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Abstract

Throughout this research we use techniques of nonstandard analysis to derive and interpret

results in classical harmonic analysis particularly in topological (metric) groups and theory of

Fourier series.

We define monotonically definable subset N of a nonstandard ∗finite group F and prove some

‘nice’ properties of N . Also we prove that N is monotonically definable if and only if N is

the monad of the neutral element of F for some invariant ∗metric d on F . In addition, we show

the nonstandard metrisation version of first-countable Hausdorff topological groups.

We introduce a variant of the notion of ‘locally embeddable in finite groups’ (LEF) for metric

groups, as ‘locally embeddable in finite metric groups’ (LEFM). We show that every abelian

group with an invariant metric is LEFM. We give a number of examples of classical metric

groups represented by nonstandard ∗finite ∗metric groups using methods of nonstandard analy-

sis. Generalising, we also define ‘locally embeddable into (uniformly) discrete metric groups’

(LEDM) and prove that every 2-sided invariant metric group is LEDM.

We present a nonstandard version of the main results of the classical space L1(T) (the space of

Lebesgue integrable complex-valued functions defined on the topological circle group T) such

as: Fourier coefficients of piecewise continuous functions; some useful properties of Dirichlet

and Fejér functions; the convolution properties of functions in L1(F); Also the relationship

between the classical L1(T) and the nonstandard L1(F) via Loeb measure.

Furthermore, we introduce the proof of: the approximation of Lebesgue integrable functions by

S-continuous functions in L1(F); the density of trigonometric polynomials with standard degree

in L1(F); the 1-norm and pointwise convergence of the nth Cesàro mean; and if f ∈ ∗CF with
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f̂ (m) = 0 for all m∈ F , then f = 0; and if f ∈ L1(F), then lim
|n|∈N

f̂ (n) = 0. In addition, we model

functionals defined on the test space of exponential polynomial functions on T by functionals

in NSA, using internal functions defined on nonstandard ∗finite sets.

We introduce the proof of the representation of continuous functions on the classical metric

group (G,+,dG) by S-continuous functions on (F, ·,dF) whenever G is represented by F/N

as a metric group, Ffin satisfies well-definedness conditions and Ffin/N ⊆ F/N is an open set.

ii



Acknowledgements

All praise and thanks be to God, my creator and the creator of all, for granting me the success

to complete my thesis.

I would like to express my deep thanks, appreciation and sincere gratitude to my supervisor

Dr. Richard Kaye for choosing this interesting topic, his scientific advice, patient guidance,

insightful comments and his continuous support of my PhD research. His useful guidance

helped me in all parts of my research and in the writing of this thesis.

I would like to express my special thanks to my co-supervisor Professor Chris Parker for his

encouragement, support and guidance.

I am very grateful to the Iraqi Ministry of Higher Education and Scientific Research/ Scholar-

ship and Cultural Relations Directorate for their financial support granted through a scholarship

I received. I also thank Kurdistan Regional Government for their support.

I would like to thank the staff members of the School of Mathematics at the University of

Birmingham who helped me.

I express my sincerely warm thanks to my parents, brothers and sisters for allowing me to be

ambitious as I wanted.

My special thanks and appreciation to my beloved wife for all of the sacrifices that she has made

on my behalf, her support, encouragement and help.

Finally, I thank my children for their patience and bearing during my absence from them due to

my working on this project.

iii



Contents

1 Introduction to Material and Literature Review 1

1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background of Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction to Nonstandard Analysis 13

2.1 Ultrafilters and Ultraproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 First-Order Logic and First-Order Language . . . . . . . . . . . . . . . . . . . 15

2.3 Standard and Nonstandard Universe . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 S-Integrable Functions (SL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 S-Continuity and L1-Integrability on ∗Finite Sets . . . . . . . . . . . . . . . . 22

2.6 Loeb Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Measurable Functions and Integrals . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Some Applications of Saturation . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Abstract Harmonic Analysis 30

3.1 Abstract Harmonic Analysis on Finite Groups . . . . . . . . . . . . . . . . . . 30

3.2 Abstract Harmonic Analysis on Topological Groups . . . . . . . . . . . . . . . 33

3.3 Fourier Coefficients and Fourier Series . . . . . . . . . . . . . . . . . . . . . . 37

4 Nonstandard Representations of Metric Groups 39

4.1 A Metrisation Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Measure on Nonstandard Sets F and F/N . . . . . . . . . . . . . . . . . . . 46

4.3 Locally Embeddable into Finite Metric Groups (LEFM) . . . . . . . . . . . . . 50

4.4 Locally Embeddable into Discrete Metric Groups (LEDM) . . . . . . . . . . . 56

iv



5 Some Examples of LEFM Groups 59

5.1 Abelian LEFM Group Examples . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 The Group of Integers Z . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 The Direct Sum of the Group of Integers Z⊕Z . . . . . . . . . . . . . 61

5.1.3 The Additive Real Group R . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.4 The Additive Circle Group T . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.5 The Additive 2-Torus of the Circles T⊕T . . . . . . . . . . . . . . . . 64

5.1.6 The Additive Complex Group C= R⊕R . . . . . . . . . . . . . . . . 66

5.1.7 The Additive Group of p-adic Integers Zp . . . . . . . . . . . . . . . . 67
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Chapter 1

Introduction to Material and Literature

Review

Throughout this chapter we introduce a general introduction to materials as the first section

and in the second section we attempt to present the basic definitions which we will use them

implicitly in the following chapters.

1.1 General Introduction

Harmonic analysis is a diverse field concerned with the study of the notions of Fourier series

and Fourier transforms with their generalisation, as well as the study of topological groups.

It has many applications ranging across different areas of science, it has extensively used by

the fields: signal processing; medical imaging; and quantum mechanics. Particularly, Fourier

transform has applications in different fields of science. It is used in physics, astronomy, optics,

communications, applied mathematics, engineering, geology, chemistry, etc. Therefore, the

subject of Fourier transformation has an important role in major aspects of life [21].

Nonstandard analysis (the theory of infinitesimals) was introduced by Abraham Robinson in

1961 [6, 29], and provides a logical foundation to the idea of infinitesimals. This new theory

and new number system obtained via model -theoretic methods was a satisfactory and complete

solution of Leibniz’s old problem (to give a rigorous meaning to infinitesimals and vanishing

quantities). Newton and Leibniz originally formulated the calculus using the expressions ‘van-
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ishing quantity’ and ‘infinitesimal number’ in their development of infinitesimal calculus, but

were unable to make the idea of ‘infinitesimal’ precise in any consistent way.

In 1977 Nelson [24] axiomatised the Robinson’s nonstandard analysis throughout a theory

called internal set theory. This new approach to nonstandard analysis is based on the axioms

of ZFC (Zermelo-Fraenkel set theory and the axiom of choice [17]) together with three other

axioms which are: transfer principle (T); idealisation principle (I); standardisation principle (S).

Nonstandard analysis is a very reasonable way to study convergence, since NSA provides a

uniform and simple approach to ε − δ analysis without excessive machinery associated with

quantifiers. Our study of the convergence in Fourier series is an example in this aspect. Non-

standard analysis is better than the classical analysis for making examples and giving a uniform

treatment of a number of different things. Because examples in NSA can be constructed by

discrete means and shown to approximate continuous functions, for example. Very often non-

standard analysis simplifies the definitions and proofs.

Nonstandard analysis has been developed widely and considerably in various areas with great

success. It has been applied in different subjects and directions such as: differential and integral

calculus, differential equations, classical differential geometry, general topology, probability

theory, theory of distributions, topological groups and Lie groups, boundary Layer theory, mi-

croeconomic theory and mathematical physics [5, 13, 14].

In 1970 Luxemburg [22] tried to link the harmonic analysis of ∗finite abelian groups and the

abelian circle group T. He studied the sequence of Fourier coefficients of a continuous func-

tion f on Lp(T), for p > 1, as the standard part of the sequence of Fourier coefficients of the

function ∗ f . Luxemburg used nonstandard analysis to find the discrete versions of Parseval’s

formula and Hausdorff-Young inequalities in Fourier analysis. He proved some theorems about

representations of positive definite functions by using nonstandard analysis.

In 1991 Gordon [9, 10] considered an internal hyperfinite abelian group G and an internal

∗finite subgroup H of G. He showed how: the Haar measure can be approximated by the Loeb

measure on H; a character of G can be approximated by an internal character of H; and the

Fourier transform on G can be approximated by the ∗finite Fourier transform on H. Moreover,
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he introduced a new method based on nonstandard analysis for the construction of separable

locally compact abelian (LCA) groups. He considered a ∗finite internal abelian group G and two

subgroups H and K of infinitesimals and finite numbers of G respectively. Gordon also defined

a topology on the quotient group K/H. The Loeb measure on G induces the Haar measure on

K/H, if K/H is a separable locally abelian group. He investigated the approximation of Fourier

transforms in LCA group by discrete Fourier transforms.

In 1997 Vershik and Gordon introduced the notion of locally embeddable into finite groups

(LEF) as abstract groups. In 2012 this idea is also studied by others such as Pestov and Kwait-

kowska [26], and corresponds to a group being embeddable in a nonstandard ∗finite group.

The aim of this research is to use methods of nonstandard analysis to study harmonic analysis in

two aspects: the representation of classical topological (metric) groups by nonstandard metric

groups; and the convergence of Fourier series in nonstandard universe. Nonstandard analysis

has been applied to topological groups (for example, by Parikh [25], Gordon [9, 10]) but we

know of no general techniques that allow topological groups to be studied by nonstandard meth-

ods applied to ∗finite groups. This possibility seemed particularly intriguing for abstract Fourier

analysis, since Fourier series on the circle group and some other specific groups can be readily

treated by nonstandard means [19].

In this work we shall set up our nonstandard mathematics (Chapter 2 and Chapter 4) that we

need to provide an analogous nonstandard study of metric groups and nonstandard study of the

convergence of Fourier series. For the classical theory, a number of texts could be followed. We

shall follow Katznelson [16].

Chapter 2 introduces important nonstandard tools as a background, which form the core of

nonstandard subjects used through next chapters. Section 2.1 explains the construction of an

ultrapower of a first order structure M. The case when M = (R, . . .) gives the construction of

hyperreals ∗R. Section 2.2 defines first-order logic and first-order language and states Łoś’s

Theorem and the Transfer principle. Section 2.3 explains the construction of standard and

nonstandard universe, defines internal sets with other important definitions. The definition of

overspill and some interesting propositions are also given.
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Sections 2.4 and 2.5 develop the nonstandard theory of L1 functions on the circle T. The

elements of L1(T) are equivalence classes of complex-valued Lebesgue integrable functions

such that f ∼ g if and only if f = g almost everywhere on T, where T = {z ∈ C : |z| = 1} is

a subgroup of multiplicative abelian group C\{0}. Also we can identify T with R/2πZ, then

T= [0,2π) or T= [−π,π) is an additive abelian group modulo 2π . Moreover, T has a topology

as a subspace of the complex topological space.

We follow Cartier and Perrin [2] to progress our work and try to obtain a nonstandard version

of L1 by considering a ∗finite set F as a model of the circle T. We define the distance func-

tion d on F by d(r,s) = 2π

N min{|r− s|,N− |r− s|}, then (F,d) is a precompact metric space.

Moreover, these sections introduce the definitions of S-integrable, S-continuous, limitedness

and L-integrable of functions on F in order to define L1(F), since the concept of integration

plays a very important role in the theory of Fourier transform and Fourier series.

Sections 2.6 and 2.7 introduce the Loeb measure [20] of internal subsets of F in order to study

the measurable functions in L1(F), and then to show the relation between the classical L1[−π,π]

and the nonstandard L1(F). Finally, Section 2.8 presents some interesting applications of satu-

ration in the nonstandard universe.

Chapter 3 introduces the basic material of the main branches of the classical theory of harmonic

analysis. Section 3.1 focuses on the vector space VG of complex-valued functions defined on

a finite group G. The discrete Fourier transform (DFT) and its inverse (IDFT) are given via

definition of the inner product 〈·, ·〉 as defined on VG. The convolution and its properties on VG

are given as well. Section 3.2 works on topological groups G, where G is abelian as a group and

Hausdorff locally compact as a topology. The definition of Haar measure and L1 on G are given

in order to define Fourier coefficients and Fourier series. A number of interesting examples are

given through the section. Section 3.3 restricts the definition of Fourier coefficients, Fourier

series, partial sums of Fourier series and Cesàro mean on the L1 space of the circle topological

group T.

Chapter 4 aims to represent classical metric groups by nonstandard metric groups through the

notion of ‘locally embeddable in finite metric groups’ (LEFM) by a variant of the notion of
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‘locally embeddable in finite groups’ (LEF) using methods of NSA which we develop through

this chapter. When a group G has a metric structure, a number of interesting variations of this

idea are possible, and one of the aims of this chapter is to explain these and give some interesting

results. We work with standard metric groups G where the metric d is 2-sided, or invariant on

both sides (Definition 1.2.9).

Section 4.1 introduces the definition of the standard part map of a ∗finite group F in the non-

standard universe, the normal subgroup N of F and the definition of monotonically definable

subset of F and its relation with Nd (the monad of the neutral element of F). Some nice prop-

erties of the monotonically definable subset are given. Theorem 4.1.9 shows the relationship

between N and Nd , that is, how to define a ∗metric d on F satisfied N = Nd . The definition

of ◦d on F/N is given via the definition of d on F , in order to study some properties of the

topological (metric) group F/N . Section 4.2 presents the definition of counting measure on

subsets of the nonstandard finite group F . The measure of subsets of the quotient group F/N

is also defined. The section is ended by some interesting results related to the measure of the

normal subgroup N when N is an external subset of F .

Section 4.3 starts with the definition of locally embeddable into finite metric groups (LEFM).

Such a group G is (LEFM) if it is embeddable in F/N for some 2-sided ∗finite ∗metric group

F , where N is the monad of the identity of F (Definition 4.3.1). In a sense this is not very far

away from the idea of a sofic group as given by Pestov and Kwiatkowska [26].

A characterisation of such groups in terms of local embeddings appears in Theorem 4.3.2, which

shows that how classical metric groups can be represented by nonstandard metric groups. We

define a partial norm on the abelian group G, and then we can extend this norm on any subset A

of G into an invariant metric d on the subgroup generated by A. As well as introducing the idea

of LEFM groups, which we believe is very natural, and proving that every abelian group with

invariant metric is LEFM (Theorem 4.3.7).

It is our belief that consideration of nonstandard finite groups can be used to streamline and

simplify certain results from abstract harmonic analysis and locally compact groups in general.

For example, Theorem 6.3.3 in Chapter 6 and Example 7.0.19 in Chapter 7.
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We do not expect that all 2-sided metric groups will be LEFM. Since every Hausdorff first-

countable topological group is metrisable with 2-sided metric, by a standard argument, then

Theorem 4.1.12 shows a nonstandard version for this fact.

When an invariant metric group is not, or is not known to be, LEFM, a modified weaker notion

may be helpful. Generalising the LEFM idea, we can also introduce the notion of groups

locally embeddable into (uniformly) discrete metric groups (LEDM). This also has a natural

nonstandard interpretation as groups embeddable in F/N where F is a discrete metric group

in the nonstandard universe, and N is again the monad of the neutral element of F . This also

gives some hope of studying metric groups as (subgroups of quotients of) discrete groups and

Theorem 4.4.5 shows that all 2-sided metric groups are LEDM.

Chapter 5 introduces explicit descriptions of some familiar abelian and nonabelian groups as

LEFM groups. Besides the obvious examples that arise directly from metric ultraproducts, it is

of interest to show that other classical examples are LEFM groups. Section 5.1 gives interesting

different examples of classical abelian metric groups as LEFM groups. What makes these

examples even more interesting is that all these familiar abelian groups can be represented as

a subgroup of the quotient F/N where F is a ∗cyclic group CN of nonstandard order N. In

particular, we wonder if all abelian groups with invariant metric occur as subgroups of such

CN/N . Section 5.2 gives remarkable examples of classical nonabelian metric groups which

are LEFM groups.

Chapter 6 presents a nonstandard approach to Fourier analysis on the topological circle group

T by using methods of nonstandard analysis together with discrete Fourier transform. This

chapter starts with the vector spaces of “smooth” functions over the field of complex numbers

C. The inner product of two functions is used to define the Fourier coefficients in L1(T) and

DFT in L1(F). The Fourier coefficients of piecewise continuous functions in L1(T) can be

written as the discrete Fourier transform in L1(F), whenever F is a ∗finite set, by using methods

of nonstandard analysis.

The Dirichlet and Fejér functions are presented and used to discuss the convergence of Fourier

series. Several important theorems on the Dirichlet and Fejér properties are introduced to facil-
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itate the representation of functions in L1(F) as series. The convolution of internal functions in

∗CF is discussed. The relationship between the classical L1[−π,π] and the nonstandard L1(F) is

explained. Also, this chapter presents the 1-norm and pointwise convergence of the nth Cesàro

mean of functions in L1(F).

Chapter 7 introduces functionals in NSA as an analogy of functionals in classical analysis on

the test space of the exponential polynomial functions in CT. In our attempt to generalise

functions, we notice that a Fourier series may not converge, but still gives useful information

such as a “generalised function”.

Chapter 8 aims to show how the nonstandard methods of Chapter 4 together with discrete

harmonic analysis (Section 3.1) may be used to derive and interpret results in classical har-

monic analysis (Sections 3.2 and 3.3). The relationship between functions ψ defined on F

and functions ◦ψ defined on G are shown in Theorem 8.0.23 whenever (G,+,dG) embeds in

(F/N ,+,dF) as a metric group and Ffin/N is an open subset of F/N together with some

further conditions.

1.2 Background of Basic Definitions

Throughout this section we introduce the basic definitions which are used in this research.

Definition 1.2.1. [23] Consider the set of all complex numbers C. The set of non zero complex

numbers is denoted by C×. The (multiplicative) circle subgroup of C× is denoted by TC and

defined by TC = {z ∈ C× : |z| = 1}. The metric function defined on TC is the metric induced

from the usual metric on C.

It will be convenient to have a notation for a group isomorphic to TC but written additively.

Definition 1.2.2. [16] The additive circle group (modulo 2π) is denoted by T. This is the group

R/2πZ or equivalently [0,2π) with addition modulo 2π .

Define the normalised metric dT on T= [0,2π) by

dT(x,y) =
1

2π
min{|x− y|,2π−|x− y|}.
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A group can act on a specific set and the action will be defined as follows.

Definition 1.2.3. [11] Let G be a group. A group action of G on a set X is a function from

G×X to X (where the image of (g,x) ∈ G×X is written g · x) satisfying:

(a) (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X ;

(b) e · x = x for all x ∈ X , where e is the identity element of G.

Following are the definitions of three different dihedral groups with suitable metrics defined on

them.

Definition 1.2.4. [30] Let CN denotes the cyclic group of order N. The dihedral group D2N =

{g jhk : 06 j <N,06 k < 2,gN = 1= h2,gh= hg−1} of order 2N is defined to be the semidirect

product of the cyclic groups CN and C2. Also is written as D2N =CNoC2. We define an action

of C2 on CN by gh = h−1gh ∈ CN such that g1 = g, (gh)k = g(hk) and (g−1)h = (gh)−1 for all

g ∈CN and h,k ∈C2. The multiplication on the set D2N = {(g,h) ∈CN oC2 : g ∈CN ,h ∈C2}

is defined by (g,h)(g′,h′) = (g(g′)h−1
,hh′).

The metric d defined on D2N by

d((g,h),(g′,h′)) = dN(g,g′)+d2(h,h′)

where dN is the usual metric on CN defined by dN(g,g′) = 1
N min{|g−g′|,N−|g−g′|} and d2

is the discrete metric on C2.

Definition 1.2.5. We define the dihedral circle group as the semidirect product of the circle

group T and the cyclic group C2. We denoted it by D2T, that is, D2T := ToC2. The non

identity element of C2 acts on T by inverting elements. The multiplication on D2T is defined by

(g,h)(g′,h′) = (g(g′)h−1
,hh′). The metric d defined on D2T = {(g,h) ∈ ToC2 : g ∈ T,h ∈C2}

by

d((g,h),(g′,h′)) = dT(g,g′)+d2(h,h′)

where dT and d2 are metrics on the circle group T and the cyclic group C2 respectively.

Definition 1.2.6. [30] The infinite dihedral group D∞ is defined to be the semidirect product

of the infinite cyclic group of integers Z by the cyclic group C2. That is D∞
∼= ZoC2. The
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group CN acts on Z by inverting the elements. The set D∞ is the Cartesian product Z×C2. The

multiplication on D∞ is defined by (g,h)(g′,h′) = (g(g′)h−1
,hh′). The metric d defined on D∞

is the discrete metric d(x,y) = 1 if x 6= y.

The groups p-adic integers and profinite completion of Z with well-defined metric functions

are two interesting metric groups constructed via the inverse limit of quotients Z/(pnZ) and

Z/(nZ) respectively as given in the following two definitions.

Definition 1.2.7. [31] Let p be a prime number. The inverse limit of cyclic groups Z/pnZ with

reduction modulo pn by the natural maps Z/pnZ→ Z/pmZ, where n>m is called the group of

p-adic integers and denoted by Zp. That is,

Zp := lim
←

(Z/pnZ).

Alternatively, we can define Zp as the set of sequences (with componentwise addition) as

Zp := {(xn) ∈∏
n∈N

(Z/pnZ) : for all n ∈ N, xn+1 ≡ xn mod pn}.

Also define the metric dp on Zp by

dp(x,y) =


2−k if k is the least such that xk 6= yk and k ∈ N,

0 if xk = yk for all k ∈ N.

Definition 1.2.8. [31] The inverse limit of cyclic groups Z/nZ with reduction modulo n by the

natural maps Z/mnZ→ Z/nZ is called the profinite completion of Z and denoted by Ẑ. That

is,

Ẑ := lim
←

(Z/nZ).

Alternatively we can define Ẑ as the set of sequences (with componentwise addition) as follows.

Ẑ := {(xn) ∈∏
n>1

(Z/nZ) : for all n|m, xm ≡ xn mod n}.

That is, (x0,x1,x2, . . .) is an element of Ẑ if and only if for all functions φmn : Z/mnZ→ Z/nZ
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such that φmn(xmn) = xn for all m,n ∈ N. Also the metric d̂ is defined on Ẑ by

d̂(x,y) =


2−k if k is the least such that xk 6= yk and k ∈ N,

0 if xk = yk for all k ∈ N,

where x = (x0,x1,x2, . . .) and y = (y0,y1,y2, . . .).

The invariance of metrics defined on groups is given as follows.

Definition 1.2.9. [26] Let G be a group and d be a metric defined on G. Then d is said to be

left invariant if d(xy,xz) = d(y,z) for all x,y,z ∈ G, right invariant if d(xz,yz) = d(x,y) for all

x,y,z ∈ G, and invariant if d is both left and right invariant.

The direct sum of any two groups is given as follows.

Definition 1.2.10. [30] The direct sum of two groups G1 and G2 is denoted by G1⊕G2. Its

elements are the elements of the Cartesian product G1×G2 and the group operation is defined

componentwise.

For finitely generated abelian groups we recall the following theorem.

Theorem 1.2.11. Let A be a finitely generated abelian group. Then there are n,m ∈ N and

ai ∈ N for i = 0,1,2, . . . ,m−1, such that

A∼= Zn⊕
m−1⊕
i=0

Cai.

Proof. For a proof see Rotman [30, Chapter 9].

A precompact metric space is defined as follows.

Definition 1.2.12. [2] A metric space (X ,d) is called precompact, if for all real ε > 0 there is a

finite family of open subsets of diameter ε whose union coincides with X . That is, for a given

real ε > 0, there is a finite family A1,A2, . . . ,An of open subsets of X such that X ⊆
⋃n

i=1 Ai and

dia(Ai)< ε for all i = 1,2, . . . ,n.

The Hausdorff property of topological spaces is given as follows.

Definition 1.2.13. [23] A topological space T is said to be Hausdorff or T2 if for every two
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distinct points x and y in T , there are two disjoint open sets Ux and Uy in T containing x and y

respectively.

Locally compact of topological groups has an essential role in the structure of topological

groups in harmonic analysis. Its definition given as follows.

Definition 1.2.14. [23] A topological space T is said to be locally compact if every point of T

has a compact neighbourhood, that is a neighbourhood contained in a compact set.

In order to define Borel measurable function, we start with regular Borel measure as follows.

Definition 1.2.15. [16] Let G be a locally compact Hausdorff space. The σ -algebra of Borel

sets B(G) is the smallest σ -algebra on G containing open sets of G. A measure µ on B(G) is

called a Borel measure. A Borel measure µ is inner regular on A∈B(G) if µ(A) = sup{µ(K) :

K ⊆ A,K compact}, outer regular on A if µ(A) = inf{µ(U) : U ⊇ A,U open}, and µ is called

regular if it is both inner regular and outer regular on B(G).

Definition 1.2.16. [32] A function f : G→ C is said to be Borel measurable if for all open

subset U ⊆ C , f−1(U) is a Borel set in G.

Let G be a multiplicative group. The definition of the topological group G will be as follows.

Definition 1.2.17. [23] A topological group G is a group that is also a topological space such

that the multiplication map (x,y) 7→ xy of G×G into G and the inversion map x 7→ x−1 of G

into G are continuous, where G×G carries the product topology.

The inner product on the complex vector space is defined as follows.

Definition 1.2.18. [32] A complex vector space V is called an inner product space if for each

(x,y) ∈ V ×V there is associated complex number 〈x,y〉 the so-called inner product of x and y

such that:

(a) 〈x,y〉= 〈y,x〉 for all x,y ∈V (the bar denotes the complex conjugation),

(b) 〈x+ y,z〉= 〈x,z〉+ 〈y,z〉 for all x,y,z ∈V ,

(c) 〈x,λy〉= λ 〈x,y〉 for all x,y ∈V and all scalar λ ∈ C,

(d) 〈x,x〉> 0 for all x ∈V ,

(e) 〈x,x〉= 0 if and only if x = 0 for x ∈V .
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Definition 1.2.19. [8] A subdivision of [−π,π) is a finite subset {x0,x1, . . . ,xn} of [−π,π] such

that −π = x0 < x1 < .. . < xn = π .

Definition 1.2.20. [1] A function f : T→ C is said to be piecewise continuous, if T= [−π,π)

can be partitioned by a finite number of points −π = x0 < x1 < .. . < xn = π such that:

(a) f is continuous on each subinterval (xi−1,xi), for all i = 1,2, . . . ,n;

(b) f has finite limits as x approaches the end points, in the subintervals (xi−1,xi).

Definition 1.2.21. [8] A function f : T→ C is said to be bounded, if there is K ∈ N such that

| f (t)|< K, for all t ∈ T.

12



Chapter 2

Introduction to Nonstandard Analysis

Our aim in this chapter is to present all concepts and tools that we need in the nonstandard

methods that we use in this research. Therefore, we start with ultrafilters and ultraproducts in

order to construct the set of hyperfinite ∗M of an infinite set M in general. The concepts of first-

order logic and first-order language can be used and interpreted in many classes of mathematical

structures, particularly in our work area. Throughout construction of standard and nonstandard

universe, we define some nonstandard concepts such as internal sets, standard elements and

finite elements.

To understand precisely the space of Lebesgue integrable functions L1 on nonstandard finite sets

F , we explain what are the S-integrable and S-continuous functions on F . Dealing with measure

on subsets of F requires to know what is Loeb measure and then the relation of measurable

functions and integrals as well. Saturation is another part of this chapter in which we attempt

to show its use in our work. Throughout this chapter, several interesting examples are given in

order to illustrate the concepts introduced.

2.1 Ultrafilters and Ultraproducts

In order to build the set of hyper numbers ∗M of an infinite set of numbers M we will present

the following definitions and theorems with some interesting examples. All theorems here are

easy and proofs can be found in the literature, for example, see Keisler [18].

Definition 2.1.1. [13] Let P = P(N) = {X : X ⊆ N}. A nontrivial filter on P (or N) is a set

13



D⊆P , such that:

(F1) D is non-empty and /0 /∈ D;

(F2) if X ⊇ Y , and Y ∈ D, then X ∈ D;

(F3) if X ,Y ∈ D, then X ∩Y ∈ D.

Example 2.1.2. Let n ∈ N, Dn = {X ⊆ N : n ∈ X}, then Dn is obviously a filter.

Theorem 2.1.3. Dcofin = {X ⊆ N : N\X is finite} is a filter.

Proof. For proof see Keisler [18].

Definition 2.1.4. [13] A filter E on N is called an ultrafilter if, for all X ⊆ N, either X ∈ E or

N\X ∈ E.

Definition 2.1.5. [18] An ultrafilter D is a nonprincipal ultrafilter if for all n ∈ N, {n} /∈ D.

Theorem 2.1.6. An ultrafilter D is nonprincipal if and only if D does not contain finite sets.

Proof. For proof see Keisler [18].

Following are two well-known theorems about the existence of filter extensions.

Theorem 2.1.7. If D is a filter and X ⊆N, such that neither X , nor N\X is in D, then there is a

filter E ⊇ D, such that X ∈ E.

Theorem 2.1.8. If D is a filter, then there is a filter E ⊇ D, such that, for every X ⊆ N, either

X ∈ E, or N\X ∈ E, i.e., E is an ultrafilter extending D.

Definition 2.1.9. Let M be an infinite set, then MN = {(m0,m1, . . .) : mi ∈M, i ∈ N}.

Definition 2.1.10. Let D be a nonprincipal ultrafilter on N. Define ∼D on MN as follows:

(m0,m1, . . .)∼D (n0,n1, . . .)⇔{i : mi = ni} ∈ D.

Following is an easy theorem about the equivalence relation ∼D on the set MN.

Theorem 2.1.11. The relation ∼D is an equivalence relation on MN.

By Theorem 2.1.3, Theorem 2.1.6 and Theorem 2.1.8 there is a nonprincipal ultrafilter on N.

From now on, we fix a nonprincipal ultrafilter D on N.
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Definition 2.1.12. [18] The set of all equivalence classes (m0,m1, . . .)/D with respect to the

equivalence relation ∼D on MN is called the ultrapower of M modulo D or is called the set of

hyper numbers of M and denoted by ∗M or MN/D or ΠDM. That is, ∗M = {(m0,m1, . . .)/D :

(m0,m1, . . .) ∈MN}.

Definition 2.1.13. [13] For each m ∈M, the hyper number ∗m = (m,m,m, . . .)/D ∈ ∗M called a

standard number.

Embedding of M into ∗M will be satisfied via the function m 7→ ∗m = (m,m,m · · ·)/D, which is

1-1. So M can be identified with the image of this embedding, but for this chapter at least we

continue to use the ∗m notation.

Definition 2.1.14. The set of all equivalence classes (r0,r1, . . .)/D with respect to the equiva-

lence relation ∼D on RN is called the set of hyperreal numbers and denoted by ∗R or RN/D or

ΠDR. That is ∗R= {(r0,r1, . . .)/D : (r0,r1, . . .) ∈ RN}.

Remark 2.1.15. These notions depend on some fixed choice of nonprincipal ultrafilter D.

Definition 2.1.16. We denote the set of hypernatural numbers, the set of hyperinteger numbers,

the set of hyperrational numbers and the set of hypercomplex numbers by ∗N, ∗Z, ∗Q and ∗C,

respectively.

2.2 First-Order Logic and First-Order Language

Our work is within the framework of first-order logic, as mentioned in Kaye’s book [17]. A

first-order logic or predicate logic is a formal system for proofs, extending the propositional

logic (logic of statements that can be true or false) or some values in Boolean algebra with

mathematical objects from a domain or more such as the set of natural numbers and the set of

complex numbers.

Here an important point we should know is that the first-order logic is not only a system for

writing and checking proofs, but also it has a wide use in the theory of algebraic structures. That

is, it has applications in a massive area of mathematical subjects such as theory of definability.

First-order logic covers predicates and quantification. It is distinguished from propositional

logic by its use of quantified variables and equality.
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Definition 2.2.1. [17] A first-order language consists of the following symbols:

(a) the logical symbols ∧,∨,¬,>,⊥, for propositional logic;

(b) a countably infinite set of variables x,y,z, . . .;

(c) the equality and quantifier symbols ‘ = ’,‘∀ ’,‘∃’;

(d) a (possibly empty) set of constant symbols such as 0,1;

(e) a (possibly empty) set of function symbols such as +,×,−;

(f) a (possibly empty) set of relation symbols such as <;

(g) the punctuation symbols such as ‘(’,‘)’ and ‘,’.

If M is a structure for a first-order language say L then ∗M (Definition 2.1.12) can be regarded

as an L structure in a natural way. For example, if M has a binary relation < we can define <

on ∗M as

(m0,m1,m2, . . .)/D < (n0,n1,n2, · · ·)/D⇔{i : mi < ni} ∈ D.

Also if M has a binary function +, then + is defined on ∗M by

(m0,m1,m2, . . .)/D +(n0,n1,n2, · · ·)/D = (m0 +n0,m1 +n1,m2 +n2, · · ·)/D.

Similarly, the functions multiplication and subtraction can be defined on ∗M as well.

Theorem 2.2.2. (Łoś’s Theorem) For every first-order formula θ(x1, . . . ,xn) in the first-order

language L for M, ∗M � θ(a1, . . . ,an)⇔{i ∈N : M � θ(a1i, . . . ,ani)} ∈D, where ∗M is the set

of all hyper numbers of an infinite set M and a j = (a j0,a j1, . . .)/D, for all j = 1,2, · · · ,n.

Corollary 2.2.3. For a sentence σ , ∗M � σ ⇔M � σ .

Corollary 2.2.4. (Transfer principle)[5] If φ is a first-order statement with parameters from

M, then φ holds in M if and only if ∗φ holds in ∗M, where ∗M is the set of all hyper numbers

of an infinite set M, ∗φ(m1,m2, . . . ,mn) = φ(∗m1,
∗m2, . . . ,

∗mn) and ∗mi = (mi,mi, . . .)/D for all

i = 1,2,3, . . . ,n.

Remark 2.2.5. For the rest of this section we look at the set of real numbers R, for the sake of

illustration.
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Example 2.2.6. Since the field of real numbers is the ordered field (R,+, ·,0,1,<) and all

axioms of ordered fields are first-order, then by Łoś’s Theorem all first-order properties are

preserved, which implies that the hyperreal structure ∗(R,+, ·,0,1,<) is an ordered field. On

the other hand, when D is a nonprincipal ultrafilter ∗(R,+, ·,0,1,<) is non Archimedean [35],

showing the “Archimedean property” is not first-order.

Definition 2.2.7. ∗Rfin = {x ∈ ∗R : ∃r,s ∈ R,∗r < x < ∗s}.

Notice that the ordered field (R,+, ·,0,1,<) is embedded within the subfield (∗Rfin,+, ·, 0,1,<)

of the field (∗R,+, ·,0,1,<).

Definition 2.2.8. [35] A real number r ∈ ∗R is called infinitesimal, if |r|< ∗(1/n), for all n∈N.

Example 2.2.9. 0 is the only standard number which is infinitesimal.

Definition 2.2.10. [34] Let r,s∈ ∗R. We say that r is infinitely close to s, if r−s is infinitesimal.

This is denoted by r ≈ s.

Definition 2.2.11. [34] If r ∈ ∗R, the monad of r is the set of all s ∈ ∗R such that s ≈ r. It is

denoted by monad(r).

Theorem 2.2.12. (Standard part principle) A finite x ∈ ∗R is infinitely close to a unique real

number r∈R. That is, the monad of each finite hyperreal number contains a unique real number.

Proof. For proof see Keisler [18].

Definition 2.2.13. [18] Let x ∈ ∗Rfin. Then the standard part of x is denoted by ◦x or st(x) and

defined to be the real number r such that ∗r ≈ x. That is, st(x) = sup{t ∈ R : ∗t < x}.

2.3 Standard and Nonstandard Universe

There is a standard way of extending a first-order structure (M, f , . . . ,R, . . .) into an object that

behaves in many respects like a higher-order structure.

Let S0 = M and for each n ∈ N, Sn+1 = Sn∪̇P(Sn).

For each n ∈ N let rankn(x) denote x ∈ Sn \ Sn−1, and let u ∈ v be the membership relation

relating an object u of rank n to an object v of rank n+1, for some n [20]. Interpret the original

functions and relations f , . . . ,R, . . . of M on objects of rank 0 in the usual way. This gives the
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structure

V (M) = (∪n∈NSn, . . . , rankn, . . . ,∈, f , . . . ,R).

For example, for R = (R,+, ·,0,1,<), V (R) contains an object for the natural numbers, N, of

rank 1. Thus the theory of V (R) is much more expressive than that of R itself.

S = V (M) is called the superstructure over M [20], V (M) is also called the standard universe

and elements of V (M) are called standard [13].

Fix a nonprincipal ultrafilter D. We are going to apply the ultrapower construction of Sec-

tions 2.1 and 2.2 to M, obtaining ∗M, and also to V (M), obtaining ∗V (M).

It is clear that the objects of rank 0 in ∗V (M) are precisely the elements of ∗M. More generally,

an object of rank n+ 1 in ∗V (M) can be regarded (via the ∈ relation in ∗V (M)) as a set of

objects of rank at most n in ∗V (M). It follows that ∗M ⊆ ∗V (M) but it is not quite true that

∗V (M)⊆V (∗M).

An object A = (A0,A1, . . .)/D in ∗V (M) has bounded rank if rankn(A) holds for some n ∈ N.

That is, if

{i : Ai has rank n} ∈ D. (1)

Conversely, suppose that A0,A1, . . . ,An, . . . ∈V (M) are given, and n ∈ N be such that

U = {i : Ai has rank at most n} ∈ D (2)

(in particular, this holds when every Ai has rank at most n).

Then U = U0∪̇U1∪̇ . . . ∪̇Un where Uk = {i : Ai has rank k}. So Uk ∈ D for some k, hence

(A0,A1, . . . ,An, . . .)/D = (B0,B1, . . . ,Bn, . . .)/D, where

Bi =


Ai if Ai has rank k

C otherwise ,
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where C is some arbitrary fixed element of V (M) of rank k.

Thus, if (2) holds then A = (A0,A1, . . . ,An, . . .)/D is equal to the equivalence class of a sequence

of elements Bi of some fixed rank k 6 n.

Definition 2.3.1. [20] We say that A ∈ ∗V (M) has bounded rank if (1) or (2) holds for some

n ∈ N.

∗V (M)bdd is the substructure of ∗V (M) of objects of bounded rank, and by observations already

made ∗V (M)bdd ⊆V (∗M).

In our work, given an infinite first-order structure M, we will usually work with the superstruc-

ture V (M) over M, using usual set theoretic definitions in V (M) to define higher-order concepts

in the first-order language of V (M).

The ultrapower ∗V (M) will be considered, and all work we do will take place in the bounded

part ∗V (M)bdd of it.

We will relate ∗V (M)bdd to V (∗M). In particular, we will need to pay attention to which elements

of V (∗M) are internal, that is, are elements of ∗V (M)bdd [20].

For example, with M =(R,+, ·,0,1,<), the setN is in V (M) and embeds into ∗N=(N,N, . . .)/D

in ∗V (R)bdd. Thus ∗N is internal. However, its subset, the set of standard natural numbers,

N= {∗n : n ∈ N}, is an element of V (∗R) (since N⊆ ∗N⊆ ∗R) but is not internal as shown by

the following.

Proposition 2.3.2. [20](Overspill principle) The set of standard natural numbers (N) is not an

internal subset of ∗N.

Equivalently, an internal subset A of ∗N containing arbitrarily large finite numbers, must A

contain an infinite element. Since if otherwiseN= {n∈ ∗N : ∃a∈ A,n < a} showsN is internal,

contradicting overspill. Conversely, N contains arbitrary large finite numbers but no infinite

element. Hence, is not internal.

Notice also that any set definable (in the first-order logic of ∗V (M)) from an internal set is in

∗V (M)bdd. It follows that if A ∈V (∗M) and N is definable from A using first-order logic then A

is not internal.
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Definition 2.3.3. [20] A set A ∈V (∗M) is said to be external if it is not internal.

Proposition 2.3.4. If A⊆ Z is internal and ∗finite, then A is finite.

Proof. Suppose n ∈ ∗N is the nonstandard natural number such that card A = n.

If n > N then for all k ∈ N, there exists a ∈ A and |a|> k since the set {−k, . . . ,0, . . . ,k−1,k}

is finite of size 2k+1 < n. So by overspill there is ν > N such that |a|> ν for some a ∈ A. In

other words A* Z.

Proposition 2.3.5. If N > N, there exists K ∈ ∗N such that n < K and nK < N for all n ∈ N.

Proof. Suppose N > N. Then for all standard k ∈ N, k2 < N. By overspill there exists K > N

such that K2 < N. So n < K and nK < N for all n ∈ N.

2.4 S-Integrable Functions (SL1)

Throughout this section we will introduce a type of integral on ∗finite sets called the S-integral.

This requires the definition of the measure m of individual elements and internal subsets of

nonstandard finite sets, as given in Cartier and Perrin [2]. Therefore, to understand precisely

what are S- integrable functions exactly, we have to give the following definitions and examples.

Definition 2.4.1. [20] If N ∈ ∗N \N, then the set {0,1,2, . . . ,N} = {k ∈ ∗N : k 6 N} is called

∗finite or hyperfinite.

Example 2.4.2. Let F =
{
b−N

2 c+1,b−N
2 c+2, . . . ,0, . . . ,bN

2 c
}
, where N ∈ ∗N \N. Then F

is a ∗finite set. If N is even, then F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
and if N is odd, then

F =
{
−N−1

2 ,−N−1
2 +1, . . . ,0, . . . , N−1

2

}
.

Definition 2.4.3. [2] Let F be a ∗finite set. An internal function m : F→ ∗R such that m(t)> 0

for all t ∈ F is said to be a measure on F .

Example 2.4.4. If F is a ∗finite set, define m(t) = 1
|F | , for each t ∈ F . This is the usual (or

uniform) measure on F normalised to 1.

Definition 2.4.5. [2] Given a measure m on a ∗finite set F . The measure of an internal set A⊆F

is

m(A) = ∑
t∈A

m(t).
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For the usual measure, m(A) = 0 if and only if A is the empty subset of F .

In practice, we usually work with the uniform measure m(t) = 1
|F | , for each t ∈ F .

Definition 2.4.6. [20] A real number r ∈ ∗R is called finite or limited, if there is a positive

a ∈R such that |r|< a. An element s ∈ ∗R is called infinite or unlimited, if s is not finite (or not

limited).

Definition 2.4.7. [27] A real number r ∈ ∗R is called appreciable, if it is limited and not in-

finitesimal.

Example 2.4.8. 0 is not an appreciable number, since 0 is an infinitesimal.

Definition 2.4.9. [2] An internal or external subset A of a ∗finite set F , is called rare, if for every

appreciable number r > 0, there exists an internal set E of F , such that A⊆ E and m(E)< r.

Example 2.4.10. Let A = {1,2,3, . . . ,n}, where n ∈ N. Then A is an internal subset of F of

Example 2.4.2 and m(A) = n( 1
N )≈ 0. So A is a rare set.

Definition 2.4.11. Let F be a ∗finite set with measure m and f : F → ∗C be a function. Then

the integral of f on F is denoted by
∫

F f dm, and defined by
∫

F f dm = ∑
t∈F

f (t)m(t).

Definition 2.4.12. [2] Let F be a ∗finite set with measure m. An internal function f : F → ∗C

is said to be S-integrable, if the integral
∫

F | f |dm is limited, and
∫

A f dm is infinitesimal for all

internal rare subsets A of F .

Definition 2.4.13. [2] The internal sequence ( fn)06n6ν of functions fn : F → ∗C, converges to

f almost everywhere, if there is a rare subset E of the ∗finite set F , such that for all t ∈ F \E

and all unlimited n6 ν , fn(t)≈ f (t).

Definition 2.4.14. [2] Let P be an internal partition of F . Then each element A in P is called

an atom of P .

Definition 2.4.15. [2] Let P be an internal partition of a ∗finite set F and f : F → ∗C be a

function. The function EP [ f ] : F → ∗C defined by EP [ f ](t) = 1
m(A)

∫
A f dm, where A ∈P is

the unique atom containing t, is called the average of f relative to P . The function EP [ f ] is

constant on each atom A ∈P and defined by EP [ f ](t) = EP [ f ](A).

Proposition 2.4.16. Let F be a ∗finite set. If f : F → ∗C is S-integrable, then EP [ f ] : F → ∗C

is S-integrable, for all internal partitions P of F .
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Proof. For a proof see Cartier and Perrin [2].

Definition 2.4.17. [2] Let F be a ∗finite subset of ∗C. A function d : F×F → ∗R is said to be

a ∗metric on F if it satisfies the following axioms:

(M1) d(r,r) = 0 for all r ∈ F ;

(M2) d(r,s) = d(s,r)> 0 for all r 6= s, where r,s ∈ F ;

(M3) d(r, t)6 d(r,s)+d(s, t) for all r,s, t ∈ F .

The pair (F,d) is said to be a ∗metric space if d is a ∗metric function on F .

Definition 2.4.18. [2] Let A be a set in a ∗finite metric space (F,d). The boundary of a set A is

denoted by ∂F(A) and defined by

∂F(A) = {t ∈ F : monad(t)∩A 6= /0∧monad(t)∩ (F \A) 6= /0}.

Definition 2.4.19. [2] A set A in a ∗finite metric space (F,d) is called quadrable, if it is internal

and ∂F(A) is rare.

2.5 S-Continuity and L1-Integrability on ∗Finite Sets

Definition 2.5.1. [2] Given a ∗finite set F , equipped with a ∗metric d, an internal function

f : F → ∗C is said to be S-continuous on a subset A of F , if for all r,s ∈ A, d(r,s) ≈ 0 implies

f (r)≈ f (s).

Definition 2.5.2. [2] Let F be a ∗finite set. An internal function f : F→ ∗C is said to be almost

S-continuous, if there exists a rare subset E of F such that f is S-continuous on F \E.

Definition 2.5.3. [2] Given a ∗finite set F with ∗metric d and uniform measure m, an internal

function f : F → ∗C is said to be Lebesgue integrable or L-integrable if it is S-integrable and

almost S-continuous on F .

Therefore, for the given ∗finite set F with ∗metric d, we may define the space L1(F) as the space

of “L-integrable” functions f : F → ∗C.

Definition 2.5.4. Given a ∗finite set F , L1(F) is the set of all L-integrable internal functions
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f : F → ∗C. This is endowed with extra structure as follows. L1(F) is a vector space over

the field of complex numbers C, with componentwise vector addition and scalar multiplication

defined as

( f +g)(ω) = f (ω)+g(ω),∀ f ,g ∈ L1(F) and (λ f )(ω) = λ ( f (ω)),∀ f ∈ L1(F),∀λ ∈ C.

We see that the vector space axioms are easily verified. Also, if f and g are L-integrable

functions, then f +g, and λ f are L-integrable provided that λ ∈ C is limited.

Note 2.5.5. Notice that, L1(F) is not a vector space over the field of hypercomplex numbers ∗C.

For example, if f (t) = 1, for all t ∈ F and λ = N ∈ ∗C\C, then λ f (t) = N is not L-integrable.

Definition 2.5.6. Given a ∗finite set F . Let f ∈ L1(F). Then the L1 norm of f is defined by

‖ f‖1 =
∫

F | f |dm.

Note 2.5.7. Given a ∗finite set F , notice that, in L1(F), we get

‖ f‖1 =
∫

F
| f |dm = ∑

t∈F
| f (t)|m(t) =

1
|F | ∑t∈F

| f (t)|.

Definition 2.5.8. [2] The internal sequence ( fn)06n6ν L1-converges to f if ‖ fn− f‖1 ≈ 0 for

all unlimited natural numbers n6 ν .

Definition 2.5.9. [2] Let (F,d) be a ∗metric space. The diameter of an internal subset A of F is

dia(A) = max{d(x,y) : x,y ∈ A}.

Definition 2.5.10. [2] An internal partition P of a ∗finite set F is called infinitely fine if each

of its atoms has an infinitesimal diameter.

Definition 2.5.11. [2] A family of internal partitions (Pn)06n6ν ,(ν > N) of a ∗finite set F is

called a dissection of F if satisfies the following properties:

(a) n6 m6 ν ⇒ Pm is finer than Pn;

(b) n is limited⇒ Pn is composed of a limited number of quadrable sets;

(c) n is unlimited⇒ Pn is infinitely fine.

Proposition 2.5.12. A dissection (Pn)06n6ν ,(ν > N) of a ∗finite set F exists.
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Proof. For a proof see Cartier and Perrin [2].

Theorem 2.5.13. Given a ∗finite set F and f : F → ∗C is an S-integrable function, then the

following statements are equivalent:

(a) f is L-integrable;

(b) for all infinitely fine partitions P , the function f −EP [ f ]≈ 0 almost everywhere;

(c) for all infinitely fine partitions P , ‖ f −EP [ f ]‖1 ≈ 0.

Proof. For a proof see Cartier and Perrin [2].

2.6 Loeb Measure

The Loeb measure is a type of measure introduced by Loeb in 1973 [5] using nonstandard

analysis. We follow the approach given by Lindstrøm [20]. Consider a ∗finite internal set F

with the uniform normalised measure (and a ∗metric d). To understand the Loeb measure and

its properties we have to consider the following.

Definition 2.6.1. Let A be the set of all internal subsets of F . Then the internal finitely additive

measure µ : A → ∗R is defined by µ(A) = |A|
|F | , for all internal subsets A of F .

Example 2.6.2. µ(F) = 1. Thus, µ(A) is finite, for every internal subset A of F .

We can turn the internal finitely additive measure µ : A → ∗R into a finitely additive, real-

valued measure ◦µ : A →R by taking the standard part ◦µ(A) = st(µ(A)) for all internal subset

A ∈A .

Definition 2.6.3. [20] A subset B of F is µ-approximable if for each real ε > 0, there are sets

A,C ∈A such that A⊆ B⊆C and µ(C)−µ(A)< ε .

Definition 2.6.4. [20] The Loeb algebra L(A ) is defined to be the set of all subsets B of F such

that B is µ-approximable.

Definition 2.6.5. [20] The Loeb measure of µ is the map L(µ) : L(A )→ R defined by

L(µ)(B) = inf{◦µ(C) : C ∈A ,C ⊇ B}.
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Notice that the Loeb measure L(µ) is an extension of ◦µ to a σ -additive measure.

Lemma 2.6.6. L(A ) is a σ -algebra extending A .

Proof. For a proof see Lindstrøm [20].

Definition 2.6.7. [20] A measure µ on a σ -algebra A is called complete, if for all B ∈ A

whenever A⊂ B and µ(B) = 0, then A ∈A and µ(A) = 0.

Lemma 2.6.8. L(µ) is a complete measure on L(A ).

Proof. For a proof see Lindstrøm [20].

2.7 Measurable Functions and Integrals

Our aim in this section is to discuss the Lebesgue measure on subsets of T = [−π,π) and the

Loeb measure on subsets of a ∗finite set F , and then measurable and integrable functions on

these sets, in order to study the relationship between functions in the standard space L1(T) and

functions in the nonstandard space L1(F) (as given later in Theorem 6.5.1). Throughout this

section, fix a ∗finite set F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 } of order N > N and T = [−π,π).

Additional material here is based on Lindstrøm [20].

Definition 2.7.1. The function stN : F → [−π,π] is defined by stN(t) = st(2πt
N ) is said to be the

“normalised” standard part map.

Definition 2.7.2. Let A be the set of all internal subsets of F . The normalised internal finitely

additive measure µ : A → ∗R is defined by µ(A) = 2π|A|
N , for all internal subsets A of F .

Definition 2.7.3. [7] Let E ⊆ R. The Lebesgue outer measure λ ∗(E) is defined by

λ
∗(E) = inf{

∞

∑
k=0
|Ik| : (Ik)k∈N is a sequence of half-open intervals with E ⊆

⋃
k∈N

Ik}.

The Lebesgue measure of E is defined by its Lebesgue outer measure. That is, λ (E) = λ ∗(E),

if for every A⊆ R, λ ∗(A) = λ ∗(A∩E)+λ ∗(A∩Ec), where Ec = R\E.

Note 2.7.4. A subset Y ⊆ R is Lebesgue measurable if and only if st−1
N Y ∈ L(A ). In addition,

if st−1
N Y ∈ L(A ), then L(µ)(st−1

N Y ) = λ (Y ). See Lindstrøm [20, page33].
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Definition 2.7.5. [20] A function h : F→ ∗R is A -measurable if for every closed set [u,v]⊂ ∗R,

h−1([u,v]) = {ω ∈ F : h(ω) ∈ [u,v]} ∈A .

Note 2.7.6. Every internal function h : F → ∗R is A -measurable.

Definition 2.7.7. A function h : F → ∗C is A -measurable if and only if Re h and Im h are A

-measurable as real-valued functions, where Re h(ω) = Re(h(ω)) and Im h(ω) = Im(h(ω)).

Definition 2.7.8. If h : F → ∗C is an internal function, then ◦h : F → C is defined by ◦h(ω) =

st(h(ω)) provided that Re(h(ω)) and Im(h(ω)) are finite in ∗R, where st(a+ ib) = st(a)+ ist(b)

for a,b ∈ ∗Rfin.

Note 2.7.9. If h : F → ∗C is A -measurable, then ◦h : F → C is L(A )-measurable.

Definition 2.7.10. For h : F → ∗C internal, given A⊆ F , we define
∫

A hdµ = 1
|F | ∑

ω∈A
h(ω).

Lemma 2.7.11. For internal A⊆ F , if h : F → ∗C is internal and h(ω)≈ 0 for all ω ∈ A, then∫
A |h|dµ ≈ 0.

Proof. For a proof see Lak [19].

Definition 2.7.12. [20] An internal function h : F → ∗C is called finite if µ({t : h(t) 6= 0}) and

max
t∈F
|h(t)| are both limited.

Lemma 2.7.13. If h : F → ∗C is finite, then st(
∫

A hdµ) =
∫

A
◦hdL(µ), for all internal A⊆ F .

Proof. For a proof see Lindstrøm [20].

Theorem 2.7.14. If h : F → ∗C is S-integrable, then st(
∫

A hdµ) =
∫

A
◦hdL(µ), for all internal

subset A in F .

Proof. For a proof see Lindstrøm [20].

Definition 2.7.15. [20] Let h : F→C be an L(A )-measurable function. Then a lifting of h is an

internal, A -measurable function H : F→ ∗C such that ◦H(ω)= h(ω) L(µ)-almost everywhere.

Theorem 2.7.16. If µ(F) is finite, then all L(A )-measurable functions have lifting.

Proof. For a proof see Lindstrøm [20].
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Notice that Theorem 2.7.16 can be extended to give the following theorem.

Theorem 2.7.17. If h : F → C is L(A )-measurable and has 1-norm ‖ · ‖1, then h has a lifting

H : F → ∗C, which is S-integrable.

Proof. For a proof see Lak [19].

2.8 Some Applications of Saturation

Theorem 2.8.1. (ℵ1-saturation) If (Ai)i∈N is a sequence of internal sets such that ∩i<IAi 6= /0

for all I ∈ N then ∩i∈NAi 6= /0.

Proof. For a proof see Lindstrøm [20].

Following are some application examples of saturation.

Example 2.8.2. Let A0,A1, . . . ,Ai, . . . (i ∈ N) be a sequence of internal sets and φi(x,A) be a

sequence of formulas of the language of V (M) with parameters A from {A0,A1, . . . ,Ai, . . .}.

Suppose

∃x
∧
i<I

φi(x,A) (3)

for each I ∈ N. Then there is an internal X satisfying φi(X ,A) for all i ∈ N. To explain this, let

BI = {x :
∧
i<I

φi(x,A)}.

Then BI is internal for each I and nonempty (by 3). So by ℵ1-saturation there is some internal

X ∈ ∩I∈NBI .

Definition 2.8.3. [20] M is κ-saturated if whenever |A| < κ and Ψ is a family of formulas

ψ(x,a), a ∈ A, that is, finitely satisfied, then Ψ is satisfied.

Example 2.8.4. ∗V (M) is ℵ1-saturated.

Remark 2.8.5. For each cardinality κ , by replacing the indexing set N with some other set I

and using an appropriate ultrafilter D on I we can arrange that ∗V (M) is κ-saturated.
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Example 2.8.6. The function st : ∗Qfin→ R defined by

st(x) = ◦x

is surjective, where ∗Qfin is the set of nonstandard finite rational numbers.

Given α ∈ R, there exists a rational sequence (an) such that (an) converges to α and without

loss of generality we may assume |an−α|< 1/n for all n ∈ N.

So {an : n ∈ N} ⊆ ∗Qfin. We have to show that there exists a sequence b = (b0,b1, . . . ,bν) in

∗Qfin, where ν > N such that b0 = a0,b1 = a1, . . . ,bi = ai for all i ∈ N.

Let φi(b,a0,a1, . . . ,ai) be the statement “b is a sequence (b0,b1, . . . ,bν) where ν > i and b j = a j

for all j 6 i”. Then it is clear that this set of statements is finitely satisfied. So by saturation

there is some b = (b0,b1, . . . ,bν) satisfying every φi.

Then for all n ∈ N, bn ∈ ∗Qfin and |bn−α| < 1/n. So by overspill there is m > N in ∗N with

bm ∈ ∗Qfin and |bm−α|< 1/m and α = st(bm) as required.

Example 2.8.7. The function φ : CpN → Zp defined by

φ(x0 + x1 p+ x2 p2 + . . .+ xN−1 pN−1) = x0 + x1 p+ x2 p2 + . . . .

is surjective, where CpN = {x0 + x1 p+ . . .+ xN−1 pN−1 : 0 6 xi < p for all i = 1,2, . . . ,N− 1},

p is standard prime, N > N and Zp is the set of p-adic integers.

Given z = ∑
∞
k=0 zk pk in Zp, we have to show that there is w = ∑

N−1
k=0 wk pk in CpN such that

φ(w) = z.

Let ψi(w,w0,w1, . . . ,wi) be the statement “w ≡ w0 +w1 p+ . . .+wi pi mod pi+1”. Then for all

I ∈ N we have

∃w
∧
i<I

ψi(w,w0,w1, . . . ,wi).

Therefore, we can take w = w0 +w1 p+ . . .+wI pI . So by saturation there is w with

w≡ w0 +w1 p+ . . .+wi pi mod pi+1, for all i.

28



Example 2.8.8. Assume (an)n∈N is a standard Cauchy sequence of rational numbers.

By saturation there is a : ∗N→ ∗Q such that a(n) = an for all n ∈ N.

Since (an)n∈N is a Cauchy sequence,

∀k∃Nk∀i, j ∈ N(i, j > Nk⇒ |ai−a j|< 1/k).

By saturation there is N : ∗N→ ∗N such that N(k) = Nk for all k ∈ N.

For all n ∈ N, we have the single sentence

∀k < n∀i, j < n(i, j > N(k)⇒ |a(i)−a( j)|< 1/k).

So there is ν > N such that

∀k < ν∀i, j < ν(i, j > N(k)⇒ |a(i)−a( j)|< 1/k).

Let k = 2, i = Nk = N(k) and b = aν−1 then |aν−1− ai| < 1/2. So, ai− 1/2 < b < ai + 1/2.

Therefore, b ∈ ∗Qfin.

Now assume `= st(b). Given k, let N = Nk ∈ N. So, for i> N,

|ai− `| ≈ |ai−b|< 1/k.

So |ai− `|6 1/k. Therefore, ai→ ` as i→ ∞.
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Chapter 3

Abstract Harmonic Analysis

The subject of harmonic analysis describes complex-valued functions whose domain is an

abelian group. Such functions are described by their Fourier series.

Our purpose in this chapter is to give the basic definitions of the classical theory in the cases

of a finite group and a locally compact group. The theory for finite groups will be used in the

nonstandard context later.

We divide this chapter into three main sections: abstract harmonic analysis on finite groups;

abstract harmonic analysis on topological groups; and Fourier coefficients and Fourier series.

3.1 Abstract Harmonic Analysis on Finite Groups

Let G be a finite abelian group, written additively. Let N ∈ N be the order of G. Such G has an

obvious counting measure, µ : P(G)→ N defined by µ(A) = card A for every A ⊆ G, where

P(G) is the power set of G, which is a σ -algebra. So all subsets of G are measurable and of

course µ is additive, that is, for any family {Ai} of disjoint subsets of G, µ(
⋃

i Ai) = ∑i µ(Ai).

Alternatively, we can normalise the measure µ as µ(A) = card A/card G or µ(A) = card A/k

for any other positive k ∈ N.

We will be interested in the C-vector space VG of all complex-valued functions defined on

domain G.

Addition and scalar multiplication on VG are defined as:
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(a) ( f +g)(x) = f (x)+g(x) for all f ,g ∈VG;

(b) λ ( f (x)) = (λ f )(x) for all f ∈VG and all λ ∈ C.

The group G acts on the vector space VG. This action is defined by setting y · f = f y where

f y(x) = f (x− y), and f , f y ∈VG.

The vector space VG has extra structure given by an inner product.

Definition 3.1.1. [11] Given functions f and g in VG, we may form their inner product with

normalisation (or other possible normalisation) as

〈 f ,g〉= 1
|G| ∑t∈G

f (t)g(t),

where f (t) is the complex conjugate of f (t).

The vector space VG has dimension N. Rather than taking the ‘usual’ basis vectors vg with value

vg(h) = δgh (where δgh is the Kronecker delta) it is better to reflect the group structure by taking

as a basis a complete set of 1-dimensional representations of G.

Definition 3.1.2. [15] A function f : G→C× = {z ∈C : z 6= 0} is a 1-dimensional representa-

tion of G if the following holds:

(a) f (x+ y) = f (x) f (y) for all x,y ∈ G;

(b) f (0) = 1.

Theorem 3.1.3. [15] For an abelian group G of order N there is a basis of VG consisting of 1-

dimensional representations of G. These basis vectors are orthogonal with respect to the inner

product 〈x,y〉 of Definition 3.1.1.

It follows easily that a 1-dimensional representation of a finite group G maps into TC. The dual

group G∗ of G is defined to be the additive group of 1-dimensional representations f : G→ TC

with pointwise multiplication of representations. That is, G∗ is a subgroup of VG.

Fix the orthonormal basis {e0, . . .eN−1} of VG, where each e j is a 1-dimensional representation
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of G. Then given f ∈VG we can write f as linear combination of basis elements as

f =
N−1

∑
j=0
〈e j, f 〉e j. (1)

This expression describes f in terms of its Fourier coefficients,

f̂ j = 〈e j, f 〉= 1
|G| ∑t∈G

e j(t) f (t). (2)

The process of obtaining the Fourier coefficients f̂ j from f is the operation of discrete Fourier

transform (DFT) and the recovery of f from the collection of its Fourier coefficients as given in

Equation (1) is the inverse DFT operation [36].

Example 3.1.4. Let G =CN be a cyclic group of order N, and e j(g) = e2πi jg/N . Given f : G→

C, its DFT is

f̂ j = 〈e j, f 〉= 1
N ∑

g∈G
e−2πi jg/N f (g).

f is recovered from DFT by the inverse operation using Kronecker delta ( ∑
n∈G

e2πikn/N = Nδk0)

f =
N−1

∑
n=0
〈en, f 〉en =

N−1

∑
n=0

f̂nen.

One of the most important concepts of Fourier analysis is convolution. Let f ,g ∈ VG. The

convolution of f and g is denoted by f ∗g and defined by

( f ∗g)(x) =
1
|G| ∑y∈G

f (y)gy(x),

for every x ∈ G, where gy = y ·g is obtained from the group action defined above.

The convolution on VG has the following properties:

(a) commutativity f ∗g = g∗ f ;

(b) associativity f ∗ (g∗h) = ( f ∗g)∗h;

(c) linearity f ∗ (g+h) = ( f ∗g)+( f ∗h) and λ ( f ∗g) = (λ f )∗g = f ∗ (λg) for all λ ∈ C.
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We prove the associative property of the convolution and the other properties are easy to check.

Theorem 3.1.5. (( f ∗g)∗h)(x) = ( f ∗ (g∗h))(x) for all f ,g,h ∈VG and all x ∈ G.

Proof. By applying a change of variables we obtain

(( f ∗g)∗h)(x) =
1
|G| ∑y∈G

( f ∗g)(y)hy(x)

=
1
|G| ∑y∈G

( 1
|G| ∑z∈G

f (z)g(y− z)
)

h(x− y)

=
1
|G| ∑z∈G

f (z)
( 1
|G| ∑

w∈G
g(w)hw(x− z)

)
= ( f ∗ (g∗h))(x).

3.2 Abstract Harmonic Analysis on Topological Groups

In this section we start looking at classical harmonic analysis. The starting point is a topological

abelian group G, written additively, and we will restrict attention throughout to the case where

the topology on G is Hausdorff and locally compact. In many cases, this topology will be given

by an invariant metric.

The vector space VG of the last section is the space of all functions G→ C. This space will

typically have infinite dimension, and for many reasons it is too ‘large’ for analysis, and we

need to consider more amenable subspaces of it. For example,

V cts
G = { f : G→ C : f is continuous}.

It is easy to check that V cts
G is indeed a subspace of VG, that is, it is closed under addition and

scalar multiplication.

In fact, the subspace V cts
G has extra useful structure which is important: it is also closed under

the G-action defined in the previous section g · f = f g, see Katznelson [16]. This groups action

remains important throughout, and we will need to ensure that the subspaces of VG we look at

are closed under this action.
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For more general function spaces we need to introduce the idea of measure.

Definition 3.2.1. [16] A Haar measure µ on a locally compact abelian group G is a positive

regular Borel measure having the following properties:

(a) µ(K)< ∞ for every compact set K ⊆ G;

(b) µ(g+A)= µ(A) for all g∈G and all measurable sets A⊆G. Here g+A= {g+a : a∈A}.

The property (b) of Definition 3.2.1 is called the invariant property of a Haar measure µ .

Theorem 3.2.2. [16] Any locally compact group G has a Haar measure. This measure is unique

up to multiplication by a positive constant.

Example 3.2.3. If G is the additive real group R. We can take the Haar measure µ to be any

scalar multiple of Lebesgue measure.

Example 3.2.4. Let G be the additive complex group C. Its Haar measure µ is the usual

Lebesgue measure in the Argand diagram.

Example 3.2.5. Let G be the circle group T= [0,2π) with addition operation modulo 2π . The

usual Lebesgue measure µ can be taken on T. So according to Definition 3.2.1, this measure is

the Haar measure, up to a multiplicative positive constant.

Example 3.2.6. Let G be the group of integers Z. We take the counting measure µ assigning

a mass of 1 to each point on Z. It is G-invariant. By Definition 3.2.1, up to a multiplicative

positive constant this is the Haar measure.

Example 3.2.7. Let G be the group of p-adic integers Zp. Zp is unlike Z; it is compact. Take

the natural probability measure µ on the smallest σ -algebra B of compact subsets of Zp such

that µ(Zp) = 1. Therefore it has a finite measure which is G-invariant. The conditions of

Definition 3.2.1 hold. Hence, this measure is Haar.

So we can fix a Haar measure µ on our group G. This gives rise to an integral for functions

f : G→ C, ∫
G

f (t)dµ,

which is the Lebesgue integral of f with respect to the Haar measure dµ on G [16].

Definition 3.2.8. [32] A function f : G→ C is integrable (L1), if
∫

G f (t)dµ is finite and for

every measurable subset A⊆ C, f−1(A) is a measurable subset of G.
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It is clear that the set of L1 functions from G toC is closed under vector addition and scalar mul-

tiplication. It is also closed under the group action. As the convolution of any two L1 functions

from G to C is an L1 function from G to C as well, this is also closed under convolution.

Definition 3.2.9. [16] V L1

G is defined to be the space of all equivalence classes with respect to

the equivalence relation ∼ defined by f ∼ g if and only if f = g almost everywhere. The set of

representatives of these equivalence classes regarded as the set of L1 functions in VG, which is

a subspace of VG.

Observe also that we can regard V cts
G is a subspace of V L1

G . This follows from the fact that every

continuous complex-valued function on G is also an L1 function on G.

Next, we use Haar measure to define an inner product of V L1

G .

Definition 3.2.10. For f ,g ∈V L1

G define

〈 f ,g〉=
∫

G
f (t)g(t)dµ.

As before, a normalisation factor may be applied here. In the case where G is compact, µ(G)

exists and is finite from the definition of Haar measure and this inner product could be naturally

normalised as

〈 f ,g〉= 1
µ(G)

∫
G

f (t)g(t)dµ.

Proposition 3.2.11. For f ,g ∈V L1

G , 〈 f ,g〉 is finite and 〈,〉 is an inner product on V L1

G .

Example 3.2.12. Let G = T. Then V L1

G is the set of L1 functions on T.

For j ∈ Z, let e j(t) = ei jt . Then 〈e j,ek〉= δ jk where δ jk is the Kronecker delta. Given f ∈V L1

G ,

its Fourier coefficients are defined analogously to the discrete case (2), by

f̂ j = 〈e j, f 〉=
∫

G
e j(t) f (t)dµ

and in the case, where G is compact,

f̂ j = 〈e j, f 〉= 1
µ(G)

∫
G

e j(t) f (t)dµ.
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One of the first questions in Fourier analysis is whether the corresponding inverse formula

f (t) = ∑
j

f̂ je j(t) (3)

is true. Note that the series in the last expression has infinitely many terms.

Example 3.2.13. Continuing on from the last example, one easy case where the inverse formula

is correct is that of exponential polynomials. For G = T let V expp
T be the subspace of V L1

T gener-

ated by the functions e j for j ∈Z. An element of V expp
T is called an exponential polynomial. The

space V expp
T is a vector subspace of V L1

T which is closed under the group action. For f ∈V expp
T ,

f can be recovered from its Fourier coefficients by Equation (3). [16]

Definition 3.2.14. Since G is a topological group and C has its usual topology, there is a topol-

ogy on V cts
G . We take the compact-open topology on V cts

G , i.e. the topology having the family of

sets O(K,U) = {γ ∈CG : γ(K)⊆U} as the base of neighbourhoods of 0, where K is a compact

subset of G and U is an open subset of C.

In the case of topological groups, we will be interested in continuous 1-dimensional represen-

tations f : G→ TC. The standard terminology in this context is to call these characters.

Note 3.2.15. The dual group G∗ of G is the group of (continuous) characters f : G→ TC. This

is topologised using the compact-open topology as before.

Example 3.2.16. T∗ ∼= Z, see Morris [23].

The importance of the dual group is that, for general Fourier Analysis over G, we wish to find

a ‘basis’ of our vector space (V L1

G , perhaps) from elements of G∗, in analogy with the finite

case, where we could take a basis of 1-dimensional representations. Of course, in the infinite

dimensional case, we might expect the Fourier series to have infinitely many terms so this

‘basis’ is not a basis in the pure sense of vector spaces but has an analytic meaning involving

convergence of series.

Notice that V expp
T is the vector space spanned by T∗. That is, for general G is span(G∗). Thus

each vector is written as a finite linear combination ∑
k−1
j=0 λ jχ j where λ j ∈C and χ j is a character

in G∗.
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The convolution of two functions f and g in VG is defined to be the integral which expresses the

amount of the area overlap between f and g by shifting g over f .

Definition 3.2.17. The convolution of functions f and g in VG is the function f ∗g ∈ VG given

by

( f ∗g)(t) =
∫

τ∈G
f (τ)gτ(t)dµ.

If G is compact , then µ(G) exists and finite. This convolution could be naturally normalised as

follows

( f ∗g)(t) =
1

µ(G)

∫
τ∈G

f (τ)gτ(t)dµ.

Also the convolution on VG, where G is a locally compact abelian group, has the following

properties: commutativity; associativity; and linearity, as we mentioned in the last section.

For the proof of commutativity and associativity properties see Katznelson [16], while the proof

of linearity follow readily from the basic properties of integration.

In addition, it is easy to check that the space V L1

G is closed under convolution.

3.3 Fourier Coefficients and Fourier Series

The space L1(T) is defined to be the space of all equivalence classes with respect to the relation

∼ ( f ∼ g if and only if f = g almost everywhere) of complex-valued Haar integrable functions

on T. Given a function f ∈ L1(T), the Fourier coefficients, the Fourier series, the `th partial

sum of the Fourier series and the average of the first n+1 partial sums of the Fourier series are

defined by Katznelson [16], as follows:

Definition 3.3.1. [16] Let f ∈ L1(T). Then the nth Fourier coefficient of f is denoted by f̂ (n),

and defined as

f̂ (n) =
1

2π

∫
T

f (t)e−intdt, (4)

where n ∈ Z.
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Definition 3.3.2. The Fourier series S[ f ] of a function f ∈ L1(T) is the trigonometric series

S[ f ] =
∞

∑
n=−∞

f̂ (n)eint (5)

Definition 3.3.3. [37] The `th partial sum of the Fourier series of a function f ∈ L1(T) is

denoted by S`( f , t) and defined by

S`( f , t) =
`

∑
k=−`

f̂ (k)eikt . (6)

Definition 3.3.4. [37] The nth Cesàro mean (or the average of the first n+1) of the partial sums

of the Fourier series of a function f ∈ L1(T), is denoted by σn( f , t) and defined by

σn( f , t) =
1

n+1

n

∑
`=0

S`( f , t). (7)

The idea is that, under “smoothness” conditions on f , we expect the series (7) in some way

approximates the original function f . If we regard the integral in (4) as a limit of summation, the

equation (4) formally is very similar to the equation (2) of the definition of the discrete Fourier

transformation. The connection is even closer due to the way we chose the coefficients. (This

was the reason for taking as data sequences indexed by negative as well as positive indices).

We shall see later, using NSA, that the connection between these two is exact when N is a

nonstandard ∗finite integer.
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Chapter 4

Nonstandard Representations of Metric

Groups

In this chapter we will look at ways in which a topological group G (usually an abelian group

with invariant metric) can be represented and studied using a nonstandard ∗finite group F with

a metric on F and a normal subgroup N of F .

The general set-up starts with the definition of a nice subset N of F named monotonically

definable set which contributes to the metrisation of nonstandard finite groups F . The counting

measure of such groups and quotient groups F/N is defined and it yields some useful results.

We define the notion of locally embeddable into finite metric groups (LEFM) and give results

showing that a large number of topological groups can be represented in this way. In the final

part of this chapter, we generalise the notion of LEFM to locally embeddable into (uniform)

discrete metric groups (LEDM).

4.1 A Metrisation Theorem

The initial object of study is F , a ∗finite group in the nonstandard universe. (This F is of course

internal and well described by nonstandard means.) In the most general set-up, we also have a

fixed normal subgroup N C F , where N need not be internal.
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Definition 4.1.1. We define the standard part map

stN : F → F/N

to be the canonical natural quotient map.

We shall look at conditions on F and N making F/N into a topological group or a metric

group, and conditions on the definability of N .

We start with conditions relating to the way N is defined. Of these, the most important by far

seems to be the following.

Definition 4.1.2. N is monotonically N-downwards definable if there is a monotonic family of

internal sets

N0 ⊇N1 ⊇N2 ⊇ ·· · ⊇Ni ⊇ ·· · (i ∈ N)

such that N =
⋂

i∈NNi.

We will use ‘monotonically definable’ as an abbreviation for ‘monotonically N-downwards

definable’ through this chapter. Of course, by saturation and overspill, if N is monotonically

definable then there is a monotonic family (Ni)i<ν such that N =
⋂

i∈NNi =
⋃

j>NN j.

Example 4.1.3. Given an F-invariant ∗metric d on F , one can define a subgroup Nd by

Nd = {x ∈ F : d(1,x)≈ 0}.

In this case Nd is monotonically definable. Indeed, define

Ni = {x ∈ F : d(1,x)< 2−i}

then Ni are internal sets for all i ∈ N. Furthermore,

N0 ⊇N1 ⊇N2 ⊇ ·· · ⊇Ni ⊇ ·· · (i ∈ N)

and Nd =
⋂

i∈NNi.
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Proposition 4.1.4. If d is a left or right F-invariant ∗metric then Nd is a subgroup of F . If d is

two-sided F-invariant then Nd C F .

Proof. Assume d is left F-invariant ∗metric. Then Nd 6= /0, since 1 ∈Nd . Assume x,y ∈Nd .

Then d(1,xy−1) = d(y−1,x−1)6 d(y−1,1)+d(1,x−1) = d(1,y)+d(x,1)≈ 0. Therefore, Nd 6

F . Similarly, if d is a right F-invariant ∗metric then Nd 6 F . Assume h ∈N and g ∈ F . Then

d(1,ghg−1) = d(g−1g,h) = d(1,h)≈ 0. Therefore, ghg−1 ∈Nd . Hence Nd C F .

Proposition 4.1.5. If Ni is defined as above, where
⋂

i∈NNi = Nd and d is a left-invariant (or

right-invariant) metric then N 2
i+1 ⊆Ni for each i. Also, N −1

i =Ni for each i. If d is two-sided

invariant then we also have N x
i = Ni for all i and all x ∈ F .

Lemma 4.1.6. If N C F is monotonically definable, there is ν > N and an internal family of

∗finite subsets Ni of F with Ni ⊇Ni+1 for 0≤ i < ν , and
⋂

i∈NNi = N , satisfying:

(a) N0 = F and Nν = {1};

(b) N −1
i = Ni for all 0≤ i≤ ν ;

(c) N x
i = Ni for all 0 < i≤ ν and all x ∈ F .

Proof. By saturation, there is an internal sequence N0 ⊇N1 ⊇N2 ⊇ ·· · ⊇Nν extending this,

where ν >N. It follows that Nα ⊆N for all α >N. The family Ni with N =
⋂

Ni is internal

for i 6 ν for some nonstandard ν , and in particular, each Ni is ∗finite. By renumbering and

replacing N0 by F and Nν by {1} if necessary, we can arrange that (a) holds.

To arrange for (b), we can use an internal induction to define N ′
ν = {1} and

N ′
ν−(i+1) = Nν−(i+1)∪N −1

ν−(i+1)∪N ′
ν−i.

Then clearly N ′
i−1 ⊇Ni−1 ∪N ′

i for all i. It follows by an internal induction that N ′
i ⊇N ′

j

for all i ≤ j and from this (using overspill) that
⋂

i∈NN ′
i =

⋃
j>NN ′

j . By an easy internal

induction each N ′
i is closed under inverses. Moreover, given 1 6= g ∈N ′

n for some n >N there

is some i with g ∈ N ′
ν−(i+1) \N ′

ν−i and ν − (i+ 1) > n, so g ∈ Nν−(i+1) ∪N −1
ν−(i+1) ⊆ N ,

hence
⋂

n∈NN ′
n =

⋃
n>NN ′

n = N .
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The other is similar. Given an internal family N ′
n satisfying the required properties up to and

including (b) define N ′′
ν = {1} and

N ′′
ν−(i+1) =

⋃
x∈F

(N ′
ν−(i+1))

x∪N ′′
ν−i

and observe this is internal ∗finite (since F is), monotonic, and has N ′′
i ⊇ N ′

i for all i. By

another internal induction (N ′′
i )−1 = N ′′

i for all i. If 1 6= g ∈N ′′
n for some n > N then there

is i (with ν− i > n) such that g is in (N ′
ν−(i+1))

x for some x, so g ∈N as required.

Proposition 4.1.7. If N C F is monotonically definable, then there is a ν > N and an internal

family of ∗finite subsets Ni of F with Ni ⊇Ni+1 for 0≤ i < ν , and
⋂

i∈NNi = N , satisfying

the properties of Lemma 4.1.6 and also

N 2
i ⊆Ni−1

for all 0 < i≤ ν .

Proof. We take a monotonic decreasing family of subsets Ni, as given by Lemma 4.1.6, so

that
⋂

i∈NNi = N and each Ni is closed under inverses and conjugation, with N0 = F and

Nν = {1}, and clearly we can assume that this sequence is proper, i.e. Nα properly contains

Nα+1 for each α < ν . We define inductively a subsequence Nαi of these. If Nαi is defined, let

Nαi+1 be the set Nβ with largest index β such that Nβ ⊇N 2
αi−1. To see that there is always

such β , observe that N0 = F will work. (Note that the ‘− 1’ was introduced here to guard

against the case when Nαi is actually a subgroup of F and to ensure αi+1 < αi.)

More interestingly, if αi > N then Nαi−1 ⊆N C F so

∀g,h ∈Nαi, gh ∈Nn

holds for all n ∈ N since N ⊆Nn and N is a group. Therefore, by overspill, there is β > N

such that ∀g,h ∈Nαi, gh ∈Nβ and hence αi > N implies αi+1 > N. Since the Nαs are closed

under conjugation and inverses we may take F = N ′
0 ⊇N ′

1 ⊇ ·· · ⊇N ′
µ = {1} where N ′

i =
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Nαµ−i and µ is the length of the subsequence Nαi . We have seen that if αi > N then αi+1 > N

so that there are nonstandard many sets N ′
j in the subsequence containing Nαi , and it follows

that
⋂

j>NN j =
⋂

k>NN ′
k , as required.

The next result shows that the existence of a monotonically definable N C F gives rise to an

internal ∗metric d on F for which N = Nd . Before that, we will prove the following lemma,

which we use implicitly in the proof of the next result (metrisation theorem).

Lemma 4.1.8 (Chaining). Assume F = N0 ⊇N1 ⊇ ·· · ⊇Nν = {1}, where each Ni is closed

under conjugation and inverses, N 2
i ⊆Ni−1 for all i > 0 and ν > N. Define the nonstandard

real-valued function f on F by f (x) = 2−n if x ∈Nn \Nn+1 and f (1) = 0. Suppose x,y ∈ F

and x = x0,x1, . . . ,xn = y is a sequence of elements such that X = ∑
n−1
i=0 f (xix−1

i+1). Then there is

a sequence x = y0,y1, . . . ,yk = y of length k ≤ ν with ∑
k−1
i=0 f (yiy−1

i+1)≤ X .

Proof. Let x = x0,x1, . . . ,xn = y be given with X = ∑
n−1
i=0 f (xix−1

i+1) and suppose n is least pos-

sible, so that no shorter sequence x = y0,y1, . . . ,yk = y has ∑
k−1
i=0 f (yiy−1

i+1) ≤ X . Of course,

xi 6= xi+1 for all i, else the sequence may be shortened by omitting one of xi,xi+1. So no f (xix−1
i+1)

is zero.

We use conjugation and f (a) = f (ab) to show that we can find a monotonic sequence of the

same length, x = y0,y1, . . . ,yn = y, with the same value ∑
n−1
i=0 f (yiy−1

i+1) such that f (yiy−1
i+1) ≤

f (yi+1y−1
i+2) for all i. Consider three consecutive points xi,xi+1,xi+2 in the original sequence

and define w = xix−1
i+1xi+2. Then f (wx−1

i+2) = f (xix−1
i+1) and f (xiw−1) = f (xix−1

i+2xi+1x−1
i ) =

f (xix−1
i+1xi+1x−1

i+2xi+1x−1
i )= f (xi+1x−1

i+2). Thus, replacing xi+1 with w swaps f (xix−1
i+1)= f (wx−1

i+2)

and f (xi+1x−1
i+2) = f (xiw−1). Applying swaps in this way we achieve the monotonic x =

y0,y1, . . . ,yn = y as claimed.

The proof of the lemma is complete if we can show that the values f (yiy−1
i+1) are all distinct,

since f has at most ν distinct non-zero values. Since f (yiy−1
i+1)≤ f (yi+1y−1

i+2) for all i, it suffices

to show that this inequality is strict.
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Because the length n is minimal, we have that, for all 0≤ i≤ n−2,

f (yiy−1
i+2)> f (yiy−1

i+1)+ f (yi+1y−1
i+2),

for else replacing yi,yi+1,yi+2 with yi,yi+2 and omitting yi+1 would make a shorter sequence

with value no more than the original. So if W = f (yiy−1
i+1) = f (yi+1y−1

i+2) = 2−w then f (yiy−1
i+2)>

2W . On the other hand, since yiy−1
i+2 = (yiy−1

i+1)(yi+1y−1
i+2) and both yiy−1

i+1, yi+1y−1
i+2 are in Nw,

using N 2
w ⊆Nw−1, we obtain f (yiy−1

i+2)≤ 2W .

Theorem 4.1.9 (Metrisation). An external normal subgroup N C F is monotonically definable

if and only if it is Nd for some ∗metric d on F .

Proof. If N = Nd we have seen how to write N as a limit of a monotonic sequence. Con-

versely, if N is monotonically definable then by Proposition 4.1.7 (and taking alternate entries

in the resulting sequence of subsets Ni) we have N =
⋂

i∈NNi where F = N0 ⊇ ·· · ⊇Nν =

{1}, each Ni is closed under conjugation and inverses, and N 2
i ⊆Ni−1 for all i > 0. Define

the nonstandard real-valued function f on F by f (x) = 2−i if x ∈Ni \Ni+1 and f (1) = 0.

Now given x,y ∈ F we define d(x,y) from f by the chaining process. We define

d(x,y) = min
n−1

∑
i=0

f (xix−1
i+1)

where the nonstandard internal minimum is over all sequences x0, . . .xn of length n ≤ ν for

which x0 = x and xn = y. We have to show that d is a two-sided invariant metric on F and

N = Nd . In the definition of f we have f (xix−1
i+1)> 0 for all sequences x = x0,x1, . . .xn = y in

F . Then d(x,y) =min∑
n−1
i=0 f (xix−1

i+1)> 0 for all x,y∈F . Also d(x,y) = 0 if and only if x= y. In

addition, by the property N −1
i =Ni we see d(x,y)= d(y,x) for all x,y∈F . Finally, by applying

Lemma 4.1.8 the triangle inequality holds as follows. Given x,y,z∈ F , d(x,y) = ∑
n−1
i=0 f (xix−1

i+1)

for some sequence x = x0,x1, . . .xn = y and d(y,z) = ∑
m−1
i=0 f (xn+ix−1

n+i+1) for some sequence

y = xn,xn+1, . . .xn+m = z. So

n−1

∑
i=0

f (xix−1
i+1)+

n+m−1

∑
i=n−1

f (xix−1
i+1)>min{

k−1

∑
i=0

f (xix−1
i+1) : x = x0,x1, . . .xk = z},
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that is, d(x,y)+d(y,z)6 d(x,z). Hence the function d is metric on F .

Obviously, d is right invariant, since for given xi,xi+1,z∈ F , f (xiz(xi+1z)−1) = f (xizz−1x−1
i+1) =

f (xix−1
i+1). Therefore d(xiz,xi+1z) = d(xi,xi+1) for all xi,xi+1,z ∈ F . Also d is left invariant, if

(zxi)(zxi+1)
−1 ∈Ni−1 \Ni, by using the property N −1

i = Ni, (zxi(zxi+1)
−1)−1 ∈Ni−1 \Ni.

So zxi+1x−1
i z−1 ∈Ni−1 \Ni. By using N z

i = Ni, we obtain xi+1x−1
i ∈Ni−1 \Ni. Then apply

N −1
i =Ni, we have xix−1

i+1 ∈Ni−1\Ni. Therefore, f (zxi(zxi+1)
−1) = f (xix−1

i+1). So d(zx,zy) =

d(x,y) for all x,y,z ∈ F .

Now to show that N = Nd , on one hand given N C F and F = N0 ⊇N1 ⊇ ·· · ⊇Nν = {1}

with N =
⋂

i∈NNi then we conclude that N is the monad of the identity. On the other hand

by the Example 4.1.3 we have Nd is the monad of the identity 1 as well. Since the monad of

each point is unique, so Nd = N .

Let N = Nd as in Theorem 4.1.9, where d is the ∗metric on F given above.

Definition 4.1.10. If d is a 2-sided invariant ∗metric on F and Nd is defined as above, then the

natural induced metric ◦d on F/N is given by

◦d(xN ,yN ) = st d(x,y).

Proposition 4.1.11. If d is a left or right F-invariant ∗metric, then ◦d is well-defined on the

coset space F/N , making it an R-valued metric. If d is two-sided F-invariant then ◦d makes

F/N into a topological (metric) group.

Proof. To show ◦d is well defined on F/N , let xN ,x′N ,yN ,y′N ∈ F/N such that xN =

x′N and yN = y′N . Then xx′−1 ∈N and yy′−1 ∈N . So d(xx′−1,1)≈ 0 and d(yy′−1,1)≈ 0.

Then d(x,x′) ≈ 0 and d(y,y′) ≈ 0. So d(x,y) ≈ d(x′,y′). Therefore st d(x,y) = st d(x′,y′).

Hence ◦d(xN ,yN ) = ◦d(x′N ,y′N ).

Moreover, the function ◦d is a metric on F/N since: (1) st d(x,y) > 0 for all x,y ∈ F then

◦d(xN ,yN )> 0 for all xN ,yN ∈ F/N ; (2) ◦d(xN ,yN ) = 0⇔ st d(x,y) = 0⇔ d(x,y)≈

0⇔ d(xy−1,1)≈ 0⇔ xy−1 ∈N ⇔ xN = yN , for all xN ,yN ∈ F/N ; (3) ◦d(xN ,yN ) =

st d(x,y) = st d(y,x) = ◦d(yN ,xN ) for all xN ,yN ∈ F/N , (4) ◦d(xN ,zN ) = st d(x,z)
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6 st (d(x,y)+d(y,z))6 st d(x,y)+st d(y,z) = ◦d(xN ,yN )+◦d(yN ,zN ) for all xN ,yN ,

zN ∈ F/N . Therefore (F/N ,◦d) forms a topological (metric) space.

To show that the multiplication function from F/N ×F/N into F/N is continuous, assume

x,y ∈ F . Given a standard real ε > 0, for every m,n ∈N , we have to find a standard real η > 0

such that if d(xm,x)< η and d(yn,y)< η then d(xmyn,xy)< ε . Consider

d(xmyn,xy) = d(xym−1
mn,xy)6 d(xym−1

mn,xym−1
)+d(xym−1

,xy)≈ 0,

where ym−1
= mym−1. So for all η ≈ 0 if d(xm,x)< η and d(yn,y)< η then d(xmyn,xy)< ε .

By overspill there is an appreciable η > 0 such that if d(xm,x) < η and d(yn,y) < η then

d(xmyn,xy) < ε . Also since N is closed under inverse, then it is easy to show that the

inverse function from F/N into F/N is continuous. Choosing η = ε , we obtain that if

d(x−1m,x−1)< η then d(xm,x)< ε .

Theorem 4.1.12. Any first-countable Hausdorff topological group G is metrisable with 2-sided

invariant metric generating the same topology.

Proof. Let F be the nonstandard version ∗G of G. The standard part map st : F → G gives in-

verse images Nn = st−1Un of a countable neighbourhood base of 1. By saturation, the subgroup

N = ∩n∈NNn is monotonically definable so is the d-monad of 1 for some ∗metric d, and this

metric induces a metric ◦d on the original G, as required. The details are straightforward.

4.2 Measure on Nonstandard Sets F and F/N

Definition 4.2.1. Since F is ∗finite internal, it has a natural counting measure which we can

normalise to 1 if convenient. For A⊆ F internal,

µ(A) =
card A
card F

,

when we are normalising to 1, or use a different normalisation constant instead of card F if

convenient. We will always choose the normalising constant so that µ(F) > 0 possibly an
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infinite nonstandard number.

The idea is that this should extend naturally to a measure on F using the approach of Loeb (see

Section 2.6).

Definition 4.2.2. For an arbitrary A⊆ F we may say A is measurable (with real-valued measure

◦µ(A)) if for each standard ε > 0 in R there are internal B,C ⊆ F such that B ⊆ A ⊆ C and

µ(C \B)< ε (and ◦µ(A) is defined to be the supremum of stµ(B) over such B, or equivalently

the infimum of stµ(C) over such C).

Proposition 4.2.3. The set of measurable subsets of F forms a σ -algebra on F containing F, /0.

◦µ is a (left and right) F-invariant measure on F .

Proof. Let A be the family of all measurable subsets of F . Obviously, F and /0 are internal

subsets of F of measure 1 and 0 respectively after normalising. Then F, /0∈A . Assume B∈A .

Then for a given standard real ε > 0 there are internal subsets A,C⊆F such that A⊂B⊂C with

µ(C)−µ(A)< ε . Furthermore, Ac and Cc are internal subsets of F satisfying Cc ⊆ Bc ⊆ Ac and

µ(Ac)−µ(Cc)< ε , that is, Bc is measurable. Therefore Bc ∈A . Suppose (Bi)i∈N is a sequence

of measurable subsets in A . There are two sequences (Ai)i∈N and (Ci)i∈N of internal sets in A

such that Ai ⊆ Bi ⊆Ci with µ(Ci)− µ(Ai) <
ε

2i+2 for all i. We have to show that B =
⋃

i∈NBi

is in A . By saturation there are two internal sequences of measurable subsets (A′i)06i6ν and

(C′i)06i6ν of internal subsets of F , where ν > N such that A′i = Ai and C′i =Ci for all i ∈ N. Let

lim
n→∞

◦µ(
⋃n

i=0 Ai) = a. Since F has a finite measure, a is finite. There is a standard k ∈ N, such

that µ(
⋃k

i=0 Ai)> a− ε

2 . Let A :=
⋃k

i=0 Ai. Notice that A , µ and (C′i)06i6ν are internal. So we

can define the internal set S := {` ∈ ∗N :
⋃`

i=0C′i ∈A and µ(
⋃`

i=0C′i)< a+ ε

2}.

Therefore, µ(
⋃`

i=0C′i) < µ(
⋃`

i=0 Ai)+∑
`
i=0

ε

2i+2 < a+ ε

2 for all ` ∈ N. By overspill, there is

ω > N such that C :=
⋃

ω
i=0Ci and A ⊆ B ⊆ C with µ(C)− µ(A) < ε . So B =

⋃
i∈NBi ∈ A .

Hence A is a σ -algebra on F . To prove that ◦µ is a left and right F-invariant measure on F , we

note that

card A = card xA = card Ax
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for every A⊆ F and every x ∈ F . So

µ(A) =
card A
card F

= µ(xA) = µ(Ax).

Therefore ◦µ(A) = ◦µ(xA) = ◦µ(Ax).

To define measure on F/N we need to take a little care, as there is no sensible notion of

‘internal subset’ of F/N . However, by pulling back to F and noting that cosets of N are

simply subsets of F , we can achieve something similar.

Definition 4.2.4. For A ⊆ F/N , we say A is measurable if
⋃

A ⊆ F is measurable and the

measure of A is defined to be

◦
µ(A) = ◦µ(

⋃
A).

(Some care needs to be taken with the overloading of the notation ◦µ as both are notating a

measure on F and a measure on F/N .)

Proposition 4.2.5. Assume µ(F) � 0 in ∗Rfin. If the normal subgroup N is measurable (as a

subset of F) then ◦µ(N ) = 0 if and only if N has infinite index in F .

Proof. Assume N is a measurable subset of F and ◦µ(N ) = 0. Assume [F : N ] = n. Then

for all ε � 0 there is an internal set A such that A⊇N and µ(A)< ε . Note that F =
⋃n

i=1 aiN ,

for some ai ∈ F . Then F ⊆
⋃n

i=1 aiA. So

µ(F)6
n

∑
i=1

µ(aiA) = nµ(A)< nε,

since µ(Ai) = µ(A j) for all i, j. Choose ε = 1/(n+1). Then it contradicts µ(F) = 1.

Conversely, suppose [F : N ] is not finite. Also suppose N is measurable and µ(N )� 0. Then

[F : N ]> n for all n ∈N. Choose ε � 0 and an internal set A such that A⊂N with µ(A)> ε .

Then

µ(A)< µ(N ) =
µ(F)

[F : N ]
<

1
n

for all n ∈ N. Thus we get µ(A)≈ 0 which is a contradiction. So ◦µ(N ) = 0.
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We are usually interested in the case where N is measurable of infinite index in F .

Proposition 4.2.6. If N is measurable of infinite index in F then the family of measurable

subsets E of F/N is a σ -algebra and ◦µ is an F/N -invariant measure on F/N .

Proof. Since
⋃
(F/N ) =F and F is a measurable set,

⋃
(F/N ) is measurable with ◦µ(F/N )

= ◦µ(
⋃
(F/N )) = ◦µ(F) = 1 (after normalising to 1). Moreover, /0 ⊆ F/N is a measurable

set of measure 0. Assume E ⊆ F/N is a measurable set. Then
⋃

E ⊆ F is measurable. So

F \ (
⋃

E) =
⋂

Ec is a measurable set in F . Hence Ec is measurable in F/N . Let E0,E1,E2, . . .

are measurable subsets of F/N . Then
⋃

En ⊆ F is measurable for each n ∈ N.

Since F is closed under the countable union of measurable sets then
⋃

n∈N(
⋃

En) ⊆ F is mea-

surable. That is,
⋃
(
⋃

n∈NEn) is measurable in F . Therefore
⋃

n∈NEn ⊆ F/N is a measurable

set. Hence the set of measurable E ⊆ F/N is a σ -algebra.

To prove ◦µ is an F/N -invariant measure on F/N we have from the invariance property of

◦µ on F , ◦µ(
⋃

E) = ◦µ(
⋃

xN E) for every measurable set E ⊆ F/N and every xN ∈ F/N .

Therefore ◦µ(E)) = ◦µ(xN E). Hence, ◦µ is F/N -invariant measure on F/N .

For the rest of this section, we suppose N C F is measurable of infinite index and F/N as a

group with an invariant measure ◦µ .

Proposition 4.2.8 below is a “taste” of the kind of results that can be obtained by measure-

theoretic considerations.

The following lemma has no doubt been discovered many times, but was worked out by Kaye

and Reading for a related problem in nonstandard finite groups and appears as Lemma 4.2.5 in

Reading’s MPhil thesis [28].

Lemma 4.2.7. Suppose F is a finite group and Σ,∆ ⊆ F have card Σ = m and card ∆ = n, and

suppose k ∈ N and k < nm/card F . Then there is x ∈ F such that card(x∆∩Σ)≥ k+1.

Proposition 4.2.8. Let F be a ∗finite group, N C F and 0 < ε < η ≤ 1 be real numbers. Then

there is k ∈ N, a measurable set A ⊆ F/N with ε < ◦µA < η and elements a0, . . . ,ak−1 ∈ F

such that F/N =
⋃

i<k aiA. More specifically, this can be achieved whenever (1−ε)k < η−ε.
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Proof. Let B ⊆ F be an internal ∗finite set with card B = n for some n > N such that ε .

n/N . η where N = card F . Then there is some large k with (1− ε)k < η − ε . By iterating

Lemma 4.2.7 we need

N
n
(
1
n
+

1
n−1

+ . . .+
1
2
+1)<

N
n
(lnn+1)

copies of B to cover the group F except the proportion (1− ε)k, by k translates of B. Choose

b0, . . . ,bk−1 ∈ F such that card(
⋃

i<k(biB)) > N(1− (1− ε)k). Let D :=
⋃

i<k(biB) and C :=

F\D. Then the remaining part of the group F is C where C has measure smaller than η − ε

since card C 6 N(1− ε)k < N(η − ε). So card(B∪C) . N(ε +η − ε) = Nη . Now we can

cover the whole F by k translates of B∪C, that is, F = (
⋃

i<k biB)∪C and ε 6 ◦µ(B∪C)6 η .

Let A be the quotient for B∪C. By pulling back every thing to the quotient group F/N using

the fact that N has a measure 0, the proposition is proved.

4.3 Locally Embeddable into Finite Metric Groups (LEFM)

An abstract group is embeddable in a ∗finite group if and only if it is locally embeddable into

finite groups (LEF). These groups were studied in Pestov and Kwiatkowska’s article [26], which

is a good introduction to these matters. The work in Section 4.1 motivates a modification of this

idea given in the following definition.

Definition 4.3.1. A metric group (G, ·,d) with a 2-sided invariant metric d is locally embed-

dable into finite metric groups (LEFM) if it is embeddable as a metric group (via an injective

group homomorphism which is an isometry) into some (∏D Gi)/N where i is from an index

set I, D is a nonprincipal ultrafilter on I, (Gi, ·,di)i∈I is a family of finite metric groups with

2-sided invariant metrics di, and

N = {(gi)i∈I ∈∏
D

Gi : ∀ε > 0, {i : di(gi,1)< ε} ∈ D}.

In other words, we take an ultraproduct of groups, and then factor this by the normal subgroup

N = Nd = {x ∈∏D Gi : d(x,1)≈ 0}, the monad of 1, as given earlier in Example 4.1.3.
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Theorem 4.3.2. A 2-sided metric group (G, ·,d) embeds as a metric group into some (∏D Gi)/N

as above if and only if for all ε > 0 and all finite subsets A ⊆ G there is a finite 2-sided metric

group H and a function φ : A→ H such that:

(a) d(φ(ab),φ(a)φ(b))< ε whenever a,b,ab ∈ A;

(b) |d(φ(a),φ(b))−d(a,b)|< ε whenever a,b ∈ A.

Proof. Without loss of generality assume that the 2-sided metric group G is infinite. Let I be

the set of all finite subsets A of G. For each A ∈ I, let εA = ε = 2−|A| and let GA be a finite

metric group with function φA = φ : A→GA satisfying (a) and (b). Let D0 be the filter on P(I)

generated by all sets

UA = {B ∈ I : A⊆ B}.

Since

UA1 ∩UA2 ∩ . . .∩UAk ⊆UA1∪A2∪...∪Ak 6= /0,

we see that D0 is nontrivial and so extends to an ultrafilter D. This ultrafilter D is nonprincipal

as G is infinite. We must show that G embeds as a metric group into ∗G/N = (∏D Gi)/N .

Let f ∈ G. For each A ⊆ G finite with f ∈ A, let fA = φA( f ) ∈ GA, and for each A ⊆ G with

f 6∈ A, let fA = 1 ∈ GA. We map f to φ( f ) = (. . . , fA, . . .)/D ∈ ∗G. Suppose f 6= g ∈ G, then

d( f ,g) = η > 0; let A ⊇ { f ,g} have size greater than − log2(η)+ 1. Then, for all B ∈ UA,

from (b) we have |dB(φB( f ),φB(g))−d( f ,g)|< η/2 and so φ( f ) 6= φ(g), as UA ∈ D. Or, with

the same argument but replacing A with some A′ ⊇ { f ,g} of size as large as we wish, we can

see that |dB(φB( f ),φB(g))− d( f ,g)| < ε for any ε > 0, so that d(φ( f ),φ(g)) ≈ d( f ,g) in the

ultraproduct. Thus φ maps G into ∗G and factors by N as an isometry φ/N : G→ ∗G/N .

The fact that this isometry φ/N is also a group homomorphism follows by a similar argument

using part (a), which shows that φ( f g) ≈ φ( f )φ(g), φ(1) ≈ 1 and φ( f )−1 ≈ φ( f−1) for all

f ,g ∈ G.

Conversely, assume ψ̂ : G→ (∏D Gi/D)/N is an embedding of 2-sided metric groups, where

each Gi is a finite 2-sided metric group and ∏D Gi is a ∗finite object in the universe ∗V = ∏DVi,

an elementary extension of the standard universe V . (This is to enable us to use Łoś’s theorem
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for statements concerning ‘finiteness’.)

Given ε > 0 standard and A ⊆ G finite, we have to show that there is a finite 2-sided metric

group H satisfying (a) and (b). Suppose A = {a0,a1, . . . ,an−1}. Since n is finite we can use the

finitely many elements of A as parameters. The embedding ψ̂ shows that

d̂(ψ̂(aia j), ψ̂(ai)ψ̂(a j)) = 0 for all ai,a j,aia j ∈ A, (1)

|d̂(ψ̂(ai), ψ̂(a j))−daia j |= 0 for all ai,a j ∈ A. (2)

From the definition of the metric d̂ on (∏D Gi)/N and the definition of N , we can choose

some function ψ : G→∏i∈NGi/D such that ψ̂(g) = ψ(g)N . (Once again, there is no way we

can expect ψ to be a homomorphism.)

Thus, for all ai,a j ∈A, we have ψ̂(ai)=ψ(ai)N , ψ̂(a j)=ψ(a j)N and ψ̂(aia j)=ψ(aia j)N .

So

∗d(ψ(aia j),ψ(ai)ψ(a j))≈ 0 (3)

|∗d(ψ(ai),ψ(a j))−daia j | ≈ 0 (4)

where ∗d : ∏D Gi×∏D Gi→ ∗R is defined by ∗d(a,b) = (di(ai,bi))/D for all a,b ∈∏D Gi and

is a ∗metric taking values in ∗R.

Thus from (3), (4) and ε > 0 standard we obtain

∗d(ψ(aia j),ψ(ai)ψ(a j))< ε for all ai,a j,aia j ∈ A

|∗d(ψ(ai),ψ(a j))−daia j |< ε for all ai,a j ∈ A.

Thus our nonstandard universe ∗V satisfies the sentence “There is a finite 2-sided metric group
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H = ∏D Gi and there are elements ψ(a0), ψ(a1), . . . ,ψ(an−1) in H such that

∗d(ψ(aia j),ψ(ai)ψ(a j))< ε

|∗d(ψ(ai),ψ(a j))−daia j |< ε

for all ai,a j,aia j ∈ A = {a0,a1, . . . ,an−1}”.

This is a first order statement with parameters daia j for all ai,a j ∈ A. There are finitely many

such parameters, all them in V .

Since the finite 2-sided metric group H and ψ(a0),ψ(a1), . . . ,ψ(an−1) are quantified out, by

the Transfer Principle this statement is true in V . That is, there is a finite 2-sided metric group

H and a function φ : A→ H satisfying (a) and (b), as required.

Corollary 4.3.3. A metric group (G, ·,d) is LEFM if and only if every finitely generated sub-

group of (G, ·,d) is LEFM.

Definition 4.3.4. Let G and H be two groups and A ⊆ G. An injective function f : A→ H is

said to be a partial homomorphism on A if for all x,y,z ∈ A

x · y = z⇒ f (x) · f (y) = f (z).

We now look to proving some abelian metric groups to be LEFM, and for this reason we switch

notation throughout the remainder of this section to additive notation on abelian groups. Some

familiar groups can be shown to be LEFM by direct construction. These include all countable

subgroups of the additive group of the reals R and the circle group T=R/2πZ with their usual

metrics. In Theorem 4.3.2 on LEFM groups, it clearly suffices to show that every finitely gen-

erated abelian metric group F is LEFM. Our proof will use the well-known structure theorem

(see Theorem 1.2.11 in Section 1.2) for finitely generated abstract abelian groups.

Definition 4.3.5. Given an abelian group G and a nonempty subset A⊆G closed under negation

(x∈ A→−x∈ A), a function ‖ ‖ : A→R is a partial norm if ‖a‖ ≥ 0 for all a∈ A with equality
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if and only if a = 0, and

∑
i
‖ai‖ ≥ ‖a‖

whenever a,a0, . . . ,an−1 ∈ A and a = ∑i ai.

Proposition 4.3.6. Given an abelian group G, a nonempty finite subset A ⊆ G closed under

negation, and a partial norm ‖ ‖ on A, there is an invariant metric d on 〈A〉 such that ‖a‖ =

d(a,0) for all a ∈ A.

Proof. The canonical choice for d is

d(u,v) = min∑
i
‖ui+1−ui‖

where the minimum is over all u0, . . . ,un such that u0 = u, un = v and each ui+1−ui ∈ A. The

checking is straightforward.

Theorem 4.3.7. Every abelian group with invariant metric is LEFM.

Proof. It suffices to show that every finitely generated abelian metric group is LEFM. By the

structure theorem (Theorem 1.2.11), such a group F is of the form Zk⊕T where T is finite.

Write elements of F as ∑
k
i=1 λiei + t where ei is a generator for the ith Z and t ∈ T . A finite

subset of F is contained in some

A =
{ k

∑
i=1

λiei + t : |λi|< M and t ∈ T
}
,

where M ∈ N.

We shall map φ : A→ φ [A]⊆ FA =Ck
K⊕T for suitably chosen large K ∈ N. This map is given

by φ(∑k
i=1 λiei + t) = ∑

k
i=1 λi fi + t where fi = 1 is the generator of the ith CK . This object is

given the partial norm ‖φ(a)‖ equal to the value ‖a‖ in F . We show that, for a sufficiently large

value of K, this is a partial norm and so it extends to a metric according to Proposition 4.3.6.

For x ∈ {0,1, . . . ,K−1}=CK , let N(x) = min{x,K−1− x} be its usual norm and sign(x) = 0

if x = 0, sign(x) = +1 if 0 < x < K/2 and sign(x) =−1 if K/26 x < K. Let B⊆ FA =Ck
K⊕T
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defined by

B =
{
∑

i
xi fi + t ∈Ck

K⊕T : N(xi)< K/3 for all i
}
.

Then there is a map ψ : B→ Zk⊕T given by

ψ(x1 + · · ·+ xk + t) = ∑
i

sign(xi)N(xi)ei + t.

By the use of K/3 in the definition of B, this is a partial homomorphism: if u,v,w ∈ B and

u+ v = w then ψ(u)+ψ(v) = ψ(w). By arranging that K > 3M we can ensure φ [A]⊆ B.

Let εA = min{‖a‖ : a∈ A,a 6= 0} and EA = max{‖a‖ : a∈ A}. Suppose that K > 3MEA/εA. We

consider an expression of the form ∑
r−1
j=0 φ(a j) = φ(a) true in FA of elements φ(a j),φ(a)∈ φ [A].

If each partial sum ∑
s−1
j=0 φ(a j), for s < r, is in B then the partial homomorphism ψ applies to

show that ∑
r−1
j=0 a j = a and hence ∑

r−1
j=0 ‖a j‖ ≥ ‖a‖. So if ∑

r−1
j=0 ‖a j‖ < ‖a‖ then some partial

sum ∑
s−1
j=0 φ(a j) with s < r is not in B. Since N(φ(a j))< M for all j, it follows that sM ≥ K/3

and hence r ≥ K/(3M) > EA/εA. Thus ∑
r−1
j=0 ‖a j‖ ≥ rεA > EA ≥ ‖a‖. Therefore, for any K >

3MEA/εA, the inequality ∑
r−1
j=0 ‖a j‖< ‖a‖ is impossible in FA, and φ is a partial homomorphism

and isometry, as required.

Rather than looking at examples that arise directly from metric ultraproducts, it is more inter-

esting to show certain classical examples are LEFM groups directly. We present such examples

in Chapter 5.

In the following theorem we notice that separable LEFM groups are compact under surjective

embedding of metric groups.

Theorem 4.3.8. Assume (G, ·,dG) is a 2-sided invariant metric group and (F, ·,dF) is a ∗finite

∗metric group such that φ : G→ F/N is an onto embedding of metric groups, where N C F

is the monad of the identity. If G is separable, then G is compact.

Proof. Assume G is separable. Then G has a countable base. Suppose {Ui : i ∈ N} is an open

cover of G consisting of basic open sets Ui of G, for all i∈N. Without loss of generality, assume

Ui = Bεi(gi), where Bεi(gi) are open balls with centre gi ∈G and radius standard real εi > 0, for
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all i∈N. Take fi ∈ F , such that φ(gi) = fiN . By saturation, the internal sequence f0, f1, . . . , fν

exists for ν > N.

Assume F 6=
⋃

i<n Bεi( fi) for all standard n ∈ N. Then by overspill there exists ` > N such

that F 6=
⋃

i<`Bεi( fi). This means that there exists c ∈ F \
⋃

i<`Bεi( fi). That is, there exists

cN /∈ Im(φ), contradicting the surjectivity of φ . Hence G ⊆
⋃

i<n Bεi(gi) for some standard

n ∈ N.

4.4 Locally Embeddable into Discrete Metric Groups (LEDM)

When an invariant metric group is not, or is not known to be, LEFM, a modified weaker notion

may be helpful.

Definition 4.4.1. A metric space (X ,d) is said to be discrete if for all x ∈ X there is a standard

real ε > 0 such that the open ball Bε(x) = {x}.

Definition 4.4.2. A metric space (X ,d) is said to be uniformly discrete if there exists a standard

real ε > 0 such that for all x ∈ X , Bε(x) = {x}.

Definition 4.4.3. A 2-sided metric group (G, ·,d) is locally embeddable into uniformly discrete

metric groups (LEDM) if G embeds in F/N , where F is a nonstandard invariant metric group

that is uniformly discrete in the sense of the nonstandard universe; for example, an ultraproduct

of standard uniformly discrete metric groups, and N is again the monad of the neutral element

of F .

An easy variation of Theorem 4.3.2 gives the following.

Theorem 4.4.4. A 2-sided metric group (G, ·,d) is LEDM if and only if, for all ε > 0 and

all finite subsets A ⊆ G, there is a 2-sided metric group H which is uniformly discrete and a

function φ : A→ H such that:

(a) d(φ(ab),φ(a)φ(b))< ε , whenever a,b,ab ∈ A;

(b) |d(φ(a),φ(b))−d(a,b)|< ε , whenever a,b ∈ A.

Proof. The proof is similar to the proof of Theorem 4.3.2.

Theorem 4.4.5. Every 2-sided metric group is LEDM.
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Proof. Let (G, ·,dG) be a 2-sided metric group and A ⊆ G is finite. Without loss of generality

assume A contains the neutral element 1 and is closed under inverse. Define dA on 〈A〉 by

dA(x,y) = min
{ n

∑
i=1

dG(1,ai) : ai ∈ A, for all i = 1,2, . . . ,n,xa1a2 . . .an = y and n ∈ N
}
.

Since A is finite, there is some a ∈ A of least positive distance dA(a,1). Then dA is well-defined

on 〈A〉. In addition, dA is a metric on 〈A〉: (1) since ∑
n
i=1 dG(1,ai) > 0, dA(x,y) > 0 for all

x,y ∈ 〈A〉, where xa1a2 . . .an = y; (2) if dA(x,y) = 0, then ∑
n
i=1 dG(1,ai) = 0 for some n ∈N. So

dG(ai,1)= 0 for all i. That is, ai = 1 for all i. Thus, x= y. Conversely, assume x= y. Then ai = 1

for all i. So, min
{

∑
n
i=1 dG(1,ai) : ai ∈ A, for all i = 1,2, . . . ,n,xa1a2 . . .an = y and n ∈N

}
= 0.

That is, dA(x,y) = 0; (3) if xa1a2 . . .an = y then ya−1
n a−1

n−1 . . .a
−1
1 = x. Also if ai ∈A then a−1

i ∈A

and dG(ai,1) = dG(a−1
i ,1). So dA(x,y) = dA(y,x) for all x,y ∈ 〈A〉 ; (4) for all x,y,z ∈ 〈A〉, it is

clear that dA(x,y)+dA(y,z)> dA(x,z).

To show that dA is a 2-sided invariant metric on 〈A〉, let zxa1a2 . . .an = zy. Then xa1a2 . . .an =

y. Therefore, dA(zx,zy) = dA(x,y). If xza1a2 . . .an = yz, then by conjugation, we obtain that,

xz(z−1a1z)(z−1a2z) . . .(z−1anz) = yz. So xa1a2 . . .anz = yz. Then xa1a2 . . .an = y. Therefore,

dA(xz,yz) = dA(x,y).

Notice that if min{dG(1,a) : a ∈ A,a 6= 1} = ε then ∑
n
i=0 dG(1,ai) > nε . Therefore the metric

dA is uniformly discrete on 〈A〉. Then for each x ∈ 〈A〉, Bε(x) = {x}. Hence 〈A〉 is a uniformly

discrete metric group. Obviously, the identity function φ : A→ 〈A〉 satisfies both conditions

(a) d(φ(ab),φ(a)φ(b))< ε , whenever a,b,ab ∈ A, and

(b) |d(φ(a),φ(b))−d(a,b)|< ε , whenever a,b ∈ A.

By Theorem 4.4.4, G is LEDM.

This theorem allows one to present the theory of 2-sided metric groups in general using discrete

nonstandard groups.

Proposition 4.4.6. Let a 2-sided metric group G be LEDM via the function φ : G→ D/N ,

where D is a ∗discrete metric group and N is the monad of the identity of D. If X ⊆ DG

is internal, where DG = {x ∈ D : ∃g ∈ G such that φ(g) = xN }, then X/N is bounded and
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closed.

Proof. Given X ⊆ DG is an internal set, assume X/N is not bounded. Then, for each k ∈ N

there is xk ∈ X , such that d(xkN ,1N ) > k + 1 which implies d(xk,1) � k. By saturation,

x0,x1, . . . is coded, that is, there is an internal sequence x1,x2, . . . ,xα , where α >N, agreeing on

finite indices i ∈ N. By overspill, there is ν > N such that

∀n6 ν(xn ∈ X ∧d(xn,1)> n).

Therefore, d(xνN ,1N ) > ν , which contradicts the fact that d is a real-valued function on

D/N . Hence X/N is bounded.

Assume that X/N is not closed. There exists a cluster point uN in DG/N with uN /∈ X/N .

Thus, for each k ∈N, there is xk ∈ X such that d(uN ,xkN )< 1/k. By saturation, x1,x2, . . . ,xα

coded in X , where α > N. By overspill, there is ν > N, such that xn ∈ X and d(u,xn) < 1/n

for all n 6 ν . This implies that d(uN ,xνN ) = 0. So uN = xνN . Since xν ∈ X , we have

xνN ∈ X/N , which is a contradiction. Hence X/N is closed.

Proposition 4.4.7. Let a 2-sided metric group G be LEDM via the function φ : G→ D/N ,

where D is ∗discrete and N is the monad of the identity. If G is separable and X ⊆ DG is

internal, then X/N is compact.

Proof. Suppose that X/N is not compact. Without loss of generality, assume that the countable

family {Ui : i∈N} is an open cover of X/N and Ui =Bεi(giN ), where εi = 1/i, for i= 1,2, . . .,

and gi ∈ DG. Assume for each k ∈ N there is xk ∈ X such that xkN /∈
⋃k

i=1 Bεi(giN ). That is,

d(xk,gi)& εi for all i6 k. By saturation, we can encode x1,x2 . . . ,xα in X , encode g1,g2 . . . ,gα

in D, where g1,g2 . . . ,gk are all in DG for all standard k ∈ N in X and encode the positive

numbers ε1,ε2 . . . ,εα in ∗R where α > N. By overspill, there exists ν > N, such that xν ∈ X

and xνN /∈ Bεi(giN ) for all i6 ν which means that {Ui : i ∈ N} is not cover of X/N , which

contradicts the assumption. Hence X/N is compact.
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Chapter 5

Some Examples of LEFM Groups

Our motivation throughout this chapter is to present some interesting examples of classical

abelian and nonabelian metric groups G represented by the quotient metric group of nonstandard

∗finite groups F factored by the monad N of the neutral element of F , to illustrate the use of

nonstandard methods in Chapter 4.

The key theorems of Chapter 4 (Theorems 4.3.2 and 4.3.7) showed that such groups can be

represented using a nonstandard finite group F but did not give further information on F .

The measure on these examples is also discussed. In particular, the usual counting measure on

F , normalised in whatever way appropriate, can be used in the Loeb style to give a measure on

F/N and hence on G, for example, as given by Lindstrøm in the volume edited by Cutland [4,

pages 1–105]. We expect these ideas to be profitable.

5.1 Abelian LEFM Group Examples

The goal of this section is to show how most natural classical examples arise as LEFM groups,

where the nonstandard ∗finite group F is cyclic. As all examples in this section will be abelian,

we shall use additive notation throughout. We denote the cyclic group of order N as CN and,

where necessary, list its elements as b−N
2 c+ 1,b−N

2 c+ 2, . . . ,0, . . . ,bN
2 c. The usual metric on

CN is given by dN(x,y) = min{|x− y|,N− |x− y|} and it corresponds to the number of steps

from x to y in either a clockwise or anticlockwise direction. However, we will have to modify

this metric (for example by dividing through by a constant) or replace it altogether in most of
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the examples that follow.

5.1.1 The Group of Integers Z

The group of integers Z with the usual metric dZ(x,y) = |x− y| is LEFM. Consider the ∗finite

∗cyclic group CN with addition modulo N, where N >N. We give CN the usual metric d(x,y) =

min{|x−y|,N−|x−y|}; of course, d is an invariant metric on CN . With this metric, the monad

of 0 as given in Section 4.1 is

N = Nd = {x ∈CN : d(x,0)≈ 0}= {0}.

Therefore, CN/N ∼=CN as abstract groups and CN/N is ∗finite ∗cyclic as well. The function

φ : Z→CN/N defined by

φ(x) = x+N

is easily seen to be well-defined, 1-1 and φ is a group homomorphism. In addition, φ is an

isometry.

If Z is given with the discrete metric d(x,y) = 1 for x 6= y then we equip CN with the same

discrete metric and argue as before.

For the measure µ on CN , we take the discrete measure µ(A) = card A with a mass of 1 to each

point. In other words, we use Definition 4.2.1 without normalisation by card CN .

The measure on Z, that we expect, is also the counting measure and the measurable sets should

be precisely the finite sets. We will show that Definition 4.2.4 gives precisely this measure

on CN/N .

According to Definition 4.2.2, a set A ⊆CN is measurable if and only if for all ε > 0 there are

∗finite B,C such that B ⊆ A ⊆ C and µ(C \B) < ε . By taking ε = 1/2 clearly this means we

must have B = A = C, so a set A ⊆CN is measurable if and only if it is ∗finite. Now suppose

A ⊆ Z is measurable. Then it is ∗finite and hence finite (Section 2.3, Proposition 2.3.4). It

follows that A⊆ Z is measurable if and only if it is actually finite, and hence the measure of A

as given in Definition 4.2.2 is card A.
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5.1.2 The Direct Sum of the Group of Integers Z⊕Z

The additive group of the direct sum Z⊕Z with discrete metric is LEFM. Take the discrete

metric on CN = {0,1,2, . . . ,N−1}, where N > N. Obviously, d is invariant on CN . The monad

of 0, as defined in Section 4.1, is

N = Nd = {x ∈CN : d(x,0)≈ 0}= {0}.

Assume k > N with kn < N for all n ∈ N (Proposition 2.3.5). We may now embed Z⊕Z into

CN/N via the function φ : Z⊕Z→CN/N defined by

φ(x,y) = x+ ky+N ,

using the same enumeration of CN .

The function φ is well-defined since x + ky ∈ CN for all x,y ∈ Z. Obviously, φ is a group

homomorphism. Furthermore, φ is 1-1. To see this, suppose (x1,y1) 6=(x2,y2). Then either x1 6=

x2 or y1 6= y2. If x1 6= x2, then for any values of y1,y2 ∈ Z, x1 + ky1 +N 6= x2 + ky2 +N since

|x1− x2|< k. Also, if y1 6= y2 then for any values of x1,x2 ∈ Z, x1 + ky1 +N 6= x2 + ky2 +N

since |x1− x2|< k and k|y1− y2|< N. So φ(x1,y1) 6= φ(x2,y2).

Also, one can easily check that φ is an isometry.

The measure µ defined on Z⊕Z is the usual counting measure.

The measure µ defined on CN/N is the usual counting measure as well. In order to describe

µ on the quotient set CN/N we use both Definitions 4.2.4 and 4.2.2 and the same process

as we applied on Z ( in Section 5.1.1). Hence the embedding φ : Z⊕Z→ CN/N preserves

measurability.

5.1.3 The Additive Real Group R

Consider the additive real group R with the usual metric dR and the nonstandard ∗cyclic group

CN . Again take k > N with nk < N for all finite n. Equip CN with the usual metric normalised
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by k, that is,

d(x,y) =
dN(x,y)

k
.

Clearly, d is CN-invariant. We may say that an element x ∈CN is finite if d(x,0) is finite (as an

element of ∗R). The set of all finite elements of CN is denoted by Cfin
N , that is,

Cfin
N = {x ∈CN : d(x,0) is finite}= {x ∈CN : dN(x,0)6 kn for some n ∈ N}.

In fact Cfin
N is a subgroup of CN . For each x ∈ Cfin

N , the standard part st(x/k) ∈ R in the usual

sense, and the function ψ : Cfin
N → R defined by ψ(x) = st(x/k) is a homomorphism. By satu-

ration (Section 2.8), it is onto with kernel N ⊆ CN . Define the function φ : Cfin
N /N → R by

φ(x+N ) = ψ(x). Thus, by the first isomorphism theorem, Cfin
N /N ∼=R and it is easy to check

that the canonical isomorphism is also an isometry, as

dR(φ(x+N ),φ(y+N )) = |φ(x+N )−φ(y+N )|= |st(x/k)− st(y/k)|= st d(x,y).

Hence, the metric group R embeds into the metric group Cfin
N /N .

Assume I = [a,b]⊆ R. Then

ψ
−1([a,b]) = ∪(φ−1([a,b])) = {x+N ∈Cfin

N /N : φ(x+N ) ∈ [a,b]}

= {x ∈Cfin
N : a6 st(x/k)6 b}

= {x ∈CN : ak . x. bk}.

Consider the sets

Au,v = {x ∈CN : u6 x6 v}

with ak 6 u and v6 bk, and

Bu′,v′ = {x ∈CN : u′ 6 x6 v′}

with u′ 6 ak and bk 6 v′. Then µ(Au,v) = (v−u)/k and µ(Bu′,v′) = (v′−u′)/k.

62



Therefore, the Loeb measure is L(µ)(ψ−1[a,b]) = b−a. So for all standard real ε > 0, there are

internal subsets Au,v and Bu′,v′ of CN such that Au,v ⊆ ψ−1(I)⊆ Bu′,v′ with µ(Bu′,v′ \Au,v)< ε .

By standard results on Loeb measure, the measure µ on R, as defined in Section 4.2, is σ -

additive. Therefore, every Lebesgue measurable set A ⊆ R has µ-measure and this measure is

λ (A).

On the other hand, the measure µ defined on CN , is a normalised measure of the form µ(A) =

card A/k for every internal subset A of CN .

Therefore, the embedding φ−1 : R→Cfin
N /N is measure-preserving.

5.1.4 The Additive Circle Group T

The additive circle group T= R/2πZ is identified with [0,2π) as given in Definition 1.2.2 and

is given the metric dT defined by

dT(x,y) =
1

2π
min{|x− y|,2π−|x− y|}.

It is LEFM. Indeed, consider the nonstandard cyclic group CN = {0,1,2, . . . ,N− 1} with the

normalised ∗metric d defined as follows

d(x,y) =
1
N

min{|x− y|,N−|x− y|}.

The monad of 0 in CN is

N = Nd = {n,N−1−n : kn < N for all k ∈ N}.

The function φ : T→CN/N defined by

φ(x) =
⌊Nx

2π

⌋
+N
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is well-defined. Moreover, φ is 1-1. Suppose x,y ∈ [0,2π) such that x 6= y. Let 06 x < y < 2π .

Then y− x > 0. By Archimedean property [8], there is n ∈ N such that 1/n < y− x. Then

N/(2πn) < Ny/(2π)−Nx/(2π). Therefore,
⌊

Nx
2π

⌋
and

⌊
Ny
2π

⌋
are in distinct N -cosets. So⌊

Nx
2π

⌋
+N 6=

⌊
Ny
2π

⌋
+N . That is, φ(x) 6= φ(y).

Obviously, φ is a group homomorphism since for all x,y ∈ T,

φ(x)+φ(y) =
⌊Nx

2π

⌋
+N +

⌊Ny
2π

⌋
+N =

⌊N(x+ y)
2π

⌋
+N = φ(x+ y)

due to |bxc+ byc−bx− yc|6 1, 1 ∈N and k(1)< N for all k ∈ N.

By Definition 4.1.10 of the ∗metric dN on CN/N and the definition of dT on T, we notice that

φ is an isometry since

dN (φ(x),φ(y)) = dN (bNx
2π
c+N ,bNy

2π
c+N )

= st(d(bNx
2π
c,bNy

2π
c))

=
1

2π
min{|x− y|,2π−|x− y|}

= dT(x,y).

Hence (T,+,dT) embeds into (CN/N ,+,dN ) as a metric group (Section 4.3). Actually, φ is

onto, so T∼=CN/N as metric groups. Thus the image of T is the whole of CN/N .

The measure µ defined on T = [0,2π) is the Lebesgue measure λ and the measure µ on the

quotient set CN/N is the Lebesgue measure λ as well. One can use the same process, as we

applied in the previous section (Section 5.1.3), to prove our claim above about measurability of

these sets. Hence the embedding φ : T→CN/N is measure-preserving.

5.1.5 The Additive 2-Torus of the Circles T⊕T

The direct sum T⊕T is the torus which we endow with the ‘taxicab’ metric

dT⊕T((x,y),(x′,y′)) = dT(x,x′)+dT(y,y′).
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This is clearly LEFM, by 5.1.4 and a direct sum. More interestingly, we can embed T⊕T into

CN/N for an appropriate choice of N and the metric on CN .

Suppose N = M(M+1), where M is nonstandard. We list the elements of CN as 0,1, . . . ,N−1;

similarly for CM and CM+1. The groups CM and CM+1 are given normalised metrics dM(x,y)/M

and dM+1(x,y)/(M+1) and CM⊕CM+1 is given the corresponding ‘taxicab’ metric as follows

d((x,y),(x′,y′)) = dM(x,x′)/M+dM+1(y,y′)/(M+1).

Therefore, the monad of (0,0) in CM⊕CM+1 is

Nd = N = {(x,y) ∈CM⊕CM+1 : d((x,y),(0,0))≈ 0}.

Now consider a = (1,1) ∈CM⊕CM+1. This is easily seen to generate CM⊕CM+1 since (M +

1)a = (1,0). We identify x ∈CN with xa ∈CM⊕CM+1 and define the metric d on CN from the

metric on CM⊕CM+1 via this identification.

Define φ : T⊕T→CN/N by

φ(x,y) = (bMx
2π
c,b(M+1)y

2π
c)+N .

It is now straightforward to see that T⊕T with the ‘taxicab’ metric is isomorphic to CN/N =

CM⊕CM+1/N with the induced metric, where N is the monad of (0,0) ∈CM⊕CM+1.

If required, other metrics are possible. For example, if T⊕T is given the metric correspond-

ing to the distance on the surface of the torus, or the distance in 3-space corresponding to an

embedding of T⊕T in R3, a modified metric on CM⊕CM+1 could be given. Also, by similar

arguments, Tk for any finite k is isomorphic to CN/N for suitably chosen N and a metric on

CN .

By using the same process as given in Section 5.1.3, one can show that the measure µ on both

sets T⊕T= [0,2π)⊕ [0,2π) and CN/N is the Lebesgue measure λ . Therefore, the embedding

φ ′ : CN/N → T⊕T preserves measurability.
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5.1.6 The Additive Complex Group C= R⊕R

In a similar way we can embed the additive group R⊕R with the usual Euclidean metric into

the quotient group CN/N for some ∗metric on CN . One way is to choose K nonstandard and

N = K(K + 1) with CN identified with CK ⊕CK+1 as before. Each of CK and CK+1 is given a

metric similar to that in Section 5.1.3 and the metric on CK⊕CK+1 is given in the usual way by

d((u,v),(u′,v′)) =
√

(u−u′)2/K2 +(v− v′)2/(K +1)2.

Define Cfin
K ⊕Cfin

K+1 = {(x,y) ∈CK⊕CK+1 : d((x,y),(0,0)) is finite}. The monad of (0,0) is

Nd = N = {(x,y) ∈CK⊕CK+1 : d((x,y),(0,0))≈ 0}.

Now define φ : CN → R⊕R by

φ(x,y) = (st(x/K),st(y/(K +1))).

According to the first isomorphism theorem, CN/ker(φ)∼=R⊕R. But ker(φ) =N . Therefore,

the function φ ′ := φ/N : CN/N → R⊕R defined by

φ
′((x,y)+N ) = (st(x/K),st(y/(K +1)))

is an isomorphism. Also by taking the metric d((u,v),(u′,v′)) =
√
(u−u′)2 +(v− v′)2 on

R⊕R we obtain that φ ′ is an isometry.

The same process, as described in Section 5.1.3, can be applied to show that the measure µ on

the sets C = R⊕R and CN/N is the Lebesgue measure λ . So the embedding φ : CN/N →

R⊕R is measure-preserving.
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5.1.7 The Additive Group of p-adic Integers Zp

The additive group of p-adic integers Zp with the metric dp defined by

dp(x0 + x1 p+ · · · ,y0 + y1 p+ · · ·) =


2−k if k ∈ N is the least such that xk 6= yk,

0 if xk = yk for all k ∈ N,

is LEFM.

Consider the ∗finite ∗cyclic additive group CpN , where p is standard prime and N > N, with the

∗metric d defined in the same way as dp. Define φ : CpN → Zp by ‘forgetting’ the nonstandard

elements:

φ(x0 + x1 p+ x2 p2 + · · ·+ xN−1 pN−1) = x0 + x1 p+ x2 p2 + · · · .

Then φ is a homomorphism and the kernel of φ is the monad N of 0 in CpN since

ker(φ) = {x0 + x1 p+ . . .+ xN−1 pN−1 ∈CpN : x0 + x1 p+ x2 p2 + . . .= 0}= N .

Also, by saturation (Example 2.8.7), φ is onto.

Define φ ′ : CpN/N → Zp by φ ′(x+N ) = φ(x). It follows by the first isomorphism theorem

that CpN/N ∼= Zp and an easy check shows that the induced isomorphism is an isometry.

In order to define the measure µ on the set of p-adic integers Zp, where p is a standard prime

number, fix k ∈ N. The basic open (which are closed and compact) sets of Zp of length k are of

the form

Uz0,z1,...,zk−1 = {w0 +w1 p+w2 p2 + . . . ∈ Zp : wi = zi for all 06 i < k},

where zi ∈ Z and 06 zi < p for all i6 0 < k. Then the measure µ of such a basic open set is

µ(Uz0,z1,...,zk−1) = p−k.
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If B is the family of all Borel sets generated by these basic open subsets of Zp, then B is

the smallest σ -algebra containing such basic open sets. Thus the measure µ : B→ R has the

following properties: 0 6 µ(B) 6 1 for all B ∈B and particularly µ(Zp) = 1; if (Bi)i∈N is a

countable family of pairwise disjoint Borel sets then µ(
⋃

i∈NBi) = ∑i∈N µ(Bi); for all B ∈B

and all x ∈ Zp, µ(xB) = µ(Bx) = µ(B); also, for each B ∈B and each ε > 0, there is a closed

set A and an open set C such that A⊆ B⊆C with µ(C \A)< ε .

So by viewing Zp, as a (locally) compact Hausdorff topological abelian group, we notice that

Zp has Haar measure µ as defined in Section 3.2. Also µ on Zp is unique up to multiplication

by a positive constant. The following steps show that Zp and CpN/N have the measure µ which

is the Haar measure.

Assume I =Uz0,z1,...,zk−1 ⊆ Zp. Given a standard real ε > 0,

φ
−1(Uz0,z1,...,zk−1) = ∪φ

′−1(Uz0,z1,...,zk−1) = {w+N ∈CpN/N : φ
′(w+N ) ∈Uz0,z1,...,zk−1}

= {w ∈CpN : w0 +w1 p+w2 p2 + . . . ∈Uz0,z1,...,zk−1}.

Now consider the sets

Au,v = {w0 +w1 p+ . . .+wN−1 pN−1 ∈CpN : u6 w0 +w1 p+w2 p2 + . . .6 v},

where u = a+ ε/4 and v = b− ε/4, and

Bu′,v′ = {w0 +w1 p+ . . .+wN−1 pN−1 ∈CpN : u′ 6 w0 +w1 p+w2 p2 + . . .6 v′},

where u′ = a and v′ = b. Notice that Au,v ⊆ φ−1(I)⊆ Bu′,v′ with µ(Bu′,v′ \Au,v) = ε/2 < ε .

By the standard results on Loeb measure, the measure µ on Zp, as defined in Section 4.2, is

σ -additive. Therefore, every Haar measurable set A ⊆ Zp has µ-measure and this measure is

µ(A).

Hence, the embedding φ ′ : CpN/N → Zp is measure-preserving.
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5.1.8 The Profinite Completion Ẑ of Z

The profinite completion of Z, as an additive group, can be regarded as the set of sequences

(x0,x1,x2, . . .) with xn ∈ Z/nZ such that xn ≡ xnm mod n for all n,m ∈ Z. Its metric, d̂, is given

by

d̂((x0,x1,x2, . . .),(y0,y1,y2, . . .)) =


2−k if k ∈ N is the least such that xk 6= yk,

0 if xk = yk for all k ∈ N.

The metric group (Ẑ,+, d̂) is LEFM. Consider the ∗finite ∗cyclic additive group CN!, where

N! = N(N−1)(N−2) . . .(3)(2)(1). Also, consider the metric d given by d(x,y) = 2−k, where

k is the greatest, such that x≡ y mod n, for all n < k. Define the function ψ : CN!→ Ẑ by

ψ(x) = (x0,x1,x2, . . .) such that x≡ xn mod n for all n ∈ N.

Notice that

ker(ψ) = {x ∈CN! : (x0,x1,x2, . . .) = 0 and x≡ xn mod n for all n ∈ N}= N .

Therefore, by the first isomorphism theorem CN!/N ∼= Ẑ and an easy check shows that the

induced isomorphism is an isometry.

The measure µ defined on Ẑ is the Haar measure and the measure µ on the quotient set CN!/N

is the Haar measure as well. One can use the same process, as we utilised in the previous

section (Section 5.1.7), to prove the above claim about measurability of these sets. Hence, the

embedding ψ ′ : CN!/N → Ẑ is measure-preserving as well.

Furthermore, according to Theorem 4.3.8, the metric space (Ẑ, d̂) is compact.
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5.1.9 The Direct Sum of Finite Cyclic Groups C2⊕C2

The group C2⊕C2 with the discrete metric d is LEFM. This is obvious from the fact that it is

finite. Our argument here will show that C2⊕C2 embeds into CN/N for suitable N and N .

Let N be a nonstandard prime, and take a nonstandard N < a such that a2 < N. We define N

by

N = {2κ +4aλ : |κ|, |λ |< a/n for some n > N }.

Notice that this is monotonically definable, since it is the intersection of all

Nn = {2κ +4aλ : |κ|, |λ |< a/(n+1)},

for n ∈ N. Therefore, by the metrisation theorem (Theorem 4.1.9), N is the monad of 0 for

some invariant ∗metric on CN . By mapping

κ +2aλ 7→ (κ mod 2,λ mod 2) ∈C2⊕C2,

we see that C2 ⊕C2 ∼= K /N where K is the subgroup of CN consisting of all κ + 2aλ

with |κ|, |λ | < a/n for some n > N. Therefore, C2⊕C2 (with some discrete metric) embeds

in CN/N .

Similar arguments apply to any finite abelian group, using the basis theorem, see for example

Rotman [30, Chapter 4].

In all the examples here, we succeeded in giving a representation of the group using only the

group F = CN , cyclic of nonstandard finite order. We wonder whether all abelian groups have

such a representation using CN .

5.2 Nonabelian LEFM Group Examples

For a nonabelian example of an LEFM group, we observe that the dihedral groups with suitable

metrics are interesting examples for this case.
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5.2.1 The Dihedral Circle Group D2T

The dihedral circle group D2T is LEFM. Consider the dihedral circle group D2T := ToC2 with

metric d as given in Definition 1.2.5 and the ∗dihedral ∗metric group D2N of order 2N > N with

the metric d as given in Definition 1.2.4. Define ψ : D2N → D2T by

ψ(c, i) = (st(
2πc
N

), i).

Then ψ is a well-defined 1-1 function. In addition, ψ is a group homomorphism. Let (c, i) and

(c′, i′) be any two elements of D2N . So:

(1) if i = 0 = i′ then ψ((c,0)(c′,0)) = ψ(c+ c′,0) = (st(2π(c+c′)
N ),0) = (st(2πc

N )+ st(2πc′
N ),0)

= ψ(c,0)ψ(c′,0);

(2) if i = 0 and i′ = 1 then ψ((c,0)(c′,1)) = ψ(c+c′,0+1) = (st(2π(c+c′)
N ),0+1) = (st(2πc

N )+

st(2πc′
N ),0+1) = ψ(c,0)ψ(c′,1);

(3) if i = 1 and i′ = 0 then ψ((c,1)(c′,0)) = ψ(c+N− c′,1+ 0) = (st(2π(c+N−c′)
N ),1+ 0) =

(st(2πc
N )+2π− st(2πc′

N ),1+0) = ψ(c,1)ψ(c′,0); and

(4) if i = 1 = i′ then ψ((c,1)(c′,1)) = ψ(c+N− c′,0) = (st(2π(c+N−c′)
N ),0) = (st(2πc

N )+2π−

st(2πc′
N ),0) = ψ(c,1)ψ(c′,1).

Thus, we obtain that ψ((c, i)(c′, i′)) = ψ(c, i)ψ(c′, i′) for all (c, i),(c′, i′) ∈ D2N .

Furthermore, the function ψ is an onto. Let α ∈D2T. Then α = (c′, i′) for some c′ ∈ T and i′ ∈

C2. There is θ ∈ D2N , where θ = (Nc′
2π

, i′), such that ψ(θ) = ψ(Nc′
2π

, i′) = (st(2π(Nc′/(2π))
N ), i′) =

(c′, i′) = α .

Therefore, by the first isomorphism theorem, D2N/ker(ψ)∼= D2T.

On the other hand,

ker(ψ) = {(c, i) ∈ D2N : ψ((c, i)) = (0,0)}= {(c, i) : (st(
2πc
N

), i) = (0,0)}= N ,

where N is the monad of (0,0) ∈ D2N . Hence, D2N/N ∼= D2T.
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Now define ψ ′ = ψ/N : D2N/N → D2T by

ψ
′((c, i)N ) = (st(

2πc
N

), i).

So ψ ′ is an isometry, since

d(ψ ′((c, i)N ),ψ ′((c′, i′)N )) = d((st(
2πc
N

), i),(st(
2πc′

N
), i′))

= dT(st(
2πc
N

),st(
2πc′

N
))+d2(i, i′)

= dN(
N
2π

st(
2πc
N

),
N
2π

st(
2πc′

N
))+d2(i, i′)

= ◦dN(c,c′)+d2(i, i′)

= d((c, i)N ,(c′, i′)N ).

Hence, D2T embeds in D2N/N as a metric group.

5.2.2 The Infinite Dihedral Group D∞

The infinite dihedral group D∞
∼= ZoC2, as given in Definition 1.2.6, taken with the discrete

metric is LEFM. Consider the ∗dihedral ∗metric group D2N of order 2N, where N > N, as given

in Section 5.2.1, with the discrete metric. The monad of (0,0) in D2N is N = {(0,0)}. The

function ψ : D∞→ D2N/N given by

ψ(c, i) = (c, i)N

is well-defined and 1-1. In addition, ψ is a homomorphism. Let (c, i),(c′, i′) ∈ D∞. Then:

(1) if i = 0 and i′ = 0 then ψ((c,0)(c′,0)) = ψ(c+c′,0) = (c+c′,0)N = (c,0)N (c′,0)N =

ψ(c,0)ψ(c′,0);

(2) if i = 0 and i′ = 1 then we obtain ψ((c,0)(c′,1)) = ψ(c+ c′,0+ 1) = (c+ c′,0+ 1)N =

(c,0)N (c′,1)N = ψ(c,0)ψ(c′,1);

(3) if i = 1 and i′ = 0 then ψ((c,1)(c′,0)) = ψ(c + (−c′),1 + 0) = (c + (−c′),1 + 0)N =
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(c,1)N (c′,0)N = ψ(c,1)ψ(c′,0); and

(4) if i= 1= i′ then ψ((c,1)(c′,1)) =ψ(c+(−c′),0) = (c+(−c′),0)N = (c,1)N (c′,1)N =

ψ(c,1)ψ(c′,1).

Finally, an easy check shows that ψ is an isometry.

73



Chapter 6

Fourier Series Via a Nonstandard Approach

Throughout this chapter we study the nonstandard approach to some results in classical har-

monic analysis (Sections 3.2 and 3.3) for a special case, where the topological group G is the

additive circle group T (see Definition 1.2.2) with the usual topology. We represent such a topo-

logical group by a nonstandard ∗finite ∗cyclic group F = CN with addition modulo N, where

N > N is the order of F with the ∗metric d defined by

d(x,y) =
dF(x,y)

N
,

where dF(x,y) = min{|x− y|,N−|x− y|}.

We attempt to use nonstandard techniques together with discrete Fourier analysis (Section 3.1)

to translate as much as possible the classical results about the theory of Fourier series in L1(T)

into nonstandard analysis.

6.1 The Inner Product Space in Nonstandard Universe

Our focus will be on the nonstandard universe as much as possible. We switch our view to ∗CF ,

which is the set of all internal functions from F to ∗C, where F is defined as follows.

Definition 6.1.1. Let F =
{
b−N

2 c+1,b−N
2 c+2, . . . ,0, . . . ,bN

2 c
}

where N > N. If N is even,

then F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
. And F =

{
−N−1

2 ,−N−1
2 +1, . . . ,0, . . . , N−1

2

}
if N is

odd.
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Throughout this chapter, we fix an even N ∈ ∗N\N. Then F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
.

Note that work with finite summations is certainly easier than the work with integrals, due

for example to the ease in swapping the order of summations. Whereas swapping order of

integrations is sometimes problematic.

Let X = ∗CF , where ∗CF = { f : F→ ∗C is an internal function}. Then X ∼= ∗CN . In fact X is a

∗vector space over the field ∗C.

Definition 6.1.2. Let f ,g in X = ∗CF . The inner product of f and g is defined by

〈 f ,g〉= 1
N ∑

n∈F
f (n)g(n).

Example 6.1.3. We define an orthonormal basis {en : n ∈ F} of X = ∗CF where en : F→ ∗C is

given by en(k) := e2πink/N for all n,k ∈ F . Observe that

〈en,em〉=
1
N ∑

k∈F
e2πink/Ne−2πimk/N =

1
N ∑

k∈F
e2πi(n−m)k/N = δnm.

Moreover, for every f ∈ X , we can write f = ∑
n∈F

λnen, for some λn ∈ ∗C. Therefore,

〈 f ,em〉= 〈∑
n∈F

λnen,em〉= ∑
n∈F
〈λnen,em〉= ∑

n∈F
λn〈en,em〉= λm.

Note that,

〈 f ,em〉=
1
N ∑

k∈F
f (k)em(k) =

1
N ∑

k∈F
f (k)e−2πimk/N = f̂ (m)

is the finite discrete Fourier transform (DFT) in X , and

f (n) = ∑
m∈F

f̂ (m)e2πinm/N

is the finite inverse discrete Fourier transform (IDFT) in X .
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6.2 The DFT of Piecewise Continuous Functions in NSA

In this section we show that we can deal with piecewise continuous functions (Definition 1.2.20)

defined on T= [−π,π] as discrete Fourier transform functions on the ∗finite set F =CN where

F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
for N ∈ ∗N\N, by using methods of NSA. In other words,

the integration on T = [−π,π], which represents the Fourier coefficients can be written as a

summation on F , which has a similar structure to the definition of DFT formula.

Consider a piecewise continuous function f defined on the closed interval T= [−π,π]. Then f

is Riemann integrable [3] and its integral on T is defined by

∫
T

f (x)dx = lim
max∆xk→0

N/2

∑
k=−N

2 +1

f (tk)∆xk,

provided that the limit exists, where the limit is taken over all subdivisions {x−N
2
,x−N

2 +1, . . . ,x N
2
}

of [−π,π]. Here, ∆xk = xk− xk−1 and xk−1 6 tk 6 xk, for every k = −N
2 +1, . . . ,0,1, . . . , N

2 . If

the limit is equal to A, then for a given ε > 0 there exists δ > 0, such that for every subdivision

P = {x−N
2
,x−N

2 +1, . . . ,x0, . . . ,x N
2
}, with max∆xk < δ , we have

∣∣∣∣ N/2

∑
k=−N

2 +1

f (tk)∆xk−A
∣∣∣∣< ε,

for any points tk, xk−1 6 tk 6 xk, where k =−N
2 +1, . . . ,0,1, . . . , N

2 .

We work in ∗V (C )bdd, where C = (C, | · |,+, ·,a, f ,<)a∈C.

The following result uses NSA to compute the Fourier coefficients in Definition 3.3.1.

Theorem 6.2.1. If f : T→ C is a piecewise continuous function and N ∈ ∗N\N, then

f̂ (n) = st
( 1

N

N/2

∑
k=−N

2 +1

∗ f (
2πk
N

)e−2πink/N
)
, for all n ∈ Z.

Proof. Suppose f is a piecewise continuous function on T = [−π,π]. Then f is a Riemann

integrable function on [−π,π] [3]. So, f (x)e−inx is Riemann integrable function on [−π,π], for
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all n ∈ Z. In the Definition 3.3.1 of Fourier coefficients of f we have f̂ (n) = 1
2π

∫
T f (x)e−inxdx.

For a given real ε > 0 there is a real δ > 0 such that for all N in the standard world

max
−N

2 <k6N
2

∆xk < δ =⇒
∣∣∣ f̂ (n)− 1

2π

N/2

∑
k=−N

2 +1

f (xk)e−inxk∆xk

∣∣∣< ε,

where we are taking the subdivision P = {x−N
2
,x−N

2 +1, . . . ,x0, . . . ,x N
2
} of [−π,π] such that

−π = x−N
2
< x−N

2 +1 < .. . < x N
2
= π , ∆xk = xk− xk−1 =

2π

N and xk =
2πk
N . That is,

∀N ∈ N, N >
2π

δ

(∣∣∣ f̂ (n)− 1
2π

N/2

∑
k=−N

2 +1

f (
2πk
N

)e−2πink/N(
2π

N
)
∣∣∣< ε

)
.

Now by the Transfer principle we get a similar statement true in the nonstandard world. Also,

our N ∈ ∗N\N is certainly greater than the standard quantity 2π

δ
. So, we have

∣∣∣ f̂ (n)− 1
N

N/2

∑
k=−N

2 +1

∗ f (
2πk
N

)e−2πink/N
∣∣∣< ε.

Since N > N, it works for all possible standard real ε > 0, then

f̂ (n)≈ 1
N

N/2

∑
k=−N

2 +1

∗ f (
2πk
N

)e−2πink/N .

Hence, f̂ (n) = st
(

1
N

N/2
∑

k=−N
2 +1

∗ f (2πk
N )e−2πink/N

)
, for all n ∈ Z.

Notice that, if f : T→ C is a piecewise continuous function, then f yields an internal function

h f : F → ∗C given by

h f (n) = ∗ f (
2πn
N

), for all n ∈ F,

where F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }. Then h f has a discrete Fourier transform

ĥ f (n) =
1
N ∑

k∈F
h f (k)en(k) =

1
N ∑

k∈F
h f (k)e−2πink/N = 〈h f ,en〉.

Theorem 6.2.1 shows that ĥ f (n) ≈ f̂ (n), for all standard n ∈ Z. Furthermore, we can recover
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h f as defined in Section 6.1 by

h f (n) = ∑
k∈F
〈h f ,ek〉en(k) = ∑

k∈F
ĥ f (k)e2πink/N .

Since f is piecewise continuous, at all points of continuity t and N > N we have

f (t) = st
(

h f (b
Nt
2π
c)
)
= st

(
∑
k∈F

ĥ f (k)e2πib Nt
2π
ck/N

)
.

6.3 The Dirichlet and Fejér Kernels in X = ∗CF

Definition 6.3.1. The function Dn : F → ∗C is defined by

Dn =
n

∑
k=−n

ek,

in other words

Dn(m) =
n

∑
k=−n

ek(m),

where m,n ∈ F and 0 6 n 6 N
2 . The family of functions {Dn : 0 6 n 6 N

2 } is analogous to the

Dirichlet kernel of the classical harmonic analysis.

Definition 6.3.2. The function Φn : F → ∗C is defined by

Φn =
1

n+1

n

∑
k=0

Dk,

that is

Φn(m) =
1

n+1

n

∑
k=0

Dk(m),

where m,n ∈ F and 0 6 n 6 N
2 . The family of functions {Φn : 0 6 n 6 N

2 } is analogous to the

Fejér kernel of the classical harmonic analysis.

It is interesting to study the behaviour of the Dirichlet and Fejér kernels, particularly when

n ∈ N is large or n ∈ ∗N \N is small. The Fejér kernel has the following useful and important

properties.
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Theorem 6.3.3. If k ∈ F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }, 06 k and N > N, then

1
N ∑

n∈F
Φk(n) = 1.

Proof. Suppose N ∈ N and X ∼= CN is a standard complex vector space of dimension N. Then

1
N ∑

n∈F
Φk(n) =

1
N

1
k+1 ∑

n∈F

k

∑
`=0

(
`

∑
m=−`

em(n)) =
1
N

1
k+1

k

∑
`=0

`

∑
m=−`

Nδm0 = 1

Then by the Transfer principle, the theorem is true for N > N. That is, 1
N ∑

n∈F
Φk(n) = 1 in

∗CN .

Theorem 6.3.4. Dk(r) ∈ ∗R, for all r,k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 }, where 06 k and N >N.

Proof. Suppose N ∈ N, and X ∼= CN is a standard complex vector space of dimension N. From

the definition of Dirichlet kernel, we have

Dk(r) =
k

∑
n=1

(e2πinr/N + e−2πinr/N)+1 = 2
k

∑
n=1

Re(e2πinr/N)+1

since e−2πinr/N is a complex conjugate of e2πinr/N . Therefore, Dk(r) ∈ R. So, by Transfer, the

theorem is true for N > N. Hence, Dk(r) ∈ ∗R, for all r,k ∈ F , 06 k.

Theorem 6.3.5. Φk(r) ∈ ∗R, for all r,k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 }, where 06 k and N >N.

Proof. In Theorem 6.3.4, we have Dn(r) ∈ ∗R, for all r,n ∈ F , 06 n and

Φk(r) =
1

k+1

k

∑
n=0

Dn(r).

In addition, the operations of summation and division by k+1 are internal. So, Φk(r) ∈ ∗R, for

all r,k ∈ F , 06 k.

The following theorem shows that the Fejér function is an even function on F ,

Theorem 6.3.6. Φn(r) = Φn(−r), for every n,r ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 } and 06 n.
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Proof. Actually, the even property of Fejér function comes from the even function property of

the Dirichlet function. That is, Dn(r) = Dn(−r) for all n,r ∈ F and 06 n6 N
2 . So,

Φn(r) =
1

n+1

n

∑
k=0

( k

∑
m=−k

em(r)
)
=

1
n+1

n

∑
k=0

( k

∑
m=−k

em(−r)
)
= Φn(−r).

Some useful equivalent formulas to the Fejér function are given in the following theorem.

Theorem 6.3.7. If r,k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 }, 06 k 6 N
2 and N > N then:

(a) Φk(r) =
k

∑
m=−k

(
1− |m|

k+1
)

em(r); and

(b) Φk(r) =
1

k+1

(
sin

(k+1)πr
N

/
sin

πr
N

)2

.

Proof. Suppose N ∈ N and X ∼= CN is a standard complex vector space of dimension N.

(a) From the definition of Fejér kernel, for all r ∈ F , we have

Φk(r) =
1

k+1

k

∑
n=0

(
n

∑
m=−n

em(r)) =
1

k+1

k

∑
m=−k

(k+1−|m|)em(r) =
k

∑
m=−k

(1− |m|
k+1

)em(r).

Since the theorem is true for every N ∈ N, then by Transfer it is true for every N ∈ ∗N.

(b) We consider the Dirichlet kernel and use the formula for partial sums of geometric series.

Then

Dn(r) =
n

∑
m=−n

em(r) = e−2πirn/N
2n

∑
m=0

e2πirm/N =
e−(2n+1)πir/N− e(2n+1)πir/N

e−πir/N− eπir/N
=

sin (2n+1)πr
N

sin πr
N

.

So,

Φk(r) =
1

k+1
1

sin πr
N

k

∑
n=0

sin
(2n+1)πr

N

=
1

k+1
1

sin πr
N

k

∑
n=0

cos 2nπr
N − cos 2(n+1)πr

N
2sin πr

N

=
1

k+1
1

(sin πr
N )2

1− cos 2(k+1)πr
N

2
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=
1

k+1

(
sin (k+1)πr

N
sin πr

N

)2

.

Thus the theorem is true for all N ∈ N. So by the Transfer principle it is true for N > N as

well.

Remark 6.3.8. Φk(0) = k+1, for all k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 } and 06 k.

Proof. In Theorem 6.3.7(a), Φk(0) =
k
∑

m=−k
(1− |m|

k+1) = k+1, for all k ∈ F , 06 k.

Theorem 6.3.9. Φk(r)> 0, for all r,k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 }, 06 k and N > N.

Proof. From Theorem 6.3.7 (b), we have Φk(r) = 1
k+1

(
sin (k+1)πr

N
sin πr

N

)2
. Hence, Φk(r) > 0, for all

k,r ∈ F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }, 06 k and N > N.

Theorem 6.3.10. Let F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 } and N >N. If 0 < k0 <

N
2 with k0

N is

not infinitesimal, then there is a standard K ∈ N such that for all 0 < n < N
2 ,

∑
r∈F
|r|>k0

Φn(r)<
K

n+1
N.

Proof. We will use Theorem 6.3.7 (b), which is an equivalent formula of the Fejér function, and

Theorem 6.3.9. Then, for all n > N, we have

06Φn(r) =
1

n+1
(sin (n+1)πr

N )2

(sin πr
N )2 .

Case (i): If

0 < k0 < r <
N
2
,

then

sin
πk0

N
< sin

πr
N
.

So
1

sin2 πr
N

<
1

sin2 πk0
N

.
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Since k0
N is not infinitesimal, then sinπk0

N is not infinitesimal either. Therefore

sin2 (n+1)πr
N

sin2 πr
N

<
sin2 (n+1)πr

N

sin2 πk0
N

.

But sin2 (n+1)πr
N 6 1, for every n ∈ F , n> 0 and N > N. Now, we choose

K =

⌈
1

sin2 πk0
N

⌉
.

Then, K is a required standard natural number, such that

Φn(r) =
1

n+1
(sin (n+1)πr

N )2

(sin πr
N )2 <

1
n+1

K.

Since, for all r,n ∈ F = {−N
2 +1, −N

2 +2, . . . ,0, . . . , N
2 }, 06 n6 N

2 , 06Φn(r). Therefore,

∑
r∈F
|r|>k0

Φn(r)6 ∑
r∈F

Φn(r)<
K

n+1
N.

Case (ii): If −N
2 < r < k0 < 0, then 0 < −k0 < −r < N

2 . So, by using Case (i), we get the

result.

Definition 6.3.11. The `th partial sum of the Fourier series of a function f : F→ ∗C is denoted

by S`( f ,n) and defined by

S`( f ,n) =
`

∑
k=−`

f̂ (k)ek(n),

where f̂k = 〈 f ,ek〉, and `,n ∈ F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }, `> 0.

Definition 6.3.12. The average of the first k+1 partial sums of the Fourier series of a function

f : F → ∗C, for k ∈ F = {−N
2 +1, . . . ,0, . . . , N

2 }, k > 0 is denoted by σk( f ,n) and defined by

σk( f ,n) =
1

k+1

k

∑
`=0

S`( f ,n),

where S`( f ,n) is the `th partial sum, n ∈ F , and F = {−N
2 +1, −N

2 +2, . . . ,0, . . . , N
2 }.

Note that, we can write the partial sums of the Fourier series and its average of a function
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f : F → ∗C in terms of Dirichlet and Fejér functions, as shown in the following theorems.

Theorem 6.3.13. For every `,n ∈ F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }, `> 0

S`( f ,n) =
1
N ∑

r∈F
f (n− r)D`(r).

Proof. From the definition of the `th partial sum of the Fourier series of f ∈ ∗CF , we have

S`( f ,n) =
`

∑
k=−`

f̂ (k)en(k) =
`

∑
k=−`

(
1
N ∑

r∈F
f (r)e−2πirk/N)e2πikn/N =

1
N ∑

r∈F
f (r)D`(n− r).

Notice that, for every n,r ∈ F , if we shift the set F to the left by r, we get n−r ∈ F . By applying

a change of variables, we get S`( f ,n) = 1
N ∑

r∈F
f (n− r)D`(r).

Theorem 6.3.14. For every k,n ∈ F where F = {−N
2 +1,−N

2 +2, . . . ,0, . . . , N
2 }, k > 0

σk( f ,n) =
1
N ∑

r∈F
f (n− r)Φk(r).

Proof. By the definition of the average of the kth partial sum of the Fourier series of a function

f : F → ∗C and Theorem 6.3.13, we obtain

σk( f ,n) =
1

k+1

k

∑
`=0

S`( f ,n) =
1

k+1

k

∑
`=0

(
1
N ∑

r∈F
f (n− r)D`(r)) =

1
N ∑

r∈F
f (n− r)Φk(r).

Notice that, for every n,r ∈ F , if we shift the set F to the left by r, we get n− r ∈ F .

6.4 Convolution

Definition 6.4.1. Let f ,g ∈ X = ∗CF and r ∈ F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
. Then the

convolution of f and g is denoted by f ∗g and defined by

( f ∗g)(r) =
1
N ∑

s∈F
g(r− s) f (s).

Notice that F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
, has an abelian group structure under the ad-

dition operation modulo N. We write +,− for these operations of F .
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Definition 6.4.2. The abelian group F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
, acts on the space

X = ∗CF . The action (τ,s) 7→ τs ∈ X is defined by τs( f (r)) = f (r− s) for τ ∈ X and s ∈ F ,

where the operation − is the binary operation of subtraction mod N in the group F .

Now we consider some properties of convolution of functions.

Theorem 6.4.3. ( f ∗g)(r) = (g∗ f )(r) for all f ,g ∈ ∗CF and all r ∈ F .

Proof. By applying a change of variables, we get

( f ∗g)(r) =
1
N ∑

s∈F
g(r− s) f (s) =

1
N ∑

s∈F
g(s) f (r− s) =

1
N ∑

s∈F
f (r− s)g(s) = (g∗ f )(r).

Theorem 6.4.4. (( f ∗g)∗h)(r) = ( f ∗ (g∗h))(r) for all f ,g,h ∈ ∗CF and all r ∈ F .

Proof. By applying a change of variables, we see that

(( f ∗g)∗h)(r) =
1
N ∑

s∈F

( 1
N ∑

`∈F
f (`)g(s− `)

)
h(r− s)

=
1
N ∑

s∈F
f (r− s)

( 1
N ∑

`∈F
g(s− `)h(`)

)
= ( f ∗ (g∗h))(r).

Definition 6.4.5. Let f ∈ X = ∗CF . Then f∗ : X → X is defined by f ∗ (g) = f ∗g.

In fact, f∗ : X → X is a linear transformation. We can prove this as follows.

Theorem 6.4.6. If f∗ : X → X , where X = ∗CF , then:

(a) f ∗ (g+h) = ( f ∗g)+( f ∗h), for all g,h ∈ X ;

(b) f ∗ (ag) = a( f ∗g), for all g ∈ X and a ∈ ∗C.

Proof. Let f∗ ∈ XX , g,h ∈ X , r ∈ F and a ∈ ∗C. Then:

(a)

f ∗ (g+h)(r) =
1
N ∑

s∈F
f (r− s)g(s)+

1
N ∑

s∈F
f (r− s)h(s) = ( f ∗g)(r)+( f ∗h)(r);
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(b)

f ∗ (ag)(r) =
1
N ∑

s∈F
f (r− s)(ag)(s) = a

( 1
N ∑

s∈F
f (r− s)g(s)

)
= a( f ∗g)(r).

Theorem 6.4.7. The vector en is an eigenvector of f∗, and the corresponding eigenvalue is

〈 f ,en〉 for all n ∈ F .

Proof. By using the definition of convolution of functions, we get

( f ∗ en)(r) =
1
N ∑

s∈F
f (r− s)en(s) = ∑

k∈F
f̂ (k)e2πikr/N

δnk = f̂ (n)e2πinr/N = 〈 f ,en〉en(r).

Notice that the DFT of the convolution of two functions is equal to the product of their discrete

Fourier transforms. This is proved in the following theorem.

Theorem 6.4.8. f̂ ∗g(n) = f̂ (n)ĝ(n), for all f ,g ∈ ∗CF , and n ∈ F .

Proof. By using the definitions of DFT of f ∗g and convolution of functions, we obtain

f̂ ∗g(n) =
1
N ∑

k∈F
( f ∗g)(k)e−2πikn/N =

1
N ∑

r∈F
f (r)e−2πinr/N 1

N ∑
k∈F

g(k− r)e−2πin(k−r)/N .

Let k− r = s. If k = −N
2 +1, −N

2 +2, . . . , N
2 , then s = −N

2 +1− r, −N
2 +2− r, . . . , N

2 − r. We shift

the set F to the left by the integer r, we notice that

N
2−r

∑
s=−N

2 +1−r

g(s) =

N
2

∑
s=−N

2 +1

g(s).

Therefore, f̂ ∗g(n) =
1
N ∑

r∈F
f (r)e−2πinr/N 1

N ∑
s∈F

g(s)e−2πins/N = f̂ (n)ĝ(n) as required.

Theorem 6.4.9. σn( f ,s) = (Φn ∗ f )(s) for all f ∈ ∗CF and all n,s ∈ F , n> 0.

Proof. By using the definition of convolution of functions and Theorem 6.3.14, we obtain

σn( f ,s) =
1
N ∑

t∈F
f (s− t)Φn(t) = (Φn ∗ f )(s),

for all n,s ∈ F and 06 n.
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Theorem 6.4.10. σn( f ,s) =
n
∑

k=−n
(1− |k|

n+1) f̂ (k)e2πiks/N , where n,s ∈ F and 06 n6 N
2 .

Proof. By Theorems 6.3.7 (a) and 6.4.9, and the definition of convolution of functions, we get

σn( f ,s) =
1
N ∑

t∈F

( n

∑
k=−n

(
1− |k|

n+1
)
e2πik(s−t)/N

)
f (t) =

n

∑
k=−n

(
1− |k|

n+1
)

f̂ (k)e2πiks/N .

Definition 6.4.11. Let F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
and r,k ∈ F with k ≥ 0. Then we

define Bk(r) by Bk(r) = {r− k,r− k+1, . . . ,r, . . . ,r+ k}, addition being modulo N as usual.

Also Bc
k(r)=

{−N
2 +1, . . . ,r− (k+1)

}
∪
{

r+(k+1), . . . , N
2

}
is called the complement of Bk(r)

in F .

According to Definition 1.2.12, F is a precompact set with respect to the metric d given by

d(x,y) = 2π

N min{|x− y|,N−|x− y|}, as shown in the following theorem.

Theorem 6.4.12. The ∗finite metric space (F,d) is a precompact space.

Proof. Since dia(F)6 π , then the diameter of F is limited. For any appreciable number a > 0,

there exists a limited family {Bi(idaN
8π
e, a

4) : i = −n, . . . ,0, . . . ,n}, n = d 2π

a/2e = d
4π

a e, of closed

balls of F , such that

F =
n⋃

i=−n

Bi

(
i
⌈aN

8π

⌉
,
a
4

)
and dia

(
Bi
(
idaN

8π
e, a

4
))

=
a
2
< a

for all −n6 i6 n. Hence, (F,d) is a precompact space.

Theorem 6.4.13. Every internal subset E of the ∗finite metric precompact space F is a metric

precompact space.

Proof. For every internal subset E of F , dia(E) 6 dia(F) 6 π. Then, diameter of E is limited.

Moreover, given a > 0, take a limited cover {Bi(ki,r) : i = 0, . . . ,n} of F . Then, {Bi(ki,r)∩E :

i = 0, . . . ,n} is a limited cover of E. Hence, E is a precompact space.
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6.5 The Relation Between L1(T) and L1(F)

Our goal in this section is to show the relation between functions in the standard space L1(T)

(Section 3.3) and functions in the nonstandard space L1(F).

Theorem 6.5.1. If g ∈ L1[−π,π], then there is H ∈ L1(F) such that g(st(2πω

N )) = ◦H(ω) for

almost all ω ∈ F .

Proof. Suppose g ∈ L1[−π,π] is a (representative of) a classical L1 (equivalence class of) func-

tions. Then g is Lebesgue (λ ) measurable and
∫
[−π,π] |g|dλ is finite. Define h : F → C by

h(ω) = g(st(
2πω

N
)).

(Note: h is not necessarily internal). Then, for a closed set B ⊆ C, g−1(B) is a Lebesgue

measurable set. In Note 2.7.4, st−1
N (g−1(B)) ∈ L(A ) and we have

st−1
N (g−1(B)) = {ω ∈ F : stN(ω) ∈ g−1(B)}= {ω ∈ F : st(

2πω

N
) ∈ g−1(B)}= h−1(B)

Therefore, h−1(B) ∈ L(A ). Hence, h is L(A )-measurable. In Definition 2.7.15, h has a

lifting H : F → ∗C such that ◦H(ω) = h(ω) L(µ)-almost everywhere. In addition, we have

g ∈ L1[−π,π], then
∫
[−π,π] |g|dλ is limited. Moreover, the standard part map is always limited.

Then, g(stN(ω)) is the composition of the functions stN : F→ [−π,π] and g : [−π,π]→C. So,∫
F |g(stN)|dL(µ) =

∫
F |h|dL(µ) is limited. By Theorem 2.7.17, H is S-integrable on F .

To show that H is almost S-continuous on F , we have h(ω) = g(st(2πω

N )), for all ω ∈ F . Hence,

h(ω) = g(t), for all ω ∈ st−1
N (t).

Thus, h is constant on monads, st−1
N (t). Moreover, we found S-integrable H : F → ∗C with

h(ω) = st(H(ω)), for all ω ∈ A, where A⊆ F is L(A )-measurable with measure 2π . Thus, on

a monad st−1
N (t), the values of H vary by at most an infinitesimal. That is, for all t ∈ [−π,π]
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and ω,ν ∈ A

ω,ν ∈ st−1
N (t)⇒ H(ω)≈ H(ν).

Since t was arbitrary, then

ω ≈ ν ⇒ H(ω)≈ H(ν), for all ω,ν ∈ A.

Therefore, H is S-continuous on A. Hence, H is L-integrable on F .

The conclusion to Theorem 6.5.1 is that every function in L1([−π,π]) can be represented as an

L1(F) function.

6.6 Convergence in Norm

Definition 6.6.1. If f : ∗N→ ∗C is a function, then the ◦limit of f (n) as n→ ∞, for n ∈ N

is λ ∈ C, if for all ε � 0, there exists a standard K ∈ N such that for all standard n > K,

| f (n)−λ |< ε , written as ◦ lim
n∈N

f (n) = λ .

Lemma 6.6.2. Let f : ∗N→ ∗C be a function and n ∈ ∗N. If f (n) has a ◦limit, then it is unique.

Proof. Same as in the usual real analysis.

Remark 6.6.3. Uniqueness follows because λ ∈ C, not ∗C.

Theorem 6.6.4. If f ∈ V = ∗CF is limited on F , then ‖σn( f )− f‖1 is also limited, for every

n ∈ F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
, 06 n6 N

2 .

Proof. Assume that f is limited on F . Then, there exists M ∈ N, such that | f (r)| < M for all

r ∈ F . Since 1
N ∑r∈F Φn(r) = 1 and Φn(r)> 0 for all r ∈ F and all n> 0, then

‖σn( f )− f‖1 =
2π

N ∑
s∈F

∣∣∣ 1
N ∑

r∈F
Φn(r) f (s− r)− f (s)

∣∣∣< 2π

N ∑
s∈F

1
N ∑

r∈F
Φn(r)(2M) = 4πM.

Now, we shall show in the following theorem that the S-continuous functions are dense in

L1(F). That is, the integrable functions can be approximated by S-continuous functions. The
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proof of this theorem will be done in two stages. First, L-integrable functions can be approx-

imated by integrable averaging functions, relative to some nice partitions of F . Second, since

each averaging function is a linear combination of constant functions, then it can be approxi-

mated by continuous functions on F [33].

Theorem 6.6.5. If f : F → ∗C is an L-integrable function, then for all appreciable numbers

a > 0, there exists an S-continuous function g : F → ∗C such that, ‖ f −g‖1 < a.

Proof. Assume f : F → ∗C is an L-integrable function. Then, for all appreciable numbers

a > 0, we will choose a nice dissection (Pn)06n6ν ,(ν >N). That is, a dissection, in which Pn

is infinitely fine, for all n > N. Then, by Theorem 2.5.13 (c), we have

‖ f −EPn[ f ]‖1 <
a
2
, for all n > N.

So by overspill, the above inequality is also true for some limited natural numbers m, where m

depends on a. Therefore,

‖ f −EPm [ f ]‖1 <
a
2
, for some m ∈ N.

Otherwise, we get

‖ f −EPm [ f ]‖1 >
a
2
, for all m ∈ N.

So by overspill, there exist unlimited natural numbers m such that

‖ f −EPm[ f ]‖1 >
a
2
, for some m > N

which is a contradiction to Theorem 2.5.13 (c). Therefore,

‖ f −EPn[ f ]‖1 <
a
2
, for some n ∈ N.

Hence, the averaging functions EPn[ f ] relative to partitions Pn, for some limited n, are dense

in L1(F). Now, using Proposition 2.5.12, we can construct a partition Pn, of F for limited n

such that each atom of Pn is a near interval. So, we obtain finitely many convex atoms in Pn,
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in which EPn[ f ] is limited.

Now we have to prove EPn[ f ] is approximated by a continuous function. Let t1, t2, . . . , tw be

points of F in which, EPn[ f ] is not continuous, where w is limited, and let η > 0 be an appre-

ciable number.

Consider a point ti, where 1 6 i 6 w. Then, to turn the function EPn[ f ] from discontinuous at

ti to continuous at ti, we will take two points (ti−η ,k) and (ti +η , l) from the left and the right

of ti, in the graph EPn[ f ]. Join the two points by the line

gi(t) =
( l− k

2η

)
t +
(

l− l− k
2η

(ti +η)
)
, for all i = 1,2, . . . ,w.

We define g : F → ∗C as follows

g(t) =


EPn[ f ](t) if ti−1 < t < ti−η or ti +η < t < ti+1,

(l−k)(t−ti)
2η

+ l+k
2 if ti−η 6 t 6 ti +η ,

where

k = EPn[ f ](t), for all ti−1 < t < ti, and for all i = 2,3, . . . ,w−1,

and

l = EPn[ f ](t), for all ti < t < ti+1, and for all i = 1,2, . . . ,w−2.

Then g is the required continuous function such that for a small enough η > 0 we get

‖EPn[ f ]−g‖1 <
a
2
.

That is, EPn[ f ] approximated by an S-continuous functions g, for limited n. So, by overspill,

there are some unlimited numbers w such that the approximation is true. Then

‖EPw [ f ]−g‖1 <
a
2
, for some w > N.
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So, from the triangle inequality of norms we obtain

‖ f −g‖1 6 ‖ f −EPw [ f ]‖1 +‖EPw [ f ]−g‖1 <
a
2
+

a
2
= a.

Theorem 6.6.6. If f ∈ L1(F), then ◦ lim
n∈N
‖σn( f )− f‖1 = 0.

Proof. Since f : F → ∗C is an L-integrable function, in Theorem 6.6.5, for all appreciable

numbers ε > 0, there exists an S-continuous function g : F→ ∗C such that ‖ f −g‖1 <
ε

2(2π+1) .

Now consider

‖σn( f )− f‖1 = ‖Φn ∗ f − f‖1 < (2π +1) · ε

2(2π +1)
+‖Φn ∗g−g‖1 =

ε

2
+‖Φn ∗g−g‖1,

since ‖Φn‖1 =
2π

N ∑
t∈F
|Φn(t)|= 2π( 1

N ∑
t∈F

Φn(t)) = 2π .

Notice that, as g is S-continuous function on F , there exists k ∈ F with k
N � 0, such that

t ∈ Bk(0) = {−k,−k+1, . . . ,0, . . . ,k}⇒max
s∈F
|g(s− t)−g(s)|< ε

4π
.

Therefore,

‖Φn ∗g−g‖1 =
2π

N ∑
s∈F
|Φn ∗g(s)−g(s)|

6 2π
(

max
s∈F
|Φn ∗g(s)−g(s)|

)
6 2π

(
max
s∈F

1
N ∑

t∈F
Φn(t)|g(s− t)−g(s)|

)
= 2π

(
max
s∈F

1
N ∑

t∈Bk

Φn(t)|g(s− t)−g(s)|+max
s∈F

1
N ∑

t∈Bc
k

Φn(t)|g(s− t)−g(s)|
)
.

Since g is S-continuous on F and g approximates f ∈ L1(F), then g is limited on F . So, there

is a standard M ∈ N such that |g(s)|6M, for all s ∈ F . Furthermore, in Theorem 6.3.10, there

exists a standard K such that, 1
N ∑

t∈Bc
k

Φn(t)< K
n+1 . So,

‖Φn ∗g−g‖1 < 2π

( 1
N ∑

t∈Bk

Φn(t)(
ε

4π
)+

1
N ∑

t∈Bc
k

Φn(t)(2M)
)
<

ε

2
+

4πKM
n+1

,
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since 1
N ∑t∈F Φn(t) = 1. Therefore,

◦ lim
n∈N
‖σn( f )− f‖1 <

◦ lim
n∈N

(ε

2
+‖Φn ∗g−g‖1

)
<◦ lim

n∈N

(ε

2
+

ε

2
+

4πKM
n+1

)
= ε.

Since ε is an arbitrary, it follows that ◦ lim
n∈N
‖σn( f )− f‖1 = 0.

Definition 6.6.7. Let F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
. Then a trigonometric polynomial

on F is an expression of the form

p(t) =
k

∑
n=−k

f̂ (n)e2πitn/N .

The numbers n ∈ F in the summand are called the frequencies of p. The largest positive n such

that f̂ (n) 6= 0 or f̂ (−n) 6= 0 is called the degree of p.

Example 6.6.8. Given f̂ on F =
{
−N

2 +1,−N
2 +2, . . . ,0, . . . , N

2

}
by f̂ (n) = 1 if |n| 6 50 and

f̂ (n) = 0 otherwise. Then f is of degree 50 and f (k) =
50
∑

n=−50
e2πink/N .

For any f ∈ L1(F), the lower bound of ‖ f‖1 can be determined, as shown in the following

theorem.

Theorem 6.6.9. | f̂ (n)|6 ‖ f‖1 for all f ∈ L1(F), and all n ∈ F .

Proof. Since |e−2πirn/N |= 1, then we have

| f̂ (n)|=
∣∣∣ 1
N ∑

r∈F
f (r)e−2πirn/N

∣∣∣6 1
N ∑

r∈F

∣∣ f (r)∣∣∣∣e−2πirn/N∣∣6 2π

N ∑
r∈F

∣∣ f (r)∣∣= ‖ f‖1.

Theorem 6.6.10. The set of trigonometric polynomials of standard degree is dense in L1(F).

Proof. We use the sequence (Φn) of the Fejér kernel, which is a summability kernel in L1(F).

By Theorem 6.6.6, for every f ∈ L1(F), the sequence (σn( f )) = (Φn ∗ f ) converges to f in

1-norm. That is, ◦ lim
n∈N
‖σn( f )− f‖1 = 0. Hence, trigonometric polynomials are dense in L1(F).

Theorem 6.6.11. (Riemann-Lebesgue Lemma) If f ∈ L1(F), then ◦ lim
|n|∈N

f̂ (n) = 0.
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Proof. Let ε > 0 be an appreciable number and f ∈ L1(F). By Theorem 6.6.6 there exists a

standard M ∈ N, such that ‖σk( f )− f‖1 < ε , for all k > M. Notice that for |n|> the degree of

σk( f ), we have

f̂ (n)− σ̂k( f ,n) =


f̂ (n) if |n|> k,

0 if |n|6 k.

So,

| f̂ (n)|= |σ̂k( f ,n)− f̂ (n)|= |( ̂σk( f )− f )(n)|6 ‖σk( f )− f‖1 < ε.

Hence, ◦ lim
|n|∈N

f̂ (n) = 0.

Theorem 6.6.12. (Uniqueness theorem) Let f ∈ ∗CF . If f̂ (m) = 0 for all m ∈ F , then f = 0.

Proof. In the vector space ∗CF , we have f (k) = ∑
m∈F

f̂ (m)ek(m). If f̂ (m) = 0, for all m ∈ F ,

then f (k) = 0 for all k ∈ F .

Notice that in Theorem 6.6.12, if f ∈ L1(F), f̂ (m) = 0, for all m∈Z, and by Theorem 6.4.10 we

have σn( f ,s) =
n
∑

m=−n

(
1− |m|n+1

)
f̂ (m)e2πims/N , then σn( f ,s) = 0, for all n∈N. In Theorem 6.6.6,

we have ◦ lim
n∈N
‖σn( f )− f‖1 = 0. So ‖ f‖1 ≈ 0.

Definition 6.6.13. Let f ∈ V = ∗CF , and s ∈ F then the ◦limit of f (r) as r→ s is λ ∈ C, if

∀ ε � 0, ∃ k such that k
N � 0 and ∀ t ∈ Bk(s), | f (t)−λ |< ε . We also write this as ◦ lim

r→s
f (r) = λ .

Theorem 6.6.14. (Fejér Theorem) If f ∈ L1(F), t0 ∈ F and y0 ∈ ∗C, such that

st(y0) =
◦ lim

h→0

f (t0 +h)+ f (t0−h)
2

, then ◦ lim
n∈N

σn( f , t0) = st(y0).

Proof. Since ◦ lim
h→0

f (t0+h)+ f (t0−h)
2 = st(y0), then for a given ε > 0, there exists k ∈ F with k

N � 0,

such that

t ∈ Bk(0) = {−k,−k+1, . . . ,0, . . . ,k}⇒
∣∣∣ f (t0 + t)+ f (t0− t)

2
− st(y0)

∣∣∣< ε.

On the other hand, we have ◦ lim
n∈N

(max
t∈Bc

k

Φn(t)) = 0, by properties of Φn in Theorem 6.3.10. So,

by overspill, there is some infinite n ∈ ∗N with max
t∈Bc

k

Φn(t)< ε.
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Notice that, |σn( f , t0)− st(y0)|

=
∣∣∣ 1
N ∑

t∈F
Φn(t) f (t0− t)− st(y0)

∣∣∣
=
∣∣∣ 1
N ∑

t∈F
Φn(t)( f (t0− t)− st(y0))

∣∣∣ (since
1
N ∑

t∈F
Φn(t) = 1)

6
1
N

N/2

∑
t=0

Φn(t)
∣∣∣ f (t0− t)+ f (t0 + t)−2st(y0)

∣∣∣ (Theorem 6.3.6 Φn(t) = Φn(−t),∀t ∈ F)

=
2
N

k

∑
t=0

Φn(t)
∣∣∣ f (t0− t)+ f (t0 + t)

2
− st(y0)

∣∣∣+ 2
N

N/2

∑
t=k+1

Φn(t)
∣∣∣ f (t0− t)+ f (t0 + t)

2
− st(y0)

∣∣∣
<

2
N

k

∑
t=0

Φn(t)(ε)+
2
N

N/2

∑
t=k+1

(ε)
∣∣∣ f (t0− t)+ f (t0 + t)

2
− st(y0)

∣∣∣
6

2ε

N ∑
t∈F

Φn(t)+
2ε

N ∑
t∈F
| f (t)|+

(2ε

N

)
(N)|st(y0)|

= 2ε +
ε

π

(2π

N ∑
t∈F
| f (t)|

)
+2ε|st(y0)|

= 2ε(1+ |st(y0)|)+
ε

π
‖ f‖1

Since ε is arbitrary and ‖ f‖1, st(y0) are limited, therefore σn( f , t0)→ st(y0).

Hence, ◦ lim
n∈N

σn( f , t0) = st(y0).
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Chapter 7

Functionals in Nonstandard Analysis

An exponential polynomial function f (z) = ∑
n
k=−n akeikz is a complex-valued function, where

ak are complex constants for all −n 6 k 6 n and z is a complex variable. Let T be the test

space of exponential polynomial functions f : T→ C. Obviously, the exponential polynomial

functions are infinitely differentiable on T. Since T = [−π,π] is a compact set, every closed

subset of T is compact. That is, functions f defined on T are of compact support. We call a

function f ∈ T a test function.

Notice that, T is a vector space over the field of complex numbers C. The componentwise

addition and scalar multiplication are defined on T as follows:

( f +g)(t) = f (t)+g(t), and (λ f )(t) = λ ( f (t)) for all f ,g ∈ T and λ ∈ C.

In this chapter we would like to focus on the continuous linear functionals (generalised func-

tions) F : T → C. The topology defined on T is the uniform convergence topology and the

topology defined on C is the usual topology.

Note 7.0.15. To avoid confusion, we will denote the nonstandard ∗finite set F by X due to the

use of the symbol of F for functionals, throughout this chapter.

For an internal function h : X → ∗C, we define the continuous linear functional Fh : ∗T → ∗C

by

Fh(
∗ f ) =

1
N ∑

k∈X

∗ f (
2πk
N

)h(k),
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where ∗ f : ∗T→ ∗C is the nonstandard natural extension of f : T→C. Therefore, ◦Fh : T →C

will be defined as

◦Fh( f ) = st
( 1

N ∑
k∈X

∗ f (
2πk
N

)h(k)
)
,

provided that the standard part exists. In order to show that ◦Fh : T → C is well defined, we

have to determine “nice” internal functions h : X → ∗C.

The following example shows that the functional ◦Fh : T → C is not continuous, when we give

the test space T of exponential polynomials the ‖ · ‖1 topology.

Example 7.0.16. Let Φn(k) = 1
n+1

n
∑

t=0
Dt(k), where Dt(k) is the Dirichlet function. Consider

the Fejér kernel sequence ( 1
n+1Φn). Then, 1

n+1Φn is a function in T , for all n ∈ N. Notice that

‖ 1
n+1Φn‖1→ 0 as n→ ∞. At the same time, 1

N ∑
k∈Ω

1
n+1
∗Φn(

2πk
N )h(k)→ 1 as n→ ∞, in the case

where h(0) = N and h(k) = 0 if k 6= 0. Therefore, ◦Fh is not a continuous function on T , when

we use the 1-norm as our metric on the test space T .

Notice that, since every test function f ∈ T is bounded on T, so ∗ f is limited on ∗T. Thus,

the standard part ◦Fh( f ) exists for every f ∈ T , if 1
N ∑

k∈X
|h(k)| is limited. Therefore, we obtain

necessary and sufficient condition for ◦Fh( f ) to exist, as shown in the following proposition.

Proposition 7.0.17. Let h : X → ∗C be an internal function. If 1
N ∑

k∈X
|h(k)| is limited, then

◦Fh( f ) = st
( 1

N ∑
k∈X

∗ f (
2πk
N

)h(k)
)

exists for all f ∈ T .

Proof. Let f : T→ C be a test function. Then f is a continuous function on a compact set T.

Therefore, f is a bounded function on T. There exists M ∈N such that | f (t)|< M, for all t ∈ T.

So, |∗ f (t)|< M, for all t ∈ ∗T. To prove that ◦Fh( f ) exists, Consider

∣∣∣ 1
N ∑

k∈X

∗ f (
2πk
N

)h(k)
∣∣∣6 1

N ∑
k∈X

∣∣∣∗ f (
2πk
N

)
∣∣∣∣∣h(k)∣∣< M

N ∑
k∈X

∣∣h(k)∣∣,
which is limited. Therefore, st

( 1
N ∑

k∈X

∗ f (2πk
N )h(k)

)
exists for all f ∈ T . Hence, ◦Fh( f ) exists

for all f ∈ T .
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Notice that in Proposition 7.0.17, if h : X → ∗C is an S-integrable function then ◦Fh( f ) exists

for all f ∈ T, since 1
N ∑

k∈X
|h(k)| is limited.

Proposition 7.0.18. Let h : X → ∗C be an internal function such that 1
N ∑

k∈X
|h(k)| is limited

and T be the test space of exponential polynomial functions f : T→ C. Then the functional

◦Fh : T → C defined by

◦Fh( f ) = st
( 1

N ∑
k∈X

∗ f (
2πk
N

)h(k)
)

is continuous and linear.

Proof. There is a standard M ∈ N such that 1
N ∑

ω∈X
|h(ω)| 6 M. To prove that ◦Fh : T → C is

continuous, we have to show that for all f ∈ T and all standard ε > 0, there is a standard δ > 0

standard such that

∀g (∀t | f (t)−g(t)|< δ ⇒ |◦Fh( f )− ◦Fh(g)|< ε).

If | f (t)−g(t)|< δ for all t ∈ T, then consider

|◦Fh( f )− ◦Fh(g)|= st
( 1

N

∣∣∣∑
k∈X

(∗ f (
2πk
N

)− ∗g(2πk
N

)
)
h(k)

∣∣∣)6 st
( 1

N ∑
k∈X

δ |h(k)|
)
6 st(δM).

So, we achieve our goal by setting δ = ε

2M . Now, to prove that ◦Fh is a linear on T , let f ,g ∈ T

and λ ∈ C. Then

◦Fh( f +g) = st
( 1

N ∑
k∈X

∗ f (
2πk
N

)h(k)+
1
N ∑

k∈X

∗g(
2πk
N

)h(k)
)
= ◦Fh( f )+ ◦Fh(g).

In addition,

◦Fh(λ f ) = st
( 1

N ∑
k∈X

∗(λ f )(
2πk
N

)h(k)
)
= λ st

( 1
N ∑

k∈X

∗ f (
2πk
N

)h(k)
)
= λ

◦Fh( f )

Hence, ◦Fh is a linear functional on T .

Example 7.0.19. Let T be the test space of exponential polynomial functions f : T→ C. The

internal function δ : X→ ∗C defined by δ (0) = N and δ (k) = 0 for all k 6= 0, is called the Dirac
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delta (generalised) function. Then

Fδ ( f ) = st
( 1

N ∑
k∈X

∗ f (
2πk
N

)δ (k)
)

exists and since δ (k) = 0 for all k ∈ X \{0} we have

1
N ∑

k∈X

∗ f (
2πk
N

)δ (k) =
1
N
∗ f (0)(N) = ∗ f (0) = f (0).

The main theorem of this chapter shows that any continuous linear functional F is equal to ◦Fh

for some internal functions h.

Theorem 7.0.20. Let F : T → C be a continuous linear functional. Then there is an internal

h : X → ∗C such that for all f ∈ T ,

◦Fh( f ) = st
( 1

N ∑
ω∈X

∗ f (
2πω

N
)h(ω)

)

is defined and ◦Fh( f ) = F( f ), for all f ∈ T .

Proof. Consider ∗F : ∗T → ∗C and look at the classical Fejér functions

Φk(t) =
k

∑
m=−k

(1− |m|
k+1

)eimt .

Note Φk ∈ ∗T for all k ∈ ∗N. We choose k > N in ∗N, so that for all g ∈ ∗T of degree 6 2k and

with coefficients ĝ( j) with |ĝ( j)|6 2k, we have

∀t,s ∈ ∗T
(
|t− s|< 1

N
⇒ |g(t)−g(s)|< 1

2k

)
.

(
The existence of such k is by overspill, since for each k∈N there is K ∈N such that for all g∈ T

of degree 6 2k with |ĝ( j)|6 2k for all j, we have ∀t,s ∈ T(|t− s|< 1
K ⇒ |g(t)−g(s)|< 1

2k ).
)

As usual T (or ∗T) acts on T (or ∗T ) by f 7→ f s, where f s(t) = f (t− s).

We define h : X → ∗C by

h(ω) = ∗F(Φ
2πω/N
k ).
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Now, let f ∈ T be arbitrary, we show ◦Fh(
∗ f ) is defined and ◦Fh(

∗ f ) = F( f ). Note

Fh(
∗ f ) =

1
N ∑

ω∈X

∗ f (
2πω

N
)h(ω) =

1
N ∑

ω∈X

∗ f (
2πω

N
)∗F(Φ

2πω/N
k ) = ∗F

( 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k

)

by linearity of F and Transfer. To show Fh(
∗ f ) ≈ ∗F(∗ f ), it suffices, by continuity of F and

Transfer, to prove that

sup
t∈∗T

∣∣∣ 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k (t)− ∗ f (t)

∣∣∣≈ 0. (1)

We use classical harmonic analysis notation as in Katznelson [16]. Recall that f ∈ T , that is,

f (t) =
`

∑
j=−`

f̂ ( j)ei jt ,

where ` ∈ N is the degree of f , and f̂ ( j) ∈ C. We also have

σn( f , t) = (Φn ∗ f )(t) =
n

∑
j=−n

(1− | j|
n+1

) f̂ ( j)ei jt → f (t)

as n→ ∞. Given n > `, the error term here is

| f (t)−σn( f , t)|=
∣∣∣ `

∑
j=−`

| j|
n+1

f̂ ( j)ei jt
∣∣∣6 `(`+1)

n+1
max

j
| f̂ ( j)|. (2)

Note also that

σn( f , t) = (Φn ∗ f )(t) =
1

2π

∫
T

Φ
τ
n(t) f (τ)dτ. (3)

By the triangle inequality, for any t ∈ ∗T, we have

∣∣∣ 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k (t)− ∗ f (t)

∣∣∣6∣∣∣ 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k (t)− (Φk ∗ ∗ f )(t)

∣∣∣+∣∣∣(Φk ∗ ∗ f )(t)− ∗ f (t)
∣∣∣.

Inequality (2) already shows that |(Φk ∗ ∗ f )(t)− ∗ f (t)| 6 `(`+1)
k+1 max

j
| f̂ ( j)| ≈ 0, since ` and all
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the f̂ ( j) are standard and k > N.

For
∣∣ 1

N ∑
ω∈X

∗ f (2πω

N )Φ
2πω/N
k (t)− (Φk ∗ ∗ f )(t)

∣∣, note that, by (3) and Transfer, the convolution

Φk ∗ ∗ f is a function ∗T→ ∗C defined by an integral

(Φk ∗ ∗ f )(t) =
1

2π

∫
∗T

Φ
τ
k(t)

∗ f (τ)dτ. (4)

Indeed, 1
N ∑

ω∈X

∗ f (2πω

N )Φ
2πω/N
k (t) is the nonstandard approximation to this integral. We just

need to check that this approximation is accurate.

As Φτ
k(t)

∗ f (τ) is an exponential polynomial of degree k+ ` < 2k with t ∈ T, all coefficients

having finite modulus, our choice of k applies and for all 2πω

N 6 τ < 2π(ω+1)
N we have

∣∣∣Φτ
k(t)

∗ f (τ)−Φ
2πω/N
k (t)∗ f (

2πω

N
)
∣∣∣< 1

2k
.

Thus, summing and integrating (4),

∣∣∣ 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k (t)− 1

2π

∫
∗T

Φ
τ
k(t)

∗ f (τ)dτ

∣∣∣< 1
k
,

since the range of integration and summation is normalised to 1 in both. This is as we required.

Hence, ∣∣∣ 1
N ∑

ω∈X

∗ f (
2πω

N
)Φ

2πω/N
k (t)− ∗ f (t)

∣∣∣≈ 0,

as required.
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Chapter 8

Towards Abstract Harmonic Analysis by

Nonstandard Methods

Our aim in this chapter is to investigate how the general theory in Chapter 4 might be applied

to abstract harmonic analysis and whether the material in Chapters 6 and 7 can be extended to

the more general case of an abelian group G equipped with an invariant metric. The work here

is only at a preliminary stage.

Our starting point is an infinite abelian group G equipped with an invariant metric dG (or any

first countable Hausdorff topological group using Theorem 4.1.12). We write G additively.

Where necessary, we suppose that the nonstandard universe is sufficiently saturated.

According to Theorem 4.3.2, there is a ∗finite nonstandard group F with an invariant metric dF

such that the embedding φ : G→ F/N is an isometry, where N is the monad of the neutral

element of F . We define

Ffin = { f : f +N ∈ Im(φ)}

by analogy to ∗Rfin in the nonstandard real world ∗R (Section 2.3).

Notice that Ffin is not necessarily internal. In Section 5.1.4, Ffin = F , so it is internal, whereas

in Section 5.1.3, Ffin ( F and is not internal. Also there is nothing necessarily ‘finite’ about the

elements of Ffin.

Since φ : G→ F/N is an embedding, φ : G→ Ffin/N is an isomorphism.
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We define the standard part map st as the function st : Ffin→ G such that st( f ) = φ−1( f +N ).

Without any confusion we shall also use the standard part maps st : ∗Rfin→R and st : ∗Cfin→C.

The subject of harmonic analysis, as explained in Chapter 3, is functions from G to C especially

functions that are continuous or integrable. Such functions often arise from internal functions

ψ : F → ∗C. We emphasise at this point that this study may be made easier by the fact that F

behaves just as if it were finite group. We define ◦ψ : G→ C by ◦ψ(g) = st(ψ( f )) whenever

g = st( f ).

An immediate question that arises here is: given an internal function ψ : F → ∗C, when is

◦ψ(g) = st(ψ( f )) well-defined? Answering this question, we notice that ◦ψ is well-defined if

◦ψ(g) does not depend on the choice of f and ψ( f ) ∈ ∗Cfin, for all such f . That is, ◦ψ will be

well-defined if:

(a) for all f ∈ Ffin, ψ( f ) ∈ ∗Cfin;

(b) for all f , f ′ ∈ Ffin, if f ≈ f ′ then ψ( f )≈ ψ( f ′) in ∗C.

Note 8.0.21. For convenience, we call these two conditions the well-definedness conditions.

Another question here is: which functions G → C arise as ◦ψ for some internal functions

ψ : F→ ∗C? Theorem 8.0.23 below is the answer to this question. Following is an easy lemma.

Lemma 8.0.22. If f0 ∈ Ffin and f ≈ f0 then f ∈ Ffin.

Theorem 8.0.23. Assume Ffin/N ⊆ F/N is an open set. If ψ : F → ∗C satisfies the well-

definedness conditions then ◦ψ : G→ C is continuous. Conversely, any continuous function

θ : G→C is ◦ψ for some internal function ψ : F→ ∗C satisfying well-definedness conditions.

Proof. Assume ψ : F→ ∗C satisfies the well-definedness conditions. To show that ◦ψ : G→C

is continuous, let ε > 0 be in R and g0 ∈ G. Then there is f0 ∈ Ffin such that g0 = st( f0) and

∀ f ∈ F( f ≈ f0⇒ ψ( f )≈ ψ( f0)).

Then

∀ f ∈ F( f ≈ f0⇒ d∗C(ψ( f ),ψ( f0))< ε).
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So

∀ f ∈ F(dF( f , f0)< 1/k⇒ d∗C(ψ( f ),ψ( f0))< ε)

is true for all k ∈ ∗N\N. By overspill, there is k ∈ N such that

∀ f ∈ F(dF( f , f0)< 1/k⇒ d∗C(ψ( f ),ψ( f0))< ε).

Therefore, ∀g ∈ G(dG(g,g0)< 1/(k+1)⇒ dC(◦ψ(g),◦ψ(g0))< ε). Hence, ◦ψ is continuous

on G.

Conversely, assume θ : G→ C is continuous and the universe is |G|+−saturated. So we can

write down |G| sentences. Enumerate G = {gi : i ∈ G }. So |G| = |G |. For each gi, choose

fi ∈ Ffin such that st( fi) = gi.

Since θ is continuous, for all gi ∈ G and all ε = 2− j > 0, there is δ = 2−k such that

dG(g,gi)< δ ⇒ dC(θ(g),θ(gi))< ε.

Define k : G ×N→ N so that δ = 2−k(i, j), that is, k is chosen so that

∀g ∈ G(dG(g,gi)< 2−k(i, j)⇒ dC(θ(g),θ(gi))< 2− j) and B2−k(i, j)( fi)⊆ Ffin for all i, j.

The last condition here can be satisfied since Ffin/N is open. Now write down sentences

describing some internal ψ : F → ∗C,

ψ( fi) = θ(gi) for all i ∈ G . (1)

∀ f ∈ F(dF( f , fi)< 2−k(i, j)⇒ d∗C(ψ( f ),ψ( fi))< 2− j+1). (2)

There are |G |+ |G ||N| = |G | such sentences. So if we can show they are ((1) and (2)) finitely

satisfied there will be some ψ satisfying them simultaneously.

Consider finitely many i1, i2, . . . , in in G and j1, j2, . . . , jn inN. Then we have finitely many balls

of different radii about fi1, fi2, . . . , fin , B2−k(i, j)( fi) for i ∈ {i1, i2, . . . , in} and j ∈ { j1, j2, . . . , jn}.
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Say f ,g ∈ F are in the same part if f ∈ B⇔ g ∈ B for each ball B as above. This gives a

partition of F into finitely many parts p. Without loss of generality (if necessary choosing

additional values j ∈ N). We may assume that no two fiα , fiβ are in the same part. For each

part p, containing some f ∈ Ffin, choose one such fp ∈ Ffin
⋂

p. If p contains one of the fi (for

i ∈ {i1, i2, . . . , in}), we will choose that fi for fp.

Define ψ to be constant on parts of F , that is, ψ( f ) = ψ(g) if f and g are in the same part p,

and define ψ( fp) = θ(st( fp)). Because of finiteness, such ψ is internal.

If some part p has no f ∈ Ffin inside it, we define ψ on p to be the constant function with value

1. In this case, p is not a subset of any open ball B2−k(i, j)( fi), since B2−k(i, j)( fi)⊆ Ffin for all i, j.

To show that (1) and (2) hold for all i ∈ {i1, i2, . . . , in} and all j ∈ { j1, j2, . . . , jn}, we notice that

ψ( fi) = θ(gi) for all i ∈ G was as defined. That is, ψ satisfied (1) finitely.

Now, let fp1 and fp2 belong to two different parts, say p1 and p2, respectively.

Suppose p1, p2⊆B2−k(i, j)( fi), where i∈ {i1, i2, . . . , in}, and j ∈ { j1, j2, . . . , jn}. We have to show

that

dC(θ(st( fp1)),θ(st( fp2)))< 2− j.

However,

d(st( fpα
),st( fi))< 2−k(i, j)

for α = 1,2 in G. Then,

dC(θ(st( fpα
)),θ(st( fi)))< 2− j,

for α = 1,2. Therefore,

dC(θ(st( fp1)),θ(st( fp2)))< 2(2− j)

by the triangle inequality. That is, (2) is satisfied finitely by ψ . Therefore, by |G|+−saturation

there is ψ satisfying (1) and (2).

Now, we have to show that ψ is S-continuous. Suppose f ,g ∈ F and f ≈ g. So f − g ∈N .

Then, either f /∈ Ffin, in which case g /∈ Ffin and ψ( f ) = ψ(g) = 1, or f ∈ Ffin and then g ∈ Ffin.

So d( f ,g)≈ 0. Let i∈G such that if f ≈ fi then g≈ fi. By (2), ψ( f )≈ψ( fi) and ψ(g)≈ψ( fi).
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Therefore, ψ( f )≈ ψ(g), as required.

Finally, it is obvious that θ = ◦ψ from (1).

We now consider the 1-dimensional representations (characters) that form a basis of the vector

space of functions F → ∗C.

Classical Fourier analysis on the circle group T uses exponential functions as a “basis” for

vector spaces of functions T→ C. This is analogous to using the functions

ek : CN → C

defined by

ek( j) = e2πi jk/N

on finite cyclic groups CN to study CCN , as was done in Chapter 6. The present aim is to

generalise this approach to other groups.

The functions ek : CN→C form a complete set of 1-dimensional representations CN→C. Thus

a suitable generalisation to other groups F would be to replace these functions by a set of 1-

dimensional representations. This is exactly what is happening in Fourier analysis on finite

(discrete) groups (Section 3.1).

Let VF be the vector space of internal functions F → ∗C, and equip VF with the inner product

〈 f ,g〉= 1
|F | ∑t∈F

f (t)g(t).

Note that VF has dimension |F | ∈ ∗N.

Let E be a complete set of 1-dimensional (irreducible) representations of F . That is, each e ∈ E

is an internal function e : F → ∗C, such that:

e(x+ y) = e(x)e(y) and e(0) = 1.

Then by Transfer and standard results in representation theory, it is known [15, Chapter 9]
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that there are exactly |F | independent representations and these form a basis of VF , which is

orthonormal for the inner product 〈·, ·〉.

It is easy to check that any 1-dimensional representation e : F → ∗C maps into the nonstandard

version of the circle group ∗TC = {z ∈ ∗C : |z|= 1} and ∗TC ⊆ ∗Cfin.

Note also (again by transfer) that any internal function F → ∗C is a linear combination of

functions in E:

f = ∑
e∈E
〈 f ,e〉e;

the coefficients 〈 f ,e〉 here may be regarded as the “Fourier coefficients” of the function f with

respect to the set E.

However, there is an immediate problem at this point, which we are currently unable to resolve.

Question 8.0.24. If E is as above, when is it the case that each e ∈ E S-continuous?

In general, functions e ∈ E need not be S-continuous, as given in the following example.

Example 8.0.25. Let F be a ∗finite ∗cyclic group CN with addition modulo N, where N >N and

the ∗metric d defined on F by d(x,y) = 1
N min{|x− y|,N−|x− y|}. Note that the following 1-

dimensional representation in E is not S-continuous. Consider ey : F→ ∗TC= {z∈ ∗C : |z|= 1}

defined by

ey(x) = e2πixy/N

where 0 6 x,y < N. Notice that 0 and
√

N are in the monad(0) of F and 0 ≈
√

N since

d(
√

N,0) = 1
N min{|

√
N|,N−|

√
N|}= 1√

N
≈ 0. While, if y = b

√
N/2c, then

ey(0) = e2πi(0)b
√

N/2c/N = e0 = 1 and ey(b
√

Nc) = e2πib
√

Ncb
√

N/2c/N = eπi =−1.

That is ey is not S-continuous, where y = b
√

N/2c.

Even if we cannot use every 1-dimensional representation of F , we might hope to represent

every continuous homomorphism G→T as ◦ψ for some S-continuous homomorphism ψ : F→
∗C. However, even this is not clear.

Question 8.0.26. Assume Ffin/N ⊆ F/N is an open set and θ : G→ T is a character (contin-

uous homomorphism). Is there ψ : F → ∗C such that θ = ◦ψ and ψ a homomorphism?
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Note that, adding

∀ f ,g ∈ F(ψ( f +g) = ψ( f )ψ(g)) (3)

to the proof of Theorem 8.0.23 is not possible: the resulting formulas are no longer finitely

satisfied, and we do not know the answer to the above question.

However, according to Theorem 8.0.23, there is an internal S-continuous function ψ : F → ∗C

such that θ = ◦ψ , and ψ( f ) = 1, when f /∈ Ffin. If θ : G→C is a homomorphism then we have

ψ( f +g)≈ ψ( f )ψ(g)) for all f ,g ∈ F . So ψ is a “nearly” homomorphism.

Therefore, the approach outlined does indeed give nonstandard descriptions of all characters

θ : G→ C. It would be worthwhile to try to reprove results in the classical harmonic analysis

by nonstandard means. In particular, the following is a special case of a result by Peter, Weyl

and van Kampen (see Higgins [12, page 100]).

Theorem 8.0.27. Let G be abelian with invariant metric and x ∈ G \ {0}. Then there is a

continuous homomorphism θ : G→ TC such that θ(x) 6= 1.

It would be an interesting project to reprove this by nonstandard means. Given x ∈ F with

x 6∈N , one would have to construct an S-continuous nearly-homomorphism ψ : F → ∗T such

that ψ(x) 6≈ 1. Theorems 8.0.23 and 8.0.27 show this is possible in principle. The goal would

be to find a straightforward proof, using the structure of the ∗finite group F perhaps. We have

as yet been unable to find a satisfactory simple proof along these lines. An alternative approach

might be to attempt to enhance Theorem 4.3.7, so that, when F is written as a direct sum of

cyclic groups
⊕

i Ai (using the Basis theorem and Transfer), each component Ai has N ∩Ai

equal to some ‘convex’ region about 0, so that the examples such as Example 8.0.25 fail, and

all the usual representations of Ai are S-continuous.
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Chapter 9

Conclusion

In this chapter we review the work done in this thesis. We refer to the main results obtained.

In addition, we discuss where things could be taken further. We conclude this chapter with a

number of open questions for further research.

9.1 A Brief Summary of the Thesis

Chapter 2 covered the basics of nonstandard analysis. We attempted to make this chapter self-

contained, and we included basic and necessary materials on NSA, which were very helpful in

applying NSA to both representations of classical topological (metric) groups by nonstandard

metric groups and to convergence of Fourier transforms. Several interesting examples were

given throughout the chapter in order that the subjects be more clear. Also, this chapter gave

the basic tools for the construction of nonstandard structure of L1 space of a nonstandard ∗finite

set F with some relevant concepts.

Chapter 3 explained the main parts of the abstract harmonic analysis, such as abstract harmonic

analysis on finite groups and abstract harmonic analysis on topological groups. We recalled the

basic definitions of Fourier series of functions defined on the topological circle group T in view

their importance. The main aim of this chapter was to present classical DFT and its inverse

IDFT on finite groups, as well as Fourier coefficients and Fourier series on topological groups.

Certainly, nonstandard analysis works by using discrete methods with infinitesimal ‘step size’

(often, 1
N ) to approximate classical analysis via the standard part map. For Fourier analysis we
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can use the idea of the discrete Fourier transform in this way. In other words, a number of basic

results in classical Fourier analysis follow directly from the analogous results in discrete Fourier

analysis together with nonstandard techniques. Therefore, we can say that nonstandard analysis

is a good way of doing Fourier analysis.

Chapter 4 started with the definition of monotonically definable subset N of the nonstandard

∗finite group F . We proved some nice properties of N , such as: N 2
i+1 ⊆Ni; N −1

i = Ni; and

N x
i = Ni, for all i and all x ∈ F , where N = ∩i∈NNi, for some sequence {Ni}i∈N of internal

subsets of F . Also the following results were obtained:

(1) an external normal subgroup N C F is monotonically definable if and only if it is Nd for

some ∗metric d on F (the metrisation theorem);

(2) any first-countable Hausdorff topological group G is metrisable with 2-sided invariant

metric generating the same topology.

The measure µ on subsets of nonstandard finite group F and the quotient F/N was defined.

The main facts obtained through this kind of measure are:

(1) Assume µ(F) � 0 in ∗Rfin. If the normal subgroup N is measurable (as a subset of F)

then ◦µ(N ) = 0 if and only if N has infinite index in F .

(2) Let F be a ∗finite group, N C F and 0 < ε < η ≤ 1 be real numbers. Then there is k ∈N,

a measurable set A⊆ F/N , with ε < ◦µA < η , and elements a0, . . . ,ak−1 ∈ F , such that

F/N =
⋃

i<k aiA. More specifically, this can be achieved whenever (1− ε)k < η− ε .

We defined locally embeddability of classical metric groups with 2-sided metric into nonstan-

dard finite metric groups (LEFM) and the following interesting results were proved.

(1) a 2-sided metric group (G, ·,d) embeds as a metric group into some (∏D Gi)/N if and

only if, for all ε > 0 and all finite subsets A⊆ G, there is a finite 2-sided metric group H

and a function φ : A→ H such that

(a) d(φ(ab),φ(a)φ(b))< ε , whenever a,b,ab ∈ A; and

(b) |d(φ(a),φ(b))−d(a,b)|< ε , whenever a,b ∈ A;
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(2) every abelian group with invariant metric is LEFM;

(3) assume (G, ·,dG) is a 2-sided invariant metric group and (F, ·,dF) is ∗finite ∗metric group,

such that φ : G→ F/N is a surjective embedding of metric groups, where N C F is the

monad of the identity. If G is separable, then G is compact.

Also we defined locally embeddability of classical metric groups with 2-sided metric into non-

standard discrete metric groups (LEDM) and we proved the following results:

(1) The theorem of LEDM groups (Theorem 4.4.4).

(2) Every 2-sided metric group is LEDM.

(3) Let a 2-sided metric group G be LEDM via the function φ : G→ D/N , where D is a

∗discrete metric group and N is the monad of the identity of D. If X ⊆ DG is internal,

where DG = {x ∈ D : ∃g ∈ G such that φ(g) = xN }, then X/N is bounded and closed.

(4) Let a 2-sided metric group G be LEDM via the function φ : G→ D/N , where D is

∗discrete and N is the monad of the identity. If G is separable and X ⊆ DG is internal,

then X/N is compact.

Chapter 5 showed and explained that the following classical abelian metric groups are LEFM:

(1) the group of integers Z with the usual metric;

(2) the direct sum of Z⊕Z with the discrete metric;

(3) the additive real group R with the normalised usual metric;

(4) the additive circle group T with the normalised usual metric on circles;

(5) the additive 2-torus group T⊕T with the taxicab metric;

(6) the additive complex group C with the usual Euclidean metric;

(7) the additive group of p-adic integers Zp with the metric dp;

(8) the group Ẑ, the profinite completion of Z, with the metric d̂;

(9) the additive group C2⊕C2 with the discrete metric.
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Also we showed the following classical nonabelian metric groups are LEFM:

(1) the dihedral circle group D2T with a suitable metric d;

(2) the infinite dihedral group D∞ with the discrete metric.

Chapter 6 used methods of NSA to study the representation of functions in L1(T) as series

in Fourier analysis. As already indicated, NSA is an excellent tool to understand the Fourier

transform. This chapter set up Fourier series by nonstandard methods, proved nonstandard

versions of the main theorems on convergence. In this chapter we proved the following main

results:

(1) If f : T→ C is a piecewise continuous function and N ∈ ∗N\N, then

f̂ (n) = st
( 1

N

N/2

∑
k=−N

2 +1

∗ f (
2πk
N

)e−2πink/N
)
, for all n ∈ Z.

(2) some useful properties of Dirichlet and Fejér functions;

(3) if g ∈ L1(T), then there is H ∈ L1(F), such that ∗g(st(2πω

N )) = ◦H(ω), for almost all

ω ∈ F , showing the relationship between the classical L1(T) and the nonstandard L1(F).

(4) if f ∈ L1(F), then ◦ lim
n∈N
‖σn( f )− f‖1 = 0;

(5) the density of continuous functions in L1(F), that is, the approximation of Lebesgue

integrable functions by S-continuous functions in L1(F);

(6) the density of trigonometric polynomials with standard degree in L1(F);

(7) the Riemann-Lebesgue theorem “if f ∈ L1(F), then ◦ lim
|n|∈N

f̂ (n) = 0”;

(8) the uniqueness theorem “if f ∈ ∗CF with f̂ (m) = 0 for all m ∈ F , then f = 0”;

(9) (Fejér Theorem) if f ∈ L1(F), t0 ∈ F and y0 ∈ ∗C, such that st(y0) =
◦ lim

h→0

f (t0+h)+ f (t0−h)
2 ,

then ◦ lim
n∈N

σn( f , t0) = st(y0).

Chapter 7 started to generalise functions to other cases such as functionals and generalised

functions F : T → C, where T is the test space of exponential polynomial functions f : T→ C.
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In this chapter we proved the following main results:

(1) let h : X → ∗C be an internal function. If 1
N ∑

k∈X
|h(k)| is limited, then for all f ∈ T ,

◦Fh( f ) = st
(

1
N ∑k∈X

∗ f (2πk
N )h(k)

)
exist;

(2) let h : X → ∗C be an internal function. If 1
N ∑

k∈X
|h(k)| is limited, then the functional

◦Fh : T → C defined by ◦Fh( f ) = st
(

1
N ∑k∈X

∗ f (2πk
N )h(k)

)
is continuous and linear;

(3) if F : T → C is a continuous linear functional then there is an internal h : X → ∗C, such

that for all f ∈ T , ◦Fh( f ) = st
( 1

N ∑
ω∈X

∗ f (2πω

N )h(ω)
)

is defined and ◦Fh( f ) = F( f ), for all

f ∈ T .

Chapter 8 attempted to extend and generalise materials in Chapters 6 and 7 by using the general

theory in Chapter 4 on abelian groups G with invariant metrics. We obtained the result: assume

that Ffin/N is an open subset of F/N . If ψ : F→ ∗C satisfies the well-definedness conditions,

then ◦ψ : G→C is continuous. Conversely, any continuous function θ : G→C is ◦ψ for some

internal function ψ : F → ∗C satisfying well-definedness conditions.

One advantage of using NSA is that NSA is good at producing “examples”. For instance, we

can easily define f̂ : F → F by

f̂ (t) =


1 if |t|< a

0 if |t|> a

and this f̂ is an internal function. Now, one might look at what one can say about the function

f = ∑
t∈F

f̂ (t)et . This is a nonstandard version of the Dirac delta function (see Example 7.0.19).

In the same way NSA can be used to define other functionals by starting with other internal

functions analogous to f̂ above.

So far, this shows that NSA is a good vehicle to study Fourier analysis. We would like to

propose a plan of questions and areas for further study.

Central to the discrete Fourier transform is the cyclic group CN and its action on spaces of

functions. This corresponds to the role the circle group T plays in classical Fourier analysis.

112



9.2 Future Research

One obvious question is to extend the known examples of LEFM groups to other families of

(non-abelian) 2-sided invariant metric groups. Clearly, a 2-sided metric group, that is locally

finite as an abstract group, is LEFM.

Question 9.2.1. Is every 2-sided metric group, that is, residually finite as a topological group,

LEFM? (G is residually finite as a topological group means that for all g ∈ G with g 6= 1 there

is a closed N C G such that g 6∈ N.)

We do not have an example of a 2-sided metric group which is not LEFM. Note that any sofic

group G≤ SN/N (where N is nonstandard) has a metric induced from the Hamming metric on

SN making it LEFM (for sofic groups, which are not defined here, see Pestov and Kwiatkowska

[26]). Therefore, to find an abstract group, which is not LEFM for any metric on it, seems to be

a particularly difficult question.

Finally, in reviewing the abelian examples of LEFM groups, an interesting question arises which

we are not currently able to resolve. That is, the observation that, in all these examples, it

sufficed to take CN for F in the embedding G ↪→F/N . We admit to being particularly surprised

that this applies even to finite groups such as C2⊕C2. We therefore ask if this is generally true.

Question 9.2.2. Is it the case that every abelian group G with invariant metric embeds in CN/N

for some nonstandard cyclic group CN , some nonstandard invariant metric dN on CN , where N

is the monad of 0?

In view of the attempts in Chapter 8 to construct characters, it would seem interesting to ask if

Theorem 4.3.7 could be extended so that the 1-dimensional representations of the ∗finite group

F are automatically S-continuous.

Say, a subset A⊆CN = {0,1, . . . ,N−1} is convex if, whenever a,b∈ A, one of {a,a+1, . . . ,a+

k−1,a+ k = b} or {b,b+1, . . . ,b+ `−1,b+ ` = a} is a subset of A, for k, ` chosen suitably

and addition taken mod N. We ask the following question:

Question 9.2.3. Given abelian group G with an invariant metric, is there a ∗finite group F with

metric d and embedding φ : G ↪→ F/N which is a homomorphism and isometry, such that for
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some description of F as F =
⊕

ν
i=1CNi , given by Theorem 1.2.11, each of Nd ∩CNi is convex?

Question 9.2.4. Does the generalisation of functionals work on the other test spaces of functions

defined on locally compact abelian groups G?
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