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Thesis Abstract  

The supposed decline of bees is feared to impact on the pollination services they help to provide to 87% 

of angiosperms. Urban densification and a rise in human population call for greater investigation into 

how the urban-rural gradient can influence bees and their pollination services. This thesis aimed to 

further current knowledge by: (i) increasing site and regional replication by sampling bee assemblages 

along the urban-rural gradient in Birmingham, UK; (ii) increasing the current documentation of bee 

traits associated with pollen carryover; (iii) incorporating a trait-based analysis to bee assemblage 

change along the urban-rural gradient; (iv) testing whether the pollination services along the same 

gradient varied between land-use types and (v) investigating the provisioning and reproductive 

success of bees in the urban environment. This thesis supports previous evidence of species-specific 

variation by urbanisation and shows how trait composition and  trait diversity are influenced by bee 

assemblage change along the urban-rural gradient. However, this recorded assemblage and trait 

variation appeared not to alter seed-set in Campanula glomerata between urban and rural areas. 

However, this thesis lacked statistical power when analysing differences in seed-set. Further 

phytometer studies are essential if pollination services are to be assessed along the urban-rural 

gradient.  I also found that nutritional quality could play an important role in provisioning rate in the 

solitary bee Osmia bicornis, with greater offspring produced in sites where more protein was found 

in provisioned pollen in urban areas. Furthermore, the inter-specific variation in pilosity (which could 

have an important role to play in pollen carryover and subsequent pollination) can be explained by 

body size and species’ pollen transport adaptation. However, pilosity traits did not vary over the 

urban-rural gradient, giving no clear indication that pollen transfer was affected by urbanisation. This 

thesis helps to inform planning and conservation efforts to promote species diversity throughout 

urban-rural gradients. From this work, I suggest trait based analysis could be a common framework 

for future studies to measure bee assemblage change between urban and rural areas. Moreover, this 

research builds on previous work which suggests that particular traits affect pollen transport and 

subsequent pollination, and that further detailed study could give clues as to how changing bee 

assemblages could influence pollination. 
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1.1 Introduction  

The proportion of land utilised or disturbed by human populations has been 

estimated between 39 and 50% (Vitousek et al., 1997), but currently it is difficult to say 

whether any ecosystem is exempt from the influences of anthropogenic disturbance (Gaston, 

2010). It is estimated that by 2030 over five billion people will reside within urban areas 

globally (United Nations, 2011). This will have exceeded 50% of the populace of the world in 

2008 and is set to increase to 84% by 2030 (United Nations, 2008). It would appear most 

taxonomic groups show a negative trend towards increasing built space that is associated 

with urban density, caused by impervious surfaces limiting vegetation and suppressing 

potential habitat (McKinney, 2008). This leads to habitat reduction, isolation and ultimately 

fragmentation (Young & Jarvis, 2001) linked to adverse effects on bird, mammal and insect 

taxa (Andrén, 1994; Wood & Pullin, 2002). Maintaining habitat for taxa in urban areas is vital 

if human populations are to experience benefit (a.k.a. ecosystem services) from their 

presence within cities (Andersson et al., 2007; Dearborn & Kark, 2010). Although cities can 

support and enhance some ecosystem services, urbanisation can also limit certain services 

(Gaston et al., 2013). This in part is due to green space loss within cities (urban densification), 

a factor noted to inhibit the services ecosystems can provide to human populations (Tratalos 

et al., 2007; Dallimer et al., 2011).  

An ecosystem service which is of direct benefit to human populations is pollination. 

The animals that provide pollination services to wild plants and crops include managed and 

unmanaged bees, beetles, butterflies, wasps, flies, bats, birds and lizards. Their pollination 

services are required to some extent by 87.5% of all angiosperms (Ollerton et al., 2011), plus 

87 crop species that make up 35% of global food production (Klein et al., 2007). Bees are one 

taxonomic group highlighted as key in providing pollination services. Their greater 

abundance, diversity and trait complementarity lead to increased pollination efficiency and 

effectiveness (Kremen et al., 2002; Hoehn et al., 2008; Bommarco et al., 2012; Garibaldi et al., 

2013; Klatt et al., 2014). It is believed there are ~20,000 species of bee worldwide (Michener, 

2007), but concern is growing due to the recorded decline in range and loss of certain species 

in the UK, mainland Europe and North America (Biesmeijer et al., 2006; Potts et al., 2010). 

The most noted decline in bees has been observed in the honey bee (Apis mellifera L.), where 
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US beekeepers recorded the average loss of 42.2% of their total hives between 2009 and 2010 

(Van Engelsdorp et al., 2011). The loss of honey bee hives has been attributed to a range of 

factors including pests and diseases (Genersch et al., 2010; Bacandritsos et al., 2010), 

pesticides (Johnson et al., 2010; Mullin et al., 2010) and habitat loss (Naug, 2009). As well as 

loss of bumblebee abundance in Europe, Asia and North America (Colla & Packer, 2008; 

Grixti et al., 2009; Williams & Osborne, 2009; Cameron et al., 2011), there is also evidence of 

range restrictions in UK bumblebees (Goulson et al., 2008). In general, wild bee decline is 

most closely linked to the simultaneous reduction in floral availability (Biesmeijer et al., 2006; 

Potts et al., 2010), and to the diminution in potential nesting and foraging resources at the 

landscape scale (Carré et al., 2009; Potts et al., 2010). 

It is still too early to tell if pollinator loss will impair pollination services to crops and 

wildflowers (Ghazoul & Pin Koh, 2010; Ghazoul, 2013). However, if land-use conversion 

continues alongside human population increase, already intensively managed agricultural 

habitats may receive increasing pressure for greater crop output (Aizen & Harder, 2009). 

Currently, crops that bees pollinate represent ~20% of the agricultural crops grown in UK 

(Breeze et al., 2011). This is set to increase by 2020 however, with the UK requiring a further 

~1.4 million ha of oilseed rape to be sown to meet the EU biodiesel target(Breeze et al., 2011). 

The crops bees pollinate make up a large proportion of human nutritional intake (Eilers et al., 

2011) and hence bee loss has been emphasised as a concern for global food production 

(Allen-Wardell et al., 1998). Wild bee diversity is known as an important factor for increased 

crop yield (Bommarco et al., 2012), can constitute the majority of flower-visiting pollinators 

(Winfree et al., 2007) and increase the level of pollination even when honey bees are also 

present (Garibaldi et al., 2011). Equally, under threat to the limited availability of pollination 

services are those mutualisms that exist between species of bees and wild plants (Kearns et 

al., 1998; Kaiser-Bunbury et al., 2010). The conservation of bee assemblages which can 

maintain pollination services is therefore pivotal in alleviating potential pollination shortfalls 

in the future.  

The literature implies that even with anthropogenic disturbances such as urban 

densification, an increase in the diversity of habitats in the landscape can supplement the 

resources bees require and increase their abundance and diversity (Steffan-Dewenter et al., 
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2002; Kleijn & Van Langevelde, 2006). There is increasing evidence that suburban areas may 

be able to provide a diversity of suitable nesting and foraging habitat for bees (Goulson et al., 

2008; Osborne et al., 2008). Gardens have been highlighted as potentially vital habitat for a 

range of species within urban areas (Goddard et al., 2010), especially as the application of 

wildlife gardening has become widely accepted in urban households (Gaston et al., 2007). 

Urban areas can be beneficial to bees with fragments of grassland or parkland providing 

foraging opportunities (Chapman et al., 2003; Frankie et al., 2005; McFrederick & LeBuhn, 

2006; Kearns & Oliveras, 2009). These sites can also offer nesting opportunities for cavity-

nesting bee species (Cane et al., 2006; Bates et al., 2011) and provide foraging resources for 

winter-active bumblebees (Stelzer et al., 2010). From the current studies investigating bee 

assemblages along urban-rural gradients, generalist foraging species are found within  urban 

areas, whilst foraging and to some extent nesting specialists are filtered out by increasing 

levels of built space (Cane et al., 2006; Bates et al., 2011; Banaszak-Cibicka‖&‖Żmihorski,‖2012).‖

That certain species can exploit urban areas is not restricted to bee assemblages (McIntyre, 

2000; Kark et al., 2007). However, there is limited evidence as to the causes and implications 

of bee species-specific responses along urban-rural gradients, and even less is known 

regarding the implications these may have on the pollination services they provide. 

Mostly, the research interest in bees and their pollination services has concentrated 

on agricultural areas. This is understandable as the economical and nutritional benefits to 

humans are directly affected by the pollination service bees provide to many crops (Gallai et 

al., 2009; Eilers et al., 2011). This has meant that the pollination service provided by bees over 

an urban-rural gradient has been researched to a lesser extent. However, there are several 

reasons why investigating the response of bees to urban-rural gradients should be continued 

further. First, bees are a valuable part of the wider biodiversity of the area and region. There 

are ~250 species of bee in the UK but there is still limited knowledge of how bees have and 

will be influenced by continuing land-use change. Although increasing in scientific attention, 

the interpretation of bee assemblage variation across the urban-rural gradient is restricted to 

specific study cities (Hernandez et al., 2009). In addition, comparable analysis between cities 

is limited by the scarce and sometimes unreliable of  data on the regional presence of bee 

species (Vanbergen et al., 2013). Secondly, the value attributed to the pollination service of 

file:///C:/Users/rxf055/Desktop/My%20Dropbox/PhD%20Geography%20and%20Environmental%20Science/Chapters/Chapter%201%20-%20Intro%20Chapter/Thesis%20introduction%20new.docx%23_ENREF_54
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bees makes them economically important to maintain. How pollinator communities can 

persist along the urban-rural gradient will directly affect the pollination of amenity or 

garden plants and crops grown within urban areas (Garnett, 1996; Werrell et al., 2009) and 

potentially the crops of agricultural areas in close proximity to suburban and surrounding 

rural areas (Cussans et al., 2010; Goulson et al., 2010). However, to what extent pollination 

services are affected by change in bee assemblages along urban-rural gradients has attracted 

little attention (but see Pellissier et al., 2012; Verboven et al., 2012). Thirdly, by investigating 

how bee assemblages vary currently between the urban-rural gradient, it is possible to work 

towards mitigating the potential loss of bees and their pollination services as urban 

densification and urban population growth continues. 

1.2 Thesis Aims 

The general aim of this thesis was to improve the current understanding of how bee 

assemblages are altered along the urban-rural gradient and to gauge the impact this may 

have on the ecosystem service of pollination, whilst also improving the current 

documentation and understanding of bee traits important to the function of pollination. The 

thesis sets out specific objectives which need to be met for the general aim to be fulfilled. 

Through a series of chapters presented in the form of papers, the objectives of this thesis 

were to; 

- improve the understanding of the effects of urbanisation on bees by characterising 

their assemblages across an urban-rural gradient (Chapter 2).  

- explore the importance of pilosity as an important train in pollen carryover by bees 

and investigate whether two known functional traits explain the variation found in 

measurements of hair length, spacing, cover and type of UK bees (Chapter 3). 

- investigate the explanatory importance of traits on species change across the urban-

rural gradient and assess the implications this may have on trait diversity (Chapter 4). 

- increase current understanding of the potential impact different land-use types have 

on pollinator visitation and subsequent seed-set (Chapter 5). 

- investigate the resource provisioning potential and subsequent population dynamics 

of bees within an urban context (Chapter 6). 
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1.3 Thesis Summary 

Initially, an extensive field experiment was undertaken in 2011 and 2012 to gain a 

comprehensive estimate of bee assemblages across the urban-rural gradient in Birmingham, 

UK. The aim of Chapter 2 was to contribute to the growing data concerning the effects of 

urbanisation on bees by characterising their assemblage variation across an urban-rural 

gradient in canal side and parkland sites. This builds upon the previous investigation of 

Bates et al. (2011) which recorded bee assemblages in cemeteries and churchyards in 

Birmingham, UK. 

Chapter 2 and previous literature illustrate the inter-specific response of bee 

assemblages across the urban-rural gradient. The implications this could have on pollination 

services of bees are still unclear as the importance of different bee species to ensure pollen 

carryover is unknown. To increase knowledge of how inter-specific variation in bees could 

influence pollination services, Chapter 3 investigated pilosity variation between species and 

its association with other known traits.  

 Using the species composition dataset detailed in Chapter 2 and a bee trait dataset 

(including Chapter 3’s‖pilosity‖analysis),‖Chapter 4 investigated the explanatory importance 

of life-history traits on species change over the urban-rural gradient and explored the 

potential variation in trait diversity within cities. 

To test if the variation in bee assemblages and the diversity of traits they have along 

the urban-rural gradient may influence pollination, pollination was evaluated between urban 

and rural areas. Through planting Campanula glomerata as a test species, Chapter 5 measured 

seed-set and bee visitation abundance and diversity between the urban and rural areas of 

Birmingham, UK.  

Finally, foraging and nesting resource availability is shown to be essential to 

influencing bee assemblages along the urban-rural gradient. How the urban environment 

influences the population dynamics of bee species is less clear however. Through the 

placement of red mason bee Osmia bicornis syn. rufa (Linnaeus) (Hymenoptera: Megachilidae) 

and artificial nests, Chapter 6 investigated the provisioning and reproductive success of bees 

in an urban environment. 
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Abstract 

Urban densification in the UK is leading to the fragmentation and isolation of natural habitats 

in our cities. Current research investigating bee assemblage distribution along urban-rural gradients 

struggles to gain synthesis, as sites, cities and regions studied vary between studies. Since bees use a 

variety of areas for their nesting and foraging resources over the urban-rural gradient, increasing 

study of the types of sites sampled provides a firmer understanding of how bee assemblages respond to 

urbanisation. Bees were sampled at 33 canal side and parkland sites across Birmingham, UK, with 

sweep netting and pan trapping undertaken between April-September in 2011 and April-September in 

2012. Abundance and diversity metrics were tested for variation between land-use types using 

ANOVA and rarefaction, and applied to mixed-models to test for relationships with landscape type 

(m2 built space and agricultural land within 250 m, 500 m, 1 km, 1.5 km, 2 km, 2.5 km, 3 km, 3.5 km 

and 4 km of each site) and local site variables (floral availability, level of management and exposure). I 

found that in canal sides and parkland overall bee abundance showed a significant positive 

relationship with built space, whilst rarefaction indicated species richness was greater in rural areas. 

Furthermore, division of abundance metrics between genera and species showed increased abundance 

in several bumblebee species to greater built space, whilst Andrena spp. showed a negative 

relationship with built space. This chapter presents further evidence that the variation in bee 

abundance between land-use types is species-specific, supporting recent studies that indicate highly 

disturbed urban environments ‘filter’ bee species and determine bee assemblages. This chapter also 

highlights the importance of site type replication within regions as these results contrast with a study 

of cemeteries and churchyards in the same region, underlining the importance of sampling all 

potential habitat sites along urban-rural gradients.  
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2.1 Introduction 

An ecosystem service which is of increasing scientific and economic interest is 

pollination., Bees (Apiforms, Apidae) and other vectors help to provide the transfer of pollen 

to approximately 87% of angiosperms worldwide (Ollerton et al., 2011). Nationally and 

globally, bees are exhibiting species loss and restriction in distribution (Biesmeijer et al., 2008; 

Potts et al., 2010). Integral to bee assemblage diversity throughout a landscape is the 

consistency of available foraging and nesting resources (Klein et al., 2007; Steffan-Dewenter 

& Westphal, 2008; Schüepp et al., 2011). The extent to which anthropogenic disturbances alter 

the availability of these resources at the landscape scale is currently a primary concern for 

mitigating bee species loss (Carré et al., 2009). 

The anthropogenic disturbance caused by urbanisation not only negatively impacts 

on local biodiversity (McKinney, 2002) but also limits ecosystem services (Tratalos et al., 

2007). Conversion of land through urban densification increases the level of impervious 

surface and habitat fragmentation (Young & Jarvis, 2001), resulting in green space loss 

(Dallimer et al., 2011). Through the loss of green space, essential resources become 

increasingly isolated for many taxa within urban areas (Andrén, 1994; Wood & Pullin, 2002), 

and most effectively explains the overall loss of biodiversity from urban areas (McKinney, 

2008).  

Currently, the literature that has investigated the effects of urbanisation on bee 

abundance and diversity has shown a loss of particular species towards higher levels of 

urbanisation (Zanette et al., 2005; Bates et al., 2011) even though some bees appear to show 

increased abundance within urban and suburban areas (Frankie et al., 2005; Fetridge et al., 

2008; Bates et al., 2011). The bees that appear to cope with urbanisation tend to be social 

(Zanette et al., 2005), foraging generalists (Fetridge et al., 2008) and nest within cavities (Cane 

et al., 2006; Fetridge et al., 2008; Matteson et al., 2008).  In particular, bumblebees appear to 

be able to use urban habitat patches for foraging due to their long foraging distances 

(Chapman et al., 2003; Greenleaf et al., 2007), and appear to have increased nest growth and 

reproductive success in suburban areas (Goulson et al., 2002). The variability in local factors 

such as management intensity and plant species richness are also known to influence the 

species recorded in urban habitats (Kearns & Oliveras, 2009).  
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However, a general synthesis as to the overall response of bee assemblages to urban-

rural gradients is difficult to achieve as study city and  region  vary, whilst not all site types 

that occur along the urban-rural gradient have been tested (Bates et al., 2011). Previous 

investigations into bee species composition in cities have made use of suburban and urban 

gardens (Fetridge et al., 2008; Matteson et al., 2008), parkland (McFrederick & LeBuhn, 2006), 

and grassland or habitat fragments (Cane et al., 2006; Kearns & Oliveras, 2009). Limited in 

the literature however, are the recording and analysis of bee assemblage variation between 

site types within the same study region. It is therefore important that current research efforts 

concentrate on increasing regional replication and sample different aspects of the urban-rural 

gradient to understand bee assemblage change along an urban-rural gradient. 

Understanding the variation in bee assemblages along the urban-rural gradient 

would allow further interpretation of how pollination services could be influenced by 

urbanisation. This ecosystem service is not only important for agricultural crops, but can also 

directly benefit urban populations by ensuring the fertilisation of flowers and improving the 

yield of crops grown within and adjacent to urban boundaries. These benefits are potentially 

widespread over a city such as Birmingham, UK that contains ~250,000 domestic gardens 

and ~7,000 allotments (Birmingham City Council, 2013). Even though the extent to which 

urban agriculture occurring in the UK is unknown, where it does occur there is evidence of 

local economic growth, provision for more sustainable ways to grow healthy food and the 

potential for greater levels of exercise and relaxation (Garnett, 1996).  

Furthermore, an advantage of having viable populations of pollinating insects in an 

urban landscape includes their value as part of biodiversity throughout the wider 

environment. Suburban areas in particular have been identified as potentially providing 

greater bee abundance and pollination services (Cussans et al., 2010) which could spread out 

into agricultural areas. For species of bee that cannot adapt to the changes in the landscape 

resulting from urbanisation, the plant-pollinator inter-dependencies they represent could be 

lost (Kearns et al., 1998; Kaiser-Bunbury et al., 2010). By adding to the current literature in 

the types of site sampled when recording bee distributions along the urban-rural gradient, 

this chapter may help to focus urban planning and conservation efforts towards mitigating 

bee assemblage change.  
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2.1.1 Aims and Objectives 

To further the current understanding of bee assemblage change along an urban-rural 

gradient, this chapter increases regional and site type sampling replication within 

Birmingham, UK. The research of Bates et al. (2011) which sampled churchyards and 

cemeteries in Birmingham, UK, was furthered by sampling canal sides and parkland sites 

throughout the same sample region. Using a dataset collected over two years of sweep-

netting and pan-trapping sampling across Birmingham UK, the aim of this chapter was to 

improve understanding of the effects of urbanisation on bees by characterising their 

assemblages across an urban-rural gradient.  

 

Specifically my objectives were to: 

(i) record the variation in bee abundance, richness and composition across an urban-

rural gradient; 

(ii) test for significant relationships in bee abundance, richness and species composition 

between local and landscape variables;  

(iii) record the observed variation in bee assemblages across the urban-rural gradient. 

 

2.2. Methods 

2.2.1 Study city and site selection 

Four thousand hectares of Birmingham, UK’s‖ 27,000‖ consist‖ of‖ semi-improved 

grassland‖or‖ancient‖woodland.‖Eleven‖percent‖of‖Birmingham’s‖land‖comprises green space 

or park land (Angold et al., 2006) and the city hosts ~250,000 domestic gardens (Birmingham 

City Council, 2013). Some 591 parks, allotment sites and public gardens make up a large 

proportion of the green infrastructure of Birmingham, and the 114 miles of canal side which 

run through Birmingham are important linear features of this city’s natural landscape 

(Birmingham City Council, 2013) (Figure 2.1). 

To ensure a balanced distribution of sites across the urban-rural gradient, areas of 

Birmingham were stratified by their relative land-use. Using previous categorisation of the 

West Midlands into 1km2 blocks of land-use (Owen et al., 2006), three general classifications 
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of‖Urban‖(made‖up‖of‖‘urban’,‖‘urban‖transport’‖and‖‘dense‖suburban’),‖Suburban‖(‘suburban’‖

and‖ ‘light‖ suburban’),‖ and‖ Rural‖ (‘village/farms’)‖ were‖ created.‖ As‖ mentioned‖ in‖ the‖

introduction, canal sides and parkland sites were chosen as sample sites. These sites were 

standardised by having either a canal or natural water course running through or alongside 

each sample area. All sites selected had at least 50% of their area exposed to sunlight rather 

than shaded and had a variety of vegetation including exposed tall ruderal grassland and a 

shrub layer and tree canopy.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Map of sample sites across Birmingham, UK and wider area. Sample sites were selected 

following land-use classification set out by Owen et al. (2006). Eleven sample sites were selected from Urban 

(‘urban’,‖ ‘urban‖ transport’‖ and‖ ‘dense‖ suburban’‖ [Red dots]), Suburban (‘suburban’‖ and‖ ‘light‖ suburban’ 

[Yellow dots]) and Rural sites (‘village/farms’‖ [Green dots]) throughout Sandwell, Birmingham City and 

Solihul (Black lines). The landscape context variables used in this chapter analysis are shown with Built Space 

in grey, Gardens in orange, Green Space in green and agricultural land in light green. Canal sides are 

represented by dark blue lines, with bodies of water and rivers/streams shown as light blue. 
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2.2.2 Bee Sampling  

Bees were sampled using sweep netting and pan trapping between April-September 

in 2011 and between April-August in 2012. Pan trapping is the best indicator of species 

richness in bees whilst minimising sampler bias, and is considered the best single method for 

data collection for bee abundance and diversity measurement (Westphal et al., 2008). 

However, some mining bee species can be missed with pan trapping alone, so sweet netting 

was also conducted. 

Pan trapping was undertaken eight times for a period of ~48 hrs for each site over the 

survey period. Using a more intensive method than Bates et al. (2011), six sets of four 

different coloured pan traps were placed over an area of 100 m2 in each site per sampling 

bout. Pan traps were rectangular plastic containers measuring 168 mm (L), 116 mm (W) and 

52 mm (D), spray painted white (code 1109), pacific blue (code 1132), yellow (code 1115) and 

fluorescent yellow (code 655) using Plasti-kote® (Wokingham, UK) Projekt Paint Gloss Super. 

White, blue and yellow pan traps are considered to be sufficient to maximise richness of bee 

species captured (Leong & Thorp, 1999; Westphal et al., 2008; Wilson et al., 2008; Gonçalves 

& Oliveira, 2013). Each pan trap was half filled with water with ~1 ml of detergent as a 

surfactant. The position of pans was changed at each site for every pan trapping session, but 

pans were distant (>5m) from public rights of way when possible. Pan trapping bouts were 

conducted over 4 days; two days for placing all the pans and the subsequent two days for 

pan collection from all sites in the same order, providing an equal period of trapping 

exposure for each site. Site sequence was varied between bouts to vary time of day of pan 

trapping exposure. This method allowed all sites to be sampled within a short period of time, 

limiting the impact of variation in environmental conditions on the activity and subsequent 

capture of bees between sites. Pan traps were monitored throughout the survey to make sure 

sites were not subjected to high pan trap disturbance. Disturbance could be form animals 

eating collected samples, Birmingham City Council or British Waterways staff  mowing over 

or moving the traps or members of the public emptying the contents of traps. To make sure 

this did not affect sampling design, a greater number of sites were initially sampled and 

removed if there was more than 20% of pan traps clearly interfered with throughout the 

sample period.   
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Sweep netting was undertaken once in spring and again during the summer months 

for each site in the 2011 sampling period, using an entomological kite net fixed upon a 6 foot 

carbon fibre fishing net pole. This added length and height, increasing the area swept, catch 

potential, allowed longer reach to collect early species of bee visiting floral rich trees (e.g. 

Prunus spp. and Salix spp.) and delayed bees reacting to experimenter presence. Sweep 

netting was conducted around flowering vegetation for 30 minutes per visit, making sure as 

much of‖ each‖ site’s‖microhabitats‖were‖ swept‖within‖ the‖ surveying‖ time as possible. The 

sequence in which sites were sampled was varied to avoid variation in species’ presence at 

different times of the day. All sweep netting visits were conducted between 11am and 4pm 

GMT in weather >15°C and <10mph wind speeds over the spring, and >18°C and <10mph 

wind speeds in the summer. Once bees were caught, smaller bees were collected from the net 

using a pooter. European honey bees and species of bumblebee that were easily identifiable 

in the field were placed into clear 50 ml centrifuge tubes, recorded and released. All other 

individuals were taken for specimen preparation and identification.  

2.2.3 Explanatory variables 

2.2.3.1 Local Variables 

Floral richness was estimated by recording the number of different species of 

flowering plant at each survey site and floral availability by recording the number of flowers 

for each plant, shrub or tree in flower. Particularly for early bee species, trees such as Salix 

spp. and Prunus spp. can offer large foraging opportunities. To incorporate these into a 

measure of floral availability, the number of flowers present per flowering tree, shrub, or 

plant was estimated using a simplified system where it was allocated as having  >10 

flowers, >100 flowers, >1000 flowers and >10,000 flowers. These two metrics were recorded 

twice each year, one for the spring and one for the summer months. The total for  spring and 

summer floral abundance and diversity were then averaged to gain a final measurement of 

each for each site. Mowing and cutting regimes were noted throughout the sampling period 

to gain a percentage estimate of Management Intensity at each site.  Using a 

photogrammetric Digital Surface Model (DSM) (OS MasterMap, 2009) which took into 

account buildings and trees, and‖the‖‘hillshade’ function in ArcGIS v10 (ESRI, 2011), a map of 
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the relative sunlight exposure was created of the sample area.  From this, all 2 × 2m cells 

within‖each‖site’s‖boundaries‖were‖averaged‖to‖gain‖a‖mean‖value‖of‖exposure. 

 

2.2.3.2 Landscape Context Variables 

Also in ArcGIS v10, four main landscape context variables were derived from 

Ordnance Survey MasterMap datasets by grouping landscape metrics. Built space was made 

up of the metrics ‘buildings’,‖ ‘man-made‖structures’,‖‘pavements’,‖‘roads’,‖ ‘man-made open 

space/landforms’,‖ ‘railways’‖ and‖ ‘developing‖ land’ (land to be built upon). Gardens were 

made up of ‘gardens’‖ of‖ all‖ sizes.‖Green‖ space‖ consisted‖of‖ ‘open‖natural‖ habitat’‖ (natural‖

open space, natural habitat without trees, natural landforms, natural railway without trees 

and natural roadside without trees)‖ and‖ ‘covered‖ natural‖ habitat’‖ (natural‖ roadside‖ with‖

trees, mixed natural habitat with trees and natural railway with trees) (Ordnance Survey, 

2006). A layer of agricultural land was gained by overlaying the green space layer with a 

map of agricultural land-use (Natural England, 2009), giving a general measure of 

agriculture albeit no specifics on the type of agricultural practice performed in these areas. 

Concentric buffer zones of 250 m, 500 m, 1 km, 1.5 km, 2 km, 2.5 km, 3 km, 3.5 km and 4 km 

were then created around each sample site. The area (m2) of each landscape metric raster 

within each buffer zone scale was then derived using Geospatial Modelling Environment 

(Bayer, 2012; Figure 2.2).  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: A diagram of landscape context layers for a rural survey site. Landscape context variables were extracted using two maps, 

OS Mastermap of landscape variables, and a map of agricultural land-use from Natural England (2013). Via these maps metrics of 

Built Space, Gardens, Green Space and Agricultural Land were generated in ArcGIS v10. Concentric circles with radii of 250 m, 500 m, 

1 km, 1.5 km, 2 km, 2.5 km, 3 km, 3.5 km and 4 km were then created surrounding each site (example is 2 km). By extracting the 

density (m2) for each landscape context variable layer for each site, a metric of each context was gained for each site. 
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2.2.4 Data analysis 

The overall abundance and species richness for each site was calculated by totalling 

the number of individual bees and the number of different species recorded from pan 

trapping and sweep netting sample. To allow an analysis of variance in species abundance 

distribution which takes into consideration species richness and abundance, Inverse 

Simpson’s Index (1 – Simpson’s Dominance [D]) of each site was estimated (Magurran, 2004). 

This inferred the diversity of each site whilst taking into account the evenness of the species 

present: 

(Equation 2.1) 

       
 

 

   

 

 

where Pi is the proportion of individuals in the ith species, and s is the total number of 

species. To ascertain if individual genera and species metrics also showed variation along the 

urban-rural gradient, overall abundance data were divided further to gain specific 

abundance metrics. 

 

2.2.4.1 Rarefaction 

The number of species found in sites can overlook the variation in species 

composition (Fleishman et al., 2006). Individual based rarefaction, which assumes all 

individuals caught are independent of each other, estimates the potential of encountering 

other species (Hurlbert, 1971). Through individual based rarefaction, a curve is fitted 

between the individuals and species recorded, giving a measure of species richness (Gotelli 

& Colwell, 2001; Colwell et al., 2012). Individual based rarefaction curves were generated for 

the bee assemblages recorded in urban, suburban and rural sites to allow comparison of 

species richness between land-use types (using R package Vegan; Oksanen et al., 2012).   
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2.2.4.2 ANOVA 

Comparison of bee assemblage metrics between general classifications of urban, 

suburban and rural sites were undertaken using Analysis of Variance (ANOVA) if metrics 

were normally distributed, or Kruskall-Wallis if they were not normally distributed. Tukey-

HSD and pairwise Wilcoxon tests were used alongside each analysis of variance, respectively, 

to record the relative differences between particular land-use types. 

 

2.2.4.3 Generalised Linear Mixed-Models 

Statistical modelling was used to test for significant relationships between 

explanatory variables and bee assemblage metrics (Table 2.1). Data exploration was 

undertaken following Zuur et al. (2010). All variables were checked for outliers using box 

plots and Cleveland dotplots. Local and landscape context explanatory variables were 

checked for co-linearity at each landscape scale prior to statistical modelling. At several 

scales, gardens and green space showed positive co-linearity to built space. To make sure the 

assumptions of independence in models were not violated, only built space and agricultural 

land landscape context variables were applied to GLMs (Table 2.1). Of the local site factors, 

floral richness was also shown to be positively co-linear with built space, and removed. This 

left exposure, management intensity and floral availability as site factors in the final models 

(Table 2.1). Several non-linear relationships were evident within the models, specifically with 

the abundance of bumblebees showing an asymptote with similar levels of abundance in 

medium and high levels of built space. These non-linear relationships were accounted for by 

adding quadratic terms to the built space variable in these particular models. A total of 10 

bee assemblage metrics were identified as showing normality, independence and 

homogeneity of variance when statistically modelled, including overall bee abundance, 

species richness, Bombus spp. abundance, Andrena spp. abundance, Bombus lapidarius 

abundance, Andrena bicolor abundance, Bombus pascuorum abundance, Bombus terrestris 

abundance, and Apis mellifera abundance. Using the model scale with the lowest Akaike 

Information Criterion (AIC), the most parsimonious model scale for each response variable 

was identified. 
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 Initial data exploration indicated bee assemblage metrics were nested between canal 

side and parkland sites. Following Zuur et al. (2009), this was accounted for by adding site 

type (parkland and canal sides) as a random factor in generalised linear mixed-effect models 

(GLMMs). Models were applied with Poisson or negative-binomial distributions to account 

for over-dispersed‖nature‖of‖count‖data‖(O’Hara‖et‖al.,‖2010). 

 Initial counts of abundance and species richness were applied to models, and then 

divided between genera and species for further modelling of inter-specific variation in bee 

species response to urbanisation. Only the genera and species abundance metrics that were 

recorded at a high enough frequency that allowed statistical models to show validity 

through normality, independence and homogeneity of variance at all explanatory variable 

scales were kept in‖this‖chapter’s‖statistical‖modelling‖analysis. Normality of each model was 

tested using Q-Q plots, independence was tested by plotting model residuals against all 

explanatory variables (either included in the model or not), and homogeneity was checked 

by plotting the model residuals against the fitted values. If the GLMMs were unable to 

account for non-linear relationships between a response and explanatory variable, a 

quadratic term was added to that variable. Interaction terms between explanatory variables 

were checked for importance in models by testing significance compared to models without 

interaction terms using ANOVA. . Spatial auto-correlation was tested using a Mantel-T test 

for each response variable before applying to a model, as well as the residuals from each 

resulting model. This indicated that spatial auto-correlation was not evident in either 

response variable or the final model residuals. 

Once a model was found suitable for each response variable at all explanatory 

variable scales, the most parsimonious model was found using an Information-Theoretic (IT) 

approach (following Burnham and Anderson, 2002) and presented as a final model. All 

analyses were undertaken using R v. 2.14.1 (R Core Team, 2012; www.r-project.org) within 

RStudio (RStudio, 2012). Modelling of GLMM models was untaken‖ using‖ ‘glmmADMB’‖

(Fournier et al., 2012). 

 

 

 

http://www.r-project.org/
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2.2.4.4 Redundancy Analysis  

All individual species’‖abundances‖were‖applied‖to‖ordination‖analysis‖to‖assess‖the‖

association of local and landscape variables with the abundance of species of bee present. 

Using Detrended Correspondence Analysis (DCA), Redundancy Analysis (RDA) was 

selected as an appropriate ordination method due to total inertia of DCA remaining below 2 

(Lepš & Šmilauer, 2003). The landscape scale most suited to describing the association of 

individual species’‖ abundance‖ was‖ selected‖ based‖ on‖ the‖ scale‖ which‖ best explained the 

variance within the RDA. All local and landscape variables in the final models were applied 

as constrained variables in the RDA to assess their association to bee‖ species’‖ abundance. 

Significance values were found using Monte Carlo permutation tests. DCA and RDA were 

calculated using the Vegan package in R (Oksanen et al., 2012).  
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Table 2.1: The response and explanatory variables used in the final Generalised Linear Mixed 

Models (GLMMs) testing bee assemblage variation along the urban-rural gradient of 

Birmingham, UK. 

Response Variables  Response Variable Description 

Overall Abundance    The total number of bees recorded at each sample site 

Species Richness The total number of bee species recorded at each site 

G
en

era 

A
b

u
n

d
an

ce
 

Bombus spp.  

Andrena spp. 

 The total number of individual bees at each site within a 

particular genus (for Bombus spp. subgenus Psithyrus was 

excluded)  

S
p

ecies 

A
b

u
n

d
an

ce 

Bombus lapidarius  

Andrena bicolor  

Bombus pascuorum  

Bombus terrestris  

Apis mellifera 

 The total number of individual bees at each site of a particular 

species. 

Explanatory Variables Explanatory Variable Description 

L
an

d
scap

e 

C
o

n
text 

 V
ariab

les 

Built Space 

Built Space (m2) within a specified 

concentric buffer zone from the 

sample site. 

Landscape context data 

were taken at intervals of 

250 m, 500 m, 1 km, 1.5 

km, 2 km, 2.5 km, 3 km, 

3.5 km and 4 km. 

  

Agricultural Land 

Agricultural Land (m2) within a 

specified concentric buffer zone 

from the sample site. 
S

ite V
ariab

les 

Exposure 

The percentage of sunlight exposure each site offers. Derived 

from the Digital Surface Model, incorporating hills, trees and 

buildings. 

Floral Availability 

The number of flowers in a site. Rather than counting every 

flower, this metric was estimated per tree/shrub/flower. The 

classification of flower abundance was either >10, >100, >1000 

or >10000. 

Level of 

Management 

A percentage of observed intensity of management in a site. 

Based on the mowing regime and the intensity of public 

occurrence at the site compared to other sites.  
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2.3 Results 

From eight pan trapping and two sweep netting surveys per site in 2011/2012, 3,309 

individual bee specimens were recorded from 76 species within 18 genera across the urban-

rural gradient of Birmingham, UK. Pan trapping surveys undertaken four times in 2011 and 

twice in 2012 caught the main proportion of bees, their catch making up 73.9% of all 

individuals recorded in this study. Sweep netting was conducted at each site once in the 

spring and again in the summer months of 2011,  the bees recorded here making up 26.1% of 

all bees caught in this study.  Individuals from the genus Bombus represented 41.2% of total 

bee abundance, whilst only 1.3% of individuals were from the subgenus Bombus Psithyrus. 

Solitary bees made up 49.4% of all individuals, and their cleptoparasites constituted 4.2% of 

total individuals caught. Andrena were by far the most abundant solitary bee genus 

represented by 20.1% of all bees recorded. The remaining 4% of bees caught were  honey 

bees (Apis mellifera). Five species were dominant throughout the study area, making up 43.9% 

of the bees collected; Bombus lapidarius (385), Andrena bicolor (289), B. pascuorum (255), B. 

terrestris (247) and B. lucorum (279) (see Appendix I: Table AI.1 for abundance data between 

land-use types). Of the 76 species recorded, only 12 were not represented within urban or 

suburban sites (Appendix I: Figure A.I.1). The most variance in species’ composition was 

explained in the RDA with landscape variables at the 2.5 km scale. The cumulative variance 

of species’ data was 25.4% and all canonical axes were significant (F=1.84, p=<0.05; Figure 2.3). 

Between land-use types, species richness (F=0.51, d.f.=2, p=0.60) and Simpsons 

Diversity Index (F=0.74, d.f.=2, p=0.74) showed no significant difference. In the mixed-models, 

species richness was also not significantly associated with either local or landscape variables. 

Overall abundance on the other hand, was significantly different between land-use types 

(F=5.17, d.f.=2, p=0.01), and showed a positive relationship with built space within a 1 km 

radius in mixed-models (Table 2.2). However, individual-based rarefaction revealed rural 

sites showed greater expected species richness than suburban and urban sites once more 

than 300 individuals are sampled in each land-use, based on confidence intervals not 

overlapping after this point (Figure 2.4).  
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Figure 2.3: Redundancy Analysis (RDA) plot of species abundance as a response to local 

and landscape explanatory variables. The Landscape variable scale of 2.5 km was the model 

which explained the most variance compared to other scales, explaining 25.4% of the 

cumulative variance in the species data (F= 1.84, p=<0.05). Species with best model fit are 

represented. Species names were abbreviations follow A.bic = Andrena bicolor, A.cin = A. 

cineraria, A.ful = A. fulva, A.hae = A. haemorrhoa, A.nig = A. nigroaenea, A.min = A. minutula, 

A.nit = A. nitida, A.sem = A. semilaevis, Ap.mel = Apis mellifera, B.hor = Bombus hortorum, B.hyp 

= B. hypnorum, B.lap = B. lapidarius, B.pas = B. pascuorum, B.pra = B. pratorum, B.ter = B. 

terrestris, C.dav = Colletes daviesanus, H.rub = Halictus rubicundus, H. hya = Hylaeus hyalinatus, 

L. alb = Lasioglossum albipes, L.cal = L. calceatum, L.sme = L. smeathmanellum, M.lig = Megachile 

ligniseca , M.wil = M. willughbiella, M.hae = Melitta haemorrhoidalis, N.fab = Nomada fabriciana, 

N.fla = N. flava, O.cae = Osmia caerulescens, O.bic = O. bicornis.  



 

 

 

 

 

Table 2.2: Model estimates and significance levels from the final GLMMs, testing for relationships of bee abundance and species richness 

metrics between landscape and local explanatory variables along the urban-rural gradient of Birmingham, UK.  

Response Variable 
Model 

Scale 

Explanatory Variables Interactions 

Built Space 
Agricultural 

Land 
Exposure Floral Availability 

Management 

Intensity 

Floral Availability 

×  Man. Intensity 

Overall Abundance  (3,309) 1km 0.000702* 
  

-2.91e-07 0.00344 
 

Species Richness (76)1 4km -5.73E-15 -0.0000174 
 

3.10e-07 0.000282 
 

Bombus spp. (1,560) 1km 0.002*** 
  

-7.04e-07 0.00159 
 

Andrena spp. (663) 250m -1.89e-09** 
 

-0.00512 3.85e-06* -0.00183 
 

Bombus lapidarius (385) 1km 2.52e-06** 
  

1.37e-06 0.00356 
 

Andrena bicolor (289) 1km -4.91e-06*** 
  

1.10e-05 2.56e-02*** -1.90e-07* 

Bombus pascuorum (255) 1.5km 4.25e-07 -8.98e-09 0.00473 -1.35e-06 0.00703 
 

Bombus terrestris (247) 1km 3.25e-06** 
 

-3.91e-03 
 

-2.46e-03 
 

Apis mellifera (133) 1.5km -2.1e-12 2.35e-07** -0.00943 8.24e-11 0.000126 -1.94e-14* 

Interactions in the data between Floral Availability and Management Intensity are shown in the column on the right. - indicates a negative 

relationship between the response and explanatory variables in question.  Model scale represents the final model scale selected through 

Information-Theoretic (IT) following Burnham and Anderson (2002). The number of individuals recorded over the sampling effort is represented in 

brackets next to each species name, apart from Species Richness which presents the total number of species found in the study.  Significant p-values 

of <0.05 shown as *, <0.01 as ** and <0.001 as ***. 
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The genus Bombus showed high levels of abundance in suburban areas (F=13.48, 

d.f.=2, p=<0.001; Table 2.3), caused by high abundance of Bombus lapidarius (H=15.37, d.f.=2, 

p=<0.001), Bombus terrestris (F=5.06, d.f.=2, p=<0.01) and Bombus lucorum (H=8.54, d.f.=2, 

p=0.01; Table 2.4). Bombus spp., Bombus lapidarius, Bombus terrestris and Bombus lucorum all 

showed positive relationships with built space (between 1 km and 1.5 km scale) in the mixed 

models (Table 2.2; Figure 2.6) and in RDA (Figure 2.3).  B. pascuorum displayed no significant 

variation between land-use (H=3.34, d.f.=2, p=0.19), and showed not significant relationship 

with built space in mixed-models.  

 

Figure 2.4: Individual-based interpolation (rarefaction) from urban (red), suburban 

(orange) and rural (green) sites with SE of the rarefaction iterations as error bars. This 

indicates rural sites had greater levels of species richness than both suburban and urban sites 

after 300 individuals were recorded. Urban and suburban sites show similar levels of species 

richness to each other until 1000 individuals sampled. Each line ends and represents the 

number of individuals recorded in that land-use type, indicating the greatest number of 

individuals in suburban areas. 
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The abundance of Andrena spp. gave no indication of variation between land-use 

types, but was significantly negatively associated with built space in mixed-models. Species 

within the genus Andrena displayed contrasting results, with no significant differences in the 

abundance of A. nigroaenea, A. minutula or A. haemorrhoa between land-use types, yet Andrena 

fulva (H=9.74, d.f.=2, p=0.008) showed a greater abundance in suburban areas whilst Andrena 

bicolor (H=9.15, d.f.=2, p=0.01) was more abundant in rural sites. The only species of solitary 

bee that was found in sufficient abundance to be applied to mixed-models was Andrena 

bicolor, and showed a negative relationship with built space at a 1 km scale. In addition, Apis 

mellifera was positively associated with the level of agricultural land at a 1.5 km scale.  

Table 2.3: Test statistics, test significance and between land-use significance from means tests and 

post-hoc tests of overall abundance, species richness and abundance metrics of bee genera between 

land-use types.  

Analysis of Variance Post-Hoc  

Test Response Test Stat Test Sig. Urb <-> Sub Urb <-> Rur Sub <-> Rur 

Overall Abundance (3,309) F=5.17 0.01 0.57 0.09 0.01 (<) 

Species Richness (from 76) F=0.51 0.6 0.6 0.6 0.9 

Simpson Diversity Index H=0.59 0.74 1 1 1 

Bombus spp. (1360) F=13.48 <0.001 0.803 <0.001 (<) <0.001 (<) 

Andrena spp. (663) H=3.8 0.14 0.3 0.32 1 

Lasioglossum spp. (340) H=1.466 0.48 1 1 0.97 

Osmia spp. (228) H=1.84 0.39 1 0.85 0.69 

Halictus spp. (140) H=1.52 0.46 1 1 0.86 

Apis mellifera1 (133) H=4.29 0.11 0.45 0.15 1 

Nomada spp. (124) H=8.22 0.01 0.29 0.02 (>) 0.35 

Megachile spp. (98) H=8.74 0.01 1 0.02 (<) 0.07 

Hylaeus spp. (71) H=5.12 0.07 0.24 0.16 1 

Bombus Psithyrus spp. (42) H=1.91 0.35 1 0.59 1 

Anthophora spp. (44) H=6.40 0.04 0.94 0.04(<) 0.33 

Colletes daviesanus1 (35) H=13.16 0.001 0.007(<) 0.03(<) 0.49 

1These genera were only represented by one species. The number of individuals recorded over the 

sampling effort is represented in brackets next to each genus. H = Kruskal-Wallis non-parametric test 

statistic and post-hoc test as Wilcoxon tests, F = ANOVA test with a post-hoc Tukey-HSD test. Degrees 

of freedom were 2 for all tests. (<) and (>) represent the direction of the trend, with the arrow pointing 

towards the land-use type with a higher levels of abundance.  
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Table 2.4: Test statistics, test significance and between land-use significance from means tests and 

post-hoc tests between the most commonly recorded individual species abundance between land-

use types.  

Analysis of Variance Post-Hoc 

Test Response Test Stat Test Sig. Urb <-> Sub Urb <-> Rur Sub <-> Rur 

Bombus lapidarius (385) H=15.37 <0.001 1 0.002(<) 0.004(<) 

Andrena bicolor (289) H=9.15 0.01 0.05 0.03(>) 1 

Bombus pascuorum (255) H=3.34 0.19 1 0.97 0.24 

Bombus terrestris (247) F=5.06 0.01 0.99 0.02(<) 0.03(<) 

Bombus lucorum (222) H=8.54 0.01 0.96 0.02(<) 0.14 

Osmia bicornis (191) H=0.96 0.62 1 1 0.94 

Bombus pratorum (122) H=5.10 0.08 1 0.12 0.27 

Lasioglossum smeathmanellum (102) H=2.87 0.24 0.65 0.31 0.65 

Andrena minutula (98) H=1.14 0.57 1 0.95 1 

Lasioglossum albipes (93) H=2.29 0.32 0.4 0.92 0.92 

Halictus tumulorum (91) H=0.44 0.8 1 1 1 

Lasioglossum calceatum (79) H=0.96 0.62 1 1 1 

Bombus hortorum (71) H=5.86 0.05 0.13 0.08 0.62 

Andrena nigroaenea (62) H=2.05 0.36 0.6 0.76 0.6 

Bombus hypnorum (58) H=8.31 0.02 0.95 0.12 0.02(<) 

Andrena haemorrhoa (51) H=4.91 0.09 0.21 0.11 0.66 

Halictus rubicundus (49) H=0.45 0.8 1 1 1 

Nomada fabriciana (47) H=1.69 0.43 1 0.58 1 

Hylaeus communis (45) H=4.18 0.12 0.37 0.2 0.37 

Andrena cineraria (38) H=3.53 0.17 0.36 0.87 0.36 

Megachile willughbiella (35) H=7.79 0.02 0.25 0.03(<) 0.25 

Anthophora plumipes (35) H=4.22 0.12 0.68 0.15 0.21 

Megachile ligniseca (35) H=6.26 0.04 0.28 0.22 0.05 

Andrena fulva (31) H=9.74 0.008 0.4 0.1 0.003(<) 

The number of individuals recorded over the sampling effort is represented in brackets next to each 

species name. H = Kruskal-Wallis non-parametric test statistic and post-hoc test as Wilcoxon tests, F = 

ANOVA test with a post-hoc Tukey-HSD test. Degrees of freedom were 2 for all tests. (<) and (>) 

represent the direction of the trend, with the arrow pointing towards the land-use type with a higher 

levels of abundance.  
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Figure 2.5: Mean bee abundance and diversity metrics between land-use types.  (±1 

SE). Bars with different letters represent significant differences, while ‘ns’‖represents 

no significant difference between land-use. 
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The varied response of bee species to land-use was continually observed in other 

abundance metrics. Megachile spp. varied significantly between land-use types (F=8.74, d.f.=2, 

p=<0.01), and Megachile willughbiella (H=7.79, d.f.=2, p=0.02) and Megachile ligniseca (H=6.26, 

d.f.=2, p=0.04) both showing greater abundance in urban and suburban areas, respectively 

(Table 2.3). Similarly, Anthophora spp. and Colletes spp. both showed significant variation 

towards sites in more urbanised areas (F=6.40, d.f.=2, p=<0.04; F=13.16, d.f.=2, p=<0.001). 

However, several genera abundance metrics showed no significant variation with land-use, 

including the abundance of Lasioglossum spp., Osmia spp., Halictus spp., Hylaeus spp. and the 

subgenus Psithyrus (Table 2.3).Interestingly, the post-hoc analysis of variation between 

individual land-use types highlighted that the most significant differences between metrics 

were observed between urban to rural sites and suburban to rural sites. 

GLMMs and RDA indicated associations between certain abundance metrics and 

local site factors. In GLMMs, there were significant interactions between floral availability 

and management intensity and the abundances of Andrena bicolor and Apis mellifera (Table 2.2; 

Figure 2.6). In RDA, Osmia bicornis, O. caerulescens, Lasioglossum smeathmanellum and several 

Megachile species were associated with measures of management intensity and exposure 

(Figure 2.3).  

The cleptoparasitic genus Nomada was found to decrease in abundance significantly 

within urban areas (H=8.22, d.f.=2, p=0.01; Table 2.3). Nomada spp. host species are most 

commonly from the genus Andrena (Baldock, 2008), which as previously mentioned shows a 

negative relationship with built space. Further to this, Nomada fabriciana and its host species 

Andrena bicolor both showed a negative association with built space in RDA (Figure 2.3). 
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Figure 2.6: The significant relationships of bee abundance metrics and landscape variables from the 

final GLMMs recorded in canal side and parkland sites along the urban-rural gradient of 

Birmingham, UK (Table 2.5). The concentric scale at which each landscape variable was extracted and 

applied to the final model is represented within brackets (see 2.2 Methods for more detail). Overall 

Abundance shows a positive relationship with built space at a 1 km scale. Metrics of Bombus spp., B. 

lapidarius and B. terrestris abundance all illustrate a positive relationship with built space at a 1 km 

scale which appeared to reach an asymptote.  In contrast, Andrena spp. and Andrena bicolor abundance 

showed the opposite trend with a negative association with built space at a 250 m and 1 km scale 

respectively. Apis mellifera abundance displayed a positive relationship to agricultural land. Grey lines 

indicate the trend of the relationship and grey areas represent 95% confidence intervals. R2 represents 

the square of the correlation for each abundance metric model (also known as a proportion between 0-

100 of model fit), p represents the significance of the relationship between abundance metric and 

explanatory variable.  
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2.4 Discussion 

Through sweep netting and pan trapping in canal and parkland sites, I recorded bee 

assemblages along the urban-rural gradient in Birmingham, UK. Using mixed-models, I 

found greater overall bee abundance in suburban compared to rural sites. Several species 

from the genus Bombus were highly abundant in these sites, and appear to be the main 

components of bee assemblages within urban and suburban areas. However, this 

overshadows the opposite trends found in Andrena spp. and Andrena bicolor which showed a 

negative relationship with increased built space density. By separating abundance data 

between genera and species, I present further evidence that the variation in bee abundance 

between land-use types is species-specific. These included interactions between local site 

variables in several mixed-models, supporting previous research on how site quality is an 

important component for bees in urban areas (Kearns & Oliveras, 2009; Bates et al., 2011).  

In previous studies, bee assemblage variation along the urban-rural gradient was 

defined by a loss in species richness (Matterson et al., 2008; Kearns & Oliveras, 2009) or a 

change in community composition (Zanette et al., 2005; Cane et al., 2006; Wojcik & McBride, 

2012). This‖ chapter’s‖ analysis‖ displays‖ similar‖ results‖ with‖ certain‖ species‖ demonstrating‖

negative influences from increased urbanisation. Some studies however, have suggested that 

urban and suburban areas can maintain a bee fauna in terms of abundance and diversity to 

the same extent as their rural counterparts (Frankie et al., 2005; Fetridge et al., 2008; Frankie 

et al., 2009). My results support this whilst also revealing that the suburban areas I sampled 

show greater bee abundance than the rural sites .  

There are certain elements of the urban and suburban landscape that could support 

greater abundances of particular bees. Fundamental to the diversity of bee species 

composition in any given habitat is the diversity of available foraging (Potts et al., 2003) and 

nesting opportunities (Potts et al., 2005). Habitat along the urban-rural gradient has been 

shown to provide such resources, most notably from sites such as suburban and urban 

gardens (Hostetler & McIntyre, 2001; Goulson et al., 2003; Matteson et al., 2008), allotments 

(Ahrné et al., 2009) and urban parks (McFrederick & LeBuhn, 2006). Bombus lapidarius and B. 

terrestis were two species that showed greater abundance in suburban areas and a positive 

relationship with built space (Figure 2.5). Bumblebees usually show less deleterious 
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responses to habitat fragmentation than smaller solitary bees (Jauker et al., 2013), due to their 

body size and thus greater foraging range (Greenleaf et al., 2007). Bumblebees can forage 

longer distances in search of food in urban areas (Chapman et al., 2003) and utilise habitat 

corridors in their search for foraging resources (Cranmer et al., 2012). Furthermore, their 

reproductive success appears to be higher in suburban areas than it is in agricultural areas 

(Goulson et al., 2003). Hence, the higher abundance of bumblebees found in the suburban 

and urban sites in my study and others (McFrederick & LeBuhn, 2006; Matteson et al., 2008; 

Bates et al., 2011) is partially explained by their ability to forage much further and make use 

of the habitat patches not exploited by smaller bees.   

However, this chapter also found contrasting relationships between land-use and 

abundance metrics of other species. For example, Andrena bicolor showed a negative 

relationship with built space and a positive relationship with management intensity, whilst 

there was also an interaction between the number of flowers on a site and its relative level of 

management. Several urban studies have shown that management regimes promoting native 

floral availability and nesting opportunities for ground nesters can offer bees consistent 

resources for survival and fecundity throughout the urban-rural gradient (McFrederick & 

LeBuhn, 2006; Kearns and Oliveras, 2009; Frankie et al., 2009). Therefore, sites that can 

maintain a high diversity of resources for different species of bee appear to support bees 

along the urban-rural gradient. Although this has been suggested and observed previously 

(Cane et al., 2006; Fetridge et al., 2008; Matterson et al., 2008; Bates et al., 2011; Banaszak-

Cibicka‖&‖Żmihorski,‖2011), this chapter adds to the growing concern that to gain a better 

understanding of bee assemblage variation along an urban-rural gradient, the inter-specific 

responses of bees must be considered. Limiting‖ this‖ chapter’s‖ ability‖ to‖ infer‖ the‖ causes‖

behind certain species’ change along the urban-rural gradient is the co-linearity between site 

and landscape variables, common to studies of the urban-rural gradient. Within this chapter, 

floral richness was positively associated with built space (and removed from further 

statistical analysis). Thus, the increase in bee abundance (specifically bumblebee abundance) 

observed in urban and suburban areas may be associated with floral diversity rather than 

built space per se.  
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Compared to Bates et al. (2011), it was apparent that there are differences in the bee 

assemblages recorded in different site types in this study region. Whilst Bates et al. (2011) 

showed bee abundance to be greater in rural compared to suburban areas when sampling 

cemeteries and churchyards, my study suggests the opposite on canal sides and in parkland 

with greater suburban abundance. Lasioglossum smeathmanellum was found in abundance in 

urban areas by Bates et al. (2011), potentially associated with the availability of crumbling 

mortar providing nesting resources for cavity nesters. In my chapter, 102 individuals of L. 

smeathmanellum were recorded with no significant difference between land-use types. These 

differences may be due to the foraging and nesting resource availability varying between site 

types, with some site types providing benefits which other sites do not. This underlines the 

need for all site types to be sampled before reaching firm conclusions about bee assemblages 

along urban-rural gradients.  

There were some corresponding results however, with certain species showing 

greater abundance in urban and suburban sites of both studies, with Bombus terrestris and 

Bombus hypnorum both shown to be greater in urban or suburban areas. Bates et al. (2011) 

also showed a greater number of species in rural compared to suburban sites. My chapter 

found no difference in the number of species between land-use types, but with rarefaction a 

greater level of species richness was estimated for rural sites. This suggests that the main 

species observed in urban areas, and the general trend of species loss along the urban-rural 

gradient may be encapsulated by studies when sampling only one or two site types in a city. 

However, to assess the full scope of species-specific responses along urban-rural gradients a 

greater number of site types require sampling. 

Potentially limiting the comparison between these two studies is this chapter’s more 

intensive pan trapping sampling effort (greater number of pans placed at each site) than 

Bates et al. (2011). However together, this chapter and Bates et al. (2011) provide valuable 

insight into how the urban-rural gradient in Birmingham influences bee assemblages in 

multiple site types. Between these two studies within this study region, there is arguably one 

site type still remaining to be surveyed in this sample area; namely gardens. In order to gain 

a comprehensive assessment of bee assemblage variation, further analysis into the 

importance of gardens is necessary in Birmingham. As for different cities and regions, 



 

 

34 

 

increasing regional and site type sampling is crucial in understanding the full impact the 

urban-rural gradient will have on bee assemblages. This could lead to a common sampling 

framework between cities, and bring current research closer to a widespread and definitive 

conclusion as to the response of pollinators to urbanisation. 

The importance of an urban-rural gradient in defining bee assemblages has been 

highlighted in this chapter and in several studies (Cane et al., 2006; Fetridge et al., 2008; 

Matteson et al., 2008; Bates et al., 2011). Species variation in response to the urban-rural 

gradient is documented in previous literature (McIntyre, 2000; Kark et al., 2007). Usually 

these responses can be defined in three ways: (i) species present within rural areas show little 

or no presence in urban sites; (ii) species present in urban areas show a greater proportion of 

individuals or are only recorded in urban sites; and (iii) other species show no difference 

between the two (McIntyre, 2000; Kark et al., 2007). This is most clearly seen in my chapter’s‖

results when observing the proportion of species represented in each land-use type 

(Appendix I: Figure AI.1). It has been suggested that investigating the causes of species-

specific variation is a key area for future research in urban ecology (McIntyre, 2000). One 

way species change along the urban-rural gradient may be assessed in the future is through 

evaluating assemblage data alongside the life-history traits of those species. This type of 

analysis has been shown before to explain the bee assemblage change observed in light of 

different aspects of anthropogenic disturbance (Moretti et al., 2008; Williams et al., 2010). In 

addition, as trait complementarity has been noted as an important component of pollination 

effectiveness (Hoehn et al., 2008: Albrecht et al., 2012; Fründ et al., 2013), a trait analysis may 

allow greater understanding of the implications bee assemblage variation could have on 

pollination services.  

As to the influence of species change on pollination services provided by bees, there 

is still inadequate information to reach a firm conclusion. The species found within urban 

and suburban areas can represent a large proportion of the regional bee diversity (Frankie et 

al., 2009) helping to provide pollination services throughout urban landscapes (Tommasi et 

al., 2004). This is potentially the case in this chapter, with 64 species out of the total 76 species 

recorded found to be present within urban and suburban sites. However, before the full 

extent of how species change will (or will not) influence pollination services along a 
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landscape gradient, the importance of certain species in providing adequate pollen carryover 

to facilitate pollination success in plants still needs to be assessed. Key areas of future 

research should include assessing how different species provide pollen-carryover, and 

whether or not the change in species observed along the urban-rural gradient can influence 

the pollination success of plants. 

The first step towards applying a trait based analysis on bee assemblage composition 

along landscape gradients is to firstly assess and add to the databases of bee traits. This 

includes morphological traits that may be important in pollen carryover by bees, and thereby 

potentially influencing the pollination services bees provide to plants. The next chapter 

attempts this by measuring the inter-specific variation in bee pilosity (or the level and type of 

hair), a potentially important trait in pollen carryover and therefore pollination. 
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Chapter 3  

 

 

 

 

An analysis of the inter-specific variation in the 

pilosity of UK bees and its relationship to body 

size and pollen transport adaptations 
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Abstract 

Pollination success is provided to flowers by bees transferring pollen between conspecific 

flowers via floral visits (pollen carryover). The morphological attribute that enables bees to collect 

pollen passively is their hair (or pilosity). Although pollen transport adaptations are well documented 

in the literature, bee pilosity is lacking measurement and comparison between species and in reference 

to other functional traits such as body size and pollen transport adaptation. This will allow further 

investigation into how changes to bee assemblages may influence potential pollen carryover by bees. 

This chapter undertakes a pilosity analysis by measuring the hair length, hair spacing, hair cover and 

hair type at 10 pre-selected body regions of 122 species of bee (three female specimens per species) 

commonly found within the UK. Hair length, spacing, cover and branching in bee species measured 

showed significant genera- and species-specific variation. Hair length, spacing and cover were all 

significantly associated with bee body size Inter-Tegular Distance (ITD). Hair length on areas adapted 

for pollen transport was explained by the pollen transport adaptations that species have (i.e. corbicula), 

whereas the level of hair branching showed no association with body size, and only explained the 

variation in the genera Halictus and Lasioglossum.  It is therefore recommended that a 

comprehensive pilosity analysis is not required to assess the relative diversity of hair traits in bees, as 

body size and pollen transport specialisations explain most of the variation between species. I suggest 

future research into the importance of hair traits for pollen carryover, and the chapter supports the 

inclusion of pilosity measurements on the areas of incidental pollen transport into functional trait 

analysis. 
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3.1 Introduction 

In 87% of angiosperms, animal vectors need to deposit viable pollen on the correct 

part of a con-specific flower for pollination to be achieved or aided (Ollerton et al., 2011). 

There are many animal vectors including mammals, insects, birds and reptiles. Bees are one 

taxonomic group that has evolved to use pollen as a source of nutrition for their offspring 

(Roulston & Cane, 2000) and subsequently they are considered prolific pollen vectors. 

Traditionally, the phenotypic adaptations that lead to particular plants being pollinated by 

particular pollinators have been grouped into pollination ‘syndromes’‖(reviewed by Waser, 

2006). Pollination syndromes however, do not adequately take into account the full 

variability in the possible connections between plants and their pollinators (Ollerton et al., 

2009). Pollination success is subject to the spatial and temporal disparity between plant 

species and potential pollinators, but how pollinators and flowers come into physical contact 

also determines the amount of pollen transferred between conspecifics (pollen carryover). 

For instance, bee species are likely to manipulate flowers differently, collect pollen in 

different ways, collect pollen on different parts of their body, collect pollen in different 

amounts, forage differently after collecting pollen, groom their bodies of pollen in different 

ways and to varying extents, and will come into contact with flowers in different ways 

(Mitchell et al., 2009). Hence, a great deal is still unknown regarding the potential pollen 

carryover between species of bees and plants, making it difficult to discern how pollination 

services will be affected by bee assemblage alteration (Mitchell et al., 2009). 

Novel ways in which plant and pollinator traits are documented and compared to 

assess potential pollen carryover are required to allow a greater understanding of pollination 

outside of pollination syndromes. One way of doing this is through a more practical 

approach to assessing pollination relationships between different species of pollinators and 

different species of plant, with a bottom up approach which documents the traits that 

directly influence pollen carryover (Ollerton et al., 2009). Before a trait-based analysis 

however, it is necessary to catalogue inter-specific variation in traits specific to the function 

of bees and to compare them prior to a trait-based analysis (Wainwright, 2007). By 

cataloguing the inter-specific differences in pollen collection and transferral to flowers, 
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further understanding of the variability of pollen carryover by bees could be achieved and 

applied to further research in pollination ecology. 

There is evidence suggesting the extent to which bees facilitate pollen carryover 

between con-specific plants is partly due to variation in their pilosity (Rademaker et al., 1997; 

Thorp, 2000; Adler & Irwin, 2006). Alongside evolving to use pollen as a source of nutrition, 

bees have developed an array of morphological and behavioural adaptations which have 

aided in the collection and transportation of pollen grains (Thorp, 1979; Thorp, 2000; 

Schlindwein et al., 2005). Bees collect or accumulate pollen in two ways, through‖‘active’‖or‖

‘passive’‖ pollen‖ collection (Figure 3.1). Active pollen collection refers to the specific 

behavioural or morphological traits enabling bees to remove pollen from particular flowers 

(e.g. sonication; Thorp, 1979, 2000), whilst passive pollen collection relates to the 

accumulation of pollen on the hairs of bees during flower visits (Thorp, 2000). After 

collection, pollen is transported in two ways: in designated transport adaptations (e.g. scopal 

hairs) or incidentally via body hair where passive pollen collection has occurred (Figure 3.1). 

The hair present upon a bee is a primary factor in the level and type of pollen 

passively collected, the incidental transport of pollen on bees, and (although to a lesser 

extent as some bees use their crop to carry pollen) is part of the adaptations of bees to 

transport pollen. Bee hair is believed to aid passive pollen collection and incidental pollen 

transport as bees have evolved branched hairs that pollen can freely attach to through 

electrostatic force (Roberts & Vallespir, 1978; Vaknin et al., 2000). For areas adapted specially 

for pollen transport, scopal hairs are noted to vary between species based on the type of 

pollen collected (Roberts & Vallespir, 1978; Thorp, 1979). Scopal hair length, hair spacing and 

hair type (level of branching/plumosity) are all attributed to the type of pollen bees collect 

from particular flowers (Thorp, 1979; Roberts & Vallespir, 1978). However, previous research 

documenting the variation in the pilosity of bees has concentrated mainly on singular 

examples based on specialised plant-pollinator relationships (Thorp, 1979; Thorp, 2000). 

Currently, there has been no empirical comparison between pilosity in bee species as a group 

or in areas of incidental pollen transport. 
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Figure 3.1: A diagram summarising the process of pollen collection and transportation by 

bees. Pollen is collected through actively manipulating flowers through sonication, biting, 

drumming or milking (Thorp, 2000; depending on anther position [Harder & Barrett, 1993]), or 

passively collecting pollen on hair whilst visiting flowers. Passively collected pollen, if 

grooming does not take place, is transported in the same position collected. If groomed, bees 

manipulate collected pollen via their relative morphological or behavioural adaption (i.e. 

carrying pollen in their crop or in scopal hairs).  Pollen is then lost in transit, taken to a nest and 

used for nutrition, or becomes successfully carried over to a conspecific flower. Arrows show 

the movement of pollen in the process, with the dashed line representing the limitation of 

pollen carryover after placed in an area adapted for pollen transport (Thorp, 2000). 
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Trait complementarity is increasing in scientific interest towards pollination services 

provided by bees. Recent evidence suggests general measures of bee abundance or richness 

do not fully account for the variability in pollination success of plants, as the dissimilarity in 

traits between bees can complement each other to fulfil this service to a greater extent 

(Hoehn et al., 2008; Albrecht et al., 2008; Winfree & Kremen, 2009; Fründ et al., 2013). 

Specifically, Hoehn et al. (2008) has shown how the division of bee species through 

morphological and behavioural traits into functional guilds showed a greater increase in 

pollination services than bee abundance or richness. They further suggested this was due to 

larger bees transporting more pollen between conspecifics whilst smaller bees facilitated 

appropriate pollen movement within flowers. This implies the complexity of morphological 

and behavioural traits in bees complements each other and leads to greater pollination 

services of plants.  

Increasingly, species diversity is a poor substitute for interpreting the how the loss of 

diversity impacts on ecosystem services as compared to trait-based frameworks (Diaz & 

Cabido, 2001; Flynn et al., 2009). With the incorporation of traits into ecological diversity 

analysis and research (Naeem & Wright, 2003; Petchey & Gaston, 2006), a connection 

between organisms and ecosystems can be applied empirically (Petchey et al., 2007). 

Therefore, the first step towards understanding the importance of pilosity towards 

pollination services is through its measurement and documentation. Secondly, through 

comparison between previously documented traits, the value of pilosity as a new trait 

towards assessing the variation in pollen carryover can be considered. There are traits which 

may be associated with pilosity that are already associated with function, including body 

size (Hoehn et al., 2008) and pollen transport adaptations (Thorp, 1979, 2000). This chapter 

outlines and undertakes a novel method for measuring the pilosity of bees. Using these data, 

I investigate the extent to which pilosity of UK bees varies between genera and species, and 

relates to species’ body size and pollen transport adaptations.  
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3.1.1 Aims and Objectives 

The main aim of this chapter was to measure and compare bee pilosity variation and 

investigate if pilosity is a valuable trait to include in analysis of pollination by assessing 

whether known functional traits explain the variation found in measurements of hair length, 

spacing, cover and structural type of UK bees. 

Specifically the objectives of this chapter were to assess the implications of: 

(i)  body size in explaining the variation found in bee pilosity; 

(ii) pollen transport adaptations in explaining the variation in bee pilosity  

 

 

3.2 Methods   

The measurements of pilosity were obtained from archived specimens at the Natural 

History Museum (London, UK). All measurements were made using an 8:1 Leica microscope 

and graticule. The inter-tegular distance (ITD) was also taken for each specimen as a measure 

of body size (Cane, 1987; Bullock, 1999). The species incorporated into the pilosity analysis 

were those classed as having ubiquitous, widespread and restricted UK distributions. 

However, some species defined as scarce were also incorporated but not all due to time 

constraints (Archer, 2007; Baldock, 2008; for species list see Appendix II). In total, 122 species 

from 23 genera were measured in the analysis of pilosity. Of these species, 72 were solitary, 

25 cleptoparasitic, 15 eusocial (Bombus spp.), six social brood parasites (Bombus; Psithyrus) 

and the managed European Honey Bee (Apis mellifera). 

3.2.1 Pilosity Analysis 

The pilosity analysis consisted of four metrics measured on 10 areas from three 

female specimens of each species. Female bees were used as they are the gender which 

actively forages for pollen and have pollen transport even though males also transport pollen 

passively adaptations. The areas where pilosity metrics taken were determined by first 

including all regions most likely to come into contact with parts of flowers offering pollen, 

covering potential passive pollen collection. These included the front trochanter and clypeus 
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associated with open flowers, and the mesonotum and gastral tergites for complex trigger 

flowers (Figure 3.2). Secondly, areas that are used for pollen transport, including the hind 

trochanter, hind femur, hind tibia and gastral sternites were included (Figure 3.2). Although 

technically part of active pollen transport morphology, these areas could still contribute to 

the transfer of pollen between flowers (Thorp, 2000) and will allow for comparison between 

pilosity and the respective pollen transportation adaptations in bees. Due to time constraints 

when collecting the pilosity data, it was not feasible to gain a complete measurement for all 

gastral tergites and sternites. Instead, the main plate and posterior marginal area (inter-

marginal and marginal) of the second tergite and sternite were measured (Figure 3.2). 

The four pilosity metrics included hair length, hair spacing, hair cover and hair type, 

each being measured for the 10 selected areas for all three specimens of each species (Figure 

3.2). Hair length for each area was measured by aligning the graticule from base to tip of hair 

at the centre of the area or the patch of hair present. Measuring hair spacing as a number of 

hairs for the entirety of that particular area was not always possible, as in some areas the 

amount of hair was too prolific or dense to feasibly count. By selecting a transect most 

representative of the hair spacing in each area, hair spacing was measured by counting the 

number of hairs between a set distance of 250 µm on the microscope graticule in the centre of 

the measured area, then dividing 250 µm by the number of hairs counted. Percentage hair 

cover was estimated as a percentage of the amount of coverage hair represented for each 

area measured. Hair type was determined by assigning the hair in each area into one of five 

categories: smooth, scaled, branches <1 µm, branches 1-2 µm and branches >2 µm. More 

information on these measurements is given in Figure 3.3.  

A protocol was undertaken for selecting which specimens of each test species were to 

be measured. First, worn or faded specimens were avoided by selecting the most unmarked 

and newly acquired specimens available from each species. Secondly, specimens collected 

from the British Isles were preferred for the analysis due to the possibility of phenotypic 

variation.  Specimens from mainland Europe were only selected if no specimens from the UK 

were available. The intra-specific variation in body size (most notable in species of 

bumblebee) could have influenced the measurements of pilosity. To allow variation in 

pilosity to be measured within species while alleviating the influence of such large 



 

 

44 

 

differences in body size, nine specimens from each species were chosen (following the above 

protocol), lined up in order of body size, with the three middle specimens used to measure 

pilosity for that species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic diagram of the dorsal and ventral views of a bee body, indicating 

areas where hair length, spacing, cover and type were measured as part of the pilosity 

analysis. Red shading indicates areas adapted for pollen transport and green shading 

indicates areas not adapted for pollen transport but still important for passively collected 

pollen and transporting pollen incidentally from flower visits.  Codes of each area 

measured are in brackets. 
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Figure 3.3: Outline of the four pilosity analysis measurements taken from 10 areas of three 

specimens for 122 species of bee. Hair length was a measure of the length of hair from the 

base to the tip of each area measured. Hair spacing was measured by counting the number of 

hairs in a set distance on the microscope graticule of 250 µm, and then divided 250 by the 

number of hairs. Hair cover was a measure of proportion of area covered by hair for each 

area measured. Hair‖type‖was‖categorised‖based‖on‖each‖area’s‖hair‖type‖(categorised below). 

The photograph at the bottom shows the left hind tibia of an Andrena bicolor. Photo: R Fowler. 
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3.2.2 Pollen Transport Groups 

Bees have developed a wide range of behavioural and morphological adaptations 

with which to transport pollen between flowers and their nests. The main ways in which 

bees are adapted to transport pollen are shown in Table 3.1, and briefly described here. 

Species from the genera Colletes and Andrena tend to transport pollen on their hind 

femora and tibiae which have branched hairs, but also use their propodeum, hind 

trochanters and hind coxae. Halictus and Lasioglossum (Halictids) use the same adaptations as 

Colletes and Andrena, but can use their basitarsi and abdominal sternites as well (Thorp, 1979). 

All four of these genera are noted to have greater levels of branching on the hairs designated 

for pollen transport. Species from the family Megachilidae use long hardened smooth hairs 

on their sternites to transport pollen (Thorp, 1979, 2000). Dasypoda use their hind tibiae and 

basitarsi as well as sternite hairs. The hairs on Dasypoda hind tibiae and basitarsi are plumose 

and a great deal longer than other species of similar size (Baldock, 2008). Panurgus, 

Anthophora, Eucera, Melitta and Macropis all use hind tibiae and basitarsi hairs to transport 

pollen. Bombus and Apis have corbiculae which are bare flattened hind tibia, surrounded by 

long hard hairs which enable pollen to be clumped together using nectar and fixed in place 

during flight. Hylaeus transport pollen in their crops, regurgitating pollen with nectar when 

provisioning brood cells. Hylaeus is therefore similar to Nomada, Sphecodes, Coelioxys, Epeolus 

and Melecta which have no pollen transport adaptations due to their cleptoparasitism.  

To assess the suitability of pilosity as an important functional trait  the influence of 

pollen transport adaptations on the relative value of pilosity metrics will need to be assessed. 

In order to achieve this, I adapted approaches of Thorp (1979) and Roberts and Vallespir 

(1978) to place genera into nominal Pollen Transport Groups (PTGs, Table 3.1) based on their 

pollen transport adaptations. Throughout the analysis, species and genera are colour coded 

into these groups for interpretation of their potential importance in explaining bee pilosity.  
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Table 3.1: The relative importance of areas adapted for pollen transport between bee 

genera, areas of ‘1’ being the most important and ‘3’ the least important but still used. 

These are then used to place bees into Pollen Transport Groups (PTGs) to assess their 

comparability to other measures of pilosity. Adapted from Thorp (1979) and Roberts and 

Vallespir (1978). 

Family Genera 
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Pollen 

Transport 

Group 

Colletidae Colletes  2 2 1 1   A 

Andrenidae Andrena  2 2 1 1   A 

Halictidae Halictus  3 3 1 1 3 3 (no. 1-5) B 

Halictidae Lasioglossum  3 3 1 1 3 3 (no. 1-5) B 

Megachilidae Megachile       1 (no.2-6) C 

Megachilidae Osmia       1 (no.2-6) C 

Megachilidae Chelostoma       1 (no.2-6) C 

Megachilidae Anthidium       1 (no.2-6) C 

Megachilidae Hoplitis       1 (no.2-6) C 

Melittidae Dasypoda     1 1 3 (no.2-6) D 

Andrenidae Panurgus     1 3  E 

Apidae Anthophora     1 1  E 

Apidae Eucera     1 1  E 

Melittidae Melitta     1 1  E 

Apidae Macropis     1 1  E 

Apidae Bombus     1   F 

Apidae Apis     1   F 

Collectidae Hylaeus 1       G 

Apidae Nomada        G 

Halictidae Sphecodes        G 

Megachilidae Coelioxys        G 

Apidae Epeolus        G 

Apidae Melecta        G 

Apidae Psithyrus        G 

1 The stomach which bees use to collect nectar and break it down into honey. 2 The anterior 

dorsal lateral area of the thorax. 3 Basitarsi are enlarged parts of the tarsi which articulate 

with the tibiae proximally. See Figure 3.2 for other taxonomic terms. 
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3.2.3 Data Analysis 

The analysis of pilosity data is outlined in Figure 3.4, and is outlined in the same 

order here. All analyses were carried out using R v. 3.0.2 (R Core Team, 2012; www.r-

project.org) within RStudio v0.98.501 (RStudio, 2012). Principal Components Analysis (PCA) 

was calculated using the Vegan package in R (Oksanen et al., 2012). 

 

3.2.3.1 Species and Genera Averages 

Initially, this analysis assessed the level of variation in pilosity measurements 

between bee species and genera. By averaging the 10 measurements per species, an average 

of each pilosity measurement per species was gained. For genera with more than one species 

within this analysis, their species values were averaged again to gain a measurement for 

each genus. The error of means between genera was estimated as the standard error between 

species’‖measurements. 

 

3.2.3.2 Pilosity and Body size 

Using the original 10 measures of each pilosity measurement for each species (i.e. 

four pilosity measurements, at 10 areas, averaged for three female specimens per species), 

the importance of body size to pilosity was assessed (Figure 3.4). Common to physiological 

trait analysis is the co-linearity between trait measurement and body size (Zuur et al., 2007). 

In order to test if body size explained the variation in pilosity metrics, pilosity metrics were 

used in a Principals Component Analysis (PCA) on a covariance matrix. Using each set of 10 

measurements per metric of pilosity, pilosity data were reduced allowing the first axis of 

each PCA (i.e. PC1) to be plotted against the species’ ITD. If body size was an influence on 

morphological characteristics then a large percentage of the variance in the dataset will be 

explained by the first axis of a PCA (Zuur et al., 2007). Spearman Rank or Pearson Product 

Moment correlation tests were used depending on the normality of the data to test for 

significant correlations between PC1 scores and ITD (Figure 3.4). If the PC1 scores were 

strongly correlated with body size, data were double-centre standardised following Zuur et 

al. (2007) to allow pilosity metrics to be analysed further without the influence of body size.  

http://www.r-project.org/
http://www.r-project.org/


 

 

 

 

 

 

Figure 3.4: Diagram of the methods used to assess the importance of pilosity as a functional trait. Initially I measured hair length, spacing, 

cover and type at 10 areas on three specimens from 122 species. These 10 measurements were then averaged for genera (or species if only one 

species was measured from that genus) to compare each pilosity measurement type. Pilosity metrics were then each included in Principal 

Components Analysis (PCA) using a covariance matrix, with the loadings of the first axis of each PCA then plotted against ITD to assess the 

influence of bee size on pilosity. To assess whether pollen transport adaptations explained any variance in pilosity, pilosity measurements 

from incidental pollen transport areas and areas of pollen transport adaptation were included in individual PCAs.  
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3.2.3.3 Incidental Pollen Transport and Pollen Transport Adaptations 

Once body size was accounted, it was possible to assess whether the differences in 

pollen transport adaptations accounted for bee pilosity variation. This was done by 

partitioning the pilosity metrics between the areas which contribute to incidental pollen 

transport and those that are part of adapted pollen transport structures. Incidental pollen 

transport areas included the clypeus, mesonotum, front trochanters, tergite and tergite 

marginal area. Areas that are adapted for pollen transport to at least some extent included 

the hind tibiae, hind femora, hind trochanters, sternite and sternite marginal areas. Each 

group per pilosity metrics were then included in PCAs, plotted in biplots and coloured based 

on their relative PTG to assess if their pilosity values grouped species by their transport 

adaptations. This allowed an assessment of how much the PTGs explained the variation in 

pilosity of bees on different areas of the bee’s body (Figure 3.4).  

 

3.3 Results  

3.3.1 Species and Genera Pilosity Averages 

 The averages of each pilosity metrics between genera are represented in Figure 3.5 

and explained in more detail in the following paragraphs. 

3.3.1.1 Genera/Species Mean Hair Length 

The social parasites Bombus; Psithyrus had the longest hair length (mean=1285 ± 84 

µm, n=6) which was effectively the same as its host genus Bombus (mean=1229 ±50 µm, n=15). 

Hair length similarity between certain parasite species and their hosts was recorded again 

with Anthophora spp. (mean=657±119 µm, n=2) and their parasite Melecta albifrons (mean=632 

µm). However, three of the four genera with the lowest average hair length were the 

cleptoparasitic genera Sphecodes spp. (mean=156 ±14 µm, n=8), Nomada spp. (mean=120±36 

µm, n=11) and Epeolus spp. (mean=65±13 µm, n=2). Hylaeus spp. had the shortest hair length 

of all (mean=58±3 µm, n=4), a genera which has adapted to carry pollen within its crop 

(Thorp, 1979; Table 3.1). Averaged hair length showed significant variation between genera 

(H=105.77, d.f.=23, p=<0.001; Table 3.2) and PTGs (H=94.11, d.f.=6, p=<0.001; Table 3.2). 
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3.3.1.2 Genera/Species Mean Hair Spacing 

 The spacing between hairs was highest in genera that either do not need to collect 

pollen or collect it in their crop. The genera Sphecodes, Nomada and Hylaeus had hairs spaced 

on average every 74, 65 and 63 µm, respectively. This contrasts with the most densely spaced 

hairs recorded on Eucera longicornis and Dasypoda hirtirpes which were 24 and 29 µm, 

respectively. Hair spacing showed significant variation between genera (H=68.21, d.f.=23, 

p=<0.001; Table 3.2) and PTGs (H=45.77, d.f.=6, p=<0.001; Table 3.2). 

 

3.3.1.3 Genera/Species Mean Hair Cover 

Average hair cover varied to less of an extent than hair length, as many species 

presented all 10 areas fully covered in hair. However, several species showed <65% hair 

cover on average, including Andrena tarsata, Lasioglossum fratellum, Nomada flavoguttata, N. 

goodeniana, Sphecodes geoffrellus and S. monilicornis. The genera with the lowest levels of 

average percentage hair cover were Epeolus, Sphecodes, Nomada and Hylaeus. Hair cover 

showed significant variation between genera (H=37.22, d.f.=23, p=0.03; Table 3.2), and 

between PTGs (H=26.51, d.f.=6, p=<0.001; Table 3.2). 

 

3.3.1.4 Genera/Species Mode Hair Type 

Lasioglossum spp. and Halictus spp. were most commonly covered in hairs branched 

between 1-2 µm. Shorter hair branching (< 1 µm) was found in Andrena spp., Colletes spp., 

Eucera longicornis, and Dasypoda hirtirpes. The cleptoparasitic species Melecta albifrons also 

presents hairs branched < 1 µm, contrasting with other parasitic species that tended to have 

smooth hairs (Nomada and Sphecodes). 

Table 3.2: Means tests of averaged species pilosity between genera and between Pollen 

Transport Groups (PTGs). Significance to p<0.001 = ***, p<0.01= ** and p<0.05 = *. 

Grouping Variable  Hair Length Hair Spacing Hair Cover 

 d.f. Test Statistic Test Statistic Test Statistic  

Genus 23 H = 105.77*** H = 68.21*** H = 37.22* 

Pollen Transport Group 6 H = 94.11*** H = 45.77*** H = 26.51*** 
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3.3.2 Pilosity and Body Size 

To check for the influence of body size on the pilosity measurements of bees, PCAs of 

each pilosity measurement type were generated (Table 3.3). This showed that PC1 explained 

79%, 42%, 45% and 44% of the variance in hair length, spacing, cover and type, respectively. 

The PC1 from all four pilosity metrics were deemed suitable to test their relationship to body 

size, and were plotted and checked for correlation with ITD (Figure 3.6). Hair length 

(Pearson: r=0.88, p<0.001), hair spacing (Spearman: r=-0.31, p<0.001) and hair cover 

(Spearman: r=-0.30, p<0.001) were all significantly correlated with body size, highlighting the 

influence body size has on bee pilosity (Figure 3.6). In contrast, hair type was not 

significantly correlated with body size (Spearman: r=-0.06, p=0.51). The explained variance 

for pilosity metric PCAs are presented in Table 3.3. In Figure 3.6, the association between 

hair length and hair spacing to body size is representative of the direction of the raw data, 

with increased hair length and decreased hair spacing alongside body size. With percentage 

hair cover however, when applied to ordination the first axis was reversed. Therefore, 

although the PC1 for hair cover and body size show a negative trend, the raw data shows 

that body size and hair cover were positively correlated. . 
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Figure 3.5: The variation in (a) mean hair length, (b) mean hair spacing, (c) mean hair cover and (d) 

mode hair type between genera (or individual species), averaged between 10 measurements taken 

from three specimens of 122 species. The number of species in each genus is displayed in plot a. 

Individual species therefore only represent the averaged value of their 10 measurements per pilosity 

metric. Error bars = ± 1 SE between the averaged species value for each pilosity measurement. Bee 

genera/species are coloured based on their pollen transport group (PTG; Table 3.1).  
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Table 3.3: Output of the Principal Component Analysis (PCA) for pilosity metrics hair 

length, spacing, cover and type, and also the double centre standardised hair length, 

spacing and cover. Included in each PCA were 10 measurements of each pilosity metric 

for 122 bee species. 

PCA Axis Eigenvalue 
Variance 

proportion 

Cumulative 

variance 

proportion 

Hair Length 1 1633000 0.79  

 2 163100 0.08 0.87 

 3 93870 0.04 0.91 

 4 57670 0.02 0.94 

 5 37340 0.02 0.96 

 6-10 79929 0.04 1.0 

     

Hair Spacing 1 3707 0.42  

 2 1550 0.17 0.58 

 3 1001 0.11 0.69 

 4 854 0.09 0.78 

 5 626 0.07 0.85 

 6 470 0.05 0.90 

 7 325 0.04 0.94 

 8 291 0.03 0.97 

 9-10 195 0.03 1.0 

   
 

 

Hair Cover 1 2759 0.45  

 2 1208 0.20 0.65 

 3 1057 0.17 0.82 

 4 447 0.07 0.89 

 5 301 0.05 0.94 

 6 228 0.03 0.97 

 7-10 132 0.03 1.0 

     

Hair Type 1 7.09 0.44  

 2 2.49 0.15 0.59 

 3 1.49 0.09 0.68 

 4 1.42 0.09 0.77 

 5 1.03 0.07 0.84 

 6 0.71 0.04 0.88 

 7 0.64 0.04 0.92 

 8 0.51 0.03 0.95 

 9-10 0.77 0.05 1.0 
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Hair Length (DC) 1 216000 0.43  

 2 107000 0.21 0.64 

 3 60540 0.12 0.76 

 4 37570 0.08 0.84 

 5 33700 0.07 0.91 

 6 16550 0.03 0.94 

 7 12820 0.03 0.97 

 8-9 17121 0.03 1.0 

     

Hair Spacing (DC) 1 1689 0.27  

 2 1350 0.22 0.50 

 3 852 0.14 0.64 

 4 765 0.13 0.77 

 5 583 0.10 0.87 

 6 338 0.05 0.92 

 7 292 0.05 0.97 

 8-9 217 0.3 1.0 

     

Hair Cover (DC) 1 6710 0.63  

 2 1311 0.12 0.75 

 3 1183 0.10 0.85 

 4 485 0.05 0.90 

 5 431 0.04 0.94 

 6 250 0.03 0.97 

 7-10 290 0.03 1.0 

DC = Pilosity metrics were double centre standardised to account for their relationship to 

body size. 
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Figure 3.6: Scatter plots showing the relationship between body size and PC1 from PCAs for (a) 

hair length, (b) hair spacing, (c) hair cover and (d) hair type, to assess the variance in bee pilosity 

explained by body size. Points represent the averaged measurement of pilosity metrics for three 

specimens from 122 species of bee. Bee species are grouped by their pollen transport group (Table 

3.1). rs=Spearman Rank Order Correlation coefficient, rp=Pearson Correlation coefficient. 

p=significance of correlation. For variance explained by each PCA, see Table 3.4. Although percentage 

cover shows a negative trend towards greater body size, this only shows the correlation between the 

loadings and body size. Therefore, although the hair cover PC1 and body size had a negative trend, with 

greater body size the hair coverage on bees actually increased. This was not the case for hair length and spacing, 

with the plots here representative of the nature of the association between length, spacing and body size. 
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3.3.3 Incidental Pollen Transport and Pollen Transport Adaptations 

As bee body size was co-linear with hair length, spacing and cover, these pilosity 

metrics were double-centre standardised before being partitioned between areas of 

incidental pollen transport and areas of adapted pollen transport.  

Through PCA, the length of hair for areas of incidental pollen transport appeared to 

group some bees based on their PTGs. This was most notable for the genera Apis and 

Bombus, with their greater tergite and tergite marginal area hair length grouping them away 

from other species. Other measures of pilosity on areas of incidental hair transport showed 

no clear grouping of species, suggesting these areas were not explained by the PTG to which 

they belonged.  

For areas adapted to transport pollen, hair length appeared to group bee species by 

PTG.  Species of Apis and Bombus (PTG: D) were grouped based on their hind tibial hair 

length; Andrena and Colletes (PTG: A) were grouped by hind femoral and hind trochanter 

hair length; and pollen-collecting species from the family Megachilidae (PTG: C) showed 

grouping based on their sternites’ hair length. These relate to their pollen transport 

adaptations, showing hair length in areas of pollen transport can be explained to some extent 

by grouping bees by PTG. However, this was only obvious with hair length, as the only 

other pilosity metric which grouped bees based on their adapted areas for pollen transport 

was by the type of hair on their hind tibiae and femora on Halictus and Lasioglossum (PTG: B). 

 

 

Table 3.4: Output of Principal Components Analysis (PCA) when pilosity 

measurements are separated between five areas of incidental pollen transport and 

five areas adapted for pollen transport.  

PCA Axis Eigenvalue 
Variance 

Proportion 

Cumulative 

Variance 

Proportion 

Areas of Incidental 

Pollen Transport  

    

Hair Length (DC) 1 95562 0.56 
 

 2 37311 0.22 0.78 

 3 15689 0.09 0.87 

 4 11350 0.07 0.94 

 5 9467 0.06 1.0 
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Hair Spacing (DC) 1 1292 0.44 
 

 2 774 0.26 0.70 

 3 362 0.12 0.82 

 4 285 0.10 0.92 

 5 249 0.08 1.0 

Hair Cover (DC) 1 4504 0.69 
 

 2 1222 0.19 0.88 

 3 430 0.07 0.95 

 4 226 0.03 0.98 

 5 127 0.02 1.0 

Hair Type  1 3.48 0.51 
 

 2 1.22 0.17 0.69 

 3 0.88 0.13 0.82 

 4 0.77 0.11 0.93 

 5 0.45 0.07 1.0 

 

 

 
 

  

Areas Adapted for  

Pollen Transport 

 
 

  

Hair Length (DC) 1 173138 0.56 
 

 2 55503 0.18 0.74 

 3 46055 0.15 0.89 

 4 17804 0.06 0.95 

 5 15337 0.05 1.0 

Hair Spacing (DC) 1 1192 0.38 
 

 2 1082 0.35 0.73 

 3 495 0.16 0.89 

 4 216 0.07 0.96 

 5 137 0.04 1.0 

Hair Cover (DC) 1 3168 0.76 
 

 2 635 0.15 0.91 

 3 283 0.07 0.98 

 4-5 65 0.01 1.0 

Hair Type  1 4.50 0.49 
 

 2 2.18 0.24 0.73 

 3 1.32 0.14 0.86 

 4 0.65 0.07 0.93 

 5 0.58 0.07 1.0 

DC = Pilosity metrics were double centre standardised to account for their relationship t

o body size. 
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Figure 3.7: Principal Components Analysis of (a) hair length, (b) hair spacing, (c) hair cover and (d) hair type 

when separated between areas of incidental pollen transport and areas adapted for pollen transport. Hair 

length, spacing and cover metrics were double-centred to remove the influence of body size (Figure 3.6), whilst 

hair type was left unchanged. Measurement codes represent the area and type of pilosity metric. For 

measurement area codes see Figure 3.2;‖those‖ending‖in‖‘.L’‖represent‖hair‖length,‖‘.S’‖for‖hair‖spacing,‖‘.C’‖for‖

hair‖cover‖are‖‘.T’‖for‖hair‖type.‖ 
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3.4 Discussion 

Previous literature has highlighted the diverse adaptations bees have developed to 

collect and transport pollen via physiological and behavioural traits (Thorp, 1979,2000).  

Through a standardised method of measuring bee hair length, spacing, cover and type this 

chapter found evidence of: (i) pilosity metrics varying between genera, and between the 

types of pollen transport adaptations they have; (ii) bee hair length, spacing and cover 

significantly correlating to body size; and (iii) for areas of incidental and adapted pollen 

transport, hair length (and to a lesser extent hair type) was explained by pollen transport 

groups (PTGs). 

3.4.1 Genera and Species Variation 

All measures of pilosity showed variation between the genera measured. There were 

some similarities however. The genus Bombus and the sub-genus Psithyrus (the social brood 

parasite of Bombus) had the longest hair length by far of any genera. This similarity between 

host and parasite was also evident for Anthophora spp. and their cleptoparasite Melecta 

albifrons. This highlights the potential importance that some cleptoparasites could provide in 

transferring pollen between flowers during their nectar foraging. However, this may be more 

dependent on body size, and is not consistent for all cleptoparasites with genera such as 

Nomada and Sphecodes having shorter and sparser hairs than their common hosts (Andrena 

spp.). The importance of hair length in pollen carryover is difficult to assess without more 

investigation into measurements of pollen collected and deposited by bees with varying hair 

lengths. It stands to reason that greater hair length results in more pollen collected and 

therefore potentially carried over to other flowers. However, there is evidence that with long 

hair pollen layers begin to accumulate on bees visiting flowers (Castellanos et al., 2003), 

which could restrict earlier collected pollen from being deposited on the correct flowers. 

More research is needed therefore to ascertain how hair length can influence pollen 

carryover in bees. 

Nomada and Sphecodes were also found to have the sparsest hair in this analysis. 

Similar in hair spacing to these genera was Hylaeus, most likely due to their transporting 

pollen in their crop and not on hair. For bees that have hair adapted for pollen transport, 
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spacing has been noted previously to vary between bees based on the species of pollen they 

forage for and collect (Roberts & Vallespir, 1978; Thorp, 1979). Therefore, these data may 

provide useful insights into pollen-collecting dynamics between species. 

Some species were observed to have particular areas with <65% hair cover (see 

section 3.3.1.3 for species), but between species and genera hair cover did not decline ~80%. 

This suggests that percentage cover may be relatively consistent in all bees Therefore, 

percentage cover may not be the most important pilosity trait to incorporate into a pilosity 

analysis, as other hair measurements show more variation and most likely will lead to 

differences in how pollen carryover is facilitated.  

 Bees are said to have evolved branched hairs to help to facilitate pollen collection 

and transport (Thorp, 1979, 2000). In this analysis, I found Halictus and Lasioglossum were 

genera with the most consistent levels of greater hair branching. Bumblebees may not have 

branched hairs to the extent of solitary bees such as Halictus spp. and Lasioglossum spp., but 

they have long dense hairs which cover their entire bodies. However, as branching is 

arguably adapted to hold and transport pollen effectively its part in depositing pollen on 

subsequently visited flowers is difficult to discern. Further investigations should concentrate 

on the different ways in which hair types can both passively collect and deposit pollen to 

assess its relative importance in pollen carryover. 

 

3.4.2 Pilosity and Body Size 

The variation found in pilosity between bee species is interesting and useful. 

However, if pilosity metrics are used in future experiments there may be other ways of 

assessing differences between species. One of the most desirable ways is by attempting to 

understand how bee assemblage variation will influence the extent to which different types 

of pilosity are present in a community. One way pilosity variation may be accounted for 

within further research is body size. I found measurements of hair length, spacing and cover 

were significantly associated with body size.  

Currently, the importance of different traits complementing (a.k.a. trait 

complementarity) pollination services is gaining momentum within the literature (Hoehn et 
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al., 2008; Blüthgen & Klein, 2011; Albrecht et al., 2013; Fründ et al. 2013), with body size 

highlighted as an important component of trait complementary (Hoehn et al., 2008).  This 

may be because larger bees are believed to be able to transport more pollen between con-

specifics, whilst smaller bees facilitate the placement of pollen in the areas most conducive to 

pollination success (Hoehn et al., 2008). My results could have bearing on this relationship 

between pollen carryover and body size, most notably with larger bees having greater hair 

length. This could suggest large pollinators such as bumblebees may be able to transfer 

pollen to a greater extent as their capacity to collect pollen on their body hair can collect and 

carry more pollen between flowers. Furthermore, Hylaeus is one of the smallest genera 

recorded, which could allow them access to flowers or parts of flowers that other larger bees 

may find difficult, subsequently aiding in placing pollen on stigma (Hoehn et al., 2008). 

Therefore, the specific value of pilosity may not be as important as the complementarity 

differences in body size may offer to pollen carryover in bee assemblages as a whole. 

However, further investigation is needed as it is beyond this chapter to ascertain if greater 

hair length facilitates more pollen carried over to flowers, as hair length may mean pollen is 

less easily deposited on subsequently visited flowers.  

Body size clearly described variation in three out of the four pilosity metrics 

measured, highlighting its use as a determinant of pilosity variation in bees. This may have 

applications in other studies investigating the pollen carryover of bees, and is an important 

component of trait complementarity that further studies should take into consideration. 

However, hair type showed no association with body size, suggesting there are elements of 

pilosity that go beyond body size in explaining variation in the pilosity of bees and may 

require incorporation into further analyses in their own right. 

 

3.4.3 Pilosity and Pollen Transport Groups 

Most of the literature documenting aspects of bee pilosity concentrates on the 

phylogeny of bees relating to their pollen transport adaptations (Thorp, 1979, 2000; Müller, 

1996a). Within these adaptations bee scopal hairs show specialisation towards the pollen of 

host flowers. For example, bees which collect pollen from flowers with smaller pollen grains 
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(<40um) have more dense and branched scopal hairs, whilst bees which collect larger pollen 

grains (>100 um) show toughened and smoother scopal hairs (Roberts & Vallespir, 1978; 

Thorp, 1979). This chapter showed that bee hair length on areas adapted for pollen transport 

showed grouping based on their relative PTG. This is self-explanatory, with longer hairs 

having developed in areas relative to their specific pollen transport adaptation. 

Although used in studies to a lesser extent than body size (but see Moretti et al., 2009), 

the inclusion of PTGs, or at least the types of adaptation each species has for transporting 

pollen, will allow some of the variation in hair length to be incorporated into analyses. There 

is evidence that the variation in pollen transport adaptations may influence pollen carryover 

by bees (Thorp, 1979, 2000). The pollen placed into hind leg morphological adaptations 

(corbiculae) found in Apis spp. and Bombus spp. or carried in the crops of Hylaeinae are 

thereafter considered unlikely to be transferred to another plant for pollination (Thorp, 1979, 

2000). Conversely, bees of the Megachilidae family transport pollen via large smoothed 

scopa on the ventral mesonotal segments that come into contact with the stigma more readily 

when these bees visit open flowers (Thorp, 1979, 2000). Hence, it is important to factor these 

adaptations into further analyses of pollen carryover by bees. In terms of the areas that 

transport pollen incidentally, PTGs do not explain the variance observed after body size is 

accounted for. Although hair spacing and cover were associated with body size, future 

analyses of pilosity or pollen carryover should take these metrics into consideration.  

 

3.4.4 Wider considerations of pilosity and pollen carryover 

The natural selection of floral adaptation based on particular pollinator visitation 

(floral specialisation) is an important factor enabling pollen carryover for particular plant-

pollinator relationships, and most likely dictated by the morphology and behaviour of 

pollinators (Ollerton et al., 2009). However, pollination ‘syndromes’  which give emphasis to 

specific individuals or‖ the‖ ‘best’‖ pollinators, may not encompass the whole range of ways 

pollen carryover is facilitated by pollinators (Ollerton et al., 2009). In Hormathophylla spinosa 

(Cruciferae), they can be pollinated effectively by all vectors visiting its flowers (Gomez and 

Zamora, 1999), and there is evidence that plants retain a level of generalism towards 
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potential pollinators even when maintaining particular morphology towards specialised 

pollinators (Mayfield et al., 2001). For bees, a range of morphological adaptations allows the 

collecting of pollen from a variety of different types of flower (Thorp, 1979; Thorp, 2000). In 

terms of how bee species loss or assemblage change may affect pollination, there is a need for 

a greater level of interpretation in how particular vectors provide pollen carryover (Ollerton 

et al., 2009). This chapter provides a step in that direction by outlining how pilosity varies 

between bee taxa and its association with body size and PTGs. Not only will this allow 

further interpretation when incorporating these traits into analyses of function in bees, but it 

is hoped this chapter can give further interpretability in future research when assessing 

effectiveness of pollen carryover between bee species  in relation to different species of plants. 

The potential pollen carryover by bees is subject to a variety of constraints. First, 

disparity in spatial and temporal occurrence and activity between plants and bees will 

influence visitation potential. Secondly, even if both flower and plant are present at the same 

time and same location, if the morphological traits of flowers and pollinators are 

incompatible pollen carryover can be restricted (Padyš{kov{‖et‖al.,‖2013). Although there are 

examples of how particular bee species and genera collect and transport pollen (Thorp, 1979, 

2000), there is still a great deal unknown regarding how bees can collect pollen, on which 

parts of their body it is collected and to what extent it is carried over to other plants (Adler & 

Irwin, 2006; Mitchell et al., 2009). This chapter adds to the current literature by recording the 

variation in pilosity metrics of bees in the UK, increasing the knowledge of what traits may 

differ between potential pollinators of plants.  

Another factor in the potential pollen carryover of bees is plant morphology, 

specifically the placement of anthers and stigmas. Future analysis of pilosity should 

incorporate not only the implications of pilosity variation and where the pollen has been 

collected, but also how collected pollen will transfer to subsequent flowers. This is no easy 

feat and will require further investigations in controlled environments with different bee and 

plant species. However, with pilosity data such as those collected in this chapter, there is 

scope for a comparison between bee and flower morphological trait datasets. Through such 

research, it may be possible to test how certain individuals facilitate pollen carryover, and to 

what extent pilosity allows bee taxa to complement each other in pollinating different 
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flowers. Through this, a great level of understanding as to the implications bee species loss 

and assemblage change may have on pollination services. 

 

3.4.5 Study limitations  

One factor that could limit the reliability of pilosity as a measure of pollen carryover 

in bees is their grooming behaviour. Bees undertake grooming at irregular intervals between 

flower visits to move passively collected pollen from their body to areas of pollen transport. 

Grooming is usually dependent on the placement of pollen prior to a flower visit (Thomson, 

1986; Harder, 1990), and has been considered to remove pollen from possible transferral to 

con-specific flowers (Thorp, 2000). The potential rates of grooming are highly variable, with 

the levels of pollen lost from the potential total carryover to other flowers by bee grooming 

estimated at 6.1% (Rademaker et al., 1997). However, compared to vectors that do not groom 

pollen from their bodies between visiting flowers (e.g. Trochilidae), this behaviour does not 

necessarily lead to a reduction in pollen carryover (Castellanos et al., 2003).  

There are other limitations, mostly associated with the methodology of measuring 

pilosity. First, not all areas of the bee body are included in the pilosity analysis.  Second, 

what this chapter classes as an area of incidental pollen transport may also be part of active 

pollen-collecting structures. For example, certain species of Panurgus are known to use 

stiffened clypeal hairs to extract pollen from Downingia cuspidata (Campanulaceae, 

Lobelioideae) (Thorp, 2000). Third, I did not consider male bees even though they are still 

important to pollen carryover and pollination effectiveness (Canto-Aguilar & Parra-Tabla, 

2000). It is however hoped that this chapter increases the level of academic interest in the 

pilosity of bees, but suggests that further investigations take into account the limitations in 

this analysis. 

 

In the next chapter, I apply both these pilosity measurements and other 

morphological and ecological traits to an analysis of bee assemblage variation along the 

urban-rural gradient in Birmingham, UK. This will allow me to investigate whether 

functional diversity in bees changes along this landscape gradient. 
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Chapter 4 

 

 

 

 

Bee assemblage individual trait mean and group 

trait diversity variation along an urban-rural 

gradient in Birmingham, UK 
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Abstract 

Bee assemblages showed variation along urban-rural gradients. Important to pollination 

services is the level of trait complementarity in bee assemblages. Through estimating individual trait 

importance and group trait diversity, it was possible to investigate the causes and potential 

implications of species-specific variation in bee assemblages along the urban-rural gradient. By 

applying trait data to bee assemblage data recorded as part of Chapter 2, the Community Trait Mean 

(Com.T) and Group Trait Dissimilarity (Gr.FD) were measured between urban, suburban and rural 

land-use types. I found that traits related to the foraging, nesting, sociality and phenology of bees 

showed significant variation along the urban-rural gradient. Bee assemblages recorded in urban and 

suburban areas were represented more by bees which were social, foraging generalists, cavity nesters, 

carried pollen via corbiculae, were generally larger, had longer flight periods and were active in the 

spring and summer months. In contrast, bee assemblages in rural areas contained bees that were 

cleptoparasites, ground-excavating nesters, had two broods per year, carried pollen on their legs and 

body with branched hairs, and were active in the spring. This has significant implications on the trait 

diversity of bee assemblages along the urban-rural gradient. Urban and suburban sites had greater 

diversity of traits related to nesting strategy and the duration of activity, whilst rural areas had 

increased group trait diversity in lecty, tongue type and seasonal presence. This chapter discusses the 

importance of individual trait variation for future conservation and research, whilst also discussing 

the potential implications of variation in group trait diversity for trait complementarity for pollination 

services. 
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4.1 Introduction 

Bee assemblage change along the urban-rural gradient is highly species-specific 

(Zanette et al., 2005; Cane et al., 2006; Banaszak-Cibicka & Żmihorski,‖2011; Bates et al., 2011; 

Wojcik & McBride, 2012; Chapter 2). Particular species appear in abundance in urban areas 

comparable to the wider landscape (Cane et al., 2006; Fetridge et al., 2008) whilst others 

display a negative response to increased densities of built space (Bates et al., 2011; Chapter 2). 

This variation in bee species composition along the urban-rural gradient has been partially 

attributed to species’‖ life-history traits (Cane et al., 2006; Banaszak-Cibicka‖ &‖ Żmihorski,‖

2011; Bates et al., 2011), specifically towards foraging and nesting preferences (Cane et al., 

2006; Fetridge et al., 2008; Matterson et al., 2008; Bates et al., 2011).  

In terms of foraging traits, generalist foragers are capable of using urban and 

suburban habitats for foraging, whilst foraging specialists are believed to be limited by the 

scarcity of their host plant within urban habitats (Fetridge et al., 2008; Matterson et al., 2008; 

Frankie et al., 2009). Previous literature emphasizes that cavity-nesting bees show particular 

association with urban areas (Cane et al., 2006), possibly due to the greater potential for 

crumbling mortar to offer more nesting opportunities in these habitats (Bates et al., 2011). In 

contrast, ground-nesting bees are shown to be negatively affected by greater porportion of 

impervious surfaces in urbanised areas (Neame et al., 2013). Furthermore, bee assemblages 

appear to shift to a greater abundance of social species with increasing urbanisation (Fetridge 

et al., 2008; Chapter 2). Although not specifically associated with urbanisation, bee 

assemblage change is shown to reduce the level of dietary and phenological breadth within a 

community (Bartomeus et al., 2013). 

There is currently insufficient evidence to to support the idea that the change in bee 

assemblages along the urban-rural gradient will influence the pollination services provided 

by them. However recently, investigations into the plant-pollinator relationships along the 

urban-rural gradient show a reduction in the diversity of plant-bee interactions (Deguines et 

al., 2012; Geslin et al., 2013). For species of bee that cannot adapt to the changes in the 

landscape resulting from urbanisation, the plant-pollinator inter-dependencies they 

represent could be lost (Kearns et al., 1998; Kaiser-Bunbury et al., 2010). Furthermore, it is 

well established that the loss of individual species can lead to breakdowns in plant-pollinator 
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relationships (Kearns et al., 1998; Memmott et al., 2004), creating foraging niche space which 

other species within that community are slow to occupy (Brosi & Briggs, 2013). Therefore, 

there is an urgent need to test whether pollination services along the urban-rural gradient are 

affected by bee assemblage change. 

There is growing evidence to suggest that not only species loss, but also a reduction 

in trait diversity that species loss brings can influence pollination efficiency of bees (Hoehn et 

al., 2008: Albrecht et al., 2012; Fründ et al., 2013). This is because the traits and the diversity of 

traits bee assemblages possess can complement each other towards facilitating greater levels 

of pollination success (a.k.a. trait complementarity) (Blüthgen & Klein, 2011). Moreover, the 

composition of traits within a community is highlighted as an important factor in ecosystem 

functioning (Diaz and Cabido, 2001) and the level of dissimilarity between individual traits 

increasing ecosystem service provision (Garnier et al., 2004; Petchey et al., 2004; Mouillot et 

al., 2011). Therefore, investigating the implications of increased urbanisation on trait 

diversity in bees is integral to understanding further the implications of bee assemblage 

change on pollination services. 

Current research into bee assemblage change lacks incorporation of life-history traits 

in analyses of bee assemblage variation along landscape gradients. This limits the 

interpretation of such research outputs and their further application. Usually particular traits 

that appear to explain observed variation in bee assemblages are only used post-hoc (but see 

Banaszak-Cibicka‖ &‖ Żmihorski,‖ 2011). By measuring trait dominance and group trait 

dissimilarity, an analysis of bee assemblage change along an urban-rural gradient would 

allow for both greater definition of traits that show positive and negative associations with 

urbanisation, and what this means for the trait complementarity of bees. Furthermore, trait 

analysis poses a potential answer to the incompatibility of urban bee studies due to their 

regional disparity. If species are measured in the traits they possess rather than individual 

units of abundance and richness, there may be greater comparability between cities and 

regions. This could lead to better resolution in how the urban-rural gradient influences bee 

assemblages.   

Locally, applying a trait-based analysis will allow greater inferential interpretation of 

variation in species’ distributions compared to measures of abundance and diversity alone 
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(Diaz & Cabido, 2001; Flynn et al., 2009). This could increase the interpretation of bee 

assemblage variation along an urban-rural gradient and help to inform conservation efforts 

of what measures could be taken to manage urban habitats to promote bee assemblage 

diversity.  

Therefore, a functional diversity analysis would allow an assessment of the 

importance of life history-traits along the urban-rural gradient, as well as gaining an 

understanding of how trait change may influence trait diversity. Through the application of 

traits (trait database from Stuart Roberts, including pilosity data from Chapter 3) alongside 

the composition of bee species across an urban-rural gradient (dataset from Chapter 2), the 

ecological cause of assemblage variation, as well as the extent of trait diversity change was 

estimated and tested empirically between land-use types.  

 

4.1.1 Aims and Objectives 

This chapter aimed to investigate the explanatory importance of traits on species 

change across the urban-rural gradient and assess the implications this may have on trait 

diversity. 

 

Specifically my objectives include to: 

(i)  record and test the possible variation in community traits of bee assemblages across 

the urban-rural gradient; 

(ii)  record and test the possible variation in trait diversity in bees by assessing the 

dissimilarity of group traits across the urban-rural gradient; 

(iii)  characterize the possible implications of trait variation and trait diversity change 

along the urban-rural gradient for pollination services. 
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4.2 Methods  

The bee assemblage dataset collected as part of Chapter 2 was used to assess the level 

of trait variation in bees between land-use types along the urban-rural gradient. Details on 

the collection of these data are outlined in greater detail in 2.2 Methods. The morphological 

and behavioural life-history traits of UK bees incorporated into this analysis were part of a 

larger database from Stuart Roberts (University of Reading). In‖light‖of‖Chapter‖3’s‖analysis‖

of pilosity, hair length, spacing, cover and hair type from areas of bees deemed part of 

incidental pollen transport (see Section 3.2 for more details) were incorporated into the trait 

data for this chapter. Once bee assemblage and trait data were integrated, a total of 68 bee 

species and their traits were used in the analysis and this included species of parasitic bee 

(cleptoparasites and social brood parasites). 

4.2.1 Functional Diversity Analysis 

Based on previous literature concerning bee species variation along urban-rural 

gradients (Cane et al., 2006; Fetridge et al., 2008; Matterson et al., 2008; Frankie et al., 2009; 

Banaszak-Cibicka‖&‖Żmihorski,‖2011; Bates et al., 2011), ecological traits were selected to be 

incorporated into this analysis based on four main categories. These categories were foraging 

traits, nesting traits, sociality and phenology (Table 4.1), and were both binary and 

continuous variables. Before analysis, the continuous traits were re-scaled between 0 and 1 

prior to standardise trait range (Botta-Dukát, 2005). 

There is a variety of measurements for testing functional diversity (Petchey & Gaston, 

2006). As this chapter had both trait and species abundance data, it was possible to gain an 

estimate of both trait weight and group trait diversity at sites along the urban-rural gradient 

(Mouchet et al., 2007).  These were used to measure trait variation and group trait diversity 

along the urban-rural gradient, respectively. The variation in these measures of community 

trait composition are shown to influence ecosystem services (Garnier et al., 2004; Petchey et 

al., 2004; Mouillot et al., 2011), and are outlined as a methodological framework for testing 

ecosystem services change in field experiments (Mouchet et al., 2007; Lavorel et al., 2011). 

These indices were calculated following Lepš et al., (2006) with the online macro 

http://botanika.bf.jcu.cz/suspa/FunctDiv.php. 

http://botanika.bf.jcu.cz/suspa/FunctDiv.php
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Table 4.1: List and description of bee morphological and behavioural traits used to estimate the 

Community Trait Mean (Com.T), and Group Trait Dissimilarity (Gr.FD) index which were used to 

assess the functional diversity in bee assemblages along an urban-rural gradient.  

 Group Trait 

Dissimilarity 

(Gr.FD) 

Community Trait 

Mean (Com.T) 

Trait 

Type¶ 
Trait Description 

F
o

ra
g

in
g

 T
ra

it
s 

Lecty1 
Oligolectic Binary Foragers on one family of plants  

Polylectic Binary Forages on multiple families of plants  

Tongue 

Type 

Tongue Short Binary Shorter tongue (genera Andrena and Colletes) 

Tongue Long Binary Long proboscis (usually from Apidae family) 

Pilosity 

(from incidental 

pollen transport 

areas)2 

Hair Length Cont. The species’ average hair length 

Hair Spacing Cont. The species’ average hair spacing 

Hair Cover Cont. The species’ average hair cover 

Hair Type Cont. Species’ average of extent of branched hairs 

Pollen 

Transport 

Crop Binary Bees that transport pollen in their crops 

No adaptations Binary Bees with no pollen adaptations 

Legs and body Binary 
Bees that transport pollen on their legs and 

bodies 

Legs Binary Bees that transport pollen only on their legs 

Abdomen Binary Bees that transport pollen on the gastral sternites 

Corbicula Binary 
Bees that transport pollen on modified hind 

tibiae 

ITD3 ITD Cont. Intertegular distance as a measure of body size 

N
es

ti
n

g
 

T
ra

it
s Nesting 

Strategy1 

Ground Excavators Binary Bees that excavates nests in the ground 

Existing Cavities Binary Bees that nest in existing cavities  

Managed Binary Bees which are managed (European Honey Bee) 

Carder Binary Bees manipulate grass/moss to form a nest 

S
o

ci
al

it
y

 

Sociality 

Solitary Binary Reproduce individually  

Social Binary Form a colony or hive 

Variable Sociality Binary Alter their sociality on environmental conditions 

Cleptoparasite1 Binary Bees which lay eggs in the nests of solitary bees 

Social-brood 

Parasite1 
Binary Parasitize bumblebee colonies (Psithyrus) 

P
h

en
o

lo
g

y
 

Duration of 

Activity 
Months Active Cont. The no. of months a bee is active over its season 

Seasonal 

Presence 

Spring Binary Spring-active bees (Feb - June) 

Summer Binary Summer-active bees (July - Oct) 

Both Seasons Binary Active for spring and summer 

Voltinism 

Univoltine Binary One brood of offspring per year 

Bivoltine Binary Two broods of offspring per year 

Multivoltine Binary Multiple broods of offspring per year 

¶ The type of variable each trait applied to indices as, continuous variables were scaled between 0-1 

prior to application to diversity indices. 1Cleptoparasites and Social Brood Parasites although considered 
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as components in measuring group traits (Gr.FD) within Lecty and Nesting Strategy, they are only 

presented in the results as individual trait (Com.T) within Sociality. 2 see‖ ‘Chapter‖ 3’‖ for‖ detailed 

experimental protocol of pilosity analysis. 3 The distance between the two wing bases of a bee, a factor 

collinear with body size (Cane, 1987; Bullock, 1999).This was used as a foraging trait due to the positive 

association between body size and forage distance (Greenleaf et al., 2007). 

Figure 4.1: Diagram explaining the way in which Community Trait Mean (Com.T) and Group 

Trait Dissimilarity (Gr.FD) measurements are calculated and what they mean, using trait group 

Tongue Type as an example. See 4.2 Methods for more details. 
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4.2.1.1 Community Trait Mean (Com.T) 

To assess the variation of individual traits along the urban-rural gradient, 

Community Trait Means (Com.T) were calculated for each trait at each site.  Individual traits 

applied to Com.T are specified in Table 4.1. Com.T measures the level of dominance a trait 

has at a particular site, by weighting species trait value i by the proportion (pi) of that species 

at a site;   

(Equation 4.1) 

            

 

   

 

 

where pi is the proportion of individuals in the ith species, s is the total number of species, 

and t is the trait value (0 to 1) of the ith species (Garnier et al., 2004; Moretti et al., 2009; 

Roscher et al., 2013). This is effectively the averaged trait value within each site, based on the 

proportion of the community present which have that particular trait (for binary traits) or 

with a higher value of that trait (for continuous traits). The higher the Com.T value at each 

site, the more dominant that trait is within the community recorded to be present. With this 

estimate, it is also possible to look at the relative importance of each trait between land-use 

types, as well as to compare the importance of that trait within each land-use type relative to 

other individual traits. 

 

4.2.1.2 Group Trait Dissimilarity (Gr.FD) 

Understanding how species within a community occupy the available niche space is an 

important measure for ecosystem functioning (Mason et al., 2005; Diaz et al., 2007). To gain a 

measure of group trait diversity (the dissimilarity of species with different types of traits 

occupying the same site) across the urban-rural‖gradient,‖Rao’s‖quadratic‖entropy (Rao, 1982; 

Botta-Dukát, 2005) was used to generate a Group Trait Dissimilarity index (Gr.FD). Group 

traits are specified in Table 4.1. Rao’s‖ quadratic‖ entropy‖ is‖ a‖ measure‖ of‖ both‖ functional‖

richness and functional divergence of species within a particular site (Mouchet et al., 2010). A 

generalisation‖ of‖ the‖ Simpson‖ Diversity‖ Index,‖ the‖ Rao’s‖ quadratic‖ entropy‖ takes‖ the‖

proportion of individuals in a community and measures the weight of the traits by the 
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dissimilarity of species, effectively calculating the trait complementarity observed in species 

for that community: 

(Equation 4.2) 

            

 

   

      

 

   

 

 

where dij is calculated as the difference in trait value between each pair of species   i and   j. 

The distribution of dij ranges from 0 to 1: the higher the value the greater the dissimilarity in 

traits of species. For instance, if a pair of species both had the same trait value (i.e. both 

polylectic), then dij would be 0, but if they were different (i.e. polylectic and oligolectic) then 

dij would be higher than 0. Hence, a higher Gr.FD value suggests higher levels of trait 

diversity in that trait group at that particular site.  

 

4.2.2 Data Analysis 

4.2.2.1 ANOVA 

All Com.T and Gr.FD values were selected to ANOVA to assess differences in 

individual traits and trait complementarity between urban, suburban and rural sites. Land-

use type was defined following the 1 km2 landscape classification of the West Midlands by 

Owen et al. (2006). Each land-use type contained 11 sites. Further details of land-use type 

allocation are provided in Section 2.1 of Methods. . ANOVA or Kruskal-Wallis tests were 

used to test for variation depending on the normality of the response variables tested. Post-

hoc tests (i.e. Tukey-HSD and pair-wise Wilcoxon tests) were used to test differences 

between individual land-use types within each ANOVA. The variation between individual 

trait Com.T values within land-use types were not statistically tested as the main aim was to 

assess the importance of individual traits along the urban-rural gradient. However, the 

Com.T of individual traits was graphically represented in relation to the other individual 

traits within their allocated group trait when both Com.T and Gr.FD are compared between 

land-use types. This does not allow an ANOVA, but gives an indication of which individual 

traits are prevailing within those land-use types.  
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4.3 Results 

4.3.1. Variation of Com.T and Gr.FD across the urban-rural gradient 

There was evidence of variation in community trait mean (Com.T) and group trait 

dissimilarity (Gr.FD) between land-use types for a range of individual and group traits 

(Table 4.2). Details of this variation are presented in this section based on their trait 

categories. 

 

4.3.1.1 Foraging traits 

Across the study areas polylectic (generalist) foragers were greater in proportion 

compared to oligolectic (specialist) foragers (Figure 4.2). Between land-use types, polylecty 

showed greater preference for suburban compared to rural sites, whilst oligolecty was found 

more in urban sites compared to suburban sites (Table 4.2; Figure 4.2). In terms of Gr.FD, a 

significantly greater level of diversity in bee lecty was recorded in rural sites (Table 4.2; 

Figure 4.2). 
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Table 4.2: Results of ANOVA and post-hoc tests of Group Trait Dissimilarity (Gr.FD) and Community 

Trait Means (Com.T) in bee functional traits between urban, suburban and rural land-use types 

 Group Trait 

Dissimilarity 

(Gr.FD) 

Community Trait 

Means (Com.T) 

Test 

Statistic 
Test Sig. 

Urban - 

Suburban 

Urban - 

Rural 

Suburban - 

Rural 

F
o

ra
g

in
g

 T
ra

it
s 

Lecty1  F=6.92 0.03*   Rural 

 Oligolectic H=10.3 0.005** Urban*   

 Polylectic H=7.02 0.02*   Suburban 

Tongue Type  H=6.31 0.04*  Rural*  

 Short F=2.84 ns    

 Long3 - -    

Pilosity 

(from incidental  

pollen 

transport 

areas)2 

 H=1.70 ns    

Hair length F=3.2 ns    

Hair spacing F=1.55 ns    

Hair cover F=0.18 ns    

Hair type F=0.2 ns    

Pollen   H=4.06 ns    

Transport Crop H=4.3 ns    

 No adaptations H=11.1 0.003**  Rural* Rural* 

 Legs and body H=3.78 0.03*  Rural*  

 Legs F=3.82 ns    

 Abdomen H=3.77 ns    

 Corbicula F=7.32 0.002**  Urban* Suburban* 

Inter-Tegula 

Distance 

 H=2.60 ns    

ITD F=4.18 0.02*  Urban*  

N
es

ti
n

g
 T

ra
it

s Nesting   H=7.72 0.02* Suburban*   

Strategy1 Ground 

excavators 
F=5.78 0.007**  Rural**  

 Existing cavities F=13.7 <0.001***  Urban*** Suburban* 

 Managed H=2.74 ns    

 Carder F=0.41 ns    

S
o

ci
al

it
y

 

Sociality  H=3.31 ns    

 Solitary F=2.22 ns    

 Social F=6.05 0.006**  Urban* Suburban* 

 Variable sociality H=0.56 ns    

 Cleptoparasite1 H=9.54 0.008**  Rural*  

 Social brood 

parasite2 
H=3.29 ns    

        

        

        

        

        



 

 

78 

 

 

Bee tongue types were in greater diversity in rural sites (Table 4.2; Figure 4.2). 

Individual traits of tongue type, although showing no significant variation between land-use 

types in their Com.T, suggested long tongued species of bee were more abundant in urban 

sites than short tongue bees (Figure 4.2).  

There was no difference in the group diversity of pollen transport adaptations 

presented between land-use types, but there was significant variation in several individual 

forms of pollen transport (Figure 4.2). Bees which carry pollen in corbiculae (an adaptation of 

the hind tibiae in which Bombus spp. and Apis mellifera affix‖ pollen‖ ‘clumps’‖ mixed‖ with‖

nectar) were significantly more abundant in urban areas. Bees with no adaptations to carry 

pollen and bees which carry pollen on the hairs of their legs and bodies (Andrena spp., 

Halictus spp. and Lasioglossum spp.) were more abundant in rural sites. There was no 

significant variation in the levels of Gr.FD pilosity or individual hair characteristics between 

land-use types (Table 4.2; Figure 4.2). Likewise, the diversity of bee body size did not change 

along the urban-rural gradient. Larger bees however, showed preferences for urban areas 

(Table 4.2; Figure 4.2). 

P
h

en
o

lo
g

y
 

Duration of   F=4.71 0.01*  Urban*  

Activity Months active F=6.87 0.003**  Urban* Suburban** 

Seasonal   H=11.5 0.003**  Rural* Rural** 

Presence Spring F=16.8 <0.001***  Rural*** Rural** 

 Summer H=7.86 0.01*  Urban*  

 Both seasons F=14.1 <0.001***  Urban*** Suburban*** 

Voltinism  H=1.17 ns    

 Univoltine H=1.21 ns    

 Bivoltine H=7.05 0.02*  Rural*  

 Multivoltine H=2.75 ns    

1For the estimation of Gr.FD, Cleptoparasites and Social Brood Parasites were incorporated within trait 

groups Lecty and Nesting Strategy, but only presented as individual traits within Sociality. 2 See‖‘Chapter‖

3’‖ for‖a detailed experimental protocol on pilosity data collection. Variance between land-use types was 

tested using Kruskal-Wallis (H) for non-normally distributed response variables and ANOVA test (F) for 

normal distributed response variables. Post-hoc tests examined the variance between each pair of land-

use types using Wilcoxon tests if a Kruskal-Wallis test was used or a Tukey-HSD test if ANOVA was 

used. All tests had 2 degrees of freedom and each land-use type consisted of 11 sites. The land-use type 

with the greater value is represented for each response. Significant p-values of <0.05 shown as * and <0.01 

as **. <0.001 as ***. Where a means test was significant but the following post-hoc test was not, the land-

use type which showed the greater value was only shown.  
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Figure 4.2: The variation found in the individual Community Trait Means (Com.T, Lines) and the 

Group Trait Dissimilarity (Gr.FD, Bars) of (a) lecty, (b) tongue type and (c) pollen transport of 

bees found between urban (red), suburban (yellow) and rural (green) sites. Com.T shows the 

relative dominance of individual traits, whilst Gr.FD is an index of how diverse the individual traits 

represented by bees in those land-use types are (see 4.2 Methods).. Error bars that do not share a 

letter represent significant differences (p<0.05) and no labels indicate that trait or group trait showed 

no significant difference. Black letters represent the Gr.FD and other colours correspond to their 

respective individual Com.T. Error bars = +/- 1 SE. N=11 sites per land-use type. 
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4.3.1.2 Nesting traits 

The nesting strategies of bees were significantly more diverse within suburban areas 

than urban areas (Table 4.2; Figure 4.3). Bees that excavate their nests in the ground were 

found to be more numerous in rural sites compared to urban sites (Table 4.2; Figure 4.3), 

whilst cavity-nesting bees were significantly more abundant in urban and suburban 

compared to rural sites (Table 4.2; Figure 4.3). Managed bees and carder bees showed no 

variation along the urban-rural gradient, and were fewer proportionately throughout the 

study area compared to ground- and cavity-nesting bees (Figure 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The variation found in the individual Community Trait Means (Com.T, Lines) and 

the Group Trait Dissimilarity (Gr.FD, Bars) of nesting traits in the bees found between urban 

(red), suburban (yellow) and rural (green) sites. Com.T shows the relative dominance of 

individual traits, whilst Gr.FD is an index of how diverse the individual traits represented by bees 

in those land-use types are (see 4.2 Methods).. Error bars that do not share a letter represent 

significant differences (p<0.05) and no labels indicate that trait or group trait showed no 

significant difference. Black letters represent the Gr.FD and other colours correspond to their 

respective individual Com.T. Error bars = +/- 1 SE. N=11 sites per land-use type. 

 

 

 



 

 

81 

 

a a 

b 

a 
b 

ab 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0 

0.2 

0.4 

0.6 

0.8 

1 

Urban Suburban Rural 

G
ro

u
p

 T
ra

it
 D

is
si

m
il

ar
it

y
  

(G
r.

F
D

) 

C
o

m
m

u
n

it
y

 T
ra

it
 M

ea
n

  

(C
o

m
.T

) 

land-use Type 

Solitary 

Social 

Variable Sociality 

Cleptoparasite 

Social Brood Parasite 

4.3.1.3 Sociality 

There was no significant variation in the diversity of sociality found between land-

use types. Social bees increased in abundance towards urban and suburban areas compared 

to rural (Table 4.2; Figure 4.4). Also, cleptoparasitic species were significantly greater in 

abundance in rural sites compared to urban sites (Table 4.2; Figure 4.4). No significant 

variation was found in solitary, variable social or social brood parasitic sociality between 

land-use types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The variation found in the individual Community Trait Means (Com.T, Lines) 

and the Group Trait Dissimilarity (Gr.FD, Bars) of sociality in the bees found between 

urban (red), suburban (yellow) and rural (green) sites. Com.T shows the relative 

dominance of individual traits, whilst Gr.FD is an index of how diverse the individual traits 

represented by bees in those land-use types are (see 4.2 Methods).. Error bars that do not 

share a letter represent significant differences (p<0.05) and no labels indicate that trait or 

group trait showed no significant difference. Black letters represent the Gr.FD and other 

colours correspond to their respective individual Com.T. Error bars = +/- 1 SE. N=11 sites 

per land-use type. 
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4.3.1.4 Phenology 

In terms of phenology, the difference in the length of time for which bee species are 

active was significantly greater in urban sites, whilst bee assemblages within the urban and 

suburban sites were significantly active for longer (Table 4.2; Figure 4.5). Bees active in both 

seasons and summer active bees showed a significant increase in urban and suburban sites 

land-use (Table 4.2; Figure 4.5). Bees active in the spring were found to be significantly more 

abundant in rural sites (Table 4.2; Figure 4.5). Even though bees active in summer and both 

seasons declined in number in rural areas, the greater Com.T of spring species in rural sites 

led seasonal activity Gr.FD to be significantly greater than in suburban and urban sites 

(Figure 4.5). Gr.FD voltinism showed no change in dissimilarity between land-use types, 

whereas Com.T of bivoltine (lay two broods per year) bees showed a significant increase in 

abundance in rural sites (Figure 4.5). 
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Figure 4.5: The variation found in the individual Community Trait Means (Com.T, Lines) and the 

Group Trait Dissimilarity (Gr.FD, Bars) of (a) duration of activity, (b) seasonal activity and (c) 

voltinism of bees found between urban (red), suburban (yellow) and rural (green) sites. Com.T 

shows the relative dominance of individual traits, whilst Gr.FD is an index of how diverse the 

individual traits represented by bees in those land-use types are (see 4.2 Methods). Error bars that do 

not share a letter represent significant differences (p<0.05) and no labels indicate that trait or group trait 

showed no significant difference. Black letters represent the Gr.FD and other colours correspond to 

their respective individual Com.T. Error bars = +/- 1 SE. N=11 sites per land-use type. 
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4.4 Discussion  

The application of a trait-based analysis to assess the diversity of traits in bees is 

important in understanding the potential influence species and diversity loss could pose for 

pollination services of bees to plants (Blüthgen & Klein, 2011). This chapter applied a 

quantitative analysis of traits to bee assemblage data recorded along an urban-rural gradient 

in Birmingham, UK. I estimated community trait means (Com.T) and group trait 

dissimilarity (Gr.FD) for each site to assess the variation of bee traits along the urban-rural 

gradient and the subsequent result on group trait diversity. The results from this analysis 

demonstrate significant variation in Com.T and Gr.FD across the urban-rural gradient in 

terms of the foraging traits, nesting traits, sociality and phenology of bee species.  

This chapter verifies that the inter-specific selection of bee assemblages along the 

urban-rural gradient observed previously (e.g. Cane et al., 2006; Fetridge et al., 2008; 

Matterson et al., 2008; Bates et al., 2011; Chapter 2) is defined by their respective life-history 

traits. Furthermore, I found that this trait-specific selection of bees along the urban-rural 

gradient subsequently influenced the diversity of traits, potentially impacting upon the trait 

complementarity of bee and the pollination services (Hoehn et al., 2008: Albrecht et al., 2012; 

Fründ et al., 2013). This variation in Com.T and Gr.FD not only allows for a greater 

interpretation of how bees vary between land-use types, but also highlights the potential 

influence of bee assemblage and subsequent trait variation on pollination services. 

 

4.4.1 Bees, Traits and the Urban-Rural Gradient 

Four key aspects of bee ecology relating to foraging traits, nesting traits, sociality and 

phenology of the bees recorded over the urban-rural gradient showed variation in Com.T 

and Gr.FD. 

 

4.4.1.1 Foraging traits 

I report greater dominance of generalist foragers in suburban areas, a trend most 

likely caused by the increased abundance of bumblebees at these sites (Chapter 2). 

Bumblebees have been recorded in great abundance in parkland and gardens in previous 
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studies of urban and suburban habitats (McFrederick & LeBuhn, 2006; Fetridge et al., 2008; 

Matteson et al., 2008). However, the difference in Com.T of generalist foragers between 

suburban and rural is marginal (Figure 4.2), suggesting generalists were persistent 

throughout the entire survey area.  However, the lack of specialist foragers, cleptoparsites 

and social brood parasites in suburban areas meant that the diversity of lecty was 

significantly lower in suburban areas as opposed to rural. Although suburbia has been noted 

as having beneficial foraging rewards for bees (Ahrné et al., 2010; Goddard et al.,  2010; 

Samnegård et al., 2011), this chapter shows how this may only be evident for generalist 

foragers.  

Interestingly, specialist foragers showed a slight, yet still significant, increase towards 

urban areas. This goes against previous trends which usually show specialist species to be 

under-represented or not found at all in urban sites (Cane et al., 2006; Fetridge et al., 2008; 

Matteson et al., 2008). Reduced floral diversity is known to decrease the level of 

specialisation and diversity of morphological adaptations in bees at the community level 

(Fenster et al., 2004; Ebeling et al., 2011) as their foraging niches are restricted (Winfree et al., 

2011). Therefore, although urban habitats are associated with greater levels of disturbance 

causing instability in floral diversity and foraging resources (Sattler et al., 2010), this chapter 

illustrates that the urban areas sampled may have provided suitable resources for specialist 

foragers. The foraging specialists recorded within this chapter included Osmia leaiana and 

Colletes daviesanus which forage on species of Asteraceae, and A. clarkella that forage on 

species of the genus Salix. Both of these plant taxa were observed to flower in urban survey 

sites through the sampling season. Additionally, as mentioned in Chapter 2, floral diversity 

was positively co-linear with built space, suggesting that canal sides and parkland surveyed 

could support the foraging requirements of specialists to a greater extent than other land-use 

types. 

It was also found that bee assemblages had greater tongue type diversity in rural 

areas. Preference for nectar foraging by bees on host flowers is subject (apart from nectar 

robbers) to the different morphological adaptations in their mouthparts. Hence, the diversity 

of  foraging specialisation in bees appears to be lower in urban areas. This corresponds to 

previous research that reports a reduced level of bee-plant visitation complexity in urban 
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areas (Deguines et al., 2012; Geslin et al., 2013). However, this chapter only divides bees into 

long and short tongued, even though there are various subgroups within these two classes. 

These two general tongue types are defined in previous research (Rodríguez-Gironés & 

Santamaría, 2006) and allow an assessment of morphological trait diversity associated with 

nectar foraging function (Fenster et al., 2004). However,  this is a general classification and 

the reduction of its diversity in urban areas may not pose a threat to urban pollination as 

plant-pollinator relationships are likely to be more complex than classifying them into 

‘syndromes’‖(Ollerton‖et‖al.,‖2009). 

The variation in morphological adaptations in bees for the collection and 

transportation of pollen could be important for the carryover of pollen by bees between 

plants (Thorp, 1979; Rademaker et al., 1997; Thorp, 2000; Adler & Irwin, 2006, Chapter 3). 

The group trait dissimilarity of pollen transport did not change across the urban-rural 

gradient, but several individual forms of pollen transported did,‖including‖‘no adaptations’, 

‘corbicula’ and ‘legs and body’. Arguably, the most specialised anatomical modification for 

pollen transport is the corbiculae of Bombus spp. and Apis mellifera (Thorp, 2000). With 

flattened areas on their hind tibiae, species with corbiculae accumulate pollen mixed with 

nectar on these areas allowing easy pollen transport back to their colony or hive. This form of 

pollen transport effectively removes pollen from potential carryover to other plants (Thorp, 

2000). Hence, the change in pollen transport adaptations within a community could impact 

upon pollen carryover. Bees which carry pollen on their legs, such as Anthophora plumipes 

and A. furcata, and bees that carry no pollen showed the opposite trend and were higher in 

rural areas. This could suggest that in the individual forms of pollen transport, there is 

deviation along the urban-rural gradient, which could also impact upon pollen carryover to 

particular plants. 

 In terms of pilosity, there was no observed variation in the hair traits or diversity of 

pilosity measurements across the urban-rural gradient. This suggests that although 

particular traits that could influence pollen carryover may vary across land-use types, there 

is still a level of trait diversity in the morphological adaptations of pollen collection and 

incidental transport along the urban-rural gradient. 
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4.4.1.2 Nesting traits 

Nesting site limitation is shown as an important determinant of bee assemblage 

composition (Steffan-Dewenter & Sciele, 2008; Williams et al., 2010; Winfree et al., 2011). This 

chapter supports previous research which showed urban areas can support-cavity-nesting 

bees (e.g. Cane et al., 2006; Matteson et al., 2008; Bates et al., 2011). This chapter is limited by 

its lack of definition between types of cavity nesters, as bees can nest in dead wood, the ends 

of woody stems and masonry. However, it is still possible to highlight that cavity-nesting 

bees show an association with urbanisation not evident in other nesting types. This 

association between cavity nesters and increased urbanisation has been attributed to 

particular nesting opportunities present in urban and suburban habitats, including the 

greater level of masonry in built-up areas (Bates et al., 2011) and the diverse nesting potential 

of gardens (Neame et al., 2013). However, cavity nesters are likely affected by immediate 

climatic conditions within urban and suburban nesting sites (Everaars et al., 2011), so further 

understanding of the dynamics of cavity nesters within the urban habitat could allow for 

refined conservation efforts in ensuring the continuation of cavity nesters in urban and 

suburban areas.  

Conversely, ground-nesting bees were more abundant in rural sites. Previous studies 

have shown high numbers of ground-nesting bees along urban-rural gradients, but only in 

well maintained florally diverse gardens (Fetridge et al., 2008) or in grassland with grazing 

regimes that increase flower abundance (Kearns & Oliveras, 2009). In my sampled area, floral 

diversity decreased towards rural sites, suggesting that floral diversity (although still an 

important factor) was not defining the observed trend in ground excavators. However, it has 

been suggested that ground excavation becomes more difficult for bees in urban areas due to 

increased impervious surfaces (Neame et al., 2013). This suggests that a lack of nesting 

opportunities is constraining the ability for ground excavators to persist in more urbanised 

areas.  

Carder bees (those that use moss and dry grass to form a nest) showed no variation 

along the urban-rural gradient. The main carder species recorded was Bombus pascuorum, 

which showed no relationship to landscape or local site variables in mixed-models in Figure 

2.2. The nesting requirements of B. pascuorum are mostly associated with the level of 
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grassland in the immediate areas (Goulson et al., 2010). As with many bumblebee species 

however, queens are able to use various aspects of the local environment as nesting sites, 

including under hedges, holes in trees or even bird boxes. This highlights another limitation 

in my analysis, with some nesting behaviour of bees being difficult to define with a single 

trait. For further analysis, different grouping systems for nesting traits in bees may allow 

greater interpretation of bee assemblage change. 

Another limitation in assessing the nesting behaviour of bees on certain land-use 

types is that there is no assurance that the bees found are using that site or even the same 

land-use type for nesting resources. Bees are central place foragers and foraging range from 

nesting sites is associated with the size of particular bee species (Greenleaf et al., 2007). As 

ITD as a measure of body size showed an increase towards urban areas, bees observed in 

urban areas may be those able to best forage further and are nesting at other sites. This 

should be taken into consideration in further research investigating where and how bees nest 

along the urban-rural gradient. 

I found that trait diversity in nesting specialisation significantly decreased in urban 

areas compared to suburban areas and is therefore a vital element of the resources required 

to mitigate bee assemblage variation along the urban-rural gradient. Through a range of 

practices and products which promote the nesting resources of both cavity and ground-

nesting bees, nesting resources can be increased throughout the urban-rural gradient. In 

terms of conservation and planning policy, providing nesting resources for a variety of 

species is an effective way of limiting species change along the urban-rural gradient. The loss 

of species due to nest limitation could very well lead to break downs in plant-pollinator 

relationships (Kaiser-Bunbury et al., 2010) as certain bee species are lost from certain land-

use types. Hence, further investigation is required to understand the dynamics of nesting 

potential within the urban environment, and how the species loss it defines may influence 

pollination services along the urban-rural gradient. 
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4.4.1.3 Sociality 

My analysis found social bees in greater abundance in urban and suburban sites, and 

has been found by several other studies (e.g. Fetridge et al., 2008; Matteson et al., 2008; 

Goulson et al., 2010). However, even with greater social species recorded in urban and 

suburban areas, there was no significant difference in diversity of bee sociality across land-

use types.  

Cleptoparasites were found in rural sites to a greater extent. This was expected as the 

original analysis of the data highlighted a negative association between cleptoparasitic 

species and built space (Chapter 2). The assumption that this is due to their host species 

being absent in urban areas is not entirely supported through this trait-based analysis, as 

solitary bees presented no variation between land-use types. However, it is known that the 

presence and level of parasitic bees are indicative of the health of their host community 

(Sheffield et al., 2013), and show negative association with fragmentation through host loss at 

the landscape scale (Schüepp et al., 2011). Due to the species-specific nature of host-parasite 

relationships however, similar trends between cleptoparasites and solitary bees are unlikely 

to be found between land-use in this kind of analysis. This limits interpretation of findings 

and is an instance where a different approach may be preferred. For example, to assess the 

influence of land-use type on the parasite-host relationships of solitary bees and their 

cleptoparasites, specific host-parasite relationships would need investigating. 

 

4.4.1.3 Phenology 

Along an urban-rural gradient, we found bees active in summer or in both seasons, 

and active for longer, were greater in number in urban and suburban areas. This has been 

found previously, with greater numbers of summer-active species found in urban areas in 

Poland (Banaszak-Cibicka‖&‖Żmihorski,‖2011).‖In addition, the diversity of activity levels in 

bees was significantly increased in urban sites, suggesting bees are able to occupy wider 

phenological niches in urban areas. However, the diversity of bee seasonal activity, the trait 

mean of spring species and the trait mean of bivoltine species (bees which lay two broods per 

year) all increased in rural areas, suggesting that bees with particular phenology are 

negatively associated with urbanisation. When bees are active and how long they are active 
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could be important for the pollination of flowers with particularly restrictive phenological 

niches. One extreme case of this is with winter active bumblebees (mainly Bombus terrestris), 

which visit winter-flowering shrubs such as the non-native Mahonia spp. (Stelzer et al., 2010). 

Maintaining a level of phenological diversity along the urban-rural gradient is therefore 

important in maintaining a level of trait complementarity towards pollination services. 

 

4.4.2 Trait variation and urbanisation  

 Trait analysis has previously helped studies to achieve a greater understanding of 

bee assemblage responses to natural and anthropogenic disturbances (Moretti et al., 2009; 

Williams et al., 2010). Compared to analysis of only species richness and abundance metrics, 

incorporating traits is highly beneficial in interpreting bee assemblage variation along an 

urban-rural gradient in greater detail. Further to this, a trait based analysis gives a testable 

method of assessing which traits show change along this particular urban-rural gradient, 

which could offer a framework for future studies to follow. Through an analysis of multiple 

cities using this method, it may be possible to achieve greater comparability across 

geographic variation in current studies of urbanisation and bees.  

 Potentially limiting the results of this study is the lack of historical records as to the 

level of traits and the trait diversity of bees in Birmingham. Historical changes in species 

abundance and range can reduce the traits in bee communities (Bartomeus et al., 2013), and 

would support my findings if there was an observed trend in the change of bee species as 

land-use change occurred. 

This chapter suggests the best way to alleviate future trait complementarity loss in 

the urban environment is through the management of habitats for a range of bee species at 

the site scale. Using the results of the trait analysis in this chapter, ways of mitigating trait 

loss along the urban-rural gradient may be undertaken. As bottom-up influences are most 

likely to affect bee populations, the provisioning of nesting site resources is highlighted as 

the main form conservation should take. However, providing floral resources suitable for a 

range of species will help to provide for bees along the urban-rural gradient.  
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Additionally, applying a trait analysis to bee composition data across urban-rural 

gradient is fundamental in future investigations of how urbanisation will influence 

pollination services of bees (Blüthgen & Klein, 2011; Brittain et al., 2013). Although evidence 

points towards the diversity of plant-pollination visitations being reduced in city centres 

(Geslin et al., 2013), there was still an abundance of generalist foragers and surprisingly an 

increase in specialist foragers in urban areas. Although arguably lower in species richness 

(Chapter 2), urban areas of Birmingham, UK do not show trait diversity loss across all traits, 

suggesting that pollination services may not be deleteriously affected by land-use change in 

this study region. This does not alleviate the need for conservation however, as the possible 

change in pollination services still needs to be supported with floral observation and seed-set 

experiments. The level to which different traits are represented within a particular habitat 

and the extent to which trait complementarity can remain in light of species loss (a.k.a. 

functional redundancy) could bolster ecosystem resilience and alleviate the risk of ecosystem 

service failure (Naeem, 1998; Hooper et al., 2005). By testing seed-set of bee pollinated plants 

along this urban-rural gradient, whether or not bee assemblage variation and the resulting 

change in some prevalence of functional traits affects pollination services could be tested.  
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Chapter 5 

 

 

 

 

Does bee assemblage variation between urban and 

rural sites in Birmingham, UK influence the 

subsequent pollination service for Campanula 

glomerata? 
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Abstract 

Land-use change has been documented to cause change in bee assemblages and their trait 

diversity. The implications this could have on the pollination services of bees throughout the urban-

rural gradient is of high importance in light of growing demand for ecosystem services both in 

agricultural and urbanised environments. This chapter tested the pollination service of bees between 

urban and rural areas of Birmingham, UK by measuring the seed-set of Clustered Bell Flower 

(Campanula glomerata) alongside bee observation sampling. This chapter found that although low 

in frequency, bee visitation abundance and species richness also showed no variation between urban 

and rural areas. I also found no significant difference in the seed-set of C. glomerata between urban 

and rural sites. These findings complement previous Chapters 2 and 4, showing that although species 

loss and some aspects of trait diversity are evident in this study area, there was no evidence of 

difference in pollination effectiveness. The extent to which test plants were subject to pollination 

limitation was unclear between land-use types in this study, and is recommended to be tested further. 

Although only one plant species, this suggests that species-specific responses of bees between urban 

and rural areas could sufficiently compensate for species loss in either land-use type. Further 

investigation with multiple plant species in different types of site (e.g. gardens) in the same area is 

required to assess the full implications of the urban-rural gradient on pollination services.  
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5.1 Introduction 

Urbanisation is an important form of landscape alteration that influences natural 

habitat in the UK (Antrop, 2000; Dallimer et al., 2011). Increasing areas of built space lead to 

habitat fragmentation and isolation of resources necessary for a range of taxa to survive and 

reproduce (Andrén, 1994: Young & Jarvis, 2001; Wood & Pullin, 2002; McKinney, 2008). This 

can lead to species change and subsequently ecosystem services can show high variability 

across urban-rural gradients (Tratalos et al., 2007). With over five billion people estimated to 

reside within urban areas globally by 2030 (United Nations, 2008), there is increasing 

demand for ecosystem services to remain resilient within our cities. The value of pollination 

has been mostly associated to the benefits in yield to agricultural crops. Their pollination 

contributes to 35% of global food production (Klein et al., 2007) and can influence seed-set, 

yield and the market price of many agricultural crops (Bommarco et al., 2012).  

However, concern for pollination in urban areas is growing. Landscape alteration and 

conversion are underlined as influential in reducing pollination services due to reductions in 

area of natural habitat and subsequently of bee abundance and diversity (Steffan-Dewenter 

et al., 1999; Ricketts et al., 2008; Bommarco et al., 2012; Klein et al., 2012; Lentini et al., 2012). 

Currently, studies detail how urbanisation negatively influences bee assemblage diversity, 

with bee assemblage change species-specific along the urban-rural gradient (Bates et al., 2011; 

Matterson et al., 2011; Banaszak-Cibicka‖&‖Żmihorski,‖2012;‖Chapter‖2).  

Pollination is a direct ecosystem service, and its continuation throughout the urban-

rural gradient has several benefits to humans. First, if pollination services are sufficiently 

consistent throughout the urban-rural gradient, food crops grown in allotments, urban 

gardens and arable fields may benefit. Specifically, for allotments and community gardens, 

urban agriculture can boost local economic growth and provide sustainable and cheaper 

ways to grow healthier food (Garnett, 1996). For agricultural areas, maintaining diverse and 

abundant pollinator assemblages  in areas adjacent to arable fields couldprovide pollination 

for crops (Goulson et al., 2003; Frankie et al., 2009; Cussans et al., 2010; Hennig & Ghazoul, 

2011; Samnegård et al., 2011; Pellissier et al., 2012).  

Pollen availability is the predominant limitation for seed-set in many angiosperms, 

with pollen transfer between con-specifics crucial in facilitating pollination success (Ashman 
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et al., 2004; Ollerton et al., 2011). Between habitat fragments along an urban-rural gradient, 

pollen carryover of bees has been recorded for up to ~2 km (Van Rossum, 2010a). Although 

the further the distance between flowers, the less the amount of pollen transferred, it is 

proposed that pollen carryover in urban areas is equal to that of agricultural landscapes (Van 

Rossum, 2010b). In one study using the mainly bumblebee pollinated plant Digitalis purpurea, 

no clear variation in seed-set along an urban-rural gradient was reported (Verboven et al., 

2012). In arable fields, bee visitation rates and resulting pollination services are greater in 

proximity to gardens (Cussans et al., 2010; Samnegård et al., 2011). This is most likely 

because farming practices can limit pollinator abundance by homogenising local habitats 

(Holzschuh et al., 2008,2011) whilst the floral availability of gardens and green space can 

increase bee visitation to plants in these habitats  (Cussans et al., 2010; Hennig & Ghazoul, 

2011). Only a few studies have aimed at examining seed-set in densely urbanised areas 

(Pellissier et al., 2012; Verboven et al., 2012), and further research in different cities and 

regions is still needed to gain a better understanding of how pollination services may vary 

between urban and rural areas.  

Other studies have examined the visitation of bees to plants alone, not directly testing 

seed-set. These show plant-pollinator relationships tend to become more simplified within 

urbanised areas because bee-flower interactions in rural contexts are more complex 

(Deguines et al., 2012; Geslin et al., 2013).  The loss of bee species that cannot adapt to the 

changes in land–use may cause breakdowns in certain plant-pollinator relationships (Kearns 

et al., 1998; Kaiser-Bunbury et al., 2010). Furthermore, bee communities take time to occupy 

the foraging niche vacated due to species loss, which in turn can influence the pollination 

success of flowers without pollinators (Brosi & Briggs, 2013). However, similar to bee 

assemblage studies along urban-rural gradients, it is difficult to draw conclusions until more 

scientific investigation has been undertaken.  

In previous investigations, Birmingham, UK showed greater overall bee abundance 

in suburban sites and bumblebee abundance increases with area of built space (Chapter 2). 

This resulted in an observed variation in community trait weight and group trait diversity 

along the urban-rural gradient in Birmingham (Chapter 4). However, the conclusions these 

studies can draw relating to how the impact of bee assemblage and trait diversity change 
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will ultimately affect pollination success, are limited. Initially, greater bee abundance may 

suggest species loss will not have a deleterious effect on pollination services, as the bees 

present will still be able to facilitate pollen carryover to the same extent (a.k.a. density 

compensation). However, this has not been found in crop pollination experiments (Winfree 

& Kremen, 2009). Furthermore, there has been growing emphasis on the importance of trait 

complementarity in bee assemblages towards pollination service function (Hoehm et al., 

2008; Albrecht et al., 2012; Fründ et al., 2013), so how  trait diversity changes in Birmingham, 

UK will influence pollination services between urban and rural sites is of  interest to 

investigate. This suggests that even though there may be greater abundance of certain bees in 

urban areas, they may not provide equivalent pollination services to bee assemblages with, 

albeit lower abundance, greater species richness and trait complementarity. Hence, it is 

important not only to investigate bee assemblage and trait diversity change along the urban-

rural gradient, but also to supplement those investigations with tests of pollination service 

itself.  

With the abundance and trait diversity of Birmingham, UK well-documented in this 

thesis and in Bates et al. (2011), there is an opportunity for a greater level of interpretation 

from a test of seed-set in the same study region. There is very little research in this study area, 

and therefore I decided that rather than sampling the full urban-rural gradient, the 

differences at the end of the spectrum between urban and rural sites would be assessed. By 

undertaking a study of seed-set in the same geographical area of Chapters 2 and 4, greater 

insights into the how urbanisation may influence pollination services along an urban-rural 

gradient may be achieved. 

 

5.1.1 Aims and Objectives 

Therefore, this chapter aimed to increase current understanding of the potential 

impact of different land-use types on pollinator visitation and subsequent seed-set by 

planting Campanula glomerata in standardised habitat patches in both urban and rural sites in 

and around Birmingham. 
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Specifically the objectives were to; 

(i)  test the importance of bee species abundance and richness in influencing seed-set of 

Campanula glomerata between urban and rural sites in Birmingham, UK; 

(ii) record the relative difference in seed-set of Campanula glomerata between urban and 

rural sites. 

 

5.2 Methods  

5.2.1 Study area and sample sites 

Assessment of seed-set was undertaken between urban and rural areas sampled as 

part of Chapters 2 and Chapter 4 of this thesis. For further detail on this study area, refer to 

section 2.2 Methods.  

Specific to‖this‖chapter’s‖experimental‖design‖however,‖was‖the‖sole‖use‖of canal sides 

as opposed to a mix of canals and parkland sites. Birmingham canals have a long-standing 

history and are an important source of habitat for many taxa along the urban-rural gradient 

(Canal and River Trust, 2014). Canal sides offer potential foraging habitat to bees in the form 

of small florally diverse intermediately-managed clearings next to tow paths along 

Birmingham’s‖ urban-rural gradient. From the floral diversity and abundance surveys 

undertaken during the sampling effort for Chapter 2, canal sides showed similarity between 

urban and rural sites. It was therefore decided that canal sides could provide a basis for site 

standardisation between land-use types to test for seed-set. Canal side sites were narrowed 

down to those having an area of tall grassland that was less regularly mown than the tow 

paths, floral diversity in the local vicinity and their exposure to sunlight. Floral abundance 

and diversity were standardised between land-use types as the level of bee visitation to 

flowers in urban habitats can increase if flowers are also more abundant and diverse  

(Hennig & Ghazoul, 2011). To alleviate possible damage due to maintenance work or from 

members of the public along the canal sides, a protective area was created by surrounding 

each plot with 30 cm tall durable plastic lawn edging. Also, Canal and River Trust 

maintenance staff were informed of the experiment and asked not to mow over the plots.  
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Ten experimental sites (Figure 5.1) were selected along the canal sides of Birmingham, 

UK to test for pollination service, five sites in urban areas and five sites in rural areas. Urban 

and rural land-use types were singled out because they are on the either end of the urban-

rural gradient, and there is still a lack of literature on how densely urbanised habitats differ 

in their pollination services from rural areas. Land-use types were derived from 1 km2 

classification of the West Midlands designated by Owen et al. (2006), with‖ this‖ chapter’s‖

urban‖ sites‖ classed‖ as‖ ‘urban’,‖ ‘urban‖ transport’‖ and‖ ‘dense‖ suburban’‖ and‖ rural‖ sites‖ as 

‘village/farms’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Map of sample sites across Birmingham, UK and throughout the wider area 

planted with Campanula glomerata. Sample sites were selected following the land-use 

classification of Owen‖et‖al.‖(2006).‖Six‖sample‖sites‖were‖selected‖from‖urban‖(‘urban’,‖ ‘urban‖

transport’‖ and‖ ‘dense‖ suburban’‖ [Red dots]), and rural sites (‘village/farms’‖ [Green dots]) in 

Sandwell, Birmingham City and Solihul (Black lines=council boundaries). The landscape 

context‖variables‖used‖in‖chapter‖2‘s‖analysis‖are‖shown‖with‖Built‖Space‖in‖grey,‖Gardens‖in‖

orange, Green Space in green and agricultural land in light green. Canal sides are represented 

by dark blue lines, with bodies of water and rivers/streams shown as light blue. 

 



 

 

99 

 

5.2.2 Study species 

Clustered Bellflowers (Campanula glomerata L.) (Campanulaceae) was planted in 

sample sites, with their resulting seed-set a measure of pollination services provided to them 

in a particular site. The main pollinators of C. glomerata are bees, but are visited by a range of 

insect taxa (Bachmann & Hensen, 2007). Several bee species in the UK are  pollen specialists 

of Campanula spp. (BWARS, 2014), but a range of other species including bumblebees are also 

important pollinators of species from this genus (Blionis & Vokou, 2005; Maad et al., 2013). In 

previous studies, C. glomerata specifically has been used to test pollination service with 

greater bee abundance and diversity increasing seed-set (Albrecht et al., 2007). C. glomerata is 

a perennial herbaceous plant that shows little to no self pollination when pollinators were 

excluded due to staggered anther and stamen maturity (Nyman, 1992; Blionis & Vokou, 2005, 

Albreckt et al., 2007, Buchmann & Hensen, 2007).  No wild C. glomerata were recorded in the 

study area or were evident in the survey sites for Chapter 2. During site selection, C. 

glomerata were searched for, but none was found. This did not discount the presence of wild 

C. glomerata or other species of Campanula in the study area, but on a site scale there appeared 

to be no differences in presence of the test species. 

Second year growth specimens of C. glomerata in 9cm pots were purchased from 

www.Wildflowers.co.uk. At each site, three specimens were planted into the ground at three 

areas cleared of tall grass. Miracle-Gro® Slow Release All Purpose Plant Food TM 25g of plant 

food was mixed into the soil of each plot. Each individual plot was chosen for its south 

facing aspect and distance from tall trees and footpaths.  

 

5.2.3 Observation Sampling 

Four observation surveys per site were undertaken between July and September in 

2012, with each observation sampling effort lasting 45 minutes per site. This time was 

divided into 15 minute observations per plot, where visiting insects were observed and 

recorded.  Per observation sampling effort, all sites were surveyed over a 2 day period. For 

each survey day, the same number of urban and rural sites was surveyed. The order of sites 

http://www.wildflowers.co.uk/
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sampled was rotated between survey efforts. Surveys were only undertaken between 9:30 to 

17:00 GMT when the temperature was above 18°C and wind speed was below 10 mph.  

For each observed bee or other insect visit, initially the number of C. glomerata flowers 

visited by that individual during a foraging bout, the type of foraging behaviour and the 

time of visit were recorded. The behaviours of visitors were grouped into categories. Pollen 

collecting behaviour included bees landing on the flowers of test plants and actively rubbing 

or manipulating the anthers. Nectar collecting behaviour was defined by bees using their 

probosces to extract nectar from the base of the flowers. The other behaviour observed 

included <1 second investigation with full contact and <1 second investigation without full 

contact. Full contact was defined by a bee landing on a flower, compared to without full 

contact when bees were observed to hover above the flower and investigate it. If a bee visited 

more than one flower in a sample plot the behaviour that bee exhibited the most towards 

flowers was recorded for that individual. However, the behaviour of each bee tended to be 

consistent throughout the observation. Recording an individual twice was a low possibility 

due to short sampling times per site. If this did occur, as the same method was used in all 

sites the chance of re-recording an insect was equal throughout the study. 

Upon observing a visitor, it was identified into a category of Fly, Hoverfly, Beetle, 

Wasp, Ant, Butterfly/Moth or Bee. If it was not easily identifiable or clearly a bee, it was 

caught when it tried to leave the plot. The bees caught that were identifiable in the field 

(using Edwards & Jenner, 2005) were recorded and released, while bees requiring 

microscopic identification were killed for preservation, pinned later that day and identified 

in the winter of 2012 to 2013. 

 

5.2.4 Campanula glomerata Seed-set 

Plots were checked continuously throughout the sampling period for ripened seed 

pods. Ten seed pods were taken at random from the three specimens per plot during the 

flowering season. From each plot, all 10 seed pods were cut open and all seed was extracted. 

The seeds were then dried in an oven at 65ºC for 24 hrs. Once the seeds had dried, the seeds 

from each plot were weighed, and then averaged to gain a measure of seed-set per plot. 
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From the three plots per site, mean seed-set for each site was calculated. To gain a measure 

across land-use types, the seed-set for each site was averaged between urban and rural sites. 

In order to check if results could be dependent on individual plant vigour, the height in 

centimetres and mean number of flowers produced by plants at each site were measured and 

compared to seed-set. The growth of test plants was measured at each observation sample by 

measuring from the base of the plant to the tip of the tallest part of the plant. This was then 

averaged between plots to gain a mean height of test plants per site. The mean number of 

flowers produced by test flowers was estimated by counting the number of flowers each 

species produced and averaging across site plots. To account for possible loss of plants from 

inadvertent mowing, vandalism or natural mortality, more sites were originally planted with 

C. glomerata. Sites had a low rate of plant loss, although two sites early on had the majority of 

plants either fail or removed from sites. This reduced the original number of six sites per 

land-use type to five. 

 

5.2.5 Local and Landscape variables 

Floral availability was estimated by grouping the number of flowers present per 

flowering tree, shrub, or plant into either >10, >100, >1000 or >10,000 flowers. The number of 

different species presenting flowers was counted as a measure of floral richness. These were 

recorded at the same time for each observation sampling event, giving four measures of 

floral abundance and richness per site which were averaged to gain a measure of each per 

site. 

Four main landscape context variables were extracted from an Ordnance Survey 

MasterMap dataset by grouping landscape metrics in ArcGIS v10 (ESRI, 2011). Built space 

consisted‖ of‖ ‘buildings’,‖ ‘man-made‖ structures’,‖ ‘pavements’,‖ ‘roads’,‖ ‘man-made open 

space/landforms’,‖‘rail’‖and‖‘developing‖land’.‖The gardens layer was derived from ‘gardens’‖

of‖all‖sizes.‖Green‖space‖was‖made‖up‖of‖‘open‖natural‖habitat’‖(natural‖open‖space,‖natural‖

habitat without trees, natural landforms, natural rail way without trees and natural roadside 

without trees)‖ and‖ ‘covered‖ natural‖ habitat’‖ (natural‖ roadside‖ with‖ trees,‖ mixed‖ natural‖

habitat with trees and natural railway with trees) (Ordnance Survey, 2006). An agricultural 
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land layer was also obtained by separating the area covered by green space layer by a map of 

agricultural land-use (Natural England, 2009). Concentric buffer zones of 250 m, 500 m, 1.5 

km and 2.5 km were then made for each sample site. Using Geospatial Modelling 

Environment (Bayer, 2012), the area (m2) of each landscape metric raster was derived (See 2.2 

Methods & Figure 2.2 for more detail).  

 

5.2.6 Data analysis 

To test for significant differences between metrics of observed visits, seed-set, plant 

vigour and site quality, independent t-tests were used. Due to the limited frequency in which 

individual bee genera visited C. glomerata, these metrics were not tested for significant 

differences. Only the overall abundance and species richness of bee visitors tested for 

differences between land-use types using t-tests. Due to the number of sites and frequency of 

bee visits, applying seed-set and observed visits to statistical models did not reliably 

contribute to the analysis. Instead, Pearson Product Moment or Spearman Rank correlations 

were applied to the seed-set, observed visits and landscape context variables of sites to look 

for potential co-linearity between these variables. These provided a complementary method 

to the simple test of means between urban and rural sites.  

 

5.3 Results 

In total, 111 insects were observed visiting test flowers in the observation sampling 

period, 37 individuals in urban areas and 74 in rural areas. The number of bees visiting 

flowers between urban and rural sites was 30 and 38, respectively. Prior to t-tests, all data 

were checked for normality. Flower visitors showed no significant differences in abundance 

(t=1.38, d.f.=8, p=0.12) or richness (t=0.42, d.f.=8, p=0.35), and neither did bee abundance 

(t=0.28, d.f.=8, p=0.39) and richness (t=0.40, d.f.=8, p= 0.34) between urban and rural sites 

(Figure 5.2). There was however significantly lower abundance (t=6.53, d.f.=8, p=0.003) and 

diversity of non-bee insects  (t=2.78, d.f.=8, p=0.03) visits observed in urban sites. It was 

considered that site quality did not influence the occurrence of visitors of C. glomerata at each 
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site as no significant difference was found between site floral availability (t=1.41, p=0.126), 

and richness(t=1.85, p=0.08) between land-use types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Andrena, Bombus, Lasioglossum and Hylaeus were the most frequently observed bee 

genera visiting C. glomerata across the land-use types. Although metrics of genera abundance 

were not tested statistically due to insufficient observed visits, there was no obvious 

difference between land-use types for bees visiting C. glomerata (Figure 5.3). Interestingly, the 

Figure 5.2: The abundance (a) and species/taxa richness (b) of all insect visits 

(Green), bee visits (Orange) and non-bee visits (Blue) recorded on Campanula 

glomerata flowers between five urban and five rural sites. Error bars = ± 1 SE. 

Bars with different letters represent significant differences, while ‘ns’‖represents 

no significant difference between land-use type for each metric. 
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main genera of bees observed differed in their visiting behaviour of C. glomerata flowers. 

From observation sampling, it was recorded that once Bombus spp. visited a survey plot they 

tended to visit more C. glomerata flowers than the other genera (Figure 5.3) and tended to 

visit flowers briefly, for nectar only. In contrast, Andrena, Hylaeus and Lasioglossum  were 

observed visiting only one or two flowers each time they were recorded, whilst also showing 

prolonged contact with flowers and actively collecting pollen from flowers (only 

Lasioglossum spp.; Figure 5.4). One species also observed during the sampling period was 

Chelostoma campanularum, a dietary specialist of Campanula spp., but only found in two urban 

areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The mean number of the most abundant bee genera recorded 

visiting test plots (a), and the mean C. glomerata flowers visited by each 

visitor per plot (b) between urban (Red) and rural (Green) sites. Error bars = ± 

1 SE. n=the number of bees from that genus recorded at each site type. 
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There was no evidence that plant vigour varied between land-use types, with the 

height of C. glomerata plants (t=0.69, d.f.=8, p=0.26, Figure 5.5a) and the mean flowers 

produced (t=0.26, d.f.=8, p=0.4, Figure 5.5b) not significantly different between urban and 

rural sites. In terms of C. glomerata seed-set, I found no significant difference between urban 

and rural sites (t=0.08, d.f.=8, p=0.46, Figure 5.6).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The mode (circles) and extent (error bars) of the type of visitation of 

the main bee genera visiting Campanula glomerata flowers between urban 

(Red) and rural (Green) sites. n=the number of bees from that genus recorded at 

each site type. 

 

Figure 5.5: The mean (±1SE) height (a) and number of flowers (b) of 

test Campanula glomerata between five urban (Red bar) and five 

rural (Green bar) sites.  



 

 

106 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

M
ea

n
 C

am
pa

n
gu

la
 g

lo
m

er
at

a 
se

ed
 s

et
  

(m
g

 o
f 

se
ed

 f
ro

m
 1

0 
se

ed
 p

o
d

s)
 

 

Urban                      Rural 

Land-use Type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation analysis showed that seed-set in C. glomerata was not significantly 

correlated to any visitor abundance and species richness metrics, nor the site variables such 

as floral richness, floral availability or the number of C. glomerata flowers that were produced 

per sample site (Table 5.1). For landscape context variables, there was a significant negative 

correlation between the area (m2) of gardens within 500 m (r=-0.81, p=0.03; Table 5.2) and 

1,500 m (r=-0.83, p=0.02; Table 5.2). The only other significant correlation was with bee 

abundance increasing with the area of agricultural land within 2500m (r=0.73, p=0.04). Built 

space and green space showed no correlation to metrics of seed-set or bee abundance and 

richness. Proportionately, built space and agricultural land were the main landscape context 

variables that differed between land-use types, whilst the percentage of gardens and green 

space stayed relatively similar between land-use types (Figure 5.7). 

 

 

 

 

 

Figure 5.6: The mean (±1SE) weight (mg) of Campanula 

glomerata seed as a measure of seed-set between five urban 

(Red bar) and five rural (Green bar) sites.  
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Figure 5.7: The percentage cover of landscape context variables within 500 m of 

five sites in each land-use type. Built space and agricultural land were the main 

varying components of the landscape variables between land-use types.  

 



 

 

 

 

 

 

 

 

 

Table 5.1: Correlations between seed-set of Campanula glomerata, metrics of visitors to test flowers, site quality metrics of floral richness 

and availability, and the number of flowers produced from 10 sample sites where pollination service by insects was tested between urban 

and rural land-use 

 

C. glomerata 

seed-set (mg) 

All 

Abundance 

Bee 

Abundance 

Other Insect 

Abundance 

Bee Species 

Richness 

All Species 

Richness 

Floral 

Richness 

Floral 

Availability 

All Abundance 0.2 
    

   

Bee Abundance  0.35 0.96*** 
   

   

Other Insect Abundance  -0.04 0.72** 0.59 
  

   

Bee Species Richness 0.34 0.8** 0.77** 0.21 
 

   

All Species Richness 0.36 0.9*** 0.89*** 0.43 0.97***    

Floral Richness -0.22 0.05 0.12 0.13 -0.09 -0.06   

Floral Availability -0.35 -0.5 -0.47 -0.43 -0.37 -0.44 0.74*  

C. glomerata flowers -0.08 0.22 0.14 0.3 -0.06 0.01 0.49 0.43 

*  p<0.005; ** p<0.01; *** p<0.001 
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Table 5.2: Correlations between seed-set of Campanula glomerata, abundance and species 

richness of visitors to test plants and landscape context variables at scales of 250 m, 500 m, 

1500 m and 2500 m from 10 sample sites where pollination service by insects was tested 

between urban and rural land-use 

Landscape 

context variable 
Scale (m) 

C. glomerata  

seed-set (mg) 

Bee 

Abundance 

Bee Species 

Richness 

Gardens 250 -0.56 0.07 0.14 

500 -0.81* -0.06 -0.12 

1500 -0.83* 0.11 -0.09 

2500 -0.42 -0.05 -0.19 

Built Space 250 0.01 -0.2 -0.19 

500 0.03 -0.1 -0.1 

1500 0.03 -0.1 -0.05 

2500 0.05 -0.03 -0.06 

Green Space 250 -0.06 0.26 0.21 

500 -0.2 0.17 0.09 

1500 -0.17 0.16 0.05 

2500 0.03 0.22 0.16 

Agricultural 

Land 

250 -0.52 0.34 0.38 

500 -0.51 0.41 0.43 

1500 -0.39 0.64 0.58 

2500 -0.29 0.73* 0.68 

 * p<0.05 
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5.4 Discussion 

Pollen limitation which leads to reduced seed-set in angiosperms (Ashman et al., 2004) 

is said to be potentially similar between urban and agricultural areas (Van Rossum, 2010b). 

This chapter set out to further the current literature of how urbanisation influences 

pollination services by testing the seed-set of C. glomerata between urban and rural areas of 

Birmingham, UK.  

 

5.4.1 Observation sampling 

Greater bee abundance and richness increases pollination services to flowers (Ricketts 

et al., 2008; Bommarco et al., 2012; Klein et al., 2012), specifically for C. glomerata (Albrecht et 

al., 2007). From observation surveys, I found that there was no significant difference between 

the mean abundance and richness of bees visiting C. glomerata. In previous literature, plant-

pollinator relationships show simplification towards higher levels of urbanisation (Deguines 

et al., 2012; Geslin et al., 2013), most likely due to bee and plant species loss in urban areas 

(Wojcik et al., 2012). This was not observed here however, with similar bee abundance and 

number of species visiting test flowers. Factors that could have influenced the visitation rate 

of bees include the floral abundance and diversity at a site, which can increase bee visitation 

to plants in the urban environment (Hennig & Ghazoul, 2011). However, visitation rate was 

un-likely to have been influenced by site foraging quality, as floral richness and availability 

were found to not vary between land-use types or correlate to the number or species richness 

of visiting bees. However, the numbers of recorded bees visiting test flowers was low in 

frequency. This limited this chapter’s ability to conclude the full variation in bee visits to test 

plants due to low statistical power. This could have been compensated for by pan trapping 

pairwise sites (Samnegård et al., 2011), but it was considered that a greater level of 

interpretability regarding how many insects directly visited test flowers  and how they 

foraged on the test flowers was more worthwhile in meeting this chapter’s objectives.  

From observations of test plots, several differences were observed with regards to the 

type of visits recorded. Bumblebees on average visited test plots the same amount of times as 

other insects, but they visited more flowers on average once within test plots. This agrees 
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with previous observations with bumblebee species that were found to be predominant 

visitors of flowers within urban habitats (Deguines et al., 2012; Geslin et al., 2013). This is in 

contrast to bees in the genera Andrena, Lasioglossum and Hylaeus which generally visited one 

or two flowers at a time. Furthermore, the most commonly observed behaviour of bees 

differed between genera, as Lasioglossum displayed active pollen collection throughout the 

study. Bumblebees, the most prolific genus of bees found along the urban-rural gradient and 

found in highest abundance in suburban and urban areas (Chapter 2), have been noted as 

important to pollination services due to their greater flower visitation rate (Albrecht et al., 

2012). Surprisingly, I found lower occurrence of bumblebees visiting C. glomerata in urban 

areas which contrasts with earlier results (see Chapter 2). However, in this chapter 

bumblebees visited numerous test flowers when visiting a test plot, suggesting they could be 

important in pollinating C. glomerata. It has been shown before in studies of pollination 

services that bumblebees and their greater foraging ranges facilitate equivalent pollination 

services to Digitalis purpurea between urban and rural areas (Verboven et al., 2012).  

One species found to visit test flowers in two urban sites was Chelostoma 

campanularum, a foraging specialist of flowers from the genus Campanula. Chapter 4 found 

that oligolectic bees were significantly greater in urban areas. This observation suggests that 

specialist species can still play a part in the pollination of flowers in urban areas. Chelostoma 

spp. are small, with foraging ranges generally within 500 m of their nests (Gathmann & 

Tscharntke, 2002). Their nests comprise existing cavities in dead wood which can be found 

on fence posts and garden sheds (BWARS, 2014). This also agrees with Chapter 4 which 

illustrated the preference of cavity-nesting bee species for urban habitats. This suggests that 

urban areas in Birmingham are not deleterious to flower visitation rates of C. glomerata and 

under some circumstances may promote specialist foraging bees as part of their pollinating 

fauna. 

5.4.2 Campanula glomerata seed-set 

C. glomerata did not vary in seed-set between urban and rural sites. There was also no 

variation in the height and flowering of test species between land-use types, nor did they 
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correlate to seed-set. Hence, it is likely that plant health did not influence the  seed-set 

results.  

Few studies have aimed at examining seed-set towards densely urbanised areas, but 

for those that have there are contrasting results. Pellissier et al. (2012) found pollination 

services were reduced in more urbanised areas with greater impervious surfaces, suggesting 

more suburbanised areas were better at providing pollination to Lotus corniculatus. Verboven 

et al. (2012) on the other hand found pollination services remained consistent across the 

urban-rural gradient. This chapter supports Verboven et al. (2012) with seed-set showing no 

variation between urban and rural areas. Pollen carryover of bees has been recorded for up 

to ~2 km between urban habitat patches (Van Rossum, 2010a) and is equal to that of 

agricultural landscapes (Van Rossum, 2010b). This chapter suggests that this was the case in 

Birmingham, UK. Verboven et al., (2012) suggested that the abundance of bumblebees in 

their study region (Belgium) enabled pollination services to be provided across the urban-

rural gradient. Similar to this, Birmingham, UK has bumblebees in abundance in both urban 

and suburban areas (Bates et al., 2011; Chapter 2). Although density compensation may not 

limit the reduction in pollination that results from bee species loss, species-specific variation 

may be able to (Winfree & Kremen, 2009). Therefore, if pollination services are negatively 

affected by loss of certain species in either urban or rural areas, the species-specific response 

of bees along the urban-rural gradient in my study area could have compensated for 

deleterious effects this had on pollination services (Chapter 2).  

Further to this, Chapter 4 found some levels of trait diversity between urban and 

rural areas. Applying an analysis of trait diversity to the species recorded visiting test 

flowers in this study would not be recommended due to the low frequency in which bees 

were recorded. However, with the similarity in seed-set between land-use type there is 

evidence to suggest that the trait diversity variation shown in Chapter 4 may not be 

negatively influencing pollination services in Birmingham, UK. 

These results however should be viewed with caution. The observed similarity in seed-

set in this chapter does not necessarily suggest that pollination services are at their maximum 

in both urban and rural areas. One previous study suggests that flowers in urban 

environments were pollen-limited and that it could be increased with greater bee visitation 
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rates (Verboven et al., 2012). This investigation did not test for pollen limitation in C. 

glomerata, which constrains the interpretation of the variation of pollination services between 

land-use types‖as‖these‖results‖may‖both‖be‖experiencing‖pollen‖limitation‖rather‖than‖‘high’‖

or‖‘sufficient’‖levels‖of‖pollination.  

In this chapter, there was evidence that other taxonomic groups other than bees 

varied significantly between land-use types. Previous studies have documented species-

specific responses in the assemblages of other insect taxa, most notably in hoverflies along 

the urban-rural gradient (Bates et al., 2011) and in agricultural environments (Meyer et al., 

2009). This may not have influenced seed-set in this chapter due to bees being the main 

pollinators of C. glomerata (Blionis & Vokou, 2005; Maad et al., 2013), but for flowers bees are 

less likely to help to pollinate and the presence of other insects may be crucial. Therefore, 

there is a need for further experimentation investigating the impact of the urban-rural 

gradient on other types of pollinators and the flowers they pollinate. Future research should 

not only concentrate on the abundance, richness and trait diversity of bees, but also on other 

pollinating taxa and their value in pollinating plants. One way of doing this would be to 

apply similar methodology as this chapter but with different plants, preferably varying in 

their morphological and phenological characteristics.  

Suburban areas have shown increased pollination services compared to agricultural 

and urban areas (Goulson et al., 2003; Cussans et al., 2010; Hennig & Ghazoul, 2011; 

Samnegård et al., 2011; Pellissier et al., 2012). In this chapter, suburban areas were not 

incorporated as it was considered more important to use available resources to test rural and 

urban areas. In the sites selected, although varying in built space and agricultural land, 

gardens constituted similar proportions of the landscape within 500 m of all sites (Figure 

5.7). Gardens specifically are shown to increase bee visitation rates, abundance and 

subsequent seed-set (Cussans et al., 2010; Samnegård et al., 2011). The presence of gardens 

within the local vicinity could have acted as a source for bees and caused equal numbers of 

bees in both site types, and subsequently limited seed-set variation. From the landscape 

context data however, greater percentage of gardens correlated with lower seed-set. This 

could suggest that the attraction of gardens for pollinators limits their pollination services to 

other sites in the surrounding area. Although beyond the scope of this chapter, the 
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importance of site type for bee assemblages along the urban-rural gradient has been shown 

in Chapter 2 and Bates et al. (2011). Hence, it is important that other types of site are tested 

for pollination services along the urban-rural gradient to obtain a clearer picture of how 

particular sites differ and compare in their bee presence and subsequent pollination success. 

In summary, by increasing regional, site type and test plant replication, a firmer conclusion 

about how the urban-rural gradient may influence pollination services may be drawn. 
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Chapter 6 

 

 

 

 

The brood cell provisioning and reproductive 

success of Red Mason Bees (Osmia bicornis syn. rufa 

[Linnaeus]) in an urbanised environment. 
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Abstract 

The response of bee assemblages to increased levels of urbanisation is species-specific, but 

detailed investigations into how species associated with urban areas can provision their young and 

reproduce successfully are scarce. To facilitate effective reproduction, bees require a source of nectar 

and pollen, and suitable nesting resources to sustain their offspring’s growth and development. 

However, understanding the extent to which urban areas provide these resources and the subsequent 

population dynamics of solitary bees is integral to understanding the implications on pollination 

services. I tested the efficacy of urban habitats in their level of viable resources towards the foraging 

generalist solitary Red Mason Bee (Osmia bicornis syn. rufa Linnaeus), using pre-collected 

overwintering adults placed within 20 artificial nest sites throughout an urbanised area in 

Birmingham, UK. The quality of provisioned resources, as an indirect measure of habitat quality, was 

shown to be a main determinant of increased brood cell provisioning success in O. bicornis. Greater 

resource quality and provisioning success also correlated to increased offspring weight and the 

proportion of female offspring produced, indicating habitat quality can ultimately influence the 

population dynamics of O. bicornis. This chapter concludes that if nesting sites are in abundance, the 

foraging resource quality is integral in providing reproductive success for bees in the urban 

environment. This is only for one species and region however, and should be further investigated with 

different bee species in different areas. 
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6.1 Introduction 

Bees require both foraging and nesting resources to reproduce effectively. Once 

suitable nesting sites are found, the larvae of solitary bees (Hymenoptera, Apoidea) are 

provided with provisions to sustain their growth and development through metamorphosis 

into adults. It is the task of the parent bee to provision each brood cell with enough viable 

pollen to enable successful larval development (Michener, 2000). Restricting this is the 

distance to forage plants from nesting sites (Zurbuchen et al., 2010), as bees are central place 

foragers and spend valuable energy and time travelling from plants to their nest (De Vries & 

Biesmeijer, 1998; Dukas & Edelstein-Keshet, 1998; Heinrich, 2004). Urbanisation is known to 

fragment habitat for many taxa, leading to resource isolation (Andrén, 1994; Young & Jarvis, 

2001; Wood & Pullin, 2002). Maintaining a mosaic of suitable habitat throughout the local 

landscape is an important factor that can increase the foraging ability of bees (Williams & 

Kremen, 2007).  Although many species of bee are found within urban areas (Frankie et al., 

2005; Matterson et al., 2008; Cane et al., 2006; Bates et al., 2011; Banaszak-Cibicka & 

Zmihorski, 2012; Chapters 2 & 4), how urbanisation influences the provisioning success of 

bees is relatively unknown. 

An important part of the resources provisioned to larvae is protein. The amount of 

protein a larva eats in its early stages of life will have a significant effect on its subsequent 

adult body size (Roulston & Cane, 2002). Body size is an important factor in the reproductive 

fitness of female solitary bees as it determines her ability to compete for nesting space (Kim, 

1997; Steffan-Dewenter & Schiele, 2004), be reproductively successful (Kim, 1997; Strohm et 

al., 2002), disperse and forage (Gathmann & Tscharntke 2002; Bosch & Vicens, 2006; Neff, 

2008) as well as overwinter (Strohm et al., 2002; Bosch & Kemp, 2004). Male bee body size is 

also linked to ability to hold a mating territory (Alcock, 1994) and is an important factor for 

mate selection by females (Conrad et al., 2010).  Other benefits of a protein-rich diet include 

increasing the ability of bees to cope with adverse conditions such as parasitism and disease 

(Alaux et al., 2010; Di Pasquale et al., 2013). Hence, bee survival and reproductive success are 

directly and indirectly affected by the quality of provisioned resources. 
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Bees provide pollination services to some of the flowers they visit, but to what extent 

they are successful in provisioning their young and how successful their offspring will 

subsequently be could impact the pollination services they provide. Therefore, how 

successful bees are in provisioning offspring in urban areas is integral to understanding how 

pollination services will be influenced by urbanisation. 

Research into the quality of habitats relating to insect diversity should concentrate on 

the immature stages of individual development to estimate the capacity in which 

populations can be sustained (Thomas et al., 2001). Yet, complexity arises when  determining 

the‖ ‘quality’‖ of‖ one patch over another, with many studies lacking feasible ways of 

measuring quality of habitats, or even knowing what to measure. Currently, studies 

investigating meta-population ecology either neglect the quantification of quality or simply 

dismiss it as a variable altogether (Thomas et al., 2001; Mortelliti et al., 2010). With central 

place foragers such as bees however, it is possible to measure the provisioned resources they 

have managed to gain from their surrounding habitat as a proxy for habitat quality. 

However, nesting limitation is considered a main bottom-up determinant of wild bee 

populations (Steffan-Dewenter & Sciele, 2008), and the microclimate surrounding nesting 

sites has a significant influence on provisioning and nesting of solitary bees (Everaars et al., 

2011). It is therefore important to standardise certain aspects of the nesting sites of bees 

before differences in the provisioning and reproductive success of bees can be evaluated. 

This chapter aimed to test the dynamics of provisioning and reproductive success in a 

cavity-nesting generalist bee species in urban areas. By standardising the nesting potential of 

bees and the presence of bees in an urban environment, it was possible to assess the variables 

other than nesting limitation that influence the breeding success of bees in the urban 

environment. This allowed an analysis of resource quality, resource quantity and landscape 

factors to be tested against the provisioning success of bees, and furthermore for the 

resulting variables of reproductive success to be assessed.  

 



 

 

119 

 

6.1.1 Aims and Objectives  

Through the release of a standardised number and size of Red Mason Bees Osmia 

bicornis syn. rufa (Hymenoptera: Megachilidae) alongside artificial nests, the aim of this 

chapter was to investigate the resource provisioning potential of bees within an urban 

context. 

 

Specifically our objectives were to; 

(i) record the brood cell provisioning and reproductive success of O. bicornis within an 

urbanised habitat; 

(ii) record the influence of resource quality and quantity as well as local and landscape 

variables on the brood cell provisioning of bees; 

(iii)  characterise the population dynamics of the Red Mason Bee in an urbanised 

environment. 

 

6.2 Method 

6.2.1 Study Area 

The area designated for‖ this‖ study‖was‖ the‖University‖ of‖ Birmingham’s‖ Edgbaston‖

campus and surrounding area, situated 4.3 km south-west of Birmingham city centre (Figure 

6.1). General maintenance of the campus consisted of annual pruning of shrubs and hedges, 

management of the trees, and regular mowing of grass areas throughout the spring and 

summer months. Surrounding the campus was a mixture of parkland, residential buildings, 

industrial buildings and a variety of infrastructure. The sample area has been classed as a 

mixture of suburban, dense suburban and urban transport (Owen et al., 2006). Through the 

sampling period, certain potential forage plants were observed on the campus and in the 

surrounding area, including Cotoneaster spp., Pyracantha spp. and Berbris spp., Tilia x europea., 

Aesculus hippocastanum and a variety of species from the genera Prunus and Cretaegus.  
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6.2.2 Study species 

Widely distributed throughout the UK and mainland Europe, the Red Mason Bee 

(Osmia bicornis syn. rufa Linnaeus) was selected as the study species. O. bicornis is univoltine, 

nesting in a range of pre-existing cavities by partitioning and capping the end of nests with 

soil. They provision brood cells (usually linearly) with pollen and nectar (>90% pollen), lay 

an egg on top of provisioned resources and cap the end of the cell with moistened soil. Bee 

larvae inside then eat the pollen and nectar and weave a cocoon where they eventually 

pupate over winter and emerge the following spring. O. bicornis show preference for artificial 

nesting tubes (Steffan-Dewenter & Schiele, 2008; Everarrs et al., 2011) and this makes them 

an ideal focal species for this study. 

O. bicornis is a common pollinator of fruit and nut crops from the Roseaceae family 

with corresponding emergence and flowering periods between April and July.  O. bicornis 

are dietary generalists in terms of both nectar and pollen, utilising a range of pollen sources 

for provisioning brood cells (Kraemer & Favi, 2010). Although generalists, there are records 

where the majority of pollen collected is from only one or two sources (Raw, 1974; Qercus 

spp. and Ranunculus spp.), with pollen collection varying depending on the plant species 

flowering in the immediate area surrounding a nest site (Rademacher & Strohm, 2010). The 

foraging range of O. bicornis is believed to be less than 500 m from their nesting site 

(Gathmann and Tscharntke, 2002) but individual foraging bouts of up to 900 m have been 

recorded when pollen and nectar are scarce within the local vicinity (Vicens & Bosch, 2000). 

Cleptoparasites are a top-down pressure on the reproductive success of O. bicornis (Steffan-

Dewenter & Sciele, 2008). An example of such a parasite is Cacoxenus indagator (Diptera: 

Drosophilidae) which lays its eggs alongside the brood cell provisioning whilst the female O. 

bicornis is away from the nest gathering more resources.  

6.2.3 Experimental Design 

To gain a measure of total brood cells provisioned by O. bicornis, artificial nests, their 

placement, and the release of a set number of adult bees (in certain size categories ready to 

emerge) were standardised. This allowed this study to alleviate the potential influence of 

nest limitation (Steffan-Dewenter & Sciele, 2008), bee limitation and to some degree the 
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microclimatic variability (Everarrs et al., 2011) on the brood cell provisioning potential of 

bees. Through this standardisation, it was possible for this study to evaluate what landscape 

and resource factors affect O. bicornis provisioning. 

In 2011, the year prior to this experiment, artificial bee hotels were placed in several 

locations within Birmingham, UK to collect O. bicornis cocoons for this experiment. They 

were cleaned and stored outside in a secure location during the winter of 2011-2012. In early 

2012 (January and February) whilst the bees were dormant, a small incision‖at‖the‖‘tip’‖of‖the‖

cocoon was made to expose the head of each bee without waking them.  Specimens that had 

not survived through the winter, those underdeveloped (usually with thin cocoon walls and 

a very small individual inside which may not be fully formed), and those that had been 

parasitized were removed from the study. The gender of each bee was checked by the 

assessing if the  clypeal pilosity was cream coloured or black, separating individuals by male 

and female gender, respectively. To alleviate the potential bias bee body size could cause 

when attempting to analyse differences between bee hotels, O. bicornis cocoons in different 

weight classes were placed in an emergence tube at each artificial nesting site. The weight of 

each viable bee was recorded by measuring the bee within the cocoon.  Each site had five 

females over the weight of 160 mg, seven females between the weight of 120-160 mg, and 10 

males heavier than 80 mg, a total of 22 O. bicornis per site. 

In the spring of 2012, artificial nests purchased from CJ Wildlife 

(www.birdfood.co.uk),‖ were‖ placed‖ within‖ and‖ around‖ the‖ University‖ of‖ Birmingham’s‖

Edgbaston campus (Figure 6.2). Each hotel contained 29 cylindrical cardboard nesting tubes 

8 mm wide and 15 cm long with a paper lining which could be removed and peeled away to 

reach the brood cells (Figure 6.3). Nests were placed in a south-facing position at each 

sample location from March-July in 2012. Filled and capped tubes were removed and 

replaced with new empty tubes throughout the sampling period. 

 

http://www.birdfood.co.uk/
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Figure 6.2: Example of Osmia bicornis artificial nesting sample site and artificial nest. Each 

sample site comprised three artificial nests (right). A set number of bees of standardised weights 

and gender were released in the emergence tubes for each sample site. Nesting tubes comprised 

an outer cardboard tube with a paper inner lining. These tubes were replaced throughout the 

sample period. Photos: R Fowler. 

Figure 6.3: Example of the inner lining of the nesting tubes used to collect the resources 

provisioned by Osmia bicornis. Three tubes of Osmia bicornis provisioned brood cells were 

collected before the larvae had hatched and began consuming the provisioned resources (made 

up of >95% pollen). Paper tubes lining each nesting tube allowed for the easy removal and 

collection of provisioned resources for measuring quality and quantity. Photo: R Fowler. 
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6.2.3.1 Provisioning Success 

After the sampling period, emergence tubes of the bees released at each artificial 

nesting site were checked to make sure they had not all failed to emerge and influenced the 

standardisation of the experiment. Of the newly provisioned cells, the nesting tubes capped 

in each site were removed, placed in a secure location and allowed to mature into adults over 

the summer. During the winter of 2012/13, after the offspring had pupated into adults, the 

nesting tubes were processed (as in Figure 6.3 but as cocoons), counted and the total 

provisioned brood cells recorded as a measure of provisioning success per site.  

 

6.2.3.2 Provisioned Resource Quality and Quantity Analysis 

Three capped nesting tubes were selected at random from each site during the 

sampling period to be used to gain estimates of the quality and quantity of provisioned 

resources. This was undertaken at the same time for all sites three weeks after adults had 

emerged. Tubes were placed in a -18ºC freezer to preserve the provisioned resources until 

analysis in the winter of 2012/13. For the analysis, the samples were removed from the 

freezer, the tubes were opened and provisioning resources were removed from each cell 

(Figure 6.3). Care was taken to remove the loam partitioning from each cell and limit its 

mixing with the resources provisioned. All resources from each cell were placed in a freeze 

drier for 24 hrs at -80ºC and weighed to the nearest mg as  a measure of resource quantity.   

To alleviate the potential influence of resource variation between cells in different 

positions of the nesting tubes, a standard protocol was used for cell selection. This protocol 

was to select six cells from the tubes collected, the first and last cell from tube 1, the second 

from first and second from last from tube 2 and the third from first and third from last cells 

from tube 3. For a comparison of resource quality between sites, an estimate of protein was 

determined. Full protein extraction of pollen is possible through acid hydrolysis but for this 

study, it was decided a light extraction would be adequate to dissolve the exine (outer layer) 

of the pollen grains and gain a measure of protein content without such an intensive method. 

From each of the six cells selected 50 mg of pollen was added to 5 ml ethanol (70%) with 0.1 

ml of hydrochloric acid (0.1 mol/L). Then the sample was placed in an ultrasonic bath for 5 

minutes to ensure homogenisation of samples before being centrifuged (5430, Eppendorf) at 
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2,500 rpm for 5 minutes. After centrifuging, 4 ml of supernatant was removed and used to 

test for protein content analysis following the Bradford Assay procedure (Bradford, 1976). 

This involved the binding of protein to Coomassie Brilliant Blue G-250 dye which is then 

tested for absorbance at 595 nm against a known protein standard to generate a standard 

curve for which the protein content of unknown samples can be estimated.  

 

6.2.3.3 Landscape Context and Vegetation  

In ArcGIS v10 (ESRI, 2011) a measure of exposure was extracted for each artificial 

nesting‖ site‖ location‖ by‖ creating‖ a‖ ‘Hillshade’‖ layer‖ using‖ a‖ photogrammetrically derived 

Digital Surface Model (DSM) of the sample area (OS MasterMap, 2009). OS MasterMap data 

of landscape metrics were then separated into three categories: built space was defined by 

‘buildings’,‖ ‘man-made‖structures’,‖ ‘pavements’,‖ ‘roads’,‖ ‘manmade‖open‖space/landforms’,‖

‘railway’‖and‖‘developing‖land’.‖Gardens‖were‖classed‖as‖‘gardens’‖of‖all‖sizes.‖Green‖space 

consisted‖of‖‘open‖natural‖habitat’‖(natural‖open‖space,‖natural‖habitat‖without‖trees,‖natural‖

landforms, natural railway no trees and natural‖ roadside‖ no‖ trees)‖ and‖ ‘covered‖ natural‖

habitat’‖ (natural‖ roadside‖with‖ trees,‖mixed‖natural‖habitat‖with‖ trees‖ and‖natural‖ railway‖

with trees) (Ordinance Survey, 2006). 

As estimating potential foraging availability for O. bicornis is made difficult by the 

nature of the sampling environment and variability of foraging preferences in O. bicornis, a 

measure of vegetation cover in the vicinity to artificial nesting sites was used as a proxy for 

viable habitat. Using the same concentric buffer zones as for the landscape context metrics, a 

measure of vegetation density in m2 for each site was extracted using aerial near-infrared and 

colour photography at 2  2 m resolution (Bluesky International Limited, Leicestershire, 

2007). With the foraging range of O. bicornis being on average 500 m from nesting site 

(Gathmann and Tscharntke, 2002), yet potentially reaching up to 900 m (Vicens & Bosch, 

2000), the total area (m2) of each landscape context metric and the vegetation metric was 

extrapolated within concentric circles from 100 m up to 1 km. This was undertaken by using 

concentric buffer zones surrounding each artificial nesting site in 100 m sequential 

increments,‖ using‖ the‖ Geospatial‖ Modelling‖ Environment‖ (GME)‖ ‘Polygon‖ Intersect’‖ tool‖

(Beyer, 2012). See section 2.2 Methods for more details of this procedure.  

http://en.wikipedia.org/wiki/Coomassie_Brilliant_Blue
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Table 6.1: Description and sampling method of response and explanatory variables applied to the 

Generalised Linear Models (GLMs) to test the importance of resource quantity, quality and 

landscape context on the provisioning rate of Osmia bicornis.  

 Metric Name Description of Variables Sampling Method 

R
esp

o
n

se  

Total 

Provisioned  

Brood Cells 

The net total brood cells 

provisioned at each artificial 

nesting site. 

The number cells produced at sites, 

with three artificial nests with 29 tubes 

in each 

E
xp

lan
ato

ry
 V

ariab
les 

Resource 

Protein 

Estimate (mg) 

An estimate of protein content of 

provisioned resources per 

artificial nesting site 

Mean taken from 6  cells per site 

Resource 

Quantity (mg) 

The amount of provisioned 

resources per artificial nesting site 

Mean taken from 6  cells per site 

Built Space (m2) Buildings, man-made structures, 

pavements, roads, manmade open 

space/landforms, rail and 

developing land. 

Derived from OS Mastermap maps, m2 

of area within buffer zones ranging in 

100 m intervals from 100 m to 1,000 m. 

Gardens (m2) Gardens of all sizes. Derived from OS Mastermap maps, m2 

of area within buffer zones ranging in 

100 m intervals from 100 m to 1,000 m. 

Green Space 

(m2) 

Open natural habitat (natural 

open space, natural habitat 

without trees, natural landforms, 

natural railway no trees and 

natural roadside no trees) and 

covered natural habitat (natural 

roadside with trees, mixed natural 

habitat with trees and natural 

railway with trees). 

Derived from OS Mastermap maps, m2 

of area within buffer zones ranging in 

100 m intervals from 100 m to 1,000 m. 

Exposure The level of exposure each site is 

subject to throughout the day 

(including shade from buildings 

and trees) 

Measurement derived from ArcGIS 

‚Hillshade‛‖tool‖using‖a‖height map 

photogrammetrically derived Digital 

Surface Model (DSM) (OS MasterMap, 

2009) 

 

Vegetation (m2) The amount of vegetation for each 

sample site. 

Derived from height and aerial near-

infrared and colour photography 

(Bluesky International Limited, 

Leicestershire, 2007), area (m2) within 

buffer zones ranging from 100 m to 

1,000 m. 
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6.2.3.4 Reproductive Success 

To measure how successful the provisioned brood cells were in each site, following 

pupation a sub-sample of 30 cocoons was chosen at random from each test site. These 30 

cocoons were weighed and averaged per site to gain a measure of mean offspring weight. 

Bees were then placed in a ventilated container and kept until they emerged in the spring of 

2013. Upon emergence, the ratio of successfully emerged females to males was recorded as a 

measure of the proportion of females produced.  

6.2.4 Data Analysis 

Variables‖ were‖ compared‖ for‖ correlations‖ using‖ either‖ Pearson’s‖ Product‖ Moment‖

Correlation‖for‖parametric‖data‖or‖Spearman’s‖Rank‖Correlation‖for‖non-parametric data.  

 

6.2.4.1 Generalised Linear Models (GLMs) 

Response and explanatory variables are detailed in Table 6.1. To assess the 

provisioning rate of O. bicornis, the total number of provisioned brood cells per site was 

modelled as the response variable in a GLM. Following Zuur et al. (2010), data exploration 

began with all variables subjected to box plots and Cleveland dot plots to check for outliers. 

Explanatory variables were checked for co-linearity prior to running models, to make sure 

assumptions of independence were not violated. As with over-dispersed ecological count 

data, alleviating the need to log response variables can be important in maintaining the 

variation in the data, and hence negative-binomial errors were applied to models (O’Hara‖et‖

al., 2010). As there were 10 potential scales in which the landscape context and vegetation 

variables could be applied to a GLM, the most parsimonious model was selected using the 

Information-Theoretic (IT) approach following Burnham and Anderson (2002).  

Q-Q plots were generated for each model to test for normality, as well as plotting 

model‖ residuals‖ against‖ the‖ fitted‖ values‖ to‖ check‖ the‖ heterogeneity‖ of‖ the‖model.‖ Cook’s‖

distance and Leverage plots were tested to make sure that individual sites did not have a 

disproportionate influence on the model. Correlograms were generated from model 

residuals to test for spatial auto-correlation in the data. Statistical analysis was undertaken 
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using the free software R v. 2.14.1 (R Core Team, 2012; www.r-project.org) within RStudio 

(RStudio, 2012). 

 

6.3 Results 

Emergence tubes with the loose pre-collected O. bicornis cocoons were checked after 

the survey period and all individuals had emerged successfully from their cocoons. This was 

most likely due to the cleaning of cocoons and removal of any dead, parasitized or unhealthy 

bees prior to release in each sample site. It was therefore considered that each sample site 

was standardised in nesting potential and initial bee emergence. 

6.3.1 Provisioning Success 

A total of 2,157 brood cells were provisioned from across all sample sites. A mean of 

107±11(SE) brood cells were provisioned for each sample site, ranging from 35 to 212. Per site, 

a mean of 13±2(SE) cells failed outright as no egg was laid or the egg died before eating the 

provisioned resources. This appeared to increase with the number of cells provisioned 

(r=0.49, n=20, p=0.02). The rate of parasitism on the provisioned cells was small with an 

average of 3.6 cells showing signs of parasitism and causing an average of 2.4 larval fatalities 

between sites, equating to 3.3% of the total brood cells produced. This left 1% cocoons which 

simply failed at either the pupation or cocoon weaving stages of development, and 1,849 

(85.7% of total) provisioned brood cells that survived the summer, pupated and had woven a 

cocoon successfully, ready to overwinter as adults. Across the sample area, this equated to 

an average recruitment at each site of 4 bees for each adult bee released, ranging from 1.3 to 

9.1. 

6.3.2 Resource Quality and Quantity 

On average 261.1±8.5 mg of resources were provisioned for each cell. The quantity of 

resources appeared to differ based on the position of each cell in the nest tube (Figure 6.4) 

with greater provisioned resources found towards the cells at the back of the tube (the first 

ones provisioned). This trend was not found for the quality of resources. The quality of 

resources was determined as 1.65±0.004 mg  of protein across the sample sites (Figure 6.4).  

http://www.r-project.org/
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 Figure 6.4: The quantity and resource quality for each cell relative to its position 

in the nesting tube. Resource weight was taken from all cells in three tubes 

removed from sites, and protein was taken from six cells of these tubes in set 

positions (see 6.2 Methods for more details). the number of provisioned cells 

recorded in that position from collected tubes is represented by n for resource 

quantity, whilst n=20 for each sample site for resource quality. Error bars = ±1 SE.  
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6.3.3 Provisioning Success 

Prior to statistical modelling, no differences between the types of nesting site were 

found. Several landscape context variables were found to be co-linear with each other and 

the vegetation variable. This left gardens and vegetation in the models (Figure 6.5). The IT 

method used to select the scale of variables for the landscape context model is shown in 

Table 6.2. The small differences in wi (rounded Akaike weights) of model scales shows there 

is weak support for selecting one model scale from another. The significant positive 

correlation between total provisioned brood cells to resource quality was evident in all 

models, and was the only significant relationship found (Table 6.3: Figure 6.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Correlation matrix of the explanatory variables uses in Generalised 

Linear Models (GLMs) to test the importance of resource quantity, quality and 

landscape context on the provisioning rate of Osmia bicornis. The correlation 

coefficient is given in the lower boxes and the relationship is presented in the boxes 

above. The variables chosen for the final model are highlighted in thick lines. 

Correlations with coefficients below 0.2 or -0.2 are not shown. 



 

 

131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: The output from the provisioning success models for each 

landscape context and vegetation scale used to test the importance of 

resource quantity, quality and landscape context on the provisioning 

rate of Osmia bicornis. The IT approach highlights gardens and 

vegetation metrics recorded within a concentric circular area of 900 m 

from each site as the most parsimonious model scale. However, as 

there are no great differences in wi it is observed that these landscape 

metrics did not have significant influence on the model output.  The 

900 m model is therefore used as the final model output. ∆I = AICi – 

min(AIC). wi = rounded Akaike 

weights.  

Scale 

Ranking (m) 
AIC ∆i 

exp'-

½∆i 
wi 

Sum(exp'-

½∆j) 

      
900  205.34 0.000 1.000 0.180 5.564 

1,000 205.53 0.190 0.909 0.163 
 

800 205.69 0.350 0.839 0.151 
 

700 206.27 0.930 0.628 0.113 
 

600 206.894 1.554 0.460 0.083 
 

500 206.895 1.555 0.460 0.083 
 

200 206.92 1.580 0.454 0.082 
 

400 207.016 1.676 0.433 0.078 
 

300 207.27 1.930 0.381 0.068 
 

100 208.25 2.910 0.233 0.042 
 

      

Table 6.3: Generalized Linear Model (GLM) output from the final 

model of the 900 m scale provisioning success model  used to test the 

importance of resource quantity, quality and landscape context on the 

provisioning rate of Osmia bicornis. 

Response/Explanatory Variables p R2 

Total Provisioned Brood Cells  58.03 

   

Resource Quantity (mg) 0.155  

Resource Quality Estimate (mg) <0.001  

Exposure 0.956  

Vegetation m2 (900 m) 0.698  

Gardens m2 (900 m) 0.062  
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6.3.4 Reproductive Success 

Of the 30 cocoons sub-sampled per site, the offspring weighed an average 130.3 ±9.2 

mg per site, ranging from 117.8 to 151.9 mg. Per site mean offspring weight did not correlate 

between total provisioned brood cells (r=0.29, n=20, p=0.21) but it did increase with greater 

resource quality (r=0.49, n=20, p=0.026; Figure 6.7). Across all sites the mean percentage of 

females produced was 39±2.12 % with only four sites having >50% of females produced. The 

percentage of females appeared to be positively correlated with total brood cells provisioned 

(r=0.47, n=20, p=0.03; Figure 6.8). 

 

 

 

Figure 6.6: Scatter plot representing the significant relationship of total provisioned brood 

cells per site and the resource quality estimate taken from six provisioned brood cells at 

each site (Table 6.2).  The grey line indicates the relationship and grey areas represent the 

95% confidence interval. p = the significance of the relationship in the model, R2 = the square 

of the correlation for each abundance metric model (also known as a proportion between 0-

100% of model fit). 
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Table 6.4: Correlation matrix showing the correlation coefficients (r) and 

significance for measures of provisioning success, resource quality, resource 

quantity and measures of reproductive success of Osmia bicornis for each site in an 

urban landscape. 

 Total 

Provisioned 

Brood Cells 

Resource 

Quality Est. 

Resource 

Quantity 

(mg) 

Mean 

Offspring 

Weight (mg) 

Resource Quality Est. (mg 

protein/50mg pollen) 
0.62** 

   

Resource Quantity(mg) 0.10 -0.15 
  

Mean Offspring Weight (mg) 0.29 0.49* -0.37 
 

Proportion of Females 0.47* 0.29 -0.41 0.42 

*p<0.05, **p<0.01 

Figure 6.7: The resource quality of six brood cells was significantly 

correlated to the averaged offspring weight (mg) measured from 30 

cocoons per site. r=correlation coefficient, *=p<0.05 
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6.4 Discussion 

The dietary generalist cavity-nesting bee O. bicornis is a species commonly found in 

urban and suburban areas in the UK (Bates et al., 2011; Chapter 2). O. bicornis populations are 

known to be predominantly determined by bottom-up pressures, most notably in nest-site 

limitation (Steffan-Dewenter & Schiele, 2008). This suggests nesting opportunities are 

available in urban areas for these species to provision brood cells and reproduce effectively.  

With artificial nesting sites placed in the sample area, the quality of resources 

provisioned significantly increased the total provisioning success of O. bicornis (Figure 6.6). 

In contrast, landscape context and vegetation metrics showed no influence over the 

provisioning success of O. bicornis with different scales of these metrics having little impact 

on model performance. This suggests that the quality of available resources is more 

constraining of provisioning ability than other factors in an urbanised environment once 

Figure 6.8: The proportion of females produced from a sub-sample of 

30 cocoons was significantly correlated to the total number of 

provisioned brood cells per site. r=correlation coefficient, *=p<0.05 
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nesting site availability is limited. Previous studies investigating O. bicornis nesting potential 

in urban environments show that micro-climatic variation can influence nest selection 

(Everaars‖et‖al.,‖2011).‖This‖chapter’s‖analysis‖standardised‖nest‖site‖ location‖on‖brick‖walls‖

and showed no association with measures of exposure in statistical modelling. Therefore, 

with a lower possibility of nesting site location affecting provisioning rate, it is suggested 

that the quality of resources in the surrounding area of nesting site influences the 

provisioning success of O. bicornis. 

In previous studies, the availability of a viable source of quality pollen is crucial in 

maintaining bee populations (Franzén & Nilsson, 2010). Using olfactory cues (Cook et al., 

2003; Grüter et al., 2008), eusocial bees can regulate the quality of pollen collected and stored 

in the colony (Kitaoka & Nieh, 2009). This chapter did not accounted for pollen choice in the 

sample area by Osmia bicornis. The resulting increase in provisioning success is most likely an 

in-direct effect from a greater abundance of protein-rich resources in the local vicinity 

increasing the number of females choosing to use these particular nesting sites. Maternal site 

fidelity in O. bicornis is shown to be as high as 80% (Steffan-Dewenter & Schiele, 2004) and is 

thought to be higher if nesting and foraging resources are in abundance. This suggests that 

sites that did well in provisioning success may have already been in habitats of greater 

quality resources. Alternatively, there were natural populations of O. bicornis already present 

within these sites, thereby increasing the number of provisioning females in that site and the 

amount of provisioned cells. The dispersal rate and movement of bees between sites was not 

recorded in this study so it was not possible to corroborate this, although it is something that 

could be explored in future research following the methodology set out by Steffan-Dewenter 

& Scheile (2004).  

Another explanation for this indirect effect would be that bees were able to select 

pollen of greater quality because within their foraging range there was increased availability 

of pollen sources on offer. Bees can provision more brood cells in a shorter period of time 

when suitable resources are in closer proximity to their nests (Zurbuchen et al., 2010). 

Therefore, as the surrounding area increased in floral availability and diversity, bees may 

have been able to provision cells at a faster rate and with greater selection of better quality 
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resources. This is beyond this chapter however, but the implications of this should be taken 

into consideration in future research. 

Previous literature has suggested that pollen quantity affects bee body size and 

subsequently important aspects of reproductive success more so than pollen quality 

(measured as the diversity of pollen species provisioned; Radmacher and Strohm, 2010). In 

this‖ chapter’s‖ analysis‖however,‖ resource quantity showed no relationship to provisioning 

success or any measures of reproductive success of O. bicornis. This may have been because 

the difference in provisioned resource quantity between brood cells was determined by its 

placement within the nesting tube (Figure 6.4). Previously, research has suggested that there 

is a link between the length of tubes and the proportion of females produced (Gruber et al., 

2011). Bees exhibit haplodiploidy and are able to determine the sex of offspring they produce 

(Gerber & Klostermeyer, 1970; Bosch & Vicens, 2005; Seildelmann et al., 2010). From 

observations when opening overwintering cocoons of O. bicornis, it would appear males are 

usually laid towards the front of the cells whilst females are laid first at the back of the tube. 

Although the gender of bees was not recorded in relation to the quantity and quality of 

resources, it was apparent that the amount of pollen increased in the cells provisioned 

earliest. There could be a temporal influence with greater pollen resources available earlier in 

the season but is more likely associated with protecting female bees from parasitism and 

predation. Ultimately, this difference in resources provisioned along the nest tubes may have 

influenced the effect of quantity on the provisioning success models. Cell placement should 

therefore be taken into account when measuring the quantity of provisioned resources, and 

still may be an important factor in the provisioning success of bees. 

It was apparent that alongside increased provisioning success in O. bicornis, there was 

an increase in the percentage of females produced (Figure 6.8). When foraging for resources 

becomes difficult, either through reduced or distant resources, sex allocation increases 

towards the sex which takes less effort to provision (i.e. males in O. bicornis). This is because 

male O. bicornis have on average smaller body weight and shorter lifespan meaning they 

require fewer resources to females (Ulbrich & Seildelmann, 2001; Ivanov, 2006). When 

potential foraging is closer and greater in abundance to nesting sites this is reversed and 

more females are produced (Ivanov, 2006).  Therefore, the variation in females produced 
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may have been due to larger female bees laying more female eggs in certain sites, whilst 

smaller females lay male eggs as they are easier to provision (Ivanov, 2006; Seildelmann et 

al., 2010). As the number and size of bees released was standardised throughout the 

sampling area, the differences in females produced were either as a result of potential 

foraging quality of the surrounding habitat allowing bees to provision sufficient resource for 

female production, or that the site quality attracted larger females to nest there and usurp 

smaller females (Kim, 1997; Steffan-Dewenter & Schiele, 2004). More females within a habitat 

could directly influence the population dynamics of bees with a greater number of potential 

nest founders in that habitat for next season. In addition, as females are more active in 

visiting flowers for provision collection they are considered greater in pollination 

effectiveness compared to males. Helping to promote increases in female numbers in bees is 

an important aspect for further conservation efforts to take into consideration. This chapter 

suggests promoting habitat quality alongside adequate nesting resources could promote 

greater percentages of females in urban habitats. 

Another aspect of reproductive success in O. bicornis is the size of offspring, which 

was measured in this study as the weight of both bee’s‖body and cocoon. It was found to 

increase alongside the estimate of resource quality (protein) for each site. It is clear from the 

literature that the survival and future reproductive success of bees is directly and indirectly 

based on the quality of provisioned resources is. In the early stages of life, larger offspring 

are more successful in overwintering and provisioning young the following season (Strohm 

et al., 2002; Bosch & Kemp, 2004) and less susceptible to parasitism and disease (Di Pasquale 

et al., 2013; Alaux et al., 2010). Once emerged, larger females can achieve more desirable 

nesting space (Kim, 1997; Steffan-Dewenter & Schiele, 2004), are more successful in egg 

laying (Kim, 1997; Strohm et al., 2002) and have increased foraging abilities (Kim, 1997; 

Gathmann & Tscharntke, 2002; Bosch & Vicens, 2006; Neff, 2008). Likewise, for male bees 

body size is linked to their ability to hold mating territory (Alcock, 1994).  Pollen quantity 

and temperature have been shown to influence O. bicornis offspring development 

(Radmacher & Strohm, 2010), but pollen quality has not been shown to influence them. 

Controlled experiments in other species of bee show a larval diet with greater protein 

content increases offspring body size (Roulston & Cane, 2002; Quezada-Euán et al., 2011). 
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Therefore, not only does pollen quality indirectly affect provisioning success, but also the 

reproductive fitness of offspring produced. The next step towards increasing resource 

quality in terms of protein would be to identify what flowers bees are using in the urban 

environment, document their protein content and advise on planting schemes.  

In previous studies where nesting resources have been supplemented in fruit 

orchards, O. bicornis populations display an increase of 2.8 (Gruber et al., 2011) and 2.4 

(Steffan-Dewenter & Schiele, 2008) bees for each one in previous years. Over all sample sites, 

I recorded a population increase of 4.03 bees for each bee released. This is much higher than 

previous studies, but difficult to compare as this is for only one season and there was only 

3.3% compared to other studies with 17.1% of nest tubes showing signs of parasitism and 

13.6% found dead in their brood cells due to parasitism (Steffan-Dewenter & Schiele, 2008).In 

addition, this study design meant that unhealthy cocoons were excluded from the initial bees 

released, effectively removing the decrease in population due to fatalities. Therefore, 

although these results could suggest that urban areas are highly beneficial to O. bicornis 

population growth, this study represents a managed population more so than a naturally 

occurring one. Even‖ so,‖ this‖ experiment’s‖ supplementation‖ of‖ nesting‖ sites allowed a 

substantial number of O. bicornis offspring to be produced. Therefore, it seems likely that O. 

bicornis are nest-limited in the urban environment, supporting results obtained in managed 

orchards (Steffan-Dewenter & Schiele, 2008).  

O. bicornis is a species of bee known for their success in urban and suburban 

environments specifically within this study region (Bates et al., 2011; Chapter 2), most likely 

due to their generalist foraging and cavity-nesting traits (Chapter 4). In terms of the 

conservation of bees, supplementing the nesting potential in urban sites could go far to 

increase the population of bees. Furthermore, once nesting sites are not limited, the quality of 

resources available is shown as an important determinant of both provisioning success and 

reproductive success. By providing artificial nesting sites in urban areas for other species, as 

long as adequate resources are available urban areas can become a viable habitat for bees 

and mitigate species’ loss in light of increased urbanisation. 
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Chapter 7 
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7.1 Introduction 

By 2030, it is estimated that over five billion people will reside within urban areas 

(United Nations, 2011). Increased levels of urbanisation to cater for population increase may 

lead to impervious surfaces limiting vegetation and suppressing potential habitat (McKinney, 

2008) causing habitat reduction, isolation and fragmentation (Young & Jarvis, 2001). To 

ensure valuable ecosystem services continue to provide benefits to human populations, 

alleviating the loss of species diversity along urban-rural gradients is essential. Bees help to 

provide pollination services to 87.5% of all angiosperms (Ollerton et al., 2011) and to 35% of 

global food crops (Klein et al., 2007). Greater abundance, diversity and trait complementarity 

in bee assemblages can lead to increased pollination efficiency and effectiveness (Kremen et 

al., 2002; Hoehn et al., 2008; Bommarco et al., 2012; Garibaldi et al., 2013; Klatt et al., 2014). 

The impact of urbanisation on bees shows contrasting results depending on region and the 

type of site sampled. Consistent throughout the literature however, is how species-specific 

responses of bees along urban-rural gradients are evident across studies (Frankie et al., 2005; 

Cane et al., 2006; Kearns & Oliveras, 2009; Bates et al., 2011; Banaszak-Cibicka‖&‖Żmihorski,‖

2012). 

This thesis set out to improve understanding of how bee assemblages are altered 

along the urban-rural gradient, to gauge the impact this may have on the ecosystem services 

of pollination, whilst also improving the documentation and understanding of bee traits 

important to function. To further understanding of bee assemblage change along an urban-

rural gradient, this thesis increases regional and site type sampling replication within 

Birmingham, UK following on from Bates et al. (2011). 

 

7.2 Main findings  

7.2.1 Bee assemblage variation along an urban-rural gradient 

In church yards and cemeteries, Bates et al. (2011) found greater bee abundance in 

rural areas compared to suburban areas. However, in Chapter 2 canal side and parkland sites 

showed contrasting results, with more bees found in urban and suburban areas. This implies 

that sample site type plays an important role in the bees recorded and reinforces the need for 
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further site type replication along the urban-rural gradient. In Birmingham, gardens have not 

been sampled highlighting the need for further investigation in other habitat types.  

McIntyre (2000) suggested that arthropods show patterns in their response between 

urban and rural areas with: (i) rural taxa showing little or no presence in urban sites; (ii) 

urban taxa showing greater abundance or only occur in urban sites; and (iii) some taxa 

showing no difference between the two. Chapter 2 and previous literature (e.g. Cane et al., 

2006; Fetridge et al., 2008; Matterson et al., 2008; Banaszak-Cibicka‖&‖Żmihorski,‖2011; Bates 

et al., 2011) show this is usually the case with bee assemblages. The species recorded in this 

thesis’‖ urban‖ and‖ suburban‖ areas‖ included‖ 64‖ species‖ from‖ the‖ total‖ 76‖ species‖ recorded‖

throughout the entire experiment. Previously, urban and suburban areas have been noted to 

represent a large proportion of the regional bee diversity (Frankie et al., 2009) helping to 

provide pollination services throughout urban landscapes (Tommasi et al., 2004). Hence, 

within Birmingham canal sides and parkland sites may be beneficial to bees along the urban-

rural gradient. 

The implications of species’ variation on the ecosystem services of pollination are not 

clear. By further understanding the relative importance of species as individuals and as part 

of assemblages which facilitate pollination services, the effect of species-specific variation on 

pollination services will be assessed better. 

 

7.2.2 Furthering knowledge of potential influential traits to function 

The thesis set out to add to knowledge of the functional traits in bees that can add to 

or complement pollination efficiency in bees. It attempted to increase the understanding of 

the potential morphological differences in bees may affect pollen carryover by bees through 

an analysis of pilosity. This analysis found that body size and the type of pollen transport 

adaptation of bees explained a proportion of the variation found in bee pilosity.  This could 

have implications for pollen carryover in bees as previous analysis of trait complementarity 

reported body size as an important component in providing pollination, with larger bees 

transferring more pollen between flowers (Hoehn et al., 2008; Albrecht et al., 2012). In terms 

of trait analysis, pollen transport adaptations have been used before (Moretti et al., 2009) and 
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from our analysis, they explain hair length on areas adapted for pollen transport. Therefore, 

it is recommended that the pilosity of bees on areas of passive pollen collection and 

incidental pollen transport should be applied to future analysis, testing the variation and 

complementarity of pilosity metrics to pollination. 

 

7.2.3 The importance of traits in defining bee assemblage variation along the urban-rural 

gradient and the potential this may have for pollination services 

When traits were applied to the bee assemblage data collected as part of Chapter 2, 

there were clear associations between particular traits along the urban-rural gradient. Bees 

more commonly found in urban and suburban areas were social, foraging generalists, cavity 

nesters, that carried pollen on corbiculae, that were in general larger, had longer flight 

periods and were active in the spring and summer months. In contrast, bees in rural areas 

were more likely to be cleptoparasites, be ground-excavating nesters, have two broods per 

year, carry pollen on their legs and body with branched hairs and were active in the spring. 

In terms of trait diversity, urban and suburban sites had bee assemblages with a greater 

diversity of nesting strategies and durations of activity. On the other hand, bees of rural 

areas had increased trait diversity in foraging specialisation of assemblages and greater 

diversity in lecty, tongue types and seasonal presence.   

This highlights the importance of traits in assessing the change in bee assemblages 

between land-use types. It could also indicate trait complementarity loss within urban areas, 

with traits relating to foraging specialisation (e.g. lecty and tongue type) significantly more 

abundant in rural sites. However, a greater abundance of larger generalist bees in urban and 

suburban areas could compensate and provide pollination services despite loss of certain 

species (Albrecht et al., 2012; but see Winfree & Kremen, 2009). Interestingly, foraging 

specialists were found to increase in urban areas suggesting that canal side and parkland 

sites in urban areas may provide potential foraging and nesting resources for specialist 

species (e.g. Melitta haemorrhoidalis). This was supported in Chapter 5 which recorded the 

oligolectic species Chelostoma campanularum visiting test plants Campanula glomerata in urban 

areas.  
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7.2.4 Testing the pollination services provided between urban and rural land-use types 

Chapter 5 reported that seed-set of test species did not vary between the urban and rural 

sites of the study area. This suggests that across Birmingham, species-specific responses to 

the urban-rural gradient (Chapter 2) which led to trait diversity variation (Chapter 4) did not 

have significant influence on the pollination services bees provide. This was corroborated by 

similar levels of bee visits on test flowers between land-use types, suggesting equal pollen 

carryover in both land-use types. Before conclusions can be made regarding the implications 

of urbanisation on pollination services however, different species of plant (e.g. broad bean, 

vipers bugloss) will need to be tested in more site types (e.g. gardens and parkland) in 

different regions. 

 

7.2.5 Resource provisioning potential and subsequent population dynamics of bees within an 

urban context 

Once nesting sites were added to an urban environment, the main determinant of 

brood cell provisioning success was resource quality. This suggests that the quality of 

resources in the immediate area of nesting sites could play an important role in provisioning 

rate of their offspring. In addition to increased provisioning rate, sites showed larger 

offspring and greater percentages of females produced with protein content of resources 

provisioned.  This suggests there were implications for the reproductive success for O. 

bicornis between sites based on the level of quality of resources bees were able to provision. 

This leads me to believe that both nesting and foraging resources are integral in promoting 

reproductive success of bees in urban environments. Therefore, although nesting sites are 

required to support a diversity of bees in the first place, along the urban-rural gradient 

quality foraging resources are needed to ensure population growth and reproductive success 

in bees. 

 



 

 

144 

 

7.2.6 General Conclusions 

This thesis found that the canal sides and parkland of Birmingham are important 

habitats for bees along the urban-rural gradient and showed contrasting results to 

churchyards and cemeteries in the same area (Bates et al., 2011). Species-specific responses, 

most likely determined by their individual traits, were evident. However, this showed no 

deleterious impact on pollination service in Campanula glomerata between urban and rural 

areas. This highlights the importance of further analysis of functional traits and their 

individual and complementary importance towards the function of pollination. This would 

greatly benefit analysis of trait diversity along the urban-rural gradient and its impact on 

pollination services. One way this thesis suggests mitigating species change and potential 

trait diversity loss in urban areas is through providing a diversity of nesting and foraging 

resources throughout the urban-rural gradient. Chapter 4 shows how nesting and foraging 

traits dictate bee assemblage variation across this gradient, whilst Chapter 6 highlights the 

potential of urban bee populations as long as nesting and foraging resources are present and 

of sufficient quality.  

 

7.3 Potential limitations of the study 

- This‖thesis’ investigation concentrates on one region only, namely Birmingham, UK 

and the wider area. Although this study builds upon the previous work of Bates et al. 

(2011) by increasing the level of regional and site type replication, there is still a limit 

to the comparability of findings to other cities. A study of multiple cities will allow 

for further interpretation of how bee assemblages are affected by different urban-

rural gradients. However, for this thesis, it was decided that effort and resources 

were better suited to intensive survey and investigation within the same region to 

complement each another. 

 

- In terms of methods, one limiting factor of this study is the division of land-use types.  

Urban, suburban and rural sites were grouped based on a more complex grouping 

system of 1 km2 blocks of land by Owen et al. (2006). However, it could be argued 
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that‖the‖‘dense‖suburban’‖group‖that‖Owen‖et‖al.‖(2006)‖used could be placed either in 

urban or suburban land-use type. Hernandez et al. (2009) stated that variety of ways 

the urban-rural gradient is measured one of the limiting factors in achieving a 

comprehensive conclusion in studies testing bee assemblages along urban-rural 

gradients. Therefore, it is important to future studies that the use of a methodological 

framework specifically associated with how urban, suburban and rural areas are 

defined. 

 

- In addition to this, the vegetation data derived from photogrammetry may not be 

fully representative of all vegetation. This method involved detecting the colour 

green from aerial photography, rather than measuring vegetation itself. Although the 

vegetation layer was checked and corrected in ArcGIS v 10 before analysis, there is 

still a level of inaccuracy within this dataset.  

 

- One main constraint of the analysis when comparing species and their responses to 

the urban-rural gradient is that presence does not necessarily mean nesting or 

survival at that particular site. The relative size of bees (Gathmann & Tscharntke, 

2002) can define their foraging range and dispersal ability. Therefore, the greater 

abundance of social bumblebee species in urban areas could be a consequence of 

greater foraging range allowing them to use the resources available in isolated 

habitats.  This is one potential consequence of analysing all species based on 

landscape scales as bees with greater foraging ranges may be surveyed but not 

necessarily be nesting in the site they are found. An experiment investigating the 

genetic diversity of the bees foraging in urban habitats (such as that of Chapman et al., 

2003) could have provided clarity in how dense and related bumblebee populations 

were in this study area if genetic sampling was undertaken. Otherwise, estimating 

nesting sites through intensive sampling may have given an idea of the nesting 

potential each site provided. 
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- Bee assemblages are known to fluctuate between seasons and years (Oertli et al., 

2005). Although bee assemblage data were collected over two years, there still may 

have been seasonal variation in the data. Likewise, for the artificial nesting 

experiment in Chapter 5 and 6, this was for only one season. Further research 

between seasons is required to support this chapter’s findings and test that 

reproductive success is consistent with our findings between years. 

 

7.4 Implications for conservation and planning policy 

As nesting site limitation is noted as a main determinant of a species’ population 

growth (Steffan-Dewenter & Schiele, 2008), this thesis suggests that creating more diverse 

nesting opportunities for a variety of different species of bee is an effective form of 

conservation for bees along urban-rural gradients. However, as foraging quality is associated 

with provisioning and reproductive success in urban areas (Chapter 6), a diversity of 

foraging resources is also essential in providing benefits to bees along urban-rural gradients. 

From the results of this thesis, it is suggested that increasing the diversity of nesting and 

foraging resources available throughout the urban-rural gradient is crucial in limiting the 

loss of species from different land-use types.  

Through the experiments undertaken in this thesis, it is apparent that canal side and 

parkland sites used in the sampling of data for Chapters 2 and 4 provided beneficial 

resources to bees in urban areas.  These sites could be used as focal points for such 

conservation efforts, to increase nesting and foraging opportunities for a diversity of bee 

species as they are already using these sites. However, the importance of other aspects of 

habitat should not be overlooked as a variety of green space and gardens could be 

potentially beneficial habitats for bees (Goulson et al., 2003; Cussans et al., 2010).  

Through conservation efforts, evidence suggests that the application of management 

for wild bees has helped to increase a range of other biodiversity. The planting of meadows 

with nectar and pollen-rich seed mixtures intends to increase pollinator abundance and 

diversity. This has been seen to result in a cascade affect whereby ecosystem services such as 

soil protection and water quality have been increased in sites designated for bee 
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conservation (Wratten et al., 2012). Hence, providing resources for bees along the urban-rural 

gradient may have a subsequent benefit to other taxa (e.g. hoverflies and wasps) and support 

a range of ecosystem services. 

 

7.5 Recommendations for future research 

Every city is unique in its development, form and geographical context, which limits 

the comparison of ecological analyses between cities. When assessing bee assemblages 

between cities, there are inherent differences in the species present, limiting comparison of 

species and their responses. The comparison of bee assemblages between cities is also 

restricted by the various methods and intensities of bee sampling between studies (Cane et 

al., 2006; Fetridge et al., 2008; Matteson et al., 2008; Bates et al., 2011; Banaszak-Cibicka & 

Żmihorski,‖2012). Bates et al. (2011) suggested that a common framework for sampling bee 

assemblage variation along the urban-rural gradient could help to clarify understanding of 

how urbanisation impacts upon bees across cities and regions. This has been conducted with 

carabid assemblages using GLOBENET (Niemelä et al., 2000; Sadler et al., 2006; Niemelä & 

Kotze, 2009). By standardising the methodology, there could be greater interpretability in the 

results of studies investigating bee assemblage variation along the urban-rural gradient. 

Even if a common framework is not achieved, until regional and methodological replication 

is increased firm conclusions of the general response of bee assemblages to urbanisation may 

not be drawn.  

This thesis underlines the importance of life-history traits in defining bee assemblage 

variation along the urban-rural gradient. Between regions, it becomes difficult to compare 

results of bee species’ variation because regional species’ distribution is different. Alongside 

a framework for sampling methodology, by using the traits associated with each species 

rather than the species as an individual unit of measurement itself, a greater level of 

comparability may be achieved. This could enable conservation and planning policy to plan 

for specific bee taxa in urban areas and use that information accordingly to reduce the 

variation in bee assemblages along the urban-rural gradient.  
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Wider than urban bee studies, I recommend further investigations into the 

importance of species variation along landscape gradients incorporate functional diversity 

into their analysis. Obviously, having trait data is essential in these analyses, but the 

potential benefits of applying ecological and behavioural traits to bee assemblage data are 

worthwhile. It is believed that with a constantly changing environment, the amount of 

functional redundancy that remains in bee assemblages is vital to continuing pollination for 

certain plant species (Albrecht et al., 2012; Fründ et al., 2013). More information regarding 

which functional traits are important for pollination services is required so it can be 

determined how pollination services may be affected alongside bee species’ variation. 

Specifically, areas that require further investigation include testing the importance of specific 

traits and combinations of traits in influencing pollination efficiency and success. Pilosity 

and its relative importance as a complementarity trait in pollen carryover are highlighted as 

key aspects in the future for functional diversity analysis, and are recommended to be used 

in future analyses. 
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Appendix I 

Supplementary information for Chapter 2 

Table AI.1 Species table of recorded bees along the urban-rural gradient of Birmingham, 

UK from canal side and parkland sites using six pan trapping and two sweep netting 

surveys in 2011 and 2012 

 

Species’ Scientific Names 
Urban 

Abundance 

Suburban 

Abundance 

Rural 

Abundance  

Total 

Abundance 

Andrena barbilabris 0 4 0 
 

4 

Andrena bicolor 43 99 147 
 

289 

Andrena carantonica 10 9 8 
 

27 

Andrena chrysosceles 0 0 2 
 

2 

Andrena cineraria 7 25 6 
 

38 

Andrena clarkella 0 1 0 
 

1 

Andrena denticulata 1 1 0 
 

2 

Andrena dorsata 4 3 1 
 

8 

Andrena flavipes 0 2 3 
 

5 

Andrena fulva 16 14 1 
 

31 

Andrena haemorrhoa 7 22 22 
 

51 

Andrena helvola 0 0 1 
 

1 

Andrena labiata 0 0 1 
 

1 

Andrena minutula 19 39 40 
 

98 

Andrena nigriceps 0 2 0 
 

2 

Andrena nigroaenea 24 23 15 
 

62 

Andrena nitida 9 3 7 
 

19 

Andrena semilaevis 2 3 8 
 

13 

Andrena subopaca 3 0 10 
 

13 

Anthidium manicatum 0 0 1 
 

1 

Anthophora furcata 6 2 1 
 

9 

Anthophora plumipes 18 16 1 
 

35 

Apis mellifera 26 49 58 
 

133 

Bombus barbutellus 0 0 1 
 

1 

Bombus bohemicus 2 0 1 
 

3 

Bombus hortorum 13 29 29 
 

71 

Bombus hypnorum 20 33 5 
 

58 

Bombus lapidarius 157 174 54 
 

385 

Bombus lucorum 98 82 42 
 

222 

Bombus pascuorum 83 111 61 
 

255 

Bombus pratorum 59 45 18 
 

122 

Bombus rupestris 5 4 10 
 

19 

Bombus sylvestris 1 8 3 
 

12 
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Bombus terrestris 103 102 42 
 

247 

Bombus vestalis 2 1 4 
 

7 

Chelostoma florisomne 0 0 2 
 

2 

Coelioxys inermis 0 1 0 
 

1 

Colletes daviesanus 33 0 2 
 

35 

Halictus rubicundus 16 20 13 
 

49 

Halictus tumulorum 18 52 21 
 

91 

Hoplitis claviventris 0 0 3 
 

3 

Hylaeus communis 23 12 10 
 

45 

Hylaeus hyalinatus 18 4 4 
 

26 

Lasioglossum albipes 20 40 33 
 

93 

Lasioglossum calceatum 19 36 24 
 

79 

Lasioglossum cupromicans 0 1 0 
 

1 

Lasioglossum leucopus 12 16 12 
 

40 

Lasioglossum leucozonium 2 0 1 
 

3 

Lasioglossum malachurum 0 0 1 
 

1 

Lasioglossum morio 3 5 7 
 

15 

Lasioglossum rufitarse 0 4 1 
 

5 

Lasioglossum smeathmanellum 77 19 6 
 

102 

Lasioglossum villosulum 1 0 0 
 

1 

Megachile centuncularis 18 2 2 
 

22 

Megachile circumcincta 2 2 1 
 

5 

Megachile ligniseca 12 21 2 
 

35 

Megachile versicolor 0 0 1 
 

1 

Megachile willughbiella 27 6 2 
 

35 

Melecta albifrons 0 1 0 
 

1 

Melitta haemorrhoidalis 1 7 0 
 

8 

Nomada fabriciana 11 12 24 
 

47 

Nomada flava 0 2 31 
 

33 

Nomada flavoguttata 2 6 5 
 

13 

Nomada goodeniana 1 2 3 
 

6 

Nomada marshamella 0 1 2 
 

3 

Nomada obtusifrons 0 1 1 
 

2 

Nomada panzeri 0 7 5 
 

12 

Nomada ruficornis 0 0 6 
 

6 

Nomada striata 0 0 2 
 

2 

Osmia caerulescens 12 11 3 
 

26 

Osmia leaiana 4 3 4 
 

11 

Osmia bicornis 65 58 68 
 

191 

Sphecodes crassus 5 0 0 
 

5 

Sphecodes ferruginatus 0 0 1 
 

1 

 
     

All Species 1142 1259 908 
 

3309 
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Figure AI.1: The proportion  of bee species’ abundance between Urban (Red), Suburban 

(Orange) and Rural (Green) land-use types in Birmingham, UK from canal side and 

parkland sites using six pan trapping and two sweep netting surveys in 2011 and 2012 
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Figure AI.2: Photographs of typical sample sites along (a & c) canal sides 

and in (b) parkland. Photos: R Fowler. 
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Appendix II 

Supplementary information for Chapter 3 

 

Table AII.1: The species measured as part of Chapter 3’s analysis of pilosity, including 

species’ codes, and the mean (mode for hair type) values for each pilosity measurement, as 

well as their body size (ITD), the PTG they were assigned to and the cluster they were 

grouped into based on their pilosity values. 1 hair types consisted of 1=smooth, 2=scaled, 

3=branched <1 µm, 4=branched 1-2 µm, 5=branched >2 µm. 2 ITD is the distance between the 

tegulae (wing bases) as a measure of body size. 3 Pollen Transport Groups (PTGs) were 

defined following Thorp (1979) (Table 3.1). 

 

Species Code 

Hair 

Length 

(µm) 

Hair 

Spacing 

(µm) 

Hair 

Cover (%) 

Hair 

Type1 

ITD2 

(µm) 
PTG3 

Andrena angustior A.ang 423 37.3 94 2 2384.4 1 

Andrena barbilabris A.bar 541.7 45.4 72 3 2318.6 1 

Andrena bicolor A.bic 476.2 33.5 100 4 1991.9 1 

Andrena carantonica A.car 549.9 41.0 100 4 2710.2 1 

Andrena chrysosceles A.chr 336.3 42.5 85.5 1 1811.4 1 

Andrena cineraria A.cin 584.4 47.5 78 2 2621.5 1 

Andrena clarkella A.cla 768.6 26.8 80 3 3298.2 1 

Andrena coitana A.coi 231.8 43.1 73 3 1511.4 1 

Andrena denticulata A.den 528.7 30.7 89 4 2153.6 1 

Andrena dorsata A.dor 373.5 49.8 78 3 2148.4 1 

Andrena fucata A.fuc 438.3 33.5 100 5 2127.1 1 

Andrena fulva A.ful 747.4 28.6 89.5 4 2880.2 1 

Andrena fuscipes A.fus 547.8 29.0 81 1 2425.7 1 

Andrena haemorrhoa A.hae 471.8 43.1 87 4 2615.3 1 

Andrena helvola A.hel 549.2 31.8 100 4 2200.2 1 

Andrena labialis A.lab 566.5 35.5 100 3 2599.3 1 

Andrena lapponica A.lap 598.4 39.7 100 3 2498.4 1 

Andrena minutula A.min 222.1 53.4 58.5 3 1377.6 1 

Andrena nigroaenea A.nig 673.4 28.4 100 4 2728.2 1 

Andrena nitida A.nit 592.4 34.7 100 4 2791.9 1 

Andrena ovatula A.ova 326.3 31.7 99 4 1982.8 1 

Andrena praecox A.pra 605.8 33.9 100 3 2157.3 1 

Andrena semilaevis A.sem 244.3 42.6 92 4 1323.6 1 

Andrena similis A.sim 369.3 50.7 84.5 1 2275.5 1 

Andrena subopaca A.sub 104.21 82.8 80 4 1350.6 1 

Andrena synadelpha A.syn 574.8 29.7 100 4 2133.9 1 
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Andrena tarsata A.tar 276.6 36.8 57.9 3 1745.8 1 

Andrena thoracica A.tho 633.8 43.5 81 1 3091.8 1 

Andrena wikella A.wik 377.1 43.1 91.5 1 2340.9 1 

Anthidium manicatum An.man 453.4 47.3 100 1 2038.4 3 

Anthophora furcata A.fur 538.3 36.7 90 3 2792.2 5 

Anthophora plumipes A.plu 776 33.0 100 2 2613.1 5 

Apis mellifera Ap.mel 235.392 44.4 100 1 2917.9 6 

Bombus barbutellus B.bar 1448.8 36.9 100 4 1996.1 6 

Bombus bohemicus B.boh 1225.8 36.5 100 2 1405.2 6 

Bombus campestris B.cam 1555 37.3 100 3 1634.8 6 

Bombus hortorum B.hor 1416.9 42.0 90 3 1748.1 6 

Bombus humilis B.hum 1158.5 46.2 90 3 1261.4 6 

Bombus hypnorum B.hyp 1353.6 45.2 100 2 1453.9 6 

Bombus jonellus B.jon 936.8 39.6 100 3 1352.2 6 

Bombus lapidarius B.lap 1128 43.3 100 3 1554.4 6 

Bombus lucorum B.luc 1222 42.4 100 2 1113.2 6 

Bombus monticola B.mon 1277.6 108.7 86 2 1585.5 6 

Bombus muscorum B.mus 798.4 44.7 100 3 855.8 6 

Bombus pascuorum B.pas 1397.3 43.1 100 3 1113.4 6 

Bombus pratorum B.pra 1294 46.3 100 3 1242.0 6 

Bombus ruderarius B rudr 1293.2 45.3 100 2 1161.2 6 

Bombus ruderatus B.rudt 1203.5 34.3 90 3 1211.9 6 

Bombus rupestris B.rup 1005.8 40.8 90 2 1309.4 6 

Bombus soroeensis B.sor 1090.8 46.2 92 3 3230.5 6 

Bombus sylvarum B.sylm 1286.3 62.2 100 3 955.3 6 

Bombus sylvestris B.syls 1344.5 41.8 100 2 1728.2 6 

Bombus terrestris B.ter 1589.4 49.2 100 3 2738.2 6 

Bombus vestalis B.ves 1128.5 54.0 89 2 2655.4 6 

Chelostoma campanularum C.cam 117.9 36.9 77.5 1 3023.7 3 

Chelostoma florisomne C.flo 313.5 40.2 94 3 1756.3 3 

Coelioxys elongata C.elo 218.5 30.5 83 1 3228.9 3 

Coelioxys inermis C.ine 190.9 49.5 97 1 3549.7 3 

Coelioxys rufescens C.ruf 280 34.4 92 1 3932.5 3 

Colletes daviesanus C.dav 320.9 33.9 99.5 4 3757.2 1 

Colletes fodiens C.fod 382.2 37.6 100 4 3140.0 1 

Colletes similis C.sim 356.7 33.8 100 1 3690.1 1 

colletes succinctus C.suc 441.9 31.3 100 4 1895.5 1 

Dasypoda hirtipes D.hir 744.9 49.0 100 3 2374.3 4 

Epeolus cruciger E.cru 52 38.0 72 1 2449.8 7 

Epeolus variegatus E.var 77 37.8 92 3 3207.0 7 

Eucera longicornis E.lon 538.3 28.6 100 3 2778.8 6 

Halictus rubicundus H.rub 366.5 29.6 100 4 3330.6 2 

Halictus tumulorun H.tum 198.1 36.7 93 4 4726.9 2 

Hoplitis claviventris H.cla 272.2 47.3 88 1 2372.1 3 
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hylaeus brevicornis H.bre 40.8 31.8 82 1 2686.6 7 

Hylaeus communis H.com 58.4 41.0 62 1 2176.2 7 

Hylaeus confusus H.con 66.5 67.0 100 1 1599.3 7 

Hylaeus hyalinatus H.hya 66.1 56.2 72 1 2713.8 7 

Lasioglossum albipes L.alb 271.4 38.2 100 4 4857.0 2 

Lasioglossum calceatum L.cal 246.3 41.5 100 4 5143.4 2 

Lasioglossum cupromicans L.cup 147.3 39.5 83 3 4596.6 2 

Lasioglossum fratellum L.fra 174.7 32.3 69 3 5517.8 2 

Lasioglossum fulvicorne L.ful 208.7 39.2 94 4 5761.9 2 

Lasioglossum lativentre L.lat 215.5 38.7 100 4 5599.2 2 

Lasioglossum leucopus L.leu 164.7 46.2 77 4 4502.1 2 

Lasioglossum malacha L.mal 132.408 40.5 75 4 4390.2 2 

Lasioglossum minutissimum L.min 132.8 39.9 81.5 4 5892.2 2 

Lasioglossum morio L.mor 151.3 42.3 81.5 4 5374.6 2 

Lasioglossum nitidiusculum L.nit 172.8 42.0 78 4 3663.3 2 

Lasioglossum parvulum L.par 158.8 55.6 89 4 6347.9 2 

Lasioglossum smeathmanellum L.sme 185.3 43.3 80 4 5293.3 2 

Lasioglossum villosulum L.vil 204.8 55.6 100 4 5859.6 2 

Macropis europaea M.eur 294.4 34.0 100 1 6250.2 5 

Megachile centuncularis M.cen 501.3 58.8 96 1 5677.4 3 

Megachile circumcincta M.cir 255.008 40.9 100 1 4922.2 3 

Megachile ligniseca M.lig 603.4 58.9 100 1 5810.8 3 

Megachile maritima M.mar 690.3 43.3 92 1 4798.4 3 

Megachile versicolor M.ver 484.1 36.8 90 1 6445.6 3 

Megachile willughbiella M.wil 613.7 47.8 100 1 5696.9 3 

Melecta albifrons M.alb 632.6 24.1 100 3 3471.5 6 

Melitta leporina M.lep 511.3 33.2 92 1 4124.0 5 

Nomada fabriciana N.fab 102.1 41.8 92 1 1906.9 7 

Nomada flava N.fla 140.2 34.9 100 1 1865.5 7 

Nomada flavoguttata N.flav 68.8 81.7 52 1 1055.3 7 

Nomada goodeniana N.goo 139.5 64.1 53 1 1321.0 7 

Nomada lathburiana N.lat 168.7 57.7 100 1 1308.8 7 

Nomada leucophthalma N.leu 161.9 67.8 72.5 1 1317.5 7 

Nomada marshamella N.mar 126.2 89.9 62 1 1579.8 7 

Nomada panzeri N.pan 110.7 63.5 76 1 1873.2 7 

Nomada ruficornis N.rufc 106 50.0 64 1 1088.5 7 

Nomada rufipes N.rufp 90.2 70.3 90 1 2050.6 7 

Nomada striata N.str 109.5 57.4 94 1 2171.7 7 

Osmia aurulenta O.aur 515.6 63.8 100 3 2015.9 3 

Osmia caerulescens O.bic 391.8 66.4 84 1 2519.2 3 

Osmia leaiana O.cae 457.3 92.7 89 1 1609.2 3 

Osmia bicornis O.lea 929.5 89.5 100 3 1820.0 3 

Panurgus banksianus P.ban 393.9 60.7 100 3 1524.3 5 

Panurgus calcaratus P.cal 274.1 78.8 100 1 1646.9 5 
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Sphecodes ephippius S.eph 137.3 76.3 84 1 1350.4 7 

Sphecodes geoffrellus S.geo 132.8 92.2 62 1 1100.5 7 

Sphecodes gibbus S.gib 159.1 68.3 90 1 1629.2 7 

Sphecodes hyalinatus S.hya 122.8 63.1 100 1 1227.0 7 

Sphecodes monilicornis S.mon 215.5 77.9 55 1 1593.1 7 

Sphecodes pellucidus S.pel 182 46.4 84 1 1692.2 7 

Sphecodes puncticeps S.pun 120.3 58.2 86 1 1136.5 7 

Sphecodes reticulatus S.ret 180.7 112.8 91 1 1522.5 7 

 

 

 

 

 
 

Figure AII.1: Principal Components Analysis biplot of hair length, spacing, cover and type 

measured from 122 species of bee. Variables in red indicate the area on‖the‖bee’s‖body and 

type‖of‖measurement‖taken,‖those‖ending‖in‖‘.L’=length,‖‘.S’=spacing,‖‘.C’=cover‖and‖‘.T’=type.‖

For species’ code reference, see Table AII1. 
 


