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Alternative Portfolio Methods

Abstract

Portfolio optimization in an uncertain environment has great practical

value in investment decision process. But this area is highly fragmented

due to fast evolution of market structure and changing investor behavior.

In this dissertation, four methods are investigated/designed to explore

their efficiency under different circumstances.

Parametric portfolio decomposes weights by a set of factors whose coef-

ficients are uniquely determined via maximizing utility function. A robust

bootstrap method is proposed to assist factor selection. If investors ex-

hibit asymmetric aversion of tail risk, pessimistic models on Choquet util-

ity maximization and coherent risk measures acquire superiority. A new

hybrid method that inherits advantage of parameterization and tail risk

minimization is designed. Mean-variance, which is optimal with elliptical

return distribution, should be employed in the case of capital allocation to

trading strategies. Nonparametric classifiers may enhance homogeneity of

inputs before feeding the optimizer. Traditional factor portfolio can be ex-

tended to functional settings by applying FPCA to return curves sorted

by factors. Diversification is always achieved by mixing with detected

nonlinear components.

This research contributes to existing literature on portfolio choice in

three-folds: strength and weakness of each method is clarified; new models

that outperform traditional approaches are developed; empirical studies

are used to facilitate comparison.
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Alternative Portfolio Methods

1 Introduction

Portfolio selection is probably one of the most dynamic area in modern financial

theory. It has broad connection with preference under uncertainty, forecasting

techniques of stationary/non-stationary time series and stochastic price behav-

ior. Optimizations of asset allocation are designed as a set of methodologies

that assemble aforementioned components to obtain a weighting policy, rather

than integrated stand-alone systems. Consequently portfolio performance is

not uniquely determined by the framework adopted, but bounded jointly by

accuracy of inputs and model validity. This entangling relation, together with

unavoidable heterogeneous nature of data, causes assessment of any approach

excessively challenging.

Another difficulty in this field is absence of a general paradigm or principle

that characterizes current portfolio optimizers. The chaos may arise from the

dilemma between theoretical robustness and practical efficiency. After over six

decades of academic exploration since Markowitz first paper, there is seldom

optimization scheme with general applicability. Unfortunately this conflict is

likely to persist in the foreseeable future.

With regard to insufficiency of existing literature, this dissertation might be

considered as a three-dimensional attempt to reach the high frontier: develop-

ing new approaches in the framework of utility maximization; conducting robust

statistical tests; simulating with real data. Although it is not as ambitious as

covering every piece of the highly fragmented area, fresh interpretations of in-
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1.1 Mean-Variance Alternative Portfolio Methods

fluential methods might contribute to better understanding of market dynamics

and complexity we are facing. In this section, I intend to necessitate the study

by discussing weakness and strength of several portfolio schemes.

1.1 Mean-Variance

Modern portfolio theory was pioneered by Markowitz (1952). The fundamen-

tal relation between expected return and its risk measure plays a critical role

in multi-dimensional choice under uncertainty. The proposed optimization was

later solved as quadratic programming (Markowitz (1959)). Despite of theo-

retical dilemma and calibration problem, it is the first model that explicitly

characterizes portfolio choice under conditions of risk as a dual optimization

paradigm. It essentially provides Pareto-style welfare maximization in that in-

vestors at the efficient frontier are prohibited from increasing their return in

exchange of decreasing risk. Another contribution, which also leaves a Achilles

heel, is disentangling return and risk that are traditionally nested in expected

utility. The separation advantageously makes asset allocation a structured se-

lection where forecast techniques might be employed.

Following researches that proliferated on similar groud extended to asset alloca-

tion in capital market (Sharpe, 1964, 1965, 1970), which is subsequently known

as CAPM model, and life-time portfolio choice (Merton, 1973). The former

uses equilibrium approach to analyz capital asset price behavior and construct

capital market line on which investors are able to gain higher return in com-

12



1.1 Mean-Variance Alternative Portfolio Methods

pensation of assuming additional risk. It introduces well-known systematic risk

that cant be diversified, beta that measures exposure on systematic risk for in-

dividual stocks and Sharpe ratio that describes risk-reward profile. The latter

is an intertemporal portfolio choice, aiming at maximizing expected summation

utility of consumption and terminal wealth subject to stochastic budge equa-

tion. Utility functional is chosen to be parabolic which is shown to hold Lie

symmetry and reserves economic rationality.

However literature has never ceased criticizing mean-variance for the lack of re-

alistic assumption. Quiggin (1981, 1993) argued that quadratic utility function

is counter-intuitive and volatility as risk measure is not consistent with exist-

ing preference. Despite recent defense of mean-variance (Markowitz (2012)) as

a quadratic utility approximation, it is still sensitive to distributional condi-

tion of asset return. More specifically, only the family of elliptic distribution is

applicable to MV utility functions (Chamberlain, 1983).

Michaud (1989) discussed the unavoidable enigma of MV that it intends to

magnify inaccuracies of inputs. Estimation errors in mean and variance lead to

significant deviation from efficient frontier and severe out-of-sample degenera-

tion. Additionally, it has a tendency of overconcentration as expected return is

targeted higher. This risk-taking arrangement worsens performance.

To alleviate delicacy of calibration and enhance mean-variance feasibility, liter-

atures focused on designing robust techniques bettering forecast of return and

its risk. Michard (1989) proposed Stern shrinkage to smooth out temporary

13



1.1 Mean-Variance Alternative Portfolio Methods

disturbance of return. Another popular approach is bootstrapping original data

set to construct a resampled frontier. Black and Litterman (1992) introduced

a Bayesian model by incorporating investors perspective. The method is that

equilibrium expected return in CAPM is adjusted to reflect some particular

information one has. Alternatively, we may first obtain prevailing forecast of

return and variance by reversely engineering market weights and modify the

benchmark portfolio according to additional information. It is advantageous

in that diversification achieved by market portfolio is not harmed compared

to plug-in method. Performance is no longer mechanically dependent on tech-

niques employed. To capture time-varying property of covariance matrix, Engle

(2002, 2009) designed dynamic conditional correlation to estimate correlations

of large system of assets. The procedure basically is using volatility adjusted

return after ′DE-GARCHING′ to measure decomposed correlation and the stan-

dardization (rescaling) extracts the dynamic matrix from data. Both simulation

and real data record an improved performance. But it restricts applicability in

normality or t distribution assumption which is often rejected in financial data.

Pesaran and Pesaran (2007) extended the model in multivariate case and applied

the method to futures market. Laloux et al. (2000) investigated correlation ma-

trix with limited samples. They showed that small eigenvalues of the matrix are

likely to be tortured and contain more observational noise. Thus stable relations

are expected to reserve in principal components. Lai et al. (2011) converted

dual problem into a stochastic optimal control with specific risk aversion so that

mean-variance framework can be conducted even without pre-specified location

14



1.1 Mean-Variance Alternative Portfolio Methods

and risk values. This approach tactically avoids direct estimation of inputs that

suffers heavily from errors thus providing rewarding risk return profile close to

true frontier.

Besides polishing techniques of calibration, recent advancement concentrates

on application in continuous scenarios. The typical setting is assuming stock

price behavior is shaped by geometric Brownian motions. By demonstrating the

connection between volatility matrix, which is the square root of covariance ma-

trix, and return vector, Lindberg (2009) analytically solved Markowitz problem

in continuous time. It was applied in industry sector data set and a significant

boost of Sharpe ratio indicates better volatility adjusted return relative to naive

strategy. This model was then generalized by Alp and Korn (2011) to introduce

jump process in stock price behavior. Their contribution is a restatement of

optimality condition and an accurate interpretation of optimal strategies.

Inefficiency of plug-in MV using a fixed window length can be caused by het-

erogeneity of data sample. Kernel classifiers, concerning the inconsistency, offer

purification approach to modeling inputs of mean-variance portfolio. Nonpara-

metric methods such as k-nearest neighbors (knn) quantify similarities by fea-

tures and calculate best estimator based on most similar observations. Their

efficiency was first investigated by Cover (1968). Later researches was led by

Short, R. and Fukanaga, K. (1980,1981). Concerning bias in high dimensions,

Hastie and Tibshirani (1996) combines linear discriminant analysis with near-

est neighborhood classification (DANN). It shrinks orthogonal to local decision

boundaries determined in last round. Iterative convergence is expected to be

15



1.2 Minimizing Tail Risk Alternative Portfolio Methods

achieved with locally best behavior at center. Delannay et al. (2006) improved

DANN with automatic adjustment to hyper-parameters, avoiding training sam-

ple over-fitting. In Section 4, I apply conventional mean-variance to strategy

selection, where technical features are used to gathering similar observations.

1.2 Minimizing Tail Risk

Paralleling to burgeoning literature on both critiques and improvement on mean-

variance method, dual optimization with alternative risk measure was actively

explored. Accounting for the failure to explain Ellsberg paradox, Schmedler

(1986, 1989) and Quiggin (1981) cast doubt on additive expected utility the-

ory established by von Neumann and Morgenstern (1944) and Salvage (1954).

Comonotonicity was then proposed to replace additivity. Together with non-

degeneracy, continuity, state independence, non-additive utility leads to subjec-

tive probability that is perceived by investors. Mathematically, capacity should

be used to distort original probability and Choquet integral is applicable. Gilboa

and Schmeidler (1992) further discussed the properties of set function and prop-

erties of Choquet integrals. Some results are the Choquet integral accumulates

on the lower boundaries of the integrand, Radon-Nikodym derivative is definable

and formulating Bayesian update.

Inspired by early studies on preferences, Artzner et al. (1999) axiomatized

the celebrated coherent risk measure by four properties: monotonicity, sub-

additivity, positive homogeneity and translation invariance. In this framework,

16



1.2 Minimizing Tail Risk Alternative Portfolio Methods

traditional volatility and value-at-risk are no longer valid. Instead, alpha risk,

known also as expected shortfall, conditional value-at-risk, serves as an impor-

tant instance of coherent risk measure that has subsequently been elaborately

investigated.

There is comparable literature on convexity, spectral risk measures, and their

connection with coherence (Follmer, 2008, 2010). A recent advance by Follmer

(2013) is an attempt to make analogy between statistical mechanics and risk

structure. The so-called spatial risk measure considers topology of financial

institutions. Consistency is defined as a mapping from original information set

to its subset. This property, with law-invariant, strongly sensitive and Labesgue

property, restricts risk measure to be in entropic form. Indication from the

major theorem is that aggregation of local risk measure is possible with delicate

settings. But if uniqueness of global risk is violated, a transition phase is present

which offers another aspect of general systematic risk.

With the spirit of retaining dual optimization paradigm but replacing volatility

with coherent risk measures, Rockafellar and Uryasev (1999) designed a port-

folio optimization by minimizing VaR and CVaR simultaneously. The basic

idea is to translate portfolio construction into minimizing an objective function

where stochastic programming applies. The trick is that first order condition

of the function respect to hyper parameter gives exact expression of alpha risk.

So duality is successfully avoided. Solvability is further discussed by discretiza-

tion. Since the sample equation is linear and convex, linear programming is

naturally applicable. Another solution is approximated by mean-variance ap-

17



1.2 Minimizing Tail Risk Alternative Portfolio Methods

proach but accuracy restricted. Krokhmal at al. (2001) extended this model to

generalized class of problems within the structure of CVaR constrained maxi-

mization. Stacked objective functions with set of confidence levels are jointly

optimized and transaction cost is tackled in linear programing. The classical

objective function was even generalized by Krokhmal (2007) by interpreting it

as a special case of another measure. The underlying measure can be chosen

to be expectation degenerating to Rockafellars model. With higher moments,

optimization of coherent measure is decomposed to large set of linear inequali-

ties. It records better performance on S&P 500 than mean-variance and optima

using CVaR.

Koenker (2005) formulated optimization from the perspective of quantile regres-

sion. Pessimistic risk is first defined if it is Choquet Integrable by some alpha

risk. It is essentially a reinterpretation of coherent risk measure by Artzner et al.

(1999). Central theorem is that Choquet utility distorted by CVaR is equivalent

to a classical quantile loss function. As coherence can always be framed by pes-

simism, stacked quantile regression has the power of optimizing portfolio using

CRM. This conclusion is in accordance with Krokhmals (2007) assertion. Albeit

tail risk measure is theoretically robust, its practicability is even questionable

since the distribution of extreme events is considerably volatile.

In Section 3, I discuss the set of existing pessimistic models which shows equiv-

alence of Koenker (2005) and Rockafellar & Uryasev (1999). A parameterized

method is proposed to tackle instability of tail risk. Its robustness is empirically

evidenced in country indics investment.
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1.3 Portfolio Parameterization Alternative Portfolio Methods

1.3 Portfolio Parameterization

Since portfolio selection discussed above sticks to maximizing rewards and min-

imizing risk jointly, disadvantages, inherited from mean-variance, are unavoid-

able. Over exposure on risk with increasing target return erodes the benefit

of diversification and results in poor out-of-sample performance. Choosing risk

measure seems to fail in resolving the problem.

Obtaining portfolio policy directly by utility maximization, in hope of bypassing

deficiencies in dual paradigm, is proposed by some researchers. By introduc-

ing efficient predictors, Ait-Sahalia and Brandt (2001) proposed linear model

with risk drivers that determines first two moments of returns. The idea of

mimicing dynamically rebalanced strategy with static portfolios leads to para-

metric portfolio by Brandt and Santa-Clara (2006). Two aspects are considered

in a conditional portfolio. One is the variable chosen to make capital tilting

toward stocks with specific feature. Another is a mixed multi-period arrange-

ment which invests risk assets for one period and risk-free one otherwise. Static

Markowitz problem is then typically solved numerically as a linear function of

state variables.

Brandt, Santa-Clara and Valkanov (2009) applied similar methodology to all

listed stocks in US from January 1964 to December 2002 to infer best alloca-

tion. The mechanism is simple: it parameterizes policy instead of return, and

optimizes it by maximizing utility function. The difference from earlier studies

is that weights are linearly decomposed by firm-specific features. It has simi-
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1.3 Portfolio Parameterization Alternative Portfolio Methods

larity with traditional cross-sectional factor portfolio in that characteristics are

standardized to ensure overall neutrality. This consistency builds asymmetric

connection between the two since factor model is the first order Taylor expan-

sion of parametric method. Experiment results showed that parameterization

outperforms naive strategy and market portfolio. Another value is that it func-

tions well out of sample without losing significant efficiency. However nonlinear

functions are not necessarily numerically insolvable. The method is also incon-

venient when we need to pick useful factors from a large set of candidates.

White (2000) designed reality check to test data-snooping problem. Null hy-

pothesis is constructed as profit of the strategy does not exceed that of bench-

mark. Since normality holds asymptotically, p-value is acquired by stationary

bootstrap (Romano and Politis, 1994). Sullivan et al.(1999) applied the method-

ology to test profitability of a broad set of trading strategies including filter rules,

moving average, support and resistance, channel breakout, on-balance volume

averages. They used both return and Sharpe ratio as loss function in statistics.

Benchmark is buy-and-hold strategy. Their experiment documented remark-

able outperformance in some subsets. Giacomini and White (2006) explored

a forecast technique of predictive ability based on kernel of functions. Since

data generating process is unknown, they construct out-of-sample statistic with

rolling window to capture heterogeneity. Parameterization of portfolio weights,

equipped with a robust factor selection, as I present in Section 2, can deliver

decent risk-adjusted return on FT100.
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1.4 Pricing Risk Factors

Besides being rooted to utility maximization, a popular portfolio among prac-

tioners is to gain exposure on one risk factor and remove systemic risk by en-

suring market neutrality. Sufficient condition of profitability is that market

behaviorally prices this anomaly. Traditionally, efficiency of firm size, book-to-

market ratio and momentum have been widely tested in various stock markets

(Fama and French, 1992; Carhart 1997). More recent studies can be roughly

categorized either as an attempt to exploring new factors (Asness et al. (2013))

or test on existing ones with different data sets (Fama-French, 2000)

The popular techniques employed in analysis are Fama-Macbeth regression

(cross-sectional) and time-serial approach. The former is to conduct time-series

analysis in a rolling sample and run cross-sectional OLS on de-correlated data.

Both of them implicitly assume that cross-section of returns is linearly corre-

lated with factors that can be readily violated. As the final piece of this research,

a functional dependence test is designed to capture nonlinear dynamics of pre-

dictability. The idea is simply applying functional principal component analysis

on return curves that are sorted by the investigated factor.

The advantage is two-fold. It is an extensive framework that includes linear

relation as a special component. Quadratic basis function, as we can see in

Section 5, remarkably contributes variation of functional returns. A mixed

portfolio is proved to achieve better risk-adjusted return than traditional factor

ones. Secondly, profitability of specific functionals of factors can be quantified
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by the corresponding coefficients. It is then possible to analyse the dynamics

and even ambitiously predict portfolio performance.
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2 Portfolio Parameterization

2.1 Background

Portfolio management is primarily as well as ultimately a mechanism of select-

ing one or one set of optimal portfolios from candidate assets for the purpose

of obtaining the most desirable risk-reward profile. In other words, the selected

portfolio is supposed to maximize assets expected return under risk constraints,

or minimize portfolio risk for given return, see Markowitz (1952, 1959). Al-

though subsequent researches endeavored to enhance dual problem paradigm

by using asymmetric risk measure (Schmeidler (1989), Koenker (2005)) or more

accurate calibration(Michaud (1989), Jobson and Korkie (1980)), these modifi-

cations cant circumvent problems arisen from making any presumptions about

potential return and risk. Some researchers developed alternative methods to

MV optimization, skipping the return prediction procedure and focusing directly

on the portfolio weights. (See Ait-Sahalia and Brandt (1994); Nigmatullin, 2003;

Brandt and Santa-Clara (2006); Santa-Clara and Saretto, 2006; Brandt et al.

(2009) )

By introducing predictors and Akaike Information Criterion (AIC), Ait-Sahalia

and Brandt (1994) had identified linear combinations of risk drivers that poten-

tially contributes to shaping first two moments of returns. Brandt and Santa-

Clara (2006) designed parametric portfolio policy in dynamic selection setting.

They, with the belief that a static managed portfolio selection approximated
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dynamic portfolio strategy, expanded the asset space to include mechanically

managed portfolios, namely conditional portfolios that invest in each basis asset

an amount proportional to conditioning variables and timing portfolios which

invest in each basis asset for a single period and in the risk-free asset for all

other periods. They then solved a static Markowitz problem under expanded

asset space by parameterizing the portfolio policy as a linear function of state

variables.

Brandt et al. (2009) applied similar methodology to all listed stocks in US from

January 1964 to December 2002 to infer best allocation. The difference from

earlier studies is that weights are linearly decomposed by firm-specific features.

Unlike factor model by Fama-French (1992), it parameterizes policy instead

of return, and optimizes it by maximizing utility function. Experiment results

showed that the method outperforms naive strategy and market one with major

measures. Another value is that it functions well out of sample without losing

significant efficiency.

A robust selection of factors that can capture dynamics of return play an impor-

tant role before applying parametric portfolio policy. Most existing literature

are focused on seeking for source of returns. Fama and French (1992) inves-

tigated cross-sectional interpretability of size, value and excess market return.

The finding is empirically supported by the profitability of extreme spread port-

folios (which is subsequently known as factor portfolio). This framework was

then extended by Fama and French (1993, 1998). Carhart (1997) incorporate

momentum effect remaining unexplained by FF factors. It indicates that price
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movement inertia can be employed in portfolio construction. In Section 5 I will

discuss functional dependence detection on predictability of factors, including

the simple idea a special case. Subsequent researches are either on testing pop-

ular risk factors with different data sets or modification of indicators aiming at

enhancing efficiency.

Persistence in price movement is validated by profitability of momentum factors.

It bring additional conjecture on the value of technical trading rules which has

received little attention in literature, since developed market is generally con-

sidered to be at least weakly efficient. However due to its nonlinear nature and

simplicity in constructing feasible testing sample, popular technical indicators

can serve as proper inputs of parameterized optimization. Early researches by

Brock et al. (1992) simulated trading strategy performance of moving average

and channel breakout on Dow Jones Index from 1897 to 1986. A larger sets

including MACD, RSI and KDJ were then investigated by Ye (2011), whose

aim is to identify the difference between two empirical samples with/without

conditioning on the rules. One study on UK FTSE30 was conducted by Hudson

et al. (1996). They report implementation difficulty because of low marginal

profits.

Lack of nonparametric test on predictability of factors remains the major ob-

stacle in applying factors. One popular method was proposed by White (2000).

He designed a statistic on conditional excess return with mild assumption of un-

derlying distribution. In consideration of unobserved process return follows and

potential data-snooping, stationary bootstrap is equipped to generate p-value.
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The method was employed by Sullivan et al. (1999) in testing validity of tech-

nical rules on daily return of Dow Jones Industrial Average (DJIA) from 1987

through 1996. This approach is can be used in factor selection if profitability of

a trading strategy is equivalent to predictability of an indicator. It facilitates a

mechanical selection process which is robust against in-sample over fitting.

The left part of this paper is organized as follows: Basic model is first intro-

duced and discussed with candidates of extensions; we then discussed how to

convert predictability into profitability where reality check applies; Finally the

methodology is evidenced by a real-data example followed by conclusion.

2.2 Model Configuration

2.2.1 Basic Model

Following Brandt et al. (2009), Brandt and Santa-Clara (2006), lets assume the

number of investable asset at time t is Nt which is usually large and complete.1

A portfolio policy is a vector w = [wi]
′ of capital invested in each asset.Then

rational investors behavior is thus to choose the optimal policy at time t that

maximizes expected utility of portfolio return at time t+ 1:

max
w

Etu(rp,t+1) = max
w

Etu(

Nt∑
i=1

wi,tri,t+1) (2.1)

If the optimal weight vector is decomposed by benchmark vector and linearized

combination of stock characteristics, it is able to construct a parameterized

1Completenesss ensures that all investable assets forms a σ-algebra
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policy in the form of

wi,t = wi,t +
1

Nt
β
′
fi,t (2.2)

Where wi,t represents weight assigned to asset i, fi,t is cross-sectionally stan-

dardized factors with zero mean and unit standard deviation to guarantee con-

dition
∑Nt
i=1 wi,t = 1. β is contribution parameter to be estimated. Replace

equation (2.1) with wi,t gives

max
w

Etu(rp,t+1) = max
β

Etu(

Nt∑
i=1

(wi,t +
1

Nt
β
′
fi,t)ri,t+1) (2.3)

This model does not consider multi-period portfolio optimization as the one

studied by Merton (1973). In equation (2.1),distributional stationarity should be

satisfied for robust forward forecast. Scaling factor 1
Nt

facilitates its application

in time-varying asset sets. One should note that each factor have the same

marginal effect on deviation from wi,t accross assets.

Practically objective function (2.1) is discretized with a sample from 0 to T as

max
w

1

T

T∑
t=0

u(rp,t+1) = max
β

1

T

T∑
t=0

u(

Nt∑
i=1

(wi,t +
1

Nt
β
′
fi,t)ri,t+1) (2.4)

Since asset return, factors and benchmark weights are known in training period,

β is estimated via unconstrained convex optimization.

A special case of (2.3) is to choose utility function u(x) = x. It degrades to

factor model, to see this point,

Et

Nt∑
i=1

(wi,t +
1

Nt
β
′
fi,t)ri,t+1 = Etrb,t+1 +

1

Nt
β
′
Etrt+1 (2.5)

Where Ft = [f1,t, ..., fNt,t] = [f
′

t,1, ..., f
′

t,K ]
′
,f1,t is factor of stock i, while f

′

t,j is

the cross-sectional vector of factor j,rt+1 = [r1,t+1, ..., rNt,t+1]
′

and Etrb,t+1 are
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returns on individual assets and benchmark portfolio respectively.And EtFtrt+1

is factor portfolio returns.If factors are source of individual asset return or rt+1 =

F
′

tβ, (2.5) becomes

Etrb,t+1 +
1

Nt
β
′
EtVtβ (2.6)

Vt is covariance matrix or risk measure of factors. (2.6) is thus essentially a

factor model with risk exposure determined by β.

Parameterization also leads to separation between passive portfolio and long-

short strategic allocation:

max
w

Etu(rp,t+1) = Etrb,t+1 + max
β

1

Nt
β
′
Etrt+1 (2.7)

Parameterization therefore estimates expected factor covariance instead of asset

covariance. It avoids misperceived correlation when a set of common risk-drivers

is shared (Roll, 2013).

2.2.2 Some Utility Functionals

Now consider an investor has different utility functions of returns. It is typi-

cal in commercial banks, structured products, leveraged investment, and exotic

securities. Changing in risk tolerance or reward expectation can lead to utility

functional shift. One scenario is that an investor needs additional maintenance

margin once loss exceeds beyond some level. This may significantly increase

prudence after margin call is hit. To capture the piecewise characteristics, the

following lemma applies.

Specific functional form as a reflection of investors risk/reward profile must be
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chosen. The simplest is (2.5) and a more complicated one is given by constant

relative risk aversion which is popular in both economic analysis and Mertons

model (1973).

uCRRA(rp,t+1) =
(1 + rp,t+1)1−γ

1− γ
(2.8)

Thus objective function (2.3) becomes

max
β

Et(

Nt∑
i=1

(wi,t +
1

Nt
β
′
fi,t)ri,t+1)1−γ/(1− γ) (2.9)

Which is a classical unconstrained convex optimization that can be solved by

Newtons method. Perets and Yashiv (2012) discussed fundamental character-

istics of HARA functional to economic analysis which ensures optima scale in-

variant. This property is crucial in reserving linearity of the optimal solution

set and independence of portfolio policy from initial wealth.

Lemma 2.1 (Piecewise Utility) For any piecewise utility function in the form

of

Etu(rp,t+1) = Et

N∑
i=1

1{rp,t+1∈Ωi}ui(rp,t+1) (2.10)

Joint maximization using (2.3) is also piecewise combination of separate utility

maximization

max
β

Etu(rp,t+1) =

N∑
i=1

1{rp,t+1∈Ωi}max
β

Etui(rp,t+1) (2.11)

if Etui(rp,t+1) <∞,∀i

Intuitively, Lemma (2.1) can be explained to choose the function with highest

value. Thus we are able to construct a parametrically solvable utility function.
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Lemma 2.2 (Convolutional Utility) For any utility function in the form of

Etu(rp,t+1) = max
i
Etui(rp,t+1) (2.12)

Where i = 1, ..., Nu, maximization using (2.3) is

max
β

Etu(rp,t+1) = max
β

max
i
Etui(rp,t+1) = max

i
max
β

Etui(rp,t+1) (2.13)

Because we can always find an array of Ωi,so that utility (2.12) can be con-

verted to piecewise utility (2.10). Both Lemma (2.1) and (2.2) states that we

can separately estimate coefficients β rather than optimizing objective function

simultaneously, which is much more convenient in implementation.

2.2.3 Extensions

If some distortion function v is introduced, Choquet integral replaces expecta-

tion in utility (2.3):

Et,νu(rp,t+1) =

∫ +∞

−∞
u(rp,t+1)dν[F (rp,t+1)] (2.14)

Where F is cumulative distribution function of portfolio. Denote F (rp,t+1) =

y ∈ [0, 1]. As F is monotonic, rp,t+1 = F−1y. (2.14) becomes

∫ +∞

−∞
u(rp,t+1)dν[F (rp,t+1)] =

∫ 1

0

u(F−1(y))dν(y) (2.15)

Let να(x) = min(1, xα ), maximizing (2.3) is converted to classical quantile re-

gression.This approach is called pessimistic portfolio (Rockafellar et al., 2000,

Koenker 2005).

Following Yacine and Brandt (2000), we may incorporate ambiguity as Choquet
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integral. The difference is that capacity v is not pre-specified. Min-max problem

in this framework is

min
ν

max
w

∫ +∞

−∞
u(rp,t+1)dν[F (rp,t+1)] (2.16)

if ν is also parameterized with functional form of alpha-risk, minimization in

(2.16) shrinks to estimate α instead of choosing functional of ν

So the objective function is in the case of να(x)

∫ 1

0

u(F−1(y))dνα(y) =

∫ α

0

u(F−1(y))dy (2.17)

Thus the right side is tractable pessimistic portfolio optimization. Denote opti-

mal weights

w∗ = w∗(r, α) (2.18)

By varying target return w
′
r = rp,t+1 it constructs efficient frontier. With differ-

ent α (2.18) indicates efficient area. Since Γ(α) =
∫ α

0
u(F−1(y))dy s continuous,

its first order condition with respect to α is

∂Γ

∂α
= u(F−1(α)) = G(α) = 0 (2.19)

As both u and F−1 re non-decreasing, with xu(x) ≥ 0,∀x, we know that one

solution is

α = F (sup(w
′
rp,t+1)) (2.20)

Given the condition that w
′
r = rp,t+1 ≥ 0 This condition is valid in that any

unprofitable portfolios wont be chosen as they are strictly inferior to holding

cash. The intuition of (2.20) is that investors are more likely to select opti-

mal portfolios with lowest expected return in compensation of uncertainty in
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risk perception. Ambiguity in probability measure of asset return may help

explaining underperformance targeting high return. Additionally, it implicitly

penalizes model uncertainty as one type of investors misperception.

Combining Condition (2.18) and (2.20), it is able to obtain global optima by

solving them simultaneously. This procedure can be shown in the following fig-

ure. Solutions are convolution of efficient area.

Interestingly, by evaluating risk of misperception in utility maximization, in-

vestors always hold extreme pessimism. And it seems likely that much more

risks have to be assumed to gain higher return.

In reality, market friction is hardly negligible while most portfolio schemes are

constructed without taking it into consideration. Thus to enhance practicability,

we develop a tractable model that is applicable in high-friction environment. It

can be easily extended to any market that is not immunized from trading cost.

The vector of discrete weights wt at time t satisfies standardization constraint

w
′
I = 1 which implies that only N − 1 degrees of freedom for the space ∆n

spanned by w.It also indicates zero total increment cross-sectionally
∑N
i=1(wt−

wt−1) = 0

Turnover at time t accordingly is defined as the sum of absolute value of differ-

entials:

T (t) =

N∑
i=1

|wt − wt−1| (2.21)
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This is the capital subject to friction. Denote ci(t) be cost rate of asset i at

time t and total cost of complete rebalancing can be expressed as

C(t) =

N∑
i=1

ci(t)|wt − wt−1| (2.22)

With respect to definition (2.22), current literature discussed a revised version

of portfolio optimization by maximizing utility of net portfolio return or max-

imizing net return given upper boundary of risk measure. Deviating from the

integrated procedure, it might be useful to set up generally applicable back-end

component. Basically, the method is to adapt weights derived from some policy

to cost, aiming at maximizing net return.

It is advantageous in that original portfolio optimization is not tortured by cost

penalty. It isolates adjustment to friction that is presumably uncorrelated with

investors preference.

For simplicity but without losing too much generality, we restrict our discus-

sion on a special case that a proportion β ∈ R1 of capital is rebalanced and

the rest is left untouched. Additionally, we allow a time-varying shrinkage

p = [p1, ..., pN ]
′ ∈ RN for each rebalancing. Thus adjusted weights

w̃t = wt + (1− β)wt−1 − p (2.23)

which become path-dependent. Thus capital subject to friction is

Cβ(t) =

N∑
i=1

ci(t)|wi,t − βwi,t−1 − pi| (2.24)

This quantile problem is linked to utility maximization, mean-variance and

mean-variance using VaR and CVaR. Notice that no restrictions are placed
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on value of β and α. A negative proportion is valid when portfolio at previous

period is leveraged up. β > 1 is implementable in a way that one essentially

goes short the former policy.

Technical shrinkage pi also has its economic explanation. It may be interpreted

as cash draw periodically from previous base. The total amount reduced is

D(t) = p
′
1 in each period. At this point, our method has inherited some

constant consumption plan (Merton, 1973) in linear case. We leave stochastic

discount factor over multi-period utility maximization for further research.

To gain some asymptotic properties of w̃t, some lemmas are introduced.

Lemma 2.3 w̃i = limt→∞Ew̃i,t exists if Ewi,t = wi and pi are bounded.

Computing some terminal weights at t using the rebalancing policy sequentially

w̃i,t =

t∑
t=1

(1− β)t−s(wi,s − pi) (2.25)

Split wi,s by its expectation and deviation

w̃i,t =

t∑
s=0

(1− β)(t−s)wi +

t∑
s=0

(1− β)(t−s)(wi−wi,t)−
t∑

s=0

(1− β)(t−s)pi (2.26)

Taking unconditional expectation and let T go to infinity, we have

w̃i = lim
t→∞

Ew̃i,t =
1

β
(wi − pi) (2.27)

And arrive at Lemma (2.27).

It tells that long-term adjusted weights are proportional to difference between

unadjusted weights and constant cash draw. If no increments is allowed asymp-

totically which is w̃i = wi, pi = 1−β
β wi It means that when positive capital is

allocated in stock i, partially adjusted portfolio guarantees a positive cash draw.
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We may relax individual relation by aggregating (3.23). If overall capitalization

is fixed,
∑N
i=1 pi = 1−β

β . The intuition is that positive cash draw is present when

β ∈ (0, 1). It is reasonable because equity change is only associated with capital

inflow and outflow. However this restriction is not placed in this framework or

leverage is also a flexible dimension.

Up to now, it can be summarized as two basic scenarios we are facing. The first

one is to stick to previous weights, whose net portfolio return at t + 1 is given

as

r0
p,t+1 =

N∑
i=0

wi,t−1ri,t+1 (2.28)

The other is the stated partially rebalancing scheme

rβp,t+1 =

N∑
i=0

w̃i,tri,t+1 (2.29)

Thus our portfolio optimization in high friction environment can be interpreted

as maximizing excess return over unbalanced one, which is

max
p,β

E∆rp,t+1 = max
p,β

E[rβp,t+1 − r0
p,t+1] (2.30)

Notice that objective function (2.30) does not account for higher moments or

utility profile. It is a simply discretion. It is able to further explore optimization

with some loss function at the sacrifice of tractability. Reality check is also

applicable for robustness.

Proposition 2.4 Assuming fixed time-sequential return on each asset ri,t = ri

and constant transaction cost on each asset ci(t) = ci, solving (2.30) is a stacked

quantile problem.
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Proof.

Lets expand (2.29) with (2.23) and (2.24).

rβp,t+1 =

N∑
i=0

w̃i,tri,t+1 =

N∑
i=1

ri,t+1(wi,t+(1−β)wi,t−1−pi)−
N∑
i=1

ci(t+1)|wi,t−βwi,t−1−pi|

So objective function becomes

max
p,β

E∆rp,t+1 = E

N∑
i=1

(ri,t+1ψi,t − ci(t)|ψi,t|) (2.31)

Here denote ψi,t = wi,t − βwi,t−1 − pi Defining τi = − ri
2ci

+ 1
2 , (2.30) is

max
p,β

E∆rp,t+1 = max
p,β

E

N∑
i=1

ρτi(ψi,t) (2.32)

rhoτi is quantile loss function. Therefore time-sequential estimation of p, β is

simply solving a stacked quantile regression in the form of

max
p,β

1

T

T∑
t=1

N∑
i=1

ρτi(ψi,t) (2.33)

Here we allow parameter varies cross-sectionally. To ensure its solvability,

τi ∈ (0, 1) indicates that |ri| < ci. This inequality bounds applicability of our

proposal in highly viscous market. Another situation takes place when mag-

nitude of return decreases as frequency increase. For example, daily portfolio

maintenance may suffer more compared to monthly counterpart since daily re-

turn is usually smaller.

Because process (2.23) is truncated by including one period lag, we may char-

acterize this model as quantile AR(1).
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2.3 Measuring Predictive/Profitable Ability

One difficulty in practicing parametric portfolio is to select factors that have

forecasting accuracy. Specifically, if predictive ability exists in some set of factors

f ∈ Σ for some probability measure P , expectation of return conditioning on f

should be biased. Here Σ is the mapping from information set of observations

to real space which is a filtration in stochastic settings.

Definition 2.5 (Relative Predicative Ability) RPA is

ξf = EP [r|f ]− EP r (2.34)

r is a real-valued random variable and EP [r|f ] − EP r 6= 0 indicates existence

of predictability. One should also notice that definition (2.5) is naturally linked

with a stronger expectation conditioning on one factor fi which is given by

EP [r|fi, i = 1, ...,K]− EP r (2.35)

More generally, return can be partially biased by factors for some subspace

G ∈ σ(Σ)

EP,G[r|f ]− EP (r1{f∈G}) = EP [r|f ∈ G]− EP (r1{f∈G}) (2.36)

If f is continuous in RK and Σ is open, absolute predicative ability can be stated

in the form of Cauchy limit:

Definition 2.6 (Relative Predicative Ability) For any f that centers at

the open set Br(f) of radius r,

lim
r→0+

EP [r|Br(f)]− EP r (2.37)
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Definition 2.7 (Trading Strategy) A trading strategy is a mapping s ∈ S :

RK → R of factors f and s(f) is capital invested by following rule s.Specifically,

a profitable strategy is then the one such that EP [rs(f)]− E[rs(f)]EP r 6= 0. S

is the set of all possible strategies.

Here we didnt assume that the difference is positive since a profitable strategy

is always possible in the case of EP [rs
′
(f)] > E[rs

′
(f)]EP r by letting s

′
(f) =

−s(f) and EP [rs(f)] < E[rs(f)]EP r. Additionally, a trading strategy does not

necessarily hold continuity. It is also possible to place restrictions on strategy

configuration. For example, a long-only strategy is a mapping s+ : RK → R.

Similarly, market neutral strategy will guarantee s0 : RK → 0. One special

case is buy-and-hold strategy which is expressed as sb : RK → 1. Validity of

buy-and-hold strategy is therefore rejection of any excess return by designing

rules on factors.

Another interesting aspect is the connection between trading strategy set and

relative predicative ability, which is described as:

Proposition 2.8 (Equivalence between Predictability and Profitability)

Assuming probability measure P and conditional measure P |Σ is differentiable,

EP [r|f ]−EP r (Inequality A) holds for true if and only if there exists a trading

strategy s ∈ S which gives EP [rs(f)]− E[rs(f)]EP r 6= 0 (Inequality B).

Remark (2.8) essentially finds a method that is able to exploit predictability.

To see it, expand conditional pdf pf |r[r|f ] we obtain:

s(f) =
pf |r[r|f ]

pf (f)
(2.38)
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Where maximum likelihood applies.

In reality however it is more general to evaluate effectiveness via loss function.

Definition 2.9 (Generalized Strategy Profitability) GSP is defined by

EPL(rs(f), E[s(f)]r) (2.39)

With inf EPL(rs(f), E[s(f)]r) is reached when EP [rs(f)] = E[rs(f)]EP r. In

order to restrict loss function behavior, we assume that

∂EPL(rs(f), E[s(f)]r)

∂s(f)
≥ 0,

∂EPL(rs(f), E[s(f)]r)

∂r
≤ 0 (2.40)

Consider linear case L(rs(f), E[s(f)]r). Higher moment may need concern, Let

loss function L(u) =‖ u ‖p. More specifically, when p = 2, linearization yields

classical OLS. If loss operator is chosen as Lτ (u) = u(τ − 1{−∞,0}(u)) which

essentially becomes quantile regression. Another linear scenario is separable loss

function

L(rs(f), E[s(f)]r) = L(rs(f))− L(E[s(f)]r) (2.41)

If L is second-order differentiable, Taylor expansion of the right side in equation

(2.41) offers a quadratic approximation and indicates that L(rs(f), E[s(f)]r)

does not need to be zero when EP [rs(f)] = E[rs(f)]EP r. An interesting aspect

is that concavity of loss function determines direction of bias. In other words

it is more conservative to concave loss functions in testing profitability. Based

on discussion above, testing predictability of factors is equivalent to assessing

profitability of a set of trading strategies instead of traditional regression. The

obvious advantage is that it never presumes linearity in E[r|f ]. As we will see,
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this framework can also be easily extended to analyzing parametric portfolio

efficiency.

For researches that typically parameterize indicators to establish relations in the

form of , White (2000) proposed a statistic of potential outperformance which

is defined by:

fk,t+1 = ln[1 + yt+1sk(χt;βk)]− ln[1 + yt+1s0(χt;β0)], k = 1, ..., l (2.42)

Where fk,t+1 is the statistic k-th strategy at time t+ 1, y and s are asset return

and trading signal respectively. As its defined,s depends on original price chit

and parameter β. Ultimately, the following null hypothesis is expected to be

tested:

H0 : max
k=1,...,l

E(fk) ≤ 0 (2.43)

As the maximum of statistic is chosen to compare with benchmark, it is not

testing profitability of trading rule with specific parameter setting, but the ef-

fectiveness of its configuration. We average fk along timeline to construct esti-

mator of expectation.

In order to obtain distribution which is not analytically solvable, we use station-

ary bootstrap method (Politis and Romano, 1994) to randomly resample return

series with total number of samples B=1000. The following statistics are then

constructed:

V l = max
k=1,...,l

√
n(fk) (2.44)

V l,i = max
k=1,...,l

√
n(f
∗
k,i − fk) (2.45)
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The order statistics of V l,i offers p-value of V l.

The essence of stationary bootstrap is to introduce auxiliary binomial distri-

bution in deciding whether next data point is chosen sequentially or randomly.

The details of the method is also briefly discussed in Sullivan, Timmermann

(1999) and White (2000)s paper.

2.4 Performance on FTSE100

In order to verify that technical analysis could also be applied to parametric

portfolio policy. We consider forming optimal portfolio from all constituents of

FTSE 100 during January 1985 and December 2008. We use technical indicators

to substitute for fundamental factors in study of Brandt et al. (2009). Since

the technical trading rules family is very huge and the best ones among them

are not invariable with markets and time, first of all we use Whites reality

check bootstrap method to recognize the best rules. Quantifying these rules

and introducing them into parametric portfolio policy model, we then get our

best portfolio policy (indicator coefficients and stock weights) to compare with

the benchmark portfolio.

The stock list under consideration consists of all stocks that have been historical

constituents of FTSE 100 index, a total of 283 companies. The rest 24 out of the

original 307 constituents were deleted from our list for events such as rename,

merger and acquisition, default and data unavailability. One serious problem

with this processing is that the number of firms in my sample is various over

time, rather than constant on 100. To handle this, add a term 1
Nt

to the portfolio
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weight function. I trace dynamics of the index: companies data are exploited

only when e they are on the FTSE 100 list, otherwise their data are removed

from the sample. Weekly stock closing data are recorded from Data Stream to

calculate trading rules as well as stock past returns.

The full sample data is divided into two periods: 1985-1994 and 1995-2008.

Data of the first period is used to pin down optimal trading rules. We borrowed

a complete set of trading rules from Sullivan et al. (1999) on which we conduct

reality check. (Table 1)

Since stationary bootstrap offers a return distribution of the trading rules under

weakly dependent settings, we are able to choose optimal parameters using

preference a functional of the distribution. If quadratic utility is employed, first

and second moment with properly defined risk aversion can rank performance

with various parameters. Here for simplicity, the one with highest mean return

is selected. The criterion then gives Table 2.

And sharpe ratio distribution of EMA, ROC and RSI is compiled in Figure 1

The corresponding technical indicators of the best rules are then calculated from

original data to be characteristics applied to parametric portfolio model. The

three characteristics are calculated as:

∆Mt(5, 10|Pt) = Mt(5|Pt)−Mt(10|Pt)

Rt(2|Pt) = logPt − logPt−2

St(14|Pt) = 100− 100

1 +RSt(14|Pt)
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Figure 2.1: Parametric Portfolio Performance ON FT100

Table 2.1: White p-value of Five Technical Trading Rule Systems

This table presents Whites reality check for five technical trading systems considered:

exponential moving average, rate of change, relative strength index, support and resis-

tance and Alexanders filter. The Whites p-value under mean return and Sharpe Ratio

criterion are both reported. EMA consists of 832 rules, ROC 12 rules, RSI 156 rules,

S-R 24 rules, and ALF 120 rules.

EMA ROC RSI S R ALF

Whites p-value Mean return 0.002 0.004 0.062 0.8 0.214

Sharpe Ratio 0 0 0.02 0.578 0.124

43



2.4 Performance on FTSE100 Alternative Portfolio Methods

Table 2.2: Optimal Technical Trading Rule under Sharpe Ratio Criterion

This table represents parameters of best trading rule for each trading system,

based on Sharpe Ratio comparison. For EMA, parameters are time span of

short-term moving average line, time span of long-term moving average line,

percentage band around intersection point of the two lines, length of holding

period. For ROC, parameter is the number of periods between current closing

prices and past closing price. For RSI, parameters are considered periods and

oversold threshold.

EMA Parameter

n1 n2 n h

2 10 0.01 20

EMA Parameter

n

2

RSI Parameter

n LR

14 6
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Table 2.3: Parametric Portfolio Performance Statistics

Statistics Parametric Portfolio Benchmark

Mean 0.142 0.049

Standard Deviation 0.101 0.135

Skewness 0.27 -0.26

Kurtosis 6.56 6.03

Sharpe Ratio 1.40 0.36

V aR0.05 -0.0158 -0.027

CV aR0.05 -0.0275 -0.044

CEG 0.121 0.012

Turnover 120.48 0

T0 0.0215 –

Table 2.4: MOMENTS OF DEGENERATION DISTRIBUTION

Moments Mean SD Skewness Kurtosis

-0.0118 0.0143 0.254 9.00

45



2.4 Performance on FTSE100 Alternative Portfolio Methods

Figure 2.2: Rolling Breakeven Transation Cost

These characteristics data are standardized cross-sectionally to subject to stan-

dard normal distribution N(0, 1) before applying to parametric portfolio model.

The standardization brings about several benefits. First, standardization unifies

the scale of all characteristics so that the possibility of overestimating coefficient

effect just because of its larger calibration. Second, the original cross-section

characteristics data may be nonstationary, while the standardized ones are defi-

nitely stationary. Furthermore, standardization makes the total deviations from

benchmark portfolio equal to zero and hence the sum of optimal portfolio weights

to be one.

As for portfolio optimization, the first period of data is used for in-sample es-

timation for initial optimal weights while the second period for out-of-sample

experiment.

Certainty equivalence gain (CEG) in Table (??) is calculated using CRRA func-

tion which indicates investors indifference between a risky gain and its CEG.
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Figure 2.3: ROLLING TURNOVER

The formula adopted here is

CEG = [
1

T

T∑
t=1

(1 + rp,t)
1−γ ]

1
1−γ

Note also that weekly mean, standard deviation and CEG are annualized.

Breakeven transaction cost (BTC) is a threshold rate beyond which active port-

folio is no longer profitable. In discrete case, capital subject to market friction is

adopting Scenario (3.24) with β = 1, p = 0. We also assume no risky asset holds

in initial period, or wi,0 = 0. Then BTC should satisfy the following equation

rnet = rgross − TcC (2.46)

Where rnet and rgross are net return and return in frictionless environment

respectively. Tc is transaction rate. Let rnet = 0, T0 is reversely defined as

T0 =
rgross
C

In order to capture time-varying profitability resistant to market friction, we

may analyze breakeven transaction cost in rolling basis. The Figure 4 shows
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Figure 2.4: ROLLING CV aR0.05 (WINDOW LENGTH = 100)

Solid line: Parametric Portfolio Dash Line: Equal Weights

the dynamics of BTC with T=52.1

Long-term average breakeven transaction cost is approximately 2% which is

consistent with the statistic on whole sample. But temporary small or even neg-

ative BTC is also present. A check on rolling turnover indicates that variation

of BTC is largely due to instability of return.

It is also possible to calculate risk measure dynamically. Figure 4 compares

rolling CV aR0.05 of equal weights and parametric portfolio.

Overall parametric portfolio has a much better risk profile in most of the time.

Discretion widens in financial crisis when pp profits from persistent down-trend.

And tail risk is effectively managed to be anchored around 0.03 level.

Empirical return distributions are qq-plotted (Figure 5,6,7) to detect existence

1This is the average number of weeks in a year.
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of non-nomarlity. Both parametric portfolio and equal weights significantly

deviate from normal distribution. PP offers no help in alleviating ‘fat tail. No-

tice that parametric portfolio return is positively leptokurtic to equal weights

scheme while avoiding introducing more negative extreme events. This prop-

erty can achieve better risk/reward profile because more favorable outcomes are

acquired without additional risks.

Finally, out-of-sample degeneration defined as the difference between realized

return and target return has a negatively-skewed distribution. Moments are

summarized in Table 4

As expected, degeneracy exists in parametric portfolio. Its high kurtosis is prob-

lematic since more extremes are anticipated. It is also evidence of difficulty in

forecasting return.

2.5 Concluding Remarks

In this paper, we systematically discussed parameterization in portfolio opti-

mization. The basic model is split policy into benchmark and add-on term that

is factorized. It can be extended considering trading constraints, market friction,

multi-utility and multi-frequency. Its validity is proved in stochastic settings.

Then in order to mechanically select efficient predictors, we first construct a link

between predictability and profitability so that reality check applies. Finally,

performance on FTSE 100 is well documented to demonstrate robustness of the

method. Its flexibility and rich potential advancement is highly appreciated.
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Figure 2.5: QQPLOT: Parametric Portfolio vs Normality

Figure 2.6: QQPLOT: Equal Weights vs Normality
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Figure 2.7: QQPLOT: Parametric Portfolio vs Equal Weights

Figure 2.8: Out-of-Sample Degeneracy
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2.6 Appendix

2.6.1 Technical Indicators

Diverse technical trading indicators have been developed to forecast stock price

so far. Modern automated trading system combines multiple rules to generate

accurate trading signals based on genetic algorithm or an artificial neural net-

work. Here in our model, we only chose the rules with best predictive power

for FTSE 100 constituents from huge universe of technical indicators. Below

is a brief view of trading rules under consideration, prominently featured by

Murphy (1999) and Kaufman (2005).

EMA (exponential moving average rules)

Exponential moving average is a trend following indicator screening fluctuations,

thus identifying major trend of price efficiently. It entails variable weights to

each price according to length of its history. In other words, it assigns heav-

ier weights to data points the more recent they are and the weights decays

exponentially, as is represented by formula (2.47)

Mt(n|Pt) = (1− 2

n+ 1
)Mt−1(n) +

2

n+ 1
Pt (2.47)

Where Mt denotes EMA value at time t, Pt denotes stock prices, n represents

the length of time periods considered. Common rule of EMA is to generate buy

or sell signal by crossover of a fast (s) and slow (l) EMA line. Or

∆Mt(n1, n2|Pt) = Mt(n1|Pt)−Mt(n2|Pt) (2.48)
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In order to remove weak and false signals, filters should be added to the rule.

Fixed band (b) that requires crossover big enough to exceed a minimum range

is imposed. In addition, holding period for a given position (h), ignoring any

signals triggered in subsequent periods, should also be considered in the rules.

EMA rules parameters are designed as below:

n1=1, 2, 3, 4, 5, 7, 10 (7 values)

n2=5, 10, 15, 20, 25, 30, 35, 40 (8 values)

b=0.001, 0.005, 0.01, 0.05 (4 values)

h=5, 10, 15, 20 (4 values)

Note that s must be smaller than l.

ROC (rate of change rules)

ROC is the percentage difference between current closing price and the price

several time periods ago. It measures the speed at which price is moving, hence

generating trading signals (See equation (2.49))

Rt(n|Pt) = logPt − logPt−n (2.49)

(2.49), Pt and Pt−n represent stock closing price now and n periods ago respec-

tively. The midpoint of ROC is zero. When it crosses above (below) zero, a

buy (sell) signal is sent out. Sometimes we may filter trading signal by some

smoothers like Parameters of this rule:

Rt(n,L|Pt) = Mt(L|Rt(n;Pt)) (2.50)

n=1, 2, 3, 4, 5, 7, 10, 12 (8 values)
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RSI (relative strength index rules)

The relative strength index is among famous momentum oscillators, whose value

volatile around a midpoint line and function well in predicting price trend rever-

sals. RSI is defined as the relative value between stock recent gains and losses.

It is calculated as:

St(n|Pt) = 100− 100

1 +RSt(n|Pt)
(2.51)

where RS denotes the ratio of average of n periods up closing prices to the

average of n periods down closes. (Murphy, 1999)

Its value fluctuates between 0-100, with 50 as its midpoint. When RSI line

crosses over the upper boundary (100−LR), there is high possibility that prices

fall in the following periods. Conversely, if it breaks below the oversold threshold

(LR), investors can expect a strong rise in price in the future. Parameters

include

n=3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (12 values)

LR=6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 (13 values)

Support and Resistance Rules

This system produce buy or sell signals according to whether closing price ex-

ceeds the minimum or maximum level over the past n periods. As with the

moving average rules, fixed band filters (b), and holding period requirements

(h) can be imposed.

Parameters:

n=5, 10, 15, 20, 25, 50 (6 values)
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h=5, 10, 15, 20 (4 values)

ALR (Alexanders Filter Rules)

Unlike rules above, ALR generate initiating and liquidating position signals.

Investors should initiate a long (short) position when current closing price rises

by x% above (below) its recent extreme low (high), defined as the lowest (high-

est) closing price obtained during a short (long) position trading period, and

liquidate long (short) position held when todays closing price falls (rises) below

recent extreme high (low).

Parameters are set as:

x=0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05 (10 values)

y=0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.06, 0.08 (12

values)

All the tested technical trading rules from the five systems above add up to

1140.
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3 On Investor’s Pessmism

3.1 Background

As Von Neumann and Morgenstern (1944) and Salvage (1954) axiomatized ex-

pected utility under uncertainty, capital allocation among a set of risky assets

becomes a classical decision making problem. Pioneered by Markowitz (1952,

1959), mean-variance framework has been dominant as a standard model in

most textbooks. Just as controversies on expected utility, MV has never been

accepted with irrefutable evidence. Critiques are mainly categorized into two

disadvantages: paradoxical assumptions on preferences or return distribution

(Quiggin (1981, 1993)), and accurate calibration of expected return and covari-

ance matrix (Bawa et al. (1979); Michaud (1989)). Markowitz (2012) opposed

the assertion that neither quadratic utility function nor Gaussian distribution

is required. These conditions are sufficient rather than necessary. There are

subsequently numerous efforts in literature on dealing with the second issue.

Estimating expected mean has been constructively discussed by Jobson and

Korkie (1980), Michaud (1989). Stability of correlations has attracted concerns

as well (like Engle (2002); Bouchaud and Potters (2009); Laloux et al. (2000)).

Black and Litterman (1992) introduced Bayesian method and updating belief in

optimization procedure. Continuous-time mean-variance approach is developed

recently. (Lindberg (2009))

Paralleling to expected utility, Schmeidler (1986); Quiggin (1993), Quiggin (1981)

introduced Choquet utility function for incorporating subjectivity. Artzner et al.
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(1999) lay axiomatic foundation for coherent risk measure. Several papers con-

tribute to developing portfolio schemes using VaR and CVaR (Rockafellar and

Uryasev (2000, 2002); Jaschke and Kuchler (2001)). The basic idea is to intro-

duce an objective function with optimal parameters equal to the ones in VaR

and CVaR. The stochastic programming problem can then be discretely solved.

Another significant advancement is proposed by Bassett et al. (2004),Koenker

(2005). Portfolios with a family of regular coherent risk measures are translated

to classical quantile regression which is, however, essentially equivalent to Rock-

afeller approach in alpha-risk case. Despite of economic attractiveness of those

procedures, the Achilles heel is inefficient estimation of tail risk. Since events

are rarely observed in sample, risk of calibration might be severely high due to

sampling variation (Jorison, 1996).

In regards with instability of inputs to optimizers, Brandt et al. (2009) design a

parametric scheme that avoids predicting return and risk via maximizing utility

function directly. It is especially superior with large asset base where estimation

error is exponentially magnified. Following the spirit of parameterization, it is

possible to factorize pessimistic portfolio weights to form parametric pessimistic

portfolio. It inherits both the higher tolerance to data-snooping that most op-

timizers suffer and better flexibility which pessimistic portfolio delivers.

In sum, this paper is focused on discussing extensive framework of pessimistic

investment strategies and empirically comparing the approaches with MV ap-

proach and benchmark using global equity index data. The left part is orga-

nized as: general models starting from utility maximization are developed in
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section 2; experiment details are described in data and performance; evaluation

of efficiency is then discussed in quantile characteristics, degeneracy, robust-

ness followed by a bootstrap that potentially alleviates overconcentration and

conclusion.

3.2 Pessimistic Models

3.2.1 Quadratic Utility Function and Coherent Risk Measure

Consider a set of lotteries X = [X1, ..., Xn]
′

and weight vector w = [w1, ...wn]
′
.

A portfolio consisting of them can be expressed as Xp = w
′
X. Denote F (X)

probability distribution of the random vector X, expected utility of compounded

lottery is

EFu(Xp) =

∫ ∞
−∞

u(Xp)dF (X) (3.1)

Using Taylor expansion approximating utility around expectation (Markowitz

2012), which gives

u(Xp) ≈ u(w
′
EX) +

∂u(w
′
EX)

∂X
w
′
(X − EX)− 1

2

∂2u(w
′
)

(∂X)2
w
′
V w (3.2)

We assume utility function is second-order differentiable. Expectation of lot-

teries and covariance matrix are defined by EX =
∫∞
−∞XdF (X) and V =

(X−EX)(X−EX)
′
, respectively. Substitute utility with approximation (3.2),

we attain

EFu(Xp) = u(w
′
EX)− 1

2

∂2u(w
′
EX)

w′Σw
(3.3)
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Σ is the covariance matrix on probability space of F (X). Equation (3.3) trans-

forms maximization of expected utility into quadratic programming problem.

Denote δ = 1
2
∂2u(w

′
EX)

w′Σw
risk aversion coefficient, classical mean variance analy-

sis becomes

min
w
δw
′
Σw

Given utility level, which is equivalent to a linear constraint w
′
EX = µ0. Note

that we did not pre-assume either probability distribution of random variables

or quadratic utility function, which is emphasized to verify the validity of mean-

variance framework. Therefore, Markowitz (1959, 2012) argued that Gaussian

distribution and quadratic utility form are sufficient but not necessary condi-

tions. As mentioned earlier, a set of distributions is always compatible with

this approach. But we still need the assertion that expectation of return and

covariance matrix can be reasonably calibrated.

The formulation above relies heavily on the accuracy of the quadratic approxi-

mation. Sometimes ineligible effect from higher order moment may significantly

deteriorate applicability of MV approach.

Back to expected utility, let X = F−1(t), definition (3.1) becomes:

EFu(F−1(t)) =

∫ ∞
−∞

u(F−1(t))dt

It shows that expected utility is essentially a uniform integral on R. Alterna-

tively, if distortion function is introduced to capture asymmetry of preference,

we may obtain
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EFu(F−1(t)) =

∫ ∞
−∞

u(F−1(t))dγ(t) (3.4)

This is expected Choquet utility. Specifically, conditional VaR φα(X) or α−risk

measure under wide investigation, has a capacity of γ(α,X) = min{Xα , 1}. Bas-

sett et al. (2004) proved that a portfolio selection that minimizes the function

of φα(X) − λEX is a quantile regression problem minε∈REρα(X − ε) by the

following theorem.

Theorem 3.1 (Bassett et al. (2004)) If EX <∞, then

min
ε∈R

Eρα(X − ε) = α(φα(X) + EX) (3.5)

Their work also shows that any pessimistic risk measure, by definition, is a

Choquet integral of α−risk measure for some probability measure:

φ(X) =

∫ ∞
−∞

γ(α, x)dϕ(α)

The equivalence between coherence and pessimism makes quantile solution a

tractable paradigm to all coherent risk measure. Despite of its universality, we

will restrict our investigation within α−risk measure in this paper.

3.2.2 Optimization of Conditional Value-at-Risk and Pessimistic Port-

folio

Not surprisingly, optimization of conditional value-at-risk developed by Rock-

afellar and Uryasev (2000) is connected to pessimistic portfolio, since both adopt
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α-risk in bi-criteria optimization problem. The former approach, however, first

constructs loss function ρ(z), z ∈ Rn associated with the outcome measured

by loss that could be subsequently discretized and solved as a classical linear

programming optimization. The latter analogously translate the problem in

quantile regression which is essentially employing the same technique. Thus

paralleling two methods is considered as an attempt to setting up a consistent

CVaR optimization procedure.

Start from general expression of ρ(z) with respect to α, η is (Pflug, 2000)

ρα(z, η) = η +
1

1− α
E[z − η]+ (3.6)

Where expectation takes the form of E[z − η]+ =
∫∞
η

(z − η)dF (z). To gain

intuitive understanding, a piecewise loss function defined on real-valued random

variables is given as:

Lα = {
z z > η

η[1− α
F (η) ] z ≤ η

Without much algebra, we prove the following proposition

Proposition 3.2

ρα(z, η) =
1

1− α
ELα(z, η)

One remarkable property of ρα(z, η) is the constant penalty rate imposed on loss

lower than threshold level α, albeit linear relation is reserved in upper side. This

asymmetry indicates pessimism consistent with coherent risk measure (Koenker,

2005) and leads to the difference from volatility. Also notice that ρα(z, η) may

not be continuous at X = η. More accurately, outcome below some breakpoint
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always delivers no lower satisfaction. And continuity is achieved if and only if

α = 0. Another scenario worth noting is α = 1, loss function ρ(z) is no longer

bounded. ρα(z, η) has abrupt shift but is still finite.

In Choquet utility setting, such proposition applies:

Proposition 3.3 Consider distortion function

γα(X) = max{1, X
η
}

and linear utility

u(X) =
1

1− α
(X +

η(F (η)− α)

1− F (η)
)

ρ(z) =
∫
u(X)dγα(X) is a Choquet utility. It is coherent and pessimistic. Specif-

ically, if F (η) is chosen to be α, ρ(z) degrades to α−risk.

Theorem 3.4 (Rockafellar and Uraysev, 2000) As function of α, ρα(z, η)

is convex and continuously differentiable. CV aRα associated with any z ∈ Rn

is determined by

min
η∈R

ρα(z, η) (3.7)

And V aRα is jointly derived by the value of η attaining the minimum

V aRα = arg min
η∈R

ρα(z, η) (3.8)

Proof. By expressing expectation with integral, equation (3.6) reads

ρα(z, η) = η +
1

1− α

∫ ∞
η

zF (z)− η

1− α
[1− F (η)]

Taking first-order condition with respect to η, as it is continuously differentiable

−α+ F (η)

1− α
= 0
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Which gives F (η∗) = α or η∗ = F−1(α). We then plug the η∗ into equation

(3.6) to obtain

ρα(z, η) = F−1 +
1

1− α

∫ ∞
F−1

[z − F−1(α)]+dF (z)

= F−1 +
1

1− α
zdF (z)− F−1 =

1

1− α
zdF (z)

Doing further expansion

ρα(z, η) =
1

1− α

∫ ∞
F−1

zdF (z) =
1

1− α

∫ ∞
−∞

zdF (z)− 1

1− α

∫ F−1

−∞
zdF (z)

=
1

1− α
E(z)− 1

1− α

∫ F−1

−∞
zdF (z)

Comparing it with equation (3.4) and let γ(α,X) = min{Xα , 1} completes proof.

One should notice that Theorem (3.4) does not explicitly assume bounded ex-

pectation of z, which is necessary for existence of minimum. The required

condition has caused fragility in the case of tail distribution that first moment

is not finite.

Most importantly, optimal loss function under Rockafellar?s setting combines

an expectation and risk assessment which is essentially the right side of equation

in Theorem (3.1). Thus we restate the last expansion by borrowing definition

of φα(z).

ρα(z, η∗) =
1

1− α
[E(z) + φα(z)]

Albeit formulating differently, risk measure and loss function share the same

nature. If we apply ρα(z, η) in the context of asset allocation, optimizing CVaR

is to obtain decision vector that minimize ρα(z, η∗)

min
w,η

ρα(X
′
w, η) = min

w,η
η + E[X

′
w − η]+ (3.9)
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As CV aR captures expected tail risk, objective function (3.6) incorporates first

order moment. A more general version may consider a stochastic programing

problem

Theorem 3.5 (Krokhmal,2006) Let a mapping φ : χ → R satisfies mono-

tonicity, sub-additivity and positive homogeneity defined by Arzner (1999), and

φ(η) > η for all real η, optima of

ρ(z) = inf
η
η + φ(z − η)

Is coherent.

The contribution of Theorem (3.5) is bridging between a mapping with relaxed

properties and coherent risk measure. Solving high moment coherent risk mea-

sure requires linearization with restrictions on number of observation which is

far beyond our discussion. It is believed that its computational cost might pre-

vent wide application.

Further exploring link between pessimistic portfolio and optimization method

by Rockafellar and Uryasev (2000), we establish such proposition:

Proposition 3.6 w, η that minimize loss function in the form of (3.9) is also

solution to quantile regression problem

min
w,η

Eρα(X
′
w − η) (3.10)
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Proof. Expand quantile loss function in continuous case

Eρα(X
′
w − η) = α

∫ ∞
η

(X
′
w − η)dF (X) + (α− 1)

∫ η

−∞
(X
′
w − η)dF (X)

= (α− 1)

∫ ∞
−∞

(X
′
w − η)dF (X) +

∫ ∞
η

(X
′
w − η)dF (X)

= (α− 1)EX
′
w + (1− α)η +

∫ ∞
η

(X
′
w − η)dF (X)

Since EX only contributes to optimal value, divided by scalar factor, w∗, η∗

achieve minima simultaneously at

min
w,η

Eρα(X
′
w − η)⇔ min

w,η
η +

1

1− α

∫ ∞
η

(X
′
w − η)dF (X)

Which is exactly the loss function (3.10). In discrete case, quantile regression

applies as follows.

Eρα(X
′
w − η) = (α− 1)

q∑
k=1

X
′
w +

1

q

q∑
k=1

[X
′
w − η]+ + (1− α)η

in which q periods of observations replace integral except some notational changes.

This is consistent with approximate solution proposed by Rockafellar and Urya-

sev (2000).

To be brief, under both continuous and discrete circumstances, pessimistic port-

folio and optimization of CVaR by Rockafellar share the same risk measure and

structure of solution. The former takes the root from Choquet utility maxi-

mization and can be easily extended to a wide range of regular coherent risk

measures. Its elegant tractability, offering additional convenience in bootstrap

analysis, is favored in this paper.
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3.2.3 Parametric Pessimistic Portfolio

We may wish to decompose portfolio policy by a benchmark and deviation

that seeks for excess return. This seperation is popular since ability of over-

performance could be evaluated based on some statistics constructed by the

two components. They include, to name a few, Sharpe ratio, information ratio

and Treynor ratio. Generally, active deviation could be motivated by a set of

characteristics, further linearization yields a parameterized expansion.

w(t) = wb(t) +
1

N(t)
F
′
(t)β (3.11)

Where w(t) = (w1, ..., wN )
′
and wb(t) = (w1,b, ..., wN,b)

′
are portfolio and bench-

mark weights, respectively. Denote fi(t) = (fi,1, ..., fi,K)
′
K-dimensional fac-

tor/characteristics vector of the ith asset at time t, and ψj(t) = (ψ1,j , ..., ψN,j)
′

cross-sectional vector of jth factor with dimension N at time t. As a result

F (t) = (f1, ..., fN ) = (ψ1, ..., ψK)
′

a K ×N factor matrix and β their loadings

to deviation. Here we allow time varying asset base. The convenience of flexibil-

ity is frequently exploited when constituents of benchmark change. The selected

factors are firm-specific. In other words, common factors are not applicable in

equation (3.11).

Multiplying both sides of equation (3.11) by N × 1 unit vector, we obtain

1
′
w(t) = 1

′
wb(t) + 1

N(t)1
′
F
′
(t)β. To faciliate comparison, it is reasonable to

ensure that the portfolio is geared by the same leverage with benchmark, which

gives 1
′
w(t) = 1

′
wb(t) irrespective of factors. Thus we should standardize F (t)
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to have zero mean cross-sectionally so that 1
′
F
′
(t) = 0. Now if we want to

minimize risk given target return µ. With asset return X = (X1, ..., XN )
′
, it is,

in the context of pessimistic portfolio

min
w
φα(X

′
w) subject to X

′
w = µ (3.12)

Replace w in optimization (3.12) with equation (3.11), objective function be-

comes

min
w
φα(X

′
w) = min

β
φα(Xb +

1

N(t)
X
′
F
′
(t)β) (3.13)

Where Xb is return on benchmark portfolio. The second term is weighted av-

erage of unit factor risk exposure. To see this, let ξj = 〈ψj , X〉 be inner prod-

uct of ψj and r, which is the contribution per unit factor j to return. So

FX = ξ = (ξ1, ..., ξK)
′

in equation (3.13) indicates our assertion. It offers an-

other interpretation of the optimization: investors assumes βj amount of factor

j that could offset benchmark downside risk and achieve better risk/reward pro-

file. It also states that only those factors that systematically reduce benchmark

risk should be chosen.

Unlike Brandt (2009), Newton’s method can not be applied to the optimization

problem (3.12), because loss function φα(x) is not everywhere differentiable

(Koenker, 2005). The following proposition is valid in the framework of pes-

simistic portfolio.

Proposition 3.7 For bounded benchmark return EXb < ∞, assume finite ex-

pectation ξ̄ = Eξ̃ < ∞ of ξ̃ = 1
N ξ = 1

N FX which is the normalized projections

with expectation. Let excess return γ = µ−EXb Solving parametric pessimistic
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portfolio optimization problem

min
β
φα(Xb+ ξ̃

′
β) subject to EXb+ ξ̄

′
β = µ and 1

′
w(t) = 1 (3.14)

is equivalent to constrained quantile regression problem

β∗ = − arg min
β,ν

Eρα(Xb − ξ̃
′
β − ν) subject to ξ̄

′
β∗ = −γ (3.15)

Proof. In previous discussion, since we standardize factors cross-sectionally,

constraint 1
′
w(t) = 1 is always satisfied if benchmark weights 1

′
wb(t) = 1.

By Theorem 2.1, we have

α(EXb + ξ̄
′
β + φα(Xb + ξ̃

′
β)) = min

ν
Eρα(Xb + ξ̃

′
β − ν) (3.16)

Given target return EXb + ξ̄
′
β = µ or ξ̄

′
β∗ = γ, optimizing portfolio (3.14) is

to minimize left side of equation (3.16). The right side formulates solution by

letting β∗ = −β.

Remark. We may restate problem (3.15) as a quantile factor model. If bench-

mark return can be interpreted as linear model of factors, it is possible to

eliminate those effect on tail risk by opposite positioning. Alternatively, sys-

temic risk is factorized and hedged. However, this scheme permits under-hedge

or over-hedge as long as target return can be achieved. The trade-off spirit is

essentially constructing efficient frontier on which each portfolio delivers best

return/α-risk profile.

Practically, plug-in method applies after discretizing objective function (3.15)

β∗ = − arg min
β,ν

T∑
t=1

ρα(Xt,b − ξ̃
′

tβ − ν)
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In more general settings, we may extend α-risk to all pessimistic risk measures

that are able to be represented by α-risk.

Proposition 3.8 Given the assumptions in proposition (3.7), minimizing any

regular coherent risk measure given target return is a weighted quantile loss

function.

By definition, any risk measure that can be expressed as φ(rp) =
∫ 1

0
φ(rp)dϕ(α)

is pessimistic. Here ϕ(α) is a probability measure. Accordingly, objective func-

tion of parametric pessimistic portfolio becomes a weighted sum of loss func-

tions.

β∗ = −min
β

∫ 1

0

min
να

1

α
Eρα(rb − ξ̃

′
β − να)dϕ(α)

where ν is α-specific, but slopes do not change. Bassett et al. (2004) proves

that pessimism is equivalent to regular coherence, which justifies our assertion.

Consider ϕ =
∑N
i=1 ciI(αi) to be a mass function. it offers a more explicit form.

β∗ = −min
β,ν

T∑
t=1

N∑
i=1

πiρα(rt,b − ξ̃
′

tβ − νi)

Where weights πi = ci
αi

.

A natural extension is to place some restrictions on weights. They are typically

inequalities of equation (3.11) in the form of

Aw = Aw̄b +
1

N
AF

′
β ∈ T ∗

where A is a p × N matrix with number of restrictions p and T ∗ is an real-

valued set. For instance, long-only portfolio is constructed by letting A = IN a

N ×N identity matrix and T ∗ = RN+ . The additional constraints on β hardly
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complicate our optimization since it is a standard inequality constrained quantile

regression: see Koenker and Ng (2005) for interior solution procedure.

If cost is incorporated, a trade-off between risk reduction (or return enhancing)

and transaction cost incurred by rebalancing should be considered. In simple

linear scenario, denote c 1 × N cost rate vector. Here the case that cost of

one security might have effect on that of other assets is excluded, thus c can

be viewed as an uncorrelated cost structure and retains less flexibility than the

correlated one. It is allowed to have time-varying c. Our net return that meets

required return as with α-risk becomes:

Erb + ξ̄
′
β − cE|∆wb + ∆F

′
β| = µ

where ∆wb = wb(t) − wb(t − 1) is the difference of benchmark and ∆F =

1
N(t)F (t) − 1

N(t−1)F (t − 1) the difference of deviation. As cost is risk-free, the

objective function associated with coherent risk measure should remain un-

changed. This problem is also

3.2.4 Efficient Frontier and Maximizing Reward/Risk Ratio

The model discussed does not infer a unique solution. As investors vary in risk

tolerance, optimal risk reward pairs extend the efficient frontier. Just as all fea-

sible portfolios are bounded by efficient frontier in mean-variance settings, we

can characterize pessimistic models by risk-reward profile. The central problem

is what risk measure should be adopted to match expected return. A natural

choice, analogously, is the measure consistent with its min-max problem. Fig-
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ure 1 shows how risk increases as higher return is targeted. As anticipated, we

indeed demonstrate a concave frontier and a hump reward/risk ratio.

More generally, maximum drawdown (popular among practitioners), VaR ex-

pected shortfalls and traditional standard deviation are also candidates. Yet

whatever measure is used, trade-off relationship between risk and return is com-

monly expected.

In practice, we have to fix portfolio selection for comparison. A common idea

is to set the same target return µ0. The problem associated with this simple

procedure is that instable performance at different return level usually leads to

contradictory conclusions. Another empirical difficulty is that we always have

to set µ0 < sup{EXt} in order to make the problem feasible.

Alternatively, we may consider optimization without constraints like:

min
w

δ(s)

s

Here s = σ(w,X)

w′X
. σ(w,X) is risk measure concerned while w

′
X is expected

return accordingly.

It can be easily shown that for any w ∈ W , there is a wf whose portfolio

performance is on efficient frontier, such that δ(sf )
sf
≤ δ(s)

s . Thus practically,

searching on global minimum is restricted within boundary. Lai et al.(2011)

shows that mean-variance optimization, under general setting that mean and

variance are unobserved, is maximizing information ratio. The assertion also

holds when we adopt different risk measures. The following proposition is a

simplified justification of our procedure.
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Figure 3.1: The upper panel shows concave efficient frontier of pessimistic portfolio, indi-

cating a finite optima can be attained. Conditional value-at-Risk is chosen to be the risk

measure. The Lower panel exhibits hump shape functional of risk/reward ratio on α-risk.

We construct the figure using weekly indices data across 24 countries. Expected return is

calculated historically without annualizing.

Proposition 3.9 For any concave risk measure ρ : w → R, concave reward

measure γ : w → R, convex decision space χ and bounded constant µ there

exists unique vector w∗ ∈W such that

γ(w∗)− µ
ρ(w∗)

≥ γ(w)− µ
ρ(w)

For all w ∈ χ,w 6= w∗

3.3 Empirical Study on Global Indices Portfolio

3.3.1 Data

We choose major indices of 24 developed economies as representatives to their

stock markets. All weekly price data denominated in local currency are col-
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lected from DataStream and logarithmic differenced. Table 1 compiles names

of indices, geographical features and prevailing currencies. Total number of ob-

servations amounts to 624 ranging from 26 January 2001 to 28 December 2012.

In the case that some countries have more than one index available, the one

with highest trading volume is selected. The benefit of the criterion is two-fold.

Liquidity is sufficient for practical implementation of our strategies. A wider

popularity generally indicates enhanced market efficiency which might serve as

a conservatism in our simulation.

Table 3 is summary of descriptive statistics. As observed in return on most finan-

cial instruments, all return distributions are negatively skewed and leptokurtic.

VaR and CVaR vary little across countries, indicating similar historical tail risk.

Only Italy experienced average loss in the sample period.

In order to construct parametric pessimistic portfolio, we choose interest rate,

exchange rate and GDP as three sovereign fundamental inputs, among which

the latter two indicators are log differenced to maintain stationarity. Since these

factors are not weekly observed, we use the value most recently observed for each

round of optimization.

One problem arises from international investment is currency risk hedging be-

cause foreign equity values have to be translated to aggregate performance.

Some empirical evidence has shown convenience of currency hedging in global

asset allocation. (Eun and Resnick, 1988; Perold and Schulman, 1988; Glen

and Jorison 1993). In reality, constructing optimal portfolio cannot neglect the

effect of exchange rate fluctuation. We can employ the techniques developed by
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Black (1990), Adler and Prasad (1992), Walker (2008) to partially alleviate, if

not fully eliminate, the risk. Yet our research should not deviate to detailing

implementation issue and concentrate purely on return on speculative capital

gains.

3.3.2 Simulation Results

In order to compare policy efficiency, we conduct simulation with two pessimistic

models (pessimistic portfolio and parametric pessimistic portfolio), mean-variance

approach. At each time t of rebalancing, a segment of sample St up to t with

total number of L observations is collected. It trains optimizers to obtain port-

folio weights w(t). This allocation does not change until rebalancing is again

called. For simplicity, the time interval ∆t is fixed which is the holding period

during which we stick to w(t).

The procedure described may affect performance in two ways. By deliberately

selecting rolling window length, return on certain policy can be boosted. Em-

pirically, it is usually necessary to compromise between the risk of introducing

additional noise and being less adaptive to fresh information which may sig-

nificantly deteriorate efficiency. In our case, in hope of avoiding unintentional

data-snooping, we offer two L for each portfolio. As one generally needs more

data than dimension of assets in pessimistic portfolio and mean-variance ap-

proach, their L1 is much larger than that L2 of parametric pessimistic portfolio.

Another aspect is that policies might behave differently associated with varying
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Table 3.1: Details of Indices Data Set

24 indices are selected to construct international equity portfolio, among which 17 are Euro-

pean indices, 2 North American, 4 Asian and 2 Oceanian, respectively, to gain the geographical

diversification. Each indice is a representative of one country equity market. Thus the most

actively traded one is chosen.

Country Main index Region Local Currency

Australia S&P/ASX 200 Oceania Australian Dollar

Austria ATX 200 Europe Euro

Belgium BEL 20 Europe Euro

Canada S&P/TSX North America Canadian Dollar

Denmark OMXC20 Europe Danish Krone

France CAC 40 Europe Euro

Finland OMXH Europe Euro

Germany DAX 30 PERFORMANCE Europe Euro

Greece ATHEX COMPOSITE Europe Euro

Hong Kong HANG SENG Asia Hong Kong Dollar

Ireland ISEQ Europe Euro

Israel ISRAEL TA 100 Asia New Shekel

Italy FTSE MIB Europe Euro

Japan NIKKEI 225 Asia Yen

Netherlands AEX Europe Euro

New Zealand NZX 50 Oceania New Zealand Dollar

Norway OSLO Europe Norwegian Krone

Portugal PSI-20 Europe Euro

Singapore STRAITS TIMES INDEX L Asia Singapore Dollar

Spain IBEX 35 Europe Euro

Sweden OMXS30 Europe Swedish Krona

Switzerland SMI Europe Swiss franc

UK FTSE 100 Europe British Pound

USA S&P 500 North America US Dollar
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holding period. To enhance robustness, both weekly and monthly rebalancing

are simulated (∆t = 1 and ∆t = 4 given weekly sampling frequency). Finally,

we also vary significance τ in quantile loss functions, so that sensitivity to tail

risk calibration can be assessed. Our benchmark is allocating equal capital to

each equity index. Table 2 compiles annual return, Sharpe ratio calculated us-

ing annualized return and 2 risk measures both with significance level 0.01.

In all scenarios, active portfolio outperforms benchmark, which indicates ex-

istence of alphas. Parametric portfolio delivers the highest Sharpe ratio irre-

spective to L, τ,∆t. Moreover, its exposure on tail risk is much smaller than

other portfolios, an indication of effective risk control. Despite of mediocre

annual return, it has the best reward/risk profile among all three portfolios.

Mean-variance approach gives the highest return and is especially competitive

alternative in low rebalancing frequency. Pessimistic portfolio overall records

the lowest return and Sharpe ratio. Another feature worth noting is that per-

formance on PPP seems to be insensitive to parameters. Comparatively, return

of mean-variance increases with lower ∆t. This could be caused by mismatch-

ing between in-sample (long-term perspective) and out-of-sample (short-term

fluctuations) return/risk frames.
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Table 3.2: Simulation Result From 2001 to 2012

The table shows out-of-sample performance from January 2001 to December 2012 using pes-

simistic portfolio (PP), mean-variance (MV) and parametric pessimistic portfolio (PPP). Each

method applies to a rolling sample to obtain allocation for the next holding period. Simulation

is conducted with two alternative window lengths L. Because one generally needs L� N , PP

and MV have L of 150/100 which are much larger than that of PPP (L = 50/25). Loss signif-

icance τ is taken value of 0.1/0.01, to gain difference of pricing tail risk by investors. Portfolio

is rebalanced for each additional observation if holding period is one week. Otherwise, we

allow weights frozen for next one month. Weekly return is annualized to compute Sharpe

ratio, assuming zeros risk-free rate. Tail risk measure, VaR0.01 and CVaR0.01, is calculated

based on empirical distribution of portfolio return.

Rebalance weekly Annual Return Sharpe Ratio VaR0.01 CVaR0.01

L = 100
PP

τ = 0.1 0.0206 0.143 -0.0668 -0.0864

τ = 0.01 0.0147 0.091 -0.0756 -0.112

MV – 0.0455 0.240 -0.0730 -0.1235

L = 50 PPP
τ = 0.1 0.0327 0.458 -0.0290 -0.0379

τ = 0.01 0.0282 0.396 -0.0290 -0.0379

L = 150
PP

τ = 0.1 0.0232 0.191 -0.0635 -0.0950

τ = 0.01 0.0105 0.049 -0.0818 -0.1454

MV – 0.0496 0.245 -0.0812 -0.1373

L = 25 PPP
τ = 0.1 0.0387 0.567 -0.0315 -0.0420

τ = 0.01 0.0362 0.537 -0.0315 -0.0394

Rebalance monthly Annual Return Sharpe Ratio VaR0.01 CVaR0.01

L = 100
PP

τ = 0.1 0.0184 0.091 -0.0677 -0.1014

τ = 0.01 0.0066 0.036 -0.0782 -0.1219

MV – 0.0672 0.345 -0.0720 -0.1177

L = 50 PPP
τ = 0.1 0.0301 0.500 -0.0268 -0.0366

τ = 0.01 0.0289 0.473 -0.0268 -0.0376

L = 150
PP

τ = 0.1 0.0127 0.061 -0.0681 -0.1050

τ = 0.01 0.0028 0.007 -0.0758 -0.1365

MV – 0.0615 0.301 -0.0823 -0.1351

L = 25 PPP
τ = 0.1 0.0288 0.489 -0.0233 -0.0344

τ = 0.01 0.0277 0.463 -0.0246 -0.0354

Benchmark -0.0049 -0.027 -0.0805 -0.114
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3.4 Discussion

3.4.1 Tail Distribution Stationarity, Overconcentration and Boot-

strap

The central assumption that justifies minimizing expected adverse tail events

using historical data is stability of tail distribution. Although there is rich

literature discussing the effect of leptokurtic return distributions on portfolio

construction (as early as Mandelbrot, 1963), rarely has any study been con-

ducted on consistency of tail behavior until recently (Straetmans and Cande-

lon, 2013). To capture the dynamics of tail distribution, several researches,

such as Embrechts (1997), Quintos (2001) contribute to designing statistics to

test structural change of extreme returns. Jansen (2000), Danielsson and de

Vries (1997) assess practical constraints placed on portfolio selection. To be

concrete, we introduce rolling α-risk CVaRα to demonstrate its time-varying

characteristics.

In figure 2, CVaRα can persistently deviate from its long-term mean, indicating

?random-walk? nature. Also notice that pessimistic portfolio hardly adapt

to abrupt sizable movement occurring at 2008 financial crisis. It is therefore

showing the fragile nature of extreme negative risk measure.

In multi-variant context, things get worse since concurrence of risk across assets

plays the key role. Similar to covariance matrix in mean-variance approach, joint

risk measure can be remarkably volatile and potentially endanger accuracy of

forecast.
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Figure 3.2: 100 weeks rolling CVaRα on benchmark return. τ = 0.1

Another problem that partially cohabited with non-stationary tail is caused by

local risk-reward profile. Assets exhibiting superior temporary risk adjusted

return have a strong gravitational effect on capital allocation in the framework

of duality structure (see Section 2). This problem can be remarkably damaging

to pessimistic portfolio. Figure 2 shows an example of such phenomena.

It plots the relation of weights with in-sample target return2. As minimum-

acceptable return level climbs, diversification is diminishing. Extreme case takes

place at the highest achievable target, where only Ireland index is selected. It

ultimately becomes a momentum mechanism.

In figure 6, we offer dynamics of pessimistic portfolio weights with different tar-

get return level. It shows that with higher expected return investor requires,

optimizer tilts to those assets historically performs better. This goes to ex-

treme as the highest return attainable is selected. As Michaud (1989) criticized,

overconcentration has inevitable disadvantages that could lead to poor our-of-

2Return is annualized.L = 100, τ = 0.1
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sample performance and over-exposure of risk that is presumed to be reduced

through diversification. More risk is assumed due to absence of diversification.

Local behavior dominates resource allocation, incurring additional transaction

cost. Most importantly, it heavily relies on effectiveness of forecasting expected

return using buy-winner strategy, which in most case has lost validity.

In combination with inefficient tail modeling and inappropriate portfolio opti-

mization, resample technique can be employed to properly extract information

from finite sample while retaining stochastic nature of return and risk measure.

We call it bootstrap pessimistic portfolio.

In 1979, Efron first stated bootstrap algorithm, as a generalized resampling

method, to empirically obtain confidence intervals and significance level in the

case of violating normality assumption. Basic algorithm is to randomly select

elements from the distribution of independently, identically distributed observa-

tions to approximate underlying distribution. Some early studies on its asymp-

totical properties and connections with other nonparametric approaches include

Efron (1983), Efron and Tibshirani (1986), Bickel and Freedman (1981), and

Singh (1981).

Some modified bootstrap methods were then proposed to resample from weakly

dependent stationary observations, pioneered by Kunsch (1989) and Liu and

Singh (1992) and later generalized by Politis and Romano (1992a, 1992b) and

Politis, Romano, and Lai (1992). The central idea instead of select single data

point is to conduct ?block resampling?. This philosophy was further improved

by Politis and Romano (1994). It is essentially a weighted average of the block
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resampling distribution, but the main difference is that the pseudo-time series

obtained by the stationary bootstrap is still stationary and the length of a block

is geometrically distributed. By introducing smoothing parameter q, it is gain-

ing relative stability compared with aforementioned moving block bootstrap.

Recent applications include, not exhaustingly, Boles et al. (2005) and Ledoit

and Wolf (2008).

Our bootstrap pessimistic portfolio essentially consists of two stages:

• Applying stationary bootstrap technique to randomly generate price paths.

• Optimize portfolio on the expanded data set.

The first advantage of this procedure is that diversification benefit is restored.

Consider previous example, bootstrap portfolio no longer overweigh single as-

set3. (Figure 7) And weights vary little with different smoothing parameters. Its

efficiency can be further examined by out-of-sample performance. Let 6 years

up to December 2006 be training set and subsequent 6 years testing period,

performance with or without bootstrap is able to be compared. Significance

level was chosen τ = 0.1.

3.4.2 Quantile Analysis

As it is well known, normal distribution maximizes differential entropy, dictates

that the most probable outcome should follow the distribution whose entropy is

3For simplicity, we average weights on each sample.
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a local maximum. Thus deviation from normality is an indication of information

loss in portfolio construction, the extent of which might serve as a qualitative

measure of information efficiency.

If two return distribution share the same moment generating function, they

should deliver the same reward/risk ratio. Smirnov (1948) stated that the

supreme of the difference between two distributions should asymptotically con-

verges to the supreme of the absolute value of a Brownian bridge. Thus a

quantile analysis would help identifying distributional consistency. Here, we

use qq plot to illustrate the characteristics. Basically, leptokurtic return bias

left tail downward and right tail upward.

In Figure 2, we construct qq plot for three portfolios and benchmark. As ob-

served, all active schemes fail to control fat tail at both sides. Mean-variance

deviate from the central Gaussian area [µ − εL, µ + εU ] which the others share

similar local feature. To further illustrate relations between two portfolio re-

turns, we plot mean-variance and pessimistic portfolio quantiles over parametric

pessimistic portfolio quantiles. It shows that return on PPP is less leptokurtic,

an evidence of enhancing tail risk control.

3.4.3 Out-of-sample Degeneration

As Davies and Servigny (2012) states, the discretion between realized return and

target return usually exhibits a negatively distorted distribution. The extent

of degeneracy, when extending in-sample allocation scheme beyond, is a critical

part of evaluation. It is also worthy of investigation from the perspective of
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historical information extraction.

The figure 5 and table 5 show estimation error, which is defined by the difference

between realized return and target return:

et = Wt−1(Xt − EXt−1)

Here denote Wt−1, Xt, EXt−1 portfolio weights at t − 1, asset return at t and

expected asset return at t − 1 respectively. Ideally,Eet = 0 indicates maximal

efficiency that active portfolio can reach. As long as EXt−1 is an unbiased esti-

mator of EXt, et should be symmetric. Thus negative mean indicates inefficient

modeling of return. More severe degeneracy is present in pessimistic portfolio

as both magnitude and uncertainty are higher. One explanation is that tail

distribution can be relatively mobile and instable over time and thus causes

unfavorable misallocation. The phenomenon is well documented by several re-

searchers.

Another aspect we observe is that pessimistic portfolio has remarkable higher-

order advantage in higher order moments (skewness and kurtosis). This is in

connection with risk measure: pessimistic portfolio minimizes tail risk while

mean-variance approach neglects higher order effects in approximation.

3.4.4 Profitability and Resistence to Market Friction

In reality, market friction is hardly negligible but portfolio schemes discussed

previouly are constructed without taking it into consideration. The simplest

measure of resistance to market friction is breakeven transaction cost cb, which
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is defined as the average return over rebalancing turnover. Table 5 compiles cb

in all simulation scenarios. However under high friction environment, investors

behavior might be distorted to maximize net return. As a result, breakeven

transaction is not an accurate description.

To enhance practicability, we develop a tractable model that is applicable in

high-friction environment. It can be easily extended to any market that is not

immunized from trading cost.

The vector of discrete weights wt at time t satisfies standardization constraint

w
′
I = 1 which implies that only N − 1 degrees of freedom for the space ∆n

spanned by w.It also indicates zero total increment cross-sectionally
∑N
i=1(wt−

wt−1) = 0

Turnover at time t accordingly is defined as the sum of absolute value of differ-

entials:

T (t) =

N∑
i=1

|wt − wt−1| (3.17)

This is the capital subject to friction. Denote ci(t) cost rate of asset i at time t

and total cost of complete rebalancing can be expressed as

C(t) =

N∑
i=1

ci(t)|wt − wt−1| (3.18)

With respect to Definition (3.18), current literature discussed a revised version

of portfolio optimization by maximizing utility of net portfolio return or max-

imizing net return given upper boundary of risk measure. Deviating from the

integrated procedure, it might be useful to set up generally applicable ?back-

end component?. Basically, the method is to adapt weights derived from some

84



3.4 Discussion Alternative Portfolio Methods

policy to cost, aiming at maximizing net return.

It is advantageous in that original portfolio optimization is not tortured by cost

penalty. It isolates adjustment to friction that is presumably uncorrelated with

investor?s preference.

For simplicity but without losing too much generality, we restrict our discus-

sion on a special case that a proportion β ∈ R1 of capital is rebalanced and

the rest is left untouched. Additionally, we allow a time-varying shrinkage

p = [p1, ..., pN ]
′ ∈ RN for each rebalancing. Thus adjusted weights

w̃t = wt + (1− β)wt−1 − p (3.19)

which become path-dependent. Thus capital subject to friction is

Cβ(t) =

N∑
i=1

ci(t)|wi,t − βwi,t−1 − pi| (3.20)

This quantile problem is linked to utility maximization, mean-variance and

mean-variance using VaR and CVaR. Notice that no restrictions are placed

on value of β and α. A negative proportion is valid when portfolio at previous

period is leveraged up. β > 1 is implementable in a way that one essentially

goes short the former policy.

Technical shrinkage pi also has its economic explanation. It may be interpreted

as cash draw periodically from previous base. The total amount reduced is

D(t) = p
′
1 in each period. At this point, our method has inherited some

constant consumption plan (Merton, 1973) in linear case. We leave stochastic

discount factor over multi-period utility maximization for further research.

To gain some asymptotic properties of w̃t, some lemmas are introduced.
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Lemma 3.10 w̃i = limt→∞Ew̃i,t exists if Ewi,t = wi and pi are bounded.

Computing some terminal weights at t using the rebalancing policy sequentially

w̃i,t =

t∑
t=1

(1− β)t−s(wi,s − pi) (3.21)

Split wi,s by its expectation and deviation

w̃i,t =

t∑
s=0

(1− β)(t−s)wi +

t∑
s=0

(1− β)(t−s)(wi−wi,t)−
t∑

s=0

(1− β)(t−s)pi (3.22)

Taking unconditional expectation and let T go to infinity, we have

w̃i = lim
t→∞

Ew̃i,t =
1

β
(wi − pi) (3.23)

And arrive at Lemma (3.23).

It tells that long-term adjusted weights are proportional to difference between

unadjusted weights and constant cash draw. If no increments is allowed asymp-

totically which is w̃i = wi, pi = 1−β
β wi It means that when positive capital is

allocated in stock i, partially adjusted portfolio guarantees a positive cash draw.

We may relax individual relation by aggregating (3.23). If overall capitalization

is fixed,
∑N
i=1 pi = 1−β

β . The intuition is that positive cash draw is present when

β ∈ (0, 1). It is reasonable because equity change is only associated with capital

inflow and outflow. However this restriction is not placed in this framework or

leverage is also a flexible dimension.

Up to now, it can be summarized as two basic scenarios we are facing. The first

one is to stick to previous weights, whose net portfolio return at t + 1 is given

as

r0
p,t+1 =

N∑
i=0

wi,t−1ri,t+1 (3.24)
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The other is the stated partially rebalancing scheme

rβp,t+1 =

N∑
i=0

w̃i,tri,t+1 (3.25)

Thus our portfolio optimization in high friction environment can be interpreted

as maximizing excess return over unbalanced one, which is

max
p,β

E∆rp,t+1 = max
p,β

E[rβp,t+1 − r0
p,t+1] (3.26)

Notice that objective function (3.26) does not account for higher moments or

utility profile. It is a simple discretion. It is able to further explore optimization

with some loss function at the sacrifice of tractability. Reality check is also

applicable for robustness.

Proposition 3.11 Assuming fixed time-sequential return on each asset ri,t =

ri and constant transaction cost on each asset ci(t) = ci, (3.26) is a stacked

quantile problem.

Proof. Let us expand (3.25) with (3.19) and (3.20).

rβp,t+1 =

N∑
i=0

w̃i,tri,t+1 =

N∑
i=1

ri,t+1(wi,t+(1−β)wi,t−1−pi)−
N∑
i=1

ci(t+1)|wi,t−βwi,t−1−pi|

So objective function becomes

max
p,β

E∆rp,t+1 = E

N∑
i=1

(ri,t+1ψi,t − ci(t)|ψi,t|) (3.27)

Here denote ψi,t = wi,t − βwi,t−1 − pi. Defining τi = − ri
2ci

+ 1
2 , equation (3.26)

is

max
p,β

E∆rp,t+1 = max
p,β

E

N∑
i=1

ρτi(ψi,t) (3.28)
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rhoτi is quantile loss function. Therefore time-sequential estimation of p, β is

simply solving a stacked quantile regression in the form of

max
p,β

1

T

T∑
t=1

N∑
i=1

ρτi(ψi,t) (3.29)

Here we allow parameter τ varying cross-sectionally. To ensure its solvability,

τi ∈ (0, 1) indicates that |ri| < ci. This inequality bounds applicability of our

proposal in highly viscous market. Another situation takes place when mag-

nitude of return decreases as frequency increase. For example, daily portfolio

maintenance may suffer more compared to monthly counterpart since daily re-

turn is usually smaller.

Because process (3.19) is truncated by including one period lag, we may char-

acterize this model as quantile AR(1). In the situation that condition |ri| < ci

is violated, it is possible to split equity base with one part suffering higher fric-

tion and the other is free of transaction cost. In the situation that condition

|ri| < ci is violated, it is possible to split equity base with one part suffering

higher friction and the other is free of transaction cost. We plot the dynam-

ics of each portfolio scheme with varying c in figure 8. cb is higher than the

non-adaptive case. Parametric portfolio is much more resistant to friction while

mean-variance approach loses advantage when c > 0.0003.

3.5 Concluding Remarks

In hope of gaining broader acceptance on conservatism on extreme cases, this

paper might be interpreted as an attempt to generalizing pessimism and empir-
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ically testing the efficiency among those models. Difficulty in accurate calibra-

tion of risk measures impedes profitable application of pessimistic models. In

the case that tail risk is more volatile than volatility measure, mean-variance

optimization could be more preferred. This phenomenon is documented by our

empirical study in global indices investment.

To avoiding modeling tail distribution of return, we attempt to decompose port-

folio weights and propose a framework of parameterized pessimistic models.

This factorized approach is advantageous in high dimensional asset pool which

most optimizers suffer from. It retains more flexibility in additional constraints

on weights and is less affected by in-sample data-snooping. Overall, the ap-

proach delivers highest risk-adjusted return that is robust to market friction.

As Liu and Cao (2014) suggest, profitability of parametric pessimistic portfolio

is sourced from serial dependence of factors and their explanatory ability on

asset return. Thus a mechanism of assessing factor selection needs further in-

vestigation.
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3.6 Appendix

3.6.1 Computational aspects of pessimistic models

For pessimistic portfolio with α-risk measure, analogous quantile problem is

given as:

min
(β,ξ)∈Rp

n∑
i=1

ρα(xi1 −
p∑
i=2

(xi1 − xij)− ξ) s.t.x̄
′
π = µ0 (3.30)

We packaged portfolio coefficients and location parameter in one set under esti-

mation, which is β = (β2, ..., βp, ξ)
′
. Slack variables u, v convert inequality into

equality constraints.

In order to rearrange it into classical linear programming structure:

min
x
{f
′
y|Ay = b, y ∈ [γl, γu]} (3.31)

γl, γu are lower and upper boundary respectively. And corresponding matrixes

are

y = (u
′
, v
′
, β
′
)
′

(3.32)

f = (τe
′
, (1− τ)e

′
, 0)
′

(3.33)

b = (x
′

1, µ0 − x̄1)
′

(3.34)

Where x1 is the observation vector x1 = (x11, ..., xn1)
′
. Similarly, observation

matrix is X = (x2, ..., xp). A is an extended matrix, such that target return

constraint is incorporated:

A = (
I −I X

O1×n O1×n ∆x̄j

) (3.35)
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Here ∆x̄j is the difference between mean of returns ∆x̄j = (x̄2− x̄1, ..., x̄p− x̄1)

Traditionally, the problem is solved by simplex method. It searches optimal

vertex of the polyhedral expanded by constraints, from an initial feasible point.

Usually complexity is increasing as it has more dimensions. In worst cast, Klee-

Minty shows that time consumption goes up exponentially.

Interior point method was considered as the most computationally efficient algo-

rithm for linear programming. Basically, nonlinear terms are added to objective

function. The continuous Lagrangian expression is then differentiated to obtain

first order conditions (known as Karush-Kuhn-Tucker KKT conditions). Affine

scaling step is calculated recursively by Newton method.

For unconstrained quantile regression, Koenker and Portnoy presented primal

and dual functions as

min
u,v,b
{τe

′
u+ (1− τ)e

′
v|Xb+ u− v = y, (u

′
, v
′
, b
′
) ∈ R2n ×Rp} (3.36)

max
d
{y
′
d|X

′
d = (1− τ)X

′
e, d ∈ [0, 1]n} (3.37)

Then Frisch-Newton algorithm can be employed to search for optimal point

following the central path toward boundary.

For quantile regression with linear constraints, primal and dual problems are

similar:

min
u,v,b
{τe

′
u+ (1− τ)e

′
v|Xb+ u− v = y,Rb ≥ r, (u

′
, v
′
, b
′
) ∈ R2n ×Rp} (3.38)

max
k1,k2
{y
′
k1 + r

′
k2|X

′
k1 +R

′
k2 = (1− τ)X

′
e, k1 ∈ [0, 1]n, k2 ≥ 0} (3.39)
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This log-barrier function is formulated to penalize feasible solutions as they

approach the boundary of the constraints set:

L = c
′
k−y

′
(X
′
k1+R

′
k2−b)−w

′
(u−k1−s)−u(

∑
log k1+

∑
log k2+

∑
log s)

(3.40)

c is the temporary variable to be estimated, while k = (k
′

1, k
′

2)
′

First order condition provides classical KKT system, which the affine scaling

step is set by Newton?s Method:

dy = (AQ−1A
′
)−1(r̃3 +A1Q

−1
1 r̃1 +A2Q

−1
2 r̃2) (3.41)

dk1 = Q−1
1 (A

′

1dy − r̃1) (3.42)

dk2 = Q−1
2 (A

′

2dy − r̃2) (3.43)

ds = −dk1 (3.44)

dz = −z −K−1zdk (3.45)

dw = −w − S−1Wdk (3.46)

Q1 = K−1
1 Z1 + S−1W (3.47)

Q2 = K−1
2 Z2 (3.48)

Here all notations follow linear programming conventions, with main diagonal

of each matrix the elements of corresponding vectors. As a result, reverse is no

longer costing, and only effort is needed for Cholesky decomposition for the first

equation in iterative algorithm.

This tentative affine scaling step should be further modified, to properly set

92



3.6 Appendix Alternative Portfolio Methods

moving speed toward boundary. The scaling factor is determined by feasibility

checking. If the full affine scaling step is infeasible, Mehrotro predictor-corrector

step should be brought into, which is actually taking ignored bilinear terms into

account. It is essentially anther Newton step starting from previously proposed

point. Formulas are quite similar in this setting:

δy = (AQ−1A
′
)−1(A1Q

−1
1 r̂1 +A2Q

−1
2 r̂2) (3.49)

δk1 = Q−1
1 (A

′

1δy − r̂1) (3.50)

δk2 = Q−1
2 (A

′

2δy − r̂2) (3.51)

δs = −δk1 (3.52)

δz = −z −K−1zδk (3.53)

δw = −w − S−1Wδk (3.54)

r̂1 = S−1(µe− dSdWe)−K−1
1 (µe− dK1dZ1e) (3.55)

r̂2 = −K−1
2 (µe− dK2dZ2e) (3.56)

Finally, the duality gap is calculated iteratively until it reduces below tolerance

level. The convergence is achieved through trade-off between stickiness to cen-

tral path and gap reducing speed (Gonzago).

Practically, it is difficult for balance, since the process is path-dependent and

fairly sensitive to initial point. Koenker and Pin states that d0 = (1 − τ)e

is a natural initial feasible point for inequality constrained quantile regression.

However the variable z is also flexible and has a significant impact on conver-

gence rate. z2 6= 0 is an additional constraint, yet it can be shown that any
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value assigned to z2 would significantly deteriorates efficiency of interior point

method.

Therefore, more robust initial point is essential in the algorithm.
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3.7 Tables and Figures

Table 3.3: Descriptive Statistics of Country Indices

Country Mean SD Skewness Kurtosis VaR0.01 CVaR0.01 VaR0.05 CVaR0.05

Australia 0.00093 0.0204 -0.8476 8.815 -0.0604 -0.0807 -0.0339 -0.0500

Austria 0.00092 0.0327 -1.1861 14.540 -0.0988 -0.1425 -0.0491 -0.0818

Belgium 0.00046 0.0268 -1.1633 12.653 -0.0814 -0.1130 -0.0451 -0.0670

Canada 0.00117 0.0222 -0.9475 10.932 -0.0670 -0.0998 -0.0339 -0.0553

Denmark 0.00128 0.0267 -0.9791 10.214 -0.0712 -0.1152 -0.0407 -0.0641

France 0.00066 0.0299 -0.6744 7.747 -0.0860 -0.1143 -0.0475 -0.0690

Finland 0.00127 0.0372 -0.5399 6.263 -0.1087 -0.1446 -0.0578 -0.0912

Germany 0.00167 0.0303 -0.6586 7.743 -0.0838 -0.1171 -0.0486 -0.0719

Greece 0.00086 0.0421 0.0983 6.370 -0.1256 -0.1526 -0.0656 -0.0958

Hong Kong 0.00214 0.0366 -1.2987 14.752 -0.0975 -0.1575 -0.0541 -0.0857

Ireland 0.00150 0.0295 -1.5688 15.735 -0.0928 -0.1406 -0.0447 -0.0739

Israel 0.00243 0.0360 -0.6029 5.678 -0.1205 -0.1392 -0.0617 -0.0873

Italy -0.0005 0.0348 -0.7602 9.022 -0.1325 -0.1581 -0.0576 -0.0875

Japan 0.00016 0.0285 -0.8494 10.184 -0.0769 -0.1121 -0.0460 -0.0672

Netherlands 0.00125 0.0287 -1.1806 12.248 -0.0959 -0.1255 -0.0451 -0.0721

New Zealand 0.00029 0.0169 -0.8382 7.912 -0.0551 -0.0706 -0.0259 -0.0428

Norway 0.00225 0.0293 -1.0754 10.067 -0.0874 -0.1318 -0.0467 -0.0730

Portugal 0.00060 0.0268 -0.8859 9.995 -0.0917 -0.1209 -0.0416 -0.0650

Singapore 0.00056 0.0286 -0.4028 7.809 -0.0732 -0.1175 -0.0469 -0.0674

Spain 0.00094 0.0315 -0.7408 8.308 -0.0856 -0.1295 -0.0496 -0.0745

Sweden 0.00177 0.0315 -0.4523 7.142 -0.0861 -0.1178 -0.0507 -0.0733

Switzerland 0.00118 0.0259 -0.8744 14.034 -0.0721 -0.1122 -0.0398 -0.0612

UK 0.00125 0.0242 -1.3656 17.338 -0.0633 -0.1004 -0.0351 -0.0565

USA 0.00146 0.0232 -0.8104 9.393 -0.0707 0.0963 -0.0354 -0.0558
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Table 3.4: Out-of-Sample Performance of Boostrap Pessimistic Portfolio, Jan-

uary 2007 - December 2012

Under real data option, we directly use the sample of first 6 years to train pessimistic portfolio,

which is classical plug-in method. In other scenarios, stationary bootrap method is employed

to compute average weights. q is the smooth parameter.

Quantile Annual Return Sharpe Ratio

Real Data 1 0.0285 0.204

Real Data 10 0.0346 0.205

Real Data 20 -0.0179 -0.070

q = 0.5 1 0.0269 0.203

q = 0.5 10 0.0343 0.205

q = 0.5 20 0.0424 0.222

q = 0.1 1 0.0249 0.191

q = 0.1 10 0.0345 0.207

q = 0.1 20 0.0394 0.209

q = 0.01 1 0.0201 0.150

q = 0.01 10 0.0277 0.163

q = 0.01 20 0.0222 0.112
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Table 3.5: Out-of-Sample Degeneracy Moments

Each moment is based on difference between realized return and in-sample target return.

Parameters of MV and PP are L1 = 100, τ = 0.1,∆t = 4. PPP1 colume has a rolling window

length L2 = 25 while the last colume L2 = 50.

PP MV PPP1 PPP2

Mean -0.0015 -0.0013 -0.0013 -0.0017

Standard Deviation 0.0218 0.0194 0.0094 0.0089

Skewness -1.190 -1.581 -0.8562 -0.743

Kurtosis 11.68 21.67 7.0996 6.624

97



3.7 Tables and Figures Alternative Portfolio Methods

Table 3.6: Breakeven Transaction Cost

Breakeven transaction cost is ratio between annual return and average turnover, measuring

vulnerability of portfolio profitability to market friction. Parametric pessimistic portfolio has

overall the highest cb due to significant lower turnover. Mean-variance suffers from volatile

capital re-allocation. Thus its return deteriorates with increasing transaction cost.

Rebalance weekly Total Turnover cb

L = 100
PP

τ = 0.1 598.99 0.0014

τ = 0.01 556.19 0.0008

MV – 789.70 0.0026

L = 50 PPP
τ = 0.1 254.35 0.0068

τ = 0.01 277.66 0.0069

L = 150
PP

τ = 0.1 516.91 0.0013

τ = 0.01 511.12 0.0012

MV – 600.30 0.0036

L = 25 PPP
τ = 0.1 303.95 0.0059

τ = 0.01 283.53 0.0057

Rebalance monthly Total Turnover b

L = 100
PP

τ = 0.1 223.48 0.0025

τ = 0.01 224.89 0.0019

MV – 354.82 0.0046

L = 50 PPP
τ = 0.1 207.69 0.010

τ = 0.01 238.38 0.0090

L = 150
PP

τ = 0.1 190.91 0.0044

τ = 0.01 211.04 0.0023

MV – 283.51 0.0055

L = 25 PPP
τ = 0.1 224.83 0.0099

τ = 0.01 250.85 0.0085
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(a) Pessimistic Portfolio and Mean Variance

(b) Parametric Pessimistic Portfolio and Benchmark

Figure 3.3: QQ Plot of empirical return distribution vs normal distribution.

As x-axis is quantile of normal distribution, adeviation from the dash fitted line is

evidence of non-normality. Specifically, leptokurtice portfolio returns have downward-

biased left tail and upward-biased right tail. Pessimistic and mean-variance return

are simulated with rolling window length L1 = 100, parametric pessimistic return

L2 = 25. τ = 0.1 in both pessimistic models. All portfolios are rebalanced monthly

(∆t = 4).
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(a) QQ Plot of MV and PP Return on PPP return

(b) Left Tail and Right Tail

Figure 3.4: QQ Plot Comparison between two simulated returns.

In upper figure, dashed curve shows distributional characteristics between MV and

PPP while solid curve is that of PP. Lower panel plots details at left and right tail.

Parameters: L1 = 100, L2 = 25, τ = 0.1,∆t = 4.
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(a) PP and MV

(b) PPP with L2 = 25 and L2 = 50

Figure 3.5: Out-of-Sample Degeneracy of three active portfolio schemes.

It is calculated by the difference between training sample target return and realized

return in the holding period. Parameters of upper panel are L1 = 100, τ = 0.1,∆t = 4.

The left figure at lower panel has a rolling window length L2 = 25 while the right one

L2 = 50.
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Figure 3.6: Portfolio Composition with Various Target Return on December.

2006.

This is an example of pessimistic portfolio weights varying with target return. As µ

increases, allocation tilts to the assets with high in-sample return. τ = 0.1
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(a) q = 0.5

(b) q = 0.1

(c) q = 0.01

Figure 3.7: Bootstrap Portfolio Composition with Various Target Return on

December. 2006.

Various average resample block lengths q are selected to check stability of bootstrap

pessimistic portfolio. τ = 0.1.
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Figure 3.8: Portfolio profitability resistence to market friction.

Dash line: PP, bold dash line: MV, bold solid line: PPP. Parameters of MV and PP

are L1 = 100, τ = 0.1,∆t = 4. PPP1 colume has a rolling window length L2 = 25

while the last colume L2 = 50.
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4 Mean-Variance on Heterogeneous Sample

4.1 Background

The traditional Mean-variance approach has first been investigated by Harry

Markowitz (1952, 1959). Mean-variance model was later carefully researched

and developed to be a framework of strategic asset management (CAPM).

Portfolio optimization is formulated, in this paradigm, as a process of utility

maximization problem by investors (Markowitz, 1956) and analogous optimiz-

ers with constraints such as stochastic dominance by Kuosmann (2004), Giorgi

(2005), Dentcheva (2006) and tail risk by Schmeidler (1989) are invoked. The

spirit of the approach is to minimize risk with given a level of expected re-

turn, based on mean and variance to estimate the diversify risk. Early studies

as early as Markowitz, adopted the expected mean return and standard devi-

ation as the risk of asset to do the asset portfolio. Fisher Black and Robert

Litterman (1992) did the special study for global portfolio optimization. They

used an approach that combines two established tenets of modern portfolio the-

ory, which are the Mean-Variance Model of Markowitz and the Capital Asset

Pricing Model (CPAM) of Sharpe (1964). This approach allows investors to

construct portfolio across global equities, bonds and currencies. Their data set

covered 17 developed countries from January 1975 to August 1991. Through

rolling-window simulation, investors are able to compare ongoing performance

with two strategies: one is investing in the bonds market with high yields, and

the other is in the equities market with high dividend yield relative to bond
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yield. Their research could be empirical evidence that investors are indeed in

informational advantage of forming perspective on global portfolio behavior.

Choueifaty and Coignard (2008) find mean-variance portfolio outperforms both

market capitalization weighted portfolio and equity weighted portfolio in long

term investment. And mean-variance portfolio has higher sharp ratio and lower

volatility. Nicholas George Baccash (2010) argues that mean-variance is quite

better for global portfolio. He researches G7, MSCI DM and MSCI EM, find

that emerging markets offer to American investor the best opportunities to reap

the benefits of global equity diversification.

However, mean-variance builds its validity on a set of unrealistic assumptions.

Follmer and Leukert (2000) describe a problem of partial hedging with quadratic

loss function. Actually it is maximizing expected utility with non-negative

marginal utility. Richard (2004) explains why mean-variance optimization is

not useful for investment management. Investors are never perfectly informa-

tionally efficient, and facing the risk of estimating portfolio risk and return

(ambiguity or model uncertainty), and biasedness is unfortunately magnified by

MV optimizers. Michaud (1989) discuss the practical problems of mean-variance

model such as generating suboptimal portfolios far from efficient frontier. Oth-

ers studies also prove that traditional mean-variance could be problematic when

distributional conditions are violated. The main problem of Markowitz model is

that the optimization procedure often results in concentrated portfolios, require-

ment of too much sample data, model lack of robustness and corner solutions.

(see Michaud (1989), Best and Grauer (1991) and Black and Litterman (1992))
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As more critiques focused on unrealistic quadratic utility function assumption,

forecasting error magnifier, some researchers (Engle 2002, Timmermann 2006)

propose several techniques enhancing estimation accuracy in expected return

and covariance matrix. In this chapter, we intend to design a hierarchical

mean-variance portfolio scheme consisting of trading strategy, state classifier

and classical optimizer. The aim is to offering a fresh application of traditional

portfolio technique. The following section is organized as: 3.2 establishes an

explicit mean-variance interpretation both in discrete and continuous case. 3.3

attempts to set up a momentum strategy from path-dependent PDEs. 3.4 in-

troduces data pre-processer as a classifier for various market state. 3.5-3.8 are

an empirical example followed by conclusion.

4.2 Model Configuration

Since risk/reward paradigm has been well established and restated by differ-

ent frameworks, interpretation can be varied from a special case of stochastic

dominance portfolio choice to continuous stochastic multi-period utility maxi-

mization under certain constraints. In this section, we are not so ambitious to

synthesize a comprehensive model applicable to all scenarios, but intending to

demonstrate its error-magnifier nature from econometric perspective.

Consider N risky assets with random returns vector r(t) and a risk free asset

with known return rf (t). Define the excess returns by the difference of the

two, with conditional means and covariance matrix µ(t) and V (t) respectively.
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Assume, for now, that the excess returns i.i.d. with constant moment.

Suppose the investor can only allocate wealth to the N risky securities. In the

absence of a risk-free asset, the mean-variance problem is to choose the vector

of portfolio weights x(t), which represent the investors relative allocations of

wealth to each of the N risky assets, to minimize the variance of the resulting

portfolio return rp(t) = x
′
r for a predetermined target expected return of the

portfolio rf + µ:

minxV ar(rp) = x
′
V x (4.1)

Subject to

Erp = x
′
(rf + µ) and

N∑
i=1

xi = 1 (4.2)

The first constraint fixes the expected return of the portfolio to its target and

the second one is a standardized condition to ensure constant leverage in the

risky assets. Applying the Lagrangian and solving the corresponding first-order

conditions, we have the following optimal portfolio weights:

x∗ = Γ + Ψx

With

Γ =
1

C4
[C2(V −1λ)− C1(V −1λ)] and Ψ =

1

C4
[C3(V −1µ)− C1(V −1µ)]

Where λ a scalar factor measuring risk aversion and C1 = λ
′
V −1µ,C2 =

µ
′
V −1µ,C3 = λ

′
V −1λ,C4 = C2C3 − C2

1 . The minimized portfolio variance

is equal x∗
′
V x∗.
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The Markowitz paradigm yields two important economic insights. First, it il-

lustrates the effect of diversification. Imperfectly correlated assets can be com-

bined into portfolios with preferred expected return-risk characteristics. Second,

it shows that, once a portfolio is fully diversified, higher expected returns can

only be achieved through more extreme allocations (notice x∗ is linear in µ) and

therefore by taking on more risk. If we have non-zeros risk-free rate, efficient

concave frontier by CAPM is constructed as figure

The problem is also evident as the paradigm relies on accuracy of forecast on ex-

pected return and covariance. To understand mechanism of error magnification,

derivative of optimal weights respect to expected return is given by

dx = αXdt+ σXdW (4.3)

Which has an explicit variance as

V arX(t) = [X(0)]2exp(2αt)[exp(σ2t)− 1]

We define equivalence of two stocks by the same parameter set of {α, σ,W} in

equation (4.3). Here essentially both characteristics of stochastic process and

driven force of randomness are shared. Path consistency is a strong condition

for stochastic equivalence in this setting. A weak similarity may be defined as

Definition 4.1 Two risky assets are said to be weakly stochastically equivalent

if and only if they shared {α, σ}.

One interesting aspect concerning the equivalence is that there is no possibility

of arbitrage. Path equivalence guarantees X1 − X2 = 0. Weak equivalence,
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contrarily, indicates non-stationary process of difference that mean-reverting

style strategy does not work. A portfolio P is a positive valued combination of

risky assets which satisfies the following conditions. Consider the identity:

dP

P
= w

′ dX

X
(4.4)

Where w = w(t) is weight variable vector, reflecting implementing certain port-

folio policy and
∑
w = 1. X is vector of stock process {X1, XN}. A passive

portfolio is a portfolio in which the number of shares remains constant which

reads:

dP = v
′
dX (4.5)

Where v is the fraction of shares in portfolio P . Market portfolio is a passive

portfolio by nave summation of all stocks. A balanced portfolio is a portfolio

of the form (4.4) where all weights w are constant. It has consequently two

parameters {αP , σP } describing its lognormal process.

With concave utility function, followed by Markowitz (1952, 1956, 1959) and

Merton (1973), CAPM provides efficient portfolios that maximizes investors

utility.

4.3 Predictability and Trading Strategy Design

In this section, we intend to develop a predictor of return from path-dependent

PDEs and time-series momentum, in hope of enhancing mean-variance portfolio

performance.
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Theorem 4.2 (Dupire, B. 2009) Consider the functional running maximum

of the path:

Mt = max
0≤µ≤t

Xt(µ)

Here X ∈ Λt ∈ Λ is a path of xt up to time t. xt is a real-valued random

variable with standard Brownian motion dxt = dw. A functional is a mapping

f:Xt → R Then following equation holds:

Mt(u) = mu = x0 +
1

2
L̄0
u (4.6)

Where u ∈ [0, t] and mu is maximum value at time u. L̄0
u denotes local time

when mu − xu = 0 is satisfied.

Remark: In classical Brownian motion, maximum is proportional to time spent

to beat the maximum. Equation (4.6) however shows momentum effect that

stronger upside potential is associated with the time spent on beating maximum.

It justifies profitability of popular momentum strategy. Note that it doesnt as-

sume fractional Brownian motion which means that even path-standard Brow-

nian motion somewhat exhibit inertia and long-term memory.

We may also define the functional running minimum of the path and obtain the

following results.

Lemma 4.3 Assuming the same condition as Theorem 3.1, consider the func-

tional running minimum of the path:

Kt = f(Xt) = min
0≤u≤t

Xt(u)
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Then following equation holds:

Kt(u) = ku = x0 −
1

2
L0
u (4.7)

Lemma 4.4 With conditions and notations the same as Theorem (4.2) and

Lemma (4.3) except dxt = σdw and σ is constant. We have analogous relations:

Mt(u) = mu = x0 +
σ

2
L̄0
u (4.8)

Kt(u) = ku = x0 −
σ

2
L0
u (4.9)

Remark: (4.8) and (4.9) are consistent with intuition that higher volatility

indicates wider deviation. We may rearrange those equations to demonstrate

relative profit of directional movement:

EDt = (mt − x0)− (x0 − kt) =
σ

2
(L̄0

u − L
0
u)

And define sharpe ratio consequently assuming zeros risk-free rate

srt =
Dt

σ
=

1

2
(L̄0

u − L
0
u)

It suggests that contribution of sharpe ratio is the discretion of the time that

price stays at highest level or lowest level.

A profitable strategy thus is designed to gain an exposure on L̄0
u − L0

u. Or

trading signal is generated by sign(L̄0
u−L

0
u). To avoid the situation of stagnate

mt or kt when price temporarily moves in adverse direction after a new mt

or kt was achieved, we may allow flexible origin. One practical method is to

fix rolling window length in calculating (L̄0
u,−L

0
u), and base decision on most

recent fluctuations.
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4.4 Nonparametric Classifier Filtering

4.4.1 K Nearest Neighbors (KNN)

Suppose a real-valued random variable X ∈ Rq and we have a sample of real-

izations {X1, , Xn}.

In general setting, consider a point in q−dimensional real space X ∈ Rq, and

random variable xi, some distance metric Di = ‖xi −X‖ is defined to measure

similarity. Here {xi, i = 1, ...n} may be chosen to be feature vector. The or-

der statistics follow definition by Kendall (1956), i.e. Ri =
∑n
j=1 1(Dj ≤ Di).

The observations that satisfy {xi|Ri ≥ k} are the k nearest neighbors the most

similar and comparable elements. We therefore are able to construct knn den-

sity estimate and knn regression like kernel method. Note that the classifier

truncates sample to reduce contamination of outliers

Definition 4.5 Suppose X ∈ Rq has multivariate density f(x). A multivariate

uniform kernel to estimate local f(x) at x can be designed inversely proportional

to the rank

f̃(i) =
k

nc
R−qi

Where c = πq/2/(Σ((q + 2)/2)) represents space of unit ball expanded in Rq.

Using second-order taylor expansion, it is easy to show that unconditional ex-

pectation of density is true value biased by the square of ranks multiplied by

gradient of f(x). Variance is affected by the expectation of ranks and f(x).

Definition 4.6 Given dependent variable is functionally correlated with ex-

113



4.4 Nonparametric Classifier Filtering Alternative Portfolio Methods

planatory variables:

yi = Ψ(xi) + ei and E(ei|xi) = 0

Simple knn estimator is the arithmetic mean of nearest neighbors:

Ψ̃(x, k) = E1(Ri ≥ k)yi =
1

k

n∑
i=1

1(Ri ≥ k)yi

If some weighting function w is introduced, smoothed k-nn estimator is

Ψ̃(x) =

∑n
i=1 w(Ri ≥ k)yi∑n
i=1 w(Ri ≥ k)

Cover (1968) first discussed convergence rate for knn algorithm. Short, R. and

Fukanaga, K. (1980,1981) further discussed measures applicable in defining op-

timal distance.

4.4.2 Discriminant Adaptive Nearest Neighbor Classification (DANN)

Nearest neighbor classifier expects a locally constant conditional probability and

spread a sphere to boundarize similar points. This method suffers severely as

dimension increases. It also performs poorly compared to Bayesian technique

when boundaries exhibit distorted nature. Hastie and Tibshirani (1996), De-

lannay, N. et. al. (2006) proposed alternative classification DANN, which is

flexibly adaptable to determine local decision boundaries efficiently. Its proce-

dure is summarized as:

• Set prior metric matrix Γ0 = I (typically identity one) or start from

updated Γi
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• Obtain k nearest neighbors round point concerned xb with some specific

distance measure

• Compute the weighted loss matrics either within the included sample W

or interactive one across two subsets B.

• Conduct bayesian modification by Γi+1 = W−1/2[W 1/2BW−1/2+εI]W 1/2

• Stop iteration until the maximum number of loops is reached, and use the

revised Γ∗

4.5 Data Input and Implementation

Up to now, several blocks have been fragmentally discussed. We are able to

introduce a coherent framework of combining these techniques. The basic idea

is hierarchical structure aiming to maximize portfolio value.

• Use strategies in Section 4.3 as preliminary filter biasing asset return. Pos-

itively skewed distribution tends to enhance absolute overall performance

regardless of portfolio scheme. It offers opportunity to test applicability

of knn mean-variance optimization.

• Cluster similar historical data using knn or DANN. The pre-processing

procedure is acting as a filter purifying local behavior. This is the ma-

jor difference that our approach deviates from traditional mean-variance

analysis.

• c) Apply mean-variance optimizing portfolio.
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Practically indicators characterizing similarity should be defined in advance. In

this research, we focus on a set of technical indicators whose effectiveness can

be properly assessed (White 2000, Timmermann and White 1999). It turns

out that only elements with statistically significant predictive power contribute

positively to purifying samples.

To test efficiency of the approach, we collect 24 global commodity future daily

data including metals, energy, live stocks, agriculture and soft dating back to

1st Jan. 1999. They are traded in Chicago Board of Trade (CBOT), London

Metal Exchange (LME), Inter-Continental Exchange (ICE) and Chicago Metal

Exchange (CME). For each future contract, a joint index that combines the

most actively traded contracts is selected. If one commodity is traded in various

exchanges, only the most liquid contract is chosen. Rolling return is ignored in

this study. Table 4.1 shows contract details and the date of listing. Descriptive

Statistics are summarized in table 4.2.

All commodities during the past 15 years have experienced price appreciation,

reflected by positive mean returns. Ex Ante Volatility is fairly stable cross

section. Unlike stocks, futures differ remarkably in 3rd-order moment, an indi-

cation of diverse directional long-term movement. Applicability of momentum

strategy is anticipated evidenced by much higher kurtosis.

In addition, both V aR0.01 and CV aR0.01 varies significantly relative to V aR0.05

and CV aR0.05, which is more volatile than standard deviation. The phenom-

ena may verify employing mean-variance is preferable to pessimistic portfolio,
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whose performance is heavily influenced by tail risk stationarity. Section 3.4.1

discussed this issue in details.

4.6 Performance

Figure 3.2 plots out-of-sample performance of three portfolio scheme: Mean-

variance approach, nave portfolio that equally invests in each contract and buy-

and-hold benchmark.

Albeit MV approach is able to achieve higher return, the larger volatility can

significantly erod its superiority. Another remarkable advantage is MVs return

is positively skewed, indicating higher proposition of profitable period.

4.7 Analysis

4.7.1 Reality Check on Strategy Profitability

As we discussed in Section 4.5, the revised mean-variance scheme also depends

on effectiveness of trading strategy developed in Section 4.3. Table 4.4 compiles

manipulated return after it is loaded on each contract.

Compared with Table 4.2, mean return shrinks associated with trading strategy.

This is partially because neutral position occupies large portion of trading time

in contrast to full long position in buy-and-long. Standard deviation and tail

risk, on the contrary, is effectively controlled. Skewness and Kurtosis shows its

little improvement in higher order normality. It seems that mixed evaluation
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results cast doubt on strategy profitability. In order to further investigate its

validity, we adopt reality check proposed by White (2000). Basically it experi-

mentally tests the null hypothesis:

H0 = E[ln(1 + Skr)− ln(1 + S0r)] = 0

Where Sk is trading signal generated by strategy k. r is asset return. S0

represents some benchmark signal. In our case, buy-and-hold serves as basic

policy which means S01. Further details of the technique are referred to Section

6.3. Table 4.5 summarizes p-value with different smooth parameter q, or average

block length of 1/q.

Null hypothesis H0 is fail to reject only in live cattle case. Wheat and cotton

has some mixed conclusion but the trading strategy reserves ability of profiting

in 21 out of 24 contracts. One may note that various smooth parameters provide

consistent p-value which is a major advantage of stationary bootstrap (Romano,

1994)

4.7.2 Robustness

Out-of-sample degeneration is defined by the difference between target return

and realized return. Distribution of mean-variance degeneration is shown in

Figure 4.3.

As Michaud.R (2008) states, active portfolio suffers more or less from the in-

ferior performance relative to training period. It is evoked by inaccuracy in
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forecasting techniques or improper modeling of risk pricing as well as data gen-

erating process. Since both asset return and strategy return is leptokurtic, we

may use qq-plot detecting absolute and relative normality

4.8 Concluding Remarks

Mean-variance approach, deserving appraisal mixed with critiques, remains con-

troversial in literature after 60 years debate. Yet however severely it is restricted

by unrealistic assumptions and practical inoperability, dual problem paradigm

or constrained optimization, in the spirit of utility maximization, is still mo-

tivating portfolio research. As the starting point, we attempt to construct a

hierarchical mean-variance to capitalize on directional moment and strategi-

cally allocate resource on state-dependent risk factor. The framework has a

higher profitability than both equal weights scheme and benchmark, but suf-

fers from out-of-sample degeneration and non-normality. It reveals some basic

disadvantages that most active portfolio management cannot avoid.
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4.9 Appendix

Table 4.1: Contracts Covered in MSCI

Commodity Exchange Category Start Date

Aluminum LME Metal 1st Jan 1999

Copper LME Metal 28th May 2002

Lead LME Metal 1st Jan 1999

Nickel LME Metal 1st Jan 1999

Zinc LME Metal 1st Jan 1999

Gold CME Metal 1st Jan 1999

Silver CME Metal 1st Jan 1999

Light Crude Oil CME Energy 1st Jan 1999

Brent Crude Oil CME Energy 1st Jan 1999

Heating Oil CME Energy 1st Jan 1999

Gasoline CME Energy 20th Oct. 2005

Gas Oil CME Energy 8th Sep. 2003

Natural Gas CME Energy 1st Jan 1999

Lean Hogs CBOT Live Stocks 1st Jan 1999

Live Cattle CBOT Live Stocks 1st Jan 1999

Feeder Cattle CBOT Live Stocks 1st Jan 1999

Wheat CBOT Agriculture 1st Jan 1999

Corn CBOT Agriculture 1st Jan 1999

Soybean CBOT Agriculture 30th Mar. 2006

Coffee CBOT Agriculture 1st Jan 1999

Sugar CBOT Agriculture 1st Jan 1999

Cocoa CBOT Agriculture 1st Jan 1999

Cotton CBOT Agriculture 1st Jan 1999
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Figure 4.1: Mean-Variance Efficient Frontier

Figure 4.2: Portfolio Performance
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Figure 4.3: Out-of-Sample Degeneracy
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(a) Pessimistic Portfolio and Mean Variance

(b) Pessimistic Portfolio and Mean Variance

Figure 4.4: Out-of-Sample Degeneracy

123



4.9 Appendix Alternative Portfolio Methods

Table 4.2: Descriptive Statistics of Continuous Futures Index

Mean is multiplied by 10, 000. Empirical Value-at-Risk and Conditional VaR

are quantiles and average values beyoud quantiles after sorting returns.

Commodity Mean SD Skewness Kurtosis V aR0.01 CV aR0.01 V aR0.005 CV aR0.005

Aluminum 0.94 0.0138 -0.2479 5.4812 -0.0404 -0.0515 -0.0214 -0.0320

Copper 4.9 0.0190 -0.1278 6.8561 -0.0558 -0.0714 -0.0300 -0.0450

Lead 3.8 0.0211 -0.2543 6.3788 -0.0627 -0.0777 -0.0346 -0.0512

Nickel 3.2 0.0240 -0.1460 6.5721 -0.0673 -0.0867 -0.0382 -0.0551

Zinc 1.8 0.0192 -0.1984 5.8767 -0.0541 -0.0716 -0.0307 -0.0459

Gold 3.9 0.0117 -0.1609 9.6894 -0.0334 -0.0441 -0.0184 -0.0281

Silver 3.6 0.0200 -1.0049 11.240 -0.0615 -0.0900 -0.0320 -0.0517

Light Crude 5.7 0.0238 -0.2171 7.4242 -0.0669 -0.0917 -0.0373 -0.0558

Brent Crude 6.1 0.0219 -0.2390 5.9506 -0.0599 -0.0796 -0.0348 -0.0512

Heating Oil 5.7 0.0231 -0.5126 7.9880 -0.0601 -0.0879 -0.0357 -0.0530

Gas Oil 5.3 0.0194 0.0619 4.7888 -0.0504 -0.0601 -0.0326 -0.0429

Gasoline 3.0 0.0241 -0.1707 6.8677 -0.0730 -0.0905 -0.0408 -0.0581

Natural Gas 1.4 0.0349 0.5931 8.7527 -0.0847 -0.1103 -0.0533 -0.0746

Lean Hogs 2.5 0.0207 0.4378 28.11 -0.0432 -0.0814 -0.0281 -0.0435

Live Cattle 1.9 0.0101 0.1934 9.1447 -0.0265 -0.0367 -0.0155 -0.0228

Feeder Cattle 2.1 0.0089 -0.1718 7.0558 -0.0239 -0.0320 -0.0144 -0.0205

Wheat 2.2 0.0203 0.2460 5.4825 -0.0511 -0.0670 -0.0300 -0.0436

Wheat 2.1 0.0179 0.0969 5.1622 -0.0492 -0.0600 -0.0272 -0.0397

Corn 2.1 0.0187 -0.3942 12.846 -0.0506 -0.0663 -0.0285 -0.0419

Soybean 3.7 0.0171 -0.7544 7.9480 -0.0530 -0.0679 -0.0290 -0.0437

Coffee 0.042 0.0223 0.3285 9.2241 -0.0582 -0.0792 -0.0345 -0.0500

Sugar 0.14 0.0234 -0.5249 7.9498 -0.0696 -0.0958 -0.0354 -0.0567

Cocoa 1.4 0.0204 -0.1611 5.7570 -0.0554 -0.0739 -0.0324 -0.0476

Cotton 0.91 0.0200 -0.4898 15.181 -0.0513 -0.0682 -0.0321 -0.0457
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Table 4.3: Momentum Strategy Performance

Mean is multiplied by 105 while standard deviation and all tail risk measures

by 104.

Commodity Mean SD Skewness Kurtosis V aR0.01 CV aR0.01 V aR0.005 CV aR0.005

Aluminum 3.8 20 0.2491 33.652 -56 -93 -23 -46

Copper 6.0 25 -0.1971 27.153 -43 -73 -17 -35

Lead 2.6 16 5.0006 171.77 -42 -72 -16 -34

Nickel 4.5 10 0.4184 36.346 -26 -40 -13 -22

Zinc 5.3 17 3.4549 58.328 -50 -69 -18 -36

Gold 5.3 27 -0.3716 53.511 -82 -139 -29 -64

Silver 4.9 16 0.9518 32.878 -49 -77 -19 -39

Light Crude -1.4 11 -0.1709 26.643 -35 -53 -16 -29

Brent Crude 3.5 12 0.1814 18.874 -40 -57 -17 -31

Heating Oil -0.75 11 -0.3096 21.061 -37 -55 -16 -29

Gasoline 1.5 11 0.8728 26.939 -33 -51 -14 -26

Gas Oil 0.22 15 -0.5590 31.879 -48 -76 -20 -38

Natural Gas -0.39 7 -0.6946 23.280 -27 -39 -10 -20

Lean Hogs -3.7 22 -4.8581 171.60 -51 -125 -18 -47

Live Cattle 8.5 26 3.1357 80.278 -71 -115 -26 -56

Feeder Cattle 8.8 26 -0.3764 19.773 -82 -124 -35 -65

Wheat -3.5 12 -3.9207 64.937 -34 -69 -15 -31

Wheat -1.9 14 -1.8019 33.321 -47 -72 -18 -36

Corn -3.7 18 -7.8238 227.23 -54 -99 -20 -44

Soybean 3.6 18 0.8528 23.101 -57 -78 -23 -43

Coffee -2.7 11 0.8992 26.409 -37 -58 -14 -29

Sugar 2.4 13 -2.5954 89.374 -38 -65 -14 -29

Cocoa -2.9 14 -4.9292 150.01 -46 -76 -16 -35

Cotton -3.3 13 -1.2842 60.423 -41 -66 -17 -33
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Table 4.4: Reality Check p-Value

r is the reality check statistics on return. sr is the reality check statistics on

sharpe ratio.

q = 0.5 q = 0.1 q = 0.02

r sr r sr r sr

Aluminum 0 0 0 0 0 0

Copper 0 0 0 0 0 0

Lead 0 0 0 0 0 0

Nickel 0 0 0 0 0 0

Zinc 0 0 0 0 0 0

Gold 0 0 0 0 0 0

Silver 0 0 0 0 0 0

Light Crude 0 0 0 0 0 0

Brent Crude 0 0 0 0 0 0

Heating Oil 0 0 0 0 0 0

Gasoline 0 0 0 0 0 0

Gas Oil 0 0 0 0 0 0

Natural Gas 0 0 0 0 0 0

Lean Hogs 0 0 0 0 0 0

Live Cattle 1 0.52 0.05 0.06 0.42 0.08

Feeder Cattle 0 0 0 0 0 0

Wheat 0 0.12 0 0.28 0 0.2

Wheat 0 0.02 0 0.04 0 0

Corn 0 0 0 0 0 0

Soybean 3.6 0 0 0 0 0

Coffee 0 0 0 0 0 0

Sugar 0 0 0 0 0 0

Cocoa 0 0 0 0 0 0

Cotton 0 0 0.54 0 0.38 0
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Table 4.5: Statistics of Performance

Mean and standard deviation are multiplied by 102.

Mean-Variance Naive Benchmark

Mean 16.35 -2.14 6.54

SD 38.48 23.87 14.72

Skewness 1.57 -0.42 -0.32

Kurtosis 41.71 23.73 7.52

Table 4.6: Out-of-Sample Degeneration Moments

Mean and standard deviation are multiplied by 102.

Mean SD Skewness Kurtosis

D -3.7 2.47 1.48 39.95
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5 Functional Predictability of Factors and Basis

Portfolios

5.1 Background

5.1.1 Risk Factors

One theoretically critical and practically valuable topic in financial research is

whether and how asset return can be predicted from a set of risk factors. Rich

literature associated with the issue can be roughly categorized by three mo-

tives: exploring new factors that are unexplained by existing ones; measuring

efficiency with alternative statistical approaches; the mechanism that assets are

behaviorally priced. Early attempts to the first dimension might be dated back

to Sharpe (1964) and Black (1972). The failure of well-known CAPM suggests

that cross-sectional return distribution should not be solely dependent on sen-

sitivity to market return. This leads to a generalized version by introducing

more macro indicators (Cox and Ross (1976); Roll and Ross (1980)). Firm-

specific factors, including size (Banz (1981)), leverage effect (Bhandari (1988))

and B/M ratio (also known as HML or B/P ratio) (Chan et al. (1991)) to name

a few, offer interpretation different from unobserved loadings like beta. Their

joint effect on US stocks is then investigated by Fama and French (Fama and

French (1992); Fama and French (1993)). Leverage is abandoned because it is

absorbed by B/M. Endogeneity has to be tackled due to interaction of Beta and

firm size. It is addressed by constructing 100 Size-beta portfolios. In method-
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ology session, we will show that there exists an elegant way in the context of

functional dependence.

One effort of subsequent research is disentangling effect of F-F factors and as-

sessing efficiency with new observations. Berk (1995) pointed out that size-

related measure is an evidence of model misspecification rather than a tradi-

tional anomaly. Ali et al. (2001) confirmed that the B/P ratio is a representation

of market mispricing due to high idiosyncratic risk, transaction costs and lower

investor sophistication. Concerning empirical contradiction to F-F result, Pen-

man et al. (2007) found that B/P ratio can be decomposed into enterprise B/M

ratio and leverage component, where the latter, as a proxy of financial distress,

is negatively related to expected return conditioning on B/M ratio. Frazzini

and Pedersen (2014) proposed a tilting strategy of market betas to capitalize

on the compensation for liquidity premium. Apergis and Payne (2014) revisited

size effect in G7 stock markets from 1991 to 2012, using panel threshold cointe-

gration. Their finding is its asymmetric impact after controlling B/M and P/E

ratio.

Another widely-documented anomaly is strong inertia of price movement, pio-

neered by Jegadeesh and Titman (1993). Thay showed that there is persistent

outperformance of buy-winners-sell-losers in US stock market. Carhart (1997)

extended F-F model with momentum factor and generated less pricing error in

contrast with other comparable models. Asness (1997) argued that negative re-

lation between value and momentum is present. Grinblatt and Moskowitz (2004)

studied return dynamics with different time scale and observed that one-year
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winners gain but one-month and three-years ones suffer. The research by Shieh

et al. (2012) suggested successful application in NYSE but not AMEX and NAS-

DAQ. Recent advances include the phenomenon that momentum occasionally

crashes during recovery period (Daniel et al. (2012) and Daniel and Moskowitz

(2013)) and remarkable forecastability in residual term in F-M regression (Blitz

et al. (2011)).

Other factors, with continual exploration on behavioral characteristics, are also

burgeoning. Ang et al. (2006) and Ang et al. (2009) reported significant con-

tribution of idiosyncratic volatility. There are also researches on net stock is-

sues effect (Pontiff and Woodgate (2008)) and financial fundamentals, for in-

stance, asset growth effect (Cooper et al. (2008)) and F-score (Piotroski (2000)).

Whether investors require a premium for higher moment risk is investigated by

Kraus and Litzenberger (1976), Amaya et al. (2011). Asness et al. (2013) de-

signed a comprehensive firm quality factor (QMJ) to evaluate firms strength in

four dimensions. Strong profitability of market-neutral strategy on the quality

indicator, which is the average of ranking scores, is empirically evidenced in

US market. However, predictability of QMJ is not statistically supported after

excluding four factors. This inconsistency cast doubt on widely-adopted testing

method.

In regard with growing family of factors and their potential interpretability,

Chen et al. (2010) proposed an alternative three-factor model (CNZ) consisting

of a market risk, an investment factor and ROA. The main intuition is that the

price fluctuation is significantly affected by its discount rate, of which invest-
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ment factor and ROA can be good proxies. The empirical results document

an enhancement in U.S. stock market compared to F-F model. Ammann et al.

(2012) applied CNZ in 10 EU countries with data ranging from 1990 to 2006.

They report comparable, if not better, performance.

To summarize, risk factors have three sources: the sensitivity of individual stock

with market index, fundamental elements as indicators of firm′s prospect, and

past performance. The efficiency is from investor behavior and affected by their

perceptions of those risks. Thus as long as factors are fully priced, excess return

is merely a reward for excessive risk exposure.

5.1.2 Empirical Studies on Emerging Stock Market

Due to different regulations, cultures, matching mechanisms, data availability

and investor behavior, emerging markets may vary in risk structure, on which

the researches may offer a test of factors′ universality. In this section, we will

apply cross-sectional analysis for US and Chinese market, in hope of gaining

robustness from comparison.

Claessens et al. (1995), Fama and French (1998) conducted nascent investiga-

tions with the International Finance Cooperation data from 19 and 13 emerging

stock markets, respectively. In spite of slight difference in data sample, they

concluded opposite impacts on market risk, size and value factors. The contra-

diction may be attributed by the difference in modeling technique. More recent

research by Cakici et al. (2013) is examination on momentum and value effect
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in 18 emerging market from 1990 to 2011. Price correction for low P/B ratio

is widely documented but buy-winners-sell-losers did not succeed in Eastern

EU. In global context, domestic factors have higher significant interpretability.

Lischewski and Voronkova (2012) investigated existence of liquidity premium

in Warsaw Stock Exchange. The failure of its significant contribution may be

caused by the fact that a large proportion of shares is controlled by a small num-

ber of institutions and compensation of illiquidity is not effectively reflected. On

the contrary, Narayan and Zheng (2010) showed that the risk is priced in Chi-

nese stock market between 1993 and 2003.

In case for Chinese market, size and B/M are considered important, while in-

significance of market beta is caused by individual investors’ irrational behav-

ior and government intervention (Eun and Huang (2007); Wang and Di Iorio

(2007)). With respect to momentum, Naughton et al. (2008) examined alter-

native trading strategies exploiting the anomaly in Shanghai Stock Exchange,

whose profitability explains short-term dynamics in this market. Consistent

with Ang et al. (2006) and Ang et al. (2009), idiosyncratic volatility factor also

has remarkable influence (Eun and Huang (2007); Nartea et al. (2013)).

Our research on emerging market has two-fold benefit. It offers data set of a

counterpart with different legitimate system and market structure, therefore, a

way of ′robustification′. A further study in global market is also rewarded.
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5.1.3 Functional Data Analysis

Since stocks exhibit similar behavior cross-sectionally, estimated standard error

would be correlated when applying pooled OLS. One approach, proposed by

Fama and MacBeth (1973), is first to conduct time-series analysis in a rolling

sample and run cross-sectional OLS on de-correlated cross-sectional data. It im-

plicitly assumes linearity of prediction, which is not necessarily satisfied (Hiem-

stra and Jones (1994); Qi and Maddala (1999)). One attempt to tackling non-

linearity is neural network, which typically has several hidden layers trained

to forecast multi outputs via a set of factors (Nicholas Refenes et al. (1994)).

But this method fails to deliver a measure of predictability, therefore, can be

easily contaminated by irrelevant variables. Worse still, it suffers over-fitting in

training sample as information to noise ratio is low. A flexible approach that

is able to offer statistical inference as well as modeling nonlinear dependence is

needed. Another concern of F-M is the difficulty in implementation accounting

for missing observations. This problem is especially severe in emerging markets.

Finally, multivariate analysis is computationally costing accounting for large

data set.

With regard to inefficiencies of current methods, we propose a FDA framework

for testing factor predictability. It is advantageous in dimension reduction. For

example, NYSE has more than 3,600 stocks; similar case is in Chinese A share

market with approximately 2,600 stocks. In this case, idea of continuous curve,

rather than vectors in multivariate analysis, is more appropriate for a large
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system. The technique commonly used in smoothing (reducing dimension) is

functional principle component analysis (FPCA), which extracts a set of basis

function that maximally explains variation of the curves (Ramsay and Silver-

man (2005)). By projecting functional objects on orthonormal basis, we are

able to represent them as a vector of scores, where classical analysis applies.

Kokoszka and Reimherr (2013) proved that dependence of the sign of scores is

asymptotically normal and report insignificant simulation results in predicting

intraday shapes of curve. Hyndman and Ullah (2007) proposed a two-step al-

gorithm followed by the principle of FPCA to predict mortality and fertility

rates in France and Australia. Other applications have been further discussed

in many aspects (Ramsay and Silverman (2005);Horvath and Kokoszka (2012);

Mestekemper et al. (2010)).

One successful application of functional forecasting is in vehicle insurance pric-

ing Segovia-Gonzalez et al. (2009). They argued that even though two methods

have the same objective in re-building an entire process within sampling from

different time period, multivariate analysis still bears shortcomings, such as

the difficulty in interpretation of variance-covariance and correlation structure;

while, FDA has its merit in de-noising observations through local information.

Cai and Hall (2006) showed the existence of functional forecasting method, as

well as the difference in properties of functional regression estimation with pre-

diction from an estimator of functional slopes. Sood et al. (2009) reported that a

better prediction of penetration of new products in using augmented functional

model than that of traditional forecasting model. Goia et al. (2010) collected
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heating demand curves to forecast intra-daily electricity loading demand. As

samples in the same group exhibit clustered variance but differs massively from

other groups, classification of observations is recommended. The spirit of the

procedure is to enhance prediction accuracy via categorization. Antoch et al.

(2010) argued that electricity consumption are intrinsically different in two pe-

riods, thus grouping objects by weekdays and weekends is valid. A functional

clustering forecast model was proposed by Abraham et al. (2003). James and

Hastie (2001) constructed a functional linear discriminate analysis to classify

new curves.

Asymptotics associated with PCA is dated back to Anderson (1963). Assuming

observations are from a multivariate normal distribution, the function of eigen-

values is asymptotically normally distributed. Hall and Hosseini-Nasab (2006)

showed that the efficiency of eigenvalues in FPCA is dominantly affected by their

spacings. Bootstrap is recommended for constructing confidence interval. Yao

et al. (2005) proposed a method of functional linear analysis whose estimator is

consistent and asymptotically normal. Mas (2007) discussed the conditions of

weak convergence in functional autoregressive model.

At the best of our knowledge, there are few researches employing FDA to analyze

factorized return. One close study by Zhang (2011) is to estimate market beta in

functional CAPM. It differs from our aim, however, in that intraday return curve

is used instead of constructing a functional object of cross-sectional returns. The

difficulty in the latter application is absence of natural topological structure of

a market. Our methodology part is then responsible for designing an algorithm
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of functionalizing cross-sectional observations.

5.2 Methodology

5.2.1 Inference for functional linear dependence

The primary concern of this part is to design a robust estimator and make

inference on cross-sectional correlation between stock return r = (r1, · · · , rN )T

and factor f = (f1, · · · , fN )T . For simplicity, it is assumed that both r and f are

symmetrically distributed and standardized with zero mean and unit standard

deviation. The null hypothesis is

H0 : ρ =
Eπ(r)Tπ(f)

N
= 0 (5.1)

Where π is some kennel function reserving monotonicity. It can take either

simple linear form or nonlinear ones that incorporate local information and are

robust to outliers (Devlin et al. (1975)). One common version of the former is

the sample correlation coefficient:

ρc =
rT f

N
(5.2)

Which is proved to the maximum likelihood estimator under normal distribu-

tion. However, it loses efficiency in case that normality is violated and leads

to contaminated estimation of correlation. One can penalize observations with

large deviations from the mean (Pitas and Venetsanopoulos (1990)) or even trim

tails by introducing Huber bounded function H(z, k) = max{−k,min(z, k)}.

Other two popular methods are based on rank statistics. One is Spearman rank
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correlation (Spearman (1904)) coefficient

ρc = 1−
6
∑i=1
N (R(ri)−R(fi))

2

N3 −N
(5.3)

For a set of observations {xi, i = 1, · · · , N}, rank operator is,

R(xi) =

N∑
j=1

1(xj ≤ xi) (5.4)

where 1 is the identity function. Another is Kendall coefficient τ (Kendall

and Gibbons (1990)), serving as a measure of concordance. Where sgn is sign

function. Asymptotics of them can refer to Kendall and Gibbons (1990), Hjek

et al. (1967).

In the context of forecasting, the interest is whether the effect of lagged factors

on current returns is significant, which has important implication for efficiency of

the predictors. It is easy to show that any market-neutral4 portfolio w, perfectly

concordant with the ranks of factors, delivers positive expected return.

{xi, i = 1, · · · , N} ifH0 is rejected and τ(w, f) = 1 (5.5)

The intuition is that market anomalies with predictability can always be ex-

ploited by a family of allocation schemes different from nave strategy (equal

weights). But assertion of the inverse relation is not necessarily true. Even if a

profitable portfolio, with functional w(f) is present, predictability of f cannot

be assured.

41Tw = 0
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The correlation measures discussed previously implicitly require that the num-

ber of stocks equal to that of factors. This assumption may not hold when all

stocks in a market are accounted for, due to frequent listing and delisting. This

problem also exists in the scenario that only constituents of an index are inves-

tigated. The index is rebalanced frequently to maintain its representativeness,

but this additional adjustment exaggerates difficulty in correlation estimation.

Generally speaking, because traditional methods require homogeneous data gen-

erating process, they suffer from a highly changing sample.

Another disadvantage is the poor performance with time-varying correlation.

Consider a modified gross error model Tukey (1960) in which the joint distri-

bution of (rt, ft)at time t conditioning on an unobserved process ρt is given

by

ψ(rt, ft|ρt) = N(rt, ft; 0, 1 + k1(ρt > 0), ρt) (5.6)

Here let k � 1. The probability density function is a bivariate normal distri-

bution with zeros mean, asymmetric volatility 1 + k(1ρt > 0) and correlation

structure ρt. We also assume ρt = −ρt−1 so that rt and ft behave exactly the

opposite from the previous period. It is clear to verify thatH0 cannot be rejected

for any of the traditional measures, albeit an evolution of ρt is indeed present.

In consideration of two problems, we propose a functional method aiming at

testing existence of dependence and filtering the path of ρt simultaneously. The

procedure for univariate case is simple.

U.1 Locate stocks in descendent/ascendant order based on their fac-
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tors and form a cross-sectional return accordingly.

The purpose of the step is to construct a return series that is functionalizable.

In the next section, we will show an alternative that uses time-serial correlation.

As long as a stock has an observation of factor, it always has an unambiguous

location. It can even go delisted when return is no longer available because

smoothing fills the missing data with local information (Ramsay and Silverman

(2005)). One remarkable feature is that stocks are not geographically static

but dependent on the value of factor. If price behaves similarly with specific

rankings, this sorting algorithm offers best arrangement of data.

U.2 Apply functional principle component analysis (FPCA) to the

smoothed return curve and obtain all basis functions Ψ = {ψi|E(ξi) 6=

0}. Null hypothesis of functional linear test

H0 : Ψ = Ø (5.7)

Specifically, define trend functions Ψ0 = {ψ0| |τ(ψ0, f)| = 1}. Null hy-

pothesis of linear functional dependence test:

H0
′ : E(ξ0) = 0 (5.8)

Because of orthonomality of basis functions, there are only two trend compo-

nents with difference up to sign. By definition, they are in either perfect con-

cordance or complete disorder. Rejection of null is equivalent to assert Ψ0 ⊆ Ψ.

It is obvious that expected score is not zero even in case of gross error model
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since both scenarios give positive contributions.

The advantages of this procedure are two folds. It extracts continuous (nth

order differentiable) relations with a set of pre-specified continuous functions,

thus retains higher persistence to cross-sectional noise. Moreover, the time

series of scores can be utilized for forecasting predictability of factors. This

topic will be covered in section 5.5. As for multi factor model, the strategy

needs additional dimension reduction.

M.1 Use PCA to find a set of linear combinations {f̃1, · · · , f̃K} of those

factors that accounts for most variation.

M.2 Employ univariate analysis for each principal component f̃ i.

Since {f̃1, · · · , f̃K} are orthogonal, inference in step U.2 for f̃ i is not affected

by other factors. It avoids infeasible multivariate test that has to design sorting

algorithm for all factors. Its additional elegance is the capability of processing

large set of factors exhibiting highly correlated structure.

5.2.2 Functional dependence forecast model

As discussed in 5.2.1, cross-sectional return curve has at least one significant

component. After applying FPCA, PC1 = ψ1; PC2 = ψ2; PC3 = ψ3. As long

as functional linear dependence test implies that expected values of components

ψ∗i deviate from zero (Equation (5.7)), we assert that it has predictability for
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return at next period in the form of

r̂(t+ 1) =

K∑
i=1

ξi,t+1ψ
∗
i (t+ 1) (5.9)

However, the above equation is not feasible unless estimates of scores ξi,t+1 can

be attained. Dependence of scores can be weakly tested by adopting Kokoszka

and Reimherr (2013) procedure. The limiting distribution of signs is normal

with null hypothesis:

H0 : Λ(k) = (N − 1)
1
2

N−1∑
i−1

I
(k)
N,nI

k
N,n+1

d→ N(0, 1) (5.10)

where I
(k)
N,n = sign(ξ̂). Positive (negative) curve shape persistence is anticipated

if H0 is rejected in right (left) tail. Assuming scores follow AR(L) process, which

reads

ξ̂i,t+1 =

L∑
j=0

γiξi,t−j (5.11)

Then, equation (5.9) can be estimated as,

r̂(t+ 1) =

K∑
i=1

ξ̂i,t+1ψ
∗
i (t+ 1) (5.12)

Nevertheless, it is still necessary to prove the r̂(t+ 1) is an unbiased estimator

of r(t+ 1). In Hilbert space H, we know that r(t) =
∑∞
i 〈rt, ψi〉ψi(t), where the

operator 〈〉 is the inner product so that 〈rt, ψi〉 is the projection of rt and ψi,

i.e. score of basis function i at time t. Then, we have 〈rt, ψi〉 =
∫ 1

0
r(t)ψi(t) · dt,

for t ∈ [0, 1]. Note that because r(t) is observed discretely in the real world,
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〈rt, ψi〉 may be approximated as,

〈rt, ψi〉 =

∫ 1

0

r(t)ψi(t) · dt

≈
K∑
j=1

1

tj − tj−1
· 1

2
· (x(tj)ψi(tj) + x(tj−1ψi(tj−1))

(5.13)

Which is simply inner product of two vectors. Now assuming {rt} is a stationary

functional process, functional curve r(t+1) can be written as following,

r(t+ 1) =

∞∑
i=1

〈rt+1, ψi〉ψi(t+ 1) (5.14)

If finite number of basis is sufficient for explaining it (where FPCA applies) with

expected residual vanishing, rearranging equation (5.14) leads to

r(t+ 1) =

K∑
i=1

〈rt+1, ψi〉ψi +

∞∑
i=K+1

〈rt+1, ψi〉ψi

= r̃(t+ 1) + ε(t+ 1)

(5.15)

where E(εt) = 0. We can have the expression below from Equation (5.12),

r̂(t+ 1) =

K∑
i=1

ξ̂i,t+1ψi(t+ 1)

=

K∑
i=1

L∑
j=0

βjξi,t−jψi(t+ 1)

=

K∑
i=1

(

L∑
j=0

βj〈rt−j , ψi〉)ψi(t+ 1)

(5.16)

The difference between equation (5.15) and equation (5.12) is given by,

r(t+ 1)− r̂(t+ 1) = r̃(t+ 1) + εt − r̃(t+ 1)

=

K∑
i=1

〈rt+1, ψi〉ψi −
K∑
i=1

(

L∑
j=0

βj〈rt−j , ψi〉)ψi + εt

=

k∑
i=1

[〈rt+1, ψi〉 −
L∑
j=0

βj〈rt−j , ψi〉]ψi + εt

(5.17)
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Thus, it is required that the condition below should be satisfied for all i,

〈rt+1, ψi〉 =

L∑
j=0

βj〈rt−j , ψi〉 (5.18)

Note that the equation (5.11) merely demonstrates linear relation without basis

functions. Therefore, the estimator r̂t+1 will be an unbiased estimator for rt+1,

which means any unbiased time-serial estimator of score is valid.

5.2.3 Constructing Portfolio with Basis Functions

A portfolio policy allocates capital across return object aiming at gaining pos-

itive overall performance, thus return on a policy rpt is essentially the inner

product of portfolio weights w(t) and cross-sectional return r(t).

rpt = 〈w(t), r(t)〉 (5.19)

Practically, investment decision is made before return is realized. Following

expansion (5.15)

rpt = 〈w(t), µt +

K∑
i=1

ξiψi + ε(t)〉 (5.20)

Randomness is stem from the risk of contributions from each basis function.

Thus functional principal component analysis is regarded as a calibration of

pattern uncertainty. The error term ε(t) has zero correlation with basis function

i.e. E〈ψi, ε(t)〉 = 0.

One should notice that there exists calibration error as ε(t) is not determinstic.

By standard context of functional PCA, it assumes that

V ar(〈ψi, rt〉) = λi (5.21)
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Consider static basis portfolio linear with some basis function, which is

wi = kψi = sign(E〈ψi, µt〉)ψ (5.22)

If
∫
ψids = 0, it ensures that our portfolio is a market-neutral strategy . By

letting rt = µt +
∑K
j=1〈rt, ψj〉ψj + ε(t) and µt 6= 0, its expected return is

Erit = E〈kψi, µt +

K∑
j=1

ξiψj + ε(t)〉

= k(E〈ψi, µt〉+ E

K∑
j=1

〈ψi, ξiψj〉+ E〈ψi, ε(t)〉)

= k(E〈ψi, µt〉+ Eξi)

= kE〈ψi, µt〉 = |E〈ψi, µt〉|

(5.23)

Here we use a general assumption that expected score is zero. We now know

that the porfolio with respect to some basis function delivers strictly positve

return as long as it is not orthogonal to the functional mean.

So it is correct that portfolio performance can be boosted if some estimator on

the sign of score can be designed. Further more, the risk associated with it is

V ar(rit) = V ar(〈kψi, ri〉) = λi (5.24)

And Sharpe ratio should be

SRi =
(θi − γ)

λi
(5.25)

where θi is projection of basis function on functional mean and γ is risk-free

ratio. Equation (5.25) tells that one threshold the score needs exceeding to

guarantee positive Sharpe ratio is γ. It is also affected by the covariance struc-

ture of basis fucntion and the noise remaining unexplained. If those return
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curves are not independent, it allows an unbiased estimator ξ̂i and cofficient

k̂t = sign(E〈ψi, µt〉) + ξ̂t, equation (5.23) becomes

Er̃it = (Ek̂t〈ψi, µt〉+ Ek̂tξi) = |E〈ψi, µt〉|+ Eξ2
i > Erit (5.26)

One may concern a mixed approaches consisted of basis portfolios. By equa-

tion (5.23), excess return Erbt = (|E〈ψ1, µt〉|, ..., |E〈ψK , µt〉|)
′ − γ1. Without

losing generality, we assume ki = sign(|E〈ψi, µt〉|) = 1. Since E〈ψi, µt〉 doesn’t

contribute to variability of return curve, covariance structure is

Cb = (rbt − Erbt )
′
(rbt − Erbt ) = Eξ

′
ξ = Cξ (5.27)

Where ξ = (ξ1, ..., ξK)
′

is score vector. It is thus clear that two basis portfolios

are intercorrelated with scores. In the framework of mean-variance optimization,

consider maximizing a linear utility function with loss aversion χ and weights

β,

L = β′Erbt − χβ′Cbβ (5.28)

First-order differential with repect to β gives

β =
1

χ
C−1
b Erbt (5.29)

When building up a fractional Kelly system on the set of basis portfolios, the

above equation can also be derived with χ the proportion invested in Kelly

portfolio. It degenerates to time-series momentum in case of zeros correlations

among all return series. To obtain (5.29), We may express equity dynamics

of basis portfolio using stochastic process drive by M wiener processes W =
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(W1, ...,WM )′, then exhibit

dSt
St

= θdt+ ΠdW (5.30)

Where St = (S1,t, ..., S
′
K,t) is equity vector of K basis portfolios at time t. θ

is drift vector defined in equation (5.25) which has the same dimension of K.

Π is a K ×M matrix, capturing the effect of different sources of uncertainty.

considering a portfolio policy by investing β in the risky asset pool and left for

earning risk-free rate γ, equity of our portfolio thus follows the SDE

dAt
At

= (1− β′1)γdt+ β′(θdt+ ΠdW )

= (γ − β′1γ + β′θ)dt+ β′ΠdW

(5.31)

Apply Ito formula and it is easy to see that K×K covariance matrix Π′Π = Cξ

dlog(At) = (γ − β′1γ + β′θ − 1

2
β′Cξβ)dt+ β′ΠdW (5.32)

The spirit of Kelly system is then maximizing the drift term, whose first order

condition offers (5.29)

∂D

∂β
= −γ1 + θ − Cξβ = Erbt − Cξβ = 0 (5.33)

5.3 Experiment

5.3.1 Implementation Procedure

To apply the method of functional data, we conduct an experiment on the

predictability of momentum effect on return in Chinese stock market. The

returns in each period are sorted by the factor. The number of stocks varies, thus
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those cross-sectional objects cannot be directly fed to FPCA without additional

restrictions being placed. Our advice in this case is to categorize sorted returns

and average the ones within the same group. In this simulation, the number of

groups is always 100, so dimension of aggregated ones does not change.

Denote ni the number of returns in group i and n̄ the maximum of {ni, i =

1, ..., 100}. The categorization can be uniquely determined for each return using

the following rule:

1. ni ≥ nj if i ≤ j

2. n̄− ni ≤ 1,∀i

The additional advantage of this approach is reducing noise potentially harmful

to functionalization while retaining local behavior. It is also consistent with FF

methods but more information is reserved.

The functionalized object is smoothed by conventional B-splines. FPCA is then

employed to obtain major components and their time-varying scores. Analysis

on functional mean, predictability of scores and their implications on momentum

portfolio can be followed.

5.3.2 Data Sample

Daily prices of all stocks listed in Shanghai and Shenzhen Stock Exchanges are

collected from Jan. 2006 to May 2014. They are adjusted for stock split, which

is frequent, and cash dividends. Return is the difference of log prices.
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The data are sufficiently representative in the sense of including a booming

economy (2006-2007), a recession (2008), slow recovery (2009-2010) and recon-

structure (2011-2014). In anticipation of excessive irrational behavior and faster

price correction in emerging market, weekly and monthly frequencies are chosen

in Chinese stock market.

Another feature in Chinese market is that preferred stocks were not permitted

until recently. The amount of issuance is still negligible. Due to complicated

shareholder structure of state-owned company, free float market capitalization

is preferable to market value. The stock prices are then adjusted to the sequence

of share arrangements since listing.

5.3.3 Data Reformat

In consideration of the 6 million records stored in relational database, we use

a C# programmable platform to retrieve stock prices and financial data from

SQL engine and adapt them in a format for feeding FDA package. It not only

serves as interaction between database and analytics module, but also offers a

simulator for simple portfolio strategies.

The first component consists of stored procedures and functions that repackage

those enquiries. Data can be distributed to either a sorting algorithm or con-

vertor. Structure for original records inherits C# comparer, thus is sortable in

generic classes. Convertor is a virtual template that is inherited by smoother,

aggregator. The former sends a signal to its successor whenever new observation
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is available and the length of data array exceeds pre-specified parameter. Aggre-

gator can convert daily prices to low-frequency data with consistent structure.

The output is formatted in text.

As for performance simulation, weighting schemes based on ranks are introduced

after sorting. If market-neutral strategy is adopted, a rank-dependent method

is constructed. We also allow quintile portfolios which assign equal weights to

stocks in specific quantile (10%-20% for instance) and zero to others. The asset

allocation policy is then passed to simulator for performance calculation.

Since data flow is a sequence of records instead of matrix, the framework is

streaming processing architecture that is also extendable in paralleling context

and complex event processing (CEP). The figure 2 illustrates class dependencies

of the project.

5.3.4 Cross-sectional Momentum

Our primary interest, in this section, is to test predictability of return using

historical performance. However unlike time-series momentum capturing time-

serial persistence in individual futures, the portfolio to be constructed aims at

exploiting a functional anomaly. More specifically, momentum factor which is

the deviation from average growth.

Mt+1 = Rt − R̄t

could be functionally correlated with return at time t+ 1, therefore generate a

significant nonzero return with basis portfolios. Rt is the average return over a
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pre-specified look-back period h. In our simulation, it is chosen to be one month

(4 weeks), two months (8 weeks), one quarter (12 weeks), half year (26 weeks)

and one yer (12 months).

5.4 Empirical Results

5.4.1 FPC of Return Curve

Figure 3-7 illustrate principal functionals with various look-back period. The

first component, accounting for on average 60% of the total variation, is linear. It

indicates that behavior of the return object is dominated by either conventional

momentum or mean-reversion. This result can also serve as an advocate of

Fama-French factor portfolio method. However there is room for improvement

as long as other components are not negligible. Additionally, profitability of

the linear exposure on momentum is affected by contribution (score) of the first

component of FPCA to return functional, as suggested by equation (5.23).

The quadratic component gives roughly 15% of variation. It suggests a pattern

that stocks at two tails diverge from ones with average past performance. Not as

obvious as the linear component, we have an absence of behavioral explanation of

second component in FPCA. It states that it is profitable to construct a spread

between ’mediocre’ stocks and extreme ones (both exceptional and poor). If

buy-winners-sell-losers is favor for first moment of past performance, we may

conjecture that the second strategy is simply a reflection of risk attitude. To

explore a possible relation, it might be good to start from descriptive statistics
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of each group sorted by momentum factor. The Figure 1 offers volatility with

different look-back periods.

X-axis is the index of groups from the highest momentum to the lowest. We

found that the shape is consistent regardless of look-back period. It seems to be

quite similar with second basis function. Thus we may assert that the second

basis function, is a measure of investor’s risk attitude. If market is currently

highly risk-averse, the score of the basis should be negative and vice versa. This

is an important implication on selection of leading indicators for score.

A natural interpretation of the scores on other basis functions, following the

previous path, is risk measure of higher moments. Since the left has a contribu-

tion of typically less then 5% and is almost orthogonal to functional mean, our

discussion is restricted within the first two components.

One worthnoting feature is that the means of all basis functions are not zeros.

It tilts toward groups with low momentum. This phenomena, albeit marginal,

leads to a profitable mean-reversion strategy. Our assertion is consistent with

previous reseaches.

5.5 Portfolio Performance

We propose three portfolio methods in regard with feasibility. The rank-dependent

portfolio assigns weights perfectly concordant with one basis function. If capital

invested in each group is proportional to the relative location in the curve, it

reflects the first basis function. This method can be discretized and formulated
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Figure 5.1: The First and Second Moments of Returns on Each Group Sorted

by Momentum Factor
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as

wi = ν(Ri − R̄) = ν(

100∑
j=1

1(Mj ≤Mi)− 50.5) (5.34)

which is essentially inherited from Fama-French. Ri is the rank of momentum

factor with average of R̄ = 50.5. ν is a scaling factor to ensure constant leverage.

The second component exhibits symmetry in two tails. We may approximate it

with a quadratic function. Again define ν for standardization.

wi = ν(Ri − R̄)2 (5.35)

Mixtures of them are also considered to investigate diversification of benefit. In

our experiment, the proportion of each basis portfolio depends on its explanatory

power. 5

The left panel in Table 10 summarizes performance on those portfolios. Return

on the first component is uniformly higher because it has a larger projection over

the mean. Mean-reversion strategy has positive profit for all 5 look-back period,

suggesting a prevailing pattern in Chinese market. Consistent with theory,

mixed portfolio delivers higher Sharpe ratio than any of two basis portfolios.

Maximum drawdown is defined as the largest spread between current equity

and its historical maximum

Practically, to avoid excessive turnover, extreme spread approach approximates

basis portfolio by retaining those groups that exhibit highest deviations. Specif-

ically only 10 groups with highest predicted returns are used to construct long

5It is optimal when scores between two basis are not correlated.
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portfolio and those 10 with poorest performance for short one. In case of weights

(5.34), 10 groups at two tails are selected. Similarly, we choose 5 groups on two

sides and 10 in the middle to replace equation (5.35).

The results in middle panel shows higher return and maximum drawdown com-

pared with rank-dependent portfolios. Risk adjusted returns on the second basis

portfolios deteriorate with shrinking underlying assets, but not the first basis.

Maximum drawdown can be reduced by mixing two basis portfolios. Some

extent of diversification is still present with longer look-back period.

In consideration of short constraints in China, we sell index futures instead

of individual stocks in index-hedged method. Since systemic risk is removed

by short the same amount of index, it is essentially a market-neutral strategy

exploiting alphas of long portfolio. Lower risk-adjusted returns are documented

with significant increase of maximum drawdown. The second basis portfolio no

longer offers diversification.

5.5.1 Predicting Scores

If return on momentum or mean-reversion exhibits persistence, the autocorre-

lation can be exploited to enhance performance. In our framework, it is to say

that scores are time serially dependent and follow some AR(p) processes. Fol-

lowing Kokoszka and Reimherr (2013), statistics for detecting weak dependency

of sign of scores are summarized in Table 1.

We cannot reject null hypothesis at 10% in scores on the first two components.
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Table 5.1: p−value of Dependency Test

C1 C2 C3 C4

w4 0.3798 0.4945 0.0637 0.1432

w8 0.4328 0.3775 0.0499 0.4328

w12 0.4305 0.5544 0.6222 0.0612

w26 0.4828 0.3161 0.6884 0.1087

m12 0.7449 0.3290 0.5876 0.4477

Although some are significant in third and fourth basis, the pattern is still

sensitive to look-back period. The test suggests that cross-sectional return are

independent functional curve.

Daniel and Moskowitz (2012) found that momentum crashes are related with the

sign of index return for past one year. The mechanism is those firms experiencing

large value depreciation are more likely to outperform due to their high betas.

Its counterpart is that market state has predictability on the scores of the first

component, because the variation of basis portfolio is always sourced from the

dynamics of scores.

To explore this relation, we conduct a set of simple regression of scores on the

sign and value of CSI300 index return, which is smoothed either annually or

semi-annually. Results are compiled in Table 2-5. We found that the indicator

is no longer effficient except for 4 weeks mean-reversion. It means that Chinese

investors do not alter their strategy respect to overall market performance.
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A natural extension is to test the dependence on higher order moments of market

return. Table 6 and 7 summarize regressions on ex ante volatility which is

defined as the exponential average of squared deviation from mean.

σ2
t = α(rt − r̄t)2 + (1− α)σ2 (5.36)

where r̄t = αrt + (1− α)rt is the running exponential average return.

Table 8 and 9 summarize regression on realized kurtosis with similar definition

κ4
t = α(rt − r̄t)4 + (1− α)κ4 (5.37)

It seems that higher order moment has a better prediction than simple average.

Interestingly, the score of linear basis functions is always signicantly dependent

on kurtosis. Tail risk is, in this sense, priced by those participants whose in-

vestment decisions are made on relative historical performance of individual

stocks.

5.6 Concluding Remarks

In this section, we propose a nonparametric approach to exploring the functional

dependence on factors and its portfolio implications. It can capture nonlinear

relations which is believed to be important elements of risks. We can always

benefit from the portfolio on nonlinear basis functions, as long as they have

nonzero projection on functional mean.

The experiment on Chinese stock market shows that linear component accounts

for 60% of total variation. Quadratic component plays a significant role in
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reducing risk of conventional mean-reversion portfolio. But it loses power with

shrinking sample and short constraints.

Finally in hope to enhance basis portfolios, several indicators designed are tested

in predicting scores. Kurtosis of market return, according to our regression, has

a remarkable influence on the linear component, as a result, the performance of

mean-reversion strategies.
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5.7 Appendix

Table 5.2: Summary of Test on Predicting Scores (Sign of Index Return)

We run a simple regression of sign of index return on score of each component.

Index return is the averaging logarithmic return semiannually, which is a sample

of 26 weeks in case of weekly observations and 6 months of monthly data. ’wn’

column contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

-0.0001

(-0.0003)

-0.0927

(-0.2202)

-0.0353

(-0.0827)

0.066

(0.1562)

0.827

(0.4650)

Slope
0.6855

(1.8097)*

0.4844

(1.1505)

0.3893

(0.9131)

0.4309

(1.0191)

2.1924

(1.2327)

C2
Intercept

-0.0221

(-0.0996)

0.0503

(0.2428)

0.0508

(0.2524)

-0.0198

(-0.1156)

0.0019

(0.0027)

Slope
0.4819

(2.1751)**

0.3041

(1.4666)

0.1307

(0.6493)

-0.2279

(-1.3306)

-0.2166

(-0.3101)

C3
Intercept

-0.0122

(-0.0906)

-0.006

(-0.0545)

-0.0041

(-0.0360)

0.0061

(0.0561)

-0.2836

(-0.6798)

Slope
0.152

(1.1292)

0.0094

(0.0852)

-0.1117

(-0.9779)

-0.0697

(-0.6379)

-0.4795

(-1.1494)

C4
Intercept

0.0381

(0.3656)

0.0585

(0.5800)

-0.0349

(-0.3538)

-0.0109

(-0.1125)

-0.0214

(-0.0520)

Slope
-0.2371

(-2.2768)**

-0.0903

(-0.8949)

0.1042

(1.0573)

-0.0429

(-0.4415)

0.4302

(1.0463)
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Table 5.3: Summary of Test on Predicting Scores (Index Return)

We run a simple regression of index return on score of each component. Index

return is the averaging logarithmic return semiannually, which is a sample of

26 weeks in case of weekly observations and 6 months of monthly data. ’wn’

column contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

-0.1147

(-0.3014)

-0.1524

(-0.3599)

-0.0594

(-0.1386)

0.021

(0.0497)

0.6876

(0.3876)

Slope
59.86

(2.0724)**

26.6

(0.8297)

2.2194

(0.0685)

5.0182

(0.1567)

36.65

(1.0123)

C2
Intercept

-0.1006

(-0.4518)

0.0249

(0.1192)

0.0254

(0.1259)

0.0092

(0.0539)

0.0113

(0.0162)

Slope
40.7421

(2.4115)**

8.4078

(0.5316)

13.51

(0.8848)

-8.3737

(-0.6454)

-4.4753

(-0.3157)

C3
Intercept

-0.02574

(-0.1898)

-0.0006

(-0.0053)

0.005

(0.0437)

0.0124

(0.1137)

-0.2458

(-0.5899)

Slope
5.558

(0.5400)

-4.0213

(-0.4781)

-2.2733

(-0.2619)

0.2953

(0.0357)

-6.5993

(-0.7759)

C4
Intercept

0.0529

(0.5016)

0.0525

(0.5183)

-0.066

(-0.6712)

-0.0082

(-0.0847)

-0.052

(-0.1268)

Slope
-4.555

(-0.5692)

6.7909

(0.8848)

18.79

(2.5283)**

1.4252

(0.1938)

-0.3765

(-0.8751)
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Table 5.4: Summary of Test on Predicting Scores (Sign of Index Return)

We run a simple regression of sign of index return on score of each component.

Index return is the averaging logarithmic return annually, which is a sample of

52 weeks in case of weekly observations and 12 months of monthly data. ’wn’

column contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

-0.0625

(-0.1577)

-0.2182

(-0.5066)

-0.165

(-0.3839)

0.3413

(0.8021)

1.5778

(0.9208)

Slope
-0.1392

(-0.3510)

-0.4905

(-1.1385)

-0.4541

(-1.0562)

0.1218

(0.2864)

2.7686

(1.6157)

C2
Intercept

-0.0733

(-0.3217)

0.0793

(0.3680)

0.162

(0.7897)

-0.0213

(-0.1232)

-0.0176

(-0.0239)

Slope
0.4109

(1.8037)*

0.2719

(1.2622)

0.2989

(1.4571)

-0.0546

(-0.3153)

-0.8622

(-1.1720)

C3
Intercept

-0.0266

(-0.1963)

0.0187

(0.1695)

0.1099

(0.9363)

0.0509

(0.4477)

-0.4921

(-1.1643)

Slope
0.1963

(1.4487)

-0.0081

(-0.0735)

0.1183

(1.0081)

0.0546

(0.4802)

-0.5923

(-1.4012)

C4
Intercept

0.0903

(0.8452)

0.08

(0.7733)

-0.0501

(-0.5028)

-0.0146

(-0.1480)

-0.0409

(-0.0951)

Slope
-0.1044

(-0.9767)

-0.0519

(-0.5014)

0.133

(1.3343)

-0.0801

(-0.8140)

-0.3765

(-0.8751)
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Table 5.5: Summary of Test on Predicting Scores (Index Return)

We run a simple regression of index return on score of each component. Index

return is the averaging logarithmic return annually, which is a sample of 52

weeks in case of weekly observations and 12 months of monthly data. ’wn’

column contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

-0.1046

(-0.2644)

-0.1524

(-0.3545)

-0.0785

(-0.1838)

0.3188

(0.7659)

1.9776

(1.1614)

Slope
48.33

(1.2651)

0.0033

(0.0001)

-24.62

(-0.5786)

66.55

(1.4883)

122.76

(2.2736)**

C2
Intercept

-0.1791

(-0.7877)

0.0215

(0.1002)

0.0814

(0.4017)

-0.011

(-0.0646)

-0.019

(-0.0255)

Slope
45.63

(2.0777)**

20.58

(0.9804)

45.46

(2.2505)**

-12.27

(-0.6725)

-23.1

(-0.9772)

C3
Intercept

-0.0626

(-0.4617)

0.0196

(0.1781)

-0.0801

(0.6883)

0.0404

(0.3620)

-0.4887

(-1.1387)

Slope
9.924

(0.7572)

0.2029

(0.0189)

15.42

(1.3296)

2.1716

(0.1811)

-15.32

(-1.1259)

C4
Intercept

0.1023

(0.9568)

0.0872

(0.8466)

-0.0805

(-0.8137)

0.0008

(0.0085)

0.0863

(0.1976)

Slope
0.5902

(0.0571)

-0.2891

(-0.0287)

13.43

(1.3628)

-5.4809

(-0.5278)

5.6312

(0.4068)
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Table 5.6: Summary of Test on Predicting Scores (Volatility)

We run a simple regression of volatility of index return on score of each compo-

nent. Ex ante volatility is the exponential average of squared exess return on its

mean: σ2
t = α(rt − r̄t)2 + (1− α)σ2 where α = 1/26. ’wn’ column contains the

scores filtered from the return functional sorted by n-weeks momentum while

’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

2.813

(2.7147)**

2.2512

(1.9119)*

2.1935

(1.7811)

2.4059

(1.9000)*

5.7939

(1.2771)

Slope
-80.28

(-2.9367)**

-66.44

(-2.1491)**

-62.57

(-1.9459)*

-65.39

(-1.9922)*

-77.34

(-1.2662)

C2
Intercept

1.1881

(1.9468)*

0.0538

(0.0921)

0.7528

(1.2914)

0.2476

(0.4798)

-0.5947

(-0.3337)

Slope
-34.71

(-2.1559)**

-0.4675

(-0.0305)

-19.72

(-1.2957)

-6.7573

(-0.5052)

9.187

(0.3829)

C3
Intercept

-0.8569

(-2.3249)**

-0.3341

(-1.0777)

-0.165

(-0.4975)

0.1016

(0.3089)

-0.6325

(-0.5898)

Slope
23.77

(2.4450)**

9.2044

(1.1309)

4.6425

(0.5361)

-2.4418

(-0.2865)

6.1457

(0.4256)

C4
Intercept

0.2422

(0.8393)

0.1291

(0.4552)

0.5445

(1.9139)*

0.2191

(0.7499)

-0.5461

(-0.5176)

Slope
-5.5568

(-0.7230)

-1.872

(-0.2515)

-16.27

(-2.1903)**

-6.2087

(-0.8198)

5.6312

(0.4068)
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Table 5.7: Summary of Test on Predicting Scores (Volatility)

We run a simple regression of volatility of index return on score of each compo-

nent. Ex ante volatility is the exponential average of squared exess return on its

mean: σ2
t = α(rt − r̄t)2 + (1− α)σ2 where α = 1/52. ’wn’ column contains the

scores filtered from the return functional sorted by n-weeks momentum while

’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

3.5667

(3.0768)***

2.0735

(1.5895)

0.9903

(0.7676)

2.427

(1.9011)*

9.0826

(1.7783)

Slope
-98.52

(-3.3067)***

-60.22

(-1.8052)*

-29.51

(-0.8938)

-57.17

(-1.7474)

-103.18

(-1.6790)

C2
Intercept

0.7575

(1.1189)

-0.0996

(-0.1520)

1.3029

(2.1232)**

0.3155

(0.6052)

0.0908

(0.0410)

Slope
-24.02

(-1.3808)

3.853

(0.2299)

-32.11

(-2.0451)**

-8.8452

(-0.6620)

0.9935

(0.0373)

C3
Intercept

-1.3215

(-3.3308)***

-0.5831

(-1.7462)

0.2674

(0.7587)

-0.0898

(-0.2621)

-0.0132

(-0.0103)

Slope
34.66

(3.3994)***

16.31

(1.9102)*

-4.7412

(-0.5256)

3.5298

(0.4018)

-4.4683

(-0.2906)

C4
Intercept

0.6992

(2.2152)**

0.4237

(1.3509)

0.4734

(1.5874)

0.2028

(0.6836)

-0.4194

(-0.3252)

Slope
-16.26

(-2.0043)**

-9.1108

(-1.1358)

-14.72

(-1.9288)*

-5.4736

(-0.7197)

5.8555

(0.3774)
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Table 5.8: Summary of Test on Predicting Scores (Kurtosis)

We run a simple regression of volatility of index return on score of each

component. Ex ante volatility is the exponential average of squared exess

return on its mean: κ4
t = α(rt − r̄t)4 + (1− α)κ4 where α = 1/26. ’wn’ column

contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

1.3499

(1.8827)*

1.6406

(2.0699)**

2.121

(2.6543)**

2.2814

(2.7651)**

9.5638

(2.9028)***

Slope
-1.1433

(-2.2521)**

-1.458

(-2.6043)**

-1.82

(-3.2047)***

-2.0102

(-3.1659)***

-1.8813

(-3.1918)***

C2
Intercept

-0.0354

(-0.0838)

-0.1658

(-0.4208)

0.196

(0.5129)

0.1162

(0.3428)

-0.5686

(-0.4177)

Slope
-0.0021

(-0.0069)

0.1686

(0.6060)

-0.1272

(-0.4686)

-0.1021

(-0.3916)

0.1251

(0.5139)

C3
Intercept

-0.5059

(-1.9905)*

-0.1334

(-0.6370)

-0.0552

(-0.2543)

0.1063

(0.4925)

-1.0936

(-1.3459)

Slope
0.4071

(2.2621)**

0.1055

(0.7133)

0.0477

(0.3096)

-0.0835

(-0.5023)

0.183

(1.2590)

C4
Intercept

0.1978

(0.9953)

-0.0009

(-0.0047)

0.1315

(0.7031)

0.243

(1.2691)

0.4479

(0.5567)

Slope
-0.1265

(-0.8992)

0.0526

(0.3893)

-0.1438

(-1.0818)

-0.2227

(-1.5113)

5.8555

(0.3774)
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Table 5.9: Summary of Test on Predicting Scores (Kurtosis)

We run a simple regression of volatility of index return on score of each

component. Ex ante volatility is the exponential average of squared exess

return on its mean: κ4
t = α(rt − r̄t)4 + (1− α)κ4 where α = 1/52. ’wn’ column

contains the scores filtered from the return functional sorted by n-weeks

momentum while ’m12’ is for 12-months momentum.

w4 w8 w12 w26 m12

C1
Intercept

1.5266

(2.0389)**

1.6058

(2.0031)**

1.8695

(2.2484)**

1.8775

(2.2892)**

11.38

(3.0614)***

Slope
-1.7083

(-2.4609)**

-1.895

(-2.5839)**

-2.2499

(-2.7456)**

-1.8698

(-2.2041)**

-3.6385

(-3.0996)***

C2
Intercept

-0.2634

(-0.6049)

-0.3992

(-0.9887)

0.1379

(0.3436)

0.1029

(0.3064)

-1.7773

(-1.0670)

Slope
0.1521

(0.3768)

0.4764

(1.2896)

-0.0227

(-0.0573)

-0.1363

(-0.3923)

0.6807

(1.2943)

C3
Intercept

-0.5536

(-2.1560)**

-0.2084

(-1.0081)

-0.0656

(-0.2863)

0.0742

(0.3360)

-0.1972

(-0.2029)

Slope
0.5466

(2.2961)**

0.246

(1.3007)

0.1808

(0.8005)

-0.0405

(-0.1775)

-0.0584

(-0.1903)

C4
Intercept

0.2657

(1.3064)

0.1537

(0.7927)

0.207

(1.0655)

0.2789

(1.4639)

0.4938

(0.5041)

Slope
-0.1768

(-0.9374)

-0.072

(-0.4056)

-0.3163

(-1.6521)

-0.3332

(-1.6912)

-0.1586

(-0.5127)
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Table 5.10: Portfolio Performance on Momentum Factor

The rank-dependent portfolio assigns weights perfectly concordant with one

basis function (C1 and C2). Mixtures of them are also considered. Extreme

spread approach approximates basis portfolio by retaining those groups that

exhibit highest deviations. In consideration of short constraints in China, we

sell index futures instead of individual stocks in index-hedged method. Annual

return r, sharpe ratio sr and maximum drawdown dmax are simulated for

each portfolio scheme. No transaction cost is incorporated. r and dmax are in

percentage terms.

Rank Dependent Extreme Spread Index Hedged

C1 C2 Mixed C1 C2 Mixed C1 C2 Mixed

r

w4 10.57 3.66 7.11 11.92 4.13 10.02 17.17 9.27 15.19

w8 12.49 0.77 6.63 20.16 -0.14 10.01 24.86 6.22 20.20

w12 11.38 1.54 6.46 19.63 1.04 10.34 23.28 7.41 19.31

w26 11.25 2.06 6.66 16.84 2.99 9.91 20.34 8.83 17.46

m12 7.03 3.11 5.07 10.55 5.31 7.93 14.30 11.90 13.70

sr

w4 1.60 0.96 1.79 1.60 0.70 1.63 0.75 0.44 0.70

w8 1.73 0.22 1.62 1.87 -0.02 1.60 1.06 0.30 0.92

w12 1.56 0.45 1.56 1.78 0.20 1.63 1.00 0.36 0.88

w26 1.63 0.72 1.75 1.63 0.64 1.72 0.89 0.42 0.80

m12 1.13 1.20 1.38 1.10 1.26 1.40 0.72 0.68 0.73

dmax

w4 -7.29 -7.03 -4.40 -13.88 -12.49 -7.71 -29.90 -48.36 -34.52

w8 -8.47 -9.55 -4.50 -14.65 -17.73 -7.89 -29.59 -46.73 -29.94

w12 -8.65 -8.88 -5.40 -13.96 -14.58 -8.22 -31.53 -47.10 -31.43

w26 -8.37 -5.87 -4.37 -11.94 -9.65 -5.57 -31.93 -44.32 -32.24

m12 -11.02 -4.82 -6.27 -18.80 -8.10 -10.31 -32.11 -36.22 -33.13
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Figure 5.2: Simulation Platform designed for retrieving data from database,

sorting stocks based on factors and grouping returns
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Figure 5.3: Basis Functions derived from FPCA on cross-sectional return curve.

Look-back period is one month h = 4.
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Figure 5.4: Basis Functions derived from FPCA on cross-sectional return curve.

Look-back period is two months h = 8.
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Figure 5.5: Basis Functions derived from FPCA on cross-sectional return curve.

Look-back period is one quarter h = 12.
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Figure 5.6: Basis Functions derived from FPCA on cross-sectional return curve.

Look-back period is half year h = 26.
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Figure 5.7: Basis Functions derived from FPCA on cross-sectional return curve.

Look-back period is one year h = 52.

172



Alternative Portfolio Methods

6 Conclusion

The portfolio methods under investigation may be acclaimed in three circum-

stances. If market participants always make rational investment decisions, mod-

elling expected utility function should be of primary concern. Assumption of

CRRA functional leads to a favor for parametric portfolio, which gains addi-

tional out-of-sample stability from decomposition of weights. However, select-

ing factors with predictability requires a robust technique resistant to data-

snooping. I offer functional equivalence between predictive ability and prof-

itability of trading strategies. Thus, the bootstrap method enhances efficiency

of parameterized optimization by filtering out efficient indicators. An experi-

ment on FT100 shows promising performance of the mechanism.

Alternatively, mean-variance is recommended when input variables follow el-

liptical distribution. Although the condition is often violated on asset return,

many nonlinear trading strategies are able to produce valid training sample be-

fore feeding into optimizers. Another problem of plug-in method arises from

heterogeneous data generating process. Classifiers can then be applied in gath-

ering similar observations. My study shows that mean-variance can beat naive

strategy in constructing a portfolio of 24 commodity futures. But this outper-

formance is marginal after incorporating transaction cost.

In case that investors exhibit asymmetric aversion of tail risk, Choquet util-

ity maximization and coherent risk measures accquire superiority. It can be

shown that the scheme proposed by Koenker (2005) is equivalent to optimiza-
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tion using conditional value-at-risk (Rockafellar and Uraysev, 2000) both in

continuous and discrete cases. By decomposing quantile loss function, a new

parametric approach is proposed aiming at minimizing weighted downside risk

exposure on a set of factors given fixed target return. An empirical study on

comparing portfolio efficiency among mean-variance, pessimistic portfolio and

its parameterized version in global equity indices investment is then conducted.

Pessimistic portfolio offers the lowest return in frictionless environment, it also

suffers from overconcentration and non-stationarity of tail risk. Deterioration

of out-of-sample robustness can be possibly mitigated by stationary bootstrap

method but averaged performance barely beats benchmark. Parametric pes-

simistic portfolio effectively reduces tail risk exposure and data-snooping bias

in training samples and thus delivering a better risk-adjusted return.

Instead of utility maximization, an allocation policy can be formed by gaining

exposures on risk factors that are behaviorally priced. Trading factor port-

folio implicitly relies on the assumption that cross-sectional stock returns are

linearly correlated with market anomalies. I propose a test on functional de-

pendence using FPCA with linearity special basis function. It can be proved

that diversification benefit is always present as long as nonlinear components

are negligible. An experiment shows that momentum/mean-reversion accounts

for approximately 60% of return variation while quadratic function contributes

to 15% of that. Time series of scores, however, does not follow AR(p) process.

Finally, it is found that profitability of buy-winners-sell-losers is affected by

kurtosis of index return because investors require premium for extreme events.
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The bottom line of this research is that a portfolio choice only succeeds within

specific market conditions. Sustainable performance can be achieved by an ap-

propriate model on investor behavior and robust in-sample optimization tech-

niques.
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