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Abstract 

Microwave filters and multiplexers are used in many application areas and have been studied 

for decades. However, with increasing demands on communications and radar systems more 

complex filters are required which not only have superior performance but also are required to 

be small and lightweight. This thesis looks at new techniques in microwave filter design to 

achieve these aims. 

Coupled resonator circuits are of importance for design of RF/microwave narrow-band filters 

with any type of resonator regardless its physical structure. The coupling matrix is used to 

represent the coupled resonator circuit. Each matrix entry value refers to a physical dimension 

of the circuit. The response of the circuit can also be calculated by using the coupling matrix.  

Different methods are developed to generate the coupling matrix. This thesis presents designs 

of the coupled resonator based diplexers and multiplexers by using the coupling matrix local 

optimisation technique. By altering the values of the matrix, the optimisation program search 

for a particular matrix with the desired circuit response. The initial values of the matrix, which 

is used as the input of the optimiser, have a great effect on the convergence of the final result 

of the optimisation. The principles of generating the good initial values of the matrix are 

included in this thesis. The design procedures and measurement performance of 3 X-band 

(8.2-12.4 GHz) rectangular waveguide circuits, including a 10th order diplexer, a 4th order 

diplexer with cross-couplings and a 4-channel multiplexer, are presented.  

A novel computer-aided physical structure tuning technique, called Step Tune method, is also 

presented in this thesis. Instead of conventionally tuning the whole structure, we simulate and 

tune just part of the circuit by using the new method. As only limited number of physical 

dimensions is tuned each time, the final result is more reliable.   
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Chapter 1  Introduction 

1.1 Overview of Diplexers and Multiplexers, and Their Applications 

Signals are transmitted (TX) and received (RX) through antennas in a wireless 

communication system. In order to save the space and cost, a single antenna is generally 

shared by both TX and RX channels working at different frequencies [1]. Diplexers and 

Multiplexers are applied here to channelize signals of different frequencies. Diplexers are for 

2 channels while multiplexers are for multiple channels. As the key components in the 

communication system, diplexers and multiplexers are used in cellular base stations, satellite 

payload systems, Wi-Fi and WiMAX systems, and many other microwave systems.  

Conventionally, a multiplexer is formed of a set of filters, usually known as the channel filters, 

and a common junction for the signal division [2]. The structure of a traditional multiplexer 

with n-channel is given in Figure 1.1. 
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Figure 1.1 Block diagram of the multiplexer. 

The multiplexer is critical part of the conventional satellite payload system [2]. The block 

diagram of a satellite payload system is shown in Figure 1.2. It is formed of an antenna for 

signal reception and transmission, a low-noise receiver, input and output multiplexers, and 

high-power amplifiers. 
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Figure 1.2 Simplified block diagram of the satellite pay load system [3]. 

One of the main applications of the diplexer is used as the front-end transmit/receive (Tx/Rx) 

diplexer [3]. It has one channel for the signal transmission and the other channel for the signal 

reception. 
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Amplifier

TX

RX

 
Figure 1.3 Block diagram of the RF front end of a cellular radio base station [3]. 

The structure of the front-end transmit/receive is given in Figure 1.3. It is widely used in the 

cellular base stations [2]. 

1.2 Thesis Motivation 

In a communication system, there is a demand for miniature devices with smaller size and less 

weight. A diplexer configuration by Skaik and Lancaster [4] removes the need of the common 

junction. This allows a significant reduction in size of the diplexer. In this thesis, this 

configuration is studied further as well as being extended to multiplexers with more channels 
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and complex topologies. 

Coupled resonator circuits are very important in RF/microwave filters design [5]. The 

topology and filter characteristics of a circuit based on coupled resonators can be described by 

a matrix M, called the coupling matrix M, and its external quality factors Qe whatever the 

physical structure of the device [6].  A typical matrix is given below in (1.1). 

 

1,1 1,2

2,1 2,2 2,3

3,2 3,3 3,4

4,3 4,4

1 2

0 0 0 0.091 0 0

0 0.091 0 0.070 0

0 0 0.070 0 0.091

0 0 0 0 0.091 0

9.314   9.314e e

M M

M M M
M

M M M

M M

Q Q

   
   
    
   
   

  

 

 (1.1) 

Port 1 1 2 Port 243

1,2M 2,3M 3,4M1eQ 2eQ

1,1M 2,2M
3,3M 4,4M

 
(a) 

1,2M

2,3M

3,4M

1eQ

2eQ

1,1M

2,2M

3,3M

4,4M

Port 1

Port 2

 
(b) 

Figure 1.4 (a) Schematic of the 4
th

 order filter. Each circle represents a resonator and the short 

lines between resonators are for the couplings between resonators. The line between the port 

and resonator represents the external coupling. (b) Its equivalent rectangular waveguide 

circuit. 
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The schematic of the matrix in (1.1) and one of its practical circuits in the form of rectangular 

waveguides are shown in Figure 1.4 (More details will be given in the later chapters). Each 

matrix entry Mi,j and Qe in (1.1) is related to a physical dimension of the circuit shown in 

Figure 1.4(b).  

After the matrix is calculated, a physical structure of the circuit is determined. It is followed 

by the extraction of each physical dimensions based on the matrix entry values. After putting 

all the physical dimensions together, a computer-aided overall structure tuning or optimisation 

work is undertaken to make the device satisfy the specifications. For the circuit with a large 

number of resonators and complex topology, the traditional design technique becomes 

unreliable. This is because too many physical dimensions are altered each time in the 

optimiser, the convergence of the tuning of the overall structure is not guaranteed.  

To solve the problem, a novel design technique, called the Step Tune method [7], is reported 

in the thesis. Instead of tuning the whole circuit all the time, we simulate and tune just part of 

the circuit by using the new method.  

For example, as shown in Figure 1.5, the process of tuning the 4
th

 order filter can be divided 

into 4 steps. In Step One, only one resonator is simulated and tuned. The schematic of the 

circuit in Step One is shown in Figure 1.5(a). After finishing tuning the first resonator, one 

more resonator is added and then the circuit, in Figure 1.5(b), is tuned again. Resonators are 

added successively in the remaining steps, in Figure 1.5(c) and (d). At each step, the old 

resonators, which have been tuned in the previous steps, are kept the same values. For each 

step, a new coupling matrix is required for the tuning. By using the Step Tune method, only 

limited number of physical dimensions (just one resonator) is tuned each time. The response 

of the device is very close to the desired one. 
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21 Port 2Port 1
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1 2 Port 23Port 1
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21 4 Port 23Port 1
 

(d) 

Figure 1.5 Process of tuning the 4
th

 order filter by using Step Tune method. (a) Step One. (b) 

Step Two. (c) Step Three and (d) Step Four. The part of the circuit being tuned in each step is 

marked in red.  

1.3 Thesis Overview 

The thesis is formed of 8 chapters, intended to present the work of coupled resonator based 

multiplexers with a novel topology. 

Chapter 1 contains the objectives and motivation of the work which is presented in the thesis. 

An overview of the thesis structures is also included in this chapter. 

Chapter 2 provides the fundamental theories required by the work presented in the later 

chapters. It starts with the general filter theory and microwave filter theory. A brief 

introduction of the coupling matrix theory is given, including the different methods to obtain 

the coupling matrix. The cross-coupled structures are introduced at the end of the chapter. 

In Chapter 3, the derivation of the n+X coupling matrix of the n-coupled resonators with 

multiple ports is given in detail. The relationship between the scattering parameters and the 
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n+X coupling matrix is also derived.  

A coupling matrix synthesis method based on a local optimisation technique is discussed in 

Chapter 4.  The topology of the multiplexer is called the Tree Topology. The principles of 

generating the high quality initial values of the coupling matrix with the Tree Topology are 

included in the chapter. Numerical coupling matrix examples are illustrated. 

For the coupled resonator circuit based on the rectangular waveguides, a traditional design 

procedure is given in Chapter 5. It is followed by the design of an X-band 10-resonator 

rectangular waveguide diplexer. By using the Step Tune method, the redesign of the 10-

resonator diplexer is given at the end of Chapter 5.  

In Chapter 6, the design of an X-band 4-resonator rectangular waveguide diplexer with cross 

couplings is given. With the help of the cross-couplings, the response of the diplexer has been 

improved.  

The Tree Topology is extended to the multiplexers with 4 channels. The design of an X-band 

4-channel multiplexer is presented in Chapter 7.  

The whole thesis is concluded in Chapter 8.  Suggestions for future work are included at the 

end of the chapter. 
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75. 



7 

 

[6] J.-S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications. New York ; 
Chichester: Wiley, 2001. 

[7] X. Shang, W. Xia, and M. J. Lancaster, "The design of waveguide filters based on cross-
coupled resonators," Microwave and Optical Technology Letters, vol. 56, pp. 3-8, 2014. 

 

 



8 

 

Chapter 2  Literature Review 

2.1 General Filter Theory 

A filter is a two-port frequency selective device to attenuate signals of undesired frequency 

range (called stop-band) while allowing desired ones (pass band) to pass through.  

Filters are classified in several ways. In terms of the attenuation characteristics, filters can be 

classified into four categories, including low-pass, high-pass, band-pass and band-stop. 

According to the location of the poles and zeros of the transmission function, filters can also 

be defined into different response functions. For example, as given in Figure 2.1, a filter has a 

Chebyshev response if the transmission response (S21) has equal-ripple within the passband.  

 
Figure 2.1 S-parameters of a 5

th
-order Chebyshev band-pass filter. Where S21 is the 

transmission response of the filter and S11 is its reflection response. 

General filter theory is based on lumped elements. A lumped element based filter circuit is 

formed of independent capacitors, inductors and resistors. In order to attenuate signals more 

quickly (i.e. sharp slope at the cut-off), the simplest method is to increase the number of 
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lumped elements in a periodic topology or the circuit leading to a higher order n. The ladder 

topology is the most commonly used periodic topology in filter design. The low-pass all-pole 

lumped filter with ladder topologies are given in Figure 2.2 [1]. 

g0 g2 gn

g1 g3 gn

gng0 g1

g2

g3

gn

gn+1 gn+1or

orgn+1 gn+1

n is even

n is even

n is odd

n is odd

(a)

(b)
 

Figure 2.2 Lumped element based low-pass filters with all pole responses in (a) a ladder 

topology and (b) its dual. 

Where n is the order of the filter or the total number of reactive elements (inductors and 

capacitors) in the circuit. g0 and gn+1 are the resistance or conductance of the source and the 

load. gi (i=1 to n) represents the inductance of the series inductor or the capacitance of the 

parallel capacitor. The circuit either in (a) or (b) may be used to generate the same response as 

they are dual to each other. Similar ladder topologies for the high-pass, band-pass and band-

stop lumped filters are illustrated in [1]. 

2.2 Microwave Filter Theory 

2.2.1 Lumped and Distributed Elements for Microwave Filters 

Microwave filters commonly refer to filters working at frequencies ranging from 300MHz to 

300GHz [1]. Although there is usually a limited range of values available for the lumped 
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element components, many microwave circuits today are formed of lumped elements for their 

more compact size [2]. But during the early years of the last century, lumped circuits were not 

feasible at very high frequency due to the high energy loss of the lumped elements and the 

serious radiation of the transmission lines [3].  

The distributed elements, such as waveguides, are explored as the substitute for the lumped 

elements[4]. For example, a waveguide cavity is introduced as a replacement for the resonant 

circuit formed of lumped elements while hollow-pipe waveguides are used as the transmission 

lines. 

In contrast to lumped elements, in a distributed circuit, it is not possible to separate out 

individual resistances, capacitances and inductances [3]. So the general filter theory based on 

the lumped elements is not suitable for the distributed circuits.  

2.2.2 Microwave Filter Theory for Narrowband and Wideband Filters 

In 1957, a theory derived from the lumped low-pass prototype with immittance inverters by 

Cohn[5] gave simple formulas restricted to designing the narrow and some moderate 

bandwidth microwave filters. A low-pass prototype circuit with lumped elements is generated 

first. A frequency transformation is applied to convert the low-pass circuit into a band-pass 

lumped circuit. Based on the values of the lumped elements of the band-pass circuit, the 

dimensions of the distributed elements are extracted. The implementation of the ideal 

immittance inverters, which are frequency invariant elements, is the key to the theory.  

For wider bandwidth filters, however, a more complicated method given by Young [6] is 

available. The theory is based on low-pass distributed prototype circuit using quarter-wave 

transformer. The transformer is a frequency variant element. A great deal of design data and 

graphs are needed to get the coupling reactance of the transformers.  
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Later work by Levy [7] combining and extending [5] and [6] gave a general method in 

microwave filter design. A simple insertion loss formula was used to derive the distributed 

prototype based on the filter parameters including the order n, the ripple level LAr and the 

band edges. The extraction of distributed element values is similar to previous works [5-6].  

For extremely broad-band filters, no theory exists to predict the equivalent circuit. But some 

work based on approximations have been developed [8].  

The project is to design devices with the narrow bandwidth. So the ideal immittance inverters 

and the frequency transformation will be introduced in the following sections.  

2.2.3 Immittance Inverters 

K Z2Z1
J Y2Y1

(a)                                          (b)  
Figure 2.3 Network representation of the single terminated (a) K-inverter and (b) J-inverter 

Immittance inverters turn an impedance into an admittance (K-inverter) or turn an admittance 

into an impedance (J-inverter). The property of an idealized immittance inverter is frequency 

invariant. Referring to Figure 2.3, when the inverter is terminated with an immittance (Z2 or 

Y2) at one end, the immittance seen at the other end will be [1]: 

 

2 2

1 1

2 2

,
K J

Z Y
Z Y

   (2.1) 

Where K is real and defined as the characteristic impedance of the K-inverter, J is real and 

defined as the characteristic admittance of the J-inverter. The equivalent lumped circuits of 

the immittance inverters, as well as the evaluation of the characteristic impedance K and 

characteristic admittance J, are given in Figure 2.4 [1].  
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Figure 2.4 Lumped-element immittance inverters 

K-

inverter

J-

inverter

K-

inverter

J-

inverter

L

C

C

L
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(b)
 

Figure 2.5 (a) Immittance inverters are used to convert a shunt capacitor into the equivalent 

circuit with a series inductor. (b) Immittance inverters are used to convert a series inductor 

into the equivalent circuit with a shunt capacitor. 
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As illustrated in Figure 2.5(a), by introducing immittance inverters, a series inductor with K-

inverters at two ends is equivalent to a parallel capacitor. Meanwhile, a parallel capacitor with 

J-inverters at two ends, shown in Figure 2.5(b), is the same as a series inductor. With 

immittance inverters, it is feasible to convert the ladder lumped circuit into new circuit with 

only one type of component. For example, the low-pass circuits in Figure 2.2 have two 

equivalent circuits shown in Figure 2.6 using immittance inverters. The equivalent circuit is 

formed of either series inductors (a) or shunt capacitors (b).  

Z0

L1

K0,1

L2

K1,2

Ln

K2,3 Kn,n+1 Zn+1

Y0
J0,1 J1,2 J2,3 Jn,n+1 Yn+1C1 C2 Cn

(a)

(b)
 

Figure 2.6 Lowpass filters with immittance inverters 

2.2.4 Low-Pass to Band-Pass Transformation 

The low-pass lumped filter circuits with immittance inverters are introduced in the previous 

sections. With the well known frequency and element transformation[1], a low-pass circuit 

can be transformed into the high-pass, band-pass or band-stop one. The low-pass to band-pass 

transformation is presented in this section. 

A prototype low-pass filter is to be transformed to a band-pass one with a passband 2 1  , 

where 1 2 and   are the angular frequencies of the passband edges. The frequency 
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transformation is [1] 

 
0

0

c

FBW

 


 

 
  

 
 (2.2) 

with 

 

2 1

0

0 1 2

FBW
 



  




 

 (2.3) 

where   is the frequency variable, c is the low-pass prototype cut-off frequency, 0 denotes 

the centre angular frequency and FBW is defined as the fractional bandwidth. Applying this 

frequency transformation to a parallel capacitor C and a series inductor L of the low-pass 

prototype filter in Figure 2.6, we have 
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 (2.4) 

which implies that a parallel capacitor C or a series inductor L in the low-pass prototype will 

transform to a parallel or series LC resonant circuit. Figure 2.7 shows the basic element 

transformation. Figure 2.8 gives the bandpass filters transformed from the low-pass ones in 

Figure 2.6. 
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Figure 2.7 Low-pass to band-pass element transformation 
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Figure 2.8 Band-pass filters with immittance inverters 

The band-pass filters shown in Figure 2.8 are the coupled-resonator filter circuits, as the 

circuits are formed of immittance inverters and LC resonators. With different techniques, such 

lumped circuits can be converted into different forms of distributed circuits including 

waveguides or microstrips [4]. 

2.2.5 Coupling Matrix Theory 

The coupled resonator circuit can be converted into matrix form called coupling matrix. The 

coupling matrix theory has advantages of applying matrix operations such as matrix rotations 
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(similarity transformation) and matrix inversions during circuit design. Reconfiguring the 

circuit topology and synthesis of the circuit are simplified by such matrix operations [9]. The 

coupling matrix theory is still only suitable for the narrow-band filtering circuits, as the theory 

is based on the narrow bandwidth assumption.  

Coupling matrix can be classified into two categories. The first one is the general n n 

coupling matrix. n is the order of the circuit. The other category, including n+2 coupling 

matrix, has additional columns and rows for the ports. Section 2.2.5.1 gives a brief 

introduction of the general n n coupling matrix for two-port circuits. Section 2.2.5.2 gives 

the extension of the n n coupling matrix to multi-port circuits. Section 2.2.5.3 gives an 

introduction of the n+2 coupling matrix. The extension of the n+2 coupling matrix to multi-

port circuits or the n+X coupling matrix will be discussed in Chapter 3. X is the number of 

ports of the circuit.  

2.2.5.1 General nn Coupling Matrix of n-Coupled Resonator Circuit with 2-Port 

In the early 1970s, Atia and Williams [10-13] first presented a design method for band-pass 

waveguide cavity filter based on coupling matrix. The matrix they used is the n n coupling 

matrix. The matrix is derived from a prototype bandpass circuit in Figure 2.9.  
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Figure 2.9 A 2-port lumped circuit composed of synchronously tuned magnetically coupled 

resonators [13]. 

The filter is an nth order cascaded filter coupled by transformers or magnetic couplings. Each 

resonator has a capacitor C=1F and an inductor L=1H. So all the resonators are resonating at 

1Hz. RS and RL are the resistance of the source and the load. (Notice the equivalent lumped 

circuit is assumed to be lossless, resistance or conductance exists only in the source and load.). 

ip is the loop current of each resonator. The coupling between resonator p and q is denoted as 

Mp,q, which is a real number and frequency invariant.  

The coupling matrix theory can be extended to the circuits with asynchronously tuned 

resonators or the general n n coupling matrix. The formulation of the general n n coupling 

matrix is discussed in [1]. Filters with magnetically and electrically coupled resonators are 

drawn separately.  
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Figure 2.10 Equivalent filter circuit of n-coupled resonators for (a) loop-equation formulation 

and (b) node-equation formulation[1]. 

The equivalent circuit with magnetically coupled resonators is given in Figure 2.10(a). Using 

Kirchoff’s voltage law, the coupling matrix is derived via an impedance matrix from a set of 

loop equations. The other circuit with electrical coupling is given in Figure 2.10(b). The 

coupling matrix is derived via an admittance matrix formulated by a set of node equations 

based on Kirchoff’s current law. Regardless of the type of coupling, a general matrix [A] 

formed of coupling coefficients mp,q and external quality factors qei is presented in [1] as: 
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Where, matrix [U] is an identity matrix, p is the complex lowpass frequency variable, 
0  is 

the centre frequency of the filter, FBW is the fractional bandwidth of the filter. qei (i=1 and n)  

is the scaled external quality factors of the resonator i. mp,q ( )p q is the normalised coupling 

coefficients between the resonator p and q. They are: 

Qei is defined as the external quality factor of resonator i. Mp,q is defined as the coupling 

coefficient between resonator p and q. mi,i  is the self coupling of resonator i. The filter is an 

asynchronously tuned one if some of mi,i are non-zero entries. 

As given in [1], the S-parameters can be calculated using the scaled external quality factors qei 

and matrix [A] as: 
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2.2.5.2 nn Coupling Matrix of n-Coupled Resonator Circuit with Multi-Port 

In order to design the coupled-resonator based multi-port circuits including diplexers and 

multiplexers, the general 2-port equivalent circuit needs to be extended to multi-port one [14]. 

As given in Figure 2.11, the equivalent n-port filtering circuits with n-coupled resonators are 

with either magnetically coupled resonators, in Figure 2.11(a), or electrically coupled 

resonators, in Figure 2.11(b).  
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Figure 2.11 n-port network with n coupled resonators [14] 

Where R1 and G1 are the source resistance and the source conductance. Ri and Gi are the load 

resistance and the load conductance at the port i. 

The derivation of the coupling matrix is similar to the 2-port one in Section 2.2.5.1. The 

general matrix [A] of n-port is presented in [14] as: 

Where, matrix [U] is an identity matrix, p is the complex lowpass frequency variable defined 

by (2.6). qei and mp,q, defined by (2.7), denote the scaled external quality factors and scaled 

coupling coefficients. 

 

 

(2.9) 
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The S-parameters can be calculated using the scaled external quality factors qei and matrix [A] 

as [14]: 
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2.2.5.3 n+2 and n+X Coupling Matrix 

Extended from the general n n coupling matrix, the n+2 coupling matrix is used to express a 

two-port circuit. A general n+2 coupling matrix is presented in Figure 2.12. 
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Figure 2.12 the n+2 coupling matrix 

Where the subscript s and l refer to the source and load. 

Comparing to the general n n coupling matrix, the n+2 coupling matrix has additional 

columns and rows for the source and the load surrounding the general n n coupling matrix. 

ms,i and mi,s are the coupling between the source and resonator i, ml,i and mi,l are the coupling 

between the load and resonator i. ms,s and ml,l are the self coupling of the source and the load. 

With the additional port columns and rows, the n+2 coupling matrix has the following 

advantages[15]: 

1) One port can be coupled to multi resonators while a single resonator can be coupled to 

multi ports. 
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2) Coupling between the source and the load is possible so as to make fully canonical filtering 

function (i.e. the number of finite-position transmission zeros is equal to the number of 

resonators n). 

So the n+2 coupling matrix is more general than the n n coupling matrix. Furthermore, the 

n+2 coupling matrix can be extended to multi-port one as n+X coupling matrix. X is the total 

number of ports of the circuit. The derivation of n+X coupling matrix, as well as its transfer 

and reflection functions, is given in Chapter 3. 

2.2.6 Synthesis of the Coupling Matrix  

For filters with standard responses such as Chebyshev, Butterworth and Elliptic, all lumped 

element values or g values can be calculated by formulas or found from tables directly[1].  

For Chebyshev lowpass prototype filters with a passband ripple LAr dB and the cut-off 

frequency 1c  , the g values for the two-port networks shown in Figure 2.2 can be 

calculated using the following formulas [1]:  
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Where 
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With given g values, the coupling coefficient Mi,i+1 and the external quality factor Qei are 

formulated directly [1] as 
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 (2.12) 

According to (2.7), the normalised coupling coefficient mi,i+1 and the external quality factor 

qei can be found as 
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For filters with arbitrary responses, however, there is no simple solution. Two ways are 

generally applied to solve the problem. One is based on recursive methods and matrix rotation, 

the other way is optimisation. 

2.2.6.1 Synthesis Method Using Matrix Rotation 

Complex filters with transmission zeros are summarised by Cameron [15-16] and divided into 

3 steps: 

(1) A recursive method for deriving polynomials, which represent the transmission and 

reflection responses. 

(2) The synthesis of a coupling matrix based on the derived polynomials and,  
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(3) A similarity transformation or matrix rotation technique to reconfigure the coupling matrix 

into a new one relating to the practical topology.  

Realisation of the original coupling matrix in (2) would be difficult, since all possible 

couplings are present or the matrix is full of non-zero entries. The key point of such synthesis 

method is to reconfigure the derived original coupling matrix in (2) into one with less non-

zero entries relating to the filter topology by a set of matrix rotations. The rotated matrix has 

exactly the same filter characteristics as the original matrix. 

2.2.6.2 Synthesis Method Using Optimisation 
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Figure 2.13 Flowchart of the optimisation 
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The second way for coupling matrix synthesis is based on optimisation techniques. The 

principle of the optimisation is to minimise a cost function   by altering the values of each 

non-zero entries in the coupling matrix. The cost function   is used to quantify the 

difference between the S-parameters of the current matrix and the expected circuit 

specifications. Before optimisation, a particular circuit topology is given. In other words, 

locations of non-zero entries in the coupling matrix are determined at the very beginning. The 

flow chart of optimisation process is given in Figure 2.13. 

2.2.6.3 Comparison of Two Synthesis Methods 

The first synthesis method, including matrix rotation techniques, is quite useful. With the help 

of computers, the original coupling matrix may be easily found in a recursive way. But matrix 

rotation techniques, which are used to reconfigure the original coupling matrix, cannot handle 

all the problems. Many practical topologies may fail to be generated by the matrix rotation. 

The sequence of the rotation angles is difficult to determine in order to guarantee the 

convergence of the rotated result. In practice, for a given topology, restricted by the 

manufacturing or the requirement of the application, coupling matrix synthesised by 

optimisation is still of importance for design of microwave filters. 

For coupling matrix synthesis by optimisation, there are two categories of optimisation 

techniques that can be applied. The first one is called global optimisation. For optimising 

operation based on global optimisation, values of the starting point have little effect on the 

final result and total computation times. Such optimisation method searches a global best with 

lowest cost function values at the cost of poor efficiency to converge the result.  

The other way of optimising is based on local optimisation technique. It takes less 

computation time than the global method. However, a good guess of the starting point is 
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essential otherwise the optimiser may converge to a non-optimum local minimum. 

This project is based on local optimisation techniques. Chapter 4 introduces how to generate 

the starting point of some multi-port circuits. The cost function   applied in this project is 

presented in the same chapter as well. 

2.2.7 Microwave Filter Design 

The coupling matrix [M] is synthesised by one of the above synthesis techniques. The next 

step is to configure a distributed circuit based on the coupling matrix. By the application of 

the full-wave electromagnetic (EM) simulators, the physical dimensions of each distributed 

element are separately extracted according to the entry values of [M] and Qe.  

The design of a 4th order Chebyshev band-pass filter is given here as an example. The 

specifications of the filter are given as: centre frequency fc=10GHz, fractional bandwidth 

FBW=0.01, passband ripple LAr=0.043dB. According to (2.11) and (2.12), the coupling matrix 

M and the external quality factors Qe of the filter are: 
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 (2.14) 

One possible structure of the filter using rectangular waveguide is given in Figure 2.14. 
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Figure 2.14 The structure of a 4

th
 order Chebyshev filter formed by rectangular waveguides. 

The dimensions of each waveguide elements are relating to the values of each matrix entries 

given in (2.14). 

 
Figure 2.15 S-parameters of a 4

th
-order Chebyshev band-pass filter. 

The filter responses are obtained by putting all distributed elements together using the EM 

simulator. Figure 2.15 gives the response comparison between the ideal one from the coupling 

matrix and the simulated one from the EM simulator. In order to eliminate the response 

difference, further adjustment or optimisation on the all physical dimensions is needed. More 
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details of the exact process to get the initial dimensions is given later in the thesis. 

Today, with the EM simulators, microwave filter design is highly dependent on the 

dimensional optimisation [17]. The simulation results give responses very close to measured 

ones. However, a set of good initial dimensions of the distributed elements is essential as 

input to the optimisation on all physical dimensions. Otherwise, the simulators will fail to 

generate an acceptable solution or even no solution at all. 

More design examples for the multi-port circuits are presented in Chapter 5 to 7. 

2.3 Diplexers and Multiplexers 

One common application of filters is to channelize signals by using diplexers and 

multiplexers [4]. Multiplexers are of two types: non-contiguous multiplexers (with 

intervening guard bands between pass bands of each branch) and contiguous multiplexers (of 

which the pass bands are adjacent). The structure of a conventional multiplexer is illustrated 

in Figure 1.1.  

As shown in Figure 1.1, channel filters connect to the shared port through a common junction. 

The function of the common junction in such a frequency distribution network is to eliminate 

the interaction between channels. The common junction may be formed of circulators, hybrid 

couplers, directional filters or a manifold [9]. 
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Figure 2.16 A 4-channel multiplexer with the Star-junction. 

Figure 2.16 shows a new type of multiplexer. It is based on an all resonant structure with the 

Star-junction[18]. Each circle represents a resonator and the lines are the internal couplings 

between resonators. The arrowed lines between resonators and ports represent external 

couplings. All channel filters are connected through the “extra” resonator 0. Since the 

multiplexer is only formed of coupled resonators, the response of a multiplexer with a Star-

junction can be fully described by the coupling matrix. However, the Star-Junction 

multiplexer is usually implemented when the number of channels is no more than four [9]. 

Each channel filter is coupled to the Star-junction resonator via coupling elements. More 

channels lead to more coupling elements connecting to the Star-junction resonator, making it 

difficult to allocate too many coupling elements to a single resonator within a limited space. 
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Figure 2.17 A 4-channel multiplexer with Tree topology. 

The other all resonant structure, Tree Topology, is presented in [19-23] and offers a different 

method to solve the problem. As shown in Figure 2.17, each of resonators has maximally 3 

main couplings no matter how much the total number of channels is. Comparing to the 

multiplexers with common junctions, this multiplexer structure eliminates the need for 

separate transmission-line based frequency distribution networks leading to a reduction in the 

overall component size and volume.  

2.4 Cross Couplings and Transmission Zeros 

The main application of the cross coupling is to generate transmission zeros in order to 

increase the attenuation over a required frequency range. However, a compromise exists that 

the attenuation over some other frequency range may be less efficient than that without the 

cross coupling. 
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Figure 2.18 Diplexers (a) without and (b) with cross couplings. 

In Figure 2.18(b), a folded structure is used. One cross coupling is added between Resonator 5 

and 8, the other one is between Resonator 5 and 11. Figure 2.19 shows the transmission 

responses comparison between the diplexers in Figure 2.18. It can be seen that a compromise 

exists, with the improvement of attenuation or rejection close to the passband giving more 

energy reflection far from the passband. 
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Figure 2.19 Two possible diplexer prototype transmission responses, with (solid line) and 

without (dashed line) finite transmission zeros generated by cross coupling. Note the increase 

of attenuation close to the pass band and decrease of attenuation far from the pass band. 

The coupling matrices of the diplexers shown in  Figure 2.18(a) and (b) are listed here. How 

to get the coupling values are discussed in Chapter 4 and 6. 

 (a): mi,i+1=mi+1,i= [0.794, 0.481, 0.636, 0.410, 0.647, 0.275, 0.203, 0.274, 0, 0.203, 0.274], 

m6,10=m10,6=0.275, mi,i=[0, 0, 0, 0, 0, 0, 0.632, 0.668, 0.67, -0.632, -0.668, -0.67], qe1=1.536, 

qe2=qe3=3.073. 

 (b): mi,i+1=mi+1,i= [0.793, 0.481, 0.633, 0.408, 0.631, 0.286, 0.187, 0.275, 0, 0.187, 0.275], 

m6,10=m10,6=0.286, m5,8=m8,5=m5,11=m11,5= -0.08, mi,i=[0, 0, 0, 0, 0, 0, 0.727, 0.665, 0.665, -

0.727, -0.665, -0.665,], qe1=1.506, qe2=qe3=3.012. 

In many cases, the attenuation over some frequency ranges is more important than that over 

other frequency ranges. Take the transmit/receive (Tx/Rx) diplexers in cellular base stations 

for example, high attenuation (sometimes as high as -120dB [16]) is required over the 
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neighbouring channel frequency range to avoid interactions between two channels [16]. In the 

meantime, the attenuation outside two channels is not so important. By introducing cross 

couplings or transmission zeros, the requirement may be satisfied with a limited number of 

resonators so as to guarantee a compact size, a minimal insertion loss and a moderate group 

delay. 
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Chapter 3  Representation of n+X Coupling Matrix 

The n+2 coupling matrix is not capable of describing an n-coupled-resonator circuit with X 

ports  3X  . It’s necessary to extend the n+2 coupling matrix for the multi-port circuit, this 

will be detailed in this chapter. 

Section 3.1 gives the derivation of the n+X coupling matrix from the electrically coupled 

resonator circuit.  Section 3.2 shows how to derive the n+X coupling matrix from the 

magnetically coupled resonator circuit. A general formula regardless the type of couplings is 

given in Section 3.3. 

3.1 Node Equation Formulation for Electrically Coupled Circuit 
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JP1,P2

JP1,n
Ji,P2
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vP1
vP2 vPXvPk

JP1,PX

 
Figure 3.1 Equivalent lumped circuit for node-equation formulation in X-port network. 

Figure 3.1 gives a multi-port lumped circuit coupled by J-inverters. The characteristic 

admittance of J-inverters is denoted as J. vi (i=1 to n) and vPk (k=1 to X) are the node voltages. 

is is the source current. GPk (k=1 to X) is the conductance at port k. Li and Ci are the inductors 

and capacitors of resonator i. 
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Based on Kirchoff’s current law, a set of node equations is generated as: 
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 (3.1) 

In matrix form: 

 
  (3.2) 

or  

 [ ] [ ] [ ]Y v i   (3.3) 

Where [Y] is the n+X admittance matrix. 

Next step is to find the relationship between the admittance matrix [Y] and the scattering 

parameters. According to [1], a lumped multi-port n-coupled-resonator circuit can be 
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simplified into its network representation with impedance matrix as in Figure 3.2(a). 

RS

n n

RS

Vs

[ ]Z

RL2
RL2

RL3
RL3

RLX
RLX

GS

n n

[ ]Y

GP2
GL2

JP2

GP3
GL3

JP3

GPX
GLX

JPX

GP1 JP1

is

(a)                                                                       (b)  
Figure 3.2 Network representation of X-port n-coupled-resonator circuit in (a) the general 

n n  impedance matrix form [Z] and (b) its dual n n  admittance matrix form [Y] with port J-

inverters. 

Here the network is in the form of general n n  impedance matrix [Z] n n  and the resistance in 

the source RS and loads RLi. Due to the limitation of the general n n  matrix, each 

resonator/port can connect to no more than one port/resonator. 

To turn the general n n  matrix into the n+X matrix form, each port resistance is replaced by 

a port conductance GPk with a J-inverter [1]. In order to match the additional J-inverters, the 

impedance matrix [Z] n n  is replaced by its dual admittance matrix [Y]. Figure 3.2(b) gives the 

equivalent [Y] n n  matrix network surrounded by additional J-inverters between the port 

conductances and the resonators.  

In order to simplify the circuit, each conductance GPk at the port k is normalised to 1 or  
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 1 ( 1 to )
1PkG k X 


 (3.4) 

According to (2.1), the characteristic admittance of the J-inverter at the source port is: 

 
1 1 2 1P s P sJ YY G G G    (3.5) 

where 1 2 1

1 1,
1s P

s

Y G Y G
R

   


. 

Similarly, the characteristic admittance of J-inverters at the load port i is: 

 ' '
1 2 1   ( 2 to )Pi Li P LiJ Y Y G G G i X       (3.6) 

where ' '

1 2

1 1,
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Y G Y G
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Figure 3.3 The network representation of an X-port n-coupled-resonator circuit. The network 

is formed of the general n n  admittance matrix [Y], the conductance GPk of port k and the J-

inverters. J1,i is the inverter between Resonator 1 and i. JPk,h is the inverter between the port k 

and resonator h. JP1,PX is the port inverter between port 1 and X. Some resonators of the circuit 

are illustrated. The other resonators, as well as the other J-inverters between the resonators, 

are omitted. 
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As given in Figure 3.3, with the application of the port inverters, a port can be coupled to 

multiple resonators while the resonator i can be coupled to multiple ports. A direct coupling 

between two ports is also possible. Comparing to the n n   coupling matrix discussed in 

Chapter 2, the n+X matrix is more general. 

n X

[ ]Y

GP2
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is

VP1
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IP1

IP2

IP3

b1
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GP3

b3

GPX

bX

IPX

a1

a2

a3

aX

 
Figure 3.4 The network representation of an X-port n-coupled-resonator circuit in the n+X 

admittance matrix form for node-equation formulation. Where GPk, VPk and IPk are the 

conductance, voltage and current at port k, and the wave variables ak and bk at port k are 

defined as (3.7). 

By absorbing the port inverters into the admittance matrix [ ]n nY  , a new network 

representation in the n+X admittance matrix form is shown in Figure 3.4, where GPk, VPk and 

IPk are the conductance, voltage and current at port k, and the wave variables ak and bk are 

defined as [2]:  
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According to [2], the relationships between the scattering parameters and the wave variables 

ak and bk are: 
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 (3.8) 

The admittance network in Figure 3.4 has the equivalent lumped circuit in Figure 3.1. By 

inspecting the network representation in Figure 3.4 and the circuit in Figure 3.1, it can be 

recognized that VPk=vPk , IPk=-iPk (k=1 to X), 1 1 1P s P PI i V G   . Considering (3.4), we have 
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 (3.9) 

According to [2], the relationships between scattering parameters and wave variables are: 
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vPk are found from (3.2) as 

  
1

, 1Pk s Pk P
v i Y


   (3.11) 

where 1
, 1[ ]Pk PY   is denoted as the entry element on row Pk and column P1 of 1[ ]Y  . Replacing 
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the node voltages in (3.10) with those given by (3.11) results in 
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The next step is to normalise the admittance matrix [Y] in order to get the coupling matrix. 

For simplicity, the circuit in Figure 3.1 is considered as a synchronously tuned network first. 

The centre frequency 0

1

LC
  .  L1=L2...=Ln=L. C1=C2=…=Cn=C. Each row i and column i 

of [Y] in (3.2) is multiplied by  
1

0C FBW


 . 
0

FBW 


 is the fractional bandwidth of 

the network. In addition, as (3.4) assumed, the conductance at each port is unity. The row Pk 

and column Pk (k=1 to X) need not be scaled. The normalised matrix [ ]Y  is 
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  (3.13) 

Where p is the complex lowpass frequency variable, i.e. 
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(3.14) 

Ji,j=Jj,i ( , 1 to ,i j n i j  ) is the characteristic admittance between resonator i and j.  
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For simplicity, all the resonators are assumed to be coupled by electrical couplings or mutual 

capacitors. According to Figure 2.4(d), the characteristic admittance J is formulated as: 

 , , , ,i j j i i j j iJ J C C     (3.15) 

Where Ci,j= Cj,i represents the mutual capacitance between resonator i and j. 

According to (3.5) and (3.6), the characteristic admittance JPk,i= Ji,Pk ( 1 to , 1 tok X i n  ) 

is presented in terms of the source and load conductances as: 
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Where GS,i and Gi,S are the equivalent source conductance at Resonator i, GLk,i and Gi,Lk are 

the equivalent conductance of load k at Resonator i. So the normalised admittance matrix [ ]Y

is replaced as: 
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  (3.17) 

It should be noticed that [2]: 
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Qe is defined as the external quality factor of the resonator at the port. Mi,j is defined as the 

coupling coefficient between Resonator i and j. qe and mi,j are the scaled external quality 

factor and scaled coupling coefficient, respectively. 

Defining the coupling coefficient
,pi pjM  between port i and j as: 

 , , ( , 1 to , )pi pj pi pjM J i j X i j    (3.20) 

During the scaling of the [Y] matrix, the characteristic admittance between ports is kept 

constant. So the normalised port coupling coefficient is 

 , ,pi pj pi pjm M  (3.21) 

Substituting (3.18) and (3.20) into (3.17), we have [ ]Y  as 
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 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

  (3.22) 
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Assuming 
0

1


  for a narrow band approximation (for a wide band circuit, 
0

1


  and m 

is frequency-variant), [ ]Y in (3.22) is simplified as 

1, 2 1,

,1 ,2 ,

1,2 1,

1, 1, 2 1,

2,1 2,

2, 2, 2 2,

,

1 1 1
1 ... ...

1 1 1
... ...

1 1 1
... ...

1

P P P PX

eS eS eS n

n

e S e L e LX

n

e S e L e LX

en

j j j jM jM
Q FBW Q FBW Q FBW

M M
j p j j j j

Q FBW FBW FBW Q FBW Q FBW

M M
j j p j j j

Q FBW FBW FBW Q FBW Q FBW

j
Q

    
  

    
  

    
  


,1 ,2

, 2 ,

2, 1 2,

2,1 2,2 2,

, 1 , 2

,1 ,2 ,

1 1
... ...

1 1 1
... 1 ...

1 1 1
... ... 1

n n

S en L en LX

P P P PX

eL eL eL X

PX P PX P

eLX eLX eLX X

M M
j j p j j

FBW FBW FBW Q FBW Q FBW

jM j j j jM
Q FBW Q FBW Q FBW

jM j j j jM
Q FBW Q FBW Q FBW













   
  

    
  

    
  















 
 
 
 
 
 
 
 
 
 
 
 



 

  (3.23) 

Substituting (3.19) and (3.21) into (3.23), [ ]Y  is simplified as 

 

1, 2 1,

,1 ,2 ,

1,2 1,

1, 1, 2 1,

2,1 2,

2, 2, 2 2,

,1 ,2

, , 2 ,

2, 1

2,1

1 1 1
1 ... ...

1 1 1
... ...

1 1 1
... ...

1 1 1
... ...

1

P P P PX

eS eS eS n

n

eS L LX

n

eS L LX

n n

n eS n L n LX

P P

L

j j j jm jm
q q q

j p jm jm j j
q q q

j jm p jm j j
q q q

j jm jm p j j
q q q

jm j
q

    

    

    

    

  2,

2,1 2,1

, 1 , 2

,1 ,2 ,

1 1
... 1 ...

1 1 1
... ... 1

P PX

L L

PX P PX P

LX LX LX n

j j jm
q q

jm j j j jm
q q q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
     
 
   

(3.24) 

Defining the normalised coupling coefficient between ports and resonators as: 
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  

1, , 1

, ,

, ,

, ,

1 1
;

1 to , 2 to
1 1

;

P i i P

eS i ei S

Pk i i Pk

eLk i ei Lk

m m
q q

i n k X

m m
q q

  

 

  

 (3.25) 

[ ]Y in (3.24) is further simplified as 

 

1,1 1,2 1, 1, 2 1,

1, 1 1,2 1, 1, 2 1,

2, 1 2,1 2, 2, 2 2,

, 1 ,1 ,2 , 2 ,

2, 1 2,1 2,2

1 ... ...

... ...

... ...

... ...

...

P P P n P P P PX

P n P PX

P n P PX

n P n n n P n PX

P P P P

jm jm jm jm jm

jm p jm jm jm jm

jm jm p jm jm jm

jm jm jm p jm jm

jm jm jm jm

    

    

    

    

    2, 2,

, 1 ,1 ,2 , , 2

1 ...

... ... 1

P n P PX

PX P PX PX PX n PX P

jm

jm jm jm jm jm

 
 
 
 
 
 
 
 

 
 
 
      

 
(3.26) 

As shown in [3], the inverse of a matrix can be expressed as: 

 

 
 

 
 

1

1

,

,

,

,

[ ] , | | 0
| |

[ ] , | | 0
| |

Pi Pj

Pi Pj

Pi Pj

Pi Pj

cof Y
Y Y

Y

cof Y
Y Y

Y





 

 

 (3.27) 

where | |Y and | |Y are the determinant of matrix [Y] and [ ]Y .  ,Pi Pjcof Y  and  ,Pi Pjcof Y are 

the entries in column Pi and row Pj of the cofactor matrices of [Y] and [ ]Y . By inspecting 

matrix [Y] in (3.2) and [ ]Y  in (3.13), we obtain the relationships of their determinants and 

cofactors as: 

 
 

       

2

0

2

,, 0

| | | |

  , 1 to ,

n

n

Pi PjPi Pj

Y C FBW Y

cof Y C FBW cof Y i j X i j





  

    

 (3.28) 

Substituting (3.28) into (3.27) yields: 
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1 1

, ,
[ ] [ ]

Pi Pj Pi Pj
Y Y

 

  (3.29) 

Notice that this equation is valid only for entries in row Pi and row Pj. Substituting (3.29) into 

(3.12) yields: 

 
 

1

11 1, 1

1

1 , 1

2[ ] 1

2[ ] 2 to

P P

k Pk P

S Y

S Y k X





 

 
 (3.30) 

In the case of asynchronously tuned coupled-resonator circuit in Figure 3.1, the resonant 

frequency of Resonator i is given by 
1

i

i iL C
  , the coupling coefficient between 

asynchronously tuned Resonator i and j is defined as 

                   ,

, , 1 to ,
i j

i j

i j

C
M i j n i j

C C
    (3.31) 

And the normalised matrix [ ]Y  in (3.26) becomes 

 

1,1 1,2 1, 1, 2 1,

1, 1 1,1 1,2 1, 1, 2 1,

2, 1 2,1 2,2 2, 2, 2 2,

, 1 ,1 ,2 , , 2 ,

2, 1

1 ... ...

... ...

... ...

... ...

P P P n P P P PX

P n P PX

P n P PX

n P n n n n n P n PX

P P

jm jm jm jm jm

jm p jm jm jm jm jm

jm jm p jm jm jm jm

jm jm jm p jm jm jm

jm j

    

     

     

     

  2,1 2,2 2, 2,

, 1 ,1 ,2 , , 2

... 1 ...

... ... 1

P P P n P PX

PX P PX PX PX n PX P

m jm jm jm

jm jm jm jm jm

 
 
 
 
 
 
 
 

   
 
 
      

 
(3.32) 

The normalised admittance matrix of (3.32) is nearly the same as (3.26) except for extra 

entries mi,i along the diagonal to account for asynchronous tuning. 
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3.2 Loop Equation Formulation for Magnetically Coupled Circuit 

KP1,Pk

KP1,P2

KP1,n
Ki,P2

Ki,Pk

K1,n
K1,P2

K1,Pk

L1 Li

KP1,i

K1,PX

Ki,PX

Kn,Pk

Kn,PX

KP2,PX

(P1) (1) (i) (PX)

KP1,1 K1,i Ki,n Kn,P2 KP2,Pk KPk,PX

vs

KP1,PX

C1 Ci

Ln

(n)

Cn
RP1

iP1 i1 ii in

RPX

iPX

(Pk)

RPk

iPk

(P2)

RP2

iP2

 
Figure 3.5 Equivalent lumped circuit for X-port coupled-resonator circuit with K-inverters. 

A multiport coupled-resonator circuit with K-inverters is shown in Figure 3.5. The 

characteristic impedance of K-inverters is denoted as K. ii and iPk are the loop currents. vs is 

the source voltage. Li and Ci are the inductor and capacitor of resonator i. RPk is the resistance 

at port k.  

Based on Kirchoff’s voltage law, a set of loop equations is generated as: 

 

1 1 1,1 1 1,2 2 1, 1, 2 2 1,

1, 1 1 1 1 1,2 2 1, 1, 2 2 1,

1

2, 1 1 2,1 1 2 2 2, 2, 2 2 2

2

... ...

1
... ... 0

1
... ...

P P P P P n n P P P P PX PX s

P P n n P P PX PX

P P n n P P

R i jK i jK i jK i jK i jK i v

jK i j L i jK i jK i jK i jK i
j C

jK i jJ i j L i jK i jK i jK
j C







     

 
       

 

 
      

 
,

, 1 1 ,1 1 ,2 2 , 2 2 ,

2, 1 1 2,1 1 2,2 2 2, 2 2 2,

, 1 1 ,1 1 ,2 2 , , 2 2

0

1
... ... 0

... ... 0

... ..

PX PX

n P P n n n n n P P n PX PX

n

P P P P P P n n P P P PX PX

PX P P PX PX PX n n PX P P

i

jK i jK i jK i j L i jK i jK i
j C

jK i jK i jK i jK i R i jK i

jK i jK i jK i jK i jK i






 
       

 

      

     . 0PX PXR i 

 (3.33) 
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In matrix form: 

 
  (3.34) 

or  

 [ ] [ ] [ ]Z i v   (3.35) 

Where [Z] is the n+X impedance matrix. 

n n

[ ]Y

GL2

GL3

GLX

n n

[ ]Z

RP2

RP3

RPX

KP1

KP2

KP3

KPX

(a)                                                           (b)

RS

RL2

RL3

RLX

GS

GL2

GL3

GLX

GS

is RP1

vs

 
Figure 3.6 Network representation of an X-port n-coupled-resonator circuit in (a) the general 

n n  admittance matrix form [Y] and (b) its dual n n  impedance matrix form [Z] with port K-

inverters. 

To derive the S-parameters of the circuit, the lumped circuit needs to be turned into its 
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network representation. According to [1], a multi-port n-coupled-resonator circuit can be 

simplified into its network representation with its general n n  admittance matrix [Y] in 

Figure 3.6(a). GS and GLk are the conductance in the source and loads. Due to the limitation of 

the general n n  matrix, each resonator/port can connect to no more than one port/resonator. 

To turn the general n n  matrix into the n+X matrix form, each conductance G in the source 

and loads is replaced by a port resistance RPk with a port K-inverter. For simplicity, the port 

resistance RPk is assumed to be unity or 

 1 ( 1 to )PkR k X    (3.36) 

In order to match the additional K-inverters, the admittance matrix [Y] n n  is replaced by its 

dual impedance matrix [Z] n n . Figure 3.6(b) gives the equivalent [Z] n n  matrix network 

surrounded by the additional K-inverters between the port resistances and the resonators.  

According to (2.1), the characteristic impedance of the K-inverter at the source port 1 is: 

 1 1 2 1P s P sK Z Z R R R    (3.37) 

where 1 2 1

1
, 1s P

s

Z R Z R
G

     . 

Similarly, the characteristic impedance of the K-inverter at the load port i is: 

 ' '

1 2 1   ( 2 to )Pi Li P LiK Z Z R R R i X       (3.38) 

where ' '

1 2

1
, 1Li Pi

Li

Z R Z R
G

     . 

As given in Figure 3.7, with the help of the port K-inverters, a single resonator can be coupled 

to multiple ports while one port can be connected to multiple resonators. A direct coupling 
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between ports is also possible. 

KiKi

n n

[ ]ZKP1,1vs

KPX,n

KP1,i

KP1,k

KP1,PX

Ln

=   Resonator i

KPX,i

KP2,i

K1

Kn

Cn

L1

C1RP1

Li

Ci

Li

Ci

RP2

RPX

...

...

...
...

...

...

 
Figure 3.7 Network representation of an X-port n-coupled-resonator circuit with K-inverters. 

The network is formed of a general n n  impedance matrix [Z], the resistance RPk of Port k 

and the port K-inverters. KPk,h is the inverter between Port k and Resonator h. KP1,PX is the port 

inverter between Port 1 and X.  

N X

[ ]Z
vs

RP2VP2

VP3

VPX

IP2

IP3

b2

RP3

b3

RPX

bX

IPX

a2

a3

aX

VP1

IP1

b1

a1

RP1

 
Figure 3.8 The network representation for X-port coupled-resonator circuit with the n+X 

impedance matrix for the loop equation formulation. Where vs is the source vaotage, RPk, VPk 

and IPk are the resistance, voltage and current at port k, and the wave variables ak and bk at 

port k are defined as (3.7). 
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By absorbing the port K-inverters into the impedance matrix, a new n+X impedance matrix [Z] 

is obtained and a new network representation is given in Figure 3.8.  

By inspecting the lumped circuit in Figure 3.5 and the network representation in Figure 3.8, it 

can be recognized that IP1=iP1, IPk=-iPk (k=2 to X), VPk=vPk (k=1 to X), 1 1 1P s P PV v I R   . 

Considering (3.36) into (3.7), we have 

 

1 1 1
1 1

1 1

2 2

2 22 2

0

s s s P s P

k k Pk k Pk

v v v i R v i
a b

R R

a b i R i

 
   

  

 (3.39) 

The relationships between scattering parameters and wave variables are: 

 

 1
1

1 2 3... 0

1

1 2 3... 0

2
1 1

2
( 2 to )

k P
k

sa a aX

k Pk
k

sa a aX

b i
S k

a v

b i
S k X

a v

  

  

   

  

 (3.40) 

iPk are found from (3.34) as 

  
1

, 1Pk s Pk P
i v Z


   (3.41) 

where 1
, 1[ ]Pk PZ   is denoted as the entry element in row Pk and column P1 of 1[ ]Z  . Replacing 

the loop currents in (3.40) with those given by (3.41) results in 

 
 

   

1

11 1, 1

1

1 , 1

1 2

2 2 to

P P

k Pk P

S Z

S Z k X





 

 
 (3.42) 

To normalise the [Z] matrix of a synchronously tuned circuit, the capacitance and inductance 

of each resonator are assumed to be the same. The centre frequency 0

1

LC
  .  
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L1=L2...=Ln=L. C1=C2=…=Cn=C. Each row i and column i (i=1 to n) is multiplied by 

 
1

0L FBW


 . 
0

FBW 


 is the fractional bandwidth of the network. In addition, as 

(3.36) assumed, the resistance at each port is unity. The row Pk and column Pk need not be 

scaled. The normalised matrix [ ]Z  is given in (3.43) as 

1,1 1,2 1,

1, 2 1,

0 0 0

1, 1 1,2 1, 1, 2 1,

0 00 0 0

2, 1 2,1 2, 2, 2

0 00 0

1 ... ...

... ...

... ..

P P P n

P P P PX

P n P PX

P n P

K K K
j j j jK jK

L FBW L FBW L FBW

K K K K K
j p j j j j

L FBW L FBWL FBW L FBW L FBW

K K K K
j j p j j

L FBW L FBWL FBW L FBW

  

   

  

    
  

    
   

   
  

2,

0

, 1 ,1 ,2 , 2 ,

0 00 0 0

2,1 2,2 2,

2, 1 2,

0 0 0

,1 ,2

, 1

0

.

... ...

... 1 ...

PX

n P n n n P n PX

P P P n

P P P PX

PX PX

PX P

K
j

L FBW

K K K K K
j j j p j j

L FBW L FBWL FBW L FBW L FBW

K K K
jK j j j jK

L FBW L FBW L FBW

K K
jK j j

L FBW



   

  






    
   

    
  

  


,

, 2

0 0

... ... 1
PX n

PX P

K
j jK

L FBW L FBW 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
   

 

  (3.43) 

Where p is the complex lowpass frequency variable. Ki,j=Kj,i ( , 1 ,i j to n i j  ) is the 

characteristic impedance between Resonator i and j. When the resonators are magnetically 

coupled, as given in Figure 2.4(a), the characteristic admittance Ki,j and Kj,i are formulated as: 

 , , , ,i j j i i j j iK K L L     (3.44) 

Where Li,j= Lj,i represents the mutual inductance between Resonator i and j. 

According to the (2.2), the characteristic impedance KPk,i and Ki,Pk of the port inverters are: 

 
, , 1 2 , , ,

, , 1 2 , , ,

( 1, 1 to )

( 2 to , 1 to )

Pk i i Pk Pk S i S i i S

Pk i i Pk Pk Lk i Lk i i Lk

K K Z Z R R R R k i n

K K Z Z R R R R k X i n

        

        
 (3.45) 

Where RS,i and Ri,S are the equivalent source resistance at resonator i, RLk,i and Ri,Lk are the 



53 

 

equivalent resistance of load k at resonator i. So the normalised impedance matrix [ ]Z is 

replaced as: 

 

,1 ,2 ,

1, 2 1,

0 0 0

1, 1,2 1, 1, 2 1,

0 0 0 0 0

2, 2,1 2, 2, 2

0 0 0 0

1 ... ...

... ...

... ...

S S S n

P P P PX

S n L LX

S n L

R R R
j j j jK jK

L FBW L FBW L FBW

R L L R R
j p j j j j

L FBW L FBW L FBW L FBW L FBW

R L L R
j j p j j

L FBW L FBW L FBW L FBW

  

 

    

 

   

    
  

    
    

   
   

2,

0

, ,1 ,2 , 2 ,

0 0 0 0 0

2,1 2,2 2,

2, 1 2,

0 0 0

,1 ,2

, 1

0

... ...

... 1 ...

LX

n S n n n L n LX

L L L X

P P P PX

LX LX

PX P

R
j

L FBW

R L L R R
j j j p j j

L FBW L FBW L FBW L FBW L FBW

R R R
jK j j j jK

L FBW L FBW L FBW

R R
jK j j

L FBW



 

    

  






    
    

    
  

  


,

, 2

0 0

... ... 1
LX X

PX P

R
j jK

L FBW L FBW 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
   

 

 (3.46) 

As noticed in [2]: 

 

 

0

,

, , ,

1
,

, , 1 to ,

e e

e

i j

i j i j i j

R
q Q FBW

L Q

L
M m M FBW i j n i j

L


  

    

 (3.47) 

where Qe is the external quality factor. Mi,j is the coupling coefficient between Resonator i 

and j. qe and mi,j are the scaled external quality factor and scaled coupling coefficient, 

respectively. 

Defining the normalised coupling coefficient mpk,i and mi,pk between Port k and Resonator i as: 
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  

1, , 1

, ,

, ,

, ,

1 1
;

1 to , 2 to
1 1

;

P i i P

eS i ei S

Pk i i Pk

eLk i ei Lk

m m
q q

i n k X

m m
q q

  

 

  

 (3.48) 

Defining the coupling coefficient MPi,Pj between port i and j as: 

 , , ( , 1 to , )pi pj pi pjM K i j X i j    (3.49) 

And the normalised ports coupling coefficient 
, ,pi pj pi pjm M .  

Assuming 
0

1


  for a narrow band approximation (for a wide band circuit, 
0

1


  and m 

is frequency-variant), the matrix [ ]Z  in (3.46) is simplified as 

 

1,1 1,2 1, 1, 2 1,

1, 1 1,2 1, 1, 2 1,

2, 1 2,1 2, 2, 2 2,

, 1 ,1 ,2 , 2 ,

2, 1 1, 1, 1,

1 ... ...

... ...

... ...

... ...

... 1 .

P P P n P P P PX

P n P PX

P n P PX

n P n n n P n PX

P P

jm jm jm jm jm

jm p jm jm jm jm

jm jm p jm jm jm

jm jm jm p jm jm

jm jm jm jm

    

    

    

    

    2,

, 1 1, 1, 1, , 2

..

... ... 1

P PX

PX P PX P

jm

jm jm jm jm jm

 
 
 
 
 
 
 
 

 
 
 
      

 
(3.50) 

By inspecting matrix [ ]Z  in (3.34) and [ ]Z in (3.43), we obtain the relationships of their 

determinants and cofactors as: 

 
 

       

2

0

2

,, 0

| | | |

, 1 to ,

n

n

Pi PjPi Pj

Z L FBW Z

cof Z L FBW cof Z i j X i j





  

    

 (3.51) 

Where | |Z  and | |Z are the determinants of matrix [ ]Z  and [ ]Z .  ,Pi Pjcof Z  and  ,Pi Pjcof Z

are the entries in column Pi and row Pj of the cofactor matrices of [ ]Z  and [ ]Z . 
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As shown in [3], the entries of the inverse matrix can be expressed as: 

 

 
 

 
 

1

1

,

,

,

,

[ ] , | | 0
| |

[ ] , | | 0
| |

Pi Pj

Pi Pj

Pi Pj

Pi Pj

cof Z
Z Z

Z

cof Z
Z Z

Z





 

 

 (3.52) 

Substituting (3.52) into (3.51) yields: 

 
1 1

, ,
[ ] [ ]

Pi Pj Pi Pj
Z Z

 

  (3.53) 

So the S-parameters in (3.42) can be expressed in terms of the normalised matrix [ ]Z  as: 

 
 

1

11 1, 1

1

1 , 1

1 2[ ]

2[ ] 2 to

P P

k Pk P

S Z

S Z k X





 

 
 (3.54) 

In the case of asynchronously tuned coupled-resonator circuit, the resonant frequency of 

Resonator i is given by 
1

i

i iL C
  , the coupling coefficient between Resonator i and j of the 

asynchronously tuned filter is defined as 

  ,

, , 1 to ,
i j

i j

i j

L
M i j n i j

L L
    (3.55) 

And the normalised matrix [ ]Z  becomes 

 

1,1 1,2 1, 1, 2 1,

1, 1 1,1 1,2 1, 1, 2 1,

2, 1 2,1 2,2 2, 2, 2 2,

, 1 ,1 ,2 , , 2 ,

1 ... ...

... ...

... ...

... ...

P P P n P P P PX

P n P PX

P n P PX

n P n n n n n P n PX

P

jm jm jm jm jm

jm p jm jm jm jm jm

jm jm p jm jm jm jm

Z
jm jm jm p jm jm jm

jm

    

     

     

  
       

 2, 1 2,1 2,1 2,1 2,

, 1 ,1 ,2 , , 2

... 1 ...

... ... 1

P P P P P PX

PX P PX PX PX n PX P

jm jm jm jm

jm jm jm jm jm

 
 
 
 
 
 
 
 

    
 
 
      

 
(3.56) 



56 

 

The normalised impedance matrix [ ]Z  in (3.56) is nearly the same as (3.50) except for the 

extra entries mi,i  along the diagonal to account for asynchronous tuning. 

3.3 General n+X Coupling Matrix 

As given in the previous sections, the formulation of the normalised admittance matrix [ ]Y , in 

(3.32), is identical to that of the normalised impedance matrix [ ]Z , in (3.56). Thereby, 

regardless of the types of couplings (magnetic, electrical or mixed), a unified formulation for 

an X-port network with n-coupled-resonator exists. (3.30) and (3.54) are combined into a 

general equation as: 

 
 

 

1

11 1, 1

1

1 , 1

1 2[ ]

2[ ] 2 to

P P

k Pk P

S A

S A k X





  

 
 (3.57) 

with  

 [ ] [ ] [ ] [ ]A X p U j m    (3.58) 

Where [A] is the n+X normalised immittance matrix, [X] and [U] are the    n X n X    

matrices with all entries zero, except for XPk,Pk=1(k=1 to X) and Ui,i=1 (i=1 to n). [m] is the 

n X normalised coupling matrix and is allowed to have nonzero diagonal entries mi,i for 

asynchronously tuned filters.  

The self coupling mi,i is used to quantify the difference between the resonant frequency fi of 

Resonator i and the centre frequency fc of the circuit. When Resonator i is asynchronously 

tuned, the self coupling mi,i is an non-zero entry. The relationship between the resonant 

frequency fi of Resonator i and its self coupling mi,i is derived from the immittance matrix [A] 

of the circuit. if  is the resonant frequency of Resonator i when 
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, ,[ ] ( ) ( ) 0i i i i i iA p jm   

 (3.59) 

where 2i if  is the angular speed of fi. 

Substitute (3.14) into (3.59), we have 

 
0 0

, ,

0 0

1 1
0i i

i i i i

i i

f f
m m

FBW FBW f f

 

 

   
        

   
 (3.60) 

where f0 is the centre frequency of the circuit, 0 02 f   is the angular speed of f0, FBW is the 

fractional bandwidth of the device. According to (3.60), we have 

 
2 2

, 0 0 0i i i if FBW m f f f      (3.61) 

So the solutions of (3.61) are 

 

2

, ,

0 1
2 2

i i i i

i

FBW m FBW m
f f

   
    
  
 

 (3.62) 

As the resonant frequency fi is positive, so the valid solution of (3.61) is  

 

2

, ,

0 1
2 2

i i i i

i

FBW m FBW m
f f

   
    
  
 

 (3.63) 

So  0if f when mi,i <0, 0if f when mi,i>0 and 0if f when mi,i=0. 

3.4 Scale  the n+X Coupling Matrix during the Frequency 

Transformation  

During the frequency transformation, the normalised n+X coupling matrix [m] of the 

prototype lowpass circuit is scaled by the fractional bandwidth FBW into the un-normalised 
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coupling matrix [M] of the desired bandpass circuit. By inspecting (3.56), the n+X coupling 

matrix [m] having normalised response is given as 

  

1,1 1,2 1, 1, 2 1,

1, 1 1,1 1,2 1, 1, 2 1,

2, 1 2,1 2,2 2, 2, 2 2,

, 1 ,1 ,2 , , 2 ,

2, 1 2,1, 2,2 2, 2,

, 1 ,1

0 ... ...

... ...

... ...

... ...

... 0 ...

P P P n P P P PX

P n P PX

P n P PX

n P n n n n n P n PX

P P P P P n P PX

PX P PX PX

m m m m m

m m m m m m

m m m m m m

m
m m m m m m

m m m m m

m m m



,2 , , 2... ... 0PX n PX Pm m

 
 
 
 
 
 
 
 
 
 
 
  

 
(3.64) 

Substituting (3.25) into (3.64), [m] turns into the form as 

  

1, 2 1,
,1 ,2 ,

1,1 1,2 1,
1, 1, 2 1,

2,1 1,2 2,
2, 2, 2 2,

,1 ,2 ,
, , 2 ,

2, 1 2,
2,1 2,1 2,1

1 1 10 ... ...

1 1 1... ...

1 1 1... ...

1 1 1... ...

1 1 1... 0 ...

P P P PX
eS eS eS n

n
eS L LX

n
eS L LX

n n n n
n eS n L n LX

P P P PX
L L L

m m
q q q

m m m
q q q

m m m
q q q

m

m m m
q q q

m m
q q q



, 1 , 2
,1 ,2 ,

1 1 1... ... 0PX P PX P
LX LX LX n

m m
q q q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.65) 

Similarly, the un-normalised n+X coupling matrix [M] is given as 



59 

 

 

 

1,1 1,2 1, 1, 2 1,

1, 1 1,1 1,2 1, 1, 2 1,

2, 1 2,1 2,2 2, 2, 2 2,

, 1 ,1 ,2 , , 2 ,

2, 1 2,1 2,2 2, 2,

, 1 ,1 ,

0 ... ...

... ...

... ...

... ...

... 0 ...

P P P n P P P PX

P n P PX

P n P PX

n P n n n n n P n PX

P P P P P N P PX

PX P PX PX

M M M M M

M M M M M M

M M M M M M

M
M M M M M M

M M M M M

M M M



2 , , 2

1, 2 1,
,1 ,2 ,

1,1 1,2 1,
1, 1, 2 1,

2,1 2,2 2,
2, 2, 2 2,

,1 ,2 ,
, , 2 ,

... ... 0

1 1 10 ... ...

1 1 1... ...

1 1 1... ...

1 1 1... ...

PX n PX P

P P P PX
eS eS eS n

n
eS L LX

n
eS L LX

n n n n
n eS n L n LX

M M

M M
Q Q Q

M M M
Q Q Q

M M M
Q Q Q

M M M
Q Q Q

M

 
 
 
 
 
 
 
 
 
 
 
  



2, 1 2,
2,1 2,1 2,1

, 1 , 2
,1 ,2 ,

1 1 1... 0 ...

1 1 1... ... 0

P P P PX
L L L

PX P PX P
LX LX LX n

M
Q Q Q

M M
Q Q Q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(3.66) 

where  

 , 1 ,
1, ,

1 1, ( 1 to , 2 to )i P i Pk
S i Lk

M M i n k X
Q Q

     (3.67) 

Substituting (3.19) and (3.21) into (3.66), we have 
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 

1, 2 1,
,1 ,2 ,

1,1 1,2 1,
1, 1, 2 1,

2,1 2,2 2,
2, 2, 2 2,

,1 ,2 ,
,

0 ... ...

... ...

... ...

...

P P P PX
eS eS eS n

n
eS L LX

n
eS L LX

n n n n
n eS

FBW FBW FBW m m
q q q

FBW FBW FBWm FBW m FBW m FBW
q q q

FBW FBW FBWm FBW m FBW m FBW
q q q

M
FBW FBWm FBW m FBW m FBW

q q

  

  



  
, 2 ,

2, 1 2,
2,1 2,1 2,1

, 1 , 2
,1 ,2 ,

...

... 0 ...

... ... 0

n L n LX

P P P PX
L L L

PX P PX P
LX LX LX n

FBW
q

FBW FBW FBWm m
q q q

FBW FBW FBWm m
q q q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  (3.68) 

Substituting (3.25) into (3.68), we have 

1,1 1,2 1, 1, 2 1,

1, 1 1,1 1,2 1, 1, 2 1,

2, 1 2,1 2,2 2, 2, 2 2,

, 1 ,1 ,2

[ ]

0 ... ...

... ...

... ...

...

P P P n P P P PX

P n P PX

P n P PX

n P n n

M

m FBW m FBW m FBW m m

m FBW m FBW m FBW m FBW m FBW m FBW

m FBW m FBW m FBW m FBW m FBW m FBW

m FBW m FBW m FBW



  

     

     

   , , 2 ,

2, 1 2,1 2,2 2, 2,

, 1 ,1 ,2 , , 2

...

... 0 ...

... ... 0

n n n P n PX

P P P P P n P PX

PX P PX PX PX n PX P

m FBW m FBW m FBW

m m FBW m FBW m FBW m

m m FBW m FBW m FBW m

 
 
 
 
 
 
 
   
 

   
 
 
    

 

  (3.69) 

So (3.69) shows how to scale the normalised coupling matrix [m] into the un-normalised 

matrix [M]. 
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Chapter 4  Coupling Matrix Synthesis by 

Optimisation 

The matrix synthesis technique applied in this work is based on a local optimisation algorithm. 

As stated in Chapter 2, such technique is suited to a specific topology and relies on a set of 

high quality initial values as the starting point. During the optimisation, a cost function is 

applied to quantify the difference between the specifications and the optimised results. 

The coupling matrix discussed in this chapter corresponds to the low-pass prototypes, i.e. the 

S-parameters of the matrix is centred at 0 Hz. A frequency transformation of the prototype 

circuit is given in Section 4.1. Section 4.2 describes the concept of the Tree Topology. 

Section 4.3 gives a brief introduction on how to get the initial values of the coupling matrix 

for diplexers with a Tree Topology and a Chebyshev response. A cost function is formulated 

in Section 4.4. The coupling matrix of a 10
th

 order diplexer is synthesised and presented as an 

example in Section 4.5. More examples are presented in Section 4.6 to 4.10. 

4.1 Frequency Transformation of the Diplexer 

1 42 3

31| |S
21| |S

0

1

 
Figure 4.1 The ideal transfer response of the diplexer 

The expected transfer response of a diplexer is given in Figure 4.1. 0 is the centre frequency 

of the diplexer, 1  to 4  are the band edges or cut-offs of the two passbands. 
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1 42 3

31| |S
21| |S

0

1

1 42 3

31| |S
21| |S

0

1 Frequency

Transformation

Prototype Response Transformed Response
 

Figure 4.2 Frequency transformation of the diplexer 

As shown in Figure 4.2, the diplexer can be transformed from a low-pass. Here i  is the cut-

off of the two passbands of the low-pass response. The frequency transformation is given as 

 

4 1

0

0

2

FBW



 

 
 

  
 

 
(4.1) 

where   is the frequency element of the lowpass mode,   is the frequency element of the 

transformed circuit. FBW is the fractional bandwidth of the transformed diplexer, which can 

be expressed as 

4 1

0

FBW
 




  

For a normalised prototype model, 1 41 and 1     , and the frequency transformation in 

(4.1) can be simplified as 

 
0

0

1

FBW



 

 
  

 
 (4.2) 
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4.2 Topologies of the Resonator Based Diplexers 

1 2

3

6

4

7

Port 2

Port 3

Port 1

5

8  
Stem Branch

Branch 

 
Figure 4.3 An 8-resonator based diplexer with Tree Topology [1]. Each circle represents a 

resonator, and the short lines between the resonators are the internal couplings. The arrowed 

lines between the resonators and ports represent the external couplings. 

Figure 4.3 illustrates the schematic of a diplexer with 8 coupled resonators. Its prototype 

matrix in the n+3 coupling matrix form is: 

 

1,1

1, 1 1,1 1,2

2,1 2,2 2,3 2,6

3,2 3,3 3,4

4,3 4,4 4,5

5,4 5,5 5, 2

2,6 6,6 6,7

7,6 7,7 7,8

8,7 8,8 8, 3

2,5

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0[ ]

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

P

P

P

P

P

m

m m m

m m m m

m m m

m m m

m m mm

m m m

m m m

m m m

m



3,80 0 0 0 0 0 0 0 0 0Pm

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.3) 

Each entry mi,i along the diagonal stands for the self-coupling coefficient which determines 

the resonant frequency of Resonator i. The other non-zero entries mi,j are the internal 

couplings between Resonator i and j. The external coupling coefficients between Port k and 

Resonator i are denoted as mPk,i and mi,Pk:  
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 , ,

1
Pk i i Pk

ei

m m
q

   (4.4) 

Where qei is the external quality factor of Resonator i.  

The diplexer in Figure 4.3 can be divided into two parts. The very leading part, containing 

Resonator 1 and 2, is called the stem. Two branches, one including Resonator 3 to 5 and the 

other having Resonator 6 to 8, are coupled to resonator 2 of the stem.  

Note that such Tree Topology is not limited to 8 resonators. The number of resonators on the 

stem and branches can be altered according to specifications. A general Tree Topology of the 

diplexer is given in Figure 4.4. 

1 h

h+1

h+k+1

Port 2

Port 3

Port 1

h+k

h+k+l

2

 
Figure 4.4 General structure of a diplexer with Tree Topology. The number of the resonators 

on the stem is an even number h. The numbers of resonators on each branch are k and l. 

The stem of the diplexer works like a dual-band bandpass filter [2]. It attenuates signals 

outside of two passbands but plays no role in splitting signals on these two bands [1]. The 

topology of the dual-band bandpass filter and its response are given in Figure 4.5(a) and (b). 



65 

 

1 42 3

21| |S

0

1

0

1 2Port 1 Port 2n-1 n

(a)                                                              (b)
 

Figure 4.5 (a) The topology and (b) the ideal response of the dual-band bandpass filter. Where 

0 is the centre frequency of the filter, 1  and 2  are the cut-offs of the left passband, 3  

and 4  are the cut-offs of the right one. n is the order of the filter. 

For dual band bandpass filter having symmetric responses, the cut-offs of the filter, in Figure 

4.5(b), have a relationship as: 

 1 4 2 3,   .       (4.5) 

Every two resonators of the dual band filter work as a resonant pair. For example, there is a 

strong coupling between Resonator 1 and 2, as well as the one between Resonator 3 and 4, but 

the coupling between Resonator 2 and 3 is weak. As a result, the order of the dual band filter 

n is a multiple of 2 or an even number. The order of each passband is half the order of the 

filter n.  

The branch is like a general single band bandpass filter. Each branch of the diplexer occupies 

one of two pass-bands of the stem and attenuates signals outside of the passband of the branch 

[1]. Signals passing through the stem will be guided to one of these two branches and 

reflected by the other [1] so as to split signals to different ports. 

4.3 Principles of the Starting Point 

The starting point of the coupling matrix of the diplexer can be divided into two parts. One 

part of the branches and the other part of the stem are initialised in different ways. 
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4.3.1 Starting Values of the Branch Part 
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Figure 4.6 (a) Bandpass filter B with n2 coupled resonators. Its coupling coefficients and 

external quality factors are denoted as B_mi,j and B_qei, (b) Bandpass filter C with n3 coupled 

resonators. Its coupling coefficients and external quality factors are denoted as C_mi,j and 

C_qei. (c) The coupling coefficients and external quality factors of the diplexer branches are 

originated from those of the band pass filters B and C.  

Figure 4.6 demonstrates how to obtain the starting point of the coupling coefficient mi,j and 

external quality factor qei for each branch from the single band bandpass filters. For example, 

the coupling coefficient between resonator h+1 and h+2 of the diplexer in (c) is originated 

from the coupling between resonator k-1 and k of the band pass filter B in (a). The cut-offs of 

the single band bandpass filter and those of the diplexer have the relationship as:  

 1 1 2 2 3 1 4 2,   ,   ,   .C C B B         (4.6) 

where 1 4 to    are the cut-offs of two passbands of the diplexer, 1 2 and B B  are the cut-
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offs of the bandpass filter B, 1 2 and C C   are the cut-offs of the bandpass filter C. The orders 

of two band pass filters are n2 and n3: 

 2 3,     (  is even)
2 2

h h
n k n l h     (4.7) 

where h is the number of resonators on the stem of the diplexer, k and l are the number of 

resonators on each branch. Similar to the dual band filter, every two resonators on the stem 

work as a resonant pair and the order of the stem is evenly distributed by the two passbands. 

So the number of resonators on the stem is a multiple of 2, i.e. an even number. 

The band pass filters B and C are scaled and shifted from the prototype low-pass filter. For a 

single bandpass filter having two cut-offs at  and a b  , the scaled and shifted processes are 

illustrated in Figure 4.7. 

1 1a a

21| |S

0
(a) (b)

21| |S

0 0

 
Figure 4.7 (a) An un-normalised low-pass filter scaled from a normalised one. (b) A band pass 

filter shifted from a lowpass one. 

As shown in Figure 4.7(a), a low-pass response, with cut-offs at a  shown in a solid line, is 

scaled from a low-pass prototype, with cut-offs at 1  in dashed line. a is defined as 

 
| |

2

a ba
 

  (4.8) 

This implies that the coupling coefficient mscale of the band pass filter with the scaled response 
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is proportional to the mprototype of the prototype lowpass filter as 

 scale prototypem a m   (4.9) 

The external quality factor qe_scale is proportional to the qe_prototype one as 

 
_ prototype

_scale

e

e

q
q

a
  (4.10) 

Figure 4.7(b) illustrates how to shift a low-pass response, centre at 0Hz, to a new one, centred 

at 0 . The new centre frequency of the passband  0  is defined as 

 0
2

a b 
   (4.11) 

So the self-coupling mi,i of the single band bandpass filter with shifted response is obtained as 

 , 0
2

a b
i im

 
   (4.12) 

4.3.2 Starting Values of the Branches Having Chebyshev Responses 

For the diplexer having Chebyshev responses, two branches can be originated from the 

Chebyshev lowpass prototype filter. The coupling coefficient mi,j and external quality factor 

qe on each branch can be obtained by the Chebyshev formulas in Chapter 2 directly. For 

example, as shown in Figure 4.6, the coupling coefficient mi,j of the diplexer branch, which 

connects to port 2, and its external quality factor qeh+k can be originated from those of the 

single band bandpass filter B. According to (4.8) and (4.10), the B_m1,2 and B_qe1 of the 

lowpass filter B with cut-offs at 3 4 and    can be found by 
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3 4
1,2 1,2 Chebyshev prototype

1 1 Chebyshev prototype

3 4

| |
B_

2

2
B_

| |
e e

m m

q q

 



 

 (4.13) 

So 

 

3 4
, 1 , +1 , 1 Chebyshev prototype

1 1 Chebyshev prototype

3 4

| |
B _

2

( 1 to 1)

2
B _

| |

h k i h k i i i i i

eh k e e

m m m

i k

q q q

     



 
 

 

 
 

 (4.14) 

Substituting (2.13) into (4.14), we have 

 

3 4
1,

1 2

0 1

4 3

| | 1
  

2

2

| |

h k h k

eh k

m
g g

q g g

  



 



 

 (4.15) 

Similarly, the rest of the coupling coefficients along the branch can be formulated as 

 
3 4

, 1

1

| | 1
  ( 1 to 1)

2
h k i h k i

i i

m i k
g g

    



 
    (4.16) 

Where gi is obtained from (2.11) and the order of the prototype Chebyshev filter n2 is given in 

(4.7). The self coupling mi,i of the branch resonator i equals to that of the band pass filter B as 

 4 3
, 0  ( 1 to + )

2
i im i h h k

 
     (4.17) 

As shown in Figure 4.6, the coupling coefficient of the diplexer mh,h+k+1 is originated from 

C_ml,l+1 of the single band bandpass filter C. According to (4.8) and (4.10), the C_ml,l+1 and 

C_qe1 of the lowpass prototype filter C with cut-offs at 1 2 and    can be found by 



70 

 

 

1 2
, 1 , 1 Chebyshev prototype

1 1 Chebyshev prototype

1 2

| |
C_

2

2
C_

| |

l l l l

e e

m m

q q

 

 



 

 (4.18) 

so 

 

1 2
, 1 , 1 Chebyshev prototype

1 1 Chebyshev prototype

1 2

| |

2

2
C_

| |

k k h l l

e e

m m

q q

  

 



 

 (4.19) 

Substituting (2.13) into (4.18), we have 

 

1 2
, 1

1

1 0 1

1 2

| | 1

2

2

| |

h h k

l l

e

m
g g

q g g

 



 



 

 (4.20) 

Similarly, the rest of the coupling coefficient along the branch can be formulated as 

 
3 4

, 1

1

| | 1
  ( 1 to 1)

2
h k l i h k l i

i i

m i l
g g

      



 
    (4.21) 

Where gi is obtained from (2.11) and the order of the Chebyshev filter is n3 in (4.7). 

The self-coupling mi,i of each branch resonator i should be initialised as the centre frequency 

of the passband occupied by the branch or 

 4 3
, 0  ( 1 to )

2
i im i h k h k l

 
        (4.22) 

4.3.3 Adjustment of the Branch Starting Point 

Actually, only the resonator connecting to the branch port has the self-coupling very close to 

the branch passband centre frequency 0 . The self-coupling mi,i of the other branch resonator 
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i can be formulated in a recursive way as 

 

3 4
, 0

, 1, 1

0
2

   ( 1,  0)

h k h k

i i i i i i

m

m m m h i h k m

 

 

 
  

       

 (4.23) 

and 

 

1 2
, 0

, 1, 1

0
2

   ( 1, 0)

h k l h k l

i i i i i i

m

m m m h k i h k l m

   

 

 
  

         

 (4.24) 

Furthermore, in order to make the starting value close to the final result, the coupling 

coefficient between the stem part and branch part needs to be scaled by a factor. For example, 

in Figure 4.6, mh,h+1 is the coupling between the branch resonator h+1 and the stem resonator 

k. It is scaled by the factor b as 

 3 4
, 1 , +1 , 1 Chebyshev prototype

| |
_  

2
h h k k k km b B m b m 

 
     (4.25) 

where b is greater than 1 and varied by the desired topology. To simplify the initialisation of 

the starting point, the value of b is determined as 1.4 based on the matrix synthesis.  

Substituting the Chebyshev formulas (2.13) into (4.25), we have 

 
3 4

, 1

1

| | 1

2
h h

k k

m b
g g





 
   (4.26) 
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4.3.4 Starting Values of the Stem Part 
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Figure 4.8 (a) A dual band bandpass filter A. Its coupling coefficient and external quality 

factor are denoted as A_mi,j and A_qei. (b) The coupling coefficient and external quality factor 

of the diplexer stem part are originated from those of the dual band filter A.  

For the stem part, as illustrated in Figure 4.8, the starting values of the coupling coefficient 

mi,j and the external quality factor qe1, in Figure 4.8 (b), are originated from those of the dual 

band bandpass filter, in Figure 4.8 (a). The diplexer and the dual band bandpass filter A have 

the same cut-offs of two passbands as: 

 A=  ( =1 to 4)i i i   (4.27) 

Where i  is the cut-off of the diplexer, Ai  is the cut-off of the dual band bandpass filter A. 

n1 is the order of the dual band filter A and 

 1  n h  (4.28) 

Where h is the number of the resonators on the stem of the diplexer, both 1  and  n h are even 

numbers.  

4.3.5 External Quality Factor qe1 of the Stem 

The external quality factor qe1 on the stem can be directly calculated by the formula as 
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2 3

1

2 3

e e
e

e e

q q
q

q q





 (4.29) 

Where qe2 and qe3 are the external quality factors on each branch.  

4.3.6 Coupling Coefficient mi,j and Self Coupling mi,i of the Stem 

Conventionally, the coupling coefficient mi,j of the dual band bandpass filter is obtained by 

optimisation using a gradient method [2]. For simplicity, the coupling coefficient A_mi,j of the 

n1-th order dual band bandpass filter A, in Figure 4.8(a), with symmetric responses has a close 

approximation to: 

 

1 1

1 1

1 1

1 1

1,2 1, 4 1

2,3 2, 1 4 3 2 1

, 1 1, 4 1 1

, 1 1, 4 3 2 1 1

A _ A _ 0.4 | |

A _ A _ 0.4 (| | | |)

A _ A _ 0.35 | |  (  is odd and 1 1)

A _ A _ 0.35 (| | | |) (  is even and 2 2

n n

n n

i i n i n i

i i n i n i

m m

m m

m m i i n

m m i i n



 

   

   

    

       

       

           )

 (4.30) 

Note that (4.30) is summarised from the matrix synthesis of the work. 

As the stem part of the diplexer, in Figure 4.8(b), is originated from the dual band filter A, in 

Figure 4.8(a), the starting point of the coupling coefficient of the stem part mi,j is: 

 , ,A _   ( )i j i jm m i j   (4.31) 

Substituting (4.30) into (4.42), we have 

 

1,2 4 1

2,3 4 3 2 1

, 1 4 1

, 1 4 3 2 1

0.4 | |

0.4 (| | | |)

0.35 | |  (  is odd and 1 )

0.35 (| | | |) (  is even and 2 )

i i

i i

m

m

m i i h

m i i h





   

      

     

        

 (4.32) 

The self-coupling A_mi,i of the dual band bandpass filter A is 0 when the filter has a 

symmetric response. So the self coupling of the stem part mi,i is 
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 , 0 (1 )i im i h    (4.33) 

Where h is the total number of resonators on the stem. 

4.3.7 Initialise the Reflection Zeros 

The transfer response ( )nH j of the n-th order Chebyshev filter can be expressed as [3] 

 
 2 2

1
( )

1
n

n c

H j
T

 
  

 (4.34) 

Where  2

n cT    is the Chebyshev polynomials of the first kind (having equal-ripple in 

passband), c is the cut-off of the passband,   represents the maximum value of return loss 

S11max in the passband and 

 11max /10
10

S 
  (4.35) 

Tn is defined as [3]: 

 

0

1

1 2

( ) 1

( )

( ) 2 ( ) ( )  ( 2)n n n

T x

T x x

T x x T x T x n 





   

 (4.36) 

The set of reflection zeros RZ  can be found when all the energy is transferred as 

 ( ) 1n RZH j   (4.37) 

By inspecting (4.34), (4.37) is satisfied when  2 2 0n RZ cT    . As   is non-zero, we have 

  2 0n RZ cT     (4.38) 

For simplicity, c is assumed to be unity and (4.38) is simplified as 
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  2 0n RZT    (4.39) 

So the set of solutions RZ of (4.39) is the set of reflection zeros of the Chebyshev filter. For 

Chebyshev response having cut-offs at 1 2 and   , its set of reflection zeros 
_RZ new  can be 

shifted and scaled from the normalised one RZ  as 

 

1 2
_

1 2

2

2

RZ new

RZ

 
 

 
 

 (4.40) 

According to (4.40), we find the relationship as 

 1 2 1 2
_

2 2
RZ new RZ

   
     (4.41) 

The set of new  is applied as the starting point of the reflection zeros of the diplexer circuit. It 

is used to calculate the cost function value during the optimisation. 

4.4 Cost Function for the Optimisation 

The cost function is used to quantify the difference between the optimised results and the 

desired response.  
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Figure 4.9 The critical points of a diplexer having equal-ripple response on the passband. 

In order to make a diplexer with a similar Chebyshev response in Figure 4.9, some critical 

characteristic points are chosen to form the cost function, including the reflection zeros RZ, 

the transmission zeros TZ, the equal-ripple pass-band edges BE  and the reflection poles 

within the pass-band RP. The cost function CF of the project is given as 
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       

    

  

 
 (4.42) 

Where ai, bi, ci, di and ei are the weights of each term, n is the number of resonators of the 

circuit,   represents the maximum value of return loss in the passband. Replacing the S-

parameters in (4.42) with (3.54), we have: 
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 (4.43) 

Where 1[ ]A  is the inverse matrix of the n+3 diplexer immittance matrix [A]. As given in 

(3.55), [A] contains the n+3 coupling matrix [m]. By altering the values of the non-zero 

entries in [m] (like the internal coupling mi,j, external coupling mpk,h and mh,pk and self 

coupling mi,i), the entry values in the inverse matrix [A]
-1

 may change leading to the change of 

the cost function value CF on the left hand side of (4.43). In a gradient method, the 

optimisation program is to find a matrix [m] with the lowest cost function value.  

4.5 Example A: a Diplexer Matrix Synthesised by Optimisation 

In this section, a diplexer example with Chebyshev response is synthesised. The first step is to 

determine the specifications and the desired topology of the diplexer. After reducing the 

number of variables based on the specifications and topology, the initial values of the matrix 

[m] and reflection zeros [ΩRZ] are generated. The optimised results including the final matrix 

[m] and the set of reflection zeroes are given at the end of this section. 

4.5.1 The Specifications and Topology of the Diplexer 

A 10-coupled-resonator based diplexer has been designed. The cut-offs of 2 passbands are 

determined as 1 2 3 4[ , , , ] [ 1, 0.5,0.5,1]       , return loss within the passband is at 20 dB. 

The chosen diplexer topology is depicted in Figure 4.10.  
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Figure 4.10 Schematic of a 10-coupled-resonator based diplexer. 

The n+3 coupling matrix of the diplexer is 

1,1
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  (4.44) 

The set of reflection zeros within two passbands are denoted as 
1 2 3 4 5

[ , , , , ]RZ RZ RZ RZ RZ    

(for the left passband) and 
6 7 8 9 10

[ , , , , ]RZ RZ RZ RZ RZ     (for the right passband). The zeros do 

not correspond to the physical resonators. 

4.5.2 Reducing the Total Number of Variables 

According to the topology and specifications of the diplexer, the total number of the variables 

in both the matrix [m] and the set of reflection zeros [ ]RZ  can be reduced due to symmetry. 

(1) As two passbands of the diplexer are symmetric at 0 Hz, the self couplings (m1,1 and m2,2) 

of the resonators on the stem have a relationship as 
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 1,1 2,2 0m m   (4.45) 

(2) As both branches have 4 resonators and two passbands are symmetric at 0 Hz, the 

coupling coefficient mi,j along each branch have relationships as 

 
2,3 2,7

, 1 4, 5  ( 3 5)i i i i

m m

m m i to  



 
 (4.46) 

while the self-coupling 
,k km  of each branch resonator k has the relationship as 

 
6,6 10,10

, 5, 5 1, 1= -  ( 3 5)k k k k k k k

m m

m m m m k to   

 

   
 (4.47) 

where m  is the difference of the self-coupling between the adjacent channel resonators. The 

external quality factors qei or the external coupling mPk,i of the diplexer are 

 
1,1

1 6 10 2,6 3,102   or  
2

P

e e e P P

m
q q q m m     (4.48) 

Also, the reflection zeros RZ of the diplexer have relationships as 

 
10

( 1 to 5)
i iRZ RZ i


     (4.49) 

According to (4.45) to (4.47), the set of non-zero variables of the matrix [m] in (4.44) is 

degenerate to the vector Xm as 

 1,2 2,3 3,4 4,5 5,6 3 4 5 6,6[ , , , , , , , , ]mX m m m m m m m m m     (4.50) 

According to (4.49), the set of variables of the reflection zeros forms the vector XRZ as 

 
6 7 8 9 10

[ , , , , ]RZ RZ RZ RZ RZ RZX        (4.51) 
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4.5.3 Initialisation of the Starting Point 

After reducing the number of variables, we need to find the initial values of X based on the 

equations given in Section 4.3. The starting values of X are given in (4.52) as 

6 7 8 9 101,2 2,3 3,4 4,5 5,6 3 4 5 6,6[ , ] [ , , , , , , , , , , , , , ]m RZ RZ RZ RZ RZ RZX X X m m m m m m m m m           

 = [0.8, 0.304, 0.159, 0.159, 0.217, 0.1, 0.1, 0.1, 0.75, 0.512, 0.603, 0.750, 0.897, 0.988] 

  (4.52) 

How to get the initial values of X is detailed in the following parts. 

4.5.3.1 Branch Couplings 

According to (4.52), the variables relating to the branch part are  

 2,3 3,4 4,5 5,6 3 4 5 6,6[ , , , , , , , ]m m m m m m m m    (4.53) 

As the number of reflection zeros on each channel is 5, the branch part is originated from a 5
th

 

order Chebyshev lowpass filter. For the filter having return loss at -20dB, its g values are 

 0 1 2 3 4 5 6[ , , , , , , ] [1,0.9714,1.3721,1.8014,1.3721,0.9714,1]g g g g g g g   (4.54) 

According to (4.20) and (4.54), the external quality factor qe2 of the branch will be  

 2 0 1

1 2

2
3.886

| |
eq g g

 
 


 (4.55) 

Similarly, the coupling coefficients mi,j_chebyshev of the 5
th

 order Chebyshev filter are  

 , 1_Chebyshev [0.217,0.159,0.159,0.217]i im    (4.56) 

Considering (4.26), the starting values of the branch coupling are extracted as 

 
2,3 3,4 4,5 5,6[ , , , ] [0.217 ,0.159,0.159,0.217]

[0.304,0.159,0.159,0.217]

m m m m b 


 (4.57) 
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where b=1.4 is produced from running experiments in the MATLAB program . According to 

(4.23), the self coupling m6,6 of Resonator 6 will be 

 4 3
6,6  0.75

2
m

 
   (4.58) 

And im  is assumed as 

 0.1 ( 3 to 5)im i    (4.59) 

4.5.3.2 Stem Couplings 

According to (4.30), the initial value of the stem coupling m1,2 is 

 1,2 4 10.4 | | 0.8m       (4.60) 

According (4.48) and (4.55), the external quality factor qe1 will be 

 1 2

1
1.943

2
e eq q   (4.61) 

4.5.3.3 Reflection Zeros 

As the diplexer has a symmetric response, hence the number of reflection zeros of each 

channel is 5. According to (4.36), we have 

 
5 3

5( ) 16 20 5 0RZ RZ RZ RZT          (4.62) 

The set of solutions of (4.62) is 

 
5 5 5 5 5 5 5 5

, ,0, ,
8 8 8 8

RZ

    
    
  

 (4.63) 

According to (4.41) and (4.63), the set of reflection zeros RZX within the passband [0.5,1] will 
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be  

 
6 7 8 9 10

[ , , , , ]= [0.512, 0.603, 0.750, 0.897, 0.988]RZ RZ RZ RZ RZ RZX        (4.64) 

4.5.4 Starting Point of the Diplexer 

The set of variables X to be optimised is defined as  

 [ , ]m rfX X X  (4.65) 

Considering (4.57) to (4.60) and (4.64), the starting point of X is given in (4.52) as 

X  =[0.8, 0.304, 0.159, 0.159, 0.217, 0.1, 0.1, 0.1, 0.75, 0.512, 0.603, 0.750, 0.897, 0.988] 

Setting the boundary condition of X as 

upper boundary=[0.88, 0.60, 0.22, 0.22, 0.303, 0.2, 0.2, 0.2, 0.83, 0.532, 0.633, 0.810, 0.937, 

0.988] 

lower boundary=[0.64, 0.17, 0.14, 0.14,   0.19,    0,    0,    0, 0.68, 0.502, 0.573,   0.69, 0.857, 

0.958] 

The S-parameters produced from the starting point is shown in Figure 4.11. 
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Figure 4.11 The diplexer responses of the starting point 

4.5.5 Optimised Result 

The optimisation is done in Matlab. The applied optimisation function is called fmincon. The 

algorithm evaluates different sets of X and tries to find the desired one which gives the lowest 

cost function value. This algorithm is based on a gradient method and it will terminate when 

some of the stopping criteria are satisfied[4]. The information of the computer used in this 

work is given below: 

CPU: Intel(R) Core(TM) i5 (3.20 GHz) 

Memory (RAM): 4.00GB (3.18 GB usable) 
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Figure 4.12 The cost function value in each iteration 

Figure 4.12 shows how the cost function value changes in each optimisation iteration. It takes 

11.7 seconds to converge to a result at the 218th iteration. The program stopped as the 

maximum relative change among all the elements of X is 5.55e-011 (less than the default 

value 1.0e-010). The maximum relative change of X is defined as [4] 

 max
X

X

 
 
 

 (4.66) 

where X  is the change of X. A very small maximum relative change means the program can 

not reduce the cost function value by altering any variables of X within the requested 

boundaries. The S-parameter response of the optimised result is given in Figure 4.13. 
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Figure 4.13 Responses of the 10

th
 order diplexer calculated from the optimised coupling 

matrix. 

The final cost function value CF=834.9. The errors of some critical points are given in Table 

4.1. 

Table 4.1 Errors of some critical points of the 10
th

 order diplexer 

RZ 
6RZ  

7RZ  
8RZ  

9RZ  
10RZ  

error 69.7 10  
64.6 10  

66.8 10  
61.4 10  

51.3 10  

RP 
5RP  

6RP  
7RP  

8RP  

error 

(in dB) 
0.0068 0.0035 0.0399 0.0757 

BE 
3BE  

4BE  

error 

(in dB) 
44.3 10  

44.4 10  

As given in (4.42), the cost function value CF is not the sum of the errors but the errors 

multiplied by the weights. For example, the weights of the reflection zero RZ are about

51.5 10 . The weights of the reflection poles RP and equal-ripple band edges BE are about
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32.2 10 . According to Table 4.1, all the errors contribute about 300 to the cost function value 

CF. However, the majority part of the cost function value CF (about 500) is originated from 

the errors on the stop band, which is not included in the specifications. Ideally, the energy on 

the stop band is fully reflected, i.e. 
1,1S  is 0 dB. The weights of the stop band are about 

32.2 10 . The errors on the stop band are listed in Table 4.2 

Table 4.2 Errors on the stop band of the 10th order diplexer 

  
(Hz) 

0 0.3 1.1 1.2 

error 

(in dB) 
42.6 10  0.02 0.219 0.0075 

 

A comparison between the initial values and optimised ones of X is given in Table 4.3. 

Table 4.3 Comparison between the initial values and the optimised values of X. ( m is 

defined in (4.47)) 

 m1,2 m2,3 m3,4 m4,5 m5,6 3m  4m  

initial 0.8 0.304 0.159 0.159 0.217 0.1 0.1 

optimised 0.821 0.285 0.162 0.159 0.217 0.035 0.003 

 5m  m6,6 6RZ  
7RZ  

8RZ  
9RZ  

10RZ  

initial 0.1 0.75 0.512 0.603 0.750 0.897 0.988 

optimised 0.001 0.749 0.513 0.609 0.758 0.902 0.988 

 

The optimised coupling matrix [m] is given as 
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0 0.717 0 0 0 0 0 0 0 0 0 0 0

0.717 0 0.821 0 0 0 0 0 0 0 0 0 0

0 0.821 0 0.285 0 0 0 0.285 0 0 0 0 0

0 0 0.285 0.71 0.162 0 0 0 0 0 0 0 0

0 0 0 0.162 0.745 0.159 0 0 0 0 0 0 0

0 0 0 0 0.159 0.748 0.217 0 0 0 0 0 0

0 0 0 0 0 0.217 0.749 0 0 0 0 0.507 0

0 0 0.285 0 0 0 0 0.71 0.162 0 0 0 0

0 0 0 0 0 0 0 0.162



0.745 0.159 0 0 0

0 0 0 0 0 0 0 0 0.159 0.748 0.217 0 0

0 0 0 0 0 0 0 0 0 0.217 0.749 0 0.507

0 0 0 0 0 0 0.507 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.507 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

  (4.67) 

The optimised reflection zeros of the diplexer at port 1 are: 

 = [ 0.513, 0.609, 0.758, 0.902, 0.988]RZ       (4.68) 

4.6 Example B to D: 10th Order Diplexer with a Different Topology 

The coupling matrix of a 10
th

 order diplexer has been synthesised. The cut-off frequencies of 

the lowpass prototype are [-1,-0.5] and [0.5,1], the return loss of S11 is 20 dB. The desired 

topology of the diplexer is given in Figure 4.14. The diplexer is denoted as Diplexer D. 

1

9

10

Port 2

Port 3

Port 1 82 3 4 5 6 7

 
Figure 4.14 Schematic of Diplexer D  

The n+3 coupling matrix of Diplexer D is given in Table 4.4. 
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Table 4.4 The coupling matrix topology of Diplexer D 
 P1 1 2 3 4 5 6 7 8 9 10 P2 P3 

P1  x            

1 x x x           

2  x x x          

3   x x x         

4    x x x        

5     x x x       

6      x x x      

7       x x x     

8        x x x x   

9         x x  x  

10         x  x  x 

P2          x    

P3           x   

Where x is denoted as the non-zero variables in the matrix.  

The initial values of the non-zero entries of the coupling matrix are obtained based on the 

methodology introduced in Section 4.3. It takes 13.62 seconds to converge to a result at the 

117th iteration. The initial values and optimised values of each non-zero variable of the 

coupling matrix are given in Table 4.5. 

Table 4.5 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer D 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m7,8 

initial 0.8 0.4 0.7 0.35 0.7 0.35 0.7 

optimised 0.8156 0.4054 0.7102 0.3316 0.7235 0.3289 0.7275 

 m8,9 m8,10 m9,9 m10,10 mP1,1 mP2,9 mP3,10 

initial 0.3032 0.3032 0.75 -0.75 0.7174 0.5073 0.5073 

optimised 0.3025 0.3025 0.7124 -0.7124 0.7174 0.5073 0.5073 

 

The initial values and optimised values of the reflection zeros RZ  is given in Table 4.6. 



89 

 

Table 4.6 The initial locations and the optimised ones of the reflection zeros 

 
1RZ  

2RZ  
3RZ  

4RZ  
5RZ  

initial -0.9877 -0.8970 -0.75 -0.6030 -0.5123 

optimised -0.9903 -0.9159 -0.7853 -0.6274 -0.5166 

 
6RZ  

7RZ  
8RZ  

9RZ  
10RZ  

initial 0.5123 0.6030 0.750 0.8970 0.9877 

optimised 0.5166 0.6274 0.7853 0.9159 0.9903 

The S-parameters of the optimised result are given in Figure 4.15. 

 
Figure 4.15 Response of Diplexer D 

Diplexer A, in Figure 4.10, and Diplexer D, in Figure 4.14, have a different number of 

resonators on the stem and branches. By altering the number of resonators on the stem and 

branch, we can get a set of 10
th

 order diplexers. Their topologies are shown in Figure 4.16. 
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Figure 4.16 Topologies of the 10-th order diplexers with Tree Topology 

Similarly, the initial values of the non-zero entries of the coupling matrix of Diplexer B and 

Diplexer C are obtained based on the methodology introduced in Chapter 4. It takes 20.55 

seconds to converge to a result at the 187th iteration. The initial values and optimised values 

of each non-zero variable of the coupling matrix of Diplexer B are given in Table 4.7. 

Table 4.7 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer B 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m4,8 

initial 0.8 0.4 0.7 0.2226 0.1590 0.2165 0.2226 

optimised 0.8190 0.4033 0.7168 0.2317 0.1613 0.2170 0.2317 

 m8,9 m9,10 m5,5 m6,6 m7,7 m8,8 m9,9 

initial 0.1590 0.2165 0.65 0.70 0.75 -0.65 -0.7 

optimised 0.1613 0.2170 0.7168 0.7448 0.7466 -0.7168 -0.7448 

 m10,10 mP1,1 mP2,9 mP3,10 

initial -0.75 0.7174 0.5073 0.5073 

optimised -0.7466 0.7174 0.5073 0.5073 

 

It takes 10.00 seconds to converge to a result of Diplexer C at the 83th iteration. The initial 

values and optimised values of each non-zero variable of the coupling matrix of Diplexer are 
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given in Table 4.8. 

Table 4.8 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer C 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m7,8 

initial 0.8 0.4 0.7 0.35 0.7 0.2226 0.2165 

optimised 0.8181 0.4033 0.7148 0.3284 0.7310 0.2284 0.2187 

 m6,9 m9,10 m7,7 m8,8 m9,9 m10,10 mP1,1 

initial 0.2226 0.2165 0.65 0.75 -0.65 -0.75 0.7174 

optimised 0.2284 0.2187 0.7240 0.7440 -0.7240 -0.7440 0.7174 

 mP2,9 mP3,10 

initial 0.5073 0.5073 

optimised 0.5073 0.5073 

 

 
Figure 4.17 Transmission responses of the prototype diplexers [1]. 

The transmission responses of Diplexer A to D are shown in Figure 4.17. Better adjacent 

channel rejection is achieved with a higher number of resonators on the branches.  
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Figure 4.18 Comparison of bandwidth from the diplexers and the equivalent 5

th
 order 

Chebyshev bandpass filter [1]. 

A bandwidth comparison between the diplexers and the equivalent 5-th order Chebyshev 

bandpass filter is given in Figure 4.18. The more resonators on the branches, the closer the 

response is to the Chebyshev one. 

 
Figure 4.19 Isolations of the prototype diplexers [1]. 
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An isolation comparison of the diplexers is shown in Figure 4.19. The more resonators on the 

branches, the higher the isolation is.  

4.7 Example E: Diplexer with a Different Return Loss of Each Channel 

The coupling matrix of a 14-resonator based diplexer has been synthesised. The cut-off 

frequencies of the low pass prototype are [-1,-0.5] and [0,1], the return loss of S11 is 20dB for 

the left band and 30dB for the right band. The topology of the diplexer is given in Figure 4.20. 
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Figure 4.20 Schematic of Diplexer E 

The n+3 coupling matrix of Diplexer E is given in Table 4.9 

Table 4.9 Coupling matrix of Diplexer E 

 P1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P2 P3 

P1  x                

1 x  x               

2  x  x              

3   x  x             

4    x  x     x       

5     x x x           

6      x x x          

7       x x x         

8        x x x        

9         x x      x  

10     x      x x      

11           x x x     

12            x x x    

13             x x x   

14              x x  x 

P2          x        

P3               x   

where x is denoted as the non-zero variables in the matrix.  
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The initial values of the non-zero entries of the coupling matrix are obtained based on the 

methodology introduced in Section 4.3. It takes 127.32 seconds to converge to a result at the 

300th iteration. The initial values and the optimised ones of the non-zero variables of the 

coupling matrix are given in Table 4.10. 

Table 4.10 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer E 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 

initial 0.800 0.600 0.700 0.485 0.305 0.305 

optimised 0.822 0.607 0.512 0.542 0.409 0.330 

 m7,8 m8,9 m4,10 m10,11 m11,12 m12,13 

initial 0.334 0.512 0.210 0.141 0.141 0.150 

optimised 0.342 0.515 0.223 0.142 0.141 0.150 

 m13,14 m1,1 m2,2 m3,3 m4,4 m5,5 

initial 0.208 -0.250 -0.250 -0.250 -0.250 0.100 

optimised 0.208 0.164 -0.013 0.089 0.004 0.111 

 m6,6 m7,7 m8,8 m9,9 m10,10 m11,11 

initial 0.200 0.300 0.400 0.500 -0.550 -0.600 

optimised 0.377 0.464 0.481 0.485 -0.725 -0.749 

 m12,12 m13,13 m14,14 mP1,1 mP2,9 mP3,14 

initial -0.650 -0.700 -0.750 0.976 0.840 0.498 

optimised -0.750 -0.750 -0.750 0.976 0.840 0.498 

where the self-coupling mi,i<0 means the resonant frequency fi of Resonator i is lower than the 

centre frequency fc of the circuit ( fi < fc ). 

The S-parameters of the optimised result are given in Figure 4.21. 
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Figure 4.21 Response of Diplexer E 

The initial locations and the optimised ones of the reflection zeros RZ  of S11 is given in 

Table 4.11 

Table 4.11 The initial locations and the optimised ones of RZ  of Diplexer E 

 
1RZ  

2RZ  
3RZ  

4RZ  
5RZ  

initial -0.9934 -0.9454 -0.8584 -0.75 -0.6416 

optimised -0.9930 -0.9467 -0.8621 -0.7544 -0.6443 

 
6RZ  

7RZ  
8RZ  

9RZ  
10RZ  

initial -0.5546 -0.5063 0.0126 0.1091 0.2831 

optimised -0.5553 -0.5063 0.0268 0.1486 0.3439 

 
11RZ  

12RZ  
13RZ  

14RZ  

initial 0.5 0.7169 0.8909 0.9874 

optimised 0.5606 0.7591 0.9092 0.9896 

 

4.8 Example F: Diplexer with a Different Order of Each Channel 

The coupling matrix of a 9-resonator diplexer has been synthesised. The cut-off frequencies 
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of the lowpass prototype diplexer are [-1, -0.5] and [0.1, 1]. The return loss of S11 is 20dB. 

The topology of the diplexer is shown in Figure 4.22.. 
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Figure 4.22 Schematic of Diplexer F 

The n+3 coupling matrix is shown in Table 4.12. 

Table 4.12 Coupling matrix of Diplexer F 
 P1 1 2 3 4 5 6 7 8 9 P2 P3 

P1  x           

1 x x x          

2  x x x     x    

3   x x x        

4    x x x       

5     x x x      

6      x x x     

7       x x   x  

8   x      x x   

9         x x  x 

P2        x     

P3          x   

 

The initial values of the coupling matrix are obtained based on the methodology in Section 

4.3. It takes 43.17 seconds to converge to a result at the 119th iteration. The initial values and 

the optimised ones of the non-zero entries of the coupling matrix of the diplexer are given in 

Table 4.13. 
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Table 4.13 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer F. 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m2,8 

initial 0.8 0.4936 0.2751 0.2626 0.2751 0.3797 0.3353 

optimised 0.8015 0.4546 0.2900 0.2655 0.2762 0.3804 0.3085 

 m8,9 m1,1 m2,2 m3,3 m4,4 m5,5 m6,6 

initial 0.2579 -0.2 -0.2 0.15 0.25 0.35 0.45 

optimised 0.2610 0.0412 -0.0730 0.4213 0.5264 0.5419 0.5457 

 m7,7 m8,8 m9,9 mP1,1 mP2,7 mP3,9 

initial 0.54 -0.7 -0.75 0.8639 0.6728 0.5418 

optimised 0.5472 -7007 -0.7391 0.8639 0.6728 0.5418 

 
Figure 4.23 Response of Diplexer F 

The response of Diplexer F is shown in Figure 4.23. The initial locations and the optimised 

ones of the reflection zeros of S11 are given in Table 4.14. 
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Table 4.14 The initial locations and the optimised ones of the relection zeros of Diplexer F. 

 
1RZ  

2RZ  
3RZ  

4RZ  
5RZ  

initial -0.9666 -0.75 -0.5334 0.1153 0.2319 

optimised -0.9696 -0.7625 -0.5369 0.1176 0.2474 

 
6RZ  

7RZ  
8RZ  

9RZ  

initial 0.4334 0.6666 0.8682 0.9847 

optimised 0.4596 0.6893 0.8801 0.9857 

 

4.9 Example G: Contiguous Channel Diplexer 

A 16–resonator diplexer has been synthesised. The cut-off frequencies of the low-pass 

prototype diplexer are [-1, -0.5] and [-0.5, 1]. The return loss of S11 is 20 dB. The topology of 

the diplexer is given in Figure 4.24. 
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Figure 4.24 Schematic of Diplexer G 

The initial values of the coupling matrix are obtained by the methodology introduced in 

Section 4.3. It takes 354.37 seconds to converge to a result at the 1209th iteration. Both the 

initial values and the optimised ones of the non-zero entries of the coupling matrix are given 

in Table 4.15. 
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Table 4.15 The initial values and the optimised ones of the non-zero entries of the coupling 

matrix of Diplexer G. 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m7,8 

initial 0.8000 0.8641 0.4439 0.4154 0.4095 0.4154 0.4439 

optimised 0.8187 0.5209 0.4269 0.4054 0.4032 0.4123 0.4430 

 m8,9 m2,10 m10,11 m11,12 m12,13 m13,14 m14,15 

initial 0.6172 0.2880 0.1480 0.1385 0.1365 0.1385 0.1480 

optimised 0.6226 0.2620 0.1379 0.1297 0.1297 0.1325 0.1418 

 m15,16 m1,1 m2,2 m3,3 m4,4 m5,5 m6,6 

initial 0.2057 -0.5 -0.5 -0.05 0.000 0.05 0.1 

optimised 0.1968 0.0158 0.0070 0.2004 0.2475 0.2523 0.2531 

0 m7,7 m8,8 m9,9 m10,10 m11,11 m12,12 m13,13 

initial 0.15 0.2 0.25 -0.45 -0.5 -0.55 -0.6 

optimised 0.2535 0.2526 0.2539 -0.7451 -0.7685 -0.7643 -0.7615 

 m14,14 m15,15 m16,16 mP1,1 mP2,9 mP3,16 

initial -0.65 -0.7 -0.75 1.0085 0.8587 0.4958 

optimised -0.7604 -0.7604 -0.7607 1.0000 0.8748 0.4845 

The response of Diplexer G is shown in Figure 4.25. 

 
Figure 4.25 Response of Example G 

The initial locations and the optimised ones of the reflection zeros of S11 are given in Table 

4.16. 
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Table 4.16 The initial locations and the optimised ones of the reflection zeros. 

 
1RZ  

2RZ  
3RZ  

4RZ  
5RZ  

6RZ  

initial -0.9952 -0.9579 -0.8889 -0.7988 -0.7012 -0.6111 

optimised -0.9954 -0.9593 -0.8923 -0.8040 -0.7076 -0.6186 

 
7RZ  

8RZ  
9RZ  

10RZ  
11RZ  

12RZ  

initial -0.5421 -0.5048 -0.4858 -0.3736 -0.1666 0.1038 

optimised -0.5521 -0.5147 -0.4558 -0.2892 -0.0566 0.2072 

 
13RZ  

14RZ  
15RZ  

16RZ  

initial 0.3962 0.6666 0.8736 0.9858 

optimised 0.4728 0.7018 0.8925 0.9867 

 

4.10 Example H: Triplexer 

The coupling matrix of an 18-resonator triplexer has been synthesised. The cut-off 

frequencies of the lowpass prototype triplexer are [-1, -0.5], [-0.25, 0.25] and [-0.5, 1]. The 

return loss of S11 is 20dB. The topology of the triplexer is shown in Figure 4.26. 
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Figure 4.26 Schematic of the triplexer. 

Port 2 is for the higher band, Port 3 is for the middle band and Port 4 is for the lower band. It 

takes 119.65 seconds to converge to a result at the 407th iteration. The initial values and the 

optimised ones of the coupling matrix of the triplexer are given in Table 4.17.  
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Table 4.17 The initial values and the optimised ones of the coupling matrix of the triplexer. 
 m1,2 m2,3 m3,4 m4,5 m5,6 m6,7 m7,8 

initial 0.8000 0.6000 0.2531 0.1528 0.1459 0.1528 0.2109 

optimised 0.7647 0.5647 0.2750 0.1554 0.1456 0.1527 0.2108 

 m3,9 m9,10 m10,11 m11,12 m12,13 m13,14 m10,15 

initial 1.1200 0.3500 0.2140 0.1459 0.1528 0.2109 0.2140 

optimised 0.4313 0.6632 0.2435 0.1522 0.1546 0.2118 0.2435 

 m15,16 m16,17 m17,18 m1,1 m2,2 m3,3 m4,4 

initial 0.1459 0.1528 0.2109 0 0 0 0 

optimised 0.1522 0.1546 0.2118 0 0 0 0 

 m5,5 m6,6 m7,7 m8,8 m9,9 m10,10 m11,11 

initial 0 0 0 0 0 0 0.6000 

optimised 0 0 0 0 0 0 0.6963 

 m12,12 m13,13 m14,14 m15,15 m16,16 m17,17 m18,18 

initial 0.6500 0.7000 0.7500 -0.6000 -0.6500 -0.7000 -0.7500 

optimised 0.7391 0.7444 0.7454 -0.6963 -0.7391 -0.7444 -0.7454 

 mP1,1 mP2,14 mP3,8 mP4,18 

initial 0.8686 0.5015 0.5015 0.5015 

optimised 0.8686 0.5015 0.5015 0.5015 

The responses of the triplexer is shown in Figure 4.27. 

 
Figure 4.27 Response of the triplexer 
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The initial locations and the optimised ones of the reflection zeros of S11 are given in Table 

4.18. 

Table 4.18 The initial locations and the optimised ones of the reflection zeros of S11. 

 
1RZ  

2RZ  
3RZ  

4RZ  
5RZ  

6RZ  

initial -0.9915 -0.9267 -0.8148 -0.6852 -0.5733 -0.5085 

optimised -0.9925 -0.9388 -0.8380 -0.7129 -0.5909 -0.5112 

 
7RZ  

8RZ  
9RZ  

10RZ  
11RZ  

12RZ  

initial -0.2415 -0.1767 -0.0648 0.0648 0.1767 0.2415 

optimised -0.2415 -0.1767 -0.0645 0.0645 0.1767 0.2415 

 
13RZ  

14RZ  
15RZ  

16RZ  
17RZ  

18RZ  

initial 0.5085 0.5733 0.6852 0.8148 0.9267 0.9915 

optimised 0.5112 0.5909 0.7129 0.8380 0.9388 0.9925 

 

 

[1] W. Xia, X. Shang, and M. J. Lancaster., "Responses comparisons for coupled-resonator based 
diplexers," in Passive RF and Microwave Components, 3rd Annual Seminar on, 2012, pp. 67-
75. 

[2] X. Shang, Y. Wang, G. L. Nicholson, and M. J. Lancaster, "Design of multiple-passband filters 
using coupling matrix optimisation," Microwaves, Antennas & Propagation, IET, vol. 6, pp. 
24-30, 2012. 

[3] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists: A Comprehensive Guide: 
Elsevier Science, 2011. 

[4] MATLAB 10 user's guide (online). Available: http://www.mathworks.com 
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Chapter 5  Diplexer Implementation 

The coupling matrix can be applied to any types of coupled resonator circuit regardless of its 

physical structure [1]. The work presented here is to realise the coupling matrix in the form of 

the rectangular waveguide circuit. Some of the waveguide components are introduced in 

Section 5.1. For the coupled-resonator circuit based on the rectangular waveguides, the design 

procedure is in four steps. The first step is to synthesis the coupling matrix [m] of the device 

meeting the desired specifications. A local optimisation algorithm, which is one of the 

synthesis methods, has been discussed in the previous chapters. The second step is to extract 

the initial dimensions of each waveguide component of the device using the EM simulator. 

The initial dimensions of the components are based on the values of the synthesised matrix 

[m]. How to extract the initial dimensions is discussed in Section 5.2. After putting all the 

initial components together, the third step is to optimise the whole physical structure in the 

EM simulator so as to meet the desired specifications. After the completion of the overall 

structure optimisation on the EM simulator, the last step is to fabricate the device and measure 

its responses by the Vector Network Analyser (VNA). If the measured response is far from its 

simulated counterpart, additional tuning work may be required to improve the measured 

results.  

In Section 5.3, a coupled-resonator rectangular waveguide based X-band diplexer is 

manufactured, measured and tuned. A further improvement on the simulation of the device 

has been made by using a new structure optimising technique, the Step Tune method. The 

procedures of the Step Tune method is given in Section 5.4. 
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5.1 Introduction of the Rectangular Cavity Resonator and Coupling Iris 

x

y

z

a
b

 
Figure 5.1 Rectangular waveguide illustration 

The rectangular waveguide, as shown in Figure 5.1, is a hollow metallic pipe guiding 

electromagnetic waves. It is one of the distributed elements widely used. By varying the shape 

of the rectangular waveguide, it can work as a cavity resonator or as a coupling iris to 

construct the filtering circuit.  

5.1.1 Cut-Off Frequency 
cutofff  of the TE Mode and TM Mode 

The cut-off frequency is the lowest frequency which a mode can propagate through the 

rectangular waveguide. TE waves can propagate through the waveguide[2]. The cut-off 

frequency 
cutofff of each TE mode is given by 

 2 2( ) ( )
2

cutoff

c m n
f

a b
   (5.1) 

Where m and n is the number of half standing waves along x axis and y axis of the rectangular 

waveguide, c is the speed of light in vacuum. 

The mode with the lowest cut-off frequency is called the dominant mode. Conventionally, for 

the standard rectangular waveguide, the width a is twice as big as the height b. According to 

(5.1), the lowest frequency is achieved when m=1 and n=0 (i.e. TE10 is the dominant mode of 
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the rectangular waveguide). 

5.1.2  Cavity Resonator and Resonant Frequency  

x

y

z
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b
l

 
Figure 5.2 Inner sight of a cavity resonator 

As shown in Figure 5.2, a cavity resonator is a rectangular waveguide enclosed by a 

conducting wall at each end. The length of a cavity resonator l is multiple of half-guided 

wavelength g  
at the resonant frequency. For dominant mode (TE10), the guided wavelength 

g  is given by (5.2) 

 
2 2 2

2

4
g

ac

a f c
 


 (5.2) 

where f is the mode frequency, a is the width of the rectangular waveguide, c is the speed of 

light in vacuum. 

5.1.3 Coupling Iris 

Coupling iris is one type of discontinuity between two rectangular waveguides and is used for 

coupling.  
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(a)                                                               (b)

(c)                                                               (d)
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Figure 5.3 Inner views of the rectangular waveguide with different types of coupling irises 

Some standard irises are illustrated in Figure 5.3. The iris with vertical slot in Figure 5.3(a) 

and (b) are the inductive irises. The iris with horizontal slot in (c) and (d) are the capacitive 

irises.  

5.2 Extraction of External Quality Factor Qe and Coupling Coefficients 

To convert the coupling matrix [m] into the waveguide form, we need to find the relationship 

between the values of the matrix entries and the related dimensions of the waveguide 

components.  

5.2.1 Extraction of the External Quality Factor Qe 

unloadQ  is defined as the ratio of the energy stored and power lost in the reactive element per 

unit time. The description is given as: 
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The unloaded quality factor Qunload  of a cavity resonator may come from the conductor loss of 

the cavity wall Qc, the dielectric Qd and any radiation Qr. If the cavity is coupled to a source 

and a load, the loaded quality factor lQ is formulated as 

 
1 1 1 1 1 1 1

l unload e c d r eQ Q Q Q Q Q Q

 
      

 
 (5.4) 

Where Qe is the external quality factor of the cavity. lQ  can be measured from the S2,1 of a 

single resonator as shown in Figure 5.4.  lQ  is formulated as 

 c
l

f
Q

BW
  (5.5) 

Where BW is the 3dB bandwidth and fc is the resonant frequency. 

 
Figure 5.4 S2,1 magnitude in dB of a single resonator 

To extract Qe from Ql, we need to simplify (5.4). There will be no dielectric loss in the 

waveguide cavity since no dielectric material is used. So dQ  . As no radiation slots exist, 

no energy is radiated from the cavity. So rQ  . For perfect electric conductor simulated 

 
Energy stored in the resonator

Average power lost 
unloadQ   (5.3) 
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on the EM simulators, the conductor loss can be ignored. So cQ  . Substituting (5.5) into 

(5.4), the equation is simplified as 

 
1 1c

l e

f

Q BW Q
   (5.6) 

or 

 l e

c

BW
Q Q

f
   (5.7) 
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Figure 5.5 A doubly loaded rectangular waveguide resonator. d and t is the width and 

thickness of the iris.  

In this work, the inductive irises are chosen as the coupling components of the devices. The 

topology of a doubly loaded waveguide resonator with inductive irises is given in Figure 5.5. 

Two coupling irises are symmetric to each other. According to [1], the external quality factor 

of each iris 
_e irisQ is 

 _ 2e iris eQ Q   (5.8) 

Substituting (5.7) into (5.8), we have 
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 _ 2e iris lQ Q   (5.9) 

Keeping the iris thickness t as 2mm and varying the width d, we can get a set of Qe_iris. Using 

EM simulator,  the relationship between the iris width d and Qe_iris is presented in Figure 5.6 

 
Figure 5.6 The relationship between iris dimensions d and Qe_iris  

As shown in Figure 5.6, Qe_iris gets smaller by increasing the width d of the iris. Using (3.67), 

the external quality factor Qe can be turned into the external coupling coefficient MPi for the 

n+X coupling matrix. 

5.2.2 Extraction of the Internal Coupling Coefficient 

The internal coupling coefficient between resonators could be an electric, a magnetic or a 

mixed coupling. The coupled resonators are synchronously tuned if their resonant frequencies 

are the same, or asynchronously tuned when the coupled resonators have different resonant 

frequencies. 
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Figure 5.7 S2,1 magnitude in dB of the coupled resonators 

Figure 5.7 shows the S2,1 of the two coupled resonators, f1 and f2 are noted as the frequencies 

of two peaks. The coupling coefficient is denoted as k and can be obtained from the universal 

formulation as [1]  

 

22
2 22 2

02 01 02 012 1

2 2 2 2

01 02 2 1 02 01

1

2

f f f ff f
k

f f f f f f

     
       

     
 (5.10) 

where, f01 and f02 are the resonant frequencies of each uncoupled resonator.  

When the coupled resonators are synchronously tuned (i.e. 0201 ff  ), (5.10) is simplified as 

[1] 

 
2

1

2

2

2

1

2

2

ff

ff
k




  (5.11) 
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Figure 5.8 Two magnetically coupled resonators with weak external couplings. 

A structure of extracting internal coupling coefficient k is given in Figure 5.8. Two resonators 

are symmetric to each other so that they are synchronously tuned. By altering the width d of 

the iris between the two cavities, a set of kiris can be obtained in a simulator and by using 

(5.11). The relationship between d and kiris is given in Figure 5.9. 

 
Figure 5.9 The relationship between iris dimensions d and kiris 

For asynchronously tuned resonators, when the ratio of two resonant frequencies f01 and f02 is 

within a small range ( 02
02 01

01

1.1,  
f

f f
f

  ), the asynchronously tuning has very little effect 

on the value of the internal coupling coefficient [3]. So the topology in Figure 5.9 can be 
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applied to extract the internal coupling of the asynchronously tuned resonators. 

5.2.3 Extraction of the Self Coupling mi,i 

The length l of the cavity resonator is generally half of the guided wavelength g of the 

resonant frequency. The equation is given as 

 
2

g
l


  (5.12) 

For the synchronously tuned device, the self coupling mi,i equals to 0. Resonator i is 

oscillating at the centre frequency f0 of the device. For the dominant mode, according to (5.2) 

and (5.13), the cavity length li  of the synchronously tuned resonator i is obtained as: 

 
2 2 2

0
2 4

g

i

ac
l

a f c


 


 (5.13) 

where c is the light speed in vacuum, a is the width of the rectangular waveguide. 

For the asynchronously tuned device, not all the resonators are resonating at the centre 

frequency f0 of the device. Resonator i is asynchronously tuned when the coupling matrix of 

the device [m] has an non-zero diagonal entry mi,i,. The relationship between the resonant 

frequency fi and the self-coupling mi,i of resonator i are given in (3.63). According to (3.63) 

and (5.13), the cavity length li  of the asynchronously tuned resonator i is obtained as: 

 

2 2 2

2
2

, ,2 2 2

0

2 4

4 1
2 2

g

i

i

i i i i

ac
l

a f c

ac

FBW m FBW m
a f c


 





       
  
 

 (5.14) 
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5.3 Example A: 10
th

 Order Diplexer with no Cross-Coupling 

5.3.1 The Specifications and Optimised Coupling Matrix of the Diplexer 

A 10-resonator rectangular waveguide diplexer working at X-band has been designed, 

fabricated and tested. The specifications of the diplexer are: the centre frequency fc=10GHz, 

the fractional bandwidth FBW=0.1, the bandwidth of each passband is 350MHz. The return 

loss of S11 is 20 dB. 

The cut-off frequencies of the lowpass prototype of the diplexer are denoted as 1 2[ , ]  for 

the left passband and 3 4[ , ]   for the right passband. According to the specifications, the cut-

off frequencies of the diplexer prototype are obtained as 

 

each passband

3 2

4 1

1 1
10GHz 0.1 350MHz

2 2 0.3
1 1

10GHz 0.1
2 2

1

c

c

f FBW BW

f FBW

 
     

      

  

   

 (5.15) 

So the set of cut-off frequencies of the diplexer prototype is 1 2 3 4[ , , , ] [ 1, 0.3,0.3,1]       . 

The desired topology of the diplexer is given in Figure 5.10. Port 2 works on the right 

passband while Port 3 is for the left passband.  
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Figure 5.10 Schematic of the 10-resonator diplexer 

The diplexer in n+3 coupling matrix is of the form: 
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 P1 1 2 3 4 5 6 7 8 9 10 P2 P3 

P1  x            

1 x x x           

2  x x x    x      

3   x x x         

4    x x x        

5     x x x       

6      x x     x  

7   x     x x     

8        x x x    

9         x x x   

10          x x  x 

P2       x       

P3           x   
 

(5.16) 

where 
1,1 11P em q , 

2,6 3,10 21P P em m q  . After the optimisation, the values of each entry 

are given in Table 5.1 

Table 5.1 Coupling values of the 10
th

 order diplexer. 
 m1,2 m2,3 m3,4 m4,5 m5,6 m2,7 m7,8 

optimised 0.8 0.3648 0.2290 0.2238 0.3036 0.3648 0.2290 

 m8,9 m9,10 m1,1 m2,2 m3.3 m4,4 m5,5 

optimised 0.2238 0.3036 0 0 0.5727 0.6373 0.6449 

 m6,6 m7,7 m8,8 m9,9 m10,10 qe1 qe2 qe3 

optimised 0.6465 -0.5727 -0.6373 -0.6449 -0.6465 1.388 2.775 2.775 

The response of the diplexer using the normalised lowpass responses is given in Figure 5.11. 
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Figure 5.11 The diplexer with normalised response 

The lowpass prototype diplexer is transformed to the desired response with fc=10GHz, FBW= 

0.1. According to (3.67) and (3.69), the entry values after the frequency transformation are 

given in Table 5.2 

Table 5.2 Coupling values after the frequency transformation 
 M1,2 M2,3 M3,4 M4,5 M5,6 M2,7 M7,8 

optimised 0.08 0.0365 0.0229 0.0224 0.0304 0.0365 0.0229 

 M8,9 M9,10 M1,1 M2,2 M3.3 M4,4 M5,5 

optimised 0.0224 0.0304 0 0 0.0573 0.0637 0.0645 

 M6,6 M7,7 M8,8 M9,9 M10,10 Qe1 Qe2 Qe3 

optimised 0.0647 -0.0573 -0.0637 -0.0645 -0.0647 13.88 27.75 27.75 

 

The S-parameters after frequency transformation is shown in Figure 5.12. 
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Figure 5.12 S-parameter of the diplexer after frequency transformation 

5.3.2 Physical Structure of the Diplexer 

To make the device more compact, the resonators of the diplexer are coupled not in a straight 

line but in a zigzag way as shown in Figure 5.13.  

Port 3
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27 3

4 5

6

Port 2

Port 1

10

9 8

 
Figure 5.13 Structure of the 10-resonator diplexer in a zigzag topology 

In order to facilitate the CNC milling, an H-plane topology with all inductive irises is chosen. 

The top view of the diplexer in rectangular waveguide is given in Figure 5.14. A 3D structure 
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is in Figure 5.15. 
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Figure 5.14 Top view of the diplexer. R1 to R10 are the cavity resonators. WR-90 refers to the 

transmission line between the port and coupled resonator. 

Inductive iris

Cavity resonator

 
Figure 5.15 3D structure of the diplexer 

The next step is to find out the dimensions of each iris and resonator of the diplexer. The 

methodology of obtaining initial dimensions has been discussed in Section 5.2. CST, one of 
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the EM simulators, has been utilised to extract the initial dimensions of the waveguide 

components.  

5.3.3 Overall Structure Optimisation 

After putting all the components together with the initial dimensions, further optimization, 

using CST frequency domain solver, on the overall structure is applied to meet the 

specifications. Both the width d of the irises and the length l of the cavity resonators are tuned. 

The optimized simulating responses before manufacturing are plotted in Figure 5.16. 

 
Figure 5.16 Responses comparison between the optimised simulation and the matrix 

calculation. 

The notations and values of the physical dimensions of the fabricated 10
th

 order diplexer are 

given in Figure 5.17 and Table 5.3. 
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Figure 5.17 Configuration of X-band diplexer structure and its dimensions. 

Table 5.3 Dimensions of the fabricated X-band 10
th

 order diplexer (Unit: mm)  

 a b de1 de2 de3 d12 d23 

fabricated 22.86 10.16 14.2 12.312 12.2 11.3 12 

 d34 d45 d56 d27 d78 d89 d910 

fabricated 7.183 10.048 8.103 11.8 7.39 10.1 8.08 

 l1 l2 l3 l4 l5 l6 l7 

fabricated 13.08 15.33 16.778 17.266 17.064 14.739 19 

 l8 l9 l10 lp1 lp2 lp3 t 

fabricated 19.6 19.3 16.87 20 21.811 22 2 

 

5.3.4 Fabrication and Measurement 

As shown in Figure 5.15, the construction of the device is split along the H-plane into two 

pieces. ( 7conductivity 3.56 10 (S/m)  ). The picture of the fabricated device is shown in 

Figure 5.18. A response comparison between the simulation and measurement results is given 

in Figure 5.19. The measured insertion loss is about 0.4 dB in the middle of the passband 
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while the simulated insertion loss is about 0.2 dB. 

 
Figure 5.18 Photograph of the fabricated X-band 10

th
 order diplexer (top cover removed). 

  
Frequency (GHz) 

Figure 5.19 Response comparison between the measurement (without tuning screws) and the 

optimised simulation results of the diplexer. 
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5.3.5 Screw Tuning 

To compensate the manufacture errors and to improve the response for the missing reflection 

poles, 22 capacitive tuning screws [4] (10 for the cavity resonators and 12 for the coupling 

irises) are inserted into the device through the top part. By varying the length penetrating into 

the waveguide, the responses are changed. After the tuning work, two more poles in the lower 

passband have been found. The return loss of the higher passband has been improved. A 

comparison of S11 between the measured results with tuning and without tuning is given in 

Figure 5.21. 

Tuning Screw

 
Figure 5.20 Photograph of the cover of the fabricated diplexer. The steel screws are for tuning. 

The brass screws are for connecting two parts of the device together. 
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Figure 5.21 Measured return loss comparison between the diplexer being tuned and without 

tuning. 

5.4 Step Tune Method for Rectangular Waveguide Device Design 

As presented in Section 5.3, after obtaining the initial dimensions of each cavity and iris, the 

traditional method is to optimise the overall structure so as to get the desired responses. With 

a circuit with higher order and/or a complex cross-coupled topology, the overall structure 

optimisation will be slow and the convergence of the final result is not guaranteed. Here we 

present a method which overcomes this problem. 

The method, which is based on EM simulator [5], will be called the Step Tune method. 

Instead of traditionally altering all the parameters of the circuit in each optimising iteration, 

the step-tune method simulates only one resonator of the device in the first step. When 

finishing tuning the first resonator, one more resonator is added and then the circuit is 

tuned/optimised again. More resonators are added successively to tuning at each step. In each 

new step, the dimensions of the old resonators, which have been tuned in the previous steps, 

are kept the same values. For each step, a new coupling matrix is required for the tuning. As 
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limited number of physical dimensions needs to optimise in each step, the optimising process 

works more efficiently and generates more reliable solutions. The key point of this method is 

to calculate the S-parameters in each step and apply the responses as the objective ones for the 

physical optimising. 

To get the responses in each step, we need to convert the internal coupling coefficient mi,j of 

the coupling iris into its related external quality factor Qei. The equation is [5]: 
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(5.17) 

where λg is the guided wavelength of the resonant frequency and λ is the free-space 

wavelength, n is the number of half-wavelengths of the waveguide resonator cavity. 

Substituting (5.17) into (3. 22), we have 
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 (5.18) 

where MPk,i is the equivalent external coupling coefficient of the internal coupling iris. 

The process of optimizing 10-resonator diplexer by Step Tune method is presented in the 

following parts. Each step, including its topology, the top view of the rectangular circuit and 

the desired response, is given in Figure 5.22 to Figure 5.28. During the Step Tune, the 

material of the circuit is set to be the PEC. 

Note as the circuits in Figure 5.23 and Figure 5.25 to Figure 5.28 are not well-matched, the 

insertion loss of each channel is very high leading to a flat reflection response S1,1 of each 

circuit. This is of course no problem and inherent in the Step Tune process. 
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5.4.1 Step One 

1

Port 1

Port 2                               

Port 1

Port 2

R1 l1

de1

d12

a

         
       (a)     (b)   

Figure 5.22 (a) Schematic of Resonator 1 in Step One and (b) its top view of the rectangular 

waveguide circuit. de1 and d12 are the width of the irises. l1 is the length of the cavity resonator 

1. a=22.86mm is the standard width of WR-90. 

The Step Tune method starts with optimising Resonator 1 of the diplexer. According to 

Figure 5.13, Resonator 1 is coupled to Port 1 and Resonator 2. In Step One, Resonator 2 is 

replaced with a Port 2. Resonator 3 to 10 are removed. The schematic of the circuit in Step 

One is illustrated in Figure 5.22(a). Resonator 1 is coupled to two ports so the general n n  

coupling matrix cannot be used to derive the responses [6]. An n+2 coupling matrix 

Step_1 2[ ]nM   is applied as 

 

1,1

Step_1 2 1, 1 1,1 1, 2

2,1

0 0

[ ]

0 0

P

n P P

P

M

M M M M

M



 
 

  
 
 

 (5.19) 

As given in Table 5.2, the related matrix entries of Resonator 1 are 

 1,1 1,1 1,20.2684,   0,   0.08PM M M    (5.20) 

M1,P2 in (5.19) is originated from M1,2 of the 10
th

 order diplexer in (5.20). According to (5.18), 

the internal coupling M1,2 is turned into its equivalent external coupling MP2,1 as 
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 2,1 1,2 0.1324
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PM M




 
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 
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So [Mstep_1]n+2 in (5.19) is 

 Step_1 2

0 0.2684 0

0.2684 0 0.1324

0 0.1324 0
n

M


 
      
  

 (5.22) 

 
Figure 5.23 Response comparison between the tuned results (in solid lines) and its objective 

ones (in dashed lines). 

According to Figure 5.14, the top view of the equivalent waveguide circuit in Step One is 

given in Figure 5.22(b). de1, d12 and l1 are the physical dimensions to tune. The aim of the 

tuning is to make the simulation results satisfy its objective counterpart obtained from the 

coupling matrix. The final results of Step One are given in Figure 5.22. The simulation results 

(in solid lines) meet well with the objective ones (in dashed lines). The objective S-parameters 

in Step One is derived from the coupling matrix in (5.22). 

5.4.2 Step Two 

After Resonator 1 is optimised in Step One, Resonator 2 is added to the circuit. According to 

Figure 5.13, Resonator 2 is coupled to Resonator 1, 3 and 7. In Step Two, Resonator 3 and 7 
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are replaced with two ports. The schematic of the circuit in Step Two is given in Figure 5.24. 
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          (a)            (b) 

Figure 5.24 (a) Schematic of the circuit in Step Two and (b) its top view of the rectangular 

waveguide circuit. de1, d12, d23 and d27 are the width of the irises. l1 and l2 are the length of the 

cavity resonators.  

As the circuit in Figure 5.24(a) has 3 ports, the equivalent coupling matrix of the circuit is 

extended to an n+3 matrix [Mstep_2]n+3 as 
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2,1 2,2 2, 2 2, 3Step_2 3
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 (5.23) 

where M2,P2 and M2,P3 are originated from M2,3 and M2,7. As given in Table 5.2, the related 

matrix entries of Resonator 2 are 

 1,2 2,2 2,3 2,70.08,  0,   0.0365M M M M     (5.24) 

According to (5.18) and (5.24), the internal couplings M2,3 and M2,7 are turned into the 

equivalent external couplings MP2,2 and MP3,2 as 

 2,2 3,2 2,3 0.0604
2

g

P PM M M




 
   

 
 (5.25) 

So [Mstep_2]n+3 is 
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Figure 5.25 Response comparison between the tuned results (in solid lines) and its objective 

ones (in dashed lines) in Step Two. The objective S21 and S31 in dashed lines are the same. 

According to Figure 5.14, the top view of the equivalent waveguide circuit in Step Two is 

given in Figure 5.24(b). d23, d27 and l2 are the new dimensions to tune. The values of de1, d12 

and l2, which have been optimised in Step One, are fixed during Step Two. After the tuning, 

as given in Figure 5.25, the simulation response (in solid lines) gets very close to its objective 

response (in dashed lines) from the coupling matrix.  

5.4.3 Completion of All Steps 

Branch resonators are added successively in the remaining steps. The schematics of the 

circuits in Step Three to Step Six, as well as their rectangular waveguide forms and the 

objective S-parameters, are given in Figure 5.26 to Figure 5.29. In each step, the dimensions 

of the new added resonators are tuned. The dimensions of the “old” resonators, which have 
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been optimised in the previous steps, are kept their values in the new step(s). 
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Figure 5.26 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Three. 

d34, d78, l3 and l7 are the dimensions to optimise. (c) Response comparison between the tuned 

results (in solid lines) and its objective ones (in dashed lines).  
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Figure 5.27(a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Four. d45, 

d89, l4 and l8 are the dimensions to optimise. (c) Response comparison between the tuned 

results (in solid lines) and its objective ones (in dashed lines). 
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Figure 5.28(a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Five. d56, 

d910, l5 and l9 are the dimensions to optimise. (c) Response comparison between the tuned 

results (in solid lines) and its objective ones (in dashed lines). 
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Figure 5.29 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Six. de2, 

de3, l6 and l10 are the dimensions to optimise. (c) Responses comparison between the 

simulation results (in solid line) and the matrix calculations (in dashed line).  

The simulation results after Step Six are given in Figure 5.29. The notations for the physical 
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dimensions of the diplexer are given in Figure 5.17. The values of each physical dimension 

are given in Table 5.4. Although this design has an improvement over the previous one, it was 

not made so no experimental results are available.  

Table 5.4 Dimensions comparison between the fabricated X-band 10
th

 order diplexer and the 

Step Tune one (Unit: mm)  

 a b de1 de2 de3 d12 d23 

fabricated 22.86 10.16 14.2 12.312 12.2 11.3 12 

step-tune 22.86 10.16 12.969 10.906 11.808 10.158 11.134 

 d34 d45 d56 d27 d78 d89 d910 

fabricated 7.183 10.048 8.103 11.8 7.39 10.1 8.08 

step-tune 6.755 9.645 7.207 11.304 7.131 10.024 7.829 

 l1 l2 l3 l4 l5 l6 l7 

fabricated 13.08 15.33 16.778 17.266 17.064 14.739 19 

step-tune 14.437 16.145 17.196 17.497 17.360 15.527 18.991 

 l8 l9 l10 lp1 lp2 lp3 t 

fabricated 19.6 19.3 16.87 20 21.811 22 2 

step-tune 19.511 19.310 17.145 20 21.759 22 2 
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Chapter 6  Diplexer with Cross-Couplings 

In the previous chapter, the design procedure of the diplexer with a Tree Topology has been 

presented. In this chapter, Section 1 discusses comparison of responses between a diplexer 

with a Tree Topology and a traditional diplexer based on a non-resonant junction. For Tree 

Topology, it is feasible to add cross coupling to improve isolation and attenuation 

performance. This is discussed in Section 2. Finally, a coupled-resonator rectangular 

waveguide based X-band diplexer with cross-coupled structure is designed, fabricated and 

tested as described in Section 3. 

6.1 Response Comparison between the Diplexer with a Tree Topology 

and the Traditional Diplexer with a Non-Resonant Junction 

2 Port 2

4 Port 3

Port 1

1

3

Non-resonant

junction

1 2

3 Port 2

4 Port 3

Port 1

              
       (a)                                             (b)  

Figure 6.1 Schematic of 4
th

 order diplexers (a) in Tree Topology and (b) with a non-resonant 

junction.  

A diagram of a 4
th

 order diplexer with a Tree-topology is given in Figure 6.1(a). Resonator 1 

and 2 are the stem resonators. Resonator 3 and 4 are the branch resonators. The schematic of 

the 4
th

 order diplexer with a non-resonant junction is given in Figure 6.1(b). To make a 

response comparison, these two diplexers have the same specifications with cut-off 

frequencies of the two passbands at [-1, -0.4] and [0.4, 1], and a return loss of the two 

passbands of 20 dB. Their responses are depicted in Figure 6.2 and Figure 6.3.  
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Figure 6.2 S11, S21 and S31 of the diplexers in Tree Topology and with a non-resonant junction. 

 
Figure 6.3 The isolation of the diplexers in Tree-topology and with a non-resonant junction. 

As shown in Figure 6.2 and Figure 6.3, the response of the diplexer with a Tree Topology is 

in solid line and the one with a non-resonant junction is in dotted line. The diplexer with a 

Tree Topology has a relatively poorer close-to-band rejection and isolation, in comparison 

with the diplexer with a non-resonant junction. The reason for this is the stem resonator plays 

no role in attenuating signals over the two passbands [1], each channel of the diplexer with a 

Tree Topology, as given in Figure 6.1(a), has only one branch resonator to attenuate signals 

with frequencies in the adjacent channel. The diplexer with a non-resonant junction, as given 
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in Figure 6.1 (b), has two resonators to attenuate signals in each channel. This leads to the 

lower attenuation and isolation of the diplexer with a Tree Topology. For the Tree Topology, 

the poor close-to-band rejection also leads to a higher insertion loss of each channel. So the 

insertion losses of the two diplexers, in Figure 6.2, are different. 

The n+3 coupling matrices of these two diplexers, which are obtained by the optimisation 

technique presented in Chapter 4, are given in Table 6.1 and Table 6.2. 

Table 6.1 The coupling matrix of the 4
th

 order diplexer with a Tree Topology. 

 P1 1 2 3 4 P2 P3 

P1 0 0.943 0 0 0 0 0 

1 0.943 0 0.904 0 0 0 0 

2 0 0.904 0 0.525 0.525 0 0 

3 0 0 0.525 0.586 0 0.667 0 

4 0 0 0.525 0 -0.586 0 0.667 

P2 0 0 0 0.667 0 0 0 

P3 0 0 0 0 0.667 0 0 

Table 6.2 The coupling matrix of the 4
th

 order diplexer with a non-resonant junction. 

 P1 1 2 3 4 P2 P3 

P1 0 0.665 0 0.665 0 0 0 

1 0.665 0.841 0.466 0 0 0 0 

2 0 0.466 0.716 0 0 0.665 0 

3 0.665 0 0 -0.841 0. 466 0 0 

4 0 0 0 0.466 -0.716 0 0.665 

P2 0 0 0.665 0 0 0 0 

P3 0 0 0 0 0.665 0 0 

6.2 The Tree Topology with the Cross Couplings  

As discussed in Chapter 2, the cross coupled structure can be used to increase the attenuation 

over some frequency range. To increase the attenuation and isolation of the adjacent passband 
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of the diplexer in Figure 6.1(a), a cross-coupled structure is investigated in this work. Figure 

6.4  shows a cross-coupled structure in order to increase the attenuation of both the left stop 

band of S21 and the right stop band of S31.  

1 2

3 Port 2

4 Port 3

Port 1

 
Figure 6.4 Schematic of the 4

th
 order diplexer with cross couplings 

As shown in Figure 6.4, the red lines between resonators are denoted as the cross couplings. 

The cross coupling between Resonator 1 and 3 has the same sign as the main couplings. It is 

shown as a solid line. The cross coupling between Resonator 1 and 4 has the opposite sign to 

the main couplings, it is represented using a dashed line. To achieve a symmetric response, 

the cross coupling values m1,3 and m1,4 have the relationship as: 

 1,3 1,4m m   (6.1) 

The coupling matrix of the cross-coupled diplexer is given in Table 6.3. The coupling 

matrices are obtained by the optimisation method described in Chapter 4. The coupling values 

of some cross-coupled diplexers with different cross couplings are given in Table 6.4. Their 

responses are given in Figure 6.5 and Figure 6.6. 

Table 6.3 The coupling matrix of the cross-coupled diplexer given in Figure 6.4. 
 P1 1 2 3 4 P2 P3 

P1  x      

1 x  x x x   

2  x  x x   

3  x x x  x  

4  x x  x  x 

P2    x    

P3     x   
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Table 6.4 The coupling values of the diplexers with different cross couplings. 

 m1,4 m1,2 m2,3 m2,4 m3,3 m4,4 mP1,1 m3,P2 m4,P3 

m1,3=0.2 -0.2 0.889 0.417 0.417 0.679 -0.679 0.940 0.665 0.665 

m1,3=0.375 -0.375 0.815 0.295 0.295 0.725 -0.725 0.937 0.662 0.662 

m1,3=0.5 -0.5 0.716 0.183 0.183 0.735 -0.735 0.933 0.660 0.660 

 
Figure 6.5 Transmission responses with different values of cross-coupling m1,3 
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Figure 6.6 Isolations with different values of cross-coupling m1,3 

 
Figure 6.7 The attenuation at the middle of the adjacent passband with different values of m1,3 

The relationship between the cross coupling value and the attenuation at the middle of the 

adjacent passband is given in Figure 6.7. The attenuation reaches the highest point when the 

cross coupling m1,3 is 0.375. The response comparisons between the diplexer with the cross 

coupling m1,3=0.375 and the traditional diplexer with non-resonant junction are given in 
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Figure 6.8 and Figure 6.9. 

 
Figure 6.8 S11, S21 and S31 responses comparison between the diplexer with the cross-coupled 

Tree Topology and the one with a non-resonant junction. 

 
Figure 6.9 S32 response comparison between the diplexer with the cross-coupled Tree 

Topology and the one with a non-resonant junction. 

Over the adjacent passband and the middle guard band of each channel, the cross-coupled 

diplexer with a Tree Topology has the slightly higher attenuation, as shown in Figure 6.8, and 

isolation, shown in Figure 6.9, than the traditional non-resonant junction one. A compromise 

exists, with such improvement giving the lower attenuation and isolation over the other stop-
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bands of each channel.  

6.3 Design Example of the Cross-Coupled Diplexer  

6.3.1 Specifications and Coupling Matrix of the Diplexer 

A 4
th

 order cross-coupled rectangular waveguide diplexer working at X-band has been 

designed, fabricated and tested. The specifications of the diplexer are a centre frequency of 

fc=10 GHz and an overall fractional bandwidth FBW=0.025. According to Figure 6.7, the 

cross coupling of the prototype diplexer m1,3 is chosen to be 0.375 in order to achieve the 

highest attenuation at the middle of the adjacent passband of each channel. The coupling 

values of the prototype diplexer are given in Table 6.4. After the frequency transformation 

using (3.69), the new coupling matrix is given in Table 6.5. 

Table 6.5 The n+3 coupling matrix of the cross-coupled diplexer after the frequency 

transformation. 

 P1 1 2 3 4 P2 P3 

P1 0 0.148 0 0 0 0 0 

1 0.148 0 0.020 0.009 -0.009 0 0 

2 0 0.020 0 0.007 0.007 0 0 

3 0 0.009 0.007 0.018 0 0.105 0 

4 0 -0.009 0.007 0 -0.018 0 0.105 

P2 0 0 0 0.105 0 0 0 

P3 0 0 0 0 0.105 0 0 

According to Table 6.5, the external quality factors Qe is calculated by (3.67) and given as 

1 2 317.55, 35.10e e eQ Q Q    

The S-parameters after the frequency transformation are given in Figure 6.10. 
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Figure 6.10 S-parameters of the 4-th order cross-coupled diplexer after the frequency 

transformation. 

6.3.2 Negative Coupling in the Diplexer 

An H-plane planer waveguide topology with all inductive irises is employed to achieve the 

couplings and the filter is made using CNC milling. A coupling method on the basis of the 

cavity transformation properties is employed[2] to generate the negative coupling as described 

below.  
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Inductive coupling iris

Half-wavelength cavity

Two-half-wavelength cavity

(a)

(b)
 

Figure 6.11 Principal magnetic fields of the (a) half-wavelength and (b) two-half wavelength 

cavity iris coupling. The circle in red represents the field patterns having clockwise direction. 

The circle in black represents the field patterns having anti-clockwise direction. 

Firstly, the direction of the field is determined by the main couplings of the circuit. Secondly, 

as given in Figure 6.11(a), the direction of the half-wavelength fields coupled by the main 

coupling iris changes 180°. Finally, as given in Figure 6.11(b), the two-half-wavelength 

cavity yields a field pair with opposite direction. If the two half-wavelength fields coupled by 

a cross coupling iris have the same direction, such cross coupling has an opposite sign to the 

main one, i.e. the cross coupling is a negative coupling if the main coupling is supposed to be 

positive. A cross coupling has the same sign as the main coupling if the two half-wavelength 

fields coupled by the cross coupling iris have the opposite direction. 



143 

 

Port 2

Port 3

Port 1

R1

R2

R3R4

d1,2

d2,4

d2,3

 
(a) 

Port 2

Port 3

Port 1

d1,3d1,4

  
(b) 

Figure 6.12 (a) Top view of the diplexer and (b) its principal magnetic field patterns. 

The top view of the diplexer topology is given in Figure 6.12(a). A TE102 mode cavity is 

selected as the 3
rd

 resonator (R3) while the rest three resonators (R1, R2 and R4) are operating 

at the TE101 mode. Since the direction of the principal field pattern is determined by the main 

coupling[2], the directions of the field patterns in Resonator 2, 3 and 4 are determined by the 

coupling irises d1,2, d2,3 and d2,4. As given in Figure 6.12(b), each circle represents a principal 

magnetic field patterns. There is a 180° phase difference between the black circle and the red 

circle. The direction of the black circle is in anticlockwise while the red one is in clockwise. 
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By inspecting Figure 6.12(b), R1 and R4 exhibit the same field pattern direction. According 

to [2], the coupling M1,4 of the iris d1,4 has the opposite sign to the main couplings. Two field 

patterns with opposite directions are coupled by the coupling iris d1,3 so M1,3 has the same 

sign as the main couplings. 

The configuration of the X-band diplexer structure is given in Figure 6.13 with the notations 

of the physical dimensions of each cavity resonator and coupling iris.  
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Figure 6.13 Configuration of the X-band diplexer structure. d is the width of the coupling iris 

and l is the length of the cavity resonator. The width of a=22.86mm and the height of 

b=10.16mm are the standard dimensions for WR-90. 

6.3.3 Step Tune Method 

The Step Tune method [3] is applied in optimising the physical dimensions of the cross-

coupled diplexer. Similar to the procedures given in Chapter 5, the optimisation is divided 

into several steps. The schematic, the top view of the rectangular waveguide circuit and the 
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desired S-parameters in each step are given in Figure 6.14 to Figure 6.17. Note as Resonator 2 

is the 2 half-wavelength cavity resonator, the internal and external coupling conversion of the 

coupling iris d13 and d23 is using (5.18) with n=2. 

Port 2Port 3

Port 1

1

Port 4

 
（a） 

Port 1

Port 2
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R1

de1

d12

a

d13
d14

a

a

a

l1

  
(b) 

 
(c) 

Figure 6.14 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step One. de1, 

d12, d13 and d14 are the width of the irises to tune. l1 is the length of the cavity resonator to 

tune. (c) Response comparison between the tuned results (in solid lines) and its objective ones 

(in dashed lines). 
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Figure 6.15 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Two. d23 

and d24 are the width of the irises to tune. l2 is the length of the cavity resonator to tune. (c) 

Response comparison between the tuned results (in solid lines) and the objective ones (in 

dashed lines). 
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Figure 6.16 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Three. 

de2 is the width of the iris to tune. l3 is the length of the cavity resonator to tune. (c) Response 

comparison between the tuned results (in solid lines) and the objective ones (in dashed lines). 
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Figure 6.17 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Four. de3 

is the width of the iris to tune. l4 is the length of the cavity resonator to tune. (c) Response 

comparison between the tuned results (in solid lines) and the objective ones (in dotted lines). 

The final response of the diplexer after the Step Tune method is given in Figure 6.17(c). The 

simulation results are given in solid line. The results in dotted line are calculated from the 

coupling matrix. The simulation results agree well with the coupling matrix ones.  
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The optimised dimensions of the 4
th

 order cross-coupled diplexer are given in Table 6.6. 

Table 6.6 Dimensions of X-band 4-resonator diplexer with cross couplings (Unit: mm). All 

the corners have the same radius of 1.6 mm, the thickness of all the coupling irises are 2 mm. 

a b de1 de2 de3 d12 d13 

22.86 10.16 10.406 10.391 9.474 6.560 6.644 

d14 d23 d24 l1 l2 l3 l4 

7.413 6.350 7.033 16.146 18.271 36.107 18.088 

 

This device has been fabricated and tested. The result is given in Figure 6.18; the X-band 

diplexer is made from the aluminium ( 7conductivity 3.56 10 (S/m)  ). 
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Figure 6.18 Photo of the fabricated X-band diplexer (top cover removed) [4]. 
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Figure 6.19 Response comparison between the measured results and the simulation. 

As given in Figure 6.19, the measurement results are shown as solid lines and the simulation 

ones are in dashed lines. The measurement results agree well with the simulations.  

The insertion loss comparison between the measured result and the simulation is given in 

Figure 6.20. In comparison with simulations, the measured insertion loss is about 0.2 dB 

higher at the middle of the left passband and 0.15 dB higher at the middle of the right 

passband. Both the roughness of the cavity surface and a poor contact between the two parts 

of the device lead to the additional insertion loss of the measured results [4]. The simulation 

value is obtained from CST simulation employing aluminium as the lossy material 

( 7conductivity 3.56 10 (S/m)  ). 
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Figure 6.20 Comparison of insertion loss between the measurement and simulation. 
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Chapter 7  Multiplexer Implementation 

In this chapter, the design procedure of a 4-channel multiplexer with a Tree Topology is 

presented. In Section 1, one of the practical splitting topologies is chosen to design the 

multiplexer. The coupling matrix of the multiplexer is given in Section 2. In Section 3, a 

rectangular waveguide based X-band multiplexer is presented in a zigzag topology, which is 

similar to the diplexer topology given in Chapter 5. The multiplexer is optimised by using the 

Step Tune method in Section 4. The multiplexer is fabricated in the workshop and the results 

are given in Section 5. 

7.1 Splitting Topology of the Multiplexer 

The design of a 4-channel multiplexer with a Tree Topology has 3 possible splitting 

topologies with the least number of resonators. These topologies are shown in Figure 7.1. 

(a) (b) (c)
 

Figure 7.1 Different splitting topologies of the multiplexers. Each circle represents a resonator. 

Each line between resonators is the coupling element. (a) Topology I: Channels splitting from 

a single resonator. (b) Topology II and (c) Topology III limit the maximum number of 

couplings associated with one resonator to 3. 

As given in Figure 7.1(a), one of the resonators in Topology I has 5 couplings. It is difficult to 

design such coupling structure due to the physical implementation of making 5 couplings. 

Topology II and III have no more than 3 couplings associated with each resonator. Both of 

these two topologies can be translated into the real physical structures. Topology II is an 

asymmetric structure while Topology III is a symmetric one. A coupling matrix with a 
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symmetric structure will have fewer variables in the optimisation based on its symmetry (See 

Chapter 4). The optimisation program converges to a result more quickly with a lower number 

of variables. Thus, in the light of a practical symmetric topology, Topology III is chosen as 

the splitting structure of the multiplexer. 

7.2 Coupling Matrix of the Multiplexer 

The prototype multiplexer has specifications with normalised cut-off frequencies of the 4 

passbands at [-1, -0.75], [-0.417, -0.167], [0.167, 0.417] and [0.75, 1], and a return loss of the 

4 passbands of 20 dB. The specifications of the physical multiplexer are a centre frequency of 

fc=10 GHz and an overall fractional bandwidth FBW=0.024.  

From the specifications, the order of each multiplexer channel is determined to be 4. 

According to the splitting topology in Figure 7.1(c), the desired schematic of the complete 

multiplexer is shown in Figure 7.2. 
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Figure 7.2 Schematic of the 16

th
 order 4-channel multiplexer. 

The coupling matrix of the multiplexer is given in (7.1) below. Each non-zero entry is denoted 

as x.  
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 P1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P2 P3 P4 P5 

P1  x                    

1 x  x                   

2  x  x x                 

3   x x  x   x             

4   x  x       x   x       

5    x  x x               

6      x x x              

7       x x          x    

8    x     x x            

9         x x x           

10          x x        x   

11      x      x x         

12            x x x        

13             x x      x  

14     x          x x      

15               x x x     

16                x x    x 

P2        x              

P3           x           

P4              x        

P5                 x     
 

(7.1) 

In (7.1), P1 is the source port. P2 to P5 are the load ports. 
1,1 11P em q , 

2,7 21P em q ,

3,10 31P em q ,
4,13 41P em q ,

5,16 51P em q .  

The coupling matrix with the normalised responses is obtained by the local optimisation 

method described in Chapter 4. The entry values of the coupling matrix are given in Table 7.1.  
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Table 7.1 The coupling values of the multiplexer with the normalised responses. 

m1,2 m2,3 m2,4 m3,5 m5,6 m6,7 m3,8 

0.7263 0.4002 0.4002 0.1745 0.0928 0.1151 0.1314 

m8,9 m9,10 m4,11 m11,12 m12,13 m4,14 m14,15 

0.0885 0.1139 0.1314 0.0885 0.1139 0.1745 0.0928 

m15,16 m3,3 m4,4 m5,5 m6,6 m7,7 m8,8 

0.1151 0.4476 -0.4476 0.8195 0.8674 0.8713 0.3028 

m9,9 m10,10 m11,11 m12,12 m13,13 m14,14 m15,15 

0.2928 0.2924 -0.3028 -0.2928 -0.2924 -0.8195 -0.8674 

m16,16 qe1 qe2 qe3 qe4 qe5 

-0.8713 1.8622 7.4078 7.4964 7.4964 7.4078 

The normalised responses of the multiplexer are given in Figure 7.3 and Figure 7.4. 

 
Figure 7.3 S11 to S51 of the multiplexer with normalised response. 
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Figure 7.4 Isolations of the multiplexer with normalised response. 

As shown in Figure 7.3, the response of the multiplexer, which has no cross coupling, has 

unexpected transmission zeros on the stop-band. The inter-reaction between the adjacent 

channels possibly leads to this. 

After the frequency transformation using equation (3.69), the response of the multiplexer is 

given in Figure 7.5. The entry values of the new coupling matrix are given in Table 7.2. 
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Figure 7.5 S-parameter of the multiplexer after frequency transformation. 

Table 7.2 The coupling values of the multiplexer after the frequency transformation. 

 M1,2 M2,3 M2,4 M3,5 M5,6 M6,7 M3,8 

value 0.0174 0.0096 0.0096 0.0042 0.0022 0.0028 0.0032 

 M8,9 M9,10 M4,11 M11,12 M12,13 M4,14 M14,15 

value 0.0021 0.0027 0.0032 0.0021 0.0027 0.0042 0.0022 

 M15,16 M3,3 M4,4 M5,5 M6,6 M7,7 M8,8 

value 0.0028 0.0107 -0.0107 0.0197 0.0208 0.0209 0.0073 

 M9,9 M10,10 M11,11 M12,12 M13,13 M14,14 M15,15 

value 0.0070 0.0070 -0.0073 -0.0070 -0.0070 -0.0197 -0.0208 

 M16,16 Qe1 Qe2 Qe3 Qe4 Qe5 

value -0.0209 77.59 308.66 312.35 312.35 308.66 

According to equation (3.63) and the self couplings Mi,i given in Table 7.2, the resonant 

frequency fi of each cavity resonator is calculated and listed in Table 7.3. 
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Table 7.3 Resonant frequencies of the resonators. 

Resonator R1 R2 R3 R4 

fi (GHz) 10.000 10.000 10.054 9.947 

Resonator R5 R6 R7 R8 

fi (GHz) 10.099 10.105 10.105 10.037 

Resonator R9 R10 R11 R12 

fi (GHz) 10.035 10.035 9.964 9.965 

Resonator R13 R14 R15 R16 

fi (GHz) 9.965 9.902 9.897 9.896 

7.3 Rectangular Waveguide Multiplexer in a Zigzag Topology 

The coupling matrix discussed in the previous section has been used for a 16
th

 order 

rectangular waveguide multiplexer working at X-band. It has been fabricated and tested. 

Similar to the 10
th

 order diplexer topology in Chapter 5, the resonators of the multiplexer are 

coupled in a zigzag topology in order to make the device more compact. The zigzag topology 

of the multiplexer is given in Figure 7.6(a). In order to facilitate the CNC milling, an H-plane 

topology with all inductive irises is chosen. The top view of the multiplexer in the rectangular 

waveguide circuit is given in Figure 7.6(b).  
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(a)                (b) 

Figure 7.6 (a) Structure and (b) its top view of the multiplexer. 

The methodology of obtaining the initial values of each physical dimension (the length l of 

each cavity and the width d of each coupling iris) of the multiplexer is presented in Chapter 5. 

7.4 Step Tune Method 

Similar to the previous chapters, the multiplexer is optimised by using the Step Tune method. 

Each step, including its topology, the top view of the rectangular circuit and the desired 

response, is given in Figure 7.7 to Figure 7.12. During the Step Tune, the material is set to be 

the PEC. 

Note as the circuits in Figure 7.7 to Figure 7.11 are not well-matched, the insertion loss of 

each channel is very high leading to a flat reflection response S1,1 of each circuit. This is of 

course no problem and inherent in the Step Tune process. 
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Figure 7.7 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step One. de1 

and d12 are the width of the irises to tune. l1 is the length of the cavity resonator to tune. 

a=22.86mm is the standard width of WR-90. (c) Response comparison between the tuned 

results (in solid lines) and its objective ones (in dashed lines). 

Resonator 1(R1) is tuned in Step One. Its schematic is given in Figure 7.7(a). As given in 

Figure 7.7(b), there are three physical dimensions (the width of the coupling irises de1 and d12, 

and the length of the cavity l1) to be tuned. The aim of the tuning is to make the simulation 

results satisfy its objective counterpart obtained from the coupling matrix. The final results of 

Step One are given in Figure 7.7(c). The simulation results (in solid lines) meet well with the 

objective ones (in dashed lines). 
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(c) 

Figure 7.8 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Two. d23 

and d24 are the width of the irises to tune. l2 is the length of the cavity resonator to tune. (c) 

Response comparison between the tuned results (in solid lines) and its objective ones (in 

dashed lines). 

After finishing Step One, Resonator 2(R2) is added successively and the tuning work moves 

to Step Two. The schematic of Step Two is given in Figure 7.8(a). As given in Figure 7.8(b), 

there are three new physical dimensions (width of the iris d23 and d24, and the length of the 

cavity l2) to be tuned. The values of the old dimensions (de1, d12 and l1) are kept constant. 

After the tuning, as given in Figure 7.8(c), the simulation response (in solid lines) gets very 

close to its objective response (in dashed lines) from the coupling matrix. 
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(c) 

Figure 7.9 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Three. d35, 

d38, d411 and d414 are the width of the irises to tune. l3 and l4 are the length of the cavity 

resonators to tune. (c) Response comparison between the tuned results (in solid lines) and its 

objective ones (in dashed lines). 
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(c) 

Figure 7.10 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Four. d56, 

d89, d1112 and d1415 are the width of the irises to tune. l5, l8, l11 and l14 are the length of the 

cavity resonators to tune. (c) Response comparison between the tuned results (in solid lines) 

and its objective ones (in dashed lines). 
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(c) 

Figure 7.11 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step Five. d67, 

d910, d1213 and d1516 are the width of the irises to tune. l6, l9, l12 and l15 are the length of the 

cavity resonators to tune. (c) Response comparison between the tuned results (in solid lines) 

and its objective ones (in dashed lines). 
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(c) 

Figure 7.12 (a) Schematic, (b) Top view of the rectangular waveguide circuit in Step. de2, de3, 

de4 and de5 are the width of the irises to tune. l7, l10, l13 and l16 are the length of the cavity 

resonators to tune. (c) Response comparison between the tuned results (in solid lines) and the 

ones calculated by the coupling matrix (in dashed lines) 
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The process continues and more resonators are added successively and tuned in the steps 

shown in Figure 7.9 to Figure 7.12.  

After the Step Tune, the final response of the multiplexer is given in Figure 7.13 in solid lines. 

The material of the device is chosen as the aluminium ( 7conductivity 3.56 10 (S/m)  ). The 

results in dashed lines are calculated from the coupling matrix. The simulation results agree 

well with the coupling matrix ones.  

 
Figure 7.13 Response comparison between the simulation (in solid lines) and coupling matrix 

(in dashed lines) with the Aluminium used as the material. 

The insertion loss and return loss comparison of each channel of the multiplexer are given in 

Figure 7.14. As shown in Figure 7.14(a), the simulated insertion loss of each channel is about 

0.7 dB and as shown Figure 7.14(b), all the reflection zeros are evident and the return loss of 

each passband is no less than 20 dB. 
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(a) 

 
(b) 

Figure 7.14 (a) Insertion loss and (b) return loss comparison between the simulation response 

with conductor loss (in solid lines) and the coupling matrix one with no loss (in dashed lines). 

The values of each physical dimension of the final result are given in Table 7.4. d is the width 
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of the iris and l is the cavity length.  

Table 7.4 Dimensions of the X-band 16
th

 order multiplexer (unit: mm). All the corners have 

the same radius of 1.6 mm, the thickness of all the coupling irises are 2 mm. 

 a b de1 de2 de3 de4 de5 

step-tune 22.86 10.16 9.79 7.80 7.88 7.88 7.90 

 d12 d23 d24 d35 d56 d67 d38 

step-tune 6.37 6.00 6.05 4.23 3.95 4.00 3.94 

 d89 d910 d411 d1112 d1213 d414 d1415 

step-tune 3.55 4.14 3.97 3.57 4.16 4.25 4.03 

 d1516 l1 l2 l3 l4 l5 l6 

step-tune 4.02 17.37 18.43 18.78 19.13 19.09 19.10 

 l7 l8 l9 l10 l11 l12 l13 

step-tune 18.27 19.32 19.36 18.47 19.56 19.60 18.71 

 l14 l15 l16 t    

step-tune 19.77 19.82 18.96 2    

7.5 Fabrication and Measurement 

Top

Bottom

 
Figure 7.15 3D structure of the multiplexer 

As shown in Figure 7.15, the device is split into two pieces, the bottom part and the top cover. 
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This device has been fabricated. Its bottom part is shown in Figure 7.16. The X-band 

multiplexer is made from aluminium. Its total size is 182.1 148.0 41.4 (unit:mm)  . 

182.1mm

1
4
8
.0

m
m

 
Figure 7.16 Photograph of the fabricated X-band multiplexer (top cover removed). [1] 
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Figure 7.17 Measurement results with tuning screws (in solid line) and simulation results (in 

dashed line) of the multiplexer. [1] 

The tuning screws have been used to compensate the manufacturing errors. The measured 

results after tuning are given in Figure 7.17. The expected passband insertion loss is 0.7 dB 

from CST as discussed above and the measured insertion loss of each channel is about 1.5 dB, 

1.9 dB, 1.6 dB and 1.8 dB higher[1]. The noticeable difference is mainly contributed by a 

number of factors. Firstly, the imperfect contact at the joints of the device leads to the 

additional loss as the multiplexer is split along the H-plane into two pieces (see Figure 7.15). 

When the current flow crosses the joints, the imperfect contact will lead to the additional 

loss[2]. Secondly, the power radiation through the tuning screw holes drilled on the top cover 

has effect on increasing the total loss [1]. Thirdly, the material making up the filter is not 

perfectly smooth and may not have exactly the same conductivity as the aluminium used in 

the CST simulation. 
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Chapter 8  Conclusions and Future Work 

8.1 Conclusions 

The work presented in this thesis can be classified into two categories: (i) the n+X coupling 

matrix of a multiplexer with the Tree Topology synthesised by a local optimisation technique 

and (ii) the multiplexer design using the Step Tune method and its implementation.  

The first part is for the coupling matrix theory and its synthesis method. In Chapter 3, the 

n+X coupling matrix of an X-port circuit with n coupled resonators has been derived. 

Magnetic and Electric couplings have been respectively discussed. They are followed by a 

unified solution which is generalized for both types of couplings or mixed ones. Comparing to 

the general n n  coupling matrix, the extended n+X coupling matrix has the advantage of its 

generality. A resonator coupled to multiple ports, as well as a port coupled to multiple 

resonators, is able to be described by using the n+X matrix. A direct coupling between ports is 

also possible. The relationship between the S-parameters of a multi-port circuit and its 

coupling matrix has been found. The equations have been applied as the basis for the work in 

the later chapters of the thesis. With the help of the n+X coupling matrix, the circuit with (i) a 

port coupled to multiple resonators, (ii) a resonator coupled to multiple ports and/or (iii) a 

direct coupling between ports can be described.  

The coupled resonator based multiplexers in this thesis are with the Tree Topology. Different 

from the conventional multiplexers, a multiplexer with the Tree Topology has no additional 

splitting network and the signal division is done through the coupled resonators, which also 

produce the filter characteristics. The removal of the additional splitting network reduces the 

total size of the multiplexer. 
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The concept of a multiplexer with the Tree Topology having a Chebyshev response is given in 

Chapter 4. This work has been subjected to a publication [1]. The multiplexer can be divided 

into 2 parts: (i) the stem part connecting to the shared ports and (ii) the branches connecting to 

the channel ports. For a diplexer with the Tree Topology, its stem part works as a dual-band 

bandpass filter [1]. It attenuates signals outside of two passbands and have little effect on 

splitting signals on these two bands [1]. The two branches of the diplexer work as Chebyshev 

filters with different centre frequencies. Each branch occupies one of the two passbands of the 

stem and attenuates signals outside of the passband of the branch [1]. The comparisons in 

Chapter 4 show the effect on the responses (isolations and bandwidths) of the diplexers with 

the Tree Topology by altering the number of resonators (length) of the stem and branches. 

The isolation becomes better with the increasing length of the branches. Also, the longer the 

length of branch, the closer the response is to the simple Chebyshev one. 

A gradient based local optimisation technique is presented to generate the coupling matrix of 

the multiplexer with desired specifications. When the circuit is in a complex structure with a 

higher order, a good starting point of the coupling matrix is essential to avoid a local 

minimum. The principles given in Chapter 4 explain how to get the high quality initial 

coupling values of the diplexers with the Tree Topology. For diplexers having non-contiguous 

channels, the external quality factors at the input and two outputs can be calculated directly 

from the equations. The couplings on the stem can be initialised based on a close 

approximation. The coupling values on the branches are originated from the Chebyshev ones.  

The Tree Topology can be extended to the multiplexers with asymmetric responses and 

topologies. Some examples are synthesised, including (i) a diplexer with a different return 

loss of each channel, (ii) a diplexer having a different order of each channel, (iii) a diplexer 

with contiguous channels and (iv) a triplexer.  
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The second part of the thesis is the multiplexer implementations using rectangular waveguides. 

Three devices have been fabricated. Their design procedures are separately given in Chapter 5 

to Chapter 7. In order to facilitate the CNC milling, all of the three devices are designed in the 

H-plane planer waveguide topologies with all inductive irises. The zig-zag topologies are 

applied to make the three devices compact. 

Traditionally, the initial dimensions of each component of the device are generated according 

to the coupling matrix. After putting all the physical dimensions together, an overall structure 

tuning is followed to get the desired response. Chapter 5 illustrates how to design a coupled 

resonator based rectangular waveguide circuit in the traditional way. An X-band 10-resonator 

rectangular waveguide diplexer is given as an example in Chapter 5. With a higher order 

and/or complex structure of the circuit, such tuning work consumes a lot of time and the 

convergence of the final result is not guaranteed. 

To overcome the difficulties, a novel EM simulator based design technique, called Step Tune 

method, has been developed [2]. The procedures can be divided into several steps. By 

extracting the responses of a part of the circuit, we can simulate and tune the part at the first 

step. After finishing tuning the part of the circuit, we move on to the second step and one or 

more resonators are added successively to form a “new” part. The desired responses of the 

new part are extracted. It is followed by a further tuning work of the new part on the EM 

simulator. During the tuning work in the second step, the old physical dimensions which have 

been tuned previously are kept constant. This leads to a reduction of the total number of 

tuning dimensions in each iteration. The process continues and more resonators are added 

successively. After the Step Tune, the final simulation result of the whole device can be very 

close to the desired one calculated from the coupling matrix. The design technique has been 

subject to a publication [2]. The X-band 10-resonator diplexer in Chapter 5 has been 
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redesigned by using the Step Tune method. The simulation result of the new design has a 

great improvement over the previous one.  The Step Tune method has provided a unique way 

to optimize multiport coupled resonator circuits and now makes possible more complex 

circuit topologies, including cross-coupled structures and multi-channel ones. 

For the Tree Topology, there is a drawback that should be pointed out: the isolation between 

the two output ports of the diplexer decreases with respect to a classical diplexer 

implementation with a non-resonant junction (for the same overall number of resonators). In 

Chapter 6, a cross-coupled structure has been applied to improve the response of the diplexer 

with the Tree Topology. Comparing to the traditional diplexer having a non-resonant junction, 

a slightly better isolation of the cross-coupled diplexer with the Tree Topology has been 

achieved. The negative coupling is generated based on the cavity transformation properties [3]. 

An X-band 4-resonator rectangular waveguide diplexer with cross couplings has been 

fabricated. The measured results agree well with the simulations. This work has been subject 

to a publication [4]. 

Possible splitting structures of the Tree Topology for more channels are discussed in Chapter 

7. A practical symmetric splitting topology has been employed to design a 4-channel 16-

resonator multiplexer. After using the Step Tune method, an X-band multiplexer based on 

rectangular waveguides has been fabricated. All the reflection poles are evident after the 

screw tuning. This work has been subject to a publication [5]. 

8.2 Future Work 

First of all, the multiplexers with the Tree Topology should be extended to more channels 

with a higher order and a more complex topology. Since the coupling matrix is obtained by a 

local optimisation technique, the complexity of the optimisation work increases dramatically 
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with the increase number of resonators and a complex topology. Better strategies of obtaining 

the coupling matrix are worth exploring. One possible solution is to find the locations of the 

reflection poles by the polynomials. At the moment, the locations of the reflection poles are 

obtained by the optimisation. With the help of the polynomials, the poles can be found 

directly so as to reduce the total number of variables in the optimisation. Another way is to 

find a more accurate approximation of the starting point of the coupling matrix. 

Considering the main application of multiplexers, is it possible to combine the multiplexers 

and the antennas together? A multiplexer is generally cascaded to an antenna for the signal 

transmission and reception. The combination removes the need of the additional matching 

circuit between the multiplexer and the antenna so as to reduce the total size of the device. 

This work is subject to a publication [6].  

Transmission zeros are generally introduced by adding cross couplings into the circuit. As 

shown in Figure 7.3, however, the response of the multiplexer, which has no cross coupling, 

has unexpected transmission zeros on the stop-band. The inter-reaction between the adjacent 

channels possibly leads to this.  It is worth exploring how to control their positions in the 

future work. 

For the coupling matrix theory part, it is worth exploring whether the following work could be 

extended to the active circuits. Currently, the coupling matrix theory is only suited to the 

passive circuits. As much work [7-9] has been done on the amplifiers working at the 

microwave frequency range, a coupling matrix including the power gain elements will be 

useful in the design of the microwave circuits integrated with the amplifiers. 

Furthermore, is it possible to describe a whole communication system with a coupling matrix? 

It is interesting if all the components of a narrow band wireless communication system, 
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including the antennas, the multiplexers, the power dividers, the couplers, the amplifiers, the 

converters, the isolators and the mixers, can be absorbed into a single coupling matrix. 
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Abstract 

Previously we have proposed a novel coupled-resonator based multiplexer structure that eliminates the need for an 

additional common junction [2] such as a manifold, T-junction or power splitter.  This new approach to multiplexer 

design is able to achieve reductions in the size and volume of the circuit. In this paper, the relationships between 

the responses and topologies of this novel type of diplexer structures are investigated.  

Introduction 

Diplexers and multiplexers are known as frequency selective components. They are used to combine or split signals 

from the shared port in a multi-port circuit. A diplexer is the simplest multiplexer being only two ports. 

Conventional diplexers are based on the combination of two channel filters with a common junction. A diplexer 

with T-junction is illustrated in Figure 1.   

Channel 

Filter One

T-junction

Channel 

Filter Two

Shared 

Port

 

 
Figure 1 Waveguide diplexer with T-junction 

The channel filters in multiplexers and two-port filters can be designed based on coupled resonator circuits [2-4]. 

Coupled resonator circuits are very important in RF/microwave filters design, especially for the narrow-band 

passband filters. The topology and transmission characteristics of a filter based on a coupled resonator network can 

be described by its coupling matrix and external quality factors, whatever the physical structure of the device. This 

filter design method is extended to multiplexer design where the device is only based on the coupled resonators, 

without an additional common junction. This allows a significant reduction in size of the multiplexer, due to the 

suppression of the removal of the common junction used in conventional multiplexers [5].  

The coupled-resonator based diplexers, without additional common junction, introduced in this paper, is derived 

from one described in reference [2]. One example is illustrated in Figure 2, it is a schematic of a diplexer with 8 

resonators. Each circle represents a resonator, and the short lines between resonators are internal couplings. The ar- 
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Figure 2 An 8-resonator based diplexer 
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rowed lines between resonators and ports represent external couplings. The very leading part, containing resonators 

1 and 2 we call the stem; two branches are coupled to the second resonator of the stem. The stem of the diplexer 

has the characteristics of a dual band all-pole bandpass filter [6], while the branches work as Chebyshev bandpass 

filters.  

Similar work, known as Star-Junction diplexer, has been done by G. Macchiarella and S. Tamiazzo [3], in which 

channels are split from only the first resonator.  

Coupling Matrix of Diplexers 

The coupling matrix of n coupled resonators in a diplexer has been derived from the equivalent circuit by 

formulation of impedance matrix for magnetically coupled resonators or admittance matrix for electrically coupled 

resonators in a similar way to the two-port formulation and is given in [1]. A general normalized coupling matrix 

[A] in terms of coupling coefficients and external quality factors has been derived [2] as shown in equation (1) 
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where  U is the n n  identity matrix, n is the number of the resonators, p is the low-pass prototype frequency, 

 m is the coupling matrix and entry mij is the normalized coupling coefficient between resonators i and j,  q  is an 

n n  matrix with all entries zero except for 
1

mm

eM

q
q

  ( m refers to resonators connecting to ports) where qe M is 

the scaled external quality factor of resonator m to port M. 

The scattering parameters derived from the general coupling matrix [2] are as follow: 
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The design procedure of the diplexer coupling matrix is done by applying a gradient-based local optimisation 

technique, which is similar to the approach in [2],[7-8]. It is based on minimisation of a cost function that is 

evaluated the values of scattering parameters at frequency locations including reflection zeros, maximum return 

points and passband edges. The initial starting values for the optimisation are based on a dual band filter for the 

stem and simple Chebyshev filters for the branches. 

Principles and Responses of the Coupled-Resonator Based Diplexer 

The stem of the coupled-resonator based diplexer works as a dual-band bandpass filter. It attenuates signals outside 

of two passbands but plays no role in splitting signals on these two bands. The two branches of the diplexer work as 

Chebyshev filters with different centre frequencies. Each branch occupies one of two pass-bands of the stem and 

attenuates signals outside of the passband of the branch. Signals passing through the stem will be guided to one of 

these two branches and reflected by the other. As a result, signals are split to different ports. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Tamiazzo,%20S..QT.&newsearch=partialPref
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The topology of the coupled-resonator based diplexers is flexible by altering the length (number of resonators) on 

the stem and branches. The structures of 10-resoantor diplexers, with different number of resonators on the stem 

and their responses are shown in Figure 3.  
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Figure 3 (a) The structures of 10-resonator diplexers, (b) Transmission responses and  (c) Isolations of the prototype ones.    

The notation of the diplexer M_N_N indicates the number of resonators on stem part and branches respectively.  (e.g. 

2_4_4 refers to a diplexer with 2 resonators on the stem part and 4 resonators on each branch). 

 
 

 
                                                 (a)                                                                                        (b) 
Figure 4 (a) Comparison of bandwidth from diplexers and equivalent 5-order Chebyshev bandpass filter (b) Isolations of 

diplexers 

 

Figure 4(a) shows the effect on the bandwidths of the diplexers by altering the length of stem and branches. It 

shows various bandwidth definitions from the -3dB bandwidth to the -30dB bandwidth. The longer the length of 

branch, the closer the response is to the simple Chebyshev. The comparison of isolations, in Figure 4(b), shows that 

such responses become better with increasing length of the branches.  

The coupling matrices of the diplexers shown in Figure 3(a) are listed here. 

2_4_4 : mi,i+1=mi+1,i =[0.8205,   0.2850,  0.1620,  0.1594,  0.2166,  0,  0.2850,  0.1620,  0.1594,  0.2166] 

             m2,7=m7,2= 0.2850; mi,i=[ 0, 0, 0.7008, 0.7443, 0.7477, 0.7484, -0.7008, -0.7443, -0.7477, -0.7484] 
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4_3_3 : mi,i+1=mi+1,i =[0.8205,  0.4033,  0.7168,  0.2317,  0.1613,  0.2170,  0,  0.1613,  0.2170] 

             m4,8=m8,4=0.2317 ; mi,i =[0,  0,  0,  0,  0.7186,  0.7448,  0.7466,  -0.7186,  -0.7448,  -0.7466] 

6_2_2 : mi,i+1=mi+1,i =[0.8175,  0.4040,  0.7140,  0.3287,  0.7310,  0.2286.  0.2190, 0, 0.2190] 

             m6,9=m9,6=0.2286 ; mi,i =[0,  0,  0,  0,  0,  0,  0.7236,  0.7444,  -0.7236,  -0.7444,] 

8_1_1 : mi,i+1=mi+1,i =[0.8145,  0.4054,  0.7107,  0.3315,  0.7226,  0.3290,  0.7280,  0.3023, 0] 

             m8,10=m10,8= 0.3023; mi,i =[0,  0,  0,  0,  0,  0,  0,  0,  0.7112,  -0.7112] 

The external quality factors of four diplexers are exactly the same and are given by: 

1 2 3 11.943; 2 3.886e e e eq q q q    
 

Conclusions 

In this work, the responses and topologies of new diplexer structures are investigated. These diplexers have flexible 

topology by altering the number of resonators on the stem and branches. Higher isolation and lower bandwidths 

occur with increasing numbers of resonators in the branches. 
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 

Abstract— This paper presents two novel multiplexer 

topologies based on all-resonator structures. Such all-resonator 

structures remove the need for conventional transmission-line 

based splitting networks. The first topology is a diplexer with 

transmission zeros in the guard band, shared by both channels. 

These transmission zeros are generated by introducing a cross 

coupling in a quadruplet in resonators common to both channels. 

A twelfth order diplexer, with a pair of transmission zeros is 

presented here as an example. The second topology is a 

multiplexer with a bifurcate structure which limits the 

connections to any resonator to three or less, regardless of the 

number of output channels. A sixteenth order four-channel 

multiplexer is presented as an example. Both topologies have 

been demonstrated at X-band using waveguide technology. Good 

agreements between measurements and simulations have been 

achieved.  

 

Index Terms—Multiplexer, diplexer, resonator filters, coupling 

matrix optimization. 

 

1. INTRODUCTION 

A multiplexer is a multiple port frequency distribution 

circuit, usually employed in a communication system to split 

input signals from a common port into several channels 

operating at different frequencies. It can also be used to 

combine several channels into a single composite signal for 

transmission through a common antenna. The common 

approach to the synthesis of a multiplexer involves designing 

each channel filter individually, and combining with a 

frequency distribution network formed of circulators [1]-[2], 

hybrid couplers [3]-[4], or manifolds [5]-[9]. A multiplexer 

configuration consisting of a resonant junction (i.e. an extra 

resonator apart from those in the channel filters) is proposed in 

[10]-[11]. In this case channel filters are connected via this 

resonant junction, and the interaction between channel filters 

can be taken into consideration during the multiplexer 

synthesis. In [12]-[14], multiplexer structures based on only 

resonators (without external resonant junctions) are proposed, 
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Fig. 1.  Two novel multiplexer topologies proposed in this paper. (a) A 

diplexer with transmission zeros in guard band shared by both channels. (b) A 

four-channel multiplexer structure.  

 

expand these studies to four channels and the use of 

transmission zeros in the design. We also experimentally 

demonstrate the ideas in waveguide.  For this all resonator 

structure, resonators at the junctions are not only employed as 

the frequency distribution network, but also as resonator poles 

for the filter responses. This multiplexer structure eliminates 

the need for separate transmission-line based frequency 

distribution networks leading to a reduction in the overall 

component size and volume. The synthesis of this all-

resonator multiplexer is based on optimization of coupling 

matrices. Various topologies can be explored by simply 

adding coupling coefficients into the matrix during the 

synthesis. This extra freedom offers new possibilities in 

selecting achievable topologies, such as the two novel 

multiplexer structures presented in this paper (as shown in Fig. 

1).  

Conventionally, to obtain the desired quasi-elliptic filtering 

responses for a specified channel, cross couplings need to be 

introduced to the corresponding channels in order to generate 

transmission zeros. In this work, we demonstrate a novel 

diplexer design with two transmission zeros located at the 

middle guard band. These two transmission zeros are shared 

by both channels, and are generated by introducing a cross 

coupling in a quadruplet in the main stem, as shown in Fig. 1 
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(a). This significantly improves the rejection in the guard band 

(a) (b)

(c) (d)  
Fig. 2.  Different topologies of multiplexers. (a) A star-junction topology [11]. 
(b) A multiplexer topology which limits the maximum connections to any 

resonator to four [15]-[16]; (c) A novel topology presented in [15]. The 
bifurcated structure reduces the maximum number of couplings associated 

with one resonator to three; (d) A simplified structure to the one shown in (c). 

This topology is essentially the same as the one shown in Fig. 1 (b).    

 

without the penalty of increasing the number of resonators or 

cross-couplings. This diplexer topology can be implemented 

using any type of resonators. In this work, X-band waveguide 

resonators operating at TE101 mode are used.  

For a multiplexer with multiple outputs, the topologies 

shown in Fig. 2 (a) and (b) can be employed to divide the 

input signal into many sub-bands. Both topologies contain a 

resonator which has four or more connections. This increases 

the difficulty of physical implementation. In some scenarios, 

where there are more than four channels, it may be difficult or 

even impossible to connect all the channel filters to the same 

resonator.  This problem can be addressed by using a bifurcate 

topology shown in Fig. 2 (c).  In this case, none of the 

resonators has more than three connections, regardless of the 

number of outputs. For a four-channel multiplexer, the 

topology, consisting of three junctions as shown in Fig. 2 (d), 

can be used. This work demonstrates such a sixteenth order 

four-channel multiplexer (see Fig. 1 (b)) at X-band using 

waveguide technology.   

The paper is organized as follows: The all-resonator 

multiplexer structure is discussed in Section II, followed by 

detailed descriptions of the above-mentioned topologies in 

Section III and IV.  The experimental results of both devices 

are presented in Section V and a conclusion is given in Section 

VI. 

2. ALL-RESONATOR MULTIPLEXER STRUCTURE 

In this work, the design technique for two-port coupled 

resonator filters [17] is extended to the design of all-resonator 

based multiplexers. The coupling matrix of a multiplexer 

based on n-coupled resonators can be derived in a similar way 

as the filter network discussed in detail in [13]. A general 

matrix [A] can be expressed as  

    

[ ]=[ ]+ [ ] [ ]A q p U j m                               (1) 

 

where [U] is the n× n unit matrix, p is the complex low-pass 

frequency variable, [q] is a n × n   matrix with all entries zero 

except for qll=1/qel (l stands for the index of the resonator 

connected to external ports), [m] is the general normalized 

coupling matrix including elements mij and mii Where mij is the 

normalized coupling coefficient between resonators i and j. 

The non-zero diagonal entries mii accounts for asynchronous 

tuning that determine the resonant frequency of the i
th
 

resonator. The scattering parameters (reflection S11, 

transmission Sl1 and isolation Sl1,l2) derived from the general 

coupling matrix may be written in terms of a generalized 

coupling matrix [A] as follows 
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In this work, a gradient-based local optimization technique 

has been applied to synthesize the coupling matrices. The 

optimization is based on minimization of a cost function that 

evaluates the values of scattering parameters at critical 

frequency locations, including reflection zeros, transmission 

zeros (if specified), peak return loss points and each channel’s 

passband edges, as reported in detail in [13]. The efficiency of 

numerical methods, employing local optimization algorithms, 

depends highly on the quality of the initial values. The initial 

coupling coefficients of resonators on the branches have been 

obtained from corresponding Chebyshev responses. Given the 

high quality initial values, the gradient-based local 

optimisation algorithm has successfully optimized coupling 

matrices of multiplexers with various topologies.  

Fig. 3 illustrates an example of a twelfth order triplexer, 

with symmetrical and equal-bandwidth filtering response, as 

shown in Fig. 4. The initial values of this triplexer are 

calculated from three Chebyshev filters with the same 

bandwidth of 2 rad/s centred at -3.5, 0 and 3.5 rad/s. The 

optimised normalized coupling coefficients and external 

quality factors are qe1=0.3116, qe4=0.9765, qe8 = qe12= 0.9423, 

m1,2 = 1.5678, m2,3 = 0.6906,  m3,4 = 0.882, m5,6 = m9,10 =0.9167, 

m6,7 = m10,11 =0.7178, m1,5 = m1,9 = 2.1702, m7,8 = m11,12 = 

0.9107, m5,5 = -m9,9 = -2.7214, m6,6 = -m10,10 = -3.3159, m7,7 = -



 

185 

 

185 

m11,11 = -3.4502, m8,8 = -m12,12 = -3.4775.  Resonators of the left 

channel filter (i.e. S31) and right channel filter (i.e. S41) have 

negative and positive self-coupling coefficients, respectively. 

These self-couplings are used to offset the resonant 

frequencies into their corresponding passbands.  

 

 
Fig. 3.  Topology of a 12th order triplexer. Resonator 1 acts as the frequency 

distribution component as well as one pole to the final triplexer responses.  

 

 
Fig. 4.  S parameters over the normalized frequency of the triplexer with a 
topology shown in Fig. 3.  

 

As shown in Fig. 4, this twelve-order triplexer has twelve 

reflection zeros. The junction resonator 1 acts as both a 

frequency distribution element and a resonator pole of the 

triplexer. It may be noted that two transmission zeros occur by 

the middle channel’s transmission response (S21), as shown in 

Fig. 4. This is attributed to the combined effect of the left and 

right channels, which operate like a shunt inductor and a shunt 

capacitor loaded to the middle channel.  

3. TOPOLOGY-I 

A twelfth order diplexer, with a coupling topology shown in 

Fig. 1 (a) and S parameter response depicted in Fig. 5, is now 

discussed. A cross coupling between resonators 2 and 5 is 

introduced in a quadruplet to provide a pair of transmission 

zeros for both channels. For comparison, the response of a 

diplexer without the cross coupling is also plotted in Fig. 5.  It 

is evident that the two transmission zeros provide significant 

(20 dB) improvement on the attenuation at the middle guard 

band with only a small penalty of slightly worsening rejection 

level at the outer stopbands. It should be noted that additional 

cross couplings could be added to the branches to achieve 

transmission zeros at the outer stopband.   

This cross-coupled diplexer can be roughly treated as a 

combination of three separate parts: a sixth order dual-band 

filter in the stem (resonators 1-6) and two third-order all-pole 

Chebyshev filters in the branches. The dual-band main stem 

splits the input signal into two passbands and feeds into two 

all-pole bandpass filters with different centre frequencies. This 

property has been utilised to generate initial values for the 

coupling matrix optimisation.  

The final optimised coupling coefficients for the 

normalized prototype are:  qe1 = 1.4329, qe9 = qe12=2.9957, 

m1,2 = 0.8326, m2,3 = 0.3944, m2,5 = 0.2894, m3,4 = 0.4201, m4,5 

= 0.2745, m5,6 = 0.6913, m6,7 =m6,10 = 0.2644, m7,8 = m10,11= 

0.2015, m8,9 = m11,12 = 0.2757, m7,7 = -m10,10 = -0.663, m8,8 = -

m11,11 = -0.6855, m9,9 = -m12,12 = -0.6822. It should be noted 

that all the coupling coefficients for the main stem are positive. 

The presence of finite transmission zeros is attributed to the 

destructive interference between signals from different paths 

[18]. The diplexer has been implemented using waveguide 

cavity resonators operating at TE101 mode coupled together 

through  

 
Fig. 5. S parameter responses of the diplexer over the normalized frequency. 

The inset shows the comparison in transmission responses between the 

diplexer with cross-coupling (solid lines) and the one without cross-coupling 
(dashed lines).  

 

 
Fig. 6. Configuration of the twelfth order X-band diplexer structure. a=22.86, 

b=10.16, l1=16.85, l2=17.94, l3=18.97, l4=18.76, l5=18.33, l6=18.56, l7=18.76, 

l8=18.68, l9=17.28, l10=18.85, l11=19.47, l12=18.22, de1=10.77, de2=9.58, 

de3=9.27, d12=7.31, d23=6.84, d25=5.53, d34=5.41, d45=6.36, d56=6.99, d67=4.88, 

d78=4.78, d89=5.34, d6,10=7.69, d10,11=4.94, d11,12=5.27. Unit: mm.  All the irises 

have the same thickness of 2 mm.   
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Fig. 7. S parameter responses of the X-band diplexer from simulation (dashed 

lines) and coupling matrix (solid lines). 

  

inductive irises, as shown in Fig. 6. 

The diplexer is designed to be centered on 10 GHz, and the 

passband centre frequency is 9.885 GHz for channel 1 and 

10.115 GHz for channel 2; the channel bandwidth is 0.11 

GHz; the passband return loss of each channel is 20 dB, and 

the attenuation at the middle guard band is 49.5 dB.  Fig. 7 

shows the diplexer responses obtain from CST [19] 

simulations using the dimensions given in Fig. 6.  

 
Fig. 8. A diplexer topology based on a non-resonating junction to achieve 
transmission zeros at guard-band for both channels [20]. In order to achieve 

two transmission zeros for each channel, four cross-couplings are added to the 

resonators at branches.  
 

A comparison has been made [20] with a same order 

diplexer with a non-resonating junction and separate cross-

couplings at the two branches, as shown in Fig. 8. Given the 

same specifications, it has been found that the topology in Fig. 

8 exhibits a larger attenuation level at the middle guard-band 

and a higher isolation between two channels. However, the 

topology in Fig. 1 (a) has advantages in terms of (i) better out-

of-band rejection; (ii) lower number (one versus four) of 

cross-couplings; and (iii) therefore easier physical 

implementation. 

  

4. TOPOLOGY-II 

A sixteenth order 4-channel multiplexer with a topology 

shown in Fig. 1 (b) has been designed. This topology uses 

three resonators (i.e. resonators 2, 3 and 4) to split the input 

signal into four channels. All the resonators have three or less 

links with other resonators. This topology can be further 

extended for multiplexers with more than 4 channels. For the 

4-channel multiplexer presented here, its coupling matrix is 

optimised using the same technique described in Section II. A 

more detailed discussion on the coupling matrix 

optimisation for this type of structure is given in [21]. 

 The final optimised normalised coupling coefficients, 

together with external quality factors are: qe1 = 1.8622, qe7 = 

7.4078, qe10 =7.4964, qe13 =7.4947, qe16 =7.4078, m1,2 =0.7263, 

m2,3 = m2,4 = 0.4002, m3,3 = -m4,4 = -0.4476, m3,5 = m4,14 

=0.1745, m3,8 = m4,11 = 0.1314, m5,5 = -m14,14 = -0.8195, m5,6 = 

m14,15 = 0.0928, m6,6 = -m15,15 = -0.8674, m6,7 = m15,16 = 0.1151, 

m7,7 = -m16,16 = -0.8713, m8,8 = -m11,11 = -0.3028, m8,9 = m11,12 = 

0.0885,   m9,9= -m12,12 = -0.2928,  m9,10 = m12,13 = 0.1139, m10,10 

= -m13,13 =-0.2924. This topology is demonstrated at X-band 

using inductive irises coupled TE101 cavities. Fig. 9 shows the 

structure of this multiplexer together with the final dimensions. 

Resonators of the channel filters are folded to form a compact 

structure. Again the multiplexer is designed to be centred at 10 

GHz with equally spaced four channels. The central 

frequencies of the four channels are 9.895 GHz, 9.965 GHz, 

10.035 GHz and 10.105 GHz. Each channel has a bandwidth 

of 0.03 GHz and a desired passband return loss of 20 dB.  Fig. 

10 shows the simulated S-parameter responses of the 

multiplexer with the dimensions given in Fig. 9.  The 

simulation results agree extremely well with the theoretical 

ones calculated from coupling matrix. Both CST [19] and 

µwave wizard [22] have been used to simulate the multiplexer. 

The two simulators produce very close results.  Although the 

multiplexer presented here exhibits non-contiguous passbands, 

it is possible to achieve continuous-band multiplexer using the 

same topology (see Fig. 1 (b)) and coupling matrix 

optimisation approach, as reported in [21]. In additional, non-

contiguous multiplexer with different guard-band to pass-band 

ratios are also feasible [21].  

Both the 12
th

 order diplexer and 16
th

 order multiplexer have 

a large number of resonators and complex inter-resonator 

couplings. Therefore it is difficult to obtain the desired 

physical dimensions for these two devices by following the 

conventional design approach for direct coupled filters [17]. 

Here, an alternative design approach [23], based on 

electromagnetic (EM) simulations, has been used to extract the 

dimensions. The multiplexer structure is constructed by 

successively adding one resonator at a time in the simulation. 

At each step, only the dimensions of one cavity and its 

connecting irises are significantly tuned towards the desired 

responses calculated from the corresponding coupling 

coefficients of the sub-matrix. This reduces the number of 

dimensions to be simultaneously optimized during the design. 

This procedure also eliminates the need of a global 

optimisation on all the dimensions within an electromagnetic 

simulator, as discussed in detail in [23].  
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Fig. 9. Configuration of the X-band multiplexer structure. a=22.86, b=10.16, 

resonator lengths: l1=17.37, l2=18.43, l3=19.13, l4=18.78, l5=19.77, l6=19.82, 
l7=18.96, l8=19.56, l9=19.60, l10=18.71, l11=19.32, l12=19.36, l13=18.47, 

l14=19.09, l15=19.10, l16=18.27, coupling gaps between adjacent resonators: 

de1=9.79, de2=7.90, de3=7.88, de4=7.88, de5=7.80, d12=6.37, d23=6.05, d24=6.00, 

d35=4.25, d38=3.97, d56=4.03, d67=4.02, d89=3.57, d9,10=4.16, d4,11=3.94, 

d11,12=3.55, d12,13=4.14, d4,14=4.23, d14,15=3.95, d15,16=4.00. Unit: mm. All the 

irises have the same thickness of 2 mm.  
 

 
Fig. 10. S parameter responses of the multiplexer from simulation (dashed 

lines) and coupling matrix (solid lines). 

5. EXPERIMENTAL VERIFICATION 

The diplexer is machined from copper and is shown in Fig. 

11. The measurement results (after tuning) agree very well 

with the simulated responses as shown in Fig. 12. The 

passband insertion loss is measured to be  around 0.6 dB, 

which is close to the expected value of 0.4 dB obtained from 

CST simulations based on the conductivity of  copper (i.e. 

5.96×10
7
 S/m).  The passband of channel 1 has a measured 

maximum return loss of 18 dB, whereas the passband of 

channel 2 has a maximum return loss of 14 dB. The isolation 

between two bands is measured to be over 25 dB. 

 
Fig. 11. Photograph of the 12th order X-band diplexer with top cover removed. 

 

 
 Fig. 12. Measurement results (solid lines) and simulation results (dashed lines) 

of the diplexer. The simulations were performed in CST [19] using a 

conductivity of copper (5.96×107 S/m).    

 

 The multiplexer is made from aluminum and is 

shown in Fig. 13. The measurement results (after tuning) are 

depicted in Fig. 14. Again, good agreement has been achieved 

between simulation and measurement. All 16 poles are 

identifiable. The insertion loss for the four channels is 

measured to be 1.8 dB, 1.6 dB, 1.9 dB and 1.5 dB, 

respectively, whereas the expected passband insertion loss 

obtained from CST simulations is 0.7 dB. The noticeable 

higher-than-simulated loss is mainly attributed to (i) the way 

the multiplexer is constructed (The multiplexer is split along 

H-plane into two pieces. Imperfect contact at the joints in the 

two pieces results in additional loss, as current flows across 

these joints [24]); (ii) the effect of the tuning screw holes 

drilled on the top cover.   

Both measurements are subject to a full two-port TRL (Thru, 

Reflect, Line) calibration. It should be noted that tuning 

screws have been utilized for both devices to compensate for 

any fabrication inaccuracies and the inner rounded corners of 

the resonators caused by the milling tool.   

 
Fig. 13. Photograph of the 16th order X-band four channel multiplier with top 

cover removed.  
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Fig. 14. Measurement results (solid lines) and simulation results (dashed lines) 
of the four-channel multiplexer.  The simulations were performed in CST [19] 

using a conductivity of aluminium (3.56×107 S/m). 

   

6. CONCLUSION 

In this paper we have reported two novel multiplexer 

topologies based on all-resonator based filtering networks. 

The first topology employs a cross-coupling in the main stem 

to produce a pair of transmission zeros at the middle guard-

band, for both channels. This topology facilitates the design of 

diplexers with a sharp roll-off in the guard band or reduced 

guard-bandwidth. The second topology utilised a bifurcate 

structure, which will find useful application in multiplexers 

with a large number of sub channels. The maximum number 

of connections of any resonator is limited to three. These all-

resonator based multiplexers are fully characterized using the 

coupling matrix. Gradient-based local optimisation is 

performed on the coupling coefficients to achieve desired 

responses. The relationships between the multiplexer coupling 

coefficients and the standard Chebyshev filters and dual-band 

filters have been investigated. These relationships have been 

employed to produce good quality initial values which are 

critical to the convergence of the local optimisation algorithm. 

Both topologies have been demonstrated at X-band using 

waveguide cavities operating at TE101 mode. The measurement 

results for both devices agree very well with simulations.  
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Abstract— This paper addresses the physical realization of 

cross-coupled waveguide filters based on electromagnetic (EM) 

simulations. For this design procedure, the filter structure is 

simulated by successively adding one resonator at a time. The 

desired filter response is achieved without the need of a global 

optimisation on all the mechanical dimensions within an 

electromagnetic simulator. This reduces the design time required 

for a cross-coupled waveguide filter and allows the possibility of 

building high-order waveguide filters with complex cross-

couplings. A sixth order X-band dual-band filter with a centre 

frequency of 10 GHz and a fractional bandwidth of 1% is 

designed using this procedure and presented here as an example. 

Excellent agreement between simulation results and theoretical 

results from coupling matrix verifies the proposed approach.      

Keywords—filter; waveguide; cross-coupling; coupling matrix; 

dual-band filter  

 

1   INTRODUCTION  

A microwave filter is a two-port network employed to 

transmit and attenuate signals in specified frequency bands. 

Microwave filters have found wide applications in modern 

communication systems, radar systems and laboratory 

measurement equipments [1]. Filters based on cross-coupled 

resonators, with real or complex transmission zeros (TZs), 

have been extensively used to (i) improve the close-to-band 

selectivity; (ii) achieve in-band group delay linearity; (iii) 

divide the single-band into multiple passbands. However, 

compared with the conventional in-line resonator coupled 

filter, the cross-coupled filter is more difficult to be physically 

implemented, due to the interactions introduced by the cross-

couplings.  

Traditionally, the design methods for direct coupled filters 

have been applied to extract the dimensions for cross-coupled 

filters. This design process usually involves the following four 

main steps: (i) identify the filter order and filter functions 

according to specification requirements; (ii) synthesis or 

optimise the coupling coefficients (Mi,j) and external quality 

factors (Qe) that can realize the desired filter function; (iii) 

choose the filter type (waveguide, microstrip, etc), and obtain 

dimensions which can achieve desired specified Qe and Mi,j 

from EM simulations on one resonator and two weakly 

coupled resonators; (iv) construct the filter in the simulator to 

get its initial responses [1]-[2]. For cross-coupled filters, this 

approach ignores the influences from cross-couplings, and 

therefore normally requires a global optimisation on all the 

physical dimensions. This global optimisation is time-

consuming, and in some special scenario, where the filter 

consists of a large number of resonators and/or complex cross-

couplings, the final optimisation may fail to converge to an 

acceptable solution, due to the large amount of control 

parameters. In [3], a design procedure, which eliminates the 

need of global optimisation, has been presented for a cross-

coupled folded waveguide filter. A fourth order and a sixth 

order cross-coupled single-band waveguide filters have been 

successfully demonstrated using this design approach. 

However, this design approach is limited to waveguide filters 

with folded topologies.  

In this paper, we present an EM-based design approach for 

determining the physical dimensions of a cross-coupled 

waveguide filter with any type of topology. This design 

procedure enables us to account for the attributions of cross-

couplings, and provides precise desired dimensions without 

the need of a final global optimisation. This approach may 

find useful application in the design of resonator based cross-

coupled waveguide filters or multiplexers [4].  
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Fig. 1. Illustration of a 6th order X-band dual-band waveguide filter and its 

topology.  There is a cross coupling between resonators 2 and 5. These six 

resonators are operating at TE101 mode and they are coupled together through 
inductive irises. All the irises have the same thickness t of 2 mm, a=22.86 mm, 

b=10.16 mm, di=5.19 mm.  
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Fig. 2 The X-band dual-band filter results from coupling matrix (red solid 
lines), µwave wizard simulations (dashed blue lines) and CST simulations 

(dotted green lines). Dimensions obtained at Step 6 shown in Tables I and II 

have been used in these simulations.  
 

2  DESIGN STEPS 

The design approach is demonstrated by a sixth order X-

band dual-band waveguide filter. Fig. 1 illustrates the 

topology and the structure of this filter. This filter is designed 

to have the following specifications: the centre frequency is 

9.965 GHz for the first passband and 10.035 GHz for the 

second passband, both passbands have a desired return loss of 

20 dB and the same bandwidth of 30 MHz, the attenuation 

level for the middle stopband is better than 26 dB.  The N×N 

coupling matrix of this dual-band filter, as depicted below, is 

generated by a synthesis technique described in [5].  Their 

corresponding S-parameter responses can be found in Fig. 2. A 

pair of symmetrical transmission zeros positioned at 9.995 

GHz and 10.005 GHz occur at the in-band to split it into two 

symmetrical passbands. These two transmission zeros are 

attributed to the cross-coupling between resonators 2 and 5. 

As all the coupling coefficients are positive, thereby all 

inductive irises have be utilised by this filter.   
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Qe1=Qe6=145.77. 
 

 

 

The design can be divided into six sub-steps, as shown in 

Fig. 3. At work step, rather than optimising dimensions for the 

entire structure, only the dimensions of one cavity and its 

connecting irises are significantly tuned towards the desired 

responses. This reduces the number of dimensions to be 

adjusted during the design, which in return yields faster and 

more reliable convergence. Especially for large scale filter 

structure, in which case it is virtually impossible to 

optimise all the mechanical dimensions at the same time. 

The calculation of the physical dimensions for the sixth order 

dual-band filter shown in Fig. 1 comprises the following steps.  

 

(1) Calculate the approximate initial dimensions for all the 

resonators and irises using the equivalent circuit 

models based on the coupling matrix as described in 

[1], [6]-[7]. 

(2) Using the coupling matrix values calculated for the 

entire filter, obtain just the responses for the first 

resonator (see Fig 3 (a)). Use the full-wave simulator 

(in our case, µwave wizard [8]) to evaluate  resonator 1 

together with its two adjacent irises, and optimize this 

simulated response towards the desired one from 

coupling matrix, by changing the resonator length (l1) 

and iris dimensions (de1 and d12). 

(3) Use the EM simulator for both resonators 1 and 2 and 

their connecting irises (see Fig. 3(b)). Adjust the length 

of resonator 2 (l2) and iris dimensions (d23 and d25) to 

match the responses with the target ones derived from 

the coupling matrix. The dimensions associated with 

resonator 1 obtained in Step 2 should be slightly 

adjusted to account for the influence of resonator 2. 

This can be done with optimisations and has a fast 

convergence due to the final result being close to the 

optimum. 

(4) Progress through the filter structure by adding only one 

resonator into the simulated structure at each time, as 

illustrated in Fig. 3. Optimise the dimensions of the 

subsequent resonator towards the desired S-parameter 

responses calculated from coupling matrix. A slight 

readjustment of the dimensions of the preceding 

resonators may be required to factor in the influence 

from the new added resonator. Normally this small 

adjustment in dimensions is only required for adjacent 

resonators. For instance, at the last step (see Fig. 3 (f)), 

the dimensions of resonator 1 will remain the same as 

the ones obtained in Step 5, since resonator 6 has a 

negligible impact on resonator 1.    

 

3 4

2 51 6
Input Output

21
Input Output1

1
Input Output

Output2 3

21
Input Output1

Output2

3 4

2 51
Input

Output

(a) (b) (c)

3 4

21
Input

Output1

Output2

(d) (e)

(f)  
Fig. 3. The dual-band filter structure shown in Fig. 1 is constructed 
successively by adding one resonator at a time.  The six steps of this design 

procedure are shown in (a)-(f) in sequence.  
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For this design approach, the middle stage S-parameter 

responses are calculated from their corresponding coupling 

coefficients, and act as the objective responses for the tuning.  

To plot the desired responses at each stage, the inner coupling 

coefficient needs to be converted into external quality factor. 

For instance, at Step 1, Qe2 should be calculated from M12. 

After expressing both the external quality factor (Qe) and 

internal coupling coefficients (Mij) using inverter value K [1], 

the relationship between Mij and Qe can be found as: 

2

2

1

2

ij e

g

M Q




 
 
 
 

                         (1) 

 

where λg is guided wavelength and λ is the free-space 

wavelength. For an X-band waveguide filter operating at a 

centre frequency of 10 GHz, Mij
2
× Qe is calculated to be 

0.3625. Consequently, Mij can be converted to its 

corresponding Qe. It is interesting to note that, the value of 

Mij
2
× Qe does not depend on the fractional bandwidth (FBW) 

of the filter.    

In additional, it may be observed from Fig. 3 that, for work 

steps 2 to 5, there are three external ports. However, both 

equations of N× N [2] and (N+2)× (N+2) [1] matrix are derived 

for a two-port network circuit. In the following, the equations 

for (N+3)× (N+3) matrix, which can be applied to calculate S-

parameter responses of a three-port filter network, will be 

derived and given.  

Reference [4] reports equations for computing three-port 

filter network S-parameter responses. However, these 

equations are derived following the similar approach to a N× 

N coupling matrix [2], and therefore has a restriction that the 

resonators number should be larger than the number of 

external ports. In the work presented here, there exists a case 

that the resonator number is less than the number of ports (see 

Fig. 3 (b)), thereby a similar approach to the (N+2)× (N+2) 

matrix synthesis is applied in this work to derive the equations. 

Here, the relationship between the S-parameters and the 

coupling matrix is extracted by analysing the node voltage and 

current of the three-port network's equivalent circuits, as 

described in detail in [1], [2] and [4]. The matrix m for a 

general three-port network consists of N coupled resonators, 

one input port (S) and two output ports (L1, L2) can be written 

in the following form: 

 

ms,1 ms,2 ms,3 … ms,N ms,L1 ms,L2

S 1 2 3 … N L1 L2

m1,s m1,1 m1,2 m1,3 … m1,N m1,L1 m1,L2

m2,s m2,1 m2,2 m2,3 … m2,N m2,L1 m2,L2

m3,s m3,1 m3,2 m3,3 … m3,N m3,L1 m3,L2

... ..
. ...

...

...

...

...

mN,s mN,1 mN,2 mN,3 … mN,N mN,L1 mN,L2

mL1,s mL1,1 mL1,2 mL1,3 … mL1,N mL1,L2

mL2,s mL2,1 mL2,2 mL2,3 … mL2,N mL2,L1

S

1

2

3

...

N

L1

L2

m = (2)

 

The above matrix is symmetrical about the principal 

diagonal and it includes the couplings between external 

ports and the internal resonators. Additionally, it is also 

possible to accommodate the direct couplings between 

external ports, such as mS,L1, mS,L2 and mL1,L2. The dual-band 

filter presented here does not include any direct coupling 

between ports, as shown in Fig. 3, therefore mS,L1, mS,L2 and 

mL1,L2 are assigned to zero here. The highlighted part (using 

grey colour) represents the core N×N matrix, whose entries are 

normalised coupling coefficients (mij=Mij/FBW). The coupling 

coefficients between external ports and inner resonators can be 

calculated by 

 

,1 1, 1 2, 2

1 2 3

1 1 1
,  ,  (3)S N L N L

e e e

m m m
q q q

  




where qei is the normalized external quality factors of the 

external port i (qei=Qei×FBW), N1 and N2 refer to the resonator 

number connecting to the output ports (L1 and L2). For 

instance, at Step 3 as shown in Fig. 3 (c), N1=2, N2=3. The 

general matrix A can be expressed as below 

     [ ] (4)A R p U j m  
 

where U is similar to a (N+3)×(N+3) unit matrix, except that 

U(1,1) = U(N+2,N+2) = U(N+3,N+3) = 0, R is a (N+3)×(N+3) 

matrix whose only nonzero entries are R(1,1) = R(N+2,N+2) = 

R(N+3,N+3) =1, p is the low-pass frequency variable, which 

can be written in terms of FBW and the filter centre frequency 

(ω0) as 

0

0

1
(5)p j

FBW



 

 
  

   
Then the S-parameter responses of a three-port filter network 

can be expressed as: 

 

 

 

1

11 1,1

1

21 2,1

1

31 3,1

1 2

2 (6)

2

N

N

S A

S A

S A











 





     

For the case where there are more than three external ports, 

similar equations can be derived accordingly by adding extra 

rows at the bottom and extra columns at the right, to the 

coupling matrix shown in equation (2). 

 

 

3  RESULTS 

The six sub-step responses for the structures shown in Fig. 

3 are depicted in Fig. 4. In Fig. 4, the dashed lines refer to the 

theoretical responses plotted using the equations described in 

Section II, and these responses are served as goals of the 

dimensional tuning. The µwave wizard [8] based on mode-

matching technique is employed in the simulations. The 
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simulated responses using the optimised dimensions are 

denoted as solid lines in Fig. 4.   

(a) (b)

(c) (d)

(e) (f)  
Fig. 4. S-parameters of the dual-band filter as successive resonators are added 

and tuned. Their corresponding topologies can be found in Fig. 3. Note that, 
S11 responses are included and represented using black lines in all six graphs.  

The dashed lines represent the desired responses which are plotted from 

coupling matrix, whereas the solid lines correspond to the responses from 

simulations using the optimised dimensions given in Table I and II.   

 

 

At each sub-step, initially only one resonator’s dimensions 

(three or less parameters) are tuned in the simulations. 

Therefore, a desired set of dimensions, whose corresponding 

responses match the objective ones, can be obtained within a 

short time. The dimensions from the previous stages may also 

be slightly altered to tune the responses towards the desired 

ones, as shown in Tables I and II. It can be observed that, only 

very small adjustments are required on the dimensions 

achieved in the foregoing stages, to account for the influence 

from the subsequent resonators. 

 The final dimensions of the dual-band filter are 

shown in Tables I and II (Step 6), and their corresponding 

simulation results can be found in Fig. 2. It can be observed 

that, without any global optimization, the final acquired 

dimensions have extremely close responses with the theory 

ones from coupling matrix. It should be pointed out that, both 

µwave wizard and CST microwave studio [9] have been 

employed to simulate the dual-band filter. These two EM 

simulators produce very close results, as shown in Fig. 2. 

 

 
 

TABLE I:  Dual-band filter iris dimensions at each step. 

Step 
Dimensions of iris (mm) 

de1 d12 d23 d25 d34 d45 d56 de2 

1 8.42 5.06 - - - - - - 

2 8.71 5.17 4.41 4.14 - - - - 

3 8.70 5.18 4.65 4.13 4.13 - - - 

4 8.73 5.15 4.67 4.13 4.14 4.38 - - 

5 8.70 5.17 4.63 4.12 4.13 4.62 5.17 - 

6 8.70 5.17 4.63 4.12 4.13 4.62 5.17 8.76 

 
TABLE II:  Dual-band filter resonators length at each step. 

Step 
Length of resonators (mm) 

l1 l2 l3 l4 l5 l6 

1 18.2 - - - - - 

2 18.06 19.01 - - - - 

3 18.07 18.99 19.39 - - - 

4 18.06 18.99 19.39 19.41 - - 

5 18.06 18.99 19.39 19.40 18.99 - 

6 18.06 18.99 19.39 19.40 18.98 18.05 

 

4  CONCLUSIONS 

A mechanical dimensions calculation method for cross-

coupled waveguide filters has been described. During this 

design procedure, the filter structure is constructed step by 

step by adding one resonator to the simulated structure at a 

time. Dimensions of this resonator are tuned towards the 

desired target middle stage responses. Equations have been 

derived and provided in this paper to plot the middle stage 

responses from coupling matrix. A sixth order dual-band X-

band filter with a pair of symmetrical transmission zeros has 

been successfully demonstrated using this approach. This 

approach eliminates the need of a global EM-based 

dimensional optimisation, and therefore leads to a reduction in 

the time required.  Moreover, it also opens the possibility of 

building high-order waveguide filters with complex cross-

couplings.  
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All-Resonator Based Waveguide Diplexer 

With Cross-Couplings 

 
Wenlin Xia, Xiaobang Shang, M.J. Lancaster 

 
This paper reports on an investigation into new diplexer topologies, based 
on all-resonator structures with cross-couplings between common 

resonators (shared by both channels) and branch resonators. This all-

resonator structure eliminates the need for separate frequency distribution 

networks and uses resonators to achieve this functionality. For diplexers 

based on such all-resonator structures, cross-couplings can be added 

between the common resonators and branch resonators to achieve some 

desired specification (e.g. improved isolation). Two diplexer topologies 

with such cross-couplings are presented. The first topology is 
implemented at X-band using waveguide technology. Excellent 

measurement results verified the proposed topology as well as the design 

procedure.  

 

Introduction: Diplexers are critical components to a communication 

system, where there is need to separate or combine two RF channels. 

Many design and implementation techniques for diplexer circuits have 

been developed. Among these techniques, the most common approaches 

are to design each channel filter separately and then combine them with a 

frequency distribution network such as a manifold [1], a resonant junction 

[2], a circulator [3] or a hybrid coupler [4]. Recently, diplexers based on 

all-coupled resonators have been proposed [5-7]. In this approach, a 

resonator can not only be used to provide a reflection zero, but also as a 

signal distribution element. This effectively reduces the size of the 

diplexers by removal of the conventional distribution network. In 

addition, as the diplexer is formed of only resonators, a single coupling 

matrix can be used to fully characterise its response, and therefore the 

coupling between different channel filters can be accurately determined 

during the synthesis. In [7], such a diplexer, based on all-resonators, with 

a cross-coupling between common resonators (i.e. resonators in the main 

stem) has been reported. Its topology is shown in Fig.1a. 

Here, we extend the study into utilising cross-couplings between 

common resonators and branch resonators. This increases the possible 

frequency responses significantly, and facilitates the designs with some 

challenging and difficult specifications, such as a high isolation and a 

sharp rejection. Two diplexer topologies, with such cross-couplings, as 

shown in Fig. 1, are investigated and presented here. The first diplexer 

(Fig. 1b) is demonstrated at X-band using waveguide technology. 

Excellent agreement between simulation results and experiment results 

are achieved. To the best of authors’ knowledge, this is the first-ever 

reported diplexer with cross-coupling between common resonators and 

branch resonators.  
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Fig. 1.  Novel diplexer topologies with cross-couplings (denoted using 

dotted lines) between common resonators (grey colour filled) and branch 

resonators (white background).  

a  12
th
 order diplexer with a cross-coupling [7] 

b   Topology 1: 4
th
 order diplexer. Two cross-couplings (i.e. m1,3 and m1,4) 

are introduced to improve the port isolation performance.  

c   Topology 2: 12
th
 order diplexer. m5,8 and m5,11 are employed to 

generate transmission zeros which are capable of increasing the out-of-

band attenuation.  

Coupling matrix design: The coupling matrices for both topologies 

are obtained using a gradient-based optimization technique [7]. Fig. 

2 shows S-parameter responses of Topology 1 with the cross-

coupling (m1,3= 0.375) and for comparison purposes without the cross-

coupling (m1,3= 0). For both cases, the return loss is designed to be 20 dB 

and the two bands are located at a normalised frequency of [-1, -0.4] and 

[0.4, 1]. Their corresponding coupling coefficients and external quality 

factors are:  

With cross-coupling: m1,3=-m1,4=0.375, 2qe1=qe3=qe4=2.280, m1,2= 

0.815, m2,3=m2,4=0.295, m3,3=-m4,4=0.725. No cross-coupling: m1,3=-m1,4 

=0, 2qe1=qe3=qe4= 2.250, m1,2=0.525, m2,3=m2,4=0.525, m3,3=-m4,4=0.586. 

 

 
a 

 

 
b 

 

Fig. 2. S parameter responses with and without cross-coupling m1,3, m1,4= 

-m1,3.  

a   S11, S21 and S31 responses.      

b   Isolation responses.  

 

As can be observed in Fig.2b, by introducing cross-coupling, the 

isolation is improved (around 10 dB better in the middle of the passband) 

and the rejection is much better at the near-band frequencies. Whereas, 

such cross-coupling leads to a penalty of decreased far-out stopband 

attenuation.  

 

 
 

Fig. 3.  Theoretical S parameter responses of 12
th

 order diplexer 

(Topology 2) with cross-coupling (in solid lines) and without cross-

couplings (in doted lines). 

 

Using the same synthesis technique, the coupling matrix of Topology 2 

has been obtained and its corresponding normalized responses are shown 

in Fig.3. The return loss for both bands is designed to be 20 dB and two 

bands are located at frequencies of [-1, -0.358] and [0.358, 1]. The 

coupling coefficients are: 2×qe1=qe9=qe12=3.096, m1,2=0.792, m2,3= 

0.477, m3,4=0.635, m4,5=0.404, m5,6=0.635, m6,7= m6,10=0.282, m5,8= 

m5,11=-0.08,  m7,8= m10,11=0.184, m8,9= m11,12=0.271, m7,7= -m10,10=0.733, 

m8,8= -m11,11= 0.668, m9,9= -m12,12= 0.671.  

As shown in Fig. 3, each channel has two transmission zeros, the 

presence of which are due to cross-couplings m5,8 and m5,11. These 



 

194 

 

194 
transmission zeros result in a sharp roll-off at the near-out-band region 

while at the same time maintaining sound isolation between two ports. 

 

4
th

 order diplexer (Topology 1) implementation: Topology 1 has been 

implemented using X-band waveguide technology. It is designed by 

following an approach in [8]. For this approach, the diplexer is 

constructed by successively adding one resonator at a time in an 

electromagnetic (EM) simulator. This eliminates the need of a global 

optimization on all the mechanical dimensions and thereby reduces the 

design time. Fig. 4 shows the diplexer structure as well as the final 

dimensions. 
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Fig. 4. Configuration of X-band diplexer structure and its dimensions. 

a=22.86, b=10.16, l1=16.15, l2=18.27, l3=36.11, l4=18.09, de1=10.41, 

de2=10.39, de3=9.47, d12=6.56, d13=6.64, d14=7.41, d23=6.35, d24=7.03, 

all corners have the same radius of 1.6. Unit: mm 

  

For this diplexer, the coupling between the 1
st
 and 4

th
 resonators is 

negative and all the other inter-resonator couplings are positive. A TE102 

cavity is specially chosen as the 3
rd

 resonator to provide for this coupling 

[9]. This is different to the other three resonators which are operating at 

TE101 mode. In order to facilitate the CNC milling, all inductive irises are 

employed for the couplings. To eliminate the need 
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Fig. 5.  Photograph of fabricated X-band diplexer (top cover removed). 

Four resonators are denoted as R1-R4. Resonator 3 is operating at TE102 

mode and the other three resonators are TE101 cavities. All resonators are 

coupled through inductive irises.  

 

 
 

Fig. 6.  Measurement (no tuning) and simulation results of diplexer.  

for any tuning, the round inner corners with a radius of 1.6 mm, which are 

introduced by the milling tools, are considered during the design. 

 

Experimental verification: The diplexer is machined from 

aluminium and is shown in Fig.5. The measurement results agree 

very well with the simulated responses, as shown in Fig. 6. The 

insertion loss in the middle of the passband is measured to be around 0.4 

dB. The expected value is 0.25 dB obtained from CST simulations using 

the conductivity of aluminium. The additional insertion loss is mainly 

originated from the construction of the diplexer which is split along the 

H-plane into two pieces. The loss occurs when current flows across the 

imperfect contact between the two pieces [10]. The measured return loss 

is below 20 dB in both passbands. Tuning screws have not been utilised 

for this diplexer. 

 

Conclusion: In this paper, we have presented novel diplexer topologies 

with cross-couplings between common resonators and branch resonators. 

Such cross-couplings facilitate the selection of topologies and improve 

the isolation performance. Two cross-coupled diplexers have been 

synthesised and are given here as examples. The first diplexer has been 

demonstrated at X-band using waveguide cavities operating at TE101 and 

TE102 modes. The measurement results agree well with simulations. 
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