
NONLINEAR CONTROL FOR
NON-NEWTONIAN FLOWS

by

AZIZAH ALRASHIDI

A thesis submitted to
The University of Birmingham

for the degree of
DOCTOR OF PHILOSOPHY

School of Mathematics
College of Engineering and Physical Sciences
The University of Birmingham
January 2015

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

PDE-constrained optimisation is an important area in the field of numerical analysis,

with problems arising in a wide variety of applications including optimal design, optimal

control and parameter estimation. The aim of such problems is to minimize a functional

J(u, d) whilst adhering to constraints posed by a system of partial differential equations

(PDE), with u and d used respectively to denote the state and control of the system.

In this thesis, we describe the steady-state generalised Stokes equations for incompress-

ible fluids. We proceed to derive the weak formulation of the problem, and show that the

resulting system may be written in terms of a mixed formulation of the Stokes problem.

Based on this formulation, the problem is discretised through use of the Galerkin finite

element method, before investigating control problems based on the generalised Stokes

equations, along with numerical experimentation.

This work will be used to achieve the main aim of this thesis, namely the exploration

and investigation of solution methods for optimal control problems constrained by non-

Newtonian flow. Ultimately, an iterative solution method designed for such problems

coupled with an appropriate preconditioning strategy will be described and analysed, and

used to produce effective numerical results.

Contents

1 Introduction 1

2 Preliminaries 7

2.1 Sobolev spaces . 7

2.1.1 Lp-spaces . 8

2.1.2 Generalised (weak) derivatives . 10

2.1.3 W k,p and Hk spaces . 10

3 PDE-constrained optimisation problems 14

3.1 Existence of solutions . 16

3.2 Existence result for some optimal controls 17

3.2.1 Linear quadratic optimisation problem 17

3.2.2 Nonlinear optimization problems 18

3.3 Unique solutions . 19

3.4 Optimality conditions . 20

3.5 Optimisation algorithms . 20

3.6 Summary . 21

4 Stokes problem 22

4.1 The Stokes problem . 22

1

4.2 Weak formulation . 24

4.3 Mixed formulation . 26

4.4 Discrete weak formulation . 28

4.5 Compatible spaces . 29

4.6 Test problems . 30

4.7 Summary . 33

5 Finite Element Method For Stokes 36

5.1 Discretised weak formulation . 37

5.2 Basis elements . 40

5.3 Transformation to the reference element 41

5.4 Finite element assembly . 43

5.5 The right hand side approximation . 44

5.6 Summary . 45

6 Solution Methods for Linear Systems 46

6.1 Saddle point system . 47

6.2 Block preconditioners . 49

6.2.1 Block diagonal preconditioning . 49

6.2.2 Block triangular preconditioning . 50

6.3 Schur complement approximations . 51

6.4 Deflated preconditioner . 54

6.5 Summary . 57

7 Generalised Stokes equations 58

7.1 Constitutive models . 58

7.2 Generalised Stokes equations . 60

7.3 Weak formulation . 61

2

7.4 Iterative solution of the discrete linearised Stokes equations 63

7.5 Numerical examples . 64

7.5.1 Piecewise constant viscosity . 64

7.5.2 Variable viscosity . 71

7.6 Summary . 78

8 Optimal control of the generalised Stokes equations 79

8.1 Distributed control problem . 80

8.2 Preconditioning the control problem . 84

8.2.1 First preconditioner P0 . 85

8.2.2 Second preconditioner P̂0 . 85

8.2.3 Third preconditioner
̂̂
P0 . 86

8.2.4 Fourth preconditioner P1 . 86

8.2.5 Fifth preconditioner P̂1 . 87

8.3 Inner-outer GMRES approach . 88

8.3.1 P0,1-solver . 88

8.3.2 P̂0,1-solver . 89

8.3.3
̂̂
P 0,1-solver . 89

8.4 Comments . 89

8.5 Summary . 91

9 Numerical experiments 93

10 Conclusion and future work 120

Appendix 123

A.1 Complexity of control problem . 123

References 127

3

Acknowledgements

First and foremost, I would like to express my thanks and appreciation to my supervisor,

Daniel Loghin. He has been very supportive, not only in an academic capacity, but also

with any issue that I have found during my time in Birmingham. I would not have been

able to reach this point without his knowledge, inspiration and support.

I would also like to express my deepest thanks to the person who initially inspired me

to undertake a PhD, namely my husband Essa Alrashidi. He has supported me in every

aspect of my life, not only taking care of my six children but also helping me with pretty

much everything that I have needed.

Also, my thanks go to my wonderful children, Bodour, Abdulaziz, Omar, Wrood,

Ahmad and my youngest son Lazam. I plan to spend plenty of time with you from now

on to make up for the past four years!

I would also like to thanks a number of colleagues within the department who have

helped me during my studies. Particular thanks goes to Thomas Reeve for helping in the

early stages of my PhD, notably with help understanding LATEX, and to James Turner

in the later stages of my PhD, who was able to provide help despite having a thesis of his

own to submit. My thanks also go to Samia Riaz, Chunlei Xu, Sudaba Mohammad and

Nina Embleton, as well as other students that I have collaborated with during my time

here in Birmingham.

Thanks also go to the School of Mathematics, particularly the Applied Mathematics

4

group for the organisation of the weekly seminar series, and also lunch time applied

mathematics seminars specifically designed for postgraduate students. These seminars

allowed me to meet and present my work to other students within the department.

Finally, I gratefully acknowledge my scholarship provided by the Public Authority for

Applied and Education Training (PAEET), allowing me the opportunity to undertake

and complete my PhD studies.

5

List of Figures

4.1 Geometry of the driven cavity test problem 31

4.2 The velocity components u1, u2 and the pressure p for the driven cavity

test problem. 32

4.3 Geometry of pipe flow test problem . 33

4.4 The velocity components u1, u2 and the pressure p for the pipe flow test

problem. 34

4.5 The streamlines for u⃗ for the driven cavity and the pipe flow test problems. 35

5.1 The P2 and P1 triangle elements. 38

5.2 The mapping to canonical triangle. 42

7.1 The spectrum of M−1
ν S for different values of νmin for one jump viscosity. . 66

7.2 The spectrum of M−1
ν S for different values of νmin for two jumps viscosity. 70

7.3 The velocity profiles of the discrete solution at (12 , y) for driven cavity test

problem. 72

7.4 The convergence history of Picard iterations for different values of α for

driven cavity test problem. 73

7.5 The GMRES convergence profiles when solving Example 5 with precon-

ditioner Pν . The deflation Mdef is started from k∗ for driven cavity test

problem for grid meshes 15× 15 and 31× 31. 75

7.6 The velocity profiles of the discrete solution at (12 , y) for the pipe flow test

problem. 77

7.7 The convergence history of Picard iterations for different values of α for

pipe flow test problem. 77

9.1 The velocity components and the stream lines for the desired velocity u⃗d

for Example 7. 104

A.1 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing driven cavity test problem in Example 7 using P0,1-solver. 123

A.2 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing driven cavity test problem in Example 7 using P̂0,1-solvers. 124

A.3 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing driven cavity test problem in Example 7 using
̂̂
P 0,1-solvers. 124

A.4 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing pipe flow test problem in Example 8 using P0,1-solvers. 125

A.5 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing pipe flow test problem in Example 8 using P̂0,1-solvers. 125

A.6 The total inner-GMRES iterations per outer-GMRES iteration when solv-

ing pipe flow test problem in Example 8 using
̂̂
P 0,1-solvers. 126

7

List of Tables

7.1 Minimum and (three) maximum eigenvalues for Example 3 involving a

single jump in the viscosity. Results are displayed for varying νmin values

with different choices of preconditioner. 67

7.2 GMRES iterations in the case of one jump for different preconditioners. . . 67

7.3 Three minimum and maximum eigenvalues for Example 4 involving a single

jump in the viscosity. Results are displayed for varying νmin values with

different choices of preconditioner. 69

7.4 GMRES iterations in the case of two jumps for different preconditioners. . 71

7.5 Total number of Picard iterations for driven cavity test problem. 72

7.6 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 5 with preconditioner Pν for different values of α and grid meshes. 74

7.7 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 5 with preconditioners MdefPν for α = 0.2 and different grid

meshes. The top row indicates the outer residual value at which deflation

is considered. 74

7.8 Total number of Picard iterations for pipe flow test problem. 78

8

7.9 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer,in blue) when solving

Example 6 with preconditioner Pν for different values of α and grid meshes. 78

9.1 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P0 for different values of α and γ. 95

9.2 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P̂0 for different values of α and γ. 96

9.3 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner
̂̂
P0 for different values of α and γ. 97

9.4 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P1 for different values of α and γ. 98

9.5 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P̂1 for different values of α and γ. 98

9.6 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner MdefP1 for different values of α and for

γ = 10−5 and 10−6. 99

9.7 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P0 for γ = 10−3 and different values of α

and mesh grids. 99

9

9.8 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner P̂0 for γ = 10−3 and different values of α

and mesh grids. 99

9.9 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 7 with preconditioner
̂̂
P0 for γ = 10−3 and different values of α

and mesh grids. 100

9.10 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 7 with

P0,1-solver for different values of α and γ. 102

9.11 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 7 with

P̂0,1-solver for different values of α and γ. 102

9.12 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 7 with

̂̂
P 0,1-solver for different values of α and γ. 103

9.13 The horizontal component of computed state velocity u1 for different values

of α and γ for the driven cavity flow described in Example 7. 105

9.14 The vertical component of computed state velocity u2 for different values

of α and γ for the driven cavity flow described in Example 7. 106

9.15 The pressure p for different values of α and γ for the driven cavity flow

described in Example 7. 107

9.16 The stream lines for the computed state velocity for different values of α

and γ for the driven cavity flow described in Example 7. 108

10

9.17 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner P0 for different values of α and γ. 110

9.18 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner P̂0 for different values of α and γ. 111

9.19 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner
̂̂
P0 for different values of α and γ. 111

9.20 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner P1 for different values of α and γ. 112

9.21 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner P̂1 for different values of α and γ. 112

9.22 Number of Picard iterations and average number of GMRES iterations

per outer iteration (rounded to the nearest integer, in blue) when solving

Example 8 with preconditioner MdefP1for different values of α and γ. . . . 113

9.23 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 8 with

P0,1-solver for different values of α and γ. 115

9.24 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 8 with

P̂0,1-solver for different values of α and γ. 115

11

9.25 The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 8 with

̂̂
P 0,1-solver for different values of α and γ. 116

9.26 The horizontal component of computed state velocity u1 for different values

of α and γ for the pipe flow example 8. 117

9.27 The vertical component of computed state velocity u2 for different values

of α and γ for the pipe flow example 8. 118

9.28 The pressure p for different values of α and γ for the pipe flow example 8. . 119

Chapter 1

Introduction

Optimisation problems constrained by partial differential equations (PDEs) arise in a wide

variety of important applications such as optimal design, optimal control, and parameter

estimation. These types of problems are referred to as PDE-constrained optimisation

problems. In the simulation of real-world problems, the state variables require solutions

to their governing PDEs by using relevant data from certain control variables. The state

variables of the system typically correspond to the displacement, velocity, temperature,

electric field and magnetic field, for instance, whereas the control variables are generally

represented, for example, by the geometry, coefficients, initial conditions, boundary con-

ditions and source functions. Determination of such variables is the main motivation in

order to satisfy certain given aims in performance described through the objective func-

tion whilst adhering to both equality and inequality constraints on the behaviour of the

system. The control variables are usually described in the form of equality constraints;

these equations will be referred to as state equations throughout this thesis.

1

The general form of a PDE-constrained optimisation problem can be represented as:

min
u,d

J(u, d)

subject to c(u, d) = 0

h(u, d) ! 0,

(1.1)

where u are the state variables, d the control variables, and J the objective function.

Furthermore, c represents the state equations, and h the inequality constraints. With re-

spect to the type of objective function and control variables, the optimisation of problems

using constrained PDEs, as in equation (1.1), can lead to problems of optimal design,

optimal control, or inverse problems with design, control, or inversion variables, respec-

tively represented by control variables. Such PDE related problems and their solutions

exist in a number of engineering and scientific fields such as aerodynamics, atmospheric

sciences, industrial chemical processes, the environment, geosciences, homeland security,

infrastructure, manufacturing, medicine and physics, to name a few. Furthermore, while

we usually have a well-posed simulation problem (given d, find u from c(u, d) = 0) , the

optimisation problem in equation (1.1) can be ill-posed. Generally, we vary the input

quantity (or control) in order to aim at a desired property of an output quantity (or

state), and monitor it with respect to some objective function J . The objective func-

tional is usually formulated in a manner such that the desired property is achieved on the

minimum of J .

The control of PDEs has the state u as the quantity to be determined in order to solve

the PDE, where the control can be an input function described on either the boundary, the

whole domain or parts of these. The distributed control problem refers to the situation

where the changeable quantity has a domain distribution. In contrast, the boundary

control problem corresponds to the case where only boundary conditions of the PDE are

2

changeable.

Recent years have seen research into a wide range of optimal control problems with

PDE constraints [43, 63, 62, 59, 54, 49, 74], with examples including Poisson’s equation

[59, 70, 54, 60], both steady Stokes [63, 59, 54, 55, 48] and unsteady Stokes [71, 54],

Navier-Stokes [45, 56] as well as others [57, 58, 21, 22].

However, the literature for investigations into optimal control problems for non-Newtonian

flows is fairly sparse. Slawig [69] has produced work in the two-dimensional stationary

case, while White [77] has investigated the control of a parabolic equation with a power

law differential operator. Non-Newtonian fluid flows in the field of structural optimisation

has been considered by Barrett and Liu [8].

To highlight the main issues, consider the following distributed optimal flow control

problem subject to the Stokes equation for incompressible fluids on a bounded domain

Ω ∈ R2

min
u⃗,f⃗

J(u⃗, f⃗) =
1

2

∥∥u⃗− u⃗d
∥∥2
L2(Ω)

+
1

2
γ
∥∥∥f⃗
∥∥∥
2

L2(Ω)

subject to − ν∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

(1.2)

where u⃗ represents the velocity of the fluid, the scalar p represents the pressure, ν is the

viscosity, f⃗ a domain force and u⃗D is a boundary source. Ω represents the domain and

∂Ω its boundary. In the simulation problem, the variables f⃗ ,Ω, ν and u⃗D are known and

present, where we seek the state u⃗. In comparison, the optimisation problem requires

the determination of certain variables, for example f⃗ (distributed control), u⃗D (boundary

control), or Ω (shape or topology optimisation), in order to minimize some functional

of these variables via the control variable and resulting state. In particular, in example

(1.2), the only control variable corresponds to the distributed source f⃗ ; each of ν, Ω, u⃗D

are known. Equation (1.2) includes a Tikhonov term as the cost functional in the second

3

term as a regularising factor in order to remedy an ill-posed situation.

Discretisation of the Stokes equations through use of the Galerkin finite element

method is well understood and has been considered within a number of works, including

[4, 32, 17]. Furthermore, established solution methods for the resulting saddle point sys-

tem are prevalent in the literature, not only for the Stokes equations [32, 67, 68], but also

for general saddle point problems [79, 50, 80].

When formulating PDE-constrained optimisation problems, we can choose to either

discretise first followed by optimisation, or vice versa. In the discretise-then-optimise

approach, we first discretise the objective function and the PDE constraints and then

solve the discrete optimisation problem. In the optimise-then-discretise approach, we

first consider the necessary conditions for the continuous optimisation problem, followed

by discretisation of the resulting system. In the literature, there are conflicting views

about which is the best strategy to follow (see, for example, [25]). In this work, we have

chosen to discretise first, then optimize. We discretise the objective function J and the

PDE using the finite element method.

In this work, the focus will be on the Stokes equations and their generalised versions

with specific models for viscosity (such as the power-law model). In the linear case, the

well-posedness of a problem and its finite element approximation are well established.

Baranger and Najib [6] extended existing results to the nonlinear problem when viscosity

adheres to either the power or Carreau laws.

Numerical examples based on jumps in the viscosity will be presented for the Stokes

equations, covering the cases of both piecewise constant and also variable viscosity. An

investigation into the maximum and minimum eigenvalues of both the full and precondi-

tioned Schur complement matrices suggests a detachment of certain eigenvalues from the

rest of the spectrum. We therefore consider an adapted preconditioner based on deflation,

which aims to replace the smallest eigenvalues with 1, along with numerical investigations

4

for two test problems.

Using this presentation, we then consider the task of controlling the generalised Stokes

equations. A matrix-vector system is then formed through consideration of the first order

optimality conditions, and will be solved using preconditioned GMRES. Five precondi-

tioners will be presented and described based on different approximations for relevant

matrices. Numerical experimentation will be presented indicating the dependence of each

of our preconditioners on the mesh parameter. Further work will consider use of the

inner-outer GMRES method [64], from which three solution methods will be described.

Numerical results will be provided for two examples based on driven cavity flow and pipe

flow problems.

The structure of the thesis can be outlined as follows:

In Chapter 2, we recall some definitions and notation for Sobolev spaces and weak

derivatives.

In Chapter 3, we introduce optimisation problems constrained by partial differential

equations along with analytical groundwork and optimality theory. We present relevant

existence and uniqueness results in researching optimal solutions and produce optimal

conditions and optimisation algorithm.

In Chapter 4, we describe the steady-state generalised Stokes equations for incompress-

ible fluids. We derive the weak formulation of the problem and write the formulation as a

mixed formulation of the Stokes problem, for which conditions for well-posedness will be

discussed. We show that the mixed weak formulation for the Stokes problem fulfils these

conditions. We also consider the discretization of the incompressible Stokes equations and

formulate the problem in terms of a minimisation problem.

In Chapter 5, we introduce the mixed finite element method that we use to discretise

our problem, arriving at a saddle point system which we look to investigate further.

Chapter 6 begins with a general consideration of different solution methods for systems

5

of linear equations. This is followed by an investigation into appropriate precondition-

ing strategies for saddle point systems, including the notion of deflated preconditioning

along with relevant results from the literature. The results from this chapter will then be

used in Chapter 7, where we describe the generalised Stokes equations for incompressible

fluids. The associated weak formulation will be outlined, where we consider linearisation

through use of Picard iterations due to the nonlinearity within the problem. After dis-

cretization, the resulting system will then be be described and analysed through numerical

experimentation, using preconditioning approaches based on the previous chapter.

In Chapter 8, we consider the problem of controlling the generalised Stokes equations.

The distributed control problem will be described, along with the associated discrete form

of the problem. By writing down the Lagrangian, a saddle point matrix-vector system

is formed from the resulting first order optimality conditions. Five different block upper

triangular preconditioning approaches will be considered, both of which consider approx-

imations to the Schur complement, with two of the preconditioners involving a further

approximation for the (1,1) block of the system matrix. Both of these preconditioners will

then be used in Chapter 9, where numerical results are provided for distributed control

problems.

Finally, in Chapter 10 we provide a summary of the thesis and indicate directions for

future research.

6

Chapter 2

Preliminaries

In this chapter, we review some basic definitions, notations and basic theorems of the

Sobolev spaces that we will use throughout this thesis. We also introduce the concept of

the weak derivative [2, 34].

2.1 Sobolev spaces

We recall that the support of a function u is the closure of the set where u does not vanish:

Definition 2.1.1 A real valued function u in Ω has support

supp u = {x ∈ Ω\u(x) ̸= 0}.

If supp u ⊂ Ω is a closed and bounded subset of Rn, then we say u has compact support

in Ω.

Definition 2.1.2 An n-tuple ααα = (α1, ...,αn), αj ∈ N ∪ {0} is called a multi index of

order k := |ααα| = α1 + ...+ αn. If x ∈ Rn, we denote by xααα the product xα1

1 ...xαn
n .

7

Let Dj =
∂

∂xj
, the partial differential operator of order k can be defined as

Dααα = Dα1

1 ...Dαn
n =

∂|ααα|

∂xα1

1 ...∂xαn
n

.

Definition 2.1.3 Let ααα be a multi index of order k.

• The set of continuous, real valued functions defined on Ω which are k times differ-

entiable denoted by Ck(Ω) is

Ck(Ω) := {u : Ω → R : Dαααu continuous on Ω, for all ααα with |ααα| " k}.

• The set of continuous, real valued functions defined on Ω which are k times differ-

entiable and whose support is in Ω is denoted by Ck
0 (Ω).

• The set of continuous, real valued functions defined on Ω which are infinitely differ-

entiable and whose support is in Ω is denoted by C∞
0 (Ω)

C∞
0 (Ω) =

⋂

k∈N∪{0}

Ck
0 (Ω).

2.1.1 Lp-spaces

Let Ω be a bounded open set in Rn and u ∈ Ω. We denote the Lebesgue integral of u by
∫
Ω u(x) dx. If

∫
Ω u(x) dx < ∞ then we say u is (Lebesgue-) integrable.

Definition 2.1.4 Let 1 " p < ∞ be a real number. The space of real valued functions

whose absolute value raised to the pth power is integrable is

Lp(Ω) :=

{
u(x) : Ω → R :

∫

Ω

|u(x)|p dx < ∞

}
.

8

Lp(Ω) spaces are Banach spaces when equipped with the norm

∥u(x)∥Lp(Ω) :=

(∫

Ω

|u(x)|p dx

) 1

p

.

Therefore

Lp(Ω) =
{
u(x) : Ω → R : ∥u∥Lp(Ω) < ∞

}
.

For the case p = ∞ define

∥u∥L∞(Ω) = ess sup
x∈Ω

|u(x)| ,

where ess sup denotes the essential supremum, i.e., the lowest upper bound over Ω exclud-

ing subsets of Ω of Lebesgue measure zero. Then the above definition for Lp(Ω) spaces

can be extended to the case p = ∞:

L∞(Ω) :=
{
u(x) : Ω → R : ∥u∥L∞(Ω) < ∞

}
.

The case p = 2 is a particular instance of Lp(Ω) where L2(Ω) is a Hilbert space when

equipped with the inner product

(u, v) =

∫

Ω

u(x)v(x) dx.

Note that ∥u∥L2(Ω) = (u, u)
1

2 .

Theorem 2.1.1 (Cauchy-Schwarz inequality) Let u, v ∈ L2(Ω). Then

|(u, v)| " ∥u∥L2(Ω) ∥v∥L2(Ω) . (2.1)

9

2.1.2 Generalised (weak) derivatives

Let u ∈ Ck(Ω), w ∈ C∞
0 (Ω), and let ααα be a multi index of order k. The following

integration by parts holds

∫

Ω

Dαααu(x)w(x) dx = (−1)|ααα|
∫

Ω

u(x)Dαααw(x) dx,

where all terms involving integrals over the boundary of Ω, which arise in the course of

integrating by parts, have disappeared because w and all of its derivatives are identically

zero on ∂Ω. The previous identity is the basis for the definition of the weak derivative.

In the case where u /∈ Ck(Ω), the integration on the left is not defined, however the one

on the right is. We use this fact to define the concept of a generalised derivative. First,

we define the space of locally integrable functions by

L1
loc(Ω) := {u : u ∈ L1(U), ∀U with U ⊂ Ω}.

Definition 2.1.5 Let u ∈ L1
loc(Ω). The function uααα(x) ∈ L1

loc(Ω) defined by

∫

Ω

uααα(x)w(x) dx = (−1)|ααα|
∫

Ω

u(x)Dαααw(x) dx, ∀w ∈ C∞
0 (Ω)

is called the generalised (or weak) derivative of u of order k.

Using the above identities we could define the spaces of weakly differentiable functions,

known as Sobolev spaces.

2.1.3 W k,p and Hk spaces

Let ααα be multi index of order k > 0, and p ∈ [1,∞]. We define the Sobolev space of order

k, denoted by W k,p(Ω), which is the set of Lp functions with derivatives of order up to

10

and including k also

W k,p(Ω) := {u ∈ Lp(Ω) : Dαααu ∈ Lp(Ω) for all ααα with |ααα| " k}.

The Sobolev spaces W k,p(Ω) are Banach spaces when equipped with the norm

∥u∥W k,p(Ω) :=

⎛

⎝
∑

|ααα|"k

∥Dαααu∥pLp(Ω)

⎞

⎠

1

p

, 1 " p < ∞.

For the case p = ∞, the corresponding norm is

∥u∥W k,∞(Ω) :=
∑

|ααα|"k

∥Dαααu∥L∞(Ω).

The definition of the Sobolev norms can be more explicit by considering the following

seminorm

|u|W k,p(Ω) :=

⎛

⎝
∑

|ααα|=k

∥Dαααu∥pLp(Ω)

⎞

⎠

1

p

.

We can rewrite the Sobolev norms in terms of its seminorms:

∥u∥W k,p(Ω) =

(
k∑

j=0

|u|pW j,p(Ω)

) 1

p

.

The case p = 2, is special for Sobolev spaces as it was for Lp−spaces. These spaces are

used when solving partial differential equations, so they deserve a special notation. The

spaces

Hk(Ω) := W k,2(Ω)

11

are Hilbert spaces when equipped with the inner product

(u, w)Hk(Ω) =
∑

|ααα|"k

(Dαααu,Dαααw)L2(Ω).

We write the seminorms on Hk(Ω) as

|u|k,Ω :=

⎛

⎝
∑

|ααα|=k

∥Dαααu∥2L2(Ω)

⎞

⎠

1

2

with the corresponding norms on Hk(Ω)

∥u∥Hk(Ω) =

(
k∑

j=0

|u|2j,Ω (Ω)

) 1

2

.

Some interesting values for k:

• k = 0

∥u∥H0(Ω) = |u|0,Ω = ∥u∥L2(Ω) .

• k = 1

|u|1,Ω = |∇u|0,Ω = ∥∇u∥L2(Ω)

∥u∥H1(Ω) =
(
|u|20,Ω + |u|21,Ω

) 1

2

=
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω)

) 1

2

.

• k = 2

∥u∥H2(Ω) =
(
∥u∥2L2(Ω) + ∥∇u∥2L2(Ω) + |u|22,Ω

) 1

2

.

Finally, we state the following useful theorem.

Theorem 2.1.2 (Poincaré-Friedrichs inequality) Let Ω ⊂ Rn be a bounded open set

12

with a sufficiently smooth boundary ∂Ω. Then there exists a constant C = C(Ω) such that

∥u∥L2(Ω) = |u|0,Ω " C(Ω) |u|1,Ω ∀u ∈ H1
0 (Ω). (2.2)

13

Chapter 3

PDE-constrained optimisation

problems

In this chapter, we introduce optimisation problems constrained by a partial differential

equation (PDE) by presenting analytical groundwork and optimality theory. The matter

of PDE-constrained optimisation problems along with associated existence and uniqueness

theorems has been discussed in the literature, for example in the textbooks of Lions [49],

Hinze [43] and Tröltzsch [74]. We will present the existence results, uniqueness results in

researching optimal solutions, produce optimal conditions and optimisation algorithms.

The form of the problems under consideration here are as follows:

min
w∈W

J(w)

subject to e(w) = 0,

c(w) ∈ K, w ∈ C,

(3.1)

where J : W → R is the objective function, e : W → Z and c : W → R are operators

where W, Z and R are real Banach spaces, K ⊂ R is a closed convex cone, and C ⊂ W is

a closed convex set. Usually, the spaces W, Z and R are generalised function spaces and

14

the operator equation e(w) = 0 represents a PDE or a system of PDEs. The constraint:

c(w) ∈ K

is an abstract inequality constraint. It can often be more efficient, in a bound constrained

optimisation problem, to omit inequality constraints and to write constraints as w ∈ C,

where C ⊂ W is a closed convex set. Problems are then considered as follows:

min
w∈W

J(w)

subject to e(w) = 0, w ∈ C.

(3.2)

In order to link with optimisation in finite dimensions, one can consider:

W = R
n, Z = R

l, R = R
m, K = (−∞, 0]m, C = R

n,

so that the problem in (3.1) transforms into a problem of nonlinear optimisation

min
w∈W

J(w)

subject to e(w) = 0,

c(w) " 0.

(3.3)

Optimisation of optimal control problems with PDE constraints can, typically, lead to

separation of the optimisation variable into two parts which produces a second structure,

so that there is state u ∈ U and control y ∈ Y (both U and Y are Banach spaces). Hence,

15

W = U × Y , w = (u, y) and the problem becomes

min
u∈U,y∈Y

J(u, y)

subject to e(u, y) = 0,

c(u, y) ∈ K.

(3.4)

Definition 3.0.6 A state-control pair (u, y) ∈ U × Y is called optimal for (3.4), if

e(u, y) = 0, c(u, y) ∈ K and

J(u, y) " J(u, y) ∀(u, y) ∈ U × Y, e(u, y) = 0 and c(u, y) ∈ K.

3.1 Existence of solutions

Let the optimal objective function value be denoted by J∗, which is finite and attainable

by using the properties of the problem. We then consider a minimising sequence (wk)k∈N,

i.e., e(wk) = 0, c(wk) " 0, J(wk) → J∗ and prove that (wk)k∈N is bounded. Next, one

can conclude that (wk)k∈N contains a convergent subsequence (wk)K → w, as a result of

boundedness. If we assume the continuity of J, e, c then one can note that

J(w) = lim
k→∞

J(wk) = J∗

c(w) = lim
k→∞

c(wk) " 0,

e(w) = lim
k→∞

e(wk) = 0.

Hence, w solves the problem. For more details we refer the reader to [43, Chapter 1].

16

3.2 Existence result for some optimal controls

Definition 3.2.1 Let X be a Banach space. We say that a sequence (xk) ⊂ U converges

weakly to some x ∈ X, written xk ⇀ x, if

lim
k→∞

f(xk) = f(x) ∀ f ∈ X∗,

where X∗ is the dual space of X.

Definition 3.2.2 Let X be a Banach space. A function f is sequentially weakly lower

semicontinuous if

f(x) " lim
k→∞

inf f(xk),

for all sequences (xk) such that xk ⇀ x.

We will present below some theorems for the existence of the optimal controls.

3.2.1 Linear quadratic optimisation problem

Consider the following linear quadratic optimisation problem of the form

min
(u,y)∈U×Y

J(u, y)

subject to

Au+ By = g, u ∈ Uad, y ∈ Yad, (3.5)

where the objective function J(u, y) = 1
2

∥∥Qu− ud
∥∥2
H
+ 1

2γ ∥y∥
2
Y , H, Y are Hilbert spaces,

U,Z are Banach spaces, ud ∈ H, g ∈ Z, A ∈ L(U,Z), B ∈ L(Y, Z), Q ∈ L(U,H). Both

the regularization parameter γ and the desired state ud are given.

We have the following existence result for (3.5)

17

Theorem 3.2.1 [43] Let the following assumptions hold

• γ ! 0, Yad ⊂ Y is convex, closed and in the case γ = 0 bounded.

• Uad ⊂ U is convex and closed, such that (3.5) has a feasible point.

• A ∈ L(U,Z) has a bounded inverse.

Then the problem (3.5) has an optimal solution (u, y). If γ > 0 then the solution is

unique.

3.2.2 Nonlinear optimization problems

The existence result can be extended to nonlinear problems

min
u∈U,y∈Y

J(u, y) subject to e(u, y) = 0, u ∈ Uad, y ∈ Yad, (3.6)

where J : U ×Y → R, e : U ×Y → Z are continuous with a Banach space Z and reflexive

Banach spaces Y , U .

Theorem 3.2.2 [43] Let the following assumptions hold

• Yad ⊂ Y is convex, closed and bounded.

• Uad ⊂ U is convex and closed, such that (3.6) has a feasible point.

• The state equation e(u, y) = 0 has a bounded solution operator y ∈ Yad ,→ u(y) ∈ U .

• (u, y) ∈ U × Y ,→ e(u, y) ∈ Z is continuous under weak convergence.

• J is sequentially weakly lower semicontinuous.

Then the problem (3.6) has an optimal solution (u, y).

The proofs can be found in [43].

18

3.3 Unique solutions

In general, it is known that if the objective function is not convex then a unique minimum

of the objective function can not be expected. However, strict convexity of objective

function does guarantee uniqueness. Therefore, we start to present the basic definitions

of convex sets and functions. A convex set in Rn is a set that contains all the points

of any line segment joining two points of the set. To be more clear, we introduce some

definitions of a convex set and function.

Definition 3.3.1 A set S ⊆ Rn is convex if and only if ∀ x, y ∈ S and λ ∈ [0, 1] :

λx+ (1− λ)y ∈ S.

Definition 3.3.2 Let f : S ⊆ Rn → R and S be a convex set. The function f is convex

if and only if ∀ x, y ∈ S and λ ∈ [0, 1] :

f (λx+ (1− λ)y) " λf(x) + (1− λ)f(y).

Definition 3.3.3 Let f : S ⊆ Rn → R and S be a convex set. The function f is strictly

convex if and only if ∀ x, y ∈ S and λ ∈ [0, 1] :

f (λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

According to [43], unique solutions to the problem (3.3) can be obtained. For this, J

requires strict convexity, e must be linear and ci must be convex in order to maintain a

unique solution.

19

3.4 Optimality conditions

Let all previous considerations be taken into account. If we assume that the functions

J, c and e are continuously differentiable and that the constraints satisfy a regularity

condition on the constraints called constraint qualification (CQ) at the solution, then the

first order optimality conditions hold at the solution w as in the following:

Karush-Kuhn-Tucker (KKT) conditions

Lagrange multipliers θ ∈ Rl and λ ∈ Rm exist such that (w, θ, λ) solves the following

KKT system:

∇J(w) + c′(w)Tλ+ e′(w)T θ = 0,

e(w) = 0,

c(w) " 0, λ ! 0, c(w)Tλ = 0,

(3.7)

where the column vector ∇J(w) = J ′(w)T ∈ Rn is the gradient of J and c′(w) ∈

Rm×n, e′(w) ∈ Rl×n are the Jacobian matrices of c and e respectively [43].

3.5 Optimisation algorithms

The solutions to the KKT system are the foundations of up-to-date optimisation algo-

rithms and for problems with no inequality constraints, the KKT system reduces to an

(n+ l)× (n+ l) equation system, as follows

G(w, θ) :=

⎛

⎜⎝
∇J(w) + e′(w)T θ

e(w)

⎞

⎟⎠ = 0. (3.8)

We can solve this nonlinear system and find the points that satisfy the KKT conditions.

Lagrange-Newton method

In applying Newton’s method to (3.8) we obtain the Lagrange-Newton algorithm, which

20

is a potent algorithm for equality constrained optimisation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For k = 0, 1, . . .

1.STOP if G(wk, θk) = 0.

2.Compute sk =

⎛

⎜⎝
skw

skθ

⎞

⎟⎠ by solving

G′(wk, θk)sk = −G(wk, θk)

and set wk+1 := wk + skw, θ
k+1 := θk + skθ .

End

(3.9)

3.6 Summary

In this chapter, we introduced the notion of PDE-constrained optimisation problems. We

presented the first order optimality conditions. We also presented the main existence

and uniqueness results that we need to have a unique solution to our PDE-constrained

optimisation problems later in Chapter 8.

21

Chapter 4

Stokes problem

The Stokes equation models fluid flow which has a very small velocity, in other words, a

very high viscosity. In the next section, we consider the Newtonian case of Stokes problem

which is linear, however the non-Newtonian case will be presented in Chapter 7.

4.1 The Stokes problem

Let Ω ⊂ R2 be an open bounded domain. The steady-state generalised Stokes equations

for incompressible fluids are given by the system of partial differential equations [72, 32]

−divσσσ = f⃗ in Ω, (4.1a)

div u⃗ = 0 in Ω, (4.1b)

where the stress tensor

σσσ = −pI + σσσE, (4.2)

the extra stress tensor σσσE is a function of shear rate ε(u⃗),

ε(u⃗) =
1

2

(
∇u⃗+ (∇u⃗)T

)
and |ε(u⃗)| =

(
2∑

i,j=1

(εi,j(u⃗))
2

) 1

2

,

22

where the vector notation #⃗ = (#1,#2), where #1 and #2 are horizontal and vertical

components respectively. f⃗ : Ω → R2 is a given function, while the vector variable u⃗

represents the velocity of the fluid, and the scalar function p represents the pressure. The

first equation (4.1a) is called the momentum equation and represents conservation of the

momentum of the fluid, while the second equation (4.1b) is called the mass conservation

equation, representing the incompressibility of the fluid. The boundary value problem

considered is equation (4.1) posed on a two dimensional domain Ω, with boundary con-

ditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

⎧
⎪⎨

⎪⎩

u⃗ = g on ∂ΩD,

n · σσσ = h on ∂ΩN ,
(4.3)

where n is the outward-pointing normal to the boundary. If ∂Ω = ∂ΩD then the boundary

condition is of Dirichlet type, and the boundary value problem is referred to as the

Dirichlet problem for the Stokes equation.

For σσσE = 2νε(u⃗), equation (4.1) becomes Newtonian, with ν denoting the viscosity,

which remains constant in this chapter. In case (4.1) is a linear Stokes system and it can

be written as ⎧
⎪⎨

⎪⎩

−ν∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω.
(4.4)

The aim is to find the velocity and the pressure of the viscous flow with some boundary

conditions on the boundary ∂Ω of the domain Ω.

23

4.2 Weak formulation

In this section, we consider Dirichlet boundary conditions (other conditions can be found

in[32]):

−ν∆u⃗+∇p = f⃗ in Ω, (4.5a)

∇ · u⃗ = 0 in Ω, (4.5b)

u⃗ = 0 on ∂Ω. (4.5c)

Let Ω ⊂ R2 be an open bounded set and assume f⃗ ∈ [L2(Ω)]2. The classical solution

of the problem (4.5) is defined as the following:

Definition 4.2.1 A pair (u⃗, p) ∈ (C2(Ω)∩C0(Ω))2×C1(Ω) satisfying the Stokes equations

(4.5) is called a classical solution.

To derive the weak formulation of the Stokes equations, we multiply the first two equations

(4.5a) and (4.5b) by test functions v⃗ ∈ V and q ∈ Q respectively, where V and Q are

suitable spaces to be defined later, then integrate over the domain Ω:

∫

Ω

(−ν∆u⃗+∇p) v⃗ dΩ =

∫

Ω

f⃗ v⃗ dΩ, (4.6)

∫

Ω

(∇ · u⃗) q dΩ = 0. (4.7)

By integrating by parts the left hand side for equation (4.6), we get

−ν

∫

Ω

∆u⃗ v⃗ dΩ = ν

∫

Ω

∇u⃗ : ∇v⃗ dΩ− ν

∫

∂Ω

(n ·∇u⃗) · v⃗ dΩ, (4.8)

24

∫

Ω

∇p · v⃗ dΩ = −

∫

Ω

p∇ · v⃗ dΩ+

∫

∂Ω

pn · v⃗ dΩ. (4.9)

combining (4.6), (4.8) and (4.9) gives

ν

∫

Ω

∇u⃗ : ∇v⃗ dΩ−

∫

Ω

p∇ · v⃗ dΩ =

∫

Ω

f⃗ · v⃗ dΩ (4.10)

for all v⃗ ∈ V = (H1
0 (Ω))

2. Note that here ∇u⃗ : ∇v⃗ :=
∑

i,j
∂ui

∂xj

∂ui

∂xj
, the componentwise

scalar product. Since there are no derivatives on the pressure and test function q on the

left-hand side of (4.10) and (4.7) respectively, the appropriate space for p and q is L2(Ω).

However, for the Stokes equations with pure Dirichlet boundary condition, the pressure

is unique up to an additive constant. In order to ensure the uniqueness, we impose the

condition ∫

Ω

p dΩ = 0. (4.11)

Therefore we consider the following space:

Q :=

{
q ∈ L2(Ω) :

∫

Ω

q = 0

}
.

The mixed weak formulation of the Stokes problem (4.5) can be established as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find u⃗ ∈ V and p ∈ Q, such that for all v⃗ ∈ V and q ∈ Q,

ν

∫

Ω

∇u⃗ : ∇v⃗ dΩ−

∫

Ω

p∇ · v⃗ dΩ =

∫

Ω

f⃗ · v⃗ dΩ,

−

∫

Ω

(∇ · u⃗)q dΩ = 0.

(4.12)

25

This can be written in the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find u⃗ ∈ V and p ∈ Q, such that for all v⃗ ∈ V and q ∈ Q,

a(u⃗, v⃗) + b(v⃗, p) = l(v⃗),

b(u⃗, q) = 0.

(4.13)

where

a(u⃗, v⃗) = ν

∫

Ω

∇u⃗ : ∇v⃗ dΩ,

b(v⃗, p) = −

∫

Ω

p∇ · v⃗ dΩ,

l(v⃗) =

∫

Ω

f⃗ · v⃗ dΩ.

The derivation of the weak formulation indicates that any solution of (4.5) satisfies

(4.12). Now the question that will arise is if problem (4.12) is well posed. To address this

matter we will present the mixed formulation problem in the next section.

4.3 Mixed formulation

Consider the following abstract mixed formulation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find u⃗ ∈ V and p ∈ Q, such that for all v⃗ ∈ V and q ∈ Q,

a(u⃗, v⃗) + b(v⃗, p) = l(v⃗),

b(u⃗, q) = 0.

(4.14)

The well-posedness of (4.14) is decided in the following theorem which was proved by

Brezzi for this type of problems as presented in [16],

Theorem 4.3.1 The problem (4.14) has a unique solution if the following conditions hold

(i) a(·, ·) and b(·, ·) are continuous bilinear forms on (V ×V) and (V ×Q) respectively,

26

i.e., the following inequalities are assumed to hold:

a(u⃗, v⃗) " Ca ∥u⃗∥V ∥v⃗∥V ∀u⃗, v⃗ ∈ V (4.15)

and

b(v⃗, p) " Cb ∥v⃗∥V ∥p∥Q ∀v⃗ ∈ V, p ∈ Q. (4.16)

(ii) the bilinear form a(·, ·) is coercive over V , i.e

a(v⃗, v⃗) ! α ∥v⃗∥2V ∀v⃗ ∈ V,

where α > 0.

(iii) the bilinear form b(·, ·) satisfies the inf-sup condition, i.e.

inf
q∈Q

sup
v⃗∈V

b(v⃗, q)

∥v⃗∥V ∥q∥Q
= β.

where β > 0.

(iv) The linear form l(v⃗) is bounded.

The inf-sup condition is also called the LBB condition as it refers to similar contribu-

tions by Ladyzhenskaya, Brezzi and Babuška. The mixed weak formulation for the Stokes

problem (4.12) fulfils the conditions of Theorem (4.3.1) w.r.t. ∥·∥V and ∥·∥Q with V, Q

defined in Section 4.2. In particular, we have

• Continuity of a(·, ·)(by using Cauchy-Schwarz inequality (2.1)):

a(u⃗, v⃗) = (∇u⃗,∇v⃗)

" ∥∇u⃗∥L2(Ω) ∥∇v⃗∥L2(Ω)

= |u⃗|1,Ω |v⃗|1,Ω

27

• Continuity of b(·, ·):

b(v⃗, p) = (p,∇v⃗)

" ∥p∥L2(Ω) ∥∇v⃗∥L2(Ω)

= ∥p∥L2(Ω) |v⃗|1,Ω

• Coercivity of a(·, ·) on V (by using Poincaré-Friedrichs inequality (2.2)):

a(u⃗, u⃗) = (∇u⃗,∇u⃗)

= ∥∇u⃗∥2L2(Ω) =
1
2 ∥∇u⃗∥2L2(Ω) +

1
2 ∥∇u⃗∥2L2(Ω)

! 1
2 ∥∇u⃗∥2L2(Ω) +

1
2C(Ω) ∥u⃗∥

2
L2(Ω)

! 1
2min

{
1, 1

C(Ω)

}(
∥∇u⃗∥2L2(Ω) + ∥u⃗∥2L2(Ω)

)

= 1
2min

{
1, 1

C(Ω)

}
∥u⃗∥2[H1(Ω)]2

• To verify the inf-sup condition we present the following theorem

Theorem 4.3.2 Let q ∈ L2
0. Then there exists w⃗ ∈ [H1(Ω)]2 with −div w⃗ = q and

a constant c > 0 such that

∥w⃗∥[H1(Ω)]2 " c ∥q∥L2(Ω) .

As a consequence, we have

sup
v⃗∈[H1(Ω)]2

b(v⃗, q)

∥v⃗∥H1(Ω)

!
b(w⃗, q)

∥w⃗∥H1(Ω)

!
∥q∥2L2(Ω)

∥w⃗∥H1(Ω)

!
1

c
∥q∥L2(Ω) ,

which implies the inf-sup condition.

4.4 Discrete weak formulation

The finite element discretisation of partial differential equations is based on its weak

formulation to obtain the discrete formulation. A discrete weak formulation of Stokes

28

problem is defined by using finite dimensional velocity space Vh ⊂ V and pressure space

Qh ⊂ Q. Then the discrete mixed weak formulation of (4.14) is given by:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find u⃗h ∈ Vh and ph ∈ Qh such that for all v⃗h ∈ Vh and qh ∈ Qh

a(u⃗h, v⃗h) + b(v⃗h, ph) = (f⃗h, v⃗h),

b(u⃗h, qh) = 0.

(4.17)

We have the following existence and uniqueness theorem and error estimates, as given

in [16]

Theorem 4.4.1 Assume that the following conditions hold

(i) the bilinear form a(·, ·) is coercive over Vh, i.e. there exists α∗ > 0 such that

a(v⃗h, v⃗h) ! α∗ ∥v⃗h∥
2
Vh

∀v⃗h ∈ Vh,

(ii) the bilinear form b(·, ·) satisfies the inf-sup condition, i.e. there exists a constant

β∗ > 0 such that

inf
qh∈Qh

sup
v⃗h∈Vh

b(v⃗h, qh)

∥v⃗h∥Vh
∥qh∥Qh

! β∗.

Then the problem (4.17) has a unique solution (u⃗h, ph) ∈ (Vh, Qh) for all h > 0. Moreover

if (u⃗, p) is the solution of (4.14), then there exists a constant C > 0, depending only on

Ca (4.15), Cb (4.16), α∗ and β∗ such that

∥u⃗− u⃗h∥V + ∥p− ph∥Q " C

{
inf

v⃗h∈Vh

∥u⃗− v⃗h∥V + inf
qh∈Qh

∥p− qh∥Q

}
.

4.5 Compatible spaces

It is well known that for the mixed finite formulation of the Stokes problem the inf

sup condition does not always hold and that we need to ensure that the pair of finite

29

element spaces (Vh, Qh) is compatible in this sense and the corresponding discretisation

is well posed. This condition is also called the compatibility condition and the pair

(Vh, Qh) satisfying this condition is called a compatible pair. In [17], Brezzi and Fortin

have published the necessary and sufficient conditions for the stability of the mixed finite

element discretisation of the Stokes problem. A pair of finite element spaces (Vh, Qh)

satisfying these conditions is called stable, and so is the corresponding discretisation.

Some stable mixed finite element spaces are listed in the next chapter. A full study of

other stable and unstable approximations can be found in [17] and [37].

4.6 Test problems

The following two examples of two-dimensional Stokes flow will be used within this thesis

as test problems.

Example 1 (Driven cavity test problem)

Let Ω = [0, 1]2. Consider the Stokes problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

(4.18)

where

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
16(x− x2)2

0

⎞

⎟⎠ on y = 1

0 otherwise

The above example represents a driven flow in a cavity. It is a classic test problem which

is used in fluid dynamics. The geometry of this test problem is illustrated in Figure 4.1

for testing a numerical simulation. It has a square flow model which moves from left to

right. The boundary conditions for the velocity are u⃗D on the top (lid) which moves in the

30

u⃗ = 0⃗

u⃗ = 0⃗

u⃗ = 0⃗

u⃗ = u⃗D

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure 4.1: Geometry of the driven cavity test problem

x-direction and no slip condition at the rest of the boundaries. It has a simple geometry

and straight forward flow structure, which makes this example an attractive test case.

The velocity u⃗ and the pressure p are the solution of the driven cavity flow in a square

domain [0, 1]2. Figure 4.2 shows the velocity in horizontal and vertical components u1, u2

and pressure p. The other test example is a pipe flow, where the domain is a horizontal

pipe as follows:

Example 2 (Pipe flow test problem)

Let Ω = [0, 4]× [0, 1], consider the Stokes problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂ΩD,

∂u⃗
∂n = 0 on ∂ΩN ,

(4.19)

where

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
4(y − y2)

0

⎞

⎟⎠ on x = 0

0 on y = 0, y = 1,

31

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.5

0

0.5

1

(a) u1

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.4

−0.2

0

0.2

0.4

(b) u2

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−10

−5

0

5

10

(c) p

Figure 4.2: The velocity components u1, u2 and the pressure p for the driven cavity test
problem.

and ∂Ω = ∂ΩD ∪ ∂ΩN

The geometry of this test problem is illustrated in Figure 4.3. The resulting velocity has

a parabolic profile in the horizontal direction, displaying gradual decay from a maximum

at the center to zero at both pipe walls and outflow boundary condition (at x = 4).

Vertically, the velocity component is zero. For the pressure p, there is a pressure drop

32

u⃗ = u⃗D

u⃗ = 0⃗

u⃗ = 0⃗(0, 1) (4, 1)

(0, 0) (4, 0)

∂ΩN

Figure 4.3: Geometry of pipe flow test problem

occurs along the pipe. Figure 4.4 shows the velocity in horizontal and vertical components

u1, u2 and pressure p. Figure 4.5 shows the streamlines for the driven cavity and the pipe

flow test problems..

4.7 Summary

In conclusion, we have derived the weak formulation of the Stokes equations. We stated

the existence and uniqueness theorem and error estimates for this problem. Furthermore,

we presented the necessary and sufficient conditions for the stability of the mixed finite

element discretisation of the Stokes problem.

In the next chapter, we introduce the method that we use to discretise our weak formu-

lation.

33

0
1

2
3

4

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) u1

0
1

2
3

4

0
0.2

0.4
0.6

0.8
1
−1

−0.5

0

0.5

1

(b) u2

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1
−5

0

5

10

15

20

25

30

35

(c) p

Figure 4.4: The velocity components u1, u2 and the pressure p for the pipe flow test
problem.

34

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4.5: The streamlines for u⃗ for the driven cavity and the pipe flow test problems.

35

Chapter 5

Finite Element Method For Stokes

In this chapter, we want to present the method that we used to discretise our problem.

We have various choices for the discretisation of the Stokes equations. The finite element

method (FEM) is considered as one of the well established and convenient methods for

solving partial differential equations numerically [23, 27]. Moreover, the Stokes problem

is well understood when discretised with the FEM [4, 18, 17, 37, 28, 32]. Also for these

problems, we have an error analysis already available unlike other discretisation methods

[75, 3]. By taking all these considerations into account, we have chosen the FEM to

discretise the Stokes equations. We also use this method to discretise our optimisation

problems in later chapters.

The general steps to solve a given differential equation using the finite element method

are basically the following

1. Set up a weak formulation of the differential equation.

2. Set up the discrete weak formulation by restricting the weak formulation to a finite

dimensional setting.

3. Setup (linear) system of equations and solve the discrete problem.

36

5.1 Discretised weak formulation

Recall the weak formulation of the Stokes equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find u⃗ ∈ V and p ∈ Q, such that for all v⃗ ∈ V and q ∈ Q,

ν

∫

Ω

∇u⃗ : ∇v⃗ dxdy −

∫

Ω

p∇ · v⃗ dxdy =

∫

Ω

f⃗ · v⃗ dxdy,

−

∫

Ω

(∇ · u⃗)q dxdy = 0.

(5.1)

In order to discretise the weak formulation, we define the finite dimensional spaces Vh ⊂ V

and Qh ⊂ Q and consider the following discrete problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find u⃗h ∈ Vh and ph ∈ Qh, such that for all v⃗h ∈ Vh and qh ∈ Qh,

a(u⃗h, v⃗h) + b(v⃗h, ph) = l(v⃗h),

b(u⃗h, qh) = 0.

(5.2)

where

a(u⃗h, v⃗h) = ν

∫

Ω

∇u⃗h : ∇v⃗h dxdy,

b(v⃗h, ph) = −

∫

Ω

ph∇ · v⃗h dxdy,

l(v⃗h) =

∫

Ω

f⃗h · v⃗h dxdy.

In our problem, we look for (u⃗h, ph) ∈ Vh × Qh where Vh, Qh are spaces of continuous

piecewise polynomials associated with a subdivision Th. Let Th be a set of disjoint sim-

plices of Ω such that {Ti}1"i"N ≡ Th and ∪N
i=1Ti = Ωh, where Ωh is an approximation of

Ω since Ω is not always a polygon (in R2) or a polyhedron (in R3). The finite element

spaces of velocity and pressure Vh, Qh are chosen to be

Vh =
{
v⃗h : Ωh | v⃗h|Ti

∈ Pk(Ti)
}
∩ C0(Ωh),

Qh =
{
qh : Ωh | qh|Ti

∈ Pl(Ti)
}
∩ C0(Ωh),

(5.3)

37

where Pk(Ti) denotes the space of polynomials of degree k on Ti , k > l ! 0. Some

commonly used compatible pairs of spaces are listed below [4, 17] .

1. P2 − P1 elements.

This combination involves a quadratic polynomial approximation for velocity and

linear polynomial approximation for pressure (see Figure 5.1):

Vh =
{
v⃗h : Ωh | v⃗h|Ti

∈ P2(Ti)
}
,

Qh =
{
qh : Ωh | qh|Ti

∈ P1(Ti)
}
.

(5.4)

2. P2 − P0 elements.

The P2−P0 pair is another stable approximation where the velocity is approximated

by a quadratic polynomial and the pressure by a piecewise constant approximation.

Vh =
{
v⃗h : Ωh | v⃗h|Ti

∈ P2(Ti)
}
,

Qh =
{
qh : Ωh | qh|Ti

∈ P0(Ti)
}
.

(5.5)

These spaces are also graphically denoted by indicating the degree of the polynomial ap-

proximation on a generic simplex.

Let

Figure 5.1: The P2 and P1 triangle elements.

{
φ⃗i : i = 1, . . . , nu

}

{ψi : i = 1, . . . , np}

38

denote basis for Vh and Qh respectively. Then

u⃗h =
nu∑

i=1

ui φ⃗i , ph =

np∑

j=1

pj ψj (5.6)

and the weak formulation becomes for the choice v⃗h = φ⃗j, qh = ψk,

nu∑

i=1

ui a(φ⃗i, φ⃗j)−

np∑

l=1

pl b(ψl, φ⃗j) =
∑nu

i=1 l(fi, φ⃗i),

nu∑

i=1

ui b(ψk, φ⃗i) = 0.

.

which in matrix form reads

⎡

⎢⎣
A BT

B 0

⎤

⎥⎦

⎡

⎢⎣
u

p

⎤

⎥⎦ =

⎡

⎢⎣
f

0

⎤

⎥⎦ , (5.7)

where the matrix A is a symmetric and positive definite square matrix, which is called

the stiffness matrix, and the matrix B is called the divergence matrix:

Aij = a(φ⃗i, φ⃗j)

Bki = b(ψk, φ⃗i)

39

In order to evaluate A we write

a(φ⃗i, φ⃗j) = ν

∫

Ω

∇φ⃗i : ∇φ⃗j dxdy

=
∑

Tk∈Th

ν

∫

Tk

∇φ⃗i : ∇φ⃗j dxdy

= ν
N∑

k=1

A(k)
ij ,

where A(k)
ij is a sparse matrix containing contribution corresponding to the support of φ⃗i

and φ⃗j jointly, i.e.

A(k)
ij =

∫

supp φ⃗i∩ supp φ⃗j

∇φ⃗i : ∇φ⃗j dxdy

=
∑

Tk∈Th

ν

∫

Tk

∇φ⃗i : ∇φ⃗j dxdy

= ν
∑

T∈τij

∫

T

∇φ⃗i : ∇φ⃗j dxdy,

where

τij =
{
T : T ∈ supp φ⃗i ∩ supp φ⃗j

}
.

It is only when this intersection is nonempty that we get the entries Aij , as a consequence

the matrix A will be largely sparse.

5.2 Basis elements

We construct φ⃗i and ψj by locally constructing a basis for polynomial spaces Pk and Pl

on an element T by imposing the conditions

φi(xk) = δik

40

ψi(xl) = δjl,

where xk is a node of element T . The basis for Vh has elements for the form

φ⃗i =

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
φ1

0

⎞

⎟⎠ , . . . ,

⎛

⎜⎝
φn

0

⎞

⎟⎠ ,

⎛

⎜⎝
0

φ1

⎞

⎟⎠ , . . .

⎛

⎜⎝
0

φn

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

This local basis is known as the set of shape functions. The implementation of the FEM

is usually done using certain techniques. We describe one in next section. We focus on

the grid of triangular simplices (R2).

5.3 Transformation to the reference element

The idea here is to map an arbitrary triangle element in the (x, y)-plane to another one

which has a simpler geometry in a computational sense, denoted by (ξ, η)-plane. Consider

an arbitrary triangle ∆k with vertex nodes (xi, yi), i = 1, 2, 3 which is mapped by a linear

transformation to the reference (canonical) triangle, denoted by ∆E with vertices at (0,0),

(1,0), (0,1) (see Figure 5.2). The mapping is defined for all points (x, y) ∈ ∆k, as in

x (ξ, η) = x1χ1 (ξ, η) + x2χ2 (ξ, η) + x3χ3 (ξ, η) , (5.8)

y (ξ, η) = y1χ1 (ξ, η) + y2χ2 (ξ, η) + y3χ3 (ξ, η) , (5.9)

where

χ1 (ξ, η) = 1− ξ − η

χ2 (ξ, η) = ξ

χ3 (ξ, η) = η

(5.10)

41

are the basis functions defined on the reference element. As an aside, curve-sided elements

can be produced via analogous mapping as in P2 element basis functions of the reference

triangles. Evidently, polynomial mapping onto ∆k from a reference element needs to be

(1,0)

(0,1)

e

xi x(0,0)

y

(x1,y1)

(x2,y2)

(x3,y3)

Figure 5.2: The mapping to canonical triangle.

differentiable, hence, with a differentiable function ϕ (ξ, η), derivative transformation is

via ⎡

⎢⎣

∂ϕ

∂ξ
∂ϕ

∂η

⎤

⎥⎦ =

⎡

⎢⎣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤

⎥⎦

⎡

⎢⎣

∂ϕ

∂x
∂ϕ

∂y

⎤

⎥⎦ . (5.11)

In order to facilitate calculation of the Jacobian matrix in (5.11) we can substitute (5.10)

into (5.8)-(5.9) and differentiate to obtain

J =
∂(x, y)

∂(ξ, η)
=

⎡

⎢⎣
x2 − x1 y2 − y1

x3 − x1 y3 − y1

⎤

⎥⎦ . (5.12)

Hence in this case, J is a constant matrix over the reference element and the determinant

|J | =

∣∣∣∣∣∣∣

x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣

= 2 area(∆k) (5.13)

is the ratio of the area of the mapped element ∆k with respect to reference element

∆E. It is noteworthy that |Jk(ξ, η)| ≠ 0 ∀(ξ, η) ∈ ∆E, which guarantees a unique and

42

differentiable inverse mapping from ∆k onto the reference element ∆E. The inversion of

the derivative transformation (5.11) is given by

⎡

⎢⎣

∂ϕ

∂x
∂ϕ

∂y

⎤

⎥⎦ =

⎡

⎢⎣

∂ξ

∂x

∂η

∂x
∂ξ

∂y

∂η

∂y

⎤

⎥⎦

⎡

⎢⎣

∂ϕ

∂ξ
∂ϕ

∂η

⎤

⎥⎦ . (5.14)

Hence, derivatives of functions, defined on ∆k, satisfy

⎡

⎢⎣

∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y

⎤

⎥⎦ =
1

|J |

⎡

⎢⎣
y3 − y1 x1 − x3

y1 − y2 x2 − x1

⎤

⎥⎦ . (5.15)

5.4 Finite element assembly

In order to obtain a generalised form of the stiffness matrix consider

A(k)
ij =

∫

∆K

∇φi∇φj dxdy =

∫

∆K

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)
dxdy.

Mapping to the reference element ∆E, we have

A(k)
ij =

∫

∆E

[(
∂ξ

∂x

∂ϕ̂πK(i)

∂ξ
+
∂η

∂x

∂ϕ̂πK(i)

∂η

)(
∂ξ

∂x

∂ϕ̂πK(j)

∂ξ
+
∂η

∂x

∂ϕ̂πK(j)

∂η

)

+

(
∂ξ

∂y

∂ϕ̂πK(i)

∂ξ
+
∂η

∂y

∂ϕ̂πK(i)

∂η

)(
∂ξ

∂y

∂ϕ̂πK(j)

∂ξ
+
∂η

∂y

∂ϕ̂πK(j)

∂η

)]
|J | dξdη,

(5.16)

where ϕ̂πK(i)(ξ, η) = φi (x(ξ, η), y(ξ, η)) are the reference basis functions and πK is a

mapping from global to local degree of freedom numbering.

Rearranging the terms, we have

43

A(k)
ij =

∫

∆E

[(
∂ξ

∂x

2

+
∂ξ

∂y

2) ∂ϕ̂πK(i)

∂ξ

∂ϕ̂πK(j)

∂ξ
+

(
∂ξ

∂x

∂η

∂x
+
∂ξ

∂y

∂η

∂y

)(
∂ϕ̂πK(i)

∂ξ

∂ϕ̂πK(j)

∂η
+
∂ϕ̂πK(i)

∂η

∂ϕ̂πK(j)

∂ξ

+

(
∂η

∂x

2

+
∂η

∂y

2) ∂ϕ̂πK(i)

∂η

∂ϕ̂πK(j)

∂η

]
|J | dξdη

= |J |

(
∂ξ

∂x

2

+
∂ξ

∂y

2)∫

∆E

∂ϕ̂πK(i)

∂ξ

∂ϕ̂πK(j)

∂ξ
dξdη

+ |J |

(
∂ξ

∂x

∂η

∂x
+
∂ξ

∂y

∂η

∂y

)∫

∆E

(
∂ϕ̂πK(i)

∂ξ

∂ϕ̂πK(j)

∂η
+
∂ϕ̂πK(i)

∂η

∂ϕ̂πK(j)

∂ξ

)
dξdη

+ |J |

(
∂η

∂x

2

+
∂η

∂y

2)∫

∆E

∂ϕ̂πK(i)

∂η

∂ϕ̂πK(j)

∂η
dξdη,

which is expressed using local derivatives of the element basis functions. The local stiffness

matrix can be computed, because the above three integrals involve derivatives of known

functions.

Finally, by assembling the A(k)
ij contributions on each ∆K the global stiffness matrix is

A =
∑

∆k

A(k)
ij .

For the divergence matrix B, the assembly is done similarly.

5.5 The right hand side approximation

Assuming the forcing term can be approximated as

f(x, y) ≈ fh(x, y) =
∑

i

f(xi, yi)φi,

44

the right hand side is approximated by

∫

∆K

fh(x, y)φj(x, y)dxdy =

∫

∆K

f(xi, yi)φi(x, y)φj(x, y)dxdy.

Transforming to the reference element, we have

∫

∆K

f(xi, yi)φi(x, y)φj(x, y)dxdy = f(xi, yi)

∫

∆E

ϕ̂πK(i)(ξ, η)ϕ̂πK(j)(ξ, η) |J | dξdη,

where the entries of the elemental mass matrix can be computed at the beginning of the

assembly:

M (k)
ij =

∫

∆E

ϕ̂πK(i)(ξ, η)ϕ̂πK(j)(ξ, η) |J | dξdη.

Globally, from the M (k)
ij contributions on each ∆K we have

M =
∑

∆k

M (k)
ij

Hence

(f,φi) ≈ (M f)i

where fi = f(xi, yi) and M is the mass matrix.

5.6 Summary

We have illustrated how the finite element method is used to discretise the Stokes equa-

tions. We obtain a linear system of equations involving large sparse matrices. We have

shown how to assemble these matrices. In the following, we use all these approaches to

discretise the control problem subject to the Stokes equations in the next chapter.

45

Chapter 6

Solution Methods for Linear

Systems

Consider the linear system

Kx = b, (6.1)

with K ∈ Rn×n, x ∈ Rn and b ∈ Rn. Traditionally, solutions have been determined to

such systems through the use of direct solution methods, providing a solution to (6.1)

within O(n3) operations. Whilst these methods (such as Gaussian elimination) are ro-

bust, from a computational perspective using direct methods for obtaining solutions to

systems of the form (6.1) involving a dense system matrix of size n×n will be expensive,

requiring O(n3) flops. Additionally, direct solution methods must be run to completion

for a solution to be obtained. However, the matrices involved in (6.1) generally have

certain structural properties which can be exploited. For instance, systems of the form

(6.1) may arise from a finite element discretisation of a partial differential equation, where

the matrix K will be large, but also sparse. Techniques aiming to take advantage of such

structures have been considered, with the development of a number of sparse direct solu-

tion methods [29].

For this work, iterative solution methods will be used which naturally exploit sparsity pat-

46

terns present in matrix-vector systems. Projection methods that look to obtain solutions

to (6.1) within a subspace of Rn of the form

Km(K,b) ..=
{
b, Kb, K2b, K3b, . . . , Kn−1b

}
(m " n), (6.2)

are widely used and referred to as Krylov subspace methods, with (6.2) known as a Krylov

subspace. A number of approaches that aim to determine solutions to (6.1) using Krylov

subspaces are present in the literature. In the case where K is symmetric positive definite,

the conjugate gradient method [42] may be used. For indefinite and non-symmetric K,

the GMRES (Generalised Minimum Residual) method [65] is typically used, and will be

the solution method of choice within this thesis. The aim of the method is to minimise

the norm of the residual r = b − Ax by writing x = V y, with y ∈ Rm and the matrix

V ∈ Rn×m denoting an orthonormal basis of Km. This basis is obtained through the

Arnoldi process, essentially using Gram-Schmidt orthogonalisation on the Krylov space

K(K, r0) with r0 representing the initial residual. The vector y is obtained by solving

a (m + 1) × m least squares problem, which is achieved sequentially by using Givens

rotations at each iterative step.

6.1 Saddle point system

Let the matrix K have the following 2× 2 block structure

K =

⎡

⎢⎣
A BT

B C

⎤

⎥⎦ . (6.3)

Such a matrix is referred to as a saddle point matrix, playing an important role in the

fields of both Numerical Analysis and Linear Algebra (see [11]). A saddle point system

is a linear system of the form (6.1), where the structure of the matrix K is as in (6.3).

47

Systems of this type are underlying in a number of scientific and engineering disciplines,

with applications found in computational fluid dynamics [30, 31], optimisation [36, 46]

and optimal control [13].

If A is nonsingular, then the saddle point matrix K admits the following block trian-

gular factorisation

K =

⎡

⎢⎣
I 0

BA−1 I

⎤

⎥⎦

⎡

⎢⎣
A 0

0 S

⎤

⎥⎦

⎡

⎢⎣
I A−1BT

0 I

⎤

⎥⎦ , (6.4)

where S ..= C −BA−1BT is the Schur complement of A in K. From (6.4), it is clear that

K is nonsingular if and only if S is nonsingular.

In a number of situations, one can expect the eigenvalues of K to be widespread and

unclustered. Therefore, the use of iterative methods for saddle point systems can require a

substantial number of iterations in order to achieve convergence. In order to improve the

spectral properties of our system, we consider employing an appropriate preconditioner.

The following system

P−1Kx = P−1b, (6.5)

is referred to as a left preconditioned system, where P is a non singular preconditioner

matrix. Additionally, the system

KP−1x̂ = b, (6.6)

is known as a right preconditioned system, where x̂ ..= Px.

In order to choose an efficient preconditioner, P has to be a good approximation to

K, taking the structure of the problem into account. Moreover, the new system involving

P should be more straightforward to solve. Therefore, we require a preconditioner that

is not only cheap to construct, but that also produces a matrix P−1K with an efficient

clustering of eigenvalues.

In the literature, a number of preconditioners have been studied based on the structure

48

of K in (6.3). Examples include block triangular preconditioners [47, 51], block definite

and indefinite preconditioners [46], and block and approximate Schur complement pre-

conditioners [11, 30].

6.2 Block preconditioners

As mentioned in the previous section, block preconditioners are based on the properties of

the linear system that we want to solve, hence the block factorisation (6.4). We consider

preconditioners of the form

P =

⎡

⎢⎣
I 0

c1BA−1 I

⎤

⎥⎦

⎡

⎢⎣
A 0

0 S

⎤

⎥⎦

⎡

⎢⎣
I c2A−1BT

0 I

⎤

⎥⎦ , (6.7)

where both c1, c2 ∈ R. By choosing appropriate values of c1 and c2, a number of block

preconditioners can be formulated. For example, in the case where c1 = c2 = 0, (6.7) will

be reduced to a block diagonal preconditioner. Alternatively, if the product c1c2 = 0, we

arrive at either a block upper or lower triangular preconditioner. We will examine these

preconditioners in more detail in the special case corresponding to C = 0.

6.2.1 Block diagonal preconditioning

The block diagonal preconditioner has the form

P1 =

⎡

⎢⎣
A 0

0 S

⎤

⎥⎦

Proposition 6.2.1 [51] If the preconditioner P1 =

⎡

⎢⎣
A 0

0 −BA−1BT

⎤

⎥⎦ is applied to the

matrix K as in (6.3) with C = 0 then the preconditioned matrix T .

.= P−1
1 K satisfies the

49

equation

T (T − I)
(
T 2 − T − I

)
= 0.

From the above proposition, it follows that T is diagonalisable and has at most four

distinct eigenvalues, namely 0, 1 and 1±
√
5

2 . In the case where T is nonsingular, the zero

eigenvalue is no longer present and so the number reduces further to three. The result

from the above proposition can be applied in the case of right preconditioning, or in

general any centered preconditioned matrix of the form

T = P−1
1 KP−1

2 , where P1P2 = P. (6.8)

For any vector r, the Krylov subspace

Kn(T , r) ..=
{
r, T r, T 2r, T 3r, . . . , T n−1r

}

has dimension at most 3 if T is nonsingular, or 4 if T is singular. The number of iterations

for any Krylov subspace method with Galerkin or optimality property does not exceed 3

[51, 44].

6.2.2 Block triangular preconditioning

Let

P2
..=

⎡

⎢⎣
A BT

0 S

⎤

⎥⎦ and P3
..=

⎡

⎢⎣
A BT

0 −S

⎤

⎥⎦

Proposition 6.2.2 If the preconditioner P2 is applied to K, then P−1
2 K and KP−1

2 have

minimum polynomial (λ− 1)2 [51].

Proposition 6.2.3 If the preconditioner P3 is applied to K, then P−1
3 K and KP−1

3 have

minimum polynomial (λ+ 1)(λ− 1) [51].

50

Remark 6.2.1 We note the following based on the the propositions above:

(i) By using the preconditioner P2, the preconditioned system has only a single eigen-

value of 1. Where as using the preconditioner P3 will lead to a preconditioned system

with exactly two eigenvalues 1.

(ii) Using the preconditioner P2 or P3 as opposed to P1 requires an additional multipli-

cation of a vector by BT at every iteration.

In order to choose a particular preconditioner, it is necessary that the preconditioner

should not be expensive to construct. All previous preconditioners involve the exact Schur

complement, which will generally be a dense matrix. To have a practical preconditioner,

both A and S should be approximated by Â and Ŝ respectively. The choice of these

approximations depends on the underlying problem. If both are chosen in an appropriate

way, the approximated preconditioned system matrix will have most of its eigenvalues

clustered around those of the original preconditioned system matrix.

6.3 Schur complement approximations

For the Stokes problem, Wathen [76] describes how the Schur complement is spectrally

equivalent to the pressure mass matrix Mp by using the following result: From the inf-sup

stability condition, there exists a constant γ > 0 independent of the mesh size satisfying

the following inequality

γp " sup
u⃗∈V

(p ,∇ · u⃗)

∇ · u⃗
" Γp,

where Γ " d for Ω ⊂ Rd. The associated discrete matrix representation to the above

inequality corresponds to

γ
(
pTMpp

)1/2
" max

u

pTBu

(uTAu)1/2
" Γ

(
pTMpp

)1/2
.

51

By setting w = A1/2u, we may write

max
u

pTBu

(uTAu)−1/2
= max

w

pTBA1/2w

(wTw)1/2
=
(
pTBA−1BTp

)1/2
,

and thus

γ
(
pTMpp

)1/2
"
(
pTBA−1BTp

)1/2
" Γ

(
pTMpp

)1/2
.

In the case of variable viscosity, there is an increase in the condition number of M−1
p S

proportional to the ratio between maximum and minimum viscosity values. This relation

is described by Grinevich and Olshanski in [39] through the following lemma

Lemma 6.3.1 Assume the discrete inf-sup condition holds, i.e.

inf
qh∈Qh

sup
vh∈Vh

(qh, div v⃗h)

qh∇v⃗h
! c0,

with qh ∈ Qh denoting an arbitrary pressure function. Then, the following inequality holds

c20ν
−1
maxMp " S " ν−1

minMp.

Proof: See [38] or [39].

Note: For two matrices A and B we write A ! B if A−B is positive semidefinite.

From Lemma 6.3.1, it follows that

cond
(
Ŝ−1S

)
" c−2

0

νmax

νmin
with Ŝ = Mp. (6.9)

Despite the pressure mass matrix Mp being well conditioned, the lack of sparsity present

within its inverse suggests that storage and application of M−1
p may be expensive. There-

fore, alternatives that look to provide a suitable approximation to Mp should be con-

sidered. Wathen [76] suggests forming Ŝ via the diagonal components of Mp, i.e. Ŝ =

52

diag (Mp). Based on this choice, if the triangulation satisfies the condition of a limit on

the minimum angle of the triangle, then Ŝ andMp are spectrally equivalent with constants

independent of the mesh size.

However, for problems that will be discussed within this thesis, the ratio between νmax

and νmin is often significantly greater than 1, suggesting that the resulting preconditioner

will become inefficient. Grinevich and Olshanski extend the preconditioning of the Schur

complement to the case where the viscosity coefficient is no longer constant as is the case of

the generalised Stokes equations. They suggest a preconditioner which takes into account

the variable viscosity. Based on this, we define our preconditioner Mν = (Mν)ij ∈ Rm×m

as a modified pressure mass matrix, with

(Mν)ij
..=
(
ν−1ψj,ψi

)
, (6.10)

and modified L2 space as follows

L2
ν(Ω)

..=
{
q ∈ L2(Ω)

∣∣ (q, ν−1
)
= 0
}
.

We now consider the effectiveness of the preconditioner Mν . We are interested in the

constants cν and Cν in the following inequality

cνMν " S " CνMν in the space Qh. (6.11)

From Lemma 6.3.1, it is possible to derive an evaluation of cν , which is formulated in the

following lemma

Lemma 6.3.2

cν ! c20
νmin

νmax

,

53

where c0 is the inf-sup constant.

Proof: See [38] or [39]

Lemma 6.3.3 For a positive ν ∈ L∞(Ω) and Ω ⊂ Rd, the upper bound in (6.11) holds

with Cν = d.

Proof: See [38] or [39].

This bound on cν leads to a similar estimate on the condition number of M−1
ν S as seen in

(6.9). However, numerical experimentation presented in later chapters will show that for

particular coefficients ν in non-Newtonian flow, the effective condition number of M−1
ν is

bounded with respect to νminν−1
max.

It is known that the eigenvalues which are smallest in magnitude slow down the con-

vergence of GMRES. Removing or deflating these isolated eigenvalues can enhance the

convergence rate. In the next section, we will present a particular deflated preconditioner

to do this job.

6.4 Deflated preconditioner

In [5], an adaptive preconditioner is presented for restarted GMRES. This adaptive pre-

conditioner is attractive when a good preconditioner is already applied. The aim of this

adaptive preconditioner is to remove the smallest k eigenvalues and replace them by 1.

The eigenvalues of the preconditioned matrix will have k multiple eigenvalues equal to

1, as well as the remaining n − k eigenvalues of the original matrix. The latter paper

builds a preconditioner from spectral information gathered by the Arnoldi process after

each iteration of the restarted GMRES algorithm. This method is based on determining

an invariant subspace of the original matrix and shifting the associated eigenvalues that

are close to the origin. This adaptive preconditioner essentially enhances the performance

of the iterative solver by removing the influence of smaller eigenvalues [5]. To construct

54

the deflated preconditioner, we need the information from the Arnoldi decomposition of

an n× n matrix K. At each iterative step m, we have the relation

KVm = VmHm + fme
T
m,

where fm ∈ Rn and Vm ∈ Rn×m such that V T
mVm = Im and V T fm = 0. The em is the

mth axis vector of appropriate dimension, Im denotes the m × m identity matrix and

Hm ∈ Rm×m is an upper Hessenberg matrix. When Vme1 = r0/r0, the columns of Vm

span the Krylov subspace Km (K, r0). Let Vk ∈ Rn×k be the matrix which consists of the

first k columns v1,v2, . . . ,vk of Vm, and let the columns of the matrix Wn−k span the

orthogonal complement of spanv1,v2, . . . ,vk. As W T
n−kWn−k = In−k, the columns of the

matrix [Vk Wn−k] form an orthogonal basis of Rn. The inverse of the matrix

Mdef = VkHkV
T
k +Wn−kW

T
n−k, (6.12)

will be used as a deflated preconditioner, with k << n. We describe this inverse below

[5].

Proposition 6.4.1 Let Q ∈ Rn×n be an orthogonal matrix partitioned as Q = [V W],

where the submatrix V consists of the first k columns of Q and the submatrix W the

remaining columns. Assume that H = V TKV is nonsingular. Then, the matrix

Mdef
.

.= V HV T +WW T ,

is nonsingular, with inverse given by

M−1
def = V H−1V T +WW T .

55

Proof: The matrix Mdef can be expressed as

Mdef =

[
V W

]
⎡

⎢⎣
H 0

0 In−k

⎤

⎥⎦

⎡

⎢⎣
V T

W T

⎤

⎥⎦ , (6.13)

and therefore

M−1
def =

[
V W

]
⎡

⎢⎣
H−1 0

0 In−k

⎤

⎥⎦

⎡

⎢⎣
V T

W T

⎤

⎥⎦ , (6.14)

which shows the result

M−1
def = V H−1V T +WW T .

In Proposition 6.4.1, when the span of the columns of the matrix

V = {v1,v2, . . . ,vk} ,

represent an invariant subspace of K, the eigenvalues of M−1
defK can be found in terms of

the eigenvalues of K. This relation is expressed in the following corollary

Corollary 6.4.1 Let the matrices V,W and H be as in Proposition 6.4.1, and assume,

moreover, that the columns of the matrix V span an invariant subspace of K associated

with the eigenvalues λ1,λ2, . . . ,λk. Then

λ
(
M−1

defK
)
= {λk+1,λk+2, . . . ,λn, 1, . . . , 1 } ,

where the eigenvalue 1 has multiplicity at least k.

Proof: The matrix K is similar to

K̃ =

⎡

⎢⎣
V T

W T

⎤

⎥⎦K

[
V W

]
=

⎡

⎢⎣
H K̃12

0 K̃22

⎤

⎥⎦ ,

56

and

λ
(
K̃22

)
= {λk+1,λk+2, . . . ,λn} . (6.15)

From (6.15) and the representation of M−1
def in (6.14) we get

M−1
defK =

[
V W

]
⎡

⎢⎣
Ik H−1K̃12

0 K̃22

⎤

⎥⎦

⎡

⎢⎣
V T

W T

⎤

⎥⎦ .

Then the spectrum of the matrix M−1
defK consists of λ

(
K̃22

)
and at least k eigenvalues

equal to 1.

In the case of right preconditioning, the result is shown in [33].

6.5 Summary

Within this chapter, a concise background into solution methods for linear systems has

been provided, with a description of the iterative approach we plan to use throughout

this thesis, namely GMRES. Furthermore, we have discussed appropriate preconditioning

strategies for saddle point problems based on the system arising from use of the mixed

finite element method for the Stokes equations described in the previous chapter. Both

block diagonal and block upper triangular preconditioners have been considered, with

relevant results from the literature analysed. Finally, we have introduced the notion of

deflated preconditioning in order to enhance our solution.

57

Chapter 7

Generalised Stokes equations

Newtonian fluids have a linear relation between the shear stress and the shear rate. In con-

trast, in non Newtonian fluid, this relation is not linear any more. There are many models

used in practice to describe the extra stress tensor σσσE = ν(ε(u⃗))ε(u⃗) (4.2). Depending

on the form of the function ν(.), these fluids can be subdivided into three different types:

pseudoplastic (or shear-thinning), dilatant (shear- thickening) and viscoplastic. Some of

the better known models are listed below.

7.1 Constitutive models

1. The power law (Ostwald-deWaele)

One of the most widely used is the power law model, where σσσE is written as following:

ν = 2ν0 |ε(u⃗)|
α−1

where

|ε(u⃗)| =

(
2∑

i,j=1

(εi,j(u⃗))
2

) 1

2

,

ν0 and α > 0 are parameters characteristic of each fluid. Here, α represents the flow

behaviour index and ν0 > 0 is the consistency index.

58

For α = 1, the power law model describes the Newtonian fluid which we presented

in Chapter 4 and non Newtonian for α ̸= 1. When 0 < α < 1, the model exhibits a

decrease in viscosity with increasing shear stress which describes the shear-thinning

fluids. When 1 < α < ∞ the model exhibits an increase in viscosity with increasing

shear stress which describes the shear-thickening fluids.

2. Carreau model

Another popular model is that due to Carreau [19]. The constitutive equation for

the Carreau model is given via the following expression for the viscosity

ν − ν∞
ν0 − ν∞

= [1 + |ε(u⃗)|2]
α−1

2 ,

where ν∞ is the infinite shear rate viscosity, ν0 is the zero shear rate viscosity

and α the exponential constant. When α = 1, the Carreau model corresponds to

Newtonian fluid with ν = ν0.

3. Cross model

Another model with a wide acceptance is due to Cross [26]. In simple shear, the

model is written as:
ν − ν∞
ν0 − ν∞

=
1

1 + k |ε(u⃗)|α
,

where α < 1 and k are fitting parameters. ν∞ and ν0 are the limiting values of the

apparent viscosity at high and low shear rate, respectively. As k → 0, this model

describe the Newtonian fluid behaviour. Similarly, the Cross model reduces to the

power law model when ν ≪ ν0 and ν ≫ ν∞.

More descriptions of such models can be found in many books [20], [24], [53], [40] and

in the review paper [14].

59

7.2 Generalised Stokes equations

Let Ω ⊂ R2 be an open bounded domain with boundary ∂Ω. Recall the steady-state

generalised Stokes equations for incompressible fluids are given by the system of partial

differential equations

−divσσσ = f⃗ in Ω, (7.1a)

div u⃗ = 0 in Ω, (7.1b)

u⃗ = u⃗D on ∂ΩD, (7.1c)

n · σσσ = 0 on ∂ΩN , (7.1d)

where the stress tensor

σσσ = −pI + σσσE,

the extra stress tensor σσσE is a function of shear rate ε(u⃗),

σσσE = ν(ε(u⃗))ε(u⃗),

and

ε(u⃗) =
1

2

(
∇u⃗+ (∇u⃗)T) ,

f⃗ : Ω → R2 is a given function, u⃗ is the velocity of the fluid, and p is the pressure.

60

7.3 Weak formulation

First, define the following spaces

VE =
{
w⃗ ∈ (H1(Ω))2 : w⃗|∂ΩD

= u⃗D

}
,

V0 =
{
w⃗ ∈ (H1(Ω))2 : w⃗|∂ΩD

= 0
}
,

Q = L2(Ω).

We use the same approach as in Chapter 4 to derive the weak formulation by multiplying

(7.1a) and (7.1b) by arbitrary functions v⃗ ∈ V0, q ∈ Q, respectively, and integrating by

part to the left hand side. We get

−

∫

∂Ω

n · σσσ · v⃗ ds+

∫

Ω

σσσ : ∇u⃗ dΩ =

∫

Ω

f⃗ · v⃗ dΩ (7.2a)
∫

Ω

q div u⃗ dΩ = 0. (7.2b)

In equation (7.2a), the term

∫

∂Ω

n · σσσ · v⃗ ds = 0 since v⃗ = 0 on ∂ΩD and n ·σσσ = 0 on ∂ΩN .

By substituting σσσ in the first equation we can state the following weak (or variational)

formulation of the generalised Stokes problem (7.1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find (u⃗, p) ∈ VE ×Q such that for all (v⃗, q) ∈ V0 ×Q,∫

Ω

ν(ε(u⃗))ε(u⃗) : ε(v⃗) dΩ−

∫

Ω

p div v⃗ dΩ =

∫

Ω

f⃗ · v⃗ dΩ,
∫

Ω

q div u⃗ dΩ = 0.

(7.3)

Existence and uniqueness for generalised Stokes equations (7.1) was shown by Baranger

and Najibin [6] for both the power law and Carreau models. A particular finite element

discretisation is discussed in [8]. For simplicity of presentation we consider that u⃗D = 0

so that VE = V0.

61

Note that problem (7.3) is nonlinear, due to the dependence of ν on u⃗. We need first

to linearize the problem. We choose the following Picard iteration: given (u⃗0, p0) as an

initial guess, solve the following sequence of linear problems until convergence

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For m = 0, 1, . . . solve until convergence

Find (u⃗m+1, pm+1) ∈ V0 ×Q such that for all (v⃗, q) ∈ V0 ×Q,∫

Ω

ν(ε(u⃗m))ε(u⃗m+1) : ε(v⃗)dΩ−

∫

Ω

pm+1div v⃗ dΩ =

∫

Ω

f⃗ · v⃗ dΩ.
∫

Ω

q div u⃗m+1 dΩ = 0

End

(7.4)

We will use the finite element method to solve the above sequence of linear problems.

Let Ωh be a partition of Ω into simplices of diameter no greater than h. Let V h
0 ∈ V0 and

Qh ∈ Q be finite dimensional subspaces, with bases {φ⃗i}, {ψj} of continuous piecewise

polynomial functions, respectively, defined on the partition Ωh. We consider the following

discrete weak formulation corresponding to formulation (7.3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find (u⃗h, ph) ∈ V h
0 ×Qh such that for all (v⃗h, qh) ∈ V h

0 ×Qh,∫

Ω

ν(ε(w⃗h))ε(u⃗h) : ε(v⃗h) dΩ−

∫

Ω

phdiv v⃗h dΩ =

∫

Ω

f⃗ · v⃗h dΩ.
∫

Ω

qh div u⃗h dΩ = 0.

(7.5)

Using the expansions

u⃗h(x) =
N∑

i=1

uiφ⃗i(x), ph(x) =
M∑

j=1

pjψj(x)

62

we obtain the discrete form of the Picard iteration (7.4):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

For m = 0, 1, . . . solve until convergence⎛

⎜⎝
Am(u⃗) BT

B 0

⎞

⎟⎠

⎛

⎜⎝
um+1

pm+1

⎞

⎟⎠ =

⎛

⎜⎝
f⃗

0

⎞

⎟⎠ .

End

(7.6)

where

[Am(u⃗h)]ij =

∫

Ω

ν(ε(u⃗m
h)) ε(φ⃗j) : ε(φ⃗i) dΩ,

[B]jk =

∫

Ω

ψj div φ⃗k dΩ

and

fk =

∫

Ω

f⃗ · φ⃗k dΩ.

In each Picard iteration, ν(·) is fixed. Then every iteration represents a system where we

can treat it as a standard linear Stokes problem.

7.4 Iterative solution of the discrete linearised Stokes

equations

As we described our method in Chapter 6, we are interested in solving the linear system

(7.6) by a preconditioned GMRES iterative method with the following block triangular

preconditioners

P ..=

⎡

⎢⎣
A(u⃗) BT

0 Mp

⎤

⎥⎦ ,

Pν
..=

⎡

⎢⎣
A(u⃗) BT

0 Mν

⎤

⎥⎦ ,

63

where Mν is the weighted mass matrix defined in (6.10). Olishanki and Simonchini [52]

studied the spectral properties of preconditioned saddle point systems. Their work in-

volved use of a deflated MINRES method coupled with a block diagonal preconditioning

strategy in mitigate the effects of outlying eigenvalues. In [78], theoretical results for a

GMRES approach coupled with a deflated preconditioner based on an exactly A-invariant

subspace is presented.

7.5 Numerical examples

Here we present some numerical experiments for the Stokes equations. We start with the

case of piecewise constant viscosity then the general case of variable viscosity.

7.5.1 Piecewise constant viscosity

In this section, we will present numerical results in the case of piecewise constant viscosity

before turning our attention to the case of variable viscosity. Here, our findings will

illustrate the effectiveness of the deflated preconditioner presented in (6.12). We will

consider two examples, firstly involving one jump, and secondly involving two jumps in

the viscosity.

Example 3 (1 Jump)

Let Ω = [0, 1]2 and consider the Stokes problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

(7.7)

64

where

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
16(x− x2)2

0

⎞

⎟⎠ on y = 1

0 otherwise.

We divide the domain into two equal parts, and set the viscosity to be the following function

ν =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 " x "
1

2
,

νmin,
1

2
< x " 1.

Table 7.1 shows the three minimal nonzero and maximal eigenvalues of S, M−1
p S and

M−1
ν S for various different values of νmin. Figure 7.1 shows the spectrum of M−1

ν S for

different values of νmin. As can be seen in Figure 7.1, the spectrum of M−1
ν S is essentially

clustered in terms of its order, with few eigenvalues of small order. From Table 7.1, it

is readily seen that there is a single eigenvalue of order νmin separated away from the

rest of the cluster, with this gap increasing as νmin is decreased further. The eigenvalues

with the smallest magnitude will not only influence the conditioning of the matrix, but

also the performance of iterative solution methods. If we want to reduce the condition

number and increase the performance of GMRES, we need to cancel the effect of the

smallest eigenvalues. In this example, we have to remove one eigenvalue. Table 7.2 shows

the number of GMRES iterations for different preconditioners for a variety of different

values of νmin. The table shows that there is GMRES iterations improvement with each

single preconditioning that we applied.

65

0 50 100 150
−101

−100

−10−1

−10−2

(a) νmin = 10−2

0 50 100 150
−101

−100

−10−1

−10−2

−10−3

−10−4

(b) νmin = 10−4

0 50 100 150
−101

−100

−10−1

−10−2

−10−3

−10−4

−10−5

−10−6

(c) νmin = 10−6

Figure 7.1: The spectrum of M−1
ν S for different values of νmin for one jump viscosity.

66

Minimum Eigenvalues Maximum Eigenvalue

νmin S M−1
p S M−1

ν S S M−1
p S M−1

ν S

7.08× 10−4 2.21× 10−1 1.30× 10−1

10−1 7.11× 10−4 2.29× 10−1 1.85× 10−1 1.72× 10−1 9.99 1.25

1.31× 10−3 3.49× 10−1 2.21× 10−1

7.08× 10−4 2.22× 10−1 1.81× 10−2

10−2 7.11× 10−4 2.29× 10−1 1.23× 10−1 1.23 99.87 1.32

1.31× 10−3 3.51× 10−1 1.33× 10−1

7.08× 10−4 2.22× 10−1 1.87× 10−3

10−3 7.11× 10−4 2.29× 10−1 6.90× 10−2 12.27 9.99× 102 1.33

1.31× 10−3 3.51× 10−1 7.03× 10−2

7.08× 10−4 2.22× 10−1 1.88× 10−4

10−4 7.11× 10−4 2.29× 10−1 6.18× 10−2 1.23× 102 9.99× 103 1.33

1.31× 10−3 3.51× 10−1 6.28× 10−2

7.08× 10−4 2.22× 10−1 1.88× 10−5

10−5 7.11× 10−4 2.29× 10−1 6.11× 10−1 1.23× 103 9.99× 104 1.33

1.31× 10−3 3.51× 10−1 6.21× 10−2

7.08× 10−4 2.22× 10−1 1.88× 10−6

10−6 7.11× 10−4 2.29× 10−1 6.10× 10−2 1.23× 104 9.99× 105 1.33

1.31× 10−3 3.51× 10−1 6.20× 10−2

Table 7.1: Minimum and (three) maximum eigenvalues for Example 3 involving a single
jump in the viscosity. Results are displayed for varying νmin values with different choices

of preconditioner.

νmin P Pν MdefPν

10−1 30 15 15

10−2 68 22 18

10−3 82 30 21

10−4 87 33 21

10−5 89 36 21

10−6 89 38 23

Table 7.2: GMRES iterations in the case of one jump for different preconditioners.

67

Example 4 (2 Jumps)

Let Ω = [0, 1]2 and consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ν∆u⃗+∇p = f⃗ in Ω,

∇ · u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

(7.9)

where

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
16(x− x2)2

0

⎞

⎟⎠ on y = 1,

0 otherwise.

In this example, the domain is divided into three equal parts with two jumps in the viscosity

as follows

ν =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

νmin, 0 " x "
1

3
,

1,
1

3
< x <

2

3
,

νmin,
2

3
" x " 1.

Table 7.3 shows the three minimal nonzero and maximal eigenvalues of S, M−1
p S and

M−1
ν S for various different values of νmin. Figure 7.2 shows the spectrum of M−1

ν S for

different values of νmin. By direct comparison to the one jump case, we see in both

examples particular eigenvalues that have order νmin lying far away from the rest of the

spectrum. In this example, there are two eigenvalues that need to be deflated. Table

7.4 shows the number of GMRES iterations with different preconditioners for a variety

of different values of νmin. The table shows that there is improvement with each single

preconditioning that we applied. Tables 7.2 and 7.4 highlight the effect of removal of just

68

Minimum Eigenvalues Max Eigenvalue

νmin S M−1
p S M−1

ν S S M−1
p S M−1

ν S

1.82× 10−3 5.61× 10−1 1.13× 10−1

10−1 1.83× 10−3 5.69× 10−1 1.26× 10−1 1.72× 10−1 9.97 1.44

1.83× 10−3 6.84× 10−1 1.39× 10−1

1.82× 10−3 5.81× 10−1 1.67× 10−2

10−2 1.92× 10−3 5.99× 10−1 3.95× 10−2 1.27 99.65 1.61

1.92× 10−3 7.38× 10−1 7.65× 10−2

1.82× 10−3 5.85× 10−1 1.75× 10−3

10−3 1.93× 10−3 6.05× 10−1 4.12× 10−3 11.24 9.96× 102 1.63

1.93× 10−3 7.44× 10−1 6.91× 10−2

1.82× 10−3 5.85× 10−1 1.75× 10−4

10−4 1.93× 10−3 6.05× 10−1 4.14× 10−4 1.12× 102 9.96× 103 1.64

1.93× 10−3 7.45× 10−1 6.83× 10−2

1.82× 10−3 5.85× 10−1 1.76× 10−5

10−5 1.93× 10−3 6.05× 10−1 4.14× 10−5 1.12× 103 9.96× 104 1.64

1.94× 10−3 7.45× 10−1 6.82× 10−2

1.82× 10−3 5.85× 10−1 1.76× 10−6

10−6 1.93× 10−3 6.05× 10−1 4.14× 10−6 1.12× 104 9.96× 105 1.64

1.94× 10−3 7.45× 10−1 6.82× 10−2

Table 7.3: Three minimum and maximum eigenvalues for Example 4 involving a single
jump in the viscosity. Results are displayed for varying νmin values with different choices

of preconditioner.

one or two eigenvalues for one or two jumps in the viscosity. We will use the advantages

seen here from application of the deflated preconditioner in the more general case of

variable viscosity.

69

0 50 100 150
−101

−100

−10−1

−10−2

(a) νmin = 10−2

0 50 100 150
−101

−100

−10−1

−10−2

−10−3

−10−4

(b) νmin = 10−4

0 50 100 150
−101

−100

−10−1

−10−2

−10−3

−10−4

−10−5

−10−6

(c) νmin = 10−6

Figure 7.2: The spectrum of M−1
ν S for different values of νmin for two jumps viscosity.

70

νmin P Pν MdefPν

10−1 19 14 12

10−2 46 19 16

10−3 57 24 18

10−4 68 27 20

10−5 89 30 20

10−6 98 32 22

Table 7.4: GMRES iterations in the case of two jumps for different preconditioners.

7.5.2 Variable viscosity

In this section, we will consider the same two examples that presented in Chapter 4 but

with variable viscosity model this time. In this thesis, we only consider the power law

model.

Example 5 (Driven cavity test problem)

Let Ω = [0, 1]2. Consider the Stokes problem

−divσσσ = f⃗ in Ω,

div u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

where the stress tensor

σσσ = −pI + 2ν0 |ε(u⃗)|
α−1 ε(u⃗).

The Dirichlet data on the boundary is given by

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
16(x− x2)2

0

⎞

⎟⎠ on y = 1,

0 otherwise.

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

H
or

iz
on

ta
l v

el
oc

ity
 U

y−coordinate

α = 0.9
α = 0.5
α = 0.2

Figure 7.3: The velocity profiles of the discrete solution at (12 , y) for driven cavity test
problem.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

15× 15 7 9 12 15 21 27 48 89

31× 31 7 9 12 16 20 27 41 86

63× 63 7 9 12 16 21 27 40 128

Table 7.5: Total number of Picard iterations for driven cavity test problem.

The velocity profiles of the discrete solution at (12 , y) are shown in Figure 7.3 for varying

α, with an indication of the number of Picard iterations required to achieve convergence

shown in Figure 7.4. Table 7.5 shows the total number of the Picard iterations for solving

Example 5 directly with different values of α and grid meshes. Our initial guess being the

solution of the linear Stokes problem. The stopping tolerance for the Picard iterations is

chosen to be 10−6. As we can see in Table 7.5, the number of Picard iterations increase

as α is close to the zero. This behaviour is relevant because as α → 0, the fluid viscosity

becomes more nonlinear in behaviour. We use GMRES to solve the system in Example

5 with the preconditioner Pν . Table 7.6 shows the number of Picard iterations (outer

iterations) and average number of GMRES iterations (inner iterations) per outer iteration

72

0 10 20 30 40 50 60 70 80 90
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

α = 0.9
α = 0.8
α = 0.7
α = 0.6
α = 0.5
α = 0.4
α = 0.3
α = 0.2

Figure 7.4: The convergence history of Picard iterations for different values of α for driven
cavity test problem.

for different values of α and grid meshes. The stopping tolerance for the inner iterations

depend on the residual of the system in each Picard iteration (residual). As α → 0,

we need to tighten the inner tolerance, otherwise the outer iterations do not converge.

In Table 7.6, it is clear that for α = 0.2, the GMRES iterations deteriorate since the

inner tolerance is tightened to 10−6(residual)0.9. Therefore, we will use the deflated

preconditioner (6.12) to enhance our GMRES iterations number for this particular α.

The Figure 7.5 shows the GMRES convergence profiles when solving Example 5 with

preconditioner Pν . The deflation Mdef is started from k∗ for driven cavity test problem for

grid meshes 15× 15 and 31× 31. As the number of GMRES iterations increases, so too

does the size of the Krylov subspace where a solution is sought. This means that more

spectral information will be available, indicating that deflation will work better when used

in later stages of GMRES as opposed to earlier on in the iterative process.

The current outer residual value can be used as an alternative indicator of when best

to apply deflation to GMRES. For instance, one could start to deflate when the Picard

residual is smaller than 10−2, or 10−3, for instance. For the control problem considered in

73

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

15× 15 7 9 12 15 21 27 47 89

(5) (5) (4) (5) (11) (6) (11) (38)

31× 31 7 9 12 16 20 28 40 86

(4) (4) (4) (4) (11) (4) (14) (47)

63× 63 7 9 12 16 21 28 43 130

(4) (4) (3) (3) (10) (4) (15) (37)

Table 7.6: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 5 with

preconditioner Pν for different values of α and grid meshes.

residual= 10−2 10−3 10−4

15× 15 89 89 89

(26) (26) (30)

31× 31 86 86 86

(35) (32) (33)

63× 63 129 129 130

(48) (39) (42)

Table 7.7: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 5 with
preconditioners MdefPν for α = 0.2 and different grid meshes. The top row indicates the

outer residual value at which deflation is considered.

this work, we will consider the application of deflation whenever the current outer residual

is less than 10−3. Table 7.7 shows the number of Picard iterations (outer iterations) and

average number of GMRES iterations (inner iterations) per outer iteration for α = 0.2

under different grid meshes after using this deflated preconditioner. Deflation is considered

at the residual values given in the table. From the table, the minimum GMRES iterations

were noted whenever the Picard residual was less than 10−3. These observations will be

used later on in the thesis, when deflation is considered for the Stokes control problem.

74

0 10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

Picard iterations

G
M

R
ES

 it
er

at
io

ns

k* = 10
 = 11
 =12
 =13
 =14
 =15
 =21
 =22
 =23

(a) For 15× 15 grid mesh

0 10 20 30 40 50 60 70 80 90
10

20

30

40

50

60

70

Picard iterations

G
M

R
ES

 it
er

at
io

ns

k*=10
 =11
 =12
 =13
 =14
 =15
 =21
 =22
 =23

(b) For 31× 31 grid mesh

Figure 7.5: The GMRES convergence profiles when solving Example 5 with preconditioner
Pν . The deflation Mdef is started from k∗ for driven cavity test problem for grid meshes
15× 15 and 31× 31.

75

Example 6 (Pipe flow test problem)

Let Ω = [0, 4]× [0, 1]. Consider the Stokes problem

−divσσσ = f⃗ in Ω,

div u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂ΩD

n · σσσ = 0 on ∂ΩN ,

where

σσσ = −pI + 2ν0 |ε(u⃗)|
α−1 ε(u⃗).

The Dirichlet data on the boundary is given by

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
4(y − y2)

0

⎞

⎟⎠ on x = 0

0 on y = 0, y = 1.

The velocity profiles of the discrete solution at (12 , y) are shown in Figure 7.6 for varying

α, Figure 7.7 shows the convergence history of Picard iterations for different values of α.

Table 7.8 shows the total number of Picard iterations for solving Example 6 directly using

different values of α and grid meshes. As in the previous example, our stopping tolerance

for the Picard iterations is set to 10−6, with the initial guess is the solution of the linear

Stokes problem for pipe flow.

Table 7.9 shows the number of Picard iterations (outer iterations) and average num-

ber of GMRES iterations (inner iterations) per outer iteration for different values of α

and grid meshes. The inner stopping tolerance used for all values of α except 0.3 and

0.2 is 10−3(residual)0.1. In the case of α = 0.3 and 0.2, the inner tolerance used with

76

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
or

iz
on

ta
l v

el
oc

ity
 U

y−coordinate

α = 0.9
α = 0.5
α = 0.2

Figure 7.6: The velocity profiles of the discrete solution at (12 , y) for the pipe flow test
problem.

0 10 20 30 40 50 60 70
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

α = 0.9
α = 0.8
α = 0.7
α = 0.6
α = 0.5
α = 0.4
α = 0.3
α = 0.2

Figure 7.7: The convergence history of Picard iterations for different values of α for pipe
flow test problem.

77

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

15× 15 7 10 13 17 23 31 55 65

31× 31 7 10 13 17 22 36 45 79

63× 63 7 10 13 16 21 31 40 63

Table 7.8: Total number of Picard iterations for pipe flow test problem.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

15× 15 7 9 12 16 21 29 56 64

(10) (9) (7) (7) (4) (3) (3) (7)

31× 31 7 9 12 15 21 34 46 80

(9) (9) (7) (6) (5) (3) (4) (5)

63× 63 7 9 12 15 20 34 46 63

(10) (9) (6) (6) (5) (4) (4) (6)

Table 7.9: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer,in blue) when solving Example 6 with

preconditioner Pν for different values of α and grid meshes.

10−3(residual)0.25 and 10−4(residual)0.15 respectively. From the table, we have seen that

the pipe flow test example is more stable than the driven cavity for α close to zero. In this

example, a deflation preconditioner is not required due to the relatively small numbers of

GMRES iterations required for convergence.

7.6 Summary

In this chapter, we have derived the weak formulation of the generalised Stokes equations

and described some constitutive models. These models will appear in the constraints

on our optimisation problem that we are going to investigate in the next chapter. The

difficulty with these problems is dealing with the nonlinear behaviour that describes the

complex flow.

78

Chapter 8

Optimal control of the

generalised Stokes equations

In this chapter, we consider the problem of controlling the generalised Stokes equations.

Depending on the formulation of the problem, we can consider either the case of dis-

tributed control or boundary control. Distributed control problems arise whenever the

control is a domain variable, whereas boundary control problems arise whenever the con-

trol variable is formulated on the boundary. For this thesis, we only consider problems

falling into the first category, namely distributed control problems, however a solution

method for boundary control problems may be achieved analogously.

Both the classical and discrete formulations of the distributed control problem will

be presented. We will then show that the first order optimality conditions for the latter

formulation may be expressed in terms of an appropriately defined matrix-vector system.

Based on the observations in Chapter 6, we consider use of GMRES coupled with an ap-

propriate preconditioning strategy. Five different preconditioners will then be considered

based on examination of the Schur complement of the system.

79

8.1 Distributed control problem

Let Ω be a bounded domain. Consider the distributed control problem subject to the

generalised Stokes equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minu⃗,f⃗ J(u⃗, f⃗)

subject to

−divσσσ = f⃗ in Ω,

div u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

(8.1)

where

J(u⃗, f⃗) =
1

2

∥∥u⃗− u⃗d
∥∥2
L2(Ω)

+
1

2
γ
∥∥∥f⃗
∥∥∥
2

L2(Ω)
.

In the above, u⃗ denotes the velocity, p the pressure and f⃗ the control variable. Both

the regularisation parameter (or the Tikhonov/penalty parameter) γ > 0 and the desired

velocity field u⃗d are known parameters. Our aim is to determine u⃗ and f⃗ that satisfy

the PDE problem (8.1) under appropriate penalisation such that u⃗ is as close to u⃗d with

respect to the L2 norm. The choice of regularisation parameter plays an important role

in the type of solution that one can expect to achieve from (8.1). If γ is very small,

the control variable f⃗ is not subject to heavy penalisation, and as such even relatively

large values of f⃗ can be sought. In this situation, the range of permissible values of f⃗

with respect to the objective function J are quite varied, and thus we can expect that the

velocity state variable u⃗ and the desired velocity u⃗d will be relatively close. However, large

values of γ mean that the role played by f⃗ is much more restricted, since the associated

contribution within the objective function will be dominant. As such, we can expect

difficulties in determining the velocity state variable u⃗ close to u⃗d in the L2 norm.

For existence and uniqueness theorems of optimal control problems for non Newtonian

80

fluids, the interested reader is referred to [69]. As mentioned in the introduction, there

are two approaches used for the solution of PDE-constrained optimisation problems. For

this work, we have chosen to discretise first, then optimize. We discretise the objective

function J and the PDE using the finite element method introduced in Chapter 5. Let

Vh and Qh denote an inf-sup stable mixed finite element pair of spaces. Let {Φi} and

{ψk} be the finite element bases of Vh and Qh respectively. Then the discrete version of

problem (8.1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

minu,f Jh(u, f)

subject to

A(u)u+BTp = Mf

Bu = 0

(8.2)

where

Jh(u, f) =
1

2
(u− ud)TM(u− ud) +

1

2
γfTMf .

The matrices A(u), M and B denote the vector Laplacian, vector mass and divergence

matrices respectively. Each of these matrices are defined as follows:

Aij =

∫

Ω

ν(ε(u⃗m
h)) ε(φ⃗j) : ε(φ⃗i) dΩ,

Bjk =

∫

Ω

ψj div φ⃗k dΩ,

Mij =

∫

Ω

φ⃗i · φ⃗j dΩ.

81

The Lagrangian associated with (8.2) may be presented as follows:

L(u, f ,λλλi) =
1

2
(u−ud)TM(u−ud)+

1

2
γfTMf+λλλ1

[
A(u)u+BTp−Mf

]
+λλλ2 [Bu] , (8.3)

where the vectors λλλ1 and λλλ2 denote Lagrange multipliers for the equality constraints.

The necessary and sufficient optimality conditions are obtained by setting the deriva-

tives of the Lagrangian (8.3) with respect to the state variables (u,p, f) and Lagrangian

multipliers (λλλ1,λλλ2) equal to zero

∂L

∂u
= M(u− ud) + JJJAuλλλ1 +BTλλλ2 = 0,

∂L

∂p
= Bλλλ1 = 0,

∂L

∂f
= γMf −Mλλλ1 = 0,

∂L

∂λλλ1
= A(u)u+BTp−Mf = 0,

∂L

∂λλλ2
= Bu = 0,

where

JJJA(u)u := A(u) +
∂A(u)

∂u
u , (8.4)

representing the derivative of A(u)u with respect to u.

Based on the equations presented above, the optimality conditions may be obtained

by solving the following matrix-vector system:

82

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M 0 0 JJJA(u)u BT

0 0 0 B 0

0 0 γM −M 0

A(u) BT −M 0 0

B 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

p

f

λλλ1

λλλ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mud

0

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to use the derivation provided in Chapter 6 for saddle point systems, and

also to identify a suitable block structure within the KKT system in order to motivate a

preconditioning strategy, we eliminate the discrete control variable f from the third row

and reorder the system in the following way:

Kx :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A(u) BT −1
γ M 0

B 0 0 0

M 0 JJJA(u)u BT

0 0 B 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

u

p

λλλ1

λλλ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Mud

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.5)

The matrix appearing on the left hand side of (8.5), denoted by K, is both large,

nonsymmetric, nonlinear and indefinite. However, this matrix possesses a block sparse

saddle structure (6.3), where we can define

A =

⎡

⎢⎣
A(u) BT

B 0

⎤

⎥⎦ , B =

⎡

⎢⎣
−1
γ M 0

0 0

⎤

⎥⎦ ,

C =

⎡

⎢⎣
M 0

0 0

⎤

⎥⎦ , D =

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦ ,

(8.6)

so that the block A corresponds to the discrete generalised Stokes equations.

For the interested reader, some properties of saddle point matrices are reviewed in

83

[11]. A number of contributions that look to solve saddle point systems are presented in

the literature, as described in [10, 63, 66], for instance. As discussed in Section 6.2, the

performance of iterative solution methods is enhanced through an appropriate choice of

preconditioner, which will be the topic of discussion in the next section.

8.2 Preconditioning the control problem

This section will involve the description of five different preconditioners. The first three of

the preconditioners will involve an approximation to the Schur complement of A using the

block structures described in (8.6). The last two preconditioners will not only consider an

approximation to the Schur complement of K, but also for the matrix A, corresponding

to the (1, 1) block of K. All our preconditioners will have the following block triangular

form ⎡

⎢⎣
Â B

0 Ŝ

⎤

⎥⎦ , (8.7)

with both Â and Ŝ denoting approximations to A in (8.6) and the Schur complement

S := D − CA−1B, respectively.

In order to derive an appropriate approximation to the Schur complement, we consider

the following:

S =

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦−

⎡

⎢⎣
M 0

0 0

⎤

⎥⎦

⎡

⎢⎣
A(u) BT

B 0

⎤

⎥⎦

−1 ⎡

⎢⎣
−1
γ M 0

0 0

⎤

⎥⎦ (8.8)

=

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦−

⎡

⎢⎣
M 0

0 0

⎤

⎥⎦

⎡

⎢⎣
A(u)−1 +A(u)−1BTS−1

loc1BA(u)−1 ∗

∗ ∗

⎤

⎥⎦

⎡

⎢⎣
−1
γ M 0

0 0

⎤

⎥⎦

=

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦−

⎡

⎢⎣
−1
γ M(A(u)−1 +A(u)−1BTS−1

loc1BA(u)−1)M 0

0 0

⎤

⎥⎦

84

=

⎡

⎢⎣
JJJA(u)u + 1

γM(A(u)−1 +A(u)−1BTS−1
loc1BA(u)−1)M BT

B 0

⎤

⎥⎦ (8.9)

where Sloc1 := −BTA(u)−1B represents the Schur complement of A.

8.2.1 First preconditioner P0

The first preconditioner we will consider corresponds to retaining the (1,1) block as per

the original system (8.5). However for the (2,2) block, it may be approximated by Dγ

which takes into account the JJJA(u)u and γ. Our first preconditioner may then be presented

as:

P0 :=

⎡

⎢⎣
A B

0 Dγ

⎤

⎥⎦ , (8.10)

where

Dγ :=

⎡

⎢⎣
JJJA(u)u + 1

γMA(u)−1M BT

B 0

⎤

⎥⎦ . (8.11)

8.2.2 Second preconditioner P̂0

If we reduce the preconditioner (8.10) in which not depend on γ any more to decrease

the sparsity pattern in the term JJJA(u)u + 1
γMA(u)−1M by replacing it by just JJJA(u)u.

Therefore, in this preconditioner we will consider corresponds to retaining the (1,1) and

(2,2) blocks as per the original system (8.5), namely Â := A and Ŝ := D. The second

preconditioner may written as:

P̂0 =

⎡

⎢⎣
A B

0 D

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A(u) BT −1
γ M 0

B 0 0 0

JJJA(u)u BT

B 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.12)

85

8.2.3 Third preconditioner
̂̂
P0

Our third preconditioner for the system (8.5) aims to exploit the similarity between A

and D. We suggest to replace JJJA(u)u in (8.12) with A(u), meaning that a preconditioner

of the following form is considered:

̂̂
P0 :=

⎡

⎢⎣
A B

0 A

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A(u) BT −1
γ M 0

B 0 0 0

A(u) BT

B 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.13)

8.2.4 Fourth preconditioner P1

In addition to the approximation of the Schur complement, the aim with this precondi-

tioner is to approximate the matrix A in (8.6). The saddle point structure of A displayed

in (8.6) suggests the following block triangular approximation:

Â :=

⎡

⎢⎣
A(u) BT

Mν

⎤

⎥⎦,

where Mν is described in (6.10). Using this approximation, an approximation to the Schur

complement S (8.8) may be considered in the following way:

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦−

⎡

⎢⎣
M 0

0 0

⎤

⎥⎦

⎡

⎢⎣
A(u) BT

Mν

⎤

⎥⎦

−1 ⎡

⎢⎣
−1
γ M 0

0 0

⎤

⎥⎦

=

⎡

⎢⎣
JJJA(u)u BT

B 0

⎤

⎥⎦−

⎡

⎢⎣
M 0

0 0

⎤

⎥⎦

⎡

⎢⎣
A(u)−1 ∗

∗

⎤

⎥⎦

⎡

⎢⎣
−1
γ M 0

0 0

⎤

⎥⎦

86

=

⎡

⎢⎣
JJJA(u)u + 1

γMA(u)−1M BT

B 0

⎤

⎥⎦

≈

⎡

⎢⎣
JJJA(u)u + 1

γMA(u)−1M BT

Mν

⎤

⎥⎦ := Ŝ.

Therefore, our preconditioner in this case can be described as follows:

P1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A(u) BT −1
γ M 0

Mν 0 0

JJJA(u)u + 1
γMA(u)−1M BT

Mν

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.14)

The main computational cost associated with P1 involves the inversion of A(u)−1.

However, under a direct comparison, the preconditioner P1 can be both stored and applied

at a cheaper cost when compared to all previous preconditioners.

8.2.5 Fifth preconditioner P̂1

Our final preconditioner uses (8.14) as well as an approximation for JJJA(u)u discussed in

Section 8.2.3 to take on the following form:

P̂1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A(u) BT −1
γ M 0

Mν 0 0

A(u) + 1
γMA(u)−1M BT

Mν

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (8.15)

The (1,1) and (2,2) blocks of preconditioners P0 in (8.10), P̂0 in (8.12) and
̂̂
P0 in

(8.13) have saddle point structures, which can be approximated by sub-preconditioners

with same structure of (8.7). This will be the main focus of discussion in the next section.

87

8.3 Inner-outer GMRES approach

In order to solve our system with either P0, P̂0 or
̂̂
P0 as described in (8.10), (8.12) and

(8.13) respectively, we require the inversion of both the (1,1) and (2,2) blocks. Direct

inversion and application of either of these blocks will be computationally expensive and

even impractical for particularly large problems. However, we consider the application

of GMRES (referred to as inner-GMRES) inside existing outer-GMRES iterations as an

iterative alternative. Based on the structure of the preconditioning matrices, approxima-

tions are required for both the (1, 1) and (2, 2) blocks. We therefore require two inner

GMRES solves for each outer GMRES iteration. For our work, the inner solves for the

(1, 1) and (2, 2) blocks of our preconditioners will be referred to as inner GMRES1 and

inner GMRES2 respectively. There are several choices that may be considered based on

the five preconditioners presented in the previous chapter. We will describe some of them

within this section.

8.3.1 P0,1-solver

Based on our description of P0 in (8.10), we consider the following upper triangular sub-

preconditioners for both A and Dγ respectively

A ≈

⎡

⎢⎣
A(u) BT

Mν

⎤

⎥⎦ =: PA, (8.16)

Dγ ≈

⎡

⎢⎣
JJJA(u)u + 1

γMA(u)−1M BT

Mν

⎤

⎥⎦ =: PDγ . (8.17)

In P0,1-solver, we solve our original system (8.5) using inner-outer GMRES. Each outer

GMRES step will be preconditioned using P0, with each inner solve preconditioned using

88

both PA and PDγ as sup-preconditioners for A and Dγ, respectively.

8.3.2 P̂0,1-solver

In this solver, we aim to solve our system (8.5) using outer-GMRES with P̂0 as well as

approximating A and D respectively by PA and

PD :=

⎡

⎢⎣
JJJA(u)u BT

Mν

⎤

⎥⎦ . (8.18)

8.3.3
̂̂
P 0,1-solver

The preconditioner
̂̂
P0 defined in (8.13) has identical (1, 1) and (2, 2) blocks. Therefore,

both blocks may be approximated in a similar manner. Here, we consider PA as per (8.16)

as a sub-preconditioner for A. We refer to this approach using the term
̂̂
P 0,1-solver.

Chapter 9 will provide numerical experimentation for the solution to (8.5), coupled

with each of the preconditioners presented within this chapter. The deflated precondi-

tioner presented in Section 6.4 will also be considered in order to improve results. Addi-

tionally, use of inner-outer GMRES will be considered in certain cases.

8.4 Comments

The following observations were used in order to enhance convergence and also to avoid

complicated operations.

• An initial guess for our iterative method is determined based on a continuation

strategy, whereby a solution is sought to a problem with a slightly higher value of

α. For instance, when solving the generalised Stokes optimal control problem in

the case α = 0.6, an initial guess will be considered based on the solution to the

equivalent problem in the case where α = 0.7. In a similar manner, the initial guess

89

in the case where the value of α = 0.9 will correspond to the solution from the

Newtonian problem (i.e.α = 1). Working with such a strategy leads to a reduction

in the total number of Picard iterations.

• The second term of the expression for JJJA(u)u given in (8.4) represents a tensor-

vector product. However, approximations to the terms may be considered by using

the standard definition of the derivative, namely

∂A(u)

∂u
u ≈

A (u+ εu)−A (u)

ε
,

with ε denoting a small perturbation. Such an approximation allows for the avoid-

ance of the matrix-vector product, since it is already involved.

• Section 8.3 suggests a means by which iterative approximations may be considered

as an alternative to direct matrix inversion in application of our described pre-

conditioners. In particular, the preconditioning approaches detailed in Section 8.2

required the inversion of at least one of A(u), JJJA(u)u or JJJA(u)u + 1
γMA(u)−1M.

Iterative alternatives are also beneficial in that they are able to exploit sparsity

patterns present within the involved matrices. As a result, we are able to solve the

control problem through consideration of nested solution methods.

• The actual cost of the inner-outer GMRES algorithm as described is dependent on

the quality of approximation for both A and D. The complexity is dependent on the

total number of inversions required of A(u), JJJA(u)u and/or JJJA(u)u +
1
γMA(u)−1M.

The relevant figures can be found in A.1.

• By examining the P0,1-solver as described in Section 8.3.1, it can be seen that this

approach essentially amounts to preconditioning using P1 inside outer precondi-

tioned GMRES iterations (with P0 used for the outer iterations). It is natural to

90

question use of the inner-outer GMRES approach described for the P0,1-solver if

it is possible to instead precondition the inner iterations directly using P1. Direct

application would avoid the need for inner GMRES solves at each outer GMRES

iteration. Nevertheless, such an approach would require storage and inversion of the

matrix P1, which can be computationally expensive. Use of inner GMRES iterations

only require the action of P1 applied to a vector. Therefore, if only a relatively small

number of inner GMRES iterations are required for each outer GMRES iteration,

significant computational savings can be made.

8.5 Summary

Within this chapter, we have presented both the classical and discrete formulation of the

distributed control problem, along with the first order necessary optimality conditions

in the discrete case. Based on these conditions, a matrix-vector system was formed

involving a large nonsymmetric, nonlinear and indefinite system matrix. However, the

block sparse saddle point structure of the matrix suggested the use of iterative solution

methods combined with an appropriate preconditioning strategy.

Five block upper triangular preconditioners of the form (8.7) were presented in this

section based on previous observations. Both preconditioners P0 and P̂0 considered an ap-

proximation for the Schur complement Ŝ, where preconditioners P1 and P̂1 also involved

an approximation Â to the matrix representation of the discrete generalised Stokes equa-

tions.

We also considered application of our preconditioning approaches through use of iter-

ative solution methods. For this work, the structure of the involved matrices suggested

further use of GMRES, leading to consideration and development of solution methods

based on an inner-outer GMRES solution method, with inner GMRES solves considered

at each outer GMRES iteration.

91

In order to compare our preconditioning approaches, we look to solve both the cavity

driven flow problem and the pipe flow problem formulated as per (8.2) using P0, P̂0,
̂̂
P0, P1

and P̂1. The application of these preconditioners will be considered both directly within

GMRES and also approximately through use of inner-outer GMRES.

92

Chapter 9

Numerical experiments

In this chapter, numerical examples for distributed control problems will be presented.

Figures for both the driven cavity flow and pipe flow problems described in Examples

5 and 6 respectively will be illustrated. The solution method used is similar to the

approach in Chapter 7, involving linearisation through use of Picard iterations coupled

with preconditioned GMRES for the resulting matrix-vector system. The preconditioners

used are as described in Section 8.2.

For this chapter, the following test problem based on driven cavity and pipe flow will

be considered. We consider the discretising the control problem using the well-studied

P2 − P0 pair finite element basis, that discretise the velocity u⃗ using P2 basis functions,

and the pressure p using P0 basis functions. We discretise the control u⃗d and the Lagrange

multipliers λ1 and λ2 using P2 and P0 functions, respectively. In this chapter, we only

consider the power law model. Therefore,

σσσ = −pI + 2ν0 |ε(u⃗)|
α−1 ε(u⃗).

A meshed grid of size 15× 15 will be considered within this chapter.

93

Example 7 (Driven cavity flow control test problem)

Let Ω = [0, 1]2 and consider the distributed control problem

min
u⃗,f⃗

1

2

∥∥u⃗− u⃗d
∥∥2
L2(Ω)

+
1

2
γ
∥∥∥f⃗
∥∥∥
2

L2(Ω)

subject to

−divσσσ = f⃗ in Ω,

div u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂Ω,

where the Dirichlet boundary condition is given by

u⃗D =

⎛

⎜⎝
2(2y − 1)(1− (2x− 1)2)

−2(2x− 1)(1− (2y − 1)2)

⎞

⎟⎠ on ∂Ω,

and the desired velocity

u⃗d =

⎛

⎜⎝
2(2y − 1)(1− (2x− 1)2)

−2(2x− 1)(1− (2y − 1)2)

⎞

⎟⎠ .

Here, instead of applying homogeneous Dirichlet boundary conditions on the three sides of

the domain as seen in Example 5, we consider Dirichlet boundary conditions corresponding

to the desired velocity.

Table 9.1 illustrates results produced using the preconditioner P0 described in (8.10)

for varying values of α and γ. The numbers recorded represent the total number of Picard

iterations required to achieve convergence, with the bracketed numbers representing the

average number of GMRES iterations at each Picard step. The results were obtained

using an adaptive stopping tolerance for GMRES, which for this problem was tightened

based on γ, since the number of Picard iterations were found to blow up for particularly

94

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 5 6 7 9 12 15 20 30

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−2 5 6 7 9 11 15 20 29

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−3 5 6 7 9 11 15 22 33

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−4 6 7 8 10 13 16 23 33

(2) (2) (1) (1) (1) (1) (1) (1)

= 10−5 4 5 7 8 10 14 17 23

(2) (2) (2) (2) (2) (1) (1) (1)

= 10−6 4 5 7 8 9 11 13 16

(3) (3) (3) (3) (3) (2) (2) (2)

Table 9.1: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P0 for different values of α and γ.

small values of γ under previous criteria. For fixed α, the number of Picard iterations can

be seen to remain roughly constant for varying γ. However, an increase is noted in the

average number of GMRES iterations as γ is decreased due to tightness. For fixed γ, the

average number of GMRES iterations per Picard step remains fairly constant for varying

α.

In Table 9.2, results are provided for the driven cavity flow problem preconditioned

using P̂0 described in (8.12) for varying α and γ values. Here, the same adaptive inner

tolerance was used from that described under preconditioning with P0. For fixed α, we

see similar characteristics to those presented in Table 7. However, for particular small

values of γ, there is a gradual increase in the average number of GMRES iterations for

decreasing α. The reason for this is due to the approximation of D by a term that does

not take into consideration the changing nature of γ.

Table 9.3 illustrates results produced using the preconditioner
̂̂
P0 described in (8.13)

95

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 5 6 7 9 12 15 20 30

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−2 5 6 7 9 11 15 20 29

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−3 5 6 7 9 11 15 21 33

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−4 6 6 8 9 14 19 24 34

(2) (2) (2) (2) (2) (1) (1) (1)

= 10−5 5 6 7 8 10 12 17 23

(5) (5) (5) (5) (6) (5) (6) (5)

= 10−6 4 5 7 8 9 11 13 17

(10) (11) (12) (13) (14) (15) (15) (13)

Table 9.2: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P̂0 for different values of α and γ.

for varying α and γ values. We see similar characteristics to those presented in Table 9.2.

The same can be said for the number of Picard iterations for fixed γ, however we now

observe a logarithmic increase in the average number of GMRES iterations for all values

of γ considered. The reason for this is due to the approximation of JJJA(u)u by A(u). For

large values of α, the second contribution within JJJA(u)u described in (8.4) is negligible.

However, the results suggest that this contribution becomes dominant for smaller values

of α.

Tables 9.4 and 9.5 illustrate results for Example 7 using preconditioned GMRES based

on use of P1 and P̂1 respectively. Comparison of Table 9.4 with Table 9.1 highlights

similar characteristics to those displayed under preconditioning with P0. However, the

average number of GMRES iterations increases substantially for notably small values of

γ, particularly for γ = 10−5 and 10−6. This behaviour is to be expected due to the relevant

approximation. For both of these cases, a deflated preconditioner (6.12) was used and

96

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 5 6 7 9 12 15 20 34

(1) (2) (2) (3) (4) (4) (7) (8)

= 10−2 5 6 7 9 11 15 20 37

(1) (2) (2) (3) (4) (4) (7) (7)

= 10−3 5 6 7 9 12 15 22 37

(1) (2) (2) (2) (3) (4) (6) (8)

= 10−4 6 7 8 9 12 16 24 34

(2) (2) (2) (3) (4) (5) (6) (8)

= 10−5 5 6 7 8 10 12 16 22

(5) (5) (6) (6) (8) (10) (12) (14)

= 10−6 4 5 7 8 9 11 13 17

(10) (11) (13) (14) (15) (18) (22) (26)

Table 9.3: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner
̂̂
P0 for different values of α and γ.

was able to provide some improvement, with the results displayed in Table 9.6.

Table 9.5 also displays similar characteristics to Table 9.4. However, an rise in the

average number of GMRES iterations is observed for particularly small values of α. This

suggests a dependence of α on the second term of JJJA(u)u in (8.4), since this second term

is neglected within P̂1.

For our preconditioners, there is no mesh dependence. Tables 9.7, 9.8 and 9.9 illustrate

the Picard iterations and average number of GMRES iterations for solving Example 7 with

preconditioners P0, P̂0 and
̂̂
P0, respectively. For ease of presentations, we only display

results for γ = 10−3 based on the driven cavity flow problem.

We now consider use of the inner-outer GMRES approach for preconditioning using

the solution methods described in Section 8.3.

Inner-outer GMRES approach

Using the presentation in Section 8.3, we now look to solve (8.5) based on an inner-

97

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 5 6 7 9 12 15 20 31

(5) (5) (5) (5) (5) (5) (4) (3)

= 10−2 5 6 7 9 11 15 20 30

(5) (5) (5) (5) (5) (5) (4) (3)

= 10−3 5 6 7 9 11 16 22 33

(5) (5) (5) (5) (4) (5) (5) (3)

= 10−4 5 6 7 9 12 16 23 34

(7) (6) (6) (6) (6) (5) (5) (5)

= 10−5 4 5 7 8 10 12 16 22

(13) (14) (14) (14) (15) (13) (12) (7)

= 10−6 4 6 7 8 9 11 13 17

(31) (34) (34) (38) (36) (37) (32) (26)

Table 9.4: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P1 for different values of α and γ.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 5 6 7 9 12 15 20 30

(5) (5) (6) (6) (7) (9) (15) (15)

= 10−2 5 6 7 9 11 15 20 30

(5) (5) (6) (6) (7) (9) (15) (15)

= 10−3 5 6 7 9 12 16 22 34

(5) (5) (6) (6) (7) (9) (13) (13)

= 10−4 6 6 7 9 12 16 23 34

(5) (6) (5) (6) (6) (6) (8) (12)

= 10−5 5 6 7 8 10 15 19 23

(12) (11) (13) (13) (13) (12) (14) (13)

= 10−6 5 5 8 8 9 11 14 20

(27) (33) (34) (35) (35) (28) (24) (31)

Table 9.5: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P̂1 for different values of α and γ.

98

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−5 5 6 7 8 10 13 18 27

(7) (9) (8) (8) (8) (10) (7) (5)

= 10−6 5 5 6 8 9 11 13 20

(16) (17) (17) (17) (15) (14) (20) (13)

Table 9.6: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner MdefP1 for different values of α and for γ = 10−5 and 10−6.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

7× 7 5 6 8 9 12 16 22 31

(1) (1) (1) (1) (1) (1) (1) (1)

15× 15 5 6 7 9 11 15 22 33

(1) (1) (1) (1) (1) (1) (1) (1)

31× 31 4 6 7 9 11 16 23 36

(1) (1) (1) (1) (1) (1) (1) (1)

Table 9.7: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P0 for γ = 10−3 and different values of α and mesh grids.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

7× 7 5 6 8 9 12 16 22 31

(1) (1) (1) (1) (1) (1) (1) (1)

15× 15 5 6 7 9 11 15 21 33

(1) (1) (1) (1) (1) (1) (1) (1)

31× 31 5 6 7 9 11 16 23 36

(1) (1) (1) (1) (1) (1) (1) (1)

Table 9.8: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner P̂0 for γ = 10−3 and different values of α and mesh grids.

99

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

7× 7 5 6 7 9 12 17 24 36

(1) (2) (2) (2) (2) (3) (3) (4)

15× 15 5 6 7 9 12 16 22 37

(1) (2) (2) (2) (3) (4) (6) (8)

31× 31 5 6 7 9 11 16 23 36

(2) (2) (2) (3) (4) (5) (6) (8)

Table 9.9: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 7 with

preconditioner
̂̂
P0 for γ = 10−3 and different values of α and mesh grids.

outer GMRES approach under preconditioning with either P0, P̂0 or
̂̂
P0.

We first consider the P0,1-solver described in Section 8.3.1. The results are displayed

in Table 9.10 for differing values of α and γ, with the average number of inner GMRES

iterations for the application of both PA and PDγ displayed in red and green respectively.

All figures presented have been rounded to the nearest integer for ease of presentation.

The tolerances for the outer GMRES solve and also for both of the inner GMRES solves

were chosen by experimentation in order to achieve the same number of Picard iterations

recorded in Table 9.1.

For relatively large γ, the average number of inner GMRES iterations appears to

remain relatively constant for each value of α. However, a logarithmic increase is seen for

particularly smaller values of γ. Nevertheless, this behaviour is to be expected based on

the observations in Table 9.1.

Table 9.11 displays results for use of the P̂0,1-solver described in Section 8.3.2. The

main difference here with the aforementioned approach is the fact that the matrix Dγ is

approximated by D and preconditioned by PD, with the same colour scheme used within

this table as per Table 9.10. In terms of a direct comparison between both Tables 9.10 and

9.11, we see that for γ no less than 10−3, the average number of inner GMRES iterations

100

remains relatively small for all values of α. Nevertheless, a logarithmic increase is noted

for particularly small values of γ. The effects of approximating JJJA(u)u+
1
γMA(u)−1M by

JJJA(u)u are also evident in the figures displayed for the average number of inner GMRES2

iterations. Here, a direct comparison of both tables shows a notable increase in the average

number of iterations, particularly for small values of γ.

Whilst the results in Table 9.10 appear to be generally better than those in Table

9.11, it is important to factor in the associated computational costs in the application

of either preconditioner in order to decide which of the two is not only effective but also

computationally efficient to apply. Figures A.1, A.2 and A.3 illustrate the complexity

for each of the preconditioning approaches P0,1, P̂0,1,
̂̂
P 0,1-solvers, respectively. A direct

comparison between the associated figures from use of both PD and PA suggests that the

overall complexity is generally better under preconditioning with PD. In fact, for notably

small values of α, the complexity associated with the results in Table 9.11 is particularly

substantial, largely due to the behaviour of the two terms within JJJA(u)u for differing

values of α.

Table 9.12 displays results for Example 7 solved using the
̂̂
P 0,1-solver described in

Section 8.3.3. From the figures, we see a roughly constant average number of inner

GMRES1 and inner GMRES2 iterations. These results were again achieved through

appropriate tightening of tolerances to deliver similar figures to Table 9.10. However,

no matter how far the tolerances were tightened, the solver was seen to blow up for all

values of γ in the case of α = 0.2, indicating that this solution method is unsuitable for

noticeably small values of α.

Figure 9.1 shows the velocity components and the stream lines for the desired velocity

u⃗d for the driven cavity flow example 7. The figures in Table 9.13 show the horizontal

component of computed state velocity u1 for different values of α and γ. The figures

in Tables 9.14, 9.15 and 9.16 show the equivalent plots for the vertical component of

101

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 3 3 3 3 3 3 2 2

2 2 2 2 1 1 1 1

= 10−2 3 3 3 3 3 3 3 2

2 2 2 2 1 1 1 1

= 10−3 3 3 3 2 2 2 1 1

2 2 2 1 1 1 1 1

= 10−4 4 4 4 3 3 3 3 2

4 3 3 3 2 1 1 2

= 10−5 5 5 5 5 6 4 4 3

7 7 8 8 8 4 4 3

= 10−6 8 8 8 8 8 8 8 7

15 16 17 19 21 22 22 14

Table 9.10: The average number of inner GMRES1 (in red) and inner GMRES2 (in
green) iterations per outer GMRES iteration when solving Example 7 with P0,1-solver

for different values of α and γ.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 3 3 2 2 2 2 1 3

2 2 2 1 1 1 1 1

= 10−2 3 3 2 2 2 2 1 3

2 2 2 1 1 1 1 1

= 10−3 2 3 2 2 2 2 1 3

1 2 2 1 1 1 1 2

= 10−4 6 5 5 6 6 6 7 7

5 4 4 4 4 4 5 6

= 10−5 7 8 8 9 9 10 12 14

7 7 8 8 8 9 9 11

= 10−6 9 9 10 10 10 12 14 17

8 9 9 10 11 11 13 15

Table 9.11: The average number of inner GMRES1 (in red) and inner GMRES2 (in
green) iterations per outer GMRES iteration when solving Example 7 with P̂0,1-solver

for different values of α and γ.

102

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3

γ = 10−1 7 7 7 7 8 9 10

6 6 7 7 7 8 7

= 10−2 7 7 7 8 8 9 11

7 6 7 7 7 8 8

= 10−3 7 7 7 8 8 9 11

6 6 7 7 7 7 8

= 10−4 6 6 6 7 7 8 9

6 6 7 6 5 6 7

= 10−5 7 8 8 9 10 10 11

7 8 8 8 9 9 10

= 10−6 7 8 8 9 10 10 11

7 8 8 8 9 9 10

Table 9.12: The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 7 with
̂̂
P 0,1-solver

for different values of α and γ.

computed state velocity u2, the pressure p and the stream lines for the computed state

velocity, respectively.

103

0

0.5

1

0

0.5

1
−2

−1

0

1

2

0

0.5

1

0

0.5

1
−2

−1

0

1

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Figure 9.1: The velocity components and the stream lines for the desired velocity u⃗d for
Example 7.

104

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

γ
=

10
−
4

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

γ
=

10
−
6

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

T
ab

le
9.
13
:
T
h
e
h
or
iz
on

ta
l
co
m
p
on

en
t
of

co
m
p
u
te
d
st
at
e
ve
lo
ci
ty

u
1
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
d
ri
ve
n
ca
vi
ty

fl
ow

d
es
cr
ib
ed

in
E
xa

m
p
le

7.

105

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

γ
=

10
−
4

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

γ
=

10
−
6

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

0

0.
5

1

0

0.
5

1−2−1012

T
ab

le
9.
14
:
T
h
e
ve
rt
ic
al

co
m
p
on

en
t
of

co
m
p
u
te
d
st
at
e
ve
lo
ci
ty

u
2
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
d
ri
ve
n
ca
vi
ty

fl
ow

d
es
cr
ib
ed

in
E
xa

m
p
le

7.

106

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0

0.
5

1

0

0.
5

1
−1

00−5
005010
0

0

0.
5

1

0

0.
5

1
−4

0

−2
002040

0

0.
5

1

0

0.
5

1
−4

0

−2
002040

γ
=

10
−
4

0

0.
5

1

0

0.
5

1
−1

00−5
005010
0

0

0.
5

1

0

0.
5

1
−4

0

−2
002040

0

0.
5

1

0

0.
5

1
−2

0

−1
00102030

γ
=

10
−
6

0

0.
5

1

0

0.
5

1
−1

00−5
005010
0

0

0.
5

1

0

0.
5

1
−5

0050

0

0.
5

1

0

0.
5

1
−4

0

−2
002040

T
ab

le
9.
15
:
T
h
e
p
re
ss
u
re

p
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
d
ri
ve
n
ca
vi
ty

fl
ow

d
es
cr
ib
ed

in
E
xa

m
p
le

7.

107

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−2
2

−2
0

−1
8

−1
6

−1
4

−1
2

−1
0

−8−6−4−20

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−1
8

−1
6

−1
4

−1
2

−1
0

−8−6−4−20

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−1
2

−1
0

−8−6−4−20

γ
=

10
−
4

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−4
5

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−5
0

−4
5

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

γ
=

10
−
6

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−5
0

−4
5

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−5
0

−4
5

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

−5
0

−4
5

−4
0

−3
5

−3
0

−2
5

−2
0

−1
5

−1
0

−50

T
ab

le
9.
16
:
T
h
e
st
re
am

li
n
es

fo
r
th
e
co
m
p
u
te
d
st
at
e
ve
lo
ci
ty

fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
d
ri
ve
n
ca
vi
ty

fl
ow

d
es
cr
ib
ed

in
E
xa

m
p
le

7.

108

Example 8 (Pipe flow control test problem)

Let Ω = [0, 4]× [0, 1] and consider the distributed control problem

min
u⃗,f⃗

1

2

∥∥u⃗− u⃗d
∥∥2
L2(Ω)

+
1

2
γ
∥∥∥f⃗
∥∥∥
2

L2(Ω)

subject to

−divσσσ = f⃗ in Ω,

div u⃗ = 0 in Ω,

u⃗ = u⃗D on ∂ΩD

n · σσσ = 0 on ∂ΩN .

The Dirichlet data on the boundary is given by

u⃗D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
4(y − y2)

0

⎞

⎟⎠ on x = 0

0 on y = 0, y = 1.

and the desired velocity

u⃗d = 4(y − y2).

Tables 9.17 to 9.21 illustrate results for Example 8 under preconditioning with P0, P̂0,

̂̂
P 0, P1 and P̂1 respectively. For each of the preconditioning approaches, a like-for-like

comparison of the numerical results shows that the recorded number of Picard iterations

for the pipe flow problem are generally greater than those displayed for the driven cavity

flow problem. This behaviour is particularly apparent for notably small values of α. The

reasoning behind this is that as α tends to zero, the flow becomes akin to plug flow

in the middle of the pipe. Consequently, more Picard iterations are needed in order to

fully capture the parabolic behaviour of u⃗d. A direct comparison between Tables 9.4

and 9.20 for both examples under preconditioning with P1 shows a significant increase in

109

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 10 12 16 20 27 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−2 6 8 10 12 15 20 27 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−3 6 8 10 12 15 19 26 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−4 6 8 10 12 13 19 26 41

(2) (2) (1) (1) (1) (1) (1) (1)

= 10−5 6 8 11 12 17 20 28 42

(4) (4) (3) (3) (2) (2) (2) (2)

= 10−6 6 7 9 12 19 20 30 54

(6) (5) (4) (3) (3) (3) (2) (1)

Table 9.17: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner P0 for different values of α and γ.

the average number of GMRES iterations for particularly small γ values. We therefore

consider a deflated preconditioner Mdef in order to improve on the recorded figures for

the average number of GMRES iterations, with the results displayed in Table 9.22. A

direct comparison between Tables 9.20 and Table 9.22 highlights the benefits of using a

deflated preconditioner, with a reduction in the total number of GMRES iterations of up

to a third noted in certain cases.

We now consider use of the inner-outer GMRES approach for preconditioning using

the solution methods described in Section 8.3.

Inner-outer GMRES approach

Using the presentation in Section 8.3, we now look to solve (8.5) based on an inner-

outer GMRES approach under preconditioning with either P0, P̂0 or
̂̂
P0.

We first consider the P0,1-solver described in Section 8.3.1. The results are displayed

in Table 9.23 for differing values of α and γ, with the average number of inner GMRES

110

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 11 12 16 20 27 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−2 6 8 10 12 15 20 27 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−3 6 8 10 12 15 19 26 39

(1) (1) (1) (1) (1) (1) (1) (1)

= 10−4 6 9 10 12 14 19 27 42

(3) (3) (3) (2) (2) (2) (2) (2)

= 10−5 6 8 11 12 16 20 28 46

(6) (6) (6) (5) (5) (4) (4) (4)

= 10−6 6 8 9 12 18 20 28 55

(15) (14) (15) (13) (13) (12) (12) (10)

Table 9.18: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner P̂0 for different values of α and γ.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 10 12 16 20 28 39

(2) (1) (1) (1) (1) (1) (2) (3)

= 10−2 6 8 10 12 15 19 27 39

(2) (1) (1) (1) (1) (1) (2) (3)

= 10−3 6 8 10 11 15 18 25 40

(2) (1) (1) (1) (1) (1) (2) (3)

= 10−4 6 8 10 11 15 19 27 43

(3) (2) (2) (2) (2) (2) (3) (4)

= 10−5 6 7 10 12 16 19 27 44

(8) (7) (7) (7) (7) (7) (7) (8)

= 10−6 7 8 8 10 18 18 31 55

(15) (14) (14) (14) (14) (14) (13) (12)

Table 9.19: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner
̂̂
P0 for different values of α and γ.

111

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 10 12 16 20 26 39

(15) (12) (10) (8) (9) (7) (5) (5)

= 10−2 6 8 10 12 16 20 28 40

(19) (18) (15) (12) (10) (9) (8) (6)

= 10−3 6 9 10 13 15 20 28 43

(29) (33) (30) (24) (27) (23) (14) (17)

= 10−4 6 9 10 12 14 19 27 39

(78) (67) (67) (73) (65) (68) (63) (57)

= 10−5 6 8 11 12 17 20 25 44

(157) (168) (161) (169) (173) (166) (163) (146)

= 10−6 7 8 11 14 19 20 27 51

(330) (278) (290) (313) (289) (270) (262) (233)

Table 9.20: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner P1 for different values of α and γ.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 10 12 16 20 26 39

(24) (20) (18) (16) (14) (14) (15) (22)

= 10−2 6 8 10 12 15 20 27 39

(29) (26) (20) (19) (18) (20) (18) (23)

= 10−3 7 8 10 13 14 20 24 42

(39) (40) (39) (32) (38) (38) (35) (44)

= 10−4 6 9 10 12 14 19 27 42

(87) (80) (74) (89) (88) (87) (100) (96)

= 10−5 6 8 11 12 17 20 27 44

(182) (188) (189) (182) (200) (218) (227) (224)

= 10−6 7 8 11 15 20 20 30 52

(348) (325) (335) (365) (330) (354) (347) (336)

Table 9.21: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner P̂1 for different values of α and γ.

112

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 6 8 10 13 16 20 27 39

(13) (10) (7) (8) (9) (6) (4) (4)

= 10−2 6 8 10 13 16 20 27 40

(10) (9) (14) (7) (10) (9) (5) (6)

= 10−3 7 8 10 13 15 18 29 38

(23) (16) (14) (23) (9) (9) (12) (12)

= 10−4 6 9 10 12 15 20 27 43

(30) (31) (30) (31) (25) (27) (20) (23)

= 10−5 6 8 11 12 17 20 27 45

(70) (83) (84) (111) (71) (68) (56) (70)

= 10−6 6 8 10 13 19 19 32 56

(128) (131) (131) (153) (129) (178) (141) (154)

Table 9.22: Number of Picard iterations and average number of GMRES iterations per
outer iteration (rounded to the nearest integer, in blue) when solving Example 8 with

preconditioner MdefP1for different values of α and γ.

iterations for the application of both PA and PDγ displayed in red and green respectively.

All figures presented have been rounded to the nearest integer for ease of presentation.

As was the case in Example 7, the tolerances for the outer GMRES solve and also for

both of the inner GMRES solves were chosen by experimentation in order to achieve the

same number of Picard iterations recorded in Table 9.17.

Here, similar results are observed as displayed for the driven cavity flow test problem.

For relatively large γ, the average number of inner GMRES iterations appears to remain

relatively constant for each value of α. However, a logarithmic increase is seen for par-

ticularly smaller values of γ. Nevertheless, this behaviour is to be expected based on the

observations in Table 9.17.

Table 9.24 displays results for use of the P̂0,1-solver described in Section 8.3.2 for the

pipe flow problem. As mentioned in the numerical results for Example 7, the matrix Dγ is

approximated by D and preconditioned by PD, with the same colour scheme used within

113

this table as per Table 9.23. In terms of a direct comparison between both Tables 9.23 and

9.24, we see that for γ no less than 10−3, the average number of inner GMRES iterations

remains relatively small for all values of α. Nevertheless, a logarithmic increase is noted

for particularly small values of γ. The effects of approximating JJJA(u)u+
1
γMA(u)−1M by

JJJA(u)u are also evident in the figures displayed for the average number of inner GMRES2

iterations. Here, a direct comparison of both tables shows a notable increase in the average

number of iterations, particularly for small values of γ.

Table 9.25 displays results for Example 8 solved using the
̂̂
P 0,1-solver described in

Section 8.3.3. As per the figures from the driven cavity flow example, we see a roughly

constant average number of inner GMRES1 and inner GMRES2 iterations. These results

were again achieved through appropriate tightening of tolerances to deliver similar figures

to Table 9.10. However, no matter how far the tolerances were tightened, the solver was

seen to blow up for all values of γ in the case of α = 0.2. Failure to effectively solve for

both examples suggests that this solution method is unsuitable for noticeably small values

of α. Figures A.4, A.5 and A.6 illustrate the complexity for each of the preconditioning

approaches P0,1, P̂0,1,
̂̂
P 0,1-solvers, respectively.

The figures in Table 9.26 show the horizontal component of computed state velocity

u1 for different values of α and γ. The figures in Tables 9.27 and 9.28 show the equiv-

alent plots for the vertical component of computed state velocity u2 and the pressure p,

respectively.

114

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 7 6 5 4 3 3 2 2

8 7 7 8 8 9 7 6

= 10−2 8 6 5 4 3 3 2 2

7 8 8 9 9 9 8 5

= 10−3 9 6 5 4 3 3 2 2

9 10 11 11 10 9 7 5

= 10−4 10 9 9 8 6 4 3 3

15 16 18 18 16 13 10 9

= 10−5 13 12 12 11 11 11 10 9

35 38 35 38 37 38 29 23

= 10−6 15 15 15 16 16 17 19 20

58 56 59 61 59 56 60 59

Table 9.23: The average number of inner GMRES1 (in red) and inner GMRES2 (in
green) iterations per outer GMRES iteration when solving Example 8 with P0,1-solver

for different values of α and γ.

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

γ = 10−1 7 6 5 4 3 3 2 2

7 8 7 8 8 9 7 5

= 10−2 7 6 5 4 3 3 2 2

7 7 8 9 8 9 8 6

= 10−3 7 5 4 4 3 3 2 2

8 8 8 8 8 8 8 8

= 10−4 12 11 11 11 11 10 11 12

10 11 11 11 11 11 13 17

= 10−5 12 12 12 12 13 14 16 20

11 11 11 11 12 12 14 18

= 10−6 13 13 13 13 14 16 18 21

11 11 11 11 12 13 15 19

Table 9.24: The average number of inner GMRES1 (in red) and inner GMRES2 (in
green) iterations per outer GMRES iteration when solving Example 8 with P̂0,1-solver

for different values of α and γ.

115

α = 0.9 0.8 0.7 0.6 0.5 0.4 0.3

γ = 10−1 10 10 9 7 8 7 9

11 11 11 10 11 10 8

= 10−2 10 10 9 8 8 8 9

11 11 11 11 11 10 7

= 10−3 11 11 10 10 9 9 10

11 11 10 10 9 8 7

= 10−4 12 11 12 11 11 12 13

12 12 12 12 12 13 15

= 10−5 12 13 13 13 13 14 16

13 13 13 13 14 15 18

= 10−6 16 16 16 17 17 19 21

16 16 16 16 17 19 22

Table 9.25: The average number of inner GMRES1 (in red) and inner GMRES2 (in

green) iterations per outer GMRES iteration when solving Example 8 with
̂̂
P 0,1-solver

for different values of α and γ.

116

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

γ
=

10
−
4

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

γ
=

10
−
6

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

0
1

2
3

4

0

0.
5

10

0.
2

0.
4

0.
6

0.
81

T
ab

le
9.
26
:
T
h
e
h
or
iz
on

ta
l
co
m
p
on

en
t
of

co
m
p
u
te
d
st
at
e
ve
lo
ci
ty

u
1
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
p
ip
e
fl
ow

ex
am

p
le

8.

117

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

γ
=

10
−
4

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

0
1

2
3

4

0

0.
5

1
−0

.2

−0
.10

0.
1

0.
2

γ
=

10
−
6

0
1

2
3

4

0

0.
5

1
−0

.1

−0
.0

50

0.
050.

1

0
1

2
3

4

0

0.
5

1
−0

.1

−0
.0

50

0.
050.

1

0
1

2
3

4

0

0.
5

1
−0

.1

−0
.0

50

0.
050.

1

T
ab

le
9.
27
:
T
h
e
ve
rt
ic
al

co
m
p
on

en
t
of

co
m
p
u
te
d
st
at
e
ve
lo
ci
ty

u
2
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
p
ip
e
fl
ow

ex
am

p
le

8.

118

α
=

0.
9

α
=

0.
5

α
=

0.
2

γ
=

10
−
2

0
1

2
3

4
0

0.
5

1
−2

00204060

0
1

2
3

4
0

0.
5

1
−2

00204060

0
1

2
3

4
0

0.
5

1
−1

001020304050

γ
=

10
−
4

0
1

2
3

4
0

0.
5

1
−2

00204060

0
1

2
3

4
0

0.
5

1
−1

001020304050

0
1

2
3

4
0

0.
5

1
−1

001020304050

γ
=

10
−
6

0
1

2
3

4
0

0.
5

1051015202530

0
1

2
3

4
0

0.
5

1−50510152025

0
1

2
3

4
0

0.
5

1−505101520

T
ab

le
9.
28
:
T
h
e
p
re
ss
u
re

p
fo
r
d
iff
er
en
t
va
lu
es

of
α
an

d
γ
fo
r
th
e
p
ip
e
fl
ow

ex
am

p
le

8.

119

Chapter 10

Conclusion and future work

Within this thesis, an in-depth study into solution techniques for PDE-constrained opti-

misation has been undertaken. These particular problems arise in a wide range of scientific

and engineering applications, notably in problems of design, and so formulating effective

solution methods for such problems is desired. We have described the underlying aim,

namely to minimize an objective function J(u, d) subject to constrains described through

a system of PDE. We have described the steady-state Stokes equations for incompress-

ible fluids, along with the associated weak formulation. Discretisation through use of the

Galerkin finite element method is well understood for the Stokes problem, and was used

within this thesis for both the Stokes equations and also the optimisation problem. The

generalised version of the Stokes problem was also presented, along with specific models

for viscosity.

Numerical experimentation was considered for both piecewise constant and also vari-

able viscosity, including investigation (in the former case) into the spectrum of both the

full and preconditioned Schur complement. These observations were then used in the

application of an appropriate preconditioner based on deflation in the case of variable

viscosity, with numerical results produced for both driven cavity and pipe flow problems.

Based on this presentation, attention was then focussed on controlling the generalised

120

Stokes equations. The notion of a distributed control problem was presented, along with

the associated control problem subject to the generalised Stokes equations, both in con-

tinuous and discrete form. By writing down the Lagrangian for the discretised problem,

a linear system was formed based on the first order optimality conditions.

By considering different solution methods for such systems, it was decided to solve

the system using GMRES coupled with an appropriate preconditioning strategy. Under

a suitable block ordering, the system matrix could then be viewed in terms of a block

2× 2 representation, with the (1, 1) block representing the system matrix for the discrete

generalised Stokes equations. Attention was then focussed on the task of preconditioning

the resulting system, involving consideration of a right preconditioning strategy. The

preconditioner presented had a block triangular structure, where the task was to determine

suitable approximations for both the (1, 1) block and the Schur complement of the system

matrix.

This led to the presentation of five different preconditioners based on the structure of

the actual Schur complement. Results were shown suggesting mesh independent perfor-

mance for each of the preconditioners considered. Nevertheless, each of the five precondi-

tioners required inversion of both the (1, 1) and (2, 2) blocks within GMRES. These blocks

possess a saddle point structure and have the potential to be substantial in size. Therefore,

depending on the problem at hand storage and application of these matrices can present

computational issues. An iterative alternative through use of inner-outer GMRES was

considered, involving use of inner GMRES solves at each outer GMRES iteration. For

our work, two inner GMRES solves were considered, leading to the development of three

different solution methods.

Numerical results were presented for both driven cavity and pipe flow problems. Ini-

tially, figures were displayed based on direct application of each of the five aforementioned

preconditioning approaches. Results for two of the preconditioning approaches showed an

121

increase in the average number of GMRES iterations for particularly small values of γ.

In order to remedy this issue, a deflated preconditioner was considered and was seen to

provide effective results for both examples. Figures for the three inner-outer GMRES

solution methods were also presented, along with associated complexity calculations in

the case of driven cavity and pipe flow problems. Overall, results were obtained matching

those recorded from direct application of the preconditioner under suitable adjustment

of inner tolerances. Nevertheless, one of the solution methods was seen to struggle for

notably small values of α, regardless of how tightly the inner tolerances were set.

Future work

• The focus of this thesis has involved distributed optimal control problems. Future

work would see the presentation given here extended to boundary optimal control

problems for the generalised Stokes problem.

• We would also like to investigate the inclusion of a convection term within the

generalised Stokes equations, leading to consideration of the Oseen problem.

• Furthermore, deeper investigations into more appropriate treatment of the nonlin-

earity present within the optimisation problem should be considered. For instance,

use of Newton’s method in place of Picard iterations would suggest that the nonlin-

earities within the system would be handled more appropriately due to the use of

first order information. Nevertheless, this would incur additional costs in the com-

putation of the necessary derivatives, and so would need to be used under certain

practical considerations. Ultimately, the main task would involve the derivation of

an appropriate preconditioning strategy for the resulting formulation, with asso-

ciated numerical results comparable (or showing improvements) to those provided

within this thesis.

122

APPENDIX

A.1 Complexity of control problem

Figures in this appendix show the total inner-GMRES iterations per outer-GMRES iter-

ation for both Examples 7 and 8 using P0,1, P̂0,1,
̂̂
P 0,1-solvers in Sections 8.3.1,8.3.2 and

8.3.3, respectively.

0.20.30.40.50.60.70.80.9
0

10

20

30

40

50

60

70

80

90

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.1: The total inner-GMRES iterations per outer-GMRES iteration when solving
driven cavity test problem in Example 7 using P0,1-solver.

123

0.20.30.40.50.60.70.80.9
0

50

100

150

200

250

300

350

400

450

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.2: The total inner-GMRES iterations per outer-GMRES iteration when solving
driven cavity test problem in Example 7 using P̂0,1-solvers.

0.30.40.50.60.70.80.9
0

50

100

150

200

250

300

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.3: The total inner-GMRES iterations per outer-GMRES iteration when solving

driven cavity test problem in Example 7 using
̂̂
P 0,1-solvers.

124

0.20.30.40.50.60.70.80.9
0

50

100

150

200

250

300

350

400

450

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.4: The total inner-GMRES iterations per outer-GMRES iteration when solving
pipe flow test problem in Example 8 using P0,1-solvers.

0.20.30.40.50.60.70.80.9
0

100

200

300

400

500

600

700

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.5: The total inner-GMRES iterations per outer-GMRES iteration when solving
pipe flow test problem in Example 8 using P̂0,1-solvers.

125

0.30.40.50.60.70.80.9
0

100

200

300

400

500

600

α

To
ta

l i
nn

er
−G

M
R

ES
 it

er
at

io
ns

γ=10−1

 =10−2

 =10−3

 =10−4

 =10−5

 =10−6

Figure A.6: The total inner-GMRES iterations per outer-GMRES iteration when solving

pipe flow test problem in Example 8 using
̂̂
P 0,1-solvers.

126

References

[1] F. Abraham, M. Behr, and M. Heinkenschloss. The effect of stabilization in finite
element methods for the optimal boundary control of the Oseen equations. Finite
Elements in Analysis and Design, 41(3):229–251, 2004.

[2] R. A. Adams and J. J. Fournier. Sobolev spaces, volume 140. Academic press, 2003.

[3] M. Ainsworth and J. T. Oden. A posteriori error estimators for the Stokes and Oseen
equations. SIAM Journal on Numerical Analysis, 34(1):228–245, 1997.

[4] D. N Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equa-
tions. Calcolo, 21(4):337–344, 1984.

[5] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned
GMRES algorithms. SIAM J. Sci. Comput., 20(1):243–269, 1998.

[6] J. Baranger and K. Najib. Analyse numerique des ecoulements quasi-Newtoniens dont
la viscosite obeit a la loi puissance ou la loi de carreau. Numerische Mathematik,
58(1):35–49, 1990.

[7] J. W. Barrett and W. B. Liu. Finite element approximation of the p-Laplacian.
Mathematics of Computation, 61:523–537, 1993.

[8] J. W. Barrett and W. B. Liu. Finite element error analysis of a quasi-Newtonian flow
obeying the carreau or power law. Numerische Mathematik, 64(1):433–453, 1993.

[9] R. Barrett, M. Berry, T. F. Chan, and et al. Templates for the solution of linear
systems: building blocks for iterative methods. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1994.

127

[10] M. Benzi and G. H. Golub. A preconditioner for generalized saddle point problems.
SIAM Journal on Matrix Analysis and Applications, 26(1):20–41, 2004.

[11] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14(1):1–137, 2005.

[12] M. Benzi, E. Haber, and L. Taralli. A preconditioning technique for a class of PDE-
constrained optimization problems. Advances in Computational Mathematics, 35(2-
4):149–173, 2011.

[13] J. T. Betts. Practical methods for optimal control using nonlinear programming,
volume 3 of Advances in Design and Control. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2001.

[14] R. B. Bird. Useful non-Newtonian models. Annual Review of Fluid Mechanics,
8(1):13–34, 1976.

[15] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. RAIRO Anal. Numer, 8(2):129–151, 1974.

[16] F. Brezzi and K. J. Bathe. A discourse on the stability conditions for mixed finite
element formulations. Computer Methods in Applied Mechanics and Engineering,
82(1):27–57, 1990.

[17] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag,
1991.

[18] F. Brezzi and J. Pitkäranta. On the stabilization of finite element approximations of
the Stokes equations. Springer, 1984.

[19] P. J. Carreau. Rheological equations from molecular network theories. Transactions
of the Society of Rheology, 16(1):99–127, 1972.

[20] P. J. Carreau, D. De Kee, and R. P. Chhabra. Rheology of polymeric systems: prin-
ciples and applications. Hanser Publishers Munich, 1997.

128

[21] E. Casas and L. A. Fernández. Distributed control of systems governed by a general
class of quasilinear elliptic equations. Journal of differential equations, 104(1):20–47,
1993.

[22] E. Casas, L. A. Fernández, and J. Yong. Optimal control of quasilinear parabolic
equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
125(03):545–565, 1995.

[23] Z. Chen. Finite element methods and their applications, volume 5. Springer, 2005.

[24] R. P. Chhabra and J. F. Richardson. Non-Newtonian flow and applied rheology:
engineering applications. Butterworth-Heinemann, 2008.

[25] S. S. Collis and M. Heinkenschloss. Analysis of the streamline upwind/Petrov
Galerkin method applied to the solution of optimal control problems. CAAM TR02-
01, 2002.

[26] M. M. Cross. Rheology of non-Newtonian fluids: a new flow equation for pseudo-
plastic systems. Journal of Colloid Science, 20(5):417–437, 1965.

[27] G. Dhatt, E. Lefranccois, and G. Touzot. Finite element method. John Wiley &
Sons, 2012.

[28] J. Donea and A. Huerta. Finite element methods for flow problems. JohnWiley&Sons,
Ltd, 2003.

[29] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Monographs on Numerical Analysis. The Clarendon Press, Oxford University Press,
New York, second edition, 1989. Oxford Science Publications.

[30] H. C. Elman. Preconditioners for saddle point problems arising in computational
fluid dynamics. Appl. Numer. Math., 43(1-2):75–89, 2002. 19th Dundee Biennial
Conference on Numerical Analysis (2001).

[31] H. C. Elman, D. J. Silvester, and A. J. Wathen. Performance and analysis of saddle
point preconditioners for the discrete steady-state Navier-Stokes equations. Numer.
Math., 90(4):665–688, 2002.

129

[32] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Oxford University Press,
USA, 2005.

[33] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation.
J. Comput. Appl. Math., 69(2):303–318, 1996.

[34] L. C. Evans. Partial differential equations, volume 19. American Mathematical
Society, 1998.

[35] V. Girault and P. A. Raviart. Finite element methods for Navier-Stokes equations:
theory and algorithms. NASA STI/Recon Technical Report A, 87:52227, 1986.

[36] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained
quadratic programming problems arising in optimization. SIAM J. Sci. Comput.,
23(4):1376–1395, 2001.

[37] P. M. Gresho, R. L. Sani, and M. S. Engelman. Incompressible Flow and the Finite
Element Method. John Wiley & Sons, 1998.

[38] P. Grinevich. Numerical solver for the variable viscosity Stokes type problem and
applications. PhD thesis, Moscow State University, 2010.

[39] P. P. Grinevich and M. A. Olshanskii. An iterative method for the Stokes-type
problem with variable viscosity. SIAM J. Sci. Comput., 31(5):3959–3978, 2009.

[40] J. Harris. Rheology and non-Newtonian flow. Longman New York, 1977.

[41] X. He and M. Neytcheva. Preconditioning the incompressible Navier-Stokes equations
with variable viscosity. Journal of Computational Mathematics, 30(5):461–482, 2012.

[42] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear
Systems. J. Research Nat. Bur. Standards, 49:409–436 (1953), 1952.

[43] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints,
volume 23. Springer Verlag, 2009.

130

[44] Ilse CF Ipsen. A note on preconditioning nonsymmetric matrices. SIAM Journal on
Scientific Computing, 23(3):1050–1051, 2001.

[45] D. Kay, D. Loghin, and A. J. Wathen. A preconditioner for the steady-state Navier-
Stokes equations. SIAM Journal on Scientific Computing, 24(1):237–256, 2002.

[46] C. Keller, N. I. M. Gould, and A. J. Wathen. Constraint preconditioning for indefinite
linear systems. SIAM J. Matrix Anal. Appl., 21(4):1300–1317, 2000.

[47] A. Klawonn. Block-triangular preconditioners for saddle point problems with a
penalty term. SIAM J. Sci. Comput., 19(1):172–184, 1998. Special issue on iter-
ative methods (Copper Mountain, CO, 1996).

[48] M. Kollmann and W. Zulehner. A robust preconditioner for distributed optimal
control for Stokes flow with control constraints. In Numerical Mathematics and
Advanced Applications 2011, pages 771–779. Springer, 2013.

[49] J. L. Lions. Optimal control of systems governed by partial differential equations. 170
of Grundlehren Math. Wiss. Springer, 1971.

[50] D. Loghin and A. J. Wathen. Analysis of preconditioners for saddle-point problems.
SIAM Journal on Scientific Computing, 25(6):2029–2049, 2004.

[51] M. F. Murphy, G. H. Golub, and A. J. Wathen. A note on preconditioning for
indefinite linear systems. SIAM J. Sci. Comput., 21(6):1969–1972 (electronic), 2000.

[52] M. A. Olshanskii and V. Simoncini. Acquired clustering properties and solution of
certain saddle point systems. SIAM Journal on Matrix Analysis and Applications,
31(5):2754–2768, 2010.

[53] R. G. Owens and T. N. Phillips. Computational rheology, volume 2. World Scientific,
2002.

[54] J. W. Pearson. Fast Iterative Solver for PDE-constrained optimization Problems.
PhD thesis, Oxford University, 2013.

131

[55] J. W. Pearson. On the role of commutator arguments in the development of
parameter-robust preconditioners for Stokes control problems. submitted to Elec-
tronic Transactions on Numerical Analysis, 2013.

[56] J. W. Pearson. Preconditioned iterative methods for Navier-Stokes control problems.
submitted to SIAM Journal on Scientific Computing, 2013.

[57] J. W. Pearson and M. Stoll. Fast iterative solution of reaction-diffusion control
problems arising from chemical processes. SIAM Journal on Scientific Computing,
35(5):B987–B1009, 2013.

[58] J. W. Pearson and A. J. Wathen. Fast iterative solvers for convection-diffusion control
problems. Electronic Transactions on Numerical Analysis, 40:294–310, 2013.

[59] T. Rees. Preconditioning iterative methods for PDE constrained optimization. PhD
thesis, Oxford University, 2010.

[60] T. Rees, H. S. Dollar, and A. J. Wathen. Optimal solvers for PDE-constrained
optimization. SIAM Journal on Scientific Computing, 32(1):271–298, 2010.

[61] T. Rees and M. Stoll. Block-triangular preconditioners for PDE-constrained opti-
mization. Numerical Linear Algebra with Applications, 17(6):977–996, 2010.

[62] T. Rees, M. Stoll, and A. J. Wathen. All-at-once preconditioning in PDE-constrained
optimization. Kybernetika, 46(2):341–360, 2010.

[63] T. Rees and A. J. Wathen. Preconditioning iterative methods for the optimal control
of the Stokes equations. SIAM Journal on Scientific Computing, 33(5):2903–2926,
2011.

[64] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal
on Scientific Computing, 14(2):461–469, 1993.

[65] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput., 7(3):856–869,
1986.

132

[66] J. Schoberl and W. Zulehner. Symmetric indefinite preconditioners for saddle point
problems with applications to PDE-constrained optimization problems. SIAM Jour-
nal on Matrix Analysis And Applications, 29(3):752–773, 2008.

[67] D. Silvester and A. J. Wathen. Fast iterative solution of stabilised stokes systems
part i: using simple diagonal preconditioners. SIAM Journal on Numerical Analysis,
30:630–649, 1993.

[68] D. Silvester and A. J. Wathen. Fast iterative solution of stabilised stokes systems
part ii: using general block preconditioners. SIAM Journal on Numerical Analysis,
31(5):1352–1367, 1994.

[69] T. Slawig. Distributed control for a class of non-Newtonian fluids. Journal of Dif-
ferential Equations, 219(1):116–143, 2005.

[70] M. Stoll and A. J. Wathen. All-at-once solution of time-dependent PDE-constrained
optimization problems. Kybernetika, 46:341–360, 2010.

[71] M. Stoll and A. J. Wathen. All-at-once solution of time-dependent Stokes control.
Journal of Computational Physics, 232(1):498–515, 2013.

[72] R. Temam. Navier-Stokes Equation: Theory and Numerical Analysis, volume 2.
North-Holland, 1977.

[73] L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM: Society for Industrial
and Applied Mathematics, 1997.

[74] F. Tröltzsch. Optimal control of partial differential equations: theory, methods, and
applications, volume 112. Amer Mathematical Society, 2010.

[75] R. Verfürth. A posteriori error estimators for the Stokes equations. Numerische
Mathematik, 55(3):309–325, 1989.

[76] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J.
Numer. Anal., 7(4):449–457, 1987.

133

[77] L. W. White. Control of power-law fluids. Nonlinear Analysis: Theory, Methods &
Applications, 9(3):289–298, 1985.

[78] M. Yeung, J. Tang, and C. Vuik. On the convergence of GMRES with invariant-
subspace deflation. Delft University of Technology, Department of Applied Mathe-
matical Analysis, 2010.

[79] W. Zulehner. Analysis of iterative methods for saddle point problems: a unified
approach. Mathematics of computation, 71(238):479–505, 2002.

[80] W. Zulehner. Nonstandard norms and robust estimates for saddle point problems.
SIAM Journal on Matrix Analysis and Applications, 32(2):536–560, 2011.

134

