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Abstract

An essential aspect of survival analysis is the estimation and prediction of survival prob-

abilities for individuals. For this purpose, mathematical modelling of the hazard rate

function is a fundamental issue. This thesis focuses on the novel estimation and appli-

cation of hazard rate functions in mathematical and medical research. In mathematical

research we focus on the development of kernel-based estimates of the hazard rate es-

timation, and in medical research we concentrate on the development and validation of

survival models using individual participant data from multiple studies.

Our first proposal is a multiplicative semiparametric estimate of the hazard rate func-

tion. The semiparametric estimate starts from a crude guess of the true hazard rate

function and then modifies it by a nonparametric correction factor. We utilize the shape

parameter α to unify different types of multiplicative semiparametric estimates and then

discuss how to estimate the data-driven version of the estimate in practice. The asymp-

totic analysis shows that the bias of our proposed estimate could be totally removed if our

parametric guess of the underlying data is correct, and even if the assumed parametric

model is wrong, the resulted estimate is still as good as the standard kernel hazard rate

estimate.

We then investigate an approach to optimize a kernel hazard rate estimate by min-

imizing its L1 error. Rather than using the traditional L2 error criterion such as mean

(integrated) squared error, we derive an optimal bandwidth to minimize the L1 error

(mean (integrated) absolute error) of the kernel hazard rate estimate and then develop a

simple Newton algorithm to calculate the bandwidth. Theoretically, we demonstrate that

the theoretic and adaptive versions of the bandwidth does minimize the L1 error of the

kernel estimate approximately.

We then consider application of more flexible survival methods to medical research,

to examine whether the mortality risk of breast cancer patients is associated with their



country of residence. The Royston-Parmar approach is used to flexibly model the baseline

hazard using restricted cubic splines, and it reveals a significant association between

country and survival probability, even adjusting for several confounding factors. The

robustness of findings is also evaluated after multiple imputation is used to estimate

missing values in the database.

This work is then extended to develop, implement and evaluate a prognostic model

for individual mortality risk after breast cancer, using individual participant data (IPD)

from multiple countries. We firstly utilize the Royston-Parmar approach to develop a

prognostic model with a stratified intercept included to allow for a unique baseline of

each included country. Then we utilize an internal-external cross validation method and

meta-analysis to summarise the performance of the developed model in external data .

Finally, we consider how to fit survival models that predict individual response to

treatment effectiveness, given IPD from multiple trials. We evaluate a range one-stage

IPD meta analysis survival models, all of which can estimate the interaction between the

treatment effect and patient-level factors. Using a large simulation study and a real case

study in epilepsy, we show the necessity of separating within and across trial interaction

effects to avoid potential ecological bias.

In conclusion, this thesis develops and apply novel statistical methods for survival anal-

ysis. Although many challenges still remain, the work provides an important contribution

to both statistical and clinical research.
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CHAPTER 1

INTRODUCTION OF SURVIVAL MODELLING IN
MATHEMATICAL AND MEDICAL STATISTICS

1.1 Overview of the thesis

Survival analysis is the study of data with the time-to-event outcome. In survival analysis,

invariably one needs to answer questions such as how long is a subject likely to survive

or which factors are predictors toward the mortality risk of the subject? To address these

issues, we should establish appropriate statistical models to predict the occurrence of

the event (failure) of interest and also to identify the prognostic factors associated with

the event[83]. Such models are known as survival models and are seen in many fields of

research such as reliability analysis in engineering and prognosis research in pharmacy[76].

However, in this thesis, we mainly focus on its theory and application in mathematical

and medical research.

In mathematical research, in this thesis we are particularly interested in estimating

a function from a noisy data set. For instance, while dealing with a data set contain

values of a single variable Y from an unknown distribution, one hopes to estimate its true

underlying probability distribution[68] or in regression analysis, one needs to estimate the

relationship between the response variable Y and explanatory regressors X[53]. In sur-

vival models, a key interest is estimating the hazard function which describes the failure

rate of an item under risk. See Section 1.2 for the details of hazard rate function. One

can classify the methods of estimating hazard functions into two categories, parametric

1



and nonparametric methods. Particularly, many of the methods used for hazard rate es-

timation were originally utilized in density estimation, i.e. kernel methods. We introduce

these approaches in the following subsections.

In medical research, in this thesis we discuss several survival modelling problems us-

ing time-to-event data arising from multiple clinical studies such as randomised trials.

Time-to-event data provides the time of a patient from a well-defined origin point to the

occurrence of an event of interest. The end-point of data could be non-fatal but more

often, it is death. Time-to-event data from clinical trials owns two evident characteristics,

firstly, the data is prone to be censored in practice which means that the patients in trials

may quit the study (or the study ends) before the event occurs. Secondly, the data is gen-

erally asymmetrical distributed because survival time could not be negative. Therefore

the common statistical model such as logistic regression is not amenable[24][77]. Instead,

we introduce several useful approaches in this chapter such as parametric regression, Cox

regression and flexible parametric regression to develop a survival model.

The goals of this thesis are to novelly apply and develop survival modes, and this can

be summarized into 2 parts. Chapter 2 and 3 are devoted to the mathematical study

on a new semiparametric kernel hazard estimate and a L1 optimal kernel hazard rate

estimate respectively. Chapter 4 and 5 discuss several survival modelling problems using

individual participant data from multiple cohort studies in breast cancer, to compare

mortality rates across countries and predict outcome risk for new individuals. Chapter 6

considers multiple trials, and uses survival models to evaluate treatment effects. We start

with a broad introduction of existing methodologies which are important to our research

in the rest of this chapter.

1.2 General functions in survival modelling

In survival modelling, there are several functions that are important in the analysis of

event time data. For example, hazard rate function, cumulative hazard rate function

and survival function are very useful in the reliability analysis concerning the lifetime of
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manufactured items in industries, in the duration modelling in economics research and in

the survival analysis, one of the major areas in medical statistics.

A hazard rate function is defined as the probability of failure of an item in an interval

(x, x+ dx) where dx converges to 0 given that it has survived until time x. The function

λ(x) referred to as a hazard rate function is then defined as

λ(x) = lim
dx→0+

P (x ≤ X < x+ dx|x ≤ X)

dx
.

Using the definition of conditional probability and then finding the limit, one expresses

it as,

λ(x) =
f(x)

1− F (x)
, when F (x) < 1

where f(x) is the probability density function and F (x) is its cumulative distribution

function of x.

Another important function in survivor analysis is the cumulative hazard rate function

which is defined as

Λ(x) =

∫ x

0

λ(t)dt.

This gives the total hazard accumulated by time x. Note that the cumulative hazard rate

function can also be expressed as

Λ(x) =

∫ x

0

f(t)

1− F (t)
dt = − log[1− F (x)].

Further the survival function S(x) usually describes the probability of an item that

will survive beyond the specified time x. It is closely associated with the cumulative

distribution which could be written as 1− F (x).

It is well known that for the real event time data from statistics, engineering, eco-
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nomics, and medical research, censoring often occurs when the value of an observation

is only partially known. In mathematical research, for the sake of simplicity, we will

not discuss the data with censorship and always assume that the failure times of all the

observations are known to us. However, our theoretical results can be easily extended to

the censored cases. As for medical research, the methodologies and data we utilize always

allow for the censored cases.

1.3 Parametric estimation

The classical approach to estimating an unknown function in statistics is first to assume

a parametric model, i.e. a parameter function with unknown parameter values. For

example, in the case of density estimation assume that the unknown density function

f(x) has a certain specified functional form f(x; θ) characterized by a parameter vector

θ where θ ∈ Θ is unknown. In the case of regression, assume that the conditional mean

E[Y |X] has some specified functional form m(x; θ), again characterized by θ. Then with

these assumptions about the functional form, our problem reduces to the estimation of

the parameter vector θ. Therefore the second step is the estimation of the parameters in

the parametric model. This classical approach is referred to as parametric estimation.

To illustrate the important drawback of the parametric estimation, consider the data

set of event time (X1, X2, ..., X200) simulated from a Weibull distribution with the shape

parameter α being 5 and the scale parameter β being 3.

Assume that the above data are modelled by Weibull distribution (α, β) and then the

unknown parameters α and β are estimated by the maximum likelihood method. Thus

the estimate of the Weibull (α, β) density f(x;α, β) is f(x; α̂, β̂) and it is plotted in the

left panel of Fig 1.1. One finds that with a sample of size 200, the parametric estimate

provides a reasonably accurate curve which is close to the true one.

Now assume (wrongly) that the same data were generated from the exponential distri-

bution f(x;µ) with mean µ, and let µ̂ be the maximum likelihood estimator of µ and thus

f(x; µ̂) is the estimate of f(x;µ). Again the estimated density function f(x; µ̂) and the

4



true Weibull density are plotted in the right panel of Fig 1.1. One notices that because of

the wrong model assumption, even with a maximum likelihood estimate of µ, as expected

the estimate f(x; µ̂) fails to reveal the true shape of the underlying model.
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Figure 1.1: The left panel plots the estimator with the correct Weibull model and the right
panel illustrates the estimator with the wrong assumption, exponential distribution. The curve
in black denotes the true underlying curve and the curve in red denotes the estimated curve.

The above example illustrates the following important point about the parametric

estimation. If the model assumption (i.e. functional form) is right, our estimate of the

function is quite accurate. However, if the assumed parametric model is wrong, our

estimate tends to be no longer reliable and diverges from the true model. This may lead

to drawing meaningless inferences.

The theory of parametric inference for survival models is well studied and developed.

There is a large body of literature on estimation of hazard rate function and related

generalizations using parametric methods. For example, see Barlow and Proschan[9] and

Lawless[82]. Here we mainly illustrate Weibull, log-normal, and log-logistic models[94] in

modelling event-time data as they would be utilized in the thesis:
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Weibull model

If one assumes the underlying event follows a Weibull distribution, then its density func-

tion, hazard rate function are characterized as

f(t) =
p

µ

(
t

µ

)p−1

e−(t/µ)p

h(t) =
p

µ

(
t

µ

)p−1

and the survival function is

S(t) = e−(t/µ)p (1.3.1)

where p > 0 is the shape parameter and µ > 0 is the scale parameter determining whether

the hazard is increasing, decreasing, or constant over time.

Log-logistic model

Log-logistic hazard rate model is obtained if the natural logarithm of survival time t has a

logistic density with location parameter µ and scale parameter σ. The log-logistic density

and hazard rate functions are

f(t) =
2 exp

(
ln t−lnµ

σ

)
tσ{1 + exp

(
ln t−lnµ

σ

)
}2

h(t) =
2 exp

(
ln t−lnµ

σ

)
tσ{1 + exp

(
ln t−lnµ

σ

)
}

and its survival function is

S(t) =

{
1 + exp

(
ln t− lnµ

σ

)}−1

. (1.3.2)

6



Log-normal model

For a log-normal model, the natural logarithm of time follows a normal distribution, say,

its density and hazard rate functions are given by

f(t) =
1

tσ
√

2π
exp

[
1

2σ2
{log(t)− µ}2

]
,

h(t) =
1

tσ
√

2π
exp

[
1

2σ2
{log(t)− µ}2

] /{
1− Φ

(
log(t)− µ

σ

)}
.

The survival function is,

S(t) = 1− Φ

(
log(t)− µ

σ

)
(1.3.3)

where Φ(z) is the standard normal cumulative distribution function.

Having defined f(t) and S(t) for each of three parametric models (Weibull, log-logistic,

log-normal) respectively, the parameters in the model could be easily estimated by the

maximum likelihood method[26][40] when presented with a set of survival times. An

observation with the occurrence of the event at time t contributes the likelihood function

the value of the hazard rate f(t) while a censored observation, known to leave the study

at time t contributes S(t), which is the probability that it survives till time t[21].

To make use of this well developed theory in survival modeling and analysis, it is essen-

tial that one has an appropriate parametric model for the collected data. But invariably

we come across a situation where either it is not possible to propose an appropriate para-

metric model or the assumed model does not provide satisfactory fit to the data. In such

cases, the parametric methods, as argued above, are not going to be helpful. So as to ad-

dress this problem, nonparametric approaches have been suggested in the literature[139].

In the next section we give a brief introduction to nonparametric functional estimation

for general statistics and survival modelling particularly.
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1.4 Nonparametric estimation

The main idea of nonparametric procedures is to let the data speak for itself without

forcing any specified structure or model on the data. For example, in the case of density

estimation, it means removing the constraint imposed by the assumed functional form

and allowing data to search an appropriate curve that best describes the original data.

Over the last few decades, many different nonparametric approaches have been pro-

posed such as kernel estimation[166], spline smoothing[165] and wavelet approach[164].

Particulary for survival modelling, Kaplan-Meier estimate and Nelson-Aalen estimate[21]

were proposed to account for possible censoring cases in the time-to-event data.

1.4.1 Kernel density estimation

Kernel-based estimation is one of the most commonly used methods in nonparametric

curve estimation. We first illustrate its use in density setting as it provides very important

guidelines to any kernel-based method in hazard rate estimation. For that suppose that

we have a sample, (X1, X2, ..., Xn), from a continuous probability density function f and

let F be its cumulative distribution function.

Note that

f(x) =
dF (x)

dx
= lim

h→0

F (x+ h)− F (x− h)

2h
.

It means when h is sufficiently small, one has

f(x) ' F (x− h)− F (x+ h)

2h
. (1.4.1)

Now one can estimate f(x) by plugging-in an estimate of F (x) in (1.4.1). For example,

let empirical cumulative distribution function

Fn(x) =

∑n
i=1 I(Xi ≤ x)

n
, (1.4.2)
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estimate F (x). Then it leads to the density estimate f̂(x) given by

f̂(x) =

∑n
i=1 I(Xi ∈ (x− h, x+ h))

2nh
=

1

nh

n∑
i=1

K

(
x−Xi

h

)

where K(u) = I[−1<u<1]
2

is the uniform probability density function. The idea behind

the above estimate is that the density estimate at a point x is simply the proportion

of observations out of n falling into the interval (x − h, x + h) and then this proportion

is adjusted for the length of the interval. Note that because of K being the uniform

distribution, each of the observations located in the neighborhood of x of length h, (x−

h, x+h), is weighted by 1/n while others are weighted 0 and the estimate at x is then the

sum of the weights of these observations. In general, it is not necessary for us to weight

all the observations in (x−h, x+h) equally, instead one can weight the observations with

a different scheme. For example, if K(u) is chosen to be the normal density function, then

an observation closer to the point x is counted with a larger weight in estimation. That is

to say, we do not need to restrict the kernel function to be uniform and many other choices

such as triangular, biweight, triweight, Epanechnikov and normal densities are possible.

In general, kernel functions are taken to be symmetric, since there is usually no reason

to weight any two symmetric observations about the point x unequally. As discussed in

literature (i.e. Wand and Jones[166]) in kernel estimation, the choice of kernel functions

is not a crucial step in estimation. In fact the kernel density estimate does not vary

significantly with different kernel functions.

In contrast, the length of the support of the kernel function exhibits a strong influence

on the resulting estimate. This length is generally referred to as the bandwidth. With the

very large bandwidth h, more observations are included into estimation for the density

at the target x. This leads the estimate to be more stable. With a small h, only very

few observations are used to construct the estimate. That leads the estimate to be more

unstable. But from equation (1.4.1), though unstable, small h leads to less bias. Thus

clearly the bandwidth h affects the bias and the variance of the estimate in the opposite
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direction.

To quantify the effect of bias and variance or to assess the goodness of a density

estimator, one needs to define an appropriate error criterion. For that let

f̂(x) =
1

nh

n∑
i=1

Kh(x−Xi)

where Kh(·) = h−1k(./h) is a symmetric kernel function and h the bandwidth. Typically,

the goodness of the kernel estimator f̂(x) is measured by a suitable error criterion. To

measure the accuracy of the estimator at a certain point, usually the squared error (f̂(x)−

f(x))2 or the absolute deviation, |f̂(x) − f(x)| are used. But if the purpose is to assess

the global performance of the estimator, commonly the L1, Lp or L∞ distance are used

where

L1(f, f̂) =

∫
|f̂ − f |,

Lp(f, f̂) =

∫
|f̂ − f |p, 2 ≤ p <∞,

L∞(f, f̂) = sup |f̂ − f |.

In this section at first we restrict our attention only to the Lp error criteria with p = 2

namely, the squared errors, (SE) and the integrated squared errors (ISE) for its technical

tractability. In Section 1.4.3 we provide a short discussion on L1 criterion.

The MSE measures the expected squared difference between the estimate and true

function, (f̂(x)− f(x))2, at the point x, i.e.

MSE(f̂(x)) = E(f(x)− f̂(x))2 = (Bias(f̂(x)))2 + V ar(f̂(x))

where Bias(f̂(x)) = Ef̂(x)− f(x).

Naturally, a good nonparametric estimate is the one with a smaller MSE at a point x.

That is, the MSE reflects the local performance of f̂(x). As discussed above, to evaluate

the accuracy of the estimator globally, we use the expected value of integrated squared
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errors, generally referred to as MISE and defined as

MISE(f̂(x)) =

∫
E(f(x)− f̂(x))2w(x)dx.

The weight function w(x) enables us to give more ‘weight’ to some interval of x than

others. For example, in hazard rate estimation, we may set the weight of rightmost x to

be 0 as its estimate tends to be very unstable.

The asymptotic properties of the kernel-based estimator have been discussed in great

details in the literature, for example, see Wand and Jones[166] or Simonoff[139]. We

summarized one of the important results in the following theorem which gives the bias

and variance of a kernel density estimator.

Theorem 1.1. Let X1, X2,...,Xn be i.i.d. random variables with common distribution

F (x) and density function f(x), which is twice continuously differentiable. Let K(·) be a

kernel function s.t
∫
K(x)dx = 1,

∫
K(x)xdx = 0 and

∫
K(x)xpdx <∞ for p = 2

Then as n→ +∞, h→ 0 and nh→ +∞, for the kernel estimate f̂(x), we have

Bias(f̂(x)) =
h2µ2,K

2
f ′′(x) + o(h2),

V ar(f̂(x)) =
R(K)

nh
f(x) + o

(
1

nh

)
.

MSE(f̂(x)) =
h4µ2

2,K

4
f ′′(x)

2
+
R(K)

nh
f(x) + o(h4) + o

(
1

nh

)
where µ2,K =

∫
u2K(u)du and R(K) =

∫
K(u)2du.

Proof. Refer to Wand and Jones[166].

Remark 1.1. Theorem 1.1 makes two important contributions towards the understand-

ing of a kernel estimator. First, it confirms our intuitive understanding that as the band-

width h increases, the bias of a kernel estimator increases and the variance decreases, i.e.

Bias(f̂(x)) = O(h2) and V ar(f̂(x)) = O(1/(nh)).

Further the quantification of the bias and variance in terms of h provided by the
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above theorem helps one to determine the optimal bandwidth h which minimizes MSE

(or MISE)[139].

1.4.2 Kernel hazard rate estimation

Kernel-based approaches are also frequently used to estimate hazard rate function in sur-

vival modelling. In our thesis, we mainly introduce kernel hazard rate estimate for the

event time data without censorship. However, the estimate could be easily generalized

to any censored data. We suggest the readers to see Watson and Leadbetter[167],[168],

Singpurwalla and Wong[140], Tanner and Wong[153] and Muller and Wang[96] for exam-

ple.

Now suppose (X1, X2, ..., Xn) are failure times of n identical items and one of the inter-

ests is to estimate the hazard rate of the component under study. Since λ(x) is a ratio of

density function to the survival function, one approach is to estimate the density function

and distribution function separately and then plug the estimates of these functions into

the hazard rate function directly, to define

λ̂1(x) =
f̂(x)

1− Fn(x)

where f̂(x) is the kernel density estimate and Fn(x) is the empirical estimate of the

distribution function F (x). Notice that with the conventional definition of Fn(x), defined

in equation (1.4.2), λ̂1(x) is not well defined since (1−Fn(x)) equals 0 for x > maxi(Xi).

Then the modified definition of Fn(x) is considered and it is defined as

Fn(x) =
#(Xi ≤ x)− 1

n
(1.4.3)

where #(Xi ≤ x) denote the number of observations that are smaller than x.

Note that when n is very large, the modified and original empirical cumulative distri-
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bution functions are equivalent. Thus it gives us the first kernel hazard estimator as

λ̂1(x) =
f̂(x)

1− Fn(x)
.

As opposed to the ratio of two functions, the other approach treats the hazard rate as

a function by itself. In this approach, first by Taylor expansion, we notice that, as h→ 0

∫
1

h
K

(
x− t
h

)
λ(t)dt =

∫
K(u)λ(x− uh)du = λ(x) +O(h2).

Therefore, we could approximate λ(x) as

λ(x) ≈
∫

1

h
K

(
x− t
h

)
λ(t)dt = λ∗(x). (1.4.4)

Let Λ(x) =
∫ x

0
λ(t)dt be the cumulative hazard rate, then

λ(x) ' λ∗(x) =

∫
Kh(x− t)λ(t)dt =

∫
Kh(x− t)dΛ(t)

=

∫
Kh(x− t)dΛn(t) +

∫
Kh(x− t)d(Λ(t)− Λn(t))

where Λn(t) is an empirical version of Λ(t).

The first term provides us with an estimator of λ, i.e.

λ̂2(x) =

∫
Kh(x− t)dΛn(t) =

1

n

n∑
i=1

(
Kh(x−Xi)

1− Fn(Xi)

)
=

n∑
i=1

(
Kh(x−X(i))

n− i+ 1

)

where Fn(x) is of the modified version defined in (1.4.3) and X(i) is the ith order statistics.

Note that λ(x) − λ∗(x) is the bias, whereas the noise in the estimators comes from the

term
∫
Kh(x − t)d(Λ(t) − Λn(t)). Like in the case of the density estimation setting, the

bandwidth h plays the similar role in hazard rate estimation and controls the amount of

smoothing applied to kernel estimates. That is, for large h, kernel hazard rate estimates

are always more smooth with lower variance. On the other hand, from equation (1.4.4), it

is clear that when the bandwidth h is very small, the approximation is closer to the true
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function with small bias. Thus, for both kernel hazard rate estimators λ1(x) and λ2(x),

the bandwidth h influences their biases and variances in opposite directions.

Similar to the case of density estimation we use the MSE to evaluate the local perfor-

mance of the hazard rate estimators. To evaluate its performance as an estimator of the

whole function we use MISE, i.e.

MSE(λ̂(x)) = E(λ̂(x)− λ(x))2,

MISE(λ̂(x)) = E

∫
(λ̂(x)− λ(x))2w(x)dx

where w(x) is a nonnegative weight function.

The asymptotic properties of the two hazard rate estimators λ̂1(x) and λ̂2(x) have

been fully studied by several authors such as Watson and Leadbetter[167], [168] from

which we summarize the biases and variances of λ̂1 and λ̂2 in the following theorem,

Theorem 1.2. Let X1, X2,...,Xn be i.i.d. random non-negative variables with com-

mon distribution F (x) and density f(x), which is twice continuously differentiable. Let

K(·) be a second-order kernel function such that
∫
K(x)dx = 1,

∫
K(x)xdx = 0 and∫

K(x)xpdx ≤ ∞ for p = 2. Also suppose that there exists small enough h such that

Kh(y − x)/(1− F (y)) is uniformly bounded for |y − x| > M for any M > 0.

Then as n → +∞, h → 0 and nh → +∞, for the kernel hazard rate estimates, we

have

Bias(λ̂1(x)) =
h2µ2,K

2

f ′′(x)

1− F (x)
+ o(h2),

V ar(λ̂1(x)) =
R(K)

nh

λ(x)

1− F (x)
+ o

(
1

nh

)
.

MSE(λ̂1(x)) =
h4µ2

2,K

4

(
f ′′(x)

1− F (x)

)2

+
R(K)

nh

λ(x)

1− F (x)
+ o(h4) + o

(
1

nh

)
.
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Biasλ̂2(x) =
h2

2
µ2,Kλ

′′(x) + o(h2),

V ar(λ̂2(x)) =
R(K)

nh

λ(x)

1− F (x)
+ o

(
1

nh

)
.

MSE(λ̂2(x)) =
h4µ2

2,K

4
(λ′′(x))2 +

R(K)

nh

λ(x)

1− F (x)
+ o(h4) + o

(
1

nh

)
.

Proof. Refer to Watson and Leadbetter[167], [168] for the proof.

Remark 1.2. Theorem 1.2 helps us to determine the value of the bandwidth h which

optimizes MSE or MISE. Similar to the case of density setting, for each of the two hazard

rate estimators, the squared bias term and the variance term change in the opposite

directions whenever there is a change in bandwidth h, i.e. Bias = O(h2) and V ariance =

O(1/(nh)). Hence in kernel estimation, the bandwidth h plays the role of balancing the

squared bias term against the variance term of the MSE or MISE and ideally we can

determine the optimal bandwidth h by minimizing the MSE or MISE w.r.t h.

Remark 1.3. The other point is that due to the presence of the survival function 1−F (x)

in the denominators of the variances for both estimators, for large x, the variances of the

above kernel hazard rate estimators are very large. Further, the bias term of λ1(x) will

also go up quickly for large x since the denominator of its bias term also consists of

1− F (x).

In this thesis, we discuss hazard rate estimation problems only based on the second

kernel hazard rate estimate λ̂2(x).

1.4.3 L1 error criterion

For its technical tractability and easy understanding, the L2 error criterion is widely

utilized to evaluate the performance of a nonparametric estimator. However, it was not
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the only method which could be utilized. Consider an alternative L1 error criterion,

L1(f(x), f̂(x)) =

∫
|f̂(x)− f(x)|dx,

to assess the accuracy of a kernel density estimator. Devroye and Györfi[36] has demon-

strated that the L1 error is always well-defined and invariant under monotone transfor-

mation of the coordinate axes. Because of the appealing properties of L1 error criterion

emphasised by Devroye and Györfi, in Chapter 3, we propose an optimal kernel hazard

rate estimator in the sense of minimizing its L1 error but without considering censorship.

1.4.4 Nonparametric estimates for time-to-event data

In this section, we specifically introduce two commonplace nonparametric estimates for

time-to-event data allowing for censorship, which are Kaplan-Meier estimate for survival

function S(t)[75] and Nelson-Aalen estimate for cumulative hazard rate function Λ(t)[17].

Suppose that a sample of n observations are obtained from a population with t(1) <

t(2) < ... < t(k) being the ordered sequence of observed event times (i.e. death), (t1, t2, ..., tn).

Here k ≤ n, as some patients may be censored. Let ni be the number of subjects at risk at

the time prior to t(i) and ui be the number of events occurs at time t(i), then the survival

function S(t) can be estimated by Kaplan-Meier formula:

Ŝ(t) =
∏
t(i)<t

ni − ui
ni

.

There are several ways to approximate the variance of the Kaplan-Meier estimate of which

the most common one is Greenwood’s formula:

V̂ (Ŝ(t)) = Ŝ(t)2
∑
t(i)<t

ui
ni(ni − ui)

.

The Nelson-Aalen estimate is a nonparametric estimate of the cumulative hazard rate
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function, given by

Λ̂(t) =
∑
t(i)<t

ui
ni
,

and its variance is estimated by

V̂ (Λ̂(t)) =
∑
t(i)<t

ui
(ni)2

.

The Kaplan-Meier survival estimate and Nelson-Aalen cumulative hazard rate estimate

can be transformed to each other in the following way:

Ŝ(t) = e−Λ̂(t).

1.5 Semiparametric estimation

When one has the exact information of the underlying model before we collect the data,

the parametric model approach of Section 1.3 is an ideal choice to our data analysis. On

the other hand the nonparametric approaches of 1.4 are preferred when a researcher does

not have the knowledge about the true underlying model. However, in practice, most

often one has partial information of the underlying model but is not certain about it. In

such cases, neither parametric nor nonparametric approaches are suitable since one wants

to use the information at hand but is not willing to rely on it totally.

Thus to make use of the partial knowledge about the true model in the nonparametric

estimation, a new approach referred to as semiparametric estimation has been proposed in

the literature. A semiparametric model, as its name suggests, is a hybrid of the parametric

and nonparametric approaches. For example, in regression, the semiparametric model are

often used in the situations where one hopes to use a parametric model to fit the data
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but the functional form with respect to a subset of the regressors is not known, that is,

Y = X ′β + g(Z)

where Y is a dependent variable, X is the vector of explanatory variables that assumed to

be in the linear relationship with Y and β is the corresponding parametric vector. The Z

is the vector of regressors of which the parametric relationship with Y is not known and

it is estimated by nonparametric approaches such as kernel regression , spline smoothing

and etc. .

In the density estimation setting, different semiparametric smoothing approaches are

proposed and discussed in the literature. One of the methods is to utilize a nonparametric

method to estimate the underlying model initially and then adjust the nonparametric

estimate by adding a possible parametric model which is referred to as additive correction

factor[78][99]. For example, it is suspected that the data follows the density function

described by the functional form f(x; θ) which is characterized by a parametric vector

θ. However since one is not sure of the correctness of the model, one may consider an

estimator of the underlying density function as,

f̂(x, π) = πf(x; θ̂) + (1− π)f̂(x)

where f(x; θ̂) is the parametric estimator and f̂(x) is the nonparametric estimator. The

parameter π ∈ [0, 1] is usually estimated by the maximum likelihood method. It can be

showed that if the parametric model prevails, the estimate of π is expected to be close

to unity and f̂(x, π̂) converges to the parametric density function f(x; θ) as n → ∞.

However if the parametric assumption is wrong, π̂ is expected to be close to zero and

f̂(x, π̂) approaches the true f(x) as n → ∞. This approach will not be pursued in this

dissertation.

An alternative method is to fit the data with an assumed parametric model and if the

the crude guess is not satisfied then utilize a nonparametric correction factor to modify
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the estimator as,

f̂(x) = f(x; θ̂)ξ(x)

where f(x; θ̂) is an estimator obtained by estimating the parametric vector θ in the as-

sumed probability model f(x; θ) and ξ(x) is a nonparametric multiplicative correction

factor. The unknown parameter vector θ is usually estimated by the maximum likeli-

hood method. Since one suspects the accuracy of the parametric density assumption,

here the multiplicative correction factor ξ(x) is used to correct the possible inaccuracy in

the guessed functional form. To calculate the correction factor, several kernel-type non-

parametric methods have been proposed in literatures such as Hjort and Glad[62] who

determined the factor by minimizing the squared error distance or the Kullback Leibler

distance between the estimate f(x; θ̂)ξ(x) and the true density function f(x), and Hjort

and Jones[63] who estimated ξ(x) by the kernel-type estimate of f(x)/f(x; θ̂).

Naito[97] developed a more generalized approach which includes the former work as its

special cases. He showed that the performance of the generalized semiparametric density

estimator is asymptotically better than their fully nonparametric kernel counterparts in

a broad family of functions around the true model. Motivated by this appealing idea,

in Chapter 2, we extend the generalized method of Naito to the setting of hazard rate

estimation using data without censorship.

1.5.1 Cox proportional hazards model

Cox proportional hazard model is an important semiparametric regression approach for

time-to-event data with censoring time[30]. The basic Cox model assumes the linear

relationship for the covariates included but relaxes the fitting by letting the baseline

hazards be nonparametric. It can be expressed as

lnλ(t) = lnλ0(t) + βTX
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where λ(t) is the hazard rates at time t, X is the vector of associated prognostic factors

and λ0(t) is the baseline hazards for patients with X being 0. β is the log hazard ratio

between two individuals whose values differ by one unit in the corresponding x but same

in other covariates. The critical assumption of Cox proportional hazard model is that

hazard ratio should be constant overtime for each of the included covariates (prognostic

factors). There are many methods to test the proportional assumption and they will be

discussed in Chapter 4.

The Cox proportional hazard model is a semi-parametric model where the coefficients

β could be easily estimated by solving the partial likelihood function. See, for example,

Collett[24] for the details. However, one evident disadvantage of Cox regression is that

the baseline hazards are not directly estimated. This is not helpful where S(t) is to be

predicted in new individuals, as then λ0(t) is needed.

1.6 Prognostic model and factors in survival mod-

elling

In health care, a common procedure is to establish a prognostic model to predict survival

time of patients with certain disease[147] and this survival probability may depend on

individual characteristics or measurements such as age and sex, referred to as prognostic

factors or predictors[129].

Consider a dataset of n patients from a clinical study, (ti, di) for i = 1, 2, ..n where ti

is the follow-up time of the ith patient and di denotes whether the observation is censored

(1=event and 0=censored). The patient-level characteristic vector X is recorded for each

patient. An appropriate prognostic model is required which is able to utilize potential

prognostic factors in X, and thereby predict S(t) for new individuals based on their X.

1.6.1 Flexible parametric model via Royston-Parmar scheme

Royston and Parmar[79][122] proposed a flexible parametric model to fit the survival

data. As indicated from this name, it is easy to imagine that the family of models were
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firstly generalized from conventional parametric models such as Weibull, log-normal, and

log-logistic distributions. But, compared to these models, it provides much more flexible

estimates by fitting the baseline hazards with smoothing splines[42].

Splines are one of most commonly used mathematical functions to establish an un-

known curve. They are usually defined by piecewise polynomials with some constraints to

ensure the smoothness, and the points which join the polynomials are named as ‘knots’[27].

Restricted natural cubic splines[38] for Royston and Parmar model with K + 2 knots (or

d.f. = K + 1) is defined as

s(ln t|γ,K) = γ0 + γ1 ln t+ γ2z1 + ...γK+1zK

where the derived variables, zj (also known as the basis functions) for j = 1, ..., K are

calculated as

zj = (ln t− kj)3
+ − ψj(ln t− kmin)3

+ − (1− ψj)(ln t− kmax)3
+ (1.6.1)

where ψj = (kmax − kj)/(kmax − kmin) and (ln t − k)+ = max(0, ln t − k) for any k. We

will show that by incorporating splines, three different kinds of Royston-Parmar models

can be derived from Weibull, log-logistic and log-normal parametric models respectively:

Weibull generalized model

If the survival function S(t) in (1.3.1) is transformed to the log cumulative hazard scale,

then

ln Λ(t) = ln[− lnS(t)] = p ln t− p lnµ = γ0 + γ1 ln t

where γ0 = −p lnµ and γ1 = p. The basic idea of the flexible parametric approach is to

relax the assumption of linearity of log time by using restricted cubic splines and then

add the covariate effects, i.e. the log cumulative hazard scale can be expressed as

ln Λ(t) = ln Λ0(t) + βTX
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where ln Λ0(t) = γ0 + γ1 ln t +
∑k0

j=1 γj+1zj is the baseline function, k0 + 2 denotes the

number of knots and zj is the basis function of natural cubic splines defined in (1.6.1). βs

again provide log hazard ratios of included covariates, assumed proportional over time.

Log-logistic generalized model

The log odds of log-logistic model, lnO(t) is given by

lnO(t) = ln
1− S(t)

S(t)
=

ln t− lnµ

σ
= γ0 + γ1 ln t

where γ0 = −(lnµ)/σ, γ1 = 1/σ, is linearly related to ln t. Then restricted natural cubic

splines and covariate effects could be introduced into the model by

lnO(t) = lnO0(t) + βTX

where lnO0(t) = γ0 + γ1 ln t +
∑k0

j=1 γj+1zj is the baseline function and X is the vector

of covariates included. βs now represent log odds ratios of included covariates which are

assumed to be proportional to time.

Log-normal generalized distribution

The flexible parametric model of ln t with a probit link function −Φ−1(ln t) is generalized

from log-normal parametric model over time t where Φ−1(.) is the inverse standard Normal

distribution. Using (1.3.3), it is defined by

−Φ−1(S(t)) =
ln(t)− µ

σ
= γ0 + γ1 ln t

where γ0 = −µ/σ and γ1 = 1/σ. The extended class of spline models from log-normal

distribution is

−Φ−1(S(t)) = γ0 + γ1 ln t+

k0∑
j=1

γj+1zj + βTX.
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where X is the vector of covariates included. Unfortunately, βT here could not be inter-

preted directly. We recommend the readers to refer to Long and Freese[86] for the way

to interpret the coefficient in a probit model.

The baseline hazard function of a Royston-Parmar model depends on the number of

knots fitted in restricted cubic splines. By default, the knot locations are decided by

centiles of log-time. Royston and Lambert[120] recommended 3 knots are sufficient for

normal size datasets and 5 or 6 knots for really big datasets.

The full maximum likelihood method can be easily applied to estimate Royston-

Parmar model[120]. For example, the likelihood function of ith observation in Weibull

generalized model (Proportional Hazard model) with d.f. = 3 can be written as

lnLi = di(ln[γ1 + γ2z
′
1(ln t) + γ3z

′
2(ln t)] + γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t)

+βTX i)− exp(γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + βTX i)

where di is the indicator variable to denote whether the sample is censored.

Using either of the three models (with proportional hazards, proportional odds and

probit scales) to model the event-time data, we could establish the baseline hazards of the

dataset and meanwhile evaluate the coefficient βT for all the prognostic factors. In this

thesis, we mainly focus on the model with proportional hazard scale. For a proportional

hazard model, using the fact that Λ(t) = − ln(S(t)), we could estimate S0(t) by the

obtained exp(−Λ̂0(t)) and thereby predict the survival probabilities of new individuals

using the following formula:

ln Ŝ(t) = ln Ŝ0(t) exp(β̂
T
X)

where Ŝ0(t) and β̂
T

are obtained from the developed model[120].

In Chapter 4 and 5, we will use Royston-Parmar modelling to identify prognostic

factors and models for breast cancer outcome risk and meanwhile highlight the advantages

of this method compared with traditional parametric models or Cox regression in survival
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modelling.

Prognostic index and risk groups

The last issue to address in this section is about the definition of prognostic index (PI)

and risk groups in flexible parametric regression.

For practical application, one of the main products of flexible parametric regression

is a prognostic index. The straightforward way to construct a prognostic index is to take

the linear predictor βTX from flexible parametric model. In usual, the patient with high

prognostic index is expected to experience more risks.

Instead of directly implementing the prognostic index to predict the risk probabilities

of patients, alternatively, we can divide the patients into several risk groups according

to the prognostic index of individuals. This is can be achieved by placing cutpoints on

the prognostic index of the underlying dataset and typically, Royston et al[119] suggested

that between two and five groups are appropriate to the problem.

1.7 Clinical randomised trials and treatment effects

Clinical randomized trials are very important experiments in medical research which also

require highly knowledge of survival modelling especially in analysing the data with time-

to-event outcome. They are often used to investigate the effect of different types of

treatments, for example, clinicians usually compare the risk outcomes of patients from

the new treatment group with those from the placebo group to see whether the survival

probabilities of patients are improved after receiving the new treatment[88].

The golden rule of clinical trial study is randomization. That is, all the participant

patients are randomized to different treatment groups without knowing which group they

stay and then are followed exactly in the same way except for the different treatment care

they may receive. One of the great advantages of this design is that it minimizes the bias

in allocation and further it balances both known and unknown confounding factors in the

baseline of patients in different groups. Many references can be found to inform how to

practice a clinical randomized trial, for example, see Jadad et al.[72] and Rosenberger and
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Lachin[114].

In clinical randomized trials, we may be only interested in investigating the treat-

ment effect on patients and how the treatment effect is impacted by any patient-level

factor[106][110]. By identifying whether the treatment effects differ for certain patients,

clinicians could offer more personalized and precise medical services to individual patients

based on their own health measurements and characteristics. Therefore in Chapter 6 we

evaluate how to estimate interaction effects between treatment and patient-level covariate

using time-to-event data from multiple clinical trials.

1.8 Aims and outlines of the thesis

The aims of this thesis could be summarized into two parts: mathematical research in

Chapter 2 and 3 and medical research from Chapter 4 to 6.

In Chapter 2, we extend the generalized method of Naito[97] to the setting of hazard

rate estimation. We demonstrate the advantage in precision accuracy of the semipara-

metric estimate when the true function is close to our prior assumed model and introduce

the ways to choose the shape parameter in the sense of minimizing the mean integrat-

ed squared errors of the estimator. In Chapter 3, we propose an optimal kernel hazard

rate estimator in the sense of minimizing its L1 error. Then we discuss how to derive a

data-driven bandwidth to minimize the L1 error of the estimator in practice.

In Chapter 4, we develop a prognostic model to investigate primary breast cancer

mortality rates across countries. To model the baseline hazards, flexible parametric re-

gression is utilized and to account for the missing values, multiple imputation strategy

is adopted. In Chapter 5, we develop and validate prognostic models for breast cancer

mortality using individual participant data from multiple studies. An internal and exter-

nal cross-validation scheme is also introduced to validate a model on multiple occasions,

and its performance is summarised by meta-analysis. In Chapter 6, we develop statistical

methods to identify interaction effects between treatment and a patient-level factor on the

survival probabilities of patients, when using data from multiple trials and a multi-level
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survival modelling framework.

Finally, in the last chapter, we summarize the findings and recommendations of the

thesis and give suggestions for future work.
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CHAPTER 2

SEMIPARAMETRIC HAZARD ESTIMATION

2.1 Introduction

In a survival analysis, a group of failure times may be observed. Suppose that all the ob-

servations in the study are non-censored and share with the same probability distribution

such as Weibull, we are then interested to explore the hazard rate function of the dataset.

However, mostly we only have the partial information about the model underlying the

given data. Thus in such situations neither the use of a parametric approach nor the use

of purely nonparametric approach to estimation seems appropriate, and a different kind

of approach is required which incorporates the partial knowledge about the possible para-

metric model in nonparametric estimation. Such approaches to estimation are generally

referred to as semiparametric approaches to estimation.

Typically, semiparametric methods are divided into two groups. One is to rely on a

nonparametric method to estimate the underlying model initially and then make use of

the partial knowledge to add a possible parametric model to the nonparametric estimate

referred to as additive correction factor. This approach has been described briefly in the

regression and density estimation settings in Section 1.5. The other is to fit the data with

an assumed parametric model and if the fit is not satisfactory then use a nonparametric

correction factor to modify the model that one started with. In this chapter, we will only

focus on the latter approach referred to as multiplicative correction factor and propose a

semiparametric hazard rate estimate using this approach. Notice that in this chapter, the
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proposed estimate is to model the data without censorship, however, it could be easily

generalized to the censored case.

The various multiplicative correction factor approaches in the settings of density es-

timation are illustrated in Section 2.2. There a detailed discussion of a generalized mul-

tiplicative correction factor approach proposed by Naito[97] is provided. By introducing

a parameter α, here referred to as shape parameter, Naito[97] unifies different approach-

es of devising multiplicative correction factors. Naito’s generalized approach to select a

multiplicative correction factor is then extended to the setting of hazard rate estimation

in Section 2.3. The hazard rate estimator obtained using the generalized approach of

Naito[97] is referred to as generalized hazard rate estimator. In Section 2.4, we exhibit

and discuss the role α plays in the generalized density and hazard rate estimators. There

by carrying out example studies with different parametric assumptions and different un-

derlying models we provide insight into the role of this parameter. In Section 2.5, the

asymptotic properties of the generalized estimator are investigated. The methods to esti-

mate the shape parameter and bandwidth are given in Section 2.6. Section 2.7 is devoted

to the proof and the final section summarizes the key findings of this chapter.

2.2 Semiparametric estimation of density function

In this section, we first describe the multiplicative correction factor approach in the esti-

mation of density which provides important guidelines to develop a generalized estimate

in the hazard rate setting. Let (X1, X2, ..., Xn) be a random sample from a probability

density function f(x), where f(x) is unknown. It is suspected that the unknown density

function f(x) can be approximated by the density function f(x; θ). Here although the

parameter which characterizes the function f(x; θ) is unknown, the functional form of

f(x; θ) is known. Now let θ̂ denotes say, an estimator of θ . Then define f̂ an estimator

of f as a product,

f̂(x) = f(x; θ̂)ξ(x)
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where ξ(x) is the nonparametric multiplicative correction factor. The parametric vector

θ may be estimated by the maximum likelihood method. The role of ξ(x) is to provide

a correction to the initial parametric guess if the parametric estimate f(x; θ̂) does not

provide a satisfactory fit to the data. Different criterion to select the correction factor

ξ(x) leads to different estimates which are described in the rest of this section.

A couple of estimators which are based on the above idea are proposed by Hjort and

Jones[63]. To define them, assume f̂i(x) = f(x; θ̂)ξi(x), i = 0, 1. That is f(x; θ̂) is the

parametric estimator and ξi(x)s are the correction factors. Then the correction factor

ξ0(x) of the first of the two estimators is now the minimizer of the local squared distance

between f(x; θ̂)ξ(x) and the true density function,

q(x, ξ(x)) =

∫
Kh(t− x){f(t)− f(t; θ̂)ξ(t)}2dt.

To minimize q(x, ξ(x)), we let the differential of q(x, ξ(x)) w.r.t ξ(x) be 0 and solve it to

obtain

ξ0(x) =

∫
Kh(t− x)f(t)f(t; θ̂)dt∫
Kh(t− x)f(t; θ̂)2dt

.

Then taking sample analogue of ξ0(x) we get the correction factor,

ξ̂0(x) =
n−1

∑n
i=1 Kh(Xi − x)f(Xi; θ̂)∫
Kh(t− x)f(t; θ̂)2dt

.

This leads to the first of the two estimators proposed by Hjort and Jones[63],

f̂0(x) = f(x; θ̂)
n−1

∑n
i=1Kh(Xi − x)f(Xi; θ̂)∫
Kh(t− x)f(t; θ̂)2dt

. (2.2.1)

The second correction factor ξ1(x) of the two estimators proposed by Hjort and
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Jones[63] is determined by minimizing the local Kullback-Leibler distance w.r.t ξ(x), i.e.

l(x, ξ(x)) =

∫
Kh(t− x)

{
f(t) log

(
f(t)

f(t; θ̂)ξ(t)

)
− (f(t)− f(t; θ̂)ξ(t))

}
dt.

If the semiparametric estimate is close to the true function f(x), then the distance

l(x, ξ(x)) should be close to 0. This fact shows that minimizing the local Kullback-Leibler

distance between the semiparametric estimate and true function is a reasonable way to

determine the correction factor ξ(x). To minimize l(x, ξ(x)), again we set the differential

of l(x, ξ(x)) w.r.t ξ(x) be 0 and solve it to obtain

ξ1(x) =

∫
Kh(t− x)f(t)dt∫
Kh(t− x)f(t; θ̂)dt

.

Again taking the sample analogue of ξ1(x) we get the correction factor which is given

by,

ξ̂1(x) =
n−1

∑n
i=1Kh(Xi − x)∫

Kh(t− x)f(t; θ̂)dt
.

This leads to the second of the two estimators proposed by Hjort and Jones[63],

f̂1(x) = f(x; θ̂)
n−1

∑n
i=1Kh(Xi − x)∫

Kh(t− x)f(t; θ̂)dt
. (2.2.2)

Hjort and Glad[62] proposed a density estimator that consists of a parametric start and

a nonparametric correction factor. To explain their proposal, let the model which provides

approximate description of the data be a parametric density f(x; θ) where θ is estimated

by the maximum likelihood method. Then multiply the guess f(x; θ̂) by a correction

factor ξ2(x) = f(x)
f(x;θ)

to modify the possible misspecfication of the parametric assumption

where f(x) is the true unknown density. Notice that in estimation of correction factor

ξ2(x), if one estimates its numerator, f(x), by the kernel method, and the dominator,

f(x; θ), by the parametric method, then the multiplicative estimator will be reduced
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to a standard kernel estimator. However, Hjort and Glad[62] proposed a kernel-type

estimator of ξ2(x) treating the correction factor as a function in itself and define ξ̂2(x) =

n−1
∑n

i=1Kh(x − Xi)/f(Xi; θ̂). This results into the third density estimator which uses

idea of multiplicative correction described at the beginning of this section and is given by

f̂2(x) = f(x; θ̂)ξ̂2(x) =
f(x; θ̂)

n

n∑
i=1

Kh(x−Xi)

f(Xi; θ̂)
. (2.2.3)

Naito[97] observed that the local L2 fitting criteria that he proposed provides a more

general method of deriving correction factors. According to this criterion, the correction

factor ξα(x) is obtained by minimizing,

Q(x, ξα(x)) =

∫
Kh(t− x)

(f(t)− f(t; θ̂)ξα(x))2

f(t; θ̂)α
dt

for a fixed point x when α ≥ 0. This is the local squared distance between the semipara-

metric estimate and the true function scaled by f(t; θ̂)α. The minimizer of Q(x, ξα(x))

with respect to ξα(x) is attained at

ξα(x) =

∫
Kh(t− x)f(t)f(t; θ̂)1−αdt∫
Kh(t− x)f(t; θ̂)2−αdt

. (2.2.4)

Thus using the sample analogue of ξα(x), the kernel-type estimate of ξα(x) is

ξ̂α(x) =
n−1

∑n
i=1Kh(Xi − x)f(Xi; θ̂)

1−α∫
Kh(t− x)f(t; θ̂)2−αdt

.

The generalized estimator of the true but unknown density function is

f̂α(x) = f(x; θ̂)
n−1

∑n
i=1 Kh(Xi − x)f(Xi; θ̂)

1−α∫
Kh(t− x)f(t; θ̂)2−αdt

.

That is, every α ≥ 0 leads to a distinct estimator. In fact, if one takes α = 0, then the

generalized estimator can be simplified to the one given by (2.2.1). Similarly, if α is set

to equal to 1 or 2, the generalized estimator will be reduced to the estimators defined in
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(2.2.2) or (2.2.3) respectively. Hence it can be seen that in the density estimation setting,

the parameter α, unifies the different multiplicative methods discussed in the literature.

It also provides more flexibilities in selecting the correction factor.

In terms of the precision of the proposed methodology for the density estimation,

Naito[97] shows that asymptotically the semiparametric approach performs better than

their fully nonparametric kernel counterparts in a broad family of functions around the

true model. To appreciate the usefulness or the good performance of the proposed method-

ology, it will be useful to gain an intuitive insight into the role α plays. One of the ways

this could be achieved is by graphical illustration. That is, first exhibiting the closeness

of target function and its crude guess multiplied by a correction factor (as a function of

α) and then illustrating the closeness as α varies. In fact, this investigation has been

carried out in Section 2.4 and its admirable performance has been one of the motivat-

ing factors for extending the Naito’s methodology to hazard rate estimation. However,

before we consider such pictorial illustration, we will first consider the extension of the

methodology to semiparametric hazard rate estimation.

2.3 Semiparametric estimation of hazard rate func-

tion

The multiplicative semiparametric methodology described in the settings of density es-

timation is considered for hazard rate estimation in this section. For instance, Hjort

et al.[64] discussed a semiparametric estimator of hazard rate by minimizing the local

Kullback-Leibler distance between the estimate and the true hazard rate function which

is an extension of the density estimate by Hjort and Jones[63]. Anderson[5] proposed a

semiparametric approach to hazard rate estimation with a parametric start modified by

a nonparametric correction factor. However, there is no theoretical investigation of the

individual approaches mentioned above in the settings of hazard rate estimation, let alone

investigation into unifying different approaches. Thus here we first propose a generalized

semiparametric hazard rate estimator and show that the approaches in Hjort et al.[64]
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and Anderson[5] are special cases of the generalized estimator.

Assume that (X1, X2, ..., Xn) is a random sample of event times from a probability

density f(x) with the distribution function F (x) which are all known. The standard

kernel hazard rate estimator as defined in Section 1.4.2 is then given by

λ̂(x) =
1

n

n∑
i=1

(
Kh(x−Xi)

1− Fn(Xi)

)
=

n∑
i=1

(
Kh(x−X(i))

n− i+ 1

)
.

Now let us assume that the true unknown hazard rate λ(x) can be approximated by

function g(x; θ), where functional form of g is known but θ is unknown. Let θ̂ be the

maximum likelihood estimator of θ, then the semiparametric estimator of λ(x) will have

the functional form,

λ̂(x) = g(x; θ̂)ξ(x)

where ξ(x) is a nonparametric correction to modify the crude parametric guess.

Following Naito[97], the optimal ξα(x) is determined by minimizing the local L2 errors

between true λ(x) and g(x; θ̂)ξα(x) scaled by g(t; θ̂)α where α is real number called the

index. That is, by minimizing,

Q(x, ξα(x)) =

∫
Kh(t− x)

{λ(t)− g(t; θ̂)ξα(x)}2

g(t; θ̂)α
dt,

this yields the correction factor ξα(x) where

ξα(x) =

∫
Kh(t− x)λ(t)g(t; θ̂)1−αdt∫
Kh(t− x)g(t; θ̂)2−αdt

. (2.3.1)

The sample counterpart of the correction factor is

ξ̂α(x) =

1
n

∑n
i=1

Kh(Xi−x)
1−Fn(Xi)

g(Xi; θ̂)
1−α∫

Kh(t− x)g(x; θ̂)2−α(t)dt
.
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Thus the generalized estimator of the true but unknown hazard rate λ(x) is

λ̂α(x) = g(x; θ̂)

1
n

∑n
i=1

Kh(Xi−x)
1−Fn(Xi)

g(Xi; θ̂)
1−α∫

Kh(t− x)g(x; θ̂)2−α(t)dt
.

This estimator unifies the different multiplicative semiparametric estimators of hazard

rate.

For the case α = 0, the correction factor of a generalized estimator is given by

ξ0(x) =

∫
Kh(t− x)λ(t)g(t; θ̂)dt∫
Kh(t− x)g(t; θ̂)2dt

.

ξ0(x) is a reasonable correction factor since it minimizes the local squared distance

q(x, ξ) between the semiparametric estimate g(x; θ̂)ξ(x) and the true hazard rate function

λ(x) where

q(x, ξ(x)) =

∫
Kh(t− x){λ(t)− g(t; θ̂)ξ(t)}2dt.

The semiparametric hazard rate estimator corresponding to this correction factor is

that

λ̂0(x) = g(x; θ̂)

1
n

∑n
i=1

Kh(Xi−x)
1−Fn(Xi)

g(Xi; θ̂)∫
Kh(t− x)g(t; θ̂)2dt

.

As discussed in (2.2.1), a similar estimator has been discussed by Hjort and Jones[63]

in the density setting.

For the case α = 1, the correction factor of the generalized estimate is

ξ1(x) =

∫
Kh(t− x)λ(t)dt∫
Kh(t− x)g(t; θ̂)dt

.

This is a modified version of the correction factor first proposed by Hjort et al.[64].

The initial correction factor proposed by Hjort et al. is

ξ∗1(x) =

∫
Kh(t− x)f(t)dt∫

Kh(t− x)S(t)g(t; θ̂)dt
.
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As discussed by Hjort et al.[64], the initial ξ∗1(x) is determined by minimizing the local

Kullback-Leibler distance l(x, ξ(x)) from the semiparametric estimator g(t; θ̂)ξ(x) to the

true λ(x), i.e.

l(x, ξ(x)) =

∫
Kh(t− x)[f(t)(log λ(t)− log g(t; θ̂)ξ(t))− S(t)(λ(t)− g(t; θ̂)ξ(t))]dt.

However, note that asymptotically, both ξ1(x) and ξ∗1(x) converge to the same quantity,

λ(x)/g(x; θ̂), as n→∞ and h→ 0.

Now since the sample counterpart of ξ1(x) equals to

ξ̂1(x) =
1

n

∑n
i=1

Kh(Xi−x)
1−Fn(Xi)∫

Kh(t− x)g(t; θ̂)dt
,

we have a kernel-type estimator of λ(x) given by

λ̂1(x) = g(x; θ̂)
1

n

∑n
i=1

Kh(Xi−x)
1−Fn(Xi)∫

Kh(t− x)g(t; θ̂)dt
.

For the case α = 2, the estimator of the correction factor is given by

ξ̂2(x) =
1

n

n∑
i=1

Kh(Xi − x)

(1− Fn(Xi))g(Xi; θ̂)
.

Notice that ξ̂2(x) is a kernel-type estimator of the correction factor ξ(x) = λ(x)/g(x; θ)

that treats ξ(x) as a function itself. It was first proposed by Hjort and Glad[62] in the

density estimation setting given by (2.2.3). Anderson[5] developed this correction factor

ξ̂2(x) in hazard rate estimation and proposed a multiplicative estimate with ξ̂2 as,

λ̂2(x) = g(x; θ̂)
1

n

n∑
i=1

Kh(Xi − x)

(1− Fn(Xi))g(Xi; θ̂)
.

Before studying mathematical properties of the generalized hazard rate estimator, we

now carry out the example studies to illustrate and to gain an insight into the role of α
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in the generalized semiparametric estimators.

2.4 The role of α

In the last section, we have seen that the introduction of parameter α helps to unify dif-

ferent approaches of selecting a multiplicative correction factor in semiparametric hazard

rate estimation just the way it does so in the semiparametric density estimation. Through

mathematical analysis, Naito[97] has illustrated the positive influence of α on the mean

squared analysis of the generalized semiparametric density estimator. This appealing pos-

itive influence of α on the mean squared analysis is one of main motivations of extending

Naito’s generalized semiparametric density estimation methodology to hazard rate esti-

mation. However, there is no graphical illustration of the very appealing role α plays

in approximating the true function (either density or hazard) by a corrective mechanism

considered in the last section. Thus the main focus of this section is to carry out example

studies which will help to exhibit the role of α pictorially, and to gain more understanding

about the parameter α.

In each example study below, we utilize the true correction factor ξα instead of its

kernel-based estimate ξ̂α to fit the underlying curve. The advantage of this setting is

that, making use of true correction factors, the example studies of density and hazard rate

functions can be held at the same time since the correction factors in density estimation

and hazard rate estimation have the same functional form. Also, the vector θ of the

parameters is assumed to be known in studies for simplicity.

Detailed steps of each study are given as follows,

1. Decide the true underlying function f(x) or λ(x) and the parametric models f(x; θ)

or g(x; θ) that will be used instead of the true models.

2. Fix the bandwidth h for each study.

From (2.2.4) and (2.3.1), it is clear that with a very small bandwidth h, regardless

of the choice of α, the corresponding approximation, fα(x) or λα(x) is expected to be

almost equal to the true function. On the other hand, if h is extremely large, all the
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approximations will be far off from the true model. Hence so as to output the satisfactory

results that the divergence between each approximations with different α can be clearly

viewed on graphs, an appropriate h is chosen which compromises the two extreme cases.

For example studies in density estimation, we use

fα(x) = f(t; θ)ξα(x)

where

ξα(x) =

∫
Kh(t− x)f(t)f(t; θ)1−αdt∫
Kh(t− x)f(t; θ)2−αdt

.

In hazard rate estimation, we use

λα(x) = g(t; θ)ξα(x)

where

ξα(x) =

∫
Kh(t− x)λ(t)g(t; θ)1−αdt∫
Kh(t− x)g(t; θ)2−αdt

.

4. Generate two panels in one figure for each example study. In the first panel, the

curves of the true function and the parametric model that will be used to model the true

function are plotted in order to provide an intuitive description of the difference between

the two functions. The obtained four approximations of the true model by the product

of assumed parametric model and correction factor with different values of α are plotted

against the true function in the second panel.

2.4.1 Example of a normal data with a cauchy start

The first example is a simple application in the density setting. Let the true density

function f(x) be the standard Normal distribution (0,1) where 0 is the location parameter

and 1 is the scale parameter.
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Assume that the above curve is modeled by a density function f(x; 0, 1) of a Cauchy

distribution (0,1),

f(x; 0, 1) =
1

π(1 + x2)

where 0 is the location parameter and 1 is the scale parameter.

The results are plotted in Fig 2.1. In the top panel, the density function of Normal

distribution and Cauchy distribution are plotted and they are similar to one another

except that Cauchy density function has thicker tails on both sides. Now note that the

true model is N(0, 1) but we will model it as Cauchy(0,1) and multiply it by a correction

factor. The bottom panel of the figure illustrates the approximations to the true density

function, i.e. approximation of N(0, 1) by the product of Cauchy(0,1) and the correction

factors. The bandwidth h is 0.5. It can be seen that even with such a large bandwidth,

the four approximations with different α succeed to detect the shape of the underlying

function (i.e. N(0, 1)) except for little upwards bias around the original point 0.

This fact indicates that with a reasonable parametric model, the semiparametric ap-

proximations perform well. Different choices of α do not change the resulting approxima-

tion significantly. Here a reasonable choice of parametric model is the one that has the

similar shape and location to the true function.
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Figure 2.1: The true function is the standard normal density function N(0, 1), and the para-
metric assumption is the cauchy distribution (0,1). In the top panel, the true curve is in black
and the parametric function is in blue. The bandwidth h equals 0.5. In the bottom panel, four
approximations are plotted against the true curve (in black) where the purple one is with α = 2,
the red one is with α = 1.5, the blue one is with α = 1 and the green one is with α = 0.

2.4.2 Example of a normal data with a two-mixed normal start

The example in the last section was essentially to show that the generalized approximation

performs well when the assumed parametric model is close to the true function in terms

of its shape. Now we consider the opposite case, that is, the assumed parametric model

39



is not an accurate guess of the true underlying model. The true curve here is chosen to

be a density function of a standard normal distribution (0,1) and the assumed density

function is a mixed distribution, 0.5Normal(3, 1) + 0.5Normal(−3, 1). The bandwidth h

is fixed as 0.25.

The results of this study are depicted in Fig 2.2. From the top panel, it is clear that

the assumed parametric function is far off from the true underlying model and thus one

needs to modify this initial guess with correction factors. The modified results are plotted

in the bottom panel and one finds that the behaviors of approximations are pretty decent

even with wrong parametric model as a start. Among them, the approximation with

α = 1.5 (in red) is the most competitive in the sense that its curve is only different from

the true one at the central peak.

Furthermore, from this figure, there is strong evidence to show that the choice of α

is related to the shape of the assumed model but not to the smoothness of the assumed

model.
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Figure 2.2: The parametric assumption is a mixed density distribution 0.5Normal(3, 1) +
0.5Normal(−3, 1) and the true density function is from a standard normal distribution (0,1).
In the top panel, the true curve is in black and the parametric function is in blue. In the bottom
panel, four approximations are plotted against the true curve (in black) where the purple one is
with α = 2, the red one is with α = 1.5, the blue one is with α = 1 and the green one is with
α = 0.

2.4.3 Example of a three-mixed normal data with a cauchy start

We consider another example where the assumed parametric model is not an appropriate

guess of the underlying true model. In this study, the underlying curve is a density
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function of a three-mixed normal distributions, 0.2Normal(−3, 1) + 0.3Normal(0, 1) +

0.5Normal(3, 1) and the assumption is that it follows a Cauchy (0,1) density distribution.

The bandwidth h is fixed as 0.8.

The approximations of the study are plotted in Fig 2.3. Although the parametric

assumption is not correct, as seen in the top panel, the generalized approximations plotted

in the bottom panel are still acceptable. One finds that the approximation with α = 1

detects all the modes of the underlying function and appears to be the best of the four

candidates. This result is different from the example discussed in Section 2.4.2 where the

correction factor with α = 1.5 is optimal of the four. It verifies our former viewpoint that

the optimal value of α varies and relies on the parametric assumption and the true curve

of the underlying model.
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Figure 2.3: The true function is the density function from a three-mixed normal distribution
0.2Normal(−3, 1) + 0.3Normal(0, 1) + 0.5Normal(3, 1) and one assumes that the curve is from
a Cauchy distribution (0,1). In the top panel, the true curve is in black and the parametric
function is in blue where h is 0.8. In the bottom panel, four approximations are plotted against
the true curve (in black) where the purple one is with α = 2, the red one is with α = 1.5, the
blue one is with α = 1 and the green one is with α = 0.
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2.4.4 Example of a log-normal data with a Weibull start

Here we consider the example in the settings of hazard rate estimation. Let the true curve

be the hazard rate function associated with a log-normal distribution (0,1), that is,

λ(x) =
φ(lnx)

xΦ(− lnx)
for x ≥ 0

where φ is the probability density function of the standard normal distribution and Φ is

the cumulative distribution function of the standard normal distribution.

We assume that the above curve is a hazard rate function of a Weibull distribution

(3,3), i.e.

λ(x) =
(x

3

)2

for x ≥ 0

where the shape parameter of the Weibull model equals to 3 and the scale parameter

equals to 3.

The bandwidth h in this study is fixed as 0.3 and then the approximations of the

true curve by the product of assumed curve and the correction factor are plotted in Fig

2.4. From the top panel, again it can be seen that the assumed parametric model is

away from the true model. In the bottom panel, one finds that the approximation with

α = 1.5 is closest to the true function but somewhat higher than the true function before

x = 1. Similar to the former two cases, the parameter α also determines the shape of an

approximation in the example.
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Figure 2.4: The true function is a hazard rate function from a log-normal distribution and the
parametric assumption is a Weibull distribution. In the top panel, the true curve is in black and
the parametric function is in blue where h is 0.3. In the bottom panel, four approximations are
plotted against the true curve (in black) where the purple one is with α = 2, the red one is with
α = 1.5, the blue one is with α = 1 and the green one is with α = 0.

2.4.5 Summary of example studies

From the studies illustrated in this section, we obtain an intuitive understanding of the

relationship between the successive approximations to the true function and index α.

That is, as α changes, the shape of the curve which approximates the true curve changes,
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with some values of α giving better approximations than the others. Making use of this

important property, one may simply adjust the value of α so that the approximation is

closer to the true function. For example, from the last example given in Fig 2.4, one may

notice that the approximation with α = 1.5 is over the true function before the point

x = 1 while the one with α = 1 is below. Thus one may choose a value of α between the

interval (1, 1.5) such as 1.3 to modify the approximation. This modified result is given in

Fig 2.5. Obviously the new approximation with α = 1.3 has a better accuracy than the

four approximations given in Fig 2.4 and the bias in the approximation after x = 0.5 is

also eliminated.
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Figure 2.5: This figure is an extension of Fig 2.4, the true function is the hazard rate function
from a log-normal distribution and the parametric assumption is a Weibull distribution. Two
approximations are plotted against the true curve (in black) of which the purple one is with
α = 1.5 and the yellow one is with α = 1.3.

Of course, in practice, one will not have the knowledge of the true function to decide

the correct value of α and hence of the correction factor, just like we did in the example

studies of this section. But these example studies are still important because they provided

us with an intuitive way to understand the role of α. Now it is known that by changing α,
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one may adjust the position of the estimate to minimize its distance from the true function

where the distance may be measured by L2 error criterion. Hence in the next section, we

will discuss analytical methods to measure this distance and propose the optimal values

of α to minimize it in the hazard rate estimation.

2.5 Inference on α in semiparametric hazard rate es-

timation

In this section, the main problem we are concerned with is to determine the optimal value

α of a generalized estimator which minimizes the mean integrated squared error.

2.5.1 Mean integrated squared errors analysis

The mean integrated squared error, which provides a reasonable quantification of the

accuracy of λ̂α(x) as an estimator of the whole function λ(x) is given by

MISE(λ̂(x)) =

∫
{V ar(λ̂(x)) + (Bias(λ̂(x)))2}w(x)dx,

where

w(x) =


1, if 0 < x < T

0, otherwise

and T = inf{x : 1− F (x) < ε}, ε > 0.

In this section, we will determine the MISE of the generalized estimator, however,

from the characteristic of λ̂α(x), it is trivial that its behavior still depends on that of θ̂

included in the initial parametric start g(x; θ̂). To address this issue, we need to define

θ0 to be the least false value of the best parametric approximation g0(x) = g(x; θ0) to the

true λ(x) which minimizes the Kullback-Leibler distance measure

∫
λ(x) log{λ(x)/g(x; θ̂)}dx.
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Then the important result which quantifies the bias and variance of the generalized hazard

rate estimator is given in the next theorem and in the proof of the theorem, it will show

that the difference between the maximum likelihood estimate g(x; θ̂) and g(x; θ0) could

be ignored in semiparametric estimation as n→∞. Recall that µ2,K =
∫
u2K(u)du and

R(K) =
∫
K(u)2du. For the formal derivation in this chapter, we need the following

assumption:

A. Hazard rate function of interest is sufficient smooths and bounded over [0, T ]

Theorem 2.1. Let g(x; θ̂) be the maximum likelihood estimator of g(x; θ) and K(·) be a

second-order kernel function s.t.
∫
K(x)dx = 1,

∫
K(x)xdx = 0 and

∫
K(x)xpdx < ∞

for p > 1. As n→∞, h→ 0 and nh→∞, one has

Bias(λ̂α(x)) =
h2

2
µ2,K

[
(λ(x)g1−α

0 (x))′′

g0(x)1−α − λ(x)(g2−α
0 (x))′′

g0(x)2−α

]
+O

(
1

n2
+
h2

n
+ h4

)
,

V ar(λ̂α(x)) =
R(K)

nh

λ(x)

1− F (x)
+ o

(
1

nh

)
+O

(
1

n2

)
.

Proof. The proof is given in Section 2.7.

Remark 2.1. The leading term of the variance of the new estimator λ̂α is same as the

standard kernel estimator and is independent with α. On the other hand, the bias term

of the generalized estimator is different from its purely nonparametric counterpart and is

dependent on α. Notice that if the assumed model g(x; θ) is exactly same as the true λ(x),

then the bias term of the proposed estimate vanishes. This shows that a semiparametric

estimator is expected to perform better than nonparametric competitors under the case

when the parametric assumption is reasonable and close to the true model.

2.5.2 Choice of α with L2 error criterion

From the example study of Section 2.4, α clearly plays vital role in the performance of

the estimator λ̂α. Thus in this subsection first we find an α which minimizes asymptotic
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MISE, i.e. we find α which minimizes AMISE. Making use of Theorem 2.1, the AMISE

of the proposed estimator is given by

AMISE(λ̂α) =
h4

4
µ2

2,KR(Mα) +
R(K)

nh

∫
λ(x)

1− F (x)
w(x)dx,

where R(Mα) =
∫ [ (λ(x)g1−α0 (x))′′

g0(x)1−α
− λ(x)(g2−α0 (x))′′

g0(x)2−α

]2

w(x)dx.

The AMISE optimal choice of α can be obtained directly by differentiating the ex-

pression of AMISE w.r.t α and solving for the case when the differential equals to zero.

Notice that the variance terms is independent with α, and thus the problem is reduced

to searching for the value of α that minimizes R(Mα). For that first set,

b1(x) = λ′′(x)− λ(x)g′′0(x)/g0(x),

b2(x) = 2

{
g′0(x)λ′(x)

g0(x)
− λ(x)

(
g′0(x)

g0(x)

)2
}
.

Then it can be seen that

(λ(x)g1−α
0 (x))′′

g0(x)1−α − λ(x)(g2−α
0 (x))′′

g0(x)2−α = b1(x) + b2(x)− αb2(x).

Also set

c1 =

∫
b2

2(x)w(x)dx,

c2 =

∫
b2(x)(b1(x) + b2(x))w(x)dx,

c3 =

∫
(b1(x) + b2(x))2w(x)dx.

It can be showed that R(Mα) = c1α
2−2c2α+ c3 and it is minimized over α at α0 = c2/c1.

This result is slightly disappointing since the AMISE optimal value of α0 involves both

c1 and c2 which depend on the unknown functions λ(p), p = 0, 1, 2. That is, to choose the

optimal value of α one needs to know λ(p)s which are unknown. This issue is addressed in

the next section where we propose a plug-in idea to seek the data dependent value of α0.
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2.6 Plug-in estimate of the shape parameter and band-

width

In this section, we discuss the methods to estimate the shape parameter α and the band-

width h of the semiparametric estimator.

Two data-based methods are proposed to estimate α which is dependent on unknown

quantities c1 and c2. The first method is a simple “plug-in” approach where the unknown

functions are estimated by kernel-based methods and it is quite easy to implement. The

second method provides us with a well-defined and systematic way to estimate the un-

known quantities c1 and c2.

Plug-in method is a widely used tool in the selection of bandwidth in smoothing

problems. For example, if one is intended to determine the AMISE optimal bandwidth

h of a kernel density estimate f̂(x) which involves unknown quantities depending on the

true f (p) for p = 0, 1, 2, then one replaces the unknown terms f (p) with their preliminary

estimates f̂ (p) directly to estimate h. Similarly here we propose to estimate the terms c1

and c2 which involve unknown λ(p)s for p = 0, 1, 2 on the basis of preliminary estimates

of λ(p)s for p = 0, 1, 2.

As for the choice of bandwidth, it is not the main issue of our work that the most

common methods like plug-in or cross-validatory ones can be used. It will be simply

discussed in the end of this section.

2.6.1 Simple plug-in method of α

Recall that the optimal value of α is α0 = c2/c1 where

c1 =

∫
b2

2(x)w(x)dx,

c2 =

∫
b2(x)(b1(x) + b2(x))w(x)dx
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and

b1(x) = λ′′(x)− λ(x)g′′0(x)/g0(x),

b2(x) = 2

{
g′0(x)λ′(x)

g0(x)
− λ(x)

(
g′0(x)

g0(x)

)2
}
.

To estimate α0, we estimate the unknown λ(p)(x) by kernel-based methods, i.e.

λ̂(p)(x) =
1

nhp+1
p

n∑
i=1

K(p)
(
x−Xi
hp

)
1− Fn(Xi)

,

where K(p) is the pth derivative of the kernel function K and Fn(x) is the empirical

distribution function. The bandwidth pilot hp used in the kernel derivative estimate of

hazard rate may be different from the bandwidth h implemented in our semiparametric

estimator[166].

Then the plug-in estimators of c1 and c2 are given by

c̄1 =

∫ T

0

b̄2(x)2dx,

c̄2 =

∫ T

0

b̄2(x)(b̄1(x) + b̄2(x))dx

where

b̄1(x) = λ̂′′(x)− λ̂(x)g′′(x; θ̂)/g(x; θ̂),

b̄2(x) = 2

g′(x; θ̂)λ̂′(x)

g(x; θ̂)
− λ̂(x)

(
g′(x; θ̂)

g(x; θ̂)

)2
 ,

and T = inf{x : 1− F (x) < ε}, ε > 0.

Thus,

ᾱ0 = c̄2/c̄1.
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2.6.2 Alternative method to select α

In this section, the other plug-in approach to estimate α0 is introduced. For that write

c1 and c2 as the sums of a family of integrals involving functional of hazard rate function

λ(x). That is

c1 = 4

∫
λ′(x)2q1(x)2w(x)dx+ 4

∫
λ(x)2q1(x)4w(x)dx

−8

∫
λ(x)λ′(x)q1(x)3w(x)dx,

c2 = c1 + 2

∫
λ′(x)λ′′(x)q1(x)w(x)dx− 2

∫
λ(x)λ′(x)q1(x)q2(x)w(x)dx

−2

∫
λ(x)λ′′(x)q1(x)2w(x)dx+ 2

∫
λ(x)2q1(x)2q2(x)w(x)dx

where

q1(x) =
g′0(x)

g0(x)
, q2(x) =

g′′0(x)

g0(x)
= q′1(x) + q1(x)2.

Notice that

∫
λ′(x)2q1(x)2w(x)dx

= −2

∫
λ(x)λ′(x)q1(x)q2(x)w(x)dx+ 2

∫
λ(x)λ′(x)q1(x)3w(x)dx

−
∫
λ(x)λ′′(x)q1(x)2w(x)dx+

∫
(λ(x)q1(x)2λ′(x))′w(x)dx.

Under Assumption A for λ(x) over (0, T ),

∫
(λ(x)q1(x)2λ′(x))′w(x)dx = lim

x→T
λ(x)q1(x)2λ′(x)− lim

x→0
λ(x)q1(x)2λ′(x) = 0.
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Similarly,

∫
λ′(x)λ′′(x)q1(x)w(x)dx

= −
∫
λ(x)λ′′′(x)q1(x)w(x)dx−

∫
λ(x)λ′′(x)q2(x)w(x)dx

+

∫
λ(x)λ′′(x)q1(x)2w(x)dx+

∫
(λ(x)λ′′(x)q1(x))′w(x)dx.

Under Assumption A for λ(x) over (0, T ),

∫
(λ(x)λ′′(x)q1(x))′w(x)dx = 0.

Therefore the above expressions for c1 and c2 can be written as

c1 = 4{ψ(0|4, 0)− ψ(2|2, 0)− 2ψ(1|1, 1)},

c2 = c1 + 2{ψ(0|2, 1)− ψ(3|1, 0)− ψ(2|0, 1)− ψ(1|1, 1)}

where ψ(p|r, s) =
∫
λ(x)λ(p)(x)qr1(x)qs2(x)w(x)dx. Then the optimal α0 is

α0 =
c2

c1

= 1 +
N

2D

where

N = ψ(0|2, 1)− ψ(3|1, 0)− ψ(2|0, 1)− ψ(1|1, 1)

and

D = ψ(0|4, 0)− ψ(2|2, 0)− 2ψ(1|1, 1).

It is clear that the terms N and D are dependent on the sum of ψ(p|r, s)s. Hence a

systematic way to estimate α̂0 is to estimate ψ(p|r, s). That is,

α̂0 = 1 +
N̂

2D̂
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where

N̂ = ψ̂(0|2, 1)− ψ̂(3|1, 0)− ψ̂(2|0, 1)− ψ̂(1|1, 1),

D̂ = ψ̂(0|4, 0)− ψ̂(2|2, 0)− 2ψ̂(1|1, 1).

Now to estimate ψ(p|r, s), we use a kernel estimator given by

ψ̂(p|r, s) =
1

n2

∑∑
i 6=j

L
(p)
g (Xi −Xj)

(1− Fn(Xi))(1− Fn(Xj))
v(Xi)

=
∑∑

i 6=j

L
(p)
g (X(i) −X(j))

(n− j + 1)(n− i+ 1)
v(X(i))

where v(Xi) = qr1(Xi)q
s
2(Xi), Lg(x) = 1

g
L(x

g
) is a kernel with the bandwidth g and L

(p)
g

is the pth derivative of Lg. Kernel L is not necessarily the same as K. The inference

of kernel-based estimates of the integral
∫
λ(x)λ(p)(x)v(x)dx for even p is discussed in

Chapter 2 of Bagkavos[8]. Here we also consider the case for odd p. The disadvantage of

this kernel type estimate is that it depends on the bandwidth g of the kernel L, so this

method will not be fully automatic.

Hence to search for a proper g, again we choose the AMSE criterion to determine the

optimal bandwidths ĝN and ĝD for the kernel-type estimates N̂ and D̂ respectively. For

instance, to estimate N̂ , we are interested in an optimal value of gN which will be taken

as the bandwidth for all the four terms ψ̂(0|2, 1), ψ̂(3|1, 0), ψ̂(2|0, 1) and ψ̂(1|1, 1) of the

functional form of N , and this optimal value is determined by minimizing the AMSE of

N̂ . Further v(x) = qr1(x)qs2(x) depends on the parametric model g0(x) = g(x; θ0) with the

unknown parameter vector θ0. Here θ0 is replaced by its maximum likelihood estimate.

Note that by argument similar to the one used in Theorem 2.1, it can be easily shown that

replacing θ0 by θ̂0, won’t change the leading terms of the asymptotic bias and variance of
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a kernel estimate ψ̂(p|r, s). The MSE of N̂ and D̂ can be expanded as

MSE[N̂ ]

= MSE[ψ̂(0|2, 1)] +MSE[ψ̂(3|1, 0)] +MSE[ψ̂(1|1, 1)] +MSE[ψ̂(2|0, 1)]

− 2E[µ̂(0|2, 1)µ̂(3|1, 0)]− 2E[µ̂(0|2, 1)µ̂(2|0, 1)]− 2E[µ̂(0|2, 1)µ̂(1|1, 1)]

+ 2E[µ̂(3|1, 0)µ̂(2|0, 1)] + 2E[µ̂(3|1, 0)µ̂(1|1, 1)] + 2E[µ̂(2|0, 1)µ̂(1|1, 1)],

MSE[D̂]

= MSE[ψ̂(0|4, 0)] +MSE[ψ̂(2|2, 0)] + 4MSE[ψ̂(1|1, 1)]

− 2E[µ̂(0|4, 0)µ̂(2|2, 0)]− 4E[µ̂(0|4, 0)µ̂(1|1, 1)] + 4E[µ̂(2|2, 0)µ̂(1|1, 1)]

where µ̂(p|r, s) = ψ̂(p|r, s) − ψ(p|r, s). From the above expansions to derive formulas

of MSE(N̂) and MSE(D̂), one needs to know the MSE of ψ̂(p|r, s) and the covariance

between the paired ψ̂(p|r, s)s. Therefore in the next two theorems, we summarize the

important results of the MSE and covariance for ψ̂(p|r, s) respectively.

Theorem 2.2. Let q1(x) and q2(x) be estimated by g(x; θ̂) and v(x) = qr1(x)qs2(x). Then

as n→∞ and g → 0,

Bias(ψ̂(p|r, s)) =
g2

2
µ2,L(u)ψ(p+ 2|r, s) + o(g2). (2.6.1)

For the case when p is odd,

Var(ψ̂(p|r, s)) =
µ2,(L(p))2

2n2g2p−1

∫
λ(x)

1− F (x)

{(
v2(x)λ(x)

1− F (x)

)′′
− v(x)

(
v(x)λ(x)

1− F (x)

)′′}
w(x)dx+O

(
1

n

)
+ o

(
1

n2g2p−1

)
. (2.6.2)
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For the case when p is even,

Var(ψ̂(p|r, s)) =
2

n2g2p+1
R(L(p))

∫
v2(x)

(
λ(x)

1− F (x)

)2

w(x)dx

+ O

(
1

n

)
+ o

(
1

n2g2p+1

)
. (2.6.3)

Proof. The proof is given in Section 2.7.

In the next theorem the asymptotic covariance of ψ̂(p1|r1, s1) and

ψ̂(p2|r2, s2) is derived. To simplify the writing we denote ψ̂(p1|r1, s1) and ψ̂(p2|r2, s2)

simply as ψ̂1 and ψ̂2 respectively.

Theorem 2.3. Let q1(x) and q2(x) be calculated by g(x; θ̂) and vi(x) = qri1 (x)qsi2 (x). Then

as n→∞ and g → 0,

E[(ψ̂1 − ψ1)(ψ̂2 − ψ2)] = Bias(ψ̂1)×Bias(ψ̂2) + A+O

(
1

n

)
.

When p1 and p2 are both even,

A =
2

n2gp1+p2+1

∫
L(p1)(u)L(p2)(u)du

∫
v1(x)v2(x)

{
λ(x)

1− F (x)

}2

w(x)dx

+o

(
1

n2gp1+p2+1

)
.

When p1 and p2 are both odd,

A =
1

2n2gp1+p2−1

∫
L(p1)(u)L(p2)(u)u2du

∫
λ(x)

1− F (x)

{[
v1(x)v2(x)λ(x)

1− F (x)

]′′
−v2(x)

[
v1(x)λ(x)

1− F (x)

]′′}
w(x)dx+ o

(
1

n2gp1+p2−1

)
.
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When p1 + p2 is odd (assuming p2 is odd and p1 is even),

A =
1

n2gp1+p2

∫
L(p1)(u)L(p2)(u)udu

∫
λ(x)

1− F (x)

{[
v1(x)v2(x)λ(x)

1− F (x)

]′
+(−1)p2v2(x)

[
v1(x)λ(x)

1− F (x)

]′}
w(x)dx+ o

(
1

n2gp1+p2

)
.

Proof. The proof is given in Section 2.7.

Remark 2.2. In comparison to the similar study given by Bagkavos[8], the introduction

of odd values for p of ψ̂(p|r, s) leads us to deal with more possibilities with respect to p.

Thus by using Theorem 2.2 and 2.3, and also restricting the function over the support

[0, T ], for even p one achieves that

AMSE[N̂ [p]]

=
g4

4
µ2

2,LN [p+ 2]2 +
1

n2g2p+5

{
1

2
µ2,(L(p+3))2

∫
λ(x)

1− F (x)

{[
q2

1(x)λ(x)

1− F (x)

]′′
−q1(x)

[
q1(x)λ(x)

1− F (x)

]′′}
w(x)dx+ 2R(L(p+2))

∫
q2

2(x)

[
λ(x)

1− F (x)

]2

w(x)dx

+2

∫
L(p+3)(u)L(p+2)(u)udu

∫ [
λ(x)

1− F (x)

]2

q′1(x)q2(x)w(x)dx

}
(2.6.4)

where N [p] = ψ(p|2, 1) − ψ(p + 3|1, 0) − ψ(p + 2|0, 1) − ψ(p + 1|1, 1) and N = N [0].

Similarly

AMSE[D̂[p]]

=
g4

4
µ2

2,LD[p+ 2]2 +
2

n2g2p+5
R(L(2))

∫
q1(x)4

(
λ(x)

1− F (x)

)2

w(x)dx (2.6.5)

where D[p] = ψ(p|4, 0)− ψ(p+ 2|2, 0)− 2ψ(p+ 1|1, 1) and D = D[0].

So as to improve the accuracy of the kernel-based estimate N̂ and D̂, we need to

estimate the the AMSE optimal bandwidth gN and gD for each of them. The MSE of N̂

and D̂ are quantified in the following theorem.
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Theorem 2.4. Let q1(x) and q2(x) be estimated by g(x; θ̂), then as n→∞, g → 0,

MSE[N̂ ] =
g4

4
µ2

2,LN [2]2 +
1

2n2g5

∫ ∫
m2|3(u, x)2w(x)dudx

+O

(
1

n

)
+ o

(
g4 +

1

n2g5

)
,

MSE[D̂] =
g4

4
µ2

2,LD[2]2 +
1

2n2g5

∫ ∫
n2(u, x)2w(x)dudx

+O

(
1

n

)
+ o

(
g4 +

1

n2g5

)

where

mp2|p1(u, x) = L(p1)(u)u

(
q′1(x)λ(x)

1− F (x)

)
+ 2(L(p2)(u))

(
q2(x)λ(x)

1− F (x)

)

and

np2(u, x) = 2L(p2)(u)q2
1(x)

(
λ(x)

1− F (x)

)
.

Proof. The proof is given in Section 2.7.

From Theorem 2.4, we can easily calculate the AMSE optimal bandwidths for N̂ and

D̂ which are respectively,

gN =

[
5

2

∫ ∫
m2|3(u, x)2w(x)dudx

µ2
2,LN [2]

]1/9

n−2/9,

gD =

[
5

2

∫ ∫
n2(u, x)2w(x)dudx

µ2
2,LD[2]

]1/9

n−2/9.

Unfortunately, we find that the bandwidths gN and gD depend on unknown quantities

N [2] and D[2]. Moreover, the estimates of N [2] and D[2] depend on unknown N [4] and

D[4], i.e. we have to have a recursive estimation of N [p] or D[p], p = 2, 4, 6, 8, ... without

end. A common way to overcome this problem is to calculate the kernel estimates for N [2]
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and D[2] by estimating N [4] and D[4] with reference to some distribution. Once N̂ [2]

and D̂[2] are found, we can use the above formula to calculate gN and gD for estimating

N and D. A point that needs to be answered is the number of iterations that we need

to estimate the optimal bandwidth gs for N and D. Wand and Jones[166] suggested that

two stages are enough in the density setting and Bagkavos[8] gave the same comment in

hazard rate estimation.

Note that the estimation of N [p] and D[p] equals to estimating a linear sums of func-

tions ψ(p|r, s) =
∫
λ(x)λ(p)(x)v(x)w(x)dx and we assume λ(x) is corresponding to some

commonly frequently-used parametric distribution. For example, the Weibull distribution

is a sensible choice for the parametric assumption of hazard rate model.

Let the scale parameter of the Weibull distribution to be 1/c and the shape index

be b, then the pth derivative of the hazard rate corresponding to Weibull distribution is

cp+1b(b− 1)(b− 2)(b− p)(cx)b−p−1. Thus ψ(p|r, s) can be estimated by

ψ̄(p|r, s) =

∫
λ(p)(x)λ(x)v(x)w(x)dx

=

∫ T

0

cp+1b(b− 1)(b− 2)...(b− p)(cx)b−p−1cb(cx)b−1v(x)dx

= cp+2b2(b− 1)(b− 2)...(b− p)
∫ T

0

(cx)2b−p−2v(x)dx

= c2bb2(b− 1)(b− 2)...(b− p)
∫ T

0

x2b−p−2v(x)dx.

Then N̄ [4], D̄[4] can be calculated as the sum of a series of ψ̄(p|r, s)s.

In addition, notice the unknown functions λ(x) and F (x) that appear above in the

expressions of mp2|p1(u, x) and np2(u, x). There we replace λ(x) with a simple kernel

hazard rate estimate discussed in the last section,

λ̂(x) =
1

nhn

n∑
i=1

K
(
x−Xi
hn

)
1− Fn(Xi)

, (2.6.6)

where hn is pilot bandwidth and F (x) is replaced by the empirical function Fn(x). That
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is to say,

m̂p2|p1(u, x) = L(p1)(u)u

(
q′1(x)λ̂(x)

1− Fn(x)

)
+ 2(L(p2)(u))

[
q2(x)λ̂(x)

1− Fn(x)

]

and

n̂p2(u, x) = 2L(p2)(u)q2
1(x)

{
λ̂(x)

1− Fn(x)

}
.

Taking advantage of the above simple estimates ofN [4], D[4], mp2|p1(u, x) and np2(u, x),

we give a detailed algorithm to estimate the index α0 as follows,

1.Compute N̄ [4] and D̄[4] with the reference to a parametric distribution.

2.Compute m̂4|5 and n̂4 and then compute

ĝN1 =

[
9

2

∫ ∫
m̂4|5(u, x)2w(x)dudx

µ2
2,LN̄ [4]

]1/13

n−2/13

and

ĝD1 =

[
9

2

∫ ∫
n̂4(u, x)2w(x)dudx

µ2
2,LD̄[4]

]1/13

n−2/13.

3.Use ĝN1 and ĝD1 to estimate N [2] and D[2] respectively.

4.Compute m̂2|3 and n̂2 and then compute

ĝN =

[
5

2

∫ ∫
m̂2|3(u, x)2w(x)dudx

µ2
2,LN̂ [2]

]1/9

n−2/9

and

ĝD =

[
5

2

∫ ∫
n̂2(u, x)2w(x)dudx

µ2
2,LD̂[2]

]1/9

n−2/9.

5.Use ĝN and ĝD to estimate N and D respectively.

6.Computer the value of α as

α̂0 = 1 +
N̂

2D̂
.

Remark 2.3. The above algorithm is an extension of the algorithm Naito[97] had used
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in the similar situation while computing shape parameter for his semiparametric density

estimator. Compared with the first simple plug-in method, this algorithm seems to be

more stable and reasonable where the two iterations of the algorithm from pilot estimates

of N [4] and D[4] to the ultimate estimators of N and D reduce the potential bias caused

by prior assumption.

2.6.3 Choice of the bandwidth h

In this section, we introduce the plug-in estimate of the bandwidth with respect to the

MISE criterion. From Theorem 2.1, we see that bandwidth h that minimizes the AMISE

of λ̂α is

h(α) =

[
R(K)

nR(Mα)µ2
2,K

∫ T

0

λ(x)

1− F (x)
dx

]1/5

.

Then the unknown terms in the expression of h(α) can be replaced by the plug-in estimates

as follows: α̂0 is given by either of the two methods introduced above, λ̂(x) is given by

(2.6.6) and 1− F (x) is estimated by its empirical version, (1− Fn(x)). That is to say, h

of our generalized estimate is given by

h(α) =

[
R(K)

nR(M̂α̂0)µ
2
2,K

∫ T

0

λ̂(x)

1− Fn(x)
dx

]1/5

.

2.7 Proofs

We finish by proving the theorems presented in this chapter.

Proof. of Theorem 2.1

Technically the proof can be separated into two steps of which the first is to derive the

bias and variance of the generalized estimator with g(x; θ̂) being replaced by g0(x), and

the second is to show that the difference between the generalized estimator with g0(x)

and λ̂α(x) with g(x; θ̂) does not change the leading terms of variance and bias.
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Without loss of generality, one defines the semiparametric estimator with the least

false parametric approximation g(x; θ0) as

λ̂∗α(x) =
g0(x)

∑n
i=1

Kh(X(i)−x)

n−i+1
g0(X(i))

1−α∫
Kh(t− x)g2−α

0 (t)dt
.

Observe that

E

{
g0(x)

n∑
i=1

(
Kh(X(i) − x)

n− i+ 1
g0(X(i))

1−α
)}

= g0(x)

∫
Kh(y − x)

f(y)g0(y)1−α

1− F (y)

×

{
n∑
i=1

F (y)i−1(1− F (y))n−i+1 n!

(n− i+ 1)!(i− 1)!

}
dy

= g0(x)

∫
Kh(y − x)λ(y)g0(y)1−α(1− F n(y))dy

= g0(x)

∫
Kh(y − x)λ(y)g0(y)1−αdy

− g0(x)

∫
Kh(y − x)λ(y)g0(y)1−αF n(y)dy. (2.7.1)

As n→∞, F n(y)→ 0, thus the second term of (2.7.1) goes to 0. Hence

∫
Kh(t− x)g2−α

0 (t)dt× E[λ̂∗α(x)] = g0(x)

∫
Kh(y − x)λ(y)g0(y)1−αdy.

By setting (y − x)/h = u, it gives

E

{
g0(x)

n∑
i=1

(
Kh(Xi − x)

n− i+ 1
g0(Xi)

1−α
)}

= g0(x)

∫
K(u)λ(x+ uh)g0(x+ uh)1−αdu

= g2−α
0 (x)λ(x) +

h2

2
µ2,K(λ(x)g0(x)1−α)′′g0(x) + o(h2).
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That is to say, Bias(λ̂∗α) = E(λ̂∗α)− λ(x) can be written as

Bias(λ̂∗α(x)) =
g2−α

0 (x)λ(x) + h2

2
µ2,K(λ(x)g1−α

0 (x))′′g0(x)∫
Kh(t− x)g2−α

0 (t)dt
− λ(x)

=
g2−α

0 (x)λ(x) + h2

2
µ2,K(λ(x)g1−α

0 (x))′′g0(x)

g2−α
0 (x) +

h2µ2,K
2

[g2−α
0 (x)]′′ + o(h2)

− λ(x)

=
λ(x) + h2

2
µ2,K(λ(x)g1−α

0 (x))′′gα−1
0 (x)

1 +
h2µ2,K

2
[g2−α

0 (x)]′′gα−2
0 (x) + o(h2)

− λ(x)

=
h2

2
µ2,K(λ(x)g1−α

0 (x))′′gα−1
0 (x)− h2µ2,K

2
[g2−α

0 (x)]′′gα−2
0 (x)λ(x)

1 +
h2µ2,K

2
[g2−α

0 (x)]′′gα−2
0 (x) + o(h2)

.

Now note that g2−α
0 (x) and [g2−α

0 (x)]′′ are bounded, for h sufficiently small we could

prove that Bias(λ̂∗α) follows

Bias(λ̂∗α(x)) =
h2

2
µ2,K

[
(λ(x)g1−α

0 (x))′′

g0(x)1−α − λ(x)(g2−α
0 (x))′′

g0(x)2−α

]
+O(h4)

=
h2

2
µ2,KMα(x) +O(h4)

where Mα(x) =
(λ(x)g1−α0 (x))′′

g0(x)1−α
− λ(x)(g2−α0 (x))′′

g0(x)2−α
.

The variance of λ̂∗α(x) can be expressed as,

V ar(λ̂∗α(x)) = E(λ̂∗α)2 − (Eλ̂∗α)2.
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The term (g0(x))−2E(λ̂∗α(x))2(
∫
Kh(t− x)g2−α

0 (t)dt)2 can be expressed as

(g0(x))−2E(λ̂∗α(x))2(

∫
Kh(t− x)g2−α

0 (t)dt)2

= E

[
n∑
i=1

Kh(x−X(i))

n− i+ 1
g0(X(i))

1−α

]2

=
n∑
i=1

E

(
K2
h(x−X(i))

(n− i+ 1)2
g0(X(i))

2−2α

)
+2
∑∑

i<j
E

(
Kh(x−X(i))Kh(x−X(j))

(n− i+ 1)(n− j + 1)
g0(X(i))

1−αg0(X(j))
1−α
)

=
n∑
i=1

∫ (
K2
h(x− y)

(n− i+ 1)2
f(y)

× n!

(i− 1)!(n− i)!
F (y)i−1(1− F (y))n−ig0(y)2−2α

)
dy

+2

∫ ∫
y≤z

(
Kh(x− y)Kh(x− z)(g0(y)g0(z))1−αf(y)f(z)

×
n−1∑
i=1

F (y)i−1n!

(n− i+ 1)!(i− 1)!

×
n∑

j=i+1

(n− i)!(F (z)− F (y))j−i−1(1− F (z))n−j

(j − i− 1)!(n− j + 1)!

)
dydz

=
n∑
i=1

∫ (
K2
h(x− y)

(n− i+ 1)2
f(y)

n!

(i− 1)!(n− i)!

× F (y)i−1(1− F (y))n−ig0(y)2−2α

)
dy

+2

∫ ∫
y≤z

(
Kh(x− y)Kh(x− z)(g0(y)g0(z))1−αf(y)λ(z)

×
n−1∑
i=1

F (y)i−1n!

(n− i+ 1)!(i− 1)!

×
n∑

j=i+1

(n− i)!(F (z)− F (y))j−i−1(1− F (z))n−j+1

(j − i− 1)!(n− j + 1)!

)
dydz
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(g0(x))−2E(λ̂∗α(x))2(

∫
Kh(t− x)g2−α

0 (t)dt)2

=

∫
In(Fn(y))λ(y)K2

h(x− y)g0(y)2−2αdy

+2

∫ ∫
y≤z

Kh(x− y)Kh(x− z)(g0(y)g0(z))1−αλ(y)λ(z)

×
{ n−1∑

i=1

n!F (y)i−1(1− F (y))n−i+1

(n− i+ 1)!(i− 1)!

− 1− F (y)

F (z)− F (y)

n−1∑
i=1

n!F (y)i−1(F (z)− F (y))n−i+1

(n− i+ 1)!(i− 1)!

}
dydz

=

∫
In(Fn(y))λ(y)K2

h(x− y)g0(y)2−2αdy

+2

∫ ∫
y≤z

Kh(x− y)Kh(x− z)λ(y)λ(z)(g0(y)g0(z))1−α

×
{

(1− F (y)n)− (1− F (y))
F (z)n − F (y)n

F (z)− F (y)
dydz

}

where In(F (y)) =
∑n

i=1
1

n−i+1

(
n
i−1

)
F (y)i−1(1− F (y))n−i+1.

Further it follows from (2.7.1),

(g0(x))−2[Eλ̂∗α(x)]2(

∫
Kh(t− x)g2−α

0 (t)dt)2

=

∫ ∫
Kh(x− y)Kh(x− z)λ(y)λ(z)(g0(y)g0(z))1−α

(1− F (y)n)(1− F (z)n)dydz

= 2

∫ ∫
y≤z

Kh(x− y)Kh(x− z)λ(y)λ(z)(g0(y)g0(z))1−α

(1− F (y)n)(1− F (z)n)dydz.

Also, notice that
∫
Kh(t− x)g2−α

0 (t)dt = g0(x)2−α +O(h2), we could write V ar(λ̂∗α(x)) as

V ar(λ̂∗α(x)) = g0(x)2α−2

∫
In(Fn(y))λ(y)K2

h(x− y)g0(y)2−2αdy + 2g0(x)2α−2

×
∫ ∫

y≤z
Kh(x− y)Kh(x− z)(g0(y)g0(z))1−αλ(y)λ(z)An(y, z)dydz
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where

An(y, z) = (1− F (y)n)F (z)n − (1− F (y))
F (z)n − F (y)n

F (z)− F (y)
.

By the Taylor Series Expansion and a result in Waston and Leadbetter[168], as n→∞,

nIn(F (u)) converges to 1/(1− F (u)) and An is negligible. Therefore the variance can be

easily shown to be

V ar(λ̂∗α(x)) =
R(K)

nh

λ(x)

1− F (x)
+ o

(
1

nh

)
.

This completes the first step of the proof which verifies the bias and variance of λ̂∗α(x) for

large n.

To consider a more general case where λ̂α(x) allows for a maximum likelihood estimate

θ̂ in the functional form of the parametric assumption g(x, θ), we need to introduce more

asymptotic properties of the maximum likelihood estimator θ̂ given by Hjort and Glad[62].

Let F be the true distribution function, f be the density function and Fn be the

empirical distribution function. We consider the functional estimators of θ of the form

θ̂ = T (Fn) for some smooth T having the influence function

I(T ) = lim
ε→0

[T ((1− ε)F + εδx)− T (F )]/ε

where δx is the unit point mass at x and ΣI = Ef [I(Xi)I(Xi)
T ] is finite. The least

false value θ0 of g0(x) = g(x; θ0) is determined by θ0 = T (F ). It is well known for

the case of the maximum likelihood estimator that T (F ) is defined as the solution to∫
(∂/∂θ) log g(x; θ)dF (x) = 0, and so I(x) = J−1(∂/∂θ) log g(x; θ0)dF (x), where J =

−Ef [(∂2/∂θ∂θT ) log g(Xi; θ0)]. With reference to Chapter 6, Serfling[135], Hjort and Glad

found that, under regularity conditions given by [67][136],

θ̂ − θ0 =
1

n

n∑
i=1

I(Xi) +
d

n
+ εn (2.7.2)

where εn = Op(n
−1) with mean O(n−2) and d/n is essentially the bias of θ̂.

66



In our case, set

η0(x) =

∫
Kh(t− x)g0(t)2−αdt,

η1(x) =

∫
Kh(t− x)u0(t)g0(t)2−αdt,

η2(x) =

∫
Kh(t− x){U0(t) + (2− α)u0(t)u0(t)T}g0(t)2−αdt,

where

u0(x) =
∂

∂θ
log g(x; θ)|θ=θ0 ,

U0(x) =
∂2

∂θ∂θT
log g(x; θ)|θ=θ0 .

Expanding g(x; θ̂) with respect to g(x; θ0) and excluding smaller order terms gives

λ̂α(x) = λ̂∗α(x) + (θ̂ − θ0)T B̄n(x) +
1

2
(θ̂ − θ0)T C̄n(θ̂ − θ0)

where B̄n(x) = 1
n

∑n
i=1 Bi(x) and C̄n(x) = 1

n

∑n
i=1Ci(x), and

Bi(x) = g0(Xi)
1−α g0(x)Kh(Xi − x)

η0(x)(1− Fn(Xi))
×
[
(1− α)u0(Xi)−

2− α
η0(x)

η1(x) + u0(x)

]
,

Ci(x) = g0(Xi)
1−α g0(x)Kh(Xi − x)

η0(x)(1− Fn(Xi))
×
[
− 2(1− α)(2− α)

η0(x)
η1(x)u0(Xi)

T

+ 2(1− α)u0(x)u0(Xi)
T + (1− α){U0(Xi) + (1− α)u0(Xi)u0(Xi)

T}

− 2(2− α)

η0(x)
u0(x)η1(x)T + {U0(x) + u0(x)u0(x)T}

+
2(2− α)

η0(x)2

{
(2− α)η1(x)η1(x)T − 1

2
η0(x)η2(x)T

}]
.

Using the fat that Ii = I(Xi) has the mean 0, we have

E[(θ̂ − θ0)T B̄n(x)] = n−1E[BT
i (x)Ii] + n−1(E[Bi(x)])Td+O(n−2), (2.7.3)
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E[(θ̂ − θ0)T C̄n(x)(θ̂ − θ0)] = n−1Tr(E[Ci(x)]E[IiI
T
i ]) +O(n−2). (2.7.4)

Then let y = vx+ h to get

E[Bi(x)T Ii]

= E

{
g0(Xi)

1−α
g0(x)Kh(Xi−x)

1−Fn(Xi)

η0(x)

[
(1− α)u0(Xi)−

2− α
η0(x)

η1(x) + u0(x)

]T
Ii

}
= E

{
(1− α)g0(Xi)

1−αKh(Xi − x)

1− Fn(Xi)

g0(x)

η0(x)
× (u0(Xi)− u0(x) +O(h2))T Ii

}
=

(1− α)g0(x)

η0(x)

∫
Kh(y − x)

1− Fn(y)
f(y)g0(y)1−α(u0(y)− u0(x) +O(h2))T I(y)dy

=
(1− α)g0(x)

η0(x)

∫
K(v)

1− Fn(vh+ x)
f(vh+ x)g0(vh+ x)1−α

(u0(vh+ x)− u0(x) +O(h2))T I(vh+ x)dv

=
(1− α)g0(x)

η0(x)

∫
K(v)

1− Fn(vh+ x)
f(vh+ x)g0(vh+ x)1−α

(v2h2u′′0(x)/2)T I(vh+ x)dv +O(h2).

Thus E[Bi(x)T Ii] is of order O(h2). Similar calculations show that E[Ci(x)] and E[Bi(x)]

are of the size equal O(h2), however we omit the details.

From equations (2.7.3) and (2.7.4), E[(θ̂− θ0)T B̄n(x)] and E[(θ̂ − θ0)T C̄n(θ̂ − θ0)] are

both of orders O( 1
n2 + h2

n
), thus

E[λ̂α] = E[λ∗α] +O

(
1

n2
+
h2

n

)
.

In order to calculate the variance of λ̂α, first we determine the orders of magnitude

of its components, V ar[(θ̂− θ0)T B̄n(x)], V ar[(θ̂− θ0)T C̄n(x)(θ̂− θ0)] and Cov[λ∗α(t), (θ̂−

68



θ0)T B̄n(x)] respectively. For example,

V ar[(θ̂ − θ0)T B̄n(x)]

= V ar[n−1
∑
i

(BT
i (x)Ii) + B̄T

n

d

n
+ B̄T

n (x)εn]

= n−1V ar((BT
n (x)In)) +O(n−2)

= n−1(E[Bi(x)])TΣI(E[Bi(x)])− n−1(E[BT
i (x)Ii])

T (E[BT
i (x)Ii]) +O(n−2).

Since (E[Bi(x)]) and E(BT
i (x)Ii) are of order O(h2), and ΣI = Ef [I(Xi)I(Xi)

T ] is finite,

then V ar((θ̂ − θ0)T B̄n(x)) is of order O(h
4

n
+ n−2). Similar calculations can be used to

show that V ar((θ̂ − θ0)T C̄n(x)(θ̂ − θ0)) is of order (h
4

n2 ), but we omit the details.

Furthermore

Cov[λ∗α(t), (θ̂ − θ0)T B̄n(x)]

= n−1(E[Bi(x)])TE

[
Kh(Xi − x)

1− Fn(Xi)

g0(Xi)
1−α

g0(x)1−α Ii

]
+O(n−2)

= O

(
h2

n
+

1

n2

)
.

Thus,

V ar(λ̂α) =
R(K)

nh

λ(x)

1− F (x)
+ o

(
1

nh

)
+O

(
1

n2

)
,

which complete the proof.

Proof. of Theorem 2.2

First consider Bias(ψ̂(p|r, s)).
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To prove (2.6.1) note that for i < j, one has

E

[ n−1∑
i=1

n∑
j=i+1

L
(p)
g (X(i) −X(j))

(n− j + 1)(n− i+ 1)
v(X(i))

]

=
n−1∑
i=1

∫ ∫
x<y

n∑
j=i+1

n!

(i− 1)!(j − i− 1)!(n− j + 1)!(n− i+ 1)
L(p)
g (x− y)

×F (x)i−1(F (y)− F (x))j−i−1(1− F (y))n−jf(x)f(y)v(x)w(x)dxdy

=
n−1∑
i=1

∫ ∫
x<y

(
n

i− 1

)
L(p)
g (x− y)×

n∑
j=i+1

(
n− i

j − i− 1

)
(
F (y)− F (x)

1− F (y)

)j−i−1(
F (x)

1− F (y)

)i−1

(1− F (y))n−2f(x)f(y)v(x)w(x)dxdy

=
n−1∑
i=1

∫ ∫
x<y

(
n

i− 1

)
L(p)
g (x− y)[(1− F (x))n−i − (F (y)− F (x))n−i]F (x)i−1

λ(y)f(x)v(x)w(x)dxdy

=

∫ ∫
x<y

L(p)
g (x− y)f(x)λ(y)v(x)

n−1∑
i=1

(
n

i− 1

)
[(1− F (x))n−i − (F (y)− F (x))n−i]F (x)i−1w(x)dxdy

=

∫ ∫
x<y

L(p)
g (x− y)f(x)λ(y)v(x)

{
1

1− F (x)
(1− n(1− F (x))F (x)n−1 − F (x)n)

−F (y)n − F (x)n

F (y)− F (x)

}
w(x)dxdy

=

∫ ∫
x<y

L(p)
g (x− y)λ(x)λ(y)v(x)w(x)dxdy

The same conclusion can be obtained for the case i > j, that is

E

[ n∑
i=j+1

n−1∑
j=1

L
(p)
g (X(i) −X(j))

(n− j + 1)(n− i+ 1)
v(X(i))

]
=

∫ ∫
x>y

L(p)
g (x− y)λ(x)λ(y)v(x)w(x)dxdy.
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This completes the proof of (2.6.1) that

E[ψ̂(p|r, s)]

=

∫ ∫
L(p)
g (x− y)λ(x)λ(y)v(x)w(x)dxdy

=

∫ ∫
Lg(x− y)λ(x)λ(p)(y)v(x)w(x)dxdy

=

∫ ∫
v(x)L(u)λ(x)(λ(p)(x) + 1/2(ug)2λ(p+2)(x) + o(g2))w(x)dxdu

=

∫
λ(x)λ(p)(x)v(x)w(x)dx+

g2

2
µ2,L(u)ψ(p+ 2|r, s) + o(g2).

Notice that by partial integration and Assumption A,
∫
λ(x)v(x)w(x)

∫
L

(p)
g (x−y)λ(y)dydx

equals to ∫
λ(x)v(x)w(x)

∫
L(p−1)
g (x− y)λ(1)(y)dydx,

thus the last third equality can be finally proved by the p times partial integration in this

way.

To establish (2.6.2) and (2.6.3) note that |Fn(x) − F (x)| = Op(n
−1/2). Therefore the

leading term of the variance expression of ψ̂(p|r, s) will not change if one replaces 1−Fn(x)

appearing in ψ̂(p|r, s) by 1− F (x). Thus,

V ar{ψ̂(p|r, s)} = I + II + III + IV + V + VI

where

I =
n(n− 1)

n4
V ar

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

}
,

II =
n(n− 1)

n4
Cov

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))
,

L
(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))

}
,

III =
n(n− 1)(n− 2)

n4

×Cov

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))
,

L
(p)
g (Xi −Xk)v(Xi)

(1− F (Xi))(1− F (Xk))

}
,
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IV =
2n(n− 1)(n− 2)

n4

×Cov

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))
,

L
(p)
g (Xk −Xi)v(Xk)

(1− F (Xi))(1− F (Xk))

}
,

V =
n(n− 1)(n− 2)

n4

×Cov

{
L

(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))
,

L
(p)
g (Xk −Xi)v(Xk)

(1− F (Xi))(1− F (Xk))

}

and

VI =
n(n− 1)(n− 2)(n− 3)

n4

×Cov

{
L

(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))
,

L
(p)
g (Xk −Xl)v(Xk)

(1− F (Xl))(1− F (Xk))

}
.

Now we analyze I-VI separately. Before that, the two critical points needed to be

highlighted and those are

1. L
(p)
g (x− y) = 1

gp+1L
(p)
(
x−y
g

)
and L(·) is a even function.

2. The derivative of an even function is an odd function and vice versa.

For term I, as n→∞,

n− 1

n3
V ar

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

}

=
1

n2
E

(
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

)2

− 1

n2

{
E

(
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

)}2

.

By setting x = y + ug, the first term in the last line can be written as

1

n2
E

(
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

)2

=
1

n2

∫ ∫
[L(p)

g (x− y)]2v2(x)
λ(x)λ(y)

(1− F (x))(1− F (y))
w(x)w(y)dxdy

=
1

n2g2p+1

∫
L(p)(u)2v2(y + ug)

λ(y + ug)λ(y)

(1− F (y + ug))(1− F (y))
w(y)dydu.
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When p is even, by the standard Taylor series expansion, the first term of I can be

expressed as

1

n2g2p+1
R(L(p))

∫
v2(y)

(
λ(y)

1− F (y)

)2

w(y)dy + o

(
1

n2g2p+1

)
.

When p is odd, one expands the equation to its 2nd order to get

1

n2g2p+1
R(L(p))

∫
v2(y)

{
λ(y)

1− F (y)

}2

w(y)dy

+
µ

2,L(p)2

2n2g2p−1

∫
λ(y)

1− F (y)

{
v2(y)λ(y)

1− F (y)

}′′
w(y)dy + o

(
1

n2g2p−1

)
.

For term II, as n→∞, it can be written as

1

n2
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

L
(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))

}

− 1

n2
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

}
E

{
L

(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))

}
.

The second term in the last line equals to − 1
n2

{
E
(

L
(p)
g (Xi−Xj)v(Xi)

(1−F (Xi))(1−F (Xj))

)}2

and the first

term can be written as

1

n2
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

L
(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))

}

=
1

n2g2p+2

∫ ∫
L(p)

(
x− y
g

)
L(p)

(
y − x
g

)
v(x)v(y)λ(x)λ(y)

(1− F (x))(1− F (y))
w(x)w(y)dxdy.

When p is even, one has L(p)
(
x−y
g

)
= L(p)

(
y−x
g

)
, and

1

n2
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

L
(p)
g (Xj −Xi)v(Xj)

(1− F (Xi))(1− F (Xj))

}

=
1

n2g2p+1
R(L(p))

∫
v2(y)

(
λ(y)

1− F (y)

)2

w(y)dy + o

(
1

n2g2p+1

)
.
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When p is odd, one has L(p)
(
x−y
g

)
= −L(p)

(
y−x
g

)
, and by setting x = y + ug we obtain,

1

n2
E

{
L

(p)
g (x− y)v(x)

(1− F (x))(1− F (y))

L
(p)
g (y − x)v(y)

(1− F (x))(1− F (y))

}

= − 1

n2g2p+1

∫
L(p)(u)2v(y + ug)v(y)λ(y + ug)λ(y)

(1− F (y + ug))(1− F (y))
w(y)dydu

= − 1

n2g2p+1
R(L(p))

∫
v2(y)

{
λ(y)

(1− F (y))

}2

w(y)dy

−
µ

2,L(p)2

2n2g2p−1

∫
v(y)λ(y)

1− F (y)

{
v(y)λ(y)

1− F (y)

}′′
w(y)dy + o

(
1

n2g2p−1

)
.

For Term III, as n→∞, it approximates to

1

n
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

L
(p)
g (Xi −Xk)v(Xi)

(1− F (Xi))(1− F (Xk))

}

− 1

n
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

}
E

{
L

(p)
g (Xi −Xk)v(Xi)

(1− F (Xi))(1− F (Xk))

}
.

The second term of its expression equals to − 1
n

{
E
(

L
(p)
g (Xi−Xj)v(Xi)

(1−F (Xi))(1−F (Xj))

)}2

. The first term

can be written as

1

n

∫ ∫ ∫
L(p)
g (x− y)L(p)

g (x− z)
v2(x)λ(x)λ(y)λ(z)

1− F (x)
w(x)dxdydz.

By setting y = x− gu and z = x− gv, here irrespective of p is even or odd, the first term

of the above equation equals,

1

n

∫ ∫ ∫
L(p)
g (x− y)L(p)

g (x− z)
v2(x)λ(x)λ(y)λ(z)

1− F (x)
w(x)dxdydz

=
1

n

∫ ∫ ∫
L(u)L(v)

v2(x)λ(x)

(1− F (x))
λ(p)(x− gu)λ(p)(x− gv)w(x)dxdudv

=
1

n

∫
v2(x)λ(x)

(1− F (x))
(λ(p)(x))2w(x)dx+ o

(
1

n

)
.
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Using the similar arguments one can show that, the terms IV and V reduce to,

IV =



2
n

∫
(v(x)λ(x))(p)λ(p)(x) v(x)λ(x)

(1−F (x))
w(x)dx

− 2
n

{
E
{

L
(p)
g (Xi−Xj)v(Xi)

(1−F (Xi))(1−F (Xj))

}}2

+ o( 1
n
), when p is even

− 2
n

∫
(v(x)λ(x))(p)λ(p)(x) v(x)λ(x)

(1−F (x))
w(x)dx

− 2
n

{
E
{

L
(p)
g (Xi−Xj)v(Xi)

(1−F (Xi))(1−F (Xj))

}}2

+ o( 1
n
), when p is odd

and

V =
1

n

∫
{(v(x)λ(x))(p)}2 λ(x)

(1− F (x))
w(x)dx

− 1

n

{
E

{
L

(p)
g (Xi −Xj)v(Xi)

(1− F (Xi))(1− F (Xj))

}}2

+ o

(
1

n

)
,

irrespective of whether p is odd or even.

Further it is straightforward to see that term VI is 0 since
L
(p)
g (Xj−Xi)v(Xj)

(1−F (Xi))(1−F (Xj))
and

L
(p)
g (Xl−Xk)v(Xl)

(1−F (Xk))(1−F (Xl))
are independent.

Thus when p is even, we get

V ar(ψ̂(p|r, s))

=
2

n2g2p+1
R(L(p))

∫
v2(x)

{
λ(x)

1− F (x)

}2

w(x)dx

+
1

n

∫
λ(x)

1− F (x)
{(v(x)λ(x))(p) + v(x)λ(p)(x)}2w(x)dx− 4

n
{E(ψ̂(p|r, s))}2

+o

(
1

n
+

1

n2g2p+1

)
,
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and when p is odd,

V ar(ψ̂(p|r, s))

=
µ

2,L(p)2

2n2g2p−1

∫
λ(x)

1− F (x)

{{
v2(x)λ(x)

1− F (x)

}′′
− v(x)

{
v(x)λ(x)

1− F (x)

}′′}
w(x)dx

+
1

n

∫
λ(x)

1− F (x)
{(v(x)λ(x))(p) − v(x)λ(p)(x)}2w(x)dx− 4

n
{E(ψ̂(p|r, s))}2

+o

(
1

n
+

1

n2g2p−1

)
.

Hence the result follows.

Proof. of Theorem 2.3

Clearly, E[(ψ̂1 − ψ1)(ψ̂2 − ψ2)] = E(ψ̂1ψ̂2)− Eψ̂1Eψ̂2 +Bias(ψ̂1)Bias(ψ̂2).

Since |Fn(x) − F (x)| = Op(n
−1/2), we could replace 1 − Fn(x) appearing in ψ̂(p|r, s)

by 1− F (x). Thus,

E[ψ̂1ψ̂2] = E

{
1

n4

∑∑
i1 6=j1

L
(p1)
g (Xi1 −Xj1)v1(Xi1)

(1− Fn(Xi1))(1− Fn(Xj1))

×
∑∑

i2 6=j2

L
(p2)
g (Xi2 −Xj2)v2(Xi2)

(1− Fn(Xi2))(1− Fn(Xj2))

}
= I+II+III+IV+V+VI+VII

where

I =
n(n− 1)

n4
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xi −Xj)v1(Xi)v2(Xi)

(1− F (Xi))2(1− F (Xj))2

}
,

II =
n(n− 1)

n4
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xj −Xi)v1(Xi)v2(Xj)

(1− F (Xi))2(1− F (Xj))2

}
,

III =
n(n− 1)(n− 2)

n4
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xk −Xi)v1(Xi)v2(Xk)

(1− F (Xi))2(1− F (Xj))(1− F (Xk))

}
,

IV =
n(n− 1)(n− 2)

n4
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xi −Xk)v1(Xi)v2(Xi)

(1− F (Xi))2(1− F (Xj))(1− F (Xk))

}
,

V =
n(n− 1)(n− 2)

n4
E

{
L

(p1)
g (Xj −Xi)L

(p2)
g (Xi −Xk)v1(Xj)v2(Xi)

(1− F (Xi))2(1− F (Xj))(1− F (Xk))

}
,
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VI =
n(n− 1)(n− 2)

n4
E

{
L

(p1)
g (Xj −Xi)L

(p2)
g (Xk −Xi)v1(Xj)v2(Xk)

(1− F (Xi))2(1− F (Xj))(1− F (Xk))

}
and

VII =
n(n− 1)(n− 2)(n− 3)

n4

E

{
L

(p1)
g (Xj −Xi)v1(Xj)

(1− F (Xj))(1− F (Xi))

}
E

{
L

(p2)
g (Xl −Xk)v1(Xl)

(1− F (Xl))(1− F (Xk))

}
.

Since the derivations of the terms III - VI are identical, we only analyze term III to

illustrate.

By setting y = x− gu, z = x+ gv, term III approximates to

1

n
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xk −Xi)v1(Xi)v2(Xk)

(1− F (Xi))2(1− F (Xj))(1− F (Xk))

}

=
1

n

∫ ∫ ∫
L

(p1)
g (x− y)L

(p2)
g (z − x)v1(x)v2(z)

1− F (x)
λ(x)λ(y)λ(z)w(x)dxdydz

=
1

n

∫ ∫ ∫
(−1)p2Lg(x− y)Lg(z − x)v1(x)

1− F (x)

× λ(x)λ(p1)(y)[v2(z)λ(z)](p2)w(x)dxdydz

=
(−1)p2

n

∫
v1(x)

1− F (x)
λ(x)λ(p1)(x)[v2(x)λ(x)](p2)w(x)dx+ o(n−1). (2.7.5)

Using the similar argument get

IV =
1

n

∫
v1(x)v2(x)λ(x)

1− F (x)
λ(p1)(x)λ(p2)(x)dx+ o(n−1), (2.7.6)

V =
(−1)p1

n

∫
v2(x)λ(x)

1− F (x)
λ(p2)(x)[v1(x)λ(x)](p1)dx+ o(n−1), (2.7.7)

and

VI =
(−1)p1+p2

n

∫
λ(x)

1− F (x)
[v1(x)λ(x)](p1)[v2(x)λ(x)](p2)dx+ o(n−1). (2.7.8)
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The expectations involved in terms I and II are more tricky for being dependent on

odd or evenness of p1 and p2. Set x = gu+ y and then

I =
1

n2
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xi −Xj)v1(Xi)v2(Xi)

(1− F (Xi))2(1− F (Xj))2

}

=
1

n2gp1+p2+2

∫ ∫
L(p1)

(
x− y
g

)
L(p2)

(
x− y
g

)
× v1(x)v2(x)λ(x)λ(y)

(1− F (x))(1− F (y))
w(x)w(y)dxdy

=
1

n2gp1+p2+1

∫
L(p1)(u)L(p2)(u)du

∫
v1(y)v2(y)

{
λ(y)

1− F (y)

}2

w(y)dy

+
1

n2gp1+p2

∫
L(p1)(u)L(p2)(u)udu

∫
λ(y)

1− F (y)

{
v1(y)v2(y)λ(y)

1− F (y)

}′
w(y)dy

+
1

2n2gp1+p2−1

∫
L(p1)(u)L(p2)(u)u2du

∫
λ(y)

1− F (y)

{
v1(y)v2(y)λ(y)

1− F (y)

}′′
w(y)dy.

(2.7.9)

Similarly,

II =
1

n2
E

{
L

(p1)
g (Xi −Xj)L

(p2)
g (Xj −Xi)v1(Xi)v2(Xj)

(1− F (Xi))2(1− F (Xj))2

}

=
1

n2gp1+p2+2

∫ ∫
L(p1)

(
x− y
g

)
× L(p2)

(
y − x
g

)
v1(x)v2(y)λ(x)λ(y)

(1− F (x))(1− F (y))
w(x)w(y)dxdy

=
(−1)p2

n2gp1+p2+1

∫
L(p1)(u)L(p2)(u)du

∫
v1(y)v2(y)

{
λ(y)

1− F (y)

}2

w(y)dy

+
(−1)p2

n2gp1+p2

∫
L(p1)(u)L(p2)(u)udu

∫
v2(y)λ(y)

1− F (y)

{
v1(y)λ(y)

1− F (y)

}′
w(y)dy

+
(−1)p2

2n2gp1+p2−1

∫
L(p1)(u)L(p2)(u)u2du

∫
λ(y)v2(y)

1− F (y)

{
v1(y)λ(y)

1− F (y)

}′′
w(y)dy.

(2.7.10)

Now consider three different cases namely, when both p1 and p2 are even, when both p1

and p2 are odd and when p1 + p2 is odd.
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When p1 and p2 are both even, from (2.7.9) and (2.7.10) the sum of terms I and II is

2

n2gp1+p2+1

∫
L(p1)(u)L(p2)(u)du

∫
v1(y)v2(y)

{
λ(y)

1− F (y)

}2

w(y)dy

+o

(
1

n2gp1+p2+1

)
.

When p1 and p2 are both odd, we have that
∫
L(p1)(u)L(p2)(u)udu = 0. Hence from (2.7.9)

and (2.7.10) the sum of terms I and II reduces to

1

2n2gp1+p2−1

∫
L(p1)(u)L(p2)(u)u2du

∫
λ(y)

1− F (y)

{[
v1(y)v2(y)λ(y)

1− F (y)

]′′
−v2(y)

[
v1(y)λ(y)

1− F (y)

]′′}
w(y)dy + o

(
1

n2gp1+p2−1

)
.

Finally when p1 + p2 is odd, without losing generalities, by assuming that p2 is odd and

p1 is even, the sum of terms I and II is

1

n2gp1+p2

∫
L(p1)(u)L(p2)(u)udu

∫
λ(y)

1− F (y)

{[
v1(y)v2(y)λ(y)

1− F (y)

]′
+(−1)p2v2(y)

[
v1(y)λ(y)

1− F (y)

]′}
w(y)dy + o

(
1

n2gp1+p2

)
.

Further, it is easy to show that as n→∞, VII is asymptotically equivalent to Eψ̂1Eψ̂2.

Then the conclusion of Theorem 2.3 follows once we add up the asymptotic expressions

of the terms I to VI given in (2.7.5)-(2.7.10).

Proof. of Theorem 2.4
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Notice that

∫ ∫
m2|3(u, x)2w(x)dudx

=

∫ ∫ {
L(3)(u)u

(
q′1(x)λ(x)

1− F (x)

)
+ 2(L(2)(u))

(
q2(x)λ(x)

1− F (x)

)}2

w(x)dxdu

= µ2,(L(3))2

∫ (
q′1(x)λ(x)

1− F (x)

)2

w(x)dx+ 4R(L(2))

∫ (
q2(x)λ(x)

1− F (x)

)2

w(x)dx

+4

∫
L(3)(u)L(2)(u)udu

∫ (
λ(x)

1− F (x)

)2

q′1(x)q2(x)w(x)dx.

Since
∫ [

q1(x)q′1(x)
(

λ(x)
1−F (x)

)2
]′
w(x)dx = 0 as limx→T q1(x)q′1(x)

(
λ(x)

1−F (x)

)2

= 0 and

limx→0 q1(x)q′1(x)
(

λ(x)
1−F (x)

)2

= 0, so

∫ ∫
m2|3(u, x)2w(x)dudx

= µ2,(L(3))2

∫ {
(q′1(x))2

(
λ(x)

1− F (x)

)2

+

(
q1(x)q′1(x)

(
λ(x)

1− F (x)

)2
)′}

w(x)dx

+4R(L(2))

∫
q2

2(x)

[
λ(x)

1− F (x)

]2

w(x)dx

+4

∫
L(3)(u)L(2)(u)udu

∫ [
λ(x)

1− F (x)

]2

q′1(x)q2(x)w(x)dx

= µ2,(L(3))2

∫
λ(x)

1− F (x)

{
2(q′1(x))2 λ(x)

1− F (x)
+ q1(x)q′′1(x)

λ(x)

1− F (x)

+2q1(x)q′1(x)

(
λ(x)

1− F (x)

)′}
w(x)dx+ 4R(L(2))

∫
q2

2(x)

[
λ(x)

1− F (x)

]2

w(x)dx

+4

∫
L(3)(u)L(2)(u)udu

∫ [
λ(x)

1− F (x)

]2

q′1(x)q2(x)w(x)dx.

With reference to (2.6.4), one can easily show the first equation of Theorem 2.4 holds for

MSE(N̂). The second equation for D̂ is straightforward,l so it is not proved here.

2.8 Discussions

In this chapter, we began with the introduction of several multiplicative semiparametric

estimates in density estimation and illustrated a generalized estimate defined by Naito[97]
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which includes the previous ones as its special cases.

Then we propose a multiplicative semiparametric estimate in the hazard rate setting

which could be seen as the generalization of Naito’s work. The semiparametric estimate

starts from a crude guess of the true hazard rate function but modified by a nonparametric

correction factor. From our example studies, we show that the shape parameter α plays

an important role in determining the accuracy of the estimate.

In the following section, we also investigated the asymptotic properties of the general-

ized estimate and found that the proposed estimator performs better than the traditional

nonparametric kernel estimate if the parametric guess of the data locates very close to the

true model. Even if the assumed parametric model is not correct, the resulted estimate

will converge to the true function with the same rate as the nonparametric counterpart.

In the end of this chapter, we proposed two adaptive estimates of the shape parameter α

and the bandwidth h using the ‘plug-in’ method.

In conclusion, the main findings of this chapter are summarized in Fig 2.1. In the next

chapter, we will discuss the standard kernel hazard rate estimator in terms of L1 error

criterion.
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What is already known on this topic:

• In density estimation, one common semiparametric method is to fit the data with
an assumed parametric model and then use a nonparametric correction factor to modify
the model that one started with.

•There are various multiplicative correction factor approaches in the settings of
density estimation and Naito[97] unifies different approaches of devising multiplicative
correction factors.

What this study adds

• We generalize Naito’s approach to the setting of hazard rate estimation using the
survival data without censorship.

• We use the example studies to exhibit and discuss the role of the shape parameter α
that plays in the multiplicative semiparametric estimators.

• The asymptotic analysis proves that the proposed estimator performs better than
its nonparametric counterpart when our prior assumption is close to the true model.

• We introduce the ‘plug-in’ approaches to estimate the shape parameter α and the
bandwidth h of the generalized estimator.

Table 2.1: Summary of the main issues and key findings in Chapter 2.
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CHAPTER 3

L1 ERRORS ANALYSIS IN KERNEL ESTIMATION

3.1 Introduction

We have mentioned general error criterion to measure the accuracy of a kernel estimate

in Section 1.4. Usually, in kernel estimation, for its technical tractability and easy under-

standing, L2 error is most commonly used. For the same reasons, in the last chapter, we

utilize the L2 error criterion, namely the MISE, E
∫
|λ̂(x) − λ(x)|2w(x)dx to judge the

performance of the semiparametric estimator λ̂(x) of the true hazard rate function λ(x).

The bandwidth and shape parameters are then obtained so as to optimize L2 error.

However see Devroye and Györfi[36] for the shortcomings of L2 error and a case for

L1 error,

L1(f, f̂) =

∫
|f̂(x)− f(x)|dx,

to assess the accuracy of a kernel density estimator. In particular, Devroye and Györfi[36]

show that L1 error is, well-defined and invariant under monotone transformation of the

coordinate axes. To make it precise, consider two d-dimensional random vectors X and Y

with densities f and g respectively. Now suppose a transformation T follows {T−1B|B ∈

B} ∈ B where B is the class of all Borel sets of Rd and the densities of T (X) and T (Y )

are f ∗ and g∗, then regardless of T , one has

∫
|f − g| =

∫
|f ∗ − g∗|.
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Specially, for d = 1, the L1 distance is invariant under continuous strictly monotone

transformation.

Of the recent developments of the L1 analysis of a kernel density estimator, it is

important to mention the work of Hall and Wand[51]. They have considered a simple,

rapidly converging, iterative algorithm allowing for the minimization of L1 distance w.r.t

bandwidth h in the setting of density estimation. Based on that, they also developed an

adaptive (data-driven) bandwidth choice which minimizes L1 errors asymptotically.

The reasons for which Devroye and Györfi have advocated L1 error criteria in density

estimation settings apply to hazard rate estimation as well. Therefore in this chapter, we

extend the concept of the L1 optimal kernel density estimation to kernel-based hazard

rate estimation. For that in Section 3.2 we propose a general asymptotic expression for

the L1 distance between the true hazard rate function λ(x) and a kernel estimator λ̂(x)

and then derive the theoretical asymptotic L1 optimal bandwidth. We then utilize the

Newton method to develop an iterative algorithm to calculate the asymptotic L1 optimal

bandwidth in Section 3.3. Unfortunately, due to the fact that the derived algorithm

depends on the unknown terms such as the derivatives of the true hazard rate function it

cannot be implemented in practice. We, therefore, propose a data-driven version of the

L1 optimal bandwidth in Section 3.4. The detailed proofs of the main theorems are given

in Section 3.5 and in the last section, the main findings of this chapter are concluded.

3.2 Hazard rate estimation and its L1 properties

In this chapter, we focus on the hazard rate function over a bounded support of x, that

is,

λ(x) =
f(x)

1− F (x)
for 0 < x < T

where T = inf{x|1 − F (x) < ε} for ε > 0, can be large enough. The reasons to consider

the truncated hazard rate function here are that the true hazard rate function λ(x) is not

necessarily a bounded function at the right end and that a kernel estimator is expected
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to be unreliable for large x. The unreliability mentioned in the latter reason stems from

the fact that the variance of a kernel estimator is very high for large x, see for example

Theorem 1.2.

Recall that

w(x) =


1, if 0 < x < T

0, otherwise.

Suppose that

λ̂(x) =
1

n

n∑
i=1

(
Kh(x−Xi)

1− Fn(Xi)

)
=

n∑
i=1

(
Kh(x−X(i))

n− i+ 1

)
.

This estimator will be referred to as the standard kernel hazard rate estimator. For λ̂(x),

the bias and standard deviation are of the same order of magnitude. Let δ denote the

common order of magnitude. Lo et al.[85] showed that λ̂(x) is asymptotically normally

distributed, hence it can be represented as

λ̂(x)− λ(x) = δ(b(x)− σ(x)Z(x)) (3.2.1)

where δb(x) is asymptotic to the bias of λ̂, δσ(x) is asymptotic to the standard deviation

of λ̂, and Z = Z(x) is the density function of Normal distribution (0,1). From (3.2.1), we

may write the L1 error of λ̂(x) as

∫
E|λ̂(x)− λ(x)|w(x)dx = δη + o(δ)

where η =
∫
w(x)dx

∫∞
−∞ |b(x)− σ(x)z|φ(z)dz.

From Theorem 1.2, by setting the bandwidth hu = n−1/5(u)2, asymptotically one can

represent that δ by n−2/5, b(x) by (u2)2b0(x), and σ(x) by (u2)−1/2σ0(x) where u > 0 is

a parameter not depending on x, b0(x) =
µ2,K

2
λ′′(x) and σ0(x) =

√
R(K)λ(x)√
(1−F (x))

which are
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independent with u. Hence η can be seen as a function of u and we have

η(u) =

∫
w(x)dx

∫ ∞
−∞
|u4b0(x)− u−1σ0(x)z|φ(z)dz.

For a formal derivation to show that η could be represented by η(u), we need the following

assumptions.

A1. K(·) is a compactly supported, symmetric function on R, with Hölder continuous

derivatives, and satisfies

∫
K(u)du = 1,

∫
u2K(u)du 6= 0.

.

A2. The density function f(x) and hazard rate function λ(x) are twice differentiable,

and f ′′(x) and λ′′(x) are uniformly continuous.

A3. f(x) and λ(x) are bounded and continuous over a bounded support.

Then we have the following theorem which gives precise asymptotic formula for the in-

tergraded mean absolute error for λ̂(x).

Theorem 3.1. Under the assumptions, A1, A2 and A3, we have

n2/5

∫
E|λ̂(x|hu)− λ(x)|w(x)dx = η(u) + o(1)

uniformly in u ∈ [C−1, C], for each C > 1.

Proof. The proof is given in Section 3.5.

Recall that in the standard kernel hazard rate estimation, by balancing the bias against

standard deviation of the estimator one obtains the bandwidth which when used gives the

‘optimal’ estimator. That is the estimator which minimizes the L2 errors, MISE. On the

similar lines here we propose to find the bandwidth which minimizes integrated absolute

86



error and thus the optimal kernel estimator in L1-sense. For that let u∗ be the value of u

which minimizes η(u). Then we show that the corresponding bandwidth hu∗ = n−1/5(u∗)2

leads to the optimal kernel estimator in sense of L1 errors.

Theorem 3.2. Under the assumptions A1, A2 and A3, by setting u∗ to be the value of u

which minimizes η(u), we have

inf
h>0

∫
E|λ̂(x|h)− λ(x)|w(x)dx ∼ n−2/5η(u∗). (3.2.2)

Proof. The proof is given in Section 3.5.

Remark 3.1. The expected L1 error of a standard kernel hazard rate estimator can be

minimized asymptotically by balancing the order of magnitude of its bias and standard

deviation. From the above theorem clearly, as in L1 density estimation, the optimal value

of the bandwidth in L1 hazard rate estimator is also of the functional form n−1/5u2 where

u may vary.

3.3 Theoretical L1 optimal bandwidth

From Theorem 3.1 and 3.2, we showed that if there is a point u∗ which minimizes η(u),

then the bandwidth u∗ leads to the optimal kernel hazard rate estimator in sense of L1

error. In this section , we show the existence and uniqueness of u∗ and then develop a

simple and rapid converging, iterative way to calculate u∗.

Recall that by balancing the order of magnitude of the bias and standard deviation of

a kernel hazard rate estimator, we have the L1 error as

∫
E|λ̂(x)− λ(x)|w(x)dx = δη + o(δ)

where η =
∫
w(x)dx

∫∞
−∞ |b(x)− σ(x)z|φ(z)dz.
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We simply it as

δη = δ

∫
w(x)dx

∫ b(x)/σ(x)

−∞
(b(x)− σ(x)z)φ(z)dz

−δ
∫
w(x)dx

∫ ∞
b(x)/σ(x)

(b(x)− σ(x)z)φ(z)dz

= 2δ

∫
w(x)dx

∫ b(x)/σ(x)

−∞
(b(x)− σ(x)z)φ(z)dz

= 2δ

∫
w(x)dx

∫ b(x)/σ(x)

−∞
(b(x)− σ(x)z)dΦ(z)

= 2δ

∫
w(x)dx

[(
lim

z→b(x)/σ(x)
((b(x)− σ(x)z)Φ(z))− lim

z→−∞
((b(x)− σ(x)z)Φ(z))

)
+

∫ b(x)/σ(x)

−∞
Φ(z)σ(x)dz

]
= 2δ

∫
σ(x)w(x)dx

∫ b(x)/σ(x)

−∞
Φ(z)dz

where Φ is the c.d.f of a standard normal distribution. From Theorem 3.1, we have proved

that by setting the bandwidth hu = n−1/5u2, approximately one can represent b(x) by

u4b0(x) and σ(x) by u−1σ0(x) in the functional form of δη and thus have

δη(u) = 2δ

∫
u−1σ0(x)w(x)dx

∫ u5b0(x)/σ0(x)

−∞
Φ(z)dz

= 2δ

∫
σ0(x)w(x)dx

∫ u4b0(x)/σ0(x)

−∞
Φ(uz)dz.

Therefore to minimize the integrated mean absolute error of λ̂(x), under the case that

its bias and standard deviation are of the same order, is to minimize η(u) w.r.t u. This

step can be implemented by letting the differential of η(u) w.r.t u to be equivalent to 0.

Noting that
∫
z<y

zφ(z)dz = −φ(y), it gives

1

2
η′(u)

=

∫ [ ∫ u4b0(x)/σ0(x)

−∞
zφ(uz)dz + 4u3 b0(x)

σ0(x)
× Φ(u5b0(x)/σ0(x))

]
σ0(x)w(x)dx

= u−2Λ(u5)
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where

Λ(v) =

∫
[4vb0(x)Φ(vb0(x)/σ0(x))− σ0(x)φ(vb0(x)/σ0(x))]w(x)dx. (3.3.1)

Let u∗ be a solution to Λ(u5) = 0. From the expression of Λ(v), it is very difficult

to find any explicit solution of u to Λ(u5) = 0 directly. Hence to solve this equation, we

employ the Newton’s method. The next theorem demonstrates that there exists a unique

and positive solution u∗ to Λ(u5) = 0.

Theorem 3.3. For a standard kernel hazard rate estimator λ̂, if the orders of its bias

and standard error are balanced against each other, then there always exists a unique and

positive solution u∗ which minimizes the leading term of its integrated mean absolute error

term, δη(u).

Proof. The proof is given in Section 3.5.

Remark 3.2. For a kernel hazard rate estimator with h = n−1/5u2,

η(u) = 2

∫
u−1σ0(x)w(x)dx

∫ u5b0(x)/σ0(x)

−∞
Φ(z)dz

where b0(x) =
µ2,K

2
λ′′(x) and σ0(x) =

√
R(K)λ(x)√
(1−F (x))

, let u∗ denote the value of u which

minimizes η(u) for a particular second order kernel K. Also let ηK(u) denote the function

η(u) when kernel K is used. Let c1 = µ2,K and c2 = (R(K))1/2 for kernel K while c0,1 and

c0,2 being the versions of c1 and c2, respectively, for another kernel function K0. Then for

any u∗ which minimizes ηK(u),

u∗0 = u∗{(c0,2c1)/(c2c0,1)}1/5

minimizes the quantity of ηK0(u0). That is to say that once the value of u∗ for a particular

kernel is known, the optimal integrated mean absolute error bandwidth of other kernel

functions can be derived easily.
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Remark 3.3. From the last remark, it is clear that by changing 2nd-order kernel from

say K to K0, the integrated mean absolute error of a kernel estimator alters only by the

quantities involving c1 and c2. That is to say, when we change the kernel function from

K to K0 that c0,1 = a1c1 and c0,2 = a2c2 for constants a1 and a2, then

ηK0(u0) = (a1a
4
2)1/5ηK(u).

It implies that infu ηK0(u) = (a1a
4
2)1/5 infu ηK(u), and the optimal kernel is the one which

minimizes a1a
4
2.

With the setting of L(v) = v−1Λ(v), let

H(v) = L(v)/L′(v)

=

[∫
(4b0(x)Φ(vb0(x)/σ0(x))− v−1σ0(x)φ(vb0(x)/σ0(x)))w(x)dx

]
×
[∫

(5b0(x)2σ0(x)−1 + σ0(x)v−2)φ(vb0(x)/σ0(x))w(x)dx

]−1

.

If v′ is an approximation to the solution of L(v) = 0 then v′′ = v′ −H(v′) is a better

approximation, and approximations converges to one point v∗quickly on iteration. Hence

the optimal value u∗ which minimizes η(u) is given by u∗ = (v∗)−1/5.

Based on the above derivations, Newton method gives the the way to determine the

optimal value of u∗ which minimizes η(u). h = n−1/5(u∗)2 is the optimal integrated

mean absolute bandwidth of a kernel hazard rate estimator and u∗ can be obtained by

minimizing η(u). However the algorithm could not be implemented directly since the

derivation procedure of u∗ using the Newton method above still depends on the unknown

terms in the functional forms of b0(x) and σ0(x). To further address this issue, in the

next section, we propose a data-driven bandwidth that can be used in practice and which

does minimize the integrated mean absolute error in an asymptotic sense.
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3.4 Adaptive L1 optimal bandwidth selection

Still represent the expected L1 distance of a kernel hazard rate estimator as J(h) =∫
E|λ̂(x|h)− λ(x)|w(x)dx. As showed in Theorem 3.1, when hu = n−1/5u2, then

J(hu) ∼ n−2/5η(u)

uniformly in u ∈ [C−1, C] for C > 1 and further by setting u∗ be the unique value to

minimize η(u), infh>0 J(h) ∼ n−2/5η(u∗).

Unfortunately, both b0(x) =
µ2,K

2
λ′′(x) and σ0(x) =

√
R(k)λ(x)
1−F (x)

are not known because

of the presence of the unknown terms λ′′(x), (λ(x))1/2 and F (x). So any attempt at

estimating u∗ should involve explicit estimation of the unknown terms. In this section,

we utilize the simple plug-in method to estimate the unknown terms. Specifically, F (x)

is replaced by its empirical cdf Fn(x) while λ(p)(x) for positive integer p and (λ(x))1/2 are

estimated by

λ̂
(p)
1 (x) =

1

nhp+1
1

n∑
i=1

K
(p)
1 {(x−Xi)/h1}

1− Fn(Xi)

and

(λ̂2(x))1/2 =

[
1

nh2

n∑
i=1

K2{(x−Xi)/h2}
1− Fn(Xi)

]1/2

respectively. Note that one could simply take the pth derivative of λ̂, λ̂(p)(x) and the

square-root of λ̂, (λ̂(x))1/2 as estimators for λ(p)(x) and (λ(x))1/2. However, to allow the

possibilities of using a different kernel than the one used to define λ̂(x), we have λ̂
(p)
1 (x)

as the derivative of the standard kernel estimator with kernel K1 and (λ̂2(x))1/2 as the

square-root of the standard kernel estimator with kernel K2.

The strong consistency properties of the above estimators of λ(p)(x) and (λ(x))1/2 are

demonstrated in the following theorem.
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Theorem 3.4. Assume that K
(p)
1 is well-defined and bounded and E(|X1|γ) <∞ for some

γ > 1. Then under the assumptions A1, A2, A3, as h1, h2 → 0, nh2p+1
1 / log n→∞

∫
|λ̂(p)

1 (x)− λ(p)(x)|w(x)→ 0 a.s. (3.4.1)

and

∫
|λ̂1/2

2 (x)− λ1/2(x)|w(x)→ 0 a.s.. (3.4.2)

Proof. The proof is given in Section 3.5.

Remark 3.4. The condition E(|X|γ) where γ > 1 imposed in this theorem is to exclude

the probability models for which E(|X|) =∞.

Remark 3.5. In estimation of both (λ(x))(p) and (λ(x))1/2, we need to use the initial

(pilot) bandwidths, h1 and h2. See Section 3.2.1 of [166] for the details.

From Theorem 3.4, it is easy to verify that the plug-in estimators of b̂0(x) and σ̂0(x)

are consistent in the sense that,

∫
(|b̂0 − b0|+ |σ̂0 − σ0|)w(x)→ 0 a.s. (3.4.3)

as n→∞.

We could define û∗ to be the value of u minimizing η̂(u) with b̂0 and σ̂0, and ĥ∗ be

the corresponding optimal data-driven integrated mean absolute bandwidth. In order to

identify whether û∗ is also optimal in the sense of integrated mean absolute errors as

n→∞, we summarize the important asymptotic properties of û∗ in the next theorem.

Theorem 3.5. Under the assumptions, A1, A2 and A3, we have

J(ĥ∗)/ inf
h>0

J(h)→ 1 a.s.

as n→∞.
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Proof. The proof is given in Section 3.5.

From Theorem 3.5, it is clear that the data-driven bandwidth ĥ∗ proposed in this

section is asymptotically optimal w.r.t integrated mean absolute error in the setting of

hazard rate estimation.

However, it is important to keep in mind that ĥ∗ is a random variable that depends on

the underlying data sample X . That is to say, in a particular data sample, we may be also

interested to see whether the proposed optimal bandwidth also minimizes the integrated

absolute error,

Ĵ(h) =

∫
|λ̂(x|h)− λ(x)|w(x)dx.

between the estimator and the true hazard rate function. So it is more natural for us

to ask a question that whether ĥ∗ derived from one dataset is asymptotically as good as

the true optimal bandwidth in minimizing the integrated absolute error, Ĵ(h)? In others

words, that is whether

Ĵ(ĥ∗)/ inf
h>0

J(h)→ 1 a.s. (3.4.4)

holds as n→∞. If that is the case, it will provide us another evidence to believe that ĥ∗

should be an optimal L1 error bandwidth for a hazard rate estimator. So as to address this

issue, we show that (3.4.4) does hold under appropriate conditions in the next theorem,

Theorem 3.6. Assume A1, A2 and A3, then

{inf
h>0

Ĵ(h)}/{inf
h>0

J(h)} → 1 and Ĵ(ĥ∗)/J(ĥ∗)→ 1 a.s. (3.4.5)

as n→∞.

Proof. The proof is given in Section 3.5.

In summary, from Theorem 3.5 and Theorem 3.6, we have demonstrated that with
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the consistent estimators of b0(x) and σ0(x), the obtained bandwidth ĥ∗ minimizes the

asymptotic integrated mean absolute error and integrated absolute error as n → ∞.

That is to say, the adaptive bandwidth choice, ĥ∗ can be seen as the optimal bandwidth

in minimizing the L1 error in hazard rate kernel estimation.

To illustrate the computation of û∗ and the bandwidth ĥ∗ using the Newton method,

define,

η̂(u) =

∫
w(x)dx

∫ ∞
−∞
|u4b̂0(x)− u−1σ̂0(x)z|φ(z)dz,

where b̂0 and σ̂0 are estimated by the plug in approaches discussed above. To minimize

η̂(u) w.r.t u using the Newton method, we start with an initial value v0 and then iteratively

estimate vj+1 by vj as

vj+1 = vj − Ĥ(vj), j ≥ 0

where

Ĥ(v) =

[∫
w(x)(rb̂0Φ(vb̂0/σ̂0)− v−1σ̂0 − φ(vb̂0/σ̂0))dx

]
×
[∫

w(x)((r + 1)b̂2
0σ̂
−1
0 + σ̂0v

−2)φ(vb̂0/σ̂0)dx

]−1

.

After finite number of iterations, the sequence {vj} converges to a fixed value v̂∗

and the algorithm terminates. Then the adaptive optimal L1 bandwidth ĥ∗ equals to

n−1/5(û∗)2 where û∗ = (v̂∗)1/5.

3.5 Proofs

We finish with the proofs of the theorems in this chapter. First we state and prove

some important lemmas which are required to prove the main theorems in this chap-

ter. Throughout the proofs given below, the symbols C,C1, C2, ... denote positive generic

constants.

Lemma 3.1. Let (0, T ) be a bounded interval. Then, for all h > 0 and 2nd order kernel

K, the standard deviation V (x) of a standard hazard rate kernel estimator satisfies that
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∫ T
0

∣∣∣V (x)−
√

R(K)λ(x)
nh(1−F (x))

∣∣∣ dx = o( 1√
nh

)as h→ 0.

Proof. With reference to Watson and Leadbetter[168], it is known that the variance of

standard kernel hazard rate estimator can be written as

V 2(x) =

∫
In(Fn(u))λ(u)K2

h(x− u)du

+ 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz

where In(Fn(u)) =
∑n

i=1
1

n−i+1

(
n
i−1

)
F (u)i−1(1− F (u))n−i+1 and

An(u, z) = (1− F n(u))F n(z)− (1− F (u))F
n(z)−Fn(u)
F (z)−F (u)

.

It has been demonstrated in [168] that In(F (u)) converges to 1
n(1−F (u))

, then

V 2(x)

=
1

nh2

∫
K2

(
x− u
h

)
λ(u)

1− F (u)
du

+ 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz

=
1

nh

∫
1

h

K2(x−u
h

)

R(K)

λ(u)

1− F (u)
R(K)du

+ 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz

=
1

nh

∫
K∗h(x− u)

λ(u)

1− F (u)
R(K)du

+ 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz

=
R(K)λ(x)

nh(1− F (x))
+

(
λ

1− F
∗K∗h(x)− λ(x)

1− F (x)

)
R(K)

nh

+ 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz

where R(K) =
∫
K2, K∗ = K2/

∫
K2 and the notation ∗ is the convolution operator that

for example, λ ∗K(x) can be written as
∫
λ(y)K(x− y)dy or

∫
K(y)λ(x− y)dy. Denote

D(x) = 2

∫ ∫
u≤z

An(u, z)Kh(x− u)Kh(x− z)λ(u)λ(z)dudz,
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then we can define

α(x) =
R(K)λ(x)

nh(1− F (x))
,

β(x) =

(
λ

1− F
∗K∗h(x)

)
R(K)

nh
−
(

λ(x)

1− F (x)

)
R(K)

nh
+D(x)

and thus achieve that V 2(x) = α(x) + β(x).

Clearly,
∫ T

0

√
λ(x)dx < +∞ and α(x) ≥ 0. Thus, it gives

√
α(x) + β(x) ≤

√
α(x) +√

|β(x)| and
√
α(x) + β(x) ≥

√
α(x)−

√
|β(x)|. Integrating over (0, T ) gives

∫ T

0

V (x)dx ≤
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx

+

∫ T

0

√∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+

nh

R(K)
D(x)

∣∣∣∣dx)

and also,

∫ T

0

V (x)dx ≥
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx

−
∫ T

0

√∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+

nh

R(K)
D(x)

∣∣∣∣dx).
As F (x) is between 0 and 1, it is easy to see that An(u, z) is of order o( 1

nh
) and thus D(x)

is of order o( 1
nh

). Note that by applying the Cauchy-Schwarz inequality, it gives

∫ T

0

√∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+

nh

R(K)
D(x)

∣∣∣∣dx
=

∫ T

0

√∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+ o(1)

∣∣∣∣× 1dx

≤
(∫ T

0

∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+ o(1)

∣∣∣∣dx∫ T

0

1dx

)1/2

=

√
T

∫ T

0

∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)
+ o(1)

∣∣∣∣ dx.
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Then we have that (excluding o(1) term)

∫ T

0

V (x)dx ≤
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx

+

√
T

∫ T

0

∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)

∣∣∣∣dx)

and

∫ T

0

V (x)dx ≥
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx

−

√
T

∫ T

0

∣∣∣∣ λ

1− F
∗K∗h(x)− λ(x)

1− F (x)

∣∣∣∣dx).
From Theorem 1 on p.6 of [36],

∫ T
0

∣∣∣∣ λ
1−F ∗K

∗
h(x)− λ(x)

1−F (x)

∣∣∣∣dx converges to 0 as h→ 0, so

it can be verified that
∫ T

0

∣∣∣∣ λ
1−F ∗K

∗
h(x)− λ(x)

1−F (x)

∣∣∣∣dx ≤ o(1).

It thus gives

∫ T

0

V (x)dx ≤
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx+ o(1)

)

and

∫ T

0

V (x)dx ≥
√
R(K)

nh

(∫ T

0

√
λ(x)

1− F (x)
dx− o(1)

)
.

Therefore
∫ T

0
V (x)dx =

√
R(K)
nh

(∫ T
0

√
λ(x)

1−F (x)
dx+ o(1)

)
.

Lemma 3.2. For any K satisfying A1 and A2, it is known that the bias term B(x) of a

standard kernel hazard rate estimator is asymptotic to Kh ∗ λ(x)− λ(x) , then it satisfies∫ T
0

∣∣∣|B(x)| − h2µ2,K
2
|λ′′(x)|

∣∣∣ dx = o(h2) as h→ 0.

Proof. Making use of Taylor series expansion, we can write

λ(y) = λ(x) + (y − x)λ′(x) +

∫ y

x

(y − z)λ′′(z)dz.
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The bias term B(x) could be written as

Kh ∗ λ(x)− λ(x)

=

∫
1

h
K

(
x− y
h

)∫ y

x

(y − z)λ′′(z)dzdy

=

∫
1

h
K

(
x− y
h

)
×∫

[Iy≥xIx≤z≤y(y − z)λ′′(z)dz + Iy≤xIx≥z≥y(z − y)λ′′(z)dz]dy

=

∫
1

h
K

(
x− y
h

)∫
[Iy≥xIx≤z≤y + Iy≤xIx≥z≥y]|y − z|λ′′(z)dzdy

=

∫
K(u)

∫
[Iu≤0Ix≤z≤x−hu + Iu≥0Ix≥z≥x−hu]|x− hu− z|λ′′(z)dzdu

= h2

∫
1

h
K(u)

∫
[Iu≤0I0≤ z−x

h
≤−u + Iu≥0I0≥ z−x

h
≥−u]

∣∣∣∣u+
z − x
h

∣∣∣∣λ′′(z)dzdu

= h2

∫
1

h
K̃

(
x− z
h

)
λ′′(z)dz = h2K̃h ∗ λ′′(z)

where K̃(y) =
∫
K(u)[Iu≤0Iu≤y≤0 +Iu≥0I0≤y≤u] |u− y| du. It is straightforward to see that

K̃ is bounded and symmetric when K is. Note that

∫
K̃(y)dy =

∫ ∫
K(u)[Iu≤0Iu≤y≤0 + Iu≥0I0≤y≤u] |u− y| dudy

=

∫
K(u)(Iu≤0

∫ 0

u

|u− y|dy + Iu≥0

∫ u

0

|u− y|dy)du

=
1

2

∫
u2K(u)du =

µ2,K

2
.

Then we have

∫ T

0

∣∣∣∣|B(x)| − h2µ2,K

2
|λ′′(x)|

∣∣∣∣ dx
=

∫ T

0

∣∣∣∣|h2K̃h ∗ λ′′(x)| − h2µ2,K

2
|λ′′(x)|

∣∣∣∣ dx
≤

∫ T

0

∣∣∣∣h2K̃h ∗ λ′′(x)− h2µ2,K

2
λ′′(x)

∣∣∣∣ dx.
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From Theorem 1 on p.6 of [36], it is known that

∫ T

0

∣∣∣∣h2K̃h ∗ λ′′(x)− h2µ2,K

2
λ′′(x)

∣∣∣∣ dx
is of order o(h2) as h→ 0, hence the result follows.

Lemma 3.3. With a bounded, continuous, 2nd order kernel K, if the density function

f(x) and the hazard rate function λ(x) are bounded and continuous, then the standard

kernel hazard rate estimator based on K satisfies

∫
E|λ̂(x|h)− Eλ̂(x|h)|w(x)dx > C min{(nh)−1/2, 1}.

Proof. Note that

∫
E|λ̂(x|h)− Eλ̂(x|h)|w(x)dx

=

∫
E|λ̂(x|h)− λ∗(x|h) + λ∗(x|h)− Eλ̂(x|h)|w(x)dx

≥
∫
E[|λ∗(x|h)− Eλ̂(x|h)| − |λ̂(x|h)− λ∗(x|h)|]w(x)dx

≥
∫
E|λ∗(x|h)− Eλ̂(x|h)|w(x)dx−

∫
E|λ̂(x|h)− λ∗(x|h)|w(x)dx (3.5.1)

where λ∗(x) = 1
n

∑ Kh(x−Xi)
1−F (Xi)

.

We begin with proving that the first term of (3.5.1) has

∫
E|λ∗(x|h)− Eλ̂(x|h)|w(x)dx > C min{(nh)−1/2, 1}. (3.5.2)

It is straightforward to see that Eλ̂(x|h) = Eλ∗(x|h), therefore we set that Yi = Kh(x−Xi)
1−F (Xi)

−

E
(
Kh(x−Xi)
1−F (Xi)

)
and obtain that

∑
Yi/n = λ∗(x) − Eλ̂(x). By defining M to be any term
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of order o((nh)−1) and using Lemma 8 on p.90 of [36], one has

sup

∣∣∣∣∣E
∣∣∣∣∣
√
n

σY n

n∑
i=1

Yi −
M

V

∣∣∣∣∣− ψ
(∣∣∣∣MV

∣∣∣∣)
∣∣∣∣∣ ≤ CρY σ

−3
Y√
n

sup

∣∣∣∣∣E
∣∣∣∣∣λ∗ − Eλ̂V

− M

V

∣∣∣∣∣− ψ
(∣∣∣∣MV

∣∣∣∣)
∣∣∣∣∣ ≤ CρY σ

−3
Y√
n

sup

∣∣∣∣E ∣∣∣∣λ∗ − Eλ̂− o( 1

nh

)∣∣∣∣− V ψ(∣∣∣∣MV
∣∣∣∣)∣∣∣∣ ≤ CρY σ

−2
Y

n
≤ CKmax

nh

sup

(
E
∣∣∣λ∗ − Eλ̂∣∣∣− V ψ(∣∣∣∣MV

∣∣∣∣)) ≤ CKmax

nh

where C is a positive constant, V 2 is the variance of λ∗(x) (which can be shown to

be asymptotically same as that of λ̂(x)), σ2
Y = E(Y 2

i ) = nV 2 for i = 1, 2, ..., n, ρY =

E(|Yi|3) <∞, Kmax is the upper bound for kernel function K and

ψ(u) =
√

2π

(
u

∫ u

0

e−x
2/2dx+ e−u

2/2

)
, u ≥ 0.

Then with the inequality given on p.94 of [36], one has

V ψ

(∣∣∣∣MV
∣∣∣∣) ≤ |M |+

√
2V 2

π
.

It gives

sup(E|λ∗(x)− Eλ̂(x)|)− V
√

2

π
≤ CKmax

nh
(3.5.3)

where C does not depend on x, n and h.

Recall that nh ≥ 1 , simple calculations can prove that

∫
V (x)w(x)dx =

∫
(E|λ∗(x)− Eλ̂(x)|2)1/2w(x)dx ≥ C2(nh)−1/2. (3.5.4)

Therefore, if nh > C3 and C3 is sufficiently large, in views of (3.5.3) and (3.5.4), one
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has that

∫
E|λ∗(x)− Eλ̂(x)|w(x)dx ≥ C2(nh)−1/2. (3.5.5)

If nh ≤ C3, suppose K vanishes outside [−s, s], centered at the origin, then λ∗(x|h) = 0

if |x −Xj| > sh for each j, 1 ≤ j ≤ n. Therefore with reference to the proof of Lemma

5.1 in [51], for the case that nh < C3 and n is sufficiently large, the chance that λ∗(x|h)

equals to 0 exceeds

p(x, n) = (P (|x−X| > sh))n ≥ (1− Uvsh)n

≥ C4 exp(−nUvsh) ≥ C5 > 0

where U is an upper bound to f , v equals to the content of the unit radius, and C5 does

not depend on x, n or h. Therefore,

∫
E|λ∗(x)− Eλ̂(x)|w(x)dx

≥
∫
p(x, n)|E(λ̂(x|h))|w(x)dx

≥ C5|
∫
E(λ̂(x|h))w(x)dx| = C6. (3.5.6)

Equation (3.5.2) follows from (3.5.5) and (3.5.6).

Next we prove that the second term of (3.5.1) is of order o(1). Consider that

∫
E|λ̂(x|h)− λ∗(x|h)|w(x)dx

=

∫
w(x)dx

∫ ∣∣∣∣Kh(x− y)

1− Fn(y)
− Kh(x− y)

1− F (y)

∣∣∣∣ f(y)w(y)dy

=

∫
w(x)dx

∫
|Fn(y)− F (y)|

1− Fn(y)
Kh(x− y)λ(y)w(y)dy.

≤ sup
y∈[0,T ]

|Fn(y)− F (y)|
∫
w(x)dx

∫
Kh(x− y)

1− Fn(y)
λ(y)w(y)dy.

From Glivenko-Cantelli theorem, it is clear that supx∈[0,T ] |Fn(x)−F (x)| = o(1) as n→∞.
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Notice that λ(x) is bounded on [0, T ], so the second term of (3.5.1) is of order o(1). That

is to say, the order of the leading term of (3.5.1) won’t be changed by its second term at

all. Hence, it is ready to show that

∫
E|λ̂(x|h)− Eλ̂(x|h)|w(x)dx > C min{(nh)−1/2, 1}.

Lemma 3.4. Consider an increasing sequence Σ0, ...,Σn of sub-σ-fields of a basic proba-

bility space, where Σ0 is trivial. A sequence of random variables Zi, 1 ≤ i ≤ n, is called

a martingale difference sequence if each Zi is Σi-measurable, and E(Zi|Σi−1) = 0 for each

i. It gives

P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > ε

)
≤ 2 exp(− ε2

2
∫ n

1
||Zi||2∞

) (3.5.7)

where ε > 0 and ||Zi||∞ is the essential supremum norm of Zi.

Proof. Please refer to the proof of Lemma 2 of Devroye[35].

Lemma 3.5. Let X be any random variable with finite mean, and let a be an arbitrary

real number. Then

||X − a| − E(|X − a|)| ≤ |X − E(X)|+ E(|X − E(X)|).

Proof. Please refer to the proof of Lemma 1 of Devroye[35].

Proof. of Theorem 3.1

The first step is to show that for any C ≥ 1 and h ≤ 1,

I(n, h, C) =

∫
|x|>C

E|(λ̂(x|h)− λ(x)|w(x)dx ≤ g(C)((nh)−1/2 + h2) (3.5.8)

where g(C) does not depend on n or h and converges to zero as C → T .
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By Taylor Expansion with the Lagrange remainder, we have

λ(x− hz) = λ(x)− hzλ′(x) +

∫ x−hz

x

λ′′(u)(x− hz − u)du.

Then by setting set u = x− thz, one obtains

λ(x− hz) = λ(x)− hzλ′(x) +

∫ 1

0

(hz)2λ′′(x− thz)(1− t)dt.

Therefore, |Eλ̂(x|h)− λ(x)| could be written as

|Eλ̂(x|h)− λ(x)|

=

∣∣∣∣ ∫ λ(x− hz)K(z)dz − λ(x)

∣∣∣∣
=

∣∣∣∣ ∫ K(z)

(
λ(x)− hzλ′(x) +

∫ 1

0

h2z2(λ(x− thz))′′(1− t)dt
)
dz

−λ(x)

∣∣∣∣
= h2

∣∣∣∣∫ K(z)z2dz

∫ 1

0

(λ(x− thz))′′(1− t)dt
∣∣∣∣ . (3.5.9)

Notice that if |hz| ≤ C and 0 < t < 1, then {x : x > 2C} ⊆ {x : x− thz > C}. Thus

for the case that h ≤ 1, one has

I1(n, h, 2C) =

∫
|x|>2C

|Eλ̂(x)− λ(x)|w(x)dx

≤ h2

{∫
K(z)z2dz

∫
|x|>C

|λ′′(x)|w(x)dx

+

∫
|hz|>C

K(z)z2dz

∫
|λ′′(x)|w(x)dx

}
≤ g1(2C)h2

where

g1(2C) =

∫
K(z)z2dz

∫
|x|>C

|λ′′(x)|w(x)dx+

∫
|hz|>C

K(z)z2dz

∫
|λ′′(x)|w(x)dx.
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g1(2C) is bounded since both
∫
|x|>C |λ

′′(x)|w(x)dx and
∫
|λ′′(x)|w(x)dx are finite and

converges to 0 as 2C → T .

On the other hand, from the variance expression given in Lemma 3.1, we could easily

show that as n→∞ and C0 is sufficiently large,

V ar(λ̂(x)) ≤ C0

nh

∫
K2(z)λ(x− hz)

1− F (x− hz)
dz.

Assume that α > 1 and set

g2(C) =

{∫
|x|>C

(1 + |x|α)−1w(x)dx

}1/2

where 1 + |x|α ≤ 2α(1 + |x− hz|α + |hz|α). Then using h ≤ 1 we obtain

I2(n, h, C)

=

∫
|x|>C

[V ar(λ̂(x|h))]1/2w(x)dx

≤ g2(C)

[∫
V ar(λ̂(x|h))(1 + |x|α)w(x)dx

]1/2

≤ g2(C)

[
C0

nh

∫
(1 + |x|α)w(x)

∫
K2(z)λ(x− hz)

1− F (x− hz)
dzdx

]1/2

≤ g2(C)

[
C0

nh

∫
2α(1+|x− hz|α+|hz|α)w(x)

∫
K2(z)f(x− hz)

(1− F (x− hz))2
dzdx

]1/2

≤ g2(C)

[
C0

nh

∫ T

0

2α(1 + |x|α + zα)

∫
K2(z)

(1− F (T ))2
dzdx

]1/2

≤ g3(C)(nh)−1/2

where the first inequity is given by Hölder inequality and

g3(C)=g2(C)(2αC0)1/2

[∫
K2(z)dz

∫ T

0

(1 + |x|α)

(1− F (T ))2
dx+

∫
T
|z|αK2(z)dz

(1− F (T ))2

]1/2

.

This quantity is finite if α is sufficiently close to unity. Notice g2(C) converges to 0 as C →

T , so g3(C) converges 0 simultaneously. Therefore we show that I1(n, h, C) ≤ g1(C)h2
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and I2(n, h, C) ≤ g3(C)(nh)−1/2.

Notice that the mean squared error of estimator, E(|λ̂(x) − λ(x)|2) equals to the

sum of the square of the bias, |Eλ̂(x) − λ(x)|2 and the variance, V ar(λ̂(x)), there-

fore

√
E(|λ̂(x)− λ(x)|2) ≤ |Eλ̂(x) − λ(x)| +

√
V ar(λ̂(x)). Cauchy-Schwarz inequality

gives E|λ̂(x)− λ(x)| ≤
√
E(|λ̂(x)− λ(x)|2) and thus E|λ̂(x)− λ(x)| ≤ |Eλ̂(x)− λ(x)|+√

V ar(λ̂(x)). Now it is ready to verify that I(n, h, C) ≤ I1(n, h, C) + I2(n, h, C), thereby

selecting g(C) = g1(C) + g3(C), we prove (3.5.8).

Next, we set that

η(u,C2) =

∫
|x|≤C2

dx

∫ ∞
−∞
|u4b0(x)− u−1σ0(x)z|φ(z)dz,

then it is clear that

lim
C2→T

sup
u∈[C−1

1 ,C1]

|η(u,C2)− η(u)| = 0, (3.5.10)

for any C1 > 1, where

η(u) =

∫
w(x)dx

∫ ∞
−∞
|u4b0(x)− u−1σ0(x)z|φ(z)dz.

Observe that

sup
u∈[C−1

1 ,C1]

∣∣∣∣ ∫
|x|≤C2

E|λ̂(x|hu)− λ(x)|w(x)dx− δη(u,C2)

∣∣∣∣
= sup

u∈[C−1
1 ,C1]

δ

∣∣∣∣ ∫
|x|≤C2

dx

∫
(|b(x)− σ(x)z| − |u4b0(x)− u−1σ0(x)z|)φ(z)dz

∣∣∣∣
≤ sup

u∈[C−1
1 ,C1]

δ

∣∣∣∣ ∫
|x|≤C2

dx

∫
[(b(x)− u4b0(x))φ(z)− (σ(x)− u−1σ0(x))zφ(z)]dz

∣∣∣∣.
Recall that when the bias term and standard deviation term of the kernel estimator are

balanced against each other, the common magnitude δ should be n−2/5 and it is achieved

by setting hu = n−1/5u2, thus using Lemma 3.1, we have δ
∫
|x|≤C2

|σ(x) − u−1σ0(x)|dx =
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o(δ) and in the same way, using Lemma 3.2, we have δ
∫
|x|≤C2

|b(x) − u4b0(x)|dx = o(δ).

Therefore it is ready to show that

sup
u∈[C−1

1 ,C1]

∣∣∣∣ ∫
|x|≤C2

E|λ̂(x|hu)− λ(x)|w(x)dx− δη(u,C2)

∣∣∣∣ ≤ o(δ). (3.5.11)

Finally using uniform convergence, Theorem 3.1 can been verified if we combing the

conclusions from (3.5.8), (3.5.10) and (3.5.11) respectively.

Proof. of Theorem 3.2

We need to prove that for some C > 0,

∫
E|λ̂(x)− λ(x)|w(x)dx ≥ C[min((nh)−1/2, 1) + min(h2, 1)]

whenever n ≥ 1 and h > 0.

Since 3E|λ̂(x)− λ(x)| ≥ E|λ̂(x)− Eλ̂(x) + Eλ̂(x)− λ(x)|, we have

3J > J1 + J2

where J =
∫
E|λ̂(x)− λ(x)|w(x)dx, J1 =

∫
E|λ̂(x)−Eλ̂(x)|w(x)dx and J2 =

∫
|Eλ̂(x)−

λ(x)|w(x)dx. From (3.5.9), it is straightforward to see that for some C1 and C2, J2(h) ≥

C1h
2 whenever 0 ≤ h ≤ C2. Further, if h > C2, then J2(h) ≥ C3. Hence J2(h) ≥

C4 min(h2, 1), for all h > 0. On the other hand, from Lemma 3.3 it follows that J1 >

C5 min((nh)−1/2, 1). Thus (3.2.2) of the theorem can now be verified easily.

Proof. of Theorem 3.3

Clearly, we only need to show that there is a unique solution to Λ(v) = 0 and this

solution is always positive where Λ(v) is given by equation (3.3.1).

Let L(v) = v−1Λ(v), that is

L(v) =

∫
[4b0(x)Φ(vb0(x)/σ0(x))− v−1σ0(x)φ(vb0(x)/σ0(x))]w(x)dx.

106



Now since

L′(v) =

∫
{4b2

0σ
−1
0 φ(vb0/σ0) + σ0v

−2φ(vb0/σ0)− v−1σ0(∂φ(vb0/σ0)/∂v)w(x)dx

=

∫
{4b2

0σ
−1
0 φ(vb0/σ0) + σ0v

−2φ(vb0/σ0) + b2
0σ
−1
0 φ(vb0/σ0)}w(x)dx

=

∫
{5b2

0σ
−1
0 + σ0v

−2}φ(vb0/σ0)w(x)dx > 0,

L(v) is continuous and strictly increasing. Also, L(0) = −∞, and as v →∞,

L(v) =

∫
[4b0(Φ(vb0/σ0))− v−1σ0φ(vb0/σ0)]w(x)dx

→
∫

4b0I(b0 > 0)w(x)dx > 0.

Therefore, the equation L(v) = 0 has a unique positive solution and so is Λ(u5) = 0.

Proof. of Theorem 3.4

First of all, in estimating λ̂
(p)
1 (x) and (λ̂2)1/2(x), the difference between F (x) and Fn(x)

can be ignored as n→∞, hence we utilize F (x) rather than Fn(x) in the following proof.

First we will establish (3.4.1). But observe that to establish (3.4.1) it is enough to

prove

∫
|Eλ̂(p)

1 (x)− λ(p)(x)|w(x)dx→ 0 (3.5.12)

and

∫
|λ̂(p)

1 (x)− Eλ̂(p)
1 (x)|w(x)dx→ 0 a.s.. (3.5.13)

Now we demonstrate these two separately.
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(i) To prove (3.5.12) observe that

Eλ̂
(p)
1 (x)− λ(p)(x)

=
1

hp+1
1

∫
K

(p)
1

(
x− y
h1

)
λ(y)dy − λ(p)(x)

=
1

h1

∫
K1

(
x− y
h1

)
λ(p)(y)dy − λ(p)(x)

=

∫
K1(z){λ(p)(x− h1z)− λ(p)(x)}dz

and so by continuity of λ(p) and compact support of K1,

sup
x∈(0,T )

|Eλ̂(p)
1 (x)− λ(p)(x)| → 0.

Thus (3.5.12) follows since K vanishes at both tails.

(ii) To prove (3.5.13), first we introduce Bernstein’s inequality (p.17, Hoeffding[65]):

Bernstein’s inequality: If Y1, ..., Yn are independent and identically distributed with

zero mean and variance σ2, and if each |Yj| ≤ c, then

P

(∣∣∣∣ n∑
j=1

Yj

∣∣∣∣ > t

)
≤ 2 exp

{
−1

2
t2(nσ2 + ct)−1

}
,

all t > 0.

For any τ > 0, the integral on the left-hand side of (3.5.13) is

∫
|x|≤τ
|λ̂(p)

1 (x)− Eλ̂(p)
1 (x)|w(x)dx

+

∫
|x|>τ
|λ̂(p)

1 (x)− λ(p)(x)− (Eλ̂
(p)
1 (x)− λ(p)(x))|w(x)dx

≤
∫
|x|≤τ
|λ̂(p)

1 (x)− Eλ̂(p)
1 (x)|w(x)dx+

∫
|x|>τ
|λ̂(p)

1 (x)|w(x)dx

+

∫
|x|>τ
|λ(p)(x)|w(x)dx+

∫
|Eλ̂(p)

1 (x)− λ(p)(x)|w(x)dx.

When τ goes to T , it is straightforward to see that the third term converges to 0 as
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λ(p)(x) is truncated at x = T and the fourth term converges to 0 as supx∈(0,T ) |Eλ̂
(p)
1 (x)−

λ(p)(x)| → 0. Therefore it suffices to show that for some sequence τ = τ(n) diverging to

+∞,

∫
|x|>τ
|λ̂(p)

1 (x)|w(x)dx→ 0 a.s. (3.5.14)

and

∫
|x|≤τ
|λ̂(p)

1 (x)− Eλ̂(p)
1 (x)|w(x)dx→ 0 a.s.. (3.5.15)

Therefore proof of the theorem will be complete if we prove (3.5.14) and (3.5.15). Now

to prove (3.5.14) assume that the support of K1 is [−s, s] and h1 is so small and τ so large

that h1s ≤ τ/2, then the left-hand side of (3.5.14) is dominated by

1

nhp+1
1

n∑
j=1

∫
|x|>τ

∣∣∣∣∣K(p)
1 ((x−Xj)/h1)

1− Fn(Xj)

∣∣∣∣∣w(x)dx

≤ C1(nhp1)−1

n∑
j=1

∫
|Xj+h1s|>τ,|h1s|≤τ/2

w(x)dx

≤ 2C1T (nhp1)−1

n∑
j=1

I(|Xj| > τ/2),

where C1 = sup(|K(p)
1 |/(1 − F (T )). Suppose E(|X1|γ) < ∞, where γ > 1 and define

π = P (|Xi| > τ/2), by Markov’s inequality, which is less than C2τ
−γ. If one takes

τ = h
−p/β
1 , where (2γ/(γ + 1)) < β < γ, one has

E{(nhp1)−1

n∑
j=1

I(|Xj| > τ/2)} = (nhp1)−1

n∑
j=1

P (|Xj| > τ/2)

≤ C2h
p(γ−β)/β
1 → 0.
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Furthermore, for each ε > 0, by Bernstein’s inequality one has

q = P

[∣∣∣∣∣
n∑
j=1

{
I(|Xj| >

τ

2
)− π

}∣∣∣∣∣ > εnhp1

]

≤ 2 exp[−1

2
(εnhp1)2{nπ(1− π) + εnhp1}−1].

Observe that π(1− π) ≤ π ≤ C2h
pγ/β
1 ≤ C2h

p
1 and nh2p+1

1 →∞, then

q ≤ 2 exp{−C3(ε)nhp1} = o(n−k)

for all k > 0. Therefore, by the Borel-Cantelli lemma,

(nhp1)−1

n∑
j=1

I(|Xj| > τ/2)→ 0 a.s..

Then (3.5.14) follows.

To establish (3.5.15), set ζ2(x) = max{ζ2
1 (x), (1 + |x|2γ)−1}, where

ζ2
1 (x) =

∫
K

(p)
1 (z)2 f(x− h1z)

(1− F (T ))2
dz,

and let T denote the set of values of x ∈ (0, T ) such that (1 + |x|γ)ζ2(x) > 2. It is easy

to see that the Lebesgue measure of T , which we denote by L(T ), is bounded as (0, T )

is bounded and (1 + |x|γ)ζ2(x) > 2 if and only if (1 + |x|γ)ζ2
1 (x) > 2. Now we will show

separately that

∫
|x|≤τ,x∈T

|λ̂(p)
1 − Eλ̂

(p)
1 | → 0 a.s. (3.5.16)

and

∫
|x|≤τ,x/∈T

|λ̂(p)
1 − Eλ̂

(p)
1 | → 0 a.s.. (3.5.17)
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For each ε > 0, the left-hand side of (3.5.16) is dominated by

εL(T ) + h
−(p+1)
1 (2 sup |K(p)

1 |/(1− F (T )))M1,

where

M1 =

∫
T
I

[∣∣∣∣ n∑
j=1

{
K

(p)
1 ((x−Xj)/h1)

1− F (Xj)
− E

(
K

(p)
1 ((x−Xj)/h1)

1− F (Xj)

)}∣∣∣∣
> εnhp+1

1

]
dx.

Define Yj =
K

(p)
1 ((x−Xj)/h1)

1−F (Xj)
−E

(
K

(p)
1 ((x−Xj)/h1)

1−F (Xj)

)
, t = εnhp+1

1 and c = 2 sup |K(p)
1 |/(1−

F (T )). It is easy to know that E(Yj) = 0 and

σ2
Y = E(Y 2

j )− (E(Yj))
2 = E(Y 2

j )

= E

(K(p)
1 ((x−Xj)/h1)

1− F (Xj)

)2
−(E(K(p)

1 ((x−Xj)/h1)

1− F (Xj)

))2

≤
∫
K

(p)
1 ((x− y)/h1)2

1− F (y)
f(y)dy

≤ h1

∫
K

(p)
1 (z)2

1− F (x− hz)
f(x− hz)dz

≤ h1ζ
2
1 (x) ≤ C1h1,

hence from Bernstein’s inequality, one obtains that

P

(∣∣∣∣∣K(p)
1 ((x−Xj)/h1)

1− F (Xj)
− E

(
K

(p)
1 ((x−Xj)/h1)

1− F (Xj)

)∣∣∣∣∣ > εnhp+1
1

)

≤ 2 exp

−1

2

(
εnhp+1

1

)2

(
nσ2

Y + 2
sup |K(p)

1 |εnh
p+1
1

(1− F (T ))

)−1


≤ 2 exp{−C2(ε)(nhp+1
1 )2(nh1C1 + C3(ε)nhp+1

1 )−1}

≤ exp{−C4(ε)nh2p+1
1 }.
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As nh2p+1/ log n→∞,

E(M1) ≤
∫
T

exp{−C4(ε)nh2p+1
1 }dx

≤ L(T ) exp{−C4(ε)nh2p+1
1 } = o(n−k)

for all k > 0. Then if one sets ε to be arbitrary small and then with the fact that

E(M1) = o(n−k), we have
∫
x≤τ,x∈T |λ̂

(p)
1 − Eλ̂

(p)
1 | → 0 as n→∞.

To prove (3.5.17), observe that for each ε > 0, the left-hand side of (3.5.17) is domi-

nated by

ε

∫
w(x)ζ(x)β/γdx+ h

−(p+1)
1 (2 sup |K(p)

1 |/(1− F (T )))M2

where

M2 =

∫
x≤τ,x/∈T

I

{∣∣∣∣ n∑
j=1

(
K

(p)
1 ((x−Xj)/h1)

1− Fn(Xj)

−E

(
K

(p)
1 ((x−Xj)/h1)

1− Fn(Xj)

))∣∣∣∣ > εnhp+1
1 ζ(x)β/γ

}
dx.

M2 is asymptotic to ∫
x≤τ,x/∈T

I{|
n∑
j=1

Yj| > εnhp+1
1 ζ(x)β/γ}dx

and Yj is defined as in the previous paragraph. Now by Hölder’s inequality,

∫
w(x)ζ(x)β/γdx ≤

{∫
w(x)ζ(x)2(1 + |x|)γdx

}β/2γ
×
{∫

w(x)(1 + |x|)−γβ/(2γ−β)dx

}(2γ−β)/(2γ)

<∞

uniformly in h1 ≤ 1, using the fact that E(|X1|γ) < ∞ and γβ > 2γ − β. With the

same definition of Yj and c given in the previous paragraph, t = εnhp+1
1 ζ(x)β/γ and
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σ2
Y ≤ h1ζ

2(x), it gives

P

(∣∣∣∣∣K(p)
1 ((x−Xj)/h1)

1− F (Xj)
− E

(
K

(p)
1 ((x−Xj)/h1)

1− F (Xj)

)∣∣∣∣∣ > εnhp+1
1 ζ(x)β/γ

)

≤ 2 exp

−1

2

(
εnhp+1

1 ζ(x)β/γ
)2

(
nσ2

Y + 2
sup |K(p)

1 |εnh
p+1
1 ζ(x)β/γ

(1− F (T ))

)−1


≤ 2 exp{−C2(ε)(nhp+1
1 ζ(x)β/γ)2(nh1ζ

2(x) + C1(ε)nhp+1
1 ζ(x)β/γ)−1}.

On one hand, suppose hp1 ≤ ζ(x)2−(β/γ), then

P

(∣∣∣∣∣K(p)
1 ((x−Xj)/h1)

1− Fn(Xj)
− E

(
K

(p)
1 ((x−Xj)/h1)

1− Fn(Xj)

)∣∣∣∣∣ > εnhp+1
1 ζ(x)β/γ

)
≤ exp{−C3(ε)nh2p+1

1 ζ(x)2β/γ−2}

≤ exp{−C3(ε)nh2p+1
1 (1 + |x|γ)(γ−β)/γ}.

The second inequality holds because x /∈ T where ζ(x)−2 > (1 + |x|γ)/2. Further

(1 + |x|γ)(γ−β)/γ is bounded.

On the other hand, suppose hp1 > ζ(x)2−(β/γ), then

P

(∣∣∣∣∣K(p)
1 ((x−Xj)/h1)

1− Fn(Xj)
− E

(
K

(p)
1 ((x−Xj)/h1)

1− Fn(Xj)

)∣∣∣∣∣ > εnhp+1
1 ζ(x)β/γ

)
≤ exp{−C4(ε)nhp+1

1 ζ(x)β/γ}

≤ exp{−C4(ε)nhp+1
1 (1 + |x|2γ)−β/2γ}

≤ exp{−C5(ε)nh2p+1
1 }

where the second inequality holds since ζ(x)2 ≥ (1 + |x|2γ)−1 and the third holds since

0 ≤ x ≤ τ = h
−p/β
1 and h1 converges to 0.

Hence combining these two different cases, one has that

E(M2) =

∫
x≤τ,x/∈T

exp{−C6(ε)nh2p+1
1 }dx = o(n−k)
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for all k > 0.

This completes the proof of (3.5.17) and thus (3.5.15) holds.

To prove (3.4.2) of the theorem, observe that by Cauchy-Schwarz inequality

∫
w(x)|λ̂1/2

2 (x)− λ1/2(x)|dx ≤
∫
w(x)|λ̂2(x)− λ(x)|1/2(x)dx

≤
{∫

w(x)|λ̂2(x)− λ(x)|(1 + |x|γ)dx
}1/2

×
{∫

w(x)(1 + |x|γ)−1dx

}1/2

where γ > 1 is again chosen so that E(|X|γ) < ∞. Now applying (3.4.1) with p = 1 we

have
∫
w(x)|λ̂2(x)− λ(x)|dx→ 0 almost surely. This completes the proof of (3.4.2).

Proof. of Theorem 3.5

If (3.4.3) holds, it is straightforward to see that for any C > 1,

sup
C−1≤u≤C

|η̂(u)− η(u)| → 0 a.s.,

û∗ → u∗ almost surely and λ(û∗)→ λ(u∗) almost surely.

Recall that J(ĥ∗) =
∫
{E|λ̂(x|h) − λ(x)|}h=ĥ∗w(x)dx and that is a random variable.

By defining h∗ = n−1/5(u∗)2 which is asymptotically optimal bandwidth of a standard

kernel hazard rate estimate in the L1 sense, we achieve that ĥ∗/h∗ → 1 almost surely and

J(ĥ∗)/J(h∗) → 1 almost surely, using the fact that û∗ → u∗ and λ(û∗) → λ(u∗). Note

that infh>0 J(h) ∼ n−2/5η(u∗), this then justifies the claim

J(ĥ∗)/ inf
h>0

J(h)→ 1 a.s..

Proof. of Theorem 3.6

Define the σ field Σi = σ(X1, ..., Xi), Y =
∫
|λ̂(x) − λ(x)|w(x)dx − E(

∫
|λ̂(x) −

λ(x)|w(x)dx) and Zi = E(
∫
|λ̂(x) − λ(x)|w(x)dx ‖ Σi) − E(

∫
|λ̂(x) − λ(x)|w(x)dx ‖

Σi−1). It is easy to see that Zi is Σi-measurable and Y =
∑n

i=1 Zi. Then to apply
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(3.5.7) given in Lemma 3.4, we need to show that there is an upper bound on |Zi|. Set

Wi,k = 1
n

∑
i≤j≤k

[
Kh(x−Xj)
1−Fn(Xi)

− λ
]

and W̃i,k = 1
n

∑
i≤j≤k

[
Kh(x−Xj)
1−F (Xi)

− λ
]
. As n→∞, it gives

Wi,k − W̃i,k =
1

n

∑
i≤j≤k

Kh(x−Xj)(Fn(Xi)− F (Xi))

(1− Fn(Xi))(1− F (Xi))

≤
supx∈[0,T ] |Fn(x)− F (x)|

n

∑
i≤j≤k

Kh(x−Xj)

(1− Fn(Xi))(1− F (Xi))

Using Glivenko-Cantelli theorem, we have supx∈[0,T ] |Fn(x) − F (x)| = o(1), then it is

easy to see that the difference between Wi,k and W̃i,k is of order o(1). Denote that

a = W1,i−1 +Wi+1,n, then we have

|Zi| ≤
∫
|E(|λ̂− λ|w(x) ‖ Σi)− E(|λ̂− λ|w(x) ‖ Σi−1)|dx

=

∫
|E(|W1,i−1 +Wi,i +Wi+1,n|w(x) ‖ Σi)

− E(|W1,i−1 +Wi,i +Wi+1,n|w(x) ‖ Σi−1)|dx

≤
∫

sup
a
|E(|a+ W̃i,i + o(1)|w(x) ‖ Σi)

− E(|a+ W̃i,i + o(1)|w(x) ‖ Σi−1)|dx

≤
∫

sup
a
||a+ W̃i,i| − E(|a+ W̃i,i|)|w(x)dx.

The last inequality is due to the fact that W̃i,i is independent with Σi−1. With reference

to Lemma 3.5 we get

|Zi| ≤
∫
|W̃i,i − E(W̃i,i)|w(x)dx+

∫
E(|W̃i,i − E(W̃i,i)|)w(x)dx

≤
C
∫
|K|
n

where C is some sufficient large constant. Therefore Zi is bounded above and by Lemma
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3.4, one obtains that

P

(∣∣∣∣∫ |λ̂(x)− λ(x)|w(x)dx− E
∫
|λ̂(x)− λ(x)|w(x)dx

∣∣∣∣ > ε

)
≤ C1exp(−C2nε

2) (3.5.18)

where C1 and C2 are large enough constants and C3n
−1/2 ≤ ε ≤ 1.

Let h0 and ĥ0 be the values of h which minimize J and Ĵ respectively. It is clear that

for sufficiently large a, we have n−a ≤ h ≤ na for all large n and also

P{n−a ≤ ĥ0(n), ĥ∗ ≤ na, all n ≥ ñ} → 1

as ñ → ∞. Given c > 0, define H = H(a, c) = {h1, h2, ...} to be a nonrandom sequence

that is defined by n−a = h1 < h2 < ... < hm−1 ≤ na < hm < ... and hi+1−hi = n−c, i ≥ 1.

For each h ∈ K = [n−a, na], define H(h) to be a value in H which minimizes |h−H(h)|.

Using Hölder continuity and compact support of K, we could let c = c(a) be so large that

for some C > 0,

sup
K
|Ĵ(h)− Ĵ(H(h))| ≤ Cn−1.

Similar, for any sample X = {X1, X2, ..., Xn}, it is easy to verify that |J(h) −

J(H(h))| ≤ Cn−1 for all h ∈ K. So with the setting that ∆ = Ĵ − J , we achieve

sup
h∈K
|∆(h)−∆(H(h))| ≤ 2Cn−1 (3.5.19)

uniformly in samples X .

Taking ε = n−(1−ζ)/2 where 0 < ζ < 1 in (3.5.18), it follows that, for large n,

P{ sup
1≤j≤m

|∆(hj)| > n−(1−ζ)/2} ≤
m∑
j=1

P{|∆(hj)| > n−(1−ζ)/2}

≤ C1m exp(−C2n
ζ).
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Since m = O(na+c) and exp(−C2n
ζ) = o(n−(a+c)) as n→∞, then

∞∑
n=1

P{ sup
1≤j≤m

|∆(hj)| > n−(1−ζ)/2} → 0.

It implies (by Borel-Cantelli lemma) that

n(1−ζ)/2 sup
1≤j≤m

|∆(hj)| → 0 a.s.

Then by applying (3.5.19),

n(1−ζ)/2 sup
h∈K
|∆(h)| → 0 a.s..

To verify (3.4.5), we also need to show that for some constant C0 > 0 and 0 < ζ < 1,

inf
h∈K

J(h) ≥ C0n
−(1−ζ)/2. (3.5.20)

As indicated earlier, 3J ≥ J1 + J2 where J1 =
∫
|λ̂(x) − Eλ̂(x)|w(x)dx and J2 =∫

|Eλ̂(x)−λ(x)|w(x)dx. From Lemma 3.3, one knows that for h ≤ 1, J1 ≥ C min((nh)−1/2, 1).

On the other hand, for K is bounded and x ∈ (0, T ),

λ̂(x) =
1

n

n∑
i=1

Kh(x−Xi)

1− Fn(Xi)

≤ Kmax

(1− F (T ))h

where Kmax is the upper bound of K. Hence for each ε > 0, there exists h̃ > 0 sufficiently

large, such that |λ̂(x)| < ε for all h > h̃, n ≥ 1 and all sample X . In particularly, with

small enough ε and h > h̃,

J2 =

∫
|ε− λ(x)|w(x)dx > C1
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where C1 is some constant. For h < h̃, then

|Eλ̂(x)− λ(x)| ≤ C = 2(supλ(x))

∫
|K|/(1− F (T ))

so that

J2C ≥
∫
|Eλ̂(x)− λ(x)|2w(x)dx ≥ C2h

τ

for some constant C2 and τ > 0, where the second inequality can be easily derived from

Lemma 1 of Stone[150] in density setting to hazard rate setting. Thus (3.5.20) is proved.

Consequently, (infh>0 Ĵ(h))/(infh>0 J(h))→ 1 and Ĵ(ĥ∗)/J(ĥ∗)→ 1 a.s..

3.6 Discussion

In this chapter, we consider the approach to optimize a hazard rate kernel estimator by

minimizing its L1 error. In particular, we investigate the expression of the optimal L1

error bandwidth for the kernel estimator and then develop a simple algorithm based on the

Newton method to calculate an adaptive version of the bandwidth. This work can be seen

as the extension of Devroye and Györfi[36] and Hall and Wand[51] in density estimation

to the setting of hazard rate function. We show theoretically that both theoretical and

adaptive forms of the bandwidth do minimize the L1 distance from the true hazard rate

function to the kernel estimator asymptotically. The key findings are summarized in

Table 3.1. In the next chapter, we will discuss how to develop a survival model using the

censored data from multiple studies.
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What is already known on this topic:

• Devroye and Györfi[36] showed that in kernel estimation, L1 error is well-defined
and invariant under monotone transformation of the coordinate axes.

•Hall and Wand[51] proposed a simple, rapidly converging, iterative algorithm
allowing for the minimization of L1 distance w.r.t bandwidth h in the setting of density
estimation.

What this study adds

• We propose a general asymptotic expression for the L1 error distance between the
true hazard rate function and a kernel estimator.

• We derive the theoretical asymptotic L1 optimal bandwidth and utilize the Newton
method to develop an iterative algorithm to calculate the bandwidth.

• We propose a data-driven version of the L1 optimal bandwidth in practice and
prove that the obtained estimate reaches the L1 optimality asymptotically.

Table 3.1: Summary of the main issues and key findings in Chapter 3.
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CHAPTER 4

EXAMINING THE OVERALL PROGNOSIS OF
BREAST CANCER PATIENTS USING IPD FROM

MULTIPLE COUNTRIES

4.1 Introduction

Chapter 2 and 3 focused on mathematical research for hazard rate estimation in survival

models when event times are known for all observations. However, in practice censored

event times will be an issue. We now concentrate on applications of survival models for

breast cancer in this situation.

In both developing and developed countries, breast cancer is the leading cause of

oncological death amongst women. Coleman[22] reported that the breast cancer patients

account for 20% or more of all cancers in total and of every 12 women, one will develop the

disease before 75 years old. Therefore, breast cancer is a major threat to women’s health,

and thus much time and money are devoted to investigating ways to improve outcomes

in those with breast cancer.

The current research has showed the survival chances of cancer patients not only

depend on their own health conditions but also are closely related to the environment

they live[92][100]. According to current statistics by Ferlay et al.[43], it is known that the

cancer patients observed in Europe accounts for 25% of total cases found in the world

despite the population of Europe being only one-ninth of the global population. These
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findings motivate investigations into country-specific survival probabilities of patients with

primary breast cancer within Europe[13][127]. In particular, which countries have a better

breast cancer prognosis than others? This chapter investigates this issue by using a

large, multi-country database collected by the European Organization for Research and

Treatment of Cancer-Receptor and Biomarker Group. This was provided by Maxime

Look (Josephine Nefkens Institute, Rotterdam) and the outcome of our interest is the

time to the death of a patient following their diagnosis of breast cancer, and the aim here

is to examine if the mortality rate in different European counties is the same overtime.

The dataset will be introduced in Section 4.2, and we will introduce key modelling

concepts and objectives in Section 4.3. The necessary methodologies for the three objec-

tives are illustrated in Section 4.4. Then the analysis and results on the breast cancer

data are summarized in Section 4.5. Throughout this section, the advantages of Royston-

Parmar models and multiple imputation techniques will be also highlighted. In the end,

we conclude with a summary of the key findings in Section 4.6.

4.2 Data

The breast cancer incidence and mortality data in this study covers 15 laboratories and the

quality-assurance programs are utilized in all these participating laboratories to measure

the biologic variables in tumor tissue approved by the local reviews boards. It incorporates

7435 selected patients who have accepted the primary surgeries for breast cancer ranging

from September 1978 to December 1995 and then being followed-up for 10 years. The

corresponding inclusion and exclusion criteria of the patients were detailed introduced in

Look et al.[87].

4.2.1 Available variables

We group 15 laboratories into 8 countries and define it as the categorical factor, ‘coun-

try’, containing: Netherland, Slovenia, Switzerland, France, Ireland, Austria, Sweden and

Denmark. See the list of the laboratories of each country in Table 4.4. The laboratory in

Rotterdam, Netherland, contributed the largest amount of data samples accounting for

121



Var Type Description

Age Continuous Age in years of patients

Upa Continuous Urokinase-type plasminogen activator antigen level
determined by immunoassays

Pai1 Continuous Plasminogen activator inhibitor antigen level determined
by immunoassays

Rupa Continuous Fractional rank of upa within study (between 0 and 1)

Rpai1 Continuous Fractional rank of pai1 within study (between 0 and 1)

Tumor type Categorical Tumor type of patient including
idc, ilc, col, tubul, medull, papil, other, unknown

Tumor grade Categorical Tumour grade of patient including
good, moderate, poor, unknown

Lymph nodes
status

Categorical Number of positive nodes involved:
np= 0, np< 3, 3< np <10, np> 10

Menopasual status Categorical Menopasual status of patient including:
premenopausal and postmenopausal age

Tumor size Categorical Tumor size:
pT1 ≤ 2cm, 2cm< pT2 <5cm, pT34 > 5cm

Adjuvant treatment Categorical Indicator whether adjuvant systemic therapy is given

Hormone receptor Categorical Steroid hormone receptor status

Country Categorical Country of study

OSi Categorical Indicator whether the death is recorded or censored

OS Continuous Time from primary surgery to death or end of follow-up

Table 4.1: Variables in the breast cancer dataset with brief description. The cutoff points for
the variable, lymph node status and tmuor size were chosen by Look et al.[87].

37% of the whole database, while the laboratory in Ljubljana, Slovenia provided the least

patients (n = 69). Patients in each laboratory were followed up from the date of primary

surgery until death (from any cause) and this outcome was defined as ‘OS’ for overall

survival. Patients who survived till the end of their observation period were censored

for the analysis of overall survival, and this was assumed to be right, non-informative

censoring.

Table 4.1 lists all the variables recorded in the database with descriptions. It incorpo-

rates the following traditional confounding factors as age, tumor size, tumor type, lymph

node status, hormone-receptor status, tumour grade and menopasual status where on-

ly age was available as a continuous variable. Tumor size was provided as an ordinate

variable by two cutoff points, 2 centimeters and 5 centimeters. Lymph node status was

the number of involved lymph nodes provided as 0, 1-3, 4-10, and more than 10. Low

hormone-receptor status was defined as either estrogen receptor status or progesterone

122



receptor was low; high hormone-receptor status was defined as at least one of estrogen

receptor or progesterone receptor stratus was high. Tumour grade was treated as four

categories, well differentiated (grade I), moderately differentiated (grade II), undifferen-

tiated (grade III), and unknown[34][47]. It was also of concern that whether a patient

received adjuvant systemic treatment and hence an indicator variable was set to denote

whether the patient received this[50].

Further, as pointed by Look et al.[87], the use of above traditional confounding fac-

tors may not be sufficient to model the mortality rate of primary breast cancer. Thus,

two additional body measurements, Urokinase-type plasmmogen activator (upa) and its

inhibit (pai1) were also available where high level of upa or pai1 is closely related to poor

prognosis in patients[6][45][60]. Due to the fact that the levels of upa and pai1 in different

laboratories were not measured within the same scale, it was difficult to compare them di-

rectly across studies[152]. To address this issue, within each individual study, Look et al.

provided rupa and rpai1 which denoted the fractional ranks of upa and pai1 respectively.

That is, within one study, upa and pai1 were rescaled into fractional ranks (between 0

and 1) via dividing the two ranked variables by the number of patients of the study. In

this way, the fractional ranks with the same scale could be comparable across different

studies.

4.2.2 Descriptive statistics

The descriptive statistics of the data are now summarized. The median follow-up of

patients alive ranged from 52 months to 120 months in different countries. The average

age of Austria, France and Switzerland were more than 57 years old while Ireland was

only 51.539. There were 40% of the patients who were premenopasual. The 45% of the

patients had small tumors (pT1), while 48% had middle tumors (pT2) and others had

large tumors. The tumour grade of 37% patients was unknown, 56% were lymph node

negative and 43% received systemic adjuvant treatment. As for the outcome, 27% of

patients died within 10 years.
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Variable No. of Obs Mean s.d. median Min Max

Age
Netherland 3242 56.777 13.366 56.000 22.000 90.000
Ireland 184 51.539 11.887 50.524 30.051 85.988
Sweden 914 54.365 11.748 51.717 23.000 89.000
Slovenia 69 55.275 10.923 55.485 31.797 76.172
Austria 88 57.638 13.140 56.070 30.229 89.588
France 1509 57.625 11.778 58.000 24.000 85.142
Switzerland 663 58.190 11.402 57.100 23.780 85.160
Denmark 766 54.851 10.857 55.000 28.000 80.000
Total 7435 56.447 12.461 56.000 22.000 90.000

Upa
Netherland 3227 1.087 1.273 0.730 0.000 24.400
Ireland 184 0.564 0.920 0.355 0.000 10.200
Sweden 914 0.452 0.456 0.310 0.000 3.190
Slovenia 69 0.384 0.281 0.340 0.070 1.370
Austria 88 5.243 4.030 4.450 0.750 18.840
France 1470 0.714 0.789 0.440 0.000 7.220
Switzerland 653 1.004 0.848 0.730 0.000 5.040
Denmark 762 3.369 5.890 0.632 0.000 60.641
Total 7367 1.192 2.355 0.570 0.000 60.641

Pai1
Netherland 3236 18.316 25.502 12.330 0.000 479.38
Ireland 184 2.270 3.841 0.581 0.000 20.900
Sweden 226 1.184 2.268 0.700 0.010 23.000
Slovenia 69 8.934 10.275 6.200 0.270 75.910
Austria 88 3.781 3.653 2.715 0.270 28.150
France 687 5.716 5.594 4.060 0.000 46.430
Switzerland 485 7.414 5.905 5.600 0.100 47.380
Denmark 766 1.970 4.089 1.027 0.000 68.925
Total 5741 12.182 20.706 6.250 0.000 479.380

Survival time
Netherland 3242 75.178 32.850 78.193 1.051 120.000
Ireland 184 65.558 33.470 64.624 2.333 120.000
Sweden 914 93.958 34.790 120.000 4.172 120.000
Slovenia 69 51.253 11.243 54.735 8.903 63.671
Austria 88 55.923 26.814 52.073 1.478 120.000
France 1509 72.042 29.694 70.275 1.084 120.000
Switzerland 663 45.139 15.880 44.353 1.708 85.224
Denmark 766 64.07 28.035 63.622 1.281 120.000
Total 7435 72.339 32.878 69.651 1.051 120.000

Table 4.2: Summary of baseline characteristics of continuous variables by countries
(s.d.=standard deviation).
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Variable Ned Irl Swe Slo Aut Fra Sui Den

Survival status
alive 2058 126 770 54 59 1235 587 503
deceased 1184 58 144 15 29 274 76 263

Tumour type
idc 2136 61 60 1009 470 635
ilc 234 6 12 81 88 76
colloid 3 1 16
tubul 21 1 3 21 4
medull 58 5 5 28 26
papil 13 1 3 2 2
other 155 7 55 53 21
unknown 622 184 914 338 1 4

Tumour grade
good 122 71 5 29 234 37
moderate 654 81 22 41 776 183
poor 1613 64 40 16 385 300
unknown 853 184 698 2 2 114 143 766

Lymph nodes
nodenegative 1656 87 491 25 36 1015 369 451
1-3 863 49 256 21 20 317 176 184
> 3− 10 524 40 135 15 21 140 69 103
> 10 199 8 32 8 11 37 49 28

Menopausal status
pre 1311 123 482 26 28 485 220 324
post 1931 61 432 43 60 1024 443 442

Tumour size
pT1 1396 64 422 18 29 801 308 275
pT2 1533 91 472 42 51 676 307 424
pT3, pT4 313 29 20 9 8 32 48 67

Adjuvant treatment
no or unknown 2353 44 411 10 22 787 137 442
yes 889 140 503 59 66 722 526 324

Hormone receptor
0 or unknown 588 77 249 42 22 300 56 182
at least one 2654 107 665 27 66 1209 607 584

Total 3242 184 914 69 88 1509 663 766

Table 4.3: Summary of baseline characteristics of category variables by country.
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Country Laboratory Total Missing upa Missing pai1

Netherland Rotterdam 2722 12 1
Nijmegen 321 3 5
Utrecht 199

Ireland Ireland 184

Sweden Sweden1 688 688
Sweden2 226

Slovenia Ljubljana 69

France Fr-lia 554 554
Paris 188 39
StCloud 499
Lille 268 268

Austria Oost 88

Switzerland Switzerland 663 10 178

Denmark
Denmark12 444 4
Denmark3 332

Table 4.4: Summary of laboratories of each country and the corresponding missing values in
upa and pai1.

Table 4.2 gives the basic characteristics of patients and their follow-up information

(e.g. number censored or dead), plus descriptive statistics for continuous factors, and

Table 4.3 summarizes other variables. Of the available variables, only upa and pai1 had

missing values, which are summarized in Table 4.4 by laboratory and country.

4.3 Objectives

Three objectives are set up in this study.

4.3.1 Objective 1: Obtain a survival curve for each country and

overall

The first objective of the analysis is to investigate the hazard rate of primary breast cancer

within each country and then on the entire database respectively. Flexible parametric

survival models via Royston-Parmar scheme are used, with all potential confounding

factors ignored. Although no confounding factors are included in this step, the pure

overall prognosis is still very useful for each country[58]. It will not only provide us

an intuitive way to compare the precision accuracy of parametric survival models and

Royston-Parmar models visually in each study but also to compare the shape of the
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hazard rates curves amongst the different countries.

4.3.2 Objective 2: Country-specific survival curve using prog-

nostic model

The second objective is to formally compare the country-specific survival probabilities

of patients. In other words, is country a prognostic factor? To quantify this, Royston-

Parmar approaches are implemented where ‘country’ is included into the model to denote

where patients come from. Two possible models are available in this case:

Unadjusted model

A straightforward idea is to incorporate ‘country’ as the only covariate in the Royston-

Parmar model. However, the weakness of this unadjusted model is quite obvious: since

mortality rates of breast cancer depend on confounding factors, comparisons between

countries are confounded in the absence of confounding factors. Ignoring confounding

can lead to a biased estimate of the true association between the outcome risks of breast

cancer and ‘country’.

Adjusted model

An alternative method is to let the Royston-Parmar model adjust for all the significant

confounding variables in estimation and prediction. In the breast cancer dataset, the

candidate confounding factors such as age, tumour type, tumour grade, number of lymph

nodes, menopausal status, tumour size, adjuvant treatment and hormone receptor status

listed in Table 4.1 could be added to the model directly as the covariates[20]. In compar-

ison to common Cox models, adjusted average survival curves can be produced following

a Royston-Parmar model (see Section 4.4.2).
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4.3.3 Objective 3: Comparison of countries after including upa

and pai1

One problem existing in the database is that subgroups of two confounding variables in

our database (upa, pai1) were missing. Additionally, the measurement methods of upa

and pari1 were not uniform across laboratories.

In Objective 2, the two variables, upa and pai1 were not considered as confounding

factors. However, it was not a perfect solution since upa and pai1 play important roles in

health measurements of patients with primary breast cancer[6][60][131]. Then the deletion

of the two variables may lead to a waste of costly collected data and further, the omission

of the key covariates in the regression may cause bigger unexplained variation in the final

model[107]. As it has raised concerns to keep all information of the underlying data,

in our study, an imputation approach by Buuren et al.[160] is proposed to estimate the

missing values in the data sample.

4.4 Methods

To meet the objectives, a pre-specified statistical analysis plan was written and this is

now summarised.

4.4.1 Methods for Objective 1

Three main statistical methods, parametric, nonparametric and Royston-Parmar models

were used to fit mortality rates of patients on the entire database.

Initially, the estimators (hazard rate function h(t), cumulative hazard rate function

H(t) and survival function S(t)) using three parametric models, Weibull, log-normal and

log-logistic, were produced in three panels respectively. Royston-Parmar survival models

were then fitted to the same data. To visualize the difference between the conventional

parametric method and Royston-Parmar model in the same scale, we developed Royston-

Parmar proportional hazards, proportional odds and probit models (seen in Section 1.6)

and plotted the estimated curves against their parametric counterparts in each figure.
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To consider country-specific hazards, the above procedure was repeated for each coun-

try separately. In this study, two questions may incur our interests, that is, whether

Royston-Parmar approaches perform better than parametric counterparts and whether

the hazard rate functions do vary across 8 European countries judging from the shapes of

corresponding survival curves.

4.4.2 Methods for Objective 2

The second goal of this chapter is to compare country-specific mortality rate of breast

cancer from 8 different European countries using Royston-Parmar regression models.

The hazard ratios, reflecting the difference in risks between two countries, were first-

ly estimated using an unadjusted Royston-Parmar proportional hazard model[2][144].

Netherland was selected to be the reference level which accounts for the biggest pop-

ulation of the total database. An alternative multivariable Royston-Parmar proportional

hazards model is then provided to incorporate all the potential confounding variables

such as age, tumour type, menopasual status, lymph node status, tumor size, adjuvant

systemic treatment, tumor grade and hormone-receptor status.

Using the estimates from the multivariable model, adjusted survival curves could be

predicted and plotted by calculating the population-averaged survival curve for each

country[120]. This is done by predicting the survival curve for each individual in the

dataset, using their own covariate values but assuming they were from a specified country.

All these individual survival curves were then averaged to give the population-averaged

survival curve for that country. For example, to estimate the mean survival curve in jth

country, the log cumulative hazard scale for the ith sample can be expressed as

ln(Hi(t)) = ln(H0(t)) + β̂0j + β̂
T
X i

where β̂0j is the coefficient estimate of jth country (0 for Netherland) and the covariate

vector X represent all the confounding factors given above. Then the mean survival curve
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at time t for jth country could be written as

N−1

N∑
i=1

exp(− exp(ln(H0(t)) + β̂0j + β̂
T
X i)).

Plotting over many t values gives the summary survival curve.

This adjusted model also allows to predict the mean absolute survival probabilities

between countries at fixed time points, after adjusting for the other variables in the

model[120].

Assessing the proportional hazards assumption

In Royston Parmar proportional hazards model, it usually assumes that the hazard ratio

of a variable remains constant over time. If it is violated, it means that the hazard ratio

of this variable changes over time and thus the time dependent effect should be taken into

consideration[83].

There are a number of methods to test proportionality[59][74][132]. As guidance, the

Cox models are fitted for the data from each country separately. If the proportional haz-

ards assumption holds, then the graph of the survival function for each involved country

versus the survival time should results in a graph with parallel curves, similarly the graph

of the log(-log(survival)) versus log of survival time should result in parallel lines as well

(‘log-log’ plot). To further adjust for any confounding variables, we could add the asso-

ciated covariates to the Cox model w.r.t each country and then the estimated survival

curves plotted in the graph are determined by fixing the value of each covariate being its

average.

4.4.3 Methods for Objective 3

Multiple imputation technique was implemented to estimate the missing values for upa

and pai1 (rupa and rpai1) in the database. Multiple imputation is a statistical tech-

nique for handling missing data, which is increasingly popular due to its generality and

efficiency[117][118] (see Appendix A). The key idea of multiple imputation is to use the
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observed data to estimate the missing data and also take the uncertainly of estimation

into consideration. In particular, m imputations of the data, each of which has the miss-

ing values properly estimated are produced and then treated equally to achieve m copies

of parameter estimates. Afterwards, the point estimates, variance and confidence inter-

vals are computed by averaging the m estimates and computing its standard errors using

Rubin’s Rule[125] (see Appendix A).

There is debate over using the original scale or ranked scale of upa and pai1 in clinical

researches. As upa and pai1 were not measured by the same extraction and assay methods,

the measurements were not comparable across the studies[87]. Arguably, the fractional

ranks, rupa and rpai1 could be applied to rescale the measurements in each laboratory

between 0 and 1. However, rupa and rpai1 forced the difference between any two neighbour

entries of upa or pai1 to be equal within one study which was not a realistic setting. To

be cautious, we proposed to run both multivariate models employing the original scale

and ranked scale of upa and pai1 respectively and then looked into the difference between

these two models with the different settings.

The multiple imputation procedures to reconstruct the two variables ( in ranked scale

or original scale) can be schemed as follows,

Multiple imputation for the model using rupa and rpai1

Within laboratory imputation: For laboratories in Rotterdam, Nijmegen, Paris and Switzer-

land, only a small proportion of upa and pai1 were not recorded. We suggested to estimate

these missing values within each laboratory separately using multiple imputation tech-

nique. As a general rule, using all available information yields multiple imputations that

have minimal bias and maximal certainty[160], hence we included all the confounding

variables into this model such as age, tumour type, menopasual status, lymph node sta-

tus, tumor size, adjuvant systemic treatment, tumor grade and steroid hormone-receptor

status. Further, the survival or censoring time, OS and its censoring indicator, OSi were

also added to the imputation procedure.

After each imputation, the observed and imputed upa and pai1 of each laboratory
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were pooled together and ranked again to produce the updated complete rupa and rpai1

respectively.

Between laboratory imputation: Unfortunately, for the laboratories, Swe1, Fr-lia and Lille

where no pai1 was reported, the within laboratory imputation could not be applied direct-

ly since multiple imputation technique cannot estimate an variable without any known

observations[117]. Then we could to make use of the observed dataset from Paris and

StCloud to estimate the missing pai1 in Fr-lia and Lille because all the 4 laboratories are

in France and should have similar baseline characteristics. In the same way, the values of

rpai1 in Swe1 can be imputed in use of the observations from Swe2 since both of the two

laboratories belong to Sweden.

In particular, for Fr-lia or Lille, firstly we combined their samples with Paris and

StCloud together to form a big dataset and then estimated the missing values of rpai1

using known rupa and rpai1 as well as the other confounding variables. After each impu-

tation, the estimated rpai1 in Fr-lia or Lille needed to be adjusted additionally to follow

the standard setting of the fractional rank. By analogy, we pooled the data from Swe1

and Swe2 and then apply the within imputation method to estimate pai1 in Swe1 with

pai1 from Swe2 and the other covaraites. Finally, rpai1 in Swe1 was computed based on

the imputed pai1.

Multiple imputation for the model using upa and pai1

Within laboratory imputation: For laboratories in Rotterdam, Nijmegen, Paris and Switzer-

land, similar to the case of rank scale, the missing values of upa and pai1 within each

laboratory were estimated by the known upa, pai1 and associated covariates separately

using multiple imputation technique.

Between laboratory imputation: In analogy to estimating rpai1, we combined the samples

from Fr-lia and Lille with those in Paris and StCloud to form a big dataset and then

imputed the missing values of pai1 in Fr-lia and Lille using known upa and pai1. As

for Swe1, missing values in pai1 were estimated using the combined data from Swe1 and

Swe2.
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Combining dataset for regression

No matter which scale we applied in multiple imputation to estimate upa and pai1, after

each imputation across all the studies, we append the imputed datasets with the studies

without missing values to form a complete imputed data set for the entire sample. Con-

sequently, m copies of the whole database with imputed upa and pai1 or rupa and rpai1

could be obtained after m imputations.

Once the multiple imputed dataset was generated, each imputed data set was analyzed

separately by using Royston-Parmar regression. For each model, country, age, tumour

type, menopasual status, Lymph node status, tumor size, adjuvant systemic treatment,

tumor grade, steriod hormone-receptor status, upa and pai1 (original or ranked scale)

were included as the covariates. Finally the estimates of coefficients of the covariates

were averaged across the m copies and the standard error of any estimate was computed

based on the ‘Rubin rule’[125].

4.5 Results

4.5.1 Results for Objective 1

We first determine the number of knots required for the Royston-Parmar model in our

research. Then we show the parametric estimators (Weibull, log-normal, log-logistic) and

their Royston-Parmar generalized estimators for the whole database and each individual

country as follows.

Number of knots for Royston-Parmar model

When the Royston-Parmar approach is applied to fit the underlying data, we need to

determine the knots required in estimating the baseline hazard function of the model. It

is also recognized as the problem to decide the degrees of freedom (d.f.) for the Royston-

Parmar model where the degrees of freedom equal to the number of knots minus 1.

Figure 4.1 illustrates the baseline hazard functions on the proportional hazards scale

for the whole database using different degrees of freedom. We find that it makes little
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difference in estimation when 3 knot was used (d.f.=2) compared to as many as 7 knots

(d.f.=6) for the outcomes of mortality[120]. Further with reference to AIC and BIC, we

find that adding the degree of freedom to the model cannot result in any big reduction in

AIC and BIC. On the contrary, AIC and BIC reached the minimum at d.f.=3 and d.f.=2

respectively. Therefore it was determined that 3 degrees of freedom (4 knots) would be

adequate in this case. In the rest of this chapter, we do not discuss the choice of knots for

the Royston-Parmar model further but based on our study, d.f.=2 or 3 is always sufficient

to model the underlying breast cancer dataset.
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Figure 4.1: Baseline hazard functions after fitting the Royston-Parmar model on proportional
hazards scale with d.f.=2 to 6 respectively.

Weibull distribution

The parametric estimator based on the Weibull parametric survival model and the Royston-

Parmar proportional hazards model generalized from the Weibull distribution were plotted

against each other in Figure 4.2. The parametric hazard rate estimator performed poorly

that failed to capture the drop of the true curve around 4 years. Comparably, Royston-

Parmar model performed very well except for a bit overestimating of the true risk for the

patients who had survived between 2.2 and 5 years. This exemplifies why Royston-Parmar

models are more flexible and needed.
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Figure 4.2: The entire data: Nonparametric estimator (solid) with pointwise confidence band
in gray, parametric estimator (dot), Royston-Parmar estimator (dash). Left panel: Kernel
estimator of hazard rate function compared with estimates from Royston-Parmar model and
Weibull model. Middle panel: same comparison for the cumulative hazard rate function. Right
panel: same comparison for the survival function.

Log-logistic distribution

The parametric log-logistic estimators for hazard rates were plotted in Figure 4.3. It

is clear that the parametric estimator was again very poor in comparison to its non-

parametric counterpart with 95% confidence band. Conversely, the difference between

the Royston-Parmar proportional odds estimator and nonparametric estimator was much

smaller implying the Royston-Parmar model is superior to its parametric counterpart.
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Figure 4.3: The entire data: Nonparametric estimator (solid) with pointwise confidence band
in gray, parametric estimator (dot), Royston-Parmar estimator (dash). First panel: Kernel
estimator of hazard rate function compared with estimates from Royston-Parmar model and
log-logistic model. Middle panel: same comparison for the cumulative hazard rate function.
Right panel: same comparison for the survival function.

Log-normal distribution

From Figure 4.4, it can be seen that the log-normal hazard rate estimator might capture

the turning point (around t = 4) of the hazard curve of the underlying risk, however

the Royston-Parmar probit estimator generalized from log-normal distribution still out-

performed in estimation with the reference to the observed true curves (nonparametric

estimators).
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Figure 4.4: The entire data: Nonparametric estimator (solid) with pointwise confidence band
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The same procedures were repeated for each European country separately. Figure 4.5

to 4.7 show the hazard rate estimators of the eight countries within the scale of Weibull,

log-logistic and log-normal distributions respectively.
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Figure 4.5: The kernel estimates of hazard rate function compared with the estimates from
flexible parametric models with d.f.=3 and Weibull models for 8 countries, Netherland, Slove-
nia, Switzerland, France, Ireland, Austria, Sweden and Denmark respectively: nonparametric
estimator (solid) with pointwise confidence band in gray, parametric estimator (dot), Royston-
Parmar estimator (dash).
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Figure 4.6: The kernel estimates of hazard rate function compared with the estimates from flex-
ible parametric models with d.f.=3 and log-logistic models for 8 countries, Netherland, Slovenia,
Switzerland, France, Ireland, Austria, Sweden and Denmark respectively: nonparametric estima-
tor (solid) with pointwise confidence band in gray, parametric estimator (dot), Royston-Parmar
estimator (dash).
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Figure 4.7: The kernel estimates of hazard rate function compared with the estimates from
flexible parametric models with d.f.=3 knots and log-normal models for 8 countries, Netherland,
Slovenia, Switzerland, France, Ireland, Austria, Sweden and Denmark respectively: nonpara-
metric estimator (solid) with pointwise confidence band in gray, parametric estimator (dot),
Royston-Parmar estimator (dash).

Two important conclusions can be summarized from these figures. Firstly is that, in

terms of smooth kernel estimators with 95% confidence band, Royston-Parmar methods

provide much better fits than their parametric counterparts. Regardless of the parametric

start of Royston-Parmar estimators, no visual difference can be found amongst the three

Royston-Parmar estimators, suggesting that the choice of the scale appear not crucial, at

least in our study.

Secondly, the fitted curves across 8 countries appear noticeably different from each

other. The shapes of hazard rate estimators were of the same type for Netherland, Ire-

land, Sweden, France and Denmark where the curves went up in the beginning and then
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dropped down, although there was some disagreement over the time at which the hazard

function reached its highest point. However the mortality rates of the other three coun-

ties, Slovenia, Austria and Switzerland, had totally different trends, where the hazard

rates gradually increased as time went. This fact implies that the hazard rate curves

of individual risks across 8 European countries might not be same at all, and thus we

should look into the potential country-level effects and whether differences were due to

confounders.

4.5.2 Results for Objective 2

Unadjusted survival analysis

The unadjusted result of the Royston Parmar proportional hazards model is summarized

in Table 4.5 where Netherland is set as the reference country and proportional hazards

assumed. The patients in Sweden have the highest probabilities to survive amongst 8

countries where its hazard ratio versus Netherland is as low as 0.341 (CI=(0.286, 0.405))

and the p-values of log hazard ratio estimators for Ireland, Slovenia, Austria and Denmark

are more than 0.05 which suggest that the unadjusted survival probabilities of patients in

these four countries are not significantly different from those in Netherland. The hazard

ratios of France and Switzerland are 0.520 (CI=(0.456, 0.593)) and 0.562 (CI=(0.445,

0.711)) indicating that unadjusted hazard rates of mortality are 48.0% and 43.8% lower

than Netherland respectively.

Variable HR s.e. of
ln(HR)

P Value 95% CI for HR

Netherland . . . .
Ireland 1.006 0.135 0.966 (0.773, 1.309)
Sweden 0.341 0.030 < 0.001 (0.286, 0.405)
Slovenia 0.908 0.236 0.710 (0.545, 1.512)
Austria 1.255 0.236 0.227 (0.868, 1.815)
France 0.520 0.035 < 0.001 (0.456, 0.593)
Switzerland 0.562 0.067 < 0.001 (0.445, 0.711)
Denmark 1.118 0.076 0.103 (0.978, 1.278)

Table 4.5: Unadjusted estimates for mortality from Royston-Parmar proportional hazards mod-
el.
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The unadjusted survival curves for 8 countries are shown in Figure 4.8 which cluster

into 3 groups. The patients in Netherland, Ireland, Slovenia, Austria and Denmark have

highest mortality rates, the patients in France and Switzerland are second, and Sweden

has the lowest risk over time.
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Figure 4.8: Unadjusted estimates of mortality for 8 included countries using the Royston-
Parmar proportional hazards model.

Adjusted survival analysis

Do differences remain after we adjust for confounding factors? To adjust for baseline

confounding, besides ‘country’, the variables age, tumour type, tumour grade, lymph

nodes, menopausal status, tumour size, adjuvant treatment and hormone receptor status

were also included into the model.

The estimates of the full model are summarized in Table 4.6. In comparison to the

142



unadjusted case, the adjusted hazard ratios for France and Denmark substantially in-

creased by approximately 20%. Sweden was still in the best position of all 8 countries

with the hazard ratio equaling to 0.344 (CI=(0.272, 0.435)). The hazard ratio for Den-

mark increased dramatically from 1.118 (CI=(0.978, 1.278)) to 1.425 (CI=(1.203, 1.689))

which implied that the unadjusted model underestimated the hazard ratio of Denmark

versus Netherland. The hazard ratio of Slovenia dropped from 0.908 (CI=(0.545, 1.512))

to 0.622 (CI=(0.371, 1.045)), but the other countries’s risk stayed at a similar level as the

unadjusted model.

Other estimates from this model suggest that a one-year increase in age increased the

hazard ratio of death by 1%. Among all types of tumors, only ‘medull’ type was statisti-

cally significant (HR=0.462, CI=(0.299, 0.714)). For the tumour grade, the prognosis of

patients in good status and moderate status were better than those in unknown and poor

status. The hazard ratio for number of lymph nodes and tumor size gradually went up

with increasing levels. The variable, menopasual status was not statistically significant

in the model. The hazard rate of death for the patients with adjusted treatment were

10.9% lower than those with conventional treatment and the risk of death for the patients

with at least one of estrogen receptor or progesterone receptor status being high was 43%

lower than their counterparts.

The population-averaged survival curves for the 8 countries are plotted in Figure 4.9.

It shows that Denmark dropped to the bottom of 8 countries while France and Switzerland

are now in the 3rd and 4th position.
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Variable HR s.e. of
ln(HR)

P Value 95% CI for HR

Age 1.011 0.003 < 0.001 (1.006, 1.017)
Tumour type Reference level: idc
ilc 0.908 0.087 0.313 (0.753, 1.095)
col 0.745 0.530 0.679 (0.185, 3.001)
tubul 0.591 0.297 0.294 (0.221, 1.580)
medull 0.462 0.103 0.001 (0.299, 0.714)
papil 0.662 0.335 0.414 (0.245, 1.784)
other 0.929 0.121 0.573 (0.719, 1.200)
unknown 1.024 0.068 0.716 (0.900, 1.166)
Tumour grade Reference level: good
moderate 1.524 0.242 0.008 (1.116, 2.082)
poor 2.179 0.341 < 0.001 (1.604, 2.962)
unknown 1.832 0.299 < 0.001 (1.331, 2.521)
Tumour size Reference level: np= 0
np< 3 2.030 0.131 < 0.001 (1.788, 2.305)
3 < np < 10 3.490 0.233 < 0.001 (3.062, 3.978)
np> 10 5.494 0.459 < 0.001 (4.663, 6.472)
Menopasual status 0.944 0.071 0.442 (0.814, 1.094)
Tumour size 1.383 0.051 < 0.001 (1.287, 1.487)
Adjuvant treatment 0.891 0.026 < 0.001 (0.842, 0.943)
Hormone receptor 0.565 0.029 < 0.001 (0.511, 0.626)
Country Reference level: Netherland
Ireland 0.954 0.152 0.769 (0.698, 1.305)
Sweden 0.344 0.041 < 0.001 (0.272, 0.435)
Slovenia 0.622 0.165 0.073 (0.371, 1.045)
Austria 1.360 0.268 0.119 (0.924, 2.000)
France 0.744 0.057 < 0.001 (0.641, 0.864)
Switzerland 0.756 0.095 0.025 (0.591, 0.966)
Denmark 1.425 0.123 < 0.001 (1.203, 1.689)

Table 4.6: Adjusted estimates for mortality from Royston-Parmar proportional hazards regres-
sion.
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Adjusted survival curves for the eight countries

Figure 4.9: Population-averaged estimates of mortality for 8 included countries using the
Royston-Parmar proportional hazards model adjusting for the potential confounding factors.

The absolute differences in predicted mean survival probabilities for each country at

1, 2, 3, 5 and 8 years following surgery are listed in Table 4.7. There is an increasing

trend in the maximum difference in predicted mean survival probabilities which are 0.021

(CI=(0.021, 0.022)) for 1-year period, 0.072 (CI=(0.070,0.073)) for 2-year period, 0.125

(CI=(0.123 ,0,127)) for 3-year period, 0.206 (CI=(0.204, 0.208)) for 5-year period and

0.282 (CI=(0.280, 0.284)) for 8-year period.

Proportional hazards assumption

By visual inspection of ‘log-log’ plots, the proportional hazards assumption was assessed

for all the possible outcomes of ‘country’ (Figure 4.10) accounting for confounders. Par-

allel curves suggest that the proportional hazards assumption appears reasonable in our
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Period Country Mean 95% CI for HR

Year 1 Netherland 0.980 (0.980, 0.981)
Ireland 0.981 (0.981, 0.981)
Sweden 0.993 (0.993, 0.993)
Slovenia 0.988 (0.987, 0.988)
Austria 0.973 (0.973, 0.974)
France 0.985 (0.985, 0.985)
Switzerland 0.985 (0.985, 0.985)
Denmark 0.972 (0.971, 0.972)

Year 2 Netherland 0.930 (0.929, 0.932)
Ireland 0.933 (0.932, 0.935)
Sweden 0.975 (0.974, 0.975)
Slovenia 0.955 (0.955, 0.956)
Austria 0.907 (0.906, 0.909)
France 0.947 (0.946, 0.948)
Switzerland 0.946 (0.945, 0.948)
Denmark 0.903 (0.901, 0.905)

Year 3 Netherland 0.874 (0.871, 0.876)
Ireland 0.879 (0.877, 0.881)
Sweden 0.953 (0.952, 0.954)
Slovenia 0.918 (0.916, 0.919)
Austria 0.835 (0.832, 0.838)
France 0.903 (0.901, 0.905)
Switzerland 0.902 (0.900, 0.904)
Denmark 0.828 (0.825, 0.831)

Year 5 Netherland 0.774 (0.771, 0.778)
Ireland 0.783 (0.779, 0.786)
Sweden 0.910 (0.908, 0.912)
Slovenia 0.848 (0.845, 0.850)
Austria 0.714 (0.710, 0.718)
France 0.823 (0.820, 0.826)
Switzerland 0.821 (0.818, 0.824)
Denmark 0.704 (0.700, 0.708)

Year 8 Netherland 0.663 (0.658, 0.667)
Ireland 0.674 (0.669, 0.678)
Sweden 0.855 (0.852, 0.858)
Slovenia 0.763 (0.759, 0.767)
Austria 0.586 (0.581, 0.591)
France 0.728 (0.724, 0.732)
Switzerland 0.725 (0.721, 0.729)
Denmark 0.573 (0.568, 0.578)

Table 4.7: Mean survival probabilities for eight countries at Year 1, 2, 3, 5 and 8 using the
adjusted model.
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Figure 4.10: ‘Log-log’ plot for the outcome of mortality for 8 countries, Netherland, Slove-
nia, Switzerland, France, Ireland, Austria, Sweden and Denmark adjusted for all the related
confounding factors.

4.5.3 Results for Objective 3

According to the choices of the scale for upa and pai1, two copies of the imputed datasets

were constructed with the multiple imputation technique.

Estimation after including multiple imputation of rupa and rpai1

With the 10 imputations of rupa and rpai1, each imputed dataset was fitted separately

where rupa and rpai1 entered the Royston-Parmar model as confounding factors. The

final parameters estimates and standard errors of the model are summarized in Table 4.8.
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Variable HR s.e. of
ln(HR)

P Value 95% CI for HR

Age 1.011 0.003 < 0.001 (1.005, 1.017)
Rupa 1.644 0.101 < 0.001 (1.447, 1.841)
Rpai1 2.080 0.114 < 0.001 (1.856, 2.304)
Tumour type Reference level: idc
ilc 1.091 0.096 0.184 (0.902, 1.280)
col 0.691 0.711 0.302 (-0.703, 2.086)
tubul 0.616 0.502 0.167 (-0.368, 1.600)
medull 0.466 0.222 < 0.001 (0.031, 0.901)
papil 0.666 0.508 0.212 (-0.330, 1.662)
other 0.976 0.131 0.428 (0.720, 1.233)
unknown 1.026 0.066 0.346 (0.897, 1.156)
Tumour grade Reference level: good
moderate 1.387 0.160 0.020 (1.074, 1.701)
poor 1.974 0.157 < 0.001 (1.666, 2.282)
unknown 1.680 0.163 0.001 (1.360, 2.000)
Tumour size Reference level: np= 0
np< 3 1.990 0.065 < 0.001 (1.863, 2.117)
3 <np< 10 3.487 0.066 < 0.001 (3.357, 3.617)
np> 10 5.445 0.083 < 0.001 (5.283, 5.608)
Menopasual status 0.945 0.075 0.225 (0.797, 1.092)
Tumour size 1.389 0.037 < 0.001 (1.316, 1.463)
Adjuvant treatment 0.896 0.029 < 0.001 (0.839, 0.952)
Hormone receptor 0.625 0.053 < 0.001 (0.521, 0.728)
Country Reference level: Netherland
Ireland 0.978 0.160 0.443 (0.664, 1.291)
Sweden 0.343 0.120 < 0.001 (0.109, 0.578)
Slovenia 0.678 0.264 0.071 (0.160, 1.197)
Austria 1.307 0.197 0.087 (0.921, 1.694)
France 0.736 0.076 < 0.001 (0.588, 0.884)
Switzerland 0.724 0.125 0.005 (0.479, 0.970)
Denmark 1.417 0.087 < 0.001 (1.247, 1.587)

Table 4.8: Royston-Parmar model parameter estimates after multiple imputation of rupa and
rpai1.

148



The population-averaged survival curves after this multiple imputation are shown in

Figure 4.11 with the Royston-Parmar models now also including rupa and rpai1. The

estimates of the hazard ratios of each country have not changed too much in comparison

to the previous adjusted model, and thus the ordering of countries stays the same as

before.
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Adjusted survival curves after MI of RUPA and RPAI1

Figure 4.11: Population-averaged estimates of mortality for 8 included countries using the
adjusted Royston-Parmar proportional hazards model after including the imputed variables,
rupa and rpai1.

Estimation after including multiple imputation of upa and pai1

Multiple imputation in the previous section was repeated on the original values of up-

a and pai1. The obtained hazard ratio estimates are summarized in Table 4.9 and the

population-averaged survival curves of 8 countries are plotted in Figure 4.12 after addi-

tionally adjusting for upa and pai1. Again no dramatic changes in the hazard ratios of
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countries could be found compared with the adjusted model in the last section. Hence it

implies that the inclusion or exclusion of upa and pai1 did not influence the association

between the risks of patients and the place they lived.
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Adjusted survival curves after MI of UPA and PAI1

Figure 4.12: Population-averaged estimates of mortality for 8 included countries using the
adjusted Royston-Parmar proportional hazards model after including the imputed variables,
upa and pai1.

4.6 Discussion

This study of the EORTC-RBG data applied a newly proposed flexible parametric model

approach (Royston-Parmar modelling) to estimate and compare the mortality rates of

patients with primary breast cancer from 8 countries.
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Variable HR s.e. of
ln(HR)

P Value 95% CI for HR

Age 1.012 0.001 < 0.001 (1.010, 1.014)
Upa 1.030 0.002 < 0.001 (1.025, 1.034)
Pai1 1.005 < 0.001 < 0.001 (1.004, 1.005)
Tumour type Reference level: idc
ilc 0.946 0.029 0.072 (0.891, 1.005)
col 0.845 0.190 0.456 (0.544, 1.314)
tubul 0.612 0.097 0.002 (0.449, 0.836)
medull 0.479 0.034 < 0.001 (0.417, 0.549)
papil 0.694 0.111 0.023 (0.507, 0.951)
other 0.872 0.038 0.002 (0.800, 0.951)
unknown 1.050 0.022 0.020 (1.008, 1.094)
Tumour grade Reference level: good
moderate 1.474 0.077 < 0.001 (1.331, 1.632)
poor 2.077 0.106 < 0.001 (1.878, 2.296)
unknown 1.771 0.094 < 0.001 (1.595, 1.965)
Tumour size Reference level: np= 0
np< 3 2.120 0.044 < 0.001 (2.035, 2.209)
3 <np< 10 3.684 0.079 < 0.001 (3.532, 3.842)
np> 10 5.663 0.152 < 0.001 (5.374, 5.969)
Menopasual status 0.925 0.022 0.001 (0.883, 0.970)
Tumour size 1.373 0.016 < 0.001 (1.342, 1.406)
Adjuvant treatment 0.879 0.008 < 0.001 (0.863, 0.895)
Hormone receptor 0.570 0.010 < 0.001 (0.551, 0.589)
Country Reference level: Netherland
Ireland 1.040 0.053 0.436 (0.942, 1.149)
Sweden 0.372 0.014 < 0.001 (0.345, 0.401)
Slovenia 0.694 0.058 < 0.001 (0.589, 0.818)
Austria 1.288 0.082 < 0.001 (1.137, 1.459)
France 0.737 0.019 < 0.001 (0.700, 0.776)
Switzerland 0.823 0.033 < 0.001 (0.762, 0.890)
Denmark 1.446 0.042 < 0.001 (1.366, 1.530)

Table 4.9: Royston-Parmar model parameter estimates after multiple imputation of upa and
pai1.
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4.6.1 Key findings

In the first objective, the hazard rate function was estimated in each country separately to

show the average (overall) prognosis in their populations[58]. The Royston-Parmar models

fitted the observed data well regardless of the chosen scale whereas standard parametric

models (such as Weibull) did not. The curves of Austria, Switzerland and Slovenia were

monotone, others were unimodal.

In the second objective of the chapter, initially only the geographical factor, ‘coun-

try’ was included into Royston-Parmar regression (unadjusted model) as the explanatory

variable. By setting Netherland to be the reference level, the hazard ratio of the other 7

countries ranged from 0.34 (Sweden) to 1.25 (Austria). After adjusting for age, tumour

type, tumour grade, number of lymph nodes, menopausal status, tumour size, adjuvant

treatment and hormone receptor status, the hazard ratios in France and Switzerland in-

creased by approximately 0.2 and the hazard of death in Slovenia now dropped by 0.28.

Sweden had the best mortality rates but Denmark had the worst.

The third goal of this chapter was to impute the missing values in upa and pai1

and then add them to the Royston-Parmar model. It was found that the inclusion or

exclusion of upa and pai1 brought no significant influence to the estimates of hazard

ratios of ‘country’. This is because the association between mortality rates of breast

cancer and ‘country’ did not depend on upa and pai1.

Beside the clinical achievements, the study also highlights the efficiency of multiple im-

putation technique in practice. The old-fashioned approach was to replace missing values

with the mean or mode of the nonmissing values for that variable. However that approach

is now thought to be insufficient since no randomness is considered in estimation[169].

Multiple imputation proposed by Burren[160] merged the proper degree of randomness

into the imputed values and also considered the uncertainty when computing standard er-

rors and confidence intervals for parameters of interests. Using this property, we are able

to calculate the mean predicted survival probabilities of patients in the imputed models

at any given time[117].
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Statistically, the study also reflects the outstanding performance of Royston-Parmar

model in fitting procedures, and more advantages are summarized as follows: Firstly,

unlike Cox-regression, the baseline hazard functions can be estimated in this model[116].

Secondly, population-averaged (‘adjusted’) survival curves can be plotted to graphically

show survival functions for groups of patients. Further from the population-averaged

survival functions, the differences in absolute S(t) can be calculated, after adjusting for

covariates in the model[120].

4.6.2 Limitations

One of the major limitations in our work is that in Royston-Parmar regression, the effect

of a covariate may wane with time, as opposed to being a constant multiplicative effect[83].

It was shown that the proportional assumption held for the effects of ‘country’, however,

we might find that the time-dependent effects still exist in other predictors. This could

form further research.

Except for the pitfalls of statistical modellings, our dataset also have clinical limita-

tions. The ordering of countries according to their mortality rate should be interpreted

with caution, as other unmeasured factors may still be at work. Firstly, our database

could be affected by unknown confounding factors such as the inconsistent diagnosis time

amongst different countreis[14]. For example, the survival duration from one country may

be over measured when it could detect the disease of patients earlier than others (lead

time bias); In other cases, one country may wrongly include the observations that would

not progress to be overt or very slowly into the research and subsequently overestimate

the overall survival time of patients (overdiagnosis bias)[15]. Secondly, it is noticed that

we categorized the dataset by its registry nation. But for some participated countries

(i.e. Slovenia: 1 study with 69 observations), the sample size and events were too small to

represent the characteristics of the whole population[54][55]. Thirdly, our dataset is now

old, as it was collected up to 1995. Finally, regardless of the reason of patients’ death,

they were all counted in the database, which may lead to a upwardly biased mortality
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rate estimator of the true risk of death due to breast cancer alone[87].

4.6.3 Link to other research

Recently, thanks to the new development of medical statistical methodologies and well

constructed databases on cancer patients in Europe, the studies at regional or interna-

tional levels have provided sufficient evidence to show the significant geographical effects

on the survivals probabilities of breast cancer patients[92][100][102]. .

For example, Parkin et al.[100] summarized the incidence, mortality, and prevalence

of dying from cancer in each national population and concluded that the risks of cancers

are highest in Eastern Europe. From recently-published data in 2012, Ferlay et al.[43]

estimated incidence and mortality estimates for the 40 countries in Europe and achieved

the similar conclusion that Easter Europeans were mostly likely to have cancer problems.

In particular, McPherson et al.[92] illustrated the geographical factor in the analysis of

breast cancer and indicated that environmental factors are of greater importance than

genetic factors of human beings. Further, their findings were echoed with our work that

Danes has the lowest survival probabilities from cancers within Europe. A report from

a more comprehensive project, namely as EUROCARE which collected cancer survival

data from 45 population-based cancer registries in 17 European countries, was given by

Sant et al.[126]. In this report, it revealed wide international differences in cancer survival

where survival was generally highest in Northern Europe, followed by Western Europe,

Denmark and the UK, and the Eastern European countries of Estonia and Poland.

The reasons behind the international differences are likely to be multiple. Some studies

attributed them to artifact factors, for example, Sant et al.[128] concluded that some

registries that only used linkage with death certificates to establish vital status of patients

(died or alive) might overestimate survival because of linkage failures. Sant et al.[127] used

multiple regression models to assess the influence of the stage of diagnosis on survivals of

patients and stated that, longer survival could be simply due to early diagnosis without

any advantage to the patient (lead-time bias) and the regional survival differences should
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therefore diminish if appropriate stage-adjusted comparisons are performed. The model

proposed in our research has not adjusted for the stage of diagnosis, but it could be

easily generalized if we know the diagnostic time for patients in different countries. Also,

Vercelli[163] casted doubt on the large geographic variations in relative survival rates

among European countries. They stated that the improvement of survivals from breast

cancer were surprisingly big that might not be due to the real prognosis, but rather to

a selection bias. For example, in elderly patients with a very bad prognosis, who are

often suffering from other serious co-morbid conditions, cancer diagnoses could be under-

notified and not reach at all the data sources commonly monitored by cancer registries.

On the contrary, Coleman et al.[23] opposed the above viewpoints. He listed sever-

al evidence suggesting that many of the observed differences in breast cancer survival

between countries, regions and population subgroups are systematic, and can be largely

attributed to differences in access to health services, including delay in presentation and

diagnosis, and the overall quality of care. This argument was also supported by Engeland

et al.[41] in the cancer survival in Denmark, the country with the lowest survivals rates

in our study, because the cancer was usually found and treated too late in Denmark com-

pared than other Nordic countries. In the discussion of geographical variations associated

with breast cancer by Bray et al.[18], the differences in survival by stage at diagnosis were

again marked as the important factor and the authors thought international comparisons

of disease rates by area can provide important clues to the underlying causes of diseases,

the effects of natural or planned interventions, and serve as indicators of the scope for

preventive strategies. Further, they also believed that the studies of migrants provided the

solid evidence that environmental (rather than genetic) determinants are responsible for

most of the observed international and inter-ethnic differences in breast cancer incidence.

4.6.4 Conclusion

The key findings and what this chapter adds are shown in Table 4.10. The next chapter

extends this work by developing a prognostic model using the same data.
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What is already known on this topic:

• Breast cancer is a global threat to women’s health which accounts for 20% or more
of all cancers in the world.

• One conventional way to estimate the time-to-event dataset is Cox regression. But a
more flexible parametric regression was also proposed via Royston-Paramar scheme.

• When we develop a multivariable model to investigate the association between the
outcome of events and the covariate of our interests, it is important for us to adjust for
all the confounding factors to avoid the potential bias.

• To deal with the missing values in the dataset, a multiple imputation method is
proposed by Buuren et al.[160] to re-estimate the missing data using the observed data.

What this study adds

• We utilized Royston-Parmar proportional hazards, proportional odds and probit
models to estimate the hazard rates of breast cancer patients respectively and showed the
Royston-Parmar models fitted the observed data well regardless of the choice of the scale.

• Adjusting for the confounding factors, we explored the association between the
incidence outcome of breast cancer and country using Royston-Parmar regression and
showed that the geographical factor has significant influences on the survival
probabilities of patients. Among the 8 countries included, Sweden had the best mortality
rates but Denmark had the worst. However, unmeasured confounders, selection and
lead-time bias may be the reason for this.

• By using multiple imputation method to estimate the missing values in upa and
pai1, we demonstrated that the upa and pai1 did not impact the association between
risks of breast cancer and the geographical factor country.

Table 4.10: Summary of the main issues and key findings in Chapter 4.
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CHAPTER 5

INTERNAL-EXTERNAL VALIDATION OF A
ROYSTON-PARMAR MODEL DEVELOPED
USING IPD FROM MULTIPLE STUDIES

5.1 Introduction

It has become commonplace for clinical centres in Europe to cooperate in medical research,

and share information about patients with the same disease to form a large dataset. The

benefits of such communication are obvious, including, for example, sufficient data to

support the clinical study of rare diseases and more stable estimators of extreme obser-

vations. One use of large data is to construct an appropriate prognostic model to predict

the survival probabilities of the underlying disease in new patients, to inform treatment

decision and patient support[111][121][147]. See Section 1.6 for the an introduction to

prognostic models.

The first stage of prognostic model development is to establish an appropriate sta-

tistical equation for the underlying dataset[107]. In a single clinical study, we only need

to determine the important patient level factors on individual risks, however within IPD

meta analysis, we should additionally account for the heterogeneities in baseline risks

across studies. Therefore, a flexible parametric model with study-specified baseline haz-

ards are potentially very useful[120]. The second stage of prognostic model research is

to identify whether the derived models have good generalizability in new individuals[95].
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It requires us to validate the proposed model in an external population[4][16]. However,

the additional validation dataset is often lacking or it is costly to collect[89]. To address

this issue, an internal-external cross validation framework can be utilized to explore the

prediction ability of the derived model within the database used to develop it given IPD

from multiple studies[123].

The aim of this chapter is therefore to use Royston-Parmar modelling to develop a

prognostic model for mortality risk of breast cancer patients, and to validate if using the

Look et al.[87] data introduced in Chapter 4. The structure of the chapter is schemed as

follows. In Section 5.2 we introduce the main steps to develop a prognostic model from

an IPD meta analysis and optimally adjust its intercept to a new study population. Then

we apply it to the breast cancer data in Section 5.3. We validate the generalizability of

our model using meta analysis of validation studies as proposed by Snell et al.[142], and

then derive a final model from the study. In the final section, we discuss the findings and

limitations of our methodology and research.

5.2 Methods

In this section, we describe four main steps used to develop and validate a prognostic

model in breast cancer: 1) constructing a Royston-Parmar flexible model in IPD meta

analysis, 2) deriving an appropriate intercept for the new population, 3) validating model

performance using internal-external cross validation scheme, 4) assessing the model within

the internal-external cross validation framework to determine the final prognostic model.

5.2.1 Develop a Royston-Parmar prognostic model

Consider an IPD meta analysis of time-to-event data from K individual studies that the

number of patients in each study may have not to be same. Let Yij denote the time at risk

of the ith patient in the jth study and dij be the event indicator, taking the value of 0 or 1,

representing whether the observation is censored or not. X ij is a participant-level covariate

vector, which could be composed of continuous or binary prognostic factors. A potentially

naive approach may assume the all IPD were collected from a single and homogeneous
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population. This approach ignores the studies of participants and a Royston-Parmar

proportional hazard model is then fitted to the one dataset:

lnH(t;X) = lnH0(t) + βTX (5.2.1)

where lnH0(t) = γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) is the log cumulative hazard baseline

function using restricted natural cubic splines with four knots, and β is the coefficient

vector of the covariate vector X. With reference to Section 1.6.1, extension to 5 or more

knots could be easily achieved but as suggested by Section 4.5.1, 4 knots are sufficient to

model the breast cancer data. The common intercept γ0 in (5.2.1) indicate any study-

level heterogeneities in baseline risks are being ignored. This type of meta-analysis is

too simple to capture the individual characteristics of study and may be biased in the

presence of the heterogeneity across studies[1].

An alternative method is to use a random effects flexible parametric model to allow

for the heterogeneity occurring in the baseline risk. To this purpose, the intercept term

is set to be a random variable following a normal distribution rather than a fixed term,

that is

lnH(t;X) = lnH0(t) + βTX (5.2.2)

where lnH0(t) = γ0 +γ1 ln t+γ2z1(ln t)+γ3z2(ln t) with γ0 ∼ N(γ, τ 2
γ ). Here we assume γ

to be the average study intercept and τ 2
γ to be the variance of the heterogeneity between

studies. By assuming the random effect, it becomes possible to model heterogeneity in

baseline risk with very few parameters[84]; however, in practice it is difficult to justify

normal assumption of random effects or to interpret it in the validation study. Further,

estimating a random-effect model demands advanced software packages and high com-

puting costs, particularly when dealing with a large number of studies in the IPD meta

analysis.

Given the limitations of the above two methods, we propose a third option: Royston-
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Parmar proportional hazard model with a stratified intercept for each study. This means

each study included in the dataset is assigned a unique intercept to account for its own

baseline hazard, and the model can be written as

lnH(t;X) = lnH0j(t) + βTX (5.2.3)

where lnH0j(t) = γ0j + γ1 ln t + γ2z1(ln t) + γ3z2(ln t). γ0j is a study-specified term for

each study j where j = 1, 2, ..., K. In this model, the normality assumption in (5.2.2) is

no longer necessary; however, it still assumes the study baseline risks are proportional to

log hazards.

The weakness of (5.2.3) is that its intercept term γ0j only focuses on the studies at

hand, which cannot be applied immediately to new individuals as these don’t fall in a

‘study’ purse[31]. Therefore, to extend the model to a new study that is not involved

in the development of the prognostic model, we should propose some proper intercept

strategies to model the heterogeneity in new populations.

5.2.2 Implement the model in a new population

In this section we propose three different approaches to obtain the study-specified intercept

for the new population. The first two methods require only the descriptive statistics from

the derivation dataset or new population, while the final one depends on re-estimating

the intercept using new IPD which is also known as a recalibration technique[95]. In the

validation study, we do not need to estimate the hazard rate function of model (5.2.3)

again, and as long as we replace γ0j in (5.2.3) with the new intercept term obtained from

either of the three intercept strategies, we can generalize this model to predict the risk of

an individual in a new population.

Average intercept

A straightforward method for obtaining a new model intercept may be to pool the K

individual intercepts γ0j, j = 1, ..., K to produce a weighted average estimator where
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the weights can be determined by common fixed effect or random effects meta-analysis

(average strategy)[33][123]. In our research, the γ0j are pooled using random effects meta

analysis and restricted maximum likelihood method. See the introduction of meta analysis

in Section 5.2.4 for the equation.

The average strategy is quite easy to put in practice where the obtained intercept can

be used as an approximation to the new dataset. However, this strategy is not flawless:

when the baseline risk of the new study is very different from the average in the original

datasets, then the discrepancy may lead to a large bias in predicted risks over time (i.e.

poor calibration of predicted and observed risk).

Neighbour intercept

An alternative to the average intercept is to select an estimated intercept of which study

is closest to the new population (nearest neighbour intercept strategy). To determine

the most similar dataset to the target study requires in-depth knowledge of the clinical

research and careful consideration of all the potential covariates amongst studies. How-

ever, if sufficient clinical guidance to the selection of the candidate study is lacking, the

statistical measure could help us to make the decision. Debray et al.[31] proposed an

algorithm to compare the similarities between the study in the derivation dataset and the

validation dataset:

1. For each predictor and/or outcome, calculate difference in mean (continuous vari-

ables) or proportion (discrete variables) of observed individuals between each study

in the derivation dataset and the validation dataset.

2. For each predictor and/or outcome, assign a rank for the mean or proportion across

all the studies in the derivation dataset according to similarity, where increasing

ranks indicate increasing differences (i.e. , less similarity).

3. For each study in the derivation dataset, determine the median rank of all its pre-

dictors and/or outcome, and then select the intercept for the new population from

the study with the smallest median rank.
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Steyerberg et al.[148] applied this method to develop and validate a risk prognostic model

across multiple studies, and then Debray et al.[31]] generalized this method into the setting

of binary outcome data. To use this method, we should know the baseline characteristics

of the new population to which we want to apply the model.

New intercept

If the baseline characteristics of the new population differ greatly from any study in the

derivation dataset, we may find that neither of the previous two strategies could work

properly here. To ensure the optimal estimate of the intercept for the new dataset,

Debray et al.[31] suggested that one may additionally use data from the new population

to re-estimate the intercept term. This new strategy can be treated as a benchmark in

intercept estimation as it is able to correctly reflect the heterogeneities in new individuals.

To determine the new intercept term γ0, we treat the other terms in baseline func-

tion lnH0(t) and the linear predictor βTX as the offset terms, and then re-estimate the

intercept term γnew in the new population using flexible parametric regression. This al-

gorithm can be implemented using any general linear model software package[37][52]. For

example, consider the log likelihood function for the ith individual in the Royston-Parmar

proportional hazard model as

lnLi = di{ln[γ1 + γ2z
′
1(ln t) + γ3z

′
2(ln t)] + γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t)

+βTX i} − exp(γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + βTX i)

where z′j(ln t) = ∂zj(ln t)/∂ ln t for j = 1, 2. For the new intercept strategy, except for the

intercept γ0, all the other terms are treated as the offset, hence we drop the terms that

do not depend on γ0 and then obtain the resulted log likelihood as

lnLi = diγ0 − exp(γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + βTX i).

Exactly, the above expression is identical to the likelihood function of a Poisson regression
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with the outcome di, and mean exp(γ0 + γ1 ln t + γ2z1(ln t) + γ3z2(ln t) + βTX i). The

exp(γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + βTX i) is a constant that can be incorporated into a

linear predictor via an offset. We are therefore able to compute the estimator of the new

intercept term from a general linear model with outcome di, a Poisson error structure

with only unknown constant term γ0, a log link, and an offset of (γ̂1 ln t + γ̂2z1(ln t) +

γ̂3z2(ln t) + β̂
T
X i), where γ̂1, γ̂2, γ̂3, and β̂ are as estimated in the developed model.

5.2.3 Model evaluation with internal-external cross-validation

In the previous section, three methods were proposed for obtaining a unique intercept

to validate new individuals when baseline risks are heterogeneous across studies. This

step can be regarded as the external validation of the derived model if a new population

is available. However, in most trials it is found that the additional dataset is lacking

or it requires more costs to collect further data[3][4][149]. This exposes the need to

propose some internal validation approaches to assess a prognostic model that does not

rely on the external dataset. Specifically with IPD from multiple studies, it requires a

framework to maximize the data available in the construction of a model and to support

the corresponding model validation within the IPD meta analysis.

The internal-external cross validation scheme first proposed by Royston et al.[123]

may help to solve our problem. The main idea of this method is to iteratively use K − 1

of the K studies to develop a prognostic model and take the omitted one as the exter-

nal validation dataset. It is a common method in model selection and data smoothing

problems[7][57][139]. In the setting of hazard rate estimation with time-to-event data, we

extend this technique to flexible parametric regression as follows:

Step 1. Select K − 1 studies from IPD database to form a derivation dataset and treat the

omitted one as the validation (new) dataset.

Step 2. Develop a flexible parametric model from the derivation dataset using Model (5.2.3).

Step 3. Choose a suitable intercept for the validation study (for example, using one of the

intercept strategies introduced in Section 5.2.2).
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Step 4. In the external validation study, utilize the estimated model from Step 2 to predict

the risks of new individuals where the intercept term γ0 of the model is particularly

determined in Step 3.

Step 5. Assess the external validation performance of the developed model based on two

fundamental aspects, the discrimination and calibration of model predictions.

Step 6. Repeat Step 1-5 for each permutation of K − 1 studies and determine the final

prognostic model according to the model performance in each permutation and by

summarising performance across all permutations.

We now outline calibration and discrimination:

Calibration

Calibration refers to whether the predicted probabilities agree with the observed probabil-

ities. For example, in a validation study, a well-calibrated prognostic model should assign

the correct hazard rates to each level of risk groups from the validation dataset[121].

First, we may evaluate an overall calibration ability of a prognostic model by cal-

culating its calibration slope in the validation dataset. This is a recognized approach to

estimate the regression coefficient on the prognostic index in the validation dataset[10][93].

To make adjustments for the heterogeneity in the validation dataset, the intercept term

γ0 is obtainable from either of the three intercept strategies above while the other terms in

the baseline hazards and the coefficients of the prognostic index are given by the develope-

d model. One could utilize any general linear model package to compute the calibration

slope bnew in practice[37][52]. Let’s consider the likelihood function of a Royston Paramar

model with the prognostic index,

lnLi = di{ln[γ1 + γ2z
′
1(ln t) + γ3z

′
2(ln t)] + γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t)

+bnewPI} − exp(γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + bnewPI)

where bnew is the calibration slope on the prognostic index to be estimated and PI denotes
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the prognostic index βTX which are obtained from the developed model. Since (ln[γ1 +

γ2z
′
1(ln t) + γ3z

′
2(ln t)]) and (γ1 ln t+ γ2z1(ln t) + γ3z2(ln t)) are known from the prognostic

model, and γ0 is given by any of three intercept strategies, they can be dropped from the

log likelihood function and thus it achieves

lnLi = di(bnewPI)− exp(γ0 + γ1 ln t+ γ2z1(ln t) + γ3z2(ln t) + bnewPI).

The above function is identical to the likelihood for a Poisson regression with the outcome

di, and mean exp(γ0 +γ1 ln t+γ2z1(ln t) +γ3z2(ln t) + bnewPI). Hence the same parameter

estimator bnew can be obtained from a general linear model with outcome di, a Poisson

error structure with the predictor, prognostic index but no constant term, a log link, and

an offset of γ0 + γ̂1 ln t + γ̂2z1(ln t) + γ̂3z2(ln t) where PI= β̂
T
X, γ̂1, γ̂2 and γ̂3 are as the

estimates from derivation model.

A poor calibration that bnew 6= 1 may imply unaccounted for differences in baseline

risks and/or in predictor-outcome associations[31]. However, the calibration slope can

reflect only the overall calibration performance of a model. To detect the potential weak-

ness of the prognostic model at each risk level, it is better for us to draw the calibration

curves to illustrate the deviance between predicted and survival probabilities at each risk

level[143][145]. To this purpose, we divide the new samples from the validation dataset in-

to four risk groups according to their individual prognostic index, where the cut-off points

are at its 20, 50 and 80 centiles. Next, we average the survival curves of the patients in each

group, and superimpose the mean survival curves and observed (Kaplan-Meier) survival

curves on one graph[120]. From visually inspecting the calibration curves, the predicted

survival probability of the derived model and the observed survival probability can be

compared directly at each risk level.

Discrimination

Discrimination, also called separation, reflects how well it can distinguish between patients

with high and low risk under a prognostic model. As an example, a model discriminates
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better if it predicts the survival probabilities of individuals at two years ranging between

20% and 80% rather than between 40% and 60%[124].

A general discrimination measure for time-to-event data is Harrell C statistic (see

Harrell et al.[54] or Newson[98]). Consider all the possible pairs of patients in the dataset,

where one has died and the other is alive at the other person’s death time. If the dead

person has a higher prognostic index than the alive person, then the prediction of this

pair is said to be concordant with the outcome. Then C statistic is the proportion of

the concordant ones in all the possible pairs. For C statistics, a value of 0.5 indicates no

discrimination beyond chance while 1 means a perfect discrimination of patients.

The standard deviation of the C statistics is computed by a resampling (bootstrapping)

technique, namely as jackknife method[159]. For instance, in a validation dataset given

n observations, the jackknife algorithm is found by aggregating the C statistics of each

permutations of (n − 1) observations and then calculate the variance of the obtained n

copies of C statistic.

Royston and Sauerbrei[124] proposed an alternative discrimination measurement fo-

cusing on the spread of the outcome in Cox or other proportional hazard regression models.

It is motivated by the fact that the discrimination of a model may be quantified by the

variation in outcome among patients on the proportional hazard scale. For example, a

weak model will have difficulty distinguishing between the risks of different patients, and

this will tend to be reflected by a narrow spread of prognostic index values. Therefore

the D index is proposed by ordering the estimated prognostic index, calculating the cor-

responding expected normal order statistics (rankits), scaled by a factor κ =
√

8/π ' 1.6

and performing an auxiliary regression on the scaled rankits. The reason to scale the

rankits by κ is to ensure the D index has the character of a log hazard ratio between

equal-sized prognostic groups.

Intuitively, larger D statistics may represent better discrimination, however, it lacks

guidance for us to set a proper threshold for the D index to classify whether the discrim-

ination abilities of a model is satisfied or not. Therefore a monotonic transformation, R2
D
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of D statistics is proposed by Royston and Lambert[120]:

R2
D =

D2/κ2

σ2 +D2/κ2

where σ2 = π2/6 for proportional hazards models. We can interpret D2/κ2 as an estimate

of the variance of prognostic index across individuals, R2
D as a measure of explained

variation on the natural scale of the model and the σ2 as the counterpart to the residual

variance in linear regression model. In the real datasets, R2
D for prognostic models may

vary quite widely from 0% to 60% although theoretically, R2
D can reach 100% by little

chance[120]. In our research, we will report both Royston D index and R2
D index.

5.2.4 Assessment of the model in the internal-external cross val-

idation framework

In the internal-external cross validation scheme, the K − 1 studies from an available IPD

meta analysis are iteratively used to develop a prognostic model, which is validated in the

omitted dataset using several important measurements introduced above, for example,

calibration slopes, calibration curves, C statistics and D statistics. This produces K

estimates of each validation statistic. Snell et al.[142] recommended that meta-analysis

can then be used to summarize them[101][162]. A perfect model will have good average

performance with small errors, and little or no heterogeneities across studies[32]. The

basic idea of univariate meta analysis and multivariate meta analysis are illustrated in

the next section.

Meta analysis

Suppose that j = 1 to K studies each provide validation estimates, Yjl for l = 1, 2 and

3, and associated standard errors, sjl. Each summary statistic Yjl is assumed to be an

estimate of a true value θjl in each study, and in a hierarchical structure (with random

effects setting) each θjl is assumed to be drawn from a distribution with mean value θl

and between study variance τ 2
l .
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In a univariate meta analysis, for each l = 1, 2 or 3,

Yjl ∼ N(θjl, s
2
jl)

where θjl is a constant for a fixed effect model but it follows a normal distribution N(θl, τ
2
l )

for a random effects model.

With the reference to Riley et al.[103][105] and Snell et al.[142], we could alternatively

pool the three statistics jointly using a trivariate meta-analysis:


Yj1

Yj2

Yj3

 ∼ N




θj1

θj2

θj3

 , δj

 , δj =


s2
j1

sj1sj2ρWj12 s2
j2

sj1sj3ρWj13 sj2sj3ρWj23 s2
j3

 .

In a fixed effect model, θjl for l = 1, 2 or 3 is set to be constant. In random effects model,

it additionally specifies that


θj1

θj2

θj3

 ∼ N




θ1

θ2

θ3

 ,Ω

 ,Ω =


τ 2

1

τ1τ2ρB12 τ 2
2

τ1τ3ρB13 τ2τ3ρB23 τ 2
3


where δj and Ω are the within-study and between study covariance matrices respectively.

Here the within-study correlation represents the association between the summary esti-

mates within a study and the between-study correlation indicates how the true underlying

statistics are associated across studies[104].

As usual, the within-study correlations ρW are assumed to be known to us. If not, with

IPD, Snell et al.[142] notes that it is possible for us to quantify the within-study correla-

tions of multiple endpoint statistics using the bootstrap technique[29][39]. Specifically, a

random sample is produced with replacement of patients within each study where the size

of the sample equals to the size of the study. Then the resampling procedure is repeated

for 1000 times (which ensures adequate precision in estimating the correlation[39]), each
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time recomputing the corresponding summary estimates. Finally the correlation of each

pair of summary statistics Y1, Y2 and Y3 over the 1000 replicates are calculated and treated

as their correlation estimates in trivariate meta analysis.

The calculation of the between-study matrix in trivariate meta analysis can be un-

dertaken using restricted maximum likelihood[70][73]. In comparison to univariate meta

analysis, trivariate meta analysis has several advantages, for example, it is more elegant to

conduct a single IPD meta analysis than many univariate ones. Also the relationship be-

tween the multiple effects could be easily illustrated and interpreted. Further, parameter

estimates of trivariate meta analysis is often superior to a univariate meta analysis since

each summary statistics can ‘borrow strength’ from the other endpoints in estimation[70].

Here, our 3 statistics of interest are C, D and calibration slope.

Model evaluation in the internal-external cross validation framework

In general, if the derived models all calibrate well across the considered permutations, then

all the IPD studies at hand can be combined to develop a final prognostic model. However,

if any of the derived models do not calibrate well in the omitted study, it indicates less

generalizability of the model and its real cause should be cautiously identified. Several

reasons may cause this discrepancy in the calibration slope or calibration curves; for

example, the failure of the chosen intercept strategy to capture the baseline characteristics

in a validation study, unexpected heterogeneities in predictor-outcome association, or

overfitting of model[31][121].

In cases of homogeneous predictor-outcome association, if the calibration slope is

strongly biased from 1, it may suggest that the intercept strategy applied for the validation

dataset is not appropriate, and therefore it may be preferable to re-estimate a more study-

specified intercept term from the validation population (new intercept strategy)[133].

However, when strong heterogeneities also exist in predictor-outcome association-

s across studies, the intercept estimator may capture too much unexplained risk from both

baseline risks and predictor-outcome associations and thus returns the biased estimator[56].

This problem may be alleviated by adding more covariates or nonlinear effects in the mod-
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el; however, it might also incur a risk of overfitting. Therefore in most scenarios, it is

suggested to exclude the study that gives poor validation statistics from the final model

and treat it separately[31].

Harrell C index and Royston D index measure the discrimination ability of a model

which are known to reach the optimality at 1. It is worth highlighting that both C and D

measurements are only sensitive to the ranks of prognostic index. A subtle change in the

model that alters prognostic index but leaves its rank order unchanged does not affect the

two statistics at all. That is to say, the C or D measure does not depend on the choice

of intercept strategy and thus can not be easily improved unless additional predictors are

included[95][119][161].

The last point to emphasize is that the internal-external cross validation framework

requires sufficient individuals in each study and also enough numbers of studies in the

dataset to guarantee well generalizability ability of the model. In particular, if some

studies in the IPD meta analysis contains too few samples, the resulted prognostic model

may behavior poor and the corresponding confidence interval may become unstable. If

the IPD meta analysis has too few studies, it becomes difficult for the prognostic model

to identify individual characteristics of new population in validation study[146]. For this

reason, Debray et al.[31] suggested that, to develop a meta-analytical prognostic model,

it should include at least four or five individual studies that each has a reasonable large

effective samples and number of events.

5.3 Application to the breast cancer data

To demonstrate the potential value of the internal-external cross validation scheme for

model development and validation study, we conducted a study using the internal-external

cross validation framework on a real data sample. The dataset utilized is same as that in-

troduced in Chapter 4, which is about the patients with breast cancer from 15 laboratories

in Europe. Specifically, according to registry country, the 15 studies formed 8 individual

countries including Netherland, Ireland, Sweden, Slovenia, Austria, France, Switzerland
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and Denmark. From log-log plot given in Section 4.5.2, it was seen that the proportional

hazard assumption roughly holds across countries. Hence a proportional hazard model

with the stratified intercept term (d.f. = 3) could be applied to model the underlying

database (see Model (5.2.3)) and the aforementioned variables of patient age, tumour

type, tumour grade, number of lymph nodes, menopausal status, tumour size, adjuvant

treatment and hormone receptor status were included into the model as the prognostic

factors.

We summarize the important results as follows: Firstly, the parameter estimators for

each rotation within the internal-external cross validation framework are given in Section

5.3.1. The calibration and discrimination performance of the model are assessed in Section

5.3.2. Then the selection of the intercept strategy is discussed in Section 5.3.3 using meta

analysis. In the last section, a final prognostic model is developed for the purpose to

predict individuals in new population.

5.3.1 Parameter estimators in internal-external cross validation

framework

We summarize the stratified intercept and parameter estimates for each permutation of

the internal-external cross validation approach in Table 5.1, Table 5.2 and Table 5.3

respectively.
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Omitted Intercept Ned Irl Swe Slo Aut Fra Sui Den Average Neighbour New

Ned Estimate -3.354 -4.332 -3.867 -3.017 -3.568 -3.548 -2.847 -3.492 -2.847 -3.296
(s.e.) (0.418) (0.398) (0.411) (0.362) (0.328) (0.358) (0.366) (0.231) (0.366) (0.029)

Irl Estimate -3.207 -4.260 -3.678 -2.892 -3.497 -3.475 -2.848 -3.398 -4.260 -3.244
(s.e.) (0.217) (0.246) (0.333) (0.275) (0.218) (0.249) (0.230) (0.188) (0.246) (0.131)

Swe Estimate -3.247 -3.305 -3.697 -2.926 -3.538 -3.552 -2.929 -3.304 -2.929 -4.329
(s.e.) (0.222) (0.274) (0.336) (0.278) (0.223) (0.254) (0.235) (0.191) (0.235) (0.083)

Slo Estimate -3.172 -3.221 -4.230 -2.860 -3.470 -3.455 -2.824 -3.321 -3.455 -3.658
(s.e.) (0.217) (0.270) (0.247) (0.275) (0.218) (0.250) (0.230) (0.186) (0.250) (0.258)

Aut Estimate -3.196 -3.247 -4.252 -3.690 -3.487 -3.480 -2.847 -3.441 -3.480 -2.903
(s.e.) (0.222) (0.274) (0.251) (0.337) (0.223) (0.254) (0.235) (0.190) (0.254) (0.186)

Fra Estimate -2.851 -2.865 -3.880 -3.354 -2.562 -3.103 -2.478 -3.001 -3.103 -3.138
(s.e.) (0.248) (0.297) (0.275) (0.354) (0.297) (0.279) (0.260) (0.201) (0.279) (0.060)

Sui Estimate -3.122 -3.152 -4.163 -3.621 -2.854 -3.442 -2.758 -3.292 -2.854 -3.422
(s.e.) (0.218) (0.271) (0.248) (0.334) (0.276) (0.218) (0.231) (0.190) (0.276) (0.115)

Den Estimate -3.196 -3.239 -4.248 -3.655 -2.867 -3.495 -3.472 -3.453 -3.196 -2.855
(s.e.) (0.221) (0.273) (0.250) (0.336) (0.279) (0.221) (0.254) (0.192) (0.221) (0.062)

Table 5.1: The parameter estimates of the stratified country intercepts for each permutation within the internal-external cross validation
framework and the intercept for the omitted study using three different intercept strategies respectively (average, nearest neighbour and new
strategies). All the estimates in this table are strongly significant (P value< 0.001).
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Omitted
study

Coefficient Age Tumour type
ilc colloid tubul medull papil other unknown

Ned Estimate 0.015∗∗ 0.051 -0.661 -0.168 -0.897∗∗ -0.390 0.099 0.079
(s.e.) (0.005) (0.153) (1.012) (0.713) (0.362) (0.729) (0.222) (0.146)

Irl Estimate 0.012∗∗∗ -0.099 -0.307 -0.530 -0.774∗∗∗ -0.420 -0.076 0.023
(s.e.) (0.003) (0.095) (0.711) (0.502) (0.222) (0.506) (0.131) (0.066)

Swe Estimate 0.011∗∗∗ -0.122 -0.310 -0.539 -0.742∗∗ -0.419 -0.086 0.025
(s.e.) (0.003) (0.096) (0.711) (0.502) (0.222) (0.506) (0.131) (0.066)

Slo Estimate 0.011∗∗∗ -0.101 -0.252 -0.529 -0.772∗∗ -0.662 -0.073 0.023
(s.e.) (0.003) (0.096) (0.711) (0.502) (0.222) (0.583) (0.131) (0.066)

Aut Estimate 0.011∗∗∗ -0.119 -0.296 -0.496 -0.744∗∗ -0.257 -0.068 0.024
(s.e.) (0.003) (0.097) (0.711) (0.502) (0.227) (0.580) (0.133) (0.066)

Fra Estimate 0.008∗ -0.121 0.260 -0.512 -0.763∗ -0.375 -0.113 0.010
(s.e.) (0.003) (0.100) (1.005) (0.502) (0.222) (0.507) (0.140) (0.074)

Sui Estimate 0.012∗∗∗ -0.077 -0.285 -0.347 -0.733∗∗ -0.389 -0.043 0.023
(s.e.) (0.003) (0.099) (0.711) (0.502) (0.227) (0.507) (0.135 (0.066)

Den Estimate 0.012∗∗∗ -0.100 -0.333 -1.060 -0.821∗∗ -0.422 -0.121 0.023
(s.e.) (0.003) (0.107) (0.711) (0.709) (0.262) (0.506) (0.140) (0.066)

Table 5.2: The parameter estimates of the predictors in the prognostic model in each permutation in the internal-external cross validation
framework where ‘idc’ for tumour type is treated as the reference level. N.B. * for P value< 0.05, ** for P value< 0.01 and *** for P
value<0.001.
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Omitted
study

Coefficient Tumour Grade Lymph nodes Menopasual
status

Tumour
size

Adjuvant
treatment

Hormone
receptormoderate poor unknown np1− 3 np3-10 np10+

Ned Estiamte 0.437∗ 0.861∗∗∗ 0.583∗ 0.632∗∗∗ 1.408∗∗∗ 1.858∗∗∗ -0.152 0.308∗∗∗ -0.113∗ -0.744∗∗∗

(s.e.) (0.221) (0.226) (0.268) (0.104) (0.108) (0.135) (0.114) (0.060) (0.049) (0.077)

Irl Estiamte 0.426∗∗ 0.786∗∗∗ 0.608∗∗∗ 0.715∗∗∗ 1.241∗∗∗ 1.716∗∗∗ -0.071 0.326∗∗∗ -0.122∗∗∗ -0.576∗∗∗

(s.e.) (0.159) (0.157) (0.163) (0.066) (0.068) (0.084) (0.077) (0.038) (0.029) (0.053)

Swe Estimate 0.445∗∗ 0.808∗∗∗ 0.668∗∗∗ 0.739∗∗∗ 1.242∗∗∗ 1.671∗∗∗ -0.020 0.326∗∗∗ -0.106∗∗ -0.486∗∗∗

(s.e.) (0.162) (0.160) (0.167) (0.068) (0.070) (0.088) (0.078) (0.038) (0.031) (0.055)

Slo Estimate 0.439∗∗ 0.789∗∗∗ 0.617∗∗∗ 0.709∗∗∗ 1.253∗∗∗ 1.697∗∗∗ -0.052 0.328∗∗∗ -0.114∗∗∗ -0.573∗∗∗

(s.e.) (0.161) (0.158) (0.165) (0.065) (0.067) (0.084) (0.076) (0.037) (0.029) (0.052)

Aut Estimate 0.468∗∗ 0.830∗∗∗ 0.654∗∗∗ 0.704∗∗∗ 1.248∗∗∗ 1.724∗∗∗ -0.056 0.331∗∗∗ -0.113∗∗∗ -0.567∗∗∗

(s.e.) (0.170) (0.166) (0.172) (0.065) (0.067) (0.084) (0.076) (0.037) (0.029) (0.052)

Fra Estiamte 0.301 0.652∗∗ 0.469∗ 0.803∗∗∗ 1.324∗∗∗ 1.786∗∗∗ 0.001 0.315∗∗∗ -0.144∗∗∗ -0.596∗∗∗

(s.e.) (0.196) (0.190) (0.194) (0.070) (0.071) (0.089) (0.082) (0.039) (0.031) (0.056)

Sui Estimate 0.423∗∗ 0.748∗∗∗ 0.552∗∗ 0.689∗∗∗ 1.231∗∗∗ 1.683∗∗∗ -0.059 0.317∗∗∗ -0.104∗∗∗ -0.572∗∗∗

(s.e.) (0.159) (0.157) (0.164) (0.066) (0.068) (0.086) (0.077) (0.038) (0.029) (0.053)

Den Estimate 0.430∗∗ 0.795∗∗∗ 0.617∗∗∗ 0.656∗∗∗ 1.163∗∗∗ 1.620∗∗∗ -0.079 0.340∗∗∗ -0.114∗∗∗ -0.538∗∗∗

(s.e.) (0.159) (0.157) (0.163) (0.068) (0.070) (0.087) (0.081) (0.039) (0.030) (0.056)

Table 5.3: The parameter estimates of the predictors in the prognostic model in each permutation in the internal-external cross validation
framework where ‘good’ for tumour grade and ‘np=0’ for lymph nodes are treated as the reference levels. N.B. * for P value< 0.05, ** for P
value< 0.01 and *** for P value<0.001.
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Regardless of which permutation of the internal-external cross validation framework

and regardless of intercept strategy, the coefficient estimates of the predictors and the

intercept estimates for each included study are very similar. Of all the permutations,

menopasual status is not significant at all, hence this factor may not be considered in our

final established model.

5.3.2 Calibration and discrimination

The resulted C statistic, D statistic and calibration slopes in each omitted study are

summarized in Table 5.4 for each permutation of the internal-external cross validation

approach for each intercept strategy.

Omitted
study

C
Index

D
Index

R2
D

Index
Calibration Slope

Average Neighbour New

Netherland 0.697 0.493 0.055 1.049 0.805 0.977
(0.008) (0.027) (0.006) (0.012) (0.012) (0.012)

Ireland 0.701 0.420 0.040 1.066 1.414 1.002
(0.036) (0.117) (0.022) (0.057) (0.056) (0.057)

Sweden 0.715 0.106 0.003 0.578 0.405 1.026
(0.023) (0.056) (0.003) (0.037) (0.037) (0.036)

Slovenia 0.735 0.326 0.025 0.870 0.919 0.991
(0.068) (0.187) (0.028) (0.098) (0.097) (0.097)

Austria 0.666 0.238 0.013 1.168 1.184 0.946
(0.050) (0.168) (0.019) (0.086) (0.086) (0.088)

France 0.682 0.182 0.008 0.896 0.951 0.969
(0.017) (0.041) (0.004) (0.038) (0.037) (0.037)

Switzerland 0.781 0.280 0.018 0.996 0.794 1.054
(0.027) (0.063) (0.008) (0.053) (0.054) (0.052)

Denmark 0.722 0.541 0.065 1.315 1.197 1.035
(0.016) (0.058) (0.013) (0.029) (0.030) (0.030)

Table 5.4: The estimators of C, D statistics and calibration slopes in the internal-external cross
validation when dataset ID is used for validation and the remaining studies for derivation.

The C statistics indicated that the discriminative abilities of the prognostic model

across studies are very stable around 0.7, suggesting that the prognostic model correctly

discriminate the risks of approximately 70% paired participants in the dataset. Compared
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with C, the D measure, which focuses on estimating the variance of prognostic index is

broadly unstable, and the average explained variation, R2
D is around 0.04 across studies.

In views of calibration slopes, the average strategy yields quite consistent performance

in 6 countries (0.8 < b < 1.2) whereas the calibration slope is too low for Sweden (b =

0.578, s.e.=0.037) and too high for Denmark (b = 1.315, s.e.=0.029). In contrast, the

nearest neighbour intercept seems somewhat less competitive where the slope estimators

of Ireland (b = 1.414 s.e.=0.056) is upward biased and of Sweden (b = 0.405, s.e.=0.037)

and Switzerland (Sui, b = 0.794, s.e.=0.054) are downward biased. To recalibrate the

bias, we could utilize the new intercept strategy which validates perfect across studies as

its calibration slopes are close to the optimal value of 1 in all the omitted studies.

It is noticed that, the worst estimate of the calibration slope comes from the study in

Sweden for either average or nearest neighbour strategies. It is not clear whether the bias

is caused by its unique baseline characteristic or predictor-outcome associations, but the

former is more plausible as the new intercept strategy returns a reasonable calibration

slope estimator (b = 1.012, s.e.=0.025). Because in practice, re-estimating the intercept

in the new population is not always available to us, to be cautious, in Section 5.3.4 we

establish the final model excluding the study from Sweden.

We also created four prognostic groups by dividing the prognostic index at 20, 50, 80

centiles and then compared the Kaplan-Meier survival curves and predicted mean survival

curves to display the group-specific prognosis.
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The calibration curves in each omitted study using the average intercept

Figure 5.1: Average intercept: Kaplan-Meier curves (jagged lines) and mean survival curves
(dashed lines) in four prognostic groups.
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The calibration curves in each omitted study using the neighbour intercept

Figure 5.2: Neighbour intercept: Kaplan-Meier curves (jagged lines) and mean survival curves
(dashed lines) in four prognostic groups.
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The calibration curves in each omitted study using the new intercept

Figure 5.3: New intercept: Kaplan-Meier curves (jagged lines) and mean survival curves (dashed
lines) in four prognostic groups.

The calibration curves of the average intercept strategy were plotted in Fig 5.1. The

model clearly does not calibrate perfectly in every single omitted study due to unexplained

heterogeneities in the dataset. The predicted curves in Netherland, Ireland, France and

Switzerland roughly coincided with the reference curves, however, the others are less

accurate.

As for the nearest neighbour strategy, from Fig 5.2, we find that the returned calibra-

tion curves performed visually worse than its average counterpart. It clearly shows that

except for France and Denmark, the big deviations could be found between the predicted

and observed survival curves in the rest of 6 countries. It might be because neighbour s-

trategy which was determined by the statistical measure, is unlikely to explain real clinical

difference amongst studies.

Finally, Fig 5.3 shows that almost perfect agreement in predicted curves were achieved

when the intercept using the new strategy was applied to the model. The only exception

was found in Austria which is probably due to its small effective sample size (n = 88).
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5.3.3 Selection of intercept strategy

Of the three intercept strategies involved, we could use the approach of Snell et al.[142]

to meta analyse the achieved calibration slopes to quantify the best one. Here trivariate

meta analysis allows us to to ‘borrow the strength’ from C measure and D measure (R2
D

statistic) to summarize the calibration slope estimate for each strategy. To this purpose,

we first employed the bootstrap technique to obtain the correlations between C measure

or R2
D measure and calibration slopes (see Appendix B). Then we conducted trivariate

meta analysis using the correlations, variance and estimates of the performance statistics

and summarized results in Table 5.5.

Summary results Between-study
from meta analysis Correlation

Intercept
Strategy

C Index
estimate

D Index
estimate

Calibration
slope

C&
Slope

D&
Slope

C&D Multi
I2 test

Between
study τ2

Average 0.711 0.028 0.993 0.019 0.784 -0.148 97.0% 0.046
(0.011) (0.009) (0.080)

Neighbour 0.709 0.028 0.960 -0.315 0.532 -0.194 98.1% 0.074
(0.012) (0.009) (0.112)

New 0.710 0.027 1.001 0.984 -0.302 -0.127 90.6% < 0.001
(0.011) (0.008) (0.017)

Table 5.5: The trivariate meta analysis for three different intercept strategies: The pooled
estimators, the between-study correlations, the multivariate I2 test and heterogeneity chi-square
τ2 in calibration slopes across 8 studies. N.B. the numbers in brackets represent standard errors.

The multivariate I2 statistics (see Jackson et al.[71]) are in good agreement to support

random effects model for all three strategies (rather than fixed effect). All the between-

study correlation estimators were well defined and interpretable[105].

Of the three strategies, the new intercept strategy achieved the optimal estimator of

the calibration slope (b = 1.001, s.e.=0.017) and has the smallest heterogeneity across

8 studies (τ 2 < 0.001). The second best one is the average intercept strategy since its

calibration slope estimator (b = 0.993, s.e.=0.080) is secondly closest to the best value 1

and the heterogeneity τ 2 is in the second place being 0.046. The nearest neighbour strategy

is demonstrated to be the worst amongst the 3 candidates no matter with respect to the
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point estimator (b = 0.960, s.e.=0.112) or heterogeneity statistic (τ 2 = 0.074).

5.3.4 Final model to predict individuals in new population

Recall that in Section 5.3.2, we have pointed out that the achieved calibration slope

in Study Sweden is poorest of 8 countries. Therefore, we established a prognostic model

excluding the Study Sweden and repeated the internal-external cross validation framework

for the entire process. Notice that the factor, menopausal status was excluded from the

model as it has no significant impact on individual risks. We summarize the obtained

estimators of C, D statistics and calibration slopes within each permutation in Table 5.6.

Omitted
study

C
Index

D
Index

R2
D

Index
Calibration Slope

Average Neighbour New

Netherland 0.699 0.492 0.055 1.019 0.913 0.984
(0.008) (0.027) (0.006) (0.011) (0.011) (0.011)

Ireland 0.702 0.423 0.041 1.006 0.852 1.005
(0.037) (0.117) (0.022) (0.056) (0.056) (0.056)

Slovenia 0.730 0.314 0.023 0.834 0.941 0.992
(0.070) (0.187) (0.027) (0.097) (0.096) (0.096)

Austria 0.661 0.230 0.012 1.126 1.205 0.951
(0.050) (0.168) (0.018) (0.085) (0.084) (0.086)

France 0.682 0.181 0.008 0.832 0.975 0.978
(0.017) (0.041) (0.003) (0.036) (0.035) (0.035)

Switzerland 0.782 0.282 0.019 0.919 0.779 1.053
(0.027) (0.063) (0.008) (0.051) (0.052) (0.051)

Denmark 0.721 0.540 0.065 1.226 1.173 1.033
(0.017) (0.058) (0.013) (0.029) (0.029) (0.029)

Table 5.6: The estimators of C, D statistics and calibration slopes in the internal-external cross
validation when dataset ID is used for validation and the remaining studies for derivation. In
this case, the study from Sweden is excluded from the model.

In comparison to the aforementioned prognostic model using all the 8 studies, no

significant improvement is found in the fitting of the model while Sweden being excluded

from the dataset. However, when we summarized the pooled estimate of calibration

slope using trivariate meta analysis in Table 5.7, it is interesting to find that for the
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average and nearest neighbour strategy, the corresponding heterogeneities τ 2 of calibration

slope estimates were reduced from 0.046 and 0.074 to 0.017 and 0.018 respectively. It

implied that the prognostic model did yield homogeneous estimates in calibration slopes

by excluding the study from Sweden. Therefore, we may recommend to exclude the study

in Sweden while developing a final prognostic model for future use.

Summary results
from meta analysis

Intercept
Strategy

C Index
estimate

D Index
estimate

Calibration
slope

Multi
I2 test

Between
study τ2

Average 0.710 0.033 0.996 95.7% 0.017
(0.013) (0.009) (0.057)

Neighbour 0.707 0.031 0.976 97.2% 0.018
(0.015) (0.009) (0.062)

New 0.710 0.031 1.000 89.9% < 0.001
(0.014) (0.009) (0.019)

Table 5.7: The trivariate meta analysis for the three different intercept strategies excluding
study from Sweden: The pooled estimators, the multivariate I2 test and heterogeneity τ2 in
calibration slopes across 8 studies. N.B. the numbers in brackets represent standard errors.

In summary, the cumulative hazard rate function of the final model is given by

H(t;X) = H0j(t) exp(βTX)

where H0j(t) = γ0j +γ1 ln t+γ2z1(ln t)+γ3z2(ln t). The estimates of the coefficient vector

β for the prognostic factor vector X and the coefficients γ1, γ2 and γ3 for the baseline

hazards are given in Table 5.8. For a patient from one of the country included in our

study, the estimate of the study-specified intercept γ0j is also listed in Table 5.8 and the

resulted baseline survival functions of each included study in the final model are plotted

in Fig 5.4.

So to obtain S(t) for a new individual we need

S(t;X) = exp(−H0(t) exp(βTX)).

For any patient from the included study in the final model, the baseline hazards is from the

181



appropriate country in Figure 5.4. However for any external patient, we could estimate

the baseline hazards from the new dataset directly. If the dataset is not available at hand,

the average or the neighbour strategy could be utilized. For all patients, βTX is obtained

using βT from Table 5.8.

.9
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)

0 2 4 6 8 10
Years from surgery

Ned Irl
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Fra Sui
Den

Baseline function of each study in the final model

Figure 5.4: The baseline function of each included study in the final model by excluding the
study from Sweden and the predictor, menopausal status.

5.4 Discussion

Prognostic models developed from IPD meta analysis are increasingly popular in clinical

research[109]. However, very little research has been devoted to how to identify the

potential heterogeneities across the studies and how to apply the prognostic model in

practice[1].
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Variable Coef. Std. Err. P value 95% CI for HR

Age 0.010 0.002 < 0.001 (0.006, 0.014)

Tumour type Reference level:idc
ilc -0.122 0.095 0.202 (-0.309, 0.065)
colloid -0.309 0.711 0.664 (-1.702, 1.085)
tubul -0.540 0.502 0.282 (-1.524, 0.444)
medull -0.741 0.222 0.001 (-1.176, -0.305)
papil -0.422 0.506 0.404 (-1.413, 0.569)
other -0.086 0.131 0.512 (-0.342, 0.170)
unknown 0.026 0.066 0.698 (-0.104, 0.155)

Tumour grade Reference level:good
moderate 0.445 0.162 0.006 (0.126, 0.763)
poor 0.807 0.160 < 0.001 (0.493, 1.121)
unknown 0.668 0.167 < 0.001 (0.340, 0.995)

Lymph nodes Reference level:np=0
np< 3 0.738 0.068 < 0.001 (0.606, 0.871)
3 <np< 10 1.241 0.070 < 0.001 (1.103, 1.379)
np> 10 1.670 0.088 < 0.001 (1.498, 1.842)

Tumor size 0.326 0.038 < 0.001 (0.252, 0.401)
Adjuvant treatment -0.106 0.030 0.001 (-0.166, -0.046)
Hormone receptor -0.485 0.055 < 0.001 (-0.594, -0.377)

Baseline hazards
γ1 0.883 0.019 < 0.001 (0.846, 0.921)
γ2 0.133 0.018 < 0.001 (0.097, 0.169)
γ3 0.033 0.010 0.002 (0.012, 0.053)

Study intercept
Netherland -3.279 0.207 < 0.001 (-3.684, -2.874)
Ireland -3.334 0.260 < 0.001 (-3.843, -2.825)
Slovenia -3.732 0.329 < 0.001 (-4.376, -3.087)
Austria -2.959 0.268 < 0.001 (-3.485, -2.434)
France -3.571 0.210 < 0.001 (-3.983, -3.159)
Switzerland -3.585 0.242 < 0.001 (-4.060, -3.110)
Denmark -2.961 0.222 < 0.001 (-3.397, -2.526)

Table 5.8: The coefficient and intercept estimates of the final model excluding the study from
Sweden and the predictor, menopausal status.
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5.4.1 Key findings

In this chapter, a prognostic model was constructed where the stratified intercepts were

introduced to account for the heterogeneities in the baseline risks. Particularly when the

derived model is generalized into new individuals, three different intercept strategies were

proposed to adjust for the heterogeneities in new population. The first method is to meta

analyse the intercepts from each individual study in the derivation dataset to produce a

pooled estimate for the new population. The second strategy is to utilize the intercept

from a study in the derivation dataset that is closest in proximity to the new study.

The third method, which always offer the best validation statistics, is to re-estimate the

intercept term from the new population directly.

In the cases lacking additional dataset to validate the derived model, the internal-

external cross validation framework was proposed to identify the generalizability of our

derived model[123]. The additional validation studies provided by the framework make it

possible for researchers to gain insight into future calibration and discrimination ability

of the newly constructed model and help researchers to identify which study, predictor or

intercept strategy (if any) is not suitable to be utilized to construct an empirical model

for future use[31].

In this process, to assess generalizability of the derived model in each cycle of the

internal-external cross validation approach, several important validation statistics are

summarized, i.e. calibration measures (calibration slopes and calibration curves), and

discrimination measures (C and D indices)[4][25]. The calibration slopes can represent

an overall assessment of the derived model in each omitted study but to further identify

the potential prediction problems, calibration curve at each risk level should be visually

inspected[31][123]. Both C and D statistics describe the ability of the model to discrim-

inate the patients with high risk and low risk but C statistic is more recommended due

to its easy application and interpretation[54].

To find the best intercept strategy, the (multivariate) meta-analysis framework of

Snell et al.[142] has been used to summarize the estimate of calibration slopes for each
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strategy[101][162]. Our example demonstrated that the new intercept strategy did outper-

form the other two in terms of precision accuracy and between-study heterogeneity[133].

Considering the poor calibration slope estimates in Sweden, our final model excludes Swe-

den. By comparing the validation performance of the final model excluding Sweden to the

one including Sweden, we demonstrated that clinically, our final model was more recom-

mended since the heterogeneses of calibration slope estimates across different validation

studies were decreased significantly while the data from Sweden being excluded.

5.4.2 Limitations

A potential limitation in our work is that our model does not account for the hetero-

geneities in predictor-outcome associations. Although the case study implied that the pre-

diction of our model was satisfied in some of countries, the researcher still need to observe

the resulting calibration slopes and curves carefully to detect the potential problems[31].

5.4.3 Conclusion

In summary, a framework to develop, implement and evaluate a prognostic model with

IPD is introduced in this research. The internal-external cross validation method, which

was first proposed by Royson[123], was extended to validate the time-to-event data from

multiple studies using Royston-Parmar models. Further, we utilized the meta analysis to

summarize the prediction performance of the proposed model within the internal-external

cross validation framework and thus determine the final model for future validation and

prediction[142].

The main issues and key findings of this chapter are summarized in Table 5.9 and the

future work will be discussed in the final chapter. In the next chapter, we will discuss how

to evaluate the interaction effects between treatment and certain subgroup of patients in

survival analysis.
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What is already known on this topic:

• Prognostic models developed from IPD meta analysis are increasingly popular in
clinical research and it is important to validate the derived model in new population
before it enters practice.

• Calibration measures (calibration slope and calibration curve) and discrimination
measures (C and D statistics) are very important statistics to assess generalizability of
the derived model.

• Multivariate meta analysis usually provides better parameter estimates than
univariate meta analysis since it borrows the strength from other correlated measure to
improve the precision of the pooled estimate.

What this study adds

• A prognostic model using the Royston-Parmar framework is constructed from
multiple studies where the stratified intercept is utilized to account for the
heterogeneities across studies.

• To validate the model in a new study, we propose three different intercept strategies
to adjust for the heterogeneities in new individuals.

• A detailed guidance is given to illustrate how to apply the internal-external cross
validation framework, derive validation statistics, and how to interpret the validation
results in this procedure.

• Based on the internal-external cross validation results, we introduce how to
establish an appropriate prognostic model to predict mortality risk in breast cancer
patients across a range of countries.

Table 5.9: Summary of the main issues and key findings in Chapter 5.
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CHAPTER 6

ESTIMATION OF TREATMENT-COVARIATE
INTERACTIONS IN A ONE-STAGE IPD META
ANALYSIS WITH TIME-TO-EVENT DATA

6.1 Introduction

The previous chapter looked at the use of survival modelling to predict individual outcome

risk. However, another key use of survival analysis is to estimate and predict the effect of

new treatments.

In clinical trials, a new medicine may be more effective in some patients than others

depending on patients’ individual biological or risk characteristics[115][158]. See Section

1.7 for the definition of clinical randomized trials. For example, imatinib was found to

be more effective in treating the chronic myeloid leukaemia problem for the patients with

epidermal growth factor receptor mutations and trastuzumab improved the outcome of

breast cancer in the subgroup of patients with positive human epidermal growth factor

receptor[61].

Research to analysis the interaction effect between a patient-level variable and the

treatment on outcome is known as stratified medicine and it is one of the fundamental

issues in a prognosis research[61]. Fully understanding this topic will benefit clinical

decision making[58]. For example, it will help clinical decision makers to determine which

patient strata is of the highest priority in clinical trials and more importantly, it could
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provide important guidance to customize healthcare for each individual patient, which

refers to the term ‘personalized medicine’, to maximize clinical benefits or reduce side-

effects.

Now consider a time-to-event dataset from multiple trials, for the purpose to identify

the association between the treatment effect and one patient level factor, the conventional

approach is to utilize aggregate data meta analysis to produce a pooled estimate of the

interaction effect from multiple trials[32]. However, it is well known that the only avail-

ability of the trial-level values in aggregate data meta analysis is insufficient to assess the

patient level association directly unless the interaction itself is reported[48][130], which is

unfortunately rare.

For that, we may overcome this problem by using the IPD from multiple trials[109].

This idea had been investigated mainly in the setting of continuous or binary outcome

and here we consider survival outcomes. For example, some researchers developed a single

model with an interaction term to investigate the association between the treatment and

covariate[112]. Alternatively, others treated the within and across trial interaction effects

separately to avoid the well documented problem, ‘ecological bias’[151]. However, the

estimation of the interaction effect had not been considered in much detail within one-

stage IPD meta analysis of time to event outcome. Therefore, to address this issue using

time-to-event data, we propose three main objectives in this chapter:

• Examine if separation of within and across terms is important in one-stage IPD

meta analysis of time-to-event outcomes.

• Consider situations with and without ecological bias respectively when estimating

the treatment-covariate interaction effects.

• Apply the proposed one-stage IPD meta analysis model to a epilepsy data.

This chapter is structured as follows. In the next section, we review the past literature

on the evaluation of the treatment-covariate interaction effect in meta analysis. Then in

Section 6.3, we describe a range of hierarchical Cox models to assess the interaction effect

188



in IPD meta analysis. We show that the models could be further divided into two groups

according to whether they treat the within and across trial interaction terms separately.

In Section 6.4, we describe a series of simulation studies where the two different groups

of the Cox models were utilized to fit the simulated data. In the process, we highlight

the advantages in parameter estimation for the models treating the within and across

trials effects individually, especially when confounding is introduced in the simulated

data. Section 6.5 applies the various models to a real case study on the effects of two

anti-epileptic drugs, and carefully investigates the treatment-covariate interaction for the

potential ecological bias. In the last section, several key findings and limitations of the

work are discussed.

6.2 Literature review

Many papers have been devoted to investigating the treatment-covariate interaction effects

in IPD meta analysis. One common method is to estimate the interaction effect within

each trial and then combine the results assuming a common effect across trials[137]. See,

for example, Mccleary et al.[91] who explored the impact of older age on the efficacy of

newer adjuvant therapies by calculating their interaction effects in each of 6 individual

trials first and then pooled them using standard meta-analysis. In general, this two-stage

process is same as a traditional aggregate data meta analysis which obtains the effect

estimate from each trial with their variance and then calculates a pooled average result

across trials using fixed or random effects meta analysis[110].

An alternative method is to meta analyse the IPD from the multiple trials in a one-

stage approach. In comparison to the two-stage method, it is more flexible to incorporate

all trials simultaneously and estimate the treatment effects and interactions all in one

analysis. One typical model includes the treatment, covariate and their interaction terms

as the predictor factors. See for example, Tudur Smith et al.[141] investigated a Cox

model with the interaction effects between the anti-epileptic drug effects and patients’s

age by directly including their interaction term into their model. However in binary
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and continuous outcome settings, other researches suggested this approach may be prone

to ecological bias, as it mixed within and between trial interactions[112]. For example,

Riley et al.[106] utilized a simulation study to demonstrate that the models ignoring

the difference between the within and across trial treatment-covariate effects may give a

biased estimator of the patient level effects in IPD meta analysis of binary outcomes. An

alternative model can carefully separate within trial and across trial treatment-covariate

effects to reduce the problem[130]. For example, Riley et al.[106] and Simmonds et al.[138]

specified models to separate patient-level and trial-level interaction terms in one-stage

IPD meta analysis of continuous outcomes. Riley et al.[110] also used this model to

analyze interactions in a one-stage meta analysis of binary outcomes and Riley et al.[106]

generalized the idea into the setting of a binary meta-analysis where the association

between the two outcomes, sensitivity and specificity of a diagnostic test and a participant-

level covariate was investigated.

However, there is little consideration of how to treat the within and across trial interac-

tion effects separately in the framework of time-to-event data and whether our estimation

benefits from it. Hence in this chapter, we consider the issue with IPD from multiple

trials with survival outcomes where treatment effects and interactions are of interest.

6.3 Treatment-covariate interaction model

Consider the IPD meta analysis of time-to-event data across j = 1 to J trials. Let xij be

a participant-level covariate of interest which can be continuous, such as age, or binary,

such as sex, and zij denotes whether the ith patient in the jth trial is in the experimental

group or in the control group (1=Experiment group, 0=Control group).

There are a variety of models available to fit the time-to-event data to randomised

trials[141]. The Cox proportional hazards model is a popular one which does not require

any assumption regarding the baseline hazard rate. Given in this chapter, we are only

interested to identify the treatment-covariate interaction effects on individual risks, the

Cox regression model is therefore a reasonable choice to solve the problem[141], as we do
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not need the baseline hazard.

6.3.1 Cox regression merging interaction terms

The Cox models could include the treatment-covariate interaction term as a prognostic

factor to predict individual risks in the IPD meta analysis. For the ith individual in the

jth trial, an initial model to predict the hazard rate function at time t can be written as

λij(t) = λ0j(t) exp(β1zij + β2xij + βTxijzij) (6.3.1)

where λ0j(t) denotes the unique baseline hazard function in the jth trial and xijzij rep-

resent the interaction term between the treatment and covariate of interest[21]. The

constant coefficients β1 is the change in the log hazard for patients in the treatment group

rather than control group where xij = 0, β2 is the change in the log hazard for a 1 unit

increase in the patient level covariate where zij = 0 and βT denotes the additional change

in the log hazard for patients in the new treatment group compared with the control

group for one unit increasing values of xij.

The unobserved trial confounding may arise from an underlying causal mechanism

or may be due to artificial difference in measurements or methods (i.e. chance, bias, or

confounding) across trials. Therefore we could further introduce a random treatment

effect into model (6.3.1) to make allowance for potential excessive variation in treatment

effects as

λij(t) = λ0j(t) exp(β1jzij + β2xij + βTxijzij) (6.3.2)

where β1j = β1 + b1j and b1j ∼ N(0, τ 2). The fixed coefficient β1 is the average log

hazard ratio for a population of possible treatment effects in individuals where xij = 0

and the random variable b1j following a normal distribution (0, τ 2) is to describe the

heterogeneities in the treatment effects across trials[154].
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6.3.2 Cox regression separating interaction terms

As discussed previously, when we include the interaction as in (6.3.1) and (6.3.2), it may

amalgamate within and across trial interactions[141]. Alternatively, we can model the

within-trial relationship by centering the covariate xij about the mean x̄j in each trial j

and model the across-trial relationship by the mean x̄j in each trial j[106][110]. In this

setting, the hazard rate model with the assumption of the stratified baseline function

across trials can be written as

λij(t) = λ0j(t) exp(β1zij + β2xij + βW (xij − x̄j)zij + βAx̄jzij) (6.3.3)

where λ0j(t) is the baseline function in the jth trial. As with model (6.3.1), the baseline

hazard for each trial is not assumed to be same. β1 and β2 are interpreted in the similar

way to (6.3.1). Additionally, the within trial coefficient βW denotes the change in the log

hazard rate for individuals who receives the new treatment rather than control for each

one unit change in xij and the across trial coefficient βA denotes the change in the log

hazard rate of individuals who receive the new treatment for a one unit change in x̄j.

The final model considered in this section is about a generalization from (6.3.3) to

account for the heterogeneities in trial treatment effects. For the ith patient in the jth

trial, it can be written as

λij(t) = λ0j(t) exp(β1jzij + β2xij + βW (xij − x̄j)zij + βAx̄jzij) (6.3.4)

where β1j = β1 + b1j and b1j ∼ N(0, τ 2). The coefficient β1 is the average log hazard ratio

for a population of possible treatment effects in those where xij = 0 and x̄j = 0, and b1j is

the deviation of the relative treatment effect in the jth trial from this population average.

β2 is defined same as model (6.3.1) and βW and βA are defined same as (6.3.3).

In models (6.3.3) and (6.3.4), the difference between the within trial interaction ef-

fect βA and the across trial interaction effect βW can be explained as the ecological
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bias[106][108][110][112]. In practice, if there is truly no ecological bias, then βA and βW

obtained from model (6.3.3) or (6.3.4) should be same as the amalgamated effect βT ob-

tained from (6.3.1) or (6.3.2)[104]. Subsequently, models (6.3.3) and (6.3.4) could simplify

to (6.3.1) and (6.3.2) respectively and βT can explain both the within-trial and between-

trial variations across trials[106]. However, as suggested by Riley and Steyerberg[112],

even when no ecological bias is present, models (6.3.3) and (6.3.4) are more recommend-

ed so as to make clear about the potential ecological bias in the underlying database.

However, it must be emphasised again that these finding have not yet been confirmed for

time-to-event studies (trials).

6.3.3 Modelling fitting

To fit the stratified Cox regression for model (6.3.1) and (6.3.3), many standard statisti-

cal packages are available such as coxph in R[46] and stcox in STATA[21]. To estimate

the random effects Cox regression in model (6.3.2) and (6.3.4), the coxme package in R

could be utilized[154]. In particular, the value of a fixed effect or random effects param-

eter could be estimated from its usual Cox partial likelihood function using a maximum

likelihood algorithm where the random effects could be integrated by partial likelihood

function[113][156].

6.3.4 Reasons for ecological bias

We have emphasized the potential importance to separate the within and across trial

treatment-covariate terms to account for the potential ecological bias in modelling indi-

vidual risks[11]. There is rich literature being devoted to explain why we should consider

the ecological bias in the meta-analysis[12][111] and why individual risks both depend on

the covariate mean and individual covariate value[49]. In this section, to further clarify

this idea, we elaborate two main reasons which are very likely to cause the ecological

bias[49][112].

If the treatment effect depends on both the patient level covariate and the trial co-

variate mean with different degrees, then the ecological bias would be more likely to be
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found in model fitting. For example, for patients with depression, younger people may

have a better treatment effect than elders due to better health overall allowing for a better

treatment response. But it may also depend on the mean age of the study (population)

as well. The clinical trials from a population with an elder mean age might be better for

elder patients since they may not feel as lonely, surrounded by others of a similar age.

Another reason for ecological bias is trial-level confounding in treatment. For example,

for a new drug firstly applied in clinical trials, the dose may differ across trials. Subse-

quently, the trials with the larger proportion of male patients may be more likely to give

their patients larger dosage of the drug. This may induce a trial-level association between

the drug effect and proportion male in the study, but it is due to confounding by dose.

That is being male appears to be associated with a better response to treatment at the

trial-level, but this is due to male receiving a higher dose, not because they are male.

6.4 Simulation study

We now describe two simulation studies to assess the performance of the models treating

the treatment-covariate interaction term as a whole (i.e. (6.3.1) and (6.3.2)) and the

models separating the within and across trial interaction terms (i.e. (6.3.3) and (6.3.4)).

In the first simulation study, we exclude any trial level confounding factor (‘No con-

founding’ simulation study). In the second simulation study, we include a confounding

factor (‘Confounding’ simulation study). In each simulation study, we consider binary

(sex) or continuous (age) variables and their interaction with treatment. The SURVSIM

package in STATA is utilized to simulate a survival data (see Crowther and Lambert[28]

for the details) and the main steps of the simulation study are summarized as follows[19],

Step 1. Each simulated IPD meta analysis dataset consists of J trials. The number of

patients in each trial was randomly determined by the normal distribution with the

mean N and standard error, N/5.

Step 2. In each individual trial, each patient has an equal chance to be assigned to the

experimental group zij = 1 or the control group zij = 0 randomly.
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Step 3a. If the covariate x is the binary variable, such as sex (1=Male, 0=Female), then for

the ith patient in the jth trial, we firstly sample the mean of xj in the jth trial from

a uniform distribution (0.5−V 1, 0.5 +V 1) where V 1 is chosen to be between 0 and

0.5 and next randomly sample xij from a binomial distribution with the obtained

mean xj.

If the covariate x is the continuous variable, age, then for the ith patient in the jth

trial, the mean of xj in the jth trial is firstly sampled from a uniform distribution

(50 − V 1, 50 + V 1) where V 1 is chosen to be between 0 and 35 and then xij is

sampled from a normal distribution truncated at 15 and 85 with the obtained mean

xj and a standard error V 2, where V 2 is chosen to be a positive number.

Step 3b. In addition, for the simulation study with confounding, we define yj to indicate

whether the extra dose of drugs is given to the patients in the experimental group

in the jth clinical trial (1=yes, 0=no). In this framework, the trials with the mean

of the binary covariate (sex) above 0.5 or the mean of continuous covariate (age)

above 50 are given an extra drug effect β4 (yj = 1).

Step 4. We can generate the survival data for the ‘no confounding’ simulation study using

(6.4.1a) and the ‘confounding’ simulation study using (6.4.1b) respectively:

λij(t) = λ0(t) exp(β0j + β1zij + β2xij + β3xijzij) (6.4.1a)

λij(t) = λ0(t) exp(β0j + β1zij + β2xij + β3xijzij + β4yjzij) (6.4.1b)

where the baseline hazards within each trial are proportional to the same common

hazard function λ0(t), which is taken to be the exponential distribution with mean

0.1. The fixed term β0j for j = 1, 2, ..., J represents the uniqueness of the base-

line hazards within each trial where β0j is sampled from the uniform distribution

U(0, 0.5) and β1, β2 and β3 are chosen to be the fixed constants. The fixed term β4

is defined for the confounding factor in the ‘confounding’ simulation which is chosen
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to be a positive constant.

Step 5. By choosing the proper values of J , N , V1 and V2, Step 1- Step 4 are repeated 1000

times to generate 1000 meta-analysis datasets for the following scenarios:

• ‘No confounding’ simulation study: Binary variable (sex)

• ‘No confounding’ simulation study: Continuous variable (age).

• ‘Confounding’ simulation study: Binary variable (sex).

• ‘Confounding’ simulation study: Continuous variable (age)

Step 6. To each 1000 meta-analysis IPD generated, we fit to the simulated patient data

two types of Cox models, one of which ignores the ecological bias (i.e. (6.3.1) or

(6.3.2)) and the other accounts for the bias (i.e. (6.3.3) or (6.3.4)). Then to evaluate

and compare the 1000 achieved parameter estimates from the two different types of

models, we look at the mean bias, standard error, mean squared errors and coverage

probability of 95% confidence interval of the estimates respectively. Of course, we

are especially interested in the interaction terms.

6.4.1 Parameter choices

We need to define β1, β2, β3 and β4 in (6.4.1) to generate the meta-analysis database for

each simulation study. To obtain a simulated database with the reasonable proportion of

events and censored cases, β1 was set to be 1. β2 and β3 were defined to be 0.5 for the

binary covariate (sex) and 0.01 for the continuous covariate (age). β4 was set to be 0 in

the first simulation study and 0.75 in the second study to account for the unobservable

trial confounding.

Besides, the selection of the values of J , N , V1 and V2 also influences the power of

interaction estimates in meta-analysis[69][138]. To investigate the possible associations

between the sample size of the database and the performance of the Cox models, two

settings were defined according to the number of trials and the number of observations

per trial, that is, J = 10 and N = 500 for the ‘large’ setting, and J = 5 and N = 250 for
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the ‘small’ setting. To explore the association between the scale of the covariate x and

interaction effects, we also varied V 1 and V 2 in our study: For the binary case, V 1 was

chosen to be 0.4 or 0.2 and for the continuous case, V 1 was set to be 20 or 10 and V 2

was set to be 5 or 10. In summary, under each scenario listed in Step 6, we simulated

1000 meta analysis datasets for each combination of V 1, V 2 and the sample size (J and

N) and then fitted the achieved data with the proper Cox models.

6.4.2 Result 1: binary covariate, no trial confounding

In the ‘no confounding’ study with the binary covariate, sex, we applied models (6.3.1)

and (6.3.3) to fit the data respectively. Since no confounding factor was considered in this

case, there is no unexplained heterogeneity across trials and so the random effects models

(6.3.2) and (6.3.4) are not considered. The estimated results for the covariate sex with

the different combinations of V 1 and the sample size are given in Table 6.1.
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Equation (6.3.1) (amalgamated interaction) Equation (6.3.3) (separate interaction)
Sample
Size

V1
Mean (s.d.) MSE Coverage Mean (s.d.) MSE Coverage

β1 β2 βT βT βT β1 β2 βW βA βW βA βW βA
Large 0.4 1.001 0.501 0.500 0.005 0.939 1.002 0.501 0.500 0.500 0.007 0.027 0.945 0.957

(0.053) (0.059) (0.072) (0.093) (0.064) (0.082) (0.164)

Large 0.2 1.001 0.501 0.501 0.005 0.946 1.006 0.501 0.502 0.490 0.005 0.112 0.953 0.956
(0.053) (0.058) (0.070) (0.173) (0.058) (0.071) (0.335)

Small 0.4 1.004 0.503 0.494 0.020 0.958 0.998 0.505 0.492 0.517 0.023 0.235 0.964 0.945
(0.111) (0.118) (0.143) (0.271) (0.121) (0.153) (0.484)

Small 0.2 0.998 0.502 0.505 0.019 0.953 1.001 0.502 0.505 0.497 0.020 0.707 0.948 0.959
(0.103) (0.108) (0.138) (0.445) (0.11) (0.143) (0.841)

Table 6.1: The estimates of the treatment-sex interaction effects in the simulated data without trial level confounding. N.B. the true values
of β1 = 1, β2 = 0.5, βT = βW = βA = 0.5, coverage is for the 95% confidence interval and the numbers in the brackets denote standard
deviation of repeated 1000 parameter estimates.198



In all settings, β̂T from (6.3.1) and β̂W and β̂A from (6.3.3) were approximately unbi-

ased estimates of the true treatment-sex interaction effect and their coverage probabilities

of 95% confidence interval were also very close to the true value 0.95. For equation (6.3.3),

the mean squared errors of β̂W were generally much smaller than those of β̂A. This high-

lights that the within trial interaction term usually has greater power than its across trial

counterpart, and this difference becomes to be bigger as the sample size or V 1 decreases.

However, β̂T from equation (6.3.1) has the smallest mean squared errors, as it is essentially

a weighted combination of β̂W and β̂A.

6.4.3 Result 2: continuous covariate, no trial confounding

In the similar way, we generated the data with the continuous variable, age for the different

combinations of V 1, V 2 and the sample size, and then fitted the simulated data by models

(6.3.1) and (6.3.3) respectively. The corresponding results are summarized in Table 6.2.
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Equation (6.3.1) (amalgamated interaction) Equation (6.3.3) (separate interaction)
Sample
Size

V1 V2
Mean (s.d.) MSE Coverage Mean (s.d.) MSE Coverage

β1 β2 βT βT βT β1 β2 βW βA βW βA βW βA

Large 20 10
0.996 0.010 0.010 <0.001 0.952 0.989 0.010 0.010 0.010 <0.001 <0.001 0.948 0.949

(0.127) (0.002) (0.002) (0.179) (0.003) (0.003) (0.004)

Large 20 5
0.994 0.010 0.010 <0.001 0.958 0.992 0.010 0.010 0.010 <0.001 <0.001 0.946 0.959

(0.148) (0.004) (0.003) (0.171) (0.005) (0.006) (0.003)

Large 10 10
1.006 0.010 0.010 <0.001 0.965 0.994 0.010 0.010 0.010 <0.001 <0.001 0.961 0.949

(0.144) (0.002) (0.003) (0.350) (0.002) (0.003) (0.007)

Large 10 5
0.996 0.010 0.010 <0.001 0.949 0.992 0.010 0.010 0.010 <0.001 <0.001 0.959 0.948

(0.234) (0.004) (0.005) (0.346) (0.005) (0.006) (0.007)

Small 20 10
1.008 0.010 0.010 <0.001 0.930 0.988 0.010 0.010 0.010 <0.001 <0.001 0.954 0.935

(0.274) (0.005) (0.005) (0.469) (0.005) (0.007) (0.009)

Small 20 5
1.014 0.010 0.010 <0.001 0.967 1.013 0.011 0.009 0.010 <0.001 <0.001 0.953 0.960

(0.320) (0.007) (0.006) (0.421) (0.010) (0.013) (0.008)

Small 10 10
0.991 0.010 0.010 <0.001 0.945 0.943 0.010 0.010 0.011 <0.001 <0.001 0.947 0.953

(0.316) (0.005) (0.006) (0.921) (0.005) (0.007) (0.018)

Small 10 5
0.993 0.010 0.010 <0.001 0.949 0.984 0.010 0.010 0.010 <0.001 <0.001 0.949 0.952

(0.491) (0.009) (0.010) (0.890) (0.010) (0.013) (0.018)

Table 6.2: The estimates of the treatment-age interaction effects in the simulated data without trial level treatment confounding. N.B. the
true values of β1 = 1, β2 = 0.01, βT = βW = βA = 0.01, coverage is for the 95% confidence interval and the numbers in the brackets denote
standard deviation of repeated 1000 parameter estimates.
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The amalgamated effect, β̂T from model (6.3.1) and the within and across trial effects,

β̂W and β̂A from model (6.3.3) were generally unbiased as they were close to 0.01 across

all settings. In addition, the resulted coverage in each setting was also very close to true

value, 0.95.

In the database with large sample size when using (6.3.3), the standard error of the

within and across trial estimators were very similar, for example, see the cases for V 1 =

10, V 2 = 5 or V 1 = 20, V 2 = 10. However, when V 1 was large relative to V 2, the

standard error of β̂W appeared slightly larger than β̂A. For example, given V 1 = 20 and

V 2 = 5, the standard error of β̂A was always around 0.006 where the standard error of

β̂W was around 0.003. Conversely, when V 1 was small relative to V 2, the standard error

of β̂W turned out to be smaller than β̂A. For example, given V 1 = 10 and V 2 = 10, the

standard error of β̂A was always around 0.003 while β̂W was almost 0.007. These findings

showed a very important property in IPD meta analysis, that is, the power to detect the

patient level interaction effects using β̂W increases when V 2 increases, and when using

β̂A it increases when V 1 increases[138]. As for the simulations with small sample size,

findings were similar except standard errors were of a larger magnitude throughout.

6.4.4 Result 3: binary covariate, trial-level confounding

We extended the simulation study to incorporate the trial-level confounding factor. From

(6.4.1b), the coefficient of the confounding factor, β4 was set to be 0.75 indicating that the

extra dose increased the log hazards of patients who received the treatment by 0.75. The

confounding factor was assumed to be unobservable here (i.e. an unknown trial-level con-

founder). We fitted the simulated data by the fixed effect stratified Cox regression models

(6.3.1) and (6.3.3) and then models (6.3.2) and (6.3.4) with random treatment effects to

account for the heterogeneities across trials (caused by the unobserved confounder). Using

the different combinations of V 1, V 2 and the sample size, we generated 1000 IPD meta

analysis repeatedly for the covariate, sex, and then fitted the data by models (6.3.1) and

(6.3.2) and models (6.3.3) and (6.3.4) respectively. The obtained results are summarized
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in Table 6.3.

Consider the fixed and random effects models (6.3.3) and (6.3.4) which treated the

within and across trial interaction terms separately. The patient level interaction estima-

tors β̂W were still approximately unbiased for all settings as they were very close to the

true value, 0.5. However, due to the confounding, β̂A were clearly biased in every setting.

For example, given V 1 = 0.2 and the small sample size, the within trial interaction estima-

tor β̂W = 0.502 (s.e.=0.136) from the random effects model (6.3.3) was close to the truth,

whereas its across trial interaction estimator β̂A = 3.47 was seriously upwards biased with

a very big uncertainty, s.e.=1.537. The stark differences between the estimators of β̂W

and β̂A demonstrated that there was strong ecological bias in the simulated datasets, as

expected due to the unaccounted for trial level confounder of dose. Interestingly, the bias

was not reduced in β̂A when using the random effects model (6.3.4) rather than the fixed

effect model (6.3.3). In views of the MSE and coverage of β̂W and β̂A, it is more clear

that the estimation of models (6.3.3) and (6.3.4) reached a high precision in β̂W where

the MSE were always small then 0.03 and coverage were very close to 0.95. However, very

poor MSE and coverage of β̂A were reported due to the presence of ecological bias.

Models (6.3.1) and (6.3.2) also gave estimates of βT , those were upwardly biased com-

pared to 0.5. The random effects model (6.3.2) performed better in terms of the coverage

of which were close to 0.95, but β̂T was still upwards biased in most settings. For exam-

ple, given the large sample size and V 1 = 0.4, the estimate of βT was 0.528 (s.e.=0.079,

coverage=0.927) for the random effects model and 0.721 (s.e.=0.091, coverage=0.192) for

the fixed effect model. This is due to the amalgamation of the unbiased within trial inter-

action with upwardly biased across trial interaction. The MSE of β̂T were still acceptable

which were always below 0.07, however, they were based on the biased estimates of the

interactions[106].
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Sample
Size

V1 Model
Mean (s.d.) MSE Coverage

Model
Mean (s.d.) MSE Coverage

β1 β2 βT τ1 βT βT β1 β2 βW βA τ2 βW βA βW βA

Large 0.4 (6.3.1)
1.245 0.350 0.721 0.057 0.192

(6.3.3)
0.634 0.499 0.495 1.970 0.006 2.263 0.944 0.003

(0.121) (0.069) (0.091) (0.174) (0.062) (0.078) (0.320)

Large 0.4 (6.3.2)
1.362 0.482 0.528 0.125 0.007 0.927

(6.3.4)
0.640 0.500 0.499 1.967 0.028 0.006 2.252 0.947 0.008

(0.126) (0.062) (0.079) (0.034) (0.172) (0.062) (0.078) (0.317) (0.019)

Large 0.2 (6.3.1)
1.310 0.425 0.599 0.016 0.696

(6.3.3)
-0.074 0.500 0.496 3.400 0.005 8.816 0.943 0.000

(0.132) (0.058) (0.076) (0.321) (0.056) (0.071) (0.638)

Large 0.2 (6.3.2)
1.373 0.493 0.510 0.127 0.005 0.947

(6.3.4)
-0.071 0.501 0.499 3.401 0.028 0.005 8.815 0.946 0.006

(0.130) (0.056) (0.071) (0.034) (0.320) (0.056) (0.071) (0.634) (0.017)

Small 0.4 (6.3.1)
1.273 0.371 0.694 0.069 0.683

(6.3.3)
0.645 0.505 0.490 1.977 0.026 2.741 0.949 0.107

(0.211) (0.134) (0.176) (0.428) (0.128) (0.162) (0.749)

Small 0.4 (6.3.2)
1.363 0.471 0.547 0.105 0.03 0.934

(6.3.4)
0.647 0.506 0.492 1.978 0.019 0.026 2.742 0.949 0.196

(0.209) (0.132) (0.168) (0.069) (0.426) (0.128) (0.162) (0.747) (0.028)

Small 0.2 (6.3.1)
1.310 0.424 0.597 0.029 0.897

(6.3.3)
-0.110 0.493 0.501 3.463 0.018 11.159 0.962 0.086

(0.201) (0.112) (0.139) (0.801) (0.108) (0.135) (1.543)

Small 0.2 (6.3.2)
1.363 0.480 0.524 0.111 0.019 0.958

(6.3.4)
-0.111 0.494 0.502 3.470 0.018 0.018 11.184 0.963 0.157

(0.198) (0.109) (0.136) (0.065) (0.796) (0.108) (0.136) (1.537) (0.027)

Table 6.3: The estimators of the treatment-sex interaction effects in the simulated data considering trial-level treatment confounding. N.B.
the true values of β1 = 1, β2 = 0.5, βT = βW = βA = 0.5, coverage is for the 95% confidence interval and the numbers in the brackets denote
standard deviation of repeated 1000 parameter estimates.
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6.4.5 Result 4: continuous covariate, trial-level confounding

The results of IPD meta analysis for the continuous variable, age, are summarized in

Table 6.4.

In all settings, the mean and coverage of β̂W were close to 0.01 and 0.95 respectively

indicating that the estimates of the within trial interaction effects from models (6.3.3) and

(6.3.4) were unbiased. On the contrary, the across-trial association estimates from the

two models were significantly larger than the within-trial counterparts and the coverage

were far away from the optimal value 0.95, highlighting again the ecological bias. Now

consider that we wrongly fit the data with (6.3.1) and (6.3.2) that did not account for

ecological bias. The pooled estimator and coverage of β̂T achieved were again biased by

the unobservable across-trial confounding factor, especially when the fixed effect model

was utilized. Though the standard error of β̂T was sometimes smaller than β̂W , this only

arose by utilizing the biased β̂A. In a sense, gain in standard error comes at the expense

of bias[106] and thus the MSE of β̂T was always larger than β̂W .

6.4.6 Summary of simulation findings

In conclusion, our simulation study has demonstrated that to understand how patient-

level covariate interacts with the treatment effect, it is better to examine the patient level

interaction effect βW rather than either the trial level interaction effect βA, or the amalga-

mated interaction effect βT , because ecological bias can seriously bias βT and βA[106][151].

Therefore separation into βW and βA is important for one-stage IPD meta analysis of

time-to-event outcomes, as otherwise important predictors of treatment response may be

missed or false predictors of treatment identified wrongly.
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Sample
Size

V1 V2 Model
Mean (s.d.) MSE Coverage

Model
Mean (s.d.) MSE Coverage

β1 β2 βT τ βT βT β1 β2 βW βA τ βW βA βW βA

Large 20 10 (6.3.1)
0.687 0.002 0.023 <0.001 0.018

(6.3.3)
-0.158 0.010 0.010 0.040 <0.001 0.001 0.958 0.003

(0.163) (0.002) (0.003) (0.317) (0.003) (0.003) (0.006)

Large 20 10 (6.3.2)
1.239 0.008 0.013 0.112 <0.001 0.848

(6.3.4)
-0.155 0.010 0.010 0.041 0.027 <0.001 0.001 0.958 0.010

(0.204) (0.003) (0.003) (0.040) (0.312) (0.003) (0.003) (0.006) (0.019)

Large 20 5 (6.3.1)
0.270 -0.003 0.032 <0.001 0.003

(6.3.3)
-0.094 0.010 0.010 0.039 <0.001 0.001 0.965 0.002

(0.199) (0.004) (0.004) (0.310) (0.005) (0.006) (0.006)

Large 20 5 (6.3.2)
0.820 0.003 0.021 0.068 <0.001 0.418

(6.3.4)
-0.092 0.010 0.010 0.039 0.025 <0.001 0.001 0.964 0.005

(0.339) (0.005) (0.006) (0.043) (0.307) (0.005) (0.006) (0.006) (0.018)

Large 10 10 (6.3.1)
0.851 0.004 0.020 <0.001 0.131

(6.3.3)
-1.523 0.010 0.010 0.068 <0.001 0.003 0.949 0.003

(0.199) (0.003) (0.003) (0.591) (0.002) (0.003) (0.012)

Large 10 10 (6.3.2)
1.308 0.009 0.011 0.121 <0.001 0.927

(6.3.4)
-1.529 0.010 0.010 0.068 0.026 <0.001 0.004 0.946 0.005

(0.204) (0.003) (0.003) (0.037) (0.587) (0.002) (0.003) (0.012) (0.018)

Large 10 5 (6.3.1)
0.103 -0.005 0.035 0.001 0.018

(6.3.3)
-1.518 0.010 0.010 0.068 <0.001 0.003 0.945 0.001

(0.298) (0.005) (0.006) (0.576) (0.005) (0.007) (0.012)

Large 10 5 (6.3.2)
1.121 0.007 0.015 0.109 <0.001 0.826

(6.3.4)
-1.520 0.010 0.010 0.068 0.026 <0.001 0.003 0.945 0.004

(0.370) (0.005) (0.007) (0.041) (0.576) (0.005) (0.007) (0.012) (0.019)

Small 20 10 (6.3.1)
0.764 0.003 0.022 <0.001 0.38

(6.3.3)
-0.183 0.010 0.010 0.041 <0.001 0.001 0.942 0.121

(0.377) (0.005) (0.007) (0.891) (0.006) (0.007) (0.017)

Small 20 10 (6.3.2)
1.128 0.007 0.015 0.085 <0.001 0.778

(6.3.4)
-0.180 0.010 0.010 0.041 0.015 <0.001 0.001 0.943 0.184

(0.437) (0.006) (0.008) (0.078) (0.889) (0.006) (0.007) (0.017 (0.026)

Small 20 5 (6.3.1)
0.340 -0.003 0.030 0.001 0.173

(6.3.3)
-0.100 0.009 0.010 0.039 <0.001 0.001 0.939 0.115

(0.508) (0.009) (0.010) (0.881) (0.010) (0.013) (0.017)

Small 20 5 (6.3.2)
0.658 0.001 0.024 0.050 <0.001 0.464

(6.3.4)
-0.099 0.009 0.010 0.039 0.017 <0.001 0.001 0.939 0.185

(0.620) (0.009) (0.012) (0.073) (0.875) (0.010) (0.013) (0.017) (0.028)

Small 10 10 (6.3.1)
0.898 0.005 0.019 <0.001 0.665

(6.3.3)
-1.693 0.010 0.010 0.071 <0.001 0.005 0.953 0.103

(0.375) (0.005) (0.007) (1.619) (0.005) (0.006) (0.032)

Small 10 10 (6.3.2)
1.246 0.009 0.012 0.106 <0.001 0.917

(6.3.4)
-1.697 0.010 0.010 0.071 0.019 <0.001 0.005 0.952 0.179

(0.379) (0.005) (0.007) (0.069) (1.611) (0.005) (0.006) (0.032) (0.030)

Small 10 5 (6.3.1)
0.235 -0.003 0.032 0.001 0.354

(6.3.3)
-1.577 0.011 0.009 0.069 <0.001 0.004 0.961 0.109

(0.639) (0.010) (0.012) (1.597) (0.010) (0.013) (0.031)

Small 10 5 (6.3.2)
0.926 0.005 0.019 0.086 <0.001 0.808

(6.3.4)
-1.581 0.011 0.009 0.069 0.016 <0.001 0.004 0.961 0.185

(0.703) (0.010) (0.014) (0.075) (1.595) (0.010) (0.013) (0.031 (0.027)

Table 6.4: The estimators of the treatment-age interaction effects in the simulated data considering trial-level treatment confounding. N.B.
the true values of β1 = 1, β2 = 0.01, βT = βW = βA = 0.01, coverage is for the 95% confidence interval and the numbers in the brackets
denote standard deviation of repeated 1000 parameter estimates.
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6.5 Real case study

6.5.1 Background

Consider now evaluating treatment-covariate interaction effects in a real case study. Tudur

Smith et al.[141] conducted a systematic review of randomized controlled trials about

the effects of two anti-epileptic drugs, Sodium Valproate (drug=1) and Carbamazepine

(drug=0) which were mainly used as monotherapy in patients with partial onset seizures

or generalized onset seizures[90]. In the review, IPD for 1225 patients from 5 clinical trials

were collected totally. See the summary of the dataset in Table 6.5.

Var Type Description

Drug Categorical Anti-epileptic drugs: Sodium Valproate or Carbamazepine
Sezure time Continuous Time to first seizure post-randomization (in days)
Scens Categorical Indicator whether the first seizure time was censored
Remission time Continuous Time to 12 month remission (in days)
Rcens Categorical Indicator whether 12 month remission time was censored
Trial No. Categorical The number of the trial
Age Continuous Age at randomisation (in years)
Epilepsy type Categorical Seizure type of epilepsy (generalized or partial)
Log seizures Continuous log number of seizures in 6 months before randomisation

Table 6.5: Variables in the epilepsy dataset with brief description.

Three patient-level characteristics variables of interest were age at randomisation (in

years), seizure type of epilepsy (generalized or partial) and the log number of seizures in 6

months before randomisation. Two outcomes, time to 12 month remission and time to first

seizure post-randomization were also of interest. Thus, in total there were six different

pairs of the outcome and covariate to be investigated in this study. i.e. 6 treatment-

covariate interaction terms were of interest. For each covariate separately, we applied

models (6.3.1) and (6.3.2) which ignore potential ecological bias, and models (6.3.3) and

(6.3.4) which remove ecological bias. In their original analysis of this data, Tudur Smith

et al. only considered models like (6.3.1) and (6.3.2). Thus our work adds important new

evaluation of this data as ecological bias may have been affecting the previous conclusions.

Table 6.6 summarizes the descriptive statistics of the underlying data and for further

details, please see Tudur Smith et al.[141]. The fitting of the Cox models in this section
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were conducted by Coxme package in R using the maximum likelihood method introduced

in Section 6.3

Variable Mean s.d. median Min Max Censored

Trial 1 n=122
Drug 0.50 0.50 0.50 0.00 1.00
Seizure time 609.71 976.64 145.50 7.00 4520.00 36
Remission time 691.73 828.82 367.50 7.00 4614.00 41
Age 30.65 14.85 24.91 13.06 69.76
Epilepsy type 0.40 0.49 0.00 0.00 1.00
Log seizure 1.27 1.31 0.69 0.00 5.87

Trial 2 n=103
Drug 0.48 0.50 0.0 0.00 1.00
Seizure time 452.53 824.60 63.0 6.00 4070.00 8
Remission time 1001.32 966.17 559.0 281.00 4544.00 15
Age 10.19 3.73 10.19 2.86 15.95
Epilepsy type 0.52 0.50 1.0 0.00 1.00
Log seizure 1.79 1.66 1.1 0.00 6.80

Trial 3 n=288
Drug 0.50 0.50 0.00 0.00 1.00
Seizure time 478.15 585.57 135.92 0.35 2348.00 90
Remission time 563.03 338.57 387.75 22.00 2164.00 64
Age 33.32 15.06 31.00 16.00 79.00
Epilepsy type 0.49 0.50 0.00 0.00 1.00
Log seizure 1.67 1.01 1.39 0.69 4.62

Trial 4 n=246
Drug 0.48 0.50 0.00 0.00 1.00
Seizure time 371.47 438.32 134.58 0.17 1520.00 59
Remission time 596.65 289.24 463.00 60.00 1400.00 63
Age 10.09 2.91 10.11 4.94 15.96
Epilepsy type 0.42 0.49 0.00 0.00 1.00
Log seizure 1.56 1.17 1.10 0.00 4.64

Trial 5 n=466
Drug 0.51 0.50 0.00 0.00 1.00
Seizure time 266.19 446.14 49.00 0.12 1832.00 168
Remission time 357.92 302.97 365.00 4.00 1833.00 275
Age 47.21 16.20 44.48 18.32 83.33
Epilepsy type 1.00 0.00 1.00 1.00 1.00
Log seizure 3.01 2.08 2.48 0.00 7.72

Table 6.6: Descriptive statistics of the epilepsy data by clinical trial (s.d.=standard deviation).

6.5.2 Summary of results

We summarize the parameter estimates in Table 6.7 and focus in great detail on the

interaction effect estimates in Table 6.8.
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Outcome Covariate Model
Parameter Estimate (s.e.)

Model
Parameter Estimate (s.e.)

βdrug βcov βT τ βdrug βcov βW βA τ

Time to
12 month
remission

Age at
randomisation

(6.3.1)
0.199 0.008∗∗ -0.011∗∗∗

(6.3.3)
0.269∗ 0.006 -0.007 -0.013∗∗∗

(0.129) (0.003) (0.004) (0.158) (0.004) (0.006) (0.005)

(6.3.2)
0.199 0.008∗∗ -0.011∗∗∗ 0.004

(6.3.4)
0.269∗ 0.006 -0.007 -0.013∗∗∗ 0.004

(0.129) (0.003) (0.004) (0.158) (0.004) (0.006) (0.005)

Epilepsy type
(6.3.1)

-0.035 -0.238∗∗ -0.128
(6.3.3)

0.168 -0.287∗∗ -0.026 -0.467
(0.113) (0.110) (0.147) (0.197) (0.118) (0.168) (0.307)

(6.3.2)
-0.039 -0.256∗∗ -0.090 0.136

(6.3.4)
0.186 -0.287∗∗ -0.025 -0.479 0.106

(0.132) (0.113) (0.156) (0.239) (0.118) (0.168) (0.376)

Log number
of seizures

(6.3.1)
-0.037 -0.166∗∗∗ -0.025

(6.3.3)
0.112 -0.171∗∗∗ -0.014 -0.100

(0.121) (0.040) (0.056) (0.245) (0.041) (0.058) (0.122)

(6.3.2)
-0.030 -0.168∗∗∗ -0.020 0.104

(6.3.4)
0.134 -0.171∗∗∗ -0.013 -0.105 0.096

(0.131) (0.040) (0.057) (0.285) (0.041) (0.058) (0.142)

Time to
first seizure
post-
randomization

Age at
randomisation

(6.3.1)
-0.194 -0.013∗∗∗ 0.009∗∗∗

(6.3.3)
-0.205 -0.013∗∗∗ 0.009∗ 0.010∗∗

(0.123) (0.003) (0.003) (0.152) (0.004) (0.005) (0.004)

(6.3.2)
-0.194 -0.013∗∗∗ 0.009∗∗∗ 0.003

(6.3.4)
-0.205 -0.013∗∗∗ 0.009∗ 0.010∗∗ 0.003

(0.123) (0.003) (0.003) (0.152) (0.004) (0.005) (0.004)

Epilepsy type
(6.3.1)

-0.140 0.332∗∗∗ 0.339∗∗
(6.3.3)

-0.176 0.344∗∗∗ 0.316∗ 0.396
(0.120) (0.110) (0.146) (0.184) (0.119) (0.170) (0.264)

(6.3.2)
-0.142 0.336∗∗∗ 0.337∗∗ 0.070

(6.3.4)
-0.184 0.347∗∗∗ 0.316∗ 0.405 0.070

(0.125) (0.112) (0.151) (0.205) (0.119) (0.171) (0.301)

Log number
of seizures

(6.3.1)
-0.031 0.242∗∗∗ 0.040

(6.3.3)
-0.248 0.254∗∗∗ 0.018 0.147

(0.107) (0.028) (0.036) (0.223) (0.030) (0.041) (0.104)

(6.3.2)
-0.037 0.246∗∗∗ 0.034 0.110

(6.3.4)
-0.259 0.254∗∗∗ 0.019 0.150 0.070

(0.120) (0.029) (0.038) (0.247) (0.030) (0.041) (0.117)

Table 6.7: Summary of the parameter estimates in the epilepsy data. N.B. * for P value< 0.1, ** for P value< 0.05 and *** for P value<0.01.
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Outcome Covariate Model β̂T CI of β̂T Model β̂W β̂A CI of β̂W CI of β̂A

Time to
12 month
remission

Age at
randomisation

(6.3.1)
-0.011∗∗∗ -0.019 to -0.003

(6.3.3)
-0.007 -0.013∗∗∗ -0.019 to -0.005 -0.023 to -0.003

(0.004) (0.006) (0.005)

(6.3.2)
-0.011∗∗∗ -0.019 to -0.003

( 6.3.4)
-0.007 -0.013∗∗∗ -0.019 to -0.005 -0.023 to -0.003

(0.004) (0.006) (0.005)

Epilepsy type
(6.3.1)

-0.128 -0.416 to 0.160
(6.3.3)

-0.026 -0.467 -0.355 to 0.303 -1.069 to 0.135

(0.147) (0.168) (0.307)

(6.3.2)
-0.090 -0.396 to 0.216

(6.3.4)
-0.025 -0.479 -0.354 to 0.304 -1.216 to 0.258

(0.156) (0.168) (0.376)

Log number
of seizures

(6.3.1)
-0.025 -0.135 to 0.085

(6.3.3)
-0.014 -0.100 -0.128 to 0.100 -0.339 to 0.139

(0.056) (0.058) (0.122)

(6.3.2)
-0.020 -0.132 to 0.092

(6.3.4)
-0.013 -0.105 -0.127 to 0.101 -0.383 to 0.173

(0.057) (0.058) (0.142)

Time to
first seizure
post-
randomization

Age at
randomisation

(6.3.1)
0.009∗∗∗ 0.003 to 0.015

(6.3.3)
0.009∗ 0.010∗∗ -0.001 to 0.019 0.002 to 0.018

(0.003) (0.005) (0.004)

(6.3.2)
0.009∗∗∗ 0.003 to 0.015

(6.3.4)
0.009∗ 0.010∗∗ -0.001 to 0.019 0.002 to 0.018

(0.003) (0.005) (0.004)

Epilepsy type
(6.3.1)

0.339∗∗ 0.053 to 0.625
(6.3.3)

0.316∗ 0.396 -0.017 to 0.649 -0.121 to 0.913
(0.146) (0.170) (0.264)

(6.3.2)
0.337∗∗ 0.041 to 0.633

(6.3.4)
0.316∗ 0.405 -0.019 to 0.651 -0.185 to 0.995

(0.151) (0.171) (0.301)

Log number
of seizures

(6.3.1)
0.040 -0.031 to 0.111

(6.3.3)
0.018 0.147 -0.062 to 0.098 0.351 to -0.057

(0.036) (0.041) (0.104)

(6.3.2)
0.034 -0.040 to 0.108

(6.3.4)
0.019 0.150 -0.061 to 0.099 -0.057 to 0.351

(0.038) (0.041) (0.117)

Table 6.8: Summary of the treatment-covariate effect estimates in the epilepsy data. N.B. s.e. represent the standard error of the parameter
estimate. * for P value< 0.1, ** for P value< 0.05 and *** for P value<0.01.
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Results for time to 12 month remission

First consider results for the outcome of time to 12 months remission. In all settings, the

amalgamated effect estimator β̂T was larger in absolute magnitude than the patient level

estimator β̂W suggesting that ecological bias may be present. For example, in the random

effects model with the binary covariate ‘Epilepsy type’ the amalgamated interaction effect

β̂T = −0.09 (s.e.=0.156) was much larger than the within trial estimator β̂W = −0.025

(s.e.=0.058) due to β̂W being combined with an extremely large β̂A = −0.479 (s.e.=0.376).

The associations between the treatment effect and the two covariates, Epilepsy type

and the log time of seizures were not statistically significant for any of the interactions in

any models (P -values> 0.1).

Fitting random effects model (6.3.4) with age at randomization as the covariate, the

between trial variance estimator τ̂ = 0.004 showed that only a small amount of unex-

plained heterogeneity of trial treatment effects remained. An interesting finding was that

the within trial effect β̂W = −0.007 (P value> 0.1) was not statistically significant whereas

the amalgamated effect estimator β̂T = −0.011 (P value< 0.01) was strongly significant.

The significant P value for β̂T was due to amalgamating β̂W with β̂A, which increased

precision but might be biased as β̂A was susceptible to ecological bias.

Results for time to first seizure post-randomization

Now consider the outcome of time to first seizure. In the models using age at randomisa-

tion as the covariate, no ecological bias was found as the within trial estimate β̂W = 0.009

(P value< 0.1) and the across trial estimate β̂A = 0.01 (P value< 0.05) were identical.

As for the log number of seizures, no significant association was found in the models.

The models examining Epilepsy type detected the weak heterogeneities across the

five included trials as τ̂ = 0.07. In the random effects models, the amalgamated estimate

β̂T = 0.337 (P value< 0.05) was slightly higher than the patient level estimate β̂W = 0.316

(P value< 0.1) due to the trial level confounding from the across trial estimate β̂A = 0.405

(P value > 0.1). Interestingly, the across trial interaction is large but non-significant,
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whereas the within-trial interaction is smaller but close to significance. This illustrates

why the general power of within-trial estimates is greater[80].

6.6 Discussion

With IPD from multiple trials, there is greater flexibility in the meta analysis to identify

the association between the treatment effect and patient-level factors on the survival

probabilities of patients. In this chapter, the work builds on a number of hierarchy

formulations of the Cox models appropriate for the analysis of the time-to-event data[155].

Inclusion of the treatment effect, patient level covariate and their interaction term in the

functional form provides a straightforward approach for exploring treatment-covariate

interaction effects using IPD[44].

In the settings of our Cox models, we could define the treatment effects to be fixed or

random. But the key component of our work is to understand how an IPD meta analysis

can correctly estimate the treatment-covariate interaction effect at patient level[130][151].

The simulation study shows that without any trial confounding, whether patient level

and trial level interaction effects are treated separately or combined make no differences

in terms of bias of estimates[80][138]. Further, the across trial estimates appear more

powerful when the across trial variation of the covariate is large, as in such scenarios the

across estimates may be the major source of information available[138]. However, ecologi-

cal bias is often a threat due to trial level confounding by unobservable factors[12][49][81].

When the simulated data is confounded by any unobservable trial factor, then the across

trial estimates are subject to ecological bias. This leads to bias in the across-trial inter-

action term, and thus potential bias in the amalgamated interaction estimate. This was

seen in the epilepsy example, where age was not identified as important within trials but

only across trials. For this reason, we suggest that practitioners should be more cautious

when interpreting the across trial estimates as ecological bias could be an issue[106][157],

and should generally separate within-trial and across-trial interactions in a one-stage IPD

meta analysis.
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The findings in this chapter reach the similar conclusions to the other researches in this

field. For example, Riley and Steyeberg[112] emphases that the within trial level factor

is more important than the amalgamated factor in the presence of ecological bias using

IPD meta analysis with binary outcome. Riley et al.[108] and Schmid et al.[130] pointed

out that the meta regression approaches to estimate the treatment-covariate interaction

at trial level have low power and are subject to ecological bias. The simulations in Riley

et al.[106] also gave the similar result that the amalgamated effect was seriously biased

by the trial confounding but the within patient level factor still performed well in the

framework of binary meta analysis.

Limitations

Though we used the hierarchy Cox models (6.3.1)-(6.3.4) to identify interaction effects

between the treatment and patient-level factor on the survival probabilities, there is still

possibility to further elaborate the setting of the multi-level Cox models in the study[141].

For example, we could further allow for the random effects in the baseline hazards across

trials or consider an interaction term with random effects rather than being the fixed

constant.

Another limitation is that the real data we utilized is about the patients from two

active treatment groups rather than one treatment group and a placebo group[90]. Con-

sequently, the difference in the effects between the two treatments themselves were not

always significant, let alone the interaction effects with any other patient level factor. For

example, consider the case for the time to seizure/remission being outcome and the log

number of seizures being covariate, no statistically significant parameters were reported

at all.

6.6.1 Conclusion

This chapter has shown the importance of separating the within-trial and across-trial

treatment-covariate interactions in a one-stage IPD meta analysis of time-to-event out-

comes. Key finds are summarized in Table 6.9. The thesis concludes in the next chapter
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with discussion about the whole thesis and intended further work.

What is already known on this topic:

• IPD meta analysis enables us to have more power to analyze the association
between the treatment effect and the covariate at patient level. However, practical
guidance is limited in the framework of time-to-event data analysis for how to specify
interactions in a one-stage model.

• Ecological bias is a well known problem in estimating the treatment-covariate
interaction effect and the estimate of the across trial interaction effect is very prone to
confounding. Hence for binary and continuous outcomes, existing work suggested to
estimate the within and across trial interactions separately in IPD meta analysis.
However, this requires evaluation for time-to-event data.

What this study adds

• IPD meta analysis models treating the within and across trial interaction effects
separately are recommended for survival outcomes.

• Such separation removes the threat of ecological bias, and enables interactions based
solely on patient-level responses. If these are no trial-level confounders, the across trial
interaction estimates may be more powerful than the within trial interaction when the
across trial variation of the covariate is large.

• However, the across trial estimates are potentially biased in the presence of
unobservable confounding factors, and thus gain in precision from using them (in
addition to within-trial interactions) comes at expense of increased bias, and worse
coverage.

• Applications to IPD for 5 epilepsy trials illustrate these issues, and show that age
may not actually be a true predictor of treatment response, unlike previously thought.

Table 6.9: Summary of the main issues and key findings in Chapter 6.
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CHAPTER 7

DISCUSSION AND FUTURE WORK

To examine or predict the outcome risk of individuals is one of the fundamental aspects of

survival analysis, and modelling the hazard rate function is a critical part of this process.

The thesis has considered survival models in two parts, mathematical research and medical

research. In mathematical research, we provided theoretical appraisal of nonparametric

modelling of hazard rate, and showed that the kernel method is an important tool in

hazard rate estimation[53][166]. In medical research, we focused on the novel situation

of individual participant data from multiple studies, and wanting to use flexible hazard

modelling to compare mortality rates of breast cancer across countries and develop a

prognostic model for new individuals, and use Cox modelling to examine predictors of

treatment response. The key findings of the thesis are now summarised.

7.1 Key findings of the thesis

In Chapter 2, we extended Naito[97]’s idea in the setting of estimating density function to

the hazard rate case, and proposed a semiparametric hazard rate estimator which depends

on what we referred to as the the shape parameter α. We illustrated approximation

error as a function of α pictorially, thereby showing the role α plays in the proposed

methodology. The asymptotic bias and variance of the resulting estimator showed that in

practice, this semiparametric estimate could provide us with an almost unbiased estimate

when the true hazard rate function is very close to our prior parametric assumption.
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Even if no partial knowledge is available, it performs as good as the usual nonparametric

estimates.

In Chapter 3, the standard kernel hazard rate estimate was analysed through L1 error

criterion. We also derived the asymptotic expression of the L1 optimal bandwidth for

the kernel estimate and showed that the bandwidth is of the same order as the usual

L2 optimal bandwidth. We then discussed how to utilize the Newton method to derive

the bandwidth since no explicit functional form is available for L1 bandwidth. Since

the optimal estimate still depends on the unknown hazard rate function itself, the data-

driven version of L1 optimal bandwidth was introduced using the plug-in method[53]. In

practice, the proposed L1 optimal estimator permits the minimization of the L1 errors

which provides a possible way to measure the absolute difference between the estimator

and the true hazard rate function[51].

In Chapter 4, we developed a prognostic model for examining whether individual

risks of breast cancer patients depends on where they live. Consequently, our research

revealed the statistical difference in survival time for different countries using a flexible

parametric model via the Royston-Parmar scheme[120][122]. In addition, it was found

that the comparison of countries was biased if the confounding factors such as patient

characteristics were not accounted for. Indeed, additional confounding (such as lead time

bias) may still be affecting the finding that Sweden does best and Denmark worst.

In Chapter 5, we discussed several issues for developing and validating a prognostic

model using IPD from multiple studies. We firstly considered to utilize the stratified

intercept to represent the unique baseline for each included study and then proposed new

strategies to extend the derived model to a new population. An internal and external

validation method offered us an exciting opportunity to perform external validation on

multiple studies[123]. We also utilized the multivariate meta-analysis framework of Snell

et al.[142] to conclude and assess the model performance and then determined to exclude

the study in Sweden and prognostic factor, menopausal status from our final model. By

using the internal-external cross validation method to our final model again, we demon-
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strate that the calibration ability of the final model did improve after dropping the data

from Sweden and menopausal status.

In Chapter 6, we illustrated how to identify the interaction between a treatment effect

and patient-level factors in a one-stage IPD meta analysis. In particular, we showed the

importance of separating the within and across trial interaction effects in the presence of

ecological bias. Previously this had not been considered for time-to-event outcomes, only

binary or continuous[106][110]. The across-trial interaction effect is prone to trial-level

confounding and subsequently may induce a bias in the amalgamated estimator of within

and across-trial interactions[109][151].

7.2 Implication of findings for medical research

The findings represented in Chapter 4 unequivocally showed that the survival time of

European patients with breast cancer was closely associated with the country they lived.

Amongst 8 countries, the overall survival probability of patients from Denmark was pre-

dicted to be lowest after adjusting for the related confounding factors while comparably,

the patients of Sweden were in the least risks of death. No significant association (if any)

between two biomarkers, upa and pai1 and geographical factor was detected through our

analysis. It is worth mention that all the estimates achieved might be further impacted

by additional confounding factors such as lead time bias and thus the bias might still

remain in the developed model[15].

In chapter 5, the achieved C statistics in each cycle of the internal-external cross vali-

dation framework reflected that the discrimination abilities of the prognostic model were

very stable across studies that approximately the risks of 70% paired participants were

discriminated correctly. The resulting parameter estimates proved that the prognostic

factor, menopausal status had no significant impact on the mortality rate of patients at

all. Further due to the poor performance of the calibration slopes of the data from Swe-

den, it was suspectable that the baseline characteristics of patients from Sweden were

very different from other countries. Therefore, in the final model we would not include
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the data from Sweden nor the predictor, menopausal status. As for the choice of the

intercept strategy, in views of the pooled calibration slope estimates across 8 studies, we

more recommended the new intercept strategy as it perfectly adjusted the model for the

heterogeneity in new individuals. If the new dataset is not available, the average intercept

strategy is preferred in terms of its more accurate pooled estimator of the calibration slope

as well as the smaller standard error and between-study heterogeneities in comparison to

the nearest neighbour strategy.

Chapter 6 looked into the association between the effects of two anti-epileptic drugs,

Sodium Valproate and Carbamazepine and three patient-level characteristics factors, age

at randomisation, epilepsy type and the log number of seizures. Two outcomes, time to 12

month remission and time to first seizure post-randomization were of our main concern.

The hierarchy Cox models in the research indicated that although the amalgamated inter-

action effect between age and treatment effect was statistically significant on the remission

time, it was potentially due to certain unobservable trial confounding (ecological bias) as

the within-trial effect was of a smaller magnitude and non-significant. Conversely, the

interaction effects of epilepsy type and drug was demonstrated to be positively significant

on the seizure time even after adjusting for the ecological bias. Besides that, no ecological

bias was found for interaction effect between age and drug on the seizure time of patients

where Carbamazepine appeared more effective on elder patients in comparison to Sodium

Valproate.

7.3 Implications of methodology

We summarize the methodologies utilized in the thesis.

7.3.1 Kernel type methods

In statistics, kernel estimation is the most favoured nonparametric approach to estimate

the unknown hazard rate function. The choice of bandwidth of the kernel, which has a

strong influence on the resulting estimate is an important issue in this approach. General-

ly, L2 error criterion (Mean (integrated) squared error) is a popular measure to determine
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the value of the bandwidth. However, the L1 view of nonparametric kernel hazard rate

estimator is probably more appropriate to assess its performance. In Chapter 3, we de-

veloped an asymptotic L1 optimal bandwidth for the standard kernel estimator and also

constructed a simple algorithm to calculate it. In addition, we showed that both theoret-

ical and data-driven versions of this L1 optimal estimator did minimize the asymptotic

L1 distance between the estimator and true function.

Besides that, we investigated a semiparametric kernel-type estimate in Chapter 2. In

this case, the parametric estimator can be seen as a crude guess which is then modified by

the nonparametric factor. Theoretical research revealed that when our prior assumption

is very close to the true function, then the bias of our estimator will vanish. That is to

say, in practice, if we could correctly figure out the parametric function of the underlying

data, the bias of the semiparametric estimator would be totally removed. This estimator

also unifies several multiplicative hazard rate estimators and could be implemented in

practice easily using a plug-in method[166].

7.3.2 Flexible parametric regression

Rather than using tradition Cox regression, we chose to use a more flexible parametric

method to model the time-to-event data from clinical studies in Chapter 4 and 5[120][122].

One of the key advantage of flexible parametric regression is that the baseline hazards

could be estimated using restricted cubic spline functions. This improvement makes the

following works possible in research. For example, the population average survival curve

for the subgroup of observations in the database could be plotted now. The absolute

survive probability of observations could be calculated adjusting for confounding factors.

Further the differences in the baseline hazards across studies could be accounted in IPD

meta analysis.
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7.3.3 Internal-external cross validation and multivariate analy-

sis

Internal and external validation method offers us an exciting opportunity to perform

external validation without using any new population[123]. We could develop and validate

the model simultaneously with the maximum external validation studies. Meanwhile, to

determine the best strategy to develop a model, multivariate meta-analysis helps us to

obtain the joint inferences using the statistics from each cycle within the internal-external

cross validation framework[70][142].

7.3.4 Treatment-covariate interaction effects

Based on our simulation and real case study, ecological bias can have a big impact on

interactions in a one-stage IPD meta analysis of time-to-event outcomes. An amalgamated

model with random effects is better than without random effects. But the most effective

way is to focus solely on the patient level interaction effect only. In this regard, our

research showed how to separate the within-trial and across-trial effects using hierarchy

Cox models and demonstrated its necessity in the presence of ecological bias.

7.4 Future work

Chapters 2 and 3 assume all event times are known, but in real life, many real data are

censored. Therefore one foreseen work in the future is to extend our theoretical research

in Chapters 2 and 3 to the situation of censoring. For example, we would like to see if the

censored case is considered, whether the asymptotic property of the generalized estimator

will be changed[96].

As for the model development in medical research, in Chapter 4, we may consider to

add the non-linear terms into the model to adjust for any time-dependent factors[122]. In

Chapter 5, we may consider the following work: Firstly, we may conduct more case studies.

In our breast cancer example, the average intercept strategy was proved to be better than

the nearest neighbour strategy. However, as suggested by Debray et al.[31], the nearest
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neighbour strategy was better in the setting of the binary outcome. It raised our concern

to collect more evidence to investigate whether this conflicting conclusion was caused by

chance or other reasons. Secondly, in our current work, we only considered the perfect

data, i.e. IPD meta analysis dataset without missing values, however, in practice, IPD

can be costly and time consuming to collect and may not be always available. Therefore,

we are considering to combine individual participant data and aggregate data together to

develop a prognostic model[106][111]. Finally, at this stage, we always assume that the

between-study heterogeneities exist in the baseline function and proportional to hazards.

However it is a strong assumption in practice. A more flexible model incorporating the

time-dependent or nonlinear terms may thus be developed in future research[120].

In Chapter 6, future work could also consider any patient-level confounding across

trials. For example, in the clinical trial, the male patients are more likely to be given the

extra dose of drugs than females which may not be accounted for in the final data. Then

we are interested to see whether and how this unobservable patient-level confounding

factor may bias the estimate of within and across trial interactions.

7.5 Conclusion

This thesis has covered many important areas of mathematical and medical research for

survival models. Though further work is needed, the thesis has contributed to new findings

about kernel estimation, breast cancer mortality, the development and validation of prog-

nostic models, and the estimation of treatment-covariate interactions for time-to-event

data. The work is therefore informative to both statisticians and medical researchers,

and the chapters will be written for publication in scientific journals in the coming year.
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APPENDIX A

MULTIPLE IMPUTATION

In Appendix A, we briefly introduce how to conduct multiple imputation to estimate

the missing values in a dataset (see Buuren et al.[160] and Royston[117][118]). Let Y

be an vector of the covariates with missing values and Z is the set of other covariates

and response variables. Y obs and Y mis denote the observed and missing parts of Y , so

Y = (Y obs, Y mis)
T .

For a single incomplete variable Y , this involves constructing an imputation model

which regresses Y on a set of variables Z = (z1, ..., zk) with complete data. Set (β,V) to

be the set of estimated regression parameters and their corresponding covariance matrix

from fitting the imputation model. We draw a value of β∗ from the posterior distribution,

commonly approximated by β∗ ∼ MVN(β̂,V) and then draw a value of Y ∗mis from its

conditional posterior distribution using β∗ and the probability distribution. Repeating

these steps m times yields m samples from the posterior distribution of Ymis which are

actually the m imputed samples.

For a set of incomplete variables Y mis in the dataset, usually it is convenient to split the

multivariate problem into a sequence of univariate problems, and solve the multivariate

case by iteration. With the proper initial values of Y mis, the algorithm using the idea of

Gibbs sampling is to estimate each incomplete variable in turn with fixing other variables

and the iterations stop when the imputed values of Y mis converges.

The choice of the number m of imputations is still in need of research. Rubin[125],
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van Buuren et al.[160] suggested that for variables with 20 percentage of missing entries,

m can be as low as 3-5. But recently, some statisticians proposed that larger m may

perform better in imputation[169]. For our breast cancer data from Chapter 4, m is set

to be 10 since the estimates appeared stable in 10 iterations.
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APPENDIX B

BOOTSTRAP CORRELATION MATRIX FOR
CALIBRATION SLOPES, C INDEX AND D INDEX

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.842 1.000

slope.ave 0.325 0.662 1.000
slope.nei 0.349 0.703 0.982 1.000
slope.new 0.334 0.677 0.998 0.991 1.000

Table B.1: Bootstrapped correlation for Netherland.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.803 1.000

slope.ave 0.307 0.656 1.000
slope.nei 0.324 0.661 0.991 1.000
slope.new 0.303 0.653 1.000 0.987 1.000

Table B.2: Bootstrapped correlation for Ireland.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.671 1.000

slope.ave 0.237 0.679 1.000
slope.nei 0.240 0.682 0.998 1.000
slope.new 0.218 0.653 0.985 0.974 1.000

Table B.3: Bootstrapped correlation for Sweden.
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C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.697 1.000

slope.ave 0.294 0.748 1.000
slope.nei 0.297 0.751 1.000 1.000
slope.new 0.300 0.754 0.998 0.999 1.000

Table B.4: Bootstrapped correlation for Slovenia.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.770 1.000

slope.ave 0.468 0.643 1.000
slope.nei 0.468 0.642 1.000 1.000
slope.new 0.469 0.649 0.996 0.996 1.000

Table B.5: Bootstrapped correlation for Austria.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.798 1.000

slope.ave 0.451 0.761 1.000
slope.nei 0.442 0.750 0.999 1.000
slope.new 0.438 0.746 0.998 1.000 1.000

Table B.6: Bootstrapped correlation for France.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.605 1.000

slope.ave 0.276 0.816 1.000
slope.nei 0.274 0.825 0.996 1.000
slope.new 0.276 0.811 1.000 0.993 1.000

Table B.7: Bootstrapped correlation for Switzerland.

C R2
D slope.ave slope.nei slope.new

C 1.000
R2
D 0.810 1.000

slope.ave 0.166 0.573 1.000
slope.nei 0.183 0.599 0.995 1.000
slope.new 0.199 0.625 0.974 0.992 1.000

Table B.8: Bootstrapped correlation for Denmark.
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