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SYNOPSIS 

This thesis presents a series of broad but systematic and consecutive investigations on the topic 

of piezoelectric energy harvesting. These include material fabrication and characterisation, 

harvester fabrication and material parameter selection, electric output and dynamic behaviour 

tests of energy harvesters, and the feasibility of utilising lead-free piezoelectric materials for 

energy harvesting. Three lead-based and one lead-free perovskite solid-solutions compositions 

(commercial soft PZT, 3 mol% La-doped 0.25Pb(Zn1/3Nb2/3)O3-0.75Pb(Zr0.55Ti0.45)O3 

(PZnN-P3LZT), 5 mol% La-doped 0.25Pb(Zn1/3Nb2/3)O3-0.75Pb(Zr0.53Ti0.47)O3 

(PZnN-P5LZT) and (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (50BCZT)) have been researched individually 

and compared to each other. In the form of bulk ceramics the lead-free composition is 

considered capable of replacing the lead-based compositions for vibrational energy harvesting 

at room temperature, despite the 50BCZT requiring a much higher sintering temperature 

(>1400 °C) and having a much lower Curie temperature (<90 °C). Typical properties of 

𝜀𝑟≈4700, 𝑃𝑟≈9 μC/cm2, 𝑑33≈630 pC/N, 𝑘𝑝≈0.56 and 𝜀𝑟≈2300, 𝑃𝑟≈9 μC/cm2, 

𝑑33≈500 pC/N, 𝑘𝑝≈0.51 have been achieved for the 50BCZT and PZT compositions 

respectively. Bulk ceramics of all the compositions and free-standing single-layer thick-films 

of two of the lead-based compositions with a low-temperature sintering additive have also been 

investigated. Vibrational energy harvesting based on a novel structure of piezoelectric/silver 

multi-layer free-standing thick-film unimorph and bimorph cantilevers have been investigated 

using two of the lead-based compositions. A planar shrinkage difference of 3-6% between the 

silver and piezoelectric layers is suggested in order to ensure successful fabrication. When 

tested under harmonic vibration conditions, a comparison of unimorph individual harvesters 

suggests that higher piezoelectric voltage and electromechanical coupling coefficients may be 

preferred when selecting materials. Further optimisations involving bimorph devices with tip 



proof mass have demonstrated maximum harvester outputs (root mean square) of about 9 μW 

and 2.8 V with approximately 14% bandwidth under resonant vibrations (100-150 Hz, 

0.5-1.0g). In addition, the cantilevers have utilised to harvest wind energy with a modified 

spinning configuration, exhibiting 3.4 V average open-circuit output voltage in optimum wind 

conditions.  
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CHAPTER 1. INTRODUCTION 

Piezoelectric materials have a long history of being widely used in sensors and actuators. 

Energy harvesting technology has also been studied for several decades: environmental energy 

is converted into useful electricity, thus solving the problems of frequently replacing/recharging 

batteries, providing autonomous power supplies, and making wireless sensor networks self-

powered and real ‘wireless’. However, the use of piezoelectricity to harvest mechanical energy, 

especially vibrational energy, was only formally proposed about 10 years ago. Although 

piezoelectric energy harvesters tend to be advantageous over other vibrational energy harvesters 

at the micro-scale and meso-scale, they are not fully understood in terms of material selection, 

dynamic behaviour and feasibility in real applications. Also, replacing currently used lead-rich 

materials with new lead-free materials to avoid toxicity, whilst maintaining the necessary 

functionality, has become an urgent issue in the piezoelectric research field.  

This project was inspired by the above description, and is the pioneering work on the topic of 

piezoelectric energy harvesting in the Functional Materials Group of University of 

Birmingham. It covers broad but systematic and consecutive studies, including material 

fabrication and characterisation, harvester fabrication and parameter selection, electric output 

and dynamic behaviour testing of energy harvesters, and demonstrates the feasibility of using 

lead-free piezoelectric materials for energy harvesting. Thus, it provides a general view of 

piezoelectric energy harvesting as well as creating relevant background and an initial data base 

in the group. 

This thesis is presented in a logical structure. Chapters 2 to 4 offer comprehensive reviews of 

relevant backgrounds, consisting of general energy harvesting technology (Chapter 2), 

principles and fabrication of piezoelectric materials (Chapter 3), as well as specific theories of 

piezoelectric and vibrational energy harvesting (Chapter 4). Chapter 5 summarises the aims and 
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objectives of the project, and Chapter 6 gives the details of the implemented experiments. 

Chapter 7 and 8 detail the main results and discussions. Chapter 7 gathers all of the information 

about compositional investigations, including the fabrication and characterisation of lead-based 

and lead-free materials, and an exploration of routes to lower sintering temperature, though the 

experiments of lead-free materials were carried out after most of the work reported in Chapter 

8 had been completed. Chapter 8 discusses the fabrication, modelling, optimisation and testing 

of piezoelectric energy harvesters, which is based on a novel structure of multi-layer free-

standing thick-films. Finally, Chapter 9 concludes the entire project and gives suggestions to 

potential further studies.  
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CHAPTER 2. ENERGY HARVESTING 

2.1 General Introduction 

Energy, in the forms of light, heat, fluid or motion, has been serving the world since the first 

creature came into life. However it had never made human beings so powerful and dominant 

until electricity, a remarkable form of energy converted from natural resources, was discovered, 

controlled and effectively utilised by people1. Conventionally, electricity has been generated 

using steam-driven electromechanical generators2 fueled by the combustion of fossil fuels, 

e.g. coal, oil, natural gas, etc., which had been derived by the physical and chemical 

transformation of dead and decayed plants and animals and stored within the earth. The 

formation of such resources took millions of years, however, they are being consumed so 

rapidly that the predicted time until fossil fuels are totally consumed is negligible compared to 

that of their being re-generated by nature. In another words, methods of harvesting energy more 

efficiently from renewable resources must be investigated to prepare for the future fossil fuel 

shortage. Also, the combustion of fossil fuels emits greenhouse gases which may cause a global 

warming problem, and sulphur/nitrogen-based oxides and particles which are able to severely 

pollute the atmosphere, e.g. the situation in 20th century London and New York, and today in 

China.  

Since human beings realised the challenges of future energy shortages as well as environmental 

issues, various green, clean and sustainable natural sources have been considered as potential 

next generation energies, of which solar and wind (or fluid) are the most popular3. Such energy 

sources are promising to complete the mission of converting and generating kW to MW level 

power for industrial or domestic use. However, the research fields of harvesting ambient 

micro-energies (μW to mW), such as structural/machinery vibration, droplet/micro-fluid, 

radio-frequency wave, etc., which are enough for low-power consumption microelectronics, 
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were not investigated until an experiment of using a device to harvest micro-kinetic energy was 

firstly implemented about 30 years ago4, and the concept of energy harvesting (EH) was 

systematically proposed and reviewed in 2000’s5,6. Undoubtedly, human life is becoming 

smarter, with the help of emerging sensors and micro-scale electronics. It would be preferable 

for wireless microelectronic devices to be able to power themselves using ambient energies 

existing in their working environments, rather than extract energy from mains power stations 

(or via the frequent replacement of batteries), in order to avoid redundant wiring or integration 

and improve portability, independence and durability. Although small-sized batteries have been 

commonly used as power supplies of microelectronic devices, the development of EH 

technology is still urgently required because of limited lifespan5, relatively low power density 

and corresponding cumbersome size7,8 , the risk of causing explosion or fire9, as well as issues 

of costly recharging/replacing6,8, recycling, post-processing and contamination, of current 

chemical batteries.  

Energy harvesting, power harvesting or energy/power scavenging has been defined as a special 

concept of the process that environmental energy, including but not limited to heat, light, fluid, 

wave and kinetic energy, which otherwise will be dissipated and wasted, is harvested and 

converted into usable low-level electricity (µW-mW) to power wireless sensor networks6,10,11. 

The component used for harvesting and converting energy is called an energy harvester (EHer). 

Unlike macro-scale industrial or domestic energy generation, where electricity is usually 

produced in an energy-rich place then transported to end users in another place by cables or 

grids, devices with EH technology are normally required to obtain energy within their working 

environments. Thus EH systems are cable-less and battery-less with respect to their energy 

requirements, although sometimes energy storage media (capacitors, super-capacitors or fast 

charging/discharging batteries) are allowed to be used only for short-term intermediate 
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electricity storage8,12-14. In another words, an ideal EH system works in a totally self-sustainable 

manner with unlimited lifespan, and does not need regular maintenance.  

The idea of EH was initially encouraged by redundant wiring or tedious and expensive battery 

recharging/replacing on wireless electronic devices6,8, such as sensors for structural/machinery 

health monitoring15, medical implants16 and other devices embedded in remote/harsh 

environments which are difficult and/or impossible to service or which need to work 

continuously for more than 10 years5. With the development of microelectronic hardware, the 

power consumption of discrete devices and systems has been decreasing to sub-watt, 

sub-milli-watt or even lower levels8,17,18. This makes the ambition of creating autonomous 

electronic systems powered by ambient energy practical. Conventionally, such devices have 

been powered by small-sized batteries with capacities of hundreds or thousands of mAh. 

However, batteries are not the perfect power supplies for the systems outlined above, mainly 

because of their power densities over long periods of time5. Firstly, as the stored electricity 

within a fully charged battery is finite, the length of time it could keep powering a device is 

also finite, following which its capability to provide electrical energy would be zero. However, 

in principle, an EHer is able to provide infinite electricity since it obtains energy from the 

environment whose capacity and stored energy could be treated as unlimited. For example, 

comparing thermal energy, vibration energy and lithium batteries, the power densities for a one 

year lifetimes have been predicted as 15, 250 and 45 μW/cm3, respectively5. In this situation, 

the battery performance is acceptable, at least much better than thermal energy. However, if the 

lifespan was required to be 10 years, the power densities of the environmental sources, thermal 

energy and vibration energy, can be considered constant, while that of lithium battery has been 

predicted to drop to only 3.5 μW/cm3, much lower than the others5. In this scenario, to provide 

1 mW power to a device, a vibration EHer would only need a volume of 4 cm3, however a 
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lithium battery would have to be 286 cm3. Such a size would definitely make a microelectronic 

device cumbersome. Secondly, even a rechargeable battery is not able to make a device really 

‘wireless’, because recharging needs connection to mains power with cables and/or some form 

of manual operation. If a device was implanted in a human or animal body, battery recharging 

or replacing would need additional surgery, which would cause discomfort to the patient and 

be very expensive; if a sensor was embedded in the structure of a 

bridge/building/vehicle/aircraft, regular and expensive maintenance would need to be done if it 

was powered by batteries; and if a monitoring system was mounted underground or in the wild 

and would not be touched for more than 10 years, it would be impossible for batteries to last 

for such a long time and still be able to power up the host. Besides, batteries would sometimes 

die without warning6, or would cause explosion or fire9, which would affect the performance 

or even destroy a device. However, EH technology is promising to solve all of the above issues.  

 

2.2 Micro-energy Harvesting  

2.2.1 Solar Energy and Photovoltaics 

Photovoltaic technology is able to directly convert solar energy into electricity by the 

photovoltaic effect of semicondoctor materials19. It has been rapidly developed and 

commercialised during recent decades. The advantages of this technology involve large power 

density (>10 mW/cm3) under sufficient outdoor sunlight5,14, easy integration with host 

structures20, and steady working status without noise or emmisions20. However, certain 

limitations still remain: (1) the variation of light intensity (e.g. in indoor evironment or murky 

weather) is likely to significantly reduce its efficiency; (2) the requirement of a large surface 

area may limit its application in micro-electromechanical systems (MEMS), as sizes at the 

micro-scale mean surfaces are extremely small9. In general, photovoltaic technology has 
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undoubtedly become one of the dominant electricity generation methods for mains power 

stations (about 1 % of global electricity production) or large energy consumption devices.  

2.2.2 Wind Energy and Wind Turbines 

Wind turbines are able to convert wind energy into electricity, where the wind causes a rotor to 

rotate, thus driving an electrical generator21. Wind is also an attractive green and renewable 

resource. Similar to solar energy, wind energy is also ubiquitous. In the current state of the art, 

a wind farm, which properly combines a certain number of wind turbines, is able to provide kW 

to MW power levels, depending on the size22. However, what hinders this technology to be the 

top-ranking energy generation method may be the principle limit of energy conversion 

efficiency, about 59%, which is known as ‘Betz limit’23. Considering further energy loss caused 

by mechanical friction and generator dissipation, the overall energy conversion efficiency of a 

wind turbine tends to be as low as 39 % (20 % when taking into account wind velocity)24. 

Although the efficiency of a photovoltaic panel could be up to 39 % (46 % with solar 

concentrator)25, which is slightly better than that of a wind turbine, solar energy is considered 

more steady and reliable than wind. Also, for the application of powering MEMS devices where 

the space is limited, conventional wind turbines may suffer mechanical design difficulties26. 

This is likely to keep deteriorating the efficiency. In order to overcome such difficulties, other 

configurations such as piezoelectric energy harvesters could be introduced and combined with 

wind-driven configurations such as free-spinning fans26. Further details on this concept will be 

given in Chapter 4. In spite of the disadvantages, wind turbines are still promising to form 

supplementary power stations, especially for areas which experience windy conditions 

throughout the year.  
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2.2.3 Thermal Energy Harvesting 

Thermal energy exists in heat flow (or temperature gradient), e.g. geothermal energy27, 

machine/vehicle waste heat28, temperature difference between human body/skin and 

atmosphere29, etc. Unlike solar and wind energy, which mainly rely on single energy conversion 

principles, thermal energy could be harvested and converted through several effects, such as 

thermoelectric30, pyroelectric31, thermo-electrochemical32, ferromagnetic33, piezoelectric34, 

etc., by properly designing EHer configurations.  

The thermoelectric effect, or ‘Seebeck effect’35, has been a typical way to generate electricity 

from thermal energy during the past decades36. Thermoelectric materials usually hold charge 

carriers (electrons or holes), and such carriers are able to diffuse from hot parts to cold parts of 

the material to create an internal electric potential36. Conventionally, a thermoelectric EH cell 

consists of a pair of n-type and p-type semiconductors connected in series and placed between 

hot surface and cold surface37, working reliably with little noise and emissions20. However, this 

design has been judged as inefficient because of the low Seebeck coefficients of current 

thermoelectric materials, especially in small temperature gradients (<10 °C) and small-scale 

devices (<1 cm3)20,38. As a result, recent research has put more efforts into nano-structured 

bulk39 or thin-film40 thermoelectric materials. These novel forms of materials are promising to 

significantly enhance the performance of thermoelectric conversion28,40.  

Other than thermoelectric generators, researchers have also been seeking other possible thermal 

energy conversion methods. Thermo-electrochemical cell (or thermocell)32 is another way to 

provide direct thermal-to-electric conversion, by creating redox ions and a resulting electric 

potential within a material between hot and cold sides32. Similar to thermoelectric converters, 

thermocells have also been struggling with low efficiency as well as costly electrode 
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materials27. To cope with this issue, carbon-nanotube-based thermocells have been investigated 

to explore the possibility of improved efficiency and cost-effective structures27.  

The pyroelectric effect, which has been widely used in sensors41-43 but rarely used as EHers, is 

also possible to convert thermal energy. The pyroelectric effect can be exhibited by 

piezoelectric materials when experiencing temperature variations44. More electric charges can 

be accumulated with larger temperature difference31. As harvester designs using pyroelectric 

materials, or combining ferromagnetic materials, are related to the integration of piezoelectric 

materials, which is the main topic of this thesis, more details will be presented in Chapter 4 

together with piezoelectric EHers. Other novel designs include configurations which actually 

transfer thermal energy into mechanical motional energy firstly (e.g. by large 

temperature-induced deforming metals45), then convert mechanical energy into electricity by a 

mechanical EHers.  

2.2.4 Kinetic (vibration/motion) Energy Harvesting 

In principle, kinetic energy is everywhere since not only do the internal chemical or physical 

activities of the earth vibrate any macro-objects sitting on it, but even the microstructures 

(molecules, atoms and electrons) of objects keep vibrating. However, usable kinetic energy (or 

mechanical energy), which could be effectively harvested and converted into micro-scale 

electricity, usually exists together with a host, e.g. building/construction vibrating at 

eigenfrequency (natural resonant frequency)46, machinery in motion15, or the human body in 

daily activities or sports47, etc.  

Human or other biological activities have been considered attractive energy sources for 

wearable smart devices48. Such activities are able to generate much more energy than previously 

thought, enough to power some electronics if efficiently harvested49. The first publication 

regarding scavenging biological motion energy may be the integration of an EH system with 
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the ribs of an animal4, which generated 17 μW peak power. Although such power was not able 

to be practically utilised at that time6, the idea has encouraged huge amount of research to 

investigate the possibility and feasibility of using biological motion energy, especially human 

motion, to power future wearable or implantable devices. Representative proposals or 

developments to date include shoe-mounted generators in the heel or sole50-52, medical implants 

powered by blood pressure/heartbeats16,53,54, knee replacement unit with self-powered 

sensors55,56, wearable EHer harvesting wrist and arm motion during walking57,58, EHer 

embedded in backpack shoulder straps59,60 and other wearable or implantable designs48,61.  

Compared to human motion, the emphasis in harvesting vibrational energy on vehicles, 

machines or constructions, as well as its harvester itself, has been delayed nearly 20 years in 

terms of potential applications5. One of the reasons that such energy and harvester have drawn 

much attention recently may be that a large number of buildings and machines have been being 

constructed and manufactured, and people have become more dependent on them. Thus their 

working conditions should be fully monitored in case of any hidden or potential damage that 

could put residents or users at risk62. However, power supplies would be a large expense for 

these monitoring systems because of the reasons presented above. Harvesting vibration energy 

dissipated from the host structure of a machine or construction could not only solve the issue 

of tedious/expensive battery recharging/replacing, but also help to reduce energy waste and 

improve the main energy usage efficiency of the host. In the current state of the art, many novel 

EHers for powering certain monitoring systems have been reported, including those for asphalt 

pavement63, oil pump15, vehicle suspension64, bridge62, vehicle tyre65, railway and train66,67, 

aircraft and spacecraft68, and others related to traffic and structures69-71.  

In order to harvest and convert kinetic energy, both conventional and novel EHers have been 

investigated, among which electrostatic-, electromagnetic-, piezoelectric-, and electrostrictive 
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type EHers have been considered most suitable and promising, and thus their research have 

dominated the EH field5,72,73. All of these harvesters could be classified as inertial generators 

with functional parts attached to fixed bases72. The fixed bases transmit vibrations to suspended 

inertial masses mounted with the functional parts, inducing relative displacements72. This 

configuration could be generally modelled or simply treated as a spring-mass system74, where 

the spring is vertically fixed on a vibrating platform whilst the mass is attached to the top of the 

spring. However, the working principles of the functional parts of different types of harvesters 

are based on different electromechanical conversion effects. For electrostatic EHer (EEHer), 

two electrodes (positive and negative) of a charged capacitor move relatively under vibration 

thus the capacitance varies and produce a charge flow5,72. Electromagnetic EHer (EMEHer) is 

a conventional technology being used in dynamos for macro-scale electricity generation, where 

a magnetic flux gradient (normally produced by a permanent magnet) and a conductor 

(normally a set of coils) move relatively to induce current flow in the conductor5,72. 

Piezoelectric EHer (PEHer) employs several pieces of functional/active piezoelectric materials, 

and deformations of such materials are able to generate electric potentials or charge flows5,72. 

Electrostrictive EHer (ESEHer) combines a dielectric material (could be polymer or ceramic 

according to published reports to date) and a bias DC electric field which induces polarizations 

within the dielectric material, working as a pseudo-PEHer75,76.  

In general, the capacitive gaps of EEHers could be at sub-micron level, and hence they could 

be easily fabricated into micro-scale and integrated with micro-systems77, providing nW to μW 

power72. However, external voltage sources would be necessary to maintain the status of 

capacitors5, which is likely to increase the complexity of the system. EMEHers and PEHers do 

not need any external source thus they are completely self-sustainable. According to the data 

of a large number of publications20,72,78,79, these two kinds of harvesters have similar levels of 
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energy conversion ability, although some reports describe PEHers as having higher power 

density8 while others report EMEHers as having better maximum power generation ability80. 

However, EMEHers are more suitable for larger-scale EH where devices and power supplies 

could be large80,81, generating mW or larger power72; PEHers suit all physical size levels 

ranging from electrostatic-level to electromagnetic-level80 corresponding to nW to mW power 

generation levels, can be structurally simpler72, and can generate higher voltage81 than 

EMEHers. Compared to the above three kinds of harvesters which can be treated as ‘relatively 

conventional’ kinetic EHers, ESEHers based on polymer dielectrics have begun to receive 

industrial and research attention in recent years73, due to high productivity and processability73, 

as well as high flexibility which overcomes the disadvantages of ceramic-based PEHers or 

ESEHers75. However, similar to EEHers, an external bias electric field is needed, which is likely 

to affect the sustainability because of the lifespan of electric field provider. Further details about 

PEHers including fundamentals and advantages/disadvantages will be given in Chapter 4.  

2.2.5 Electromagnetic Wave Energy Harvesting and Others 

Nowadays people are exposed in pervasive electromagnetic (EM) waves including 

radio-frequency (RF) waves emitted by wireless communication devices (GHz level)82, 

broadcast waves, power line dissipated waves83 and other environmental electromagnetic waves 

(MHz level). Such kind of energy has also provided an opportunity to power micro-scale 

electronics. Harvesting and converting EM waves requires antenna or rectenna82 with various 

dimensions in order to match different wave-lengths83. In addition, EM wave EH may benefit 

where other kinds of energy sources are unavailable. However, only nW-level power can be 

generated14 and the efficiency depends on input energy and stays at an average low level84.  

Radioactive materials are another potential energy source for EH because of their extremely 

high energy density14. Although the half-lifes of some such materials can be centuries, their 
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usage causes safety concerns and is a barrier for public acceptance24. Converting this energy 

needs the help of combination with piezoelectric or betavoltaic components14, of which the 

combination with piezoelectric component will be introduced in Chapter 4.  

Finally, some other potential micro-energy sources could also be considered, e.g. energy within 

marine sediments which could be harvested by miro-organisms85, energy that could be extracted 

from biologic battery in inner ears86, acoustic energy87, etc., though they either have been rarely 

investigated or are too far away from real applications.  

 

2.3 Summary 

This chapter has given a broad and general review of the topic of energy harvesting. The 

importance of energy harvesting in low power devices has attracted a lot of attention over the 

last two decades, however research has been spread over a wide range of harvesting 

technologies and application environments. Certain environments may need several energy 

harvesting technologies to be fitted, in order to efficiently utilise various available 

environmental energy sources. Whereas, certain energy harvesting technologies are able to 

convert different energy sources, and can therefore be used in different environments. In this 

project, piezoelectric energy harvesting was selected for further investigation due to its good 

compatibility with various energy sources. The following chapters will review piezoelectricity, 

piezoelectric materials and their applications for energy harvesting.  
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CHAPTER 3. PIEZOELECTRIC MATERIALS 

3.1 Ferroelectricity and Piezoelectricity 

To date, it has been found that among the 32 classes of crystal point groups, 21 possess 

non-centrosymmetric unit cell structures, of which 20 have potentials to exhibit the 

piezoelectric effect1. This is a phenomenon that charge displacement (or electric potential) will 

be generated across the material when it is strained under applied force (defined as direct 

piezoelectric effect), while strain of the material will be induced when it is placed in external 

electric field (defined as converse piezoelectric effect)2. Figure 3-1 explains the piezoelectric 

effect.  

 

Figure 3-1. Schematic explanation of the piezoelectric effect.  

Of the 20 piezoelectric crystal classes, 10 are said to be ‘ferroelectric’, as in their unit cells two 

or more spontaneous polarization orientation states are allowed without an external electric 

field but can be shifted between each other by an external electric field. Such a phenomenon is 

known as ‘ferroelectricity’2. The area in which spontaneous polarizations stay along the same 

direction is defined as a ‘domain’, whilst the boundary area between domains is called ‘domain 

wall’3. In a polycrystalline, domains are randomly arranged thus a piece of ferroelectric material 

does not exhibit piezoelectricity. But via a poling process (based on the behaviour of 
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ferroelectricity), the domains will be forced to rotate and align along the direction of the field3, 

thus giving a piezoelectricity.  

The discovery of piezoelectricity dates back to 1880, when Jacques and Pierre Curie were 

working on crystals including quartz, Rochelle salt (potassium sodium tartrate) and tourmaline4. 

However, piezoelectric materials had not been actually used until Barium Titanate (BaTiO3) 

ceramics were investigated, since before then piezoelectric materials were limited to single 

crystals and they were either easily soluble in water or only operated at ultra-low temperatures 

(< -100 °C), which prevented their application5. The discovery of BaTiO3 ferroelectric ceramics 

was a milestone of piezoelectric materials development. The unit cell of BaTiO3 is classified as 

the ‘perovskite’ structure (ABO3), where 8 barium ions (Ba2+) occupy the 8 corners of a cube 

(A site), 6 oxygen ions (O2-) possess the 6 face centre positions and 1 titanium ion (Ti4+) takes 

the body centre position (B site)5, shown in Figure 3-2 (a). Above the Curie temperature (𝑇𝑐), 

the unit cell has cubic symmetry where the centres of the positive and negative charges are 

coincident and thus no dipole moment exists. However, when the temperature drops below 𝑇𝑐, 

there is a relative shift between the O2- octahedra and the Ba2+/Ti4+ ions, destroying the cubic 

symmetry and resulting in a spontaneous polarization. The relative shift can produce various 

non-cubic perovskite phases depending on the distortion directions, including tetragonal, 

orthorhombic and rhombohedral, where temperature and ionic size are the driving forces to 

determine which exact phase will be generated5,6. Figure 3-2 (b) shows an example of a 

tetragonal perovskite structure.  
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Figure 3-2. Schematics of a perovskite structure: (a) a cubic phase above Tc
6; (b) side-view of 

a tetragonal phase below Tc.  

In theory, other ions are able to replace Ba2+ or Ti4+ but still retain the overall perovskite 

structure. Equation 3-15,6 defines the tolerance factor (tol.) and indicates the requirements and 

relations of site A, B ions and oxygen ion, where 𝑟𝐴, 𝑟𝐵 and 𝑟𝑂 represent the radii of A, B site 

ions and oxygen ion, respectively, assuming the ions to be perfect spheres. For cubic perovskite 

phases, tol.=1, while 0.9<tol.<1.1 must be ensured in order to make other non-cubic perovskite 

phases stable5,6. This has provided a guide for exploring more perovskite piezoelectrics.  

𝑡𝑜𝑙. =
𝑟𝐴 + 𝑟𝑂

√2 ∙ (𝑟𝐵 + 𝑟𝑂)
    (3-1) 

 

3.2 Properties and Relevant Parameters of Piezoelectric Materials  

3.2.1 Definitions of Effective Directions  

Before understanding piezoelectric properties, specific directions must be defined, as polarised 

piezoelectric materials do not perform the same with isotropic and anisotropic structures. Figure 

3-3 shows the commonly accepted convention relating to piezoelectric materials. The poling 
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axis is usually defined as the ‘3’ direction, with the two orthogonal directions labelled as the 

‘1’ and ‘2’ directions. The ‘4’, ‘5’ and ‘6’ directions indicate rotations around the ‘1’, ‘2’ and 

‘3’ axes, respectively, thus representing shear. For piezoelectric materials, the properties along 

‘1’ and ‘2’ are normally the same but different from those of ‘3’. The defined directions are 

normally notated with certain parameters, where two numbers are inserted as subscripts, first 

of which represents the input direction (stress or electric field), whilst the second matches the 

response direction. For example, parameter 𝑀31 is interpreted as material property M 

determined by the stress along ‘3’ inducing charge displacement along ‘1’ for the direct 

piezoelectric effect, or by the external electric field along ‘3’ causing strain along ‘1’ for 

converse piezoelectric effect. The parameters with the same root but different direction pairs 

possess various values7.  

 

Figure 3-3. Schematic explanation of piezoelectric directions.  

3.2.2 Elastic, Dielectric and Ferroelectric Properties 

Piezoelectric materials are firstly elastic objects within a certain stress range, similar to other 

materials. However, unlike isotropic and fully anisotropic materials, polarized piezoelectric 

materials have 5 independent compliance or stiffness constants, which are 𝑠11, 𝑠12, 𝑠13, 𝑠33, 𝑠44 

(= 𝑠55) or 𝑐11, 𝑐12, 𝑐13, 𝑐33, 𝑐44 (= 𝑐55)1,5, respectively. Some compliance constants (s) are 
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inverse to their corresponding stiffness constants (c) (e.g. 𝑠11 = 1/𝑐11, 𝑠44 = 1 𝑐44⁄ ), and they 

link to normalised material elastic properties, including Young’s modulus (Y), Poisson’s ratio 

(Λ) and shear modulus (G), by Equation 3-2 to 3-41,8.  

𝑌 = 1
𝑠11

⁄     (3-2) 

𝛬 = −
𝑠12

𝑠11
⁄     (3-3) 

𝐺 = 1
𝑠44

⁄    (3-4) 

Second, piezoelectric materials also act as dielectrics. Because of polarization, piezoelectric 

materials have two independent values of permittivity, 𝜀11 and 𝜀33
1,5. For single-domain 

piezoelectric materials, 𝜀11 and 𝜀33 determine the permittivity of direction ‘1’ (or ‘2’) and ‘3’, 

respectively. For multi-domain piezoelectrics, the permittivity of a certain direction is 

comprehensively contributed by 𝜀11 and 𝜀33 (dependent on domain arrangement) of each 

domain. Also, as other dielectric materials, the permittivity of piezoelectric materials are 

affected by temperature and phase, and peaks can be observed in phase transition regions in 

temperature-permittivity spectra. Figure 3-4 shows an example of temperature-relative 

permittivity relation of single crystal BaTiO3. Relative permittivity (𝜀𝑟 = 𝜀 𝜀0⁄ , 𝜀0 is vacuum 

permittivity of free space) is also known as the dielectric constant. 

Dielectric loss is another significant property for dielectrics as well as piezoelectrics, which 

defines the dissipated energy caused by phase difference between the electric field and field-

induced dipole displacement when a dielectric or piezoelectric material is subjected to an 

alternating external field9. The phase difference (δ) is known as the loss angle, while dissipation 

factor (tanδ) is generally used to reveal the level of dielectric loss9. Larger dielectric loss is 

indicated by increased tanδ.  
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Figure 3-4. The dependence of relative permittivity on temperature for single crystal BaTiO3
5.  

Finally, as introduced above, the phenomenon whereby that the direction of polarisation in 

individual domains can be made to rotate with external electric field can be understood as 

ferroelectricity. Figure 3-5 shows the hysteresis loop of a ferroelectric material. As the electric 

field is increased from zero for the first time, the polarization rises from zero to its saturation 

or spontaneous value, but then falls to a non-zero value (remanent polarization) when the 

electric field is reduced to zero. In order to reduce the polarization to zero, a coercive electric 

field with an opposite direction is needed. If this field continues to increase, the polarization 

will reverse and reach the negative saturation. And in the same way, a positive coercive electric 

field is needed to reset the negative polarization.  
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Figure 3-5. Example of ferroelectric hysteresis loop.  

3.2.3 Piezoelectric Properties 

3.2.3.1 Constitutive Equations, Piezoelectric Coefficients and Boundary Conditions 

The piezoelectric effect can be fully described in theory by four equation groups, known as the 

constitutive equations (or relations), where Groups 1 to 4 are expressed by Equations 3-5 and 

3-6, 3-7 and 3-8, 3-9 and 3-10, and 3-11 and 3-12, respectively. Different groups suit different 

boundary conditions (mentioned below) in which a piezoelectric material is situated.  

Group 1: Gibbs free energy, free and short-circuit boundary2,10 

𝐷 = 𝑑𝜎 + 𝜀𝜎𝐸    (3-5) 

𝑆 = 𝑠𝐸𝜎 + 𝑑𝐸    (3-6) 

Group 2: Electric Gibbs energy, clamped and short-circuit boundary2,10 

𝜎 = 𝑐𝐸𝑆 − 𝑒𝐸    (3-7) 

𝐷 = 𝑒𝑆 + 𝜀𝑆𝐸    (3-8) 

Group 3: Elastic Gibbs energy, free and open-circuit boundary2,10 

𝑆 = 𝑠𝐷𝜎 + 𝑔𝐷    (3-9) 

𝐸 = −𝑔𝜎 + 𝛽𝑇𝐷    (3-10) 
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Group 4: Helmholz free energy, clamped and open-circuit boundary2,10 

𝜎 = 𝑐𝐷𝑆 − ℎ𝐷    (3-11) 

𝐸 = −ℎ𝑆 + 𝛽𝑆𝐷    (3-12) 

In the equations, 𝐷, 𝜎, 𝐸 and 𝑆 mean the charge displacement, stress, electric field and strain 

of a piezoelectric material, respectively; 𝛽𝑇 and 𝛽𝑆 are the inverses of 𝜀𝑇 and 𝜀𝑆; and 𝑑, 𝑔, 𝑒 

and ℎ are four piezoelectric coefficients. Such coefficients are mathematically defined by 

Equations 3-13 to 3-161, where 𝑇 represents temperature. In addition, 𝑑 is known as the 

piezoelectric charge coefficient; 𝑔 is usually called the piezoelectric voltage coefficient; and 𝑒 

and ℎ have rarely been referred to by special names, but only by piezoelectric coefficients 

contributing to Groups 2 and 4 constitutive relations.   

(
𝜕𝐷

𝜕𝜎
)

𝐸,𝑇
= (

𝜕𝑆

𝜕𝐸
)

𝜎,𝑇
= 𝑑    (3-13) 

− (
𝜕𝐸

𝜕𝜎
)

𝐷,𝑇
= (

𝜕𝑆

𝜕𝐷
)

𝜎,𝑇
= 𝑔    (3-14) 

(
𝜕𝐷

𝜕𝑆
)

𝐸,𝑇
= − (

𝜕𝜎

𝜕𝐸
)

𝑆,𝑇
= 𝑒    (3-15) 

(
𝜕𝐸

𝜕𝑆
)

𝐷,𝑇
= (

𝜕𝜎

𝜕𝐷
)

𝑆,𝑇
= −ℎ    (3-16) 

Also, according to the expression of the constitutive equations, some properties of a 

piezoelectric material are also affected by boundary conditions which the material is surrounded 

by, as certain parameters (e.g. 𝜀, 𝑠, 𝑐 and 𝛽) are presented with a superscript. The letters ‘𝐸’, 

‘𝐷’, ‘𝜎’ and ‘𝑆’ are not only used as tensors in the constitutive equations, but selected to 

represent electrical or mechanical boundary conditions when inserted as superscripts, meaning 

independent variables. In particular, the subscripts ‘𝐸’ or ‘𝐷’ corresponds to short- or open-

circuit electric boundaries; and ‘𝜎’ or ‘𝑆’ implies free- or clamped- mechanical boundaries, 

respectively5. For example, parameter 𝑀31
𝐸  means material property 𝑀31 under short-circuit 
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external electric conditions.  Although property variations caused by different boundary 

conditions may not be as significant as those caused by directions, accurate parameter 

calculations still necessitate distinguishing such difference5.  

3.2.3.2 Electromechanical Coupling Coefficients (k) 

The factor k indicates the effectiveness of the energy conversion between mechanical and 

electrical energy of piezoelectric materials. In general, the effective electromechanical coupling 

coefficient (𝑘𝑒𝑓𝑓) is defined by Equation 3-171. And considering the effect of directions, other 

coupling coefficients including 𝑘𝑝 (planar), 𝑘31 (transverse), 𝑘33 (longitudinal), 𝑘15 (shear), 𝑘𝑡 

(thickness), etc. have also been commonly introduced11. These coefficients will be 

mathematically defined by relevant equations in Section 3.3. 

𝑘𝑒𝑓𝑓
2 =

mechanical energy converted to electrical energy

input mechanical energy
 

                              =
electrical energy converted to mechanical energy

input electrical energy
    (3-17) 

3.2.3.3 Mechanical Quality Factor (𝑸𝑴) 

𝑄𝑀 is defined by Equation 3-18, implying the level of mechanical energy loss when 

piezoelectric materials act as resonators under an applied electric field. Larger 𝑄𝑀 indicates less 

mechanical loss12.  

𝑄𝑀 = 2𝜋 ∙
Stored Mechanical Energy

Dissipated Energy per Cycle
    (3-18) 

 

3.3 Characterisation Approaches 

3.3.1 Vibration Modes and Sample Standards 

As properties along different material directions vary significantly, samples with special shapes 

need to be processed before characterisation, in order to separate the frequency ranges of 
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vibrations and provide a clear view of signal response. Typically, there are five vibration modes 

with matched sample standards, by which properties along all possible directions are able to be 

characterised13-16. Figure 3-6 shows the schematics of these standards with polarisation and 

vibration directions as well as electrode positions all marked. In transverse length mode and 

thickness shear mode, thin plate samples are used, where 𝜀33
𝜎 , 𝑠11

𝐸 , 𝑠11
𝐷 , 𝑘31, 𝑑31 and 𝑔31 can be 

obtained with the former whilst 𝜀11
𝜎 , 𝜀11

𝑆 , 𝑠55
𝐸 , 𝑠55

𝐷 , 𝑘15, 𝑑15 and 𝑔15 can be calculated with the 

latter. In radial mode and thickness extension mode, thin discs are utilised and the former can 

provide information of 𝜀33
𝜎 , 𝜀33

𝑆 , 𝑠12
𝐸  and 𝑘𝑝 while the latter can reveal 𝜀33

𝑆 , 𝑠13
𝐸 , 𝑠33

𝐸 , 𝑠33
𝐷  and 𝑘𝑡. 

In the last mode, longitudinal length mode, a cylinder is employed to gain values of 𝜀33
𝜎 , 𝑠33

𝐸 , 

𝑠33
𝐷 , 𝑘33, 𝑑33 and 𝑔33

11,13-16. 

 

Figure 3-6. Schematics of piezoelectric vibration modes and sample standards11,13-16.  
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3.3.2 Frequency Method 

The frequency method is a comprehensive approach which provides a full scenario to obtain 

the complete matrix of the material coefficients. An impedance analyser is usually required and 

capacitance (𝐶), resonant frequency (𝑓𝑟) and anti-resonant frequency (𝑓𝑎) of all the standard 

samples ideally made from the same batch of material must be accurately measured5,11. Figure 

3-7 shows an example of an impedance-frequency plot measured by an impedance analyser. 

The parameter frequency constant (𝑁) is defined as 𝑁 = 𝑓𝑟 ∙𝛼, where 𝛼 represents the dimension 

in parallel with the vibration direction. For the same piezoelectric material, the frequency 

constants of certain vibration mode should be the same value.  

 

Figure 3-7. Resonance spectra of the transverse, radial and longitudinal length modes11.  

Other material constants can subsequently be calculated. Equations 3-19 to 3-36 fully express 

the calculation relations of all the material parameters1,11,17,18. It should be noted that the 𝐶, 𝑓𝑟 

and 𝑓𝑎 cited in each equation should match the corresponding vibration mode11. In the 

equations, 𝜌, 𝑙, 𝑤, 𝑡 and 𝑟 represent density, length, width, thickness and radius of each sample, 
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respectively. In Equation 3-28, 𝐽0 and 𝐽1 are Bessel functions1, which make the specific 

expressions for the former equation considerably complex. However, as the curves induced by 

the functions are insensitive to 𝛬, in practice 𝑘𝑝 can be approximately expressed by the second 

sub-equation in Equation 3-281,11. The results strongly depend on the accuracy of the frequency 

measurement, and the disadvantage of this method is the complexity of sample preparation11. 

𝑠11
𝐸 =

1

4 ∙ 𝜌 ∙ 𝑓𝑟
2 ∙ 𝑙2

    (3-19) 

𝑠12
𝐸 = −𝑠11

𝐸 ∙ (1 −
2 ∙ 𝑘31

2

𝑘𝑝
2

)     (3-20) 

𝑠13
𝐸 = {

1

2
[𝑠33

𝐸 (𝑠11
𝐸 + 𝑠12

𝐸 ) −
𝑠11

𝐸 + 𝑠12
𝐸

4 ∙ 𝜌 ∙ 𝑓𝑎
2 ∙ 𝑡2 ∙ (1 − 𝑘𝑡

2)
]}     (3-21) 

𝑠33
𝐸 =

𝑠33
𝐷

1 − 𝑘33
2 =

1
4 ∙ 𝜌 ∙ 𝑓𝑎

2 ∙ 𝑡2

1 − 𝑘33
2     (3-22) 

𝑠55
𝐸 =

𝑠55
𝐷

1 − 𝑘15
2 =

1
4 ∙ 𝜌 ∙ 𝑓𝑎

2 ∙ 𝑡2

1 − 𝑘15
2     (3-23) 

𝑠66
𝐸 = 2(𝑠11

𝐸 − 𝑠12
𝐸 )    (3-24) 

𝜀11
𝜎 = 𝐶 ∙

𝑡

𝑤 ∙ 𝑙
    (3-25) 

𝜀33
𝜎 = 𝐶 ∙

𝑡

𝜋 ∙ 𝑟2
    (3-26) 

𝑘𝑒𝑓𝑓
2 ≈

𝑓𝑎
2 − 𝑓𝑟

2

𝑓𝑎
2

    (3-27) 

𝑘𝑝
2

1 − 𝑘𝑝
2

= 𝑓 (𝐽0, 𝐽1, 𝜎 ∙
𝑓𝑎 − 𝑓𝑟

𝑓𝑟
)        𝑘𝑝

2 ≈ 2.51 ∙
𝑓𝑎 − 𝑓𝑟

𝑓𝑟
− (

𝑓𝑎 − 𝑓𝑟

𝑓𝑟
)

2

    (3-28) 

𝑘31
2 =

𝜋

2
∙

𝑓𝑎

𝑓𝑟
∙

1

𝜋
2 ∙

𝑓𝑎

𝑓𝑟
− 𝑡𝑎𝑛 (

𝜋
2 ∙

𝑓𝑎

𝑓𝑟
)

    (3-29) 
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𝑘33
2 =

𝜋

2
∙

𝑓𝑟

𝑓𝑎
∙ 𝑡𝑎𝑛 (

𝜋

2
∙

𝑓𝑎 − 𝑓𝑟

𝑓𝑎
)     (3-30) 

𝑘15
2 =

𝜋

2
∙

𝑓𝑟

𝑓𝑎
∙ 𝑡𝑎𝑛 (

𝜋

2
∙

𝑓𝑎 − 𝑓𝑟

𝑓𝑎
)     (3-31) 

𝑘𝑡
2 =

𝜋

2
∙

𝑓𝑟

𝑓𝑎
∙ 𝑡𝑎𝑛 (

𝜋

2
∙

𝑓𝑎 − 𝑓𝑟

𝑓𝑎
)     (3-32) 

𝑑33 = 𝑘33(𝜀33
𝜎 ∙ 𝑠33

𝐸 )
1
2    (3-33) 

𝑑31 = 𝑘31(𝜀11
𝜎 ∙ 𝑠11

𝐸 )
1
2    (3-34) 

𝑑15 = 𝑘15(𝜀11
𝜎 ∙ 𝑠55

𝐸 )
1
2    (3-35) 

𝑔33 =
𝑑33

𝜀33
𝜎         𝑔31 =

𝑑31

𝜀33
𝜎         𝑔15 =

𝑑15

𝜀11
𝜎     (3-36) 

3.3.3 Laser Interferometry Method 

The laser interferometry method is based on the converse piezoelectric effect, where the 

displacement deflection (𝛥𝐿) of a sample is measured against the applied voltage (𝑈𝑖𝑛). The 

piezoelectric coefficients (unit: pm/V) can be calculated by Equation 3-37, in which 𝛥𝑙 should 

match the appropriate material direction of a standard sample11. For example, if 𝑑33 is the 

targeted parameter, the 𝛥𝑙 should come from the length difference of the cylinder sample 

(longitudinal length mode) showed in Figure 3-6. Similar to the frequency method, high 

resolution (nanometre level) is compulsory for interferometers11.  

𝑑𝑖𝑗 =
∆𝑙

𝑈𝑖𝑛
    (3-37) 

3.3.4 Quasi-static (or Berlincourt) Method  

A quasi-static method is more cost-effective than the above methods, as it does not require a 

complete set of standard samples and the measurement can usually accommodate a wide range 

of samples shapes and sizes11. The method is based on the direct piezoelectric effect5, however 

both the response of direct and converse effects should be taken into account11. The 
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piezoelectric coefficients (unit: pC/N) can be calculated using Equation 3-38, where 

𝑄 (unit: pC) is the induced charge and 𝐹 (unit: N) is the force along certain direction applied 

on the sample.11.  In practice, a Berlincourt 𝑑33 or 𝑑31 metre is able to directly measure the 

charge and applied force, and thus the calculated values can usually be displayed on the 

equipment.  

𝑑𝑖𝑗 =
𝑄

𝐹
    (3-38) 

 

3.4 Lead-based Piezoelectric Ceramics 

3.4.1 Lead-Zirconate-Titanate (PZT) 

Although the discovery of BaTiO3 (BT) was the start of the history of industrial application of 

piezoelectrics, it was still unable to meet all the requirements of actuators, sensors and 

transducers, which were potential consumers of these materials, as many of these applications 

demanded improved and/or tailored material performance. BT yielded neither high 

piezoelectric parameters nor could be optimised by adjusting compositions in a wide range1,3,5. 

Driven by this demand, PZT, a solid solution system of PbTiO3 and PbZrO3, was developed in 

the 1950s and has been dominating the market of piezoelectric ceramics until the present day5,6. 

Similar to BT, PZT unit cells also have perovskite structures (ABO3), where Pb ions occupy 

the A sites and Zr and Ti ions occupy the B sites. The PbTiO3-PbZrO3 phase diagram is shown 

in Figure 3-8. The properties are very dependent on composition and temperature, and it has 

been well-established that properties such as the coupling coefficients and relative permittivity 

reach a peak near the morphotropic phase boundary (MPB), where an abrupt structural change 

occurs between the tetragonal and rhombohedral phases, allowing more polarisation directions 

(or increased ease of domain reorientation) when the material is being poled5,19. PZT 
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outperforms BT in terms of piezoelectric properties and these properties can be widely tailored 

by adjustment of the Zr/Ti ratio and/or the addition of dopants1,5.  

 

Figure 3-8. Low-temperature phase diagram of PZT19.  

With the rapid development of PZT, many other Pb-based perovskite solid solutions have been 

synthesized and they are mostly combined with the use of PZT, in order to further tailor 

properties. For example, the addition of Pb(Zn1/3Nb2/3)O3 (PZnN) can help enhance the 𝑑 values 

and field-induced strain, which is required by high performance actuators and transducers for 

sensitive control20; the Pb(MgxNb1-x)O3-PbTiO3 (PMN-PT) system can provide higher 

electromechanical coupling coefficients21, making the materials more suitable for energy 

conversion devices (e.g. energy harvesters)22,23; etc. Such compositional modifications have 

been usually referred to compensating valent substitutions5.  

3.4.2 Doping  

Doping is also an approach used to enhance as well as tailor piezoelectric properties. The effect 

of doping can be quite complex, but it can be classified as four main types, including isovalent 
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substitution of the A and/or B sites, donor doping and acceptor doping, respectively5. Firstly, 

some alkaline earth metal ions (e.g. Ca2+, Sr2+, Ba2+, etc.), which are isovalent with Pb2+, are 

able to randomly occupy a proportion of the A sites and replace the Pb2+ of PZT5. This 

substitution tends to decrease 𝑇𝑐, thus increase permittivity at room temperature5. In addition, 

it raises the 𝑑33 and coupling coefficients whilst a lower dielectric loss can be achieved5. Proper 

amount of such substitution is up to 10 at.%5. Similarly, some ions (e.g. Sn4+, Hf4+, etc.) are 

able to modify the composition by replacing the B sites (Zr4+ and Ti4+ of PZT)5,24,25. However, 

unlike the A site substitution where exists an suggested amount limit, the original B site ions 

can be partially as well as completely replaced by the introduced ions5. The B site isovalent 

substitutions normally do not significantly optimise specific piezoelectric properties as they 

nearly retain the initial perovskite structure of PZT5, but they sometimes are able to shift the 

relative position of the MPB and adjust 𝑇𝑐, thus helping to tailor the properties5,24,25.  

Secondly, donor dopants (e.g. La3+, Bi3+, Nd3+, Nb5+, Ta5+, Sb5+)and other possible rare earth 

metal ions), which carry higher charge than those of ions to be replaced, are also able to 

substitute into the perovskite structure (ion3+ replacing A site cations and ion5+ replacing B site 

cations), and are compensated by the creation of the cation vacancies1. The vacancies can be 

the A or B or both sites, which are comprehensively determined by the types of donor dopants 

and host structures, the actual doping amount and the exact processing conditions 

(e.g. atmosphere, pressure, etc.)1. The final composition after donor doping should be decided 

via microstructural characterisation methods. But for PZT, the A site (Pb2+) vacancies are 

usually preferable because of the ease of PbO loss at high temperatures5,26,27, and this can be 

proved by weight loss studies5. In the donor doped PZT, dipolar pairs combining the donor 

dopants and cation vacancies are formed, which are supposed to be immune to applied electric 

or spontaneous polarization, thus maintaining a relatively stable orientation status1,5. Such 
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mechanism has few pinning effect on domain wall movement, because of which domains are 

likely to be more active thus domain motions are able to be driven by smaller external electric 

field or stress1,5. This tends to improve permittivity and compliance constants as well as increase 

dielectric and mechanical loss (lower 𝑄𝑀)1,5. Also, as domains become more mobile, a larger 

number of them can be motivated along external electric field direction compared to that of 

pure PZT, resulting in stronger piezoelectric effect, e.g. larger coupling coefficients, but smaller 

coercive field5. In addition, the vacancies are able to help release residual stress of domain 

rotation, reducing the effect of ageing5. Ageing is the phenomenon whereby piezoelectric 

properties change with time after poling resulting from the relaxation and reorientation of the 

domains structure1, which will be presented in detail in the next chapter. In addition, donor 

dopants increase the number of conduction band electrons compensating the vacancies, hence 

resistivity as well as the breakdown electric field of PZT tend to increase1,5. Donor doping is 

also called ‘soft’ doping, with amounts usually controlled within 5 at.%1.  

Finally, acceptors with lower charge (e.g. K+, Rb+, etc. replacing A site cations and Co3+, Fe3+, 

Cr3+, Mn3+, etc. replacing B site cations) are able to substitute the PZT perovskite structure and 

are compensated by the formation of oxygen vacancies1. As oxygen ions form a continuous 

lattice structure of PZT unit cells, the absence of oxygen is likely to cause shrinkage and 

distortion of the unit cells5. Opposite to the donor dopant-cation vacancy combinations, the 

dipolar pairs between acceptors and oxygen vacancies formed within the acceptor doped PZT 

can be reoriented by local or applied electric field1. As such dipolar pairs are able to provide a 

field contributing to the stabilization of the domain structures (pinning the domain walls), the 

permittivity, dielectric and mechanical loss and compliance constants of the doped PZT tend to 

be reduced1,5. Also, as the domain structures are rather stable, which means they are difficult to 

rotate with external electric field, the doped PZT usually have smaller coupling coefficients but 



University of Birmingham 

36 
 

higher coercive field than the undoped1,5. In general, acceptor doping induces opposite effects 

on relevant properties to those caused by donor doping1,5. Acceptor doping is also called ‘hard’ 

doping.  

Other composition modification may involve the addition of Chromium and Uranium, which 

usually introduce more than one valence state, and hence cause comprehensive changes of 

piezoelectric properties5. In practice, a combination of the above methods may help properly 

design the properties for certain applications. For example, a standard set of hard and soft PZT 

has been developed, commercialised and commonly used in both laboratories and industries to 

meet the requirements of various applications. PZT-5A and PZT-5H are two types of standard 

‘soft’ PZT. Benefiting from its high sensitivity, permittivity and time stability, PZT-5A has 

been widely used in receivers or generators such as hydrophones, ultrasonic transducers, 

vibration sensors and accelerometers, etc28-31. PZT-5H shares most of the features with 

PZT-5A, but it is even of higher quality, e.g. with extremely high permittivity, coupling and 

piezoelectric coefficients28,29. It has been widely used in not only all of the areas where PZT-5A 

has been applied, but also in sensitive ultrasonic transducers and ink jet printers, etc., where 

higher sensitivity is required28,29,32-34. PZT-4D and PZT-8 series are two types of standard ‘hard’ 

PZT. They exhibit extremely low dielectric and mechanical loss (low 𝑡𝑎𝑛𝛿 and high 𝑄𝑀) and 

are able to generate large mechanical drive amplitudes28,29. Thus, they are suitable for high 

power acoustic applications such as ultrasonic cleaning, sonar, etc28,29,35,36.  

 

3.5 Lead-free Piezoelectric Ceramics 

3.5.1 Introduction 

Although PZT based piezo-ceramics have been dominating the application market, the issue of 

replacement of PZT becomes more and more urgent as a relevant EU legislation has prohibited 
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the use of certain hazard substances, such as lead, mercury, cadmium, etc., in electrical and 

electronic equipment and devices37,38. Lead in piezoelectric materials has a current exemption 

from this ban, but the intention is for the maximum allowed concentration of lead to be 

0.1 wt%38, whereas PZT based piezoelectric materials usually contain more than 60 wt% of 

lead6. Once lead goes into human bodies, it accumulates in organs and can hardly be ejected, 

leading to potential fatal disease. Currently, lead-free piezoelectrics have not been able to 

substitute PZT on a broad basis, and this has triggered a huge amount of research to be 

undertaken to explore as many lead-free piezoelectrics as possible39-42. The consideration 

involves not only toxicity but also the cost of any alternative elements, their availability, and 

the structural tolerance between target atoms when designing and synthesizing lead-free 

materials6. According to such requirements, three main classes have received the most attention, 

namely Sodium Potassium Niobate (KNN) based, Bismuth Sodium Titanate (BNT) based and 

Barium Calcium Zirconate Titanate (BCZT) based ferroelectrics.  

3.5.2 KNN Related Materials 

KNN is a solid solution of KNbO3 (KN) which possesses similar structures and phases to BT 

but higher phase transition temperatures43, and NaNbO3 (NN) which has antiferroelectric 

properties44. Both KN and NN are orthorhombic at room temperature6. Overall, pure KNN has 

shown comparable or even higher 𝑇𝑐 (around 400 °C) but lower relative permittivity (200-500), 

𝑘𝑝 (0.2-0.4) and 𝑑33 (80-160 pC/N) than the PZT family43,45-49. Similar to PZT, doping (or 

chemical modification) is also helpful to optimise the properties. For instance, doping Li, Ta, 

Sb or introducing BT or BNT may help to comprehensively enhance permittivity, 𝑘𝑝 and 𝑑33 

(but still lower than PZT), while incorporating different amounts of SrTiO3 may be able to 

adjust such properties in a wide range6,39,50-55. However, the expense of most doping is the 

decrease of 𝑇𝑐, affecting the highest working temperature of such materials6.  
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3.5.3 BNT Related Materials 

Bi1/2Na1/2TiO3 (BNT) is also a perovskite ferroelectric56, as well as its counterpart Bi1/2K1/2TiO3 

(BKT)57. The drawbacks of pure BNT or BKT refer to sintering complication, poling difficulty 

because of high leakage currents and high coercive fields, and poor dielectric and piezoelectric 

constants6,56,58-62. To optimise this, binary systems (e.g. BNT-BT, BKT-BT and BNT-BKT) and 

even ternary systems (e.g. BNT-BT-BKT and BNT-BT-KNN) have been developed63-67. 

BNT-BT can be easily sintered between 1100-1200 °C, with enhancement of piezoelectric and 

coupling coefficients6. In contrast, BKT-BT hardly shows advantages over pure BNT or BKT64. 

BNT-BKT exhibits higher 𝑇𝑐 and 𝑇𝑑 (depoling temperature) and slightly higher permittivity 

and 𝑑33.6 BNT-BKT-BT exhibits comparable properties to BNT-BT, though the highest 𝑑33 

while lowest 𝑇𝑑 is found among BNT based materials6,68. In fact, BNT-BKT-BT has been 

suggested to be a suitable material to replace PZT in some specific applications such as 

ultrasonic transducers69 and accelerometers70. BNT-BT-KNN, combining an MPB between a 

rhombohedral phase (BNT) and a tetragonal phase (BT) together with an orthorhombic phase 

(KNN), possesses the highest external electric field induced strain due to easier domain rotation 

and domain wall movement of such structures6,67, making them useful for actuators.  Unlike 

PZT or KNN, doping of BNT related piezoelectrics shows few effects on property tailoring, in 

spite of decreased 𝑇𝑑 and slight improvement of piezoelectric properties6.  

3.5.4 BCZT Related Materials 

KNN and BNT related materials which have had a long history as candidates in the search for 

lead-free materials to replace PZT. However, since 2009, a solid solution of 

(1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-BCT or BCZT) has been investigated as another 

significant promising lead-free ferroelectric, with extremely high 𝑑33 (>600 pC/N, even higher 

than ‘soft’ PZT) being first reported for a 0.5BZT-0.5BCT (50BCZT) composition42. Figure 3-9 
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shows a prediction (based on X-ray diffraction and permittivity-temperature measurements) of 

the BZT-BCT phase diagram.  

 

Figure 3-9. Predicted phase diagram BZT-BCT based on partial experiment42,71.  

Compared to that of PZT, the MPB of BCZT system is strongly curved, implying that the 

optimum properties near the MPB depend on not only composition but temperature, thus 

leading to poor temperature stability. However, in spite of this temperature instability, such a 

system has some similarity to PZT, meaning the properties vary with the ratio of BZT and BCT, 

with the optimum reaching comparable level to those of PZT, providing a possibility to tailor 

the material in a similar way to PZT42. However, the barrier preventing it to be widely used in 

the near future may be its low 𝑇𝑐 (approximately 90 °C for 50BCZT), which is much lower than 

that of KNN based (around 400 °C)6, BNT based (200-400 °C)6 or PZT based piezoceramics 

(100-400 °C)19.  

The unit cell of BCZT has been treated based on that of BT, where Ca2+ ions occupy a part of 

the positions of Ba2+ whist some Zr4+ ions take places of Ti4+. As only a few years have been 
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devoted into BCZT related research, to the state of the art, effects of microstructure72, 

fabrication and process methods (sintering73, poling74, annealing75), even the phase 

transition/diagram76,77 is still under investigation and so is not yet well understood. Some 

preliminary doping trails have not shown any significant property improvements, although it 

has been shown that the sintering temperature can be lowered78-80.  

Table 3-1 lists a selection of reported properties of BCZT related materials and the comparison 

to those of typical PZT, KNN and BNT related materials.  

Table 3-1. A selection of reported properties of PZT based and lead-free piezoceramics.  

Composition Relative 
Permittivity 

𝒅𝟑𝟑 
(pC/N) 𝒌𝒑 𝑻𝒄 

(°C) 

0.5Ba(Zr0.2Ti0.8)O3-
0.5(Ba0.7Ca0.3)TiO3

42 ~3000 ~600 N/A ~93 

 (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 + CeO2
79 4843 600 0.51 ~90 

 (Ba0.85Ca0.15Ti0.90Zr0.10)O3 + Pr2O3
81 4638 460 0.476 ~80 

(Ba0.82Sr0.03Ca0.15)(Zr0.1Ti0.9)O3
82 N/A 534 0.477 72 

Textured (Na,K)NbO3-LiTaO3-
LiSbO3

39 1570 416 0.61 253 

Li0.03(Na0.53K0.48)0.97Nb0.8Ta0.2O3 + 
BiFeO3

83 N/A 340 0.47 ~300 

0.98(Na0.5K0.5)NbO3-
0.02Ba(Zr0.52Ti0.48)O3

84 1951 217 0.41 ~425 

(Bi0.5Na0.5)0.94Ba0.06TiO3 + CeO2 + 
La2O3

85 831 162 N/A ~280 

Bi0.5(Na0.84K0.16)0.5TiO3 + SrTiO3 + 
Nb2O5

86 868 185 0.343 292 

PZT ceramic family (soft and hard)19,39 2000-8000 200-1000 0.5-
0.7 

400-
100 
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3.6 Fabrication of Piezoelectric Ceramics 

The fabrication of piezoelectric ceramics utilises processes in common with other ceramics, 

generally consisting of the mixing and milling of the raw materials, calcination, re-milling, 

shaping and sintering1,5,87,88. In addition, piezoelectric ceramics need to undergo electroding 

and poling after sintering5. An ageing process is sometimes added to the end of the process for 

industrial manufacturing.  

3.6.1 Powder 

3.6.1.1 Raw Materials 

Inorganic powders (e.g. metal-oxides, alkaline earth-carbonate, etc.) are commonly utilised as 

starting materials to fabricate piezoelectric ceramics88. Purity, particle size, particle size 

distribution, and reactivity are the main criteria in the selection of the raw materials, in addition 

to availability and cost which may be considered by industrial manufacturers1,5,88. Purity is 

likely to affect final piezoelectric properties, as certain impurities may contain ‘soft’ or ‘hard’ 

doping elements which are able to cause a change of the designed compositions and 

corresponding final properties. Therefore, highly-purity powders (usually >99 %) are required 

to control the impurity level5, especially for those forming the frame compositions of ABO3, 

e.g. PbO, ZrO2 and TiO2 for synthesizing PZT, where much larger quantity would be used than 

those to be doping additives. Particle size affects reactivity during calcination and densification 

during sintering5,88. Also, the choice of particle size and size distribution of the raw materials 

will be dependent on the specific shaping method selected88. In general, smaller particles 

without agglomerates are desired5. Reactivity is affected by chemical elements and particle size 

of powders, both of which define the temperature and time needed in the calcination process5,88. 

For doping additives where only minor percentages are used, reactivity becomes more 

important5.  
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3.6.1.2 Mixing and Milling 

The different raw material powders need to be evenly mixed in their appropriate stoichiometric 

proportions before calcination. Also, the mixed powders need to be milled before and after 

reaction in order to control the particle size and size distribution. In practice, mixing and milling 

are usually completed in one step, which is selected from various mechanical and chemical 

mixing/milling methods for different particle size ranges. Vibratory milling is usually able to 

produce finer particles than ball milling due to the higher energy imparted to the suspensions, 

but both methods are suitable to make μm-sized particles88. However, if nm-sized particles are 

required, chemical methods, of which sol-gel88 is an example, are usually applied. After mixing 

and milling, for those processes which are carried out in the presence of a liquid solvent, a 

subsequent drying step needs to be incorporated prior to calcination.  

3.6.1.3 Calcination 

For most of the mixtures obtained from mechanical mixing and milling methods, 

high-temperature treatment (called calcination) is usually employed before shaping and 

sintering them. The purpose of such a process is to pre-form the desired phases and thus 

improve sample homogeneity and also reduce the volume shrinkage in the sintering step5. In 

calcination, the target solid solution does not have to be fully synthesized, but the calcinations 

product must be able to react to the final phase during sintering1. Hence, the ideal calcination 

temperature should be high enough to drive the appropriate reactions but low enough to 

suppress chemical loss. For example, PbO evaporation is a common issue in the calcination 

process of PZT1. Several steps have been adopted in research and industry to avoid such 

evaporation loss, including using covered crucibles to load the powders, and adding appropriate 

amount of excess PbO in the starting materials, etc.1 This issue still exists in the sintering 

process, and more steps to solve the problem will be presented in Section 3.6.3. Also, the ideal 
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calcination temperature should prevent the powder becoming too hard to re-mill1,5. After 

calcination and re-milling, the first stage of fabrication is complete and the processed powders 

are ready for further steps.  

3.6.2 Shaping 

3.6.2.1 Dry Pressing 

Before sintering, the calcined powders must be formed into specific shapes similar to the final 

product designs. Dry pressing (or uniaxial pressing) is the most commonly used way to obtain 

thin bulk samples with simple shapes and constant cross-sectional areas1,87. This method is able 

to achieve high production rates as well as close tolerances88. However, although double-ended 

pressing can provide a more even density distribution than single-ended, the green bodies made 

though dry pressing still tend to suffer large density variation, especially for thicker or larger 

samples1,87,88. To address this issue, hot pressing and/or isostatic pressing are also widely 

applied in both laboratory and industry1,87,88. These two methods are sometimes combined 

(hot-isostatic pressing) in order to further improve the density and minimise any variation 

throughout the sample1.  

3.6.2.2 Doctor Blading and Screen Printing 

In contrast to dry pressing which mainly suits the fabrication of bulk ceramics, doctor blading 

and screen printing are specially designed for shaping thin and thick films (thickness <100 μm). 

Rather than dry powder with binder, printable inks/pastes with appropriate rheological 

behaviour needs to be prepared in advance. The process of doctor blading is shown 

schematically in Figure 3-10, where it can be seen that tapes are used to control the planar 

dimensions as well as the thickness of the deposited film, and the substrate provides a platform 

to the film.  
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  Figure 3-10. Schematic diagram of the doctor blading process.  

Doctor blading is a flexible and cost-effective deposition method for producing ceramic films 

in laboratory conditions, while screen printing is another commonly used method 

(corresponding to doctor blading) to produce ceramic films in large quantity but at low cost in 

either laboratory or industry89,90. Inks similar to those used in doctor blading are squeezed with 

a rubber squeegee through pre-designed emulsion patterns on screens made from finely woven 

mesh, and are transferred onto supporting materials89,90, followed by drying and sintering. The 

planar shape of a printed film is controlled by the pattern, whilst the thickness can be affected 

by the size and resolution of the mesh and/or the number of printing cycles.  

There are also many other methods such as tape casting10, extrusion87,88, injection molding87,88, 

slip casting87,88 and gel-casting91, which have been widely used to shape piezoelectric green 
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bodies, but as they are not directly relevant to the work reported in this thesis, they will not be 

discussed here.  

3.6.3 Sintering 

3.6.3.1 Conventional Solid-state Sintering 

Sintering is the process whereby the powder compacts (green bodies) are transformed to dense 

and robust ceramics by heating at elevated temperatures below the melting point of the 

material92, and is the most important process determining density and grain size, thereby 

affecting the qualities and piezoelectric properties of the ceramic. In principle, sintering 

temperature and time comprehensively affect densification and grain growth88. At the right 

temperature, the density increases with time, then followed by grain growth. However, if the 

temperature is too low, full densification can never be reached. Although ceramics with high 

density but small and uniform grains possess excellent mechanical properties (e.g. high 

strength), piezoelectric ceramics are usually engineered to have larger grains (>1 μm) as higher 

𝑑 values can be obtained with increased grain size61,93. Such phenomenon is illustrated in Figure 

3-11, where the parameters of 𝑑31 and spontaneous polarization of a Nb-doped piezoelectric 

ceramic were improved with increased grain size until about 1.5 μm, and then remained at the 

same level. Therefore, the sintering of piezoelectric ceramics requires more accurate selection 

and control of both temperature and time, in order to gain high density as well as appropriate 

grain sizes.  

Also, following the discussion with calcination, PbO evaporation still retains an issue in the 

sintering process of lead-based piezoelectric ceramics1. In addition to the steps to avoid Pb loss 

mentioned above, the green bodies for sintering can also be surrounded or buried by a lead-rich 

powder (e.g. PbZrO3), and again loaded in closed crucibles/vessels1.  
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Figure 3-11. Dependence of (a) 𝑑31 (b) spontaneous polarization on grain size for a Nb-doped 

PZT ceramic94. 

3.6.3.2 Liquid-phase Sintering 

Liquid-phase sintering involves the use of low melting point, often glassy, additions to the 

ceramic powder which, when molten, provide a mechanism to enhance atomic migration and 

diffusion, and enhance densification92. The first requirement for liquid-phase sintering to occur 

is that the liquid yields an appreciable solubility of the solid phase and is thus able to wet the 

solid particles92. When this happens, some of porosity will be filled by the liquid, and surface 

tension will tend to pull the neighbouring particles towards each other92. This mechanism not 

only enables ceramics to be densified at much lower temperatures than would be possible using 

conventional solid-state sintering, but also offers the advantages of much more rapid, uniform 

sintering and densification92,95,96. However, for piezoelectric ceramics, the existence of glassy 

film at grain boundaries after liquid-phase sintering may have detrimental effects on functional 

properties such as the 𝑑 and 𝑘 values92,97-99. Thus, the amount of sintering aid should be 

minimised in order to reach a balance point between high density and acceptable piezoelectric 

properties.  
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3.6.4 Electroding and Poling 

Many electroceramics require the addition of thin layers of conductive materials on their 

surfaces in order to exploit their properties. In particular, for piezoelectric materials, electrodes 

are required on surfaces perpendicular to the intended polarisation direction to enable 

application of the appropriate external electric field, and also to allow voltage to be applied or 

extracted during the operation of the device5. In practice, any metal could be used, but common 

electrode materials are silver, gold, nickel, copper, palladium, platinum and alloys thereof, 

among which silver and gold are more commonly used in industry and laboratory, respectively5. 

The use of the platinum group metals is usually required if the electrodes are co-sintered with 

lead-oxide-based pizoelectrics, in order to withstand the sintering temperatures of the bulk 

ceramic materials, although silver can be used with thick film materials designed to sinter at 

and below 900 °C90,95. 

Poling is implemented by applying a large electric field to the piezoelectric ceramics via the 

electrodes (contacting poling) or without electrodes (Corona poling), and maintaining it for a 

certain period of time5. The field can be continuous, intermittent or alternating in either strength 

or direction, but must exceed the coercive field and approach the spontaneous polarisation while 

being smaller than the breakdown electric field5. The quality of poling is a vital factor that 

influences the percentage of the domains which are able to rotate and re-align along the 

direction of the applied electric field, thus affects the strength of piezoelectric response. In 

practice, poling can be done at the temperatures close to, but below, the Curie temperature 

where the domain wall movement becomes more active and poling is easier to achieve51,74,100. 

Often the sample is cooled with the electric field still applied101,102. Contacting poling usually 

takes places in silicone oil1. For ‘soft’ PZT, the oil temperature and the applied electric field 

are typically controlled at 100-150 °C and 1-4 kV/mm, respectively1,101. However, because of 
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the domain wall pinning effect, as presented in Section 3.4, ‘hard’ PZT is more difficult to be 

well poled in the normal conditions applied to ‘soft’ PZT. Therefore, ‘hard’ PZT can be 

quenched from a temperature well above the 𝑇𝑐 (e.g. 500 °C) or de-pinned by applying a high 

temperature (below the 𝑇𝑐) and a high periodic field (below the maximum allowed field) for 

hundreds or thousands of cycles, before being poled under the same conditions as those applied 

to ‘soft’ PZT102. Corona poling is an advantageous method to some degree, as it does not 

required electrodes to be deposited before poling, does not contact the surfaces of the samples, 

and can diminish the risk of electrical breakdown1,103. Such a poling method is done in the air 

atmosphere and elevated temperatures (100-150 °C for PZT), with applied voltages at ~104 

V103. In general, poling is the last process in the fabrication of piezoelectric ceramics.  

3.6.5 Aging 

The functional properties of a piezoelectric ceramic can change with time after poling, and this 

effect is known as ageing1,5. It is not caused by any external mechanical stress or electric field 

or temperature variation1,5, but may be due to the relief of residual stresses among domain 

re-aligned during poling5 or the reduction in the mobility of domain walls and the gradual 

formation of inhibiting structures (e.g. internal fields induced by dipole alignment formed from 

impurity ions or lattice defects, redistributed internal strains because of crystal anisotropy or 

defect accumulation in domain wall areas)1. Such an effect usually leads to a reduction of the 

relative permittivity, dielectric loss and 𝑘, with a corresponding increase of 𝑄𝑀 and stiffness of 

the poled piezoelectric ceramics5,104. Equation 3-39 indicates the relation of property change 

and time in ageing, where 𝑀 represents certain property and 𝑡0, 𝑡1 are two measurement time 

points after poling respectively1,5.  

𝑀𝑡1 − 𝑀𝑡0

𝑀𝑡0
= 𝐴 ∙ log10 (

𝑡1

𝑡0
)     (3-39) 
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For example, if the 𝑘𝑝 value of a piezoelectric disc is measured on the 1st day after poling (𝑘𝑝,1) 

and re-measured on the 10th day (𝑘𝑝,10), Equation 3-39 can be written as Equation 3-40. Factor 

𝐴 can be defined as the ageing effect constant, of which the absolute value implies the ageing 

rate. The larger |𝐴| becomes, the faster a certain property changes with time. However, different 

time gaps as well as properties result in various 𝐴 values.  

𝑘𝑝,10 − 𝑘𝑝,1

𝑘𝑝,1
= 𝐴10 ∙ log10 (

10

1
)    (3-40) 

Also, Equations 3-41 and 3-42 can be deduced according to Equations 3-39 and 3-40, proving 

that the percentage of a property change is constant for the time gap of (𝑡1
𝑛+1 − 𝑡1

𝑛) (𝑛 =

0,1,2,3, … ).  

𝐴10 ∙ log10 (
10

1
) = 𝐴10 ∙ log10 (

100

10
) = 𝐴10 ∙ log10 (

1000

100
) = ⋯ 

=
𝐾𝑝,10 − 𝐾𝑝,1

𝐾𝑝,1
=

𝐾𝑝,100 − 𝐾𝑝,10

𝐾𝑝,10
=

𝐾𝑝,1000 − 𝐾𝑝,100

𝐾𝑝,100
= ⋯    (3-41) 

𝑀𝑡1
𝑛+1 − 𝑀𝑡1

𝑛

𝑀𝑡1
𝑛

= 𝐴𝑡1 ∙ log10(𝑡1) , 𝑛 = 0,1,2,3, …     (3-42) 

Ageing is a detrimental effect, leading to the poorer stability of material properties over time 

and a corresponding unstable performance of final assembled devices. In practice, ageing can 

be minimised or controlled by, for example, using ‘soft’ doped material compositions presented 

in Section 3.4 and heat treatment at specially selected temperatures to help relieve internal 

stresses5. In addition, commercial materials would normally only be supplied in an ‘aged’ (at 

certain temperature and for certain time) so that any subsequent deterioration is small.  

 

3.7 Summary 

This chapter has comprehensively reviewed the backgrounds and up-to-date knowledge of 

piezoelectricity, from the basic principles to materials and corresponding fabrication processes, 
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all of which are directly related to this project. Although piezoelectricity and piezoelectric 

materials are relatively old concepts, there are still several areas which need to explore, such as 

the investigation of the replacement of the lead-based by lead-free materials, and the selection 

of the mature lead-based and the emerging lead-free materials for the application of energy 

harvesting. The next chapter will give a specific review of the combination of piezoelectric 

materials and the energy harvesting technology.  
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CHAPTER 4. PIEZOELECTRIC AND VIBRATIONAL ENERGY 

HARVESTING 

4.1 Introduction 

The concept of harvesting and converting kinetic energy into electricity by utilising 

piezoelectric energy harvesters (PEHers), especially for vibrational energy, was introduced in 

Chapter 2. A simplified spring-mass system is shown in Figure 4-1. Typically, elements of 

piezoelectric materials are the core components in PEHers to convert energy1-3. But 

configurations acting as an equivalent ‘spring’ (e.g. cantilever substrate, etc.) to transmit motion 

from the host to the core components, and stress/strain magnifiers (e.g. proof mass, magnets, 

etc.) used for maximising/adjusting deformations of piezoelectric materials thus optimising 

outputs, are also included in PEHers1-3.  

 

Figure 4-1. Schematic of a spring-mass system (reproduced according to reference4) 

Such structures mechanically perform as a spring-mass system, which can be mathematically 

expressed by Equation 4-14, where 𝑦(𝑡) is the housing vibration displacement, 𝑧(𝑡) is the 

relative motion of the seismic mass, and 𝑚, 𝜉, 𝛾 represent the seismic mass, damping constant 

and spring constant of the system, respectively. However, this is only a general assumption, and 
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more accurate predictions of resonant frequency, generated voltage and power need further 

analyses, which will be introduced in the following sections.  

𝑚𝑧̈(𝑡) + 𝜉𝑧̇(𝑡) + 𝛾𝑧(𝑡) = −𝑚𝑦̈(𝑡)    (4-1) 

In addition to the main harvester structure presented above, a corresponding external circuit 

needs to be integrated into the system, providing voltage/power conditioning, rectification and 

regulation5,6, as well as energy storage in certain cases7. Considering this, the performance of a 

PEHer, including output voltage, output power and energy conversion efficiency, may be 

affected by mechanical configurations, equivalent circuits and piezoelectric materials. These 

will also be introduced in the following sections.  

 

4.2 Feasible Piezoelectric Energy Harvesting Configurations 

4.2.1 Cantilever 

The majority of the research involving PEHers to date has focused on cantilever 

configurations8,9, as shown in Figure 4-2 (a). A piece of thin piezoelectric element is attached 

on a substrate, forming a unimorph cantilever. The direction of polarization is along the 

thickness of the piezo-element, and the cantilever is fixed on a base on one end while free on 

the other end where a tip mass is attached. In principle, when the fixed end of the cantilever 

vibrates upwards (Figure 4-2 (b)), the cantilever bends downwards because of inertia, causing 

the piezoelectric element to be deformed. Thus there will be an electric potential generated 

across the piezo-element. In a similar way, when the cantilever vibrates downwards 

(Figure 4-2 (c)), the piezo-element is compressed effectively, generating an electric potential 

with an opposite direction. Therefore, if the cantilever keeps vibrating, an AC output voltage 

will be generated.  
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Figure 4-2. Schematics of cantilever configuration (side-view).  

This working mode, commonly known as the ‘31-mode’ (deformation is perpendicular to 

polarization), has been proved to be more efficient than the ‘33-mode’ (deformation is parallel 

with polarization, which will be presented later), as although the ‘31’ piezoelectric response is 

usually weaker than that of ‘33’ (𝑑31 < 𝑑33), the ‘31’ deformation tends to be much larger thus 

is able to induce a larger output1,8. It should be noted that the centroid plane of the piezo-element 

must not be coincident with the neutral axis of the entire cantilever (Figure 4-2 (a)), otherwise 

no voltage can be extracted10.  

In terms of actual designs, bimorph cantilevers, where two piezo-elements are attached on both 

surfaces of a substrate or to each other (Figure 4-3), are also commonly utilised in order to 

improve the open-circuit voltage10 or output current (hence output power)11,12. It should be 

noted that in the case of the bimorph, a central electrode is needed, or the substrate for the 

bimorph (and for the unimorph) can be electrically conducting13. In addition, multi-morph 

configurations containing several piezoelectric elements can be occasionally considered14,15, 

and element shapes can be tailored to optimise either output or efficiency. A rectangular shape 
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is the most typical and can be simply fabricated8; whereas triangular or trapezoidal shapes allow 

more even strain distribution and thus are capable of increasing output power and efficiency8,16. 

The initial state of the cantilevers also has effect on the harvesting capability and working 

frequency range of PEHers. For instance, pre-stressed or pre-curved cantilevers are able to help 

enhance energy harvesting capability17,18; and pre-stressed beams clamped on both sides can 

exhibit a wider range of responses to excitation frequencies19.  

 

Figure 4-3. Schematics of unimorph and bimorph cantilevers.  

4.2.2 Free-standing Thick-film Structure 

For the ‘31-mode’ PEHers, piezoelectric bulk sheets have been conventionally fabricated 

separately then glued onto the substrates1,20. This process is simple to implement, however 

micro-scale dimensions are difficult to be achieved, making it incompatible with 

micro-electromechanical systems (MEMS) which are the one potential end use for PEHers. 

Also, it requires additional processing for reliable bonding in order to prevent fatigue and 

delamination in long-time use. As a result, thick-films co-sintered with substrates (e.g. silicon 

on insulator (SOI) or stainless steel), providing firm attachment between the piezo-elements 

and substrates, have been demonstrated, enabling integration of PEHers with MEMS21. 

However, the constraint effect caused by the substrate would lead to poor sintering and 

consequently reduced piezoelectric properties. During sintering, a piezoelectric thick film will 

shrink, whereas the supporting substrate is usually dense, and will not shrink further. When 

they are attached to each other and co-sintered, large residual stresses on the interface area are 

likely to prevent the film densifying fully, resulting in deteriorated piezoelectric properties. This 
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may also lead to the piezoelectric layer fracturing easily when being poled. In this configuration, 

the substrate is purely a supporting structure and may absorb or dissipate the harvested energy, 

thus reducing the overall energy conversion efficiency. In addition, as the output of PEHers 

depend on relevant piezoelectric properties3, but they are unable to be directly and accurately 

measured for the thick-films with substrates22, theoretical modelling and design of the 

harvesters may become unreliable.  

To solve the problem, a free-standing thick-film cantilever, firstly reported in 200823, may be 

helpful. The free-standing thick-film configuration was defined as ‘one that stands alone (or on 

its own foundation) and is free from external support or attachment to a non-electro-active 

platform’24. Figure 4-4 shows the schematics of the reported structure based on fabrication by 

screen printing. A carbon layer was incorporated into the normal multi-layer thick-film 

structure as the sacrificial layer, and this could be totally burnt off during co-sintering, thus 

producing a free-standing structure24. PZT paste and Ag/Pd paste were selected to be the 

piezo-elements and electrodes respectively24, however the shrinkage rate of the electrodes did 

not match that of the PZT, leading to a delamination phenomenon. Despite that, the problem 

was temporarily solved by printing two non-active piezoelectric layers as the top and bottom 

layer. Unfortunately, few free-standing thick-film PEHers have been reported since then.  
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Figure 4-4. Schematics of fabrication and structure of the free-standing thick-film 

cantilever24.  

4.2.3 Other Structures 

Other structures of PEHers have also been investigated to explore the energy generation 

capability and the effects of mechanical structures on output. Figure 4-5 shows a practical 

design of cymbal structure25, consisting of a bulk PZT disc with electrodes (piezo-element), a 

pair of brass rings (for connection with external circuits) and a pair of convex steel plates 

(cymbal elastic elements). The force is vertically applied on the steel plates and is subsequently 

transferred to the disc, deforming it along the radial direction and effectively working in a ‘31 

mode’9,25. This configuration is able to withstand higher loads than the cantilever8,26, and is 

suitable for low working frequencies (several Hz)25.  
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Figure 4-5. Pictures and schematic of a cymbal configuration (dimension unit in μm)25.  

Figure 4-6 shows a configuration of circular diaphragm, where a metal plate is clamped on a 

rigid base with attached piezoelectric disc and proof mass27,28. When the base vibrates, the 

inertia of the proof mass is able to force the metal disc as well as the piezoelectric disc bending 

up and down, generating charge across the piezo-element27,28. As the polarization of the 

piezoelectric disc is usually parallel to the thickness direction, this configuration in fact works 

in the ‘31 mode’ as well, which is similar to the cantilever. With a metal support, this type of 

harvester tends to work with high accelerations or in fluctuating pressure environments8.  
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Figure 4-6. Schematics of circular diaphragm configuration: (a) side-view; (b) top-view 

(reproduced according to multiple sources27,28).  

Although the ‘31 mode has’ dominated the designs of PEHers, the ‘33 mode’ can still be applied 

if the driving stress is large enough. For instance, a stack of thin piezoelectric elements 

combined together tends to generate a much higher power under large stress which is applied 

parallel to the polarization direction, as the piezoelectric response in ‘33 mode’ (𝑑33) is usually 

a factor of about 2 larger than that in ‘31 mode’ (𝑑31)29,30.  

The ‘15 mode’ (or shear mode) has recently been considered, of which the corresponding 

configuration is shown in Figure 4-731. The polarization is parallel with the electrodes (while 

for 31 mode and 33 mode, the polarization is perpendicular to the electrodes), and the 

piezo-element is sandwiched by the proof mass and the base31. The vibration is also parallel to 

the polarisation direction, as shown in the figure, inducing a shear deformation of the 

piezo-element. This is a promising working mode to further enhance the output of PEHers due 

to the potentially higher energy harvesting factors in the ‘15 mode’ than those in the ‘33 mode’ 
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or ‘31 mode’31,32, though the fabrication of the materials (e.g. poling, re-electroding) may 

become more complex. This will be presented in detail in the following sections.  

 

Figure 4-7. Schematics of shear mode harvester configuration (side-view)31.  

 

4.3 Beam Vibration Theory 

4.3.1 Resonant Frequency 

In terms of the design of the cantilever configuration, resonant frequencies where the 

amplitudes reach a maximum must be predicted in advance, as they define the optimum 

working conditions in which the PEHers should be operated in order to maximise the output. 

The Bernoulli-Euler beam theory is a reliable mathematical model for calculating the 

fundamental resonant frequencies of thin long cantilevers (length > 20×thickness)33, according 

to which the fundamental frequency (𝑓0) of a multi-layer composite cantilever without tip proof 

mass can be illustrated by Equations 4-2, 4-3 and 4-434,35.  

𝑓0 =
𝜆0

2

2𝜋𝐿2
∙ √

𝑌𝐼

𝑚𝑝𝑢𝑙
    (4-2) 

𝑌𝐼 = ∑ 𝑌𝜓 𝑤 ∫ 𝑦2 ∙ 𝑑𝑦     (4-3) 
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𝑚𝑝𝑢𝑙 = ∑ 𝜌𝜓 𝑤 ∫ 𝑑𝑦     (4-4) 

In the equations, 𝜆0 is the function of fundamental resonant boundary conditions, which has a 

value of 1.8751 for a cantilever34; 𝐿 and 𝑤 are the length and width of the cantilever, 

respectively; 𝑌 is Young’s modulus; 𝐼 is the moment of inertia; 𝑚𝑝𝑢𝑙 is the mass per unit length 

of the cantilever; 𝜌 is the material density; 𝑦 is the distance from thickness neutral centre to 

each layer’s boundary; and the subscript 𝜓 represents a certain layer. A symmetric structure 

along the thickness direction is suggested34. When considering additional tip mass (𝑚𝑡𝑖𝑝), the 

overall natural resonant frequency (𝑓) of the system can be expressed by Equation 4-524, where 

𝑚𝑐𝑎𝑛 is the mass of the entire cantilever.  

𝑓 = 𝑓0 ∙ √
0.236𝑚𝑐𝑎𝑛

0.236𝑚𝑐𝑎𝑛 + 𝑚𝑡𝑖𝑝
    (4-5) 

According to the above model, the resonant frequency of a cantilever-based PEHer can be 

designed by tailoring either the dimensions and tip mass or the material physical/elastic 

properties.  

4.3.2 Bandwidth 

The bandwidth of a vibrational energy harvester can be defined as the full width at half 

maximum (FWHM) of its output-input frequency spectrum divided by its resonant frequency36, 

as described in Figure 4-8.  

For energy harvesters based on conventional beam-mass inertial systems (e.g. cantilever with 

tip mass), the bandwidth is considered extremely narrow (< 5%) due to the inherent working 

mechanism, with a resulting excellent performance only at or very close to their resonant 

frequencies37,38. However, a real environmental or machinery vibration normally has a wide 

bandwidth comprising several main frequencies mixed together and affecting each other, and 

even the main frequencies could shift slightly dependent on the circumstances1,39. Thus, in this 
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situation, the efficiency of the harvesters are dramatically reduced, which is one of the major 

drawbacks of cantilever based PEHers.  

 

Figure 4-8. Definition of the bandwidth of vibrational energy harvesters.  

To address this issue, non-linear technology40-42 or harvester arrays43,44, or a combination of 

both45, can be utilised to widen the bandwidth of PEHers. In particular, for non-linear 

technology, single or multiple non-linear amplitude magnifiers have been applied on a typical 

piezoelectric cantilever. The magnifiers could be developed using a special tip mass 

(e.g. asymmetrically attached46), multiple spring-mass systems47, magnetic coupled 

magnifiers42, etc., or could be re-formed beams with specifically designed shapes, such as a 

multi-stage beam48 or vertical placed beam49. The function of a non-linear magnifier is to create 

a bifurcation of the original output vs. frequency peak, or to suppress the optimum output but 

delaying its decrease, both of which tend to effectively widen the working frequency range36. 

In contrast, the method of integrating harvester arrays is more straightforward, by precisely 

designing the resonant frequencies of several individual harvesters with typical cantilever 

configurations37. The output peaks of the individual harvesters can be split in order to fit 
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different major vibrations with frequencies far from each other, or can partially cover each other 

to obtain a wideband response, for vibrations where a major frequency co-exists with noise 

around the frequency36. The advantage of the array configuration over the non-linear method is 

that it is not only capable of a wide bandwidth, but also of enhancement of the overall output 

power, if two or more output peaks overlap36. However, the potential problem of the former 

one may involve that an array with multi-degrees of freedom tends to work in an 

unsynchronized regime because of mistuning stiffness50. This means if the individual harvesters 

in an array are connected directly to each other but via not any rectifiers, as the generated 

electric signals are alternating between positive and negative and their different stiffness cannot 

ensure synchronising vibration, the positive electric potential generated by an individual 

harvester may be affected that by another (or vice versa), thus reducing the overall output, 

especially when the individual harvesters are connected in series or share the same proof mass50-

52. Although such a problem needs complex mathematical analyses50, it has been practically 

solved by the use of a rectifier for each individual harvester before being connected together43. 

Also, as an array contains two or more individual harvesters, the overall size of the integrated 

harvester is likely to be larger.  

 

4.4 Piezoelectric Cantilever Theory 

4.4.1 Poling and Electric Connection of Bimorphs 

Unimorph and bimorph cantilevers have be defined and distinguished in Figure 4-3. For a 

unimorph piezo-element with two layers of electrodes in parallel (like a capacitor), there is only 

one way to pole the material and connect the electrodes to external circuits if the cantilever is 

going to work in ‘31 mode’ (Figure 4-9 (a)). However, for a bimorph configuration, there are 

two different options to pole the two piezo-elements and connect the electrodes (Figures 4-9 (b), 
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4-9 (c)). Theoretically, the one poled in series and connected in parallel (called a parallel 

bimorph, Figure 4-9 (b)) tends to double the output current or power coupled with proper 

loads38,53 compared to its unimorph counterpart, while the one poled in parallel and connected 

in series (called a series bimorph, Figure 4-9 (c)) is able to double the open-circuit voltage10. 

Either method can be applied in practice.  

4.4.2 Electrodes 

Depositing layers of continuous electrode materials on both surfaces of a piezo-element, known 

as ‘parallel plates’ type electrodes (PPE)54, is a conventional electroding approach for 

cantilever-based PEHers, as presented above. This approach is simple and cost-effective, and 

suits a wide range of device dimensions (cm to μm level). However, another approach known 

as interdigitated electrodes (IDE) can also be considered, as shown in Figure 4-10. Rather than 

putting electrodes on both surfaces, two sets of electrode fingers are integrated on one surface 

of the piezo-element, across which a poling electric field is applied (Figure 4-10 (a))54,55. 

Therefore, the general polarization is along the length of the piezo-element, with opposite 

sub-directions between anodes and cathodes. As a result, the cantilever will work in a bending 

mode while the piezo-element will respond in ‘33 mode’ rather than ‘31 mode’55. As this 

configuration combines both the advantages of cantilever (larger deflection) and ‘33 mode’ 

(beneficial material parameters related to energy harvesting), the energy conversion capability 

tends to be improved, especially for MEMS applications54,55. However, much more complex 

factors, including the thickness of the piezo-element, the gaps between fingers, the length as 

well as the width/thickness ratios of the fingers, etc., must be carefully modelled and optimised 

in a practical design54,55, leading to increased device cost. Other disadvantages involve the 

unpoled regions under the electrodes, and the piezo-element not fully poled through the 

thickness55.  
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Figure 4-9. Schematics of poling and connecting methods (side-view): (a) unimorph; 

(b) bimorph poled in series, connected in parallel; (c) poled in parallel, connected in series.  
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Figure 4-10. Schematics of IDE configuration: (a) top-view; (b) cross-sectional side-view 

(reproduced according to multiple sources54,55).  

4.4.3 Equivalent Circuitry 

Figure 4-11 shows examples of the equivalent circuit of a cantilever based ‘31 mode’ PEHer in 

vibration and its corresponding external circuit, where Figure 4-11 (a) is focused on the details 

of the harvester, and Figure 4-11 (b) gives a general view of the entire harvesting system38,56,57.  

In Figure 4-11 (a), 𝑅1, 𝐿1 and 𝐶1 are the effective resistance, inductance and capacitance of the 

mechanical segment of the harvester, which model the mechanical damping, mass and 

compliance, respectively38; and 𝑛 is the turn ratio of the effective mechanical-electrical 

transformer38. With a vibration input 𝜐𝑖𝑛, an AC output voltage 𝑈 is generated in parallel with 

the effective capacitance 𝐶0 of the electric segment38. Such parameters are able to affect the 

output as well as energy conversion efficiency of the harvester38, but they are actually 

determined by the parameters of the piezo-elements and/or the supporting substrate, as 

discussed in detail in the next section. However, as Figure 4-11 (b) shows, if the harvester is 

connected to a load or an energy storage medium in an application, a specially designed external 

circuit for conditioning, rectifying and regulating the chaotic AC output into stable and usable 
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DC signals must be placed between the harvester and the end uses56,57. Different external 

circuits will achieve various energy conversion efficiencies for different end users57. The design 

and investigation of external circuits are beyond the scope of this thesis, thus no further details 

will be given.  

 

Figure 4-11. Schematics of the equivalent circuit of a cantilever based ‘31 mode’ PEHer in 

vibration and the corresponding external circuit: (a) harvester; (b) general integration 

(reproduced according to multiple sources38,56,57).  

4.4.4 Relationships of Material Properties and Energy Harvester Output 

For an energy harvester which intends to be a power supply, open-circuit voltage, output power 

and energy conversion efficiency are the most significant criteria. It has been presented that 

such performance of a PEHer can be affected by factors related to the harvester structure and 
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configuration and/or the electric circuitry. However, the overall capability of harvesting and 

converting energy is ultimately determined by the relevant properties of the piezoelectric 

materials utilised in the harvester. Even if the configuration and corresponding circuitry are 

very efficient, the absolute output of a PEHer is never able to be substantially improved if the 

full performance of the piezo-element is unavailable.  

The open-circuit output voltage (𝑈) of a unimorph cantilever in which the thickness of the 

substrate is equal to the total thickness of the electrodes and the piezo-element (as illustrated in 

Figure 4-9 (a)), or a symmetrical parallel bimorph cantilever (as illustrated in Figure 4-9 (b)), 

can be calculated using Equation 4-610. In the equation, 𝐻 and 𝐿 represent the thickness and 

length of the entire cantilever, respectively; 𝛿𝑧 is the tip displacement when the cantilever is 

bending; and ℎ31 is the effective transverse piezoelectric coefficient, which can be calculated 

by Equation 4-710. The open-circuit voltage of a symmetrical bimorph cantilever connected in 

series (as illustrated in Figure 4-9 (c)) is likely to be double this value (2𝑈)10.  In general, the 

output voltage is dependent on the piezoelectric coefficients 𝑔33 and 𝑔31, commonly named as 

piezoelectric voltage coefficients24, the stiffness of the piezoelectric material, the dimensions 

of the structure and the deformation when vibrating.  

𝑈 =
3

16
(

𝐻

𝐿
)

2

ℎ31𝛿𝑧    (4-6) 

ℎ31 = 𝑔31(𝑐11
𝐷 + 𝑐12

𝐷 ) + 𝑔33𝑐13
𝐷     (4-7) 

Compared to the voltage, the mathematic predictions of the output power have attracted 

stronger controversy13,35. Although the derivation of such equations is not appropriate here, it 

has been commonly agreed that certain general trends should be obeyed in practical harvester 

designs. For example, at frequencies far below the natural resonant frequency of a cantilever 

PEHer, the output power density, which is a comparable factor implying the ability to convert 

ambient vibrational energy, is likely to be positively related to 𝑑∙𝑔 (e.g. 𝑑31∙𝑔31)3. While at the 
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resonant frequency, larger 𝑄𝑀, 𝑘31 and relative permittivity tend to induce higher output power 

density3. It should be noted that at off-resonant frequencies smaller relative permittivity may be 

needed as 𝑔31 = 𝑑31 (𝜀𝑟∙𝜀0)⁄ ,58 however in the resonant situation the requirement is for a larger 

relative permittivity. This is the first conflict that should be balanced when designing and 

selecting the materials for PEHers.  

In a similar way to the output power, the materials aspect of the energy conversion 

efficiency (𝜂𝑚) may also suffer a conflict. Equation 4-8 provides an estimation10,59, where 𝑄 is 

the total quality factor considering both the effects of mechanical part (𝑄𝑀) and dielectric part 

(𝑄𝑑 = 1 𝑡𝑎𝑛𝛿⁄ ), and 𝑘’ is expressed by Equation 4-910,59. As indicated, the efficiency is 

positively contributed to by 𝑄𝑀 and 𝑘𝑒𝑓𝑓. However, 𝑘𝑒𝑓𝑓 is normally inversely related to 𝑄𝑀, 

as 𝑘𝑒𝑓𝑓 increases as the gap between the resonant and anti-resonant frequencies increases 

whereas 𝑄𝑀 decreases10. Therefore, a maximum multiplied value is desired.  

𝜂𝑚 =
𝑄 ∙ 𝑘′

2 + 𝑄 ∙ 𝑘′
    (4-8) 

𝑄 = 𝑄𝑀 + 𝑄𝑑        𝑘′ =
𝑘𝑒𝑓𝑓

2

1 − 𝑘𝑒𝑓𝑓
2     (4-9) 

The above conflicts make choosing materials for PEHers complicated. Practical investigation 

needs to be done in terms of each material case.  

 

4.5 Other Energy Harvesting Combining Piezoelectricity 

Several examples of potential energy harvesters combining piezo-elements for harvesting other 

sources of energy rather than kinetic have been briefly mentioned in Chapter 2. These include 

a wind harvester, a pyroelectric or ferromagnetic thermal harvester, and a radioactive harvester. 

The design details of some wind harvesters with piezo-elements are shown in Figure 4-12. The 

first feasible configuration is shown in Figure 4-12 (a), where piezoelectric bimorphs are 
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radially embedded on a cylindrical holder. The shaft is driven by wind causing the bumps to 

strike the bimorphs periodically and induce deformations60. Rather than bend the bimorphs by 

mechanical impact, the second configuration (Figure 4-12 (b)) employs permanent magnets 

mounted on the tip of the bimorphs and the shaft, which force the bimorphs to bend up and 

down by contact-less attractive and repulsive magnetic forces as the shaft is rotated by the 

wind61. The advantage of designs that combine piezoelectric elements and wind turbine 

structures, over the conventional electromagnetic wind turbine, is considered to be their 

potentially compact size which may suit the application of small and low-power devices. The 

energy harvesters involved in this project share similar cantilever configurations to those shown 

in Figure 4-12, and are thus compatible with wind turbine systems. The other possible structure 

incorporates flexible beams of soft piezoelectric polymers (e.g. PVDF – polyvinylidene 

floride), which can be straightforwardly placed in the air flow and thus deformed62.  
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Figure 4-12. Schematics of wind harvesters combining piezo-elements: (a) striking design60; 

(b) contact-less design61.  

Also, ferroelectric materials are able to exhibit the pyroelectric effect which transfers 

temperature fluctuation into electricity. As this is a mechanically static procedure, the 

configuration of a pyroelectric harvester is relatively straightforward, where either bulk or film 

piezoelectric materials or a combination of both are directly employed as the harvester and 

connected with corresponding circuitry10,63,64. However, the other design of thermal energy 

harvester utilising the piezoelectric effect involves a more complex transfer structure, of which 
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an example is shown in Figure 4-1365,66. A PEHer of any of the type introduced above is placed 

between cold and hot surfaces. A soft magnet (with a Curie temperature 𝑇𝑐) is attached to the 

‘hot’ side of the PEHer, above a permanent magnet which is fixed on the hot surface. The 

temperature of the hot surface is higher than 𝑇𝑐 while that of the cold side is lower. In the initial 

state, the soft magnet is ferromagnetic and is thus able to be attracted by the permanent magnet, 

inducing a deformation of the PEHer. When the two magnets contact each other, the 

temperature of the soft magnet increases above 𝑇𝑐 and it enters the paramagnetic state, thus 

losing its attraction to the permanent magnet, causing release and oscillation of the PEHer. In 

such stage, the temperature gradient is transferred to mechanical displacement and then to 

electricity. When the soft magnet cools down, the cycle repeats. There are some important 

requirements to be noticed for the design of this harvester: (1) the 𝑇𝑐 or 𝑇𝑑 (depoling 

temperature) of the piezoelectric materials must be higher than the 𝑇𝐻 (temperature of the hot 

surface); (2) the 𝑇𝑐 of the soft magnet must be able to be tailored between the 𝑇𝐻 and 𝑇𝐿 

(temperature of the cold surface). Such a configuration provides one option for the design of a 

thermal energy harvester incorporating piezoelectrics, though it is of slow cyclic operation65,66 

compared to piezoelectric energy harvesters designed for harvesting vibration energy.  
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Figure 4-13. Example schematics of the configuration and operating mechanism of a thermal 

energy harvester combining piezoelectrics and magnetics (simplified according to multiple 

sources65,66).  

The energy emitted by radioactive materials can also be harvested and converted to electricity 

through the piezoelectric effect. Figure 4-1467 shows a promising design of such harvester, 

where there are many similarities compared to the harvester shown in Figure 4-13. The charge 

emitted by the piece of radioactive material (e.g. uranium, thorium) generates an electrostatic 

attraction to the conductive cantilever, forcing it to bend. When the two components contact 

each other, the charge differential is dissipated and the cantilever is released and starts to 

oscillate. Consequently, the piezoelectric patch attached to the cantilever transfers the 

radioisotope source into electricity67,68.  

Some quantification of output of different types of piezoelectric energy harvesters described 

above and some other (e.g. electromagnetic, electrostatic) vibrational energy harvesters are 

listed in Table 4-1 as reported for a brief comparison. In summary, PEHers are mainly suitable 
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for harvesting vibration energy but, with suitable design configurations, they can be 

incorporated into harvesters of other energy sources.  

 

Figure 4-14. Schematic configuration of radioisotope harvester67.  
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Table 4-1. Brief summary of different types of piezoelectric and vibrational energy harvesters. 

Harvester 

Principle 

Energy Source 

and Condition 

Harvester 

Configuration 

Output 

Voltage 

(V) 

Output 

Power 

(mW) 

Power 

Density 

(mW/cm3) 

Piezoelectric69 
Vibration 

243 Hz, 4.9 m/s2 

Thin-film cantilever 

on SOI, PPE 
- 2.15×10-3 2.02 

Piezoelectric70 
Vibration 

67 Hz, 2.84 m/s2 

Screen printed thick-

film on stainless steel 
- 0.24 - 

Piezoelectric24 
Vibration 

229 Hz, 9.8 m/s2 
Free-standing - 0.28×10-3 15.5×10-3 

Piezoelectric69 
Vibration 

243 Hz, 4.9 m/s2 

Thin-film cantilever 

on SOI, IDE 
- 1.71×10-3 1.61 

Piezoelectric25 
Cyclic pressure 

1.19 Hz, 24.8 N 

Cymbal, bulk 

ceramics 
- 0.66 0.31 

Piezoelectric27 
Vibration 

150 Hz, 9.8m/s2 
Diaphram array - 28 14 

Piezoelectric32 
Vibration 

63.8 Hz, 10m/s2 

Shear mode, bulk 

ceramics 
127.6 9 42.25 

Piezoelectric60 
Wind 

10 miles/h 

18 bimorphs, 

striking type 
- 5 0.386 

Piezoelectric61 
Wind 

10 miles/h 

6 bimorphs, 

contact-less type 
- 0.75 1.04 

Pyroelectric64 
Cyclic heat flow 

40-100 °C, 1 Hz 

Piezoelectric thin-

film 
- - 110 

Piezoelectric65 

Temperature 

gradient 

50 °C difference 

Integration of soft and 

permanent magnets 
- - 

1.85-3.61 

(mW/cm2) 

Piezoelectric68 
Radioactive 
63Ni sourse 

Cantilever, 

radioactive material 
- 0.1×10-3 0.1×10-3 

Electromagnetic71,72 
Vibration 

Tailorable 
Commercialised Up to 8 Up to 27 - 

Electrostatic71 

Vibration 

Various 

conditions 

- - 
2.4×10-3-

1.76 

2.42×10-3-

56×10-3 

Electrostrictive73 

Vibration 

100 Hz, 0.2% 

transverse strain 

- - 7×10-3 0.28 

 



University of Birmingham 

80 
 

References 

1 Roundy, S., Wright, P. K. and Rabaey, J. A study of low level vibrations as a power source for 
wireless sensor nodes. Computer Communications 26, 1131-1144 (2003). 

2 Beeby, S. P., Tudor, M. J. and White, N. M. Energy harvesting vibration sources for 
microsystems applications. Measurement Science & Technology 17, R175-R195 (2006). 

3 Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. Journal of 
Electroceramics 19, 167-184 (2007). 

4 Williams, C. B. and Yates, R. B. Analysis of a micro-electric generator for microsystems. Sensors 
and Actuators A-Physical 52, 8-11 (1996). 

5 Ramadass, Y. K. and Chandrakasan, A. P. An efficient piezoelectric energy harvesting interface 
circuit using a bias-flip rectifier and shared inductor. IEEE Journal of Solid-State Circuits 45, 
189-204 (2010). 

6 Dicken, J., Mitcheson, P. D., Stoianov, I. and Yeatman, E. M. Power-extraction circuits for 
piezoelectric energy harvesters in miniature and low-power applications. IEEE Transactions on 
Power Electron. 27, 4514-4529 (2012). 

7 Guan, M. J. and Liao, W. H. Characteristics of energy storage devices in piezoelectric energy 
harvesting systems. Journal of Intelligent Material Systems and Structures 19, 671-680 (2008). 

8 Anton, S. R. and Sodano, H. A. A review of power harvesting using piezoelectric materials 
(2003-2006). Smart Materials & Structures 16, R1-R21 (2007). 

9 Kim, H. S., Kim, J. H. and Kim, J. A review of piezoelectric energy harvesting based on vibration. 
International Journal of Precision Engineering and Manufacturing 12, 1129-1141 (2011). 

10 Moulson, A. J. and Herbert, J. M. Electroceramics: Materials, properties and applications. 
Chapman & Hall: London, pp. 274-336 (1990). 

11 Erturk, A. and Inman, D. J. An experimentally validated bimorph cantilever model for 
piezoelectric energy harvesting from base excitations. Smart Materials & Structures 18, 
025009 (2009). 

12 Wang, Q. M. and Cross, L. E. Constitutive equations of symmetrical triple layer piezoelectric 
benders. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 46, 1343-1351 
(1999). 

13 Erturk, A. and Inman, D. J. Issues in mathematical modeling of piezoelectric energy harvesters. 
Smart Materials & Structures 17, 065016 (2008). 

14 Kim, I., Joo, H., Jeong, S., Kim, M. and Song, J. Micro-power generation of PMN-PZT triple 
morph cantilever for electric harvesting devices. E-MRS 2009 Spring Meeting, Symposium F: 
Advances in Transparent Electronics: From Materials to Devices, June 8, 2009 - June 12, 2009.9 
edn 7, 2331-2335 (2010). 

15 Al Ahmad, M. and Jabbour, G. E. Electronically droplet energy harvesting using piezoelectric 
cantilevers. Electronics Letters 48, 647-649 (2012). 

16 Roundy, S., Leland, E. S., Baker, J. et al. Improving power output for vibration-based energy 
scavengers. IEEE Pervasive Computing 4, 28-36 (2005). 

17 Yoon, H. S., Washington, G. and Danak, A. Modeling, optimization, and design of efficient 
initially curved piezoceramic unimorphs for energy harvesting applications. Journal of 
Intelligent Material Systems and Structures 16, 877-888 (2005). 

18 Zhu, Y., Zu, J. and Su, W. Broadband energy harvesting through a piezoelectric beam subjected 
to dynamic compressive loading. Smart Materials and Structures 22, 045007 (2013). 

19 Marzencki, M., Defosseux, M. and Basrour, S. Mems vibration energy harvesting devices with 
passive resonance frequency adaptation capability. Journal of Microelectromechanical 
Systems 18, 1444-1453 (2009). 



Ph.D. Thesis – Yang Bai 

81 
 

20 Kymissis, J., Kendall, C., Paradiso, J. and Gershenfeld, N. Parasitic power harvesting in shoes. 
2nd International Symposium on Wearable Computers - Digest of Papers 132-139 (1998). 

21 Glynne-Jones, P., Beeby, S. P. and White, N. M. Towards a piezoelectric vibration-powered 
microgenerator. IEEE Proceedings: Science, Measuremetn and Technology 2 edn 148, 68-72 
(2001). 

22 Torah, R. N., Beeby, S. P. and White, N. M. Experimental investigation into the effect of 
substrate clamping on the piezoelectric behaviour of thick-film PZT elements. Journal of 
Physics D: Applied Physics 37, 1074-1078 (2004). 

23 White, N. M., Harris, N. R., Swee, L. K. and Tudor, M. J. Novel thick-film piezoelectric 
micro-generator based on free-standing structures 2008 2nd Electronics Systemintegration 
Technology Conference, ESTC, September 1, 2008 - September 4, 2008, 589-592 (2008). 

24 Kok, S. L., White, N. M. and Harris, N. R. Fabrication and characterization of free-standing 
thick-film piezoelectric cantilevers for energy harvesting. Measurement Science and 
Technology 20, 124010 (2009). 

25 Palosaari, J., Leinonen, M., Hannu, J., Juuti, J. and Jantunen, H. Energy harvesting with a cymbal 
type piezoelectric transducer from low frequency compression. Journal of Electroceramics 28, 
214-219 (2012). 

26 Mo, C., Arnold, D., Kinsel, W. C. and Clark, W. W. Modeling and experimental validation of 
unimorph piezoelectric cymbal design in energy harvesting. Journal of Intelligent Material 
Systems and Structures 24, 828-836 (2013). 

27 Wang, W., Yang, T. Q., Chen, X. R. and Yao, X. Vibration energy harvesting using a piezoelectric 
circular diaphragm array. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency 
Control 59, 2022-2026 (2012). 

28 Kim, S., Clark, W. W. and Wang, Q. M. Piezoelectric energy harvesting with a clamped circular 
plate: Experimental study. Journal of Intelligent Material Systems and Structures 16, 855-863 
(2005). 

29 Li, X. T., Guo, M. S. and Dong, S. X. A flex-compressive-mode piezoelectric transducer for 
mechanical vibration/strain energy harvesting. IEEE Transactions on Ultrasonics Ferroelectrics 
and Frequency Control 58, 698-703 (2011). 

30 Platt, S. R., Farritor, S. and Haider, H. On low-frequency electric power generation with PZT 
ceramics. Ieee - Asme Transactions on Mechatronics 10, 240-252 (2005). 

31 Aladwani, A., Aldraihem, O. and Baz, A. Single degree of freedom shear-mode piezoelectric 
energy harvester. Journal of Vibration and Acoustics-Transactions of the Asme 135, 051011 
(2013). 

32 Zhou, L., Sun, J., Zheng, X. J. et al. A model for the energy harvesting performance of shear 
mode piezoelectric cantilever. Sensors and Actuators A-Physical 179, 185-192 (2012). 

33 Wang, G. Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and 
Euler-Bernoulli beam theory. Journal of Intelligent Material Systems and Structures 24, 
226-239 (2013). 

34 Blevins, R. D. Formulas for natural frequency and mode shape. van Nostrand Reinhold 
Company: New York, pp. 104-106 (1979). 

35 Shafer, M. W., Bryant, M. and Garcia, E. Designing maximum power output into piezoelectric 
energy harvesters. Smart Materials and Structures 21, 085008 (2012). 

36 Bai, Y., Meggs, C. and Button, T. W. Investigation of using free-standing thick-film piezoelectric 
energy harvesters to develop wideband devices. International Journal of Structural Stability 
and Dynamics 14, 1440016 (2014). 

37 Zhu, D., Tudor, M. J. and Beeby, S. P. Strategies for increasing the operating frequency range 
of vibration energy harvesters: a review. Measurement Science and Technology 21, 022001 
(2010). 



University of Birmingham 

82 
 

38 Al Ahmad, M., Elshurafa, A. M., Salama, K. N. and Alshareef, H. N. Determination of maximum 
power transfer conditions of bimorph piezoelectric energy harvesters. Journal of Applied 
Physics 111, 102812 (2012). 

39 Zhu, D. B., Harris, N. and Beeby, S. Performance of linear vibration energy harvesters under 
broadband vibrations with multiple frequency peaks. 26th European Conference on Solid-State 
Transducers, Eurosensor 2012, Procedia Engineering (eds R. Walczak & J. Dziuban) 47, 5-8 
(2012). 

40 Guyomar, D., Badel, A., Lefeuvre, E. and Richard, C. Toward energy harvesting using active 
materials and conversion improvement by nonlinear processing. IEEE Transactions on 
Ultrasonics Ferroelectrics and Frequency Control 52, 584-595 (2005). 

41 Lallart, M., Wu, Y. C., Richard, C., Guyomar, D. and Halvorsen, E. Broadband modeling of a 
nonlinear technique for energy harvesting. Smart Materials and Structures 21, 115006 (2012). 

42 Tang, L. H. and Yang, Y. W. A nonlinear piezoelectric energy harvester with magnetic oscillator. 
Applied Physics Letters 101, 094102 (2012). 

43 Liu, J. Q., Fang, H. B., Xu, Z. Y. et al. A MEMS-based piezoelectric power generator array for 
vibration energy harvesting. Microelectronics Journal 39, 802-806 (2008). 

44 Al-Ashtari, W., Hunstig, M., Hemsel, T. and Sextro, W. Enhanced energy harvesting using 
multiple piezoelectric elements: Theory and experiments. Sensors and. Actuators A-Physical 
200, 138-146 (2013). 

45 Ferrari, M., Alghisi, D., Bau, M. and Ferrari, V. Nonlinear multi-frequency converter array for 
vibration energy harvesting in autonomous sensors. 26th European Conference on Solid-State 
Transducers, Eurosensor 2012, Procedia Engineering (eds R. Walczak & J. Dziuban) 47, 410-413 
(2012). 

46 Abdelkefi, A., Najar, F., Nayfeh, A. H. and Ben Ayed, S. An energy harvester using piezoelectric 
cantilever beams undergoing coupled bending-torsion vibrations. Smart Materials & 
Structures 20, 115007 (2011). 

47 Tang, L. H. and Yang, Y. W. A multiple-degree-of-freedom piezoelectric energy harvesting 
model. Journal of Intelligent Material Systems and Structures 23, 1631-1647 (2012). 

48 Berdy, D. F., Srisungsitthisunti, P. and Jung, B. et al. Low-frequency meandering piezoelectric 
vibration energy harvester. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency 
Control 59, 846-858 (2012). 

49 Friswell, M. I., Ali, S. F., Bilgen, O. et al. Non-linear piezoelectric vibration energy harvesting 
from a vertical cantilever beam with tip mass. Journal of Intelligent Material Systems and 
Structures 23, 1505-1521 (2012). 

50 Litak, G., Friswell, M. I., Kwuimy, C. A. K., et al. Energy harvesting by two magnetopiezoelastic 
oscillators with mistuning. Theoretical & Applied Mechanics Letters 14, 043009 (2012). 

51 Kim, I. H., Jung, H. J., Lee, B. M. and Jang, S. J. Broadband energy-harvesting using a two 
degree-of-freedom vibrating body. Applied Physics Letters 98, 214102 (2011). 

52 Lin, H. C., Wu, P. H., Lien, I. C. and Shu, Y. C. Analysis of an array of piezoelectric energy 
harvesters connected in series. Smart Materials and Structures 22, 094026 (2013). 

53 Smits, J. G., Dalke, S. I. and Cooney, T. K. The constituent equations of piezoelectric bimorphs. 
Sensors and Actuators A-Physical 28, 41-61 (1991). 

54 Chidambaram, N., Mazzalai, A., Balma, D. and Muralt, P. Comparison of lead zirconate titanate 
thin films for microelectromechanical energy harvester with interdigitated and parallel plate 
electrodes. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 60, 
1564-1571 (2013). 

55 Knight, R. R., Mo, C. K. and Clark, W. W. MEMS interdigitated electrode pattern optimization 
for a unimorph piezoelectric beam. Journal of Electroceramics 26, 14-22 (2011). 

56 Yang, Y. W. and Tang, L. H. Equivalent circuit modeling of piezoelectric energy harvesters. 
Journal of Intelligent Material Systems and Structures 20, 2223-2235 (2009). 



Ph.D. Thesis – Yang Bai 

83 
 

57 Szarka, G. D., Stark, B. H. and Burrow, S. G. Review of power conditioning for kinetic energy 
harvesting systems. IEEE Transactions on Power Electron. 27, 803-815 (2012). 

58 Fialka, J. and Benes, P. Comparison of methods for the measurement of piezoelectric 
coefficients. IEEE Transactions on Instrumentation and Measurement 62, 1047-1057 (2013). 

59 Richards, C. D., Anderson, M. J., Bahr, D. F. and Richards, R. F. Efficiency of energy conversion 
for devices containing a piezoelectric component. Journal of Micromechanics and 
Microengineering 14, 717-721 (2004). 

60 Myers, R., Vickers, M., Kim, H. and Priya, S. Small scale windmill. Applied Physics Letters 90, 
054106 (2007). 

61 Bressers, S., Avirovik, D., Lallart, M., Inman, D. J. and Priya, S. Contact-less wind turbine utilizing 
piezoelectric bimorphs with magnetic actuation. Proceedings of the IMAC-XXVIII, Structural 
Dynamics, Conference Proceedings of the Society for Experimental Mechanics Series 12 3, 233 
(2010). 

62 Li, S. G., Yuan, J. P. and Lipson, H. Ambient wind energy harvesting using cross-flow fluttering. 
Journal of Applied Physics 109, 026104 (2011). 

63 Cuadras, A., Gasulla, M. and Ferrari, V. Thermal energy harvesting through pyroelectricity. 
Sensors and Actuators A-Physical 158, 132-139 (2010). 

64 Cha, G. and Ju, Y. S. Pyroelectric energy harvesting using liquid-based switchable thermal 
interfaces. Senors and Actuators A-Physical 189, 100-107 (2013). 

65 Ujihara, M., Carman, G. P. and Lee, D. G. Thermal energy harvesting device using ferromagnetic 
materials. Applied Physics Letters 91, 093508 (2007). 

66 Chung, T. K., Shukla, U., Tseng, C. Y., Chen, C. C. and Wang, C. M. A magnetic/piezoelectric-
based thermal energy harvester. Active and Passive Smart Structures and Integrated Systems 
2013, Proceedings of SPIE (ed H. A. Sodano) 8688, UNSP 86880M (2013). 

67 Knight, C., Davidson, J. and Behrens, S. Energy options for wireless sensor nodes. Sensors 8, 
8037-8066 (2008). 

68 Lal, A., Duggirala, R. and Li, H. Pervasive power: A radioisotope-powered piezoelectric 
generator. IEEE Pervasive Computing 4, 53-61 (2005). 

69 Kim, S. B., Park, H., Kim, S. H. et al. Comparison of MEMS PZT cantilevers based on d(31) and 
d(33) modes for vibration energy harvesting. Journal of Microelectromechanical Systems 22, 
26-33 (2013). 

70 Zhu, D., Glenne-Jones, P., White, N. et al. Screen printed piezoelectric films for energy 
harvesting. Advances in Applied Ceramics 112, 79-84 (2013). 

71 Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S. and Green, T. C. Energy harvesting 
from human and machine motion for wireless electronic devices. Proceedings of the IEEE 96, 
1457-1486 (2008). 

72 www.perpetuum.com/products/vibration-energy-harvester.asp [online access] 07/08/2014. 
73 Cottinet, P. J., Lallart, M., Guyomar, D. et al. Analysis of ac-dc conversion for energy harvesting 

using an electrostrictive polymer P(VDF-TrFE-CFE). IEEE Transactions on Ultrasonics 
Ferroelectrics and Frequency Control 58, 30-42 (2011). 

 

 

http://www.perpetuum.com/products/vibration-energy-harvester.asp


84 
 

CHAPTER 5. AIMS AND OBJECTIVES 

This project covered broad but systematic and consecutive investigations on the topic of 

piezoelectric energy harvesting. These include material fabrication and characterisation, 

harvester fabrication and parametric selection, electric output and dynamic behaviour tests of 

energy harvesters, and the feasibility of utilising lead-free piezoelectric materials for energy 

harvesting. In this way the work was able to provide a general view of piezoelectric energy 

harvesting as well as create relevant background and an initial data base in the group. The aims 

and objectives are summarised as following: 

 To fabricate and characterise bulk ceramic samples made from traditional ‘soft’ PZT 

and two other lead-based piezoelectric compositions, and compare their parameters 

related to energy harvesting.  

 To investigate the feasibility of lowering the sintering temperature of the bulk materials, 

in order to be prepared for subsequent thick-film fabrication.  

 To fabricate and characterise bulk ceramics made from a promising lead-free 

piezoelectric composition, and thus compare its energy harvesting parameters to those 

of traditional PZT, as well as investigate its capability for low-temperature sintering.  

 To select, fabricate and characterise a lead-based piezoelectric candidate material for 

energy harvesting applications, and compare with PZT in the form of single-layer 

free-standing thick-films.  

 To fabricate and characterise multi-layer free-standing thick-film cantilevers with PZT 

and the other lead-based candidate, and develop a reliable/repeatable process.  

 To test electrical outputs of the cantilever harvesters under mechanical vibration without 

structural or electrical optimisation, in order to explore or confirm the theoretical 

relations between harvester performance and material properties.  
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 To improve the performance of the harvesters, and fabricate and demonstrate prototype 

devices.  
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CHAPTER 6. EXPERIMENTAL APPROACHES 

6.1 Powder Synthesis 

6.1.1 Lead-based Compositions 

The compositions of PZT-5H, 3 mol% and 5 mol% La-doped PZnN-PZT were selected as the 

lead-based candidates, whose expected chemical formulas and short names used in this thesis 

are shown in Table 6-1.  

Table 6-1. Summary of the selected lead-based compositions.  

Short Name Theoretical Chemical Formula 

PZT Commercial PZT-5H (TRS610C) 

PZnN-P3LZT 0.25Pb(Zn1/3Nb2/3)O3-0.75[0.03La+Pb(Zr0.55Ti0.45)O3] 

PZnN-P5LZT 0.25Pb(Zn1/3Nb2/3)O3-0.75[0.05La+Pb(Zr0.53Ti0.47)O3] 

 

As presented in Chapter 3, La3+ is a ‘soft’ dopant that helps to improve permittivity, 𝑘, time 

stability (slower ageing), etc.1, whilst the use of PZnN as well as various Zr/Ti ratios can 

properly tailor and balance other properties1,2. The selection of both La-doped compositions 

was based on the author’s previous work and experience3, where the PZnN-P3LZT was likely 

to provide higher 𝑔 and 𝑄𝑀, while the PZnN-P5ZT was intended to have higher 𝑑∙𝑔 values as 

well as coupling coefficients. The PZT powder was ‘TRS610C’ (Batch No. 1321A, TRS 

Technologies, USA), but the two series of La-doped PZnN-PZT powders were synthesized 

through the conventional solid state reactions from PbO (> 98 %, Product No. 290404E, BDH 

Chemicals Ltd., USA), ZnO (> 99.5 %, Product No. 306174R, BDH Chemicals Ltd., USA), 

Nb2O5 (> 99.9 %, Product No. 72520, Fluka Chemika, UK), La2O3 (> 99 %, Product No. 29010, 

BDH Chemicals Ltd., USA), ZrO2 (> 99.82 %, Minchem HMP Ltd., UK) and TiO2 (> 99.9 %, 

Batch No. 06005KS, PI-KEM Ltd., UK).  
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Firstly, the raw material powders were weighed according to their calculated stoichiometric 

ratios (Table 6-1). In order to take account of the evaporation of PbO during calcination and 

sintering, empirically 1 wt% excess PbO was also added to each batch. The powders were then 

mixed and milled in a 500 mL polypropene bottle (Scientific Laboratory Supplies, UK) with 

ZrO2 balls and distilled water (ball:powder:water = 2: 1: 0.5 𝑤𝑡%) on a ball milling machine 

(Machine No. 21735, Pascall Engineering, UK) for 24 hours. The actual amount of each raw 

powder is listed in Appendix I. Subsequently, the mixtures were dried at 90 °C in an oven 

(Lenton Thermal Designs, UK) for 24 hours and then calcined at 900 °C for 2 hours with a 

5 °C/min ramp rate (up and down) in a muffle furnace (Serial No. 3967, Lenton Furnaces, UK). 

The powders for calcination were loaded in Al2O3 crucibles (99.99 %, Multi-lab Ltd., UK) with 

lids (sealed by ZrO2/water paste). Finally, the calcined powders were re-milled and dried using 

the same processes, followed by being sieved through a 250 μm sieve mesh (Endecotts, UK).  

6.1.2 Lead-free Composition 

The 0.5BZT-0.5BCT composition, 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (abbreviated as 

50BCZT afterwards), which was selected because of its excellent potential piezoelectric 

properties4, was also synthesized through a conventional solid state reaction. BaZrO3 powder 

was fabricated first as a precursor. Stoichiometric amounts of BaCO3 (> 99 %, Batch 

No. 237108-500G, Sigma-Aldrich, UK) and ZrO2 raw powders were mixed and milled in a 125 

mL polypropene bottle (Scientific Laboratory Supplies, UK) with ZrO2 balls and Ethanol 

(99.99 %, Batch No. 1076733, Fisher Scientific, UK) (ball:powder:ethanol = 2: 1: 0.8 𝑤𝑡%) 

for 24 hours on the ball milling machine, followed by drying at 80 °C in the oven for 24 hours 

and heat treatment at 1400 °C for 10 hours with a 5 °C/min ramp rate (up and down) in another 

muffle furnace (Serial No. 5079, Lenton Furnaces, UK). It should be noted that as this project 

includes work on both lead-based and lead-free compositions, good laboratory procedures were 
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used to avoid cross-contamination of lead-based and lead-free materials (and any other 

materials used in the group). Where equipment could not be thoroughly cleaned (e.g. mixing, 

heating etc.), separate equipment was dedicated to each material type. This was particularly 

important for the calcination and sintering furnaces. Subsequently, treating the synthesized 

BaZrO3 as one of the starting materials, stoichiometric amounts of BaZrO3, CaCO3 (> 99 %, 

Batch No. C4830-100G, Sigma-Aldrich, UK), BaCO3 and TiO2 were mixed, milled and dried 

using the same procedures presented above, and calcined at 1350 °C for 2 hours with the same 

ramp rate in the same furnace as the BaZrO3. Because the decomposition of BaCO3 and CaCO3 

produces CO2, the lead-free powder mixtures were calcined in open Al2O3 crucibles. Finally, 

the calcined powders were re-milled and dried using the same processes as those presented in 

Section 6.1.1, followed by being sieved through a 300 μm sieve mesh (VWR, UK). The actual 

batch compositions are listed in Appendix I.  

6.1.3 Low-temperature Sintering Aid 

A commercial borosilicate glass (Batch No. 2210, Particle Technology, UK) was selected as 

the sintering aid for investigations of low-temperature sintered lead-based and lead-free 

piezoelectric ceramics (bulk discs and thick-films). A part of the calcined powders presented in 

Section 6.1.1 and 6.1.2 were mixed with amounts of the glass additive ranging from 1 to 9 wt% 

for the lead-based to 1 to 3 wt% for the lead-free powders respectively, treating the calcined 

powder as 100 wt%. The powder mixtures were then milled with ZrO2 balls and distilled water 

(ball:powder:water = 2: 1: 0.5 𝑤𝑡%) for 24 hours on the ball milling machine, dried at 90 °C 

for 24 hours in the oven, and finally sieved through meshes (250 μm for the lead-based, 300 μm 

for the lead-free). It should be explained here that the selection of the mesh sizes has no strict 

requirement, as the sieves were only used to avoid potential large agglomerates of the dried 

powders. Both sieves used in this project were chosen according to the availability in the 
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group’s laboratories. And separate sieve for each material type was applied in order to avoid 

cross-contamination of lead-based and lead-free compositions.  

 

6.2 Shaping and Sintering 

6.2.1 Bulk Discs 

All of the green bodies of bulk disc samples both with and without glass additives were shaped 

by uniaxial single-ended dry pressing in a stainless steel die (P.T. No. 3000, Specac, UK) with 

13 mm diameter. Before pressing, a combination of two water-based polyvinyl alcohol (PVA) 

binders, about 5 wt% DURAMAX B-1000 (Product No. 74821, Chesham Chemicals Ltd., UK) 

and about 5 wt% DURAMAX B-1007 (Product No. 74823, Chesham Chemicals Ltd., UK) 

(treating the powder as 100 wt%), was mixed with ZrO2 balls and distilled water as well as the 

powder (ball:powder:water = 2: 1: 0.5 𝑤𝑡%) for 10-15 minutes on the ball milling machine, 

followed by drying at 90 °C for 24 hours in the oven and sieving through 250 μm (lead-based) 

or 300 μm (lead-free) meshes. The subsequent pressing was carried out on a 5507 Instron (UK) 

using pressures between 90-98 MPa (12-13 kN) applied for 1 minute for each disc. The mass 

of each green body was targeted on 0.8 g (lead-based) or 0.4 g (lead-free). Finally, the green 

bodies were sintered at:  

(1) 1200-1270 °C for 2 hours, in Al2O3 rectangular crucibles (99.99%, Multi-lab Ltd., UK), 

covered by lead-oxide doped ZrO2 sand (lead-based without glass);  

(2) 900-1000 °C for 2 hours, on Al2O3 substrates (CeramTec North America, USA), in air 

atmosphere (lead-based with glass);  

(3) 1400-1490 °C for 4 hours, on ZrO2 substrates (Dynamic-Ceramic Ltd., UK), in air 

atmosphere (lead-free without glass);  

(4) 900-1300 °C for 4 hours, on ZrO2 substrates, in air atmosphere (lead-free with glass).  
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The sintering programme was set as follows:  

1 °C/min ramp to 325 °C, dwell 1 hour;  

1 °C/min ramp to 500 °C, dwell 1 hour;  

5 °C/min ramp to targeted temperatures, dwell certain periods (presented above);  

5 °C/min ramp to room temperature.  

The initial slow heating procedures below 500 °C were used to burn off the binders without 

disruption to the ceramic green bodies. Also, it should be noted that the furnaces used for 

sintering the lead-based and lead-free samples should match the corresponding ones used for 

calcination presented in Section 6.1, to avoid Pb contamination on lead-free samples.  

6.2.2 Fabrication of Printable Inks 

The lead-based powders with appropriate amounts of glass additives were mixed with a 

commercial vehicle, the Blythe (M03MD10, Johnson Matthey, UK). The ratio of the powder 

and the Blythe were 80 wt% and 20 wt%, respectively. A 3-roll mill (G2996/84/484/2, 

Marchant Engineers, UK) with 100 μm rear and 30 μm front roller gaps was utilised to help 

mix the inks and reduce agglomeration. A silver ink comprising 70 wt% silver flake (FS2, 

Johnson Matthey, UK) and 30 wt% Blythe, and a carbon ink comprising 30 wt% carbon powder 

(Monarch 120, Johnson Matthey, UK) and 70 wt% Blythe used to produce electrode and 

sacrificial layers respectively, were manufactured using the same process.  

6.2.3 Free-standing Thick-films and Cantilevers 

Free-standing single-layer thick-films or multi-layer cantilevers were fabricated by a doctor 

blading process. Figure 6-1 shows the schematic fabrication processes.  
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Figure 6-1. Side-view schematics of the fabrication processes of (a) free-standing single-layer 

thick-film; (b) free-standing thick-film unimorph cantilever; (c) free-standing thick-film 

bimorph cantilever.  
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A 70 μm thick tape (810 Magic, Scotch, UK) and a 140 μm thick tape (494-354, RS 

Components Ltd., UK) were employed to control the thickness of each bladed layer. First of 

all, a carbon layer was deposited on Al2O3 substrates (250-1000 μm thick, CeramTec North 

America, USA) (the substrates were also used as blades), followed by other layers as shown in 

the Figure 6-1. Each layer was dried at 70 °C for 30 minutes before printing the next layer. 

Subsequently, the layers were co-sintered at 875-950 °C for 0.5-2 hours. The ramping 

procedures were the same with those for bulk discs, while the dwell periods were cut to half 

because of smaller dimensions of the thick-films.  

In further detail, as shown in Figure 6-1 (a), different from Series 2, Series 1 single-layer 

thick-films were not coated with gold electrodes (electroding will be presented in the next 

section), thus they were used for measurements of physical properties (e.g. density, shrinkage 

rate). The planar dimensions of wet films of Series 1 and 2 were 1 cm × 1 cm and 3 mm × 15 mm, 

respectively. Along with Series 1, several silver films with the same wet dimensions were also 

fabricated using the same process, for the investigation of shrinkage matching.  

Besides, in Figure 6-1 (b) and (c), the substrates were pre-cut using a diamond scribe (RS, UK) 

(a pen with a diamond tip) thus could be snapped off by hand after sintering, in order to obtain 

free-standing structures. The top electrodes were slightly smaller (0.5 mm shorter as well as 

0.5 mm narrower) than the piezoelectric layers, in order to avoid the potential shorting between 

the electrodes during high voltage poling. Also in practice, the bottom electrodes were 

connected to the other surfaces of the substrates by painting a conductive strip by hand using 

the tip of a 175 µm thick bare copper wire (Scientific Wire Company, UK), and soldering points 

were connected to the top, intermediate (bimorph only) and bottom electrodes, for convenience 

of further poling and wiring. Particularly, for the bimorph cantilevers, the bottom electrode was 

designed 20 % shorter than the piezoelectric layer (Figure 6-1 (c)), which was determined by 
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many experimental trials and was proved to be able to prevent the tip from sticking to the 

substrate after sintering.  

In order to adjust the performance of the harvester devices, lead (Pb) masses, selected because 

of their high density, were attached to the tips (bottom sides, piezoelectric surfaces uncovered 

by silver) of a part of the bimorph cantilevers with super glue (Power Flex GEL, Loctite, UK), 

shown in Figure 6-2. The joint areas between the cantilevers and the base substrates were also 

reinforced by the same glue, to avoid any crack and detachment in such weak areas during 

vibration, as Figure 6-2 shows. As the reinforcement was made by hand, the effective length of 

the free-standing part of a cantilever might be slightly shortened. Thus, the real free-standing 

length of the cantilever was measured after the reinforcement.  

The dimensions of the unimorphs and bimorphs without tip mass for the first-stage material 

comparisons were about 11 mm length (free-standing part) and 3 mm wide, while the bimorphs 

used for output optimisation and frequency modelling were fabricated with a range of planar 

dimensions (free-standing length from 10 to 17 mm, width from 3 to 3.5 mm) and tip masses 

(0.05 to 0.2g) according to the theories presented in Chapter 3, in order to achieve different 

frequencies and integrate arrays on a test circuit board (433-832, RS, UK) to develop wideband 

harvesters.  

 

Figure 6-2. Schematic of tip mass attachment and joint area reinforcement.  
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6.3 Electrode Depositing and Poling 

For the sintered lead-based discs without glass, the silver ink manufactured in Section 6.2.2 was 

painted on both surfaces as electrodes by hands. The wet electrodes were dried at 70 °C for 

30 minutes in the oven and fired at 750 °C for 10 minutes with ramp rates (up and down) of 

5 °C/min in the furnace for lead-based compositions. Also, as presented above, the unimorph 

and bimorph cantilevers were co-sintered with the same silver electrodes. However, for all of 

the remaining samples (discs and single-layer thick-films), Chromium (Cr) layers (thickness of 

40 nm) then Gold (Au) layers (thickness of 200 nm) were successively sputtered as electrodes 

by a sputter coater (K575X, Emitech, UK).  

Finally, all of the samples were poled using a contact poling method in silicone oil. The poling 

electric fields were 3 kV/mm and 10 kV/mm for disc samples and thick-films (including 

single-layers and cantilevers), respectively. The fields were provided by a power supply 

(Alpha III, Brandenburg Ltd., UK). In terms of poling temperature and period, all of the 

lead-based discs, single-layer thick-films and cantilevers were poled at 110 °C for 10 minutes, 

following which the samples were removed from the field and the oil immediately, while all of 

the lead-free discs were poled at 25, 50, 80 or 110 °C for 10 minutes with the field kept on 

during cooling to 25 °C. Additionally, a number of the bimorph cantilevers were poled in series 

whilst the others were poled in parallel.  

 

6.4 Materials Characterisation 

6.4.1 Density and Shrinkage 

The density was calculated from the basic physical equation ‘𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑚𝑎𝑠𝑠 𝑣𝑜𝑙𝑢𝑚𝑒⁄ ’, 

where the mass was measured by an accurate electronic balance (R300S, Sartorius, USA) 

measuring to 4 decimal places, and the dimensions were obtained with:  
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(1) a Vernier caliper (Electronic Digital Caliper 0-150 mm/0.01 mm/±0.02 mm, RS, UK) - 

diameters of discs and length/width of thick-films/cantilevers;  

(2) a micrometer (Electronic Digital Micrometer IP54, 0-30 mm/0.001 mm/±0.002 mm, TESA, 

Switzerland) - thickness of discs and free-standing single-layer silver films;  

(3) a scanning electron microscope (SEM) (XL-30, Philips FEI, USA) - thickness of 

thick-films/cantilevers.  

Each sample was randomly measured at (1) 3 positions (2) 5 points and (3) 4 fracture 

cross-sections then the average value was treated as the corresponding dimension.  

Also, for disc samples the linear diameter shrinkage calculated by Equation 6-1 was used as the 

criterion, while for thick-films the planar area shrinkage calculated by Equation 6-2 was taken 

into account.  

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 =
(13 𝑚𝑚 − 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑠𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑔)

13 𝑚𝑚
× 100%    (6-1) 

𝑝𝑙𝑎𝑛𝑎𝑟 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 =
(1 𝑐𝑚2 − 𝑝𝑙𝑎𝑛𝑎𝑟 𝑎𝑟𝑒𝑎 𝑎𝑓𝑡𝑒𝑟 𝑠𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑔)

1 𝑐𝑚2
× 100%    (6-2) 

6.4.2 Particle Size, DSC, XRD and Microscopy 

The particle sizes of all of the raw material powders as well as the calcined powders were 

analysed on a particle size analyser (Gracell, Sympa Tec, Germany).  

The borosilicate glass powder was tested on a differential scanning calorimetry (DSC) and 

thermal gravimetric analysis (TGA) equipment (STA 449C, Netzsch, Germany), from room 

temperature to 900 °C with a ramp rate of 10 °C/min in air, in order to understand the thermal 

behaviour of this glass. Also, a part of the sintered lead-based discs were tested on a DSC 

equipment (DSC 404C, Netzsch, Germany), from room temperature to 500 °C with a ramp rate 

of 10 °C/min in argon atmosphere, in order to measure their phase transition temperatures.  
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All of the calcined powders and sintered discs/single-layer thick-films were measured on an 

X-ray diffractometer (XRD) (Equinox-3000, Inel, France) with Cu-Kα1 radiation 

(wavelength = 1.540560 Å) and diffraction angle (𝜃, 10° < 2𝜃 < 100°), at room temperature. 

The resultant intensity - 2𝜃 spectra were analysed with the help of the software ‘Match!’ 

integrated with the PDF-2 data base (copyright JCPDS-ICDD 2004, USA).   

Also, all of the sintered discs, single-layer thick-films and cantilevers were observed using the 

SEM mentioned in Section 6.4.1. In particular, the fracture surfaces of the lead-based discs and 

the single-layer thick-films, whilst the polished then thermally etched (100-150 °C below the 

sintering temperature for 10 minutes) surfaces of the lead-free discs, were imaged. However, 

such a conventional SEM sample preparation method did not suit the observation of 

cross-sectional areas of the silver/piezoelectric multi-layer samples. As the silver layers were 

extremely soft and ductile, they could not be snapped off even in an ultra-low temperature 

environment (e.g. liquid nitrogen); in addition, the polished silver particles would cover the 

entire piezoelectric surface, and as a result only a large silver area could be seen under the SEM. 

This practical problem was solved by fixing the cantilevers in the hardened epoxy (EpoFix 

Resin + EpoFix Hardener, Batch No. 9081-2622/0216-1515, Struers, UK; resin:hardener =

7: 1 𝑤𝑡%; hardened at room temperature in air), subsequently using a cutting machine 

(Accutom-50, Struers, UK) with a diamond cut-off wheel (M0D13, Struers, UK) to cut the 

cantilevers together with the epoxy. Figure 6-3 briefly explains the sample preparation process. 

It should be noted that both secondary electrons (SE) and back scatter electrons (BSE) were 

used as electron sources when imaging cantilevers, while only SE was employed for the discs 

and single-layer thick-films.  
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Figure 6-3. Schematics of SEM sample preparation process of the cantilevers.  

6.4.3 Dielectric, Ferroelectric and Piezoelectric Properties 

The capacitance (labelled as 𝐶𝑆 on the equipment, corresponding to 𝐶𝑇 in Chapter 3) and 

dielectric loss factor (𝑡𝑎𝑛𝛿) at 1 kHz of a number of the lead-free discs were measured with an 

impedance analyser (4194A, Hewlett Packard, USA), at various temperatures (-50 °C to 

120 °C) with ramp up rate of 60 °C/hour controlled by an environmental chamber (TJR, Tenney 

Environmental-SPX, USA). The measured capacitances were calculated to corresponding 

relative permittivity (𝜀𝑟 = 𝜀33
𝜎 𝜀0⁄ ) by the Equation 3-26 in Chapter 3.  

Also, the 𝐶𝑇 and 𝑡𝑎𝑛𝛿 at 1 kHz of each sample, as well as the resonant/anti-resonant 

frequencies (𝑓𝑟, 𝑓𝑎) and resonant impedance (𝑍𝑚) along the corresponding direction of certain 

sample shapes (presented in Chapter 3), were measured on another impedance analyser (4294A, 

Agilent, USA) at room temperature. Based on these, the Young’s modulus (𝑌𝐸), compliance 

constant (𝑠11
𝐸 ), 𝜀𝑟, electromechanical coupling coefficients (𝑘𝑒𝑓𝑓, 𝑘𝑝, 𝑘31), piezoelectric charge 

coefficient (𝑑31) and piezoelectric voltage coefficients (𝑔33, 𝑔31) were calculated by the 

equations presented in Chapter 3. The mechanical quality factor (𝑄𝑀) was obtained from 

Equation 6-31.  
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𝑄𝑀 =
1

2𝜋𝑓𝑟|𝑍𝑚|𝐶𝑇 ∙
𝑓𝑎

2 − 𝑓𝑟
2

𝑓𝑎
2

    (6-3) 

The piezoelectric charge coefficient (𝑑33) was directly measured on a Berlincourt d33-meter 

(YE2730A, Sinocera, China), where 6 random points of each sample were measured and the 

average value was treated as the true 𝑑33. It should also be stated that as the single-layer 

thick-films were not robust enough to endure the forces applied by the d33-meter, an entirely 

Au-coated Al2O3 substrate was introduced as a support, as Figure 6-4 shows.  

 

Figure 6-4. Picture illustration of the Au-coated substrate used to support the 𝑑33 

measurement of the single-layer thick-films.  

Obviously, the presence of the substrate caused an error, but it was not as significant as that of 

the films co-sintered with and firmly attached on a substrate, since the substrate used here only 

constrained the thickness deformation but not the transverse. A simple experiment was 

implemented to correct the error. As Figure 6-5 shows, a piezoelectric disc with Au electrodes 

was measured on the d33-meter with free boundary conditions then re-measured with the same 

substrate used by the films, thus a difference was recognised. More than 20 discs were measured 

and the average measured 𝑑33 values with the substrate were proved about 78% of those without 

the substrate. As the boundary condition of the disc was similar to that of the thick-film, this 

error was applied to calculate the predicted real 𝑑33 value (named as effective piezoelectric 
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coefficient, 𝑑33
∗ ). Therefore, for single-layer thick-films, 𝑑33

∗  was calculated by ‘𝑑33
∗ =

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑33 78%⁄ ’.  

 

Figure 6-5. Picture explanation of the error eliminating experiment.  

Finally, ferroelectric hysteresis loops of some of the lead-free discs were measured by a 

commercial characterisation company (aixACCT System GmbH, Germany).  

 

6.5 Vibration Test 

The cantilevers were mounted and tested as energy harvesters on an electromagnetic shaker 

(Gearing & Watson Electronics, UK). The setup of the testing system is shown in Figure 6-6 

and Figure 6-7. The blue rigid clip in Figure 6-7 (b) was used as a support structure to 

conveniently fix the cantilever on and remove it from the vibrating component of the shaker. 

The cantilevers were attached on the clips by super glue in advance.  
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Figure 6-6. Schematic of the vibration testing system.  

 

Figure 6-7. Pictures of the vibration testing system. 

A sinusoidal input drove the shaker, providing a harmonic vibration to the individual harvester 

under test, which was directly connected to a resistive load (𝑅) for measuring output voltage, 

power and tip displacement, or was connected to a 1000 μF capacitor through a diode bridge 

rectifier (1.5 A/200 V, W02G 948C, Vishay, USA) for observing charging behaviour. When 

connected to a 100 MΩ resistor, the voltage obtained was treated as the open-circuit voltage. 

Figure 6-8 shows the electric connections of the harvesters and external circuits.  
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Figure 6-8. Schematics of connections used in the vibration test: (a) direct connection, for 

output voltage, power and tip displacement measurements; (b) connection with a diode bridge 

rectifier, for charging capacitors.  

The input vibration frequency and acceleration as well as the tip displacement of the harvester 

were monitored by a laser vibrometer (M5L/2, MEL, Germany) and an accelerometer (4370, 

Brüel & Kjær, Denmark). When vibrating, the voltage across the resistor (𝑉𝑅) or the capacitor 

(𝑉𝐶) was measured, signal conditioned and recorded on a data-acquisition system (SCXI-1000 

Chassis, SCXI-1305 Module, National Instruments, UK). Meanwhile, the output power (𝑃) and 

power density (𝑃𝐷) were automatically calculated by Equations 6-4 and 6-5, where 𝑃𝑅𝑀𝑆 is the 

root mean square of 𝑃 in 50 periods. The instantaneous data acquisition rate was 1 kHz. Also, 

in Equation 6-5, the cantilever volume of free-standing segment includes the inactive layers, 

e.g. electrode layers and bottom piezoelectric layer in unimorphs. Such a calculation method 

provides a convenience when comparing data with relevant references, which will be discussed 

in Chapter 8.  



University of Birmingham 

102 
 

𝑃 = 𝑉𝑅
2 𝑅⁄     (6-4) 

𝑃𝐷 = 𝑃𝑅𝑀𝑆 cantilever volume of free-standing segment⁄     (6-5) 

The entire procedure was controlled by the self-written Labview programme (Labview 8.5 

software, National Instruments, UK), which is presented in detail in Appendix II.  

In terms of harvester arrays, three individual harvesters were integrated into each harvester 

array, of which the connection is shown in Figure 6-9.  

 

Figure 6-9. Schematic of electric connection of the integrated harvester array.  
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CHAPTER 7. COMPOSITIONAL INVESTIGATIONS 

7.1 PZT and La-doped PZnN-PZT 

7.1.1 Material Analyses 

7.1.1.1 Particles 

Tables 7-1 and 7-2 summarise the particle sizes of the raw powders (starting oxides), PZT and 

two La-doped PZnN-PZT powders. All of the powders including starting oxides were 

separately ball milled with ZrO2 balls and distilled water (ball:powder:water = 2: 1: 0.5 𝑤𝑡%) 

for 24 hours before measurements, and each datum was an average of 3 values from 3 

independent measurements. There are not many strict issues for the particle sizes of the starting 

oxides, as long as they are well mixed prior to calcination. This can be achieved by the adequate 

ball milling described in Chapter 6. However, for the PZT and La-doped PZnN-PZT powders, 

the particle size needs to be suitable for forming the green bodies and sintering. According to 

Table 7-2, the particle sizes were considered to be acceptable for both calcination and sintering, 

hence no further crushing or grinding process was implemented.  

Table 7-1. Summary of particle sizes of the starting oxides for lead-based composition.  

Powder D50 (μm) D90 (μm) 

PbO 2.80 ±0.64 7.60 ±0.91 

ZnO 1.20 ±0.47 2.47 ±0.59 

Nb2O5 2.06 ±0.53 5.15 ±0.73 

La2O3 3.00 ±0.74 8.34 ±1.05 

ZrO2 3.14 ±0.56 7.46 ±0.81 

TiO2 2.97 ±0.67 7.33 ±1.05 
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Table 7-2. Summary of particle sizes of the calcined and milled lead-based powders.  

Powder D50 (μm) D90 (μm) 

PZT 1.22 ±0.40 3.41 ±0.50 

PZnN-P3LZT 2.83 ±0.67 5.49 ±1.01 

PZnN-P5LZT 2.54 ±0.57 5.70 ±0.82 

 

7.1.1.2 Phase Structures 

The XRD patterns of the starting oxides have been firstly checked. As the patterns matched 

well with the standard PDF database (presented in Chapter 6) and they are not the main research 

objectives of this project, no further information is provided here. Figures 7-1, 7-2 and 7-3 show 

the XRD patterns of the PZT, PZnN-P3LZT and PZnN-P5LZT powders and their disc 

counterparts sintered at different temperatures, respectively.  

Pure tetragonal perovskite phases were revealed in both the powder and disc, with the evidence 

of a single diffraction peak (111) as well as the peak broadening (or potential split) near (100) 

and (200), as analysed in Figure 7-1. However, the 2𝜃 values of the peaks from the sintered 

disc shifted about 1° towards the larger numbers compared to those of the powder, implying 

different lattice parameters (e.g. 𝑐/𝑎, 𝑐 and 𝑎 are the lattice parameters along and perpendicular 

to the spontaneous polarization respectively) between the unit cells of the powder and the disc. 

According to the PDF database (presented in Chapter 6), the composition of this commercial 

PZT powder was extremely close to Pb(Zr0.52Ti0.48)O3  

(𝑐 𝑎⁄ ≈ 1.014), with no indication of obvious peak shifts or phase transition caused by doping. 

Nevertheless, the composition of the sintered disc matched a La-doped PZT  

(𝑐 𝑎⁄ ≈ 1.017), which proved the ‘soft’ type claimed by the manufacturer. This might suggest 

that the La element was only physically doped into the powder but not chemically reacted. 
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During sintering, a chemical reaction between the La element and the pure PZT happened at 

the same time, resulting in altered lattice parameters and thus shifted peaks. Also, there appears 

to be a reversal of intensities of the (001)/(100) and (002)/(200) split peaks for the powder and 

disc respectively. This could be due to La reaction discussed above or lead loss during sintering. 

However, as the method of suppressing lead loss has been applied in the experiment (introduced 

in Chapter 6), the La reaction was considered as the preferable reason.  

Compared to PZT, the phase structures of the other two compositions were more complex. In 

Figure 7-2, combinations of rhombohedral and tetragonal perovskite phases were observed in 

the PZnN-P3LZT powder and all of the sintered discs, with the evidence of peak broadening at 

(100), (111) and (200) peak positions. This was an expected result, as the designed Zr/Ti ratio 

(55:45) was near the MPB region in the PZT phase diagram. Besides, it was found that with the 

increased sintering temperature, the proportion of tetragonal phase increased, which was 

indicated by the gradually emerging peak split of the (002) reflection as the sintering 

temperature was increased. However, it was still quite difficult to recognise the main phase 

based only on the XRD patterns, and further details will be given in the next section as to how 

the relative permittivity was used to help the analysis. Also, as with other compositions 

containing lead zinc niobate, diffraction peaks identified as a pyrochlore phase (lead niobate) 

were observed along with the main phases. One reason for this might be due to the Nb ions 

being present in disordered regions caused by the abnormal growth of ZnNb regions and 

providing favourable formation conditions for pyrochlore1.  

Similar to the PZnN-P3LZT composition, it can be seen in Figure 7-3 that a rhombohedral and 

a tetragonal perovskite phase were also initially formed in the PZnN-P5LZT powder, with the 

evidence of the overlapped and/or split peaks at the (100), (111) and (200) orientations, due to 

the designed Zr/Ti ratio (53:47) being near the MPB. Meanwhile, the content of the tetragonal 
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phase in the sintered discs also increased with the sintering temperature. In contrast to 

Figure 7-2 where the dominant phases were difficult to recognise, Figure 7-3 indicates that in 

the discs sintered at 1230 °C and 1250 °C, the tetragonal phase governed the main parts of the 

microstructures as the peaks belonging to the rhombohedral phase were not obvious, whilst in 

the disc sintered at 1270 °C there was mostly the tetragonal phase as the (111) orientation peak 

became sharp and single, and the rhombohedral phase peaks were hardly to be observed. This 

suggested that the doped La might be able to help the phase transition from rhombohedral to 

tetragonal with certain sintering temperatures1,2. However, the higher relative intensities of the 

pyrochlore peaks than those in Figure 7-2 indicated a larger percentage of the pyrochlore phase 

in the PZnN-P5LZT. This may also be due to the increased La content promoting the growth 

of (ZnNb) regions1. Excessive pyrochlore implies a risk of deteriorated piezoelectric properties. 

Consequently, the La doping needs to be carefully controlled in order to balance the increased 

𝑐 𝑎⁄  of the tetragonal phase with the deterioration of the piezoelectric properties due to the 

formation of pyrochlore.  
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Figure 7-1. XRD patterns of the PZT powder and sintered disc with full-scale plotting and 

details of {100}, {111} and {200} peaks.  
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Figure 7-2. XRD patterns of the PZnN-P3LZT powder and sintered discs with full-scale 

plotting and details of {100}, {111} and {200} peaks. 
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Figure 7-3. XRD patterns of the PZnN-P5LZT powder and sintered discs with full-scale 

plotting and details of {100}, {111} and {200} peaks. 
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7.1.1.3 Sintering Behaviour 

Figure 7-4 shows the densities and diameter shrinkage of the sintered ceramic discs with 

different compositions and sintering temperatures. Each datum point was an average of 6 values 

from a batch of 6 samples.  

 

Figure 7-4. Dependence of (a) density and (b) diameter shrinkage on sintering temperature 

for sintered ceramic discs of different compositions.  

The PZT samples were only sintered at 1200 °C, as this temperature was suggested by the 

manufacturer, with a reference density (PZT ref.3) provided. Although the experimental density 

of the PZT samples was not as large as the reference value, it was still able to be investigated 

and compared to those of the PZnN-P3LZT and PZnN-P5LZT samples, as the aim of this stage 

was to find out two compositions with obvious contrast and to use them to study the relations 

between piezoelectric properties and harvester performance, rather than discover better material 

options. According to Figure 7-4, for both the PZnN-P3LZT and PZnN-P5LZT samples, the 

optimum sintering temperatures were 1230-1250 °C with reasonable shrinkage, considering the 

deviations. Below 1230 °C, the energy provided by the furnace was not enough to induce a 

fully densification; while above 1250 °C, the grains continued to grow, leading to regenerated 
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pores and decreased densities, despite the shrinkage remaining the same. Such phenomena were 

further investigated using SEM, as shown in Figures 7-5 and 7-6.  

 

Figure 7-5. SEM images of fracture surfaces of the PZnN-P3LZT ceramic discs sintered at 

different temperatures.  

For instance, in Figure 7-5, the microstructure of the PZnN-P3LZT sample sintered at 1200 °C 

(Figure 7-5 (a)) was unconsolidated, resulting in a smaller density and shrinkage rate, 

corresponding to the data points in Figure 7-4. When sintered at 1230 °C, the microstructures 

(Figure 7-5 (b)) were relatively densified with evenly distributed tiny pores and 1-2 μm average 

grain size. In the 1250 °C sintered sample (Figure 7-5 (c)), some larger pores and grains were 

observed in some areas, although most of the regions remained similar to those of the 1230 °C 

sintered sample (Figure 7-5 (b)). However, the situation deteriorated for the 1270 °C sintered 
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sample (Figure 7-5 (d)), where much larger pores and grains were observed, with an average 

size of around 3 μm, leading to decreased densities as shown in Figure 7-4. The case shown in 

Figure 7-6 could be explained in a similar way.  

 

Figure 7-6. SEM images of fracture surfaces of the PZnN-P5LZT ceramic discs sintered at 

different temperatures. 

Figure 7-7 shows the SEM image of a PZT sample as a reference, where 1-2 μm grains with 

evenly distributed pores could be observed. The existence of such pores might be the reason 

that the average density of the PZT discs shown in Figure 7-4 was smaller than that provided 

by the manufacturer. The difference of binder, shaping method and sintering conditions 

between the experimental samples and manufacturer samples could be responsible for the 
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observed difference in density. Also, this might result in a reduction of other dielectric and 

piezoelectric properties, which will be discussed in the next section.  

 

Figure 7-7. SEM image of fracture surface of the PZT ceramic disc sintered at 1200 °C.  

7.1.1.4 Phase Transitions 

The XRD patterns, results of density and shrinkage, as well as the SEM images of the sintered 

PZnN-P3LZT and PZnN-P5LZT discs indicated that 1250 °C was the optimum sintering 

temperature for these materials. Thus, one of each of such samples together with a PZT disc 

sintered at 1200 °C were selected to run the DSC test in the conditions presented in Chapter 6. 

Figure 7-8 shows the DSC plot, where the first gradient changes at 50-75 °C were regarded as 

the stabilisation of the equipment from relatively cold status to the heated internal circumstance. 

However, the second obvious gradient variations occurred in the range of 325-425 °C were 

considered as the thermal response of phase transitions. For the PZT sample, the phase 

transition started at around 325 °C and finished at about 425 °C, while for the PZnN-P3LZT 

and PZnN-P5LZT samples, they happened at approximately 350 °C and sustained until slightly 

below 400 °C. According to the PZT phase diagram shown in Chapter 3, these phase transitions 

were predicted to be rhombohedral/tetragonal to cubic transitions, and the temperature ranges 
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were treated as their corresponding Curie temperatures (𝑇𝑐). Although two phases 

(rhombohedral and tetragonal) co-existed in the PZnN-P3LZT and PZnN-P5LZT samples, no 

evidence of the transition between such phases was found in the DSC test, as in such a case the 

phase change is driven by composition rather than by temperature.  

 

Figure 7-8. Dependence of DSC on temperature for the discs of PZT sintered at 1200 °C and 

PZnN-P3LZT and PZnN-P5LZT sintered at 1250 °C.  

7.1.2 Basic Dielectric and Piezoelectric Properties 

7.1.2.1 Permittivity and Dielectric Loss 

Figure 7-9 shows the relative permittivity (𝜀𝑟) before and after poling and the dielectric loss 

factor (𝑡𝑎𝑛𝛿) after poling, measured at room temperature, of the disc samples sintered at 

different temperatures. The measurements were taken at the 24th hour after poling had been 

completed, and each datum point was an average of a batch of 6 samples (each sample was 

measured 3 times independently in order to reduce errors caused by equipment). Firstly, it can 

be seen that the relative permittivity and dielectric loss of the PZT samples were lower and 

higher respectively, compared to the reference3. Presumably this is due to the lower density, 

but other factors such as lead loss may also contribute. Also, following the discussion of the 

dominant phases in the last section, Figure 7-9 (a) indicates that the disc samples of the PZT 
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and PZnN-P5LZT compositions after poling yielded higher relative permittivity than those 

before poling, while an opposite trend happened for the PZnN-P3LZT samples. This might be 

evidence that in the PZnN-P3LZT disc samples, the rhombohedral phase possessed more 

content of the entire microstructures. And as Figure 7-9 (b) shows, the poled discs of the PZT 

and PZnN-P5LZT generally had lower dielectric loss than those of the PZnN-P3LZT.  

 

Figure 7-9. Dependence of (a) 𝜀𝑟 before and after poling (b) 𝑡𝑎𝑛𝛿 after poling on sintering 

temperature for the lead-based ceramic discs of different compositions.  
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In theory, the domains in unpoled multi-domain piezoelectric ceramics can only co-exist with 

each other with angles of 180° and 90° in the tetragonal phase, as the possible dipole directions 

are along <100>, <1̅00>, <010>, <01̅0>, <001> and <001̅>; or 180° and 𝑥°/(180-𝑥)° 

(e.g. 71°/109° for PZT4, called effective 90°) in the rhombohedral phase, because of possible 

dipole directions along <111>, <1̅1̅1̅>, <1̅11>, <11̅1>, <111̅>, <1̅1̅1>, <11̅1̅> and <1̅11̅>.  

Assuming that an unpoled multi-domain piezoelectric ceramic only consists of 180° domains, 

all of which are perpendicular to the electrodes (as shown in Figure 7-10 (a)), the effective 

overall 𝜀33
𝜎  of the ceramic should comprise a combination of the 𝜀33

𝑆  of each single domain. 

Similarly, if a multi-domain piezoelectric ceramic only contains 180° domains, all of which are 

in parallel with the electrodes (as shown in Figure 7-10 (b)), the effective overall 𝜀33
𝜎  should 

comprise a combination of the 𝜀11
𝑆  of each single domain. As the clamped domain is constrained 

by the domain walls, the 𝜀33
𝑆  value is predicted to be smaller than its corresponding 𝜀33

𝜎  value.5 

Therefore, in the situation of Figure 7-10 (a), the effective overall 𝜀33
𝜎  tends to increase after 

poling because of the disappearance of 180° domain walls. In contrast, according to empirical 

investigations6,7, 𝜀11 was usually larger than 𝜀33 for a single domain, thus the effective overall 

𝜀33
𝜎  after poling in Figure 7-10 (b) would probably decrease, as it will transfer to a combination 

of the individual 𝜀33
𝜎  values of each domain because of 90° domain rotation. Based on the above 

discussion, for a normalised unpoled multi-domain piezoelectric ceramic where the 180° and 

90° (or effective 90°) domains co-exist, as shown in Figure 7-10 (c), if the 180° domains 

dominate the domain structure, the effective overall 𝜀33
𝜎  is likely to increase, while if the 90° 

(or effective 90°) domains are the majority, it tends to decrease. Also, based on the results in 

Figure 7-9 (a), as the microstructures of the PZT and PZnN-P5LZT were shown to be 

tetragonal-rich and their permittivity increased after poling, it implied that in such tetragonal 

phases 180° domains might dominate. Because the composition of PZnN-P3LZT was 
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extremely close to that of the PZnN-P5LZT, the tetragonal phases were assumed to be similar. 

If in the PZnN-P3LZT samples the tetragonal phase still dominated, the permittivity should 

have a similar trend to those of the PZnN-P5LZT samples, however they varied with an opposite 

trend. Therefore, this could imply that the main phase in the PZnN-P3LZT samples was 

rhombohedral containing mainly effective 90° domains. It should be noted that the above 

discussion assumes that the poling direction is parallel to <100> where all the grains are nicely 

aligned, whereas in a real material the grain orientations will be random. However, such a 

discussion is still valid in real cases, although the effects might not be quite as great, as some 

domains may not be able to re-orientate.  

 

Figure 7-10. Schematics of explanation of effective 𝜀33
𝜎  of unpoled multi-domain piezoelectric 

ceramics.  
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7.1.2.2 Piezoelectric Coefficient, Electromechanical Coupling and Quality Factor 

Figure 7-11 shows the impedance-frequency spectra (vibration along the diameter direction) of 

the discs based on which 𝑄𝑀, 𝑘𝑒𝑓𝑓 and 𝑘𝑝 were calculated. One of each batch of samples was 

selected and is shown as representative, and the average frequency constant (𝑁) with deviation 

of each batch of samples is stated. The figure shows the fundamental resonance and three levels 

of harmonics of each sample when vibrating along the direction of the diameter driven by small 

electric signals, indicating that all of the samples exhibited typical piezoelectric response. The 

𝑓𝑟, 𝑓𝑎 and 𝑍𝑚 used for relevant calculation were obtained from the fundamental resonance.  

In Figure 7-11, the frequency constants of the PZnN-P3LZT samples slightly increased with 

sintering temperature, implying possible internal change (e.g. phase transition) within the 

materials. This could be a supplementary evidence of the discussion with Figure 7-2, where a 

growth of tetragonal phase with the increase of sintering temperature was deduced. Also, for 

the PZnN-P5LZT samples, the frequency constants stayed similar until being sintered at 

1250 °C, which implies no significant internal material change happened for the samples 

sintered below this temperature. However, the potential phase transition from rhombohedral to 

tetragonal as discussed in Section 7.1.1.2 within the samples sintered at and above 1250 °C 

might be the reason leading to the corresponding variation of the frequency constants.  
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Figure 7-11. Dependence of impedance on frequency for the lead-based ceramic discs of 

different compositions sintered at different temperatures.  

Figure 7-12 shows the 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓 and 𝑘𝑝 of the lead-based disc samples, of which the 

measurements were taken 24 hours after poling, and each datum point was an average of a batch 

of 6 samples (each sample was measured 3 times independently in order to reduce errors caused 

by equipment). The PZT and PZnN-P5LZT samples exhibited generally higher 𝑑33, 𝑘𝑒𝑓𝑓 and 
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𝑘𝑝, except that the PZnN-P3LZT samples exhibited higher 𝑄𝑀. This could be because, on one 

hand, that larger amount of La doping made the PZT and PZnN-P5LZT rather ‘soft’, inducing 

enhanced 𝑑33 and electromechanical coupling coefficients; on the other hand, the Zr/Ti ratio in 

the PZnN-P3LZT composition was further away from the MPB than that of the PZT or 

PZnN-P5LZT, causing a partially pseudo-‘hard’ effect which increased 𝑄𝑀 but decreased 𝑑33, 

electromechanical coupling coefficients as well as permittivity (Figure 7-9 (a)).  

 

Figure 7-12. Dependence of (a) 𝑑33 (b) 𝑄𝑀 (c) 𝑘𝑒𝑓𝑓 and (d) 𝑘𝑝 on sintering temperature for 

the lead-based ceramic discs of different compositions.  

7.1.3 Energy Harvesting Related Parameters 

Figure 7-13 shows the calculated results of 𝑔33 (Equation 3-36 in Chapter 3) and 𝑑33∙𝑔33 of the 

disc samples. As expected, the PZnN-P3LZT samples possessed higher 𝑔33 values. This is 

because the pseudo-‘hard’ effect decreased the permittivity but the ‘soft’ La-doping 
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compensated the reduction of 𝑑33 to some degree, resulting in increased 𝑔33. However, the PZT 

and PZnN-P5LZT samples generally had higher 𝑑33∙𝑔33 values. In principle, the parameter 𝑔 

has a positive effect on the generated voltage across a piezoelectric material (see Equations 4-6 

and 4-7), while 𝑑 ∙ 𝑔 (defined as figure of merit, FOM) is able to determine the overall 

capability of energy generation of a piezoelectric energy harvester. As shown in Equation 7-1, 

the energy storage of a piezoelectric energy harvester is positively related to the capacitance of 

a piezoelectric element (𝐶) as well as the square of the generated voltage (𝑈). Also as 

mentioned, 𝐶 and 𝑈 are proportional to the permittivity (𝜀) and voltage coefficient (𝑔), 

respectively. As 𝑔 = 𝑑/𝜀 (see Equation 3-36), the energy storage is consequently affected by 

the FOM. Considering the information provided in both Figures 7-12 and 7-13, a PEHer 

(piezoelectric energy harvester) made from the PZT or PZnN-P5LZT composition might have 

larger theoretical off-resonant output power density, while that made from the PZnN-P3LZT 

composition would hopefully generate higher open-circuit voltage. Nevertheless, which 

composition would reveal a larger energy conversion efficiency of the material sector was 

difficult to predict with the current results. A further discussion will be given with the real 

harvester test in Chapter 8.  

Energy Storage =
1

2
𝐶𝑈2 ∝ 𝜀 ∙ 𝑔2 = 𝜀 ∙ (

𝑑

𝜀
)

2

=
𝑑2

𝜀
= 𝑑 ∙ 𝑔    (7-1) 
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Figure 7-13. Dependence of (a) 𝑔33 (b) 𝑑33∙𝑔33 on sintering temperature for the lead-based 

ceramic discs of different compositions.  

At this stage, it could be summarised that the properties of the PZnN-P5LZT samples were 

quite similar to those of the PZT samples. As one of the aims of this project is to investigate the 

relations between material properties and harvester performance, rather than conduct further in 

depth research on different compositions, the PZT and PZnN-P3LZT compositions, which 

obviously differ each other, were selected to continue the device fabrication and test, with no 

further work about devices being carried out on the PZnN-P5LZT composition. This was only 

one of the reasons of such material selection, but the other reasons will be stated in the following 

sections.  
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7.1.4 Ageing 

In order to observe the ageing behaviour, all of the disc samples were re-measured on the 180th 

day after being poled. Figure 7-14 summarises the 180-day ageing effect constants of 

parameters corresponding to those discussed in the above sections. The calculation was based 

on the relevant presentation in Chapter 3.  

In the figure, the positive value means an increase of the parameter with time while the negative 

value indicates an opposite change. For 𝑡𝑎𝑛𝛿, 𝜀𝑟 and 𝑑33, all of the three compositions showed 

decreasing trends, while for 𝑄𝑀 all of them showed an increasing trend. For the 

electromechanical coupling coefficients, all of the PZnN-P5LZT samples as well as the 

PZnN-P3LZT samples sintered at 1230 °C aged positively, while the others aged negatively. 

And for 𝑔33 and 𝑑33∙𝑔33, only the PZT samples showed a positive change.  
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Figure 7-14. Dependence of 180-day ageing effect constants of 𝑡𝑎𝑛𝛿, 𝜀𝑟, 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓, 𝑘𝑝, 

𝑔33 and 𝑑33∙𝑔33 on sintering temperature for the lead-based ceramic discs of different 

compositions.  
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From a general point of view, the PZnN-P3LZT composition exhibited the weakest ageing 

effect (smaller absolute value of 𝐴180) among all the compositions, indicating a better time 

stability, despite the exception of 𝑑33. However, as for the PZT composition the 𝑑33 decreased 

slower than the 𝜀𝑟, the 𝑔33 and 𝑑33∙𝑔33 which are two significant criteria for energy harvesting 

increased with time, which was actually a beneficial trend if the materials were selected to 

fabricate energy harvesters. As the 24-hour properties of the PZT and PZnN-P5LZT samples 

were similar but the ageing behaviour of the former was beneficial, this was the second reason 

to choose the PZT for further device investigations, rather than the PZnN-P5LZT. As the PZT 

had such ageing advantage, it was suggested that the PEHers made from the PZT and 

PZnN-P3LZT would better be tested and compared as soon as possible after being poled, in 

order to avoid significant errors caused by ageing.  

 

7.2 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 

7.2.1 Material Analyses 

7.2.1.1 Particles 

Tables 7-3 and 7-4 summarise the particle sizes of the raw powders, pre-reacted BaZrO3 powder 

and calcined 50BCZT powder. All of the powders were ball milled for 24 hours before 

measurements, and each datum was an average of 3 values from 3 independent measurements. 

The particle size of the calcined 50BCZT powder was larger than that of the lead-based powders 

listed in Table 7-2 as well as the empirical data of practical ceramic fabrication. This might be 

because of the larger starting particles of the BaCO3 powder as well as the higher calcination 

temperature (1350 °C compared to 900 °C for the lead-based compositions). Although other 

milling methods (e.g. vibratory milling) may help to further reduce the particle size, this 

calcined powder was used for the preliminary investigation of the general properties of sintered 
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50BCZT ceramics, in order to maintain the compatible fabrication process with the lead-based 

ceramics discussed above, as well as keeping the process as simple as possible and thus 

avoiding errors or perturbations caused by additional procedures.  

Table 7-3. Summary of particle sizes of the starting oxides for lead-free composition.  

Powder D50 (μm) D90 (μm) 

BaCO3 4.04 ±0.87 9.59 ±1.38 

ZrO2 3.14 ±0.56 7.46 ±0.81 

CaCO3 2.73 ±0.79 6.90 ±1.05 

TiO2 2.97 ±0.67 7.33 ±1.05 

 

Table 7-4. Summary of particle sizes of the calcined and milled lead-free powders.  

Powder D50 (μm) D90 (μm) 

BaZrO3 1.47 ±0.44 3.38 ±0.56 

50BCZT 4.58 ±0.69 11.60 ±1.07 

 

7.2.1.2 Phase Structures and Transitions 

Figure 7-15 shows the XRD results of the synthesized BaZrO3 powder, calcined 50BCZT 

powder and disc ceramics sintered at different temperatures. In general, all of the patterns 

indicate perovskite phase structures. In particular, the BaZrO3 powder was proved a simple 

cubic phase without peak broadening or split. However, the 50BCZT powders and the sintered 

discs were more complicated to analyse.  



Ph.D. Thesis – Yang Bai 

127 
 

 

Figure 7-15. XRD patterns of the BaZrO3 powder, 50BCZT powder and discs sintered at 

different temperatures – full scale.  

Figure 7-16 provides the details of certain peaks that could help identify specific phases of the 

powder and discs. Although the peak positions shifted towards smaller diffraction angles after 

sintering, which might imply increased 𝑐 𝑎⁄  ratios, both the powder and the discs formed 

orthorhombic/tetragonal-combined multi-phase structures according to the peak positions as 

well as broadening and splitting as shown in Figure 7-16. In detail, the first reported phase 

diagram of BZT-BCT system8 (presented in Chapter 3) suggested a strongly curved MPB 

between tetragonal phase and rhombohedral phase, and the 50BCZT composition at room 

temperature is situated in this MPB region. This should result in a binary phase structure as 

shown in Figure 7-15 and 7-16. However, in more recent studies using either X-ray diffraction9 

or neutron diffraction10 measurement which is more sensitive, partially revised MPBs of the 

system9,10 were proposed with an additional orthorhombic phase between the tetragonal and 

rhombohedral phase regions, as in the parent compound BaTiO3 (presented in Chapter 3). This 
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was a supplementary clue9,10 when analysing and indexing the XRD patterns. In order to 

investigate the phases in more detail as well as determine the phase transition temperatures, the 

temperature dependence of 𝜀𝑟 and 𝑡𝑎𝑛𝛿 of one sample of each batch of sintered discs were 

measured between -50 °C and 120 °C, and the data are shown in Figure 7-17. 
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Figure 7-16. XRD patterns of 50BCZT powder and discs sintered at different temperatures - 

detail of the {100}, {110}, {111}, {200}, {211} and {220} peaks.  
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Figure 7-17. Dependence of relative permittivity and dielectric loss factor on temperature for 

the 50BCZT discs sintered at different temperatures.  

The phase transition between the tetragonal and cubic phases can be recognised with the peaks 

in both 𝜀𝑟 and 𝑡𝑎𝑛𝛿 around 88 °C, which was also considered as the 𝑇𝑐 of the 50BCZT 

composition. Two other phase transition regions can also be observed at around -5 °C and 23 °C, 

respectively. The first transition is only visible in the 𝑡𝑎𝑛𝛿 data, whilst the second transition is 

visible by gradient variations in both the 𝜀𝑟 and 𝑡𝑎𝑛𝛿 data around 23 °C. These phenomena 

indicate two phase transitions, which were interpreted as the rhombohedral-orthorhombic and 

orthorhombic-tetragonal transitions, respectively. As the XRD was carried out at room 

temperature (approximately 20 °C) which is in the phase transition region, a co-existence of 
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orthorhombic and tetragonal phases of the sintered discs at room temperature could be expected, 

as shown by the indexing of the peaks in Figure 7-16.  

7.2.1.3 Sintering Behaviour 

Figure 7-18 shows the densities and diameter shrinkage rates of the 50BCZT discs sintered at 

different temperatures.  

 

Figure 7-18. Dependence of density and diameter shrinkage on sintering temperature for the 

50BCZT discs.  

The shrinkage exhibited a similar trend to the lead-based samples discussed above, which was 

that the samples tended to shrink more with increased sintering temperature, indicating better 

densification at higher temperatures. However, the measured densities firstly decreased for the 

samples sintered up to 1450 °C, then increased to about 5 g/cm3 sintered at 1490 °C. In 

principle, this might be due to grain growth dominating over densification for the samples 

sintered between 1400 °C and 1450 °C, thus resulting in much retained porosity and leading to 

decrease in density. However, when being sintered above 1450 °C, the densification dominates 



University of Birmingham 

132 
 

the sintering behaviour again, thus leading to an overall reduction in porosity. SEM 

micrographs of the sintered samples are shown in Figure 7-19.  

 

Figure 7-19. SEM images of polished and thermal-etched surfaces of the 50BCZT discs 

sintered at different temperatures.  
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For the samples sintered at 1400 °C (see Figure 7-19 (a)), the grain sizes are evenly distributed 

in the range of 15-20 μm with small amount of small pore between grains. When being sintered 

at 1430 °C (Figure 7-19 (b)), the grains continued to grow and dominated over densification, 

with more small pores retained than that sintered at 1400 °C. Such a behaviour sustained until 

1450 °C (Figure 7-19 (c)), where the grain growth started to slow down and the average grain 

size maintained in the range of 25-30 µm. When the sintering temperature continued to ramp 

up, significant grain growth could hardly be observed in the samples sintered at 1470 °C 

(Figure 7-19 (d)) and 1490 °C (Figure 7-19 (e)), while most of the pores were eliminated due 

to densification dominating grain growth, resulting in more consolidated microstructures hence 

higher densities (see Figure 7-18). It should be noted that the average grain sizes of the 50BCZT 

discs were considerably larger than those of the lead-based discs presented in Section 7.1. This 

might be caused by the larger particle size of the calcined powder, as well as the higher sintering 

temperature which is the theoretical driven force of grain growth. Also, BaTiO3 ceramics have 

been well known for rapid grain growth11. 

7.2.2 Effect of Sintering Temperature on Dielectric, Piezoelectric and Energy Harvesting 

Properties 

7.2.2.1 Permittivity and Dielectric Loss 

The relative permittivity and dielectric loss factor of the 50BCZT discs sintered at different 

temperatures, poled at 25 °C and tested at the 24th hour after poling are shown in Figure 7-20. 

Each datum point was an average of measurements on 6 samples. Overall, the relative 

permittivity increased while the dielectric loss decreased with increased sintering temperature. 

According to previous research regarding to the parent composition, BaTiO3, both density and 

grain size have influence on relative permittivity12. When sintered below 1450 °C, as the grain 

growth dominated over densification, although the density decreased with increased sintering 
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temperature (see Figure 7-18), the relative permittivity did not decrease but increase with 

growing grains. A corresponding opposite trend was observed in 𝑡𝑎𝑛𝛿. This might suggest that 

for the 50BCZT ceramics, dielectric properties (e.g. 𝜀𝑟 and 𝑡𝑎𝑛𝛿) may be strongly dependent 

on grain size rather than density. Considering the errors, little difference could be found in the 

temperature range of 1450 to 1490 °C in terms of the relative permittivity and dielectric loss.  

 

Figure 7-20. Dependence of relative permittivity and dielectric loss factor after poling on 

sintering temperature for the 50BCZT discs.  

7.2.2.2 Piezoelectric Coefficient, Electromechanical Coupling and Quality Factor 

The impedance-frequency spectra of planar vibration of the discs sintered at different 

temperatures are shown in Figure 7-21. These data were used to calculate the coupling 

coefficients.  Each spectrum was from a sample sintered at the indicated temperature. The 

average frequency constants are also marked in the figure. This figure confirmed that all of the 

samples sintered at different temperatures exhibited piezoelectric activity with planar 

resonance. The frequency constants of the samples sintered at 1430-1490 °C were similar, 

considering reasonable errors, implying similar material qualities. However, those of the 

sample sintered at 1400 °C showed not only a larger average value but also huge deviation, 

indicating an unstable or inhomogeneous status at this sintering temperature.  
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Figure 7-21. Dependence of impedance on frequency for the 50BCZT discs sintered at 

different temperatures.  

The 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓 and 𝑘𝑝 of the 50BCZT discs sintered at different temperatures are shown in 

Figure 7-22. Each datum represents an average of measurements from 6 samples. Similar to the 

situation in Figure 7-21, the samples sintered at 1400 °C exhibited obviously different 𝑑33 and 

coupling coefficients with lower average values and larger deviations compared to the samples 

sintered at 1430-1490 °C. The 𝑑33, 𝑘𝑒𝑓𝑓 and 𝑘𝑝 showed similar trends to that of 𝜀𝑟 (see 

Figure 7-20), where the variation of these parameters was probably not resulted from change 

of density but was likely to be positively related to grain size. This might suggest that grain 

growth may also have a more significant influence on piezoelectric properties than density, 

which is consistent with the discussion in Section 3.6.3.1. Exclusively, the 𝑄𝑀 showed rather a 

stable trend when taking the deviations into account, which may suggest an independence on 
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density or grain size.  In summary, the dielectric and piezoelectric properties showed a rather 

good consistency to those in the published report8.  

 

Figure 7-22. Dependence of (a) 𝑑33 and 𝑄𝑀 (b)  𝑘𝑒𝑓𝑓 and 𝑘31 on sintering temperature for 

the 50BCZT discs.  
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7.2.2.3 Energy Harvesting Related Parameters 

The 𝑑33∙𝑔33 and 𝑔33 values of the discs sintered at different temperatures are shown in 

Figure 7-23. Both parameters varied with similar trends to the 𝑑33 (see Figure 7-22 (a)), where 

the samples sintered at 1490 °C generally exhibited the best average properties. Therefore, as 

the 𝑑33, coupling coefficients and energy harvesting parameters increased with sintering 

temperature, the samples sintered at 1490 °C were selected for further investigations.  

 

Figure 7-23. Dependence of 𝑑33∙𝑔33 and 𝑔33 on sintering temperature for the 50BCZT discs.  

7.2.3 Effect of Measurement Temperature – Temperature Stability 

Polarization/electric field hysteresis loops measured at a range of temperatures are shown in 

Figure 7-24 for disc samples No. 25 and No. 26, both of which are 50BCZT sintered at 1490 °C.  
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Figure 7-24. Dependence of polarization on bias electric field for (a) disc sample No. 25 and 

(b) disc sample No. 26 sintered at 1490 °C. 

The results in Figure 7-24 (a) and (b) exhibit good consistency. As the two samples were 

randomly selected, the fabrication and measurement repeatability could then be confirmed. In 

the figure, the hysteresis loops measured at 30 °C possessed the largest spontaneous and 

remanent polarizations, which were about ±15 and ±9 μC/cm2 in average, respectively. Also, 

they showed the largest coercive electric field of approximately ±350 V/mm. However, the both 

the spontaneous and remanent polarizations and the coercive electric fields decreased towards 
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zero with the increase of temperature, especially for the loops measured at 70 °C and 80 °C 

where enormous deteriorations of the remanent polarizations and coercive electric fields were 

found between them. For the loops measured at 80 °C and above, the remanent polarizations 

and coercive electric fields were nearly zero, indicating that the perovskite ferroelectric phase 

had transferred to the paraelectric cubic phase and could not be poled any more, and thus no 

longer exhibiting piezoelectricity. The phase transition temperature (𝑇𝑐) situated around 80 °C, 

is in agreement with that determined from the dielectric property data presented in Figure 7-17.  

7.2.4 Ageing – Time Stability 

In addition to the property measurements carried out on the 24th hour since being poled which 

were reported above, the 6 samples sintered at 1490 °C were subsequently measured on the 48th 

(2nd day), 72nd (3rd day), 96th (4th day), 240th (10th day) and 1440th (60th day) hours, respectively, 

in order to observe the ageing behaviour. The ageing process was completed at room 

temperature in air. Figure 7-25 shows the variations of the dielectric, piezoelectric and energy 

harvesting parameters with measurement time.  

Overall, the 50BCZT ceramics exhibited the normal ageing behaviour expected of piezoelectric 

ceramics, with relative permittivity, dielectric loss, piezoelectric and coupling coefficients all 

decreasing with time, while the quality factor increased with time. The 𝑑33∙𝑔33 showed a 

similar trend to the 𝑑33, however the 𝑔33 trend was observed to be more complex, with the 

value dropping dramatically to a minimum value on the 4th day while then rising back to its 

initial value and remaining relatively stable. Amongst all of the parameters, the 𝑑33, 𝑘𝑝, 𝑑33∙𝑔33 

and 𝑔33 became approximately constant on the 10th day after being poled, however other 

parameters still tended to keep changing. As the poling conditions which had been used for 

these experiments had not been optimised, further discussion of the ageing effects and 
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comparisons to PZT ceramics will be given after the optimisation results are presented in the 

next two sections.  

 

Figure 7-25. Dependence of 𝜀𝑟, 𝑡𝑎𝑛𝛿, 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓, 𝑘𝑝, 𝑑33∙𝑔33 and 𝑔33 on measurement 

time for the 50BCZT discs sintered at 1490 °C.  

7.2.5 Effect of Poling Conditions 

The optimum poling conditions for a piezoelectric material will be dependent on the precise 

relationship between phases and temperature for the composition of interest, and in particular 

the MPB. As the MPB of the BZT-BCT system is strongly dependent on temperature, and the 

presence of two phase transition regions above room temperature was observed for the 50BCZT 

composition as discussed in Section 7.2.1.2, a systematic investigation on the effect of poling 

temperature was undertaken with the disc samples sintered at 1490 °C. Four additional batches 

of discs were fabricated and each batch contained 3 samples. In order to minimise errors, each 
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sample was measured 3 times independently, thus each data point in the figures of this section 

is an average of 9 measurements.  

The 4 batches of samples were poled at 25 °C, 50 °C, 80 °C and 110 °C, respectively, on the 

same other conditions (at 3 kV/mm DC electric field, in silicone oil, keep field on during 

cooling and remove field at 25 °C) presented in Chapter 6. The poling temperatures were 

selected based on the phase transition behaviour presented in Section 7.2.1 and Figure 7-17, 

where 25 °C was in the phase transition region of two ferroelectric perovskite phases, 50 °C 

situated in a stable single-phase (tetragonal) region, 80 °C was near the 𝑇𝑐, and 110 °C was 

above 𝑇𝑐. In principle, the allowed polarization directions in the different phases have different 

crystallographic orientations. Thus around phase transition temperatures, there is a greater 

possibility for the polarisation direction of individual crystals or domains to align with the 

electric field direction. In addition, the process of keeping the voltage on whilst cooling down 

helps to maintain the optimum poled status. The poling taken above 𝑇𝑐 was designed to induce 

the polarization with a preferred orientation when the paraelectric phase transferred to a 

ferroelectric phase. That is to say, when cooling through the cubic-ferroelectric phase transition 

with the electric field applied, this may give an additional driving force for the alignment of the 

polarization vectors. It should be noted here that as the breakdown electric field of the cubic 

phase of the 50BCZT ceramics was smaller than 3 kV/mm electric field, the poling at 110 °C 

was in fact carried out with 2 kV/mm field.  

The dielectric and piezoelectric parameters of the additional samples poled at different 

temperatures are shown in Figure 7-26 for different time intervals after poling. Within the first 

24 hours, increased poling temperatures resulted in decreased 𝑑33, 𝑘𝑒𝑓𝑓 and 𝑘𝑝. Within the first 

10 days, increased poling temperatures only led to a lower relative permittivity, and no 

significant effects on the other parameters were observed if the error bars are taken into account. 
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However, two variations were found on the 𝑑33 values measured on the 10th day and 60th day, 

where the values increased with poling temperature until 80 °C then became relatively stable. 

Also, despite the slight variations in terms of the average values, all of the parameters excluding 

𝑑33 tended to be independent of poling temperature after being aged for 60 days.  

 

Figure 7-26. Dependence of 𝜀𝑟, 𝑡𝑎𝑛𝛿, 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓 and 𝑘𝑝 on poling temperature for the 

50BCZT discs sintered at 1490 °C measured at different times.  

The remaining two energy harvesting related parameters, which exhibited slightly stronger 

dependence on poling temperature below 80 °C, especially when being aged, are shown in 

Figure 7-27. It should be noted here that the 𝑑33∙𝑔33 and 𝑔33 were not always deteriorated with 
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time, especially for the samples poled at 50 °C and above where no significant deterioration but 

even slight improvement with time can be observed. This is due to that the 𝜀𝑟 and 𝑑33 varied 

with different rates (see Figure 7-26), and thus the calculated 𝑑33∙𝑔33 and 𝑔33 (see 

Equation 3-36) would follow a different trend.  

 

Figure 7-27. Dependence of 𝑑33∙𝑔33 and 𝑔33 on poling temperature for the 50BCZT discs 

sintered at 1490 °C and measured at different times.  

However, in Figures 7-26 and 7-27, a trend about the ageing effect could be generally viewed 

in that the samples poled at lower temperatures seemed to age more. Details are illustrated in 

Figure 7-28, where the 60-day ageing effect constants of different parameters with different 

poling temperatures are compared.  
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Figure 7-28. Dependence of 60-day ageing effect constants of 𝜀𝑟, 𝑡𝑎𝑛𝛿, 𝑑33, 𝑄𝑀, 𝑘𝑒𝑓𝑓, 𝑘𝑝, 

𝑑33∙𝑔33 and 𝑔33 on poling temperature for the 50BCZT ceramic discs sintered at 1490 °C.   

In terms of the dielectric and piezoelectric parameters, the ageing effect constants decreased 

with the increase of poling temperature, excluding the 𝑄𝑀 where the smallest constants were 

found at 80 °C. Also, apart from 𝑄𝑀, all of the parameters decreased with time. However, as 

the 𝑑33∙𝑔33 and 𝑔33 were comprehensively determined by 𝑑33 and 𝜀𝑟, both of their ageing effect 

constants showed irregular variation trends. In particular, for 𝑑33∙𝑔33, the values decreased with 

time when the samples were poled at 25 °C and 50 °C, but those for the latter aged less than the 

former. In contrast, a positive variation was observed for samples poled at 80 °C and 110 °C, 

the values being quite similar. For 𝑔33, the values decreased only for samples poled at 25 °C, 
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while those poled at 50, 80 and 110 °C showed increased properties after ageing, with samples 

from the latter two temperatures exhibiting similar values.  

In summary, although the poling temperature had little effect on the absolute values of most 

properties, higher poling temperatures could help to eliminate ageing. Also, the key energy 

harvesting related parameters, 𝑑33∙𝑔33 and 𝑔33 could even be increased with certain poling 

temperatures, which might be an advantage of using these materials to fabricate energy 

harvesters.  

7.2.6 Comparison of 50BCZT and PZT Ceramics 

As the proposed lead-free composition intends to substitute the commercial PZT as the material 

candidate for piezoelectric energy harvesters, the properties related to energy harvesting of both 

compositions were compared. The 50BCZT samples sintered at 1490 °C and poled at 80 °C 

were selected as the best samples, which were subsequently compared to the PZT samples 

sintered at 1200 °C which were presented in Section 7.1. Figure 7-29 shows the comparisons 

of relevant parameters of such samples, where the results were measured 24 hours after poling, 

and which have been extracted from Figures 7-9, 7-12, 7-13, 7-26 and 7-27.  

It can be observed that for the two compositions, each has particular prominent features. The 

50BCZT tends to have larger relative permittivity as well as mechanical quality factor, which 

in theory could provide higher resonant output power to a PEHer. The PZT exhibited larger 

𝑑33∙𝑔33 and 𝑔33 values, which might be helpful in respectively improving the theoretical 

off resonant output power and open-circuit voltage of a PEHer. However, as both compositions 

had comparable effective coupling coefficients, whilst the 50BCZT had a larger 𝑄𝑀 but smaller 

dielectric loss, all of which has a significant influence on the energy conversion efficiency of a 

PEHer, it is difficult to predict theoretically such performance. In addition, as the 𝑇𝑐 of the 

50BCZT composition was shown to be between 80 and 90 °C while that of the PZT was about 
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350-400 °C, the last disadvantage of the 50BCZT is considered as the much lower practical 

working temperature.  

Overall, the 50BCZT composition shows a considerable potential to substitute traditional PZT 

in energy harvesters, especially when the predicted working temperature is lower than 80 °C.  

 

Figure 7-29. Comparisons of 𝜀𝑟, 𝑄𝑀, 𝑘𝑒𝑓𝑓, 𝑡𝑎𝑛𝛿, 𝑑33∙𝑔33 and 𝑔33 of the PZT and 50BCZT 

ceramics.  

 

7.3 Low-temperature Sintering 

7.3.1 Borosilicate Glass 

In order to prepare for the subsequent fabrication of silver/piezoelectric multi-layer co-sintered 

thick-films, the low-temperature liquid-phase sintering behaviour and sintered piezoelectric 

properties of all of the lead-based and lead-free compositions discussed in Sections 7.1 and 7.2 

were first investigated using bulk discs. The target sintering temperature was below 950 °C, as 



Ph.D. Thesis – Yang Bai 

147 
 

the melting point of silver is about 960 °C. Figure 7-30 shows the XRD pattern of the 

borosilicate glass used for this work. A single, very broad peak is observed on a very noisy 

background, indicative of a glassy material with extremely low level of crystallisation. The 

average results of 3 independent particle size analyses showed that the powder had 𝐷50 of 

3.80 ± 1.30 μm and 𝐷90 of 9.89 ± 1.64 μm after 24-hour ball milling.  

 

Figure 7-30. XRD pattern of the borosilicate glass utilised as sintering aid.  

Figure 7-31 shows the results of a DSC/TGA test (introduced in Section 6.4.2) of the glass 

powder. Around 350 °C there was an endothermic event observed together with a weight loss 

of about 1.5 %. This might be caused by an impurity reaction that decomposed and emitted a 

gaseous product, or the evaporation of water chemically bound in the powder. However, at 

approximately 800 °C, an obvious exothermic reaction began without weight loss, and which 

was considered as the melting of the glass frit. Based on these observations, it was assumed that 

above 800 °C powdered materials containing this glass would be sintered in a liquid-phase 

environment.  
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Figure 7-31. Dependence of DSC and mass on temperature for the borosilicate glass.  

7.3.2 Lead-based Compositions 

The PZT was used for an initial broad investigation to understand the sintering behaviour with 

the borosilicate glass. Figure 7-32 shows the density, diameter shrinkage, relative permittivity 

after poling and 𝑑33 of the PZT discs with different glass contents sintered at temperatures 

between 900 and 1000 °C. The measurements were taken 24 hours after poling, and each datum 

point is an average of 6 values from a batch of 6 measured samples. 

In terms of ordinary ceramic sintering, targeting on a lower temperature, the highest density 

was achieved by the PZT discs with 5 wt% glass sintered at 950 °C, as indicated by the peaks 

in Figure 7-32 (a) and (b). The maximum average density and diameter shrinkage  were 

approximately 85% and 93% respectively of those of the PZT discs without glass sintered at 

1200 °C (see Figure 7-4), of which no shrinkage happened when sintered at 900-1000 °C. 

Therefore, the borosilicate glass was proved a successful sintering aid for the PZT composition. 

However, although the density and shrinkage increased with the content of glass addition 

(below 5 wt%), the dielectric and piezoelectric properties (𝜀𝑟 and 𝑑33 as representatives) did 

not follow the same trend. For all of the samples shown in Figure 7-32 (c) and (d), obvious 
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decreases of the 𝜀𝑟 and 𝑑33 were observed with the increase of the glass content, especially for 

the 𝑑33 where dramatic reductions occurred from 1 wt% to 3 wt% of glass content. This 

indicated that introduction of the non-crystalline glass composition had a detrimental influence 

on the dielectric and piezoelectric properties, thus the sintering densification and sintered 

material properties must be balanced in order to ensure a lower sintering temperature, a better 

densification and acceptable properties at the same time. In a comprehensive consideration, the 

glass content of 1 wt% was selected to be applied on other lead-based compositions.  

 

Figure 7-32. Dependence of (a) density (b) diameter shrinkage (c) 𝜀𝑟 and (d) 𝑑33 on glass 

additive content for PZT discs sintered at different temperatures. 

The dielectric and piezoelectric as well as the energy harvesting related parameters, 𝜀𝑟 after 

poling,  𝑑33, 𝑔33, 𝑑33∙𝑔33, 𝑘𝑒𝑓𝑓 and 𝑄𝑀, of the PZT, PZnN-P3LZT and PZnN-P5LZT discs 

with 1 wt% glass and sintered at 900 °C and 950 °C are compared in Figure 7-33.  
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Figure 7-33. Comparisons of 𝜀𝑟 after poling, 𝑑33, 𝑔33, 𝑑33∙𝑔33, 𝑘𝑒𝑓𝑓 and 𝑄𝑀 of the 

lead-based discs with 1 wt% glass additive sintered at 900 °C and 950 °C.  

The first point to notice is that because of the imperfect sintering at low temperatures as well 

as the glass addition,  all of the samples performed worse than their high-temperature, well-

sintered counterparts. In particular, for PZT, the average 𝜀𝑟, 𝑑33, 𝑔33, 𝑑33∙𝑔33, 𝑘𝑒𝑓𝑓 and 𝑄𝑀 of 
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the samples with 1 wt% glass sintered at 900-950 °C were about 30%, 19-24%, 77-80%, 

18-19%, 36-39% and 105-114% respectively of those of the samples without glass and sintered 

at 1200 °C; for PZnN-P3LZT, the average values of the corresponding parameters were about 

26-32% (𝜀𝑟), 26-27% (𝑑33), 86-99% (𝑔33), 23-26% (𝑑33∙𝑔33), 35-44% (𝑘𝑒𝑓𝑓) and 39-64% (𝑄𝑀) 

respectively of those of samples without glass sintered at 1250 °C (best comprehensive 

properties); and for PZnN-P5LZT, they were about 12-16% (𝜀𝑟,) 13-14% (𝑑33), 85-108% (𝑔33), 

12-14% (𝑑33∙𝑔33), 29% (𝑘𝑒𝑓𝑓) and 102-107% (𝑄𝑀) respectively of those of the samples without 

glass sintered at 1250 °C (best comprehensive properties). Exclusively, for PZT and 

PZnN-P5LZT samples, the 𝑄𝑀 values were slightly enhanced by the addition of the glass and 

being sintered at low temperatures, whilst for all of the samples the least effect was seen on the 

𝑔33 values. However, compared to the PZT and PZnN-P3LZT samples, the PZnN-P5LZT 

samples with glass dropped to extremely low levels (only around 15 %) in terms of the 𝜀𝑟, 𝑑33, 

and 𝑑33∙𝑔33, indicating that it was more difficult to sinter this composition at low temperatures 

whilst also maintaining the reasonable dielectric and piezoelectric properties.  

Figures 7-34, 7-35 and 7-36 show the XRD pattern comparisons of the sintered samples with 

glass and the corresponding ones without glass together with those of the respective powders.   
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Figure 7-34. XRD patterns of the PZT powder, PZT discs with 1 wt% glass sintered at 900 °C 

and 950 °C and PZT disc without glass sintered at 1200 °C.  
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Figure 7-35. XRD patterns of the PZnN-P3LZT powder, PZnN-P3LZT discs with 1 wt% glass 

sintered at 900 °C and 950 °C and PZnN-P3LZT disc without glass sintered at 1250 °C.  
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Figure 7-36. XRD patterns of the PZnN-P5LZT powder, PZnN-P5LZT discs with 1 wt% glass 

sintered at 900 °C and 950 °C and PZnN-P5LZT disc without glass sintered at 1250 °C.  

Overall, all of the low-temperature sintered samples maintained similar phase structures to their 

corresponding powders, but did not achieve the properties of their high-temperature sintered 

counterparts. This could explain the reduction in the relevant material properties between the 

samples with glass and those without glass. It implies that the glass only promoted the ceramic 

densification at low temperatures, and had little effect on the phase transition or lattice 

parameter optimisation which were considered essential in order to obtain better 

dielectric/piezoelectric properties. Also, in Figures 7-35 and 7-36, the relative intensities of the 

XRD peaks of the samples with glass which were assigned to pyrochlore were magnified 

compared to the remaining peaks, indicating a higher proportion of the pyrochlore phases in 
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these samples. This might be because the glass may not only help the densification but 

encourage the growth of pyrochlore at the same time. As the content of the glass utilised were 

only 1 wt%, no additional peaks related to the compositions of the glass were observed.  

Finally, Figure 7-37 shows the fracture surface SEM images of the lead-based discs with 1 wt% 

glass sintered at 900 °C and 950 °C. All of the observed samples formed grains of 1-2 µm. 

However, although all of the samples were much more porous than their well-sintered 

counterparts presented in Section 7.1 (Figures 7-5, 7-6 and 7-7), the PZT samples showed 

relatively better densification than the PZnN-P3LZT and PZnN-P5LZT samples. This implies 

that it might be easier to sinter the PZT ceramics at low-temperatures in a liquid phase 

environment.  

In a comprehensive consideration, the PZT and PZnN-P3LZT compositions were chosen for 

further study and the PZnN-P5LZT was abandoned, as: (1) the well-sintered PZnN-P5LZT 

samples performed extremely similarly to the PZT samples (presented in Section 7.1.3); (2) the 

PZnN-P5LZT composition showed worse time stability (faster ageing) than the other two 

compositions (presented in Section 7.1.4); and (3) the PZnN-P5LZT composition was more 

difficult to sinter at low temperatures in a liquid phase (presented in this section).  
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Figure 7-37. SEM images of fracture surfaces of the discs with 1 wt% glass sintered at 

different temperatures: (a) PZT, 900 °C; (b) PZT, 950 °C; (c) PZnN-P3LZT, 900°C; 

(d) PZnN-P3LZT, 950 °C; (e) PZnN-P5LZT, 900 °C; (f) PZnN-P5LZT, 950 °C.  
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7.3.3 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 

Figure 7-38 shows the densities and diameter shrinkage of the 50BCZT discs with glass 

contents of 1-3 wt% and sintered at different temperatures. 

 

Figure 7-38. Dependence of (a) density (b) diameter shrinkage on sintering temperature for 

the 50BCZT discs with different glass contents.  

 In Section 7.2, it was shown that the principle sintering temperatures of the 50BCZT ceramics 

were much higher than that of PZT. They were also more difficult to sinter at the low 

temperatures achieved for PZT using the same glass type and contents. At 900-1000 °C, the 

50BCZT samples were hardly sintered, even with 3 wt% glass additives, where the density and 
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shrinkage were about 3.0 g/cm3 and 0-2 % respectively, as shown in Figure 7-38. From 1100 °C, 

the samples started to be sintered as both the densities and shrinkage went up with the increase 

of temperature, indicating better densification. With 1100 °C sintering temperature, only small 

differences of density and shrinkage values were observed among the samples with 1 wt%, 

2 wt% and 3 wt% glass addition, implying similar densification levels. At 1200 °C, the samples 

with 2 wt% and 3 wt% glass still showed similar density and shrinkage values, while the largest 

differences were observed between the 1 wt% and 2 wt% glass contents. This indicates that 

increase glass addition beyond 2 wt% may also help the sintering of the 50BCZT composition, 

but 2 wt% might be enough to obtain reasonable density and shrinkage. After being sintered at 

1300 °C, the samples with 3 wt% glass addition were stuck onto the supporting substrate by the 

melted and re-solidified glass, which meant that 3 wt% addition was excessive for such a 

sintering temperature. In addition, being sintered at 1300 °C, the densities of the samples with 

1 wt% and 2 wt% glass were similar and the difference in shrinkage reduced.   

Figure 7-39 shows the variations of 𝜀𝑟, 𝑑33, 𝑔33 and 𝑑33∙𝑔33 with sintering temperatures and 

glass contents for the 50BCZT samples. The poling was carried out at 25 °C, and the 

measurements were taken 24 hours after poling. Each datum point was an average of 9 values, 

which were from 3 samples but each sample was independently measured 3 times. The relative 

permittivity varied linearly with sintering temperature from 900 °C to 1300 °C, and the samples 

with less glass exhibited slightly larger relative permittivity values for a particular temperature, 

especially from 1100 °C upwards (see Figure 7-39 (a)). However, the situation for 𝑑33 was a 

little different, where all of the samples sintered at 900-1100 °C exhibited extremely low 𝑑33. 

Noticeable enhancements only occurred with 1200-1300 °C sintering temperatures. Similar to 

what happened to the PZT samples, larger glass contents resulted in an obviously deterioration 

in 𝑑33 (see Figure 7-39 (b)). The trends of the 𝑑33∙𝑔33 were nearly the same with those of 𝑑33 
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(see Figure 7-39 (d)). In addition, interesting variations were found in 𝑔33, where the values 

decreased until 1100 °C then increased with increasing temperature (see Figure 7-39 (c)). The 

larger 𝑔33 values at 900 °C were because of the smaller 𝜀𝑟, while the larger values at 

1200-1300 °C resulted from the larger 𝑑33. However, considering the very poor ceramic 

sintering as well as extremely low 𝑑33∙𝑔33 values, the samples sintered at 900-1100 °C were 

considered not suitable for further work.  

 

Figure 7-39. Dependence of (a) 𝜀𝑟 (b) 𝑑33 (c) 𝑔33 and (d) 𝑑33∙𝑔33 on sintering temperature 

for the 50BCZT discs with different glass contents.  

Figure 7-40 compares 𝑘𝑒𝑓𝑓 and 𝑄𝑀 of the 50BCZT samples with different glass contents 

sintered at 1200 °C and 1300 °C. Less glass tended to induce larger 𝑘𝑒𝑓𝑓, while the 𝑄𝑀 varied 

in the opposite way. Considering a balance of densification and reasonable performance at 

reduced sintering temperatures, the best low-temperature sintered samples were determined as 

those with 1 wt% glass sintered between 1200 °C and 1300 °C.  
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Figure 7-40. Dependence of (a) 𝑘𝑒𝑓𝑓 (b) 𝑄𝑀 on sintering temperature for the 50BCZT discs 

with different glass contents.  

In summary, compared to the well-sintered samples at 1490 °C presented in Section 7.2, the 

low-temperature sintered 50BCZT samples performed about 74-86% of diameter shrinkage, 

25-30% of 𝜀𝑟, 28-35% of 𝑑33, 43-54% of 𝑘𝑒𝑓𝑓, 107-127% of 𝑄𝑀, 116-117% of 𝑔33, and 33-56% 

of 𝑑33∙𝑔33, with approximately 200-300 °C lower sintering temperature, and under the same 

poling conditions (25 °C).  

However, as 1200 °C was still too high for the use of silver electrodes, the subsequent 

investigations on real energy harvesters presented in Chapter 8 only involved the lead-based 

compositions. Potential methods for further reducing the sintering temperature of the 50BCZT 

composition will be discussed in the future work in Chapter 9.  
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CHAPTER 8. FREE-STANDING STRUCTURES AND NOVEL ENERGY 

HARVESTERS 

8.1 Introduction 

Chapter 4 has reviewed the principles, configurations and materials of piezoelectric energy 

harvesters (PEHers). This chapter presents the experimental results and corresponding 

discussions of piezoelectric free-standing thick-film structures and cantilever-based vibrational 

energy harvesters. The materials have been fully discussed in Chapter 7 using high-temperature 

and low-temperature sintered bulk ceramics. Following this, this chapter picks up two of the 

lead-based compositions (PZT and 3 mol% La-doped PZnN-PZT (PZnN-P3LZT)). Rather than 

bulk samples, these compositions were fabricated to single-layer and piezoelectric/silver 

multi-layer free-standing thick-films using the doctor blading process (see Section 3.6.2.2). The 

single-layer films were used for fabrication process investigation and material characterisation 

(Section 8.2), whilst the multi-layer film cantilevers were tested as individual energy harvesters 

under harmonic vibrations (Section 8.3). Also, the individual harvesters were mathematically 

analysed and modelled, and then used for energy harvester array design, fabrication and 

harmonic vibration test (Section 8.4). In addition, the individual harvesters were configured 

with a free-spinning fan and tested in air-flow (Section 8.5).  

 

8.2 Inks and Thick-films 

8.2.1 Ink Properties and Free-standing Structure Fabrication 

As the fabrication process of the free-standing structures involved co-sintering 

silver/piezoelectric multi-layers, the first issue should be to gain a good knowledge of the 

shrinkage of the deposited films when subjected to various firing procedures, and the effects of 

them on the appearance and integrity of the sintered cantilevers. Figure 8-1 shows some 
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examples of the sintered PZT, PZnN-P3LZT and silver free-standing single-layer thick-films 

(Series 1) which were used for shrinkage measurements. As presented in Chapter 6, Series 1 

samples shown in Figure 8-1 were fabricated by printing a layer of piezoelectric or silver ink 

onto a carbon layer. After being sintered at 875-950 °C for certain period (see Section 6.2), the 

planar shrinkage and densities were characterised (see Section 6.4).  

 

Figure 8-1. Pictures of the single-layer free-standing thick-films (Series 1) (a) PZT sintered at 

900 °C for 1 hour, (b) PZnN-P3LZT sintered at 950 °C for 1 hour, and (c) silver sintered at 

900 °C for 0.5 hour (top-view).  

Figure 8-2 shows the planar shrinkage of the silver, PZT and PZnN-P3LZT inks at different 

sintering temperatures with different dwell durations (measured from Series 1 samples). The 

fabrication of the inks have been presented in Section 6.2.2. Each datum point was from an 

average of 10 samples.  
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Figure 8-2. Dependence of planar shrinkage on (a) sintering temperature at various dwell 

times, and (b) dwell time at various sintering temperatures for single-layer thick-films of 

different compositions. 

The silver ink had approximately the same shrinkage for all the conditions tested. Main 

contribution to the shrinkage of the silver ink is considered as polymer decomposition when 

heated to the sintering temperature. Also, as the tested temperatures shown in Figure 8-2 were 

rather close to the melting point of silver (about 960 °C), sintering of the silver ink is expected 

as well. However, sintering did not affect the shrinkage of the silver ink, implying that the silver 
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had achieved the fullest densification under these conditions. In contrast, although polymer 

decomposition did not contribute to the differences of shrinkage under different conditions for 

the PZT and PZnN-P3LZT inks, the shrinkage varied for the different sintering procedures 

according to Figure 8-2 because of change of densification level. Both sintering temperature 

and dwell duration had significant influences on the shrinkage. In particular, for the PZT ink, 

the shrinkage increased linearly with sintering temperature (Figure 8-2 (a)) but retained at 

approximately the same level with dwell duration until being sintered for 2 hours where a slight 

shrinkage increase was observed (Figure 8-2 (b)). However, for the PZnN-P3LZT ink, the 

shrinkage increased linearly with both sintering temperature (Figure 8-2 (a)) and dwell duration 

(Figure 8-2 (b)), despite such a trend started from being sintered at 900 °C (Figure 8-2 (a)). 

Among all of the procedures, 7 of them (P1-P7 shown in Figure 8-2) were applied to the 

fabrication of the free-standing multi-layer thick-film cantilevers. Details of procedure P1 to P7 

are summarised in Table 8-1, where adopted compositions and configurations, sintering 

temperatures and dwell durations are defined. The binder burning-off procedure and 

temperature ramping rate were mentioned in Section 6.2, which are: 

(1) 1 °C/min ramping up to 325 °C, dwelling 1 hour; 

(2) 1 °C/min ramping up to 500 °C, dwelling 1 hour; 

(3) 5 °C/min ramping up to target sintering temperature, dwelling certain period; 

(4) 5 °C/min ramping down to room temperature. 
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Table 8-1. Sintering temperatures and dwell durations of sintering procedure P1 to P7. 

Procedure Composition and Configuration Sintering 
Temperature (°C) 

Dwell 
Duration 

(h) 

P1 PZT + Ag, unimorph 875 1.0 

P2 PZnN-P3LZT + Ag, unimorph 950 1.0 

P3 PZT + Ag, unimorph 925 1.5 

P4 PZT + Ag, unimorph & bimorph 925 1.0 

P5 PZnN-P3LZT + Ag, unimorph & 
bimorph 900 1.0 

P6 PZT + Ag, unimorph 900 2.0 

P7 PZnN-P3LZT + Ag, unimorph & 
bimorph 875 1.0 

 

Figure 8-3 shows the pictures of the sintered cantilevers corresponding to the P1 to P7 

procedures labelled in Figure 8-2 and listed in Table 8-1. As the cantilevers sintered with P3, 

P6 and P7 procedures looked similar to those sintered with P2, P4 and P5, respectively, the 

pictures were not re-presented.  

As observed, if the shrinkage of the silver layer was much larger than that of the piezoelectric 

elements, a delamination problem was likely to occur (Figure 8-3 (a)). On the contrary, if the 

shrinkage of the silver layers were equal to or smaller than that of the piezoelectric layers, in 

addition to the effect of the material mass, the cantilever would deflect downwards and even 

stick onto the substrate during sintering, leading to a failure to obtain a free-standing structure 

(Figure 8-3 (b)). It was found empirically that only by maintaining a difference of 3 % to 6 % 

in the overall shrinkage of the silver and the piezoelectric elements could a flat, free-standing 

thick-film cantilever free from residual stress be obtained (Figure 8-3 (c), (d), (e) and (f)). This 

suggested that the PZT cantilever would better be sintered at 925 °C for 1 hour (P4) or at 900 °C 
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for 2 hours (P6), and the PZnN-P3LZT cantilever could be sintered at 875 °C or 900 °C for 

1 hour (P7 or P5).  

 

Figure 8-3. Pictures of the free-standing thick-film cantilevers sintered with different 

procedures: (a) the PZT unimorph sintered at 875 °C for 1 hour (P1); (b) the PZnN-P3LZT 

unimorph sintered at 950 °C for 1 hour (P2); (c) the PZT unimorph sintered at 925 °C for 

1 hour (P4); (d) the PZnN-P3LZT unimorph sintered at 900 °C for 1 hour (P5); (e) & (f) the 

PZnN-P3LZT bimorph sintered at 900 °C for 1 hour (P5).  

Figure 8-4 shows the cross-sectional SEM images of two successfully fabricated cantilevers: 

(a) a PZT unimorph sintered at 900 °C for 2 hours; (b) a PZnN-P3LZT bimorph sintered at 900 

°C for 1 hour. In general, the individual layers and interfaces were clearly defined. For the 

unimorph, thicknesses of the silver and piezoelectric layers were about 35 μm and 80 μm, 

respectively, with the overall thickness of the unimorph being approximately 230 μm 
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(Figure 8-4 (a)). For the bimorph, the overall thickness was about 285 μm, with the individual 

silver and piezoelectric layers being about 35 μm and 90 μm, respectively. For the initial stage 

of the investigation concerning comparisons of the output generated by the harvesters made 

from the two piezoelectric compositions, the thickness of the layers were controlled around the 

above values. However, in later investigations concerning optimisation of the output and 

frequency tuning, various thickness combinations were utilised, which will be discussed later. 

It should be noted that all of the previous SEM images were generated using secondary 

electrons (SE) as the source, but Figure 8-5 shows the back scatter electron (BSE) images of a 

PZT unimorph and a PZnN-P3LZT bimorph, in order to observe any diffusion of silver. As 

shown in Figure 8-5, the silver diffused slightly into the piezoelectric layers with 5-10 μm 

diffusion interfaces (as marked in the figure), meaning good lamination between the silver 

layers and piezoelectric layers. No other evidence of deep silver diffusion was observed, thus 

confirming the success of the designed structures.  

 

Figure 8-4. Cross-sectional SEM images (SE) of (a) PZT unimorph (b) PZnN-P3LZT 

bimorph.  
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Figure 8-5. Cross-sectional SEM images (BSE) of (a) PZT unimorph (b) PZnN-P3LZT 

bimorph.  

8.2.2 Properties of Single-layer Thick-films 

Figure 8-6 gives an example of the upper and lower surfaces of a sintered and gold-sputtered 

free-standing single-layer thick-film (Series 2) used for property characterisations. The 

fabrication, dimensions and characterisation methods of Series 2 samples have been presented 

in Chapter 6. It can be seen that the electrode on each surface did not fully cover the entire 

surface of the piezoelectric layer, also the two layers of electrodes were not coincident with 

each other. This was to avoid electric shorting between the electrodes as well as preventing 

sparks during poling, as was presented and discussed in Chapter 3. However, the surface area 

used for permittivity calculation was taken as the smallest possible area which were covered by 

both electrodes at the same time, rather than that of the entire piezoelectric surface. For instance, 

the surface area used for calculating the permittivity of the sample shown in Figure 8-6 was 

𝑙𝑎 × 𝑙𝑏 rather than 𝑙𝑎0 × 𝑙𝑏0, where 𝑙𝑎, 𝑙𝑏, 𝑙𝑎0 and 𝑙𝑏0 are defined in Figure 8-6.  
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Figure 8-6. Pictures of a sintered and gold-sputtered PZT free-standing single-layer 

thick-film (Series 2): (a) upper surface; (b) lower surface (top-view).  

The PZT thick-films sintered at 900 °C for 2 hours and the PZnN-P3LZT thick-films sintered 

at 900 °C for 1 hour were utilised to characterise the energy harvesting related properties of the 

materials, and thus provide a benchmark with which to correlate the harvester outputs in the 

vibration tests presented in the following sections. Table 8-2 briefly summarises the physical, 

dielectric and piezoelectric properties of the two types of thick-films. As with Series 1, each 

datum was an average of 10 samples, with the standard deviations indicated in the table. In 

general, the PZnN-P3LZT thick-films had larger 𝑑33, 𝑑31, 𝑔33 and 𝑔31 values and thus 

correspondingly larger 𝑑33∙𝑔33 and 𝑑31∙𝑔31. This would imply a higher theoretical output 

voltage as well as off-resonant output power for the harvesters made from such thick-films 

compared to those made from the PZT thick-films with the same dimensions and peak 

deflections. However, the resonant output power density and energy conversion efficiency were 

difficult to evaluate theoretically due to the complex dependencies on the other parameters, 

𝑘𝑒𝑓𝑓, 𝑘31, 𝑄𝑀, 𝜀𝑟 and 𝑡𝑎𝑛𝛿. In addition, the data reported in a relevant publication1, in which 

free-standing ‘soft’ PZT thick-films were fabricated with sintering temperatures of 850 to 

950 °C, are also included in Table 8-2 as a reference. Overall, the free-standing PZT thick-film 
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fabricated in this project exhibited smaller 𝜀𝑟 and 𝑄𝑀 but larger 𝑑33, 𝑑31, 𝑔33, 𝑔31 and 𝑘31 

compared to those in the literature. Further comparisons will be discussed in the following 

sections concerning real energy conversion tests.  

Table 8-2. Summary of the average properties of the PZT and PZnN-P3LZT thick-films, and 

relevant data in reference.  

 PZT PZnN-P3LZT Reference1 

𝜌 (g/cm3) 6.02 ±0.02 5.01 ±0.02  

𝑌𝐸  (GPa) 13.9 ±1.3 19.4 ±1.7  

𝜀𝑟 383 ±19 328 ±16 336 to 617 

𝑡𝑎𝑛𝛿 (%) 2.4 ±0.1 2.4 ±0.2  

𝑑33 (pC/N) 168 ±5 177 ±21 53 to 82 

𝑑31 (pC/N) -97 ±3 -102 ±12 -20 to -29 

𝑔33 (mV·m/N) 49.4 ±1.5 60.8 ±7.0 17.8 to 21.2 

𝑔31 (mV·m/N) -28.5 ±0.9 -35.2 ±4.1 -5.2 to -6.7 

𝑘𝑒𝑓𝑓 0.18 ±0.01 0.23 ±0.01  

𝑘31 -0.20 ±0.01 -0.26 ±0.01 0.13 to 0.15 

𝑄𝑀 32 ±4 19 ±3 98 to 130 

 

Figure 8-7 shows the examples of the impedance-frequency spectra of a PZT thick-film and a 

PZnN-P3LZT thick-film, based on which the 𝑌𝐸 , 𝑑31, 𝑘𝑒𝑓𝑓, 𝑘31 and 𝑄𝑀 were calculated (for 

equations see Chapters 3 and 6). The resonance in the figure belonged to the length direction 

vibrations, which demonstrates the typical piezoelectric response of both samples.  
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Figure 8-7. Dependence of impedance on electric signal frequency for a PZT thick-film 

sintered at 900 °C for 2 hour and a PZnN-P3LZT thick-film sintered at 900 °C for 1 hour.  

Figure 8-8 shows the XRD patterns of the PZT and PZnN-P3LZT thick-films sintered with the 

same procedures presented above, together with comparisons to their powder and disc 

counterparts. For thick-films of both compositions, the main perovskite structures observed in 

the powders were maintained. The peak positions of the PZT thick-film shifted slightly (0.3°) 

towards larger diffraction angles. Although such a shift was not as significant as that for the 

PZT discs sintered at 1200 °C (presented with Figure 7-1), compared to the PZT discs with 

glass sintered at 900 °C for 2 hour where the peak shift could be hardly noticed (Figure 7-34), 

the low-temperature sintered PZT thick-films appeared to be closer to the high-temperature 

sintered discs. Such a microstructure also resulted in higher density, 𝑑33 and 𝑘𝑒𝑓𝑓 (listed in 

Table 8-2) than those of the low-temperature sintered discs (shown in Figure 7-33). However, 

nothing in the commercial vehicle used in the inks prevented the formation and growth of the 
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pyrochlore in the PZnN-P3LZT thick-films, where the mixture of phases appeared almost the 

same as that for the corresponding low-temperature sintered discs.  

 

Figure 8-8. XRD patterns of the PZT thick-film sintered at 900 °C for 2 hours and the 

PZnN-P3LZT thick-film sintered at 900°C for 1 hour, and the corresponding powders, discs 

with glass addition sintered at 900 °C for 2 hours and discs without glass sintered at 

1200 °C (PZT) and 1250 °C (PZnN-P3LZT) for 2 hours.  

Figure 8-9 shows the SEM images of cross-sectional free-standing single-layer thick-films of 

the PZT and PZnN-P3LZT and their magnified fracture surfaces. Flat ceramic films of 

approximately 90 μm thick (PZT) and 80 μm thick (PZnN-P3LZT) were fabricated, with 

relatively dense microstructures compared to their low-temperature sintered disc counterparts 

(Figure 7-37). The grain sizes were 2-3 μm for both films, while some evenly distributed tiny 
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pores were observed in the PZnN-P3LZT film, consistent with the lower measured density 

compared with that of the PZT film (Table 8-2).  

 

Figure 8-9. (a) & (c) cross-sectional and (b) & (d) fracture surface SEM images of 

free-standing single-layer thick-films of (a) & (b) PZT sintered at 900 °C for 2 hours and 

(c) & (d) PZnN-P3LZT sintered at 900 °C for 1 hour.  

 

8.3 Vibration Tests of Single-element Energy Harvesters 

8.3.1 Unimorph Harvesters without Proof Mass 

The unimorph cantilevers made from the PZT and PZnN-P3LZT films were firstly tested and 

compared without tip proof masses. The root mean square (RMS) open-circuit voltage and RMS 

output power density measured with a range of accelerations at their individual resonant 

frequencies are shown in Figure 8-10 and 8-11, respectively. The calculation methods have 

been introduced in Section 6.5. In the figures, each datum was from an average of 3 samples, 

and each sample was tested 3 times independently within a week since being poled, in order to 
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ensure the repeatability. Therefore, each datum point was actually an average of 9 values. The 

individual resonant frequencies of the PZT unimorph cantilevers were measured in the range 

of 431-436 Hz, while those of the PZnN-P3LZT unimorph cantilevers were about 470 Hz.  

 

Figure 8-10. Dependence of RMS open-circuit voltage on acceleration (g ≈ 9.8 m/s2) for the 

PZT and PZnN-P3LZT unimorph cantilevers vibrating at their individual resonant 

frequencies.  

In Figure 8-10, as expected, the PZnN-P3LZT unimorph harvesters generated higher 

open-circuit voltage with relatively large accelerations (1.0g and 1.5g), resulting from the larger 

𝑔33 and 𝑔31 of the piezoelectric elements. The peak to peak tip displacements of the PZT and 

PZnN-P3LZT samples at higher acceleration levels were not distinguishable, being in the range 

of 70-150 µm and 130-200 µm for accelerations of 1.0 and 1.5g, respectively. However, the 

PZnN-P3LZT harvesters did not exhibit advantages with smaller accelerations (0.1g and 0.5g) 

in terms of open-circuit voltage as shown in Figure 8-10. As the dimensions of the PZT and 

PZnN-P3LZT unimorphs were similar while the PZnN-P3LZT layers were stiffer (larger 𝑌𝐸), 

the actual resonant frequencies of the PZnN-P3LZT cantilevers (approximately 470 Hz) were 

higher than those of their PZT counterparts (431-436 Hz), thus, with the same acceleration, the 

tip displacements of the former (20-30 µm for 0.1g, 40-60 µm for 0.5g) were smaller than the 



University of Birmingham 

176 
 

latter (30-40 µm for 0.1g, 50-70 µm for 0.5g), which might play a dominant role in generating 

output voltage at lower vibration levels.  

 

Figure 8-11. Dependence of RMS output power density on resistive load for: (a) the PZT and 

PZnN-P3LZT unimorphs vibrating at resonant frequencies with 0.1g acceleration; and (b) the 

PZT (c) the PZnN-P3LZT unimorphs vibrating at their individual resonant frequencies with 

different accelerations (g ≈ 9.8 m/s2).  

In Figure 8-11, it can be seen that the PZnN-P3LZT harvesters generally gave higher output 

power densities than the PZT samples with all values of resistive load, however they showed 

larger deviations. In order to identify whether such deviations were due to the measurement of 

different samples or repeat measurements on the same sample, Table 8-3 gives details of the 

data involved in Figure 8-11 (c) for acceleration of 1.5g with resistive load of 220 kΩ. Output 

power densities of three individual PZnN-P3LZT unimorph cantilevers (Samples 1, 2 and 3) 

obtained from three independent measurements (Tests 1, 2 and 3) are listed in the table. Also, 
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deviations due to repeat measurements (Dev.-Test) and due to measurement of different 

samples (Dev.-Sample) are calculated. It can be seen that the Dev.-Sample values are about an 

order of magnitude larger than the Dev.-Test values, indicating that the larger overall deviations 

in Figure 8-11 (a) and (c) may be because of the larger deviations of the material parameters of 

the PZnN-P3LZT thick-films that were exhibited compared to those of the PZT thick-films, as 

listed in Table 8-2.  

Table 8-3. Output power densities of three PZnN-P3LZT unimorph cantilevers obtained from 

three tests at their individual resonant frequencies with 1.5g acceleration and 220 kΩ 

resistive load, and deviations due to measurement of different samples and repeat 

measurements.  

 Test 1 Test 2 Test 3 Dev.-Test 

Sample 1  101.54 105.03 102.11 1.87 

Sample 2 66.61 68.99 66.48 1.42 

Sample 3 86.57 88.22 85.19 1.52 

Dev.-Sample 17.53 18.03 17.82 15.47 (overall) 

                                                                                                    Unit: µW/cm3 

Despite these deviations, the outputs reached the peaks with a resistive load of 220 kΩ for both 

types of harvesters with all of the four input accelerations. Such an electrical matching may 

change as the materials, device dimensions/configurations or electrical connections differ. Also, 

the optimum average output power densities of the PZnN-P3LZT harvesters were calculated to 

be 900% (0.1g), 68% (0.5g), 73% (1.0g) and 173% (1.5g) better than those of the respective 

PZT harvesters. When compared to the reported data1 obtained on a screen-printed PZT-5H 

free-standing thick-film unimorph energy harvester tested at its resonant frequency (around 230 

Hz) with 60 kΩ resistive load, the advantages were even more remarkable, approaching to 25 % 
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(0.1g), 92% (0.5g) and 121% (1.0g). It should be noted that the output power densities of the 

reference1 were re-calculated according to relevant data based on the same method used in this 

project (see Section 6.5).  

The better performance of the PZnN-P3LZT harvesters compared to the PZT harvesters 

(Figure 8-11) might result from the PZnN-P3LZT unimorphs having either higher initial 

resonant power generation abilities (or energy densities) or higher energy conversion 

efficiencies, or a combination of both of them. Thus, the efficiency must be firstly determined 

in order to investigate and compare the initial/real energy densities. The effective 

efficiency (𝜂𝑒𝑓𝑓) of an energy harvesting system, which is expressed by Equation 8-1, consisted 

of three aspects: the material sector (𝜂𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙), the structural sector (𝜂𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙) and the 

electric sector (𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐).  

𝜂𝑒𝑓𝑓 = 𝜂𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∙ 𝜂𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 ∙ 𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐    (8-1) 

As the cantilevers were directly connected to resistors, the generated energy would be totally 

dissipated by the resistive load, thus 𝜂𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 was assumed as 1. Meanwhile, because the 

configurations were the same, the 𝜂𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 of the two types of unimorphs were assumed the 

same as well. Combining Equation 4-8 (Chapter 4) and Equation 8-1, the ratio of the efficiency 

of the PZT unimorph (𝜂𝑒𝑓𝑓1) and that of the PZnN-P3LZT unimorph (𝜂𝑒𝑓𝑓2) could be expressed 

by Equation 8-2, where 𝑄1 and 𝑄2 are total quality factors of the PZT and PZnN-P3LZT 

thick-films, respectively. And 𝑘′1 and 𝑘′2 are the factors of the PZT and PZnN-P3LZT thick-

films related to electromechanical coupling coefficients. Factor 𝑘′ has been defined by Equation 

4-9 in (Chapter 4), whist 𝑄 could be estimated by Equation 8-3 (𝑄𝑀 is mechanical quality factor, 

𝑡𝑎𝑛𝛿 is dielectric loss factor).  

𝜂𝑒𝑓𝑓1

𝜂𝑒𝑓𝑓2
=

2𝑄1𝑘′1 + 𝑄1𝑄2𝑘′1𝑘′2

2𝑄2𝑘′2 + 𝑄1𝑄2𝑘′1𝑘′2
    (8-2) 
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1

𝑄
=

1

𝑄𝑀
+ 𝑡𝑎𝑛𝛿    (8-3) 

Using the data of the thick-films in Table 8-2, 𝜂𝑒𝑓𝑓1 𝜂𝑒𝑓𝑓2⁄  was calculated to be approximately 

0.87. This means without considering the effects of the structure and circuit, the energy 

conversion efficiency of the PZT unimorph was smaller than that of the PZnN-P3LZT 

unimorph, suggesting that in order to obtain a higher efficiency, piezoelectric materials 

exhibiting larger 𝑄∙𝐾′ might be preferred.  

The initial power generation abilities of the samples can now be compared after taking out the 

effect of efficiency. Taking the average output power densities vibrating at 0.5g with 220 kΩ 

resistive load as an example, the PZnN-P3LZT harvesters still outperformed the PZT harvesters 

by about 46% in terms of the initially generated power density. This confirmed that the 

PZnN-P3LZT composition could not only impart higher energy conversion efficiency, but 

better raw energy conversion ability, when applied in a piezoelectric free-standing thick-film 

energy harvester. Also, it suggested that the electromechanical coupling coefficients might have 

a more significant effect than 𝑄𝑀 on the output power density.  

8.3.2 Bimorph Harvesters without Proof Mass 

8.3.2.1 Output Power Density 

Figure 8-12 shows the comparison of the RMS output power densities of the unimorphs and 

bimorphs made from the PZnN-P3LZT composition. Again, each datum was from an average 

of 3 samples and each sample was tested 3 times within a week. In addition it should be noted 

that, the bimorphs were poled in series while being connected in parallel for the harvester 

characterisations. In the figure, the average output power densities of the bimorphs with the 

optimum resistive load (100 kΩ) were about twice of those of the unimorphs when excited with 

accelerations of 1.0g and 1.5g. This is because the two pieces of piezoelectric layers of the 

bimorphs were electrically connected in parallel, which tended to double the current compared 
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to the unimorphs. This is also the reason for the peak in bimorph output being at about half the 

resistive load compared to the unimorphs (electrical matching). However, at lower vibration 

levels (0.1g and 0.5g), the output power densities of the bimorphs were smaller than those of 

the unimorphs, where the reason might be that the bimorphs were thicker than the unimorphs 

thus their resonant frequencies were higher (about 610-625 Hz), leading to reduced amplitudes 

as well as tip displacements (around 10 μm for 0.1g and 30 μm for 0.5g) with weak vibrations. 

Although the same situation would also happen at higher vibration levels, the differences of the 

tip displacements between the unimorphs (70-150 μm for 1.0g, 130-200 μm for 1.5g) and 

bimorphs (90-130 μm for 1.0g, 160-180 μm for 1.5g) were not significant enough to markedly 

affect the absolute output. Table 8-4 gives the information of film thicknesses, planar 

dimensions and resonant frequencies for each sample of the PZnN-P3LZT unimorphs and 

bimorphs used for comparison in Figure 8-12. In the table, the thickness is expressed by the 

five individual layers, which are top electrode (𝐸𝑇), top piezoelectric layer (𝑃𝑇), middle 

electrode (𝐸𝑀), bottom piezoelectric layer (𝑃𝐵) and bottom electrod (𝐸𝐵), respectively, from 

left to right. As introduced in Chapter 6, the volume used for calculating the output power 

density was the free-standing part taking into account all piezoelectric and silver layers 

(thickness of the whole device). This means, although the structure of the two configurations is 

almost identical apart from one electrode, the inactive piezoelectric layer in the unimorph case 

resulted in a half output power density compared to that in the bimorph case where both 

piezoelectric layers were active. This does not necessarily suggest the bimorph configuration is 

more efficient, but, based on the same materials, it is a better choice of chasing higher output 

compared to the unimorph. Also, unlike the unimorphs which had a relatively wide range of 

corresponding resistive loads (100-470 kΩ), the output of the bimorphs seemed more dependent 
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on the loads. Sharp trends can be observed in Figure 8-12 (c), especially for measurements at 

1.0g and 1.5g accelerations.  

 

Figure 8-12. Dependence of RMS output power density on resistive load for: (a) the 

PZnN-P3LZT unimorphs and bimorphs vibrating at resonant frequencies with 0.1g 

acceleration; and the PZnN-P3LZT (b) unimorphs (c) bimorphs vibrating at resonant 

frequencies with different accelerations.  

Overall, the PZnN-P3LZT bimorph individual harvesters performed a maximum average output 

power density of approximately 147±7 μW/cm3, vibrating at resonant frequencies of 

610-625 Hz with 1.5g acceleration and 100 kΩ resistive load, without any structural or electrical 

optimisation. Further experiments and discussions after this point are based on the bimorph 

structures made from the PZnN-P3LZT composition with various dimensions (planar and 

thickness) and different weights of tip proof masses.  
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Table 8-4. Length, width, thickness and resonant frequencies of each tested PZnN-P3LZT 

unimorph and bimorph cantilever (ET – top electrode, PT – top piezo-layer, EM – middle 

electrode, PB – bottom piezo-layer, EB – bottom electrode).  

 
Length (mm) 
(free-standing 

part) 

Width 
(mm) 

Thickness (µm) 
(ET-PT-EM-PB-EB) 

Resonant 
Frequency 

(Hz) 

Unimorph-1 11.4 2.94 37.8-73.8-28.4-79.4-n.a. 467 

Unimorph-2 11.5 2.96 36.6-74.0-30.4-80.4-n.a. 470 

Unimorph-3 11.4 2.93 34.0-82.5-25.5-84.4-n.a. 468 

Bimorph-1 13.8 3.00 36.1-92.0-32.5-94.6-32.2 612 

Bimorph-2 13.4 2.98 32.1-89.6-28.1-99.2-25.6 624 

Bimorph-3 13.5 3.00 35.4-92.3-29.6-92.1-38.0 618 

 

8.3.2.2 Effect of Shorter Bottom Electrode 

It has been presented in Chapter 6 that in order to ensure successful fabrication, the bottom 

electrode of the bimorph should be at least 20% shorter than the entire cantilever. This would 

definitely cause a reduction to the output of the bottom piezoelectric layer, since only the part 

covered by both electrodes could be poled and activated. The influence of this will now be 

considered in more detail.  

Figure 8-13 shows the lower side of a bimorph sample, where the bottom electrode was about 

76% of the entire cantilever length. Figure 8-14 compares the instantaneous open-circuit 

voltage, output voltage with resistive load and output power of the top/bottom piezoelectric 

layers and the entire cantilever of this sample.  In order to amplify the output thus make any 

differences more recognisable, a 0.12g mass was attached to the tip of this bimorph sample. 

The tip mass of 0.12g was chosen here because the value is at the average level among all of 
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the masses used in the experiment, which is heavy enough to magnify the output but not to add 

risk of breaking the cantilever when vibrating.  

According to Figure 8-14 (a), (b) and (c), the shorter bottom electrode did not obviously affect 

the open-circuit voltage. Both the top and bottom piezoelectric layers generated about 2 V peak 

voltages, close to that generated by the entire cantilever (about 2.2 V). This might be because 

that the very tip of the cantilever did not bend much2, thus the inactive part close to the tip was 

not effective enough to drag down the output considerably. Indeed, it has been discussed that a 

thin-film PZT membrane on silicon substrate covered by 60% electrodes could offer the 

optimum electromechanical coupling3, and a similar situation could exist for piezoelectric 

cantilevers.  

However, when connected to a resistive load, the output difference of the layers could be easily 

recognised, as shown in Figure 8-14 (d), (e) and (f). The top and bottom layers only generated 

about 1.2 V and 1.0 V peak voltages across the load respectively, while the comprehensive 

value was about 1.5 V. This was mainly because the shorter bottom electrode made the effective 

resistance of the bottom piezoelectric layer smaller (only the aspect covered by both electrodes 

was active), and the resistive load matched only the overall resistance of the entire cantilever 

(effectively two resistors connected in parallel) but not each single-layer’s. The output power 

could provide more information of the real difference caused by the shorter bottom electrode. 

As Figure 8-14 (g) and (h) indicate, the output power of the bottom layer (nearly 3 μW) was 

about 67% of that of the top layer (nearly 4.5 μW), under the same vibrational and electric 

conditions. The overall output power (about 7.8 μW) shown in Figure 8-14 (i) was close to the 

sum of each layer’s value.  
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Figure 8-13. Picture of the lower side of a bimorph cantilever with the bottom electrode 76 % 

of the entire cantilever length.  

 

Figure 8-14. Dependence of (1) open-circuit voltage for (a) top piezoelectric layer (b) bottom 

piezoelectric layer (c) overall cantilever, (2) output voltage with 330 kΩ load for (d) top 

piezo-layer (e) bottom piezo-layer (f) overall cantilever, and (3) output power with 330 kΩ 

load for (g) top piezo-layer (h) bottom pizo-layer (i) overall cantilever, on real time, vibrating 

at resonant frequency (345 Hz) with 1.0g acceleration.  
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Consequently, considering the integrated two piezoelectric layers, the shorter bottom electrode 

would have a minimal effect on the overall open-circuit voltage, however it was likely to reduce 

the overall output power. In addition, it could be predicted that if the bottom electrode covered 

100% of the cantilever bottom surface, the overall output power was likely to be twice of that 

of each single-layer, proving that the bimorphs poled in series while connected in parallel tend 

to double the output power, which has been estimated in Chapter 4.  

8.3.3 Bimorph Harvesters with Proof Mass 

8.3.3.1 Effect of Tip Mass Attachment 

Tip masses of metallic lead were cut into tiny bar shapes with different weights, and attached 

to the cantilevers as described in Chapter 6 in either a symmetrical or asymmetrical 

configuration. Table 8-5 and 8-6 summarise the relevant information of dimensions, tip mass 

attachment and poling/connecting methods of all of the 6 samples used for the investigation on 

performance optimisation.  

Table 8-5. Summary of the dimensions of the cantilever samples (ET – top electrode, PT – top 

piezo-layer, EM – middle electrode, PB – bottom piezo-layer, EB – bottom electrode). 

Sample ID Free-standing Length (mm) Width (mm) 
Thickness (μm) 

(ET-PT-EM-PB-EB) 

H-1 10.71 3.16 32.3-116.7-22.0-115.0-30.8 

H-2 14.10 3.21 31.4-71.2-23.2-66.1-29.3 

H-3 16.75 3.50 18.6-76.0-17.0-67.3-19.0 

H-4 14.25 3.22 18.3-76.5-16.6-67.0-18.9 

H-5 16.00 3.50 19.0-76.0-16.5-67.5-18.5 

H-6 15.00 3.25 18.5-75.5-17.9-67.4-19.6 

 



University of Birmingham 

186 
 

Table 8-6. Summary of the tip mass attachment and poling/connection methods of the 

cantilever samples. 

Sample ID Tip Mass (g) Attachment Poling/Connection 

H-1 0.122 Asymmetric Series/Parallel 

H-2 0.150 Symmetric Series/Parallel 

H-3 0.097 Asymmetric Series/Parallel 

H-4 0.095 Symmetric Parallel/Series 

H-5 0.104 Symmetric Parallel/Series 

H-6 0.120 Symmetric Parallel/Series 

 

As was presented with Table 8-3, the thickness in Table 8-5 is also expressed by the five 

individual layers, which are top electrode (𝐸𝑇), top piezoelectric layer (𝑃𝑇), middle electrode 

(𝐸𝑀), bottom piezoelectric layer (𝑃𝐵) and bottom electrod (𝐸𝐵), respectively, from left to right. 

In Table 8-6, the poling scenario is indicated on the left of the poling/connection column whilst 

the connection is on the right. Figure 8-15 shows the schematics of the tip mass attachment 

methods corresponding to samples H-1 to H-3 in Table 8-3, and the pictures of a bimorph 

sample with a symmetrically attached tip mass.  
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Figure 8-15. Schematics (top-view) of (a) H-1 (b) H-2 (c) H-3 for tip mass attachment 

methods; and (d) & (e) pictures of a bimorph with symmetrically attached tip mass.  

Figure 8-16 shows the frequency dependence of the RMS output power for samples H-1 to H-3 

with matched resistive loads (H-1 330 kΩ, H-2 470 kΩ, H-3 470 kΩ), and Figure 8-17 shows 

the frequency dependence of the RMS open-circuit voltage for samples H-1 to H-6, 

respectively, subjected to different accelerations (g ≈ 9.8m/s2). The frequency dependence of 

the peak to peak tip displacement for samples H-3 (Figure 8-16 (c) and Figure 8-17 (c)), 

H-5 (Figure 8-17 (e)) and H-6 (Figure 8-17 (f)) is also shown. The frequency changes were 

made manually in discrete intervals of 1 Hz, either up or down. No lag in output with change 

of frequency was observed.  
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Figure 8-16. Dependence of RMS output power for samples H-1, H-2 and H-3, and peak to 

peak tip displacement for sample H-3, on input frequencies with different accelerations.  
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Figure 8-17. Dependence of RMS open-circuit voltage for samples H-1 to H-6, and peak to 

peak tip displacement for samples H-3, H-5 and H-6, on input frequencies with different 

accelerations.  

As shown in the above figures, for the parallel connected individual harvesters (H-1, H-2 and 

H-3), maximum outputs of about 9 µW and 2-2.5 V with 1.0-1.5g accelerations, and 3-4.5 µW 

and 1.5-2 V with 0.5-1.0g accelerations were achieved when the harvesters were vibrating near 

the resonant frequencies. And the positions of the peaks were treated as the measured resonant 

frequencies. Meanwhile, for the series connected individual harvesters (H-4, H-5 and H-6), 
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maximum outputs of 2-2.8 V with 0.5-1.0g accelerations were also generated when vibrating 

near resonant frequencies.  

Comparing sample H-3 to samples H-5 and H-6, where the data of peak to peak displacement 

are shown, H-3 generated about 1.5 V peak open-circuit voltage with approximately 1200 µm 

displacement vibrating at 102 Hz with 0.5g acceleration, however H-5 and H-6 were able to 

provide the peaks of 2.2-2.5 V with nearly only 1000 µm with 107 Hz, 0.5g vibration. In another 

comparison, the open-circuit voltage of sample H-3 with 1000 µm tip displacement was only 

about 1.2 V, which was close to the half of those values of H-5 or H-6, under extremely similar 

conditions. This was to be expected according to the relevant introduction in Chapter 4, that is 

the bimorphs poled in parallel while connected in series tend to double the output voltage, 

though the best matched resistive loads were normally 4 times of those of the parallel connected 

counterparts. The point that the bimorphs poled in series while connected in parallel are able to 

double the output power has already been discussed in Section 8.3.2.  

Furthermore, both the output power and open-circuit voltage shown in Figure 8-16 and 

Figure 8-17 were generally 5-10 times higher than those of the cantilever without tip mass. 

However, it should be noted that such an improvement does not necessarily mean a complete 

optimisation. As discussed in Chapter 4, tip displacement and dimensions of a cantilever are 

able to affect open-circuit voltage hence output power. Therefore, by precisely tailoring the 

dimensions (e.g. increase volume) or properly selecting tip masses (e.g. using heavier proof 

mass to increase tip displacement), further improvement on output could be expected. As output 

optimisation of energy harvesters is a complex procedure which requests advanced 

computational and modelling methods and this is not the main purpose of this project, the choice 

of tip mass was only used for frequency tuning and no further output optimisation was carried 

out.  



Ph.D. Thesis – Yang Bai 

191 
 

In addition, it can also be observed in Figures 8-16 and 8-17 that at lower levels of vibration 

(0.5-1.0g acceleration) for samples H-1 and H-3, where the tip masses were asymmetrically 

attached, the output or tip displacement showed considerable inconsistency within the 

frequency ranges below the resonant frequencies. In particular, as indicated by the dashed 

arrows, when tuning up the input frequency, the output or displacement delayed to increase to 

the peak. On the contrary, when tuning down the input frequency, it delayed to decrease4. This 

phenomenon appeared as the asymmetric tip mass introduced a torsion degree of freedom5, 

which made the entire bending-torsion system performing non-linear. However, when the 

vibration went to a higher level, e.g. H-1 with 1.5g acceleration, the inconsistency disappeared. 

This might be because the strong vibration compensated the difference between the bending 

amplitude and the torsion twisting angles4. In the opposite case, for samples H-2, H-4, H-5 and 

H-6 where the tip mass was symmetrically attached, the hysteresis phenomenon was hardly 

visible. The slight inconsistency might be because of the inaccuracy in precisely achieving a 

symmetrical attachment of the tip mass, as shown in Figure 8-15 (b). Such result suggested that 

an asymmetric tip mass was likely to increase the non-linearity of the spring-mass system to 

some degree, which might be valuable for designing a single-element non-linear energy 

harvester at low-level vibrations, in order to effectively widen the bandwidth4.  

8.3.3.2 Charging Behaviour in Real Applications 

As the current development of energy harvesting technology has not been able to directly power 

most wireless sensor networks in real time because of insufficient energy generated, the 

potential applications of energy harvesters in the near future are predicted as two-stage power 

supplies – charging energy storage media firstly, then using such media to power final nodes 

when external energy sources are not available6,7. Therefore, sample H-3 and H-5 were selected 
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as representatives to charge a 1000 µF capacitor, thus to explore the feasibility of applying such 

individual harvesters in certain scenarios.  

Figure 8-18 shows the real-time instantaneous open-circuit voltage of sample H-3 and H-5 

connected to diode bridge rectifiers (as shown in Figure 6-7 (b), Chapter 6), vibrating at their 

resonant frequencies (103 Hz and 107Hz, respectively) with 0.3g or 0.5g acceleration.  

 

Figure 8-18. Dependence of instantaneous open-circuit voltage on real time for the individual 

harvesters connected with diode bridges vibrating at resonant frequencies with different 

accelerations: (a) H-3, 0.3g; (b) H-3, 0.5g; (c) H-5, 0.3g; and (d) H-5, 0.5g.  

As observed, original AC outputs (switching between positive and negative potentials) were 

converted into positive outputs. Although they were not well-rectified DC outputs with stable 

voltage, they were still possible to charge capacitors. Similar to the un-rectified signals shown 

in Figure 8-17, sample H-5 offered higher open-circuit voltage than H-3, although it can be 

seen that the ratio was smaller than 2:1 which might be caused by electrical dissipation 

introduced by the rectifier.  
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Figure 8-19 shows the corresponding charging response using different samples with certain 

vibration conditions. As H-3 was poled in series while connected in parallel, it generated higher 

charging current, resulting in a faster charging rate in the first 25 minutes. However, although 

H-5 provided a slower charging rate at the early stage, it was able to charge the capacitor to a 

higher electric potential if the charging time was allowed long enough because of its higher 

open-circuit voltage (Figure 8-19). The charging voltage limits of H-5 (series connected) were 

150-200% of those of H-3 (parallel connected). This result suggested that the proposed 

individual harvesters with either poling/connection method were feasible in terms of 

applications targeted on fast charging or high final electric potential.  

In comparison, piezoelectric energy harvesters have also been used for charging energy storage 

devices in the literature8. For instance, a PZT-aluminum unimorph cantilever was used for 

charging a 40 mAh Ni-MH rechargeable button cell battery, where the voltage of the battery 

was charged from 0.5 V to 1.2 V in 60 minutes (11.7 mV/min) at the resonant frequency8. 

Although the charging rate of harvester H-3 with 0.5g acceleration shown in Figure 8-19 

reached 38.3 mV/min in the first 60 minutes, it is considered less efficient than that of the 

literature as capacitance of the battery is much larger than the capacitor. However, the volume 

of the PZT element in the literature was also much larger (40mm × 62mm × 0.95mm), and the 

calculated average output power density was only 81 µW/cm3, compared to 858 µW/cm3 of the 

piezoelectric element of harvester H-3. From this point of view, it can be predicted that with 

increased volume of piezoelectric element, the proposed harvester is likely to be 10 times more 

efficient than that of the literature when charging the same battery.  
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Figure 8-19. Dependence of capacitor voltage on charging time for samples H-3 and H-5 

vibrating at resonant frequencies with 0.3g and 0.5g accelerations.  

 

8.4 Design, Integration and Vibration Test of Harvester Arrays 

8.4.1 Frequency Modelling 

8.4.1.1 Young’s Modulus of Silver Layers 

The concept of an energy harvester array in which several single-element harvesters are 

integrated into a single device which could help to widen the overall bandwidth was introduced 

in Chapter 4. However, for this to be successful, the resonant frequency of each individual 

harvester must be carefully predicted and designed, in order to achieve either a very broad 

smooth shaped output-frequency spectrum partially overlapping neighbour peaks, or a saw 

tooth-shaped response extending the resonant frequencies into a wider range.  

According to Equation 4-2 to 4-5 in Chapter 4, the unknown parameters for modelling the 

resonant frequency of a bimorph harvester until this point were the density (𝜌𝑠) and Young’s 

modulus (𝑌𝑠) of the silver layer. The density was obtained by measuring the single-layer silver 
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film fabricated together with Series 1 samples, as shown in Figure 8-1 (c). The calculated value 

will be presented later with other relevant parameters used for frequency modelling. However, 

the 𝑌𝑠 was more complicated to be directly measured or calculated through the single-layer 

films. This issue was solved by taking converse calculations of Equations 4-2 to 4-5 with the 

measured resonant frequency of each bimorph sample and other known parameters. Specific 

details are provided here.  

Figure 8-20 shows the cross-sectional SEM image of sample H-1, which reveals that the five 

layers were not perfectly symmetric to the neutral plane of the entire thickness. In order to make 

the equations still applicable, Equations 4-3 and 4-4 were treated specifically in terms of 

different layers. 

 

Figure 8-20. Cross-sectional SEM image with relevant dimensional markers of sample H-1.  
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Take sample H-1 as an example, although the neutral plane was determined, making 𝑦3-1 equal 

to 𝑦3-2, the middle silver later was not evenly divided by the neutral plane, where 𝑦1-1 was about 

9.4 μm while 𝑦1-2 was about 12.6 μm, as shown in Figure 8-20. Also, the thickness difference 

between the top and bottom silver layers as well as the top and bottom piezo-layers exacerbated 

the asymmetry. In such a case, for sample H-1 (other samples obeyed the same principle), 

Equations 4-2 and 4-3 were replaced by Equations 8-4 and 8-5, where the dimensional 

parameters were marked in Figure 8-20, and 𝜌𝑝 and 𝑌𝑝 represent the density and Young’s 

modulus of the piezoelectric layers, respectively.  

𝑌𝐼 =
𝑤

3
∙ [

𝑌𝑠(𝑦1-1
3 + 𝑦1-2

3 + 𝑦3-1
3 − 𝑦2-1

3 + 𝑦3-2
3 − 𝑦2-2

3 )

+𝑌𝑝(𝑦2-1
3 − 𝑦1-1

3 + 𝑦2-2
3 − 𝑦1-2

3 )
]     (8-4) 

𝑚𝑝𝑢𝑙 = 𝑤 ∙ [𝜌𝑠(𝑦𝑠𝑡 + 𝑦𝑠𝑚 + 𝑦𝑠𝑏) + 𝜌𝑝(𝑦𝑝𝑡 + 𝑦𝑝𝑏)]    (8-5) 

The above mathematical manipulation might introduce an error which was related to 

asymmetry. Define the degree of asymmetry (𝐷𝑎𝑠𝑦.) by Equation 8-6.  

𝐷𝑎𝑠𝑦. =
𝑦3-1 − 𝑦𝑠𝑡 − 𝑦𝑝𝑡 −

𝑦𝑠𝑚

2
𝑦3-1 + 𝑦3-2

× 100%    (8-6) 

Table 8-7 and 8-8 summarise the relevant information of dimensions, tip masses, asymmetry, 

measured frequencies and calculated 𝑌𝑠. A large number of samples were measured and 

calculated, but only 8 samples (C-1 to C-8) were listed in the tables which obtained similar 

calculated 𝑌𝑠. The 𝐷𝑎𝑠𝑦. of such samples were found smaller than ±5%, compared to the full 

range of -8 % to 11 % for all of the measured samples. For other cantilevers where the 𝐷𝑎𝑠𝑦. 

were larger than ±5%, the calculated 𝑌𝑠 showed irregular variations. This probably implied that 

the mathematical model needed to be refined when modelling the samples with larger 𝐷𝑎𝑠𝑦.. 
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Table 8-7. Summary of dimensions and tip masses of the cantilevers used for the calculation 

of Young’s modulus of thick-film silver-layers. 

Sample 
ID 

Free-standing Length 
(mm) 

Width 
(mm) 

Thickness (μm) 
dst/dpt/dsm/dpb/dsb 

Tip Mass 
(g) 

C1 (H-1) 10.71 3.16 32.3/116.7/22.0/115.0/30.8 0.122 

C2 11.23 3.00 23.2/73.5/29.4/78.5/25.1 0.224 

C3 (H-2) 14.10 3.21 31.4/71.2/23.2/66.1/29.3 0.150 

C4 11.50 3.25 17.3/79.9/19.1/62.2/15.9 0.130 

C5 12.97 3.25 20.0/71.7/16.9/59.5/20.4 0.113 

C6 12.58 3.50 19.4/75.5/17.7/67.9/19.3 0.100 

C7 13.65 3.50 17.7/77.0/15.4/67.9/18.9 0.130 

C8 16.25 3.50 18.6/75.6/17.8/66.0/18.9 0.098 

 

Table 8-8. Summary of degrees of asymmetry, measured resonant frequencies (open-circuit 

resonant behaviour with 0.5g acceleration) and calculated silver-layer Young’s modulus of 

the cantilevers.   

Sample ID 𝑫𝒂𝒔𝒚. (%) Measured Resonant Frequency (Hz) Calculated 𝒀𝒔 (GPa) 

C1 (H-1) -0.51 347.76 46.26 

C2 1.50 149.57 46.19 

C3 (H-2) -1.63 130.55 46.71 

C4 -4.91 140.82 46.09 

C5 -3.13 131.50 48.78 

C6 -1.93 160.97 48.50 

C7 -2.01 122.27 48.28 

C8 -2.36 104.42 45.77 
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In order to simplify the analysis and target straightforward on the final purpose of designing 

harvester arrays of this project, rather than conduct professional mathematical and mechanical 

analyses, only the samples showing better consistency were discussed. In addition, the 

measured and calculated data in Table 8-8 were based on the open-circuit resonant behaviour 

with 0.5g acceleration.  

During the fabrication of the initial bimorph samples used for this calculating stage, the 

thickness of each layer was not specifically controlled due to different tapes being used to define 

each layer during the printing stage. This may provide some explanation to the deviations that 

were observed. However, when fabricating the cantilevers for the following validation and array 

design stages, each layer was specially controlled, where the 70 μm tape was used for printing 

silver layers while the 140 μm tape was for piezoelectric layers. As a result, the average 

thickness of each layer was almost consistent for different samples, as shown in Figure 8-21. 

Meanwhile, the average degree of asymmetry was limited under ±5%.  
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Figure 8-21. Cross-sectional SEM image with dimensional markers of a thickness-controlled 

cantilever.  

Table 8-9 summarises the calculated values of density and Young’s modulus of the 

piezoelectric and silver thick-film layers, which were used in the following validations and 

modelling. For the silver layer, both the density and Young’s modulus are about 57 % of the 

bulk silver metal (10.49 g/cm3 and 83 GPa, respectively)9. This may be because the silver layer 

was not fully densified during co-sintering with the piezoelectric layers. The piezoelectric layer 

is considered much softer than the bulk ceramics (for a commercial ‘soft’ PZT TRS 610, the 

Young’s modulus is 69 GPa10), assuming the bulk PZnN-P3LZT ceramics exhibit similar 

mechanical properties to ‘soft’ PZT (according to similar compositions as well as densities 

shown in Figure 7-4). The piezoelectric layer is also softer than the reported screen-printed 
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‘soft’ PZT thick-films co-sintered with alumina11 or silicon12 substrates (calculated Young’s 

modulus of 52±8 GPa11 and 54±4 GPa12 respectively). This may be due to larger porosity of 

the proposed thick-films, or the errors generated with the calculation methods used for the films 

attached with substrates. Corresponding to the supposed larger porosity, the density of the 

piezoelectric layer is about 69 % of their bulk counterparts (shown in Figure 7-4).  

Table 8-9. Summary of calculated values of density and Young’s modulus of the piezoelectric 

and silver thick-film layers.  

 Piezoelectric Layer Silver Layer 

Density (g/cm3) 5.01 ±0.02 5.98 ±0.29 

Young’s Modulus (GPa) 19.4 ±1.7 47.1 ±1.2 

 

8.4.1.2 Validation and Modelling Results 

Once the 𝑌𝑠 was obtained, Equations 4-2, 4-5, 4-4 and 4-5 were combined to calculate the 

theoretical resonant frequencies of 9 other cantilevers (M1-M9) fabricated with controlled 

thickness, and which were then compared with the actual measured resonant frequency values. 

The calculations and measurements were again based on the open-circuit electric condition and 

0.5g acceleration. Figure 8-22 and Figure 8-23 shows the comparisons of the predicted and 

measured resonant frequencies of each sample, marked with free-standing length (𝐿), cantilever 

width (𝑤) and tip mass (𝑀). It can be seen that the calculated frequencies did not exactly match 

the measured values, however, the deviation was smaller than 1.5 %. These deviations might 

result from a number of reasons. Firstly, despite the improved fabrication procedures noted 

above, the structures were not perfectly symmetric, which might affect the applicability of the 

beam theory. This effect should be minor because the asymmetry shown in Figure 8-21 is only 

-2.1 % (< ±5 % as discussed above) and relevant calculations were based on an improved model 
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(Equation 8-4). Secondly, both the density and the Young’s modulus of each layer had 

non-negligible deviations according to Table 8-9, which could also affect the peak positions to 

some extent. The largest deviation in Table 8-9 occurs on the Young’s modulus of piezoelectric 

layer, reaching ±8.8 %. However, as in Equation 4-2 the frequency is shown positively related 

to square root of Young’s modulus whilst negatively related to square root of density, the 

deviations of other data (±0.4 %, ±4.8 % and ±2.5 %) are able to more or less compensate the 

large deviation of ±8.8 %. Finally, for convenience in the calculations it was assumed that all 

the layers in a cantilever had equal length and width. However, as also noted above, the bottom 

electrode was in fact shorter, which introduced small errors to the real mechanical status. As 

(a) it has been discussed in Section 8.3.2 that the very tip of the cantilever may not bend much, 

(b) in the real configuration the part where silver is absent was fulfilled by excessive 

piezoelectric components (shown in Figure 6-1 (c)), and (c) densities of the silver and 

piezoelectric layers are similar (Table 8-9), this should also be a minor influence. Therefore, 

the second reason, deviations of material properties, may have the most significant contribution 

to the errors. This is similar to the discussion in Section 8.3.1.  
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Figure 8-22. Dependence of RMS open-circuit voltage on input frequency for cantilevers 

(samples M1-M4) with marked predicted resonant frequencies (𝐿 – free-standing length, 

𝑤 – cantilever width, 𝑀 – tip mass).  
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Figure 8-23. Dependence of RMS open-circuit voltage on input frequency for cantilevers 

(samples M5-M9) with marked predicted resonant frequencies (𝐿 – free-standing length, 

𝑤 – cantilever width, 𝑀 – tip mass).  

However, although the predicted frequencies did not precisely and perfectly match the peaks of 

the open-circuit voltage, this modelling method was still reliable enough for designing energy 

harvester arrays, as the outputs at the predicted resonant frequencies were at least 80 % of the 

peak values. Considering the relatively wide bandwidth of the proposed individual harvester 

(> 5 %), the tolerance of using such modelling method to properly design harvester arrays was 

acceptable.  
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A further implementation of this modelling method is shown in Figure 8-24, where the effect 

of tip mass and cantilever length have been explored. A cantilever width in the range of 

3.0-3.5 mm was proved appropriate to both ensure better output performance and avoid ceramic 

cracks after sintering. Therefore, the modelling in Figure 8-24 was taken with the width of 

3.25 mm, and no further modelling on the effect of bimorph width was undertaken. Based on 

Figure 8-24, energy harvester arrays could then be designed by selecting appropriate length and 

tip mass combinations to fit the required frequencies.  

 

Figure 8-24. Dependence of theoretical resonant frequency on free-standing length for the 

individual harvesters of 3.25 mm width and 198 µm thickness (19-76-17-67-19 µm from top 

layer to bottom layer) with different tip masses.  

8.4.2 Harvester Array Integration and Vibration Test 

Two sets of harvester arrays were designed, fabricated, integrated and tested, of which the 

information of dimensions, tip masses and designed frequencies was summarised in Table 8-10. 

Array A1 was designed for a triple-peak response with split resonant frequencies, which suited 

the environment where several main vibrations co-exist. Array A2 targeted on a wide bandwidth 

response, where three peaks partially overlapped each other at the frequencies of half maximum 
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outputs, which could fit the circumstance containing a single main frequency but where noises 

around the main frequency also exist. The two piezoelectric layers of each single element (A1-1 

to A1-3, A2-1 to A2-3) were poled in parallel while connected in series.  

Table 8-10. Summary of the dimensions, tip masses and designed frequencies of the harvester 

arrays. 

Array 
ID 

Single-element 
Harvester ID 

Free-standing 
Length (mm) 

Width 
(mm) 

Tip 
Mass 

(g) 

Designed 
Frequency (Hz) 

A1 

A1-1 15.65 3.25 0.10 108 

A1-2 15.15 3.25 0.08 125 

A1-3 13.10 3.25 0.10 142 

A2 

A2-1 12.45 3.25 0.15 128 

A2-2 12.05 3.25 0.15 134 

A2-3 13.25 3.25 0.10 140 

 

Figure 8-25 shows the picture of integrated array A1. Figure 8-26 shows the harmonic vibration 

response of arrays A1 and A2, where the positions of half maximum and designed resonant 

frequencies are also marked. For both arrays, the resonant frequencies with 0.5g acceleration 

fitted the original design very well. However, the resonant frequencies slightly increased with 

the decrease of acceleration, resulting in larger errors when comparing the designed resonant 

frequencies to the corresponding measured frequencies at peak positions with 0.1g and 0.3g 

acceleration. Considering the FWHM with 0.5g acceleration as a criterion, array A1 could work 

effectively (open-circuit voltage above 1.5 V) in the frequency ranges of 106-112 Hz, 

124-130 Hz and 140-146 Hz, whilst array A2 possessed a bandwidth of about 14 % where the 

open-circuit voltage remained above 1.4 V compared to 5-6 % for the individual harvesters. 
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Such outcomes proved the feasibility of the proposed harvesters for development of wideband 

devices.  

 

Figure 8-25. Picture of array A1.  

 

Figure 8-26. Dependence of RMS open-circuit voltage on frequency for arrays A1 and A2 

vibrating with different accelerations (marked with half maximum and designed resonant 

frequencies).  



Ph.D. Thesis – Yang Bai 

207 
 

8.5 Other Energy Harvesters Based on Free-standing Structure 

In order to further discover the feasibility and compatibility of the proposed configuration 

(free-standing thick-film bimorph), two individual harvesters (H-3 and H-5) were integrated 

with a computer fan (070010A, Intel, UK), in order to harvest wind energy (air flow). The 

internal permanent magnets of the fan were removed in order to reduce the start wind speed 

limit (i.e. to make the fan free-spinning in wind). The removed magnets were cut into small 

patches (approximately 5×3×2 mm3) and attached to the edges of the blades with super glue. 

Also, another type of permanent magnet (Neodymium-Iron, Swift Levick Magnet Ltd., UK) 

was ground into flakes, and small pieces (about 0.03g) were attached on the tip mass of each 

individual harvester so that, repulsive magnet forces would be induced between the magnets on 

the blades and on the harvester tips. Similar to the harvester arrays, the two individual harvesters 

were fixed on a piece of test circuit board (about 5×1 cm2) and connected to two diode bridge 

rectifiers. Finally, the circuit board was mounted on the frame of the fan, keeping the distance 

between the magnets on the tips and on the blades at approximately 2 mm. Figure 8-27 shows 

the schematics and pictures of the integrated device, which was intended to collect wind energy 

and transfer it into electricity (named as wind harvester).  

When being tested, the wind harvester was connected to the vibration test system presented in 

Chapter 6, however only the data acquisition and computer program were utilised to monitor 

and record data, while the driving component was replaced by an electric fan (HT-800E, 

Honeywell, USA) which provided air flow (energy source) to the harvester. By adjusting the 

distance between the fan and the harvester, the direction of the air flow as well as the switch 

position that controlled the wind speed, the optimum output was discovered.  
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Figure 8-27. (a) Schematic and (b), (c) and (d) pictures of the integrated wind energy 

harvester.  

Figure 8-28 shows the instantaneous open-circuit voltage of the harvester and the charging 

behaviour of a 1000 μF capacitor connected to the harvester. An average open-circuit voltage 

of about 3.4 V was generated according to Figure 8-28 (a). This is comparable with the 

optimised output voltage (1.0 V and 2.4 V) with best matched resistive loads and wind speed 

of two of the reported designs based on contacting type piezoelectric wind harvesters13 

(presented in Figure 4-12). In Figure 8-28 (b) a stable charging rate of 30-50 mV/min was 

obtained in 4 consecutive tests, which is comparable with the charging rates obtained on 

harvester H-3 under harmonic vibration (Figure 8-19). Further optimisations of such a design 

can be expected with dynamically improved fan, enhanced magnetic coupling, low-power 

management circuitry, as well as with optimised the individual energy harvesting elements 

(free-standing thick-film cantilevers). This showed that the proposed free-standing 
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piezoelectric thick-film structure was not only able to harvest vibration energy, but also 

compatible with harvesting energy from other sources, such as wind energy, with the 

appropriate supporting configurations.  

 

Figure 8-28. (a) Dependence of instantaneous open-circuit voltage on real time 

(b) dependence of capacitor voltage on charging time for the wind harvester tested on the 

optimum air flow condition.  

 

 

 

 



University of Birmingham 

210 
 

References 

1 Kok, S.-L., White, N. M. and Harris, N. R. Fabrication and characterization of free-standing 
thick-film piezoelectric cantilevers for energy harvesting. Measurement Science and 
Technology 20, 124010 (2009). 

2 Roundy, S., Leland, E. S., Baker, J. et al. Improving power output for vibration-based energy 
scavengers. IEEE Pervasive Computing 4, 28-36 (2005). 

3 Cho, J., Anderson, M., Richards, R., Bahr, D. and Richards, C. Optimization of electromechanical 
coupling for a thin-film PZT membrane: II. Experiment. Journal of Micromechanics and 
Microengineering 15, 1804-1809 (2005). 

4 Bai, Y., Meggs, C. and Button, T. W. Investigation of Using Free-standing Thick-film Piezoelectric 
Energy Harvesters to Develop Wideband Devices. International Journal of Structural Stability 
and Dynamics 14, 1440016 (2014). 

5 Abdelkefi, A., Najar, F., Nayfeh, A. H. and Ben Ayed, S. An energy harvester using piezoelectric 
cantilever beams undergoing coupled bending-torsion vibrations. Smart Materials & 
Structures 20, 115007 (2011). 

6 Szarka, G. D., Stark, B. H. and Burrow, S. G. Review of Power Conditioning for Kinetic Energy 
Harvesting Systems. IEEE Transactions on Power Electron. 27, 803-815 (2012). 

7 Kim, H. S., Kim, J. H. and Kim, J. A Review of Piezoelectric Energy Harvesting Based on Vibration. 
International Journal of Precision Engineering and Manufacturing 12, 1129-1141 (2011). 

8 Sodano, H. A., Inman, D. J. and Park, G. Generation and storage of electricity from power 
harvesting devices. Journal of Intelligent Material Systems and Structures 16, 67-75 (2005). 

9 en.wikipedia.org/wiki/Silver [online access] 17/12/2014.      
10 www.trstechnologies.com [online access] 16/04/2014.      
11 Walter, V., Delobelle, P., Le Moal, P., Joseph, E. and Collet, M. A piezo-mechanical 

characterization of PZT thick films screen-printed on alumina substrate. Sensors and Actuators 
A-Physical 96, 157-166 (2002). 

12 Park, J. H., Kwon, T. Y., Yoon, D. S., Kim, H. and Kim, T. S. Fabrication of microcantilever sensors 
actuated by piezoelectric Pb(Zr0.52Ti0.48)O-3 thick films and determination of their 
electromechanical characteristics. Advanced Functional Materials 15, 2021-2028 (2005). 

13 Myers, R., Vickers, M., Kim, H. & Priya, S. Small scale windmill. Applied Physics Letters 90, 
054106 (2007). 

 



211 
 

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

In Chapter 5 a number of aims and objectives for the project were set out. It now remains to 

summarise to what extent these have been achieved.  

Bulk ceramic samples made from traditional ‘soft’ PZT and two other lead-based piezoelectric 

compositions (3 mol% and 5 mol% La-doped PZnN-PZT) have been fabricated and 

characterised. The calcined ceramic powders exhibit perovskite structures as expected 

(tetragonal for the PZT, tetragonal and rhombohedral for the two types of La-doped PZnN-PZT) 

and particle sizes suitable for ceramic fabrication (D50 ranging from 1 µm to 3 µm). The bulk 

ceramic samples have achieved >90 % theoretical densities and exhibited 15-17 % linear 

shrinkage, with 1-3 µm grain sizes. The perovskite phases in the powders have been maintained 

in the bulk sintered ceramics. Also, ferroelectric-paraelectric phase transitions (Curie 

temperatures) have been found in the range of 325-425 °C (for the PZT) and 350-400 °C (for 

the two types of La-doped PZnN-PZT), which is consistent with other reports. Optimum 

dielectric and piezoelectric properties are summarised in Table 9-1 for the PZT samples sintered 

at 1200 °C and the 3 mol% and 5 mol% PZnN-PZT samples sintered at 1230-1250 °C. The data 

for the PZT samples are consistent with those in the literature, and the 5 mol% La-doped 

PZnN-PZT samples have shown similar dielectric and piezoelectric properties to the PZT. 

However, it has been suggested that with larger 𝑔33 but smaller 𝑑33∙𝑔33 values, the 

3 mol% La-doped PZnN-PZT composition should be more suitable for vibrational energy 

harvester applicaions being able to generate higher open-circuit voltage but with a lower energy 

density than PZT and 5 mol% La-doped PZnN-PZT. In addition, the 3 mol% La-doped 

PZnN-PZT ceramics have shown a slower aging rate compared to their PZT and 5 mol% 

La-doped PZnN-PZT counterparts.  
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Bulk ceramic samples made from a lead-free composition, (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3, have also 

been fabricated and characterised. With particle size of about 4.6 µm (D50), the calcined ceramic 

powder had a two-phase perovskite structure. The phases have been identified as tetragonal and 

orthorhombic, confirming recently published phase diagram studies, rather than tetragonal and 

rhombohedral phases reported previously. These phases are retained in the sintered ceramics. 

Three phase transitions have been observed with increasing temperature, which are a 

rhombohedral-orthorhombic transition at about -5 °C, an orthorhombic-tetragonal transition at 

about 23 °C, and a tetragonal-cubic transition at about 88 °C (the Curie temperature). This is 

also consistent with recent literature and with what is essentially a doped BaTiO3 composition. 

The sintered ceramics have >85 % theoretical densities, exhibit 12-14 % linear shrinkage, and 

have grain sizes in the range of 20-30 µm. Although the grain size is similar to that of pure 

BaTiO3 ceramics, it is considered rather large compared to the PZT. Optimum dielectric and 

piezoelectric properties are shown in Table 10-1 for samples sintered at 1490 °C. However, the 

main drawback with this composition is the poor temperature stability due to the much lower 

Curie temperature compared to PZT and some other lead-free compositions. The poling regime 

has been shown to play a critical role in optimising functional properties as well as decreasing 

ageing rates. In general, the 50BCZT composition has exhibited comparable potential energy 

harvesting capability to PZT, especially for applications near room temperature.  

Both the lead-based and lead-free compositions have been combined with borosilicate glass for 

liquid-phase low-temperature sintering. With 1 wt% glass addition, the lead-based 

compositions sintered at 900-950 °C and the lead-free composition sintered at 1200 °C have 

achieved approximately 70-80 % of the density values compared to their respective 

high-temperature sintered ceramics, and with similar phase structures to the corresponding 

ceramic powders. The dielectric and piezoelectric properties have been reduced compared to 
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their high temperature sintered ceramic counterparts, and these are also shown in Table 9-1 for 

glass additions of 1 wt%. Increasing glass content further improves the sintered density, but the 

dielectric and piezoelectric properties are dramatically deteriorated. Although these 

low-temperature sintered samples have not exhibited the full properties of their 

high-temperature sintered counterparts, they have been considered sensible as the samples have 

not been able to be sintered at all at such low temperatures and exhibited no piezoelectric 

properties without the glass addition. Of the four investigated compositions, the 5 mol% 

La-doped PZnN-PZT composition has exhibited the largest overall reduction in properties as a 

result of low temperature sintering.  

The PZT and 3 mol% La-doped PZnN-PZT with 1 wt% glass additions have been fabricated to 

printable inks. Single-layer free-standing piezoelectric thick-films have been fabricated via low 

temperature sintering and characterised. They have achieved approximately 70-90% of the 

densities of their high-temperature sintered bulk counterparts, and with the same perovskite 

phase structures and similar grain sizes. Both the PZT and 3 mol% La-doped PZnN-PZT 

thick-films exhibited larger 𝑑33, 𝑑31, 𝑔33, 𝑔31 and 𝑘31 but smaller 𝜀𝑟 and 𝑄𝑀 compared to those 

in relevant literature as shown in Figure 9-2 for the PZT and 3 mol% La-doped PZnN-PZT 

samples sintered at 900 °C. Compared to each other, the 3 mol% La-doped PZnN-PZT 

thick-films used for vibrational energy harvesting are expected to generate higher open-circuit 

voltage and off-resonant output power than the PZT thick-films.  

Multi-layer free-standing piezoelectric thick-films (unimorph and bimorph cantilevers) 

co-sintered with silver electrodes have been fabricated using the same process and tested as 

vibrational energy harvesters. It has been found empirically that only by maintaining a 

difference of 3 % to 6 % in the overall shrinkage of the silver (larger shrinkage) and the 

piezoelectric elements can a flat, free-standing thick-film cantilever, free from residual stress 
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be obtained. Under harmonic vibrations, the 3 mol% La-doped PZnN-PZT unimorphs without 

tip proof masses generated larger open-circuit output voltage and output power density than the 

PZT unimorphs, matching with resistive loads at their individual resonant frequencies with 

different accelerations. The optimum average output power densities of the 3 mol% La-doped 

PZnN-PZT harvesters have been 900 % (0.1g), 68 % (0.5g), 73 % (1.0g) and 173 % (1.5g) 

better than those of the respective PZT harvesters. When compared to the relevant reported 

data, the advantages have even approached to 25 % (0.1g), 92 % (0.5g) and 121 % (1.0g). The 

3 mol% La-doped PZnN-PZT bimorphs poled in series but connected in parallel and without 

tip proof mass have been able to double the output power density of the unimorphs with half 

the resistive load. The optimum average output power density of the bimorphs without any 

structural or electrical optimisation has been approximately 147±7 µW/cm3, vibrating at 

resonant frequencies of 610-625 Hz with 1.5g acceleration. A structure incorporating a shorter 

bottom electrode has not had any apparent effect on the overall open-circuit voltage, but does 

reduce the overall measured output power with resistive loads. The theoretical relations 

between harvester performance and material properties have also been confirmed and validated.  

For the bimorph energy harvesters with tip proof masses and with series connection, an 

optimum average open-circuit output voltage of approximately 2.8 V has been achieved at 

127 Hz with 1.0g acceleration. And for those with parallel connection, an optimum average 

output power of about 9 µW has been obtained at 129 Hz with 1.0g acceleration and 470 kΩ 

resistive load. The maximum peak to peak tip displacements of the bimorphs with tip masses 

have reached 1200 µm. All of the above data have been 5-10 times higher than those of the 

bimorphs without tip masses. Also, a novel configuration with asymmetrical tip mass 

attachment has shown nonlinear behaviour and the potential to widen bandwidth.  
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Resonant frequencies of the individual energy harvesters have been analysed and modelled. 

The errors caused by predicted and measured resonant frequencies have been validated < 1.5 %.  

Table 9-1. Summary of the optimum dielectric and piezoelectric properties of the 

high-temperature and low-temperature sintered bulk samples.  

Composition 
Sintering 

Temp. 
(°C) 

𝜺𝒓 𝒕𝒂𝒏𝜹 𝒅𝟑𝟑 
(pC/N) 

𝒈𝟑𝟑 
(Vm/N) 

𝒅𝟑𝟑∙𝒈𝟑𝟑 
(×10-12 
m2/N) 

𝒌𝒑 𝑸𝑴 

PZT 

1200 2300 0.024 500 0.025 12.5 0.51 42 

900-950 690  95-120 0.020 4.5-4.9  44-
48 

PZnN-P3LZT 

1230-
1250 1100 0.026 300 0.031 9.3 0.49 75 

900-950 286-
352  80 0.267-

0.031 2.1-2.4  29-
48 

PZnN-P5LZT 

1230-
1250 2900 0.024 590 0.023 13.6 0.60 40 

900-905 348-
464  80 0.020-

0.025 1.6-1.9  41-
43 

BCZT 

1490 4700 0.015 630 0.015 9.5 0.56 90 

1200 1175-
1410  176-

220 0.017 3.1-5.3  96-
114 
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Table 9-2. Summary of the optimum dielectric and piezoelectric properties of the thick-films 

sintered at 900 °C.  

Composition 𝜺𝒓 𝒅𝟑𝟑 (pC/N) 𝒅𝟑𝟏 (pC/N) 𝒈𝟑𝟑 (Vm/N) 𝒈𝟑𝟏 (Vm/N) 𝒌𝟑𝟏 𝑸𝑴 

PZT 383 168 97 0.049 0.029 0.20 32 

PZnN-P3LZT 328 177 102 0.061 0.035 0.026 19 

 

Based on such a modelling process, individual harvesters and wideband harvester arrays with 

specific resonant frequencies have been designed, fabricated and tested. The individual 

harvesters with series connection have been able to charge a 1000 µF capacitor with an average 

charging rate of 30 mV/min at resonant frequencies with 0.5g acceleration. The wideband 

harvester arrays have exhibited a bandwidth of about 14 % across the designed resonant 

frequencies, which is much wider than that of the individual harvesters and advantageous 

compared to those in relevant literatures. A harvester prototype incorporating the individual 

harvesters, a free-spinning fan and permanent magnets for the application of harvesting wind 

energy has also been fabricated and tested. It has shown a possibility of using piezoelectric 

energy harvesters to harvest wind energy, with an average open-circuit output voltage of about 

3.4 V and a charging rate of 30-50 mV/min when charging a 1000 µF capacitor under optimum 

wind conditions.  

 

9.2 Future Work 

More compositional optimisations need to be done in order to enhance the Curie temperature 

as well as the temperature stability of the 0.5BZT-0.5BCT composition. This would promote 

such lead-free materials to substitute traditional PZT in a wider range of applications. The issue 

could be solved by introducing compositions with much higher Curie temperatures, 
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e.g. BiFeO3, thus compensating for the low Curie temperature of 0.5BZT-0.5BCT. However, 

according to previous experience, this modification would probably result in inferior 

dielectric/piezoelectric properties. Therefore, how to balance the property and the temperature 

stability would be a new issue to be investigated. Trying to create nano-domain microstructures 

may be helpful to some degree.  

As the sintering temperature of the 0.5BZT-0.5BCT composition has not been desirable for 

co-sintering with silver electrodes, two suggestions could be considered in order to further 

fabricate free-standing thick-film energy harvesters with such lead-free compositions. Firstly, 

other types of electrode materials could be used to replace silver, e.g. gold, platinum, etc. This 

may be the quickest method to solve the issue. However, the manufacturing cost would 

dramatically increase in such a method. Alternatively, an effort to select another sintering aid 

or develop nano-particles could be made, in order to further reduce the sintering temperature 

that could match the use of silver. According to the author’s experience, Li2O could aid 

sintering better than the commercial borosilicate glass, however the lowest sintering 

temperature was still much higher than 950 °C. Thus a combination of two or more sintering 

aids could be considered. However, as the introduction of more sintering aid may deteriorate 

the piezoelectric properties further, the development of nano-particles seems more promising, 

where no sintering aid would be needed.  

Although the harvesters have been proved functional to harvest vibration energy, the absolute 

output power was not enough to directly power any sensor node, in spite of the reasonable 

open-circuit voltage and output power density. Therefore, either energy generation ability or 

energy conversion efficiency (or both) needs to be improved. Energy generation ability could 

benefit from multi-morph structures and/or higher relevant material properties. In particular, 

multi-morph structures could be achieved by applying a more automatic deposition process, 
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such as screen printing and tape casting, which may reduce the fabrication complexity as well 

as ensure high production quality. And higher material properties would rely on qualities of the 

films, which is in fact a joint issue of the compositional optimisation and low-temperature 

sintering investigation presented above. Use of high-quality interdigitated electrodes may also 

be helpful in realising different design concepts. Energy conversion efficiency is a more 

complex factor, which would be affected by material properties, mechanical configurations and 

electric circuitry. This may need a collaborative investigation by researchers from different 

backgrounds. Also, the durability of the harvesters needs to be understood through tests with 

various environmental conditions (e.g. temperature, vibration type/level) and time scales.  

In addition, more accurate mathematic models with a broader applicability could be developed, 

in order to precisely predict not only working frequencies but also outputs of the proposed 

energy harvesters.  

Lastly, as the proposed harvesters have shown a good compatibility, other possibilities could 

be explored in order to harvest fluidic, thermal, or magnetic energy, etc., of which the principles 

have been presented in Chapter 4.  
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APPENDIX I. ACTUAL AMOUNT OF RAW POWDERS ADDED FOR 

INITIAL SYNTHESES 

1. Lead-based Compositions 

Raw Materials (Unit: g) PZnN-P3LZT PZnN-P5LZT 

PbO 68.9583 68.5895 

ZnO 2.0434 2.0325 

Nb2O5 6.6469 6.6114 

La2O3 1.1099 1.8400 

ZrO2 15.2649 14.6311 

TiO2 8.0884 8.4027 

 

2. Lead-free Composition 

Raw Materials (Unit: g) BaZrO3 50BCZT 

BaCO3 16.1480 28.4705 

ZrO2 10.0000 N/A 

BaZrO3 N/A 5.3086 

CaCO3 N/A 2.8879 

TiO2 N/A 13.7023 
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APPENDIX II. COMPUTER PROGRAM WRITTEN IN LABVIEW FOR 

VIBRATION TEST OF THE ENERGY HARVESTERS 

1. Flow Chart of Program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manually set a target input frequency, acceleration and load resistance; 
generate a sinusoidal wave through the ‘simulate signal sub VI’; and send the 
signal to the shaker via the ‘DAQmx sub VI’, thus generate a real mechanical 

vibration. 

Collect feedback signals from the accelerometer, laser vibrometer and 
harvester by the ‘DAQmx sub VI’; and unmerge the signals to three separate 

channels through the ‘select signals sub VI’.  

Calculate frequency of the accelerometer signal using the ‘tone measurements 
sub VI’; calculate error between the frequency and the set input frequency with 

the ‘formula sub VI’; display ‘error out’; finely adjust ‘error in’ manually to 
approach the 'error out' to zero; display compensated frequency as the base 
frequency; and write the frequency to file via the ‘write to measurement file 

sub VI’.  

Display the accelerometer output voltage; calculate RMS voltage by the 
‘statistics sub VI’; transfer voltage to acceleration via the ‘formula sub VI’; 
display acceleration; and manually tune ‘coarse’ and ‘fine’ to achieve the 

accurate target acceleration.  

Calculate frequency of the laser vibrometer signal using the ‘tone 
measurements sub VI’; display the frequency as the cantilever tip frequency; 
display the laser vibrometer output voltage; select maximum and minimum 
voltages through the ‘statistics sub VI’; calculate peak to peak cantilever tip 

displacement via the ‘formula sub VI’; display the displacement; and write the 
displacement to file via the ‘write to measurement file sub VI’.  
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NB: all of the sub VIs used were integrated in the software.  

 

2. Front Panel of Main Program 

 

 

Display harvester instantaneous output voltage; calculate RMS voltage using 
the ‘statistics sub VI’; display the RMS voltage; and write the RMS voltage to 

file via the ‘write to measurement file sub VI’.  

Calculate harvester instantaneous output power using the ‘formula sub VI’; 
display the instantaneous output power; calculate RMS power using the 

‘statistics sub VI’; display the RMS power; and write the RMS power to file 
via the ‘write to measurement file sub VI’.  

Stop.  
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3. Block Diagram of Main Program 

 

1*: simulate signal sub VI; 

2*: DAQmx sub VI; 

3*: select signals sub VI; 

4*: tone measurements sub VI; 

5*: formula sub VI; 

6*: statistics sub VI; 

7*: write to measurement file sub VI; 

8*: while loop. 
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4. Equations Used in Formula Sub VIs 

Error calculation: 

error =
set frequency − accelerometer frequency

set frequency
 

Acceleration calculation: 

Acceleration =
RMS accelerometer output voltage × 1000

98
 (𝑔), 𝑔 ≈ 9.8 𝑚/𝑠2 

Peak-peak displacement calculation: 

Displacement = (maximum − minimum laser output voltage) × 100 (𝜇𝑚) 

Instantaneous output power calculation: 

Power =
harvester instantaneous output voltage2

load resistance
 (𝑊) 
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This paper is concernedwith the wideband behavior of single-frequency andmulti-frequency free-

standing thick-¯lm piezoelectric energy harvesters. The energy harvesting devices have been
fabricated and brief fabrication information is provided. The individual harvesters have been

combinedwith either symmetric or asymmetric tipmasses, with some being connected together to

form a harvester array. Testing has been undertaken using harmonic vibrations with a wide range

of frequencies andaccelerations, andalso using a randommachineryvibration, anddatahavebeen
recorded in terms of un-recti¯ed and recti¯ed open-circuit voltage, output power with matched

resistive loads, peak-to-peak tip displacement, and even charging rates of capacitors. As a general

result, the individual harvesters with asymmetric tipmasses have vibrated nonlinearly below and
in the vicinity of the resonant frequencies. An individual harvester vibrating at the resonant

frequency with 0.5 g acceleration has been able to charge a 1000�F capacitor to 1Vwithin 12min

and to 1.5Vwithin 30min. Also, the harvester array has exhibited a wideband response, where an

open-circuit voltage of above 0.8V has been provided within a certain range of frequencies.
Finally, the harvester array has successfully charged a capacitor on a vibrating test sieve shaker,

proving the feasibility of the proposed device in real applications.

Keywords: Piezoelectric thick-¯lm; array; wideband; nonlinear; charging capacitor; machinery

vibration.
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Fabrication and Investigation of Free-standing 
Piezoelectric Thick-film Cantilevers for Energy Harvesting 

Applications 

Yang Bai
1
, Carl Meggs

1
, Tim W Button

1,2
 

1 School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, UK 
Corresponding author: Tim W Button, e-mail address: t.w.button@bham.ac.uk  
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Abstract: 

Free-standing thick-film cantilevers with a silver/piezoelectric multi-layer bimorph structure for use as vibration energy 
harvesters are presented. The use of silver electrodes has decreased the material cost of each harvester compared to Au, Pt or 
Ag/Pd, and a self-synthesized new lead-based piezoelectric composition has been applied, in order to compensate for the 
poorer properties of traditional soft PZT thick-films than those of their bulk ceramic counterparts. Also, the redundant 
supporting layers and substrates have been removed, reducing the total volume and enabling the realization of the simplest 
structure. Output power densities of the harvesters have been tested subsequently so that the advantages have been practically
proved. Finally the modeling and further applications based on the structure have been proposed.  

Key words: free-standing, thick-film, energy harvesting, silver electrode, PZN-PZT
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Temperature-Stable Relative Permittivity from –70°C to 500°C in (Ba0.8Ca0.2)
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Temperature-stable relaxor dielectrics have been developed in

the solid solution system: 0.45Ba0.8Ca0.2TiO3–(0.55 – x)Bi
(Mg0.5Ti0.5)O3–xNaNbO3. Ceramics of composition x = 0

have a relative permittivity ɛr = 950 � 15% over a wide tem-
perature range from +70°C to 600°C. Modification with NaN-

bO3 at x = 0.2 decreases the lower limiting temperature to

– 70°C, but also decreases relative permittivity such that
ɛr ~ 600 � 15% over the temperature range – 70°C to 500°C.
For composition x = 0.3, the low-temperature dispersion in loss

tangent, tan d, (at 1 kHz) shifts to lower temperature, giving

tan d values ≤0.02 across the temperature range – 60°C to
300°C in combination with ɛr ~ 550 � 15%. Values of dc

resistivity for all samples are of the order of 1010 Ω m at

250°C and 107 Ω m at 400°C.
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Lead-Free Piezoelectric Materials and Composites for High Frequency Medical  

Ultrasound Transducer Applications  
 

Y. Jiang, T. Thongchai, Y. Bai, C.Meggs,T. W. Button 
University of Birmingham 

Edgbaston, Birmingham, UK 
T.W.BUTTON@bham.ac.uk 

 

A. Matousek, P. Tofel, H. Hughes, T. W. Button 
CEITEC – Central European Institute of Technology  

Czech Republic  
Hana.Hughes@ceitec.vutbr.cz 

Abstract—Lead-free ceramics based on the (1-x)Ba(Zr0.2Ti0.8)O3-
x(Ba0.7Ca0.3)TiO3 (BZT-BCT) system have been reported to 
exhibit piezoelectric properties comparable to lead zirconate 
titanate ceramics, and are thus being considered as replacement 
materials for some applications. In this work, the possibility of 
fabricating BZT-BCT based 1-3 piezocomposites for high 
frequency ultrasound imaging has been explored. An 
investigation of the interdependence of synthesis, processing and 
sintering conditions on the physical, structural, microstructural 
and functional properties of piezoelectric compositions in the 
BZT-BCT system has been carried out. Ceramic powders with a 
composition of 0.5BZT-0.5BCT and a particle size of 1 µm were 
chosen for the fabrication of the ceramic segments which were 
subsequently sintered at 1425°C. A novel randomised pattern 
that has recently demonstrated its advantages in suppressing 
undesirable spurious resonances was adopted for the lead-free 
composites and a micro-moulding technique based on gel casting 
ceramic processing has been used for the fabrication of the 
composites. A 0.5BZT-0.5BCT based randomised composite 
operating at ~30 MHz with an electromechanical coupling factor 
of 0.63 has been achieved.  

Keywords—(BaCa)(ZrTi)O3 ceramics; piezoelectric; lead-free; 
processing; Piezoelectric composite; High frequency transducer; 
Gel-casting 
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Free-standing Piezoelectric Thick-film Energy Harvester 
with Enhanced Output Power Density 

Yang Bai 1, Carl Meggs 1, Tim W Button 1,2 
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Background: Free-standing Configuration 
The use of free-standing piezoelectric thick-film cantilevers as vibration energy harvesters 

was first reported by White et al. [1] and Kok et al. [2]. This configuration has advantages over 
more traditional structures in piezoelectric energy harvesters, including reduced cost, smaller 
dimensions, simplified fabrication and easier integration with wireless sensor networks [1]. 
However, there have been few publications investigating and discussing this configuration 
since the first reports, which may be because piezoelectric ceramics were thought to be too 
fragile to form a film-based free-standing structure [2][3].  

Problems 
In practice, the drawbacks of a free-

standing piezoelectric thick-film multi-
layer cantilever may include: 
• De-lamination after co-sintering         

caused by mismatched shrinkage 
rates of different layers 
(piezoelectric, electrode and 
substrate).  

• Dramatically reduced piezoelectric 
properties of piezoelectric layers  
inherent in thick-film processes with 
low sintering temperatures.  

Work Objectives 
• Resolve the de-lamination problem by 

optimising the thick film ink formulations 
and thus matching the overall shrinkage 
rates during the drying and sintering 
processes.  

• Utilise an optimised piezoelectric 
composition with higher g31, d31·g31 and k31 
instead of traditional soft PZT in order to 
compensate for the poorer piezoelectric 
performance of thick-film materials.  

• Measure the real transverse properties of 
single-layer thick-films and test the energy 
conversion abilities of the cantilevers.  

Experiments/Research Methods 
Inks Used for Cantilever Fabrication 

Process: Doctor Blading 

Ink Name Powder Glass a (wt%) Vehicle b (wt%) 

PZT Ink Commercial ‘soft’ PZT 
(TRS 610C) 

1 20 
PZN-PZT Ink 3 mol% La + PZN-PZT 

(self-synthesized) 
Silver Ink Silver Flake 

N/A 
30 

Carbon Ink Carbon 70 
a Borosilicate Glass; Powder = 100 wt%        b Blythe; Powder+Glass+Vehicle = 100 wt% 

Single Piezoelectric Layer 

Unimorph Cantilever Bimorph Cantilever 

For Shrinkage Rate 
Measurements 

For Piezoelectric 
Property Measurements 

Characterisation 
• The shrinkage rates (η) were calculated from equation η=𝐴0−𝐴1

𝐴0
× 100%, where A0 is 

the surface area before sintering while A1 is the surface area after sintering.  
• Piezoelectric properties were measured with an Impedance Analyser.  
• Energy conversion of the multi-layer cantilevers was tested as shown below.  

For Energy Conversion 
Tests 

V 

Signal Conditioning & 
Data Acquisition  

Cantilever 
Laser 

Accelerometer 

Shaker 

Computer & 
Labview 

Output Power (P) =V2/R   Power Density=PRMS/Cantilever Volume 

Results 

- 

Shrinkage Rates 

Figure 3. 
De-lamination 

100 μm 

Figure 1. 
Good unimorph sample 

Silver 
Piezo 
Silver 
Piezo 

• When the shrinkage of the piezoelectric layer was much less than shrinkage of the 
silver layer, de-lamination was observed (see figure 3).  

• When the shrinkage of the piezoelectric layer was equal to or more than that of the 
silver layer, the cantilever deformed and contacted the substrate (see figure 4).  

• When the shrinkage rate of the piezoelectric layer was approximately 5-6%  smaller 
than that of the silver layer, flat cantilevers, free from residual stresses and  without 
de-lamination or droop, were successfully fabricated (see figure 1 and 6).  

• The SEM images (figure 2 and 5) show the cross-section of  the cantilevers. Good 
interfaces were observed.  

Piezoelectric Properties 
PZT c 3 mol% La + PZN-PZT d 

Piezoelectric charge coefficient 
d31 (pC/N) -97±3 -102±12 

Piezoelectric voltage coefficient 
g31 (mV·m/N) -28.5±0.9 -32.5±4.1 

Transverse electromechanical 
coupling coefficient                    
k31 (dimensionless) 

-0.20±0.01 -0.26±0.01 

c Sintered at 900 ˚C for 2 hours         d Sintered at 900 ˚C for 1 hour 

Energy Conversion e 

• Unimorph cantilevers of 3 mol% La + PZN-PZT showed performance improvements of 
up to 173% at 1.5g (g≈9.8m/s2) compared to commercial PZT (see figure 7). 

• Improvements were 68% at 0.5g, 73% at 1.0g and 173% at 1.5g, respectively. When 
compared to reference [2], the improvements reached 92% at 0.5g and 121% at 1.0g, 
respectively.  

• The output power density of the bimorph with optimum resistive load was about 
twice that of the unimorph at 1g and 1.5g (see figure 8). At lower values of 
acceleration (0.1g and 0.5g) the output power density of the bimorph was lower than 
the unimorph. This may be because the bimorph was thicker than the unimorph so 
that it was less sensitive to the vibration at lower accelerations. 

• The bimorph seemed more sensitive to the value of resistive load (see figure 8).  
• A maximum output power density of 146.8 μW/cm3 was obtained when the 3 mol% 

La + PZN-PZT bimorph was vibrating at 440 Hz, 1.5g with the resistive load of 100 kΩ 
(see figure 8(b)).  

• Figure 9 shows an example of the instantaneous voltage and power of the resistive 
load. As this work concentrates on composition optimisation and process 
development, the cantilevers used for testing were not optimised in terms of 
structural or electrical properties. It is anticipated that increased output power 
densities will be obtained when a traditional oscillation magnifier (proof mass and/or 
spring) or a high efficiency circuit (booster/AC-DC converter) is introduced.  

e The data were obtained when the cantilevers were vibrating at their own natural resonant frequencies.  

` 

R 

Conclusions 
1. Free-standing piezoelectric thick-film cantilevers  without de-lamination effect have been fabricated.  

2. The advantages of an optimised composition over the traditional PZT material has been experimentally confirmed for the application of vibration energy harvesting.   
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Snap Substrate Snap Substrate 

Figure 2.  
Cross-section  

SEM image 

Figure 4. 
Droop effect 

Figure 6. 
Good bimorph sample 

200 μm 

Figure 5. 
Cross-section 

SEM image 

Figure 7. The dependence of the output power density on  
resistive load for the unimorph thick-film free-standing cantilevers.  

Figure 8. The dependence of the output power density on resistive 
load for the 3 mol% La + PZN-PZT cantilevers 

Figure 9. The instantaneous (a) 
voltage (b) power of a bimorph 
sample vibrating at 440 Hz, 1.5g 

with 100 kΩ resistive load. 
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For several decades, the renewable energy research has involved macro-scale ambient resources (e.g. out-door solar, strong fluidic
- wind) in order to generate kW-MW power for industrial or domestic use. However, as portable/microelectronic devices consume
much less energy due to innovation in electronic hardware and processing, harvesting micro-scale ambient energy (μW-W) for
such devices, and designing them to be self-recharged or self-powered, necessitate the development of novel energy harvesters
suitable for micro-dimensions, where the conventional technology is likely to be less efficient or face severe practical problems.

Piezoelectric Energy Harvester
(Free-standing Cantilever)

1 cm

Deformation/Bending

Electric Potential/Voltage

Signal Conditioning/Energy Storage

Low-frequency/Small-amplitude Vibration
(building, machine)

Weak Fluid (breeze,  droplet)

Small Temperature Gradient (<10 °C)

Supporting Structure

Circuitry/End User

Concept

Consumer Electronics
Structural Health Monitoring Sensors

(buildings, bridges, railways)

Remote Control Aerospace

Other Micro-electromechanical Systems (MEMS)
Wireless Sensor Networks (WSNs)
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Market Size
Energy Harvesting Devices* Piezoelectric Harvesters**
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$0.7 Bn

$5 Bn $823.8 M

?
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Commercial

Data

Research Achievements
• Two lead-based piezoelectric compositions have been

investigated on energy harvesting related parameters.
• A batch of novel piezoelectric energy harvesters (shown in

figure 1.) made with one of the investigated compositions
has been fabricated, with about 2.5V average voltage and
10 μW average power harvested under harmonic vibration.

• A lead-free (green and clean) piezoelectric composition has
been proved suitable for energy harvesting.

Piezoelectrics For Micro-scale Energy Storage
Energy Source Conventional Technology Problems In Micro-scale Piezoelectric Solution

Vibration Piezoelectric Conversion High Working Frequency;
Integration Thick-films/Thin-films

Wind Wind Turbine Low Efficiency;
Threshold Wind Speed

Thick-film Cantilevers + Free-
spinning Fan + Magnets

Thermal Energy Thermoelectric Harvester Ultra-low Output with                
Small Temp. Gradient

Piezo-cantilever +                         
Hard Magnet (hot side) +             
Soft Magnet (cold side)

Solar Energy Photovoltaic Panel Small Surface Area;                       
Low efficiency No Direct Solution

E-mail Addresses: YXB087@bham.ac.uk (Y. Bai); t.w.button@bham.ac.uk (T. W. Button)

Applications Challenges & Tasks
• Keep improving the output and reliability - under real

environment test conditions.
• Develop matched external circuitry.
• Innovative applications – enlarging the market.
• Build up standards – giving users confidence.

Figure 1. A novel piezoelectric energy
harvester (free-standing thick-films):
(a) schematic of the construction; (b)
the fabricated harvester.

Promising Market & Bright Future

*P. Harrop and R. Das, Energy Harvesting and Storage for Electronic Devices 2012-2022, IDTechEx (2012). 
**H. Igbenehi and R. Das, Piezoelectric Energy Harvesting 2013-2023, IDTechEx (2012). 
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Introduction 
Having experienced more than 20 years’ research, Piezoelectric Energy Harvesting has shown to be a promising technology, and is 
predicted to approach commercialisation in several years. In order to evaluate the feasibility and explore potential applications, 
this poster presents the charging behaviour of vibration and wind energy harvesters based on integrated free-standing thick-film 
piezoelectric cantilevers, in which individual elements have been investigated and developed by the authors at earlier stages of 
the project.   

Vibration Harvester - Individual Charging 1000 μF Capacitor - Individual 

Contacts: YXB087@bham.ac.uk (Y. Bai); c.meggs@bham.ac.uk (C.Meggs); t.w.button@bham.ac.uk (T. W. Button) 

Vibration Harvester - Array Charging 1000 μF Capacitor - Array 

Figure 1. Proposed individual energy harvester with free-standing thick-film 
structure: (a) schematic of the construction; (b) the fabricated harvester.  

~13 mm 

~250 μm 

0.1 g 

Piezoelectric Thick-film 
Piezoelectric Thick-film 

Base (fixed end) Free end 
Silver Lead Tip Mass 

(a) 

1 cm 

(b) 

Figure 2. (a) The schematic of the connection method (b) the picture of an array.  
Table 1. Summary of the dimensions, tip masses and frequencies of the array. 

Wind Harvester Based on Piezoelectrics 

Figure 3. Pictures of wind harvester incorporating piezoelectrics: (a) front-side; (b) back-side  
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Figure 4. Instantaneous output voltage and charging response of an individual harvester.  
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Summary 
• Vibration harvesters have been able to charge  a 1000 μF capacitor, 

under both harmonic and machinery vibration.  
• Proposed structure has also been proved feasible to incorporate to 

a wind system, showing comparable output voltage and charging 
rate to those of the vibration systems.  

Charging 1000 μF Capacitor - Wind 

Figure 6. Instantaneous output voltage and charging response of a wind harvester in a 
series of four consecutive tests.   
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) 

Figure 5. (a) Test configuration, (b) harmonic output and (c) charging response  of 
an array mounted on a sieve shaker.  

Uo: RMS output voltage of the harvester 

Uc: Capacitor voltage 
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Experimental  
• Bulk disc ceramic samples with compositions of 1/9, 3/7 and 5/5 

Ba(Zr0.2Ti0.8)O3/(Ba0.7Ca0.3)TiO3 (BZT/BCT) (see Figure 1) were prepared by solid-state 
reaction, where sintering was carried out at 1400-1500 °C for 4 hours. 

• Poling was taken at 3 kV/mm for 10 minutes in silicone oil at room temperature. 
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Introduction 
This work is concerned with the measurement of the dielectric and piezoelectric parameters of (BaCa)(ZrTi)O3 (BCZT) ceramic materials, which are being 
widely investigated as potential lead-free replacements for lead zirconate titanate (PZT). Measurements of the dielectric and piezoelectric properties of 
the sintered materials have been made by a range of techniques at three institutions. Sets of sintered samples included a range of BCZT compositions 
and samples sintered under different conditions (temperature and heating/cooling rates). 
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Figure 1. Phase diagram of BZT-BCT solid solution.  
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d33 
Berlincourt d33-meter (YE2730A, 

Sinocera, China) Berlincourt d33-meter Laser Interferometer (Aixacct, 
Germany) 

εr 
Impedance Analyser (4294A, 

Agilent, USA) 
Impedance Analyser (4294A, 

Agilent, USA) N/A 

Displacement 
loop N/A Radiant (Precision, Technologies 

Ing., USA) 
Laser Interferometer (Aixacct, 

Germany) 

Table 1. Parameters measured by different equipment 

Results  

① ② 

①: composition         ②: sintering temperature 
sc: slow cooling rate   fc: fast cooling rate 

① ② 

①: composition         ②: sintering temperature 
sc: slow cooling rate   fc: fast cooling rate 

Conclusions 
• BCZT lead-free piezoceramic samples (14 specimens) with different compositions 

have been measured by different techniques. 
• Results of dielectric constants and piezoelectric coefficients obtained from different 

techniques have been compared. 
• Generally, very good agreement between the different techniques has been found, and 

the results are in agreement with the phase diagram. 
• The largest differences between results of piezoelectric coefficients measured by 

different techniques have been observed on the 5/5 composition. 
• The measured properties of the 5/5 composition are very sensitive to processing and 

poling conditions. 

Figure 2. Piezoelectric coefficients of different samples measured in different institutes. 

Figure 3. Dielectric constants of different samples measured in different institutes. 

Figure 4. Dependence of displacement on voltage for a 3/7 BCZT sample sintered at 1475 °C 
measured in different institutes. 
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