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Abstract

Estimating the size of an insect pest population in an agricultural field is an integral part of

insect pest monitoring. An abundance estimate can be used to decide if action is needed to

bring the population size under control, and accuracy is important in ensuring that the correct

decision is made. Conventionally, statistical techniques are used to formulate an estimate from

population density data obtained via sampling.

This thesis thoroughly investigates an alternative approach of applying numerical integration

techniques. We show that when the pest population is spread over the entire field, numerical

integration methods provide more accurate results than the statistical counterpart. Meanwhile,

when the spatial distribution is more aggregated, the error behaves as a random variable and

the conventional error estimates do not hold. We thus present a new probabilistic approach

to assessing integration accuracy for such functions, and formulate a mathematically rigorous

estimate of the minimum number of sample units required for accurate abundance evaluation

in terms of the species diffusion rate. We show that the integration error dominates the error

introduced by noise in the density data and thus demonstrate the importance of formulating

numerical integration techniques which provide accurate results for sparse spatial data.
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Nomenclature

Unless otherwise stated, the following notation is used throughout this thesis.

List of Acronyms

Acronym Description

1D One-Dimensional

2D Two-Dimensional

IPM Integrated Pest Management

List of Latin Symbols

Symbol Description

d Dimensionless diffusion rate of pest species

D Domain representing the agricultural field

Erel Relative error of approximation formed from exact data

Ẽrel Relative error of approximation formed from noisy data

f Pest population density

h Distance between sample units / grid step size

k Degree of interpolating polynomial

L Length of the agricultural field (one-dimensional problem)

I Exact pest abundance

Ia Estimate of pest abundance formed from exact data
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Ĩ Estimate of pest abundance formed from noisy data

M Sample mean pest population density

M̄ True mean pest population density

N Number of sample units/grid nodes

p Probability of achieving a sufficiently accurate estimate

Pk(x) An interpolating polynomial of degree k

q Order of convergence of a method of numerical integration

r Degree of precision of a method of numerical integration

S Area of the agricultural field (two-dimensional problem)

w Weight of a numerical integration formula

List of Greek Symbols

Symbol Description

β Random variable perturbing the location of the grid

δ Dimensionless width of a peak (local maximum)

∆x Characteristic length of spatial heterogeneity

γ Random variable perturbing the location of the peak maximum

ν Measurement tolerance of population density data

τ Accuracy tolerance of an estimate of pest abundance

ω Factor of characteristic length of spatial heterogeneity
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Chapter 1

Introduction

1.1 The Principles of Integrated Pest Management

Pests are a sustained and significant problem in the production of food across the globe. The

term ‘pest’ can be used to describe any organism which is deemed to cause harm to mankind in

some manner; in crop production this label is given to those which damage or destroy potential

produce to an unacceptable extent. Crops are vulnerable to attack from pests both during the

growing process and after they have been harvested. When pests of crops prior to harvest are

considered, the focus is often predominantly on arthropods, plant pathogens and weeds (e.g

[54, 88]). Estimates of the annual worldwide loss due to pests at this stage in the production

process lie between 35 and 42% [61, 82]. In particular, the pre-harvest loss of 14-15% of the

world’s crops has been attributed to insect pests [81, 80]. Further losses are incurred after the

crops have been harvested. This can be due to infestation of stored crops by pests such as

insects, rodents, birds, as well as micro-organisms which cause damage both quantitative and

qualitative in nature [41]. Such losses have been estimated to range from 10-25% [81].

In order to minimise these losses, the pest population must be managed in some way to

control their abundance or density. Measures of so-called ‘preventative pest management’ can

be put into practice; the idea being to try to stop the pest population from becoming a problem

in the first place. Age-old examples of such a tactics are crop rotation and intercropping. In

1This chapter is an edited version of the introduction presented in [68].
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a crop rotation, instead of an agricultural field consistently being used to grow the same crop,

different crops which critically host different pests, are grown sequentially. Intercropping is the

planting of different crops within the same field at the same time. Variety can also be introduced

by planting several genotypes of the same crop species within a field. Introducing heterogeneity

in such ways, either spatially, temporally, or genotypically, can destablise the life cycle of a

pest and has been documented to help to control pest populations [53, 91]. A pest’s preference

for a certain plant can be exploited to the farmer’s advantage using a technique called trap

cropping. Here, crops are interspersed with plants that are more attractive to the pest and thus

act as sacrificial decoys. This diversionary ploy can be sufficient to protect the crop in itself,

otherwise it reduces the area of the field to be subjected to further management tactics should

they be needed since the pests are then located in localised domains [44]. Another precautionary

measure is to grow crops which have been cultivated to be resistant to pest attack. Grafting

has been used for centuries to manage certain pathogens and it has also been deemed to be

useful in the control of arthropod pests and weeds [54]. A more scientifically advanced means

of pest resistant plant cultivation is genetic modification. This is a relatively recent initiative of

which the risks are not yet fully understood, however, its potential to become the dominant pest

management strategy has certainly been recognised and consequently it has become the focus

of much research (e.g [7, 20, 38, 93]).

Another way of managing pests is to implement a control action, that is, to employ a means

of killing the pest organisms. The most widely used control action is the application of pesticides.

It has been estimated that around 3 million metric tonnes are used across the globe per year

[80]. Biological control actions, e.g releasing a natural enemy of the targeted pest into the

agroecosystem, provide an alternative to the use of chemicals. The indiscriminate use of control

actions or using them as a preventative measure can have serious negative consequences. For

instance the regular use of pesticides often leads to the pest becoming resistant making future

management a more difficult task [3]. Another unwanted side effect can be that the pesticide

has lethal or sub-lethal effects on natural enemies [95] which can cause a resurgence in the pest

population or a secondary pest to emerge.
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Recognition that precautionary tactics are rarely sufficient to manage pests alone and that

relying entirely on control action is not a durable approach led to the emergence of ‘integrated

pest management’ (IPM) [50]. IPM is the incorporation of several different tactics which work

cooperatively together to protect crops from pest attack in a more sustainable way. It consists

of the three phases. Firstly, preventative measures of pest management are put in to place.

Subsequently, the pest abundance is monitored. The decision of whether or not to implement

a control action is then made by comparing the abundance of pests against some threshold

level, i.e. the limit at which intervening becomes worth the effort or expense. Such threshold

values can be decided upon by taking a variety of factors into consideration, however, the

most often used are economic thresholds in accordance with the work presented in [99] as often

the overriding concern is that the pest management programme is financially viable (e.g see

[43]). The principle of IPM is therefore that a control action is only used if and when it is

necessary. Thus monitoring is key to the decision process and is considered an essential part of

any integrated pest management and control programme [18, 57].

1.2 Methods of Estimating Pest Abundance

Since different pest types have different behaviours, the monitoring methodology varies accord-

ingly. We thus limit our scope to the consideration of insect pests; henceforth in the text the

generic term ‘pest’ is used synonymously with ‘insect pest’ unless otherwise stated. The pro-

cedure also depends on the environment to be monitored. Let us consider pest management of

crops prior to harvest. Furthermore, let us take the spatial scale of the monitoring procedure

to be that of an agricultural field. A complete census in this case is hardly practical or indeed

possible, therefore the population abundance must instead be estimated. The data to form such

an estimate is collected by sampling the pest population for which there exists a multitude of

techniques (e.g see [4, 12, 46, 96]). A direct, in-situ count can be made of the number of pests

in a sample unit e.g a plant or a unit area of habitat. For the more inconspicuous species,

the counting process can be made easier by dislodging the pests from the plant using a practice

known as ‘knockdown’. In some instances a sample of the habitat itself may be carefully removed

and taken to a laboratory where the count can then be made.
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Once the data has been collected the arithmetic mean number of pests M per sample unit

is calculated as follows:

M =
1

N

N
∑

i=1

fi, (1.2.1)

where fi are the individual sample counts, and N is the number of sample counts taken [29].

From the mean number of pests per unit area, an estimate of the number of pests in the entire

agricultural field is obtained by scaling by its area [94]. A mean number of pests per plant can

be converted to the mean per unit area by multiplying by the mean number of plants in such an

area. Such an estimate of pest abundance is considered an ‘absolute’ estimate since the sample

counts directly reflect the number of pests in the sample unit.

Although the sampling techniques outlined above are very effective, they are time consuming

and costly to implement, particularly on a large scale. Thus, often quicker and more cost effective

means of sampling are used instead. One such technique is netting. A net is swung into the

crops for a prescribed time or number of sweeps. The pest insects caught inside are then counted

(e.g see [66, 96]). A mean count per sample unit can then be calculated as above.

Another widely used sampling technique is trapping. Traps are installed in the field, exposed

for a certain amount of time, after which the traps are emptied and the pests counted. The

position of the traps can be arbitrary; some ecologists opt for random grids of traps or choose

appropriate sampling patterns [2, 56], but in many cases they are placed at the nodes of a

rectangular grid [36, 45]. The traps can either be active, whereby an attractant is used to draw

the pests into the traps e.g bait or pheromones, or they can be passive where capture relies on

the activity of the pest species. The trap counts provide information about the pest population

density at the position of the traps [19, 84] and the sample mean density can then be calculated

by scaling (1.2.1) with relation to the area of the agricultural field, where fi are now the pest

densities at the sample locations.

The above techniques yield a relative estimate of abundance rather than an absolute estimate.

The counts are not a direct measure of pest abundance but are relative to the sampling technique

and the conditions at the time of sampling. Therefore, only relative estimates which have been

obtained via the same sampling technique and in the same conditions can be compared. It is
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possible, however, to convert an estimate that is relative to one that is absolute using regression

analysis [15] or through calibration using experimental data [35]. Steps to achieve this via

mathematical modelling have also been made [73].

An estimate of the population abundance can also be achieved using Mark-Release-Recapture

methods. Initial sampling is performed and the catch is counted and marked in some way (e.g

see [42]). The marked population is then released back into the agroecosystem and another

round of sampling is conducted. An estimate of the population size can then be formulated

using the condition that the proportion of marked insects in the field is equal to the proportion

of marked insects found in the second sample. That is, the following can be rearranged to solve

for I

Î

I
=

Ĉ

C
, (1.2.2)

where Î is the total number of marked insects, I is the number of insects in the entire population,

C is the number of insects caught in the second sample and Ĉ is the number of those which are

marked. This method works well in scientific studies but is too labour intensive to be suitable

for routine monitoring.

1.3 The Importance of Accurate Estimation

Once an estimate of the pest population size in an agricultural field has been acquired, a pest

management decision is made by comparing it to some threshold value(s). Let us consider the

simplest case where a single threshold value is used. If the estimate falls below the threshold the

decision is to take no action, whereas if it exceeds the threshold the decision is to intervene and

implement a control action (e.g see [9], Chapter 1). The decision can be considered to be correct

if the same conclusion would have been reached if the true pest abundance had been known.

However, by definition the true abundance is unknown, thus we require information about the

reliability of the estimate in order to have confidence about the decision’s validity. Suppose we

can define the accuracy of an estimate Ia as being within some tolerance τ of the true abundance

I. This subsequently means that an estimate Ia belongs to the range [I − τ, I + τ ]. There is

only a risk of an incorrect decision if the threshold value falls within this range. If the accuracy
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of an estimate can be quantified, in turn, the risk can be quantified. Furthermore, clearly the

smaller the tolerance τ , i.e. the more accurate the estimate, and the lesser the risk of making

an incorrect pest management decision.

An incorrect decision could mean that action is not taken when it is needed leading to

the loss of crops. The value of crops lost to pests in generic sense of the term (insects, plant

pathogens and weeds) has been estimated to be $2,000 billion per year even with the use of

pesticides [80]. Obtaining a more accurate estimate of the pest abundance could lead to the

more timely use of a control action and ultimately reduce crop loss. On the other hand, the use

of a control action could be recommended unnecessarily. The most common means of control is

the application of pesticides which is a costly procedure that can cause considerable damage to

the environment [48]. Pesticides are known to contribute to air, soil and water pollution whilst

there is growing evidence linking their use to human illnesses [1, 25]. It has been estimated that

less than 0.1% of pesticides used reach their targeted pest, the remaining 99.9% is absorbed

by some means into the environment [79]. Some of the loss occurs during application with

the spray drifting outside of the intended area, however once applied to a crop, pesticides can

then vaporise into the air, end up in surface or groundwater, be absorbed by plants or ingested

by non-target species, or indeed remain in the soil. Furthermore, unnecessary application of

pesticides is undesirable from an economic perspective; around $40 billion is spent per year

applying pesticides [80].

It is obvious from the above that there is a significant need for reliable methods to accurately

evaluate the pest population size in order to avoid making an incorrect decision regarding the

use of a control action. It is worth noting here that the accuracy required by pest monitoring is

not always particularly demanding. It differs according to the monitoring purpose. In routine

monitoring an error range can be 20%−100% [65, 89], whereas monitoring for research purposes

can demand a higher degree of accuracy of 10% (e.g see [66], p. 245).

Several means of optimising the accuracy of an estimate have been considered in the ecological

literature. One way is to ensure that the size of the data set is large enough i.e. that enough

sample units are taken. It follows from the equation (1.2.1) that the exact value of the population
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size will be obtained for infinitely large number N . Hence we can expect better accuracy of the

estimate when N gets larger. A pre-sample (or series of them) can be used to obtain a sample

mean and sample variance from which an estimate of the number of sample units needed to

achieve a specified precision can be calculated (e.g see [9, 31, 66]). However, there is a trade-off

between the number of sample units needed to achieve sufficient accuracy and the number that

can be practically afforded. For instance, if a trapping procedure is applied in ecological research,

the number K of traps per given area can be made quite large, e.g. in the order of hundreds.

Meanwhile in routine pest monitoring programmes K rarely exceeds twenty [56] per a typical

agricultural field with a linear size of several hundred meters. In some cases, there may only

be one or a few traps per field [60]. There are several practical reasons as to why the number

of sample units cannot be made large. An increase in the number of sample units equates to

an increase in the amount of labour and hence finances required. In any real-world scenario

there is a limit to such resources. Also, sampling introduces a disturbance into the field and

too intensive sampling can cause damage to the agricultural product. Furthermore, sampling

also imposes a disturbance on the pests which can in turn affect the results of the sampling

technique, therefore from this perspective the number of sample units should be minimised.

The efficacy of a sampling technique is also important to the accuracy of an estimate of the

pest abundance. Means of sampling a pest population are constantly being reviewed leading

to sampling equipment being developed and improved [11, 101]. Another key consideration is

the sampling plan, that is, the prescribed locations at which samples are to be taken. For an

estimate to be accurate the sample must capture sufficient information to adequately represent

the true pest presence. In theory, if conditions are homogeneous across the field, insects could be

randomly distributed. In reality, however, the population density distribution is never random

as the conditions can never truly be homogeneous, and furthermore, the location of an insect is

dependent on various factors where examples include where the egg it spawned from was laid,

and the location of other members of the population. As such, insects exhibit an aggregated

spatial distribution [36, 45] to varying degrees. The sampling plan thus becomes crucial; it is

important to avoid bias stemming from samples being placed entirely in areas where the pests

9



are clustered, or likewise, entirely in areas of zero density. Comparisons of various patterns e.g

random, transects, quadrats, etc. have been made in order to make recommendations [2].

1.4 Research Objectives

Although ensuring a sufficiently accurate estimate has been considered in the ecological literature

as discussed in the previous section, to the best of our knowledge, the focus has predominantly

been on how the data is collected. In this thesis, we instead look at the way in which the data

is processed. We discuss numerical integration techniques as an alternative approach to the

existing statistical methods.

We aim to demonstrate that numerical integration methods can be used to provide a reli-

able estimate of pest abundance. We explain the theory of numerical integration and how the

techniques can be used in ecological applications. It will be shown that often numerical inte-

gration methods can provide more accurate results than statistical techniques which rely on the

sample mean. However, restrictions imposed by the underlying ecological problem mean that

the numerical integration methods may not perform according to the conventional theory. We

go on to conduct an in depth study to establish which factors affect the accuracy of numerical

integration techniques within the framework of the pest monitoring problem, and thus gain an

understanding of how the accuracy of a pest abundance estimate may be controlled. Thus, we

make some initial steps towards the development of numerical integration methods which could

be implemented in routine pest monitoring.

We study the pest monitoring problem at the spatial scale of a single agricultural field, which

we consider as a rectangular domain. To gain an understanding of the issues we first consider

a simplified one-dimensional (1D) counterpart of the pest monitoring problem. We have then

extended some of our results to handle the two-dimensional (2D) case. We primarily consider a

regular grid of sample units, however we also carry out some investigation of quasi-regular and

random sampling plans. Our study begins by considering the density data to be exact, we then

in the later chapters consider noisy density data.

The structure of this thesis is as follows. In Chapter 2 we give an overview of the mathe-

matical theory behind numerical integration and we outline how the techniques can be used to
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evaluate pest abundance. The motive behind considering such methods as an alternative to the

widely used statistical techniques is demonstrated. In Chapter 3 we explain how the conditions

and restrictions imposed by ecological problem affect the performance of numerical integration

methods. We introduce the concept of the coarse grid problem which arises due to the limited

amount of data that can be collected. We show that the accuracy which can be achieved on

coarse grids is strongly dependent on the spatial pattern of the density distribution and that any

prior knowledge of this pattern should be used to its fullest extent. In Chapter 4 we show the link

between the diffusion rate of a species and the spatial pattern of the pest population. In turn,

we demonstrate that the diffusion is a controlling parameter of the accuracy of an abundance

estimate. We construct a rudimentary estimate of the number of regularly (and quasi-regularly)

spaced sample units required to achieve an estimate with a prescribed level of accuracy. In

Chapter 5 we study a particular type of density distribution which is difficult to handle, namely

a highly aggregated distribution. We introduce a new computational grid classification, ultra-

coarse, where the accuracy of an estimate can only be described probabilistically. An improved

estimate of the minimum number of regularly spaced sample units needed to guarantee accu-

racy is found. The results of this chapter are then extended in Chapter 6 to be applicable for

a random sampling plan, which is often viewed favourably by ecologists. In Chapters 7 and

8 we investigate how noise in the density data affects the accuracy of an abundance estimate.

Conclusions of the entire study are provided in Chapter 9.
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Chapter 2

Numerical Integration Methods

In this chapter methods of numerical integration are discussed within the framework of the

ecological problem of monitoring a pest population in a single agricultural field. First, the basic

concepts of numerical integration are outlined in Section 2.1. Subsequently, in Sections 2.2 – 2.4

examples are given of specific methods which could be implemented to evaluate pest abundance.

The potential benefits of using numerical integration techniques instead of a standard statistical

approach are highlighted in Section 2.5. Chapter conclusions are given in Section 2.6.

2.1 Theory of Numerical Integration

Once information on the pest population in an agricultural field has been gathered by a chosen

sampling technique, an estimate of the pest abundance can be formulated. Typically the estimate

used within the ecological community depends on the sample mean [29]. Under the assumption

that sample counts can be manipulated to give the pest density at each sample unit location

[19, 84], an estimate Ia to the true abundance I can be calculated as

I ≈ Ia = SM(N) =
S

N

N
∑

i=1

fi, (2.1.1)

where S is the area of the field, M(N) is the sample mean pest density, N is the total number

of sample units and fi denotes the pest population density at the sample unit location xi,

i = 1, . . . , N . By the law of large numbers (e.g see [40]), as N grows large, the sample mean

density M tends to the true mean density M̄ . Thus, as N grows large the above estimate of the

12



pest abundance Ia tends to the exact pest abundance I.

The estimate of the pest abundance given by the formula (2.1.1) is simply a weighted sum

of the available pest population density values. Generalising this formula leads us to consider

numerical integration techniques as a means of estimating pest abundance. Let the agricultural

field subjected to pest monitoring be represented by the domain D. If the pest population

density function f(x, y) were known to us almost everywhere across the domain D, then the

exact pest abundance I could be calculated by analytically evaluating the integral

I =

∫∫

D

f(x, y) dx dy. (2.1.2)

However, the information on the pest population density is obtained by sampling and as such

is only available to us at a finite number N of locations. Consequently, the pest population

density function is discrete, namely, f(x, y) ≡ fi, i = 1, . . . , N . The above integral cannot be

evaluated and thus we are forced to seek an approximation by means of numerical integration.

The general formula for numerical integration is given by the weighted sum (e.g see [28])

I ≈ Ia =
N
∑

i=1

wifi, (2.1.3)

where the weights wi, i = 1, . . . , N depend on the specific method of numerical integration. It is

easy to see on comparison with the above that the formula (2.1.1) can be considered as a simple

form of numerical integration where the weights are uniformly defined as

wi =
S

N
, i = 1, . . . , N. (2.1.4)

There are, of course, many other possible combinations of weight coefficients other than

that prescribed by (2.1.4) which can be used in the formula (2.1.3) to yield an estimate Ia.

The weights must be chosen, however, such that the resulting estimate Ia satisfies the following

condition

Ia(N) → I, as N → ∞. (2.1.5)
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In other words, as the data set fi, i = 1, . . . , N increases in size, the estimate Ia produced

increases in accuracy. To assess the accuracy we may consider the absolute approximation error

which is a measure of the magnitude of the distance between an estimate and the exact solution

and is defined as

Eabs(N) = |I − Ia(N)|. (2.1.6)

Alternatively we may calculate the relative approximation error given by

Erel(N) =
Eabs

|I| =
|I − Ia(N)|

|I| , (2.1.7)

which quantifies the accuracy of an estimate Ia as a proportion of the exact solution.

Let us consider the absolute error (2.1.6). From (2.1.5) we obtain the following condition

Eabs(N) → 0, as N → ∞. (2.1.8)

In order to calculate the absolute error (2.1.7) of an estimate Ia, we require the value I. We recall

that in the pest monitoring problem I corresponds to the true pest abundance present in the

agricultural field which in reality cannot be known. In such a situation the standard approach

is to decide on the accuracy by considering the asymptotic error estimate of the employed

numerical integration method. An error estimate often takes the following form (e.g see [83])

Eabs(N) ≤ C

N q
sup

x∈[a,b]
|f (r+1)(x)| (2.1.9)

where C, q and r are constants dependent on the choice of weight combination used in formula

(2.1.3). In particular, q is the order of convergence i.e. the rate at which Eabs converges to

zero as N grows infinitely large. The degree of precision, that is the degree of polynomial for

which the method is exact, is denoted by r. We typically expect that the higher the order of

convergence of a method of numerical integration, the more accurate the estimate produced will

be. Some examples of legitimate weight combinations such that condition (2.1.8) is satisfied are

discussed in Sections 2.2 - 2.4 alongside their corresponding orders of convergence and degrees
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of precision.

2.2 Methods of Numerical Integration on a Regular Grid

We first consider the 1D problem and discuss potential weight coefficient combinations to be

used in the formula (2.1.3). 2D methods of numerical integration are discussed in Section 2.4.

We reduce the problem to one dimension by considering the domain D in the focus of pest

monitoring as a straight line. The domain D is therefore defined as the interval D = [a, b] and

the integral (2.1.2) becomes

I =

∫ b

a
f(x) dx, (2.2.1)

where f(x) ≡ fi, i = 1, . . . , N . This can be thought of as considering a single transect from the

grid of data as depicted in Figure 2.1. It is worth noting that there is evidence to suggest that

of the contiguous sampling formations, a straight line provides the most accurate estimations

[2]. Therefore, 1D methods of numerical integration may also be useful in the practical problem

of pest monitoring.

Numerical integration formulae are derived by somehow interpolating between the available

data points fi, i = 1, . . . , N (see Figure 2.1b). The weights wi, i = 1, . . . , N in the formula (2.1.3)

are then determined by integrating the resulting interpolating function. The definition of the

weights therefore depend on the means of interpolation used, and the sampling plan i.e. the way

the sample unit locations which correspond to the grid nodes xi, i = 1, . . . , N are distributed.

Let us first consider a regular sampling plan, whereby the sample units are evenly spaced over

the domain D. Such a plan is often used in pest monitoring [36, 45]. In the 1D problem, this

equates to each of the grid nodes xi being a fixed distance h from its neighbouring grid nodes.

We refer to h as the grid step size.

When the data points fi are available at evenly spaced grid nodes xi, commonly used weight

choices in the formula (2.1.3) are those prescribed by the Newton-Cotes rules1. This family of

numerical integration formulae finds a polynomial Pk(x) of degree k which passes through the

1The Newton-Cotes formulae are the work of Isaac Newton (1642-1727) and Roger Cotes (1682-1716). For
details of the history see [39], pp. 76-77.
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Figure 2.1: (a) Example of field data [45]. The numbers represent the sample unit counts from
which the pest population density at the sample unit location can be obtained. Samples were
obtained by means of pitfall traps. Data from a line of sample units is extracted from the grid
therefore reducing the problem to one dimension; considered sample units are outlined. (b)
Sketch of the pest population density function obtained from such counts [69]. The density
f(x) = f(xi) represented by the filled circles is known only at the location of the sample units
denoted by x1, x2, ..., xN . The continuous distribution shown by the dashed curve is not known.

data points fi, i = 1, . . . , k + 1. The polynomial Pk(x) is defined by the Lagrange interpolation

formula (e.g see [100])

Pk(x) ≡
k+1
∑

i=1

fiLi(x),

where Li is the Lagrange polynomial given by

Li(x) =
k+1
∏

j=1
j 6=i

x− xj
xi − xj

.

An approximation Ia to the exact integral I is then calculated by integrating analytically the

interpolating polynomial Pk(x) as follows

16



I ≈ Ia =

∫ b

a
Pk(x) dx.

The degree k of the interpolating polynomial depends on the number of grid nodes where the

pest population density values fi are available. A polynomial of degree k requires N = k+1 data

points fi to be available. The weights in (2.1.3) as prescribed by the Newton-Cotes formulae

are thus

wi =

∫ b

a
Li(x)dx.

There are two forms of Newton-Cotes formulae: open and closed (e.g see [17]). When the

regular grid of nodes includes the limits a and b of the domain D, i.e. the grid nodes are defined

as

x1 = a, xi = xi−1 + h, i = 2, . . . , N − 1, xN = b, (2.2.2)

where the grid step size is h =
b− a

N − 1
, then the weights produced correspond to the closed

Newton-Cotes formulae. If, however, the endpoints of the grid do not coincide with the limits

a, b and the grid nodes are instead defined as

x1 = a+
h

2
, xi = xi−1 + h, i = 2, . . . , N − 1 xN = b− h

2
, (2.2.3)

where the grid step size is defined as h =
b− a

N
, then the open Newton-Cotes formulae are

derived. Regularly spaced nodes which include either the left endpoint a or the right endpoint b

give rise to the semi-open Newton-Cotes formulae [30]. In the practical terms of pest monitoring,

the implementation of formulae of the closed type require sample units to be located on the field

boundary in order to obtain an estimate of the pest abundance in the whole field. The open

type formulae, however, can be applied to obtain an estimate if the sample units are inset from

the field’s edge.
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Figure 2.2: Piecewise approximation of the function f(x) by polynomials of degree k. The figure
is as given in [68]. (a) k = 0 (b) k = 1 (c) k = 2.

As implementation of the Newton-Cotes formulae requires the computational grid to be

regular, their asymptotic error estimates can be expressed in the form

Eabs ≤ Chq sup
x∈[a,b]

|f (r+1)(x)|, (2.2.4)

where h > 0 is the grid step size. The constants C, q and r have dependence on the degree

k of the employed interpolating polynomial. Once again q represents the method’s order of

convergence and r its degree of precision. The accuracy of an estimate is clearly dependent

on the grid step size h. Furthermore, a smaller grid step size corresponds to a larger number

N of grid nodes and therefore a higher degree k of polynomial is required to interpolate the

data over the entire interval [a, b]. As documented in many a textbook (e.g see [17]), higher

order interpolating polynomials constructed on a regular grid exhibit oscillatory behaviour and

therefore yield inaccurate estimates Ia of an integral I. As such, Newton-Cotes formulae are not

usually applied to the entire interval of integration [a, b]. Instead, the Newton-Cotes formulae

are used locally, i.e. on a sub-interval of [a, b]. Summing the local approximations then gives the

approximation to the integral over [a, b]. This equates to applying the compound or composite

Newton-Cotes formulae (e.g see [28, 100]).

We now give some examples of some well known composite Newton-Cotes formulae. Let us

consider the sampling plan prescribed by (2.2.2). The simplest means of interpolating between

data points fi is using a constant function, that is, an interpolating polynomial Pk(x) of degree
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k = 0. An example of such interpolation is shown in Figure 2.2a where on each sub-interval

[xi, xi+1] for i = 1, . . . , N − 1 a rectangle has been constructed with the width h = xi+1−xi and

height fi. Since integrating a function f(x) can be thought of as calculating the area under the

curve, an approximation to the integral

Ii =

∫ xi+1

xi

f(x) dx (2.2.5)

is given by the area

αi = hfi.

Computing the sum

Ia =
N−1
∑

i=1

αi =
N−1
∑

i=1

hfi

gives an approximation to the exact integral I as defined by (2.2.1). The endpoint b of the

interval [a, b] has not been used as an interpolation point (the above sum does not contain the

function value fN ≡ f(xN ) = f(b)). Therefore, this method, which is commonly referred to as

the composite left rectangle rule, is of the semi-open type of Newton-Cotes formula. Alternatively

on each sub-interval [xi, xi+1] for i = 1, . . . , N−1, a rectangle with width h = xi+1−xi and height

fi+1 could be constructed. This means of interpolation yields another semi-open Newton-Cotes

formula: the composite right rectangle rule. In both cases the weights of the formula (2.1.3) are

uniformly defined as wi ≡ h, and it is only the underlying computational grid of nodes xi used

in the calculation which differs. The error estimates for both composite rectangle methods are

of the form (2.2.4) with order of convergence q = 1 and degree of precision r = 0. Generally, a

more accurate estimate formed by piecewise constant interpolation can be obtained by instead

locating the grid nodes at the midpoint of each sub-interval [xi, xi+1]. This is equivalent to using

the computational grid (2.2.3). This open type formula is the composite midpoint rule and is

known to have an improved order of convergence q = 2 and degree of precision r = 1.
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Let us increase the degree of the interpolating polynomial Pk(x) to k = 1, i.e. we interpolate

by means of a linear function. Figure 2.2b shows such an interpolation where the points xi

and xi+1 are joined by a straight line. Thus, on each sub-interval [xi, xi+1] a trapezium is

constructed. The area of this trapezium αi gives an approximation to the integral Ii given by

(2.2.5) and we have

Ii ≈ αi =
h

2
(fi + fi+1).

As before, we obtain an estimate Ia of the integral I by summing the areas αi, where

Ia =
h

2
f1 +

N−1
∑

i=2

hfi +
h

2
fN .

This corresponds to the weights of the formula (2.1.3) being defined as

w1 =
h

2
, wi = h, for i = 2, . . . , N − 1, wN =

h

2
. (2.2.6)

This integration rule, for obvious reasons, is known as the composite trapezium rule. Since the

construction of a straight line requires two points, the total number N of grid nodes is required

to be N ≥ 2. The order of convergence of the composite trapezium rule is q = 2 and the degree

of precision is r = 1.

Let us now increase the degree of the interpolating polynomial to k = 2 . We recall that a k

degree interpolating polynomial requires the function value to be known at k+1 computational

nodes xi; thus to construct an interpolating polynomial of degree k = 2 (i.e. a quadratic function)

we require the use of three grid nodes. Figure 2.2c shows a quadratic interpolating polynomial

constructed using the consecutive grid nodes xi, xi+1 and xi+2. The area under the quadratic

provides an estimate of the integral of the function f(x) over the sub-interval [xi, xi+2] and is

calculated as follows:

Ii ≈ αi =
h

3
(fi + 4fi+1 + fi+2).
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The above is known as Simpson’s rule. Let the interval [a, b] be divided into sub-intervals

[x2i−1, x2i+1] where i = 1, . . . , N−1
2 and Simpson’s rule be applied to each sub-interval. Summing

the resulting areas yields the following estimate Ia of the integral I of the function f(x) over

the entire interval [a, b]

Ia =
h

3



f1 + 4

N−1

2
∑

i=1

f2i + 2

N−3

2
∑

i=1

f2i+1 + fN



,

which is the composite Simpson’s rule. The order of convergence is q = 4 and the degree of

precision is r = 3. It can be seen from the upper limits of the summations that the number N of

grid nodes is required to be odd in order to apply the composite Simpson’s rule. Furthermore,

to be able to fit a quadratic to the data we also require that N ≥ 3. The composite Simpson’s

rule corresponds to the weights of the formula (2.1.3) being defined as

w1 =
h

3
, wi =

4h

3
, for i = 2, 4, . . . , N − 1, wi =

2h

3
, for i = 3, 5, . . . , N − 2, wN =

h

3
.

(2.2.7)

The error estimates of the composite k + 1 point Newton-Cotes formulae of either closed or

open type are known to be of the form (2.2.4) with order of convergence q = k + 1 and degree

of precision r = k when k is odd, meanwhile q = k + 2 and r = k + 1 when k is even (e.g see

[83]). From the error estimates, it appears that in general using a higher order interpolating

polynomial will give rise to a more accurate numerical integration method. This, however, is

not necessarily the case. It is well documented (e.g see [28, 100]) that for larger polynomial

degree k, some of the weights of the corresponding k + 1 point Newton-Cotes method become

negative leading to some cancellation of terms when the estimate Ia is calculated. Therefore a

less accurate estimate is produced. For this reason the k + 1 point Newton-Cotes formulae are

considered unsuitable when k ≥ 7 in the case of the closed type, and when k ≥ 2 in the case

of the open type [83, 100]. Furthermore, whilst the composite Newton-Cotes methods which

rely on constant interpolation (when k = 0) such as the aforementioned rectangle rules can be

implemented when the total number N of grid nodes is entirely arbitrary, the implementation
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of a composite k + 1 point Newton-Cotes formulae for k > 1 require the the number of grid

nodes to be of the form N = mk + 1, where m ∈ N. For small k this condition is hardly a

hindrance, e.g the only resulting requirement on the number N of grid nodes when k = 1 is that

N ≥ 2. However, the restriction makes implementation of Newton-Cotes formulae somewhat

more awkward as k grows large. As such, numerical integration is most often conducted using

methods which rely on lower order polynomial interpolation such as the composite trapezium

or the composite Simpson’s rule.

A regular computational grid, which corresponds to a regular sampling plan in the pest

monitoring problem, is required to implement a numerical integration formula of the Newton-

Cotes family. In the next section we discuss methods of numerical integration on irregular

grids.

2.3 Methods of Numerical Integration on an Irregular Grid

In this section we discuss numerical integration methods on irregular computational grids. We

continue to restrict our focus to the 1D problem, thus the agricultural field is still considered as

the interval D = [a, b]. 2D numerical integration methods are discussed in the next section.

The Newton-Cotes methods are derived by integrating interpolating polynomials constructed

over a regular grid. Different methods of numerical integration can be derived by selecting an

irregular grid formation. In fact, the grid nodes can be chosen so as to maximise the degree

of precision. This procedure leads to the family of Gaussian integration rules, where the grid

nodes are located at the roots of orthogonal polynomials (e.g see [26, 100]). The weights are

always positive thus convergence of the estimate Ia to the exact value of the integral I can be

guaranteed as the number of nodes k increases. Furthermore, this class of k+1-point Gaussian

integration rules is known to have degree of precision r = 2k + 1.

Another class of methods which use irregular computational grids are the Clenshaw-Curtis

formulae [21]. The nodes of the computational grid are located at the extrema of a Chebyshev

polynomial. A k + 1 point formula has degree of precision r = k. It would appear, therefore,

that the accuracy of such methods is much poorer than the Gaussian rules, though this is only

the case if the integrand is well approximated by a polynomial. For a large class of functions the

22



accuracy of the two approaches is the same [103]. The Clenshaw-Curtis integration methods,

however, can be implemented much more quickly than the Gaussian methods with the use of

the fast Fourier Transform.

Both the Gaussian and Clenshaw-Curtis integration methods could be used to obtain an

estimate of pest abundance if the sample units were located at the roots of the orthogonal

polynomials. Even if collecting samples in a prescribed pattern is the intention, however, human

error when collecting samples or obstructions present in the agricultural field may lead to the

resulting grid of sample unit locations being different to that which was planned. We thus now

design a family of numerical integration techniques which can handle an effectively arbitrary

grid of sample units.

Let us define the sample unit locations, i.e. the computational grid of the numerical integra-

tion method, as follows:

x1 = a, xi = xi−1 + hi−1, i = 2, . . . , N − 1, xN = b, (2.3.1)

where hi > 0 for i = 1, . . . , N − 1 is the distance between grid nodes xi and xi+1. The location

of the interior nodes xi for i = 2, . . . , N − 1 are therefore arbitrary. It is only the exterior nodes

x1 and xN which are fixed to coincide with the endpoints of the interval D = [a, b].

Once again, we seek an approximation to the integral

I =

∫ b

a
f(x) dx

where the population density function f(x) ≡ fi for i = 1, . . . , N . As before, the index i is used

to represent the sample unit location xi, however, the layout of the sample units is now defined

according to the sampling plan (2.3.1) rather than following a regular sampling plan. We first

consider the integral of the population density function f(x) over the sub-interval [xi, xi+1],

namely

Ii =

∫ xi+1

xi

f(x) dx, for i = 1, . . . , N − 1
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An approximation Iai to the integral Ii is constructed by integrating an interpolating polynomial

P k
i (x) of degree k which approximates f(x) over the sub-interval [xi, xi+1], that is we have,

Ii ≈ Iai =

∫ xi+1

xi

P k
i (x) dx, for i = 1, . . . , N − 1.

Summing the local approximations Iai gives an estimate Ia of the integral I:

I ≈ Ia =
N−1
∑

i=1

Iai .

The interpolating polynomials P k
i (x) are found by Lagrange interpolation

P k
i (x) =

k+1
∑

j=1

f(xj)Lj(x),

where we recall that

Lj(x) =
k+1
∏

l=1
l 6=j

x− xl
xj − xl

.

It can be seen from the above that each interpolating polynomial P k
i (x) depends on a set

of points xj , j = 1, . . . , k + 1. By the nature of the outlined problem, on each sub-interval

[xi, xi+1] the population density function f(x) is known solely at the endpoints. Therefore, to

construct an interpolating polynomial of degree k > 1, some additional points from outside the

sub-interval [xi, xi+1] must be used. We refer to the set of points xj , j = 1, . . . , k + 1 as the

interpolation stencil.

We use the interpolation stencil presented in [72] which we outline below. The stencil is

presented for three cases: when the degree of the polynomial P k
i (x) is k = 2, k = 3, and k = 5.

The aim is to keep the stencil as symmetric as possible about [xi, xi+1] however the structure is

dependent on where the sub-interval [xi, xi+1] is positioned within the domain [a, b].

For the case k = 2 the stencil consists of three points, xi, xi+1, and one other taken either

immediately before or after the sub-interval [xi, xi+1]. The stencil used to determine P k
i (x) over
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Figure 2.3: Interpolation stencil for polynomial approximation of degree (a) k = 2, (b) k = 3
and (c) k = 5. The shaded region indicates the interval over which the polynomial is to be
integrated

25



each sub-interval [xi, xi+1] when k = 2 is defined as follows

1. xi, xi+1, xi+2 for i = 1, ..., N − 2

2. xi−1, xi, xi+1 for i = N − 1.

This is illustrated in Figure 2.3a. To construct P k
i (x) when k = 3 we require four points including

xi and xi+1. For the purpose of symmetry we aim to use xi−1 and xi+2 as the additional nodes

however for the sub-intervals at the boundaries of the domain [a, b] this is not possible. The

stencil therefore takes three forms as outlined below and shown in Figure 2.3b.

1. xi, xi+1, xi+2, xi+3 for i = 1

2. xi−1, xi, xi+1, xi+2 for i = 2, ..., N − 2

3. xi−2, xi−1, xi, xi+1 for i = N − 1.

For k = 5 there are five forms of the interpolation stencil, namely,

1. xi, xi+1, xi+2, xi+3, xi+4, xi+5 for i = 1

2. xi−1, xi, xi+1, xi+2, xi+3, xi+4 for i = 2

3. xi−2, xi−1, xi, xi+1, xi+2, xi+3 for i = 3, ..., N − 3

4. xi−3, xi−2, xi−1, xi, xi+1, xi+2 for i = N − 2

5. xi−4, xi−3, xi−2, xi−1, xi, xi+1 for i = N − 1

The stencil is symmetric for the interior sub-intervals and becomes asymmetric as [xi, xi+1]

approaches the left and right boundaries of [a, b]. See Figure 2.3c.

Clearly, increasing the number of stencil points allows a higher degree polynomial approx-

imation to be used in the problem. This in turn increases the accuracy of the approximation,

whether an approximation of the function itself or function derivatives is needed. Consequently,

extended stencils are used in various numerical methods where accurate approximation of either

temporal derivatives or spatial derivatives is required. Examples include multi-step ordinary
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differential equation methods for temporal problems, and higher order approximation of the

boundary value problem by Richardson extrapolation for spatial problems (e.g see [17]).

We shall refer to the above numerical integration technique as the Lagrange Interpolation

Integration (LII) method. It provides more flexibility than the composite Newton-Cotes formu-

lae. Firstly, it permits the use of an irregular computational grid. Secondly, the only condition

for the total number N of grid nodes is that to implement polynomial interpolation of degree k

we require N ≥ k+1. This is less restrictive than the condition on N imposed by the composite

Newton-Cotes formulae, where we recall that for k ≥ 1 the k + 1 point formulae require that

the total number of grid nodes be of the form N = mk + 1, for some m ∈ N.

Since the LII method comprises of integrating analytically local interpolating polynomials,

the only source of error stems from the Lagrange interpolation. It can be shown (e.g see [83])

that the following provides an estimate of the error induced by Lagrange interpolation:

|f(x)− Pk(x)| ≤ Chk+1
max sup

x∈[a,b]
|f (k+1)(x)|, hmax = max

i=1,...,N−1
{hi},

where Pk(x) is the degree k polynomial approximation of f(x) and the constant C is dependent

on k. Thus an estimate of the error (2.1.6) obtained when approximating the abundance by the

LII method is

Eabs ≤ Chk+1
max sup

x∈[a,b]
|f (k+1)(x)|. (2.3.2)

The order of convergence is thus q = k + 1 as hmax tends to zero, and the degree of precision

is r = k. When the degree of the interpolating polynomials P k
i (x) is k = 1, and a regular

grid is considered, the method is simply the compound trapezium rule (2.2.6). The order of

convergence for k = 3 on a regular grid corresponds to that of the compound Simpson’s rule

(2.2.7). This assertion is verified in Section 3.1 where this particular numerical integration

method is employed (see Figure 3.2a).

This technique relies on the analytical integration of the interpolating polynomials. As such,

implementation becomes awkward as k increases. Similar but more sophisticated numerical
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integration techniques are given in [23, 72] where the piecewise interpolating polynomial of

degree k is instead numerically integrated. In [72] a Gauss-Legendre formula is applied after the

interpolation has been done, thus the procedure is named the Gauss-Legendre with interpolation

(GLI) method. It is shown in [72] that it is the error induced by the Lagrange interpolation

which is dominant thus the order of convergence q is the same as the above LII method i.e.

q = k+1. In [23], this numerical integration is performed by a Clenshaw-Curtis rule. The order

of convergence is again q = k + 1, however as mentioned above, the computation can be done

with far less effort by using the fast Fourier Transform.

So far we have restricted our discussion to the 1D problem. We have outlined several 1D

methods of numerical integration which could, in theory, be used to construct an estimate Ia of

the pest abundance I in an agricultural field represented by the interval D = [a, b]. In the next

section we discuss the 2D problem and correspondingly give the details of some 2D numerical

integration methods.

2.4 Methods of Numerical Integration in Two Dimensions

We now look at the 2D problem and consider the agricultural field as a rectangular domain

D = [a, b] × [c, d]. The numerical integration techniques discussed in the previous section can

be extended to form 2D formulae. Let the sample units be located at the nodes of a rectilinear

grid with Nx nodes in the x direction and Ny nodes in the y direction, hence the total number

of sample units is N = NxNy. The exact value of the pest abundance I is the evaluation of the

integral (2.1.2) which can be expressed as

I =

∫ d

c

(∫ b

a
f(x, y) dx

)

dy =

∫ d

c
F (y) dy,

where the pest population density function is discrete, namely f(x, y) ≡ f(xi, yj), for i =

1, . . . , Nx, and j = 1, . . . , Ny. The integral F (y) can be approximated by treating y as a constant

and applying a 1D numerical integration formula

F (y) =

∫ b

a
f(x, y) dx ≈

Nx
∑

i=1

wif(xi, y),
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Figure 2.4: (a) The index pair (i, j) corresponding to the coordinate (xi, yj) of a sample unit.
There is a total of N sample units, with Nx in the x direction and Ny in the y direction.
(b) Applying the mapping (2.4.2), the index pair (i, j) is converted into a single index i′ thus
allowing the double summation (2.4.1) to be expressed in the form (2.1.3).

for some choice of weights wi. An approximation Ia to the integral I can then be obtained by

applying a 1D integration formula to F (y) which is now the integrand

I ≈ Ia =

Ny
∑

j=1

wjF (yj).

The approximation Ia is then the evaluation of the double summation

Ia =

Nx
∑

i=1

Ny
∑

j=1

wiwjf(xi, yj) =

Nx
∑

i=1

Ny
∑

j=1

Wi,jfi,j , (2.4.1)

where fi,j ≡ f(xi, yj), and we have let Wi,j = wiwj .

The above double summation can be converted to a single summation of the form (2.1.3).

The index pair (i, j) corresponds to the coordinate (xi, yj) of a sample unit. Applying the

following mapping, which is depicted in Figure 2.4, to the index pair (i, j), for i = 1, . . . , Nx and

j = 1, . . . , Ny,

(i, j) → i′, where i′ = i+ (j − 1)Nx, (2.4.2)

the double summation (2.4.1) is transformed into the following single summation
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Ia =

N
∑

i′=1

Wi′fi′ .

The above formula is indeed of the form (2.1.3), where the Wi′ are equivalent to the wi of (2.1.3).

We shall thus revert to using wi to denote the weights.

We now give the weights wi, i = 1, . . . , N in formula (2.1.3) for some well known 2D numerical

integration rules. We restrict our consideration to a regular sampling plan such that the grid

nodes (xi, yj), i = 1, . . . , N are defined by

x1 = a xi = xi−1 + hx i = 2, . . . , Nx − 1 xNx = b,

y1 = c yj = yj−1 + hy j = 2, . . . , Ny − 1 yNy = d,

(2.4.3)

where hx = (b − a)/(Nx − 1) and hy = (d − c)/(Ny − 1) are the grid step sizes in the x and y

directions respectively. On such a grid, the composite 2D Newton-Cotes formulae can be used to

obtain an estimate Ia (e.g see [17, 26]). The 2D formulae are derived according to the procedure

detailed above, whereby the 1D formula is implemented in each direction in turn. The weights

wi of the 2D composite trapezium rule are given below.
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Meanwhile the 2D compound Simpson’s rule has weights
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(2.4.5)

where the application of this rule requires the number of sample units in each direction (i.e. Nx

and Ny) to be odd.

The error (2.1.6) of an estimate obtained using a 2D composite Newton-Cotes rule is of the

form (e.g see [17, 26])

Eabs = O(hx)
q +O(hy)

q. (2.4.6)

For the 2D composite trapezium rule (2.4.4) it is known that q = 2, and for the 2D composite

Simpson’s rule (2.4.5), q = 4. The degree of precision, that is the maximum degree of the

bivariate polynomial for which the formula produces an exact result, is r = 1 and r = 3 for the

2D composite trapezium and Simpson’s rules respectively (e.g see [26]).

We have outlined how numerical integration formulae can be constructed in both one and

two dimensions. In the following section we discuss how effective these methods could be in the

pest monitoring problem of estimating pest abundance in an agricultural field.

2.5 On the Significance of the Asymptotic Convergence Rate

We have discussed methods of numerical integration along with asymptotic error estimates

(2.1.9) which are conventionally used to assess a method’s accuracy. In this section we explain

how exploiting the convergence rate of a method could be useful in the evaluation of pest

abundance. For simplicity, the examples given in this and the following section are 1D, however
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the conclusions drawn are valid for the 2D problem which is considered later in the text.

It was outlined in the introduction how the ability to quantify the accuracy of an estimate

of pest abundance translates to the ability to assess how much confidence there can be that the

resulting pest management decision, i.e. whether or not to implement a control action, is indeed

the correct one. More specifically, a more accurate estimate gives rise to greater confidence in

the decision. Let us define an estimate to be sufficiently accurate if the relative error (2.1.7)

satisfies the following condition

Erel ≤ τ, (2.5.1)

where we refer to τ as the accuracy tolerance. In ecological studies, 0.2 ≤ τ ≤ 0.5 can be thought

of as a good level of accuracy while τ ∼ 1 may even be acceptable [65, 89]. It was explained in

the introduction how the nature of the ecological problem means that the number N of sample

units (grid nodes) is limited. It would thus be preferable to employ a means of estimation which

achieves the required level of accuracy (2.5.1) for a smaller value of N . From the asymptotic

error estimates (2.1.7), we expect a method with a faster convergence rate to be a better option.

To demonstrate this, let us consider an example to compare the accuracy of estimates Ia

calculated by different numerical integration methods over a series of grids with an increasing

number of N nodes. We assess the accuracy by calculating the relative error (2.1.7) and as

such we require the the exact quantity I to be available. Consequently, let us take the pest

population density to be mathematically defined by the integrable function f(x) on the interval

[a, b] = [0, 1] as

f(x) =
√
x7 + 1/10 x ∈ [0, 1] (2.5.2)

which is shown in Figure 2.5a. Integrating this function analytically gives the exact value

I = 0.32̇. We consider a regular grid of sample unit locations defined according to the formula

(2.2.2) for a fixed value of N. The sampling procedure is simulated by evaluating the function

(2.5.2) at the computed points xi, i = 1, . . . , N to produce a discrete set of data fi, i = 1, . . . , N .
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Figure 2.5: Example of evaluating the pest abundance by means of numerical integration as given
in [34]. (a) A toy example of a pest population density function f(x) defined by the equation
(2.5.2). (b) Convergence of the relative approximation error Erel (2.1.7) for estimates obtained
using the numerical integration formula (2.1.3) with different weight choices. The abbreviations
‘stat’, ‘trap’ and ‘Simp’ indicate that the estimate was calculated by the statistical rule (2.1.4),
the compound trapezium rule (2.2.6) and the compound Simpson’s rule (2.2.7) respectively.
The accuracy tolerance (2.5.1) is set as = 0.2 (dashed line). An estimate is considered to be
sufficiently accurate when its relative error lies below this threshold.

An estimate Ia is found by means of formula (2.1.3) with the selected set of weights and the

relative approximation error Erel is calculated according to (2.1.7).

The convergence rate is established by computing Erel over a series of grids. The first grid

is formed by fixing N = N1 for some initial value N1. The subsequent grid is then generated by

recomputing the number N as N = 2N −1 and this process is repeated. Convergence curves for

the error of estimates formed using the statistical method (2.1.4), the compound trapezium rule

(2.2.6), and the compound Simpson’s rule (2.2.7) are plotted in Figure 2.5b. It can be shown

(e.g see [28]) that on a regular grid defined by (2.2.2), i.e. there are grid nodes at the endpoints

of the interval [a, b], the statistical rule has the order of convergence q = 1. Meanwhile, as

mentioned in Section 2.2 the composite trapezium and composite Simpson’s rule have orders

of convergence q = 2 and q = 4 respectively. It can be seen that the relative error adheres to
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the asymptotic error estimates and the gradient of the convergence curves correspond to the

theoretical convergence rate.

The motivation for considering an estimate other than the sample mean population density is

well illustrated by Figure 2.5b. Let us fix the accuracy tolerance (2.5.1) as τ = 0.2. Whereas the

statistical rule (2.1.4) requires a grid ofN = 9 sample units to produce an estimate which satisfies

the condition (2.5.1) that the relative error lies below the tolerance τ , the composite trapezium

rule (2.2.6) requires a grid of only N = 5 units. Furthermore, the composite Simpsons rule

(2.2.7) achieves the desired accuracy on the grid of only N = 3 sample units. In fact, for N = 3

we have Erel = 0.4363 using the statistical rule and Erel = 0.0105 when the composite Simpson’s

rule is employed. The estimate formed by Simpsons rule is over forty times more accurate than

that provided by the statistical rule. This accuracy translates to greater confidence that pest

management decision made using the estimate of pest abundance Ia is the same as the decision

that would have been made had the true value of the abundance I been known.

2.6 Chapter 2 Conclusions

We have discussed in this chapter how numerical integration techniques (2.1.3) can be applied

in the pest monitoring problem of estimating pest abundance and given examples of specific

methods. Asymptotic error estimates (2.1.9) suggest that more accurate results can be obtained

by using numerical integration rather than the standard statistical approach where in particular

higher order methods seem preferable. This is illustrated by the example given in the previous

section. A more accurate estimate of pest abundance is desirable as it translates to greater con-

fidence that the management decision made from this estimate is correct. So far we have painted

a rather promising picture for the use of numerical integration in the problem of pest monitoring.

The matter is, as demonstrated in the next chapter, the asymptotic error estimates (2.1.9) do

not always hold. Applying numerical integration within the framework of pest monitoring does

not give rise to a standard problem.
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Chapter 3

The Coarse Grid Problem of

Estimating Pest Abundance

In this chapter it is demonstrated that the restrictions imposed by the ecological problem under

consideration can affect the performance of a numerical integration technique. As such, estimat-

ing pest abundance gives rise to an atypical numerical integration problem which demands that

the conventional theory be revisited. In Section 3.1 it is shown with the aid of mathematically

significant test cases how the asymptotic error estimates given in the previous chapter do not

always hold. In Section 3.2 we explain how ecologically significant test cases can be generated.

Such test cases are studied in Section 3.3 on a regular computational grid. Results on irregu-

lar computational grids are given in 3.4. In Section 3.5, 2D data with ecological meaning are

considered. Concluding remarks are made in Section 3.6.

3.1 The Coarse Grid Problem

In this section we explain how, in the matter of estimating pest abundance, the asymptotic error

estimates (2.1.9) may not hold. This is called the coarse grid problem and was highlighted in

[70, 72]. We follow the methodology of these papers in this and the following section, studying

test case examples of the population density function to investigate the instances in which this

problem arises.

An asymptotic error estimate uses the assumption that the distance between the sample units
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Figure 3.1: Test case examples of the pest population density function. (a) The density is taken
as the function f(x) given by the equation (3.1.1) where the agricultural field is considered as
the interval [a, b] = [0, π], (b) the function f(x) is defined by (3.1.2) and [a, b] = [0.1, 1], (c) the
equation (3.1.3) describes the function f(x) and [a, b] = [0, 1].

(grid nodes) is small. This means that the number N of sample units is required to be large.

Thus, it is only reasonable to rely on an asymptotic error estimates when this condition on N is

met. We, however, are proposing to obtain an estimate Ia of pest abundance I by numerically

integrating the discrete pest population density function fi, i = 1, . . . , N obtained from sampling

data. A key restriction imposed by the pest monitoring problem is that the number N is small.

In this scenario, an asymptotic error estimate may not hold and thus cannot be relied upon to

conclude about the accuracy of an estimate Ia.

To demonstrate the issue let us consider some test cases. We follow the same procedure

outlined in the previous section whereby the pest population density is considered to be math-

ematically defined by an integrable function f(x). Thus the exact value of the abundance I is

available to us by integrating the function f(x) analytically. An estimate Ia is obtained over a

series of regular grids (2.2.2) with an increasing number N of nodes by implementing a chosen

method of numerical integration (2.1.3). The relative error (2.1.7) for each estimate is then

calculated.

Let us first define f(x) as follows, where the agricultural field is considered as the interval

[a, b] = [0, π]
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 stat trap LII, k = 3 Simp LII, k = 5

Figure 3.2: Convergence of the error Erel of estimates formed by various methods of numerical
integration. The legend in all graphs is as given above. The labels ‘stat’, ‘trap’ and ‘Simp’
indicate that the estimate was formed by the statistical rule (2.1.4), compound trapezium rule
(2.2.6) or the compound Simpson’s rule (2.2.7), while ‘LII’ indicates that the LII method
outlined in Section 2.3 was employed for the specified interpolating polynomial degree k. The
vertical dotted line marks the transitional number of nodes N∗ when the asymptotic error
estimates appear to begin to hold. (a) Convergence curves for the test case defined by the
equation (3.1.1) as shown in Figure 3.1a. We note that the assertion made in Section 2.3 that
the LII method when k = 3 converges at the same rate as the composite Simpson’s rule is
validated. (b) and (c) Convergence curves for the test case described by (3.1.2) and (3.1.3)
respectively, as shwon in Figures 3.1b and 3.1c.

f(x) = sin (x) x ∈ [0, π]. (3.1.1)

The function is a single peak spanning the entire domain [a, b] as shown in Figure 3.1a. The

exact value of the integral is I = 2. In Figure 3.2a we compare the convergence of estimates

formed by several methods of numerical integration, namely: the statistical rule (2.1.4), the

composite trapezium rule (2.2.6), the composite Simpson’s rule (2.2.7), as well as the so-called

LII method from Section 2.3 for the interpolating polynomial degree k = 3 and k = 5. It can be

seen that, like the example given in the previous section, the error Erel behaves according to the

asymptotic error estimates. For a fixed number N of nodes the method with the lowest order

of convergence q, i.e. the statistical rule, produces the least accurate estimate. Meanwhile, the
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method with the highest order of convergence i.e. the LII method with k = 5, produces the most

accurate estimate. This is the case even when the number of grid nodes N is small. We recall

that on a grid of type (2.2.2) according to the asymptotic error estimates the statistical rule has

the order of convergence q = 1, whereas the LII method with k = 5 has order of convergence

q = 6.

We now consider a different definition of the function f(x), namely the following oscillating

function

f(x) =
sin (100πx)

πx
+ 3, x ∈ [0.1, 1] (3.1.2)

shown in Figure 3.1b, where we have [a, b] = [0.1, 1] and analytical integration yields I ≈ 2.7091.

It can be seen from Figure 3.2b that convergence curves in this case do not always behave

according to the asymptotic error estimates. A discernible difference between the methods in

terms of accuracy does not present until the number of grid nodes is sufficiently increased. From

visual inspection of the graph, a difference between the composite Simpson’s method and the

supposedly higher order LII method for k = 5 only occurs once the number of grid nodes reaches

N > N∗ ≈ 200. Sufficient grid refinement is needed before the narrow peaks and troughs of

the density function (3.1.2) can be resolved and the asymptotic error estimates begin to hold.

Interestingly, on the grids with the smallest number of nodes (e.g N = 9, 17, 33, 65) it is actually

the method with the lowest asymptotic convergence rate, the statistical rule, which produces

the most accurate estimates. The conventional approach of using a higher order method to yield

a more accurate estimate is not effective on coarse grids.

Finally, let us investigate the convergence of estimates when f(x) is defined as the following

function

f(x) =
1

(x+ 0.01)5
, x ∈ [0, 1] (3.1.3)

where we have [a, b] = [0, 1]. A plot of this function is shown in Figure 3.1c. Integrating

analytically we obtain the exact value of the abundance
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I =
(0.01)−4 − (1.01)−4

4
≈ 2.5× 107.

Convergence curves for the same set of numerical integration methods considered above are

plotted in Figure 3.2c. We see from Figure 3.2c that once again the asymptotic error estimates

do not always hold. For the smaller values of N the difference in the performance between the

different numerical integration methods is not as distinct as in the case of the examples (2.5.2)

and (3.1.1). In particular, there is little difference between the accuracy of the estimates yielded

by the composite Simpson’s rule and the LII method for k = 5 until the number N of nodes

in the grid is sufficiently increased. It appears that it is only when N > N∗ ≈ 257 that the

performance of the two methods become differentiable and the higher order LII method for k = 5

begins to become distinguishably superior. The matter is that the function f(x) is such that

the density is largely contained in a very narrow sub-interval. It thus takes sufficient refinement

of the computational grid to detect and adequately resolve this region. For grids with a small

number N of nodes, this region is entirely missed and the estimate Ia obtained by numerical

integration is inaccurate. Note that the jump in accuracy visible in Figure 3.2c for convergence

curve corresponding to the the LII method approximation with interpolating polynomial degree

k = 3, is due to the computational grid geometry (see Appendix A).

Asymptotic error estimates are the usual means of drawing conclusions about the accuracy of

an estimate Ia when the exact value I is not known. However, the above examples demonstrate

that such estimates do not hold when the number N of grid nodes is too small, i.e. the grid is too

coarse, to effectively resolve the density function f(x). This leads us to define a computational

grid on which the asymptotic error estimates do not hold as a coarse grid. Meanwhile, we will

use the term fine grid to describe a computational grid where the asymptotic error estimates do

hold. We denote the number of grid nodes at which the transition occurs as N∗. A grid with

N < N∗ is therefore considered as coarse, whilst a grid with N > N∗ will be defined to be fine.

The examples considered above alongside the wider class of test cases considered in [72]

show that the number of nodes N∗ at which the asymptotic error estimates begin to hold i.e.
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the number of nodes at which the computational grid transitions from coarse to fine depends

on the spatial pattern of the pest population density function. When the population is spread

homogeneously across the entire domain as in Figure 3.1a the asymptotic error estimates hold

even for small N . Meanwhile, when the density distribution becomes patchy which is comparable

to the test case shown in Figure 3.1b, an increased number N∗ of nodes is required for the

asymptotic error estimates to hold. The situation becomes more difficult when the density is

confined to a small region (see Figure 3.1c). A heuristic estimate of the value of N∗ for an

integral calculated on an interval of length 1 was given in [70] as

N∗ ≈ s
1

∆x
, (3.1.4)

where ∆x is defined as the width of a characteristic of spatial heterogeneity in the density func-

tion e.g the width of a sub-region of steep gradient, or the width of a single peak. The coefficient

s ≥ 1 corresponds to the number of points needed to resolve the spatial heterogeneity charac-

teristic, therefore it depends on its nature. This coefficient is set as s = 1 if the characteristic is

a sub-region of steep gradient (as shown in Figure 3.1c) as only one point needs to be located

within this sub-region for it to be detected [70]. Meanwhile, it is considered in [70] that when

the spatial heterogeneity takes the form of a peak (e.g as in Figure 3.1b) that there needs to

be three grid nodes located within each peak to resolve it, i.e. s = 3. The estimate (3.1.4) can

be applied to an interval of arbitrary length [a, b] by multiplying by (b − a). For the rapidly

oscillating test case of Figure 3.1b we thus arrive at the estimate N∗ ≈ 135 where ∆x = 0.02 is

the width of a single peak and we recall that [a, b] = [0.1, 1]. Meanwhile, for the test case shown

in Figure 3.1c we have [a, b] = [0, 1] and ∆x = 0.05 as the width of the region of steep gradient

so the estimate is N∗ ≈ 200. Whilst these estimates are not precise, they give a good indication

of the order of the number N∗ of nodes required to ensure that the asymptotic error estimates

hold.

We emphasise that the definitions of coarse and fine grids depend on the behaviour of the

error Erel of an estimate rather than being definitively defined by the number N of grid nodes.

A grid with a fixed number N of nodes may be considered fine for one function f(x), and coarse
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for another. For example it can be seen by comparing Figures 3.2a with 3.2b that a grid with

N = 9 nodes can be described as fine when the function (3.1.1) is considered but coarse for the

function (3.1.2). This means that it cannot be determined from the knowledge of the number N

alone whether or not the corresponding computational grid is coarse or fine. What can be said,

however, is that when N is small the coarse grid problem may be encountered. Thus, for small

N the asymptotic error estimates cannot be relied upon to conclude about the accuracy of an

estimate. In terms of the pest monitoring problem, if we are not able to quantify the accuracy

of an estimate of pest abundance, then we cannot say how much confidence can be placed in the

management decision it implicates. An alternate means of assessing the accuracy of estimates

on coarse grids is needed.

In this section we have given examples of mathematically defined functions f(x) such that

the coarse grid problem arises. Whilst these test cases were demonstrative, they are of no real

ecological significance. We now go on to consider ecologically meaningful test cases to investigate

if and when the same problem is likely to occur in the problem of pest abundance evaluation.

3.2 Generating Ecologically Significant Data

We continue our study of the coarse grid problem by turning our attention to data sets fi, i =

1, . . . , N which are ecologically meaningful. We want to again look at the convergence rates

of estimates formed by methods of numerical integration. To produce convergence curves akin

to those shown in Figure 3.2 in the last section, we need to be able to evaluate the relative

error Erel over a series of computational grids. Using simulated data allows us to fulfill these

requirements.

The model used to generate the data is the spatially explicit form of a predator-prey model

with the Allee effect 1 also known as the Rosenzweig-MacArthur model [87]. It consists of a

set of coupled reaction-diffusion equations which describes the spatio-temporal dynamics of the

pest species i.e. how the pest species moves within a closed space over time. The prey species

is considered to be the pest attacking the crops, while the predator is a species which in turn

1The Allee effect (e.g see [59, 104]) is a nonlinear positive relationship between the population density and the
per capita growth rate. It means that if the population size falls below a threshold value, the per capita growth
rate will decrease.
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feeds on the pests. The spatially explicit form of the Rosenzweig-MacArthur model is as follows

∂F (X,Y, T )

∂T
= D1

(

∂2F

∂X2
+

∂2F

∂Y 2

)

+ F (F − FT )(K − F )
4α

(K − FT )2
− AFG

F +B
(3.2.1)

∂G(X,Y, T )

∂T
= D2

(

∂2G

∂X2
+

∂2G

∂Y 2

)

+ κ
AFG

F +B
−MG (3.2.2)

(e.g see [59, 104]). The prey and predator population densities are denoted F and G respectively

and are functions of position (X,Y ) and time T , where T > 0 and we take 0 < X < L,

0 < Y < L. The parameter L represents the lengths of the closed square space, which represents

an agricultural field. The first terms in both equations represent the dispersal of the species. In

(3.2.1) the second is the combined births and deaths of the prey, and the third term represents

the prey lost to the predator. In (3.2.2), the second term signifies the growth of the species due

to predation, and the final term represents the death of the predator.

The above system depends on eight parameters: D1 and D2 denote the diffusion rates of

populations F and G respectively, K represents the carrying capacity for the prey, FT is the

Allee threshold density where 0 < FT < K, α is the maximum prey per capita growth rate,

A is the rate at which the predator attacks, B is the half-saturation prey density, the food

assimilation efficiency coefficient is denoted by κ, and M signifies the death rate of the predator.

The model described by equations (3.2.1) and (3.2.2), has been rigorously tested against field

data [55] and shown to be a reliable within a certain parameter range. Therefore we believe the

test cases subsequently generated from this model to be ecologically realistic.

In order to make the implementation of the model simpler, the number of parameters upon

which the system depends is reduced. Firstly let D1 = D2 = D. The number of parameters

can then be further reduced by writing the equations (3.2.1) and (3.2.2) in dimensionless form.

The non-dimensionalisation process is as described in [71]. The variables X and Y represent the

species position in space and hence they are lengths. Therefore, X can be non-dimensionalised

by scaling by the length of the agricultural field in the X direction, namely L. That is, the

dimensionless variable x = X/L is introduced. Correspondingly, the variable y = y/L is also

introduced where we recall that L is also the length of the agricultural field in the y direction.
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The carrying capacity K is measured in inverse area units, as is the prey density F , therefore

f = F/K is the dimensionless prey density. The dimensionless predator density is defined as

g = G/(κK). Finally, the attack rate A has units in terms of inverse time, and the parameter B

is measured in inverse area units. Hence t = κAKT/B is a dimensionless time variable. Substi-

tuting these dimensionless variables into the equations (3.2.1) and (3.2.2) gives a dimensionless

form of the system (e.g see [71])

∂f(x, y, t)

∂t
= d

(

∂2f

∂x2
+

∂2f

∂y2

)

+ βf(f − χ)(1− f)− fg

1 + Λf
(3.2.3)

∂g(x, y, t)

∂t
= d

(

∂2g

∂x2
+

∂2g

∂y2

)

+
fg

1 + Λf
−mg (3.2.4)

where d = BD/(κAKL2), m = MB/(κAK), Λ = K/B, β = 4αBK/(Aκ(K − FT )
2), and

χ = FT /K are dimensionless parameters. Numerical solution of the equations (3.2.3) and

(3.2.4) at a fixed time t = t̂ > 0 and for chosen values of the other parameters yields a discrete

density distribution f(x, y) ≡ fi, i = 1, . . . , N .

Before we consider the 2D problem, we first gain some insight by studying some 1D test

cases with ecological significance. These test cases were generated in [70] from the numerical

solution of the 1D counterpart of the system of equations (3.2.1) and (3.2.2), namely

∂F (X,T )

∂T
= D1

∂2F

∂X2
+ αF

(

1− F

K

)

−A
FG

F +B
(3.2.5)

∂G(X,T )

∂T
= D2

∂2G

∂X2
+ κA

FG

F +B
−MG (3.2.6)

where T > 0 and 0 < X < L and the parameters have the same meaning as described earlier.

Matters are simplified by again assuming D = D1 = D2. The non-dimensionalisation procedure

is as described in [70] whereby the variables are redefined as x = X/L, t = αT , f = F/K and

g = AG/(αK). The dimensionless form of the above 1D system is thus
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∂f(x, t)

∂t
= d

∂f2

∂x2
+ f(1− f)− fg

f + Λ
(3.2.7)

∂g(x, t)

∂t
= d

∂g2

∂x2
+ k

fg

g + Λ
−mg (3.2.8)

where d = D/(αL2), Λ = B/L, k = κA/α, and m = M/α are dimensionless parameters.

Solving the equations (3.2.7) and (3.2.8) at some fixed time t on a regular grid (2.2.2) of nodes

xi, i = 1, . . . , N gives a discrete density function f(xi) ≡ fi, i = 1, . . . , N .

3.3 Numerical Integration of Ecological Data on Regular Grids

In this section 1D ecologically significant test cases are studied to gain insight, 2D examples are

considered later in the chapter in Section 3.5. Three 1D test case examples as shown in Figure

3.3 are considered. These test cases were generated in [70] by numerically solving the system

of equations (3.2.7 –3.2.8) on a very fine regular grid of Nf = 32, 769 nodes across the unit

interval [0, 1]. The datasets were supplied by the authors of [70] and subsequently used within

this study. The system of equations were solved by the method of finite differences where the

results of a explicit finite difference scheme was also validated by a more advanced alternate

directions scheme to avoid any numerical artefact (see [78]). The boundary conditions were

taken as ∂f/∂x = ∂g/∂x = 0 at any boundary of the domain (i.e. the no-flux conditions).

Varying the dimensionless time t and diffusion d parameters produces a differing number of

peaks: a single peak function shown in Figure 3.3a, a three peak function shown in Figure 3.3b,

while Figure 3.3c shows a multi-peak density function. The values of Λ, k and m are the same

for each test case. The specific parameter values, along with the initial conditions used are given

in the caption of Figure 3.3.

We now investigate the rate at which estimates of pest abundance converge for each of the

test cases shown in Figure 3.3. We again follow the procedure previously outlined. That is, we

calculate estimates Ia by a means of numerical integration (2.1.3) and then the relative error

Erel as defined by (2.1.7) over a series of regular grids (2.2.2) with an increasing number N

of nodes. Since the pest population density function was constructed by numerical solution of
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Figure 3.3: Test case examples of the pest population density function as used in [70] generated
from the 1D spatially explicit form of the Rosenzweig-MacArthur model given by equations
(3.2.7) and (3.2.8). The dimensionless time and diffusion parameters are set as (a) t = 50, d =
10−4 (b) t = 100, d = 10−5 and (c) t = 400, d = 10−5. The remaining parameters are fixed as
Λ = 0.3, k = 2 and m = 0.7 for each test case. The initial conditions used in the system are
f(x, 0) = f̂ and g(x, 0) = ĝ+ x+0.01, where (f̂ , ĝ) is the unique steady state of the non-spatial
form of the system, i.e. the equations (3.2.7) and (3.2.8) without the first term. The population
density function is discrete available only at the nodes of a fine, regular, computational grid.

a mathematical model, it is discrete. Hence, we cannot integrate the function analytically to

obtain the true value of the pest abundance I. However, the population density function is

available to us at the nodes of a very fine regular grid of Nf = 32, 769. We thus integrate the

function numerically on this fine grid and treat this value which we denote INf
as the ‘exact’

value. We choose the compound trapezium rule (2.2.6) to generate this ‘exact’ value. A simple,

low order method is used in order to limit the effect of the round off error incurred over such a

fine mesh. An estimate Ia on a coarser grid of N < Nf nodes is found by extracting the relevant

pest density values from the already established set fi, i = 1, . . . , Nf and applying the chosen

method of numerical integration.

Figures 3.4a–c show the convergence curves of estimates formed by the composite Simpson’s

rule (2.2.7) and the LII method of Section 2.3 with interpolating polynomial degree k = 5 for

the test cases shown in Figure 3.3a–c respectively. We compare the performance of these two

methods to determine if the coarse grid problem described in the previous section arises when

ecologically significant data is considered. If the coarse grid problem does not present itself, and
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 Simp LII, k = 5

Figure 3.4: Convergence of the error Erel of estimates formed by the the compound Simpson’s
rule (2.2.7) or the LII method outlined in Section 2.3 where the interpolating polynomial degree
is set as k = 5. The legend in all graphs is as given above. (a)–(c) Convergence curves for the
test case shown in Figure 3.3a–c respectively.

the asymptotic error estimates (2.1.9) hold, then we would expect the LII method with k = 5

which has order of convergence q = 6 to produce more accurate estimates than the composite

Simpson’s rule which we recall has order of convergence q = 4.

It can be seen from Figure 3.4 that this is not always the case; the number N of grid nodes

must be sufficiently increased before the accuracy of the estimates behave in accordance with

the asymptotic error estimates and the accuracy of the LII method with k = 5 becomes superior.

For instance, Figure 3.4a shows that on a grid of N = 9 nodes, the accuracy of the two methods

is very similar for the one peak density function of Figure 3.3a. In fact, the estimate produced

by the composite Simpson’s rule is slightly more accurate. However, once the grid is refined to

have N > N∗ ≈ 9 nodes, the LII method with k = 5 produces a more accurate estimate. By

the time the grid is refined to have N = 17 nodes, the LII, k = 5 estimate is more accurate by

several orders of magnitude than the composite Simpson’s rule. Grids of N > N∗ ≈ 9 nodes

can be described as fine since the asymptotic error estimates hold. Figures 3.4b and c show that

further grid refinement, i.e. a higher number N of grid nodes is required in order to sufficiently

resolve the increased level of spatial heterogeneity of the three peak and multi-peak density

functions such that the error behaves according to the error estimates. The grid appears to be
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sufficiently refined when N = 65 for the three peak distribution. On grids with N = 9, 17 and 33,

the difference between the accuracy of the two numerical integration methods is small. For the

multi-peak density function, the grid must be refined to N = 129 nodes before the asymptotic

error estimates hold reliably. Looking at the behaviour of the error prior to this level of grid

refinement, there is at first little difference between the accuracy of the two methods, cf. the

errors on the grids with N = 9 and N = 17. There is then some alternation between which

method produces the most accurate estimate until the grid is refined to have N = 129 nodes.

These results demonstrate that the coarse grid problem arises when ecologically significant

data is considered. Furthermore, they confirm the conclusion of the previous section that the

number N∗ of grid nodes required for the asymptotic error estimates to hold depends on the

spatial pattern of the density distribution. The value of N∗ grows larger as the density distri-

bution becomes more patchy. This was shown to be the case for a more comprehensive set of

1D test cases with ecological significance in [70].

It should be pointed out that sufficiently accurate estimates may still be obtained on coarse

grids; however that the accuracy cannot be predicted by the error estimates. For instance, on a

grid with just N = 9 nodes, the relative error of estimates obtained via the compound Simpson’s

rule and the LII method for k = 5 are ESimp
rel ≈ 0.10267 and ELII,k=5

rel ≈ 0.11483 respectively for

the three peak test case shown in Figure 3.3b. For the multi-peak test case the corresponding

errors are ESimp
rel ≈ 0.24011 and ELII,k=5

rel ≈ 0.24135. These values are within the tolerance range

0.2 ≤ τ ≤ 0.5 considered as good accuracy in ecological applications. Before we move on to

study ecologically significant data in 2D, we first investigate numerical integration on irregular

grids in the next section which follows the discussion given in [68].

3.4 Numerical Integration on Irregular Grids

So far we have considered using methods of numerical integration to evaluate pest population

abundance when the sampling plan is a regular grid, i.e. the samples are taken at regular

spatial intervals. However, it may be that an irregular grid is prescribed in a pest monitoring

programme. Furthermore, even if a regular grid has been selected as the intended sampling plan,

taking samples at precisely regular intervals may not be possible in practice. The landscape of
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Figure 3.5: (a) An interior grid node xi for some i = 2, . . . , N − 1 is a fixed distance h from its

neighbouring grid nodes in accordance with a regular sampling plan. (b) An interior grid node xirreg

i

which has been perturbed according to the transformation (3.4.1). The shaded region shows the possible

locations for xirreg

i , where this node is no longer an equal distance from its neighbouring nodes.

an agricultural field may have natural obstacles (e.g. a bush or a tree) that mean one or many of

the samples may then have to be taken at a location shifted from that which was intended, hence

the resulting grid of samples is irregular. We thus now investigate the accuracy of numerical

integration methods formulated on an irregular grid. Our analysis is focused on a 1D problem

for the sake of simplicity.

We have seen that estimates on coarse grids can have poor accuracy e.g see the integration

error for small values of N in Figure 3.2b. One way to improve the accuracy of integration on

coarse grids would to use an irregular grid where most of the grid nodes are concentrated in

sub-regions that present difficulties in their numerical integration (i.e. peaks or sub-regions with

a steep function gradient). However, in pest monitoring it often is not possible to use irregular

grids adapted to a spatial pattern of the density distribution because that pattern is usually not

known a priori. We assume we have no such existing knowledge.

We consider several types of grids with varying degrees of irregularity: a slightly irregular

grid, a quasi-random grid, and a random grid. We use the term slightly irregular to refer to

a simple example of an irregular grid, whereby a single sampling location is shifted from the

position prescribed by a regular sampling plan. We generate such a grid by first constructing

a regular grid (2.2.2) of N nodes. A single interior node xi, for some i = 2, . . . , N − 1 is then
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perturbed according to the following transformation:

xirregi = xi + h

(

γ − 1

2

)

, (3.4.1)

where xi is a node location on a regular grid, and γ ∈ (0, 1) is a uniformly distributed random

variable. The transformation (3.4.1) is further illustrated in Figure 3.5.

A quasi-random grid has an increased level of irregularity whilst preserving some structure.

Such grids are generated in a similar way to the method discussed above for the slightly irregular

grids. The difference is that instead of a single interior node being perturbed, all interior

nodes are perturbed. That is, the transformation (3.4.1) is applied to all interior nodes xi, i =

2, . . . N − 1 of the regular grid. This form of grid is closely related to the so called centric

systematic sampling plan (e.g see [58]) whereby the field is divided into sections and a sample is

taken from a random location within each section. Our version differs only in that we have fixed

the boundary points so as to preserve the interval of integration as [a, b]. A random sampling plan

is often viewed favourably from a theoretical viewpoint as it is considered to avoid introducing

bias into the estimate [13, 51, 85, 92], the concern being that a systematic distribution of samples

will somehow coincide with the distribution of the pests. We therefore take into consideration

such a distribution of samples in our investigation and generate the points xi, i = 1, . . . , N as

follows:

xi = a+ γ(b− a), i = 1, . . . , N, (3.4.2)

where γ ∈ (0, 1) is a uniformly distributed random variable. The points xi, i = 1 . . . N are then

sorted into ascending order and the endpoints on a random grid are then replaced as

x1 = a, xN = b. (3.4.3)

We now look at the accuracy of pest abundance estimates obtained by methods of numerical

integration on the grids outlined above. We will be using the statistical rule, and forms of

the trapezium rule and Simpson’s rule to evaluate the pest abundance. Since the statistical

rule (2.1.4) has no spatial dependence it can be applied to regular and irregular grids alike.
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Meanwhile, we must use different forms of the trapezium and Simpson’s rules to (2.2.6) and

(2.2.7) in order to be able to apply them to irregular grids. The idea remains the same as

discussed in Sections 2.2 and 2.3: replace the integrand by a polynomial function and integrate

the polynomial. The generalised trapezium rule on irregular grids is given by

I ≈ Ĩ =
N−1
∑

i=1

hi
(fi + fi+1)

2
, (3.4.4)

where the grid step size hi = xi+1−xi is variable rather than fixed as in the formula for regular

grids. We use the following adapted version of Simpson’s rule to handle irregular grids

I ≈ Ĩ =

N−1

2
∑

i=1

h2i−1 + h2i
6

(f2i−1 + 4f2i + f2i+1) , (3.4.5)

which also relies on the variable grid step size hi = xi+1−xi. As with the conventional Simpson’s

rule (2.2.7), the number of grid nodes N is required to be odd.

We illustrate the convergence on irregular grids by considering a sequence of grids as was

done above for regular grids. In the case of the slightly irregular grids, we want to determine

how perturbing a single node affects the convergence rate of a method of numerical integration,

rather than how the position of the grid node which is perturbed affects the accuracy. As such,

in each generation of the slightly irregular grids, the same interior grid node is perturbed. We

will begin all of our calculations on a grid of 3 grid nodes which has only one interior node. The

unperturbed position of this node lies at x = (a+ b)/2, therefore, it will always be this central

node which is perturbed in the generation of each slightly irregular grid. For grids with a more

significant level of irregularity i.e. the quasi-regular and random grids, each grid generation is

repeated a total of nr times thus providing nr values of the relative error (2.1.7) for any given

grid of N nodes. The mean error on a grid of N nodes is then calculated as

µ(Erel) =
1

nr

nr
∑

i=1

Ereli . (3.4.6)

We first return to a standard mathematical test case considered in Section 3.1 and evaluate
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Figure 3.6: Numerical integration of the function (3.1.1) on irregular grids. Computations are
made using the statistical rule (2.1.4) (solid line, closed circle), the trapezium rule (3.4.4) (solid
line, closed square), and Simpson’s rule (solid line, closed triangle). (a) The relative error (2.1.7)
is calculated on slightly irregular grids. Meanwhile the mean (3.4.6) of nr = 10, 000 evaluations
of the relative error is obtained on (b) quasi-random and (c) random grids. Each convergence
curve is compared with the convergence on regular grids (dashed line). The legend for each
figure is as given above.

the integral of the function 3.1.1 shown in Figure 3.1a over a sequence of increasingly refined

irregular grids. Evaluations of the error are shown in Figure 3.6. The convergence rate of

errors calculated over increasingly refined regular grids have also been plotted in each graph for

comparison purposes (see the dashed line in the figure). It can be seen from Figure 3.6a that

very little difference is made to the accuracy by perturbing a single node as the results for the

regular and slightly regular grids are close to each other.

For the quasi-random and random grids, the mean (3.4.6) of nr = 10, 000 evaluations of

the error have been plotted in Figure 3.6b and Figure 3.6c respectively. Again the convergence

curves of errors calculated over regular grids have also been plotted. It can be seen from Figure

3.6b that on average the accuracy on the quasi-random grids is similar to that on regular

grids for the statistical rule and trapezium rule. A more distinctive difference is evident in

the case of Simpson’s rule, where the increased level of irregularity leads to a more inaccurate

estimate. Using a random computational grid affects the convergence rate with varying degrees
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of prominence depending on the method of numerical integration employed as can be seen in the

Figure 3.6. The behaviour of the convergence curve for the statistical rule is different from the

convergence for the trapezium rule and Simpson’s rule. On average the randomness introduced

to the computational grid causes the convergence curves of the trapezoidal and Simpson’s rules

to be shifted upwards, that is, the resulting estimates are less accurate although they begin to

converge at a similar rate to those formulated on regular grids as N increases. The higher the

degree of method applied, the more prominent the effect seems to be, although it should be

noted that on average the accuracy still improves when a higher degree method is used. Let

us now consider the accuracy of the numerical integration of ecologically significant data on

irregular grids. Since we are required to perform repeated calculations over increasingly refined

grids, we again use simulated data. As earlier explained, the simulated ecological population

density functions were obtained through numerical solution of the 1D system (3.2.7 –3.2.8) on

an extremely fine, regular grid of Nf +1 = 215 +1 nodes on the interval [a, b] = [0, 1]. Since the

density functions are thus discrete rather than continuous, the method for generating the slightly

irregular computational grid is now different to that outlined above although the fundamental

ideas are the same. We have available a fine grid of points xfi , i = 1, . . . , Nf where

xf1 = a = 0, xfi = xi−1 +
b− a

Nf − 1
, i = 2, . . . , N − 1, xfNf

= b = 1.

To generate a slightly irregular grid of N nodes, a regular grid is first obtained by extracting

the required N nodes from the available fine grid as

xi = xfj , j = 1 + (i− 1)

(

Nf − 1

N − 1

)

, i = 1, . . . , N. (3.4.7)

A single interior node must then be perturbed, however, it must be perturbed to a value for

which the population density is available. This is achieved by replacing an interior grid node as

xi = xfj+r, γ ∈
[

− Nf − 1

2(N − 1)
,
Nf − 1

2(N − 1)

]

(3.4.8)

for some i = 2, . . . , N − 1, where j is as given in (3.4.7) and γ is a uniformly distributed random
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integer.

The generation of quasi-random grids for use with simulated ecological data is as follows.

The endpoints are fixed as

x1 = xf1 , xN = xfNf
, (3.4.9)

and the interior points are defined as

xi = xfj+r, r ∈
[

− Nf − 1

2(N − 1)
,
Nf − 1

2(N − 1)
− 1

]

, i = 2, . . . , N − 1. (3.4.10)

Note that here the upper limit of the interval to which r belongs is one less than that in (3.4.8)

so as to avoid any nodes coinciding.

To extract a random grid from the available data, the grid nodes of the fine grid xfi , i =

1, . . . , Nf are first permuted randomly. We shall denote the resulting points as x̃fi , i = 1, . . . , Nf .

We begin to form a random grid of N nodes by selecting the first N nodes from the permuted

fine grid so we have

xi = x̃fi , i = 1, . . . , N. (3.4.11)

The nodes xi, i = 1, . . . , N are then sorted into ascending order and the endpoints are replaced

as

x1 = a = 0, xN = b = 1. (3.4.12)

Let us now consider the three-peak simulated ecological test case from the previous section

as shown in Figure 3.3b. As above, we generate a sequence of increasingly refined grids and the

relative errors are calculated according to (2.1.7). The value I has been calculated by applying

the composite trapezium rule on the extremely fine, regular grid of Nf nodes. For the quasi-

random and random grids, nr = 10, 000 of each grid are generated and a mean of the errors is

calculated.

Convergence curves for the slightly irregular grids, where one node is randomly shifted from

its original location on a regular grid, are shown in Figure 3.7. The integration error (2.1.7)

computed for the statistical rule (2.1.4) is presented in Figure 3.7a, while the error for the
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Figure 3.7: Convergence curves on slightly irregular grids for the ecologically meaningful density
distribution of Figure 3.3b. Convergence on a sequence of grids where a central grid node is
randomly shifted is compared to the convergence on regular grids. The method of integration
is (a) the statistical rule (2.1.4), (b) the trapezium rule (3.4.4), (c) Simpson’s rule (3.4.5).

trapezoidal rule (3.4.4) and the Simpson rule (3.4.5) is shown in Figure 3.7b and Figure 3.7c,

respectively. The convergence results in the figure confirm our previous conclusion made for the

function (3.1.1). A slight perturbation of grid regularity results in a slight perturbation in the

integration error.

Let us now make a stronger perturbation of a regular grid and consider numerical integration

on a sequence of quasi-random grids where each interior grid node is randomly shifted around

its position on a regular grid. The corresponding convergence curves are shown in Figure 3.8. It

can be seen from the figure that increasing the degree of grid randomness in the problem results

in a bigger integration error, no matter what integration method is used. This conclusion is

further illustrated by consideration of integration error on truly random grids; see Figure 3.9.

Again, the convergence curves shown in Figure 3.9 for integration on regular grids always lie

below convergence curves obtained for random grids for any integration rule employed in the

problem.

The results of our study demonstrate that grid randomisation leads to a bigger integration

error on coarse and fine grids alike. Surprisingly, this conclusion is true even for the statistical

method which has no spatial dependence. While further careful study of this issue is required,

our first experience with a problem of numerical integration on random grids demonstrates that
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Figure 3.8: Convergence curves of the mean error on quasi-random grids for the ecologically
meaningful density distribution of Figure 3.3b. Convergence on a regular grid is also plotted
for comparison purposes (dashed line). The method of numerical integration used is (a) the
statistical rule (2.1.4), (b) the trapezoidal rule (3.4.4), (c) the Simpson rule (3.4.5).

3 5 9 17 33 65 129

10
−3

10
−2

10
−1

10
0

N

E
r
e
l

 

 

µ(Estat
irreg)

Estat
reg

(a)

3 5 9 17 33 65 129

10
−8

10
−6

10
−4

10
−2

10
0

N

E
r
e
l

 

 

µ(Etrap
irreg)

Etrap
reg

(b)

3 5 9 17 33 65 129
10

−6

10
−4

10
−2

10
0

N

E
r
e
l

 

 

µ(ESimp
irreg )

ESimp
reg

(c)

Figure 3.9: Convergence curves of the mean error on random grids for the ecologically meaningful
density distribution of Figure 3.3b. This is compared with the convergence on regular grids
(dashed line). The method of numerical integration used is (a) the statistical rule (2.1.4), (b)
the trapezoidal rule (3.4.4), and (c) the Simpson rule (3.4.5).

an equidistant distribution of traps produces more accurate results than a random distribution.

For an irregular distribution to be beneficial, prior knowledge of the spatial pattern of the pest

population would be needed.
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Figure 3.10: Examples of the pest population
density function generated by the system of
equations (3.2.3–3.2.4) as considered in [71].
(a) An example of a continuous front. The
parameter values are set as t = 50, β = 3,
χ = 0.28, Λ = 0.5, m = 0.48, d = 10−6.
The initial conditions are f(x, y, 0) = 0.72 +
0.007x+0.008y and g(x, y, 0) = 1.2+0.008x−
0.007y. (b) A late stage of patchy invasion.
The parameter values are fixed as t = 3500,
m = 0.414 and β, χ,Λ, d are the same as
for the test case shown in 3.10a. The ini-
tial conditions in this case are f(x, y, 0) = 1
if 0.42 < x < 0.53, 0.45 < y < 0.55 and f(x, y, 0) = 0 otherwise, g(x, y, 0) = 1 if
0.42 < x < 0.48, 0.45 < y < 0.51 and g(x, y, 0) = 0 otherwise. (c) An early stage of patchy
invasion where the population density is located in a small sub-domain of the field. The pa-
rameter values and initial conditions are as for the test case shown in 3.10b except for the time
parameter which is set as t = 450.

3.5 Numerical Integration of 2D Data

Let us now consider some examples of a 2D pest population density distribution. We return our

attention to a regular sampling plan, however the study of the previous section could readily be

extended to 2D. We consider test cases presented in [71]. The 2D system of equations (3.2.3–

3.2.4) are solved at some fixed time t = t̂ to produce a discrete density function f(x, y) ≡ fi, i =

1, . . . , N . As in the 1D case, an explicit finite differences scheme validated by a more advanced

alternate directions scheme (see [78]) was used to solve the coupled partial differential equations,

and the no-flux boundary conditions ∂f/∂n = ∂g/∂n = 0 were imposed at each boundary of the
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domain, where n is the normal vector. The authors of [71] supplied the solution of the coupled

partial differential equations on a very fine regular grid (2.4.3) on the unit square [0, 1] × [0, 1]

with the number of nodes in the x and y direction set as Nx = Ny = 1025. Thus the total

number of grid nodes representing sample units is Nf = 1, 050, 625. The test cases shown in

Figure 3.10 were generated using the parameter values and initial conditions given in the figure

caption. Further details of the numerical solution of the system of equations (3.2.3–3.2.4) can be

found in [71]. The spatial pattern of the three density functions are very different. The density

function of Figure 3.10a is an example of a continuous front, whereas that of Figure 3.10b can

be considered an example of a late stage of patchy invasion [77, 78]. Meanwhile Figure 3.10c

shows an early stage of patchy invasion where the pest population is concentrated in a small

sub-area of the field.

The same computational procedure that was carried out for the 1D ecological test cases is

applied for the 2D pest population density functions shown in Figure 3.10. The 2D composite

trapezium rule (2.4.4) is applied to the fine mesh of data fi, i = 1, . . . , Nf and this is taken as the

value of I. A series of increasingly refined regular grids with N < Nf nodes are extracted from

the existing data set and a method of numerical integration (2.1.3) is applied. Table 3.1 compares

the error of estimates formed by the statistical rule (2.1.4), the 2D composite trapezium rule

(2.4.4) and the 2D composite Simspon’s rule (2.4.5) for each test case.

We have seen that the level of grid refinement required for the asymptotic error estimates

(2.1.9) to hold depends on the spatial pattern of the pest population density function. In Section

3.3 it was shown that sufficiently accurate estimates are possible on coarse grids, i.e. on grids

where the asymptotic error estimates do not hold. This raises the question of what is the

minimum number N of sample units (grid nodes) required to obtain sufficient accuracy. From

Table 3.1 it can be seen that this is again dependent on the spatial pattern of the population

density distribution. The grids displayed in Table 3.1 are considered to be coarse as the highest

order numerical integration method under consideration, i.e. the composite Simpson’s rule,

does not yet consistently produce the most accurate estimates. In the case of the continuous

front depicted in Figure 3.10a where the population density is fairly spread across the domain
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N Estat
rel Etrap

rel ESimp
rel

9 0.1383 0.05065 0.02558
25 0.06410 0.01421 0.02210
81 0.03230 6.517e-004 0.003895
289 0.01763 2.869e-004 9.557e-005

(a)

N Estat
rel Etrap

rel ESimp
rel

9 0.4216 0.4964 0.4929
25 0.1798 0.2632 0.1798
81 0.1124 0.1115 0.06742
289 0.08671 0.06473 0.05380

(b)

N Estat
rel Etrap

rel ESimp
rel

9 0.9999979 0.999995 0.9999915
25 0.9999992 0.999999 0.9999995
81 0.9999020 0.999876 0.9997859
289 0.1685830 0.061408 0.1136888
1089 0.1386613 0.210940 0.4078478
4225 0.0766259 0.047545 0.1275943

(c)

Table 3.1: Relative approximation error
(2.1.7) of estimates generated by the sta-
tistical rule (2.1.4), the compound trapez-
ium rule (2.4.4) and the compound Simp-
son’s rule (2.4.5) on a series of regular
coarse grids with an increasing number N
of nodes. The population density function
under consideration is: (a) the continuous
front given in Figure 3.10a, (b) a late stage
of patchy invasion as shown in Figure 3.10b, and (c) an early stage of patchy invasion as shown
in Figure 3.10c whereby the population is concentrated in a small sub-area of the field.

considered as the agricultural field, it can be seen from Table 3.1a that a high level of accuracy

(Erel ≤ τ = 0.5) is already achieved on a grid with N = 9 nodes, i.e. three nodes in both the

x and y directions. Table 3.1b shows that the estimates produced when the patchy distribution

shown in Figure 3.10b is considered are not as accurate in comparison. However, the accuracy

still remains reasonable by ecological monitoring standards (Erel ≤ τ = 0.5) even on a grid with

a total number of nodes as small as N = 9. The accuracy of estimates obtained for the test case

shown in Figure 3.10c where the population is concentrated in a small sub-area of the field is

much poorer. Errors of the order of Erel ∼ 1 are evident on grids with N ≤ 81 nodes. There is

little difference between the accuracy of the three numerical integration methods. Furthermore,

whereas Tables 3.1a and b show that increasing the number N of grid nodes leads to a more

accurate estimate, oscillatory behaviour is evident in Table 3.1c. For example, the trapezium

and Simpson’s rule estimates on a grid with a total number of N = 1089 nodes are less accurate

than the corresponding estimates which were obtained on a grid with the smaller number of

N = 289 nodes.

The above examples demonstrate that accuracy of estimates depends on the spatial pattern of

the population density distribution. A more comprehensive set of 2D test cases with ecological

significance were studied in [71] where it was shown that, like in the 1D problem, density
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distributions where the population are spread homogeneously over the entire domain are easiest

to handle. A higher number of nodes is required to achieve comparable levels of accuracy

when the density distribution is patchy. The most problematic case is when the density is

concentrated within a small sub-region. On grids with a small number of nodes this region may

be missed leading to very inaccurate estimates. We reiterate that it is still possible to achieve

an acceptable level of accuracy can on coarse grids i.e. when the asymptotic error estimates do

not hold, however the accuracy is not reliable as the error may oscillate.

3.6 Chapter 3 Conclusions

Conclusions about the accuracy of an estimate formed by numerical integration are usually made

from the asymptotic error estimates (2.1.9). Conditions imposed by the ecological scenario,

however, mean that this is not a standard numerical integration problem. The asymptotic

estimates cannot be relied upon under the restriction imposed that the number N of sample

units (grid nodes) is small.

Since asymptotic error estimates do not hold on coarse grids, the conventional approach

of using a higher order method to improve the accuracy of an estimate may not be effective.

It was demonstrated that on coarse grids the error may oscillate and it can be difficult to

differentiate between the accuracy of different numerical integration methods. It should be

noted that other conventional techniques used in numerical integration problems to improve

accuracy are not available to us. For instance grid refinement would correspond to repeating

the sampling procedure with an increased number of samples, however of course the distribution

of the pest population would change in the time it takes to do this. We do not consider the

time dependent problem and instead are concerned with how the accuracy may be quantified

and optimised at a fixed point in time. For the same reason adaptivity with moving grids

(e.g see [16]), i.e. rearranging the same number of traps and repeating the process is also not

viable. Furthermore, we cannot distribute the sample units (grid nodes) such that more traps

are installed local to areas of pest population that may require higher resolution without prior

knowledge of the density distribution.

It was shown that whilst the error does not behave according to the asymptotic error esti-
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mates on coarse grids, sufficiently accurate results may still be obtained. The question of what

is the minimum number N of sample units (grid nodes) required to obtain sufficient accuracy

needs to be addressed. The findings of [70, 71, 72] have been confirmed, namely that the accu-

racy of an estimate depends on the spatial pattern of the pest population density distribution.

In the next chapter we identify a particular parameter which has control over the spatial pattern

and hence construct an estimate of the minimum number of sample units required to achieve

accuracy within a desired tolerance.
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Chapter 4

Effects of Species Diffusion on

Approximation Accuracy

It is essential to gain an understanding into which factors affect numerical integration accuracy

on coarse grids since the asymptotic error estimates (2.1.9) cannot be relied upon. It was

discussed in the previous chapter that the spatial heterogeneity of the integrand function is one

such factor. This in itself is affected by a range of parameters. Here, we focus on the role of the

rate at which a pest species diffuses.

In Section 4.1 we establish a link between the diffusion rate and the spatial pattern of the

population density. We then investigate how the accuracy of numerical integration on regular

grids is affected by diffusion in Section 4.2, where in particular we construct a lower bound

for the number of sample units necessary to obtain a sufficiently accurate approximation. This

lower bound is then validated for ecological significant data in Section 4.3. In Sections 4.4 and

4.5 we look at how sparsity of the spatial data and grid irregularity affects integration accuracy

respectively, and we establish further recommendations for the minimum number of grid nodes

required in each case. Discussion and conclusions of this chapter’s results are given in Section

4.6. For simplicity, we limit our study to the 1D problem within this chapter and the agricultural

field is considered as the unit interval [0, 1]. A simple linear transformation can be applied to

recover an interval [a, b] of arbitrary length. This chapter follows the work we presented in [69].
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4.1 Spatial Heterogeneity and the Effect of Diffusion

It is well known that ecological populations often exhibit significant spatial heterogeneity [63,

104]. We now investigate the effect of species diffusion on the spatial heterogeneity of pest

population distribution as discussed in [69] where we assume that each insect performs Brownian

motion. Let us first consider a very simple model of the spatial temporal dynamics of a pest

species, ignoring the impact of population multiplication and interspecific interactions. That is,

the pest population density distribution is described by the scalar diffusion equation, namely

∂F (X,T )

∂T
= D

∂2F

∂X2
, (4.1.1)

where D is the diffusion coefficient caused by the self-movement of individuals [63]. Let us

consider a population in the unbounded domain, −∞ < X < ∞. An initial population of size

I0 is introduced by point-source release at the position X = X0. The solution of equation 4.1.1

is then given by (e.g see [24])

F (X,T ) =
I0√
4πDT

exp

(

−(X −X0)
2

4DT

)

. (4.1.2)

The characteristic width of the distribution (4.1.2), that is the characteristic length of the spatial

heterogeneity, is therefore given as

∆ ∼
√
DT , (4.1.3)

where the sign ∼ means ‘up to a constant coefficient’.

It has been shown (see [74], section 9.3) that when other ecologically meaningful initial

conditions are considered instead, e.g an initial population is introduced over a finite domain,

the characteristic length of the spatial heterogeneity is also given by (4.1.3). Dimensional analysis

shows that this is a generic property of the diffusion equation (4.1.1). This equation contains
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a single parameter, namely the diffusion coefficient D which has the dimension [distance]2 ·

[time]−1. Therefore, for any given time T , the only quantity with the dimension of length is
√
DT . Such analysis is explained in [6], in particular see Chapter 2 where it is performed on the

heat equation. This is essentially the same equation as 4.1.1 therefore the calculations can be

easily repeated.

Let us now look at a slightly more complex model, a single-species model with multipli-

cation, in other words a reaction-diffusion equation. We consider a particular case where the

multiplication is described by the logistic function, therefore the model is given by the following

equation which is also known as Fisher’s equation [37]:

∂F (X,T )

∂T
= D

∂2F

∂X2
+ αF

(

1− F

K

)

, (4.1.4)

where α is the per capita growth rate and K is the carrying capacity. The dimension of α is

time−1 and K is distance−1 . Hence the only quantity with the dimension of length that can be

generated from the parameters of equation (4.1.4) is as follows,

∆x ∼
√

D/α. (4.1.5)

As T → ∞, for a wide class of initial conditions equation (4.1.4) describes a travelling front

[59]. Consequently, the characteristic length ∆x of the spatial heterogeneity is then given by

the width of the front.

Such dimensional analysis is not as effective when a system of reaction-diffusion equations

is considered, that is when we have a multi-species system. Such systems have more than one

parameter with the dimension of time or inverse time, and more than one diffusion coefficient,

therefore there are multiple ways of generating a quantity with the dimension of length. An

alternative approach is needed. Let us assume for simplicity that all diffusion coefficients have

the same value D. This system is known to develop complex, chaotic spatio-temporal patterns

sometimes referred to as ‘biological turbulence’ when the corresponding non-spatial system has
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a unique positive state namely an unstable focus [55]. The characteristic length ∆x of the

emerging multi-peak spatio-temporal pattern, that is the width of a single peak, is then given

as [75]

∆x = 2πc∗
(

D

maxRe(λ)

)1/2

, (4.1.6)

where maxRe(λ) is the maximum real part of the eigenvalues of the linearised non-spatial system

and c∗ is a numerical coefficient of the order of one. It is worth noting that since maxRe(λ) has

the dimension of time−1, ∆x as defined by (4.1.6) indeed has the dimension of length. Therefore

equation (4.1.6) is in a good agreement with the previous dimensional analysis performed for

the single-species model. In fact, it can be regarded as a generalisation of equation (4.1.5).

In all three cases (4.1.3), (4.1.5) and (4.1.6), the characteristic length of the spatial hetero-

geneity is proportional to
√
D, i.e.

∆x = ω
√
D, (4.1.7)

where ω is a factor that can depend on the parameters of the interactions between the individuals

of a single species (intraspecific) and those between individuals of different species (interspecific),

but is independent of the diffusion coefficient. Extensive numerical study [75, 76] has shown

ω to be relatively robust to changes in these parameters and typically has a value of ω ≈ 25.

Non-dimensionalising (4.1.7) we obtain the same relationship between the dimensionless forms

of the diffusion coefficient and the characteristic length of spatial heterogeneity, namely d and

δ, as follows

δ =
∆x

L
= ω

√
d, (4.1.8)

where we recall that L is the length of the agricultural field.

To further understand how the diffusion coefficient controls the spatial pattern of the pop-

ulation density let us re-consider two of the ecologically significant test cases from the previous

chapter generated by the 1D Rosenszweig-Macarthur model (3.2.7–3.2.8), namely the single peak

and multi-peak distributions of Figure 3.3a and Figure 3.3c respectively. For convenience the
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Figure 4.1: Test case examples of the pest population density function generated from the 1D
spatially explicit form of the Rosenzweig-MacArthur model (3.2.7–3.2.8). The dimensionless
diffusion parameter is set as (a) d = 10−4 and (b) d = 10−5. The reader is referred to Figure
3.3 for the details of the other parameters.

test cases are presented again in Figure 4.1. Throughout this chapter, the single peak population

density function is denoted by f1(x) and the multi-peak density function by f2(x). It can be

seen from the figure that the number of peaks present in the density function increases as the

diffusion coefficient d decreases. 1. In practical terms this means the slower a species diffuses,

the more likely it is to form complex spatial patterns.

4.2 The Impact of the Diffusion Rate on the Accuracy of Inte-

gration

We have seen from previous chapter that the number of grid nodes N required to achieve a

sufficiently accurate estimate of pest abundance depends on the spatial pattern of the density

distribution and in the previous section it was discussed how the spatial pattern is controlled

by the diffusion coefficient. We now derive the relationship between the diffusion coefficient d

and the number of grid nodes N required for accurate evaluation of the population size. We

assume we have no prior knowledge of the spatial pattern. As such, we consider a regular grid

1This is the case so long as the time t is sufficiently large such that that impact of the initial conditions is no
longer an issue. For the time parameters used to generate the test cases of Figure 4.1 please see the caption of
Figure 3.3.
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formation (2.2.2). Thus the grid step size, i.e. the distance between grid nodes, is fixed. The

effects of deviating from this regular sampling plan is investigated later in the chapter in Section

4.5. We previously established that using a higher order numerical integration method does not

necessarily improve the accuracy of the resulting estimate on coarse grids. Hence, in our following

analysis we use a simple means of numerical integration namely the composite trapezium rule

(2.2.6). That is, the population density function is interpolated by linear polynomials.

Our analysis focuses on a component of spatial heterogeneity, namely a single peak. Let

the population density function f(x) which by definition is non-negative have a peak (local

maximum) somewhere on the unit interval [0, 1] (e.g see Figure 4.1a). Further let the domain

of the peak be the sub-interval [xi−1, xi+1] of length 2h, where the peak maximum is located at

the sub-interval midpoint xi. We Taylor expand the density function f(x) about the location of

the maximum xi as follows

f(x) = f(xi) +
1

2

d2f(xi)

dx2
(x− xi)

2 +R(x). (4.2.1)

We now assume that the remainder term R(x) can be ignored and thus consider the density

function in the vicinity of the peak as the following quadratic function

f(x) ≈ Q(x) = B −A(x− xi)
2, x ∈ [xi−1, xi+1], (4.2.2)

where A = −1

2

d2f(xi)

dx2
> 0 and B = f(xi) > 0. The maximum of the quadratic coincides with

the maximum of the peak and is thus symmetric about the location of the maximum namely

xi. We require the quadratic Q(x) to be non-negative over the sub-interval [xi−1, xi+1], i.e.

Q(xi−1) = Q(xi+1) = B − Ah2 ≥ 0. This provides us with the following relationship between

h,A, and B:

h2 ≤ B

A
. (4.2.3)

Examples of replacing a peak with a quadratic function are shown in Figure 4.2 and the

details are discussed in the Appendix B. Clearly, by ignoring the remainder term of the Taylor

expansion (4.2.1) and considering the peak as the quadratic function Q(x) as given in (4.2.2)
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Figure 4.2: The peak of the population density distribution f1(x) as shown in Figure 4.1a
is replaced with a quadratic function on the interval [xi−1, xi+1] of width 2h. The quadratic
function Q(x) is as defined by 4.2.2 where h is taken as (a) h = 0.125, and (b) h = 0.0625.

we have introduced the error R(x), however we consider this error to be sufficiently small (see

Appendix B).

We now proceed to use the approach of considering a peak as a quadratic function to ob-

tain a recommendation regarding the grid step size needed for accurate estimation of the pest

abundance. We consider the pest abundance in the vicinity of the peak, i.e. on the interval

[xi−1, xi+1] of width 2h. Now let us consider a local regular computational grid of three nodes

xi−1, xi, and xi+1 where the distance between neighbouring nodes is h. An estimate Ia of the

integral of the peak is obtained by integrating a piecewise linear interpolating polynomial of the

peak which is depicted in Figure 4.3 i.e. we apply the composite trapezium rule 2.2.6 on the

local grid

Ia =
h

2
f(xi−1) + hf(xi) +

h

2
f(xi+1)

=
h

2
Q(xi−1) + hQ(xi) +

h

2
Q(xi+1)

= 2Bh−Ah3 (4.2.4)
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Figure 4.3: Approximation of a peak by
a piecewise linear polynomial P1(x) on a
grid of three regularly spaced nodes. The
peak is treated as the quadratic function
Q(x) as defined by (4.2.2). The location
of the peak maximum coincides with the
central grid node. We consider the in-
tegral of the quadratic as the exact inte-
gral I of the peak, while integrating P1(x)
yields the approximation Ia.

xi−1 xi xi+1

Q(x)

P1(x)

h

Treating the peak as a quadratic allows us to calculate the exact abundance I as

I =

∫ xi+1

xi−1

Q(x) dx = 2Bh− 2Ah3

3
. (4.2.5)

We want to ensure that the estimate Ia is sufficiently accurate. Thus, we require that the

relative error satisfies the condition (2.5.1) namely that Erel ≤ τ for some chosen value of τ . By

definition I > 0, therefore this condition implies that

|I − Ĩ| ≤ τI. (4.2.6)

Let us set the tolerance as τ = 0.25, which is within the acceptable range of error for ecological

applications given in Chapter 2 (see Section 2.5). Such accuracy has been previously recom-

mended for ecological monitoring [86]. From (4.2.5) and (4.2.4) it can be seen that |I − Ĩ| = Ah3

3
.

The expression (4.2.6) then becomes

Ah3

3
≤ 1

4

(

2Bh− 2Ah3

3

)

,

which after some rearrangement and taking into consideration A > 0, gives us the condition on

the grid step size h ≤
√

B/A to ensure the relative error is E ≤ τ = 0.25. We define the limiting

grid step size where Erel = τ = 0.25 to be h0 =
√

B/A.

We now wish to link this to the species diffusion. As discussed in Section 4.1, the diffusion
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can be written in terms of the characteristic length of the spatial heterogeneity. In the case

of the quadratic function Q(x), this equates to the width of the peak, which we define as the

distance between the two roots. The roots of (4.2.2) are given as

xI = x1 −
√

B/A, xII = x1 +
√

B/A,

hence the peak width which we denote δ is given as δ = 2
√

B/A. The grid step size restriction

to ensure Erel ≤ τ = 0.25 on a regular mesh can then be written as h ≤ h0 = δ/2. Since the

spatial heterogeneity can be expressed in terms of the diffusion coefficient d, we have

h ≤ h0 =
ω
√
d

2
. (4.2.7)

where we recall that typically ω ≈ 25. Hence if the species diffusion d is known, we can determine

the grid step size h0 necessary to ensure accurate evaluation of the pest abundance. Estimates

of the diffusion coefficient exist for a variety of species (e.g see [49, 90]). The number of grid

nodes i.e. sample units corresponding to the grid step size h0 is given by N0 = 1+1/h0 thus we

arrive at the following condition on the number N of grid nodes to ensure that Erel ≤ τ = 0.25

N ≥ N0 = 1 +
2

ω
√
d
. (4.2.8)

4.3 Application of Approach to Ecological Data

In this section we seek to validate the recommendation (4.2.8) by considering the single peak

and multi-peak population density functions, f1(x) and f2(x) shown in Figure 4.1. We follow

the procedure outlined in the previous chapter in Section 3.3 whereby we integrate the density

function on the unit interval [0, 1] over a series of grids with an increasing number N of nodes

and calculate the relative error (2.1.7). The chosen method of numerical integration is the

composite trapezium rule (2.2.6). We recall that the density distributions f1(x) and f2(x) were

obtained via a mathematical model (3.2.7–3.2.8) and are thus discrete. As in Section 3.3, the

approximation yielded by the composite trapezium rule (2.2.6) on the finest available regular
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N 3 5 9 17

h 0.5 0.25 0.125 0.0625

Erel 0.6948 0.5459 0.0823 0.0036

Table 4.1: Integration error (2.1.7) for the population density distribution f1(x) shown in Figure
4.1a where the composite trapezium rule (2.2.6) has been implemented on the unit interval [0, 1].
The error is given for increasingly small grid step size h.

h 0.5 0.25 0.125 0.0625 0.03125

N 3 5 9 17 33

E 0.1579 0.1567 0.2193 0.1304 0.0001

Table 4.2: Integration error (2.1.7) for the population density distribution f2(x) shown in Figure
4.1b where the composite trapezium rule (2.2.6) has been implemented on the unit interval [0, 1].
The error is given for increasingly small grid step size h.

grid of N = 32, 796 nodes is taken to be the exact integral I.

First we focus on the single peak population distribution f1(x) of Figure 4.1a. The diffusion

coefficient for this distribution is d = 10−4. Hence from (4.2.7) and (4.2.8) we have the recom-

mendation that the grid step size should be h ≤ h0 = 0.125 i.e. we require N ≥ N0 = 9 grid

nodes in order to ensure an error of Erel ≤ τ = 0.25. The relative error produced on applying

the composite trapezium rule (2.2.6) to f1(x) is given in Table 4.1, where it can be seen that for

grids with N < 9 nodes, the relative error Erel exceeds the desired tolerance τ = 0.25. However,

once the grid is refined to N = 9 nodes, the accuracy becomes much higher and is well within

this limit.

Now we consider the population density distribution f2(x) shown in Figure 4.1b. The density

coefficient is d = 10−5 which means that according to (4.2.7) and (4.2.8) we require a grid step

size of h ≤ h0 = 0.0395 i.e. the number of grid nodes is required to be N ≥ N0 = 27 to

achieve an error of E ≤ τ = 0.25. Table 4.2 shows the integration error 2.1.7 for the composite

trapezium rule (2.2.6) applied to f2(x). In fact the desired level of accuracy is achieved on

all grids. We recall that the composite trapezium rule approximation is founded on piecewise

linear interpolation of the population density function. We suspect that this higher level of

accuracy may be due to the cancellation that occurs as a result of the piecewise linear polynomial
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Figure 4.4: Piecewise linear polynomial approximation P1(x) for the multi-peak population
density distribution f2(x). (a) Approximation on a grid of N = 17 nodes, (b) Approximation
on a grid of N = 33 nodes.

approximation of the population density function f2(x) being too high on one sub-interval and

then too low on another. Therefore it is evident that whilst the grid step size recommendation

(4.2.7) ensures the error is within the desired limit Erel ≤ τ = 0.25, it does not give an indication

of the error on coarser grids. It could be, as is the case in this instance, that sufficient accuracy

has already been achieved on a grid with fewer nodes than recommended by (4.2.8).

It can also be seen in Table 4.2 that a significant jump in accuracy occurs when the grid

is refined from N = 17 to N = 33 grid nodes. Figure 4.4, which shows the piecewise linear

polynomial approximation of f2(x) over the two aforementioned grids, illustrates why this is the

case. When the grid has N = 17 nodes, the majority of the peaks in f2(x) are approximated

by a single linear polynomial. This is equivalent to approximating a quadratic polynomial on a

local grid of just 2 nodes, which we discuss later. However, when the grid is refined to N = 33

nodes, all but two of the peaks are approximated by at least two linear polynomials. It is clear

that a reduction in the number of peaks that are approximated by a single linear polynomial

causes a significant reduction in the integration error (2.1.7).
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4.4 Arbitrary Location of Peak Maximum

The recommendation (4.2.8) was found by assuming that there are three grid nodes in the

vicinity of the peak, namely xi−1, xi, xi+1, where the central node coincides with the location

of the peak maximum. By the nature of the ecological monitoring problem, the location of the

local maxima of the population density function f(x) are generally unknown. Hence in practice,

it is likely that the sample locations, i.e. the grid nodes will not coincide with the position of

the local maxima. Thus we now need to investigate how the integration error is affected by the

peak maximum not being captured by a grid node. There is also the possibility that there are

not three grid nodes local to the peak. It could be that a peak falls between two grid nodes

and so is approximated by a single linear polynomial, a problem that was touched upon in the

previous section.

Let us again consider a mesh of three regularly spaced nodes xi−1 = xi − h, xi and xi+1 =

xi + h, and assume that the population density function f(x) has a peak somewhere on the

interval [xi−1, xi+1] which is of width 2h. As before, we approximate the peak by a quadratic

function. Let us define the quadratic approximation of the peak Q(x) as follows

Q(x) =











B −A(x− x∗)2 when x ∈ [xI , xII ],

0 otherwise,
(4.4.1)

where A,B > 0, x∗ is the location of the maximum point which is now distinct from the grid

node xi. The values xI and xII are the roots of quadratic Q(x). We can express the location of

the maximum x∗ in relation to the position of the grid nodes as

x∗ = xi + γh = xi−1 + h(γ + 1),

where because of the symmetry of the quadratic it is sufficient to consider γ ∈ [0, 1/2]. The

roots xI and xII can then be written in terms of xi−1, A and B as

xI = xi−1 + h(γ + 1)−
√

B/A xII = xi−1 + h(γ + 1) +
√

B/A. (4.4.2)
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Figure 4.5: Approximation of a peak by
a piecewise linear polynomial P1(x) on a
grid of three regularly spaced nodes. The
peak is treated as the quadratic function
Q(x) as defined by (4.4.1). The location
of the peak maximum x∗ is arbitrary and
is no longer restricted to coincide with a
grid node. We consider the integral of
the quadratic as the exact integral I of
the peak, while integrating P1(x) yields
the approximation Ia.

xi−1 xi xi+1

Q(x)

P1(x)

h
x∗xI xII

The exact integral of the peak is considered to be

I =

∫ xi+1

xi−1

Q(x) dx =

∫ xII

xI

Q(x) dx =
4

3
B
√

B/A =
2

3
Bδ, (4.4.3)

where δ = 2
√

B/A is the distance between the roots of the quadratic Q(x).

We follow the same approach used in Section 4.2 and construct an estimate Ia of the inte-

gral of the peak by integrating a piecewise linear interpolating polynomial of the peak i.e. we

apply the composite trapezium rule 2.2.6 on the local grid of the three regularly spaced nodes

xi−1, xi, xi+1. This is depicted in Figure 4.5. The approximated value of the integral is thus

Ia =
h

2
f(xi−1) + hf(xi) +

h

2
f(xi+1) = hQ(xi)

= h(B −Aγ2h2). (4.4.4)

To ensure a sufficiently accurate estimate we apply the condition (2.5.1), that Erel ≤ τ ,

where we again set τ = 0.25. Since by definition I > 0, this condition on Erel is equivalent to

the following condition on the estimate Ia

0.75I ≤ Ia ≤ 1.25I. (4.4.5)

We wish to establish how far away the location of the peak maximum can be from a grid node

whilst still achieving an acceptable error of Erel ≤ τ = 0.25. In other words we seek the values

of γ for which the above inequality is satisfied. Let us first consider the lower limit of (4.4.5),
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that is when Ia ≥ 0.75I. From (4.4.3) and (4.4.4) this inequality becomes

Bh−Aγ2h3 ≥ Bδ

2
,

which after rearrangement gives us

γ ≤ γII =
δ

2h

√

1− δ

2h
, (4.4.6)

where γII is the upper limit for γ. For γII ∈ R to exist, we require the grid step size to be such

that h ≥ δ/2.

We now consider the upper limit of (4.4.5), when Ia ≤ 1.25I. Substituting (4.4.3) and (4.4.4)

into this inequality we arrive at

Bh−Aγ2h3 ≤ 5Bδ

6
.

Rearranging the above we find a lower limit for γ which we denote γI :

γ ≥ γI =
δ

2h

√

1− 5δ

6h
, (4.4.7)

where γI ∈ R exists for h ≥ 5δ/6. Consequently, even when the peak lies between two grid

nodes, there is a parameter range where sufficiently accurate results are achieved. Furthermore,

for any fixed h, there exists the value of γ for which the approximation is exact, that is Ia = I.

Setting (4.4.3) and (4.4.4) equal to each other and solving for γ we find that this value is given

by

γ(h) =
δ

2h

√

3h− 2δ

3h
, h ≥ 2δ

3
. (4.4.8)

Clearly γ(h) > 0, meaning that the location of the grid node which leads to zero error is not

that which coincides with the location of the peak maximum.

The curves γI and γII are shown in Figure 4.6 for the diffusion coefficients d = 10−4 and d =

10−5, therefore corresponding to distributions f1(x) and f2(x) of Figures 4.1a and b respectively.

Let us fix h = h∗. From (4.4.6) and (4.4.7) we can calculate the limits γI(h
∗) = γ∗I and

γII(h
∗) = γ∗II . Thus, for any value of γ within the range γ∗I ≤ γ ≤ γ∗II the relative error of
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Figure 4.6: The function γ(h) for different values of the dimensionless diffusivity d when the
grid step size is larger than the peak width i.e. h > δ. The part of the (h, γ) plane between the
two solid curves (4.4.6) and (4.4.7) gives the parameter range where the integration is performed
with the required accuracy Erel ≤ τ = 0.25. The dashed curve represents where the integration
error is Erel = 0. The diffusion coefficient is (a) d = 10−4 and (b) d = 10−5.

integration will satisfy the condition Erel ≤ τ = 0.25. The dashed line represents where I = Ia.

An obvious, but nonetheless important observation that can be made from this figure is that

as the diffusion coefficient d decreases, the admissible range for the error becomes increasingly

narrow. Effectively the peak is lost on the computational mesh.

4.5 Analysis on a Non-Uniform Grid

So far our analysis has been performed on a regular computational grid. As previously mentioned

in Sections (2.3) and (3.4) the sampling plan used in practice may not be regular. Thus, we

now analyse the effect grid irregularity has on the integration error (2.1.7). We still assume that

we have no prior knowledge of the spatial pattern of the pest population. As such we are not

able to purposely choose the grid node (sample unit) locations such that more grid nodes are

situated local to areas of pest population density which require a higher resolution e.g where

there is a peak or a steep function gradient. Instead our analysis focuses on the type of grid

irregularity whereby the interior grid nodes of a regular grid have become locally shifted. This
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Figure 4.7: Approximation of a peak by
a piecewise linear polynomial P1(x) on
a grid of three irregularly spaced nodes.
The peak is treated as the quadratic func-
tion Q(x) as defined by (4.2.2). The lo-
cation of the central computational grid
node x̃i is defined by (4.5.1) and is dis-
tinct from the location of the peak max-
imum xi. We consider the integral of the
quadratic as the exact integral I of the
peak, while integrating P1(x) yields the
approximation Ia.

xi−1 xi xi+1

Q(x)

P1(x)

h
x̃i xi + h/2

grid type was referred to as quasi-random in Section 3.4 of the previous chapter.

We return to the case when the peak is well resolved, i.e. that there are three grid nodes

in the vicinity of the peak and follow a very similar approach to that used for the analysis on

a regular mesh in Section 4.2. We again assume that the population density function f(x) has

a peak on the interval [xi−1, xi+1] which is of length 2h, and that the maximum is located at

the interval midpoint xi = xi−1 + h. The grid used for integration, however, is the set of three

points {xi−1, x̃i, xi+1}, where x̃i is a perturbation of xi according to the following mapping:

xi → x̃i = xi + βh, (4.5.1)

and is shown in Figure 4.7. The parameter β is chosen such that β ∈ (0, 1/2). Moving the grid

node in this fashion is representative of the situation when a sample unit can not be installed

at the desired location xi due to an obstacle and is instead placed nearby. Hence the movement

is restricted by the upper limit β = 1/2 which ensures x̃i is strictly less than halfway between

the location of the maximum xi and grid node xi+1. Setting β = 0 would result in a uniform

mesh where the grid midpoint coincides with the location of the maximum, as was the case in

Section 4.2.

In the vicinity of the peak, i.e. on the interval [xi−1, xi+1] the peak is replaced by the

quadratic as defined by (4.2.2). Since the interval of integration remains the same as that for

the regular grid analysis, namely [xi, xi+1], the exact integral is given by (4.2.5). We obtain an

approximation to the integral by applying the composite trapezium rule (2.2.6) on the local grid
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of nodes {xi−1, x̃i, xi+1} as follows

Ia =
h

2
f(xi−1) + hf(x̃i) +

h

2
f(xi+1)

=
h

2
Q(xi−1) + hQ(x̃i) +

h

2
Q(xi+1)

= 2Bh−Ah3(1 + β2). (4.5.2)

The underlying piecewise linear polynomial interpolation which gives rise to this estimate is

shown in Figure 4.7.

We again require that the relative approximation error (2.1.7) is such that Erel ≤ τ = 0.25.

Thus, from the condition (4.4.5) and the expressions (4.2.5) and (4.5.2) we obtain the following:

Ah3
(

1

3
+ β2

)

≤ 1

4

(

2Bh− 2Ah3

3

)

.

The above can be rearranged to give

h2 ≤ B

A (1 + 2β2)
.

By recalling that the peak width is δ = 2
√

B/A and implementing the relation (4.1.8), we

arrive at a grid step size recommendation for the underlying regular mesh from which the

irregular grid is formed by perturbing the interior nodes. In terms of the diffusion coefficient

this recommendation is

h ≤ ω
√
d

2
√

1 + 2β2
. (4.5.3)

which ensures that the error (2.1.7) is Erel ≤ τ = 0.25 on the irregular mesh under consideration.

The upper limit for h is a monotone decreasing function which achieves its minimum value at

the upper limit of β which is β = 1/2. Setting β = 1/2 in (4.5.3) gives us the upper limit for

the grid step size which can be expressed in terms of the recommended grid step size h0 for a

uniform grid (4.2.7)

h ≤ ω

√

d

6
= h0

√

2

3
. (4.5.4)
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Thus it can be seen that a finer grid is required, i.e. a higher number of grid nodes, in order

to obtain sufficiently accurate results if the interior nodes are locally shifted from a regular

formation.

4.6 Chapter 4 Conclusions

In this Chapter we have shown that the rate at which a species diffuses is one of many factors

which define the spatial heterogeneity of the pest population density function. Coupled with

the results of the previous chapter this means that the diffusion rate affects the accuracy of the

numerical integration of the pest density data.

By considering a component of spatial heterogeneity, namely a peak (local maximum) and

treating it as a quadratic function we have been able to obtain a recommendation for the

number N of regularly spaced grid nodes required to ensure the population abundance estimate

Ia achieves a chosen level of accuracy Erel ≤ τ where for calculation purposes we fixed τ = 0.25.

This recommendation is given in terms of the diffusion coefficient d. Whilst we clearly introduce

an error by treating a peak as a quadratic function, the analytical prediction (4.2.7) was shown

to be in good agreement with numerical results. We considered the effect introducing irregularity

to the computational grid has on the integration error and provided the recommendations (4.5.3–

4.5.4) for the necessary average grid step size to ensure sufficient accuracy.

Furthermore, we studied the case when the grid is so coarse that only a single grid node

lies within the vicinity of the peak. In ecological terms this case corresponds to the distribution

being aggregated such that it is localised to one (or several) small patch(es) of the field. In this

scenario we established that there is a parameter range (4.4.6–4.4.7) such that the condition

on the relative error Erel ≤ τ = 0.25 is satisfied. Outside of this range, however, the resulting

estimate is not sufficiently accurate. We emphasise again that the location of the local maxima

of a pest population density function are generally not known a priori. Thus, obtaining an

accurate estimate of pest abundance for density distributions aggregated in such a way becomes

a matter of chance. This indicates that in this scenario a different approach, namely probabilistic

rather than deterministic, is needed for assessing integration accuracy. This issue is investigated

in more detail in the next chapter.
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Chapter 5

Numerical Integration on

Ultra-Coarse Grids

In this chapter we follow the work we presented in [67]. We improve on the estimate from

the previous chapter of the minimum number of grid nodes (sample units) needed to achieve

a sufficiently accurate estimate of the pest abundance. When the number of traps is less than

this recommended number, we cannot guarantee accuracy, therefore the error is in this sense

probabilistic rather than deterministic. We show that by considering the error as a random

variable, we are able to quantify the chance of achieving an accurate estimation in this instance.

The analysis is founded on considering highly aggregated density distributions (peak func-

tions) which are discussed in Section 5.1. It is shown that achieving a sufficiently accurate

estimate when integrating such density distributions is a matter of chance. This leads us to in-

troduce a new grid classification; a grid is considered to be ultra-coarse when the probability of

achieving an accurate estimate is p < 1. In Section 5.2 we obtain an estimate for the probability

of achieving an accurate estimate on ultra-coarse grids. We go on to study the transition from

ultra-coarse to coarse grids i.e. when sufficient accuracy becomes guaranteed in Section 5.3, and

find an estimate of the threshold number Nt of grid nodes where this transition occurs. Numer-

ical verification of our theoretical predictions is provided in Sections 5.4 and 5.5 where standard

and ecological significant test cases are considered respectively. In Section 5.6 we explain how

the probabilistic approach can be used to compare different numerical integration methods on
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Figure 5.1: (a) The pest population density distribution f(x, y) at an early stage of patchy
invasion. The density distribution is as given in Figure 3.10c, and has been obtained by numeri-
cally solving the system of equations (3.2.3–3.2.4). The filled circles represent grid node (sample
unit) locations. It can be seen that the N = 25 grid nodes have entirely missed the patch where
the population is located. (b) A 1D counterpart of the density distribution shown in (a). It
comprises of a single peak and is thus referred to as a peak function.

coarse grids. A discussion of the results and concluding remarks are provided in Section 5.7.

5.1 Integration of Severely Aggregated Density Distributions

(Peak Functions)

We have demonstrated how the spatial heterogeneity of a pest population density distribution,

which is in turn controlled by the species diffusion, affects the number of sample units necessary

to achieve an accurate estimation of the pest population size. It has also been discussed how

accurate estimations can be achieved on very coarse grids when the pest population is distributed

across the whole field, even when the spatial structure is strongly heterogeneous. The accuracy

deteriorates, however, when the distribution is what we will refer to as highly aggregated, that

is, the pest population is located within a relatively small area of the field.

Such distributions may indeed arise in ecological applications. For example in the case of

biological invasion, the pest species can be initially located in a very small area (see Figure 5.1a),

and then as time passes spread over the entire field [78]. The scenario of a spreading pest species
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forming a strongly heterogeneous patchy spatial distribution is referred to as patchy invasion. It

would be desirable to accurately evaluate the pest population before the patch spreads to limit

the damage caused to the crop. The problem is, however, that the location of this patch of pest

population is unknown. We cannot therefore improve the accuracy of the estimation by placing

traps local to where the population is concentrated. Instead we consider a regular grid of traps

that covers the entire domain. It can be that the grid is so coarse that the sample units miss

the population entirely as shown in Figure 5.1a.

A 1D counterpart of an early stage of patchy invasion is what we will refer to as a peak

function. This is where the population density function on the interval D = [a, b] is such that

there is a single peak located in a sub-domain Du = [xI , xII ] and elsewhere the density is zero.

Thus, the population density distribution function f(x) is of the following form:















f(x) > 0 for x ∈ (xI , xII)

f(x) = 0, otherwise

(5.1.1)

where the maximum of the peak is assumed to be located at x∗ = 0.5(xI + xII). An example of

a 1D peak function is shown in Figure 5.1b. Throughout this chapter we shall fix the interval

representing the agricultural field as D = [0, 1], since a simple linear transformation can be

applied to scale the unit interval to the arbitrary interval [a, b].

We investigate the accuracy of numerical integration of peak functions. We begin our study

by considering standard examples of peak functions for which the integral is available in closed

form, and as such the exact value I can be calculated. Test cases with ecological significance

are then considered later in the text. One standard example of a peak function is the normal

distribution given by (e.g see [40])

f(x) =
1

σ
√
2π

exp

(

−1

2

(x− x∗)2

σ2

)

, (5.1.2)

where the location of the peak maximum x∗ is the mean of the distribution and σ is the standard

deviation. The density of the normal distribution is a bell shaped curve, symmetrical about the
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Figure 5.2: Numerical integration of a peak function. (a) The peak function (5.1.2) where the
location of the peak maximum is x∗ = 0.38 and the peak width is δ = 0.25. (b) The relative
integration error (2.1.7) for the peak function shown in (a) over a series of uniformly refined
grids. The methods of numerical integration which are applied are the statistical rule (2.1.4), the
composite trapezium rule (2.2.6), and Simpson’s rule (2.2.7) where the legend is as shown above.
(c) The relative error when the peak is located randomly on a uniform grid of N = 5 nodes for
each of the aforementioned numerical integration methods. The location of the peak maximum
x∗ is considered as a random variable and the relative error is shown for 10 realisations nr of
x∗. The legend is again as shown above.

mean and it is known from the Empirical Rule that 99.7% of the total area under the curve lies

within 3 standard deviations of the mean (e.g see [64] p. 93). Therefore we define the peak

width to be δ = 6σ.

Let us consider the peak function (5.1.2) where we fix δ = 0.25 as shown in Figure 5.2a. We

numerically integrate the function over a series of increasingly refined regular grids (2.2.2) and

calculate the relative error (2.1.7). The following numerical integration methods are applied:

the statistical rule (2.1.4), the composite trapezium rule (2.2.6), and the composite Simpson’s

rule (2.2.7). Convergence curves of the relative error are shown in Figure 5.2b. We use the same

criterion (2.5.1) to assess accuracy that was used in previous chapters, i.e. that the relative

error is such that Erel ≤ τ and recall that in ecological applications a range of 0.2 ≤ τ ≤ 0.5 is

considered to be a good level of accuracy.

Figure 5.2b displays three distinct regions where the relative error behaves in a different

manner. When the number N of grid nodes is very small an accurate estimate is not achieved,

instead the relative error is Erel ∼ 1. Furthermore, the accuracy between the three numerical
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integration methods cannot be differentiated. The method with the lowest order of convergence

i.e. the statistical rule (2.1.4) performs at the same level of accuracy as the composite Simpson’s

method (2.2.7) which has the highest order of convergence. Grids with such a small number

of nodes are the focus of the ecological monitoring problem since a realistic number of sample

units used in practice is N ∼ 10 [56, 60]. Once the grid is refined to have N ≈ 17 nodes

the accuracy improves and the methods differentiate themselves in terms of performance. The

computational grid is still considered to be coarse, however, until the grid has N ≈ 65 nodes

where the asymptotic error estimates (2.1.9) begin to hold and the Simpson’s rule has superior

accuracy.

Clearly the lack of sufficient accuracy on very coarse grids is due to the grid nodes (sample

units) being situated such that the peak of the pest population density distribution is missed. We

recall that the location of the peak sub-domain Du is unknown. In order to understand how the

integration error (2.1.7) is affected by the relationship between the location of the peak and the

position of the grid nodes, let us consider the location of the peak maximum x∗ as a uniformly

distributed random variable. We fix the number of grid nodes to be N = 5, and randomly

move the location of the peak (5.1.2) over the domain D = [0, 1]. For each realisation nr of

the random variable x∗ the peak (5.1.2) was integrated using the three methods outlined above

and the relative integration error (2.1.7) calculated. This was done 10 times and the results

can be seen in Figure 5.2c. For instance, when nr = 3 the location of the peak maximum is

x∗ = 0.7013, while for nr = 7 the same peak is located at x∗ = 0.4188 etc. . There is significant

variation in the accuracy achieved for all methods, with the error ranging from Erel ∼ 0.01

to Erel ∼ 1. When the number of grid nodes is very small, it is clear that the accuracy is

probabilistic in nature, i.e. it becomes a matter of chance as to whether an acceptable level of

accuracy is achieved. We define such grids to be ultra-coarse.

We have thus expanded on the grid classification used in previous chapters such that there

are now three types of computational grid: fine, coarse, and ultra-coarse. The definitions are as

follows:

Fine Grid: The asymptotic error estimates (2.1.9) hold.
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Coarse Grid: The asymptotic error estimates do not hold, however, the error is deter-

ministic in the sense that it can be described as being within a certain tolerance. Namely,

the error is guaranteed to satisfy the condition (2.5.1) that Erel ≤ τ for a chosen tolerance

τ .

Ultra-Coarse Grid: The asymptotic error estimates do not hold and the accuracy is not

deterministic. The accuracy can only be described in terms of the probability of achieving

an error within a prescribed tolerance. The probability that Erel ≤ τ for a chosen tolerance

τ is p < 1.

In the next two sections we seek the threshold number of grid nodes Nt where the transition

between ultra-coarse and coarse grids takes place, that is, when the error changes from being

probabilistic to deterministic. We also aim to find an expression to describe the probability p of

the integration error being within a chosen level of tolerance when the number of grid nodes N

is such that N < Nt. As in the previous chapter, we focus on the composite trapezium rule of

integration (2.2.6).

5.2 Analysis on Ultra-Coarse grids

Our analysis follows the approach of the previous chapter, whereby we Taylor expand the peak

function (5.1.1) about the location of the maximum x∗

f(x) = f(x∗) +
1

2

d2f(x∗)

dx2
(x− x∗)2 +R(x)

and we ignore the remainder term R(x). Thus, we model the peak by the quadratic function

(4.4.1) which we restate below for convenience:















f(x) ≈ Q(x) = B −A(x− x∗)2 for x ∈ [xI , xII ]

f(x) = 0, otherwise

(5.2.1)
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where A = −1

2

d2f(x∗)

dx2
> 0 and B = f(x∗) > 0. The exact integral I of the peak is then given

by (4.4.3), that is we have

I = 2/3Bδ (5.2.2)

where the peak width δ is the distance between the roots of the quadratic Q(x) namely δ =

2
√

B/A.

We reiterate the remarks we made in the previous chapter that by considering the peak as

a quadratic function we introduce an interpolation error of the order of δ3. However, it will

be shown via numerical computations in Sections 5.4 and 5.5 that the theoretical predictions

gained as a result of this approach are reasonably accurate for any kind of peak function.

We consider a uniform grid (2.2.2) of N nodes over the domain D = [0, 1], thus x1 = 0.

xi = xi−1+h, i = 2, . . . , N where the grid step size is h = 1/(N − 1). Let us define the grid step

size h in terms of the peak width δ, that is let

h = αδ. (5.2.3)

We also express the location of a grid node xi in terms of its relation to the position of the peak

maximum x∗. In other words we paramaterise xi such that

xi = x∗ + γh, γ ∈ [0, 1/2] (5.2.4)

where γ is a uniformly distributed random variable. It is sufficient to consider γ ∈ [0, 1/2] due

to the symmetry of the quadratic peak Q(x). The aim is to find where the condition Erel ≤ τ is

satisfied where the approximate integral Ia is calculated via the composite trapezium rule (2.2.6).

We choose the tolerance to be τ = 0.25, therefore this condition on the error is equivalent to

0.75I ≤ Ia ≤ 1.25I. (5.2.5)

Let us begin our study of ultra-coarse grids by considering the case when the grid is so coarse

that there is at most a single grid node located within the peak sub-domain Du = [xI , xII ]. Thus
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Figure 5.3: The trapezium rule (2.2.6) approximation of a peak function. (a) One grid node is
located within the peak sub-domain Du = [xI , xII ]. (b) Two grid nodes are located within the
peak sub-domain Du.

we require that the grid step size is such that h > δ. From (5.2.3) this in turn means that we

consider α > 1. For there to be at most one grid node in the vicinity of the peak means that

we either have no grid nodes within the region Du, or precisely one. The absence of grid nodes

in the region Du means that the peak is entirely lost on the computational grid and thus is a

degenerate case. Consequently, we now focus on the scenario where a single grid node xi lies

within the region Du and the composite trapezium rule (2.2.6) is employed to obtain an estimate

Ia of the integral of the peak as shown in Figure 5.3a.

We have, in fact, already studied this case in Section 4.4 of the previous chapter and we

established a range for the parameter γ (which we recall from (5.2.4) controls the location of the

grid node xi) such that the condition (5.2.5) is satisfied. Hence from (4.4.6),(4.4.7) and using

the condition (5.2.3) above, we have the following condition for γ in terms of the parameter α,

γI(α) 6 γ(α) 6 γII(α), (5.2.6)

where

γI(α) =
1

2α

√

1− 5

6α
, γII(α) =

1

2α

√

1− 1

2α
. (5.2.7)
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Figure 5.4: The range of parameter γ = γ(α) for which the integration error is Erel 6 τ where
τ = 0.25. (a) The grid step size is h > δ where δ is the peak width. (b) The grid step size is
δ/2 6 h 6 δ.

The lower limit γI(α) exists only for α ≥ αI = 5/6, and the upper limit γII(α) exists only for

α ≥ αII = 1/2. Since for the time being we are considering the case where α > 1, both limits

exist.

The inequalities (5.2.6) define the parameter range where integral is computed with the

required accuracy Erel ≤ τ = 0.25, this range can be seen in Figure 5.4a. Let us choose

α = α̂ > 1. Then for a peak of width δ we have the grid step size defined as h = ĥ = α̂δ.

The error is then within the prescribed tolerance for γ̂I 6 γ 6 γ̂II , where γ̂I = γI(α̂) and

γ̂II = γII(α̂).

We assume that the peak is as likely to be situated in one location as another within the

domain D = [0, 1]. In other words, we assume the location of the maximum x∗ to be a uniformly

distributed random variable. Using the fact that α = h/δ, the probability of achieving an error

Erel ≤ τ = 0.25 on a regular grid with N nodes is then given by

p(Erel ≤ τ, α)theor =
(γII(α)− γI(α))

(γmax − γmin)
= 2(γII(α)− γI(α)), (5.2.8)

where γmin = 0, γmax = 1/2. Since we have fixed the tolerance as τ = 0.25 we shall henceforth
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write the probability as p = p(α)theor. From (5.2.7) it can be seen that the probability of

achieving an error Erel ≤ τ = 0.25 is p < 1 when we have α > 1 (i.e. h > δ).

By considering the relative integration error (2.1.7) as a random variable and modelling a

peak function by a quadratic, we have obtained the probability (5.2.8) of achieving a sufficiently

accurate estimate when the grid step size h exceeds the width δ of the peak. In the next section

we use the same approach to determine the transitional number of grid nodes Nt required to

guarantee sufficient accuracy, i.e. the probability is p = 1.

5.3 On the Transition from Ultra-Coarse to Coarse grids

We now look at the transition from ultra-coarse grids where the error Erel is a random variable,

to coarse grids where the error is deterministic in the sense that the accuracy Erel ≤ τ is

guaranteed. We again fix τ = 0.25. We thus consider a finer computational grid such that there

is a minimum of one grid node, and a maximum of two grid nodes within the peak sub-domain

Du = [xI , xII ] and the composite trapezium rule (2.2.6) is applied to approximate the integral

of the peak (see Figure 5.3b). Therefore the grid step size h is such that

δ/2 ≤ h ≤ δ (5.3.1)

and subsequently from (5.2.3) this means that 1/2 ≤ α ≤ 1.

Consider the location (5.2.4) of the grid node xi which lies in the peak sub-domain Du =

[xI , xII ]. Let us consider another grid node xi−1 which from the definition of the computational

grid is defined as xi−1 = xi − h. For xi−1 to also lie within the peak sub-domain, we require

it to be within half the peak width of the location of the peak maximum x∗, since the peak is

symmetric. Therefore we have the lower bound, xi−1 ≥ x∗−δ/2. This condition, in combination

with the definition of xi−1, and (5.2.4), gives

x∗ + h(γ − 1) ≥ x∗ − δ

2
.

After rearrangement and using the paramaterisation (5.2.3) we obtain a minimum value of γ
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namely γ0 which ensures there are two grid nodes within the peak sub-domain Du,

γ ≥ γ0 = 1− δ

2h
= 1− 1

2α
.

For γ ∈ [0, γ0) there is only one grid node in the peak subinterval Du = [xI , xII ]. Let us

therefore return to the condition (5.2.6) from the previous section. As previously mentioned,

there are restrictions as to when the limits γI(α) and γII(α) exist. The upper limit requires

α ≥ αII = 1/2. Since we are considering 1/2 ≤ α ≤ 1, this condition is satisfied. However

the lower limit requires α ≥ αI = 5/6. Therefore for α ≥ αI , condition (5.2.6) holds and we

can apply the result (5.2.7) to compute the probability p of achieving a sufficiently accurate

estimate. On the other hand, for α < αI , the lower limit γI(α) does not exist and we instead

have to replace the inequalities (5.2.6) as follows

0 ≤ γ(α) ≤ γII(α). (5.3.2)

Let us now investigate the case where γ ∈ [γ0, 1/2], thus there are two grid nodes in the peak

sub-domain as shown in Figure 5.3b. We use the same analysis approach as before whereby we

replace the peak function by the quadratic approximation (5.2.1). The exact integral I is thus

given by (5.2.2) and we obtain the estimate Ia using the composite trapezium rule (2.2.6) on

the local grid of nodes {xi−2, xi−1, xi, xi+1}

Ia =
h

2
f(xi−2) + hf(xi−1) + hf(xi) +

h

2
f(xi+1)

=
h

2
Q(xi−2) + hQ(xi−1) + hQ(xi) +

h

2
Q(xi+1)

= 2Bh−A((γ − 1)2 + γ2)h3. (5.3.3)

The tolerance is set as τ = 0.25 and so we again have to solve for the inequality (5.2.5). Let

us first look at the lower bound Ia ≥ 3

4
I. From (5.2.2), the parameterisation (5.2.3), and the
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fact that B/A = δ2/4 we obtain the following

γ2(α)− γ(α) + C(α) ≤ 0, (5.3.4)

where C(α) =
1

2
− 1

16α3
(4α− 1). The equation γ2 − γ + C = 0 has roots

γIII =
1−

√

1− 4C(α)

2
, γIV =

1 +
√

1− 4C(α)

2
.

The inequality (5.3.4) is satisfied in the range γ ∈ [γIII , γIV ] which is only non-empty if the

above roots exist. This requires 4C(α) 6 1. From the definition of C(α), this condition is

equivalent to

4α3 − 4α+ 1 6 0. (5.3.5)

Solving the equation 4α3 − 4α + 1 = 0 numerically gives the roots α1 ≈ −1.1072, α2 ≈ 0.2696

and α3 ≈ 0.8376. The inequality (5.3.5) is then satisfied for α ∈ (−∞, α1] ∪ [α2, α3]. Since,

however, we are concerned with 1/2 ≤ α ≤ 1 we have that α ∈ [1/2, α3]. Hence, if α ∈ [1/2, α3],

the range γ ∈ [γIII , γIV ] will provide us with the integration error Erel 6 τ = 0.25. We should

also take into account the restriction γ ∈ [γ0,
1

2
]. It readily follows from the above computation

that γIII(α) <
1

2
and γIV (α) >

1

2
for any α ∈ [1/2, α3].

Let us now look at the lower boundary γ0. Setting γ0(αt) = γIII(αt) gives the equation

8α3
t − 8α2

t + 1 = 0. (5.3.6)

The above equation has roots at α = 1/2 and αt ≈ 0.8090 in the subinterval [1/2, α3]. Hence

γIII(α) ≤ γ0(α) for α ∈ [1/2, αt] and γIII(α) ≥ γ0(α) when α ∈ [αt, α3] (see Figure 5.4b). Let

us also note that αt < αI < α3.

Finally, we consider the upper bound of inequality (5.2.5), that is Ia 6
5

4
I. From (5.2.2), the

parameterisation (5.2.3), and the fact that B/A = δ2/4, after some rearrangement we arrive at

γ2(α)− γ(α) +D(α) > 0, (5.3.7)
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Figure 5.5: (a) The set of parametric curves defining the admissible range of node location γ on
grids with the grid step size h > δ/2. In the domain D1 : α ∈ [1/2, αt] the condition e 6 τ holds
for any γ, while in the domain D2 : α > αt the integration error becomes a random variable.
(b) The probability p(α) of having the integration error Erel 6 τ = 0.25 for a peak of the width
δ integrated on a grid with the grid step size h = αδ.

with D(α) given by D(α) =
1

2
− 1

48α3
(12α− 5). Roots of the equation γ(α)2 − γ(α) + D(α)

exist if 4D(α) 6 1. Substituting the given value for D(α) results in the inequality

4α3 − 4α+
5

3
6 0,

which does not have any real roots for α > 0. Hence the inequality (5.3.7) holds for any value

of γ.

We now compute the probability p = p(α)theor of the event that the error is Erel 6 τ = 0.25

on a grid with fixed grid step size h = αδ, where α > 1/2. The entire domain α > 1/2 is shown

in Fig. 5.5a, where the curves γ(α) of Figure 5.4a and b are now ‘glued’ together. There are four

subintervals of α to look at, and for each we need to consider the case when there is one node

within the peak sub-domain (γ ∈ [γmin = 0, γ0)), and when there are two (γ ∈ [γ0, γmax = 1/2]).

The probability p of achieving an accurate approximation is then p = p1 + p2, where p1 is

the probability of an accurate estimate when one node is located in the peak sub-domain, and

p2 is the probability of an accurate estimate computed when two nodes belong to the peak
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sub-domain.

Case 1: α ∈ [1/2, αt]

(i) First we consider the range γ ∈ [0, γ0), thus is there is only one grid node in the peak

sub-domain Du = [xI , xII ]. Since αt < αI , the admissible range of α is given by inequality

(5.3.2). However we now need to investigate the position of the curve γII(α) in relation

to the curve γ0(α). In order to find the point of intersection we set the two expressions

to be equal to each other and solve for α. Rearranging the equation γ0(α) = γII(α) gives

the same equation as (5.3.6). Therefore we have the same points of intersection, α = 1/2

and α = αt. For α ∈ [1/2, αt] we have γ0(α) ≤ γII(α), and for α ∈ [αt, 1] we have

γ0(α) ≥ γII(α). Thus for α ∈ [1/2, αt] the upper bound of (5.3.2) is replaced by γ0(α) so

we have the admissible range of γ as 0 ≤ γ(α) ≤ γ0(α). The probability of achieving an

accurate estimate Ia is then calculated as p1(α) = (γ0(α)− 0)/(γmax − γmin) = 2γ0(α).

(ii) Now let us consider the range γ ∈ [γ0, 1/2] where there are two nodes in the peak sub-

domain Du. In this case the admissible range is γ ∈ [γIII(α), γIV (α)] ∩ [γ0, 1/2]. In the

working above we found that, for α ∈ [1/2, αt] we have γIII(α) ≤ γ0(α) and γIV > 1/2.

Therefore the condition on γ becomes γ0(α) ≤ γ(α) ≤ 1/2 and we find the probability of

achieving an accurate estimate Ia to be p2(α) = (1/2−γ0(α))(γmax−γmin) = 1− 2γ0(α).

So for α ∈ [1/2, αt], where αt ≈ 0.8090, the probability of obtaining the error Erel ≤ τ = 0.25

for any γ ∈ [0, 1/2] is then p(α)theor = p1(α) + p2(α) = 1.

Case 2: α ∈ (αt, αI ]

(i) For the range γ ∈ [0, γ0), the inequality (5.3.2) holds. In Case 1(i) we established that

for α ∈ (αt, 1] we have γ0(α) > γII(α). Therefore the admissible range of γ remains as

(5.3.2) and we have the probability of achieving acceptable accuracy as p1(α) = (γII(α)−

0)/(γmax − γmin) = 2γII(α).

(ii) Now we consider γ ∈ [γ0, 1/2]. As in Case 1(ii) the admissible range is γ ∈ [γIII(α), γIV (α)]∩

[γ0, 1/2]. In the range α ∈ (αt, α3] we have γIII(α) > γ0(α) and γIV > 1/2. Since αI ≤ α3,
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the admissible range of γ becomes γ ∈ [γIII(α), 1/2]. The probability of achieving an

accurate answer is p2(α) = (1/2− γIII(α))/(γmax − γmin) = 1− 2γIII(α).

Thus for α ∈ (αt, αI ], where αI = 5/6 ≈ 0.8333, the probability of obtaining the error Erel ≤

τ = 0.25 for any γ ∈ [0, 1/2] is then p(α)theor = p1(α) + p2(α) = 1 − 2γIII(α) + 2γII(α). For

this range of α, we have γIII > γII , therefore p(α)theor < 1.

Case 3: α ∈ (αI , α3]

(i) For γ ∈ [0, γ0), since we now have α > αI , the inequality (5.2.6) holds for any γ ∈ [0, γ0(α)).

Therefore p1(α) = (γII(α)− γI(α))/(γmax − γmin) = 2(γII(α)− γI(α)).

(ii) For γ ∈ [γ0, 1/2], as (αI , α3] ⊂ (αt, α3], from Case 2 (ii) we have p2(α) = 1− 2γIII(α)

The resulting probability for α ∈ (αI , α3], where α3 ≈ 0.8376, the probability of obtaining the

error Erel ≤ τ = 0.25 for any γ ∈ [0, 1/2] is then p(α)theor = p1(α) + p2(α) = 1 − 2γIII(α) +

2(γII(α)− γI(α)). For this range of α, we have γIII > γII , therefore p(α)theor < 1.

Case 4: α > α3

(i) For γ ∈ [0, γ0), as α3 > αI , the probability is as in Case 3(i), that is p1(α) = (γII(α) −

γI(α))/(γmax − γmin) = 2(γII(α)− γI(α)).

(ii) In the case of γ ∈ [γ0, 1/2], the admissible range γ ∈ [γIII(α), γIV (α)] ∩ [γ0, 1/2] is the

empty set since the existence of γIII(α), γIV (α) requires α ∈ [1/2, α3]. Hence p2(α) = 0.

For α > α3, we therefore have the probability of achieving the accuracy of Erel ≤ τ = 0.25 as

p(α)theor = p1(α) + p2(α) = 2(γII(α)− γI(α)), where p < 1.

The function p(α)theor is shown in Figure 5.5b. For the fixed width δ of the peak, the

parameter αt used in (5.2.3) yields the threshold value ht of the grid step size where the transition

from ultra-coarse grids to coarse grids takes place, namely,

ht = αtδ, (5.3.8)

where αt ≈ 0.8090. On any grid with α ≤ αt (i.e. h ≤ ht) represented by domain D1 in

Figure 5.5a, the error (2.1.7) is deterministic in the sense the probability of achieving an error
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Erel ≤ τ = 0.25 is p(α)theor = 1. In other words we are guaranteed to achieve sufficient

accuracy. When α > αt (i.e. h > ht) represented by the shaded domain D2 in Figure 5.5b, the

computational grid is ultra-coarse. We cannot say what level of accuracy is achieved. Instead we

can only say what the probability is of achieving a desired level of accuracy, and this probability

is p < 1. Since h = 1/(N − 1), from (5.3.8) we obtain the transitional number Nt of grid nodes

required to guarantee an error of Erel ≤ τ = 0.25

Nt = 1 +
1

ht
= 1 +

1

αtδ
. (5.3.9)

By considering the error as a random variable and considering a peak as a quadratic function,

we have obtained an estimate of the number Nt of grid nodes required to guarantee a sufficiently

accurate estimate Ia. We have also made a theoretical prediction of the probability p of achieving

sufficient accuracy when the number of grid nodes is such that N < Nt. In the following two

sections we test our predictions for a variety of test cases where the shape of the peak differs

from a quadratic function.

5.4 Numerical Verification of Approach: Standard Test Cases

We begin testing our theoretical predictions by considering standard examples of peak functions

for which we can calculate the exact integral I. We then turn our attention to ecologically

meaningful data sets in the next section.

For each test case, the peak width δ is fixed and the location of the peak maximum x∗ is

considered as a uniformly distributed random variable. Since we wish to ensure the entire peak is

always situated within the interval D = [0, 1], and we consider both symmetric and asymmetric

cases, x∗ is randomised over the interval [δ, 1− δ]. The number of grid nodes is set to be Nl, the

location of the peak maximum x∗ is randomly selected and the peak function is then integrated

via the composite trapezium rule (2.2.6). This is done for nr = 10, 000 realisations of x∗. The

probability p(hl)num of accurately evaluating the integral over a grid of Nl nodes is then given

by

p(hl)num =
n̂r

nr
, (5.4.1)
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Figure 5.6: (a) A quadratic function (5.2.1). The peak width is δ = 0.06 and the parameters
are A = 1000, B = 0.9. (b) The probability p(h)num obtained by direct computation agrees
with the theoretical results p(h)theor for the function (5.2.1) of Fig. 5.6a. (c) The integration
error for the function (5.2.1) on an ultra-coarse grid and a coarse grid with a fixed number of
nodes. The error (2.1.7) is shown for the ten realisations nr of the random variable x∗, where
x∗ is uniformly distributed. The probability of achieving an error Erel ≤ τ = 0.25 is p ≈ 0.3
on an ultra-coarse grid of N = 18 nodes (dashed line), while p = 1 on a coarse grid of N = 25
nodes (solid line).

where hl = 1/(Nl − 1) is the grid step size and n̂r is the number of realisations of x∗ for which

the error is Erel ≤ τ for τ = 0.25. The number of grid nodes is then increased to Nl+1 = Nl + 1

and we repeat the process, stopping when we reach the number of grid nodes NL such that the

grid step size is hL ≤ δ/2.

Our approach to obtaining the theoretical probability p(h)theor was to treat the peak func-

tion as a quadratic. We thus first verify this theoretical prediction by finding p(h)num for the

quadratic peak (5.2.1). Let us set the peak width to be δ = 0.06 and choose A = 1000, B = 0.9,

as shown in Figure 5.6a. The probability (5.4.1) is calculated for a series of grids starting with

N1 = 5 nodes and ending in N18 = 22 for which condition (5.3.1) holds. From Figure 5.6b it can

be seen that the values of the numerical probability p(hl)num for l = 1, ..., 18 lie very close to

the theoretical curve p(h)theor. Let us define the maximum deviation dp of the numerical results

from the theoretical curve as

dp = max
l=1,...,NL

|p(hl)theor − p(hl)num|, (5.4.2)

where p(hl) is the numerical probability (5.4.1) and p(hl)theor the theoretical probability on a
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grid of step size hl. For the above quadratic test case with nr = 10, 000, the maximum deviation

was found to be dp = 0.0087. Therefore we consider the number of realisations nr = 10, 000 to

provide sufficiently reliable results, and we continue to use this value in the study of other test

cases.

As discussed in the previous section, on coarse grids the error is deterministic, that is we can

guarantee accuracy within a tolerance τ . However on ultra-coarse grids the error is probabilistic

where we can only describe the probability of achieving an accuracy of Erel ≤ τ . This is

demonstrated in Figure 5.6c. Here, the location of the maximum x∗ of the quadratic peak

(5.2.1) has been moved randomly nr = 10 times on the interval [δ, 1 − δ]. For each realisation

the integration error (2.1.7) has been calculated both on an ultra-coarse and a coarse grid.

Applying our theoretical predictions (5.3.8) and (5.3.9) from the previous section we anticipate

that the transitional grid step size will be ht = 0.04854, which corresponds to Nt = 22 grid

nodes. Therefore we choose grids with N = 18 and N = 25 nodes as examples of ultra-coarse

and coarse grids respectively. As shown in Figure 5.6c, the error on the ultra-coarse grid depends

on the location of the peak. The theoretical prediction of the probability of achieving an error

of Erel ≤ τ = 0.25 for a grid with N = 18 nodes is p ≈ 0.3 (see Figure 5.6b) and this matches

with the numerical experiment shown in Figure 5.6c. Meanwhile, it can be seen in Figure 5.6c

that on the coarse grid the error is deterministic, and the desired accuracy is always achieved

regardless of the positioning of the peak. Again, this corroborates our theoretical prediction.

We now wish to ascertain how effective our predictions are for peak functions other than

quadratics. We first consider another example of a symmetric peak, namely a quartic function

as defined by

f(x) =















A
(

(

δ
2

)4 − (x− x∗)4
)

, for x ∈ [x∗ − δ
2 , x

∗ + δ
2 ],

0, otherwise,

(5.4.3)

where A = 1, 200, 000 and we again choose the peak width to be δ = 0.06. The resulting peak is

shown in Figure 5.7a. A comparison of the numerical probability function p(h)num, as calculated

according the method outlined at the beginning of the section, and the theoretical curve p(h)theor

is shown in Figure 5.8a. Since this peak is not a quadratic, we expect some discrepancy with
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Figure 5.7: Standard numerical test cases: (a) quartic function (5.4.3), (b) cubic function (5.4.4),
(c) normal distribution (5.1.2), (d) Lorentz distribution (5.4.5), (e) sine peak (5.4.6). In all cases
the peak width is set as δ = 0.06. In order to show the shape of the peak clearly the functions
are plotted local to the peak, however, the interval of integration remains the entire unit interval
D = [0, 1].

the theoretical curve. However, it can be seen there is good agreement between the two curves,

except in what we shall refer to as the transition layer, that is when αt ≤ α3 (i.e. ht ≤ α3δ). It

is in this region that the maximum deviation dp = 0.498764 occurs, as calculated by (5.4.2).

The next test case is constructed from a cubic function therefore providing us with an

example of a peak which is asymmetric. The density distribution f(x) is defined as follows

f(x) =















A (x− x∗ + (δ/3)) (x− x∗ − (2δ/3))2 , for x ∈ [x∗ − δ/3, x∗ + 2δ/3]

0, otherwise.

(5.4.4)

We set A = 30, 000 and use the same peak width as before that is δ = 0.06 (see Figure 5.7b).

Once again the numerical and theoretical probability curves are plotted, as shown in Figure

5.8b. When h > α3δ the numerical results match well with the theoretical predictions. Here
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Figure 5.8: The numerically computed probability (5.4.1) (solid line) of obtaining an accurate
estimate, that is, the relative error (2.1.7) satisfies the condition Erel ≤ τ where we have fixed
τ = 0.25. It is compared with the theoretical curve p(h)theor (dashed line) obtained for the
quadratic function. The probability graph is shown for the (a) quartic function (5.4.3) (b) cubic
function (5.4.4), (c) normal distribution (5.1.2). The peak width is δ = 0.06 in each case.

the probability of achieving an accurate estimate is small. In the transition layer, the numerical

probability is smaller than predicted by the theory. In particular, the grid step size hnumt for

which the transition between ultra-coarse and coarse grids occurs, is smaller than the theoretical

estimate (5.3.8) obtained for the quadratic approximation of the peak.

So far the test cases we have considered have been constructed such that population den-

sity f(x) is zero outside of the peak sub-domain Du. The normal distribution (5.1.2) already

considered in Section 5.1 provides an example of a peak function that is non-zero over the en-

tire domain D = [0, 1]. Although outside of the peak of width δ = 6σ the function (5.1.2) is

comparatively close to zero, and therefore we still expect there to exist ultra-coarse grids where

the error is a random variable. The peak width is fixed as δ = 0.06 (see Figure 5.7c), and

the theoretical and numerical curves can be seen in Figure 5.8c. Still there is good agreement

between the curves on very coarse grids, however the whole of the numerical curve p(h)num is

now shifted with respect to the theoretical curve p(h)theor. The maximum deviation (5.4.2) is

dp = 0.8129 and the transitional value of the grid step size according to the numerical results is

hnumt ≈ 0.5δ, where as the theoretical prediction is ht ≈ 0.8δ.
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This discrepancy in the values of the transitional grid step size is due to the fact that

the theoretical prediction was constructed by considering the peak as a quadratic function.

Therefore as earlier discussed in Section 5.2 an interpolation error of the order δ3 is introduced

for peaks that are not quadratic. Consequently for small δ i.e. a narrow peak, we expect

our theoretical probability function p(h)theor to be accurate, diverging from the numerically

computed probability p(h)num as the peak width δ increases. We investigate this for another

peak function, constructed from the Lorentz distribution, which is well known in fields of physics

and interdisciplinary research (e.g see [8]).

We define the test case as

f(x) =































δ2

4

1

4(x− x∗)2 + δ2/4
− 1

5
, for x ∈ [x∗ − δ/2, x∗ + δ/2],

0, otherwise,

(5.4.5)

where the peak is given by a Lorentz distribution. Let us now select three peak widths, the

baseline width of δ = 0.06 which we have used in the previous test cases, a narrow peak width

δ = 0.01, and a wider peak with δ = 0.1. The peak function (5.4.5) is shown for peak width

δ = 0.06 in Figure 5.7d. The theoretical and numerical probability curves are computed for each

peak width. The ‘transition layer’ of the curves can be seen in Figure 5.9a, whilst the ‘tails’

are shown in Figure 5.9b. It can be seen that as the peak becomes narrower, the numerically

computed probability curve p(h)num gets closer to the theoretical curve p(h)theor. This means

that the estimate (5.3.8) of the actual transitional grid step size hnumt becomes more reliable as

δ decreases.

We investigate this further by calculating hnumt for the peak (5.4.5) at various peak widths

δ and comparing the values to those produced by the theoretical estimate (5.3.8). For each δ

the values of hnumt were calculated according to the condition that p(hnumt ) = 1 and p(h) < 1

when h > hnumt . The results are shown in Figure 5.10a. It can be seen that for narrow peaks,

in particular where δ < 0.1, the numerically computed threshold value hnumt is close to the

theoretical predictions htheort . The numerical values all lie below the theoretical curve, therefore
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Figure 5.9: The probability graphs p(h)num computed for the function (5.4.5) for different values
of the peak width namely δ = 0.1, 0.06, and 0.01. The computed probability p(h)num is compared
with the theoretical estimate p(h)theor made for a quadratic function. The probability graph is
shown for (a) the transition layer, and (b) the tail region. The legend for both figures is given
above.

the theoretical prediction (5.3.8) can be used as an upper bound to the transitional grid step

size ht. An estimate of the minimum number of grid nodes necessary to ensure an accuracy

Erel ≤ τ = 0.25 can thus be calculated from (5.3.9).

We now repeat the process detailed above for another example of a peak function. This test

case is formed from a sine function in the following manner

f(x) =































sin

(

π

δ

(

x− x∗ +
δ

2

))

, for x ∈ [x∗ − δ/2, x∗ + δ/2],

0, otherwise.

(5.4.6)

This function is shown in Figure 5.7e for the peak width δ = 0.06. The numerically calculated

transitional grid step hnumt size for various values of the peak width δ are plotted alongside the

theoretical curve (5.3.8) in Figure 5.10b. Again it can be seen that the theoretical curve provides
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Figure 5.10: The threshold grid step size ht when the peak width δ varies. The threshold values
hnumt obtained by direct computation are compared with the theoretical curve htheort defined
by (5.3.8). The calculations are made for (a) the Lorentz peak (5.4.5), and (b) the sine peak
(5.4.6).

an upper bound for ht, with the estimation becoming more reliable for narrower peaks.

We have shown by considering a variety of standard examples of peak functions that (5.3.8)

provides a good estimate of the grid step size ht where the probability p of obtaining an error

Erel ≤ τ = 0.25 transitions from p < 1 (sufficient accuracy is a matter of chance), to p = 1

(sufficient accuracy is guaranteed). This estimate is more reliable for narrower peaks, however

it can be considered as an upper bound for the grid step size h when wider peaks are considered.

In turn, (5.3.9) provides a lower bound for the number of grid nodes N required. In the next

section we proceed to apply our theoretical predictions to ecologically meaningful data.

5.5 Numerical Verification of Approach: Ecological Test Cases

We now consider test cases of ecological significance, generated by the 1D spatially explicit form

of the Rosenzweig-MacArthur model (3.2.7–3.2.8). It was demonstrated in Section 4.1 of the

previous chapter that the spatial distribution of the pest population density function f(x) at a

fixed time t is controlled by the diffusion coefficient d. For d ≪ 1 the initial condition f(x, 0) can

evolve into a function with a single peak (e.g see [75]). We thus use three ecologically meaningful
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Figure 5.11: Ecological test cases. The spatial distribution of the pest population density f(x)
as predicted by the 1D Rosenzweig-MacArthur model (3.2.7–3.2.8) for different values of the
diffusion coefficient d; (a) the density distribution f1(x) has been obtained for for d = 10−4

(b) the density distribution f2(x) obtained for d = 10−5 (c) the density distribution f3(x)
where d = 10−6. An example of the system’s parameters (the density distribution f2(x)):
t = 50, k = 0.5, Λ = 2.0, m = 0.42. The initial conditions are f(x, 0) = 0.8, 0 < x < 0.6,
g(x, 0) = 0.5, 0 6 x 6 0.55, and f(x, 0) = 0, x > 0.6, g(x, 0) = 0, x > 0.55.

examples of peak functions genereated by numerically solving on a very fine, regular grid, the

system of equations (3.2.7–3.2.8) for the diffusion coefficient values d = 10−4, d = 10−5, and

d = 10−6. The numerical solutions were supplied by the authors of [70]. The resulting one-peak

density distributions f1(x), f2(x), and f3(x) are shown in Figure 5.11a–c respectively. It is clear

from the figures that the diffusion d affects the peak width δ. We recall the relationship (4.1.8)

formulated in Section (4.1), namely

δ = ω
√
d.

Using this estimate of the peak width, we can rewrite the estimate for the transitional grid step

size (5.3.8) in terms of the diffusion coefficient

ht = αtδ ≈ αtω
√
d, (5.5.1)

where typically ω ≈ 25 (see Section 4.1).

Let us first consider the distribution f1(x) shown in Figure 5.11a. The diffusion coefficient

is d = 10−4, thus according to (5.5.1) the estimated grid step size for which we are guaranteed

an accuracy of Erel ≤ τ = 0.25 is then ht ≈ 0.2. From (5.3.9), the estimate for the minimum

number of grid nodes needed for an accurate estimation is then Nt ≈ 6. We now integrate the
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N 3 4 5 6 7 8 9 10

h 0.5 0.3333 0.25 0.20 0.1667 0.1429 0.125 0.1111

Erel 0.6948 0.1119 0.5459 0.07983 0.1699 0.02305 0.08228 0.001918

Table 5.1: The integration error (2.1.7) for the density distribution f1(x) on a sequence of refined
regular grids with grid step size h (i.e. the number N of grid nodes).

density function f1(x) using the compound trapezium rule (2.2.6), and compute the relative

integration error (2.1.7) over a series of refined grids1. At each stage of refinement a single

grid node is added. The results displayed in Table 5.1 show that the estimate of the threshold

number of grid nodes Nt is in surprisingly good agreement with the numerical results, where the

actual value of is indeed Nt = 6 as predicted. Whilst the error (2.1.7) does continue to oscillate

on grids with N > Nt nodes, it remains within the limit Erel ≤ τ = 0.25.

We now turn our attention to the distribution f2(x) of Figure 5.11b, where the diffusion

coefficient is d = 10−5, and repeat the process outlined above. The threshold number of grid

nodes is now estimated asNt ≈ 17. The integration error obtained on implementing the midpoint

rule is shown in Table 5.2 and it can be seen that the actual minimum number of grid nodes

which guarantees a sufficiently accurate integral evaluation is Nt = 21. In terms of the ecological

problem of pest management, this number of sample units may not be realistic. As previously

discussed, a typical number of sample units used in practice is N ∼ 10. Thus, other factors

need to be considered in order to decide on the number of sample units that should be used.

A factor that should be considered in future work is that in the case of narrow peaks such as

f2(x), it may be that the value of the integral is small. That is if the pest population density

is located to a small area, the total number of pests may also be small. This means that the

risk of the pest abundance being at a harmful level is smaller, and we can therefore afford to

be less accurate in our approximation and instead consider a tolerance of τ > 0.25 e.g τ = 0.5,

or perhaps even τ = 1. The same approach as described in Sections 5.2 and 5.3 could then be

used to obtain an estimate of the threshold number of traps Nt.

Finally we consider the extremely narrow peak f3(x) with diffusion coefficient d = 10−6

1In order to calculate the relative error (2.1.7), we apply the approach from previous chapters and use the
trapezium rule approximation (2.2.6) calculated on the finest available grid as the value of the exact integral I.
This is also done for the density distributions f2(x) and f3(x).
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N 17 18 19 20 21 22 23 24 25

h 0.0625 0.0588 0.0556 0.0526 0.05 0.0476 0.0455 0.0435 0.0416

Erel 0.4127 0.5412 0.5101 0.4124 0.1960 0.0028 0.1454 0.2234 0.2137

Table 5.2: The integration error (2.1.7) for the density distribution f2(x) on a sequence of refined
regular grids with grid step size h (i.e. the number N of grid nodes).

shown in Figure 5.11c. The estimate of the threshold number of grid nodes in this instance

is Nt ≈ 51. This number of sample units is too large to be used in routine pest monitoring.

Since the integral is very small (in the case of the distribution f3(x) we have I = 0.007161),

our recommendation to ecologists would be to wait until time evolves and the peak gets wider

especially since, as the results in the previous section show, when the peak is very narrow the

probability of achieving a sufficiently accurate estimation from a more reasonable number of

sample units, i.e. N ∼ 10, is very small.

Now that we have validated our theoretical results, in the next section we go on to investigate

how we might apply this probabilistic approach to assessing the integration error in order to

compare the accuracy of numerical integration methods on ultra-coarse grids.

5.6 Comparing Numerical Integration Methods on Ultra-Coarse

Grids

In Section 5.1 we demonstrated that on ultra-coarse grids, methods of numerical integration

cannot be differentiated in terms of their performance by conventional convergence analysis. We

propose that on such grids, the efficiency of a numerical integration method should instead be

assessed by the probability of achieving a sufficiently accurate estimate. That is, on comparing

two methods on ultra-coarse grids, the one with the highest probability of achieving an accurate

evaluation of the integral would be recommended. We shall now use the approach detailed in

Sections 5.2 and 5.3 to compare the performance on ultra-coarse grids of the composite trapezium

rule (2.2.6) with the statistical method (2.1.4) often used in ecological applications. For the

purposes of this investigation, we restrict our consideration of the grid step size to the range h > δ

(i.e. α > 1). We use the superscripts ‘trap’ and ‘stat’ to distinguish between the approximations
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obtained via the composite trapezium rule and the statistical method respectively.

The composite trapezium rule (2.2.6) can be rewritten as

Itrapa =
1

2(N − 1)
f1 +

1

N − 1

(

N−1
∑

i=2

fi

)

+
1

2(N − 1)
fN .

We consider a peak function (5.1.1), therefore we have f1 = fN = 0 and the approximation

obtained via the statistical method can be expressed in terms of the composite trapezium rule

approximation

Istata =
N − 1

N
Itrapa = κItrapa , (5.6.1)

where 0 < κ = (N − 1)/N < 1.

Let us impose the condition on the relative integration error (2.1.7) used throughout this

chapter, that Erel ≤ τ where we again fix τ = 0.25. This is equivalent to the approximate

integral satisfying the inequalities 0.75I ≤ Istata ≤ 1.25I which using (5.6.1) become

0.75I ≤ κItrapa ≤ 1.25I.

Since we consider the grid step size h > δ the term Itrapa is given by (4.4.4) calculated in Section

4.4 of the previous chapter. We also recall that the exact integral is given by (5.2.2). Using

these expressions in the above set of inequalities yields

Bδ

2
≤ κh(B −Aγ2h2) ≤ 5Bδ

6
.

Solving for γ we have

γstatI (α) ≤ γ(α) ≤ γstatII (α),

where

γstatI (α) =
1

2α

√

1− 5

6ακ
, γstatII (α) =

1

2α

√

1− 1

2ακ
, (5.6.2)

The probability of achieving sufficient accuracy when using the statistical method (2.1.4) on
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regular grids with grid step size h > δ is then

pstat(α) =
γstatII − γstatI

γmax − γmin
= 2(γstatII − γstatI ) =

1

α

(

√

1− 1

2ακ
−
√

1− 5

6ακ

)

. (5.6.3)

The equivalent probability when implementing the composite trapezium rule (2.2.6) is given by

(5.2.8) and can be written as

ptrap(α) =
1

α

(

√

1− 1

2α
−
√

1− 5

6α

)

(5.6.4)

Let us consider the ratio

ptrap(α)

pstat(α)
=

√

1− 1
2α −

√

1− 5
6α

√

1− 1
2κα −

√

1− 5
6κα

,

where κα < α as κ < 1. The function ρ(α) =

√

1− 1

2α
−
√

1− 5

6α
is monotonically decreasing

for α > 1 (i.e. for h > δ). Furthermore, since κα < α, the ratio ptrap/pstat < 1. This means that

the probability of achieving an accurate evaluation of the integral via the statistical method is

greater than that for the composite trapezium rule.

This result can be seen in Figure 5.12a, where the theoretical probability curves p(h)traptheor

and p(h)stattheor have been found from (5.6.4) and (5.6.3) respectively using the substitution h =

αδ, for α > 1. The curve representing the statistical method is above that corresponding to

the composite trapezium rule. Figure 5.12b meanwhile shows the probability curves obtained

numerically according to the computation (5.4.1) for the Lorentz distribution (5.4.5) with peak

width δ = 0.06. The difference between the numerical curves is small but the probability of

achieving an accurate answer via the statistical method remains greater the trapezium rule

probability. Therefore for a small number of grid nodes such that the grid step size satisfies the

condition h > δ, the statistical method can be considered the more reliable of the two methods

to produce an accurate estimate. This is in spite of the fact that the composite trapezium rule

has a higher asymptotic convergence rate than the statistical method. The analysis should,

however, be conducted over the entire range of ultra-coarse grids (i.e. for h ≥ δ/2) in order to

make a proper comparison between the two methods.
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Figure 5.12: Comparison of the composite trapezium rule (2.2.6) and the statistical method
(2.1.4) on ultra-coarse regular grids with h > δ. (a) The probability of achieving sufficient
accuracy Erel 6 τ = 0.25 is higher for the statistical method, as the curve obtained for the
composite trapezium method ptraptheor(h) lies below the curve obtained for the statistical method

pstattheor(h). (b) The probability curves p(h)trapnum and p(h)statnum obtained by direct computation
(5.4.1) for the Lorentz distribution (5.4.5) with the peak width δ = 0.06.

5.7 Chapter 5 Conclusions

In this chapter we have introduced the concept of ultra-coarse computational grids where the

number N of grid nodes is too small to provide sufficient information about the pest population

density distribution, thus the accuracy of an estimate cannot be described deterministically as

being within a certain tolerance. Instead, the relative integration error behaves as a random

variable of high magnitude and achieving a prescribed level of accuracy becomes a matter of

chance. The accuracy on ultra-coarse grids should therefore be assessed by the probability p of

achieving a sufficiently small error, rather than considering the error itself.

The problem of ultra-coarse grids arises when the spatial pattern of the population is aggre-

gated, and as such in this chapter we have focused on single peak density functions i.e. when the

population is concentrated within a single patch. By modelling a peak function as a quadratic,

we have obtained a theoretical prediction for the probability p < 1 of accurate evaluation on

ultra-coarse grids. We have also constructed an estimate of the threshold number Nt of grid

nodes required for the probability to become p = 1. Numerical experiments showed this estimate

107



to be a reliable lower bound thus Nt can be considered an estimate of the minimum number of

grid nodes required for sufficient accuracy to be guaranteed.

We showed that on ultra-coarse grids, conventional convergence analysis is not conducive to

distinguishing between the performance of numerical integration methods. We have therefore

proposed that on such grids the accuracy should be described in terms of the probability that

the estimate is within a certain tolerance of the true pest abundance, rather than the error itself.

This then permits the comparison of methods where the method with the highest probability p

would be recommended. It should be mentioned that since our analysis relied on a quadratic

approximation of the peak, we could only compare numerical integration methods with an order

of convergence q ≤ 2. In order to compare higher order methods e.g the composite Simpson’s

rule (2.2.7), we would need to use a higher order approximation of the peak. The analysis would

then be conducted in the same way.

The study conducted in this chapter has focused on a regular grid of sample units and imple-

menting the composite trapezium rule (2.2.6) to estimate the pest abundance. The statistical

rule (2.1.4) often used in ecological applications does not, however, require the sample units to

adhere to a specific formation. In the next chapter we investigate the accuracy of pest abundance

evaluation when the number of sample units is small, and they are located randomly.
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Chapter 6

Evaluating Pest Abundance Using

Random Sampling

In the previous chapter we constructed an estimate of the threshold number Nt of grid nodes

such that, for any regular grid with N ≥ Nt, the estimate obtained via the composite trapezium

rule (2.2.6) achieves a prescribed level of accuracy. Meanwhile, we developed an approach which

allowed us to evaluate the probability p < 1 of obtaining an accurate estimate on regular grids

with N < Nt nodes. This chapter consists of our work presented in [32] where we extend the

results to the statistical counterpart of numerical integration, namely the statistical method

(2.1.4). This method is space-implicit, and the location of the grid nodes (sample units) can be

arbitrary. A common recommendation is to locate the sample units randomly to avoid biasing

[13, 51, 85, 92]. The concern is that a non-random sample may coincide with the pattern of

the population. In this chapter we show that whilst such a sampling plan works well when the

population is spread across the entire domain, it may not be the best approach when the density

distribution is highly aggregated. Furthermore we show that if a random sampling plan is used,

there is an optimal number of sample units to provide accurate evaluation.

In Section 6.1 we outline how we formulate the problem. We present the analysis approach in

Section 6.2 where we focus on the 1D problem. The approach is then verified for both standard

test cases and ecologically significant 1D data in Section 6.3. In Section 6.4 we extend our

analysis to the 2D problem. A comparison between a random and regular sampling plan is then
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made in Section 6.5 and it is shown that regular plan is more likely to produce accurate results

when a highly aggregated density distribution is the focus of the monitoring procedure. The

conclusions and discussion of the results of this chapter are provided in Section 6.6.

6.1 Evaluating the Mean Density for Highly Aggregated Distri-

butions

We have already identified in previous chapters that the risk of inaccurate estimation of abun-

dance is highest when the spatial distribution of the population is highly aggregated, i.e. the

entire pest population is located with in a single sub-domain (patch) of the field and the popu-

lation density is zero elsewhere. Therefore, we continue the theme of the previous chapter and

concentrate on such distributions. As mentioned in Section 2.1 of Chapter 2, the statistical

method (2.1.4) is a commonly used means of forming an abundance estimate Ia. We recall that

this estimate is defined as

Ia = SM(N),

where S is the area of the agricultural field and M(N) is the sample mean density, namely

M(N) =
1

N

N
∑

i=1

fi. (6.1.1)

Within this chapter we consider the agricultural field as the unit square D = [0, 1]× [0, 1] thus

the area S = 1. Consequently, we focus our attention on the estimate (6.1.1).

An obvious, yet important observation made in the previous chapter was that the accuracy

of the evaluation of pest abundance depends on how many sample units (grid nodes) are located

within the sub-domain Du of non-zero density. It may be that the small number N of sample

units miss the patch entirely thus generating an estimate of the mean density of M(N) = 0.

Meanwhile, if one or more sample units fall within the patch a better estimate of M(N) > 0 is

produced. The members of the Newton-Cotes family of numerical integration (e.g the composite

trapezium rule and the composite Simpson’s rule), which have so far largely been the focus of

our attention, require the sample units to be regularly spaced. The estimate (6.1.1), however, is
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space-implicit and permits a random sampling plan. While an increase in the number N of nodes

in a uniform grid implies an increase in the number of nodes located within the patch of non-zero

density, this is not the case for a random distribution of nodes. As we already mentioned in

the introduction to this chapter, random (or pseudo-random) positioning of sample units is a

widespread technique widely recommended in the literature because it allows one to eliminate a

bias-related error. For highly aggregated density distributions, however, sampling in a random

way means that detecting the patch of pest insects is a matter of chance and the trade-off

between the bias error and the approximation error may simply not exist. Below we consider

this issue in more detail.

If there are N sample units located randomly across the field of the unit area S = 1, then

the probability pm that there are m units within the sub-domain Du of zero-density is defined

by the binomial distribution (e.g see [97]):

pm =
N !

m!(N −m)!
δm(1− δ)N−m, (6.1.2)

where δ is the area of the sub-domain Du and the following condition holds:

N
∑

m=0

pm = 1. (6.1.3)

Consider the probabilities p0, p1, . . . , pN defined by the formula (6.1.2). Obviously, the first

meaningful case is that we have one sample unit within the sub-domain Du as a result of a

random installation of sample units. Let us compute the probability p̂(N) given by the sum

p̂(N) = p0 + p1 = (1− δ)N +Nδ(1− δ)N−1, (6.1.4)

where p0 is the probability that we have no sample units within the sub-domain Du, and p1 is the

probability of having a single sample unit within that sub-domain. It follows from the expression

(6.1.4) that the probability p̂(N) is dominant in the sum (6.1.3) when a narrow sub-domain δ

is considered. In other words, for small δ the number of sample units m located within the
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Figure 6.1: The probability p̂(N) given by the formula (6.1.4). (a) The value of the total number
of sample units N varies and the area δ of the peak sub-domain is fixed. (b) N is fixed and δ
varies.

population of pests is more likely to be either m = 0 or m = 1 than m > 2. This statement is

illustrated in Figure 6.1a where the probability p̂(N) has been plotted for an increasing number

N of sample units. The area δ for each graph shown in Fig. 6.1(a) has consequently been fixed

as δ = 0.01, 0.06, 0.1, and 0.2, respectively. It can be seen from the figure that for the two

smaller areas δ = 0.01 and δ = 0.06 the probability p̂ remains greater than 50% for the entire

range of N displayed. For the larger choices of δ, that is the patch takes up 10 or 20% of the

field, we have p̂(N) > 0.5 for N ≤ 16 and N ≤ 8 respectively. In Figure 6.1b a similar graph

has been plotted, except this time the area of the patch of pests is varied for fixed values of the

total number of sample units N . In each case there is a range of sub-domain areas δ for which

the condition p̂(N) > 0.5 is satisfied. Thus the probability p̂(N) is dominant when the patch is

small in comparison to the area of the field, a situation which corresponds to an early stage of

biological invasion. The observations made above will be further discussed in Section 6.5.

The conclusion that we make here is that the bias problem is not very important when

a single peak distribution is considered, as the most likely scenario is that we lose either all

or all but one of the sample units outside the sub-domain Du of non-zero density. Hence, the

question we would like to investigate is whether a random distribution is still better than a grid of

equidistant sample units for highly aggregated density of pest insects. Clearly, a complete answer
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to this question would require investigation of all cases described by the formula (6.1.2), that is

one sample unit within the sub-domain Du, two sample units within Du, etc. . However, in the

present paper we restrict our discussion to the case of a single sample unit placed within the sub-

domain Du even when the total number N of sample units is large. Despite this case not giving

us a complete answer to the question of accurate estimation of the pest abundance, its study

will allow us to identify and resolve several very important issues related to handling strongly

localised density distributions. In particular, it will be revealed that a standard approach in

the evaluation of the pest population size should be revisited when a highly aggregated density

distribution is considered. In the next section we follow a similar approach to that used in

the previous chapter whereby we handle the relative approximation error (2.1.7) as a random

variable and compute the probability of obtaining an accurate estimate of the pest population

size.

6.2 Probability Analysis: 1D Case

Let us first consider the 1D problem; the 2D problem is considered later in the chapter in Section

6.4. We recall from the previous chapter that when the pest population is highly aggregated,

i.e. the population is restricted to a single patch, the population density function f(x) is a peak

function as shown in Figure 6.2a. The spatial heterogeneity of a one-peak distribution f(x) can

be thought of as being constructed of two components - a peak region and a tail region. Clearly,

the peak is a dominant feature of the density f(x) and it provides the main contribution to the

mean density M(N). Hence for the sake of our further discussion we again use the simplified

version of the distribution f(x) from Chapters 4 and 5. In the peak region we consider f(x) as a

quadratic function of the width δ. Elsewhere we set the population density to be zero, therefore

the tail region is essentially ‘cut off’. We thus have

f(x) ≈











Q(x) = B −A(x− x∗)2, x ∈ [xI , xII ],

0, otherwise,
(6.2.1)
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Figure 6.2: (a) An example of high aggregation density distribution in a 1D ecological system.
(b) Approximation of the one peak density distribution by a quadratic function. One sample
unit at the location x0 lies within the peak sub-domain.

where x∗ is the location of the maximum of the peak, A = −1

2

d2f(x∗)

dx2
, B = f(x∗). The peak

width is δ = 2
√

B/A and the roots are xI = x∗ − δ/2, xII = x∗ + δ/2. While such an

approximation of the peak introduces an error of the order δ3, the numerical study conducted in

the previous chapter showed that our conclusions drawn from considering a quadratic peak can

be extended to peak functions of arbitrary shape. Hence we consider the approximation (6.2.1)

to be reliable and use it in our further analysis.

As we already mentioned in the previous section, we intend to consider the limiting case of

one sample unit being located in the peak sub-domain Du = [xI , xII ], where we have non-zero

density f(x). In other words, if the sample unit numeration is i = 1, 2, . . . , N , then we have

fi0 6= 0 for fixed i = i0 and fi = 0 for any i 6= i0. Let us re-define the index i0 as i0 = 0 for

the sake of convenience. The sample unit location xi0 ≡ x0, where the density fi0 ≡ f0 6= 0, is

defined as

x0 = x∗ + γ
δ

2
,

where the parameter γ ∈ [0, 1] as we only consider the right half of the peak sub-domain, because

of the obvious symmetry of the peak (see Figure 6.2b).

114



The density f0 is computed as

f0 ≈ Q(x0) = B −A(x0 − x∗)2 = B(1− γ2), γ ∈ [0, 1], (6.2.2)

where we take into account that
δ

2
=

√

B

A
.

Let us now define M̄ to be the true mean density and we require the approximation error to

be small when M̄ is approximated by the sample mean density M(N):

Erel =
|M̄ −M(N)|

M̄
< τ, (6.2.3)

where τ is a prescribed tolerance, 0 < τ < 1. Hence the mean value M(N) computed when we

use N sample units should be within the range

(1− τ)M̄ 6 M(N) 6 (1 + τ)M̄. (6.2.4)

We have already mentioned in the previous section that in ecological applications the exact

location of the peak sub-domain cannot be predicted for a high aggregation density distribution.

We now make an assumption that is crucial for our further discussion. Since the location of

the sub-domain Du = [xI , xII ] is not known, and any location is as likely to occur as another,

the location x∗ of the peak maximum can be considered to be a uniformly distributed random

variable. Under the requirement that only one sample unit lies in the domain Du = [xI , xII ] the

assumption about uniformly random location of the peak sub-domain can be re-formulated in

terms of the location of the point x0. Namely, we fix the point x∗ and then consider γ ∈ [0, 1]

as a uniformly distributed random variable in order to randomise the location of x0.

We now solve the inequalities (6.2.4) in order to see whether any location x0 of a sample

unit within the peak sub-domain can provide the desirable accuracy (6.2.4). From (6.2.2), the

sample mean density (6.1.1) is

M(N) =
f0
N

=
B(1− γ2)

N
. (6.2.5)
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Meanwhile, by considering the peak as the quadratic density distribution Q(x) defined by (6.2.1),

the true mean density M̄ is calculated as

M̄ =

1
∫

0

Q(x) dx =
2

3
Bδ. (6.2.6)

Substituting the above expressions for M(N) and M̄ in (6.2.4) we arrive at

(1− τ)Bδ̂ 6
B(1− γ)2

N
6 (1 + τ)Bδ̂, (6.2.7)

where δ̂ =
2

3
δ.

Consider the inequality

B(1− γ)2)

N
6 (1 + τ)Bδ̂. (6.2.8)

We have

1− γ2 6 (1 + τ)Nδ̂ ⇒ γ > γI =

√

1− (1 + τ)Nδ̂, (6.2.9)

where we have to choose a positive root, as γ ∈ [0, 1]. It follows from the solution of (6.2.9) that

the number N of sample units should be restricted as

N 6 N∗ =
1

δ̂(1 + τ)
. (6.2.10)

If the restriction (6.2.10) breaks, then the inequality (6.2.8) holds for any γ ∈ [0, 1].

Let us now solve

B(1− γ2

N
> (1− τ)Bδ̂. (6.2.11)

Similar computation results in

1− γ2 > (1− τ)Nδ̂ ⇒ γ 6 γII =

√

1− (1− τ)Nδ̂, (6.2.12)
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where the number of sample units is restricted as

N 6 N∗∗ =
1

δ̂(1− τ)
. (6.2.13)

If the restriction (6.2.13) does not hold then the accuracy (6.2.4) is never achieved. In other

words, if we have a large number N > N∗∗ of sample units, but they are randomly distributed

over the entire domain D = [0, 1], so that only one sample units is positioned within the peak

sub-domain, then the accuracy of the sample mean density evaluation will always be poor, as

M(N) will not be within the range (6.2.4).

Let us note that the number N∗ < N∗∗ for any peak width δ and tolerance τ . Hence we

have to consider the following cases:

Case 1: N 6 N∗.

For any number of sample units that is smaller than N∗, the admissible range of the sample

unit location x0 where we can guarantee prescribed accuracy (6.2.4) is given by γI 6 γ 6 γII .

In other words, we require that x0I 6 x0 6 x0II , where x0I = x∗ + γI
δ

2
and x0II = x∗ + γII

δ

2
.

The same result holds when we consider a sample unit location at the left-hand side of

the peak, x0 = x∗ + γ
δ

2
, where γ ∈ [−1, 0]. We therefore have two subintervals [−γII ,−γI ]

and [γI , γII ] where the sample unit location within each of those subintervals will give us the

accuracy required by (6.2.4). As the length of the entire interval is γ ∈ [−1, 1] and a sample unit

is randomly placed at any point of the peak sub-domain, then the probability p(N) of obtaining

a value M(N) that meets the condition (6.2.4) is given by

p(N) =
2(γII − γI)

γmax − γmin
, (6.2.14)

where γmin = −1, γmax = 1 and we multiply the range γII − γI by 2 as we now consider the

left-hand side and the right-hand side of the peak. Substituting γI and γII from (6.2.9) and

(6.2.12) respectively in the equation (6.2.14) we arrive at

pI(N) =

√

1− (1− τ)Nδ̂ −
√

1− (1 + τ)Nδ̂. (6.2.15)
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The probability pI(N) for N < N∗ is shown as branch I of the graph in Figure 6.3a. It

can be seen from the graph as well as from the analytical expression (6.2.15) obtained for

the probability p(N) that the maximum value pmax = pmax(τ) =

√

1− 1− τ

1 + τ
of the probability

p(N) is achieved when N = N∗. It is important to note here that the maximum probability is

always pmax < 1. At the same time the probability pmax(τ) predictably grows when we make

the tolerance τ bigger, that is pmax → 1 as τ → 1.

Case 2: N∗ < N 6 N∗∗.

For any number of sample units N > N∗ the inequality (6.2.8) always holds. Hence we only

have the restriction (6.2.13) and the admissible range of γ becomes γ ∈ [0, γII ]. The probability

of obtaining an accurate estimate (6.2.4) is given by

pII(N) =

√

1− (1− τ)Nδ̂. (6.2.16)

The probability pII(N) defined for the number of sample units N∗ < N 6 N∗∗ is shown as

curve II in Figure 6.3a.

Case 3: N > N∗∗.

In the case that N is sufficiently large, the probability of the event that the error is within the

range (6.2.4) is pIII(N) = 0 as we cannot meet the condition (6.2.11) (see branch III in Figure

6.3a).

Let us note again that the results above are entirely based on the assumption that only one

sample unit belongs to the peak sub-domain. However, as explained in Section 6.1 if a random

distribution of sample units over the domain is applied, then we cannot guarantee that more

than one sample unit will be located in the peak sub-domain even when the total number N of

sample units is large. The branches II and III of the curve p(N) in Figure 6.3a will exist as

long as we have a single sample unit within the peak sub-domain, no matter how large the total

number N of sample units becomes. Hence if we want to keep a random distribution of sample

units, our recommendation would be to restrict the number of sample units as N ≈ N∗ as this
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M̄ in the case when a single sample unit is located within the peak sub-domain Du where the
peak is formed by the quadratic function (6.2.1). (a) The theoretical curve. (b) Comparison
of the theoretical curve and computational results. The probability is computed for the peak
width δ = 0.06 and the tolerance τ = 0.25.

number of sample units provides the greatest chance of obtaining an accurate estimate M(N)

of the mean density.

6.3 Numerical Verification: 1D Case

In this section the probability p(N) will be obtained in several test cases by direct computation

and compared with a theoretical curve obtained for the quadratic function (6.2.1). The first test

case is to confirm that our theoretical results derived for a quadratic function are correct. Let

us fix the peak width δ, the tolerance τ and the location x∗ of the peak maximum. We then

consider the location x0 of a sample unit as a random variable that is uniformly distributed

over the interval [x∗, x∗ + δ/2]. In our computations we provide nr = 100, 000 realisations of

the random variable x0 for the fixed total number N of sample units, compute M(N) and check

the condition (6.2.4) for each realisation of x0. The probability p(N)num of accurate evaluation

(6.2.4) of the mean density is then computed as

p(N)num =
n̂r

nr
, (6.3.1)
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Figure 6.4: Computation of the error (6.2.3) for a random peak location. The peak is given by
a quadratic function (6.2.1) of width δ = 0.06. The tolerance in the formula (6.2.3) is set as
τ = 0.25. The location of the peak maximum is randomly generated 100 times and the error
value is computed for each realisation nr = 1, 2, . . . , 100 of the peak location. (a) The number
of sample units is N = 10. The probability of getting the error Erel ≤ τ is low and most of the
error values are beyond the required range. (b) The number of sample units is N = N∗ = 20.
The probability of getting an accurate result Erel ≤ τ achieves its maximum when N = N∗ and
most of the error values are within the required range.

where n̂r is the number of realisations for which the condition (6.2.4) holds. We then increase

the number of sample units by one and repeat computation (6.3.1) for N +1 total sample units.

We stop increasing the number N , when the number NL of sample units becomes so large that

the condition (6.2.13) breaks and we have p(NL) = 0.

The probability p(N)num of the accurate evaluation of the mean density is shown in Figure

6.3b for the peak width δ = 0.06 and the tolerance τ = 0.25. We start from N1 = 1 sample unit

and then increase the number of sample units until NL = 40. It can be seen from the figure

that all values of the probability p(N)num, N = 1, . . . , 40, computed by direct evaluation (6.3.1)

belong to the theoretical curve p(N).

The probability (6.2.15)–(6.2.16) is further illustrated for a quadratic function (6.2.1) in

Figure 6.4. Again, we assume that only one sample unit is located within the peak sub-domain

Du and the location of that sample unit is random with respect to the position of the peak

maximum. We make 100 random realisations nr of the sample unit location x0 and compute
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the error (6.2.3) for each realisation when the total number of sample units is fixed as N = 10.

The integration error (6.2.3) computed for the function (6.2.1) is shown in Figure 6.4a. The

theoretical value of the probability p(N) is p(N) = 0.12 when N = 10. This is well illustrated

by the results shown in Figure 6.4a where approximately 10% of the error values belong to the

range (6.2.4). Clearly, the value p ≈ 0.1 must tend to the theoretical probability p(N) = 0.12

when we increase the number of realisations nr (cf. Figure 6.3b). Consider now N = N∗, where

the optimal number N∗ of sample units is defined from (6.2.10) as N∗ = 20 for the peak width

δ = 0.06 and the tolerance τ = 0.25. The probability of an accurate estimate is p(N∗) = 0.66

and this result is confirmed by the error distribution shown in Figure 6.4b where most of the

error values (every 2 out of 3) lie within the required range.

Let us now consider several standard test cases where the highly aggregated density distri-

butions (peak functions) are different from the quadratic function (6.2.1). The test cases below

are taken from those considered in the previous chapter, where they were investigated for the

composite trapezium integration rule (2.2.6). For convenience we restate the equations defining

the test cases below, meanwhile the reader is referred to Figure 5.7 in Section 5.4 of the previous

chapter for plots of the peaks. Our first test case is to consider the cubic function

f(x) =











A(x− x∗ + (δ/3))(x− x∗ − (2δ/3))2, x ∈ [x∗ − δ/3, x∗ + 2δ/3],

0, otherwise,
(6.3.2)

where the peak width is δ = 0.06 and A = 30, 000 (see Figure 5.7b). We apply the same

computational procedure (6.3.1) as for the quadratic function discussed above to obtain the

probability p(N)comput for various N . The probability graph for the function (6.3.2) is shown in

Figure 6.5a. Obviously, the probability graph obtained for a cubic function cannot coincide with

the theoretical curve (6.2.15)–(6.2.16) (a dashed line in Figure 6.5a). In particular, the critical

number N∗ = 24 is now different from the theoretical value N∗ = 20 computed from (6.2.10)

for τ = 0.25 and δ = 0.06 Nevertheless, it can be seen from the figure that the theoretical curve

obtained for a quadratic function is a good approximation of the probability p(N) computed for

a cubic function (6.3.2).
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Figure 6.5: Numerical test cases. The probability (6.3.1) (solid line) of achieving sufficient
accuracy (6.2.4) computed for (a) a cubic function (6.3.2) (b) a quartic function (6.3.3) and (c)
a normal distribution (6.3.4). For the functions (a)-(c) the peak width is chosen as δ = 0.06.
For each function (a)–(c) the probability (6.3.1) is compared with the theoretical curve obtained
for a quadratic function (dashed line).

The next test case is a quartic function defined as

f(x) =















A

(

(

δ

2

)4

− (x− x∗)4

)

, x ∈ [x∗ − δ

2
, x∗ +

δ

2
],

0, otherwise,

(6.3.3)

where A = 1, 200, 000 and the peak width is again taken as δ = 0.06 (see Figure 5.7a). The

probability graph for the function (6.3.3) is shown in Figure 6.5b. It can be seen from the figure

that the graph has a similar shape to the theoretical graph for the quadratic function, but the

critical number N∗ = 17 is again different from the number N∗ = 20 obtained from the analysis

of a quadratic distribution.

Finally, we consider a normal distribution

f(x) =
1

σ
√
2π

exp

(

−1

2

(x− x∗)2

σ2

)

, (6.3.4)

which gives us an example of a peak function that is different from zero everywhere in the domain

x ∈ [0, 1]. The peak width is defined by the parameter σ as δ = 6σ and we again consider δ = 0.06

(see Figure 5.7c). The probability graph computed from (6.3.1) for the function (6.3.4) is shown
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in Figure 6.5c. It can be seen from the figure that the critical number N∗ = 33 strongly differs

from the number of sample units obtained for a quadratic function with the same peak width.

However, the shape of the graph is still similar to the theoretical curve (a dashed line in the

figure) and the critical value N∗ of sample units provides the maximum probability p(N∗). The

presence of the critical value N∗ in each graph in Figure 6.5 remains the most essential feature

of our analysis.

We now test our estimate (6.2.10) of the critical number N∗ of sample units for some ecolog-

ically meaningful test cases. We consider two of the peak functions from the previous chapter

which were generated from the 1D Roseznweig-Macarthur model (3.2.7–3.2.8), namely the peak

functions generated for the diffusion coefficient d = 10−4 and d = 10−5. We refer to the density

distributions as f1(x) and f2(x) respectively and they are shown in Figure 6.6.

We recall from Section 4.1 of Chapter 4 that the diffusion coefficient d is a controlling

parameter of the spatial heterogeneity of the population density function [55, 75], where a

simple estimate of the peak width δ is

δ = ω
√
d,

and numerical experiments [75, 76] have shown that typically ω ≈ 25. Using this estimate of

the peak width, the critical number (6.2.10) of sample units can be evaluated as

N∗ =
1

δ̂(1 + τ)
≈ C√

d
, (6.3.5)

where the coefficient C(τ) =
3

2ω(1 + τ)
.

Consider the density distribution f1(x) shown in Figure 6.6a. Since the diffusion coefficient

is d = 10−4, the estimate (6.3.5) gives us the number N∗ ≈ 5 for the tolerance τ = 0.25. The

probability graph obtained by direct computation is shown in Figure 6.6b, where the number

N∗ = 7 taken from the graph is in good agreement with the theoretical estimate.

Let us now evaluate the number N∗ in the case that we have the density distribution f2(x)

shown in Figure 6.6c. For the diffusion coefficient d = 10−5 we have N∗ ≈ 16. The direct

computation gives us N∗ = 23 (see Figure 6.6d) which is greater than the theoretical value of
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Figure 6.6: Ecological test cases. (a) The spatial distribution f1(x) of the pest population
density f(x) for the diffusivity d = 10−4. Other parameters along with the initial and boundary
conditions used to generate this distribution are given in the caption of Figure 3.3 in Chapter 3.
(b) The probability (6.3.1) of an estimate achieving the required accuracy (6.2.4) computed for
the density distribution f1(x) under the condition that a single sample unit is located within the
peak sub-domain. (c) The pest population density f2(x) obtained for the diffusivity d = 10−5;
the other parameters are as for the distribution f1(x). (d) The probability (6.3.1) computed for
the density distribution f2(x).

N∗ obtained for a quadratic function. However, the results obtained for a quadratic function

are still true for an ecologically meaningful density distribution. Namely, if sample units are

randomly located over the monitored area and we cannot guarantee that more than one sample

unit will fall within the peak sub-domain, then the best chance to get an accurate estimate of

the mean density is when we use the number of sample units close to the critical number N∗.
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Further increase in the number of sample units reduces our chance for an accurate estimate.

6.4 Probability Analysis: 2D Case

In this section we expand the results obtained from the analysis of the 1D problem to the more

realistic 2D problem. We again focus on a highly aggregated density distribution where there

is a single peak in the domain. The domain of interest is now represented by the unit square

D = [0, 1] × [0, 1]. As in the analysis for the 1D problem, we consider the peak as a quadratic

function, and ignore the tail region by setting the population density function f(x, y) to be zero

outside of the peak domain. That is we consider the population density function to be as follows:

f(x, y) ≈











Q(x, y) = B −A
(

(x− x∗)2 + (y − y∗)2
)

, (x, y) ∈ Du,

0, otherwise,
(6.4.1)

where (x∗, y∗) is the location of the peak maximum. The peak sub-domain Du is a circular disc

of radius R, where R =
√

B/A, and is centred at (x∗, y∗). This region can be seen in Figure 6.7a.

We define the peak width as δ = 2R.

Performing similar analysis to the 1D case, we arrive at the following probability function

p(N) (The details of the calculation are given in Appendix C):

p(N) =























√

1− N(1−τ)πR2

2 −
√

1− N(1+τ)πR2

2 , N ≤ N∗(∆),
√

1− N(1−τ)πR2

2 , N∗(∆) < N ≤ N∗∗(∆),

0 N > N∗∗(∆),

(6.4.2)

The probability p(N) is shown in Figure 6.7b. It can be seen from the that the shape of the graph

p(N) computed for a 2D quadratic distribution is identical to the probability graph generated

for a 1D quadratic function (the dashed line in Figure 6.7b; see also Figure 6.3), except the

critical number of sample units N∗
2D is different from the number of sample units N∗ obtained

in the 1D case. This is a consequence of the definition (C.0.2) where the function f(x, y) is

effectively a function of a single variable, f(x, y) ≡ f(r). Thus both probability functions can
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be written in the following form:

p(N) =























√

1−N(1− τ)∆−
√

1−N(1 + τ)∆, N ≤ N∗(∆),
√

1−N(1− τ)∆, N∗(∆) < N ≤ N∗∗(∆),

0 N > N∗∗(∆),

(6.4.3)

where we now use a uniform notation N∗(∆) and N∗∗(∆) for the critical number of sample units

and the definition of the parameter ∆ varies according to the number of dimensions in which

we are working.

In the 1D case we have

∆1D = 2δ1D/3 (6.4.4)

and in the 2D case

∆2D = πR2/2 = πδ22D/8, (6.4.5)

where δ1D and δ2D are the peak widths for the dimension denoted by the subscript.

It is clear that the theoretical probability curves will be the same when ∆1D = ∆2D. We
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can write the 1D peak width δ1D in terms of δ2D as

δ1D =
3πδ22D
16

. (6.4.6)

Hence the probability of achieving an error (6.2.3) within a prescribed tolerance τ for a 2D

peak can be calculated using the 1D theory. The critical number N∗
2D in (C.0.6) can then be

computed as

N∗
2D =

3

(1 + τ)2δ1D
. (6.4.7)

For the 1D quadratic peak (6.2.1) with δ1D = 0.06 and the tolerance τ = 0.25 we have that the

number N∗
2D = 566 when a 2D counterpart with the same peak width δ2D = 0.06 is considered

(see Figure 6.7b). On the other hand, if we want to obtain the same critical number N∗
2D = 20

as in the 1D case, we have to set the peak width δ2D =

√

16δ1D
3π

= 0.3192.

At the same time it is worth noting that the relation (6.4.6) between 1D and 2D problems

is accurate for a quadratic function only. For a spatial distribution different from a quadratic

function the equation (6.4.6) gives us an approximate estimate of the peak width and therefore an

approximate value of the number N∗
2D of sample units. Consider for example, a 2D counterpart

of the normal distribution (6.3.4). The function f(x, y) is given by

f(x, y) =
1√
2πσ2

exp

(

−(x− x̂1)
2 + (y − ŷ1)

2

2σ2

)

, (6.4.8)

where the peak width is δ = 6σ. Let us set δ = 0.06 for a 1D distribution (6.3.4). It has

been discussed above that the estimates (6.4.6) and (6.4.7) give us the peak width δ2D = 0.3192

for which the critical number N∗
2D in the 2D case should be the same as in the 1D case. The

probability graphs for a 1D distribution (6.3.4) with δ = 0.06 and a 2D distribution (6.4.8) with

δ = 0.3192 are shown in Figure 6.8, where we expect the two graphs to be the same. However,

it can be seen from Figure 6.8 that the probability graph obtained for the normal distribution

(6.4.8) is shifted from the graph p(N) obtained for the 1D normal distribution (6.3.4).

We conclude this section by considering a simple yet ecologically meaningful example of a

highly aggregated density distribution in 2D. Namely, we focus our attention on the pest pop-

127



Figure 6.8: Probability curves for the 1D
and 2D normal distributions (6.3.4) and
(6.4.8). We set ∆1D = ∆2D = 0.04 thus
the peaks have ‘equivalent’ peak widths
namely δ1D = 0.06, δ2D = 0.3192.
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ulation density distribution supplied by the authors of [71] which was obtained from numerical

solution of the 2D Rosenzweig-MacArthur model (3.2.3–3.2.4) as shown in Figure 6.9. The de-

tails of the parameters used to generate the density distribution are given in the figure caption.

We consider a distribution f1(x, y) where the peak is wide, that is it takes up a large portion of

the entire domain (see Figure 6.9a). We also look at a second distribution f2(x, y) for which the

peak is restricted to a much smaller sub-domain (see Figure 6.9c). The distribution f2(x, y) was

formed by placing the peak from f1(x, y) on a domain ten times larger in each direction. This

is essentially the same as considering a peak with width δ ten times smaller than the original

distribution.

In each case, the peak sub-domain is defined as the region in which the pest population

density is such that f(x, y) ≥ 10−4. The region outside of Du, i.e. the tail region is then ignored.

Let (x̃, ỹ) denote the points which belong to the peak sub-domain Du. The width of the peak in

the x and y directions, δx and δy, are calculated as δx = max(x̃)−min(x̃), δy = max(ỹ)−min(ỹ).

We then define the peak width δ to be δ = min(δx, δy). The distributions f1(x, y) and f2(x, y)

were found to have peak widths of δ = 0.848541 and δ = 0.0848541 respectively.

An estimate of the point (x∗, y∗) is given by x∗ ≈ (max(x̃) + min(x̃))/2, y∗ ≈ (max(ỹ) +

min(ỹ))/2. The random location (x0, y0) of a sample unit within the peak sub-domain is gener-

ated as

x0 = r cos θ + x∗, y0 = r sin θ + y∗,
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Figure 6.9: 2D ecological test cases. (a) The spatial distribution f1(x, y) of the pest population
density generated by the system of equations (3.2.3–3.2.4) on the unit square. The test case is
as considered in [71] where the parameters used in the system are: t = 800, d = 10−6, m = 0.5,
Λ = 0.5, β = 3, and χ = 0.28. The initial conditions are f(x, y, 0) = 1 for 0.42 < x < 0.53 and
0.45 < y < 0.55, and f(x, y, 0) = 0 otherwise, and g(x, y, 0) = 1 for 0.42 < x < 0.48 and 0.45 <
y < 0.51, and g(x, y, 0) = 0 otherwise. (b) The probability (6.3.1) of an an estimate achieving
sufficient accuracy (6.2.4) computed for the density distribution f1(x, y) under the condition
that a single sample unit is located within the peak sub-domain. (c) The pest population
density f2(x, y) considered in the domain D : x ∈ [0, 10], y ∈ [0, 10]. (d) The probability (6.3.1)
computed for the density distribution f2(x, y).

where r ∈ [0, R] and θ ∈ [0, 2π] are uniformly distributed random variables. As before, we

consider nr = 100, 000 realisations of the sample unit location.
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We assume there is only one sample unit in the peak sub-domain Du. In accordance with

the procedure previously outlined, we now calculate p(N)num for the population distributions

f1(x, y) and f2(x, y). The results are shown in Figure 6.9b and Figure 6.9d respectively. It can

be seen from the figure that the probability curves obtained for density distributions f1(x, y)

and f2(x, y) differ from the graphs p(N) computed for 1D ecologically meaningful density distri-

butions (cf. Figure 6.6). The difference can be explained by the fact that the functions f1(x, y)

and f2(x, y) present the simplest case of a peak function when a highly aggregated density dis-

tribution is almost constant in the peak sub-domain. Hence the value of the mean density does

not depend on a random location of the point (x0, y0) and the value of N in the expression

(6.1.1) can be considered as a scaling coefficient. Nevertheless, this simple test case confirms

our conclusions made in Section 6.1 that random installation of a large number of sample units

does not result in an accurate estimate of the mean population density, as we have p(N) = 0 for

a large number N of sample units in both cases (see Figure 6.9b and Figure 6.9d).

6.5 Comparison of Sampling Plans: Random vs Regular Grid

The analysis made in the previous sections for the 1D and 2D cases revealed that there exists a

critical number N∗ of sample units for which the probability of an accurate answer achieves its

maximum value. The estimate of N∗, however, does not take into account the whole complexity

of the problem when we have to deal with a random sampling plan. First of all, let us note

that the probability p(N) should be scaled by the probability p1(N) of the event that exactly

one sample unit is installed within the peak sub-domain. According to the formula (6.1.2)the

probability p1(N) is calculated as

p1(N) = Nδ(1− δ)N−1. (6.5.1)

The probability p̃1(N) of having the error with the given range (6.2.4) when a single sample

unit falls into the peak sub-domain is then given by p̃1(N) = p1(N)p(N). The functions p1(N)

and p̃1(N) are shown in Figures 6.10a and b, respectively. It can be seen from Figure 6.10b that

the resulting probability p̃1(N) is much smaller than p(N). For a quadratic function with the
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peak width δ = 0.06 and the tolerance τ = 0.25 the critical number Ñ∗ for which the resulting

probability p̃(Ñ∗) has its maximum is Ñ∗ = 20 and the probability is p̃(Ñ∗) ≈ 0.23.

On the other hand, it was established in the previous chapter that a uniform grid of equidis-

tant sample units over the unit interval [0, 1] provides the desirable accuracy of the mean density

evaluation with the probability p(N) = 1 when the distance between sample units is h = αtδ,

where δ is the peak width in the one-dimensional problem and the parameter αt depends on the

tolerance τ only. In other words, if we use a regular sampling plan then the desired accuracy

(6.2.3) will be achieved for any number N > Nt = 1 + 1/αδ of sample units. For a quadratic

function with the peak width δ = 0.06 and the tolerance τ = 0.25 the threshold number provid-

ing the error below the given tolerance has been computed as Nt = 21 (i.e., the distance between

sample units is h = 0.05). Any equidistant grid of sample units with the number N > 21 will

then give us an accurate estimate of the pest abundance.

The discussion above can be summarised as follows. For the given value δ = 0.06 of the peak

width, on a grid of randomly distributed sample units the probability of getting an accurate

estimate achieves its maximum p̃(N) ≈ 0.23 for N = 20. For larger values of N the probability

then becomes smaller. However, on a regular grid of about the same number N = 21 of sample
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units, an accurate result is obtained with the probability being equal to one. Furthermore, the

probability remains one for larger values of N. Therefore, for N ∼ 20 (or larger), on a regular

grid the estimate of the population size is not a stochastic variable anymore, while on a random

grid of the same size it still essentially stochastic and the probability of obtaining an accurate

result remains relatively low. Thus a grid of equidistant sample units is more favorable compared

to a random sampling plan.

Clearly, the argument above is not complete, as for a random sampling plan there is the

possibility that more than one sample unit falls inside the peak sub-domain. Generally speaking,

a similar computation for the probability p̃2, p̃3, . . . , p̃N would be needed in order to be able to

conclude about the efficiency of a random distribution of sample units, Here p̃m, m = 2, 3, . . . , N ,

is the probability of having the error with the given range (6.2.4) when m sample units fall into

the peak sub-domain. The total probability P̃ (N) =
N
∑

m=1
p̃m should then be computed to

determine if P̃ (N) ≈ 1. We do not make this computation, however, let us note that in Section

6.1 it was shown that, in the case δ ≪ 1 (i.e. narrow peaks which is the main focus of this

chapter), the probability of the event that more than one sample unit fall into the peak area

is significantly less than 50% and gets smaller with a decrease in δ. Thus, having restricted

our analysis to the case of high population aggregation (i.e. δ ≪ 1), corrections to the equation

(6.5.1) are expected to be small.

Based on our present results, therefore, we believe that locating sample units at the nodes

of an equidistant Cartesian grid is a better option than using a random sampling plan, when

evaluating the pest abundance for a highly aggregated density distribution. It should be noted

that a regular sampling plan is comparable in terms of effort to implement. A random sampling

plan eliminates the bias error, but, as we already discussed in Section 6.1, the bias problem does

not exist when a highly aggregated density distribution (a single peak) is considered. Finally,

another important argument in favour of a grid of equidistant sample units, is that such a grid

may be better suited for a multi-patch distribution. If we have a multi-patch density function

where all patches have approximately the same width (i.e., a collection of several peaks scattered

over the monitored area), then installing a grid with the number of sample units N ≥ Nt will
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detect all the patches, while we cannot guarantee the same result when the sampling plan is

random.

6.6 Chapter 6 Conclusions

We have revisited the problem discussed in the previous chapter of estimating pest abundance

when the spatial pattern of the population is highly aggregated. Since the number N of sample

units is limited, achieving a sufficiently accurate estimate is a matter of chance. In this chapter

we have focused on the statistical method (2.1.4), which depends on the sample mean density

(6.1.1). This method is space-implicit and thus permits the sample units (grid nodes) to be

located randomly. As such, we have extended the theoretical approach developed earlier to

handle a random sampling plan.

By using the assumption that a single sample unit falls within the patch of non-zero density,

we have obtained theoretical predictions of the probability of achieving a sufficiently accurate

estimate for both the 1D and 2D problems. It has also been shown that there is a critical

number N∗ of sample units for which the probability achieves its maximum value. Using a

number N > N∗ of sample units may lead to a reduced chance of achieving a sufficiently accurate

estimate. Comparisons with results from the previous chapter indicate that for the same number

N∗ of sample units, a regular sampling plan is more reliable than a random distribution when

the population is highly aggregated.

Our analysis has been conducted under the assumption that the entire population is localised

to a single patch. Whilst this kind of distribution has ecological significance as it corresponds

to the early stage of biological invasion [90], it is somewhat of an extreme case. The technique

we have presented, however, could be extended to handle the case where there are multiple

patches of pests across the field which is often observed in reality [5]. Assuming the patches

are on average the same size, it is then a matter of multiplying the probability p of achieving

an accurate estimate for a single patch, by the total number of patches. When using a random

sampling plan, this problem is complex as the number of patches is unknown. However, if a

regular sampling plan is used instead, and the total number of sample units N is sufficient to

detect one patch, then it will be sufficient to detect them all. Of course it may be that the
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number N is too large to be practical. Further analysis is needed to determine whether in this

situation a smaller number of randomly distributed sample units would in fact be more suitable.
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Chapter 7

Evaluating Pest Abundance in the

Presence of Noise

So far we have assumed that the population density data used to formulate an estimate of pest

abundance is precise. In other words, we have considered the measurements of population density

obtained by sampling to accurately reflect the true pest population density at each sample unit

location. In practice this assumption often does not hold, for example when trapping is used as

the sampling technique, and instead the density data are affected by a measurement error. This

chapter consists of the work presented in [33] where we investigate the impact of the random

component of this measurement error. Namely, we study how noise in the density data affects

the accuracy of a pest abundance estimate. The study is restricted to the 1D case and the

agricultural field is represented by the unit interval D = [0, 1].

In Section 7.1 it is discussed how noise in the density data arises and how it propagates to

uncertainty in the abundance estimate and its accuracy. We present a means of quantifying this

uncertainty in Section 7.2 and give a credible interval for the relative approximation error when

noise is present. We apply our theory to both standard mathematical and ecological significant

test cases in Sections 7.3 and 7.4 respectively and compare the accuracy of estimates formed

from noisy data with those formed from exact data. The chapter conclusions are presented in

Section 7.5.
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7.1 The Uncertainty of an Abundance Estimate from Noisy

Data

We consider a trapping procedure conducted in an agricultural field to collect data on the pest

population. Trapping is a sampling technique widely used for pest insect abundance evaluation

[2, 12, 36, 45, 56]. Traps are installed in the field, exposed for a prescribed length of time, then

the traps are emptied and the pests are counted. It was discussed in the introduction that it is

a widespread situation in ecological monitoring that financial, ecological and other restrictions

require the number of traps installed in an agricultural field to be relatively small [56, 60]. For

example, the number of traps installed over an agricultural field in the United Kingdom very

rarely exceed a few dozen [12, 36, 45], where a linear size of the field is typically of the order of

a few hundred meters.

Since the traps are exposed for a certain time period, and the spatial pattern of the pest

population changes over time, the question arises of whether the population density distribution

can really be recovered from such a sampling procedure. We make a key assumption that the

exposure time of the traps is selected such that within this time frame, the population density

distribution does not change significantly. That is, we assume that the area over which the pop-

ulation has spread is small in comparison to the size of the characteristic spatial heterogeneity,

i.e. cluster size. The exposure time therefore must vary depending on the target species. For

instance, in a study of ground beetles (Carabidae), traps were emptied every 2 days [45]. The

dispersal of one particular species P.melanarius has been estimated to be less than 55m over 30

days [102]. Thus, during the time the traps are exposed, an insect will be less than 3.7m from the

position it held at the beginning of the traps exposure. This distance is an order of magnitude

smaller than the estimated typical cluster size of greater than 30m [45]. Our assumption that

the population density distribution has not altered significantly would therefore be reasonable.

Under the assumption that trap counts can be converted into the pest population density at

the trap locations it is possible to obtain an estimate of the total pest population size [19, 84].

The conversion of trap counts to density is, however, by no means straightforward. Let us
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assume the traps to be passive traps, i.e. no attractant such as bait or a pheromone is used

to draw the pest insects towards the trap. The movement of the insects can be considered to

be random, thus, in the finite time for which the trap is exposed the trap count will only be

a fraction of the true number of insects local to the trap. Consequently, rather than providing

an absolute count, the traps provide a count that is relative to the activity and the density of

the insects. Converting relative abundance estimates into the true population density local to

the trap has been the focus of much research [47, 73, 84]. The result of this conversion is of

course not the precise pest population density local to the trap but rather a measurement, and

measurements are subject to a measurement error.

Let us denote the measured pest density at the trap location xi by f̃i, and fi represents

the corresponding exact pest density. The relationship between the measured pest density f̃i

and the the true pest density fi is then fi = f̃i + εmi
where εmi

is the measurement error.

A measurement error is considered to consist of two components: a random component, and

a systematic component [10]. In other words, the measurement error εmi
can be expressed as

εmi
= εri + εsi where εri and εsi represent the random and systematic error respectively. The

random error is the result of noise in the data and thus any εri , i = 1, . . . N can be either positive

or negative with equal probability. The systematic error on the other hand is caused by some

source of bias and therefore every εsi , i = 1, . . . N is consistently either positive or negative. We

focus on the impact of noise in the data and as such we ignore the systematic contribution to the

measurement error. That is to say we redefine the relationship between the measured quantity

f̃i and the true value fi as

fi = f̃i + εri .

The random error component εri of a measured pest density f̃i given in the above equation is

in essence a realisation of a random variable. We consider the true pest density fi to be some

unknown constant. Since f̃i is the sum of an unknown constant fi and a realisation εri of a

random variable, it can in turn also be considered a realisation of another random variable.

There is thus an uncertainty associated with a measured pest density f̃i.

We have previously ignored any error in the density data and instead focused solely on the
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error imparted by the numerical integration procedure itself. That is, we have considered the

following abundance estimate Ia constructed from the numerical integration of exact data:

Ia =
N
∑

i=1

wifi, (7.1.1)

and studied the relative error Erel of this estimate which we recall is defined as

Erel =
|I − Ia|

I
. (7.1.2)

The exact pest abundance I > 0 would be given by

I =

1
∫

0

f(x) dx,

if the pest population density function f(x) were known almost everywhere across the domain

of the field which is here taken to be the unit interval. We again require that the estimate to

be sufficiently accurate, namely that the relative error satisfies the condition (2.5.1)

Erel ≤ τ,

where an accuracy tolerance τ ∈ (0.2, 0.5) is considered acceptable.

Now, we take the random error present in the density data into account. Applying a method

of numerical integration (7.1.1) to the measured pest densities f̃i, i = 1, . . . , N gives the following

estimate of the pest abundance:

Ĩ =
N
∑

i=1

wif̃i. (7.1.3)

The relative error of an approximation based on measured data which we denote by Ẽrel is then

given by

Ẽrel =
|I − Ĩ|

I
. (7.1.4)

The focus of our investigation is to establish how the introduction of noise to the data set {fi}
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affects the accuracy of the abundance estimation, that is, to determine how the error Ẽrel differs

from Erel. We return to considering a regular sampling plan (2.2.2) across the unit interval thus

the trap locations are defined as

xi =
i− 1

N − 1
, i = 1, . . . , N. (7.1.5)

Our attention is restricted to the composite trapezium rule (2.2.6) in this chapter, and additional

numerical integration methods are then studied in the next chapter.

In our work we simulate the uncertainty in the density data by considering any measured

value of the pest density f̃i to be a realisation of a normally distributed random variable Fi with

mean µi, and standard deviation σi. The probability density function is (e.g see [40])

p(f̃i) =
1

σi
√
2π

exp







−1

2

(

f̃i − µi

σi

)2






, (7.1.6)

where we assume that the mean is equal to the true pest density, that is µi = fi. The uncertainty

in the measured value f̃i, which we denote by u(f̃i) can be then quantified by the standard

deviation σi of the random variable Fi,

u(f̃i) = σi. (7.1.7)

If a random variable has the normal distribution, then any single measurement f̃i, i.e. a single

realisation of the random variable Fi, lies in the range

f̃i ∈ [fi − zσi, fi + zσi] (7.1.8)

with probability

P (z) = erf

(

z√
2

)

, (7.1.9)
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where the error function erf(z) is given by

erf(z) =
2√
π

∫ z

0
exp

(

−t2
)

dt.

Let us assume that with the same probability, the pest population density obtained via a

trap count is within a fixed percentage of the true density at the trap location. In other words

with probability P (z) each measured pest population density fi lies somewhere within the range,

f̃i ∈ [fi − νfi, fi + νfi],

where we refer to ν ∈ (0, 1) as the measurement tolerance. Equating the interval above to

that given by (7.1.8) gives the following relation between the standard deviation σi and the

measurement tolerance ν:

σi =
νfi
z

. (7.1.10)

It is worth noting here that our means of introducing noise into the data does not depend

on the length of the time interval when traps are exposed in the field. Generally, a longer

time of exposition can be thought of as collecting a larger number of samples that, in turn,

results in smaller uncertainty in data (i.e. a smaller value of the standard deviation σi in the

normal distribution) [98]. However, the measurement tolerance ν we use in the problem is always

expressed as a percentage of the true value fi at the trap location xi. Hence a longer (shorter)

time of traps exposition is already taken into account by considering larger (smaller) values fi

of the density function.

An example of the uncertainty associated with the function values is depicted in Figure 7.1a.

The ecologically relevant (i.e. non-negative) function f(x) has been defined as

f(x) =
1

3
sin

(

3πx

2

)

+
2

3
, x ∈ [0, 1],

hence the pest abundance is I = 0.737402. The exact pest population densities fi correspond to

the function f(x) evaluated at the trap locations xi, i = 1, . . . , N which are regularly distributed
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Figure 7.1: Evaluation of pest abundance from noisy data. (a) An example of the pest population
density function f(x). Three equidistant traps are installed over the unit interval to measure
the density f(x). The density value f̃i, i = 1, 2, 3 measured at the position xi of the trap lies
within the range (7.1.8) with probability P (z) as defined by (7.1.9). The lower and upper limits
of this range are denoted f̃min

i and f̃max
i respectively. The measurement tolerance has been set

as ν = 0.3 and we have fixed z = 3. (b) The distribution of the estimate Ĩ of pest abundance
computed from the measured data f̃i on a grid of N = 3 traps. Each realisation is presented
as a skewed cross in the figure, where nr = 100 realisations of the estimate Ĩ are shown. The
values Ĩ are compared with the exact value I of the pest abundance (solid line) and the estimate
Ia computed from the exact data fi (dashed line).

on the interval [0, 1]. In the example shown in Figure 7.1a the number of traps has been fixed as

N = 3 hence the traps are located at x1 = 0, x2 = 0.5 and x3 = 1. The estimate Ia formulated

by numerically integrating the exact data fi, i = 1, 2, 3 via the composite trapezium rule (2.2.6)

is Ia = 0.701184, while the error is Erel = 0.049115 which is much lower than the required

tolerance τ .

We then consider the perturbed data as shown in Figure 7.1a. Sets of measured data values

f̃i are generated by perturbing the function values fi at each point xi, i = 1, 2, 3, according to

the transformation

f̃i = fi + γσi, (7.1.11)

where γ is a random variable taken from the standard normal distribution, and σi is defined

according to (7.1.10). The measurement tolerance is set as ν = 0.3. We also fix z = 3, therefore,

the probability that each realisation f̃i lies within the range (7.1.8) is P (z = 3) ≈ 0.9973. The
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transformation is applied nr = 100 times to each value fi to generate nr sets of measured data

for i = 1, 2, 3. These data sets are integrated for any fixed nr using the composite trapezium

rule (2.2.6) to yield estimates of the pest abundance Ĩ.

The distribution of the estimate Ĩ of pest abundance computed from the perturbed data f̃i on

a grid of N = 3 traps is shown in Figure 7.1b. It is clear from the figure that the introduction

of noise can cause the estimate Ĩ based on measured data to be further away from the true

abundance I making the accuracy of evaluation very poor for some realisations of Ĩ. In the next

section we quantify the uncertainty in the accuracy Ẽrel of the approximated pest abundance

induced by noise in the density data.

7.2 Quantifying the Evaluation Accuracy in the Presence of

Noise

In this section we establish a credible interval for Ẽrel. Consider for each i = 1, . . . , N the

density measurement f̃i to be a realisation of the normally distributed random variable Fi with

density distribution (7.1.6). It can be seen from (7.1.3) that an estimate Ĩ of pest abundance is

a linear combination of the measured pest densities f̃i. Hence Ĩ can in turn be considered as a

realisation of a normally distributed random variable which we shall denote ĨF where

ĨF =
N
∑

i=1

wiFi. (7.2.1)

The random variable ĨF has mean µĨ = Ia, where Ia is the estimated abundance based on

the exact pest densities. Furthermore, assuming there is no correlation between trap data, the

standard deviation σĨ which quantifies the uncertainty u(Ĩ) associated with an estimate is

u(Ĩ) = σĨ =

√

√

√

√

N
∑

i=1

w2
i u

2(f̃i), (7.2.2)

(e.g., see [23]).

We now determine the probability density function of the random variable Ẽrel. For the sake
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Figure 7.2: The probability density function of the quantity E as described by (7.2.4). Reflecting
the negative contributions in the y-axis yields the folded normal distribution of Ẽrel. The upper
and lower limits of the interval [Ẽmin, Ẽmax] to which Ẽrel belongs with probability P (z) are
defined differently depending on the distance between the true pest abundance I and the estimate
formulated on exact data Ia: (a) when |I−Ia| ≤ zσĨ and (b) when |I−Ia| > zσĨ . See Appendix

D for the details of how Ẽmin and Ẽmax are calculated.

of convenience let us first consider the following auxiliary quantity

E =
I − Ĩ

I
. (7.2.3)

Since E is a linear function of Ĩ which is a realisation of a normally distributed random variable,

E can be considered as a realisation of a normally distributed random variable with mean

µE = 1 − Ia/I and standard deviation σE = σĨ/I. We note that in ecological applications the

true pest abundance I is always I > 0. The probability density function is described by

p(E) =
1

σE
√
2π

exp

{

−1

2

(

E − µE

σE

)2
}

, (7.2.4)

and the quantity E belongs to the range

E ∈ [µE − zσE , µE + zσE ] (7.2.5)

with probability P (z) given by (7.1.9). Examples of the probability density function of E are
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shown in Figure 7.2.

We have

Ẽrel = |E|,

and Ẽrel becomes a realisation of a random variable with a folded normal distribution (e.g., see

[52]). The probability density function of Ẽrel is then formed from that of E by reflecting the

the negative contributions in the y-axis and is given by the following expression

p(Ẽrel) =
1

σE
√
2π



exp







−1

2

(

Ẽrel − µE

σE

)2






+ exp







−1

2

(

Ẽrel + µE

σE

)2








 (7.2.6)

=
I

σĨ
√
2π



exp







−1

2

(

I(1− Ẽrel)− Ia
σĨ

)2






+ exp







−1

2

(

I(1 + Ẽrel)− Ia
σĨ

)2








 ,

where the mean value is

µẼrel
=

(

1− Ia
I

)[

1− 2Φ

(

Ia − I

σĨ

)]

+
σĨ
I

√

2

π
exp

{

−1

2

(

Ia − I

σĨ

)2
}

, (7.2.7)

and the standard deviation is

σẼrel
=
√

µ2
E + σ2

E − µ2
Ẽrel

. (7.2.8)

We now seek a range [Ẽmin, Ẽmax] to which Ẽrel belongs with probability P (z). It can be

seen from (7.2.4) (see also Figure 7.2) that the range of the error Ẽrel depends on the quality of

approximation Ia obtained from the exact values fi of the pest population density. Two separate

cases depending on the nature of the probability density function (7.2.4) should be considered.

The first case is when the mass to be reflected in the y-axis in order to obtain the folded

normal distribution (7.2.6) contains part but not all of the range (7.2.5). That occurs when

the distance between the true pest abundance I and the estimate Ia formed from exact data

satisfies the condition |I − Ia| ≤ zσĨ (see Figure 7.2a). This condition requires a certain level of

accuracy of the approximation formed from exact data (i.e. the approximation Ia is required to

be sufficiently close to I).

We then consider the scenario when |I − Ia| > zσĨ , i.e. a poor approximation is obtained
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on integrating exact data. The mass to the left of the y-axis is either entirely exclusive of the

interval (7.2.5) in the case that µE is positive (see Figure 7.2b) or, when µE is negative, is

entirely inclusive.

Combining the two cases above and making the calculations explained in Appendix D, we

find that Ẽrel ∈ [Ẽmin, Ẽmax] with probability P (z) when the lower limit is defined as

Ẽmin =























0 for Erel ≤ z
σ
Ĩ

I ,

Erel −
zσĨ
I

for Erel > z
σ
Ĩ

I ,

(7.2.9)

and the upper limit is given by

Ẽmax =



























Erel +
σĨ
I
Φ−1

[

2Φ(z)− Φ

(

z +
2IErel

σĨ

)]

, for Erel ≤ z
σĨ
I
,

Erel +
σĨ
I
Φ−1

[

Φ(z)− Φ

(

z − 2IErel

σĨ

)

− Φ

(

z +
2IErel

σĨ

)

+ 1

]

, for Erel > z
σĨ
I
,

(7.2.10)

where Φ and Φ−1 are the standard normal cumulative distribution function and its inverse

respectively. We have thus constructed an α percent credible interval (e.g see [14]), where α =

100P (z), for the error Ẽrel of an estimate based on measured data. The quantities Ẽmin, Ẽmax

are the lower and upper limits of this credible interval respectively.

It immediately follows from (7.2.9) and (7.2.10) that the impact noise in data makes on the

approximation error is defined by the accuracy of the evaluation of pest abundance obtained

from exact values of the pest population density, which in turn depends on the number N of

traps where the data are available. In the next section we illustrate this conclusion by various

numerical examples.

7.3 Assessing the Impact of Noise: Standard Test Cases

In this section we perform some conventional numerical test cases to verify our approach. We

then further investigate how introducing noise to the density function values affects the accuracy

of the estimated pest abundance and in particular we focus on the instance when the grid of
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traps is coarse. We follow the same methodology as used in previous chapters and begin by

considering some continuous functions with various level of spatial complexity where we require

that the exact pest abundance I is available in closed form. For each test case we generate a

regularly spaced set of traps and we take the unit interval [0, 1] to represent the agricultural

field. Therefore, the traps are located according to (7.1.5). The exact pest population densities

are then given by fi ≡ f(xi), i = 1, . . . , N .

We have already discussed how the accuracy of an abundance estimate depends on the spatial

heterogeneity of the population density function. Let us begin with a test case which is easy to

handle whereby the population is spread over the entire domain. We define the function f(x)

as:

f(x) = exp (x) sin (3πx)2 + cos (πx)2. (7.3.1)

The density function consists of three wide peaks as can be seen in Figure 7.3a. We fix the

number N of traps and generate measured values of the pest density by perturbing each exact

pest density fi a total of nr = 100, 000 times according to the transformation (7.1.11). We

therefore have nr sets of measured values {f̃i}. For each set of data an estimate of the pest

abundance is obtained by implementing the compound trapezium rule (2.2.6) and the relative

error is then calculated. To confirm that these nr = 100, 000 estimates of Ẽrel are indeed

realisations of a random variable with a folded normal distribution with mean µẼrel
and standard

deviation σẼrel
we calculate the sample mean

µ̄Ẽrel
=

1

nr

nr
∑

i=1

Ẽreli , (7.3.2)

and the sample standard deviation

sẼrel
=

√

√

√

√

1

nr − 1

nr
∑

i=1

(

Ẽreli − µ̄Ẽrel

)2
, (7.3.3)

and make a comparison with the theoretical quantities given by (7.2.7) and (7.2.8) respectively.
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Figure 7.3: The test cases to validate the evaluation error Ẽrel. (a), (b), and (c) are defined
over the unit interval [0, 1] by the functions given in (7.3.1), (7.3.5), and (7.3.6) respectively.

N µẼrel
µ̄Ẽrel

|µ
Ẽrel

−µ̄
Ẽrel

|

|µ
Ẽ
| σẼrel

sẼrel

|σ
Ẽrel

−s
Ẽrel

|

|σ
Ẽrel

|

3 5.61487e-02 5.60751e-02 1.30966e-03 4.22788e-02 4.23984e-02 2.82837e-03
5 4.04341e-02 4.03461e-02 2.17619e-03 3.05006e-02 3.04113e-02 2.82837e-03
9 3.20344e-02 3.20420e-02 2.37235e-04 2.42023e-02 2.41924e-02 4.07894e-04
17 2.27749e-02 2.28342e-02 2.60330e-03 1.72067e-02 1.72749e-02 3.96428e-03
33 1.61567e-02 1.61861e-02 1.82543e-03 1.22065e-02 1.22618e-02 4.53146e-03
65 1.14429e-02 1.14904e-02 4.14803e-03 8.64526e-03 8.67210e-03 3.10411e-03

Table 7.1: Comparison between the theoretical mean and standard deviation of the quantity
Ẽrel as defined by (7.2.7) and (7.2.8), and their numerical counterparts (7.3.2) and (7.3.3) over
several grids of N traps. The theoretical means and standard deviations are shown in the
columns labelled µẼrel

and σẼrel
respectively and the sample mean and standard deviations

are labelled µ̄Ẽrel
and sẼrel

. The relative difference between the theoretical quantity and its
numerical counterpart is calculated in the last column of the table. Good agreement can be seen
thus providing verification of our approach.

We then establish the following proportion

Pnum =
ñr

nr
, (7.3.4)

where ñr is the number of the relative errors Ẽrel which fall within the range [Ẽmin, Ẽmax] as

defined by (7.2.9) and (7.2.10) in order to make a comparison with the theoretical probability

P (z). The number of traps is then increased as 2N − 1 and the quantities (7.3.2)-(7.3.4) are

recalculated.
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N Pnum
|P (3)−Pnum|

|P (3)|

3 0.99732 1.984965e-05
5 0.99745 1.502016e-04
9 0.99722 8.042106e-05
17 0.99716 1.405835e-04
33 0.99739 9.003915e-05
65 0.99722 8.042106e-05

Table 7.2: Comparison between the theoretical probability P (z) as defined by (7.1.9) that Ẽrel

lies within the range [Ẽmin, Ẽmax] and the numerical probability Pnum computed according to
(7.3.4) over a series of grids with N traps. We fix z = 3 thus P (z) = P (3) ≈ 0.9973. The
relative error between the two quantities is shown in the last column.

We apply the above procedure to the test case (7.3.1), where the number of traps is subse-

quently increased to be N = 3, 5, . . . , 65. We select the measurement tolerance as ν = 0.3. As

can be seen in Table 7.1, for each value of N we have good agreement between the sample mean

µ̄Ẽrel
and the theoretical mean µẼrel

, and likewise between the sample and theoretical standard

deviations sẼrel
and σẼrel

. We fix z = 3 therefore we have the theoretical probability that Ẽrel

lies within the range [Ẽmin, Ẽmax] as P (z) ≈ 0.9973. It can be seen from Table 7.2 that the

corresponding numerical probability Pnum as given by (7.3.4) is indeed approximately 0.9973.

We are therefore satisfied that the range given by (7.2.9) and (7.2.10) can be used to make

reliable conclusions about the error Ẽrel of an estimated pest abundance based on measured

data Ĩ.

We now directly compare the quantities Erel and Ẽrel in order to understand how using

noisy data rather than exact pest population densities impacts the accuracy of a pest abundance

estimate. Let us introduce further test cases to consider alongside that prescribed by the function

(7.3.1). It is more difficult i.e. a higher number N of grid nodes are required to obtain an

accurate abundance estimate when the population is located in a small sub-domain of the field.

We therefore introduce test cases where the density is either concentrated in a narrow layer as

defined by the following function (see Fig. 7.3b):

f(x) = (x+ 0.1)−3, (7.3.5)
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or is located within a small sub-domain of the unit interval and also exhibits oscillatory behaviour

(see Fig. 7.3c):

f(x) = exp (−20x) sin (20πx)2. (7.3.6)

For an increasing number N of regularly spaced traps, the relative error Erel(N) of an

approximation based on exact data is calculated. The mean value µẼrel
of the error of an

approximation based on measured values as well as the upper and lower bounds of the interval

[Ẽmin, Ẽmax] are found from (7.2.7) and (7.2.9), (7.2.10) respectively for the same set of values

of N . The measurement tolerance is fixed as ν = 0.3 throughout and we set z = 3.

The corresponding graphs of the error as a function of the number N of traps (convergence

curves) for each of the test cases are displayed in Figure 7.4. An estimate of the integral I is

considered to be accurate if it satisfies the condition (2.5.1). We select the tolerance τ = 0.25

which has been recommended for routine monitoring [86] and lies within the acceptable range

for ecological applications given in Section 7.1. The line τ = 0.25 is therefore also plotted so as

to determine when the estimates become sufficiently accurate.

It can be seen in Figure 7.4a that for the test case (7.3.1) where the population is spread

across the entire domain, the estimates based on exact data are sufficiently accurate for the

whole range of the number N of traps considered in the problem. The curve Erel always lies

below the line τ = 0.25. It is also evident from the figure that the addition of noise to the data

significantly slows the convergence of the pest abundance estimate to the exact value when we

increase the number of traps. Clearly the curve for the mean error based on perturbed data

µẼrel
has a less steep gradient than its Erel counterpart. This is because whilst the uncertainty

associated with the estimate based on measured values decreases as the number of traps N

increases, the contribution to the mean error µẼrel
from the noise is more dominant than that

of the integration error Erel. In other words the uncertainty decreases at a slower rate than

the integration error decreases. Meanwhile, it is important to note the mean error µẼrel
does

converge to zero in the theoretical limit of an infinite number of traps (e.g., see [23]).

For the test case above, the Ẽmax curve entirely lies below the upper threshold τ = 0.25 of

the desired accuracy. The lower bound of the interval [Ẽmin, Ẽmax] is Ẽmin ≡ 0 as the estimate
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Ẽmax, νm = 0.1
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Figure 7.4: (a)-(c) The error for the approximation based on exact data Erel is compared with
the mean error µẼrel

of an approximation based on noisy data alongside the limits of the interval

[Ẽmin, Ẽmax] for the test cases (7.3.1), (7.3.5) and (7.3.6) respectively as shown in Figure 7.3a-
7.3c. The measurement tolerance is fixed as ν = 0.3 and z = 3 in each case. The legend for
each figure is as shown in (a). (d) Mean error µẼrel

of an approximation based on noisy data

and the upper limit of the interval [Ẽmin, Ẽmax] for the test case (7.3.1) as shown in Figure 7.3a
where values ν = 0.05, 0.1, 0.3 of the measurement tolerance have been selected. We fix z = 3
as before.
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based on exact values Ĩ is within zσĨ of the exact pest abundance I right from the initial

estimate, where we have chosen z = 3. The value Ẽmin = 0 is not displayed since the plots

are given on a logarithmic scale. Meanwhile, for the more testing density distributions (7.3.5)

and (7.3.6), the number of traps N has to be sufficiently increased before the desired level of

accuracy E ≤ τ = 0.25 is obtained (see Figure 7.4b and Figure 7.4c). Similarly there needs to be

some level of grid refinement before the lower limit becomes Ẽmin = 0. Prior to this occurring

the mean error µẼrel
lies close to the error for the unperturbed data set Erel as indeed does

Ẽmax. After the lower limit of the credible interval for Ẽrel becomes Ẽmin = 0, a difference in

the convergence rates becomes evident with the convergence of the perturbed data becoming

much slower.

One feature of the graph in Figure 7.4c has to be mentioned here. In the case of the initial

estimates formulated from N = 3 and N = 5 trap counts, it can be seen that the upper and

lower limits of the interval [Ẽmin, Ẽmax] lie extremely close to the error based on exact data Erel.

This is an artefact of the way in which each measured value of pest density f̃i is considered to

be related to the true value fi; each measured value is considered to be within some percentage

of the true value. The function values at the initial N = 3 trap locations which we recall

are regularly distributed across the interval [0, 1], are extremely small in magnitude meaning

the resulting uncertainty is also very small. This is also the case on the subsequent grid of

N = 5 traps, whereas, when the number of traps is increased to N = 9 some function values

with a larger magnitude are detected and hence the uncertainty is larger in comparison to that

associated with the previous estimate.

So far we have looked at how noise impacts the accuracy of an estimate of the pest abundance

for a fixed measurement tolerance of ν. We now investigate the impact of noise on an estimate’s

accuracy as the quantity ν is varied. Let us again consider the simpler test case (7.3.1) as

shown in Figure 7.3a. Figure 7.4d shows the convergence curves for different values of the

measurement tolerance: ν = 0.05, 0.1 and 0.3 where z is fixed as z = 3. It can be seen that

increasing the measurement tolerance causes the convergence curve to shift upwards; greater

uncertainty associated with the set of measured values {f̃i} gives rise to greater uncertainty
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associated with the estimate formulated from this data set as one would expect. Obviously,

the point at which the error becomes acceptable, that is it falls below the upper threshold of

τ = 0.25, occurs later meaning a larger number of traps would be needed to acquire a sufficiently

accurate estimate.

7.4 Assessing the Impact of Noise: Ecological Test Cases

Although informative, the test cases in the previous section were chosen for their mathematically

interesting characteristics rather than their direct relevance to the pest monitoring problem.

Therefore, we now turn our attention to some ecologically meaningful test cases. We require the

ability to repeat estimates of the pest abundance for the same density function for an increased

number of traps. It is difficult to find field data in a one-dimensional domain which would

be suitable for our purpose, so we use data simulated from the spatially explicit form of the

1D Rosenzweig-MacArthur model (3.2.7–3.2.8) supplied by the authors of [70]. This system

of equations is solved numerically at a fixed time t = t̂ > 0 for different parameter values to

generate four ecologically meaningful test cases which are shown in Figure 7.5. The test cases

of Figures 7.5a–7.5d have an increasing number of peaks and we refer to them as the monotone,

single peak, three peak, and the multi-peak test case respectively.

The exact pest abundance I is computed using the composite trapezium rule (2.2.6) from the

exact data fi obtained on a very fine grid of Nf = 215+1 traps. Once we have found the values

of the pest density function f(x) at the trap locations xi, i = 1, ..., Nf , we can find estimates

Ia(N) of the pest abundance for any smaller number N of traps by extracting the relevant pest

density function values from this data set and applying the same evaluation rule (2.2.6).

Since the pest density function for each of the ecological test cases is obtained as a result of

numerical solution, the exact pest abundance I is not available. The exact pest abundance I is

instead computed using the composite trapezium rule (2.2.6) from the exact data fi obtained on

a very fine grid of Nf = 215 + 1 traps.

Let us fix the number of traps as N = N1 and calculate an estimate Ia based on exact data.

The relative error Erel is then calculated from (7.1.2). The mean error µẼrel
of an estimate

formed from noisy data is found from (7.1.2) and the limits of the interval [Ẽmin, Ẽmax] are
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Figure 7.5: Ecologically meaningful test cases as considered in [70], generated by the model
(3.2.7–3.2.8) at different times t and for various choices of the dimensionless diffusion coefficient
d: (a) t = 5, d = 10−4 (b) t = 50, d = 10−4 (c) t = 100, d = 10−5 (d) t = 400, d = 10−5. In each
case the other parameter values as well as the initial and boundary conditions are as given in
the caption of Figure 3.3.

calculated from (7.2.9) and (7.2.10). The number of traps is then increased as 2N1 − 1 and

the above is repeated. This is done several times and the corresponding convergence curves are

shown in Figure 7.6. The measurement tolerance is fixed as ν=0.3 and we also set z = 3.

The results of the ecological test cases reconfirm our earlier findings. If the number N of

traps installed can resolve the spatial pattern of the density function f(x) and can therefore

provide good level of approximation accuracy, then noise makes visible impact on the evaluation

error. In other words, if for a given N the distance between the estimate based on exact data

Ia and the exact abundance I remains within z multiples of the standard deviation σĨ , then the
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convergence curve for the error of the estimate based on exact data Erel differs significantly from

the mean error µẼrel
of the estimate based on perturbed data. This can been seen in Figure 7.6a

where the results for the monotone density distribution of Figure 7.5a are presented. For the

monotone function a good level of accuracy is already achieved on coarse grids (e.g., see N = 5

in the figure), and the error Erel obtained from exact data is several orders of magnitude smaller

than the mean error µẼrel
when N increases. However, it is important to emphasise that the

mean error is already below the required tolerance even on very coarse grids. Furthermore as we

already mentioned in our previous discussion, the mean error converges to zero as the number

N of traps grows infinitely large.

On the other hand, if the estimate based on unperturbed data Ia is already poor, then the

introduction of noise makes little difference to the accuracy of evaluation. This behaviour is

shown in Figures 7.6b-7.6d where the more complex spatial density distributions are not well

resolved on initial grids with a small number N of traps. As a result, the curves Erel and µẼrel

lie close to each other.

It should be mentioned that, as shown in Figures 7.6c and 7.6d for both the three peak

and multi-peak test cases, the quantity Ẽmin on the initial grid of N = 3 traps is Ẽmin = 0

whereas for a number of subsequent grids it becomes non-zero before eventually returning to

zero. It is by chance only that for these test cases the initial estimate on a grid of N = 3 nodes

is sufficiently accurate to satisfy the condition |I − Ia| ≤ zσĨ ; see also our discussion of the test

case (7.3.6) in the previous section. However, the distance between the estimate based on exact

data Ia and the exact abundance I does not decrease fast enough to remain within z multiples

of the standard deviation σĨ until the grid of traps is sufficiently refined.

As discussed in previous chapters, a generic behaviour of the approximation error is that the

accuracy of the approximation Ia worsens when the spatial complexity of the density function

increases. Consequently the number of traps for which the error falls solidly below the required

tolerance increases when the spatial density evolves from a monotone function to a multi-peak

density distribution. It can be seen from Figure 7.6d that for a multi-peak density function

(i.e. the function that presents an ecologically important case of a patchy population density)
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Figure 7.6: The error for the approximation based on exact data Erel is compared with the mean
error µẼrel

of an approximation based on noisy data and the limits of the range [Ẽmin, Ẽmax] for
the ecologically meaningful (a) Monotone, (b) Single peak, (c) Three peak and (d) Multi-peak
test cases as shown in Figures 7.5a - 7.5d respectively. The measurement tolerance is fixed as
ν = 0.3 and we set z = 3 in each case. The legend for all figures is as shown in (a).

the impact of noise is negligible when the number of traps is within the range N ∼ 10 used in

ecological applications. While this result should be further validated for two-dimensional density

distributions, it may help ecologists to make a correct decision about the accuracy of evaluation

on coarse grids of traps.
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7.5 Chapter 7 Conclusions

In this chapter, we have considered a trapping procedure where noise (random error) can be

expected in the resulting measurements of pest population density. The impact of noise on the

accuracy of a pest abundance estimate obtained by the composite trapezium rule (2.2.6) has

been investigated.

By considering each measured pest population density to be normally distributed about

the true density, the error Ẽrel of an estimate constructed from noisy data can be quantified.

Assuming the density data are uncorrelated, an expression for the mean error µẼrel
has been

given, and we have found a range to which a realisation of the error Ẽrel belongs with probability

P (z). In other words, we have constructed an α percent credible interval for the error Ẽrel of

an estimate based on measured data, where α = 100P (z). The theoretical results have been

verified for various 1D density distributions, including those with ecological significance.

We have demonstrated that the approximation error when noise is present in the pest popu-

lation density data depends on the accuracy of evaluation obtained when exact density values are

considered. In particular, the credible interval we have established for Ẽrel contains zero if the

estimate of pest abundance Ia formed in the absence of noise is sufficiently accurate. Otherwise

the lower bound of this interval Emin will be greater than zero.

The accuracy of the estimate has also been studied for the ecologically significant scenario

where the number N of traps is small i.e. on coarse computational grids. It has been shown,

perhaps contrary to intuitive thinking, that the impact of noise is negligible when the data

available are sparse. In other words, the accuracy of evaluation on coarse grids may already

be so poor that noise in field measurements of the pest population density does not make any

significant contribution. This result has been numerically confirmed for ecologically meaningful

data.

Numerical experiments revealed that, when we increase the number of traps, noise becomes

a dominant feature of the approximation and the mean error may differ from the approximation

error obtained on exact values of the density function by several orders of magnitude. Our

results confirm that the mean error converges to zero for an infinitely large number of traps.
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However, the convergence rate of the mean error is much slower than the convergence rate of

the approximation error obtained when exact data are used for approximation.

We have only considered the composite trapezium rule (2.2.6) of numerical integration in this

chapter. It has been shown that the accuracy of approximation on exact data is crucial when

the number N of traps is small. Applying other methods of evaluation may give an estimate of

pest abundance that is more accurate on coarse grids of traps in the presence of noise and we

investigate this in the next chapter.
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Chapter 8

Comparing Methods of Numerical

Integration in the Presence of

Noise

We continue our consideration of uncorrelated density data obtained from a trapping procedure

which is thus subject to an inherent random error (noise). We extend the study conducted in

the previous chapter in order to compare the impact of noise in the population density data

on an estimate of pest abundance for various evaluation methods. In particular, we compare

the performance of the statistical rule (2.1.4), the composite trapezium rule (2.2.6), and the

composite Simpson’s (2.2.7) rule in the presence of noise. We continue to work in 1D, however

the approach can readily be extended to the 2D problem. This chapter consists of work given

in [34].

The work we have carried out so far into the impact of noise in the population density data

on the abundance estimation accuracy has shown that the effects when the number N of nodes

where density data are available is large (i.e. on fine computational grids) differ to when the

number N is small (on coarse grids). Thus we consider the cases separately: the performance

of the different evaluation methods using noisy data is compared on fine computational grids in

Section 8.1, and on coarse grids in 8.2. The theoretical conclusions drawn in these sections are

then verified for ecologically relevant test cases in Section 8.3. Concluding remarks are provided
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in 8.4.

8.1 The Accuracy of Integrating Noisy Data: Fine Grids

We wish to compare the performance of different means of evaluating pest abundance when

noise is present in the population density data. As in the previous chapter, we consider a

regular distribution of traps (7.1.5) across the unit interval which is taken to represent the

agricultural field. We compare three means of forming an estimate namely: the statistical rule

(2.1.4), the composite trapezium rule (2.2.6), and the composite Simpson’s (2.2.7) rule.

We again take the relationship between the true pest density fi and the measured (noisy)

pest density f̃i at a trap location xi ∈ [0, 1] to be

fi = f̃i + εri

where εri is the random component of the measurement error (see Section 7.1) and is a realisation

of a normally distributed random variable. We assume εri to have a mean of zero and further

take the true pest density fi to be some unknown constant. Hence, the measured pest density f̃i

is a realisation of a normal distributed random variable with mean equal to the corresponding

true density fi.

We recall that estimates Ia and Ĩ of abundance formed from exact and noisy density data

respectively are given by the following formulae

Ia =
N
∑

i=1

wifi Ĩ =
N
∑

i=1

wif̃i,

and for convenience we restate the weight coefficients wi, i = 1, . . . , N for the evaluation methods

under consideration below. On the unit interval, they are:

wi =
1

N
, i = 1, . . . , N
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for the statistical rule (2.1.4),

wi = h, i = 2, . . . , N − 1, wi =
h

2
, i = 1, or i = N.

for the composite trapezium rule, and

wi =
4h

3
, i = 2, 4, . . . , N − 1, wi =

2h

3
, i = 3, 5, . . . , N − 2, wi =

h

3
, i = 1, or i = N.

for the composite Simpson’s rule, where h = 1/(N − 1). The relative errors Erel and Ẽrel for

estimates constructed from exact and noisy data are given by (7.1.2) and (7.1.4), namely,

Erel =
|I − Ia|

I
Ẽrel =

|I − Ĩ|
I

.

It was demonstrated in Section 7.2 that the quantity Ẽrel is a realisation of a random variable

with a folded normal distribution, and an expression for the mean error was given (7.2.7). An α

percent credible interval [Ẽmin, Ẽmax] was constructed for α = 100P (z), with the limits (7.2.9–

7.2.10) and where P (z) is described by (7.1.9). We use the quantities (7.2.7) and (7.2.9–7.2.10)

to assess the relative integration error of an estimate formulated from noisy density data.

In this section we compare the performance in the presence of noise of the statistical rule

(2.1.4), the composite trapezium rule (2.2.6) and Simpson’s rule (2.2.7) on a fine computational

grid. We thus analyse the formulae for the mean value of Ẽ as well as the limits of its credible

interval for the case when the number N of traps is large. It can readily be seen from (7.2.7)

and (7.2.9–7.2.10) that the behaviour of these quantities are dictated by the accuracy Erel of the

estimate obtained when exact density data values fi, i = 1 . . . , N are considered, as well as σĨ ,

namely the uncertainty (7.2.2) associated with the estimate Ĩ of abundance formed from noisy

data.

For large N , the fixed distance h between the traps is small. We recall from Chapter 2 (see

Sections 2.2 and 2.5) that for small h the relative error Erel of an estimate formed from exact
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data behaves according to the asymptotic error estimates

Erel ≤ Chq (8.1.1)

where the constant C and the asymptotic convergence rate q depend on the method of evaluation.

When the statistical method (2.1.4) is applied on a regular grid of nodes q = 1, and for the

composite trapezium rule (2.2.6) and composite Simpson’s rule (2.2.7) we have q = 2 and q = 4

respectively. Thus on fine grids of precise data, the statistical rule and the composite Simpson’s

rule yield the least and most accurate estimates respectively.

We now look at the behaviour of the uncertainty term u(Ĩ) for large N (i.e. for small h).

Let us introduce the term umax such that

umax = max
i∈{1,...,N}

u(fi).

From the above and the equation (7.2.2) it follows that

u(Ĩ) =

√

√

√

√

N
∑

i=1

w2
i u

2(f̃i) ≤ umax

√

√

√

√

N
∑

i=1

w2
i .

Let us first consider the uncertainty associated with an estimate Ĩstat formed by the statistical

rule. Substituting the weights (2.1.4) into the above and recalling the distance between the traps

is fixed as h = 1/(N − 1) we obtain

u(Ĩstat) ≤
umax√

N
=

(

1

h
+ 1

)− 1

2

umax.

For small h we have

umax

(

1

h
+ 1

)− 1

2

≈ h
1

2umax,

thus the convergence of the uncertainty u(Ĩstat) is of the order k = 1/2. Similar expressions can

be found for the uncertainty associated with an estimate Ĩtrap formed by implementation of the
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composite trapezium rule (2.2.6)

u(Ĩtrap) ≤ h

(

1

h
− 1

2

) 1

2

umax ≈ h
1

2umax,

and likewise that associated with the estimate ĨSimp formulated from the composite Simpson’s

rule (2.2.7)

u(ĨSimp) ≤
h

3

(

10

h
− 2

) 1

2

umax ≈ h
1

2umax.

Thus the orders of convergence of the uncertainty terms u(Ĩtrap) and u(ĨSimp) are, as for u(Ĩstat),

also k = 1/2 provided the distance h between traps is small.

It can be seen from (7.2.9) that as N grows large, and the relative error Erel of an estimate

formed from exact data grows sufficiently small, the quantity Ẽmin becomes zero. In our study

of the effect noise has on the accuracy of an estimate formed by the composite trapezium rule

conducted in the previous chapter, we found that when the number of traps N is large, the

uncertainty u(Ĩ) associated with the estimate Ĩ is the dominant contribution to the error of an

estimate Ĩ. Therefore, in this chapter’s study of the three methods (2.1.4), (2.2.6) and (2.2.7)

we anticipate that as N increases, the quantities µẼrel
and Ẽmax will converge at a rate of

k = 1/2 in accordance with the behaviour of the uncertainty term u(Ĩ) rather than the order q

as described by the error estimate (8.1.1). This conclusion is validated in Section 8.3.

8.2 The Accuracy of Integrating Noisy Data: Coarse Grids

We now turn our attention to the ecologically relevant case of a coarse grid of traps where the

number of population density data points is small. In many cases having a small number of traps

installed in the field means that the computational grid of data used to formulate an estimate of

abundance is coarse. We recall from Chapter 3 that for this class of grids, the asymptotic error

estimates do not hold. It was discussed in Chapters 4 and 5 that the matter of grid coarseness is

related to the degree of heterogeneity of the pest population density function highly aggregated

density distributions being the most difficult case for pest abundance evaluation. An estimate

of pest abundance can be very inaccurate when the total pest population size is evaluated from
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a strongly heterogeneous density pattern, while the same grid of traps will provide very good

accuracy for another, quasi-homogeneous, density distribution. Ecologists and farmers often

have to deal with pest insect density distributions that have a considerable degree of aggregation

[22, 55, 62], therefore the study of abundance estimation accuracy on coarse grids is important.

Our previous investigation has been made under the assumption that the density data is exact,

thus we now need to further investigate the accuracy on coarse grids in the case that noise is

present in the data.

Once again, the mean error and the bounds of the credible interval are generally determined

by the uncertainty u(Ĩ) associated with the estimate Ĩ formulated from measured pest densities,

and the error Erel of an estimate Ia formulated from exact values of the pest population density.

We begin our study of coarse grids by discussing the uncertainty quantity u(Ĩ). Below we

compare the uncertainty in the estimate obtained when the composite trapezium rule (2.2.6)

is employed with the uncertainty for the statistical rule (2.1.4) and composite Simpson’s rule

(2.2.7) estimates on coarse grids.

From (7.2.2) it is clear that the uncertainty u(Ĩ) associated with an estimate formed from

measured data Ĩ will increase in magnitude as the magnitude of the weights of the numerical

integration method increase. On comparing the weights of the statistical rule estimate (2.1.4),

the composite trapezium rule (2.2.6), and composite Simpson’s rule (2.2.7) on the unit interval

which are given in Section 8.1, it can be seen that none of these methods has uniformly larger

weights than another. For example, the weights of the composite trapezium rule are w1 =

wN = h/2 and wi = h, i = 2, . . . N − 1 whereas for the statistical rule they are uniformly wi ≡

1/N . Thus, whilst the weights corresponding to the interior nodes are larger for the composite

trapezium rule than the statistical rule estimate, the converse is true for those at the exterior

nodes. Consequently, employing a method which by the asymptotic error estimate (8.1.1) is

ordinarily considered more accurate, could in fact lead to a larger associated uncertainty.

For instance the use of composite Simpson’s rule (2.2.7) may result in a larger uncertainty

in the estimate Ĩ than that yielded by the composite trapezium rule (2.2.6). This occurs when
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the following condition is satisfied

h2

9

(

u21 + u2N
)

+
16h2

9

N−1

2
∑

i=1

u22i +
4h2

9

N−1

2
∑

i=2

u22i−1 >
h2

4

(

u21 + u2N
)

+ h2
N−1
∑

i=2

u2i ,

where ui ≡ u(fi). The above can be expressed as

u21 + u2N < C1

N−1

2
∑

i=1

u22i − C2

N−1

2
∑

i=2

u22i−1, (8.2.1)

where the coefficients are C1 = 28/5 and C2 = 4.

Likewise, composite Simpson’s rule could lead to a greater uncertainty associated with the

estimate Ĩ than that associated with statistical rule (2.1.4). This will happen when we have

h2

9
(u21 + u2N ) +

16h2

9

N−1

2
∑

i=1

u22i +
4h2

9

N−1

2
∑

i=2

u22i−1 >
1

N2

N
∑

i=1

u2i .

Using the fact that h = 1/(N − 1) and rearranging gives

u21 + u2N < C3

N−1

2
∑

i=1

u22i − C4

N−1

2
∑

i=2

u22i−1, (8.2.2)

where we have C3 =
7N2 + 18N − 9

8N2 − 18N + 9
and C4 =

5N2 − 18N + 9

8N2 − 18N + 9
.

Finally, implementing the composite trapezium rule will give rise to a larger uncertainty

than the statistical rule when the following condition is satisfied:

u21 + u2N < C5

N−1
∑

i=2

u2i , (8.2.3)

where C5 = (8N − 4)/(3N2 − 8N + 4).

The conditions (8.2.1), (8.2.2) and (8.2.3) can be used to decide which method is best to

use on a coarse grid of traps in order to reduce the uncertainty of evaluation. Consider, for

example, the condition (8.2.3) and let a very coarse grid of N = 3 traps be installed. The
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(a)f(x)

xx2
x1 x3

(b)f(x)

x2
xx1

x3

Figure 8.1: A sketch of the density distribution f(x) where evaluation of the pest abundance is
done on a coarse grid of N = 3 traps. The measured data are available at the points x1, x2 and
x3 of a regular grid of traps. (a) The density is localised close to the centre of the domain. (b)
The density is localised close to the boundaries.

inequality (8.2.3) is then written as u21 + u23 < C5u
2
2, where C5 = 20/7 ≈ 3. Hence, if the spatial

pattern of a density distribution is such that the density is concentrated close to the domain

centre (see a sketch of the density function shown in Figure 8.1a), the inequality (8.2.3) holds.

The uncertainty generated by the composite trapezium rule (2.2.6) is in this case larger than

the uncertainty generated by the statistical method (2.1.4). On the contrary, if the density is

localised close to the boundaries (see Figure 8.1b) then the composite trapezium rule yields a

smaller uncertainty of evaluation. Similar analysis can be done for conditions (8.2.1) and (8.2.2).

It follows from the conditions (8.2.1), (8.2.2) and (8.2.3) that on coarse grids the error in

the pest abundance estimate depends on the spatial pattern of the density function when noisy

data are used for the evaluation. This is the same conclusion made in previous chapters when

exact density data was considered. We thus reiterate that the knowledge of spatial pattern of

the pest insect density distribution is crucial when pest abundance is evaluated on coarse grids

and any information about spatial pattern must be used to its fullest extent.

We now discuss the role of the error Erel of an estimate formed from exact density data in

the behaviour of the error Ẽrel of an estimate constructed from noisy data. It was shown in the
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previous chapter that if for small N the error Erel is already significant, then the contribution

made by the uncertainty term u(Ĩ) discussed above is negligible. We remember that the error

Erel is (unavoidably) incurred by approximating the pest abundance by numerical integration as

opposed to analytically integrating the continuous population density distribution. Meanwhile,

the uncertainty term u(Ĩ) is the result of the noise in the density data. In other words, it was

found in the previous chapter that on coarse grids the impact of noise in the data is insignificant

in comparison to the error imparted by the method of numerical integration used to form an

abundance estimate. This conclusion was drawn from a study of the composite trapezium rule

(2.2.6) only, thus in the next section we investigate whether it hold true for the statistical rule

(2.1.4) and the composite Simpson’s rule (2.2.7) by conducting numerical experiments on several

ecologically meaningful test cases. The accuracy on fine grids will also be investigated.

8.3 Numerical Study of the Impact of Noise

In this section we test the conclusions of the previous two sections for a variety of ecologically

meaningful data. Estimates of the pest abundance are obtained by employing the methods

(2.1.4), (2.2.6) and (2.2.7) over a series of increasingly refined grids of traps, i.e. for increasing

values of the number N of traps. The mean error of estimates formed from measured data

µẼrel
is calculated for each value of N , as are the lower and upper limits of the credible interval

[Ẽmin, Ẽmax] using (7.2.7) (7.2.9) and (7.2.10) respectively. To assess the impact of noise on the

accuracy of an estimate, a comparison is made with the relative errors of the estimates based on

exact data Erel. Plots of the convergence curves of all error quantities are given and the results

are discussed.

Since we intend to investigate the accuracy of numerical integration for a broad variety of

density patterns, we generate six ecologically significant test cases from the model (3.2.7–3.2.8)

by inputting different parameter values. Plots of the resulting pest density functions are shown

in Figures 8.2a - 8.2f. The test cases are chosen such that the level of difficulty in obtaining an

accurate estimate of pest abundance increases as we move from test case 1 through to test case

6. A test case is considered more difficult the higher the number N of traps needed to obtain

a sufficiently accurate estimate. Test case 1, as shown in Figure 8.2a, is a smooth, monotonous
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function. The structure of the density function can therefore be detected from a small amount

of data i.e. a small number N of installed traps and an accurate estimate of abundance can

be readily produced. The number of peaks present in the density function increases in the

subsequent test cases until we reach test case 5 as shown in Figure 8.2 which has a complicated

multi-peak structure. More information about the pest density function, which corresponds to a

higher number N of installed traps, will be required to detect the more complex peak structure

and thus obtain an accurate estimate. Meanwhile, test case 6 provides an example of the most

difficult case whereby the pest population is located within a small sub-domain of the field. The

difficulties of handling such distributions, also known as peak functions have been discussed in

detail in Chapters 5 and 6. If we consider a fixed number N of installed traps, we expect the

estimate of abundance to be most accurate for test case 1 and least accurate for test case 6.

It should be noted that the quantities µẼrel
, Ẽmin and Ẽmax were derived using the assump-

tion that any measured pest density f̃i is normally distributed about the true pest density fi

and belongs to the range (7.1.8) with a prescribed probability (7.1.9). The counterpart to this

assumption is that there is a chance that any f̃i can lie outside of this range. In particular

the theory does not discount a measured pest density f̃i being negative. Of course a negative

pest density is senseless, therefore instead each measured pest density should be considered to

belong to a truncated normal distribution. The effects of such a truncation are investigated

in Appendix E and are shown to be small when the parameter z ≥ 1. We thus ensure that z

satisfies this condition and consider µẼrel
, Ẽmin and Ẽmax to be reliable indicators of accuracy

behaviour of an abundance estimate in the presence of noise.

The quantities we use to assess the impact of noise on an estimate of pest abundance, namely

Erel, µẼrel
, Ẽmin, and Ẽmax, all depend on the true value of the pest abundance I. In order

to obtain I we use the same approach used throughout previous chapters and solve the system

of equations (3.2.7–3.2.8) on a very fine regular grid. For all test cases shown in Figure 8.2 the

number of nodes on the fine grid was fixed as Nf = 4097. The data fi, i = 1, . . . , Nf obtained

on the fine grid was then integrated using the composite trapezium rule (2.2.6) and the result

was taken to be the exact pest abundance I.
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Figure 8.2: Ecologically significant test cases. A spatial distribution f(x) of the pest population
density function is obtained from the model (3.2.7–3.2.8) at different times t and for different
values of the diffusivity d. (a) Test case 1, d = 10−4, t = 5, (b) Test case 2, d = 10−4, t = 50,
(c) Test case 3, d = 10−5, t = 50, (d) Test case 4, d = 10−5, t = 100. (e) Test case 5, d = 10−5,
t = 400. (f) Test case 6, d = 3× 10−6, t = 10. The other parameter values as well as initial and
boundary conditions are as given in the caption of Figure 3.3.
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An estimate of pest abundance based on exact data Ia is obtained using each of the weight

choices (2.1.4), (2.2.6), and (2.2.7), on a series of regular grids of traps and the error Erel is

calculated according to (2.1.7) as usual. The initial grid has the number of traps fixed asN = N1,

where N1 is odd. The number of traps in subsequent grids is then calculated as Ns = 2Ns−1− 1

for s ≥ 2 . This process is repeated as many times as necessary to fully show the behaviour of

the convergence. The quantities µẼrel
, Ẽmin and Ẽmax are then evaluated for each value of N

from (7.2.7), (7.2.9) and (7.2.10) where the measurement tolerance (see Section 7.1) has been

set as ν = 0.3. We have fixed z = 3 so the probability that a single realisation of the error Ẽrel

lies within the range [Ẽmin, Ẽmax] is P (z = 3) ≈ 0.9973.

Figures 8.3a–8.3f compare the error Erel of an estimate formed from exact data with the mean

error µẼrel
of an estimate formed from noisy data. Once the grid of traps becomes sufficiently

refined, the convergence rate of the error quantity Erel behaves according to the asymptotic

error estimates (8.1.1) and the composite Simpson’s rule (2.2.7) yields a more accurate estimate

than the composite trapezium rule (2.2.6), which in turn is superior than the estimate provided

by the statistical rule (2.1.4).

Meanwhile, it can also be seen from Figures 8.3a–8.3f that for each method of numerical

integration the mean error of an estimate formed from noisy data, µẼrel
, converges at the slower

rate of k = 1/2 as explained in Section 8.1. The difference in the convergence rates of Erel and

µẼrel
demonstrates that when the number N of traps is large, the accuracy of an estimate may

be severely hampered by the presence of noise. In the presence of noise, the composite Simpson’s

rule (2.2.7) is not superior to the methods (2.1.4) and (2.2.6), as is the case when precise data

are used on fine grids. It should be noted, however, that as N grows large the estimate of pest

abundance based on exact data Ia tends to the true pest abundance I and hence the error of an

estimate based on exact data Erel tends to zero. Consequently, the probability mass function

of the quantity Ẽrel transitions to a special case of the folded normal distribution, namely the

half normal distribution [27]. In other words, the probability mass function skews towards zero,

thus it becomes more probable that a smaller rather than a larger error will be obtained.
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Figure 8.3: Convergence curves for the density distributions depicted in Figure 8.2a – 8.2f
respectively. The mean error µẼrel

of an estimate formed from noisy data (dashed lines) is
compared with the error Erel of an estimate constructed from exact data (solid lines). The
caption in all figures is as given above. The superscripts ‘stat’, ‘trap’ and ‘Simp’ indicate that
the estimate of the pest abundance was calculated either by the statistical rule (2.1.4), or was
formed using the composite trapezium rule (2.2.6) or Simpson’s rule (2.2.7).
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Figure 8.4: Convergence curves for the density distributions f(x) depicted in Figure 8.2a – 8.2f
respectively. Plots of the mean error quantity µẼrel

are shown (solid lines) alongside the quantity

Ẽmax (dashed lines). The caption in all figures is as given above and the same superscript
notation is used as in Figure 8.3.
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Figures 8.4a–8.4f show the mean error µẼrel
more clearly, as well as the quantity Ẽmax. The

curves of Ẽmax are shown to be parallel to that of µẼrel
for larger N , therefore confirming that

the convergence rate of Ẽmax is also k = 1/2 as expected. Thus for large N , the uncertainty

associated with the estimate of pest abundance Ĩ caused by noise in the data f̃i, i = 1, . . . , N

is the dominant factor affecting the accuracy of an estimate. One interesting feature shown in

Figures 8.4a–8.4f is that when the number N of traps is large, the difference between the values

of the quantity µẼrel
for each of evaluation methods is very small, as is the difference between

the values of Ẽmax. This confirms our previous conclusion that whilst the more sophisticated

composite Simpson’s method (2.2.7) outperforms the composite trapezium rule (2.2.6) and the

statistical method (2.1.4) when the data on the pest population density are precise, there is

little difference between the methods when the data is noisy.

Tables 8.1a–8.1f give the values of Ẽmin for the test cases 1–6. As can be seen from (7.2.9),

the definition of this quantity depends on the relative error Erel of an estimate constructed from

exact data. A sufficiently accurate estimate is needed for the quantity Ẽmin to be zero, thus the

grid of N traps needs to be sufficiently refined to resolve the heterogeneity of the pest population

density. Tables 8.1a–8.1f confirms that the point at which Ẽmin becomes consistently zero varies

depending on the spatial pattern of the pest population density function of the corresponding

test case (compare with Figures 8.2a-8.2f). For the easier to handle spatial density distributions

e.g the monotone function of test case 1 (see Figure 8.2a), the quantity Ẽmin is non-zero only for

the estimate formed by the statistical rule (2.1.4) on the grid of N = 3 traps (see Table 8.1a).

Test cases 5 and 6 as shown in Figure 8.2e and Figure 8.2f on the other hand require further grid

refinement before Ẽmin becomes consistently zero. This happens for all numerical integration

methods considered in the paper after the grid has been refined to N = 33 and N = 65 traps

for test case 5 and test case 6 respectively.

Now let us consider the behaviour of the error quantities when the number N of traps is

small. Figures 8.3a–8.3f confirm the findings of the previous chapter. It can be seen from

Figure 8.3 that for small N the accuracy of an estimate of pest abundance formed from noisy

data is determined by the accuracy of an estimate based on exact data. That is, for small N
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N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0057 0 0

5 0 0 0

9 0 0 0

(a)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.6088 0.6415 0.6686

5 0 0.1391 0.4180

9 0 0 0

(b)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0819 0.2363 0.3724

5 0 0 0.1423

9 0 0 0

17 0 0 0

(c)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0 0 0.1590

5 0 0 0.1742

9 0 0.1742 0

17 0 0 0

(d)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.0452 0 0

5 0.0600 0.0252 0.0118

9 0.1407 0.1308 0.1499

17 0.0679 0.0568 0.0170

33 0 0 0

65 0 0 0

(e)

N Ẽstat
min Ẽtrap

min ẼSimp
min

3 0.9982 0.9980 0.9977

5 0.9984 0.9984 0.9985

9 0.9985 0.9985 0.9985

17 0.5949 0.5697 0.4267

33 0.3757 0.3562 0.2627

65 0 0 0

(f)

Table 8.1: The quantity Ẽmin for the test cases shown in Figure 8.2a – 8.2f respectively. The
same superscript notation is used as in Figure 8.3. For the larger values of N where the values
of Ẽmin are not displayed, they are uniformly zero.

the quantity Ẽrel is strongly dependent on Erel and is just slightly affected by the uncertainty

u(Ĩ) caused by noise being present in the data. This is evident from the fact that in general

the curves representing the mean error µẼrel
of the estimates formed from noisy data lie close

to their corresponding curves Erel when N is small. In some cases the estimate of the pest

abundance Ia based on exact data already achieves good levels of accuracy even when N is

small. For example, for Test case 1 (see Figure 8.3a), this is evident for the estimates formed

by implementing the composite Simpson’s rule. Here, there is a clear difference between the

quantities ESimp
rel and µ

ẼSimp
rel

even on very coarse grids of N = 3 and N = 5 traps (compare the

solid red line with closed triangles with the dashed red line). Whereas considering the estimates

formed by the statistical rule on the same coarse grids, it can be seen that there is little difference

between Estat
rel and µẼstat

rel
since the accuracy remains poor until the grid of traps is further refined

(compare the solid green line with closed circles with the dashed green line).
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Figures 8.3f and 8.4f exhibit the behaviour on grids with a small number N of traps whereby

the quantities Erel, µẼrel
, Ẽmax and also Ẽmin (see Table 8.1f) lie very close to each other. As

discussed in the previous chapter this is the result of how we consider the noisy data f̃i to be

related to the true population density values fi. At the nodes of these grids the values of fi are

very small. Since we essentially consider the f̃i to be a percentage of the corresponding fi, in

this instance the noisy data will lie close to the true data.

We continue to consider the ecologically relevant scenario where the number of grid nodes

N is small. Tables 8.2a - 8.2f provide further evidence to support the assertion that for each

numerical integration method, the magnitude of µẼrel
is mainly defined by Erel on coarse grids

of traps. In other words, the impact of the uncertainty u(Ĩ) in an estimate caused by noise in

the density data is dominated by the error Erel which is imparted by the means of obtaining an

estimate i.e. the method of numerical integration. Tables 8.2a - 8.2f gives u(Ĩ), alongside the

quantities Erel and µẼrel
for all test cases on the grids of N = 3, 5 and 9 nodes. For each fixed

value of N , the uncertainties u(Ĩ) associated with an estimate are compared for each numerical

integration method. The maximum of these uncertainties is given in bold, and the minimum

is given in grey text. The same comparison is made for the relative errors Erel of an estimate

based on exact data, and the mean errors µẼrel
of an estimate formulated from noisy data.

It is shown in Tables 8.2a–8.2f that the numerical integration method which yields the

maximum or minimum value of µẼrel
for a fixed number N of traps is the same as that which

generates the maximum or minimum value of Erel for all test cases. Therefore, the accuracy of

an estimate based on exact data should be used to assess which method is superior when N is

small. The tables also demonstrate the point made in Section 8.2, that there are instances when

the uncertainty term u(Ĩ) is greater when the composite Simpson’s rule is employed than when

the composite trapezium rule and/or the statistical rule is used to estimate pest abundance.

For example, this occurs for test case 2 when N = 5 as shown in Table 8.2b as well as for test

case 3 when N = 3. Other examples of this happening can be seen in the remaining tables,

as can examples of when the uncertainty associated with an estimate formed by the composite

trapezium rule exceeds that associated with the corresponding statistical method estimate.
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N 3 5 9

u(Ĩstat) 0.0121 0.0081 0.0055

u(Ĩtrap) 0.0099 0.0067 0.0049

u(ĨSimp) 0.0085 0.0068 0.0054

Estat
rel 0.2838 0.1327 0.0643

Etrap
rel 0.1409 0.0235 0.0011

ESimp
rel 0.0021 0.0156 0.0063

µẼstat
rel

0.2839 0.1335 0.0668

µẼtrap
rel

0.1428 0.0452 0.0304

µ
ẼSimp

rel

0.0521 0.0439 0.0332

(a)

N 3 5 9

u(Ĩstat) 0.0042 0.0229 0.0132

u(Ĩtrap) 0.0037 0.0285 0.0148

u(ĨSimp) 0.0036 0.0379 0.0108

Estat
rel 0.6681 0.3138 0.0048

Etrap
rel 0.6948 0.5459 0.0823

ESimp
rel 0.7214 0.9595 0.0723

µẼstat
rel

0.6681 0.3139 0.0502

µẼtrap
rel

0.6948 0.5459 0.0907

µ
ẼSimp

rel

0.7214 0.9595 0.0760

(b)

N 3 5 9

u(Ĩstat) 0.0403 0.0244 0.0170

u(Ĩtrap) 0.0518 0.0263 0.0262

u(ĨSimp) 0.0659 0.0182 0.0176

Estat
rel 0.3701 0.0628 0.0824

Etrap
rel 0.6069 0.0526 0.0798

ESimp
rel 0.8438 0.2725 0.0888

µẼstat
rel

0.3701 0.0711 0.0830

µẼtrap
rel

0.6069 0.0666 0.0806

µ
ẼSimp

rel

0.8438 0.2725 0.0893

(c)

N 3 5 9

u(Ĩstat) 0.0407 0.0255 0.0175

u(Ĩtrap) 0.0306 0.0177 0.0145

u(ĨSimp) 0.0205 0.0157 0.0164

Estat
rel 0.2205 0.0414 0.0369

Etrap
rel 0.0568 0.2455 0.1384

ESimp
rel 0.3341 0.3084 0.1027

µẼstat
rel

0.2230 0.0670 0.0501

µẼtrap
rel

0.0837 0.2455 0.1384

µ
ẼSimp

rel

0.3341 0.3084 0.1031

(d)

N 3 5 9

u(Ĩstat) 0.0190 0.0150 0.0105

u(Ĩtrap) 0.0210 0.0160 0.0108

u(ĨSimp) 0.0248 0.0176 0.0110

Estat
rel 0.2009 0.1828 0.2268

Etrap
rel 0.1579 0.1567 0.2193

ESimp
rel 0.1148 0.1563 0.2401

µẼstat
rel

0.2009 0.1828 0.2268

µẼtrap
rel

0.1580 0.1567 0.2193

µ
ẼSimp

rel

0.1173 0.1563 0.2401

(e)

N 3 5 9

u(Ĩstat) 1.30e-06 9.53e-07 6.87e-06

u(Ĩtrap) 1.54e-06 1.03e-06 7.13e-07

u(ĨSimp) 1.89e-06 1.05e-06 7.41e-07

Estat
rel 0.99852 0.99867 0.998711

Etrap
rel 0.99833 0.99861 0.99869

ESimp
rel 0.99815 0.99871 0.998714

µẼstat
rel

0.99852 0.99867 0.998711

µẼtrap
rel

0.99833 0.99861 0.99869

µ
ẼSimp

rel

0.99815 0.99871 0.998714

(f)

Table 8.2: Contributions to the error of an estimate calculated from noisy data. For grids of
a small number of traps and for each of the numerical integration methods (2.1.4)-(2.2.7), the
quantities u(Ĩ), Erel, and µẼrel

are compared. The same superscript notation is used as in
Figure 8.3. For a fixed value of N , the greatest of each quantity is highlighted in bold and the
lowest is given in grey text. The position of the bold/grey text in the µẼrel

row matches that of
the Erel row.
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Accuracy control on coarse grids remains, perhaps, the most difficult issue in the general

problem of pest abundance evaluation since the asymptotic error estimates do not hold. As

explained in Chapters 5 and 6, on coarse grids the approximation error can be considered a

random variable and we have thus recommended that a method of numerical integration should

instead be assessed probabilistically. In other words, the probability of obtaining a desired level

of accuracy should be calculated rather than the error of an estimate. The initial methodology

we presented for such an assessment was for exact data only, however the findings of this paper

indicate that the results would also apply for noisy data as the effects of noise can be ignored

on coarse grids.

8.4 Chapter 8 Conclusions

The study of pest abundance evaluation in the presence of noise conducted in the previous

chapter has been extended to consider other methods of numerical integration. The performance

of the composite trapezium rule (2.2.6) has been compared with that of the statistical rule (2.1.4)

and the Simpson’s rule (2.2.7). For each method we have studied the behaviour of the mean error

µẼrel
arising when pest abundance is evaluated from noisy data. We have also investigated the

credible interval [Ẽmax, Ẽmax] to which the error of evaluation belongs with a given probability

P (z).

We have considered the cases of a large number of traps and a small number of traps sepa-

rately as different accuracy criteria should be applied in the former and latter case. If the number

of traps is large enough such that the grid of traps is fine, the methods of numerical integration

can be compared based on their asymptotic convergence rate. It has been demonstrated that

for each of the evaluation methods considered, the mean error of an estimate formed from noisy

data converges to zero at the same rate. This is despite the fact that the methods have differ-

ent convergence rates when applied to exact data. This confirms the findings of the previous

chapter, that noise becomes a dominant feature of the approximation when the number N of

traps is large. This conclusion, however, does not immediately result in the recommendation to

dismiss more advanced (and therefore more accurate on exact data) methods of pest abundance

evaluation for the sake of methods less accurate yet easy to implement. As noted in Section
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8.3, it becomes more probable that a smaller rather than a larger error will be obtained as the

error Erel of an estimate formed from exact data tends to zero. Hence a method of numerical

integration with a higher convergence rate when applied to exact data may still be superior

when perturbed data are considered on fine grids of traps. Further study is required to verify

this assertion.

When the number N of traps is small and the grid of traps is coarse, the asymptotic error

estimates do not hold. Generally, the mean error and the bounds of the credible interval are

determined by the uncertainty u(Ĩ) associated with the estimate formulated from measured

pest densities as well as the error Erel of an estimate formulated from exact values of the pest

population density. We have shown that on coarse grids the uncertainty depends on the spatial

pattern of the density function. Hence, any a priori knowledge about the density distribution

could be helpful in deciding which integration method should be used to reduce the uncertainty

of the evaluation.

Meanwhile, it was found that on coarse grids the most significant contribution to the error

of an estimate Ĩ formed from measured data is the quantity Erel i.e. the error imparted by the

numerical integration method. Our numerical experiments confirmed that the impact of the

uncertainty u(Ĩ) was negligible in many ecologically meaningful test cases where Erel was large.

Thus finding a method of evaluating pest abundance which is accurate on coarse grids when

exact density data are considered is critical to the pest monitoring problem.
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Chapter 9

Concluding Remarks

9.1 Discussion and Conclusions

We have considered the ecological monitoring problem of estimating pest insect abundance in

an agricultural field. Such an estimate can be used to decide whether or not it is necessary

to intervene and implement a control action to reduce the pest population size. Means of pest

control, the most commonly used being pesticides, are costly, time consuming to administer,

and can have damaging effects on the environment and the ecosystem. At the same time, the

damage caused to crops by pests is significant and needs to be prevented as much as possible.

The importance of making a correct pest management decision is clear and a more accurate pest

abundance estimate means greater confidence can be placed in the resulting pest management

decision.

Typically, a statistical approach is used to obtain an estimate of pest abundance. In this

thesis, we have instead built upon the work conducted in [70, 71, 72] and applied numerical

integration to the abundance evaluation problem. An estimate is formed by numerically in-

tegrating the discrete pest population density function obtained by sampling the population.

The motivation behind applying numerical integration methods in the problem is that their

weight coefficients can be chosen such that the asymptotic convergence rate exceeds that of the

statistical method. Such methods thus have the potential to yield more accurate results.

Restrictions imposed by the nature of the ecological scenario, however, mean that this differs
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greatly from a standard numerical integration problem. Whereas conventionally it is assumed

that the number of data points can be made large, in pest monitoring there is a practical limit to

the number N of sampling locations which can be used within a single field, and this number can

be particularly small in the case of routine monitoring. Thus we are forced to seek an accurate

approximation from a very limited amount of data.

We reviewed the results of [70, 71, 72]. It was explained that when the number of data

points where the integrand is available is small, the asymptotic error estimates cannot be relied

upon. Computational grids for which the error does not behave according to these estimates

are described as coarse grids, meanwhile grids where the asymptotic error estimates hold are

considered to be fine grids. These definitions depend on the nature of the integrand, rather

than explicitly the number of data points. A grid that is considered as fine for one function

may be coarse for another. The transition point from coarse to fine grids depends on the spatial

heterogeneity of the integrand i.e. the pest population density function. The asymptotic error

estimates were shown to hold even for a small number of data points when the population is

spread homogeneously over the entire domain. For such a spatial distribution of pests, numerical

integration methods with a higher convergence rate will produce a more accurate estimate of

abundance. Meanwhile a higher number of grid nodes is required for the asymptotic error

estimates to hold when a more heterogeneous population density distribution is considered.

This number of nodes may be too large to be used in practice, and thus the coarse grid problem

arises. A consequence of the asymptotic error estimates not holding on coarse grids is that the

conventional approach of using a method with a higher convergence rate to improve accuracy

may not be effective.

Some other typical techniques used in standard numerical integration problems to improve

accuracy were not available to us. With some prior knowledge of the spatial pattern of the

pest population, the accuracy of an estimate could be improved by adapting the sampling plan

accordingly. For instance more data could be collected in areas that required a higher level of

resolution. However, such information is not usually available thus we made no assumptions

about the spatial heterogeneity of the pest population density function. Furthermore, our focus
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was on the accurate estimation of the population size at a fixed point in time. As such we

could not use grid refinement or adaptive grid movement to improve the accuracy. In pest

monitoring, both of these techniques would require repeating the sampling procedure either with

an increased number of sample units in the former case, or with a different spatial configuration of

sample units (i.e. a different sampling plan) in the latter. Clearly the initial conditions cannot

be recreated; pest insects are living creatures and the population density function changes

over time. The time parameter would have to be taken into account to permit the use of the

aforementioned techniques but this was outside the scope of our study. Instead we considered

the time independent problem. It is worth noting, however, that grid refinement and adaptive

grid movement could be applied whilst still considering the problem as time independent if the

target pest species is sufficiently slow moving. For example in the case of weed species, the

population density distribution will not change significantly between rounds of sampling. Grid

refinement or grid adaptation techniques, widely used in conventional mathematical integration

problems, could then be exploited to improve the accuracy of the abundance estimate.

The accuracy that can be achieved for a fixed, small number of data points also depends

on the spatial heterogeneity of the integrand i.e. the pest population density function. Accu-

rate estimates can be obtained when the density is spread over the entire domain, even if the

density function is heterogeneous. More inaccurate estimates are expected when the density is

patchy (distinct areas of zero and non-zero density) with the situation worsening the higher the

severity of the aggregation as the patches of non-zero density may be missed by the sampling

procedure. We aimed to investigate how the accuracy on coarse grids could be assessed, since

the asymptotic error estimates conventionally used to conclude about performance do not hold.

We also embarked on a search for means of improving the accuracy of estimates on coarse grids

under the conditions outlined above.

Though the precise spatial pattern of the pest population itself is not usually known, esti-

mates of the rate at which the population diffuses exist for several species. It was explained how

the diffusion rate is a defining parameter of the spatial pattern of the population density function

and how it can be used to estimate the characteristic width of spatial heterogeneity. We then
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investigated how knowledge of the diffusion rate could be exploited to control the integration

error so that it is within a prescribed tolerance.

For highly aggregated population density distributions we found that on coarse grids not

only do the asymptotic error estimates not hold, but the integration error behaves as a random

variable. An abundance estimate may still achieve a prescribed accuracy level, but it is a matter

of chance. We introduced a new class of computational grid, namely an ultra-coarse grid,

where the probability of achieving an error within a certain tolerance is p < 1. By modelling a

component of spatial heterogeneity, i.e. a single peak, as a quadratic function and considering

the integration error as a random variable, we were able to find an estimate of the number

Nt of regularly spaced data points required to ensure sufficient accuracy in terms of the species

diffusion rate. We were also able to describe the probability p < 1 of obtaining a desired accuracy

level when the number of data points is N < Nt. We have proposed that such a probabilistic

assessment of accuracy should be used to compare methods of numerical integration on ultra-

coarse grids where the method with the highest probability of achieving the desired accuracy

would be recommended.

We then extended our probabilistic study of ultra-coarse grids to handle random sampling

plans. The statistical means of estimating pest abundance is spatially implicit and permits

such a distribution of sample units. Furthermore, whilst a regular sampling plan is often used

in ecological monitoring, a random sampling plan is sometimes favoured instead. The concern

is that a non-random sampling plan will correlate with the spatial pattern of the population

distribution and thus the abundance estimate will be biased. Although sampling randomly works

well when the population is spread over the entire field, we showed that a regular sampling plan

may be better suited to handling highly aggregated populations.

We considered the scenario whereby the entire population is concentrated within a small

patch of the field. Under the assumption that a single sample unit lies within the patch of non-

zero density, we constructed a theoretical prediction of the probability of achieving an accurate

abundance estimate for a given number N of randomly located sample units, and found the

critical number N∗ of sample units for which this probability achieves its maximum value.
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Increasing N beyond this point leads to a decrease in the chance of estimating the abundance

accurately. This is contrary to the behaviour when a regular sampling plan is used, where

an increase in N ultimately leads to sufficient accuracy being guaranteed. Furthermore, on

comparison of our theoretical predictions, for a fixed number N the probability of obtaining an

estimate within a prescribed tolerance of the true abundance was higher for a regular distribution

than a random distribution of sample units.

The above conclusions were reached under the assumption that the pest population density

data at the sample unit locations are precise. As discussed in the introduction, there are sampling

techniques which produce an absolute estimates of abundance at the sample unit location thus

a true reflection of the local population density can be recovered. Such methods, however, are

labour intensive and time consuming. More commonly, more cost-effective sampling methods

which produce a relative abundance estimate at the sample unit location are used instead. For

example trapping is an often used sampling technique, however, the trap counts are relative to

trapping technique. We considered a passive trapping process i.e. no attractant was used to

draw the target species into the trap. Consequently, the trap counts are relative to the activity

of the target pest as well as the density. Means of converting such counts to the population

density exist, however the resulting density data are of course not exact. The data are instead

measurements which include a measurement error. A key component of this measurement error

is the random error (noise). We thus conducted a study of the impact of this noise on an estimate

of pest abundance and compared it to the error imparted by the numerical integration process.

Our assumption that the resulting measurement of pest population density is a realisation

of a normal random variable with the mean equal to the true density at the trap location means

that the relative approximation error in the presence of noise is a realisation of a folded normal

distribution. We constructed a confidence interval for the error of an estimate formulated from

noisy data and then assessed the impact of noise on the accuracy of an abundance estimate by

investigating the behaviour of the lower and upper limits of this confidence interval as well as

the mean of the error. It was found that the convergence rate of a numerical integration method

is significantly slowed down in the presence of noise. As such, when the number of traps is large,
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noise is the dominant feature of the evaluation error. Meanwhile when the number of traps is

small and the error attributed to the numerical integration of the data is large, noise in the data

makes little impact and the matter of reducing the integration error on coarse grids remains the

main concern.

It is evident from our research that any a priori information regarding the spatial distribution

of the pest population should be used to its fullest extent. Based on the findings presented in this

thesis, in the case of estimating the pest abundance from precise density data, we recommend

the use of higher order numerical integration methods if the number of sample units is sufficient

to resolve the spatial heterogeneity of the population distribution as the conventional asymptotic

error estimates hold. For the small number of sample units used in pest monitoring programmes,

this corresponds to when the pest population is known to be spread over the entire agricultural

field. As indicated in Section (8.4), more research needs to be done before a recommendation can

be made regarding which numerical integration method should be used when the population is

spread over the entire domain but the density data is noisy. Likewise, further research is required

to determine the best means of evaluating pest abundance when the population is known to be

aggregated. In this case it is a matter of chance as to whether the data from the small number

of sample units yields a sufficiently accurate abundance estimate. We suggest our probabilistic

means of assessing a numerical integration method on such ultra-coarse grids should be extended

so that more methods can be compared and a recommendation as to which one to implement can

be made. Our study suggests that the same hierarchy could then be applied when the density

data is noisy, as the integration error is dominant when the number of sample units is small

and the population density distribution is patchy, however this needs to be confirmed through

further research. Suggested extensions to the work conducted in this thesis are provided in the

next section.

9.2 Directions for Future Work

We now discuss the limitations of the work conducted in this thesis and the avenues of inquiry

left open. Furthermore, we outline the next steps which could be taken en route to providing

more concrete recommendations to be used in the practice of pest monitoring.
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We have demonstrated how to yield an estimate of pest abundance from real-world multi-

dimensional pest population density data, and results for the 2D problem have been presented.

For parts of our study we have reduced the problem to 1D for simplicity, however, these results

can readily be extended to two dimensions. Numerical tests presented in this thesis have been

performed using simulated data. The numerical integration of field data has been discussed in

[68, 71], thus further testing could henceforth be conducted using field data. We have considered

a simplified representation of an agricultural field, namely a rectangular domain. The study

could be extended to consider a curvilinear boundary.

The probabilistic assessment of the error induced by numerical integration in Chapters 4

and 5 was founded on treating a peak (local maximum) of the population density function

as a quadratic. As such, we were able to evaluate the probability of achieving a sufficiently

accurate estimate, and also estimate the minimum number of sample units needed to guarantee a

prescribed level of accuracy, but only for numerical integration methods with a degree of precision

r less than the order of a quadratic i.e. for r < 2. To consider other numerical integration

methods with a higher degree of precision, a higher order replacement of the peak should be

used in the analysis. A comparison between the performance of the often used statistical method

2.1.4 and an array of higher order numerical integration methods should then be made in order

to provide recommendations of which method to use on ultra-coarse computational grids.

We made an initial investigation of how locally shifting the sample unit locations away

from a regular grid affects the accuracy of numerical integration and the minimum number

of sample units needed to guarantee the error is within a chosen tolerance (see Chapter 3,

Section 3.4 and Chapter 4, Section 4.5). The mean error produced by an irregular sampling

plan was compared to the error of an estimate obtained on a regular grid of sample units. The

variance of the error should also be studied to fully understand the impact of perturbations

on the prescribed sampling plan. This investigation should be extended to consider how the

probability of achieving an accurate estimate on ultra-coarse regular grids is affected.

As mentioned in the introduction, other estimates exist of the minimum number of sample

units required for sufficient accuracy. Extending the probabilistic study of Chapters 4 and 5
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to handle the 2D problem would mean that a comparison could then be made between these

estimates.

In Chapter 6 we evaluated the probability of achieving a sufficiently accurate estimate on

implementing the statistical method (2.1.4) when a random sampling plan is used. We arrived

at our theoretical predictions by considering a highly aggregated density distribution where the

entire population is confined within a small patch of the field. We also simplified the analysis by

considering the event that a single sample unit is located randomly within the patch of non-zero

density. For completeness, the cases when more than one sample units fall into this patch should

be incorporated into the probability evaluation, however as was explained in Section 6.5, it is

expected this additional contribution will be small in comparison. The study should, of course,

also be extended to handle multi-patch distributions.

The impact of noise in the population density data obtained via passive trapping on the

accuracy of abundance estimation was studied in Chapters 7 and 8. The impact was assessed

by considering the mean error, and by constructing a confidence interval. The results on coarse

grids were clear; the impact of noise in the density data is negligible in comparison to the error

imparted by the numerical integration method. As mentioned in Section 8.4, however, further

investigation is required in order to make a recommendation of which numerical integration

method to use on fine grids when noise is present. A means of making such a recommendation

would be to utilise equation (7.2.8) to calculate the standard deviation of the error when noise

is present, alongside the mean, and then subsequently calculate the skewness of the probability

density distribution. The method of numerical integration with the stronger positive skew, i.e.

the mass is skewed more towards zero error would then be the recommended method.

We also assumed that the trap counts were uncorrelated however, in reality there may be

some correlation between trap counts if the traps are installed sufficiently close to each other

and this should be investigated. Furthermore, we conducted this study for the 1D counterpart

of the pest monitoring problem; similar analysis should be carried out in 2D. The systematic

component of the density measurement error was ignored, as mentioned in Section 7.1. Its

contribution to the abundance estimation error should be evaluated and compared to the error
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imparted by the numerical integration procedure.

Our work has focused on assessing the accuracy of a pest abundance estimate at a fixed point

in time. Once the outstanding issues outlined above have been resolved, the time dependent

problem should be considered.

We have considered numerical integration as a means of formulating an abundance estimate.

Numerical integration is based on (piecewise) polynomial interpolation of the integrand. An

alternative interpolating technique used in abundance estimation is kriging. Kriging approxi-

mates the data statistically (predominantly using least-squares). While it is widely employed

in ecological application, its potential in terms of accuracy is still unclear when data used for

kriging is sparse. Results of our study reveal that the accuracy on coarse grids should be for-

mulated in probabilistic rather than deterministic terms, thus the use of the kriging technique

on sparse data should be revisited. This may constitute another topic of future research.

We have demonstrated that numerical integration techniques can be used to evaluate pest

abundance however we do not proclaim to have presented a method ready to use in pest mon-

itoring. As indicated above, much further research needs to be conducted. Instead, we have

made some important first steps towards achieving this ultimate objective.
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Appendix A
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Figure A.1: The pest population density is described by the function A.0.1 where (a) δ = 0.01,
(b) δ = 0.1 and (c) δ = 1.

In Chapter 3, Section 3.1 several numerical integration methods were applied to test cases

with mathematically interesting characteristics over a series of regular grids with an increasing

number N of nodes. On plotting the convergence curves for the test case described by function

(3.1.3), namely

f(x) =
1

(x+ 0.01)5
, x ∈ [0, 1]

a jump in accuracy was evident for LII method approximation when the interpolating polynomial

degree was set as k = 3. For convenience both the function and relevant convergence curve are

redrawn in figures A.1a and A.2a respectively. We now investigate the jump in accuracy further.
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Figure A.2

Let us consider a more generalised version of the above function, namely,

f(x) =
1

(x+ δ)5
, (A.0.1)

where on setting δ = 0.01 we obtain the original function of interest (3.1.3) restated above. Plots

of this function for different values of δ are shown in Figure A.1b where we have chosen δ = 0.1

and in Figure A.2b where δ = 1. Corresponding convergence curves of estimates generated by

the LII method for k = 3 are shown in Figure A.2b and A.2c. Comparing the graphs of Figure

A.2 it can be seen that as δ is increased the jump becomes less severe. Its position is also related

to the order of δ. When δ = 0.01 the jump occurs when n is of the order 103. When δ is ten

times larger, δ = 0.1 the number of sub-intervals n corresponding to the jump decreases tenfold

to become of order 102. On increasing the value of δ by a factor of ten once again, that is we now

have δ = 1, there is no longer a jump visible. We are thus satisfied that the jump in accuracy

is a result of cancellation caused by the geometry of the interpolation stencil, (see Section 2.3).
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Appendix B

The analysis conducted in chapters 4 and 5 uses the assumption that we can treat a peak (a

local maximum) as a quadratic function. In making this assumption, however, we introduce an

error. Here we investigate the significance of this error. Suppose that the population density

function f(x) has a local maximum at the point xi which lies somewhere on the unit interval

[0, 1]. Let the population density function value at the point xi be available, as well as at the

points xi−1 = xi − h and xi+1 = xi + h where h > 0 is an arbitrary parameter. Knowing the

function value at three nodes allows us to construct a quadratic interpolating polynomial to

approximate the peak. Such interpolation was discussed in Section 2.2. The coefficients of the

quadratic are usually found by the condition that at three nodes f(x) = Q(x). We require that

the maximum of the quadratic coincides with the maximum of the peak, thus we define the

quadratic to be of the following form

Q(x) = B −A(x− xi)
2

and find the coefficients A and B using only two collocation conditions, namely f(xi−1) =

Q(xi−1) and f(xi) = Q(xi). As such, we have

A =
f(xi)− f(xi−1)

h2
, B = f(xi).

Let us investigate the error we introduce to our analysis by treating the peak as a quadratic
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h 0.125 0.0625 0.0312 0.0156

Emax
int 0.3325 0.0922 0.0123 0.0011

Table B.1: Maximum interpolation error (B.0.1) for the quadratic approximation the single peak
of f1(x) for various values of h.

function. To do this we consider the maximum interpolation error, that is the maximum distance

between the actual density function f(x) and the quadratic replacement Q(x) within the vicinity

of the peak [xi−1, xi+1]

Emax
int = max

x∈[xi−1,xi+1]
|f(x)−Q(x)|. (B.0.1)

Table B.1 shows the maximum interpolation error introduced when the single peak of the func-

tion f1(x) shown in Figure 4.1a is approximated by a quadratic for various values of h. The

maximum of the peak is located at x = 0.255249 thus this is taken as the value of the node xi.

We recall that the function f1(x) is discrete and available at the nodes of a very fine regular grid

of Nf = 32, 769 nodes on the unit interval [0, 1]. Thus the maximum interpolation error (B.0.1)

was calculated over the set of points belonging to the peak vicinity namely the sub-interval

[xi−1, xi+1]. The table shows that a decrease in the parameter h results in a decrease in the

interpolation error (B.0.1). This is also evident from Figure 4.2.

We now look at the difference in the integration error when the actual density function

f(x) and the quadratic replacement Q(x) are integrated in the vicinity of the peak [xi−1, xi+1].

The chosen means of numerical integration is the compound trapezium rule (2.2.6), i.e. the

peak is interpolated by linear polynomials on the local grid of three nodes xi−1 = xi − h, xi

and xi+1 = xi + h for a fixed value of h as detailed in Section 4.2. The relative integration

error (2.1.7) is calculated in the vicinity of the peak for the function f(x) and the quadratic

replacement Q(x) and are denoted Ef
rel and EQ

rel respectively. The exact integral of the peak used

in the computation of these error terms is obtained by applying the composite trapezium rule

(2.2.6) to the subset of the Nf = 32, 769 data points which lie in the peak domain [xi−1, xi+1].

Table B.2 shows the integration error (2.1.7) when the integral is calculated in the vicinity

of the peak for both the density distribution f1(x) shown in Figure (4.1a), and the quadratic
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h 0.125 0.0625 0.0312 0.0156

Ef
rel 0.0641 0.0464 0.0279 0.0091

EQ
rel 0.1839 0.0961 0.0341 0.0096

Table B.2: The integration error (2.1.7) when the approximate integral Ia is computed on a grid
of three nodes local to the peak using the compound trapezium rule (2.2.6). The integration

errors Ef
rel and EQ

rel computed for the peak of the density distribution f1(x) and its quadratic
replacement Q(x) are given for several values of h.

h 0.0312 0.0156 0.0078 0.0039

Ef
rel 0.0545 0.0532 0.0267 0.0080

EQ
rel 0.1986 0.1024 0.0325 0.0086

Table B.3: The integration error (2.1.7) when the approximate integral Ia is computed on a grid
of three nodes local to the peak using the compound trapezium rule (2.2.6). The integration

errors Ef
rel and EQ

rel computed for the first peak of the density distribution f2(x) and its quadratic
replacement Q(x) are given for several values of h.

approximation of the peak Q(x). Table B.3 shows corresponding integration errors local to the

first peak of the multi-peak population density function f2(x) shown in Figure 4.1b. In both

cases we consider that EQ
rel lies sufficiently close to Ef

rel. Thus we proceed with the approach of

treating a peak as a quadratic in our analysis.
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Appendix C

Here, we give the details of the probability analysis conducted in Chapter 6 for the 2D case.

The procedure is similar to that used for the 1D case shown in Section 6.2. Consider N sample

units installed over the domain D = [0, 1]× [0, 1], where we assume that only one sample unit is

located within the peak sub-domain Du, and any other units fall outside Du, where the density

distribution is zero. The location of this single sample unit is denoted r0 = (x0, y0), and is

parameterised as

x0 = r cos θ + x∗, y0 = r sin θ + y∗, (C.0.1)

where r ∈ [0, R] and θ ∈ [0, 2π]. The location of r0 is randomised by considering r and θ as

uniformly distributed random variables. The population density at this location, written as

u(x0, y0) ≡ u0, is then calculated as

f0 ≈ Q(x0, y0) = B −A
(

(x0 − x∗)2 + (y0 − y∗)2
)

= A(R2 − r2), r ∈ [0, R], (C.0.2)

where we have used the fact that B = AR2. The mean density M(N) is then

M(N) =
f0
N

=
A(R2 − r2)

N
.
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The true mean density M̄ is computed as

M̄ =

∫ 1

0

∫ 1

0
f(x, y) dx dy =

1

2
AπR4.

Once again we require that the error (6.2.3) is sufficiently small, therefore we impose condition

(6.2.4). From the above values of M(N) and M̄ we obtain

(1− τ)AπR4

2
≤ A(R2 − r2)

N
≤ (1 + τ)AπR4

2
. (C.0.3)

Let us first consider the upper limit in (C.0.3), namely

A(R2 − r2)

N
≤ (1 + τ)AπR4

2
. (C.0.4)

Solving for r we obtain

r ≥ rI = R

√

1− N(1 + τ)πR2

2
, (C.0.5)

where rI exists for

N ≤ N∗
2D =

2

(1 + τ)πR2
. (C.0.6)

We now consider the inequality

(1− τ)AπR4

2
≤ A(R2 − r2)

N
. (C.0.7)

After some rearrangement we arrive at

r ≤ rII = R

√

1− N(1− τ)πR2

2
. (C.0.8)

The limit rII exists when

N ≤ N∗∗
2D =

2

(1− τ)πR2
. (C.0.9)

As τ ∈ (0, 1), the number N∗
2D < N∗∗

2D. We consequently have three cases to consider when

evaluating the probability p(N) that the error (6.2.3) is within the prescribed tolerance τ .
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Case 1: N 6 N∗
2D.

For this range of N , both rI and rII exist. Therefore the admissible range of the parameter r is

rI ≤ r ≤ rII . (C.0.10)

Since r is a uniformly distributed random variable the probability p(N) of M(N) being suffi-

ciently close to the true mean density M̄ can be computed as

pI(N) = (rII − rI)/(rmax − rmin) = (rII − rI)/R,

where rmin = 0 and rmax = R. From (C.0.5) and (C.0.8) we thus have

p(N)I =

√

1− N(1− τ)πR2

2
−
√

1− N(1 + τ)πR2

2
.

Case 2: N∗
2D < N 6 N∗∗

2D.

In this instance, rI no longer exists, but the inequality (C.0.4) always holds. Therefore the

lower limit in (C.0.10) should be replaced by rmin = 0. The admissible range now becomes

0 ≤ r ≤ rII , therefore the probability p(N) is described by

pII(N) = (rII − 0)/(rmax − rmin) = rII/R.

Substituting in the values for rI and rII we arrive at

pII(N) =

√

1− N(1− τ)πR2

2
.

Case 3: N > N∗∗
2D.

When the number of sample units N exceeds the limit N∗∗
2D, neither rI nor rII exist, and the

inequalities (C.0.4) and (C.0.7) never hold. There is thus no admissible range of r for this range

of N . The probability that the error (6.2.3) is sufficiently small is then pIII(N) = 0.
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Appendix D

We seek the upper and lower limit of the interval [Ẽmin, Ẽmax] to which the quantity Ẽrel belongs

with probability P (z) given by (7.1.9) as discussed in Section 7.2 of Chapter 7. We recall that

the estimate of pest abundance Ĩ calculated from measured data is a realisation of a normally

distributed random variable with mean µĨ = Ia and standard deviation σĨ as defined by (7.2.2).

Thus any realisation Ĩ lies within the interval [Ia− zσĨ , Ia+ zσĨ ] with probability P (z). We use

this credible interval for Ĩ to construct a credible interval for Ẽrel. We consider two cases based

on the distance between the approximate integral formed from exact data Ia and the exact value

of the integral I. Let us begin by finding the lower limit of the interval, Ẽmin.

Case 1: |I − Ia| ≤ zσĨ

In this case, as can be seen from Fig. D.1(a), an estimate based on measured data Ĩ which

belongs to the range [Ia − zσĨ , Ia + zσĨ ] can coincide with the exact value of the integral.

Therefore the lower limit of the range [Ẽmin, Ẽmax] is:

Ẽmin = 0. (D.0.1)

Case 2: |I − Ia| > zσĨ

In this instance, from Fig. D.1(b) we can see that the range [Ia− zσĨ , Ia+ zσĨ ] does not include
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Figure D.1: Finding the interval [Ẽrel, Ẽmax] to which Ẽrel belongs with probability P (z). (a)
Case 1: |I − Ia| ≤ zσĨ . In this case, the exact value of the integral I lies within the credible

interval for Ĩ thus the lower limit of the credible interval for Ẽrel is Ẽmin = 0. (b) Case 2:
|I− Ia| > zσĨ . The exact value of the integral I lies outside, thus the interval [Ẽmin, Ẽmax] does
not include the zero value.

the exact value of the integral I. Either we have Ia ≤ I in which case we can see that

Ẽmin =
|I − Ia − zσĨ |

|I| ,

or we have Ia > I, therefore

Ẽmin =
|I − Ia + zσĨ |

|I| ,

In both cases

Ẽmin = Erel −
zσĨ
I

, (D.0.2)

which is a strictly positive quantity as the condition |I − Ia| > zσĨ of course means that

Erel > zσĨ/I, where we recall that I > 0.

It should be mentioned that a zero relative error is still possible in the second case, when

the distance between the approximation based on exact data and the true value of the integral
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exceeds z multiples of the standard deviation σĨ , however we choose to fix Ẽrel as

Ẽmin =























min {E ≥ 0 : E ∈ [µE − zσE , µE + zσE ]} , for µE ≥ 0,

|max {E ≤ 0 : E ∈ [µE − zσE , µE + zσE ]} |, for µE < 0

where E is defined by (7.2.3). In other words we find the value of the quantity E closest to zero

which lies within the range (7.2.5) and then take the absolute value as Ẽmin (see Figure 7.2).

Let us now consider the upper limit Ẽmax of the credible interval of Ẽrel. To find Ẽmax

we use the condition that any single value of Ẽ lies within the range [Ẽmin, Ẽmax] with fixed

probability P (z) as defined by (7.1.9). As mentioned above, Ẽrel is a realisation of a random

variable with a folded normal distribution. This distribution is formed by reflecting the negative

quantities of the distribution (7.2.4) of the auxiliary error E in the y-axis. Unless the mean

value of this underlying normal distribution is µE = 0, if we take Ẽmax = µE + zσE then

the probability P̂ that Ẽrel lies within the above range will exceed P (z). We shall denote the

additional contribution as P ∗, therefore

P̂ = P (z) + P ∗.

We now seek the appropriate value of the upper limit Ẽmax in order to satisfy the condition

that P̂ = P (z). Let us temporarily impose the restriction µE ≥ 0. As when constructing the

lower limit Ẽmin, we consider the cases when the distance between the approximation based on

exact data Ia and the true value of the integral I exceeds or is within z multiples of the standard

deviation σĨ separately.

Case 1: |I − Ia| ≤ zσĨ

As shown in Figure 7.2a the probability P ∗ is given by

P ∗ =

∫ µE−zσE

−µE−zσE

p(E) dE. (D.0.3)
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In order to satisfy the condition P̂ = P (z), we must then find Ẽmax such that

∫ µE+zσE

Ẽmax

p(E) dE = P ∗. (D.0.4)

Using the transformation

E → E − µE

σE

from (D.0.3)and (D.0.4) we obtain the following in terms of the standard normal distribution

function Φ:

Φ(−z)− Φ

(−2µE

σE
− z

)

= Φ(z)− Φ

(

Ẽmax − µE

σE

)

.

Rearranging gives

Ẽmax = µE + σEΦ
−1

[

2Φ(z)− Φ

(

z + 2
µE

σE

)]

. (D.0.5)

Case 2: |I − Ia| > zσĨ

Similar calculations for this case as illustrated in Figure 7.2b yield

Ẽmax = µE + σEΦ
−1

[

Φ(z)− Φ

(

z − 2µE

σE

)

− Φ

(

z +
2µE

σE

)

+ 1

]

, (D.0.6)

Earlier we assumed µE ≥ 0. Since the probability density function (7.2.6) for the folded

normal distribution is the same for mean µE as it is for −µE , we can replace the term µE for

|µE | in equations (D.0.5) and (D.0.6) so that they hold for arbitrary µE .
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Appendix E

The means of assessing the impact of noise on a pest abundance estimate discussed in section

Chapters 7 and 8 were founded on the assumption that with probability P (z) = erf(z/
√
2) a

measured pest density f̃i is within a fixed percentage ν of the true pest density. That is, we

assume that with probability P (z), each f̃i satisfies the condition

f̃i ∈ [(1− ν)fi, (1 + ν)fi]

where ν ∈ (0, 1). The counterpart of this assumption of course is that there is a chance that

each f̃i could lie outside of this range. The theory therefore allows for f̃i, i = 1, . . . , N to be

negative. The probability of a single realisation f̃i being negative is

P (f̃i < 0) = Φ

(−z

v

)

and is shown in Figure E.1 for varying measurement tolerance ν and parameter z.

Whilst in the practical context a negative pest density is senseless, we now provide justification

that this theory can still be applied for a range of values of ν and z.

Noise is introduced to the function values fi to generate the values f̃i using the transformation

f̃i = fi + γσi
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Figure E.1: Probability of a single
realisation f̃i being negative for var-
ious values of the measurement tol-
erance ν and the parameter z.
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P (f̃i < 0)

where γ is a random variable taken from the standard normal distribution and we recall that

σi = νfi/z. For a fixed value of N , the above transformation is applied nr = 100, 000 times to

each value of fi thus generating nr = 100, 000 sets of perturbed data f̃i, i = 1, . . . , N . Each set of

noisy data is then integrated and the relative error is calculated, thus a total of nr realisations of

the error quantity Ẽrel are generated. We have chosen the sample mean density as the method

of evaluation. The number of realisations ñr of Ẽrel which lie within the interval [Ẽmin, Ẽmax]

is then calculated and the following proportion is established

Pnum =
ñr

nr
. (E.0.1)

for each value of N . The same sets of noisy data f̃i generated above are then considered again

and any negative values are replaced with zero. As before, the relative error Ẽrel of the estimate

of the pest density obtained are calculated for each data set. We again estimate the abundance

by the sample mean density. The proportion (E.0.1) is again evaluated for each value of N . We

evaluate the proportion (E.0.1) for the data which includes negative values of f̃i, which we denote

Praw. We then replace the negative values of f̃i and evaluate (E.0.1) to find the proportion P+.

The relative difference between the two proportions is calculated

Pdiff =
|Praw − P+|

Praw
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and is shown for varying ν and z in Figure E.2 where the density distributions of Figure 8.2b and

8.2f have been considered for both a small number N = 3 and large number N = 257 number of

grid nodes. Visual inspection of the figures indicates that for z ≥ 1 the relative difference is very

small. Thus for this range of z values the theoretical credible interval of Ẽrel can be considered

to be reliable.
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Figure E.2: Difference to theoretical proportion when negative values replaced with zero. Means
of estimate evaluation is the sample mean density. (a) Single peak test case (see Figure 8.2b),
number of grid nodes fixed as N = 3. (b) Single peak test case (see Figure 8.2b), number of grid
nodes fixed as N = 257. (c) Narrow peak test case (see Figure 8.2f), number of grid nodes fixed
as N = 3. (d) Narrow peak test case (see Figure 8.2f), number of grid nodes fixed as N = 257.
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vulgaris serine proteinase inhibitor gene. PloS one, 8(2):e57303, 2013.

[94] G. W. Snedecor and W. G. Cochran. Statistical Methods. The Iowa State University Press,
Ames, 1980.

[95] F. Sohrabi, P. Shishehbor, M. Saber, and M. S. Mosaddegh. Lethal and sublethal effects of
imidacloprid and buprofezin on the sweetpotato whitefly parasitoid eretmocerus mundus
(hymenoptera: Aphelinidae). Crop Protection, 45:98–103, 2013.

[96] T. R. E. Southwood and P. A. Henderson. Ecological Methods. Third edition, Blackwell
Science Ltd., 2000.

[97] M. R. Spiegel. Theory and Problems of Probability and Statistics. McGraw-Hill, New York,
1992.

[98] R. G. D Steel, J. H Torrie, and D. A. Dickey. Principles and Procedures of Statistics.
McGraw-Hill Book Company, Inc., New York, 1960.

[99] V. M. Stern, R. F. Smith, R. Van den Bosch, and K. S. Hagen. The integration of chemical
and biological control of the spotted alfalfa aphid. part i. the integrated control concept.
Hilgardia, 29(2):81–101, 1959.

[100] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York,
1980.
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