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Abstract 

 
Recombinant protein production (RPP) in E. coli is a cornerstone of modern 

bioprocessing, especially for biopharmaceutical production. This study presents work 

aimed at developing analytical techniques and production protocols for RPP in E. coli, 

particularly with reference to industrial applications. 

 

Flow cytometry (FCM) was used routinely to monitor cell physiology and RPP itself 

through the production of CheY::GFP a fluorescent model protein. Further applications 

of FCM for monitoring RPP processes were also developed. A protocol was developed to 

identify CheY::GFP inclusion bodies produced under high-stress conditions using the 

amyloidophilic fluorescent dye Congo red. FCM analysis was also applied to RPP process 

stages that are currently little studied, agar plate and early-stage liquid cultures. FCM 

screening of transformants expressing CheY::GFP on agar plates identified abnormal, 

likely mutated cells. Further analysis identified 3 populations of varying fluorescence 

intensity and the progressive transfer of cells from the high fluorescence population to 

one of intermediate fluorescence along with a progressive loss of culturability. This was 

shown to be the result of amyloid inclusion body formation by Congo red staining. FCM 

analysis of agar-plate and early-stage liquid culture is therefore proposed as a useful 

(and currently under–exploited) analytical step for RPP processes. 

 

RPP conditions that minimise physiological stress by reducing growth temperature and 

inducer concentration can increase product yields, solubility and biomass yields. In this 

study stress-minimised production conditions were applied to industrially-derived RPP 

fermentation protocols. The original complex-medium based fermentation protocol 

used for stress-minimised RPP showed substantial limitations for industrial use. 

Application of stress-minimised conditions to a semi-defined medium-based protocol 

using both early and late-phase induction and glucose or glycerol as carbon source was 

shown to be successful with high yields of biomass, total CheY::GFP and soluble 

CheY::GFP (up to 77.5 g·L-1, 15.7 g·L-1 and 7.1 g·L-1, respectively). The protocols 

developed in this study improved biomass generation, product formation and 

reproducibility over both the original stress-minimised and unmodified industrially-

derived protocols. It is therefore concluded that stress-minimisation is of potential 

industrial use.  

Adaptation of a defined growth medium fermentation for stress-minimisation showed 

limited success due to nitrogen and phosphate limitation in the initial growth medium. 

Further analysis of nitrogen and phosphorus content showed that the complex medium 

was likely phosphate limited and that the semi-defined medium was likely nitrogen 

limited. It was concluded that with further adaptation a stress-minimised defined-

medium protocol will be possible. 
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ORT  Operator/repressor titration 
OXC  Oxygen consumed 
PBS  Phosphate buffered saline 
PEG  Polyethylene glycol 
PFCF  Plasmid-free cell fraction 
PI  Propidium Iodide 
PMMA  Poly(methylmethacrylate) 
PMT  Photomultiplier tube 
PP  Polypropylene 
PPG  Polypropylene glycol 
ppGpp  5-3-guanosine pyrophosphate 
PPM  Parts per million 
PS  Polystyrene 
PTM  Post-translational modification 
PWA  Pulse-width analysis 
RALS  Right angle light scatter 
ROS  Reactive oxygen species 
RP  Recombinant protein 
RPP  Recombinant protein production 
RPM  Revolutions per minute 
RQ  Respiratory quotient 
SDS  Sodium dodecyl sulphate 
SDS-PAGE  Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
SSC  Side scatter 
TA  Toxin/antitoxin 
Tat  Twin arginine transportation 
TCA  Tricarboxylic acid 
TEMED Tetramethylethylenediamine 
TGS  Tris, glycine, SDS 
Th-S  Thioflavin-S 
Th-T  Thioflavin-T 
Tris  Tris(hydroxymethyl)aminomethane 
UPR  Unfolded protein response 
VBNC  Viable but non-culturable cells  
VVM  Volume per volume per minute 
wtGFP  Wild-type GFP 
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Chapter 1:  Introduction & Literature Review 
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This chapter contains a review of relevant scientific literature, covering the following 

areas: a general summary of recombinant protein production (RPP) and its application 

in Escherichia coli, the physiological stresses RPP imposes and the methods to 

ameliorate them, industrially-relevant methods of E. coli culture and the uses of flow 

cytometry (FCM) and of autofluorescent proteins in microbial biotechnology. Finally, the 

aims of this project are described. 

 

1.1. Uses & importance of RPP  

The earliest reported instances of the production of a protein from a recombinant gene 

were from the late 1970s (Itakura et al., 1977; Goeddel et al., 1979), leading on from 

recent advances in recombinant DNA technology. In both cases small medically-relevant 

polypeptide hormones (somatostatin and insulin) were produced in E. coli as plasmid-

encoded fusions to β-galactosidase. Since then RPP has become a highly useful aspect of 

modern biotechnology, finding applications in medicine, industry and research, being 

worth billions of pounds globally every year.  

 

1.1.1. Pharmaceutical, biotechnological & research uses 

One of the best-known uses of RPP is the production of protein-based pharmaceuticals, 

such as insulin, human growth factor and antibody-based drugs like Herceptin (Walsh, 

2010a). Industrial uses include recombinant enzymes for chemical and food processing 

such as bovine chymosin (rennet), a milk-curdling enzyme used in cheese production 

that has been synthesised in a number of microbes including E. coli and is approved for 

human consumption by the United States Food and Drug Administration (FDA) (Flamm, 

1991; Olempska-Beer et al., 2006). RPP is also of great importance for modern biological 

research in the production of commonly used laboratory enzymes such as the restriction 
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endonucleases and thermostable DNA polymerases vital for genetic manipulation; the 

majority of restriction endonucleases available from New England Biolabs are 

recombinant (New England Biolabs, 2013/2014). Smaller-scale RPP is also directly used 

in research to synthesise proteins of interest for structural or functional analysis, recent 

examples include: Rouyi et al. (2014), Świeżawska et al. (2014), Overman et al. (2014) 

and Um et al. (2013). 

 

1.1.2. Systems, uses & limitations.  

Numerous expression systems exist for RPP, from microbes such as bacteria and yeast, 

to higher eukaryotes such as filamentous fungi, plant, insect and mammalian cells, and 

even cell-free systems. The wide range of expression systems available is necessitated 

by the range of proteins that have been targeted for production. The properties of the 

recombinant protein (RP) product and its intended use will affect the choice of host 

system; as such, there is no single ‘ideal’ system. Below follows a summary of common 

expression systems with example products from each in Table 1.1 and a summary of the 

advantages and disadvantages of each in Table 1.2. 

1.1.2.1. Bacterial systems  

In the interests of efficiency, it is advantageous to utilise the simplest system possible for 

the product in question. In this regard bacteria hold many advantages: they are simple 

organisms and can grow rapidly to high cell densities, with high product yields in 

relatively simple bioreactors using inexpensive growth media. Microbial hosts can 

therefore be advantageous for RPP processes.  

Bacteria do however possess certain limitations, primarily involving their ability to 

produce more complex, eukaryotic proteins. First, eukaryotic proteins are often subject 

to significantly higher levels of post-translational modification (PTM) than in
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Table 1.1: Selected commercialised and industrially-relevant RPP products from 

common expression systems 

Expression system Proteins/Products 
EU/FDA 

Approved References 

M
ic

ro
b

ia
l s

y
st

em
s 

Bacteria 

Escherichia coli 

Thrombolytics 
Hormones 

 
Interferons 

Vaccines 
 

Antibodies (Fab) 
Enzymes 

tPA (Ecokinase etc.)  
Insulin (Humulin etc.) 
HGH (Protropin etc.) 
Betaferon etc. 
Borellia burgdorferi 

(Lymarix) 
Cimzia 
Chymosin 

Yes 
Yes 
Yes 
Yes 
Yes 

 
Yes 
Yes 

 
Schmidt, 

2004; Walsh, 
2010a; 

Flamm, 1991 

Bacillus subtilis 
Hormones 

Enzymes 
Other 

Proinsulin  
Lipase A  
Streptavidin 

No 
No 
No 

Westers et al., 
2004; Terpe, 

2006 

Bacillus 
megaterium 

Enzymes 
Other 

Dextransucrase  
Toxin A (Clostridium 

difficile) 

No 
No Terpe, 2006 

Yeast 

Saccharomyces 
cerevisiae 

Anticoagulants 
Hormones 

 
Growth factors 

Vaccines 

Hirudin (Revasc etc.) 
Insulin (Novolog etc.) 
HGH (Valtropin) 
PDGF (Regranex) 
Hepatitis B (Recombivax 

etc.) 
HPV (Gardisil) 

Yes 
Yes 
Yes 
Yes 
Yes 

 
Yes 

Schmidt, 
2004; 
Walsh, 
2010a; 

Martínez et 
al., 2012 

Pichia pastoris 
Blood factors 

Hormones 
Others 

Kalbitor 
Insulin precursor  
Human serum albumin  

Yes 
No 
No 

Martínez et 
al., 2012 

Hansenula 
polymorpha 

Vaccines 
Interferons 

Hepatitis B  
Interferon α2b 

No 
No 

Martínez et 
al., 2012 

H
ig

h
er

 e
u

k
ar

y
o

te
s 

Filamentous 
Fungi 

Aspergillus niger 
Interleukins Human interleukin 6 No Martínez et 

al., 2012 

Insect cells Baculovirus 
Vaccines 

Others 
HPV (Cervarix) 
Human 

proapoliproprotein AI 

Yes 
No 

Walsh, 2010; 
Martínez et 

al., 2012 

Mammalian 
cells 

 

Chinese hamster 
ovarian (CHO) 
cells 

Blood factors 
Thrombolytics 

Hormones 
Growth factors 

Interferons 
 

Antibodies  

Factor VIII (Bioclate) 
tPA (Activase etc.) 
FSH (Gonal F etc.) 
EPO (Neorecormin etc.) 
Interferon β1a (Avonex 

etc.)  
Herceptin etc. 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Schmidt, 
2004; 

Walsh, 2010a 

Baby hamster 
kidney (BHK) 
cells 

Blood factors Factor VIII (Kogenate 
etc.) 

Factor VIIa (Novoseven) 
 

Yes 
 

Yes 
 

Schmidt, 
2004; 

Walsh, 2010a 

Human cell lines 

Interleukins 
Anti-thrombotics 

Enzymes 

Oprelvekin  
Protein C (Xigris) 
VPRIV 
Elaprase 

Yes 
Yes 
Yes 
Yes 

Schmidt, 
2004; 

Walsh, 2010a 
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Table 1.2: Advantages and disadvantages of common industrially-relevant 

expression systems  

Information taken from Palomares et al. (2004), Schmidt (2004), Terpe (2006), Demain 

& Vaishnav (2009), Ferrer-Miralles et al. (2009), Adrio & Demain (2010) and Assenberg 

et al. (2013). 
Host  Advantages Disadvantages 

Bacteria – general[1] Simple 
Inexpensive  
High biomass yields 
High product yields  
Rapid growth & production 

Low levels of PTMs 
Difficulty expressing larger proteins  
Poor production of proteins with 

high DSB content  
Non-mammalian codon bias 

 E. coli Well characterised, highly studied & 
used  

Extensive range of tools and systems 
available  

Easily manipulated 

Poor secretion capacity  
Tendency for RP aggregation (IBs) 
Production of pyrogenic LPS 

endotoxin 

 Bacillus sp. Efficient secretion 
GRAS status 
Generally well characterised 

High protease activity 
Sporulation 

    Yeast – general[2] Increased PTM 
Efficient secretion 
Simple 
Inexpensive 
High biomass yields 
High product yields 
Rapid growth & production 

Non-mammalian PTM 

 S. cerevisiae Well characterised, highly studied & 
used  

GRAS status 

High protease activity in secretory 
vesicles 

Hyper glycosylation 
(mannosylation) can result in 
immune response 

 Methylotrophic yeasts 
(P. pastoris & H. 
polymorpha) 

Efficient secretion 
Does not hyperglycosylate 

(mannosylate) as S. cerevisiae 

Methanol feed flammable & toxic to 
humans 

Non-GRAS 

    Filamentous Fungi   Efficient secretion  
More complex PTM 
some GRAS 

High protease activity 

    Insect cell culture 
(baculovirus) 

 More complex PTM 
Efficient secretion  
Cheaper than mammalian cell 

culture 

Higher cost than microbial culture 
Slower 
Complex procedure 
N-glycosylation is non-sialated 

    Mammalian cell 
culture 

 PTMs should be almost identical to 
native protein 

Expensive 
Complex fermentation 
Potential virus & prion 

contamination 

[1] – Applies to all bacteria listed 
[2] – Applies to all yeast listed 
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prokaryotes, especially glycosylation, but also including carboxylation, hydroxylation, 

amidation, sulphation and disulphide bond (DSB) formation (Walsh, 2010b). Often PTMs 

are essential for function or, for proteins of pharmaceutical use, may be necessary to 

avoid immunological responses. Bacteria do not produce most PTMs. For example, a 

protein that is glycosylated when made in eukaryotic cells will be unglycosylated when 

produced in E. coli. Synthesis of a protein that is natively glycosylated with partial or no 

glycosylation could significantly limit its functionality.  

Bacteria show difficulties in synthesising larger RPs, although production of a 210 kDa 

protein in E. coli has been reported (Doekel et al., 2002; Palomares et al., 2004), typically 

bacteria are used to produce proteins <30 kDa (Demain & Vaishnav, 2009). 

Proteins with high DSB content are also more difficult to produce in bacteria as the 

cytoplasm, where the bulk of RPP systems direct the nascent polypeptides, has too 

reducing an environment to favour DSB formation (Terpe, 2006; Demain & Vaishnav, 

2009; Assenberg et al., 2013). 

An additional limitation in the production of exogenous proteins in bacteria results from 

differences in codon usage during translation, often termed codon bias. The genetic code 

is degenerate; the number of trinucleotide codons available is greater than the number 

of amino acids coded for (61 codons for 20 amino acids (plus 3 stop codons)), therefore 

many amino acids are coded for by multiple codons and hence multiple tRNA molecules. 

The relative abundance of different tRNAs for a particular amino acid can vary greatly 

between species and results in species-specific preferences (reviewed by Terpe, 2006) 

that will be reflected in the codon usage of a gene from that species (Dong et al., 1995). 

Rapid production of a protein from an organism with a significantly different codon bias 

can exhaust the supply of a less-abundant tRNA. This can have severe effects on 

translation, resulting in ribosomal stalling, translational frame-shifts, amino acid 
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misincorporation, and premature termination. It may also affect mRNA stability 

(Goldman et al., 1995; Calderone et al., 1996; Kane, 1995; Kurland & Gallant, 1996). 

Differences in codon bias can be remedied by supplementing genes for rare tRNAs or 

modification of the recombinant gene to match host organism preferences, by site-

directed mutagenesis or more recently by chemical DNA synthesis and in silico design 

(Burgess-Brown et al., 2008). 

1.1.2.2. E. coli  

The most common bacterial host for RPP is E. coli, the reasons for this appear to be 

principally historical. E. coli is one of the most studied model organisms in the biological 

sciences therefore much is known about its genetics, physiology, growth and 

metabolism and E. coli was integral to the development of RPP, therefore a wide variety 

of expression systems and strains tailored for RPP are available (Section 1.2.2). In 

addition E. coli is also easily genetically manipulated allowing ready production of novel 

strains tailored to the task in hand (Demain & Vaishnav, 2009; Assenberg et al., 2013).  

E. coli exemplifies many of the general advantages to bacterial RPP: E. coli can be grown 

to high cell densities (>100 g·L-1 dry cell weight (DCW) using inexpensive media (see 

Chapter 1.4). E. coli can accumulate RP to a very high percentage of its total protein 

content, i.e. up to ~50% of soluble protein (Sung et al., 1987; Sevastsyanovich et al., 

2009) and up to 50% of total cellular protein when produced in inclusion bodies (IBs) 

(Jevševar et al., 2005). For an approximate comparison; the most abundant E. coli 

protein in the PaxDB database of protein abundance, the translational elongation factor 

EF-Tu (Tuf), has an average abundance of 15497 PPM, equivalent to ~1.5% of protein 

molecules in the cell (Wang et al., 2012). Growth of E. coli is very rapid; under optimal 

conditions, doubling time can be as little as 20 minutes.  
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Although E. coli will not natively glycosylate RPs there have advances in this regard, 

primarily involving metabolic engineering and incorporation of the glycosylation 

machinery from Campylobacter jejuni (Lizak et al., 2011; Pandhal et al., 2011, 2012; 

Valderrama-Rincon et al., 2012).  

There are disadvantages to the use of E. coli as a host for RPP, it is relatively poor at 

protein secretion (see Section 1.2.1.1) and rapid RPP often causes aggregation of the RP 

as IBs (see Section 1.2.1.2). In addition, E. coli natively produces pyrogenic 

lipopolysaccharide endotoxins that must be removed in additional processing stages 

(Petsch & Anspach, 2000) or requires the use of strains deficient in endotoxin 

production such as the commercialised CleanColi™ BL21 (DE3) strain (Lucigen Corp.) 

(Lucigen Corp., 2013). 

1.1.2.3. Other Bacteria 

In addition to E. coli, other bacteria have been used as hosts for RPP particularly the 

Gram-positive Bacillus subtilis and Bacillus megaterium. As bacteria they share many of 

the advantages of E. coli and in addition are generally regarded as safe (GRAS) 

organisms, do not produce endotoxins and are more efficient at secretion. However, 

high secreted protease activity along with the tendency of Bacilli to sporulate under 

stressful conditions can result in lower productivity and as yet, there are no approved 

RP pharmaceuticals produced in Bacillus species (Palomares et al., 2004; Westers et al., 

2004; Terpe, 2006; Walsh, 2010a).  

1.1.2.4. Yeast 

Many species of yeast have been used as RPP-hosts, particularly Saccharomyces 

cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha 

(Walsh, 2010a; Walsh, 2010b; Darby et al., 2012; Nielsen, 2013). Growth of yeast to high 

cell densities and high RP yields is again relatively simple and inexpensive. In addition, 
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yeast are able to secrete and glycosylate proteins. Glycosylation in yeast is however 

significantly different to that of mammalian cells and may adversely affect product 

function (Walsh, 2010b). S. cerevisiae particularly, is known to hypermannosylate 

proteins, which can cause an immune response (Palomares et al.,2004; Walsh 2010b; 

Darby et al., 2012).  

1.1.2.5. Higher eukaryotic systems  

Due to the failings of microbial systems in producing more complex proteins it is 

sometimes necessary to use species closer to their source in order to ensure adequate 

RP folding and processing, despite increasing complexity and cost. Common types of 

higher eukaryotes used for RPP include filamentous fungi, plant, insect, mammalian and 

human cell lines. Again, notable examples of proteins produced in these systems are 

given in Table 1.1 and summaries of the advantages and disadvantages given in Table 

1.2.  

1.1.2.6. Cell-free systems 

There are also RPP systems that occur entirely in vitro, with no whole, viable cells 

involved, using either cell-free lysate or a reconstituted expression system. Similar to 

whole-cell systems, E. coli-derived lysates tend to provide higher yields of protein and 

are among the most commonly used, but eukaryote-derived systems such as those from 

wheat-germ and rabbit reticulocytes can be used if significant PTM is required. The 

major advantages of cell-free RPP over cell-based systems are that it can be performed 

at lower volumes (<1 mL) aiding high-throughput studies, it is less sensitive to toxic 

proteins (proteins whose production, even when uninduced, can cause cell death, 

growth defects and decreases in productivity (Saïda et al., 2006)), DSP is simplified as 

cell lysis is not required and reaction conditions can be easily modified to the target 

protein (Katzen et al., 2005). A major limitation of cell-free RPP is that it has not yet 
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been applied industrially, although recently Zawada et al. (2011) reported production of 

a granulocyte-macrophage colony-stimulating factor (rhGM-CSF) with E. coli cell extract 

at the 100 L scale, suggesting possible future industrial applications. 

 

1.2. RPP in E. coli 

E. coli is a Gram-negative rod-shaped γ-proteobacterium that is a natural coloniser and 

strain-dependent pathogen of the mammalian intestine. First isolated by Theodor 

Escherich in the late 19th century and later named after him, it is one of the most widely 

studied model organisms in the biological sciences. With the extent of knowledge 

available, ease of growth and easily manipulated genetics it is logical that E. coli is also 

one of the most common hosts for RPP (Overton, 2014). 

E. coli is inextricably linked to the history of RPP: the earliest instances of RPP used E. 

coli, the first FDA-approved RP pharmaceutical was produced in E. coli (Humulin® (Eli 

Lilly), recombinant human insulin) (Johnson, 1983) and it remains a preferred host. The 

utility of E. coli for a wide variety of RPP applications is demonstrated by the number of 

high-value pharmaceuticals (~50% of all approved RP pharmaceuticals; Walsh, 2010a), 

industrially relevant enzymes and proteins for structural determination (up to 80% of 

structures in the protein data bank; Sørensen & Mortensen, 2005) produced in E. coli. 

 

1.2.1. Methods of production 

There are many of strategies for RPP in E. coli, relating to the subcellular localisation of 

the RP and the state in which it is produced, summarised in Figure 1.1. Each strategy has 

advantages and limitations as summarised in Table 1.3.  
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Figure 1.1: Sub-cellular localisation & production methods for RPP in E. coli.  

Presence of the RP product is denoted by green colouration. a) uninduced cell. b) 

cytoplasmic, soluble. c) cytoplasmic, insoluble. d) periplasmic. e) secreted. (Key: 1 – 

chromosome, 2 – expression vector, 3 – gene encoding RP, 4 - cytoplasm, 5 – periplasm, 

6 – inclusion body, 7 – protein export machinery, IM – inner membrane, OM – outer 

membrane, CW – cell wall). 

 

b) 

a) 

IM 

1 

2 

3 

4 

5 

OM 
CW 

c) 

6 

d) 

7 

e) 
7 
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Table 1.3: Advantages and disadvantages of subcellular localisation and 

conformational state strategies for RPP in E. coli  

Location/State Advantages Disadvantages 

Cytoplasm Simplest expression system 
Generally high RP yields 

More complex DSP (requirement for 
cell breakage) 

Reducing environment disfavours DSB 
formation 

High protease activity 
Periplasm Simpler DSP 

Oxidising environment favours DSB 
formation 

Lower protease activity 
N-terminus authenticity 

More complex expression systems 
Transportation systems introduce 

additional bottlenecks 

Extracellular Simpler DSP 
Improved folding 
Lower protease activity 
N-terminus authenticity 

E. coli is a poor secretor 
More complex expression systems 
Transportation systems introduce 

additional bottlenecks 
      

Soluble Correctly folded 
Functional 
‘Default’ state 

Many proteins cannot be produced 
solubly in E. coli  

Toxic products functional 
IBs Substantial purification by 

centrifugation 
Protease resistant 
Toxic products inactive 
High cellular RP yields 

Requires effective refolding strategy 
Refolding not always successful 
Stressful on cells 
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1.2.1.1. Subcellular localisation 

While protein synthesis occurs solely in the cytoplasm E. coli can accumulate RP in 3 

subcellular locations; the cytoplasm, periplasm and extracellular milieu, accumulation in 

the latter 2 often being interchangeably referred to as secretion.  

Cytoplasmic accumulation is the most common strategy for RPP in E. coli as it requires 

the simplest expression system and generally allows highest RP yields (Makrides, 1996). 

The cytoplasm however, has many disadvantages for RP accumulation; it has a reducing 

environment disfavouring the formation of DSBs (Choi & Lee, 2004; Overton, 2014) 

(although there are advances in this area, see Section 1.2.3.1) and relatively high 

protease activity (Makrides, 1996; Overton, 2014). Furthermore cytoplasmic 

accumulation is problematic for DSP, release of proteins from the cytoplasm requires 

disruption of the entire cell, which requires substantial energy input, can generate heat 

and produces a large volume of a complex, relatively impure mixture of RP, other 

cellular proteins, nucleic acids, endotoxin and other cell fragments (Overton, 2014). 

Accumulation in the periplasm requires the RP to be translocated across the cytoplasmic 

membrane. The principal mechanism of translocation for RPP is through the SecYEG 

complex that exports unfolded proteins, although it has also been demonstrated that 

RPs can also be exported in a folded state by the twin-arginine translocation (Tat) 

system (Georgiou & Segatori, 2005; Matos et al., 2012). Periplasmic localisation holds 

many benefits over cytoplasmic; the periplasmic environment is more oxidising and 

hence DSB formation is favoured (Makrides, 1996; Mergulhão et al., 2005), protease 

activity is lower in the periplasm and hence likely increases RP stability (Makrides, 

1996; Mergulhão et al., 2005; Overton, 2014), and cleavage of signal peptides increases 

the likelihood of the RP displaying its native N-terminus (N-terminus authenticity) 

(Makrides, 1996; Mergulhão et al., 2005). The principal benefit of periplasmic 
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localisation is that purification of RP from selective disruption of the periplasm is 

substantially simpler than from the cytoplasm (Makrides, 1996; Mergulhão et al., 2005). 

The periplasm contains fewer proteins (40-50, equivalent to <5% of cellular protein) 

and should not contain any nucleic acids, reducing contaminants in the cell extract 

(Makrides, 1996; Mergulhão et al., 2005). As the volume of the periplasm is substantially 

lower than that of the cytoplasm (20-40% of total cell volume) (Stock et al., 1977) the 

subsequent volume of cell extract to be processed is also greatly reduced. Finally, 

disruption of the periplasm alone can be achieved using gentler methods for example by 

osmotic shock treatment (French et al., 1996). Periplasmic accumulation does however 

require a more complex expression system that introduces additional bottlenecks in the 

process, i.e. the capacity of the translocation apparatus and cellular RP yields are 

generally lower (Makrides, 1996). 

Finally, RP can be transported out of the cell entirely to accumulate in the extracellular 

milieu. This is a common strategy in hosts such as CHO cells, but it has been less 

effective when applied to E. coli because secretion in wild type E. coli is limited, typically 

only occurring for proteins involved in pathogenesis (Ni & Chen, 2009; Overton, 2014). 

RP secretion can be split into 2 categories: leakage of periplasmic contents and targeted 

transport of RP through the secretory apparatus. In the former, proteins are 

periplasmically targeted under conditions where the outer membrane (OM) is 

selectively permeablised either by coexpression of genes known to permeablise the OM 

such as bacteriocin release protein and kil or addition of chemical agents such as Triton 

X-100 and glycine (Makrides, 1996; Choi & Lee, 2004). An alternate strategy involves 

periplasmic targeting in L-form cells that lack a cell wall and periplasm, however L-form 

cells show growth defects and are less robust than their cell-wall containing 

counterparts and are therefore generally unsuited to large-scale production (Gumpert & 
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Hoischen, 1998; Mergulhão et al., 2005). True secretion through existing apparatus has 

been achieved by fusion to OM proteins such as OmpF or natively secreted proteins such 

as haemolysin (Choi & Lee, 2004; Mergulhão et al., 2005). Fusion of RPs to IgG-binding 

domains of S. aureus protein A (or synthetic derivatives thereof) have been 

demonstrated to direct the fusion product to the extracellular space in addition to aiding 

RP folding and affinity purification (also see Section 1.3.6) (Abrahmsén et al., 1986; 

Moks et al., 1987). Recently, Sevastsyanovich et al. (2012) reported the development of 

a novel RP secretion module using the type V or autotransporter system. Accumulation 

of RP into the extracellular milieu is an attractive option, particularly with regards to 

DSP. Purification of RP directly from fermentation broth does not require any form of 

cell disruption and whole cells can be removed simply, for example by centrifugation. 

This removes a harsh processing stage that may adversely affect the product and, as E. 

coli does not secrete many proteins extracellularly, greatly decreases contaminants 

(Makrides, 1996). In addition, protease activity is much lower extracellularly, protein 

folding is often improved and similarly to periplasmic localization, cleavage of signal 

peptides can increase N-terminus authenticity (Makrides, 1996; Choi & Lee, 2004; 

Mergulhão et al., 2005). Much like periplasmic accumulation, yields of extracellular RP 

tend to be lower than those achieved cytoplasmically, the expressions systems required 

are more complex and introduce additional bottlenecks in processing (Makrides, 1996). 

RP secretion holds many advantages for industrial RPP, particularly in simplifying DSP 

as this can represent substantial savings for a process (purification is estimated to 

account for 50-90% of the total costs for a bioprocess (Cunha & Aires-Barros, 2002)). 

However, the complexity of the systems involved in secretion, variability in efficacy and 

extremely high yields possible with cytoplasmic accumulation result in many processes 

still utilising cytoplasmic accumulation. It is therefore likely that further research into 
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more robust secretion systems will likely see more widespread adoption of secretory 

RPP systems. 

1.2.1.2. Conformational state 

RPs can be made in two conformational states, either in their soluble folded form or as 

insoluble aggregates called inclusion bodies.  

Under normal growth conditions E. coli will produce native globular proteins so that 

they fold into their stable, soluble, form, and can therefore be regarded as the ‘default’ 

production option. Production of RP in its soluble form is advantageous as it will most 

likely exhibit native structure and function. However, many proteins, particularly those 

of eukaryotic origin cannot be produced solubly in E. coli and some RPs when expressed 

in active form may be toxic to the cells (Makrides, 1996; Saïda et al., 2006). 

Conventional RPP protocols often exceed the cells’ capacity for producing correctly 

folded protein, in these circumstances RPs aggregate into IBs. IBs are large, relatively 

dense, proteolysis-resistant aggregates that often exhibit considerable amyloid 

character i.e. large amounts of cross-beta sheet structure (de Groot et al., 2009) and 

have been regarded as being inactive relative to their constituent protein in its native 

state (Singh & Panda, 2005) (though there exists evidence that they do exhibit some 

activity, see Section 1.6.6). Although RPs are generally required in their soluble, active 

state as a final product, production as IBs is frequently utilised as it can provide 

advantages to the process. IBs are relatively pure, dense particles therefore it is possible 

to achieve significant RP purification from crude cell lysate in a single centrifugation 

step; this process is used to produce many products such as insulin (Lilie et al., 1998; 

Schmidt et al., 1999; Vallejo & Rinas, 2004; Sevastsyanovich et al., 2010). IBs are also 

resistant to proteolysis and present a method to produce toxic proteins in an inactive 

form (Makrides, 1996). In addition cellular yields of RP in IBs are often extremely high, 
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up to 50% of total cellular protein (Jevševar et al., 2005). The principle issue with IBs is 

that they require substantial processing to refold the constituent RPs into their 

biologically active forms. Refolding of proteins from IBs involves two steps: first, 

solubilisation of the IB preparation in buffer typically containing a chaotropic agent such 

as urea or guanidium chloride and a reducing agent such as β-mercaptoethanol, then 

removal of the solubilisation agents by dialysis, allowing gradual refolding. While 

refolding can be highly effective and is frequently used industrially it is an additional 

processing stage that introduces additional costs, it is not universally effective and 

therefore the quality of refolded protein can be low. Yields of biologically active refolded 

RP can be as low as 15-25% of total protein (Lilie et al., 1998; Singh & Panda, 2005). In 

addition, RP misfolding and IB formation is associated with substantial physiological 

stresses that may be detrimental to cell productivity (see Section 1.3). 

The choice of conformational state for RPP depends primarily on the RP in question and 

its intended use, for a complex eukaryotic protein that is unstable and potentially toxic 

when produced in bacteria, IBs are the logical option as this would be the only method 

to ensure sufficient RP yields, offsetting the additional costs involved with refolding. 

However for an RP that can be stably expressed in soluble form, soluble production ab 

initio may be a preferable strategy. 

 

1.2.2. Common RPP systems in E. coli  

Many systems have been developed for RPP in E. coli, comprising different mechanisms 

for induction, host strains and additional features to aid production. 

1.2.2.1. Induction 

RPP is often known to result in a rapid loss of productivity and cell growth either due to 

RPP-related stress or simply redirection of metabolites towards RPP (the metabolic 
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burden). As such, regulated production of RP is generally favoured (Makrides, 1996). 

One of the principal steps in the regulation of gene expression in E. coli is at the stage of 

transcription initiation, similarly it is at this stage that RPP is principally regulated. In its 

simplest form the recombinant gene of interest is placed under the control of a 

promoter that will become active only under specific controlled conditions. On exposure 

of the cells to these conditions (termed induction) RNA polymerase can bind the 

promoter, initiating transcription and hence production of the RP. While it is 

theoretically possible to use any promoter from E. coli and any synthetic derivative 

thereof, only a limited number have proved to be effective and hence are routinely used. 

Terpe (2006) provides a useful list of features that a promoter must possess to be useful 

for RPP: low basal transcription (i.e. tight regulation); readily transferable to other 

strains; simple and inexpensive to induce; and induction should be independent of 

extraneous stimuli. In addition it is also possible to modulate the rate of RPP using a 

dose-dependent promoter such as the araC-PBAD system (Guzman et al., 1995). 

1.2.2.2. lac promoter-based systems 

Regulation of the lacZYA operon, encoding the machinery for utilisation of the 

disaccharide lactose, was the first gene regulatory circuit elucidated and as such is the 

archetype for gene expression in E. coli. In wild type E. coli the lac operon is under the 

control of the lac repressor LacI, via the lac promoter (Plac). On binding the lactose 

isomer, allolactose, LacI undergoes a conformational change that prevents DNA binding, 

allowing RNA polymerase access to the promoter and hence initiating transcription 

(summarised in Figure 1.2). In a synthetic setting deliberate addition of lactose to a 

culture will induce recombinant gene expression. This has been aided by the utilisation 

of metabolically-inactive synthetic inducer analogues such as isopropyl β-D-1-

thiogalactopyranoside (IPTG) the structure of which in comparison to lactose and
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Figure 1.2: Mechanism of induction for LacI-based RPP systems 

a) Uninduced cells: in the absence of inducer, LacI is bound to the lac operator, blocking 

access of RNA polymerase, therefore preventing expression of the RP product. b) 

Induced cells: LacI binds IPTG and cannot bind DNA, allowing access of RNA polymerase 

to the T7 polymerase gene, resulting in synthesis of the RP product. c) Chemical 

structures of LacI effector molecules. Adapted from Sweet (2003). 

 

  

c 
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allolactose is given in Figure 1.2. As IPTG is metabolically inactive it is not subject to 

decreases in concentration due to catabolism of lactose (Sweet, 2003). Given the status 

of Plac as a model expression system it is unsurprising that some of the earliest examples 

of RPP used transcriptional lac-fusions and IPTG to induce RPP (Goeddel et al., 1979). 

There are 3 limitations of wild-type Plac for RPP: it is subject to catabolite repression and 

as such requires activation by cyclic AMP (cAMP) and cAMP receptor protein (CRP) for 

full activity and therefore will not reach full induction during growth on glucose; it is a 

relatively weak promoter; and finally, it has significant basal or ‘leaky’ activity in the 

absence of inducer (Sweet, 2003; Terpe, 2006). A number of Plac variations have been 

developed to address these limitations. To reduce reliance on CRP/cAMP a mutant 

variant of Plac, called lacUV5 can be used that allows significant transcription without 

CRP (Eron & Block, 1971). To increase promoter activity, hybrid promoters were 

developed by replacing the lacUV5 -35 region with that of the trp operon (encoding 

genes for tryptophan biosynthesis). Two promoters were developed, tac and trc, with 

the sole difference being the region between the -10 and -35 elements is 16 and 17 bp 

respectively (de Boer et al., 1983; Brosius et al., 1985). tac was shown to have 5-10 fold 

higher activity than lac (Amann et al., 1983) and trc was shown to retain approximately 

90% activity compared to tac (Brosius et al., 1985). To reduce basal activity it is possible 

to use the mutant LacI variant, LacIq. LacIq binds the lac operator more tightly, reducing 

basal transcription 10-fold (Calos, 1978). 

1.2.2.3. Other chemically-induced systems 

Of the simple chemically-induced systems lac-based ones remain the most developed, 

but others are available. These include promoters derived from other carbohydrate 

utilisation operons such as the L-arabinose-induced PBAD (Guzman et al., 1995) and L-

rhamnose-induced rhaPBAD promoters (Haldimann et al., 1998) and others such as the 
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tetA promoter that is induced by anhydrotetracycline, a less active form of the antibiotic 

tetracycline (Skerra, 1994). 

1.2.2.4. Bacteriophage λ-based systems 

In addition to E. coli-derived, chemically-induced systems, it is also possible to use 

regulatory systems derived from bacteriophage and physical signals for induction. For 

example, the system reported by Elvin et al. (1990) that used the strong promoter pL 

from bacteriophage λ in conjunction with a mutant form of the λ repressor protein, λ 

cI857. λ cI857 is temperature dependent, at increased temperatures it loses the ability 

to repress and therefore RPP can be induced by an upshift of temperature from 30°C to 

42°C (Elvin et al., 1990; Terpe, 2006). 

1.2.2.5. Bacteriophage T7 RNA polymerase-based systems 

One of the most common RPP systems in use and the one most pertinent to this study is 

a combination of the lac-based, chemically-induced and bacteriophage-derived systems; 

the T7 polymerase system (Studier & Moffat, 1986; Sweet, 2003; Sørensen & Mortensen, 

2005; Terpe, 2006). In the T7 polymerase system the recombinant gene, supplied on a 

plasmid, is under the control of a promoter that is recognised solely by the T7 

bacteriophage RNA polymerase. Expression of the recombinant gene occurs upon the 

expression of the T7 polymerase, which is chromosomally located (Figure 1.3). The 

reason for chromosomal location of the T7 polymerase gene was that in initial 

experiments where the gene was provided on a plasmid along with the recombinant 

gene, basal expression of the polymerase was sufficient to severely affect plasmid 

maintenance. Studier & Moffat (1986) proposed two induction systems, first providing 

the T7 polymerase only on induction by infection with bacteriophage λ and second with 

T7 polymerase already chromosomally integrated through a prophage of the λ-

derivative DE3 under the control of lacUV5 and IPTG induction. The former was 
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Figure 1.3: Mechanism of induction for the T7 polymerase RPP system. 

a) Uninduced cells: in the absence of inducer, LacI is bound to the lac operator, blocking 

access of E. coli RNA polymerase, therefore preventing expression of the T7 RNA 

polymerase. b) Induced cells: LacI binds IPTG and cannot bind DNA, allowing access of E. 

coli RNA polymerase to the T7 polymerase gene, resulting in synthesis of T7 RNA 

polymerase. T7 RNA polymerase then allows synthesis of the RP product. Adapted from 

Sweet (2003). 
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suggested for production of toxic products where even basal activity from a lac 

promoter is sufficient to cause growth defects, however it is the latter that has become 

the more popular method. Following the development of the T7 polymerase system 

numerous DE3 strains have been commercialised along with many T7 expression 

vectors, most notably the pET series. 

 

1.2.3. Strains 

Numerous strains of E. coli exist that may be used for RPP or have been specifically 

developed as a host for RPP, depending on the expression system used, selected 

examples are summarised in Table 1.4. Simple plasmid-based expression systems may 

be used in many strains providing they contain compatible genotypes, whether they are 

specifically developed for RPP or not such as E. coli W3110 a wild-type K12-derivative 

strain commonly used for RPP (Huang et al., 2012). T7-polymerase-based systems 

however, require strains specifically created for RPP by integration of the DE3 

prophage. While many DE3 strains are available the most common are BL21 (DE3) and 

its derivatives. 

1.2.3.1. E. coli BL21 and derivatives 

E. coli BL21 (DE3) was one of the original strains developed by Studier & Moffat (1986) 

by integration of the DE3 prophage into BL21, a derivative of B834 (Wood, 1966). An 

advantage of BL21 and derivatives for RPP is that they are deficient in the proteases lon 

and ompT (Sørensen & Mortensen, 2005; Terpe, 2006). In addition to BL21 a number of 

derivatives have been developed with improvements in various aspects of RPP. BL21*, 

as used in this study, is a derivative of BL21 that contains the rne131 mutation. rne is an 

essential gene encoding the enzyme RNase E. rne131 produces a truncated enzyme that 

results in increased RNA stability (Lopez et al., 1999) and is claimed to therefore 
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Table 1.4: Selected E. coli strains commonly used for RPP 

Adapted from Terpe (2006). 
Strain Derivation Features 

W3110 K12 Wild-type laboratory strain 

Origami K12 trxB & gor mutant for improved DSB formation 

HMS174 K12 DE3 prophage for T7 polymerase expression system 
recA mutant for increased plasmid stability 

BL21 B834 DE3 prophage for T7 polymerase expression system 
lon & ompT protease mutant 

BL21* BL21 rne131 mutation for increased mRNA stability 

BLR BL21 recA mutant for increased plasmid stability 

Origami B BL21 trxB & gor mutant for improved DSB formation 

Rosetta BL21 pRARE to supplement tRNAs for rare codons 

Rosetta-gami BL21 pRARE to supplement tRNAs for rare codons 
trxB & gor mutant for improved DSB formation 

C41 BL21 Mutant strain for improved production of membrane proteins 

C43 BL21 Double mutant strain for improved production of membrane 
proteins 

   

pLysS, pLysE Plasmids Encode T7 lysozyme to reduce basal RP expression 
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increase yields of recombinant protein (Life Technologies Corporation, 2010). To reduce 

basal or ‘leaky’ expression of toxic proteins in T7 polymerase systems the pLysS and 

pLysE plasmids may be used encoding the T7 lysozyme that degrades the T7 

polymerase and hence decreases uninduced RP expression (Sweet, 2003; Terpe, 2006; 

Merck KGaA, 2013a). To aid formation of cytoplasmic disulphide bonds Origami™ (DE3) 

(Novagen) can be used; a trxB and gor mutant, BL21 (DE3)-derivative strain with a more 

oxidising cytoplasm (Terpe, 2006; Merck KGaA, 2013b). To aid production from non-

codon optimised genes Rosetta™ 2(DE3) (Novagen) can be used; a BL21(DE3) derivative 

containing pRARE2, a plasmid encoding tRNAs for 7 rare codons (Terpe, 2006; Merck 

KGaA, 2013c). Finally, Rosetta-gami™ B(DE3) possesses features from both the Rosetta 

and Origami strains (Terpe, 2006; Merck KGaA, 2013d). E. coli C41 and C43 are BL21-

derivative strains that were originally isolated by Miroux & Walker (1996) that had 

acquired mutations allowing improved production of a number of globular and 

membrane proteins. 

A major advantage of BL21-derivatives in industrial bioprocesses is that BL21 has been 

demonstrated to produce less acetate in high cell density culture than K-12-derived 

strains such as JM109. This reduces culture acidification and increases the efficiency of 

conversion from glucose to biomass (see Section 1.4.3.2). This was shown to be due to 

increased flux through the glyoxalate shunt and acetyl-CoA synthetase (Noronha et al., 

2000; Phue & Shiloach, 2004).  

One consideration ought to be made when using BL21 and derivatives for industrial 

cultivation, BL21(DE3) has been shown to be FNR deficient due to the acquisition of a 

nonsense mutation at codon 141 in an ancestral strain (Studier et al., 2009). FNR is a 

global gene regulator associated with the shift to anaerobiosis. Lacking FNR, BL21(DE3) 
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therefore displays metabolic impairments including the inability to respire 

anaerobically (Pinske et al., 2011).  

1.2.3.2. Other (DE3) strains 

BL21 (DE3)-derivative strains are not the only strains that use the T7 polymerase 

system. In addition to BL21(DE3) Studier & Moffat (1986) also inserted DE3 into 

HMS174, a K-12 derivative strain. HMS174 is a recA mutant and as such may have 

increased vector stability. HMS174(DE3) is commercially available and there are also K-

12 derivative versions of the previously mentioned Rosetta™, Origami™ and Rosetta-

gami™ strains (Terpe, 2006). 

 

1.3. Physiological stress during RPP & the improved protocol 

RPP generally requires an organism to produce a single protein to a significant 

proportion of its total protein content at a rate far in excess of that during normal 

growth. E. coli has not evolved to do this and adverse effect on the cells may be expected. 

There have been many studies regarding the considerable stresses RPP imposes on 

bacteria (Gill et al., 2000; Jürgen et al., 2000; Haddadin & Harcum, 2005; Harcum & 

Haddadin, 2006; Dürrschmid et al., 2008). RPP has been shown to induce an overlapping 

stress response; for example, the transcriptional response of E. coli to production of 

chloramphenicol acetyltransferase (CAT) with a high-stress RPP protocol (37°C, 5 mM 

IPTG) was found by Haddadin & Harcum (2005) to include elements of a general stress 

response regulated by RpoS, the heat-shock response regulated by RpoH and the 

nutrient limitation-detecting stringent response, causing detrimental effects to cell 

growth, plasmid retention and quality of the RP product. Decreases in expression of 

genes involved in oxidative phosphorylation and the machinery for transcription and 
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translation led the authors to conclude that the response to RPP induction down-

regulates genes that should be up-regulated to continue production.  

 

1.3.1. Mis-folded protein and the heat shock response 

During RPP the rate of protein production often exceeds the capacity of the post-

translational folding and modification systems including the chaperones and 

transporters that are essential for some proteins to reach their soluble, stable, native 

states (Baneyx & Mujacic, 2004). This results in an accumulation of incorrectly folded 

protein, often as IBs. The presence of mis-folded protein is one of the key signals for 

induction of the RpoH (heat shock sigma factor) regulon, through an unfolded protein 

titration model, summarised in Figure 1.4 (Yura & Nakahigashi, 1999; Guisbert et al., 

2008). RpoH is synthesised constitutively, however under normal growth conditions 

RpoH becomes associated with the ubiquitous chaperones DnaK, DnaJ, GrpE and GroELS 

and is directed towards proteolysis (primarily by the ATP-dependent metalloprotease 

FtsH) (Yura & Nakahigashi, 1999; Guisbert et al., 2008). There is therefore, insufficient 

RpoH available to induce expression of its regulon significantly. Mis-folded protein 

caused by either RPP or denaturation (e.g. due to heat) will bind to the chaperones and 

hence titrate them away from binding RpoH. Free RpoH is then available to bind RNA 

polymerase and induce expression of its regulon comprising of >20 proteins (Gamer et 

al., 1996; Yura & Nakahigashi, 1999; Arsène et al., 2000; Guisbert et al., 2004, 2008). 

Effects of RpoH induction include up-regulation of a number of ‘heat shock proteins’ 

(HSPs) principally the molecular chaperones DnaK, DnaJ, GrpE and GroELS, the ATP-

dependent proteases Lon and ClpAB and the inclusion body-associated proteins IbpA 

and IbpB, allowing mis-folded proteins to be either refolded by the chaperone systems 

or degraded by the proteases. Regulation at the σ-factor level as opposed to 
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Figure 1.4: Mechanism of RpoH induction through the misfolded protein titration 

model.   

a) Under normal growth conditions: RpoH is sequestered by chaperones and targeted to 

FtsH for proteolysis and hence unable to bind RNA polymerase and initiate 

transcription. b) Under heat shock: Increased amounts of mis-folded protein titrate 

chaperones away from RpoH, resulting in free RpoH that then is able to bind RNA 

polymerase and direct transcription of HSP operons (adapted from Yura & Nakahigashi 

(1999) and Guisbert et al. (2008)). 
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transcription factor allows the transition to a stress-responsive state at a higher 

hierarchical level, essentially reprogramming RNA polymerase away from 

‘housekeeping’ genes. This is reflected in the fact that at 46°C, 15-20% of cellular protein 

is comprised of the two major chaperone systems DnaK and GroE (Yura & Nakahigashi, 

1999; Arsène et al., 2000). Similarly, mis-folded protein in the periplasm will induce 

expression of the envelope stress response via RpoE (Yura & Nakahigashi, 1999; Ades, 

2004; Alba & Gross, 2004).  

 

1.3.2. Nutrient depletion and the stringent response 

RPP imposes significant metabolic challenges to cells, not only through synthesis of the 

product itself, but also through maintenance of a high copy number plasmid expression 

vector with associated antibiotic resistance genes that must be expressed (See Chapter 

1.3.4.) and also in the case of the E. coli BL21/pET and similar systems through synthesis 

of the T7 RNA polymerase. It is only to be expected that diverting cellular resources 

from growth towards RPP and supporting processes will result in some degree of 

growth arrest. Bentley et al. (1990) observed that RPP caused a decrease in growth rate 

with increasing RP content, Dong et al. (1995) and Kurland & Dong (1996) then 

observed that RPP triggered a breakdown of rRNA, and hence of ribosomes, causing a 

decrease in protein synthesis, followed by a loss of viability. It is not even necessary to 

produce the RP to cause growth defects. Soriano et al. (1999) observed that induction 

(37°C, 1.68 mM IPTG) of a T7-based expression vector with no RP gene still limited 

growth. The authors concluded that this was a specific effect of T7-type plasmids as this 

effect was not observed with another, non-T7 type plasmid.  

Synthesis of all the necessary components for RPP represents a significant diversion of 

cellular resources that would otherwise be available for normal cellular processes, 
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termed a ‘metabolic burden’ (Bentley & Kompala, 1990). If the metabolic burden of RPP 

becomes sufficient to deplete cellular resources (amino acids, ATP and other 

metabolites) it can activate a state known as the stringent response. The stringent 

response detects a state of nutrient depletion that has become limiting for growth and 

facilitates a shift of gene expression from one suited for rapid growth to stationary 

phase (Chatterji & Ojha, 2001). Depletion of amino acids results in an increase in 

uncharged tRNAs and stalled ribosomes. Triggered by the presence of stalled ribosomes, 

RelA synthesises the alarmone 5’,3’ guanosine pyrophosphate (ppGpp). ppGpp is then 

the signal to induce the stringent response. Effects of the stringent response include a 

decrease in the amount of stable RNAs produced, a decrease in the number of ribosomes 

and an up-regulation of genes involved in amino acid biosynthesis. In non-RPP growth 

conditions the effects of these changes would be to prepare cells for survival in 

stationary phase. ppGpp has in fact been found to positively regulate rpoS and hence 

entry into stationary phase (Gentry et al., 1993; Chatterji & Ojha, 2001). 

 

1.3.3. RpoS and the general stress response 

When stressed, E. coli can induce not only specific stress responses such as that for heat 

shock, but also a general stress response mediated by RpoS that provides some 

resistance to further and additional stresses often termed cross-protection and is 

involved in the transition to stationary phase on nutrient limitation (Battesti et al., 

2011). Gill et al. (2000) showed upregulation of rpoS in response to RPP and Haddadin 

& Harcum (2005) showed RPP induction to have an overlapping transcriptional 

response to that of the shift to stationary phase.  
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1.3.4. Effects of RPP-induced stress 

The combination of these responses (heat shock, stringent and general stress responses) 

has 3 effects. First, the productivity of the cells and quality of the product decreases, 

changes in gene expression ultimately reduce the cells capacity for producing the RP and 

protein that is made is either aggregated into IBs or degraded by proteases (Villaverde & 

Carrió, 2003; Haddadin & Harcum, 2005; Sevastsyanovich et al., 2009). Second, stress-

responsive gene regulatory elements titrate RNA polymerase away from σ70-regulated 

housekeeping and growth related genes, severely arresting the growth rate and 

culturability of RP-producing bacteria (Andersson et al., 1996; Sundström et al., 2004; 

Haddadin & Harcum, 2005). This growth arrest also is related to a third detrimental 

phenomenon observed during RPP; loss of the plasmid expression vector. To ensure 

retention, plasmids usually also contain a gene encoding antibiotic resistance. 

Supplementation of the growth medium with the relevant antibiotic creates a selective 

pressure for retention of the plasmid as plasmid loss will result in a cell becoming 

antibiotic sensitive and hence unable to grow. Despite antibiotic based selection, 

plasmid-free cells often eventually outgrow their protein-producing counterparts 

(Sevastsyanovich et al., 2009), presumably as the selective pressure conferred by the 

antibiotic resistance genes becomes insufficient to counterbalance the severe 

disadvantage posed by RPP-induced stress. This effect is probably related to a second 

issue with antibiotic-based selection in that some of the most common antibiotics used 

are the β-lactams such as ampicillin. β-lactam resistance relies on enzymatic 

degradation of the antibiotics by β-lactamase (Bla) and may, after sufficient time, reduce 

concentrations below the minimum inhibitory concentration (Baneyx, 1999). This 

situation is exacerbated by the fact that the Bla can accumulate in the extracellular 

environment as a result of its leakage from lysed cells (Baneyx, 1999). There are a 
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number of ways that this can be avoided; the simplest is by using an alternate antibiotic, 

either a more stable β-lactam antibiotic variant such as carbenicillin (Butler et al., 1970) 

or by using an alternate resistance marker that may exhibit better stability. Other 

options remove the need for antibiotics altogether through either chromosomal 

insertion of the expression system, or so called ‘plasmid addiction systems’ where loss 

of the plasmid directly causes cell death. There are three categories of plasmid addiction 

systems; toxin/antitoxin (TA)-based systems, metabolism-based systems and 

operator/repressor titration (ORT) systems (Kroll et al., 2010). In TA-based systems the 

plasmid encodes a stable toxin and unstable antitoxin, plasmid loss prevents further 

synthesis of both components but the antitoxin degrades more rapidly than the toxin 

resulting in free toxin within the cell and therefore cell death. There are 3 types of TA-

systems used, i.e. antisense RNA-regulated, protein-regulated and restriction 

modification-based; these are described in detail by Kroll et al. (2010). In metabolism-

based systems an essential, chromosomal gene is knocked out and provided in trans on 

a plasmid, such as ispH an essential gene in isoprenoid biosynthesis (Kroll et al., 2009). 

Plasmid loss removes the essential gene, impairing growth of plasmid-free cells. Finally, 

in operator/repressor titration systems, an essential chromosomal gene is placed under 

the control of the lac promoter and the plasmid contains multiple copies of the lac 

operator. When the plasmid is present lacI is titrated away by the multiple lac operator 

sites allowing essential gene expression however, when the plasmid is lost lacI binds 

and represses essential gene expression, causing cell death. ORT-systems were 

originally developed by Williams et al. (1998) using chromosomally located kan 

encoding kanamycin resistance, allowing growth on kanamycin-containing media. 

Cranenburgh et al., (2001) then developed a system using dapD an essential gene 

involved in lysine biosynthesis and peptidoglycan crosslinking that did not require 
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antibiotics. A limitation of the ORT-systems described here for RPP is that the use of LacI 

to repress the essential gene precludes the use of lac-based RPP systems as induction 

would also induce essential gene expression independent of the plasmid. 

 

1.3.5. RPP-related stress in other host species 

RPP does not, of course, result in substantial physiological stress in E. coli alone.  

Similarly to E. coli, production of an aggregation prone protein in B. subtilis was shown 

to form IBs and proteome analysis showed increased synthesis of HSPs including 

chaperone & proteases (Jürgen et al., 2000; Westers et al., 2004) 

RPP-related stress can also affect eukaryotes e.g. yeasts and mammalian cell culture 

hosts in addition to prokaryotes. Typically the nascent RP polypeptide is translocated 

from the cytoplasm into the endoplasmic reticulum (ER) where it folds and is processed 

by the PTM machinery before secretion. High rates of RPP can exceed the capacity of the 

folding and PTM systems in the ER and cause accumulation of misfolded RP (Schröder & 

Kaufman, 2005; Hussain et al., 2014). As a result, detection of misfolded protein typically 

occurs in the ER (Mattanovich et al., 2004). Detection of misfolded protein in the ER 

ultimately results in the expression of a number of genes known as the unfolded protein 

response (UPR). The UPR is a wide acting response (transcriptomic studies in yeast 

showed >350 genes (>5% of the total gene complement) were UPR-regulated (Patil & 

Walter, 2001;)). The UPR can increase the protein processing capability of the ER by 

upregulating for example ER-resident chaperones, decrease the workload of the ER by 

limiting transcription and translation or by degrading misfolded protein by ER-

associated protein degradation (ERAD) whereby misfolded protein is translocated back 

into the cytoplasm, ubiquitinylated and targeted for proteolysis (Patil & Walter, 2001; 

Mattanovich et al., 2004; Gasser et al., 2008; Hussain et al., 2014). The UPR is also 
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thought to affect the entirety of the secretory pathway, beyond that of the ER (Patil & 

Walter, 2001;). If the effects of the UPR are insufficient to counteract that of the 

misfolded protein itself this is known in higher eukaryotes to be a trigger for apoptosis 

(Mattanovich et al., 2004; Hussain et al., 2014). Although there are substantial 

differences in the specifc mechanisms of RPP related stress between E. coli and 

eukaryotic systems there are superficial similarities; the principle trigger detected is 

that of misfolded protein and in both cases the response include upregulation of 

chaperones and proteolysis. It is also possible that high rates of RPP could result in an 

exhaustion of metabolites as with the E. coli stringent response but the lower synthesis 

rates typical of eukaryotic RPP make this unlikely (Mattanovich et al., 2004). 

 

1.3.6. Previous attempts to ameliorate RPP-induced stress 

Protein aggregation/degradation, growth arrest and plasmid loss are serious problems 

for the efficacy of RPP-related processes and there have been a number of attempts to 

ameliorate these. Induction of the heat-shock response appears to be the cell’s 

mechanism by which it adapts to and copes with the presence of RPP-generated mis-

folded protein. If this is the case then deliberately stimulating the heat shock response, 

or artificially simulating it could be beneficial to RPP processes. Heat-shock immediately 

prior to induction or using heat shock to induce protein production (for example with λ-

cI857, a temperature sensitive mutant of the bacteriophage λ repressor protein) induces 

chaperone synthesis that can increase the cells capacity for protein folding (Schmidt et 

al., 1999). However, heat shock will also induce the synthesis of potentially detrimental 

proteases. Others have had some success co-expressing chaperones from a second 

plasmid (de Marco et al., 2007; reviewed by Martínez-Alonso et al., 2010). This, 

however, requires maintenance of a second plasmid with the requirement for further 
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antibiotic selection and imposes an additional metabolic burden in synthesis of both the 

plasmid and chaperones. In addition, its efficacy is by no means consistent. For instance, 

depending on the RP and chaperones used, chaperone co-expression can result in a 

decrease in productivity. It is also possible to follow induction with a decrease in 

temperature (e.g. 37°C to 25°C), the lower temperature potentially favouring RP folding 

(Sevastsyanovich et al., 2009; Alfasi, 2010).  

An additional strategy for increasing RPP productivity is to modify the growth media to 

favour protein solubility and folding by the addition of chemical agents that promote 

protein folding (reviewed by Fahnert, 2012). This can be as simple as using rich growth 

media (Moore et al., 1993) or supplementing a limiting metabolite such as an amino acid 

(Ramírez & Bentley, 1995). It is also possible to supplement chemicals known to modify 

protein production and folding; Kusano et al. (1999) reported sub-lethal doses of the 

protein synthesis inhibiting and cold-shock inducing antibiotic chloramphenicol 

enhanced production of a number of eukaryotic cytochrome P450s and production of 

another P450 was enhanced by addition of ethanol that is known to induce heat shock 

and hence increase chaperone production. In addition, the original protocol for 

producing the CheY::GFP model protein used in this study involved the addition of 20 

g·L-1 ethanol at 6 h post-induction to enhance RP solubility (Jones, 2007). 

The methods discussed above for alleviating RPP-related stress have focused on 

adapting process and culture conditions, it is also possible to adapt the target protein 

and host organism; a protein that correctly folds more readily is less likely to cause 

stress to the host and the benefits of producing a host more able to withstand stress is 

obvious. In this regard there has been some success in fusing the protein of interest to 

another protein with useful properties. Fusion to a protein known to fold more robustly 

can increase solubility over that of the native protein (reviewed by Walls & Loughran, 
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2011), common fusion partners include maltose binding protein (MBP), glutathione-s-

transferase (GST), thioredoxin (TRX) and NusA. MBP is the most common solubilisation 

partner and has been shown to be more effective than either GST or thioredoxin (Kapust 

& Waugh, 1999). N-terminal fusions have been shown to be more effective for in vivo 

folding, suggesting that initial correct folding of the fusion partner positively influences 

folding of the RP product (Sachdev & Chirgwin, 1998a). MBP and TRX fusions have been 

demonstrated to improve refolding of proteins in vitro (Sachdev & Chirgwin, 1998b). 

Samuelsson et al. (1994) also demonstrated that refolded human insulin-like growth 

factor I (IGF-I) showed higher solubility and stability when fused to ZZ, 2 copies of a 

synthetic IgG binding domain derived from Staphylococcus aureus protein A. An 

additional benefit to some solubility-enhancing fusions is that the fusion partner may 

enable affinity purification, such as MBP, GST, TRX and ZZ, potentially simplifying DSP 

(Moks et al., 1987; Walls & Loughran, 2011). While solubility-enhancing fusions are 

effective they are not universally so, the protein may still mis-fold. The fusion partner 

often must be first cleaved from the RP for it to be used, creating additional processing 

stages and the fusion partner will represent a substantial proportion of the total RP 

produced, therefore decreasing final yields of the cleaved RP product. 

Isolation of host organisms that have acquired mutations allowing more efficient 

production and RPs whose coding sequence has acquired mutations that improve 

folding have also been reported, such as the work reported by Miroux & Walker (1996) 

who isolated the strains C41(DE3) and C43(DE3) that showed improved production of a 

number of membrane and globular proteins over unmodified BL21(DE3). As fluorescent 

protein-RP fusions have been particularly effective in this regard this is discussed in 

Section 1.6.5.  
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Many of these methods for ameliorating stress have analogues among other host 

species. For example, overproduction of chaperones during RPP in B. subtilis has been 

shown to increase RP solubility and yields (Westers et al. 2004), although similar to E. 

coli the effects of chaperone co-production in yeast appear to be mixed (Mattanovich et 

al., 2004). It appears that decreasing the growth temperature during RPP may be 

beneficial in yeast (Mattanovich et al., 2004; Gasser et al., 2008) and potentially also in 

mammalian cell culture (Al-Fageeh & Marchant, 2006). Finally, the selection of high-

producing cell lines is a common stage in process development for eukaryotic RPP, it has 

been possible to use the response of the UPR to guide cell line selection for mammalian 

cell culture, selecting cell lines with higher tolerance to RPP-related stress (Kober et al., 

2012; Du et al., 2013; Hussain et al., 2014). 

 

1.3.7. Minimising RPP-induced stress: The ‘improved’ protocol 

A new strategy has been proposed that, rather than mitigating the effects of the stress 

responses inherent to a ‘standard’ RPP protocol (i.e. those described in the 

manufacturers instructions for E. coli BL21* (Life Technologies Corp., 2010), growth at 

37°C pre-induction and 25°C post-induction, induced with 0.5mM IPTG), aims to 

minimise these stresses from the outset (Sevastsyanovich et al., 2009; Alfasi, 2010). 

Growth conditions were set to decrease physiological stress and the inducer 

concentration was optimised not on the amount of RP generated or the rate of RP 

formation, but on the level of protein function observed at the end of the experiment. 

The temperature was maintained at 25°C throughout the experiment, to favour correct 

protein folding (Vera et al., 2007). In addition this would also decrease growth and 

hence protein synthesis rates. A constant temperature was used as opposed to 

decreasing temperature from 37°C on induction to limit any potential stress involved in 
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a rapid change of temperature. Induction of cold shock is known to result in a temporary 

block in translation that is thought, at least in part, to be sensed directly by the ribosome 

(VanBogelen & Niedhardt, 1990; Yamanaka, 1999). This protocol was originally 

developed using a 42 kDa model protein comprising E. coli CheY (a regulator protein 

involved in chemotaxis (Hess et al., 1988)) with a C-terminal green fluorescent protein 

(GFP) fusion (incorporating the S65T red-shift and F64L folding mutations) expressed 

from the pET20b vector derivative pET20bhc-CheY::GFP (Waldo et al., 1999; Jones et al., 

2004; Jones, 2007). CheY is a good model protein for testing the ability to form soluble 

protein as it does not readily fold into its soluble form under ‘standard’ RPP conditions. 

The GFP-fusion allows a simple method to estimate the quantity of soluble protein 

present via fluorimetry and also allows for monitoring of the process by FCM. 

The hypothesis that RPP under conditions aimed to minimise physiological stress can be 

beneficial for production of CheY::GFP was found to be true. Under stress-minimising 

conditions (25°C, 8 μM IPTG) total amount of biomass, RP solubility, the percentage of 

cellular protein that was the recombinant product and therefore specific yield of protein 

were significantly higher than those produced under ‘standard’ conditions despite the 

total amount of T7 polymerase present being too low to be detected by Western 

analysis. The modified stress-minimising conditions were therefore termed an 

‘improved’ protocol. This protocol was then applied to laboratory-scale batch and fed 

batch fermentation and it was shown that product yield (in terms of g product per L 

culture broth) in batch growth increased under improved conditions and that 

prolonging expression in fed-batch growth under improved further increased product 

yield over batch (Sevastsyanovich et al., 2009). 

The physiological basis for this effect appears to be reduction of the growth arrest in 

protein producing bacteria described earlier. In the standard protocol culturability, 
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plasmid retention and the proportion of productive cells as determined by green 

fluorescence via FCM dramatically decreased immediately post-induction with viable 

cell numbers only recovering following a lag period and the majority having lost the 

plasmid. In contrast, during the improved protocol both productive cell counts and 

plasmid retention remained above 90% and viable cell numbers increased throughout. 

Despite protein synthesis occurring at a much lower rate, the increased cell viability 

allowed for continued growth and hence protein synthesis continued for much longer, 

with the net effect of increased product yield (Sevastsyanovich et al., 2009). This 

conclusion is supported by a study by Wagner et al. (2008) into the ‘Walker’ mutant 

strains of E. coli BL21; C41(DE3) and C43(DE3) (Miroux & Walker, 1996). It was 

observed that the reason the mutant strains were able to accumulate soluble protein to 

a much greater extent than the wild-type was due to the IPTG-inducible promoter 

controlling the T7 polymerase acquiring mutations that decreased its activity and hence 

reduced the amount of T7 RNA polymerase produced on induction.  

Application of the improved protocol was also shown to be effective for production of 

not only the soluble, cytoplasmic model protein CheY::GFP. Similarly improved RP yields 

were obtained for three additional proteins: cytochrome c2 from Neisseria gonorrhoeae 

that requires periplasmic localisation and significant post-translational modification in 

the attachment of haem, cytochrome c peroxidase (CCP) from N. gonorrhoeae (Turner et 

al., 2003) and D-GFP another non-E. coli protein (GSK) (Sevastsyanovich et al., 2009). 

The success of the improved protocol in increasing RPP productivity in E. coli represents 

a new paradigm for the design of future processes. When it is identified that a process 

causes physiological stress, it may be recommended not just to counteract the effects, 

but also to reduce or remove the stress itself. 
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1.4. Fermentation & industrial cell culture 

The scale of RPP processes can vary greatly, from laboratory uses that may only require 

milligram to gram batches of the target protein to industrial uses such as the production 

of pharmaceuticals or industrially relevant proteins that will often require vast 

quantities of the product regularly, often many kg per year. As such, RPP culture 

volumes may vary from the millilitre to 100,000s of litres scale. In order to cater to such 

varieties in scale there exist a wide range of options available for growth of RPP 

cultures, including culture vessel design, growth strategy and growth media 

composition. 

 

1.4.1. Culture vessel design 

Obviously the design of a culture vessel will alter greatly based on the volume of culture 

it is intended for and on any specific requirements of the organism being cultured, from 

a simple shake-flask through to many thousand litre industrial bioreactors. A summary 

of many variations on these is given below, however for further detail Doran (2013) is 

recommended. 

1.4.1.1. Shake-flask cultures 

The simplest culture vessel used for RPP is the shake flask. They are relatively 

inexpensive, requiring little specialised equipment and due to their low volume they are 

suitable for screening studies. However, the low maximum volumes preclude large-scale 

production, and sample taking and making additions cannot be readily automated and 

require the removal of the culture vessel from the incubator, potentially disturbing 

growth. This means that there can be no real-time monitoring. Although it is interesting 

to note adhesive sensors have been developed recently that can be attached to the 

interior of a flask and can be used to monitor culture parameters such as pH and 
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dissolved oxygen tension (DOT) (the partial pressure of O2 dissolved in the culture 

broth) (Wittman et al., 2003; Schneider et al., 2010; Doran, 2013) 

1.4.1.2. Bioreactor/fermenter cultures 

Bioreactors or fermenters are vessels specifically designed for cell culture, the most 

common type for E. coli being the stirred-tank reactor. Stirred tank reactors generally 

consist of a vessel made of glass in the case of smaller-scale laboratory models or 

photobioreactors and stainless steel for larger scale models. The vessels themselves are 

stationary, agitation is provided by a central rotating shaft with impellers attached. 

Baffles are often also included to provide additional turbulence for mixing and to 

prevent vortexing. Samples are removed through a submerged tube. The culture is 

aerated by sparging filtered air into the vessel and if necessary this can be supplemented 

with oxygen. Temperature is sensed by a submerged probe and controlled automatically 

either by a water jacket around the vessel or a combination of heating mats and cold 

fingers. Additional control mechanisms are often included; most bioreactors will contain 

ports to attach a number of analytical probes, the most frequent being those for DOT, pH 

as these are useful parameters to asses the physiological condition of the culture, and 

the presence of foam in order to prevent blockage of air filters and culture leakage. 

These probes are then connected to an external control unit where the outputs can be 

used to drive control systems and correct observed readings to user-defined set values. 

The agitation speed and aeration rate can be controlled to regulate DOT, sterile 

concentrated acid and base solutions can be automatically added to control pH and 

foaming can be prevented by the automated addition of an antifoam solution. Outputs 

from these systems (temperature, pH, DOT, agitation speed and addition rates) are often 

logged into a computer system for later analysis. Vessels will also include ports for the 

aseptic addition of material, such as for inoculation, or a solution of chemical inducer 
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such as IPTG (Doran, 2013). Bioreactors hold many advantages over simpler techniques, 

increased aeration allows the culture volume to be scaled to the many 1000s of litres 

required for an industrial process. The use of probes to detect, monitor and 

automatically regulate culture parameters allows the operator to be more informed 

about the process and for the process itself to be more reliable and reproducible. The 

main disadvantages of bioreactor culture are that it requires specialised equipment, due 

to the larger volumes it is inherently more expensive per run and hence it is more 

difficult to multiplex experiments especially for screening studies. Also, the complexity 

of the equipment requires not only significantly more time for vessel set-up and shut-

down, but operators must be trained to a higher level. 

1.4.1.3. Additional features available for bioreactors 

As with any technology, there are many additional and variant features available for 

bioreactors, those more frequently used include: the analysis of exhaust gas 

components; often by gas-mass spectrometry (MS); probes for parameters such as 

glucose concentration (Phelps et al., 1995) and fluorescence (Randers-Eichorn et al., 

1997; Jones et al., 2004); additional control systems, such as controlling feeding rate by 

pH or DOT; and if connected to a network the ability to monitor and operate the vessel 

remotely. A more recent variation, disposable vessels, are finding popularity in industry 

as cleaning costs and requisite down-time associated with re-usable vessels is reduced, 

especially for mammalian cell culture (reviewed by Eibl et al., 2010). A final innovation 

in many ways contradicts previously stated points, a scaled-down microtitre plate 

fermentation system has been developed called the Biolector (M2P Labs, Germany). 

Based on a microtitre plate reader, it uses modified microplates allowing parallel 

monitoring of up to 96 individual cultures, detecting OD, pH, O2, CO2 and fluorescence. It 

is possible to grow in both batch and fed batch mode and was demonstrated to be 



 43 

scalable to laboratory scale fermentation (1.4 L) (Kensy et al., 2009a, 2009b; Scheidle et 

al., 2010). 

 

1.4.2. Cultivation techniques 

1.4.2.1. Batch growth 

Batch growth is the simplest cultivation technique available and involves a single step 

process where the growth medium is inoculated and the culture allowed to grow. Batch 

cultures can be grown at all scales from shake-flask to production-scale vessels but they 

rely only on the medium components initially provided and as such the maximum 

biomass that can be produced is limited. 

1.4.2.2. Fed-batch growth 

Industrial processes generally require large amounts of biomass to be produced and it 

would be more efficient if this is can be done in as small a culture volume as possible, 

reducing either the capacity (and hence, space and cost) of the bioreactors used or the 

number of runs necessary and the volume of waste water produced (Choi et al., 2006). It 

is possible to produce concentrations of biomass vastly in excess of those possible in 

batch processes with the addition of concentrated, sterile nutrients following depletion 

of the initial (batch-phase) medium. Most fed-batch growth strategies operate under 

carbon-limiting conditions, feeding additional carbon source, but this can be 

supplemented by additional metabolites. The main use of fed-batch cultures are in 

bioreactors where feed can be added automatically, requiring little operator 

intervention.  

1.4.2.3. Continuous culture 

A final culture method is the continuous stirred-tank reactor (CSTR) or chemostat. A 

culture is grown and maintained in steady-state growth at a fixed volume by 
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simultaneous feeding and removal of culture. While CSTRs hold some advantages such 

as the removal of potentially limiting waste products, they are not often used for RPP 

processes, the long run-times increasing risk of failure and likelihood of increased 

genetic variability. Industrially CSTRs are used in the growth of bakers yeast, brewing 

and waste processing (Doran, 2013), but their main application is in research for 

studying the behaviour of cultures in a steady-state such as Sunya et al. (2012, 2013); 

who determined the response of E. coli to glucose pulses in steady-state chemostat 

cultures. 

 

1.4.3. Growth media 

A final consideration for industrial cell culture is the composition of growth media. This 

can be divided into two areas, the growth medium itself and the carbon source.  

1.4.3.1. Growth media 

Microbial growth media are classified on the extent to which they include defined 

chemical components or biologically-derived complex components such as yeast extract 

(powdered autolysate of yeast), tryptone (tryptic hydrolysate of casein) and peptone 

(enzymatic autolysate of milk, meat or soy protein).  

Complex media consist of predominantly complex components. The staple laboratory 

medium Lysogeny Broth (LB) (also known as Luria, Luria-Bertani or Lennox broth), as a 

complex medium, contains only tryptone, yeast extract and NaCl. All nitrogen, vitamins 

and trace elements derive from tryptone and yeast extract. Sometimes it may be 

necessary to supplement complex media for example as a buffer or to counteract a 

deficiency in a trace metabolite. In contrast, defined media consist solely of simple, non-

biologically derived components such as salts. Semi-defined media contain aspects of 

both.  
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Complex media are commonly used in a laboratory setting due to their simplicity of 

production and the generally good growth achievable, but they have two major 

limitations for industrial application. First, being biologically derived, complex media 

components are inherently variable in content between manufacturer and product 

batch. Industrial processes require reproducibility and therefore any variability 

introduced by using a different batch of media components would be undesirable. 

Second, many complex components such as tryptone and peptone are animal-derived 

and their use will introduce additional regulatory concerns for pharmaceutical 

production. 

1.4.3.2. Carbon source 

Carbon is a necessary element for biomass and while complex media will contain 

sufficient carbon to sustain some growth, for efficient biomass yields it is necessary (for 

non-photosynthetic cultures) to supplement carbon. The two most common carbon 

sources for industrial growth of E. coli are glucose and glycerol, although others are 

available.  

Glucose appears to be the most commonly used carbon source in the culture of E. coli 

(Choi et al., 2006). It is relatively inexpensive and is consumed preferentially to other 

carbon sources in wild type cells (Lee, 1996; Overton, 2014). Glucose does possess some 

disadvantages, for example, under oxygen limited conditions, it is subject to mixed-acid 

fermentation producing in varying quantities acetate, lactate, formate, succinate, ethanol 

and hydrogen. When glucose concentrations, even in highly aerated cultures, exceed the 

cell’s requirements (>5 g·L-1 (Lee, 1996)) overflow metabolism is triggered, producing 

acetate. The overall effect of these phenomena is culture acidification and reduction in 

the efficiency of biomass conversion, leading to perturbation of growth and productivity 

(Lee, 1996). Additional considerations with the use of glucose are that it can react with 
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amine groups in Maillard reactions and therefore must be autoclaved separately to the 

growth medium, and that as a solid it must generally be dissolved for feeding, diluting 

the vessel’s contents. This was addressed by Matsui et al. (1989) who devised an 

apparatus that fed powdered glucose, hence limiting dilution.  

Glycerol is the second most commonly used carbon source in E. coli culture and holds 

many advantages over glucose. It is not as readily converted to acetate and therefore 

higher concentrations may be used, allowing longer batch growth and less strenuous 

monitoring of feeding (although acetate accumulation has been observed using glycerol 

in fed-batch cultures (Korz et al., 1995)). It does not undergo Maillard reactions and may 

be autoclaved with the growth medium, removing an addition step, decreasing the risk 

of contamination. As a liquid it can be fed directly into the culture, with minimal dilution. 

However, this is complicated by its viscosity and therefore it is most commonly used in 

solution, albeit at higher concentrations than is possible with glucose. Glycerol is 

however more expensive than glucose and growth rates are typically lower (Lee, 1996). 

Other carbon sources sometimes used include lactose and fructose. Lactose is an 

interesting case in RPP cultures as it can act not only as carbon source but also can be 

interconverted into its isomer allolactose, the natural effector molecule of LacI and 

hence induce RPP in LacI-mediated systems (Figure 1.2). This was used by Humphreys 

et al. (2002) who, to induce RPP in a fed-batch fermentation, changed the carbon source 

from glycerol to lactose. The use of fructose was argued for by Aristidou et al. (1999) as 

a potential rival to both glucose and glycerol as fructose, like glycerol, does not cause 

growth-limiting levels of acetate production and it is only marginally more expensive 

than glucose (and hence cheaper than glycerol). However, as a solid, it retains the 

related limitations of glucose and in addition can convert to glucose on autoclaving, 

requiring filter-sterilisation and therefore additional cost. 
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1.4.4. Strategies for fed-batch RPP in E. coli  

It is economically advantageous to grow cells in an industrial bioprocess to high 

densities, generally through fed-batch fermentation. There have been numerous studies 

aimed at optimising high cell density culture (HCDC) in E. coli both solely for biomass 

and also in conjunction with RPP, summarised below.  

1.4.4.1. HCDC techniques 

In an ideal HCDC fermentation the only limitation on growth would be the theoretical 

maximum cell density in liquid suspension. This is estimated at between 200-400 g·L-1 

DCW (Reisenberg et al., 1991; Märkl et al., 1993). As Mori et al. (1979) demonstrated 

that over 200 g·L-1 DCW viscosity sharply increases with increasing cell density a 

theoretical maximum of approximately 200 g·L-1 for a stirred tank reactor is logical (Lee, 

1996). To corroborate this, cell concentrations in excess of 100 g·L-1 are frequently 

reported (Lee, 1996; Choi et al., 2006). There does not appear to be a single ‘ideal’ 

strategy for HCDC, successful instances are reported with numerous differences 

although certain commonalities do occur. Few successful HCDC strategies use complex 

media, the majority opting for semi-defined or defined (Lee, 1996; Choi et al., 2006), 

presumably this is because of the variability and lack of control inherent in complex 

components. The majority of HCDC strategies use glucose as carbon source although a 

significant minority use glycerol (Lee, 1996; Choi et al., 2006). The most variable aspect 

of HCDC appears to be feeding strategy. Lee (1996) summarises the options into 

methods without feedback control, methods with indirect control and methods with 

direct control. In methods without feedback control the feed rate is determined 

independently of sensor outputs, including constant feeding, increased feeding and 

exponential feeding for a fixed specific growth rate (μ). In methods with indirect 

feedback control the feed rate is controlled by sensor outputs indicative of substrate 
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concentration such as the DOT (a DO-stat), pH (a pH-stat), carbon dioxide evolution and 

cell concentration such that the feed rate maintains a constant value of the detected 

parameter and therefore likely, also a constant substrate concentration. In direct 

feedback control the feed rate is determined directly from the substrate concentration 

via an on-line probe allowing a constant substrate concentration.  

The major limitation of HCDC is that, especially in the later stages of culture, mixing and 

aeration efficiency decreases, causing transient anaerobiosis (Garcia et al., 2009). This 

was partly addressed by Soini et al. (2008) who demonstrated that common HCDC 

media are designed solely for aerobic growth and supplementation with trace elements 

typically only necessary for anaerobic growth such as selenium, nickel and molybdenum 

can be beneficial to HCDC. 

1.4.4.2. HCDC for RPP 

While it has been observed that yields of recombinant protein per unit biomass can be 

higher in shake-flask cultures (Jeong & Lee, 1999; Choi et al., 2006) the vast limitations 

of the format for industrial processes result in economic benefits for HCDC of potentially 

lower-producing cells due to the quantity of biomass that can be produced. HCDC 

protocols for RPP are generally similar to those for other purposes such as for biomass 

accumulation, the primary difference being RPP induction. For shake-flask RPP of a 

soluble, non-toxic protein induction is recommended at mid-log phase (optical density 

(OD650) ~0.4) harvesting 2-3 h later (Life Technologies Corporation, 2010) typically 

reaching a final OD650 of ~10. A single HCDC-RPP run will typically last for 20-48 h or 

possibly longer (Lee, 1996), this therefore raises the question of when should RPP be 

induced in HCDC. It has been demonstrated that RPP can dramatically affect growth 

rates therefore late induction would limit the period cells are subject to growth-limiting 

conditions, allowing more rapid biomass accumulation and would therefore result in 
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shorter run-times and decrease overall process costs. RPP can also reduce viability and 

plasmid retention, which may result in a limited productivity window, late induction 

therefore allowing maximal cell counts. On the other hand sufficient time must be 

allowed for accumulation of an economically viable quantity of RP. An effective 

induction strategy for HCDC-RPP should balance these two competing factors and it 

appears that most studies opt for separating the growth and production phases with 

induction at relatively high biomass concentrations (Choi et al., 2006). The dichotomy of 

protein production and biomass yield was highlighted by Want et al. (2009) who 

analysed production of an antibody Fab (fragment antigen binding) fragment using 

HCDC inducing at three different points: at high biomass during the fed-batch phase 

(OD600 ~50); and at two points during the transition from batch to fed-batch growth 

(OD600 ~21). Earlier induction resulted in decreased biomass formation, but a 

concomitant increase in Fab production; the earliest induction point showed a ~50% 

decrease in peak biomass (DCW per L culture broth) and 4-fold increase in Fab 

production (concentration of Fab in culture broth) when compared to the latest (16 g·L-1 

versus 25 g·L-1 biomass and 1 μg·mL-1 versus 4.1 μg·mL-1 Fab, respectively). The HCDC-

RPP fermentation protocol used by Sevastsyanovich et al. (2009) when reporting the 

improved protocol induced RPP very early, in mid-logarithmic growth (OD650 ~0.5). It is 

possible that the lower RP synthesis rates achieved during the improved protocol favour 

increased production times for sufficient product formation. 

 

1.4.5. Fermentation development 

Many factors may influence the outcome of a fermentation for example; temperature, 

pH, DOT, medium, feeding regime etc., all of which must be examined to optimise the 

fermentation protocol. For an RPP process this extends to include, for example; host 
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strain, inducer, inducer concentration, induction point and harvest time. Traditionally 

fermentation development involved a trial and error approach examining a single or 

limited number of features, this is not only time consuming but also does not account for 

combinatorial effects (Papneophytou & Kontopidis, 2014). This has however began to be 

superseded by Design of Experiments (DoE), a more systematic methodology allowing 

analysis of multiple parameters within a single series of experiments. A number of 

variables at an appropriate range of values are combined in a factorial or fractional 

factorial manner to produce a reduced number of experiments from which the effects of 

individual parameters can be calculated statistically (Bora et al., 2012; Papneophytou & 

Kontopidis, 2014). The reduced number of experiments required represents a saving of 

both time and money during development. DoE methodologies have been successfully 

applied to RPP-fermentation process development in E. coli (Swalley et al., 2006; Islam 

et al., 2007; Coutard et al., 2008) and with the development of microscale fermentation 

equipment such as the Biolector (Kensy et al., 2009a, 2009b; Scheidle et al., 2010) 

(Section 1.4.1.3) its use will continue to increase. 

 

1.5. Flow cytometry & its applications in biotechnology & bioprocessing 

1.5.1. Heterogeneity and the importance of single cell analysis 

Flow cytometry (FCM) is a single-cell analysis method, in that it detects and analyses 

individual cells as opposed to bulk measurement methods that provide values averaged 

over a population. While the most common parameters detected by FCM are similar to 

existing bulk measurement techniques such as OD and fluorimetry, the utility of FCM is 

in its ability to detect culture heterogeneity. Even in cultures of relatively ‘simple’ 

organisms such as microbes there exists significant levels of heterogeneity within 

members of a population (reviewed by Davey & Kell, 1996; Díaz et al., 2010). Davey & 
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Kell (1996) identified three major causes of culture heterogeneity. First, the position of 

the cells in the cell cycle, as cultures are rarely in synchronous growth. Heterogeneity is 

also caused by physiological differences as a result of the cellular environment, of 

particular relevance for sub-optimally mixed bioreactors and also as a result of 

stochasticity in gene expression, thought to allow a range of phenotypes in order to 

more readily respond to a change in environmental conditions (Thattai & van 

Oudenaarden, 2004). Cultures are also eventually likely to show genetic variability as 

DNA replication in E. coli is not perfect and every division event holds a small possibility 

of a mutation arising. Davey & Kell (1996) estimate that after 1 generation 99.5% of cells 

remain wild-type. Considering that a large-scale fed-batch fermentation may have many 

litres of high cell density culture (OD >100), all derived from a single initial 

transformant, the scope for mutational variability is substantial (assuming OD 1 ~ 109 

cells·mL-1, 1 L of an OD 100 culture will contain approximately 1014 cells, equivalent to at 

least 47 generations and, assuming no selective pressures, would be expected to result 

in approximately 79% wild-type cells). This is attested to in the success of studies 

involving forced-evolution and isolation of mutant strains (Waldo et al., 1999; Alfasi et 

al., 2011). In addition to these causes, RPP is likely to introduce heterogeneity due to cell 

viability, plasmid loss and IB formation. 

Reproducibility and reliability are of great importance for successful bioprocesses, 

particularly at industrial scale. As bulk measurement techniques provide only an 

average value it is not possible to detect changes in the distribution of a parameter. For 

example, a single bulk fluorescence value from fluorescent protein (FP)-producing cells 

may correspond to a single population of modest fluorescence or a mixture of high 

producers and non-producers and any gradation between. Being able to detect such a 
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situation is of great utility in bioprocess monitoring and herein lies the benefit of single 

cell analysis. 

 

1.5.2. FCM 

FCM was originally developed for the US Army during the Second World War by Gucker 

et al. (1947). Light scatter and a sheath of filtered air was used to measure smoke 

particles for testing gas masks and it was also found to be effective in detecting airborne 

bacterial spores (Gucker & O’Konski, 1949; Ferry et al., 1949; Shapiro, 2005). Further 

advances occurred in the 1950s with Wallace H. Coulter developing what would become 

the Coulter Counter a device which measured the electrical impedance of cells in liquid 

suspension as they passed through a narrow aperture (Davey & Kell, 1996). Since then 

FCM has become a powerful technique for the analysis of biological samples at the single 

cell level and has been shown to have great potential utility in biotechnology and 

bioprocessing (Hewitt & Nebe-Von-Caron, 2001; Reiseberg et al., 2001; Mattanovich & 

Borth, 2006; Want et al., 2009; Díaz et al., 2010; Broger et al., 2011; Gatza et al., 2012). 

As the name suggests flow cytometry involves the measurement of cells as they flow 

past a detector. The following section will provide an overview of FCM, for further 

information on the subject the reader is recommended the extensive work by Shapiro 

(2005), in addition there are many resources regarding FCM available on the website of 

the Purdue University Cytometry Laboratories http://www.pucl.purdue.edu.  

 

1.5.3. Components and function of a flow cytometer 

Modern flow cytometers typically operate utilising light-scattering principles as in the 

Gucker particle counter and in liquid suspension. Schematic representations of key 

components of the cytometers used in this study are summarised in Figure 1.5. Flow

http://www.pucl.purdue.edu/
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 Figure 1.5: Operation of a typical flow cytometer. 

a) Sample insertion and hydrodynamic focusing: sample leaves nozzle into stream of 

sheath fluid, achieving laminar flow and aligning cells in single file before passing to the 

flow cell. b) Optical system of a typical flow cytometer: Cells interact with laser at the 

flow cell, forward scatter is detected at <10° from incidental light with incidental light 

masked, light at 90° passes through a series of filters allowing detection of side scatter 

and fluorescence. c) Optical & fluidics systems from the BD-Accuri C6: optical detectors 

are spaced around flow cell (Key: 1 – lasers, 2 – flow cell, 3 – FSC-detector, 4 – SSC-

detector, 5 – fluorescence detectors, 6 – peristaltic pumps). 
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cytometers can generally be divided into three main sections: fluidics, optics and 

electronics/computational.  

1.5.3.1. Fluidics 

The fluidics system of a flow cytometer is involved in the delivery of cells into the 

detection (optics) system. Cells suspensions are passed into the centre of a channel of 

pressurised sheath fluid such that laminar flow is achieved and the sample is 

hydrodynamically focused, with the result that particles pass in single-file through the 

flow cell (Figure 1.5a). Once in the flow cell, particles pass through the detector and then 

flow either into waste collection or in more specialised cytometers a cell sorter or 

imaging system. 

1.5.3.2. Optics 

The detection systems in most flow cytometers are light-based involving a laser and 

optical sensors. Once cells reach the flow cell they pass through a laser beam and the 

interaction of the cell and its contents with the laser is measured. Two interactions are 

generally detected: light scattering and fluorescence emission. In order to detect 

fluorescence the operational wavelength of the laser will be set to the excitation 

wavelength of common fluorophores e.g. ~ 488 nm for enhanced GFP (EGFP) and 

fluorescein isothiocyanate (FITC) and will include filters and detectors at relevant 

emission wavelengths either in series with the side scatter (SSC) detector (Figure 1.5b) 

or spaced around the flow cell (Figure 1.5c).  

1.5.3.3. Electronics & computational 

The final common component in a flow cytometer is the electronic or computational 

system. Scattered or emitted light is first converted into an electrical signal by 

photomultiplier tubes or photodiodes then converted into numeric data by the included 

computer. Should a peak in the detector output fall inside user-defined controls to 
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eliminate intrinsic sample noise (termed a threshold or discriminator) it is identified as 

an event and recorded. Data from each event is recorded from all output parameters 

(light scattering, fluorescence, signal length, pulse width, timestamp) so that it is 

possible to perform multivariate analysis between all parameters recorded. The 

computer system will also control other aspects of the cytometers operation such as 

control of the fluidics. An additional use of computing is for gating data, the highlighting 

and isolation of a particular sub-population for further analysis. 

1.5.3.4. Additional features 

Many cytometers also include additional features, most commonly fluorescence 

activated cell sorting (FACS). FACS was originally developed by Fulwyler (1965) and 

involves the selection of a cellular population based on the data gathered as the cells 

passed through the laser and its isolation (sorting) from the remainder of the sample for 

further analysis. Having passed through the laser the sample flow is divided by agitation 

into droplets that due to the dilution of cells used will be statistically likely to contain 

individual cells which can then be ‘sorted’ based upon user-defined properties. If a cell 

falls within the sort conditions its droplet is electrostatically charged and directed by 

electrically charged deflection plates into collection tubes; cells outside of the sort 

conditions remain uncharged and fall into the waste (Davey & Kell, 1996). Cell sorting is 

of great utility when particular cells are required for further use/analysis such as for the 

isolation of high-producing mutant strains as described in Section 1.6.5. 

Another feature that has been incorporated into some flow cytometers is cellular 

imaging, where a photomicrographic image of a cell is also recorded as it passes through 

the machine. This is available on cytometers such as the Cytosense and its variants 

produced by CytoBuoy for analysis of marine phytoplankton and the Amnis FlowSight 
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(Millipore) (examples of research using these machines have been reported by Rutten et 

al. (2005) and Grimwade et al. (2012), respectively). 

 

1.5.4. Flow cytometric data & its applications 

1.5.4.1. Light scattering 

The primary data output in FCM is the amount of light scattered by a cell, (Figure 1.6). 

Forward scatter (FSC) or forward angle light scatter (FALS) is detected at angles 

typically <10° from that of the incidental laser light. It has been shown that FSC is 

primarily dependent on cell size, volume or biomass and has been used to predict these 

(Koch et al., 1996). Many studies however have shown this relationship is not always 

directly proportional and can be affected by many other factors including the shape, 

structure, refractive index and chemical composition of the cell and also the design of 

the instrument itself (Wållberg et al., 2005). In some cases it was found that 

mathematical modelling could be used to predict biomass from FSC (Vives-Rego et al., 

2000). SSC or right angle light scatter (RALS) is detected at 90° to the incidental light 

and is primarily indicative of intracellular complexity or granularity (Davey & Kell, 

1996).  

The primary use of light scatter in FCM is to determine the morphology of cells (Hewitt 

& Nebe-Von-Caron, 2001; Shapiro, 2005). Cells are initially identified from background 

noise (thresholding) either based on FSC alone or in combination with other parameters 

such SSC and fluorescence (Shapiro, 2005). It is also possible to differentiate cell types 

based upon scatter if there is sufficient morphological difference, useful for detecting 

contamination (Hewitt & Nebe-Von-Caron, 2001). It is relatively simple to differentiate 

between, for example, mammalian, yeast and bacterial cells based upon size alone 

however it is also possible to differentiate between different species of bacteria. E. coli
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 Figure 1.6: Sample FCM data 

a) E. coli MG1655 FSC/SSC plot showing distinctive bimodal SSC distribution of rod-

shaped cells. b) S. cerevisiae FSC/SSC plot showing higher FSC and SSC signals than E. 

coli caused by increased cell size and complexity. c) FL1 (green fluorescence)/FL3 (red 

fluorescence) quadrant plot for a mixture of living and ethanol-killed E. coli BL21 

stained with propidium iodide (PI) (red) and bis-oxonol (DiBAC4(3)) (green), quadrants 

are labelled based on viability of cells within (Alive – PI- BOX-, Injured (cells with 

depolarised membrane potential) PI- BOX+, Dead PI+ BOX+). All data generated using a 

BD-Accuri C6 flow cytometer. 
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as a rod-shaped bacterium displays a bimodal distribution in SSC but not FSC (Figure 

1.6a). While this may appear on initial inspection to be two separate sub-populations 

Hewitt & Nebe-Von-Caron (2001) showed that following sorting and re-analysis 

identical distributions were obtained from both populations and was attributed to the 

rod-shaped morphology of E. coli, the two populations being due to cells passing through 

the laser in different orientations relative to their length and width. This is supported by 

the observation that coccoid species such as Rhodococcus produce unimodal 

distributions. 

A final use of light scatter of particular relevance to this study involves the detection of 

IBs. Lewis et al. (2004) reported that E. coli producing a model mammalian protein AP50 

displayed an increase in both FSC and SSC when the protein formed IBs and suggested 

that this effect may be exploited as a diagnostic technique. Hedhammar et al. (2005) 

used EGFP fusions to demonstrate a positive correlation between the standard deviation 

of FSC signals and the formation of IBs (along with green fluorescence to indicate the 

amount of soluble protein formed).  Wållberg et al. (2005) however, concluded that light 

scattering alone was not sufficient to identify promegapoietin IBs in E. coli and found it 

necessary to use a fluorescent antibody. The authors concluded that this may be due to 

process-specific effects or more likely due to differences in FCM optical set-up. It could 

therefore be concluded that while light-scattering may provide information on IB 

formation it appears to be case-dependent. 

1.5.4.2. Fluorescence 

While light scatter can provide much information, it is the inclusion of fluorescence 

detection that has made FCM as powerful an analytical technique as it now is. The 

advantages of fluorescence detection are first that there are a large number of 

fluorescent species that may be used and detected, from the native autofluorescence of 
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cellular components to fluorescent proteins and a wide range of fluorescent dyes. There 

is also a wide spectrum of fluorescence that can be detected, allowing multiplexed 

experiments analysing multiple aspects of cellular function on different fluorescence 

channels (Shapiro, 2005). 

1.5.4.3. Autofluorescence & its uses 

All cells exhibit autofluorescence to varying extents, which can be exploited for analysis 

(Shapiro, 2005). One of the most widely used applications in microbial FCM is in the 

analysis of marine phytoplankton due to the presence of fluorescent pigments such as 

chlorophyll and phycoethrythrin (Vives-Rego et al., 2000). 

1.5.4.4. Fluorescent dyes & their uses 

A major advantage of FCM is the range of fluorescent dyes that are available for use and 

its ability to detect multiple coloured dyes in a single experiment. Due to the sheer 

number of dyes available and myriad uses thereof it would be impossible to summarise 

them fully here and as such only a limited number are discussed. Some of the most 

common dyes of use in microbial biotechnology are summarised in Table 1.5 (reviewed 

Veal et al., 2000; Díaz et al., 2010) and for further information on the variety of 

fluorescent dyes available the reader is directed towards the Molecular Probes™ 

Handbook (Johnson & Spence, 2010).  

Probably the most common use of FCM and fluorescent dyes is for determining cellular 

viability, often using a dual staining system of propidium iodide (PI) and bis-oxonol 

(BOX). PI is a red-fluorescent DNA binding dye to which the cell membrane is 

impermeable. When bound to DNA PI shows a 20-30 fold enhancement in fluorescence, 

the excitation maximum shifts ~30-40 nm towards the red and the emission ~15 nm 

towards the blue (excitation 530 nm, emission 625 nm when bound to DNA, an 

additional stronger excitation peak exists at ~300 nm however this is less commonly 
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Table 1.5: Summary of fluorescent dyes commonly used in microbial FCM 

Adapted from Díaz et al. (2010), additional information from Johnson & Spence (2010) 

and Esparagó et al. (2012) 
Type of 

dye/fluorophore or 
feature detected 

Dye / Fluorophore 
Excitation/emission maxima 

(nm) 
N

u
cl

ei
c 

ac
id

s 

DNA, RNA 

Ethidium bromide 510/595 
Propidium iodide 300,536/623 

Cyanines 

TO-PRO 
515/533 (TO-PRO 1) 
462/661 (TO-PRO 3) 

TOTO 
514/533 (TOTO 1) 
642/660 (TOTO 3) 

SYTO 485-508/498-527 
SYBR 467/520 (SYBR Green) 

DNA 
DAPI 350/470 

Hoechst 33342 350/461 
DRAQ5 647/700 

Lipids 
Nile Red 551/636 
BODIPY 503/512 

Fluorogenic 
substrates 

ChemChrome (CY, CB, CV6) 488/520 
FDA, CFDA, CFDA/SE, CFDA-

AM 
492/519 

Calcein-AM 494/519 
CTC 450/630 

FUN-1 480/580 

Intracellular pH 
BCECF-AM 482/520 
SNARF-A 510-580/587-635 

Membrane potential 

Rh123 507/529 
DiOC6(3) 484/501 
DiOC2(3) 482/497 

DiBAC4(3) 488/525 
JC-1 (mitochondrial) 498, 593/525, 585 

Cytoplasmic Ca2+ Indo-1 361, 330/405, 480 

Antibodies or 
oligonucleotides 

PE, PE-Cy5 conjugates 490/575, 690 

Alexa Fluor 488 495/519 
Oregon Green 496/524 

Autofluorescent 
proteins 

GFP & derivatives 
Various  

(488/510 for S65T) 

IBs/amyloid Thioflavin-S 375/455 
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utilised). As the cell membrane is impermeable to PI, it will only be able to enter a cell 

and bind DNA when the cell membrane is compromised and as such is used as a stain for 

dead cells where dead cells fluoresce red (Johnson & Spence, 2010). BOX refers to a 

family of anionic, lipophilic dyes that are able to cross the cell membrane, however due 

to their charge are excluded by cells with an active membrane potential and hence will 

only cause a cell to become fluorescent when either the cell is membrane compromised 

(dead) or membrane depolarised (termed ‘injured’ cells). The most common variant 

used is DiBAC4(3) that fluoresces green (excitation 493 nm, emission 515 nm) and as 

such is commonly used with PI as a dual-staining system as illustrated in Figure 1.6c 

(Johnson & Spence, 2010). Other variants of BOX exist with different fluorescence 

maxima to accommodate alternate secondary stains. PI/BOX staining has been used to 

successfully monitor RPP in E. coli fermentations many times (Hewitt & Nebe-Von-

Caron, 2001; Lewis et al., 2004; Want et al., 2009). An alternative viability staining 

method described by Lehtinen et al. (2004) uses GFP and PI to determine dead cells 

where loss of GFP fluorescence also indicates cell death. Flow cytometric viability 

determination holds many advantages over the more traditional techniques, namely 

counting colonies grown on agar plates. Plate counting is a very limited technique in 

that, first it requires a minimum of approximately 16 h growth to generate a result and 

second it provides only a single parameter for defining cellular ‘life’, that of culturability 

on agar. FCM-based techniques for enumerating viable cells are comparatively rapid, 

generally requiring only a few minutes incubation with the dyes and they provide a 

much more detailed indication of cell viability. What defines the terms alive and dead at 

a cellular level is not absolute (Davey & Kell, 1996). It is obvious that a cell with an intact 

membrane, actively respiring and able to undergo cell division can be called alive and 

this is the basis of colony forming units (CFU) counts. Cells with a ruptured membrane, 
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as indicated by fluorescence of membrane-excluded DNA-binding dyes, are typically 

defined as dead (although Votyakova et al. (1994) demonstrated that Micrococcus luteus 

cells stained with PO-PRO-3, a membrane-excluded DNA-binding dye usually used as a 

dead cell stain, were able to be resuscitated). Cells may also exist between these two 

states. Many terms have been given to these intermediate viability states, however one 

of particular relevance is that of the viable but non-culturable (VBNC) phenotype. VBNC 

cells cannot form colonies on agar plates (and are therefore undetected by conventional 

enumeration) but retain metabolic activity and may still contribute to the culture (Davey 

& Kell, 1996; Nebe-Von-Caron et al., 2000; Díaz et al., 2010). It is also possible with 

many flow cytometers to count cells, either with the use of ratiometric beads or directly 

by measurement of sample volume. A simple comparison of FCM-derived absolute cell 

counts with CFU counts can easily determine the proportion of the total cells that are 

unable to grow on agar. 

In addition to viability staining an interesting use of fluorescent dyes for RPP has 

recently been reported by Esparagó et al. (2012) who expressed amyloid-β (A-β) 

peptide in E. coli and were able to positively identify cells containing A-β IBs using the 

amyloidophilic fluorescent dye thioflavin-s (Th-S). 

1.5.4.5. FPs & their uses 

Fluorescent proteins have found many applications within microbial FCM and more 

generally within microbial biotechnology as a whole (Vizcaino-Caston et al., 2012), these 

applications are discussed in greater detail below in Section 1.6. 

 

1.5.5. The benefits of FCM  

As has been demonstrated single-cell measurements and specifically FCM provide in a 

single technique multiparametric data that can include information regarding cell count, 
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morphology, viability, contamination, RP product formation and general culture 

heterogeneity, significantly more data than can be generated by any single conventional 

analytical technique. With a trained operator data can be generated within 5-10 minutes 

of a sample being removed from a culture vessel, unlike many conventional techniques 

that allow analysis many hours later. The flexibility and rapidity of FCM is ideal for a 

bioprocess, allowing the operator considerably more data on which to make a control 

decision. These benefits only stand to increase: Novel technologies such as automated 

sampling and preparation systems can allow regular samples to be taken from the 

culture vessel, prepared and analysed without the presence of an operator allowing real-

time culture monitoring. An example of this is reported by Gatza et al. (2012) where 

batch fermentations of GFP-expressing E. coli in either LB or M9 minimal media were 

automatically monitored throughout the length of the fermentation (8 h LB, 30 h M9) 

using a BD-Accuri C6 FCM coupled with an MSP M5000 FlowCytoPrep automated 

sampler. Finally, it is conceivable that improvements to process control software could 

see direct integration of automated FCM data into bioreactor feedback and control 

mechanisms. 

 

1.6. GFP & its applications in biotechnology & bioprocessing 

1.6.1. The history of FPs 

The green fluorescent protein (GFP) of Aequorea victoria (avGFP), a species of deep-sea 

jellyfish, was first discovered and characterised by Shimomura et al. (1962) as a 

companion protein to the Ca2+-dependent blue-emitting chemiluminescent aequorin. 

The blue light emitted by aequorin excites the GFP chromophore with the result that A. 

victoria appears green not blue (Morin & Hastings, 1971; Shimomura et al., 1974). It was 

not until the 1990s however that key breakthroughs would allow its exploitation within 
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research. First, the gene sequence of GFP was cloned and sequenced by Prasher et al. 

(1992) then recombinant GFP was cloned into, and produced in exogenous hosts by 

Chalfie (1995) (E. coli & Caenorhabitidis elegans, also showing the first use of GFP as a 

gene reporter and for protein localisation in vivo) and Inouye & Tsuji (1994) (E. coli). 

Finally, screening of mutant GFPs yielded variants with altered and improved spectral 

properties, including a blue fluorescent species, that greatly extended the application of 

avFPs (Heim et al., 1994, 1995). The use of autofluorescent proteins has since become a 

mainstay of research in the biological sciences (March et al., 2003; Su, 2005; Vizcaino-

Caston et al., 2012). The extent to which FPs have been incorporated in research was 

reflected in the decision in 2008 to award the Nobel Prize for Chemistry to Shimomura, 

Chalfie and Tsien “for the discovery and development of the green fluorescent protein, 

GFP” (Zimmer, 2009). 

 

1.6.2. How FPs work 

There are 2 main forms of FPs in use: those derived from A. victoria (the archetypal GFP 

& derivatives): and those derived from coral of the genus Discosoma such as dsRed and 

the mFruit series of proteins (Shaner et al., 2004; Shaner, 2013). In this study the focus 

will be primarily on the Aequorea-derived FPs, specifically avGFP. 

Wild-type GFP (wtGFP) is a soluble, 238 amino acid, 27 kDa protein comprised of an 11-

strand β-barrel surrounding a central α-helix to which the chromophore is attached. The 

chromophore is a 4-(p-hydroxybenzylidene)imidazolidin-5-one formed directly out of 

three amino acids, in wtGFP S65-Y66-G67, in a multiple stage oxygen-dependent 

reaction, summarised in Figure 1.7a. 

wtGFP has excitation and emission maxima of 395-397 nm and 504 nm respectively; 

however, mutations to amino acids surrounding the chromophore or the chromophore 
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Figure 1.7: Maturation & structure of the avGFP and dsRed chromophores. 

a) Proposed mechanism for maturation of the avGFP chromophore including oxidation 

by molecular oxygen and production of hydrogen peroxide. b) Structure of the dsRed 

chromophore for comparison to that of avGFP (wavy lines denote continuation of 

polypeptide chain) (Adapted from Tsien (1998) & Sample et al. (2009)). 
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itself can modify the spectral properties. One of the most common mutations is S65T 

found in enhanced GFP (EGFP) that shifts the excitation and emission maxima to the red 

(488 nm and 507-509 nm respectively). Other mutations affecting spectral properties 

include yellow, cyan and blue fluorescent proteins. Further mutations have produced 

other beneficial characteristics, such as the F64L mutation that improves folding in E. 

coli (Cormack et al., 1996) and Andersen et al. (1998) who modified GFPmut3* with C-

terminal short peptide additions to reduce the half-life and hence limit persistence of 

GFP that could reduce sensitivity when measuring small changes over time for example 

in gene reporter experiments. The Discosoma-derived FPs typically fluoresce at longer 

wavelengths than avGFP and as avGFP has been mutated to fluoresce at shorter 

wavelengths the two complement each other for a full colour palette. The chromophore 

structures of both categories of proteins are also highly similar (see Figure 1.7b) 

(Craggs, 2009).  

 

1.6.3. Advantages & limitations of FPs 

FPs hold many advantages over more traditional reporter proteins: they exhibit a broad 

host range, having been successfully synthesised in organisms from bacteria (Chalfie, 

1995; Inouye & Tsuji, 1994) through to mammalian cells (Marshall et al., 1995) and even 

in full multicellular organisms (Okabe et al., 1997), being relatively simple proteins that 

do not require extensive PTM. Their use does not require the addition of a chemical 

substrate or cofactor such as the archetypal reporter protein β-galactosidase (Chalfie, 

1995). Detection methods are typically non-destructive, allowing cells to be monitored 

in vivo. Fluorescence detection can also be exquisitely sensitive, allowing not only bulk 

but also single cell measurements via fluorescence microscopy (FM) and FCM and even 

at the subcellular level for example for organelle localisation (de Giorgi et al., 1996). The 
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wide colour palette available allows multiple factors to be investigated simultaneously, 

or for spatial studies involving Förster resonance energy transfer (FRET) (Day & 

Davidson, 2009). 

FPs, however hold some limitations; chromophore maturation is oxygen-dependent 

therefore precluding the use of avFPs in anaerobic conditions without potentially 

destructive sample processing. A further feature of avFPs under anaerobic conditions is 

that when mature, aerobically-produced GFP is subject to anoxia, fluorescence maxima 

can shift dramatically such that the protein fluoresces in the red spectrum (excitation, 

543 nm; emission, 570-630 nm) (Elowitz et al., 1997). 

In addition to the classical FPs and derivatives there are further autofluorescent 

proteins now available with properties targeted towards the limitations of those already 

in use such as the flavin mononucleotide binding protein (FMN-BP) described by 

Drepper et al. (2007). The chromophore of FMN-BP, unlike the amino acid-derived 

chromophore of GFP is a bound flavin mononucleotide. While it does therefore require a 

cofactor to fluoresce, FMN is ubiquitous in the cell and therefore it can be assumed for 

convenience that the protein fluoresces naturally. The primary advantage of FMN-BP is 

that fluorescence is oxygen-independent and therefore can be produced and measured 

in anaerobic environments and the spectra does not change when proteins are 

transferred from aerobic to anaerobic environments. 

 

1.6.4. General applications of GFP in microbial biotechnology 

The main focus of this work is the application of FPs specifically to RPP in E. coli, but FPs 

have also provided many important advances for microbial biotechnology in general and 

brief examples are given below. For further reading the reader is directed to the recent 

review by Vizcaino-Caston et al. (2012). 
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The inclusion of an FP-tag in a microorganism can allow for whole-cell localisation and 

monitoring especially when combined with single-cell analyses such as FCM. 

Fluorescence-based whole cell monitoring has applications in many aspects of microbial 

biotechnology including food production, environmental monitoring and in any 

bioprocess that requires co-culture. An example of this comes from Miao et al. (2009) 

who developed E. coli SCC1, a derivative of E. coli MG1655 with GFPmut3* inserted on 

the chromosome under the control of a constitutive promoter, as the GFP gene is 

chromosomally encoded this eliminated the inherent problems involved with loss of a 

plasmid-encoded system. The GFP-tag enabled differentiation by FCM between E. coli 

SCC1 and non E. coli strains and the introduction of RFP reporter plasmids showed 

differential gene expression patterns when E. coli SCC1 was co-cultured with Klebsiella 

pneumoniae and Enterococcus faecalis. 

FPs are ideal reporters for gene expression studies and there exist large libraries of 

reporter plasmids such as the pUA66 library developed by Zaslaver et al. (2006) 

consisting of about 2000 E. coli MG1655 promoters transcriptionally fused to GFPmut2. 

pUA66 reporters have been used to monitor the expression of genes for the chaperones 

GroE and DnaK during RPP in E. coli (Vizcaino-Caston, 2012). GFP reporters have also 

been used to monitor conditions in microbial fermentations for example, Garcia et al. 

(2009) who used an oxygen-responsive reporter pNar-GFPuv comprising the promoter 

for the anaerobically-expressed nitrate reductase (narG) transcriptionally fused to 

GFPuv, to demonstrate that mixing inefficiencies in aerobic bioreactors caused localised 

anaerobiosis. 

There have also been many advances in using modified FP molecules themselves as a 

direct sensor for environmental conditions such as intracellular pH (Wilks & 

Slonczewski, 2007) and redox state (Delic et al., 2010). A direct sensor has advantages 
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over genetically-encoded reporters as there would be less potential for interference 

from other gene regulatory elements; this area is reviewed in more detail by Frommer et 

al. (2009), Wang et al. (2009a) and Vizcaino-Caston et al. (2012). 

 

1.6.5. Applications of FPs for RPP in E. coli  

Autofluorescent proteins have also shown considerable impact as reporters of RPP and 

protein folding, primarily as RP-FP fusion products. This is based upon the observation 

that GFP must fold correctly before the chromophore is able to form and the protein 

becomes fluorescent. The assumption therefore is that a correctly-folded, soluble GFP-

fusion protein will be fluorescent whereas a mis-folded, insoluble protein will be non-

fluorescent and therefore fluorescence can be to estimate RPP yields (Waldo et al., 1999; 

Vizcaino-Caston et al., 2012).  

This concept was first explored by Waldo et al. (1999) who, using a panel of 20 

cytoplasmic proteins from Pyrobaculum aerophilum, a hyperthermophilic archaeon, and 

their equivalent C-terminal GFP fusions, demonstrated that the fluorescence of E. coli 

producing GFP fusions showed a strong positive correlation to the solubility of the 

proteins when produced under the same conditions without the GFP fusion. Assuming 

therefore, that fluorescence of an FP fusion protein can be an effective indicator of 

solubility, this correlation was then used to isolate mutated forms of predominantly 

insoluble proteins that showed improved folding and solubility while retaining protein 

function (the ability of Ferritin to oxidise Fe(II)) without the need for a specialised 

screen for protein activity. A recent, complementary use of GFP-fusion proteins as a 

screen for the presence of advantageous mutations is reported by Alfasi et al. (2011) 

who, using the protein CheY::GFP isolated mutant forms of the host strain E. coli BL21* 

displaying improved production characteristics. Following standard protocol RPP (37°C, 
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0.5 mM IPTG) a small amount of cells retained green fluorescence, suggesting the ability 

to maintain production under physiologically stressful conditions. It is possible that 

these cells had acquired spontaneous mutations enabling higher productivity. Two 

methods to identify these potentially high-producing strains were used, first by 

identification of GFP+ colonies on agar plates following standard protocol RPP and 

second by FACS, sorting GFP-positive cells following multiple rounds of RPP.  

In addition to isolation of mutants a common use of FP-fusions in RPP is to screen for 

favourable production conditions, increased fluorescence being assumed to be 

indicative of more productive conditions. Jones et al. (2004), while reporting the 

production of an on-line fluorescence probe that would allow real-time monitoring of 

FP-fusion protein production in a bioreactor (a development on the fluorescence probe 

reported by Randers-Eichorn et al. (1997)), demonstrated the utility of RP-FP fusions in 

identifying conditions for improved production and optimal harvesting time. By 

monitoring fluorescence probe readings in 20 L batch fermentations with 5 FP-RP 

fusions they were able to demonstrate that for one of the 5 proteins a standard 24 h 

post-induction harvesting time was not optimal as fluorescence was still accumulating 

and harvesting at 48 h was optimal. Further, they were able to develop the growth 

media used; RP solubility was lower when cells were grown in Modified Terrific Broth 

(MTB) than in LB and adding pH regulation to LB increased production further (two-fold 

over LB alone and four-fold over MTB). Comparison of CO2 evolution over time for 

fermentations producing GFP alone, a model RP and that protein fused to GFP showed 

that the pattern of CO2 production for the GFP fusion showed greater similarity to that of 

the RP alone than that of GFP. This suggests that metabolism during the production of 

the GFP-fusion protein is affected to a greater extent by the protein of interest than the 

GFP moiety. As previously mentioned Sevastsyanovich et al. (2009) used an RP-GFP 
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fusion CheY::GFP with fluorimetry and FCM to validate their hypothesis that production 

conditions designed to eliminate metabolic stress inherent to standard RPP protocols 

can improve productivity and RP quality.  

The ease at which fluorescence measurements can be made make FP-RP fusions highly 

useful for testing novel expression systems and technology. Siller et al. (2010) proposed 

a novel technique to produce soluble eukaryotic proteins in E. coli using decreased 

translation speeds. Based on the observation that protein synthesis is typically much 

slower in eukaryotes than E. coli (3-8 amino acids per second (aa·s-1) versus 10-20    

aa·s-1, respectively) it was hypothesised that decreasing translation rates in E. coli could 

improve RP solubility during the synthesis of eukaryotic proteins. This was tested using 

a streptomycin pseudo-dependent strain of E. coli that requires streptomycin for near 

wild-type translation rates and in the absence of streptomycin exhibits translation 

speeds equivalent to eukaryotic ribosomes (~5 aa·s-1). Three RPs were tested, GFP alone 

and two GFP-fusion proteins; MPB-GFP and GFP-enolase. This approach was shown to 

be effective with GFP production under slower translation conditions exhibiting a ~2-

fold increase in fluorescence over fast translation conditions and a ~3-fold increase for 

the fusion proteins, although in all cases the increase in solubility was lower than that of 

fluorescence. 

Modern biotechnology is now heavily reliant on high-throughput studies to streamline 

process development. With rapid detection of fluorescence being a standard feature in 

most 96-well plate readers, RP-FP fusions are ideal for high-throughput studies. This 

was shown by Coutard et al. (2008) who, using an incomplete-factorial approach 

(testing 12 combinations of expression conditions out of a possible 36 from 4 E. coli 

strains, 3 growth media and 3 growth temperatures, see Section 1.4.5) and C-terminal 

GFP fusions, determined optimal production conditions for ten proteins, with “at least 
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the same sensitivity and specificity” as more expensive Western analysis. Combining 

both high-throughput screening and novel technology, the microtitre-plate based scale-

down fermentation system ‘Biolector’ was tested in batch and fed-batch growth with 

both E. coli and the methylotrophic yeast Hansenula polymorpha producing GFP. Growth 

kinetics and RP production (measured by DCW and GFP-fluorescence respectively) for 

microplate cultures were compared to equivalent 1.4 L fermentations (a 7000-fold 

increase in scale) and in all cases data from microplate cultures closely matched those 

from fermentations; as such it was concluded that scale-up was successful (Kensy et al., 

2009a, 2009b; Scheidle et al., 2010). 

 

1.6.6. Disadvantages of using GFP as a solubility/production reporter 

A large number of studies have successfully used FP-RP fluorescence as a predictor of 

protein folding and solubility, demonstrating its utility. However, numerous studies now 

suggest the direct relationship assumed between FP-RP fluorescence, solubility and 

correct protein folding may be more complicated and that caution may be advised when 

interpreting these data. First, it has been shown that technically insoluble proteins in an 

IB may still retain functionality. This was demonstrated by García-Fruitós et al. (2005) 

who produced IBs in E. coli from fusions of aggregation-prone proteins to GFP and blue 

fluorescent protein (BFP) that still retained considerable fluorescence. Further work in 

this area has since shown that fluorescence in FP-IBs is localised towards the centre of 

the aggregate (García-Fruitós et al., 2007a) and while cells grown at 16°C produce fewer 

FP-IBs than cells grown at temperatures more likely to result in misfolded RP (30°C  & 

37°C) those that did form were significantly more fluorescent. The presence of biological 

activity in IBs, whether fluorescence or enzymatic, is unlikely to be as a result of active 

site or chromophore amino acids being directly incorporated in the aggregate and more 
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likely as a result of folded or partially-folded protein becoming ‘trapped’ within the 

aggregate. Supporting this, it has also been shown that soluble, active recombinant 

protein (including GFP) can be extracted from IBs when incubated under mild, non-

denaturing conditions (Jevševar et al., 2005; Peternel et al., 2008). It is interesting to 

note that as IBs have been demonstrated to retain some function their direct use as 

biologically-active nanoparticles has been suggested, both in biotechnology as an 

immobilised biocatalytic particle (Sans et al., 2012) and in medicine as a method for 

intracellular therapeutic protein delivery (Villaverde et al., 2012). In addition to 

insolubility not necessarily being indicative of completely incorrect folding and loss of 

protein function, solubility is not necessarily indicative of correct folding and 

functionality. It was shown by Martínez-Alonso et al. (2008) that GFP fused to an 

aggregation-prone protein formed microaggregates (~0.2 μm) and protein fibrils that 

remained in the soluble fraction (supernatant following centrifugation of cell lysate 

formed by sonication). Siller et al. (2010) then showed that slowed translation rates 

resulted in increases in both fluorescence and solubility (as determined by SDS-PAGE 

analysis of protein fractions obtained from chemical lysis and centrifugation of cells), 

however the improvement in fluorescence was found to be higher than that of solubility. 

This discrepancy was found to be as a result of the presence, under normal production 

conditions, of non-fluorescent aggregates of the FP-fusion protein that remained in the 

soluble fraction. 

A second possible issue with the use of FP-RP fusions as protein folding/solubility 

reporters is that if the fusion is used to develop specific methods for later production of 

the native fusion partner, should the FP moiety affect solubility in any way this may 

cause erroneous conclusions. Many studies have been referenced above claiming a close 

relationship between native RPs and their equivalent FP fusions, however some suggest 
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that GFP may act as a solubilisation partner. Jones et al. (2004) stated that out of a panel 

of 5 test proteins the solubility of one was enhanced when expressed as its GFP-fusion. 

Japrung et al. (2005) reported that a Plasmodium falciparum dihydrofolate reductase-

GFP fusion purified from E. coli only aggregated in vitro at concentrations above 30 

mg.mL-1 whereas the native enzyme aggregated at 2 mg.mL-1. Coutard et al. (2008) 

demonstrated that fusion to GFP resulted in moderate increases in solubility for a 

number of proteins (up to 8.5% for a glycosyl transferase from Mycobacterium 

tuberculosis). Although interestingly, they also reported that two fusion proteins showed 

decreased solubility (up to ~11.5% for an M. tuberculosis esterase).  

While these studies show that using FP-RP fusions as reporters of protein folding and 

solubility may not be as straightforward as initially thought, the sheer volume of 

successful studies suggest that there is no reason at this time to abandon the technique.  

 

1.6.7. FPs as reporters of plasmid loss 

A final use of RP-FP fusions in RPP is as a means of monitoring retention of the plasmid 

expression vector. It is established that RPP-related stress can cause significant levels of 

plasmid loss and hence be detrimental to productivity (Baneyx, 1999; Sevastsyanovich 

et al., 2009). Standard techniques for enumerating plasmid loss involve plating cultures 

for CFU then replica plating onto antibiotic agar, requiring 2 rounds of bacterial growth 

and as such may take up to 2 days from initial sampling time. Such a lengthy time delay 

means that it is impossible to use these data for process control. If the expression vector 

encodes an FP, either as an RP-FP fusion or separately this would mean that plasmid-

containing cells should be fluorescent and non-fluorescent cells should be plasmid-free. 

If combined with single-cell analytical techniques such as FCM, this can be used to 

estimate plasmid retention without lengthy growth stages and therefore in a timescale 
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that can be used to drive process control decisions. This has been used for RPP in both E. 

coli and yeast: Patkar et al. (2002) analysed a variety of expression strategies and 

systems for the production of an elastic, protein-based polymer (GVGIP)260GVGVP 

fused to GFP in E. coli and used FCM for rapid evaluation of expression levels and the 

plasmid free cell fraction (PFCF). Similarly Ishii et al. (2010) evaluated a number of 

expression vectors and strains of Saccharomyces cerevisiae producing GFP with FCM, not 

only did they analyse expression levels and the levels of GFP- cells but also showed that 

the proportion of GFP- cells accurately reflected plasmid retention rates as determined 

by plate-counting. There are however, limitations to these techniques: First, classical 

plasmid retention analysis is a growth-based technique whereas FCM will analyse all 

cells present whether alive and culturable, dead or displaying a VBNC phenotype. If 

plasmid retention is not equally distributed between the culturable and non-culturable 

populations then there may be discrepancies between the two figures. Second, GFP is 

generally a relatively stable molecule (Andersen et al. (1998) conservatively estimated 

the in vivo half life of unmodified GFPmut3* in E. coli and Pseudomonas putida to be >1 

day) and therefore recently plasmid-free cells will likely retain some fluorescence and 

hence overestimate the retention rates. For a culture in logarithmic growth this should 

not present a significant issue as rapid cell division would quickly dilute residual 

fluorescence below detectable levels, however stationary phase or slow-growing cells 

may be more problematic. The latter limitation was addressed by Bahl et al. (2004) who 

inserted into E. coli a chromosomally-encoded GFP regulated by a LacI-controlled 

promoter, which in conjunction with plasmid-encoded LacI, only fluoresced when the 

plasmid was lost. While effective, this system requires modification of both the host 

strain and plasmid, to be used generally in RPP it would be necessary to produce a novel 

expression system, especially as LacI would interfere with any system using DE3.  
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1.7. Project aims & objectives 

Following an assessment of related literature the following areas were identified as 

being of particular interest for further study: 

 FCM is a powerful technique for the analysis of cell cultures in bioprocesses 

including RPP, allowing rapid and even real time analysis of multiple physiological 

parameters that can be used to streamline development and influence process 

control (Section 1.5). However, its use as a process analytical technique is by no 

means universal, it is therefore concluded that research aimed at extending the 

potential uses of FCM in the context of industrial RPP in E. coli would increase its 

uptake as a standard technique.  

 The stress-minimising ‘improved’ RPP protocol by Sevastsyanovich et al. (2009) 

represents a significant change in the theory behind RPP in E. coli and has the 

potential for wider application in both laboratory and industrial contexts (Section 

1.3.7), but the fermentation protocol it is applied to has substantial limitations for 

industrial use, particularly as complex growth media are rarely used industrially 

(Section 1.4.3.1). It is therefore concluded that the optimisation of ‘improved’ RPP 

for industrial HCDC would be beneficial. 

From these areas of study the following aims project aims were developed: 

 To investigate and develop additional methods by which FCM can be used for the 

monitoring and analysis of RPP cultures in E. coli (Chapter 3). 

 To optimise protocols for RPP in E. coli using the physiological stress-minimising 

improved protocol of Sevastsyanovich et al. (2009), specifically regarding its 

application to industrially-relevant fermentation conditions (Chapter 4).  
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Chapter 2:  Materials & Methods 
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2.1. Materials 

Details of all chemicals; commercially-produced reagents, kits and bacterial strains; 

plasticware/consumables and principal pieces of equipment are given in Tables 2.1-4. 

Unless otherwise stated all solutions were made using double distilled water (ddH2O). 

 

2.2. Buffers & solutions  

2.2.1. Antibiotics & other chemical additions  

Stock solutions of culture additions such as antibiotics and RPP inducers were made to 

1000x working concentration and added to culture media at 1 μL·mL-1. Carbenicillin 

(Melford), a more stable variant of ampicillin (Butler et al., 1970) was dissolved in 

ddH2O to make a 100 mg·mL-1 stock solution and filter-sterilised through a 0.22 μm 

disposable filter unit (Millipore). If not used immediately this solution was stored at        

-20°C. 

Stock solutions of IPTG (Melford) were required at 3 concentrations dependent on RPP 

protocol; 500 mM, 100 mM and 8 mM. For the 500 and 100 mM stock solutions an 

appropriate amount of powder was dissolved in ddH2O to produce the correct 

concentration directly, then filter sterilised as above. For the 8 mM solution, due to the 

inherent inaccuracies in weighing small amounts, an 80 mM (10x) stock solution was 

made and filter-sterilised, when required this was diluted with sterile ddH2O to produce 

the correct concentration. If not used immediately, all solutions were protected from 

light by wrapping in aluminium foil and stored at 4°C. 

E. coli sulphur-free salts solution was added to some fermentations (as indicated) to 

supplement trace elements, the solution consisted of, in 1 L: 82 g MgCl2·7H2O, 10 g 

MnCl2·4H2O, 4 g FeCl2·6H2O, 1 g CaCl2·6H2O, and 20 mL concentrated HCl. 
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Table 2.1: Chemicals used during this study 

Item Manufacturer 
Acetic acid (glacial) Fisher Scientific UK Ltd, Loughborough, UK 
Ammonium persulphate (≥ 98%) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Asparagine (>98.5%) (BDH) VWR International Ltd, Lutterworth, UK 
β-mercaptoethanol (for electrophoresis) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Bromophenol blue (sulphone form) (BDH) VWR International Ltd, Lutterworth, UK 
CaCl2·6H2O (≥ 98%) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Carbenicillin disodium salt Melford Laboratories Ltd, Ipswich, UK 

Citric acid (>99.7%) (BDH AnalaR) VWR International Ltd, Lutterworth, UK 
Coomassie Brilliant blue R (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
CoSO4·7H2O (>99%) (Sigma ReagentPlus™) Sigma-Aldrich Co., St Louis, MO, USA 
CuSO4·5H2O (Technical) (Fisher) Fisher Scientific UK Ltd, Loughborough, UK 
Dimethylsulphoxide Fisher Scientific UK Ltd, Loughborough, UK 
Ethanol Fisher Scientific UK Ltd, Loughborough, UK 
FeCl2·6H2O (Reagent Grade) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
FeSO4·7H2O (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Glucose (BDH) VWR International Ltd, Lutterworth, UK 
Glycerol Fisher Scientific UK Ltd, Loughborough, UK 
H3BO3 (Electronic Grade) (Fisons) Sanofi S.A., Paris, France 
H3PO4 (concentrated) Fisher Scientific UK Ltd, Loughborough, UK 
HCl (concentrated) Fisher Scientific UK Ltd, Loughborough, UK 
IPTG (>99%) Melford Laboratories Ltd, Ipswich, UK 
K2HPO4 (>99%) (BDH AnalaR) VWR International Ltd, Lutterworth, UK 
KH2PO4 (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Methanol Fisher Scientific UK Ltd, Loughborough, UK 
MgCl2·6H2O (Sigma ReagentPlus™) Sigma-Aldrich Co., St Louis, MO, USA 
MgSO4·7H2O(Sigma ReagentPlus™) Sigma-Aldrich Co., St Louis, MO, USA 
MnCl2·4H2O (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
MnSO4·H2O (>98.5%) (BDH AnalaR) VWR International Ltd, Lutterworth, UK 
Na2MoO4·2H2O (Analytical Grade) (Fisons) Sanofi S.A., Paris, France 
NaCl Sigma-Aldrich Co., St Louis, MO, USA 
(NH4)2SO4 (CertiFied AR) (Fisher) Fisher Scientific UK Ltd, Loughborough, UK 
Polyethylene glycol 6000 (BDH) VWR International Ltd, Lutterworth, UK 
Polypropylene glycol  Sigma-Aldrich Co., St Louis, MO, USA 
Propidium Iodide (Invitrogen) Life Technologies Ltd (Invitrogen), Paisley, UK 
Sodium dodecyl sulphate (~95%) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Serine (>99%) (Sigma ReagentPlus™) Sigma-Aldrich Co., St Louis, MO, USA 
Tetramethylethylenediamine  Melford Laboratories Ltd, Ipswich, UK 
Threonine (>98%) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Tris HCl (Trizma®) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 
Tryptone (Fisher Bioreagents) Fisher Scientific UK Ltd, Loughborough, UK 
Tryptone Sigma-Aldrich Co., St Louis, MO, USA 
Tryptone-peptone (Bacto) Becton, Dickinson & Company, Oxford, UK 
Yeast extract Oxoid Ltd, Basingstoke, UK 
Yeast extract Duhefa Biochemie, Haarlem, Netherlands 
Yeast extract (Bacto) Becton, Dickinson & Company, Oxford, UK 
ZnSO4·7H2O  (>99.5%) (BDH AnalaR) VWR International Ltd, Lutterworth, UK 
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Table 2.2: Pre-prepared reagents and kits used during this study 

Item Manufacturer 

10x TGS buffer Bio-Rad Laboratories Ltd, Hemel Hempsted, UK 

20% (w/v) SDS Bio-Rad Laboratories Ltd, Hemel Hempsted, UK 

BugBuster® Merck KGaA (Novagen), Darmstadt, Germany 

E. coli BL21*  Life Technologies Ltd (Invitrogen), Paisley, UK 

E. coli JM109  Promega Corp., Madison, WI, USA 

Flow-Check Fluorospheres Beckman Coulter (UK) Ltd, High Wycomb, UK 

LB Broth (powdered) (Sigma) Sigma-Aldrich Co., St Louis, MO, USA 

Nutrient Agar Oxoid Ltd, Basingstoke, UK 

PBS Tablets Oxoid Ltd, Basingstoke, UK 

Protogel National Diagnostics, Atlanta, GA, USA 

QIAprep Spin Miniprep kit  QIAGEN Ltd, Manchester, UK 

PierceTM BCA Protein Assay Kit Pierce Biotechnology, Rockford, IL, USA 

Silicone antifoam Dow Corning Corp, Midland, MI, USA 

 
Table 2.3: Consumables used during this study 

Item Manufacturer 

Bijou, 7 mL, polystyrene Appleton Woods Ltd, Birmingham, UK 

Cellulose gel drying film  Promega Corp., Madison, WI, USA 

Centrifuge tubes (Falcon), 50 mL, polypropylene, sterile Becton, Dickinson & Company, Oxford, UK 

Cuvettes, semi-micro, polystyrene Fisher Scientific UK Ltd, Loughborough, UK 

Fluorescence cuvettes, 3 mL polymethylmethacrylate Kartell Labware Division, Noviglio, MI, Italy 

Microcentrifuge tube, 1.5 mL, polypropylene Sarstedt Ltd, Leicester, UK 

Microcentrifuge tube, 2 mL, polypropylene Sarstedt Ltd, Leicester, UK 

Needles, 21 gauge regular, Microlance® Becton, Dickinson & Company, Oxford, UK 

Nescofilm sealing film Nippon Shoji Kaisha Ltd, Osaka, Japan 

Petri dishes, 90 mm diameter, polystyrene, sterile  Sarstedt Ltd, Leicester, UK 

Pipette tips, 1 mL, polypropylene Sarstedt Ltd, Leicester, UK 

Pipette tips, 200 μL, polypropylene Sarstedt Ltd, Leicester, UK 

Pipette tips, 5 mL, polypropylene, Eppendorf fit VWR International Ltd, Lutterworth, UK 

Syringe filters, 0.22µm PES membrane, sterile, Millex  Merck Millipore, Billerica, MA, USA 

Syringe, 1 mL, Plastipak Becton, Dickinson & Company, Oxford, UK 

Syringe, 20 mL, Plastipak Becton, Dickinson & Company, Oxford, UK 

Syringe, 5 mL, Plastipak Becton, Dickinson & Company, Oxford, UK 

Syringe, 60 mL, Plastipak Becton, Dickinson & Company, Oxford, UK 
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Table 2.4: Principal equipment used during this study 

Item Manufacturer 

Midisart® 2000 0.2 μm PTFE air filters Sartorius AG, Goettingen, Germany 

Sarto-Capsule air filters Sartorius AG, Goettingen, Germany 

BD-Accuri C6 Flow cytometer Becton, Dickinson & Company, Oxford, UK 

Canoscan 9000F scanner Canon Inc., Tokyo, Japan 

Coulter EPICS-Elite Flow cytometer Beckman Coulter (UK) Ltd, High Wycomb, UK 

D150 Oxyprobe DOT probe Broadley-James Corp., Irvine, CA, USA 

F-695 Fermprobe pH probe Broadley-James Corp., Irvine, CA, USA 

Fermac 310/60 bioreactor  Electrolab Biotech Ltd, Tewkesbury, UK 

Omni-Page mini SDS-PAGE apparatus Cleaver Scientific Ltd, Rugby, UK 

Perkin Elmer Luminescence Spectrometer LS 50B PerkinElmer Inc., Waltham, MA, USA 

PrimaDB process gas mass spectrometer Thermo Fisher Scientific, Waltham, MA, USA 

PT100 temperature sensor Electrolab Biotech Ltd, Tewkesbury, UK 

Uvikon Spectrophotometer 922  Kontron AG, Eching, Germany 
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2.2.2. Phosphate buffered saline (PBS) 

Where appropriate, cultures and cell suspensions were diluted in PBS to maintain an 

appropriate osmolarity and pH. This was made according to Dulbeccos formulation ‘A’ 

(NaCl 8.0 g·L-1, KCl 0.2 g·L-1, Na2HPO4 1.15 g·L-1, KH2PO4 0.2 g·L-1, pH 7.3) from 

commercially produced tablets (Oxoid) according to the manufacturer’s instructions. 

 

2.2.3. Buffers & solutions for protein analysis (SDS-PAGE & BCA Assay) 

The compositions of solutions made for the production of SDS-PAGE gels were as 

follows: 

 2x stock running gel buffer – 0.75 M Tris(hydroxymethyl)aminomethane (Tris)/HCl, 

pH 8.3 (pH adjusted by addition of HCl).  

 10x stock stacking gel buffer – 1.25 M Tris/HCl, pH 6.8 (pH adjusted by addition of 

HCl). 

 Ammonium persulphate (APS) – An 80 mg·mL-1 solution of APS was made by 

weighing 80 mg of APS in a 1.5 mL microcentrifuge tube and dissolving in 1 mL 

ddH2O.  

 Sample buffer – 2 g SDS, 20 mL glycerol and 5 mg bromophenol blue (sulphone 

form) were dissolved in 1x stacking buffer (made by diluting 10 mL of 10x stock 

stacking buffer in ddH2O to a final volume of 100 mL) to a final volume of 92 mL. 

This was divided into 1 mL aliquots in 1.5 mL microcentrifuge tubes and stored at 

ambient temperature. Immediately prior to use 87 μL of β-mercaptoethanol was 

added to the tube.  

 Running buffer – 1x Tris-glycine-SDS (TGS) running buffer (25 mM Tris, 192 mM 

glycine, 0.1% w/v SDS, pH 8.6) was made from a commercially available 10x stock 

solution (BioRad), diluting in ddH2O. 
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 BCA assay lysis/solubilisation buffer – 2% (w/v) SDS and 1 mM EDTA were 

dissolved in 1x SDS-PAGE stacking buffer (125 mM Tris/HCl, pH 6.8).  

 

2.2.4. Solutions for the development of Coomassie blue-stained protein following 

SDS-PAGE 

The composition of solutions used to develop Coomassie blue-stained SDS-PAGE gels 

were as follows: 

 Coomassie blue stain – 2 g·L-1 Coomassie Brilliant blue R in 50% (v/v) methanol, 

10% (v/v) glacial acetic acid and 40% (v/v) ddH2O.  

 Fast destain – 40% (v/v) methanol, 10% (v/v) glacial acetic acid and 50% (v/v) 

ddH2O.  

 Slow destain – 10% (v/v) methanol, 10% (v/v) glacial acetic acid and 80% (v/v) 

ddH2O. 

 Shrink solution – 48% (v/v) methanol, 2% (v/v) glycerol and 50% (v/v) ddH2O. 

 

2.2.5. Dyes for flow cytometry 

A 200 μg·mL-1 stock solution of PI (Sigma) was made by dissolving 4 mg of PI powder in 

20 mL of ddH2O. This was divided into 1 mL aliquots in PP microcentrifuge tubes and 

stored at 4°C for up to 6 months. 

Stock solutions of Congo Red (CR) (BDH Chemicals) were produced in two ways. For 

initial experiments a saturated stock solution was made by dissolving 100 mg of dye and 

100 mg of NaCl in 5 mL 80% (v/v) ethanol, filtered through a 0.22 μm filter unit to 

remove undissolved solids and used only on the day produced as the solution rapidly 

precipitated during storage. For subsequent experiments a 2 mg·mL-1 solution was 
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made by dissolving 2 mg of dye in 1 mL of dimethylsulphoxide (DMSO) (Fisher) and 

stored at 4°C. 

 

2.3. Bacterial strains & plasmids & basic growth media 

2.3.1. Bacterial strains 

E. coli JM109 (endA1 recA1 gyrA96 thi hsdR17 (rk– mk+) relA1 supE44 Δ(lac-proAB), [F´ 

traD36 proAB laqIqZΔM15]) (Promega) was used to produce stocks of the expression 

vector. E. coli BL21* (DE3) (F- ompT hsdSB (rB-mB-) gal dcm rne131 λ(DE3)) (Invitrogen) 

was used for all subsequent cultures and RPP. For work involving anaerobic production 

and aerobic recovery of GFP the strain E. coli SCC1 was used. E. coli SCC1 is a derivative 

of wild-type E. coli MG1655 (F- λ- ilvG- rfb-50 rph-1) containing a chromosomal insertion 

of PA1/04/03-gfpmut3* allowing constitutive expression of GFP (Miao et al., 2009).  

 

2.3.2. Plasmids 

Expression vector pET20bhc-CheY::GFP encoding the model RPP product CheY::GFP 

(Jones et al., 2004, Jones, 2007) was used for all RPP experiments, a plasmid map is 

given in Figure 2.1. 

 

2.3.3. Solid growth media 

To make solid growth media 11.2 g of nutrient agar (NA) (Oxoid) was dissolved in 400 

ml of ddH2O and sterilised by autoclaving for 15 minutes at 121°C (1 bar). If selective 

agar was required the sterile molten agar was allowed to cool to 60°C to limit thermal 

degradation of the antibiotic, then carbenicillin was added to a final concentration of 

100 μg·mL-1. Molten agar was poured into sterile 90 mm diameter polystyrene (PS) petri 

dishes (Sarstedt) at approximately 20 mL per plate, allowed to set then dried to remove 
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Figure 2.1: Plasmid map for expression vector pET20bhc-CheY::GFP 

Key: Grey – origin of replication; Blue – gene encoding β-lactamase (antibiotic resistance 

marker); Brown – gene encoding CheY; Green – gene encoding GFP; Red – 

transcriptional terminator; Bent arrow – transcriptional promoter. Not to scale. 
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excess moisture. Plates were stored at 4°C and those containing antibiotic were used 

within 2 months. 

2.3.4. Liquid growth media 

For work involving E. coli SCC1, cells were grown in LB with the following composition: 

20 g·L-1 tryptone-peptone (BD Bacto), 10 g·L-1 yeast extract (BD Bacto) and 10 g·L-1 NaCl 

(Sigma). This was dissolved in ddH2O and sterilised by autoclave for 15 minutes.  

Unless otherwise stated E. coli BL21* and JM109 were grown in LB with the following 

composition: 10 g·L-1 tryptone-peptone, 5 g·L-1 yeast extract and 5 g·L-1 NaCl. This was 

prepared as above. 

If glucose was required in the medium, a 40% (w/v) solution in ddH2O was autoclaved 

separately and added post-sterilisation to the correct final concentration at ambient 

temperature to prevent Maillard reactions between the glucose and amine groups in LB. 

If antibiotics were required these were also added post-sterilisation to prevent thermal 

inactivation. 

 

2.4. Recombinant DNA techniques 

2.4.1. Production and transformation of competent E. coli  

MgCl2-competent cells (both E. coli JM109 and BL21* (DE3)) were prepared according to 

the protocol by Nishimura et al. (1990). 50 mL of growth medium A (LB (1% tryptone, 

0.5% yeast extract, 0.5% NaCl) supplemented with 10 mM MgSO4·7H2O, 0.2% (w/v) 

glucose) was inoculated with 0.5 mL of an overnight culture (2 mL LB, 37°C, 150 RPM, 

16 h) and grown (37°C, 200 RPM) to mid-logarithmic phase (OD650 ~1.0). Cultures were 

decanted into sterile, disposable 50 mL centrifuge tubes (BD-Falcon), cooled on ice for 

10 minutes then pelleted by centrifugation (1500 x g, 4°C, 10 minutes) and resuspended 

in 0.5 mL of pre-cooled medium A. To this cell suspension, 2.5 mL of storage medium B 
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(LB supplemented with 36% (w/v) glycerol, 12% (w/v) polyethylene glycol (PEG) 6000, 

12 mM MgSO4·7H2O, filter-sterilised) was added and mixed without vortexing then 

divided into 100 μL aliquots in sterile 1.5 mL PP microcentrifuge tubes and stored at -

80°C. 

Competent cells were transformed according to a modified protocol based on that by 

Nishimura et al. (1990). Aliquots of cells were thawed on ice, 2 μL of miniprep plasmid 

DNA was added then incubated on ice for 15-30 minutes. Cells were heat-shocked at 

42°C for 1 minute, chilled on ice for 1-2 minutes, 900 μL of LB was added then the cells 

were allowed to recover and express antibiotic resistance for 1 h at 37°C. Following 

recovery of the cells in LB, cells were pelleted by centrifugation (16,873 g, 5 minutes, 

ambient temperature), resuspended in 100 μL LB and plated onto selective NA. Plates 

were then incubated to allow for cell growth (25°C, 48 h). Single colonies from the 

transformation plate were then restreaked onto fresh antibiotic agar and grown under 

the same conditions to create a master plate of cells derived from a single colony. Unless 

otherwise stated, plates were stored at 4°C and discarded after 2 weeks. To investigate 

the effect of oxygen limitation during storage some plates were sealed between use with 

Nescofilm, a gas-resistant sealing film. If it was required to analyse transformants prior 

to growth in liquid culture, a small amount of cells were removed from the plate with a 

sterile 200 μL pipette tip and resuspended in 1-2 mL sterile PBS, this could then be used 

both for FCM, CFU and SDS-PAGE analysis. 

 

2.4.2. Production & purification of plasmid stocks 

To produce stocks of plasmid E. coli JM109 was transformed as above and single 

colonies from the transformation plate restreaked onto fresh selective agar. From these 

plates 2 mL cultures of LB supplemented with 100 μg·mL-1 carbenicillin were inoculated 
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and grown for 16 h at 37°C with agitation. These cultures were harvested by 

centrifugation in sterile 2 mL PP microcentrifuge tubes (16,873 g, 5 minutes, ambient 

temperature) and plasmid DNA was extracted using a QIAprep Spin Miniprep kit 

(QIAGEN) according to manufacturers instructions, eluting into 50 μL sterile ddH2O. 

 

2.5. Bacterial growth & RPP – Shake flasks 

2.5.1. E. coli SCC1 

2.5.1.1. Growth Conditions 

E. coli SCC1 was grown in 100 mL LB cultures supplemented with 0.4% (w/v) glucose, 

from a 2% (v/v) inoculum. The inoculum was grown from a single colony of bacteria in 

LB at 37°C and 200 RPM. Aerobic cultures were grown in 500 mL conical flasks and 

incubated at 37°C and 200 RPM, oxygen-limited cultures were obtained by growth in 

100 mL conical flasks at 37°C without agitation. 

2.5.1.2. Aerobic fluorescence recovery 

For aerobic fluorescence recovery (AFR) of GFP (Zhang et al., 2005), both aerobic and 

oxygen-limited cultures were grown for 3 h then 15 mL of culture was removed and 

cells harvested by centrifugation (10 minutes, 2556 x g, 4°C) in sterile PP disposable 

centrifuge tubes (BD-Falcon). Cell pellets were then re-suspended in 15 mL PBS and 

incubated at 37°C, 200 RPM in 50 mL conical flasks for 2 h. 

 

2.5.2. E. coli BL21* 

2.5.2.1. Inoculum set-up 

All inocula for RPP experiments were prepared in such a way to be analogous to those 

used for fermentations i.e. 35 mL of LB supplemented with 100 μg·mL -1 carbenicillin in 

a 250 mL conical flask was inoculated with a sweep of cells taken from a master plate of 
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transformants and incubated with agitation (150 RPM). Temperature and duration of 

incubation varied with experiments. 

2.5.2.2. Growth conditions & RPP 

For shake-flask RPP cultures 100 mL of LB supplemented with 100 μg·mL-1 carbenicillin 

and 0.5 % (w/v) glucose in a 500 mL conical flask was inoculated at 2% (v/v) from an 

overnight culture prepared as described above and incubated with agitation (200 RPM). 

3 protocols were used for shake-flask RPP during this study, summarised in Table 2.5.  

 

2.6. Bacterial growth & RPP – Fed-batch fermentation 

2.6.1. Vessel & fermentation equipment 

For all fed-batch fermentations a Fermac 310/60 bioreactor (Electrolab) was used with 

a 5 L cylindrical vessel. The vessel was equipped with 4 baffles and an agitator with 2 

six-bladed Rushton turbines. Aeration was achieved by sparging air from below the 

lower impeller at a rate of 3 L·minute-1 (2 vvm initial culture volume) through a 

reusable, autoclavable 0.22 μm filter (Sartorius). Off-gas was passed through a 

condensing column at approximately 2°C to prevent moisture loss and then through a 

larger volume reusable, autoclavable 0.22 μm filter (Sartorius). To prevent blockage of 

the exhaust filter by foamed culture two 1 L catch pots were placed between the 

condenser and filter, each containing approximately 1 mL of polypropylene glycol (PPG) 

as antifoam (Sigma). When filled with medium the vessel was sterilised by autoclaving 

at 121°C for 20 minutes. 

 

2.6.2. Media & growth conditions 

A number of different fermentation protocols were used during this study, including 

differences in growth media, feed composition and feed rate, these are summarised in 
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Table 2.5: Growth temperature and induction conditions for shake-flask RPP 

cultures 

Protocol S1 S2 SA 

Source Sevastyanovich et al., 
2009  

(‘standard conditions’) 
 

This study Sevastyanovich et al., 
2009  

(‘improved conditions’) 

Induction 
point  
 

OD650 ~ 0.5 (mid 
logarithmic phase) 

OD650 ~ 0.5 (mid 
logarithmic phase) 

OD650 ~ 0.5 (mid 
logarithmic phase) 

Temperature 
pre-induction 
 

37°C  37°C  25°C  

Temperature 
post-induction 
 

25°C  37°C  25°C  

[IPTG] 0.5 mM 0.5 mM 8 μM 
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Tables 2.6 and 2.7. All fermentations began with an initial volume of 1.5 L medium 

supplemented with 100 μg·mL-1 carbenicillin, adjusted to pH 6.3 and were inoculated at 

2% (v/v) from an overnight culture. Inocula were grown from a sweep of cells in 35 mL 

of LB supplemented with 100 μg·mL-1 carbenicillin in a 250 mL conical flask, at either 

30°C and 150 RPM for 12-14 h or 25°C and 150 RPM for 18-21 h. Prior to addition to the 

vessel 5 mL of inoculum was removed and used for screening and analysis. 

Fermentations were terminated after it was apparent that the culture had ceased to 

grow, indicated by OD650 and/or DOT/off-gas analysis. 

 

2.6.3. Process monitoring and control 

Unless otherwise stated data logging and process control were via the on-board control 

unit or Electrolab fermentation management software on a connected PC. 

2.6.3.1. Temperature sensing & control 

Temperature sensing was via an external PT100 Sensor (Electrolab). To control 

temperature a wrap around heating mat and cold finger were used. Temperature 

regulation was periodically calibrated by inserting an independent thermometer 

through an open port when the vessel was set up containing water. It was observed that 

during the later stages of fed-batch growth that cooling with a single cold finger was 

insufficient to maintain the set point, therefore once an increase in temperature was 

observed the chilled water supply for the condenser was rerouted to a second cold 

finger. 

2.6.3.2. DOT sensing & control 

DOT sensing was via a reusable, autoclavable D150 Oxyprobe (Broadley James). DOT 

was calibrated both prior to assembly with H2O in the vessel and after autoclaving prior 

to inoculation by alternately sparging air and nitrogen. DOT was maintained above a set 
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Table 2.6: Media composition for basic fermentations protocols 
Protocol A (LB-based) B (Semi-defined) C (Chemically-defined 

SM6E) 

Source Sevastyanovich et al., 
2009; 

S. Alfasi – Personal 
communication 

Want et al., 2009 Humphreys et al., 2002; 
C. Hsu – Personal 

communication 

Components  10 g·L-1 Tryptone 
5 g·L-1 Yeast extract 
5 g·L-1 NaCl 
1 mL E. coli sulphur free 

salts 
1 mL·L-1 Silicone antifoam 

(Corning) 

14 g·L-1 (NH4)2SO4  

35 g·L-1 Glycerol 
20 g·L-1 Yeast extract 
2 g·L-1 KH2PO4  

16.5 g·L-1 K2HPO4  

7.5 g·L-1 Citric acid.  
1.5 mL·L-1 Conc. H3PO4 

0.66 mL·L-1 
polypropylene glycol 
(PPG) (as antifoam) 

5.2 g·L-1 (NH4)2SO4 

3.86 g·L-1 NaH2PO4·H2O 
4.03 g·L-1 KCl 
1.04 g·L-1 MgSO4·7H2O 
0.25 g·L-1 CaCl2·2H2O 
10 mL·L-1 SM6E Trace 

elements solution 
4.16 g·L-1 Citric acid 

monohydrate 
31.11 g·L-1 Glycerol 
0.66 mL·L-1 PPG 

Post-
sterilisation 
additions 

12.5 mL·L-1 40% (w/v) 
Glucose 

1 mL·L-1 100 mg·mL-1 
Carbenicillin 

34 mL·L-1 Trace metal 
solution 

10 mL·L-1 1 M 
MgSO4·7H2O 

2 mL·L-1 1 M CaCl2·2H2O 
1 mL·L-1 100 mg·mL-1 

Carbenicillin 

1 ml·L-1 100 mg·mL-1 
Carbenicillin 

Further 
additions 

At 5 h post-induction: 
1 mM Serine 
1 mM Threonine 
1 mM Asparagine 

  

Trace elements 
composition 

 3.36 g·L-1 FeSO4·7H2O  

0.84 g·L-1 ZnSO4·7H2O  

0.15 g·L-1 MnSO4·H2O  

0.25 g·L-1 Na2MoO4·2H2O  

0.12 g·L-1 CuSO4·5H2O  

0.36 g·L-1 H3BO3 

48 mL·L-1 Conc. H3PO4 

104 g·L-1 Citric acid 
monohydrate 

5.22 g·L-1 CaCl2·2H2O 
2.06 g·L-1 ZnSO4·7H2O 

2.72 g·L-1 MnSO4·4H2O 

0.81 g·L-1 CuSO4·5H2O 

0.42 ·L-1 CoSO4·7H2O 

10.06 g·L-1 FeCl3·7H2O 

0.03 g·L-1 H3BO3 
0.02 g·L-1 NaMoO4·2H2O 

Feed 
composition 
 

100 g·L-1 Tryptone 
50 g·L-1 Yeast extract 
200 g·L-1 Glucose 
10 mM Serine 
10 mM Threonine 
10 mM Asparagine 
1 ml 100 mg.l-1 

Carbenicillin stock 
1 mL·L-1 8mM IPTG stock 
1 mL·L-1 E. coli sulphur-

free salts 
0.1% (v/v) silicone 

antifoam (Corning) 

714 g·L-1 Glycerol 
30 ml.l-1 1 M MgSO4·7H2O 
1 mL·L-1 100 mg.l-1 

Carbenicillin stock 
1 mL·L-1 IPTG stock 

(100mM/8mM as 
necessary) 

 

714 g·L-1 Glycerol 
30 ml.l-1 1 M MgSO4·7H2O 
1 mL·L-1 100 mg.l-1 

Carbenicillin stock 
1 mL·L-1 8mM IPTG stock 
 

 

  



 93 

T
a

b
le

 2
.7

 F
e

rm
e

n
ta

ti
o

n
 p

ro
to

co
ls

 u
se

d
 i

n
 t

h
is

 s
tu

d
y

 
 

C
3

 

M
ed

iu
m

 C
 

3
1

.1
1

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

2
5

°C
 

8
 μ

M
 

O
D

6
5

0
 ~

8
0

-9
0

 

C
2

 

M
ed

iu
m

 C
 

3
1

.1
1

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

2
5

°C
 

8
 μ

M
 

O
D

6
5

0
 ~

8
0

-9
0

 

C
1

 

M
ed

iu
m

 C
 

3
1

.1
1

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

2
5

°C
 

8
 μ

M
 

O
D

6
5

0
 ~

8
0

-9
0

 

B
3

 

M
ed

iu
m

 B
 

5
 g

·L
-1

 g
lu

co
se

 

0
.5

 L
  

4
0

0
 g

·L
-1

 
gl

u
co

se
 

7
.4

 g
·L

-1
 

M
gS

O
4
·7

H
2
O

 

E
xp

o
n

en
ti

al
 a

t 
   

μ
 =

 0
.2

 u
p

 t
o

 
6

7
.5

 m
L

·h
-1

 

2
5

°C
 

8
 μ

M
 

M
id

-l
o

ga
ri

th
m

ic
 

p
h

as
e 

   
   

(O
D

6
5

0
 ~

0
.5

) 

B
2

 

M
ed

iu
m

 B
 

3
5

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

2
5

°C
 

8
 μ

M
 

M
id

-
lo

ga
ri

th
m

ic
 

p
h

as
e 

   
   

(O
D

6
5

0
 ~

0
.5

) 

B
1

 

M
ed

iu
m

 B
 

3
5

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

2
5

°C
 

8
 μ

M
 

W
it

h
 f

ee
d

in
g 

(O
D

6
5

0
 ~

4
0

-
5

0
) 

B
 

M
ed

iu
m

 B
 

3
5

 g
·L

-1
 

gl
y

ce
ro

l 

0
.5

 L
  

F
ee

d
 B

 

6
7

.5
 m

L
·h

-1
 

3
7

°C
 

1
0

0
 μ

M
 

W
it

h
 f

ee
d

in
g 

(O
D

6
5

0
 ~

4
0

-
5

0
) 

A
 

M
ed

iu
m

 A
 

5
 g

·L
-1

 g
lu

co
se

 

1
 L

  
F

ee
d

 A
 

St
ep

p
ed

 li
n

ea
r:

 
7

 h
o

u
rs

 p
o

st
-i

n
d

u
ct

io
n

 
1

3
.6

9
 m

L
-1

·h
-1

 
3

2
.5

 h
 p

o
st

-i
n

d
u

ct
io

n
 

2
1

.1
3

 m
L

-1
·h

-1
 

4
8

.5
 h

 p
o

st
-i

n
d

u
ct

io
n

 
2

7
.1

7
 m

L
-1

·h
-1

 
5

4
.5

 h
 p

o
st

-i
n

d
u

ct
io

n
 

3
8

.0
 m

L
-1

·h
-1

 

2
5

°C
 

8
 μ

M
 

M
id

-l
o

ga
ri

th
m

ic
 p

h
as

e 
   

   
(O

D
6

5
0
 ~

0
.5

) 

P
ro

to
co

l 

G
ro

w
th

 
m

ed
iu

m
 

C
ar

b
o

n
 s

o
u

rc
e 

in
 v

es
se

l 

F
ee

d
 

F
ee

d
 r

at
e 

T
em

p
er

at
u

re
 

[I
P

T
G

] 

In
d

u
ct

io
n

 
p

o
in

t 

  



 94 

point of 30% by increasing agitation to a maximum of 1000 RPM from a minimum of 

200-500 RPM. 

2.6.3.3. pH sensing & control 

pH sensing was via a reusable, autoclavable F-695 Fermprobe (Broadley James). Prior to 

assembly a 2-point calibration was done using pH 4 and 7 buffers then prior to 

inoculation a sample of media was removed and tested on an external pH meter for a 

final single-point calibration. pH was controlled at a set point of 6.3 ± 0.1 with the 

automated addition of sterile 10% (v/v) NH3 and 5% (v/v) HCl. 

2.6.3.4. Off-gas analysis 

Off-gas was automatically collected for compositional analysis using a PrimaDB process 

gas mass spectrometer (MS) (Thermo) and compared to atmospheric air in order to 

calculate the proportion of O2 consumed (OXC), CO2 evolved (CDC) and from these the 

respiratory quotient (RQ), these data were logged automatically by GasWorks v1.0 

(Thermo). This was done not only to provide additional information regarding the cells 

metabolism but also the live data plotting facility incorporated into the software allowed 

monitoring of changes in the respiratory activity of the culture during the stages of the 

fermentation where DOT was depleted and therefore less sensitive to small changes. 

 

2.6.4. Aerobic fluorescence recovery 

For AFR of fed-batch fermentation cultures a sample was taken from the fermenter 

when the DOT was approaching 0% despite full agitation and aeration and 1 mL aliquots 

were pelleted by centrifugation (16,873 x g, 5 minutes, ambient temperature). Pelleted 

cells were resuspended in 10 mL sterile PBS, transferred to a sterile 50 mL conical flask 

and incubated with agitation (25°C, 150 RPM). 
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2.7. Cell analysis techniques 

2.7.1. Optical density 

Optical density was measured in disposable semi-micro polystyrene (PS) cuvettes 

(Fisher) at 650 nm using a Uvikon Spectrophotometer 922 (Kontron Instruments), 

diluting with PBS where necessary to obtain a reading of 0.1-0.6, zeroing the machine 

with ddH2O.  

 

2.7.2. Fluorimetry 

Fluorescence measurements were determined in disposable 3 ml 

polymethylmethacrylate (PMMA) fluorescence cuvettes (Kartell) using a Perkin Elmer 

Luminescence Spectrometer LS 50B, exciting at 488 nm, detecting at 510 nm with 10 nm 

slit width, diluting with PBS where necessary. As it was observed that LB has an 

inherent fluorescence under the conditions used, a sample of medium was taken from 

each flask prior to inoculation, the fluorescence determined, then subtracted from the 

readings for the growing culture. 

 

2.7.3. Colony forming units (CFU) & plasmid retention 

To determine culturability and plasmid retention, cultures were serially diluted in 

sterile PBS, plated on to non-selective NA plates to allow 50-500 colonies per plate and 

incubated at 25°C for 48 h. Growth at 25°C as opposed to 37°C allowed colonies to 

develop a clear GFP+ phenotype from ‘leaky’ recombinant gene expression. Expression 

vector retention was determined in two ways, first the proportion of GFP positive 

colonies were identified by eye, then colonies were replica-plated on to NA and NA-

carbenicillin plates. 
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2.7.4. Dry cell weight 

To determine DCW from fermentations 4 x 2 mL aliquots of sample were pelleted by 

centrifugation (16,873 g, 15 minutes) in 2 mL pre-weighed and labelled PP 

microcentrifuge tubes stored under desiccating conditions, the supernatant was 

removed by syringe and discarded, tubes were then dried at 100°C for a minimum of 24 

h before weighing. 

 

2.7.5. Flow cytometry 

Two flow cytometers were used during this study, initially an EPICS Elite (Coulter) then 

subsequently a BD-Accuri C6 (BD).  

2.7.5.1. Sample preparation & staining for cell physiology 

For both cytometers samples were diluted in 0.22 μm filtered PBS to an appropriate 

data rate (Table 2.3) and data were recorded. Cell physiology was then tested by 

staining with fluorescent dyes, PI for dead cells and CR for the presence of amyloid-like 

protein deposits. To the unstained samples, having been diluted to give an appropriate 

data rate, dyes were added to final concentrations previously determined to give 

optimal results and data was recorded again. Live/dead differentiation using PI was 

calibrated using a mixture of live and ethanol-killed cells, 2 x 1 mL aliquots of cells were 

pelleted by centrifugation (16,873 x g, 10 minutes, ambient temperature), one was 

resuspended in PBS, the other in ethanol. These cell suspensions were diluted in filtered 

PBS to an appropriate data rate, mixed in approximately equal volumes, stained with PI, 

analysed by FCM and gates drawn to differentiate the 2 populations (examples for both 

cytometers are given in Figure 2.2). These gates were then applied to experimental 

samples to estimate viability. 
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Figure 2.2: Propidium iodide staining for FCM 

Control data for FCM-derived viability staining with PI. a) & b) show typical gating for 

identification of dead (PI+) cells for both cytometers used during this study.  

a) Coulter EPICS Elite-derived control PMT2 (green fluorescence) versus PMT4 (red 

fluorescence) plot of a mix of live and ethanol-killed E. coli BL21*pETCheY::GFP stained 

with PI, dead cells fall within the defined gate R2. b) BD-Accuri C6-derived control FL1-A 

(green fluorescence) versus FL3-A (red fluorescence) plot of a mix of live and ethanol-

killed E. coli BL21*pETCheY::GFP and untransformed cells stained with PI, dead cells fall 

within the defined gate P7.  

 

  

a) b) 

GFP+ 

Alive 

GFP- 

Alive 

GFP+ 

Dead

 

GFP- 

Dead 
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2.7.5.2. Gating of fluorescent populations 

It was observed that when there were populations of varying average fluorescent 

intensity these populations would often overlap when visualised as a histogram, due to a 

correlation between cell size/volume and total cellular fluorescence i.e. a small but 

highly fluorescent cell would give a similar fluorescence reading to a larger less 

fluorescent cell. This phenomenon prevented accurate gating and hence enumeration of 

populations, but an intensity/dot plot of forward scatter versus green fluorescence 

exploited the relationship between FSC and cell size and hence allowed more accurate 

gating (Figure 2.3), an additional benefit of this was that when a population was small 

enough to not be visible on a histogram it could often still be visualised on a bivariate 

plot. 

2.7.5.3. EPICS Elite 

The EPICS-Elite uses a 15 mW air-cooled Argon ion laser at 488 nm for sample 

excitation and for this study fluorescence was detected by photomultiplier tubes (PMTs) 

at 525 nm (PMT2, GFP) and 630 nm (PMT4, PI). The flow cell and optics were manually 

aligned whenever the machine was used using Flow-Check Fluorospheres (Beckman-

Coulter). PMT voltages and fluidics settings were variable and typical values are given in 

Table 2.8. To eliminate background noise a variable discriminator was used on PMT1 

(FSC) and SSC then 20,000 events were collected. To prevent both concurrent events 

and a disproportionate percentage of noise in the sample the data rate was maintained 

between 1-2000 where possible. The staining protocol for PI was derived from previous 

studies using this equipment; stock dye solution was added to cell suspensions to a final 

concentration of 7.5 μg·mL-1, incubated at ambient temperature for 1 minute then 

analysed.  
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Figure 2.3: Typical gating of FCM data 

a) FSC-A versus SSC-A plot of E. coli BL21*pETCheY::GFP showing typical gating to 

eliminate intrinsic noise (P1) a small amount of noise can be seen below the gate.  

Typical gating of FCM data to enumerate GFP+ cells and fluorescent sub-populations: b) 

Histogram of mean FL1-A values for E. coli BL21*pETCheY::GFP (sample data) showing 

typical gating for GFP+/GFP- cells V1-R = GFP+, V1-L = GFP-. c) FSC-A versus FL1-A plot of 

same data as (b), gated such that GFP+ cells are within gate P3, additional fluorescent 

sub-populations can be seen that were not distinguishable in (b), unless otherwise 

stated GFP+ data in this work is gated in this manner. c) FSC-A versus FL1-A plot of same 

data as (b), gated to enumerate fluorescent sub-populations. 

  

c d b 

a 
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Table 2.8: Operating parameters for FCM data acquisition 

Coulter EPICS Elite 
Optical settings – PMT values used 

FS PMT1 (SSC) PMT2 (GFP) PMT4 (PI) 
150 600 650 1200 

Fluidics & data collection settings 
Sheath pressure 5 psi 
Sample pressure Variable  

Data rate 1000-2000 events·s-1 

Events collected 25000 
  

BD-Accuri C6 
Optical settings Fixed, manufacturers settings.  

No artificial voltage manipulation or 
colour compensation applied 

Fluidics settings[1] Default slow fluidics setting: 
Flow rate – 14 μL·mL-1 

Core size – 10 μm 
Data rate[1] 1000-2500 events·s-1 

Events collected[1] 20000 (in gate P1) 
[1] – Unless otherwise stated 
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2.7.5.4. C6 

The C6 uses a 488 nm solid-state laser for sample excitation and for this study 

fluorescence was detected using a 533/30 BP filter for GFP (FL1-A) and 670 nm LP filter 

for PI (FL3-A). The flow cell alignment and fluorescence detection on the C6 is fixed 

therefore no alterations were made to these. To eliminate background noise data was 

thresholded on FSC-H (typical values 7-20,000), and 20,000 events were recorded in a 

gated region on FSC-A/SSC-A plots corresponding to the scatter profile of E. coli (P1, 

typical gating given in Figure 2.3). For routine analysis the pre-set fluidics setting ‘Slow’ 

was used to maximise the passage time of cells through the laser due to the relatively 

small size of E. coli. Where accurate volume measurements were required ‘Medium’ 

fluidics were used as manufacturers instructions state ‘Slow’ fluidics do not give 

accurate volume measurements. According to manufacturer’s instructions samples were 

diluted to give a data rate of 1,000-2,500 where possible. The BD-Accuri C6 was a new 

acquisition during the course of this study, as such effective dye concentrations were 

calibrated before experimental use. PI staining was determined to show adequate 

differentiation between dead and alive cells at a final concentration of 4 μg·mL-1, 

therefore stock dye solution was added to this concentration (10 μL dye per 1 mL 

sample), incubated at ambient temperature for 3 minutes then analysed. As CR staining 

has not been used previously to stain for IBs in E. coli a range of dye concentrations and 

incubation times were tested, these are detailed in Section 3.2. 

 

2.8. Protein analysis 

2.8.1. SDS-PAGE 

Proteins extracted from various preparations of culture samples were separated by 

mass using denaturing SDS-PAGE, using an Omni-PAGE mini apparatus (Cleaver 
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Scientific). The Omni-PAGE apparatus allows 2 gels to be run simultaneously; therefore 

all following amounts are for 2 gels. A 15% (w/v) acrylamide resolving gel was made by 

mixing 7.5 mL of protogel, 7.5 mL of 2x resolving gel buffer and 75 μL of 20% SDS. 

Polymerisation was initiated by the addition of 150 μL 80 mg·mL-1 APS solution and 7.5 

μL Tetramethylethylenediamine (TEMED), the mixture was mixed briefly then 

immediately poured between 2 100x100 mm glass plates to 0.5 cm below the level of 

the combs used for producing the sample wells. To exclude oxygen from the 

polymerisation and to prevent evaporation of water a layer of 0.1 % (w/v) SDS was 

pipetted over the gel, this was then left to polymerise for approximately 1 h. Once the 

resolving gel had polymerised the layer of 0.1% SDS was removed and a 6% acrylamide 

stacking gel was added. To make the stacking gel 2 mL of protogel, 1 mL of 10x stacking 

gel buffer, 7 mL of ddH2O and 50 μL 20% SDS were mixed and polymerisation was 

initiated by adding 100 μL APS and 5 μL TEMED. After mixing, a 1 mL layer of stacking 

gel was pipetted over the resolving gel and immediately discarded to wash any 

remaining 0.1% SDS away, then stacking gel was poured over to the top of the plates and 

a comb was inserted at an angle to prevent bubbles forming under the wells. After 

allowing approximately 1 h for the gel to polymerise the combs were gently removed 

and the wells were washed with ddH2O to remove any unpolymerised acrylamide. Gels 

were loaded with samples as described below and run in 1x TGS buffer at 110 V for 

approximately 2 h at ambient temperature. 

 

2.8.2. Sample preparation & BugBuster® 

Samples for both total protein and solubility analysis were taken from cultures in the 

same way, so that all samples were standardised for biomass. A volume of culture in mL 

equal to 0.9/OD650 was pelleted by centrifugation (16,873 g, 15 minutes) in sterile 1.5 
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mL or 2 mL (where appropriate) PP microcentrifuge tubes, supernatant removed by 

pipetting and unless used immediately stored at -20°C. For total protein analysis 

pelleted cells were thawed (if necessary), resuspended in 60 μL of sample buffer, boiled 

for 10 minutes and 5 μL was loaded on the gel (assuming OD650 1 = 0.4 g·L-1 DCW this 

equates to a loading of approximately 0.03 mg biomass). To separate the soluble and 

insoluble protein fraction the chemical lysis agent BugBuster® (Novagen) was used. Cell 

pellets were thawed and resuspended in a volume of BugBuster® equal to that of sample 

buffer for total protein samples (60 μL), incubated at room temperature for 10 minutes 

then the insoluble fraction was pelleted by centrifugation (16,873 x g, 20 minutes, 

ambient temperature). Following centrifugation the soluble fraction (supernatant) was 

removed by pipetting into a fresh, sterile microcentrifuge tube. The insoluble fraction 

(pellet) was washed to remove any residual soluble protein by resuspension in 180 μL 

sterile PBS then pelleted by centrifugation (16,873 x g, 10 minutes, ambient 

temperature) and the supernatant removed. Both soluble and insoluble samples were 

then resuspended in 60 μL of sample buffer and boiled for 10 minutes. 5 μL of insoluble 

samples were loaded on the gel however as the soluble samples had a final volume of 

120 μL, a 2x dilution of the original extract, 10 μL was loaded so that the amount loaded 

for total protein, soluble and insoluble corresponded to the same initial biomass.  

 

2.8.3. Coomassie Blue Staining & Drying 

Proteins were visualised by staining with a 0.2% (w/v) solution of Coomassie Brilliant 

Blue R. Gels were removed from the casting/running apparatus, rinsed in ddH2O and 

incubated with the stain at ambient temperature for 30 minutes with gentle agitation. 

To remove non-specifically bound dye; gels were washed in fast destain twice for 30 

minutes then three times in slow destain for 1 h with gentle agitation. Stained gels were 
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then removed from the destain solution, placed in shrink solution with agitation for 1 h 

then mounted between 2 sheets of cellulose gel drying film (Promega), stretched over a 

frame and left to dry under ambient conditions for 1-2 days. 

 

 

2.8.4. Bicinchoninic acid assay 

Protein concentrations from end-point fermentation samples were determined by the 

bicinchoninic acid (BCA) assay using a commercially-produced kit (PierceTM BCA Protein 

Assay Kit) in 96-well plates according to manufacturers instructions and analysed at 

560nm using a GloMax®-Multi microplate reader (Promega).  

2.8.4.1. Sample preparation 

2 mL fermentation samples were taken at termination, cells harvested by centrifugation 

(16,873 g, 15 minutes) in sterile 2 mL microcentrifuge tubes, the supernatant removed 

by syringe and stored at -20°C until required. When required, cell pellets were thawed 

and resuspended in 10 mL PBS then divided into 200 μL aliquots and cells were pelleted 

by centrifugation (16,873 g, 10 minutes) in sterile 1.5 mL microcentrifuge tubes. 

Supernatants were removed by pipette and retained for analysis to determine 

concentration of protein released on freeze-thaw of initial cell pellet.  

To determine total cellular protein content cell pellets were resuspended in 500 μL 

solubilisation/lysis buffer, boiled (10 minutes, 100°C) diluted as necessary in PBS and 

assayed. 
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2.9. Computational analysis 

2.9.1. Flow cytometry 

Due to differences in age and manufacturer; data from the 2 cytometers could not be 

analysed using the same software package. 

2.9.1.1. WinMDI 

All data gathered using the EPICS-Elite flow cytometer was analysed using the Windows 

Multiple Document Interface for Flow Cytometry (Win MDI) software package 

(http://facs.scripps.edu/software.html). 

2.9.1.2. Cflow 

All data gathered using the BD-Accuri C6 cytometer was initially and unless otherwise 

stated analysed by the software package provided, Cflow (BD).  

 

2.9.2. SDS-PAGE  

Dried SDS-PAGE gels were scanned with a Canoscan 9000F (Canon) at 600 dpi and 

bands were quantified by densitometry with the software package ImageJ (Abàamoff et 

al., 2004; Schneider et al., 2012) (Figure 2.4). Images were first subjected to background 

subtraction (default settings) followed by lane definition. Histograms of colour intensity 

were produced from defined lanes, peaks corresponding to CheY::GFP were defined and 

the areas underneath calculated. To estimate the percentage of soluble CheY::GFP, 

CheY::GFP peak areas for soluble and insoluble samples were compared. To estimate the 

percentage of total protein that was CheY::GFP, either the intensity of the CheY::GFP 

peak was calculated as a percentage of the intensity of the total lane or the intensities of 

the CheY::GFP peaks of both the soluble and insoluble samples were calculated as a 

percentage of the intensities of both samples combined. 
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Figure 2.4: Densitometric analysis of SDS-PAGE gels 

Analysis of a sample SDS-PAGE gel by ImageJ. a) Gel was scanned at 600 dpi and opened 

in ImageJ. b) Background was removed by default settings. c) Lanes were defined. d) 

Lane histograms were plotted. e) CheY::GFP peaks were defined. f) CheY::GFP peaks 

were selected, area under the peak automatically calculated and used for analysis (for 

solubility analysis, area of insoluble and soluble CheY::GFP peaks were compared, for 

total production analysis, area under CheY::GFP peaks were compared to area under 

remainder of the histogram). 
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2.9.2.1. Protein yield analysis 

Initial estimates of CheY::GFP yields were predicted in a similar way to Sevastsyanovich 

et al. (2009) from biomass values and SDS-PAGE data assuming protein comprises 60% 

of E. coli dry cell mass (based on 50-61% estimates from Valgepea et al. (2013) and 70% 

from Sevastsyanovich et al. (2009)). This method however does not account for any 

variation in protein content that may have occurred therefore yields were also 

calculated from BCA assay-derived total cellular protein concentrations. 

 

2.10. Preliminary experiments 

In order to ensure consistent growth of microbial cultures and accuracy of analytical 

methods a series of preliminary experiments were made. 

 

2.10.1. Batch variation of complex growth medium components 

During the initial stages of this study tryptone from Fisher Scientific and yeast extract 

from Oxoid were used for media production, but on replacement of supplies of both a 

decrease in the final OD650 for overnight cultures was observed (from approximately 7 

to 5). Despite replacement of the yeast extract from the vendor it was not possible to 

recover growth to previous levels. In order to ensure reproducible cell growth a brief 

study was made into batch variation of tryptone and yeast extract. 35 mL overnight 

cultures (LB, 30°C, 150 RPM) were grown using a number of sources and batches of both 

tryptone (BD Bacto, Oxoid, Sigma and Fisher bioreagents) and yeast extract (BD Bacto, 

Oxoid x2 and Duchefa Biochemie). For ease of comparison 2 series of cultures were 

made; the first containing each tryptone sample along with BD yeast extract, the second 

containing BD tryptone with each yeast extract sample as those from BD were available 

in the largest amount. In addition a batch of pre-mixed LB of the same composition was 
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also used (Sigma). OD650 measurements were taken for each combination following 14 h 

growth (Figure 2.5). 

OD650 data showed a range of cell densities generated. For tryptone the range was from 

5.87 (Oxoid) to 8.41 (Sigma). For yeast extract the range was from 4.73 for Oxoid 1 to 

7.14 for BD, both Oxoid samples gave similar results (4.81 for Oxoid 2). LB using BD 

tryptone gave the second highest OD650 of all tryptone samples and BD yeast extract 

gave the highest (7.14), similar to that of initial work. Both BD tryptone and yeast 

extract were available in single batches sufficient for the remainder of this study and 

thus were used.  

 

2.10.2. Production of GFP under oxygen-limited conditions 

This work relied heavily on the estimation of CheY::GFP accumulation by fluorescence, 

either by fluorimetry or FCM. However, the avGFP fluorophore requires O2 to produce 

its mature, fluorescent form (Figure 1.7) (Hansen et al. (2001) demonstrated that GFP 

produced in Streptococcus gordonii ceased to fluoresce between 0.1-0.025 ppm) and GFP 

produced in anaerobic environments can accumulate in a folded but non-fluorescent, 

immature form (imGFP) (Zhang et al., 2005). Bioreactor cultures, even under aerobic 

conditions, can be subject to inefficiencies in mixing and aeration, resulting in microoxic 

and anoxic microenvironments sufficient to result in cells upregulating genes for 

anaerobic growth, e.g. the nar genes for nitrate reduction (Garcia et al., 2009). This could 

only be exacerbated in HCDC where cellular oxygen demands can exceed the aeration 

capacity of the bioreactor, as frequently observed during this study. It is therefore 

possible that during later stages of fermentation where the DOT is severely limited 

(~0%) immature, non-fluorescent CheY::GFP could accumulate and hence cause 

underestimation of RPP productivity.  
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Figure 2.5: OD650 data for overnight cultures of E. coli BL21* pET CheY::GFP using 

different sources of tryptone and yeast extract 

a) Varying sources of tryptone with BD bacto yeast extract. b) Varying sources of yeast 

extract with BD bacto tryptone. Data are mean values derived from 2 replicate cultures, 

error bars are ± 1x standard deviation. 
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2.10.2.1. Oxygen limitation in shake-flask cultures 

To determine whether imGFP can accumulate in oxygen limited cultures of E. coli an 

aerobic fluorescence recovery (AFR) protocol was used; anaerobically grown GFP-

expressing cells were resuspended in PBS to limit further cell growth and protein 

production, then incubated under aerobic conditions. If imGFP was present, exposure to 

oxygen during AFR would allow maturation of the chromophore and hence cause an 

increase in fluorescence measurements. AFR was initially proposed by Zhang et al. 

(2005), to observe GFP-producing Enterobacter aerogenes grown under the stringently 

anaerobic conditions required for biohydrogen production. AFR was used for this study 

as it would not only identify imGFP accumulation but would also be a useful sample 

processing stage if significant amounts of imGFP were shown to form. 

AFR was initially tested using E. coli SCC1, a K-12-derivative strain that expresses 

GFPmut3* constitutively. The reason for using SCC1 is that GFPmut3*, being a less-

stable variant of GFP limits accumulation of fluorescent protein that might mask small 

changes in fluorescence and constitutive expression eliminates variability resulting from 

RPP induction, also, E. coli BL21* as a B-derivative strain is unable to be grow 

anaerobically (Studier et al. 2009; Pinske et al. 2011). 

E. coli SCC1 was grown in 100 mL shake flask cultures (LB, 0.5% glucose) under both 

aerobic and oxygen-limited conditions then harvested for AFR after 3 h growth. Cells 

were harvested at 3 h based on data from preliminary growth curves. After 3 h both 

aerobic and oxygen-limited cultures were in exponential growth phase (Figure 2.6a) and 

lower cell densities for the latter suggested that cells were in fact oxygen-limited. Also, 

peak specific fluorescence (fluorescence per unit OD650) was observed for both aerobic 

and oxygen-limited cultures after 3 h growth (Figure 2.6b). At harvesting it was 

observed that the specific fluorescence of aerobic cultures was lower than that obtained 
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Figure 2.6: Growth and fluorescence profiles for E. coli SCC1 over 8 h under 

aerobic and oxygen-limited conditions  

a) OD650 data for aerobic (○) and oxygen-limited (●) cultures. b) Relative fluorescence 

(fluorescence per unit OD650) data for aerobic (□) and oxygen-limited (■) cultures. 

Data are mean values from 2 replicate cultures from a single representative 

experiment, error bars are ± 1 standard deviation. 
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during preliminary growth curves, this was interpreted as possibly being due to 

differences in culture handling i.e. cultures used for solely growth analysis would have 

been removed from the incubator more often than those grown for AFR, possibly 

retarding growth. Cells were resuspended in PBS and incubated under AFR conditions 

(37°C, 200 RPM) for 2 h, sampling for OD650 and fluorescence every 30 minutes; in 

addition samples of the original culture at the point of harvesting were also analysed. 

After 2 h AFR specific fluorescence values for anaerobic cultures were lower than that of 

the starting culture. (Figure 2.7a), presumably due to an increase in OD650 observed 

(Figure 2.7b). Unexpectedly, aerobically-grown cells showed an increase in specific 

fluorescence during AFR and in comparison to the starting culture, presumably as a 

result of a decrease in OD650. As AFR did not cause an increase in specific fluorescence 

for oxygen-limited cultures, it was concluded that under the conditions used there either 

was insufficient imGFP to warrant routine use of AFR or that sample handling 

introduced sufficient oxygen for maturation of any imGFP produced. 

2.10.2.2. Oxygen limitation in HCDC-RPP fermentation 

To further validate the conclusion that the AFR protocol was not necessary for routine 

use during this study, specifically when applied to oxygen-limited, HCDC fermentations, 

the AFR protocol was tested on cells grown under these conditions. Cells were taken 

from a fermentation following growth to high cell density (OD650 nm ~250) when the 

DOT was severely depleted (~5.0%), divided into replicates and subjected to AFR. In 

order to limit potential aggregation of CheY:GFP, at 37°C and hence decrease in 

fluorescence, the AFR protocol was modified: The incubation temperature was 

decreased to 25°C and as this may have caused a decrease in the rate of the maturation 

reaction the incubation time was increased to 4 h. Samples were then analysed by FCM. 

FCM analysis showed that in the original culture and during the 4 h AFR 97-98% of cells 
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Figure 2.7: Data from AFR treatment of aerobic and oxygen-limited E. coli Scc1 

 a) Comparison of relative fluorescence from AFR to the original culture for aerobic 

(blue) and oxygen-limited (red) samples. b) OD650 over 2 hours AFR for aerobic (○) and 

oxygen-limited (●) cultures. Data are mean values from 2 replicate cultures from a 

single representative experiment, error bars are ± 1 standard deviation.  
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were GFP+ and there was no overall trend in FSC (data not shown). Although a small 

(2.97% overall) increase was observed in green fluorescence during AFR and in 

comparison to the original culture (Figure 2.8a) and there was an increase in the 

proportion of dead (PI+) cells after 4 h (Figure 2.8b) neither trend was statistically 

significant. It was therefore concluded that the additional time and expense in sample 

processing for AFR outweighs the benefits of its inclusion.  

2.10.2.3. Conclusion 

The application of AFR to the analysis of fluorescence in oxygen-limited E. coli cultures 

was shown to be unnecessary for both GFPmut3* and CheY::GFP grown under shake 

flask and HCDC conditions. The limited concentration of oxygen available in the 

instances tested appears to have been sufficient to allow maturation of the GFP 

produced. Alternately it is possible that small quantities of imGFP present in the culture 

on sampling may have been exposed to sufficient oxygen during sample handling to 

allow for maturation. As the rate constant for the oxidation stage of GFP maturation 

(S65T variant) is estimated at 19-83 minutes (Heim et al. 1995, Reid & Flynn 1997, 

Tsien 1998) there may have been sufficient time for this to occur. During preparation for 

both fluorimetry and flow cytometry samples were diluted in buffer that was not subject 

to degassing and hence will have contained dissolved oxygen and samples were 

agitated/vortexed for mixing. It is possible that this provided sufficient oxygen for 

maturation. The use of an autosampler connected to the culture apparatus may possibly 

minimise the amount of agitation as a result of sample handling and therefore 

demonstrate whether this is the case. It is also possible that in future comparisons of 

fluorescence data to predicted fluorescence based on SDS-PAGE derived yields of GFP 

may also assist in assessing this phenomenon. This method would be of particular use if 

imGFP shows decreased stability relative to mature GFP and hence misfold.  
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Figure 2.8: FCM data from modified AFR treatment of oxygen-limited HCDC E. coli 

BL21* pETcheY::GFP 

a) Comparison of mean FL1-A (green fluorescence) from 4 hours AFR to the original 

culture. b) Percentage dead cells (PI+) in original culture and during 4 hours AFR. Data 

shown are single values for culture samples and mean values from 2 replica flasks for 

AFR samples, error bars are ± 1x standard deviation. 
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Chapter 3:  Results 1 – Novel Applications of Flow Cytometry for 

Bioprocess Monitoring and Control
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3.1. Introduction 

FCM is of great utility in RPP bioprocess monitoring using established techniques such 

as viability staining and the use of recombinant protein-FP fusions, but this is by no 

means the full scope of applications FCM could have. The first aim of this work was to 

“To investigate and develop additional methods by which FCM can be used for the 

monitoring and analysis of RPP cultures in E. coli”, this chapter therefore describes a 

series of experiments that develop a novel method for RPP monitoring by FCM and 

apply FCM analysis to aspects of RPP and fermentation not previously reported in E. coli. 

 

3.2. Use of the amyloidophilic dye Congo red as a stain for the flow cytometric 

detection of inclusion bodies 

3.2.1. Introduction 

There are many advantages to the production of RPs in their native, soluble form, as 

opposed to in IBs, therefore a method to detect the formation of IBs during a bioprocess 

would be beneficial. This has been attempted using bulk measurements, such as the 

work reported by Jin et al. (1994) who showed that inclusion body presence can be 

predicted based on the OD600/OD420 ratio of E. coli cell debris during purification. There 

have also been other attempts using FCM. The simplest methods use light scattering, 

based on the observation that IBs are highly refractive particles and therefore their 

presence should result in an altered light scatter profile. While there have been 

successes in this regard (Lewis et al., 2004; Hedhammar et al., 2005), as light scattering 

can be affected by numerous other cellular parameters and by cytometer design, success 

appears to be case-dependent (Wållberg et al.,. 2005).  

The use of FP fusions as solubility indicators have been in many cases successfully 

applied to FCM but these do not directly detect IBs, only a decrease in fluorescence 
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indicative of IB formation and may be complicated by the fact that FP-IBs can retain 

some fluorescence (García-Fruitós et al., 2005). Ramdzan et al. (2012) addressed these 

concerns for RPP in mammalian cells using pulse width analysis (PWA). Soluble FPs will 

be diffuse throughout the cytoplasm and therefore the width of fluorescent pulses 

detected will be equivalent to that of the whole cell whereas an inclusion body will be 

spatially constricted and the resultant fluorescent pulse will be narrower than that of 

the cell. This technique is unlikely to be as effective in bacteria due to the much smaller 

cell size.  

The area that shows the greatest promise in flow cytometric IB detection is that of 

fluorescent dyes; they are generally influenced by fewer factors than light scatter and 

hence can be more specific, and can be applied to any RP without the use of an FP-

fusion. 

An obvious choice of dye for detecting IBs are fluorescent amyloidophilic dyes such as 

Thioflavin-S (Th-S), Thioflavin-T (Th-T) and Congo red (CR), as IBs are known to possess 

considerable amyloid character (Wang et al., 2008, de Groot et al., 2009) and these dyes 

are used for the histological detection of amyloid. There have been a limited number of 

studies applying these dyes to the detection of E. coli RP-IBs with and without FCM. 

Esparagó et al. (2012) positively identified IBs formed from the amyloid β peptide (A-β) 

in E. coli using Th-S by FCM. Upadhyay et al. (2012) demonstrated binding and 

fluorescence of CR to isolated E. coli RP-IBs and Wall & Solomon (1999) and Wall (2002) 

demonstrated FCM detection of CR-stained amyloid fibrils from mammalian samples. 

These studies leave ample opportunity for further investigation as CR has not been 

applied to in vivo detection of IBs and while thioflavin has been used in vivo, A-β has 

little utility as a model RPP product. A series of experiments were therefore devised to 
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determine the efficacy of CR in staining IBs formed by the model RPP product CheY::GFP 

in vivo and their detection by FCM. 

 

3.2.2. Results & discussion 

3.2.2.1. Initial trial 

For an initial limited trial to determine if it was possible to stain IB-containing E. coli 

with CR and to detect these cells by FCM, a 100 mL shake flask culture of E. coli BL21* 

pETCheY::GFP was grown according to protocol S1 (37°C pre-induction, 25°C post-

induction, 0.5 mM IPTG) (Table 2.5) and sampled at 24 h post-induction. Samples were 

analysed by FCM first unstained then stained with CR by the addition of 20 μL·mL-1 of a 

stock dye solution (100 mg CR, 100 mg NaCl in 5 mL 80% (v/v) ethanol, 0.22 μm 

filtered), incubated (> 10 minutes, ambient conditions) and reanalysed. A comparison of 

the stained and unstained cells (Figure 3.1) showed a slight increase in red fluorescence 

(FL3-A) after staining for all cells except the population with highest green fluorescence 

(FL1-A) and the presence of an additional population (4.6%) with further increased 

FL3-A. This additional population was assumed to correspond to cells containing CR-

bound IBs. The smaller increase in FL3-A in the majority of cells was assumed to 

correspond to non-specific binding for example to curli, amyloid-containing fibres found 

on the exterior of many Enterobacteraciae and the usual target for CR staining in E. coli 

(Barnhart & Chapman, 2006). It was therefore concluded that the test was successful. 

Having established that cells grown under conditions favouring IB formation display a 

population with increased red fluorescence when stained with CR, it was decided to 

investigate further: First to develop a more optimal staining protocol and second to 

determine the efficacy of the optimised protocol as a potential process diagnostic 

methodology. 
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Figure 3.1: FCM data of CR (in 80% EtOH/NaCl) stained E. coli BL21* pETCheY::GFP  

FL1-A (green fluorescence) versus FL3-A (red fluorescence) plots of cells taken from a 

single culture 24 h post-induction following protocol S1 production conditions. a) 

unstained cells. b) CR-stained cells. Gate P7 corresponds to CR+ cells. 

  

a b 
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3.2.2.2. Staining protocol development 

In order to further test the staining protocol 100 mL shake flask cultures were grown 

under 3 conditions with varying propensity for RPP related stress and IB formation: 

protocols SA (mild/improved conditions) (25°C, 8 μM IPTG), S1 (standard conditions) 

(37°C pre-induction, 25°C post-induction, 100 mM IPTG) and S2 (increased stress 

conditions) (37°C, 100 mM IPTG) (Table 2.5). As in Section 3.2.2.1 samples were taken 

from cultures at 24 h post induction and analysed by FCM. Samples were stained with 20 

μL·mL-1 of CR stock solution and incubated for 30 minutes as this was determined to be 

sufficient, duplicate samples were also stained with PI. 

Following staining all protocols clearly showed a CR+ population of cells and the 

proportions of CR+ cells appeared consistent with the expected amount of IBs in each 

protocol (Figure 3.2). Protocol SA should have produced the lowest amount of 

aggregated protein, S1 an intermediate amount and S2 the largest amount. SA contained 

the fewest CR+ cells (1.0%), S1 contained an intermediate amount (3.2%) and S2 the 

most (12.2%). It was also observed that the percentage of CR+ cells was in all cases 

lower than the percentage of PI+ cells, while this may have been an accurate reflection of 

culture state (i.e. CR+ cells were also generally PI+) it may also indicate issues with 

permeability of the cell membrane to CR. PI only enters cells with a compromised 

membrane and it is likely that not all PI+ cells would contain IBs therefore if CR was also 

excluded by intact membranes CR+ cells would form a subset of PI+ cells. To determine 

whether this was the case it was decided to modify the staining protocol to improve 

permeability of the cell membrane to CR. Attempts to permeablise the cells with both 

ethanol (25%) and DMSO (50%) proved inconclusive, the percentage of CR+ cells did not 

increase substantially and cell morphology, as indicated by light scatter, was altered. CR 

was therefore dissolved in DMSO, an amphiphillic solvent known for its ability to 
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Figure 3.2: FCM data of CR (in 80% EtOH/NaCl) stained E. coli BL21* pETCheY::GFP  

FL1-A (green fluorescence) versus FL3-A (red fluorescence) plots of cells taken from 

single cultures grown to 24 h post-induction under protocols S2 (increased stress 

conditions), S1 (standard conditions) and SA (improved conditions). Gates P1,2 & 3 

corresponds to populations P1,2 & 3 respectively, gate P4 corresponds to PI+ or CR+ 

cells. 
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permeate cell membranes and to increase membrane permeability to solutes (Yu & 

Quinn, 1994). Advantageously CR appeared to be more soluble in DMSO than in 

NaCl/80% ethanol and the DMSO-based stock solution was more stable as evaporation 

of ethanol would frequently cause precipitation. 

To ensure the CR+ cells observed were due to production of CheY::GFP and not for 

example due to production of curli, 2 cultures of untransformed E. coli BL21* were 

grown to 24 h post-inoculation and analysed by FCM with and without staining (20 

μL·mL-1 of 2 mg·mL-1 CR (in DMSO), 30 minutes ambient conditions). Unstained samples 

showed 0% of cells within the CR+ gate and stained only 0.5% (Figure 3.3), fewer than 

observed for the lowest RPP sample (1.0% for improved conditions). As the percentage 

of CR+ cells corresponded to the predicted amounts of IBs for each set of production 

conditions and that only minimal levels of CR+ cells were observed in plasmid- cells it 

can be reasonably concluded that CR appeared to stain for IBs and thus warranted 

further study. 

3.2.2.3. Test of staining protocol 

To test fully the potential of flow cytometric CR staining for IB detection a series of 

shake flask experiments were set up (100 mL, LB, 0.5% glucose) and grown according to 

protocols SA, S1 and S2. Cultures were analysed throughout by FCM, staining with PI 

and CR and by SDS-PAGE.  

The proportion of CR+ cells remained below 5% throughout for SA cells and also for S1 

(Figure 3.4a). For S2 cells the proportion of CR+ cells remained low during the early 

stages of culture, only showing substantial amounts at 24 h post-induction. CheY::GFP 

solubility at 24 h post-induction appeared in agreement with the predicted stress levels 

of each protocol, SA produced the highest proportion of soluble protein, S2 the least and 

S1 an intermediate amount, whereas the proportion of CR+ cells only increased for S2 
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Figure 3.3: FCM data of CR (2 mg·mL-1 in DMSO) stained untransformed E. coli 

BL21*  

FL1-A (green fluorescence) versus FL3-A (red fluorescence) plots of cells taken from a 

single culture (of 2 replicates) 24 h post-inoculation following protocol S1 production 

conditions. Gate P2 corresponds to CR+ cells. 
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Figure 3.4: FCM data of CR and PI-stained shake-flask E. coli BL21* pETCheY::GFP 

RPP cultures 

a) Percentage of CR+ cells for cultures grown under protocols S1 (blue), S2 (red) and SA 

(green). b) As (a) but for PI+ cells. Data are mean values of 4 cultures from 2 replicate 

experiments, error bars are ± 1x standard deviation.  

  



 126 

with SA and S1 showing similar amounts (Figure 3.5). These data suggest that the 

relationship between formation of CheY::GFP IBs and the amount of amyloid character 

exhibited is not as simple as originally assumed and that IBs formed under lower 

temperatures possess negligible amounts of amyloid whereas those produced under 

higher temperatures posses substantial amounts. S1 and S2 differ only by the 

production temperature (25°C to 37°C, respectively) and therefore this is the likely 

cause for the difference in proportion of CR+ cells observed. A temperature-dependent 

relationship whereby increased temperature favours increased amyloid content is 

logical. IBs can be divided into classical and non-classical forms; classical IBs are 

typically less biologically active, more resistant to proteolysis and denaturation and 

contain higher amyloid content (Jevševar et al., 2005; Peternel et al., 2008; Peternel & 

Komel, 2010). Increasing growth temperature is known to not only decrease biological 

activity of RP-IBs (García-Fruitós et al., 2007a) but also increase resistance to 

proteolysis and denaturation (de Groot & Ventura, 2006) i.e. increase classical 

characteristics. It is therefore highly likely that increasing growth temperature would 

also increase amyloid content. 

The proportion of CR+ cells remained lower than that of PI+ cells in most cases as 

previously observed (Figure 3.4a.b), except for 2 points; 4 and 6 h post-induction for S1 

cells, with 2.52 and 2.4% CR+ to 2.30 & 1.38% PI+ respectively. These data points suggest 

that CR is able to enter non membrane-compromised cells and the observation that CR+ 

cells frequently appeared to be a sub-set of PI+ cells is likely accurate. This therefore 

suggests that CheY::GFP IBs with high amyloid character may be cytotoxic. The presence 

of IBs in cells is known to cause growth defects (Lindner et al., 2008), amyloid deposits 

may be cytotoxic in the absence of the molecular chaperones DnaK or GroEL (González-

Montalbán et al., 2005) and amyloid peptides may have antimicrobial properties (Kagan 
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Figure 3.5: FCM and SDS-PAGE data of shake-flask E. coli BL21* pETCheY::GFP RPP 

cultures at 24 h post-induction 

a) Percentage of CR+ cells at 24 h post-induction as determined by FCM (blue), 

percentage of CheY::GFP that was soluble at 24 h post-induction as determined by 

BugBuster® fractionation followed by SDS-PAGE (red). Data are mean values of 4 

cultures from 2 replicate experiments, error bars are ± 1x standard deviation. b) 

Representative SDS-PAGE samples separated into soluble and insoluble fractions using 

BugBuster® from data in (a), arrow indicates approximately 42 kDa. 
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et al., 2012). There is however evidence to the contrary, that amyloid+ IBs produced in E. 

coli without toxic effects are toxic to mammalian cells (González-Montalbán et al., 2007). 

 

3.2.3. Conclusion 

It has been demonstrated that the amyloidophilic fluorescent dye Congo red positively 

stains E. coli cells producing the model RPP product CheY::GFP. It was further 

demonstrated that the proportion of CR+ cells is higher for production conditions 

favouring the formation of IBs and hence it is concluded that CR positively stains 

CheY::GFP IBs produced in E. coli. While it was expected that the proportion of CR+ cells 

would correlate with CheY::GFP insolubility a direct relationship was not observed. It 

was concluded that amyloid content of CheY::GFP IBs was affected primarily by growth 

temperature as the percentage of CR+ cells increased most when CheY::GFP was 

produced at 37°C.  

It is therefore concluded that CR can be used to stain for IBs in E. coli under specific 

conditions and likely in a case-dependent manner as amyloid formation is heavily 

influenced by amino acid sequence. It is proposed that a possible application of CR 

staining may be for monitoring the intentional production of IBs either for refolding or 

the production of bioactive nanoparticles. ‘Classical’ highly-amyloidogenic IBs are 

known to be more resistant to denaturation and solubilisation (de Groot & Ventura, 

2006; Upadhyay et al., 2012) and hence limitation of amyloid content (as indicated by 

CR+ cells) during production of IBs for refolding would be favourable. The use of IBs as 

biologically active nanoparticles is an area of active research (e.g. Sans et al., 2012; 

Villaverde et al., 2012) and would again likely require limiting ‘classical’ high-amyloid 

character in the IBs produced. 
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3.3. Flow cytometric screening of E. coli transformants for RPP 

3.3.1. Introduction 

Most RPP systems in E. coli provide the gene encoding the RP product on a plasmid 

(Baneyx, 1999). It is therefore necessary to first transform the host strain. 

Transformations frequently generate large numbers of transformants of which only a 

limited amount are cultured further, either to directly inoculate cultures or to establish a 

cell bank. During process development it is likely transformants will be screened to 

ensure that the cells used for production are optimal and have not, for example, 

acquired detrimental mutations. In the interests of efficiency it is advantageous for 

screening to occur at the earliest opportunity. FCM is ideally suited to these needs, as 

only a small number of cells are required and can be taken directly from agar plate 

cultures of transformants, without additional growth stages. This section presents a 

case-study that highlights the use of FCM to identify an aberrant transformant at the 

earliest possible stage, from agar plate culture. 

 

3.3.2. Results & discussion 

E. coli BL21* was transformed with pETCheY::GFP and grown on NA supplemented with 

carbenicillin. 6 transformants grew and all were restreaked onto fresh NA-carbenicillin 

plates. Following growth, all transformants were screened by FCM. 5 transformants 

showed distributions of light scatter and green fluorescence that were highly similar not 

only to each other but also to those previously observed (termed T1 cells). One however, 

showed atypical distributions (termed T2 cells) (Figure 3.6). Fluorescence distribution 

for both T1 and T2 transformants showed 2-3 populations, a high fluorescence 

population and a lower fluorescence population that could be further subdivided into an 

intermediate and a low fluorescent population, presumed to be plasmid free cells and 
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Figure 3.6: FCM data of T1 and T2 cells 

a) Forward scatter (FS LOG) versus side scatter (SS pmt1 LOG) density plots of a 

representative T1 transformant. b) As (a) for the T2 transformant. c) Histogram of green 

fluorescence (pmt 2 log) for a representative T1 (green) and T2 transformant (black). 

  

a b 

c 
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sample noise. T1 cells were predominantly in the higher fluorescence population and T2 

cells showed more cells in the lower fluorescence population. Interestingly, the higher 

fluorescence population of T2 cells, while being a lower proportion overall had a higher 

fluorescence than that of the T1 cells. The most likely explanation for the differing light 

scatter and fluorescence distributions was that the T2 cells had mutated. Furthermore, 

as the higher fluorescence population of the T2 cells showed an increase in fluorescence 

over that of the T1 cells it was hypothesised that the mutations acquired may be 

beneficial for RPP. As Alfasi et al. (2011) were able to isolate improved RPP host strains 

using GFP-fusions and FCM, it was decided to investigate T2 cells further. In order to test 

this, overnight cultures (35 mL LB-carbenicillin, 14 h, 30°C) were grown from all 

transformants at intervals (1, 3, 4 & 8 weeks) while the plates were stored at 4°C. FCM 

analysis of cultures at 1 weeks storage showed that cultures grown from T2 cells 

showed lower fluorescence than for T1 cells (Figure 3.7a). Comparing OD650 data for 

overnight cultures grown from T1 and T2 cells showed that T2 cells were subject to 

growth defects of increasing severity; by 8 weeks of storage it was not possible to 

cultivate T2 cells (Figure 3.7b). From these data it was concluded that while it was likely 

that the T2 cells had acquired a mutation, the resultant growth defects made these cells 

unsuitable for RPP.  

An additional phenomenon was also observed during the course of this experiment, that 

the distribution of fluorescence for T1 cells changed during the 8 weeks of monitoring. 

In the initial stages of storage the majority of cells were in a high fluorescence 

population but as the cells were stored a population of intermediate fluorescence 

developed and it appeared that cells transitioned from the high fluorescence population 

to the intermediate (Figure 3.8a,b). Transition to the intermediate fluorescence 

population did not appear to affect subsequent culture as the majority of cells following
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Figure 3.7: Analysis of overnight cultures from T1 and T2 cells 

a) Green fluorescence (pmt 2) histogram comparing representative overnight cultures 

grown from T1 (green) and T2 (black) transformants after 1 weeks storage at 4°C. b) 

OD650 data of representative overnight cultures grown from T1 (blue) and T2 (red) 

transformants during 8 weeks storage at 4°C, data are mean values derived from 2 

replicate cultures, error bars are ± 1x standard deviation. * - denotes timepoint at which 

it was not possible to culture the atypical (T2) transformant. 

  

a 
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Figure 3.8: Analysis of fluorescence population shift for typical transformants 

during storage 

a) Fluorescence intensity histograms for a representative T1 transformant at 1 week 

(green) and 8 weeks (black) storage. b) Fluorescence intensity histograms for a 

representative typical (T1) transformant at 8 weeks storage (green) and after overnight 

growth (black). c) Percentage of cells in the high fluorescence population for 5 T1 

transformants during storage, data are mean values of 5 samples, error bars are ± 1x 

standard deviation. 

  

a b 
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overnight growth remained in the high fluorescence population despite being inoculated 

with large amounts of intermediate fluorescent cells (Figure 3.8c). The formation of 

intermediate fluorescence cells on agar plates was unexpected and therefore it was 

decided to investigate further. 

 

3.3.3. Conclusion 

FCM screening of RPP transformants was demonstrated to be effective in identifying 

atypical (T2) transformants simply, quickly and at an early experimental stage. Further 

study showed T2 cells to be inappropriate for further use. In the context of a bioprocess 

this technique would allow identification and discarding of aberrant transformants 

almost immediately during process development, representing a potential saving of 

time. Although in this case the primary identifier of atypicality was an altered green 

fluorescence distribution, T2 cells also showed altered light scatter suggesting the 

potential of transfer to non-fluorescent products.  

 

3.4. Flow cytometric monitoring of aging in agar plate cultures of RP 

producing E. coli  

3.4.1. Introduction 

In Section 3.3.2 it was observed that during storage at 4°C, cells on agar plates formed 2 

discrete populations of varying green fluorescence intensity and that as cells aged they 

gradually transitioned from the highest fluorescence population to the lower. This 

phenomenon was unexpected and therefore it was decided to investigate further in 

order to determine the specific cause of this phenomenon and any effects it might have 

on subsequent RPP processes.  
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3.4.2. Results & discussion 

3.4.2.1. Monitoring the aging of agar-plate cultures 

E. coli BL21* was transformed with pETCheY::GFP and grown on NA-carbenicillin (25°C, 

48 h) then restreaked on to fresh NA-carbenicillin plates, grown under the same 

conditions then stored at 4°C for the remainder of the experiment. At regular intervals 

during storage, cells were removed from the plates, resuspended in PBS and analysed by 

FCM and for CFU/plasmid retention. Similar changes in fluorescence distribution to 

Section 3.3 were observed. At 0 weeks storage the majority of cells were in a high-

fluorescence population (Figure 3.9a) and later in storage (12 weeks) a substantial 

proportion of cells had transitioned to a lower fluorescence population (Figure 3.9b). 

For ease of quantification and analysis FCM data were displayed as forward scatter 

versus green fluorescence plots (Figure 3.9c,d) and gated into 3 populations 

corresponding to high fluorescence (P1), intermediate fluorescence (P2) and low 

fluorescence (P3) (corresponding to GFP- cells and likely small amounts of sample 

noise). The use of FSC versus FL1-A plots for analysis allowed for clearer differentiation 

of fluorescence populations than FL1-A histograms that showed overlapping 

populations due to differences in cell size (i.e. a small cell with a high GFP concentration 

is likely to have similar fluorescence to a larger cell with a low GFP concentration).  

Over 16 weeks storage at 4°C there was a clear, steady decrease in the number of cells in 

the highly fluorescent population P1 and a concurrent increase of cells in the 

intermediate fluorescent population P2 (Figure 3.10a). The proportion of cells in the 

GFP- population P3 remained low throughout, reaching a peak of 5.2% at 10 weeks. As 

cells were stored at 4°C and thus growth would be severely limited these data support 

the conclusion that the relative increase in the proportion of population P2 over time 

was due to transition of cells from population P1 to P2 as opposed to growth of P2 cells.  
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Figure 3.9: FCM gating of fluorescence population shift for transformants during 

storage 

a) Green fluorescence intensity (FL1-A) histogram for a representative transformant at 

0 weeks storage. b) As (a) for 12 weeks storage. c) FSC-A versus FL1-A plot of (a) 

showing typical gating for P1, P2 and P3. d) As (c) for data from (b). Data are 

representative samples from 4 replicate cultures. 

  

b 

a c 

d 
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Figure 3.10: FCM analysis of fluorescence population shift for transformants 

during storage 

a) Distribution of cells in P1 (○), P2 (●) and P3 (□); total percentage of PI+ (dead) cells 

(■) during 16 weeks storage. b) Percentage of PI+ (dead) cells in P1 (△), P2 (▲) and P3 

(▽) during 16 weeks storage. Data are mean values from 4 replicate cultures, error bars 

are ± 1x standard deviation. 
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Further analysis of FCM data showed that the mean green fluorescence of each 

population remained relatively constant throughout the 16 weeks (Figure 3.11a) but 

mean forward scatter appeared to decrease (Figure 3.11b), suggesting that cell size 

decreased while GFP content remained similar. FSC-A data also showed that population 

P1 had a consistently higher forward scatter than P2 and that during the course of the 

experiment the variance of FSC-A decreased, suggesting increased homogeneity of cell 

size. 

PI staining of the entire sample showed that the proportion of PI+ (dead) cells remained 

below 10% throughout the experiment, reaching peak values between 2-6 weeks 

(Figure 3.10a). Analysis of PI staining for the 3 individual fluorescence populations 

however showed that while the proportion of PI+ P1 and P3 cells remained low (<10%) 

throughout, population P2 was almost 80% PI+ at 0 weeks decreasing to be equivalent to 

populations P1 and P3 after 6 weeks (Figure 3.10b). This suggests that cells initially in 

population P2 were predominantly dead but as increasing numbers of cells entered P2 

the PI+ proportion diminished, presumably cells entering P2 during storage were more 

viable than those produced during the growth stage. 

3.4.2.2. The effect of subsequent culture and RPP 

Throughout the storage period overnight cultures (35 mL LB-carbenicillin, 30°C, 14 h) 

were inoculated from the agar plate cultures and grown. It was observed that OD650 

values at 14 h post-inoculation showed an overall decreasing trend with increased 

storage time, decreasing dramatically between 8 and 12 weeks storage (Figure 3.12a). 

To determine the cause of this decrease, at regular intervals (0, 4, 8 and 12 weeks) 

overnight cultures were also grown for an extended period of time (12, 14, 16 and 18 h 

post-inoculation). Extended incubation resulted in increased OD650 values for all 

cultures (Figure 3.12b) and cultures from 0, 4 and 8 weeks reached similar final 
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Figure 3.11: FCM analysis of fluorescence populations during storage 

a) Mean green fluorescence (FL1-A) of cells in P1 (○), P2 (●) and P3 (□) during 16 

weeks storage. b) Mean forward scatter (FSC-A) of cells in P1 (■) and P2 (△) during 16 

weeks storage. Data are mean values from 4 replicate cultures, error bars are ± 1x 

standard deviation. 
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Figure 3.12: Growth of liquid cultures from agar plate cultures during storage 

a) OD650 data from 14 h overnight cultures during storage (○) (mean values of 8 

replicate cultures). b) OD650 data from extended growth of overnight cultures at 0 (●), 4 

(□), 8 (■) and 12 (△) weeks storage (mean values of 4 replicate cultures). Error bars 

are ± 1x standard deviation   
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densities. These data suggest that decreased overnight growth was as a result of either 

an increased lag period or fewer initial viable cells. 

To determine the effects of plate-aging on subsequent RPP 2 plates were taken after 0, 4 

and 12 weeks storage overnight cultures and used to inoculate 4 shake-flask RPP 

cultures (100 mL LB-glucose, protocol SA), grown to 24 h post-induction and analysed 

by FCM and SDS-PAGE and for OD650. The percentage of GFP+ cells as determined by 

FCM for all cultures remained above 97% throughout (data not shown) but there was a 

decreasing trend in mean FL1-A of GFP+ cells at 24 h post-induction with increasing 

storage (Figure 3.13a). This was accompanied by a decrease in mean FSC-A and 

therefore it is likely that the decrease in FL1-A was due to a decrease in cell size rather 

than decreasing CheY::GFP content. Possibly related to the change in cell size, there was 

also an increase in OD650. SDS-PAGE analysis showed no overall trend in total CheY::GFP 

accumulation and of CheY::GFP solubility (Figure 3.13b). These data suggest that 

increased initial culture age and P2 content have a mixed effect on improved RPP, the 

principal negative effect being the increase in inoculum lag phase.  

3.4.2.3. The effect of sealing/gas transfer 

Agar plate cultures used above were sealed during storage by gas-barrier film 

(Nescofilm) in order to limit the likelihood of contamination and to decrease the rate of 

moisture loss. The experiment was repeated with unsealed plates and it was observed 

that the rate of fluorescence population change increased substantially for unsealed 

plates., After 4 weeks storage the percentage of cells in population P1 had decreased to 

80% for sealed and 35% for unsealed plates (Figure 3.14). Again, the decrease in 

population P1 was accompanied by an equivalent increase in P2. The reason for this 

phenomenon is uncertain as both the gas composition and drying rates will be affected 

by sealing, but this may provide a route for further study.  
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Figure 3.13: Analysis of liquid cultures from agar plate cultures during storage 

a) OD650 data (blue),  mean forward scatter (FSC-A) (red) and mean green fluorescence 

(FL1-A) values (green) of 24 h RPP cultures during storage (mean of 4 replicate 

cultures). b) SDS-PAGE data from (a); percentage total protein that was CheY::GFP 

(blue) and percentage soluble CheY::GFP (red). Error bars are ± 1x standard deviation. 
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Figure 3.14: FCM analysis of fluorescence population shift for sealed and unsealed 

transformants during storage 

Analysis of fluorescence population shift for agar plate cultures sealed with gas-barrier 

film; percentage of cells in populations P1 (○) and P2 (●) (mean of 8 replicates). 

Analysis of fluorescence population shift for unsealed agar plate cultures; percentage of 

cells from in populations P1 (□) and P2 (■) (mean of 4 replicates). Error bars are ± 1x 

standard deviation. 
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3.4.2.4. Determination of plasmid loss 

It was initially hypothesised that the shift in fluorescence distribution from population 

P1 to P2 during plate aging was due to plasmid loss, and that population P2 resulted 

from P1 cells that had lost the plasmid but retained a moderate amount of fluorescence. 

This fluorescence was retained as a result of residual CheY::GFP (due to ‘leaky’ 

expression) that was then not fully diluted out of the cells due the low growth rates 

resulting from incubation at 4°C and selective pressure from the presence of 

carbenicillin, resulting in a GFP intermediate phenotype. This hypothesis was supported 

by a number of observations: Overnight cultures showed increased lag phases with 

increasing storage time, if cultures containing carbenicillin were inoculated with 

increasing proportions of plasmid- cells this would decrease the amount of effectively 

viable cells and hence increase lag phase. PI staining of plate samples showed 

population P2 to be initially composed of predominantly dead cells; the proportion of 

PI+ P2 cells then decreases with increasing storage time, presumably as carbenicillin 

concentrations decreased due to degradation by β-lactamase. Also, mean FSC-A values 

for P1 were consistently higher than that of P2, consistent with light scatter profiles of 

untransformed cells. Loss of fluorescence and FCM has been used to monitor loss of FP-

encoding plasmids in both E. coli (Patkar et al., 2002; Sevastyanovich et al., 2009) and 

yeast (Ishii et al., 2010). Alternately Bahl et al. (2004) used derepression of 

chromosomally encoded GFP to indicate loss of a LacI-encoding plasmid. If plasmid loss 

could be established as the cause of P2 formation this would provide a useful diagnostic. 

CFU-based measures of plasmid retention for agar plate samples during storage did not 

show a strong correlation to the percentage of P1 cells as would be expected if 

population P1 were comprised of plasmid+ cells (Figure 3.15), although this may have 

been due to differences in the culturability of the 2 populations. CFU count plates are 
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Figure 3.15: Plasmid retention of agar plate cultures during storage 

FCM data: percentage of cells in population P1 (○). CFU-based data: percentage of GFP+ 

colonies (●) and percentage of carbenicillin resistant (and hence plasmid+) colonies       

(□) (mean of 8 samples). Error bars are ± 1x standard deviation. 
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initially grown without antibiotic selection and hence should allow growth of cells 

regardless of plasmid presence. However, if the proportion of VBNC cells among the 

plasmid- population is higher than among the plasmid+ population, for example due to 

the presence of carbenicillin on the storage plate and associated stresses, this would 

account for the discrepancy.  

CFU counts and replica plating of cell suspensions directly from the plate were unable to 

identify sufficient proportions of plasmid negative cells to correspond to population P2. 

This was hypothesised to be due to population P2 containing predominantly VBNC cells 

and P1 predominantly culturable. It was therefore decided to test plasmid retention of 

P1 and P2 cells separately. Cells were taken from plates with high P1 (short storage 

time) and high P2 (long storage time) content and sorted with a BD FACSAria FACS at 

the Functional Genomics, Proteomics and Metabolomics Facility, University of 

Birmingham by T. Overton. Sorted cells were analysed by FCM (BD-Accuri C6) for 

absolute cell counting, plated on to non-selective NA then replica-plated onto NA-

carbenicillin for plasmid retention. GFP+ and plasmid+ colonies for sorted P1 cells were 

above 97% for all samples. It was not possible however to accurately determine plasmid 

retention rates for P2 samples as CFU counts were too low to provide accurate data at 5-

12 colonies per 100 μL; this was determined to be equivalent to <1% of total cells 

plated. In addition, GFP+ phenotypes were observed among the P2-derived colonies. It 

was therefore concluded that the hypothesis of P2 being due to plasmid loss was not 

conclusively supported by the data obtained and an alternate hypothesis was formed. 

3.4.2.5. Determination of inclusion body formation 

It was hypothesised that the formation of population P2 is a result of CheY::GFP 

aggregation into inclusion bodies. It is known that IBs formed from fluorescent proteins 

can retain considerable amounts of fluorescence (albeit less than an equivalent amount 
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of soluble protein) (García-Fruitós et al., 2005), it is reasonable to assume CheY::GFP IBs 

to be less fluorescent than an equivalent amount of soluble protein and high 

concentrations of protein can be prone to precipitation/aggregation. In order to test this 

hypothesis, further unsealed plates of transformants were grown and at intervals were 

harvested, resuspended in PBS and analysed by FCM (including CR staining) and SDS-

PAGE. As larger amounts of cells were required in this instance than for previous work 

(for SDS-PAGE analysis), for each sample an entire agar plate culture was harvested and 

resuspened in PBS, hence for this work each data point represents a single replicate 

culture sampled once as opposed to a culture sampled throughout. 

Solubility of CheY::GFP as determined by BugBuster® fractionation followed by SDS-

PAGE remained at approximately 55% throughout (Figure 3.16), which did not appear 

to support the hypothesis. CR staining however, showed a statistically significant 

correlation with population P2 formation (r = 0.993, p <0.01) (Figure 3.17a) suggesting 

population P2 cells were CR+. It was also observed that after 2 weeks storage the 

percentage of CR+ cells was higher than that of PI+, strongly suggesting that the 

suspected issue with permeability of the cell membrane to CR described (Section 3.2) 

had been overcome. Further analysis of CR-stained cells showed that not only did P2 

cells predominantly stain CR+ but also that on staining with CR, green fluorescence 

decreased substantially (Figure 3.17b,c). It is hypothesised that this was as a result of 

FRET interactions between the GFP and CR fluorophores and if so supports the 

conclusion that CR was bound to CheY::GFP IBs as FRET requires the two fluorophores 

to be in close proximity (typically 1-10 nm (Johnson & Spence, 2010)). In addition to 

FCM analysis of CR-stained cells it was also possible to visualise CR+ cells by 

fluorescence microscopy (Figure 3.18), when subject to a modified staining protocol 

involving 5 times the concentration of CR and 6 times the incubation period (100 μL·mL-
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Figure 3.16: SDS-PAGE analysis of agar plate cultures during storage 

a) Percentage solubility of CheY::GFP from cultures during storage, mean values from 

minimum of 2 replicate cultures, error bars are ± 1x standard deviation. b) 

Representative SDS-PAGE samples from data in (a), arrow indicates approximately 42 

kDa. 
  

b 
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Figure 3.17: FCM detection of inclusion bodies in agar plate cultures during 

storage 

a) Percentage of cells in P1 (○) and P2 (●), percentage of CR+ (□) and PI+ cells (■). 

Mean values from minimum of 2 replicate cultures, error bars are ± 1x standard 

deviation. b) Mean green fluorescence (FL1-A) versus red fluorescence (FL3-A) plots of 

cells after 4 weeks storage, unstained and stained with PI and CR. c) Mean forward 

scatter (FSC-A) versus FL1-A plots of data from (b), representative sample from 4 

replicate cultures. Gates P1,2 & 3 corresponds to populations P1,2 & 3 respectively, gate 

P4 corresponds to PI+ or CR+ cells.  

b Unstained PI CR 

c Unstained PI CR 
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Figure 3.18: Imaging of CR-stained bacteria from agar plate cultures stored for 4 

weeks 

Photomicrographs of a cell suspension stained with 100 μL of 1 mg·mL-1 CR (in DMSO) 

per 1 mL cell suspension and incubated for 3 h under ambient conditions. Images of 3 

individual CR+ cells from 3 separate exposures. a) Phase contrast. b) Green fluorescence 

(GFP). c) Red fluorescence (CR). 

  

a b c 



 151 

1 of 1 mg·mL-1 CR (in DMSO), 3 h). Micrographs clearly showed refractive particles 

(presumed to be IBs) at the poles of cells under phase contrast, green fluorescence 

throughout the cell and red fluorescence localised to the poles of the cell, therefore it is 

concluded that this corresponded to CR-stained IBs.  

While SDS-PAGE analysis proved to be inconclusive, CR staining of cells appeared to 

show that P2 cells possessed increased amyloid character and that was localised to 

polar refractive particles consistent with IBs. From these data the following explanation 

is proposed: Agar plate cultures during storage contained an amount of CheY::GFP due 

to ‘leaky’ expression from the T7 polymerase expression system that existed both 

solubly and in IBs. P1 cells contained soluble CheY::GFP and amyloid-, high fluorescence 

IBs having been grown under relatively mild conditions (25°C, uninduced). During 

storage CheY::GFP IBs became amyloid+ in a stochastic manner, losing fluorescence and 

causing the cell to enter population P2.  Fluorescent CheY::GFP IBs are likely to contain 

both soluble, folded (hence fluorescent) and partially unfolded protein (Jevševar et al., 

2005; Peternel et al., 2008) in close proximity, the presence of partially unfolded protein 

could provide nucleation points for amyloid and it is a characteristic of amyloid that 

following the initial nucleation event polymerisation can occur rapidly (García-Fruitós et 

al., 2011). From these data is it also likely that BugBuster®, the reagent used for the 

extraction of soluble protein, is only able to release soluble CheY::GFP from the 

cytoplasm and not from inside IBs. 

At 0 weeks storage population P2 was predominantly PI+, i.e. P2 cells formed during the 

initial growth phase at 25°C were predominantly dead. This is consistent with data from 

Section 3.2 that CR+ cells appeared to be a subset of PI+ cells and that CheY::GFP amyloid 

deposits may be antimicrobial (Kagan et al., 2012). The proportion of PI+ P2 cells 

decreased during storage, as the overall proportion of P2 cells increased, suggesting that 
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P2 cells formed during storage were not dead. Sorting data showed that population P2 

had very low culturability, even after the proportion of PI+ had decreased to similar 

levels to P1, strongly suggesting that despite not being dead P2 cells were still under 

stress. From these observations it appears the suspected cytotoxicity of CheY::GFP 

amyloid deposits may be related to either growth phase, or more likely, temperature as 

PI+ P2 cells were formed primarily during plate growth at 25°C and PI- P2 cells were 

formed during storage at 4°C where cell growth should have been negligible. 

It is obvious from the data presented that population P2 comprises of (depending on 

culture age) dead or VBNC cells, resulting in increased lag periods in subsequent culture 

that would be undesirable for reproducibility of inocula in industrial bioprocess. CR+ cell 

counts appeared to be approximately equivalent to the proportion of population P2 and 

therefore likely could be used to predict the proportion of population P2. The vast 

majority of RPP-related bioprocesses will not involve FP fusions and therefore a P2 

population would not be observed, but CR staining may be utilised as a rapid and 

inexpensive diagnostic method. 

 

3.4.3. Conclusion 

Here was presented a series of experiments monitoring the aging of agar plate cultures 

of E. coli BL21* producing CheY::GFP and to determine the cause of the formation of an 

intermediate fluorescence population of unknown origin and low levels of viability and 

culturability. An initial hypothesis of plasmid loss could not be proved and it was 

subsequently demonstrated that P2 cells contained amyloid and that staining with the 

amyloidophilic fluorescent dye CR could be used to estimate P2 content. From these 

observations it is concluded that CR staining of agar plate cultures prior to inoculation of 

fermenter inocula might be a useful diagnostic step. To fully establish the utility of this 
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method it would be useful to establish whether this phenomenon occurs with other RPP 

products (specifically non-fluorescent proteins) and is therefore not case dependent. It 

is acknowledged that industrial processes will more often use cell banks to improve 

reproducibility as opposed to agar plate cultures and therefore it may be of interest to 

determine if similar phenomena are observed in cell banks.  
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Chapter 4:  Results 2 – Application of ‘Improved’ Physiological 

Stress-Minimised Production Conditions to Industrially Derived 

Fed-Batch RPP Protocols
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4.1.  Introduction 

Sevastsyanovich et al. (2009) proposed and demonstrated a novel protocol for 

producing high yields of soluble, cytoplasmic RP in E. coli by minimising the 

physiological stresses inherent to typical RPP protocols using a reduced growth 

temperature (25°C) and IPTG concentration (8 μM) (Section 1.3.7). While this ‘improved 

protocol’ reduced the overall rate of RP synthesis, it also reduced the amount of 

plasmid-free and dead cells, increasing the effective production period, and hence 

increased RP yields. In addition, the decreased production rate allowed improved RP 

folding and hence a greater proportion of RP was available in the soluble fraction. The 

improved protocol therefore represents a significant development in the theory behind 

RPP processes.  

The principal aim of this study was to further develop and optimise this ‘improved’ 

protocol. The logical extension for research into RPP at the laboratory scale is 

application to industrial practices. Although industrial RPP frequently utilises 

production in the form of IBs (Section 1.2.1.2) the variable efficacy of refolding 

procedures leaves substantial opportunity for development of RPP protocols aimed at 

optimising the production of soluble RP. An examination of the fermentation protocol 

used by Sevastsyanovich et al. (2009) identified three potential limitations for industrial 

application. First, LB is used as both growth medium and feed. As LB contains tryptone, 

an animal-derived component, it is unsuitable for cGMP processes. Complex components 

are also subject to batch variation that has already been demonstrated to affect biomass 

formation in the E. coli BL21* pETCheY::GFP model RPP system (Section 2.10.1). Second, 

the feed contains large amounts of complex components (100 g·L-1 tryptone, 50 g·L-1 

yeast extract, 200 g·L-1 glucose) making it costly and difficult to dissolve. In addition, this 

may affect culture osmolarity and interfere with downstream processing. Finally the use 
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of glucose as a carbon source, while often used industrially, can be problematic as it is 

readily converted to acids by both overflow and fermentative metabolism (hence 

requiring stringent feed, O2 and pH control) and for fed-batch production is limited in its 

solubility, limiting high cell densities. The glucose must also be sterilised separately to 

nitrogen-containing components then mixed, introducing additional preparation stages 

and increasing the potential for contamination.  

Considering the predicted limitations for industrial use, the ‘improved’ protocol as it is 

currently presented it is unlikely to widely influence process development in industry. 

Industrial biotechnology, particularly the pharmaceutical industry, would be unlikely to 

adopt dramatic changes to the protocols used, for both economic and regulatory 

reasons. The work presented in this chapter is therefore aimed primarily to apply the 

stress-minimisation paradigm to industry-derived high cell density E. coli RPP 

fermentation protocols in order that it is presented in a format more readily applicable 

to existing industrial practices and hence, it is hoped, will be more widely adopted. This 

chapter also examines in more detail aspects of stress-minimised RPP including the 

effects of altering the induction point, carbon source, and growth medium composition. 

2 RPP fermentation protocols were chosen for the application of improved production 

conditions, in both cases the protocols had been used previously in this department as 

part of industrial collaborations in the production of periplasmically-located Fab and 

were available in publicly-accessible literature. The first protocol was taken from Want 

et al. (2009) and addresses the concerns outlined above as it uses a semi-defined 

medium containing yeast extract as its only complex component, reducing potential for 

batch-variation and removing concerns associated with using animal-derived tryptones. 

It uses glycerol as carbon source, simplifying medium preparation as this can be 

autoclaved with nitrogen-containing components. The feed contains only glycerol and 



 157 

MgSO4, again simplifying preparation and in addition, the concentration of glycerol used 

is much higher than possible for glucose, facilitating growth to high cell densities. In 

addition the growth and induction conditions of this protocol (37°C and 100 mM IPTG) 

are likely to generate high levels of physiological stress and hence are ideal for 

adaptation for stress minimisation. The second protocol was taken from Humphreys et 

al. (2002) and uses a chemically defined medium removing any variability from 

biologically-derived components. 

 

4.2. Results & Discussion 

In all cases fermentations were set up in a 5 L Electrolab Fermac 310/60 fermentation 

apparatus containing 1.5 L initial growth medium and grown in fed-batch according to 

the protocols detailed in Section 2.6. On-line data monitored by the fermentation 

apparatus (DOT, agitation, pH and temperature) and by gas-MS (CDC, OXC and RQ) and 

scans of gels used for SDS-PAGE analysis for all fermentations are provided in Appendix 

1 (Chapter 7). For fermentations according to protocols A-B3 the data presented are 

derived from a single representative fermentation from a minimum of 2 replicate 

cultures, for protocol C fermentations the data are derived from a single culture. A 

summary of end-point fermentation data for all protocols presented here is provided in 

Table 4.1, in addition to data from Sevastsyanovich et al. (2009) and Alfasi (2010) for 

comparison purposes. 

 

4.2.1. Production of CheY::GFP by E. coli BL21* using Protocol A 

The principal aim of this study was to adapt the ‘improved’ RPP fermentation protocol 

by Sevastsyanovich et al. (2009) and Alfasi (2010) (henceforth referred to as Protocol A) 

to facilitate industrial applications. It was decided initially to directly replicate this work 
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using the facilities and equipment available in order to establish a base-line from which 

adaptations could be compared and to determine the extent of the limitations predicted 

above.  

A fermenter was set up according to protocol A (Tables 2.6, 2.7). CheY::GFP production 

was induced at OD650 ~0.5 (3.5 h post-inoculation). Feeding began on depletion of initial 

carbon source as indicated by on-line measurements (DOT, CDC and OXC (Figure 7.2) at 

~11 h post-induction according to an stepped linear scheme adapted from that 

determined by Alfasi (2010) such that the feed rate was increased when on-line 

monitoring systems indicated that the feed rate had become growth-limiting. The 

fermentation was terminated when it was apparent that growth had ceased at 70 h post-

induction.  

Cell density as measured by OD650 steadily increased up to approximately 48 h post-

induction, and then fluctuated, reaching a peak OD650 of 71.2 at 52 h, although by 

termination at 70 h it had decreased to 64 (most likely due to dilution by feed, acid and 

base addition) (Figure 4.1a). On-line data also showed a decrease in metabolic activity 

(O2 demand and CO2 production) following complete addition of the feed at 57-58 h 

confirming that there was no further growth during this period. Final biomass was 

determined at 30.1 g·L-1 DCW, which equates to a biomass yield (Yxs) of 0.36 g·g-1 

glucose (although this is potentially complicated by additional carbon supplied by the 46 

and 23 g·L-1 of tryptone and yeast extract respectively). CFU counts increased up to a 

maximum of 3.5x1010 cfu·mL-1 at 46 h post-induction then decreased to a final count of 

2.1x1010 cfu·mL-1.  The percentage of dead cells, determined by FCM with PI staining, did 

not increase above 2.6% throughout the fermentation (Figure 4.1b) and therefore did 

not account for the final decrease in CFU, the decrease in culturability may therefore be 

possibly due to an increase in VBNC cells. 
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Figure 4.1: Culture growth, plasmid retention and viability data from a protocol A 

fermentation  

a) Growth data: OD650 measurements (○), CFU counts (●). b) Plasmid retention and 

FCM data: Percentage colonies plasmid+ (□), percentage colonies GFP+ (■), percentage 

cells GFP+ (by FCM) (△), percentage cells PI+ (dead) (by FCM) (▲). Arrow indicates 

point at which feed was turned on. 
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Plasmid retention, as determined by both replica plating and GFP+ phenotype of colonies 

on CFU plates, remained above 94 and 97% respectively throughout the fermentation 

and GFP+ cells, as determined by FCM, remained above 90% (Figure 4.1b), strongly 

suggesting that the majority of cells remained productive throughout the fermentation. 

Mean cellular green fluorescence increased between inoculation and induction followed 

by a rapid decrease until 2 h post-induction; this coincided with an increase followed by 

a decrease in FSC and is therefore interpreted as stationary phase cells from the 

inoculum increasing in size during initial stages of growth, then decreasing in size as the 

cells divide with a concomitant decrease in fluorescence as residual CheY::GFP was 

divided between daughter cells (Figure 4.2a). After 2 h post-induction fluorescence 

increased rapidly up to 162,000 at 29 h, then increased only slightly up to a maximum of 

approximately 167,000 at 52 h and remained stable until termination. As there was also 

little change in FSC during the same period that would indicate changing cell size it 

appeared that little functional CheY::GFP was accumulated following 29 h. CheY::GFP 

solubility increased over 20% from induction to 62% at 26 h post-induction, then 

appeared to fluctuate until the end of the fermentation reaching a final solubility of 63% 

(Figure 4.2b). The percentage of total protein that was CheY::GFP peaked at 24 h post 

induction at 17% which decreased to 13% at the end of the fermentation, barely any 

increase over that obtained pre-induction. Final yield of total CheY::GFP produced was 

calculated from SDS-PAGE and BCA assay data to be 3.1 g·L-1 (g protein per L culture 

volume), corresponding to a yield of 2.0 g·L-1 soluble CheY::GFP.  

From the data above it appears that fermentation A progressed in 3 stages. First, 

accumulation of both biomass and soluble cellular CheY::GFP between 0-28 h post-

induction, production of biomass with constant cellular CheY::GFP concentration 
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Figure 4.2: FCM and SDS-PAGE data from a protocol A fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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between 28-48 h then production of neither biomass nor CheY::GFP between 48 h and 

termination. It could therefore be argued that harvesting should occur at ~48 h. 

Accumulation and solubility of CheY::GFP showed no overall increase after 24-28 h and 

biomass accumulation ceased after ~48 h. A potential explanation for this observation is 

as follows: It has been established that CheY::GFP production using this protocol is 

enhanced by supplementation with serine, threonine and asparagine as concentrations 

of these can become limiting (Jones, 2007). The media components used are undefined 

and therefore different sources and batches may have different amino acid distributions, 

thereby rendering the existing supplementation regime ineffective. If a different amino 

acid became limiting this could limit CheY::GFP and biomass formation. It is further 

presumed that limitation would not become sufficiently limiting for growth to cease as 

feeding tryptone and yeast extract would still provide sub-optimal amounts. 

Protocol A is a direct replicate of the original improved fermentation protocol by 

Sevastsyanovich et al. (2009), a comparison of the data discussed above to that reported 

previously should demonstrate the efficacy of the replication here attempted. There are 

2 published data sets using protocol A; Sevastsyanovich et al. (2009) and Alfasi (2010) 

(for convenience hereafter referred to as A(1) and A(2) respectively and summarised in 

Table 4.1). Both A(1) and A(2) showed similar accumulation of CheY::GFP reaching 31 

and 35% respectively, but did not show consistent biomass accumulation with A(1) 

reaching less than half the terminal OD650 of A(2). 

Terminal OD650 of A was similar to A(1), but much lower than A(2), although due to a 

higher DCW/OD650 the DCW of A was more similar to A(2) than OD650 (as A(1) predicted 

DCW from OD650 a comparison to A(1) is superfluous). A also showed much lower levels 

of RP accumulation than A(1) and A(2). It is worth noting that CheY:GFP yield data from 

A(1) and A(2) are predicted based on assumed cellular protein content, not determined 
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biochemically and are therefore of limited utility for comparison (see Section 4.2.9). 

From these data it appears that attempts to fully replicate the original improved 

protocol (i.e. high biomass and high CheY::GFP content) were limited in success, despite 

>10 attempts (Figure 7.1). A precise reason for this is not known, but the following is 

hypothesised: The large amounts of undefined media components present a large 

potential for variability and that this at least contributed to the limits in biomass and RP 

accumulation. CheY::GFP production is known to require amino acid supplementation 

(Jones, 2007), as alternate sources of medium components may have different amino 

acid distributions additional development stages may be required to devise an optimal 

supplementation scheme. In addition it was found later in this work that phosphate may 

have become limiting for growth (discussed in Section 4.2.8). Other data however were 

indicative of successful CheY::GFP production under improved conditions (high 

fluorescence, plasmid retention and CheY::GFP solubility and low cell death). Taken 

together, this suggests protocol A as previously reported is only partially reproducible, 

RP quality and the physiological state of the culture were consistent, suggesting that the 

stress-minimisation paradigm is effective but the transferral of A to an alternate setting 

placed limitations in both biomass generation (particularly as A(1) and A(2) showed 

inconsistent OD650 results) and overall product formation. This is consistent with the 

potential limitations predicted in Section 4.1 and supports the decision to adapt the 

stress-minimisation paradigm to more industrially-relevant (and therefore more likely 

reproducible) fermentation protocols. 

In addition to low biomass and RP accumulation, additional limitations to protocol A 

were observed: First, the timing of required operator interventions was inefficient, 

induction occurs at ~3.5 h post-inoculation, an amino acid supplement is administered 

at 5 h post-induction and the feed must be manually turned on when batch-phase 
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glucose is consumed, typically between 7-11 h post-induction, requiring up to 14-15 h 

continual operator monitoring during initial stages. Second, total duration of the 

fermentation, at over 70 h is rather long for industrial applications as originally noted by 

Alfasi (2010).  

Overall it can be concluded that while the stress-minimisation paradigm showed 

potential utility, the original improved fermentation protocol did not appear to be 

readily transferable to alternate settings and included many features that are unsuitable 

for industrial application, justifying the work subsequently presented. 

 

4.2.2. Production of CheY::GFP by E. coli BL21* using Protocol B 

The fermentation protocol used by (Want et al., 2009) was selected as an example 

industrially-derived protocol for use in this study. In order to determine the effects of 

applying improved production conditions it was first necessary to grow cultures under 

standard conditions, termed Protocol B. Culture and feed volumes were reduced from 

the published protocol (3 L media and 1 L feed to 1.5 L media and 0.5 L feed) to remain 

approximately consistent with protocol A, and to ensure sufficient headspace as the 

culture is prone to foaming (see Appendix 2 (Chapter 8)). Duplicate fermentations were 

carried out according to protocol B (Tables 2.6, 2.7) and while there were commonalities 

in results (predominantly in growth patterns) there was substantial heterogeneity in 

measures of productivity. As it was not possible to generate reproducible results these 

data will not be discussed here in detail but are provided in Appendix 1 (Chapter 7, 

Figures 7.3, 7.4).  

Both fermentations showed limited growth post-induction necessitating termination at 

OD650 ~80 (Figure 7.3a), substantially lower than would be expected considering the 

amount of carbon supplied as glycerol. In addition, both fermentations showed 
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substantial levels of plasmid loss as compared to A across all analytical methods used 

(replica-plating of CFU colonies, GFP+ phenotyping of CFU colonies and GFP+ 

phenotyping of cells by FCM) (Figure 7.3b,c), including a minimum of 40% GFP- cells in 

the pre-induced period. As growth limitation and plasmid loss are established as being 

indicative of RPP-related stress, based on these observations alone, it is strongly 

suggested that protocol B caused physiological stress. It is also likely that heterogeneity 

in results is indicative of the cellular response to stressful conditions. 

 

4.2.3. Application of ‘improved’ production conditions to Protocol B (Protocol B1) 

Although not conclusive, it appeared likely that protocol B produced RPP under stressful 

conditions. It was then necessary to determine whether application of improved 

production conditions could increase process productivity. A derivative protocol was 

designed where production conditions were modified to conform to the central tenets of 

the improved protocol (25°C, 8 μM IPTG), termed Protocol B1. Feeding began when on-

line measurements indicated exhaustion of glycerol from the initial medium at 20-21 h 

post-inoculation and induction was concomitant with feeding at OD650 47.8. 

Fermentations were terminated when it became apparent that growth had ceased at 21 

h post-induction. 

OD650 and on-line data (DOT, agitation, MS) showed slow initial growth, followed by a 

steady increase during the initial stages of feeding (Figures 4.3a, 7.5). The culture was 

then terminated at a final OD650 of 297. DOT and agitation data also suggested that 

following 6 h post-induction O2 demand exceeded maximum aeration capacity until 12 h 

DOT and MS data showed that oxygen consumption and CO2 evolution sharply 

decreased, hypothesised to be due to the feed rate becoming limited for growth during 

this period, potentially feeding only sufficient for cell maintenance. CFU counts appeared 
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Figure 4.3: Culture growth, plasmid retention and viability data from a protocol 

B1 fermentation  

a) Growth data: OD650 measurements (○), CFU counts (●). b) FCM data: percentage 

cells GFP+ (□), percentage cells PI+ (dead) (■). Arrow indicates point at which feed was 

turned on. 
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to decrease during the initial stages of feeding, then increased to 7.0x1011 cfu·mL-1 at 

termination. Although the proportion of dead (PI+) cells remained lower than 10% 

throughout there were increases immediately before induction and at culture 

termination, suggesting that cell viability decreased when glycerol was depleted (Figure 

4.3b). At termination the culture contained 72.8 g·L-1 DCW, corresponding to a Yxs of 

0.356 g·g-1 glycerol. The DCW/OD650 ratio at 0.24 was substantially lower than both that 

observed for A (0.47) and the typically cited value of 0.4 (Sevastsyanovich et al., 2009), 

an increase in cellular light scattering may have been an indicator of increased inclusion 

body formation (Hwang & Feldberg, 1990). 

Unexpectedly, RQ data began higher than expected for growth on glycerol, only reaching 

a value close to that of the oxidation of pure glycerol (0.86) approximately 6 h before 

induction (Figure 7.5b). This is hypothesised to be due to preferential consumption of 

trace carbohydrates from the yeast extract in preference to glycerol. 

Between 6 h pre-induction and 17 h post-induction a substantial amount of base was 

required for pH regulation (0.34 L) (Figure 7.5c), although base pump figures are likely 

to be overestimates as pockets of gas frequently accumulate in the tubing during the 

course of the fermentation. Addition of a large volume of base during the fermentation is 

indicative of acid production; this is surprising as glycerol is typically used to limit acid 

production. In fact, more base was added during this fermentation than for A that used 

glucose. 

The proportion of GFP+ cells as determined by FCM remained above 93% throughout 

the fermentation (Figure 4.3b). Fluorescence and forward scatter decreased during the 

initial stages of growth followed by a small increase immediately before induction 

(Figure 4.4a). Again this is interpreted as the dilution of cellular GFP content and 

decreasing size during rapid, uninduced growth, followed by an increase in CheY::GFP 
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Figure 4.4: FCM and SDS-PAGE data from a protocol B1 fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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content and cell size as the growth rate decreased due to consumption of glycerol. 

Following induction, fluorescence increased to a maximum of 240,000. 

RP solubility peaked at the point of induction, then decreased to a low point at 5 h post-

induction but recovered to almost the peak value at termination reaching a final 

solubility of 56% (Figure 4.4b). Total RP accumulation followed a similar pattern 

although peak accumulation occurred at 2 h post-induction. Final yield of CheY::GFP was 

calculated to be 12.7 g·L-1, corresponding to a yield of 7.1 g·L-1 soluble CheY::GFP. These 

data suggest that RP accumulation and solubility is lowest during periods of rapid 

growth. 

Although not conclusive, it appeared likely that protocol B produced CheY::GFP under 

stressful conditions based upon apparent limitations in growth and substantial plasmid 

loss. A comparison to the data from B1 strongly supports this conclusion as there was a 

4-fold increase in terminal OD650 and the proportion of GFP+ cells remained above 93% 

throughout. This suggests that cells in B1, unlike B, remained productive and viable 

throughout which is indicative of successful application of the stress-minimisation 

paradigm. The sole limitation observed for industrial application of the modified 

protocol is a 39% increase in run time (~12 h), but it is thought that the substantial 

increases in productivity and reproducibility should be sufficient to justify this expense.  

The purpose of this series of experiments was to develop a fermentation protocol that 

combined the productivity of the original improved protocol with the scalability of an 

industrially-derived protocol as complex growth media are rarely used for HCDC (Lee, 

1996). It is therefore also necessary to compare the original improved protocol (A) and 

the industrially-derived improved protocol developed here (B1) to determine whether 

B1 showed sufficient improvements in productivity to be recommended over A. B1 

showed an almost 5-fold increase in cell density over A, CFU increased by over 1 log and 
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DCW was over double that of A, although as B1 used a larger amount of glycerol than A 

did of glucose, biomass yields were almost identical. FCM analysis showed similar levels 

of GFP+ cells, suggesting similar levels of vector retention, but cells in B1 were 46% 

more fluorescent and showed higher levels of homogeneity as evidenced by the 

coefficient of variance (CV) of the fluorescence values. B1 did show higher levels of dead 

cells however this did not appear to have affected productivity. RP solubility was 11% 

higher in A, but total RP accumulation in B1 was almost double that of A. These data, 

combined with the increased biomass resulted in over 4-fold increase in CheY::GFP yield 

and an over 3-fold increase in yield of soluble CheY::GFP. In addition to improvements in 

growth and productivity the fermentation run-time was 44% lower in B1 which would 

represent substantial savings in operating costs for industrial applications and further 

aided by the fact that growth medium B was 35% cheaper than A. 

B1 also addressed a further limitation identified in A; it required fewer operator 

interventions, only inoculation, induction/feeding and harvesting. In addition, as 

induction/feeding occurred 20-21 h post-inoculation and harvesting, 21 h post-

induction, all necessary interventions can be timed to occur within standard working 

days.  

Overall B1 showed a moderate decrease in product quality to A, this appears to be in 

agreement with Moore et al. (1993) who showed that complex growth medium 

increased RP solubility. However, biomass formation and RPP productivity increased by 

sufficiently large amounts that overall amounts of total and soluble CheY::GFP produced 

were higher. In addition this was produced in a shorter amount of time using a cheaper 

growth medium and therefore at a lower cost. It is therefore concluded that the 

improved, industrially-derived protocol developed here represents a viable and 

attractive alternative to the improved fermentation protocol as originally reported. 
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An unexpected observation was that B1 required the addition of substantially more base 

to regulate the culture pH than A. This is in spite of the fact that growth on glucose, as in 

A, would be expected to generate a greater amount of acid than growth on glycerol, as in 

B. In addition, B1 was not supplemented with amino acids (serine, threonine and 

asparagine) unlike A, yet solubility and accumulation of CheY::GFP was not substantially 

affected. This was despite evidence that supplementation was required for effective 

production (Jones, 2007) and that amino acid deficiencies can be detrimental to growth 

and RPP. The initial yeast extract-derived amino acids could not account for total 

protein production and therefore it is concluded that additional de novo amino acid 

biosynthesis was sufficient for both biomass and CheY::GFP accumulation.  

Although it was demonstrated that B1 did show improvements in CheY::GFP production 

over A the specific reasons for these improvements were unclear as the 2 protocols 

differ in multiple factors, specifically the point of induction (OD650 ~0.5 and ~40), 

principal carbon source (glucose and glycerol) and the growth medium. It was therefore 

decided to further adapt protocol B in order to investigate these factors. 

 

4.2.4. The effect of changing induction point  

One of the principal differences between protocols A and B is that protocol A induces 

RPP early in the fermentation, in mid-logarithmic phase (OD650 ~0.5) whereas B1 

induces later in the fermentation, concurrent with feeding (OD650 40-50). Induction at 

high biomass (i.e. later in the culture) is a strategy frequently used in industrial 

processes, separating the growth and production phases. This strategy is highly effective 

for systems where the production window, the period in which producing cells remain 

active and viable, is limited for example by the production of toxic protein or to limit the 

metabolic burden of standard RPP. Improved RPP does not limit the viability of 
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producing cells and increases the production window, although at the expense of 

limiting overall RPP rates. It would therefore be worthwhile to determine whether early 

induction of an improved B-derivative fermentation would increase RPP productivity 

over B1 due to the increased potential production window. Earlier induction has 

previously been established as having a positive effect on protein yields and a negative 

effect on biomass yields (Want et al., 2009). In order to determine whether changing 

induction point affects improved RPP Protocol B2 was modified so that induction 

occurred at OD650 ~0.5, (as in protocol A); this was termed Protocol B2. A comparison of 

B1 and B2 will therefore highlight the effects of earlier induction 

A fermenter was set up according to protocol B2 and was induced by the addition of 8 

μM IPTG when the culture reached an OD650 of ~0.5, as in A. Feeding began prior to 

depletion of carbon source (17.5 h post-induction), was paused to allow consumption of 

glycerol (18.5 h) and resumed once it was apparent that the glycerol had been 

consumed (22 h). The fermentation was terminated once it had been determined that 

growth had ceased (43 h).  

Growth of B2 progressed similarly to B1, reaching similar terminal OD650 readings at 

approximately 40 hours post-inoculation (Figure 4.5a). Terminal DCW was slightly 

higher than B1 at 77.5 g·L-1, corresponding to a slightly higher Yxs of 0.378. As with B1 

the DCW/OD650 ratio was lower than expected at 0.27.  On-line data also showed similar 

patterns to B1: initial RQ values were again higher than that expected for glycerol; 

metabolic activity declined after 28 h post-induction, again likely due to the feed rate 

becoming limiting; and again, a substantial volume of base was required for pH 

regulation. 

The proportion of GFP+ cells as determined by FCM (Figure 4.5b) during the initial 

stages of the fermentation was lower than expected; at approximately 80%. This was 
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Figure 4.5: Culture growth, plasmid retention and viability data from a protocol 

B2 fermentation  

 a) Growth data: OD650 measurements (○). b) FCM data: percentage cells GFP+ (□), 

percentage cells PI+ (dead) (■). Arrows indicate points at which (left to right) feed was 

turned on, paused and resumed. 
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however not due to the presence of GFP- cells but due to non-fluorescent particulate 

matter with a scatter distribution that overlapped that of the cells, observed to be 

consistent with the presence of antifoam (Figure 4.6). The low cell densities observed 

during the early stages of this fermentation resulted in a low signal to noise ratio and 

hence underestimated the proportion of GFP+ cells. During the second day of 

monitoring, GFP+ cells remained above 95% but at termination the proportion had 

dropped to 74%. PI staining also showed an increase in the percentage of dead cells at 

termination up to 8.8%. These data suggest that by termination the culture had become 

stressed. 

The mean green fluorescence and FSC of GFP+ cells during the initial stages of 

fermentation showed a pattern similar to that of A (Figure 4.7a); and again this is 

interpreted as an increase followed by a decrease in cell size as stationary-phase cells 

from the inoculum re-enter growth. After 18 h post-induction both parameters steadily 

increased to termination reaching final values of 370,000 for FL1-A and 25,000 for FSC-

A. The increase in FL1-A during the latter stages of fermentation was greater than that of 

FSC-A, suggesting accumulation of GFP. In addition, the value of FL1-A at termination 

was the peak value measured during the fermentation, strongly suggesting effective 

accumulation of CheY::GFP. 

SDS-PAGE analysis (Figure 4.7b) showed an increase in the percentage of total cellular 

protein that was CheY::GFP throughout; from 16% at the point of induction to 26% at 

termination. However the percentage solubility showed an overall decrease during the 

fermentation from 47% at induction to 37% at termination, suggesting that overall 

product quality had decreased. Final yield of CheY::GFP was calculated at 15.7 g·L-1, 

corresponding to a yield of 5.9 g·L-1 soluble CheY::GFP. 
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Figure 4.6: FCM analysis of early-stage fermentation samples showing 

interference by antifoam 

a) FSC-A versus SSC-A intensity plot of uninoculated fermentation media from B3 

showing particulate matter (antifoam) falling within noise-excluding gate P1. b) 

Histogram of green fluorescence intensity for (a), vertical gate dividing events into low 

(V1-L) and high (V1-R) green fluorescence events. c) FSC-A versus SSC-A intensity plot 

of B3 2 hours post-inoculation, particulate matter can still be seen. d) Histogram of 

green fluorescence intensity for (c).  
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Figure 4.7: FCM and SDS-PAGE data from a protocol B2 fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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In terms of growth and biomass generation B1 and B2 showed similar final 

measurements (Table 4.1). Final OD650 was marginally higher for B1, although DCW was 

slightly higher for B2, resulting in a slightly higher Yxs. In addition, culture viability, as 

indicated by the percentage of PI+ cells, was similar. It can therefore reasonably be 

concluded that culture growth and biomass generation did not appear to be affected by 

earlier induction. 

In terms of productivity the effect of early induction was mixed; The percentage of total 

protein that was CheY::GFP was similar, but the product quality, as indicated by 

CheY::GFP solubility was almost 20% lower in B2, resulting in higher total yields of 

CheY::GFP for B2 but lower yields of soluble CheY::GFP. The proportion of GFP+ cells was 

over 20% lower for B2, but the mean green fluorescence of the GFP+ cells was over 50% 

higher but more heterogeneous, with a higher CV. It was unexpected that despite similar 

amounts of CheY::GFP per unit biomass and lower levels of solubility that B2 showed a 

higher FL1-A value. This can be explained that FL1-A measurements were taken only as 

the average of GFP+ cells whereas SDS-PAGE samples are taken from the culture as a 

whole, B1 contained a larger amount of productive cells than B2, but productive cells in 

B2 had accumulated more CheY::GFP. In support of this FL1-A values of all cells for B1 

and B2 (taking into account non-productive cells) were more similar. 

Costs of raw materials were identical but B2 required a longer fermentation, as would 

be expected due to the extended induction period, increasing overall fermentation costs, 

with similar yields of total and soluble CheY::GFP it is therefore concluded that B1 is 

likely to be the more economical choice. 

The effects of induction point on RPP under standard conditions was explored by Want 

et al. (2009) who demonstrated that earlier induction resulted in lower yields of 

biomass but increases in RP yield. It has been demonstrated here that under improved 
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conditions this is not the case, earlier induction had no overall effect on biomass 

generation, a slight increase in total fermentation time and a mixed effect on RPP 

productivity. Standard RPP diverts substantial cellular resources, limiting growth at the 

expense of RPP (Sevastsyanovich et al., 2009; Bentley et al., 1990), therefore it is likely 

that earlier induction will divert a greater amount of cellular resources increasing RP 

yield at the expense of growth. As improved RPP does not limit growth as dramatically, 

that there was no limitation in biomass generation with earlier induction was not 

unexpected.  

The rate of RP synthesis under improved conditions is slower than under standard 

conditions and therefore a longer induced period is likely to be required to accumulate a 

particular RP yield. If an improved fermentation is induced too late, there may be 

insufficient time to accumulate economically sufficient RP before growth ceases. 

However it also now appears that substantial extension of the production window for 

improved RPP causes heterogeneity in productivity and physiological stress that may be 

undesirable. Determination of the interaction between these opposing factors to 

determine optimal induction and harvesting points may be a useful future study. 

 

4.2.5. The effect of changing principal carbon source 

The second principal difference between protocols A and B is that of the carbon source 

used; A uses glucose whereas B uses glycerol. The effects of changing carbon source 

appears to be case-dependent; there are numerous studies that claim RPP is enhanced 

by growth on both glucose (Carvalho et al., 2012; Tseng & Leng, 2012) and glycerol 

(Zhang et al., 2010; Pflug et al., 2007; Luo et al., 2006). Protocol B2 was further modified 

such that glucose replaced glycerol as carbon source (the 35 g·L-1 glycerol used in the 

batch phase of B2 was replaced by 0.5 g·L-1 glucose and the feed (0.5 L) was comprised 
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of 400 g·L-1 glucose and 7.4 g·L-1 MgSO4·7H2O) and termed Protocol B3. A comparison of 

B2 with B3 allowed the effects of changing carbon source to be determined.  

A fermentation was set up according to Protocol B3 and induced by the addition of 8 μM 

IPTG when the culture reached an OD650 of ~0.5 (6 h post-inoculation). Feeding began 

when on-line measurements determined that the initial carbon source had been 

depleted at 9 h post-induction. Initially the feed rate was calculated in order to produce 

an exponential growth curve for a μ of 0.2, using the following equation (Strandberg et 

al., 1994):  

𝐹 = (
1

S
) × (

µ

YXS
+m) × X0 × eµ𝑡 

Where: F equals the feed rate (L·h-1); X0, total biomass at start of feed (g DCW); μ, 

specific growth rate (0.2 h-1); t, time (h); S, feed glucose concentration (400 g·L-1); Yxs, 

cell yield on glucose (0.622 g biomass·g glucose-1;  (Wallace & Holms, 1986)); and m, 

maintenance coefficient for glucose (0.00468 g glucose·g biomass-1·h-1; (Wallace & 

Holms, 1986)). This was continued until the feed rate equalled that of B1-2 (45 mL·L-1·h-

1 relative to initial volume) then feeding remained linear until termination. The 

fermentation was terminated once it had been determined that growth had ceased at 40 

hours post-induction. 

Following the initial lag period, growth proceeded steadily up to 26 h post-induction 

reaching OD650 138 and 1.2x1011 cfu·mL-1 at 24 h (Figure 4.8a). At termination the OD650 

had increased further to 167 but CFU counts had decreased to 1.1x1010 cfu·mL-1, 

suggesting that at termination cells had ceased to grow and had likely entered stationary 

phase. Agitation data suggest that following 25 h O2 consumption began to decrease, 

possibly indicating that the feed had become limiting and gas-MS data show that after 

the feed was exhausted at 32 h metabolic activity rapidly decreased. At termination the 
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Figure 4.8: Culture growth, plasmid retention and viability data from a protocol 

B3 fermentation  

a) Growth data: OD650 measurements (○), CFU counts (●). b) Plasmid retention and 

FCM data: Percentage colonies plasmid+ (□), percentage colonies GFP+ (■), percentage 

cells GFP+ (by FCM) (△), percentage cells PI+ (dead) (by FCM) (▲). Arrow indicates 

point at which feed was turned on. 
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fermentation had achieved a DCW of 42.6 g.L-1, resulting in a Yxs of 0.411 g.g-1 and a 

DCW/OD650 ratio of 0.26.  

Plasmid retention, as measured by replica plating and GFP+ phenotyping of CFU plates 

remained above 92% throughout and the percentage of GFP+ cells determined by FCM 

remained above 98%, except for the initial sample that was 85% (Figure 4.8b). This was 

again due to high levels of background noise caused by antifoam and low cell density (as 

Figure 4.6). It can therefore be concluded that there was no appreciable amount of 

plasmid loss during the fermentation. The percentage of dead cells as determined by 

FCM (Figure 4.8b) remained at less than 7% throughout, although there was an increase 

between 26 h (1.8%) and termination (5.9%), possibly suggesting a slight increase in 

cell stress due to the onset of stationary phase. 

Green fluorescence of GFP+ cells and FSC (Figure 4.9a) showed a similar pattern to other 

early-induced fermentations: During the early stages of fermentation both FL1-A and 

FSC-A rapidly increased up to the point of induction then gradually decreased. Again this 

is interpreted as being due to cells initially increasing in size as they re-enter growth 

phase followed by decreasing cell size as they begin to divide, causing partitioning of 

GFP between cells and hence decrease in FL1-A. Between 6 and 20 h FSC-A decreased to 

a greater extent than FL1-A, suggesting that while the cells became smaller, GFP content 

increased. Between 20 and 26 h FL1-A increased by approximately 30% and FSC-A 

increased by approximately 20%, suggesting accumulation of GFP despite increasing cell 

size. At termination FL1-A had increased to 296,000 from 265,000 at 26 h, and FSC-A 

had increased from 21,800 to 22,700. Again FL1-A had increased to a greater extent 

than FSC-A, suggesting further accumulation of GFP. 

SDS-PAGE data (Figure 4.9b) showed an increase in the percentage of total cellular 

protein that was CheY::GFP from 2 h post-induction until termination, reaching a final 
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Figure 4.9: FCM and SDS-PAGE data from a protocol B3 fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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peak value of 30%. CheY::GFP solubility fluctuated during the fermentation, peak 

solubility of 50% was observed at 5 h post-induction and final solubility reached 46%. 

Final yield of CheY::GFP was calculated at 11.1 g·L-1, corresponding to a yield of 5.5 g·L-1 

soluble CheY::GFP. 

B3 showed lower final OD650 and DCW than B2, this was expected, as the total mass of 

glucose added in B3 was substantially lower than that of glycerol in B2. However B3 

showed a higher Yxs and therefore the efficiency of converting carbon source to biomass 

was slightly higher. 

FCM data showed a higher proportion of GFP+ cells and lower proportion of PI+ cells in 

B2 suggesting that B3 was less stressed. The mean green fluorescence of GFP+ cells in B3 

was slightly (<20%) lower than B2, as was the mean FSC. 

SDS-PAGE analysis showed that both CheY::GFP accumulation and solubility were higher 

in B3 than B2. Due to lower yield of biomass the yield of total CheY::GFP was 35% lower 

although the higher solubility of B3 resulted in similar yields of soluble CheY::GFP. This 

occurred despite B2 showing a higher final fluorescence of GFP+ cells. Again this is 

interpreted as being the result of B2 having fewer GFP+ cells. This conclusion is 

supported by final FL1-A values for all cells that were similar for both protocols 

Both protocols required similar amounts of time therefore operational costs would also 

be similar, but growth medium for B3 cost almost half that of B2, due to the higher cost 

of glycerol and that less glucose was used in B3 than glycerol in B2. This may therefore 

result in a slight economic advantage to B3 for the production of soluble CheY::GFP as 

yields of soluble protein were similar. 
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4.2.6. The effect of changing growth medium 

To determine the effects of changing the growth medium from LB to the more defined 

medium of Want et al. (2009), protocol A can be compared to B3, the improved 

conditions, early-induced, glucose utilising derivative of B.  

B3 showed a 2.5 fold increase in OD650 over A along with a 41% increase in DCW, and a 

13% increase in Yxs. In addition B3 showed a higher final OD650 and a similar final DCW 

to A(2), the most productive reported instance of A. As these values were obtained with 

the same amount of glucose and a drastically lower amount of complex components it is 

reasonable to conclude that, in terms of biomass generation, the growth medium from B 

was more effective than A. This finding is surprising as tryptone and yeast extract 

contain 4.3 and 16.3% carbohydrates respectively in addition to carbon incorporated 

into amino acids and therefore the amount of organic carbon available in A was higher. 

FCM analysis showed that the amounts of GFP+ and PI+ cells were similar between B3 

and A, suggesting similar levels of plasmid retention and cell viability. Mean FL1-A was 

almost 2-fold higher for B3. Although FL1-A was higher for B3, FSC-A was over 2-fold 

higher and therefore the increase in FL1-A may be, at least partially, due to increasing 

cell size. 

At 30.1% the final percentage of total cellular protein that was CheY::GFP in B3 was the 

highest achieved during this study, over double that of A and similar to that reported in 

A(1). Protein solubility however was lower than A at 49.5% which is in agreement with 

Moore et al. (1993) that more complex media favour protein solubility. Finally, B3 

required 37% less run-time and the growth medium cost 66% less per litre.  

An unexpected additional effect of changing the growth medium was also observed, all 

fermentations using growth medium B required the addition of a greatly increased 

amount of base to regulate pH. Base addition in fermentations is usually required due to 
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production of acidic by-products of carbohydrate metabolism either by overflow 

metabolism of high concentrations of glucose or anaerobic mixed acid fermentation 

(Lee, 1996), although less common, fermentation to acid has been documented with 

glycerol (Korz et al., 1995). Base addition occurred irrespective of the carbon source 

used (precluding overflow metabolism) and occurred under periods where oxygen 

should not have been limiting (precluding fermentative metabolism). It is therefore 

assumedly a result of the growth medium itself. The cause of this is currently unknown; 

therefore more detailed metabolic analysis of cultures growing on the medium would be 

a potentially beneficial route of further investigation. This phenomenon is discussed in 

more detail in Section 4.2.8. 

 

4.2.7. Adaptation of a chemically-defined medium based fermentation protocol for 

‘improved’ RPP 

The physiological stress-minimising improved RPP protocol was successfully applied to 

an industrially-derived HCDC protocol using semi-defined media that would eliminate 

some limitations of complex media such as LB (Section 4.1). A semi-defined medium 

however, still relies on some complex components and it may still be preferable to use a 

chemically-defined medium. Here follows a series of experiments designed to adapt a 

defined medium HCDC RPP protocol to produce soluble cytoplasmic RP under stress-

minimising conditions.  

To assess the effects of growth on chemically-defined growth media on ‘improved’ RPP 

the protocol of Humphreys et al. (2002) was adapted for production under stress-

minimised conditions and to be consistent with the fermentations presented above.  

Initial culture volume was reduced to 1.5 L and the fermentation was grown at 25°C 

throughout. Both feeding and induction were substantially altered. In Humphreys et al. 
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(2002) cultures were initially pulse-fed 2 doses of 45 mL 80% (w/w) glycerol then 

induced by feeding 20-50 g·L-1 lactose when glycerol was exhausted at OD600 ~80, this 

was altered such that feeding was identical to protocol B and RPP was induced by 

addition of 80 μM ITPG at OD650 ~80.  

4.2.7.1. Attempt 1 (C1) 

On consumption of the initial 31.11 g·L-1 glycerol (as indicated by DOT and MS data at 

26.5 h post-inoculation) feeding began identically to that of protocols B1-3. RPP was 

induced once the culture OD had reached a minimum of 80 at 39 h post-inoculation. The 

fermentation was terminated earlier than expected at 8 h post-induction as OD650 

readings had indicated that growth had ceased. 

Growth, as indicated by OD650 (Figure 4.10a) data did not increase substantially before 

~20 h pre-induction suggesting an extended lag-phase compared to A and B 

fermentations, as would be expected for growth on minimal media. The culture grew 

rapidly between 20-11.5 h pre-induction, reaching OD650 45.7, but on resumption of 

monitoring the next day the OD650 had reached 89.4 at 1 h pre-induction, this increased 

to a peak of 91.2 at 1 h post-induction after which it decreased steadily to 81.2 at 8 h 

post-induction presumably due to dilution of the culture by feed and base addition and 

suggesting that the culture had ceased to grow therefore causing termination. CFU 

counts (Figure 4.10a) increased from 1.4x1010 cfu·mL-1 at 12.5 h pre-induction to 

8.3x1010 at induction then increased only slightly to 9.3x10 at 3 h post-induction. On-

line data support OD650 data and show that following ~7.5 h pre-induction metabolic 

activity began to decrease, suggesting this was the point at which the culture ceased to 

grow. In addition on-line data showed no initial phase of higher RQ as with B1-3 (Figure 

7.8b), supporting the assumption that this was due to consumption of trace 
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Figure 4.10: Culture growth, plasmid retention and viability data from a protocol 

C1 fermentation 

a) Growth data: OD650 measurements (○), CFU counts (●). b) Plasmid retention and 

FCM data: Percentage colonies plasmid+ (□), percentage colonies GFP+ (■), percentage 

cells GFP+ (by FCM) (△), percentage cells PI+ (dead) (by FCM) (▲). Black arrow 

indicates point at which feed was turned on, blue arrow indicates addition of 15 g 

(NH4)2SO4.   
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carbohydrates from the yeast extract and similarly to B1-3, show substantial base 

addition in order to maintain pH following transition to exponential growth. 

As the application of improved conditions to protocol B increased the final OD over that 

reported by Want et al. (2009) it was unexpected that was not the case for protocol C. A 

potential explanation was formed on the observation that the DOT would rapidly and 

transiently decrease as base was added to the culture for pH regulation and increasing 

the pH set point at 6.4 at 3.5 h post-induction (requiring an increase in rate of base 

addition to maintain) causing an increase in metabolic activity. An increase in metabolic 

activity in response to base addition, as the base was 10% NH3, suggested that growth 

limitation may be due to nitrogen starvation especially as the concentration of 

(NH4)2SO4 in the initial growth medium was 63% lower than B, therefore a supplement 

of 50 mL 30% (NH4)2SO4 was added at 4.75 h post induction. This addition did not cause 

an increase in OD, assumedly this was because the culture had already begun to enter 

stationary phase and therefore was terminated prematurely. 

As the fermentation was terminated prematurely, measures of productivity were 

limited. All measures of plasmid retention (percentage of GFP+ colonies, plasmid+ 

colonies and GFP+ cells by FCM) (Figure 4.10b) remained above 90% throughout and the 

percentage of PI+ cells remained below 2%, suggesting that despite potential metabolic 

deficiencies, physiological stresses were not sufficient to impair plasmid retention or 

viability. 

Initial FCM data showed a similar pattern to A, B2 and B3; FL1-A and FSC-A of GFP+ cells 

(Figure 4.11) both increased initially then decreased as cells entered exponential phase. 

Between 21-12.5 h pre-induction the FL1-A and FSC-A showed no overall increase, 

suggesting that during this period of uninduced growth basal levels of CheY::GFP 

production had been reached. After 12.5 h pre-induction fluorescence increased with a 
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Figure 4.11: FCM data from a protocol C1 fermentation  

FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●).   
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slight decrease in FSC-A, suggesting an increase in CheY::GFP content despite most of 

this period being uninduced. This is likely due to leaky CheY::GFP production during a 

decreasing growth rate. 

Based on the observations during C1 regarding the potential N-deficiency it was 

therefore decided to repeat the fermentation with additional (NH4)2SO4 during the 

initial fermentation media termed attempt C2. 

4.2.7.2. Attempt 2 (C2) 

A fermenter was set up as C1 except that the 5.2 g·L-1 (NH4)2SO4 in the initial growth 

medium was increased to equal that of protocol B (14 g·L-1) and termed C2 (summarised 

in Table 4.2).  Feeding began once on-line data indicated that the initial glycerol had 

been consumed (26 h post-inoculation), RPP was induced when the culture had reached 

an OD650 of ~80 (79.1 at 31 h post-induction) and the fermentation was terminated 

when on-line measurements indicated that growth had ceased (41 h post-induction). 

OD650 data showed a shorter lag period compared to C1 (Figure 4.12a), this is unlikely to 

be due to the N-supplementation; rather a malfunction of the cooling system at 22 h pre-

induction that caused the temperature to increase to 36°C before correction at 8 h pre-

induction (Figure 7.9a). This will have increased the growth rate and hence decrease the 

lag period. After ~11 hours pre-induction metabolic activity increased rapidly 

suggesting growth and the OD650 increased from 28.6 at 7 h pre-induction to 99.2 at 2 h 

post-induction.  Between 1-20 h post-induction metabolic activity showed a steady 

decline suggesting that growth had predominantly ceased. On resumption of monitoring 

at 17 h post-induction the OD had increased moderately to 121, then decreased to 107 

at 18-20 h, supporting the conclusion that between 2-20 h cell growth had become 

limited despite feeding. As with C1, growth limitation was not expected and as the 
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Table 4.2: Summary of modifications to growth medium C 

 C1 C2 C3 

Growth 
medium 
composition 

5.2 g·L-1 (NH4)2SO4 

3.86 g·L-1 
NaH2PO4·H2O 

4.03 g·L-1 KCl 
1.04 g·L-1 

MgSO4·7H2O 
0.25 g·L-1 

CaCl2·2H2O 
10 mL·L-1 SM6E 

Trace elements 
solution 

4.16 g·L-1 Citric acid 
monohydrate 

31.11 g·L-1 Glycerol 
0.66 mL·L-1 PPG 

14 g·L-1 (NH4)2SO4 

3.86 g·L-1 
NaH2PO4·H2O 

4.03 g·L-1 KCl 
1.04 g·L-1 

MgSO4·7H2O 
0.25 g·L-1 

CaCl2·2H2O 
10 mL·L-1 SM6E 

Trace elements 
solution 

4.16 g·L-1 Citric acid 
monohydrate 

31.11 g·L-1 Glycerol 
0.66 mL·L-1 PPG 

14 g·L-1 (NH4)2SO4 

3.86 g·L-1 
NaH2PO4·H2O 

4.03 g·L-1 KCl 
1.04 g·L-1 

MgSO4·7H2O 
0.25 g·L-1 

CaCl2·2H2O 
10 mL·L-1 SM6E 

Trace elements 
solution 

4.16 g·L-1 Citric acid 
monohydrate 

31.11 g·L-1 Glycerol 
0.66 mL·L-1 PPG 
2 g·L-1 KH2PO4  

16.5 g·L-1 K2HPO4  

1.5 mL·L-1 Conc. 
H3PO4 

 

Supplements 15 g (NH4)2SO4 
(4.75 hours post-
induction) 

15 g (NH4)2SO4      
(2 hours post-
induction) 

20 g Na2HPO4           

(20 hours post-
induction) 

10 g NaH2PO4           

(20 hours post-
induction) 

1.5 mL E. coli 
sulphur-free 
salts                   
(20 hours post-
induction) 

 

2 mL E. coli sulphur-
free salts        
(11.5 hours post-
induction) 

2 mL SM6E Trace 
elements 
solution         
(11.5 hours post-
induction) 

N.B: Alterations to basic growth medium in Table 2.6 are in bold. 
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Figure 4.12: Culture growth, plasmid retention and viability data from a protocol 

C2 fermentation  

a) Growth data: OD650 measurements (○), CFU counts (●). b) Plasmid retention and 

FCM data: Percentage colonies plasmid+ (□), percentage colonies GFP+ (■), percentage 

cells GFP+ (by FCM) (△), percentage cells PI+ (dead) (by FCM) (▲). Black arrow 

indicates point at which feed was turned on, blue arrow indicates addition of 15 g 

(NH4)2SO4, red arrow indicates addition of 20 g Na2HPO4 and 10 g NaH2PO4.  
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nitrogen content had already been increased (as a precaution an additional supplement 

of 15 g (NH3)2SO4 was also added at 2 h post-induction), N-starvation was unlikely to be 

the cause. As the amount of phosphates in medium C was also substantially less than B it 

was hypothesised that this may be the cause and therefore at 20 h post-induction a 

supplement of 20 g Na2HPO4 and 10 g NaH2PO4 was added (Table 4.2), along with 1.5 

mL of E. coli sulphur free salts. This supplement had a pronounced effect on the culture, 

metabolic activity showed a rapid upward spike and growth resumed at a steady state 

reaching OD650 162 at termination. CFU data also support the above trends (Figure 

4.12a), there was an increase during the initial stages of culture, up to the point of 

feeding, followed by a slight lag then increasing up to 2.8x1012 cfu·mL-1 at induction. 

This increased only slightly to 6.1 x1012 at 24 h, supporting the conclusion that during 

this period there was little growth, then decreased to 1.8x1012 at termination, the 

decrease was likely due to the culture having ceased to grow at ~33 h and hence likely 

to have entered stationary phase. At termination a DCW of 48.4g·L-1 was reached, 

corresponding to a Yxs of 0.296 g·g-1. Similarly to B1-3 the DCW/OD650 ratio was lower 

than expected at 0.3. 

Plasmid retention (plasmid+ and GFP+ colonies) remained above 90% throughout 

although the percentage of GFP+ colonies showed a slight decreasing trend after 7 h pre-

induction (Figure 4.12b). This is supported by FCM data that showed the percentage of 

GFP+ cells remained above 90% throughout, the initial increase from 91% to a peak 

value of 99% was due, as in Section 4.2.4, to initial samples containing a large 

proportion of non-fluorescent particulate matter due to the low initial cell numbers, 

decreasing as the cell count increased. As with the percentage of GFP+ colonies, the 

proportion of GFP+ cells showed a slight decrease during the fermentation, suggesting 

there may have been low levels of plasmid loss. The percentage of dead (PI+) cells 
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remained below 10% except at induction where it reached a peak value of 10.5% 

(Figure 4.12b). Green fluorescence and forward scatter of GFP+ cells (Figure 4.13a) 

showed the expected initial trend of increasing followed by decreasing, as explained 

above. From 7 h pre-induction onward, both parameters showed increasing trends, FSC-

A appeared to increase with growth rate, during periods of slower growth (2-18 h and 

24-41 h post-induction) the rate of increase was lower. FL-1A on the other hand 

increased steadily throughout the remainder of the fermentation reaching a final peak 

value of 461,000, the highest value for a fermentation during this study. As FL1-A 

increased to a greater extent during the fermentation than FSC-A, this suggests that the 

increase in fluorescence was not simply a product of increasing cell volume with 

constant CheY::GFP content. Also, as FL1-A increased steadily during the periods where 

FSC-A increased only slightly and growth rate was depressed this suggests that it is 

during periods of slower growth that functional protein is principally accumulated.  

SDS-PAGE analysis (Figure 4.13b) showed relatively high levels of RP production, the 

percentage of total cellular protein that was CheY::GFP increased throughout reaching a 

final peak value of 29% and the solubility of CheY::GFP showed an overall increase 

reaching a final peak value of 60%. Both values are almost equal to the highest values 

previously achieved (30% from B3 and 63% for A, respectively). Final yield of CheY::GFP 

was calculated at 10.5 g·L-1, corresponding to a yield of 6.3 g·L-1 soluble CheY::GFP. 

The data above suggest that despite accidental heat/cold shock during the initial stages 

of production and likely metabolic deficiencies, reasonable amounts of biomass were 

produced (OD650 >100) and high RPP productivity. Based on these observations it was 

decided that it would be beneficial to test this protocol further, with an increased 

phosphate concentration, termed attempt C3.  



 196 

 

 
Figure 4.13: FCM and SDS-PAGE data from a protocol C2 fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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4.2.7.3. Attempt 3 (C3) 

A fermenter was set up as protocol C2 except that the growth medium was 

supplemented with the phosphate-containing components of medium B (2 g·L-1 KH2PO4, 

16.5 g·L-1 K2HPO4, 1.5 mL·L-1 Conc. H3PO4) and termed C3 (Table 4.2). Feeding began 

when on-line data suggested that batch-phase glycerol had been consumed (33.3 h post-

inoculation). RPP was induced when the culture had reached OD650 of ~80 (82.0 at 38.5 

h post-inoculation). The fermentation was terminated when on-line data indicated 

growth had ceased (16.5 h post-induction). 

OD650 data (Figure 4.14a) showed an extended lag period until ~10 h pre-induction then 

a steady increase reaching 249 at 12 h post-induction. While the OD650 data during this 

period did not suggest any major limitations to growth, the DOT/agitation and CDC/OXC 

did, showing a gradual decrease in metabolic activity between 2-12 h post-induction. As 

this media was already assumed to have been deficient in nitrogen and phosphate it was 

hypothesised that a trace element may have also become limiting and therefore a 

supplement of 3 mL SM6E trace elements solution and 2 mL E. coli sulphur free salts 

was added at 11.5 h post-induction, but this had no effect. It was found that the decrease 

in metabolic activity observed was due to the feed rate becoming limiting for growth as 

an increase in feed rate at 12 h post-induction caused a rapid decrease in the DOT and 

increases in the CDC and OXC that continued until termination. At termination the OD650 

had increased to a final peak value of 277 comparable to the 2 highest of this study (B2 

at 297 and B3 at 288), the final DCW was 66.8 g·L-1, corresponding to a Yxs of 0.408 g·g-1, 

comparable to the highest value achieved for this study (0.411 for B4) and a DCW/OD650 

ratio of 0.24. Once again, despite growth on glycerol a substantial volume of base was 

required to maintain pH. 
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Figure 4.14: Culture growth, plasmid retention and viability data from a protocol 

C3 fermentation  

a) Growth data: OD650 measurements (○), CFU counts (●). b) Plasmid retention and 

FCM data: Percentage colonies plasmid+ (□), percentage colonies GFP+ (■), percentage 

cells GFP+ (by FCM) (△), percentage cells PI+ (dead) (by FCM) (▲). Arrows indicate 

points at which (left to right) feed was turned on or rate of feeding increased. 
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Unlike C1 and C2, plasmid retention did decrease below 90% between induction and 

termination, although the percentage of GFP+ cells remained above 95% throughout 

(Figure 4.14b). As CFU counts decreased between 6.5 h pre-induction and induction this 

is likely due to differential culturability in plasmid+ and plasmid- cells. Although CFU 

data suggested a decrease in culturability the percentage of dead (PI+) cells remained 

below 10% and hence it is likely that there was an increase in VBNC cells.  

FCM analysis of GFP+ cells (Figure 4.15a) showed an initial increase then decrease in 

both FSC-A and FL1-A, as described above. Following this, both parameters increased 

slowly up to induction then more rapidly. Peak fluorescence occurred at termination 

(221,000) and as fluorescence increased to a greater extent than forward scatter it is 

assumed that this was as due to CheY::GFP accumulation.  

SDS-PAGE data (Figure 4.15b) showed the percentage of cellular CheY::GFP increased to 

a peak (29%) at 12 h post-induction then decreased slightly to 27% at termination. 

CheY::GFP solubility increased to a peak (49%) at induction, decreased to 40% at 12 h 

post-induction then increased slightly to 42% at termination. Final yield of CheY::GFP 

was calculated at 14.2 g·L-1, corresponding to a yield of 6.0 g·L-1 soluble CheY::GFP. 

It is apparent from these data that the metabolic deficiencies of C1 and C2 were 

remedied as C3 obtained both a similar biomass to B2 and B3 and a similar Yxs value. 

The effects on RPP productivity were mixed, as both fermentations generated CheY::GFP 

to a similar percentage of total cellular protein the higher biomass of C3 resulted in a 

higher total yield of CheY::GFP but the higher solubility of C2 resulted in similar yields of 

soluble CheY::GFP. 
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Figure 4.15: FCM and SDS-PAGE data from a protocol C3 fermentation  

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells (○), mean cellular 

forward scatter (FSC-A) of GFP+ cells (●). b) SDS-PAGE data: Percentage of CheY::GFP 

that was soluble (□), percentage of total cellular protein that was CheY::GFP (■). 
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4.2.8. A reassessment of organic nitrogen and phosphorus content in fermentation 

media and its impact on ‘improved’ RPP 

4.2.8.1. Limitation of growth due to due to deficiencies in growth media 

The most striking and unexpected results from this series of experiments was that the 

application of improved conditions to the fermentation media of Humphreys et al. 

(2002) did not result initially in high cell density, apparently due to a combination of 

nitrogen and phosphate limitation.  To understand this further, analyses of phosphorus 

and nitrogen content for all fermentation protocols used in this study were made. As it 

was not possible to determine the concentration of NH4+ or PO43- biochemically, 

theoretical amounts of nitrogen and phosphorus in the fermenters were calculated from 

media recipes (when complex components were used values were calculated using 

published typical analyses (Becton, Dickinson and Co., 2006)) and the amounts 

incorporated into biomass calculated from DCW or OD650 (when DCW was not available, 

assuming OD650 1 = 0.4 g·L-1 DCW) data and the typical elemental composition of E. coli 

published in Doran (2013), are summarised in Table 4.3.  

During C1, growth limitation was hypothesised as being due to N-starvation but 

supplementation of (NH4)2SO4 did not cause further growth. Analysis of phosphorus 

content provided an explanation: at termination the predicted amount of phosphorus 

incorporated into biomass had already exceeded that available in the starting medium 

and therefore further growth would be unlikely. The discrepancy between these values 

is interpreted as being due to fluctuations in the relationship between OD650 and DCW 

used and in cellular phosphorus content as a result of strain and RPP. In addition to a 

discrepancy in phosphorus content, the predicted nitrogen content was higher than the 

amount in the growth medium but this is more simply explained as the 10% ammonia 

added as base is likely to have been incorporated. Although it should theoretically be 
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Table 4.3: Summary of fermentation nitrogen and phosphorus compositions 

Fermentation  Amount in growth medium 
(g) 

Amount in 
biomass (g) 

A N 22.2 10.525 
P 1.6 2.25 
   

B1 N 7.72 21.8 
P 7.28 4.66 
 Base medium Supplemented  

C1 N 1.66 4.84 10.22[1] 

P 1.3 1.3 2.18[1] 
    

C2 N 4.46 7.64 12.32 
P 1.3 16.48 2.64 
    

C3 N 4.46 18.74 
P 6.66 4.16 

[1] – Calculated from OD650 (assuming OD650 1 = 0.4 g·L-1 DCW) as final DCW not 
determined for C1 
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possible to calculate the amount of nitrogen added from the volume of base recorded, 

this is complicated by ammonia being gaseous under ambient conditions and hence 

readily coming out of solution. It was observed that the base addition tubing would 

frequently contain large pockets of gas (presumably NH3), reducing the accuracy of 

volume monitoring and decreasing the concentration in solution, therefore these data 

were omitted from calculations. Humphreys et al. (2002) stated that fermentations were 

harvested at OD 90-100, this is consistent with the peak OD650 achieved by C1 (91.2). It 

is therefore obvious from these data that the unmodified growth is suited specifically to 

the growth profile and RPP protocol it is used for; a short burst of RPP very late in the 

fermentation and final ODs of 90-100. 

It has previously been noted that for both protocols B and C the volume of base added to 

the cultures was excessive, as the use of glycerol should limit acid formation. However, 

analysis of nitrogen content for protocols B and C showed that in all cases the predicted 

amount of biomass-incorporated nitrogen far exceeded that provided in the growth 

media. While variation from the typical values in Doran (2013) may account for some of 

this discrepancy it is unlikely to account for all of it. Protocol A, that contained a greater 

concentration of nitrogen in the growth medium than in the final biomass, required 

considerably less base. It is therefore hypothesised that base addition became, 

effectively, a nitrogen feed. This is also supported by base addition data from C2; 

following supplementation of (HN4)2SO2 at 2 h post-induction the base addition rate was 

substantially lower (Figure 7.10). There does not appear to be a direct mechanism by 

which nitrogen starvation would result in acid formation but the following is 

hypothesised: The principal mechanism by which ammonia is assimilated in E. coli, is via 

glutamate dehydrogenase (GDH) and glutamate synthase (GOGAT) (Tyler, 1978; 

Umbarger, 1978). Starvation of ammonia could result in accumulation of precursors 
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such as 2-oxoglutarate and glutamate, both of which would be acidic under physiological 

pH.  It is also established that E. coli BL21 and derivatives have differences in carbon 

metabolism (TCA cycle, glyoxalate shunt and acetyl-CoA synthetase) that may also have 

an effect (Noronha et al., 2000; Phue & Shiloach, 2004). It may therefore be advised for 

future work to increase the amount of bioavailable nitrogen in both protocols B and C. It 

may also be of interest to investigate further the effects on pH of N-starvation, possibly 

through metabolomic analysis. 

It was observed in Section 4.2.1 that the final biomass of protocol A was lower than 

would be expected based on the medium composition, but compositional analysis 

provides a potential explanation: Similarly to C1 the predicted final concentration of 

biomass-incorporated phosphorus in A exceeded the concentration in the growth 

medium and therefore it can be concluded that phosphorus was likely exhausted by the 

end of the fermentation, which would be expected to result in growth arrest. In addition, 

if the complex components used in A(1) and A(2) contained higher proportions of 

phosphorus, this would explain the higher biomasses achieved. It may therefore be 

useful for future work to run further fermentations using protocol A supplemented with 

additional phosphates to investigate whether this is the case.  

4.2.8.2. The effects of nutrient limitation on RPP 

In addition to effects on growth and biomass formation, growth medium formulation is 

known to affect RPP productivity. Complex growth media have been known to increase 

protein solubility (Moore et al., 1993; Fahnert, 2012), potentially the cause of increased 

CheY::GFP solubility in protocol A. Wang et al. (2009b) observed that RP yields can be 

increased by the addition of ammonia, even for complex media where there should be 

sufficient organic nitrogen available. As nitrogen is a necessary component of amino 

acids the underpinning logic is obvious, although this may not be universally true; 
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Schroeckh et al. (1999) successfully used an RPP-induction system based on the E. coli 

glnA promoter to induce at high cell density (OD550 120) only when the concentration of 

ammonia became limiting (<1 mM). Cultures were induced by replacement of ammonia 

as base addition by KOH. Control of phosphate concentration can also influence RPP 

productivity; Huber et al. (2011) demonstrated that the total cellular amount of RP for a 

T7 polymerase expression system increased under conditions where cells were limited 

for phosphate but not for carbon source. Phosphate is necessary for cell growth (e.g. for 

DNA replication), but not directly for protein synthesis (unlike nitrogen and carbon) and 

phosphate-limited cells can remain metabolically active. Phosphate limitation can 

therefore stall cell growth, allowing redirection of cellular resources towards protein 

synthesis. Decreased growth rate and increased RP synthesis rates can therefore cause 

an overall increase in cellular productivity. This is also likely to be the reason for 

successful use of RPP systems using the promoter for alkaline phosphatase (PhoA) that 

is activated under phosphate starvation by the 2 component regulator PhoR/PhoB 

(Lübke et al., 1995; Makino et al., 1986). 

An examination of fermentation productivity and nitrogen/phosphorus content through 

this study suggest that the above effects may have had a role, unfortunately no definitive 

conclusions may be made. For example, A showed high solubility but low RP yields, was 

likely phosphate and therefore growth-limited but in light of Wang et al. (2009b) may 

have also been ammonia-limited despite large quantities of organic nitrogen available. 

For protocols B and C the initial media were incontrovertibly nitrogen limited, but the 

addition of ammonia throughout the fermentations in base addition prevented any 

accurate determination of the extent of N-limitation. It would be potentially worthwhile 

to investigate in greater detail the effects of these limitations on improved RPP, for 
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example by repeating the fermentation protocols with only a single limiting factor by 

providing a non-growth limiting excess or additional feed of the others. 

While it is not currently possible to ascertain specific effects of medium composition on 

RPP, a comparison of C2 and C3 suggests an effect of growth rate. During the 2 periods 

of growth limitation in C2 (2-18 h post-induction during phosphate-limitation and 24-41 

h as growth ceased due to the end of feeding) FL1-A increased at a faster rate than that 

of FSC-A. This was interpreted as an increase in cellular content of folded, mature 

CheY::GFP during periods of decreased growth rate. In addition, overall growth rate 

between induction and termination was lower for C2 than C3, but measures of RPP 

productivity (fluorescence, total CheY::GFP content, CheY::GFP solubility) were 

consistently higher for C2. These data overall suggest that decreasing growth rates by 

growth medium manipulation favour both CheY::GFP accumulation and quality. 

 

4.2.9. Analysis of fermentation diagnostic techniques 

4.2.9.1. Using the DCW/OD650 ratio as a culture diagnostic 

It was observed that the ratio between terminal culture DCW and OD650 for A was higher 

than the typically cited value for E. coli of 0.4 and lower for B1-C3. This ratio has been 

shown to be affected by the formation of inclusion bodies i.e. that IB-containing cultures 

show a lower ratio (Hwang & Feldberg, 1990). This relationship is logical as IBs are 

highly diffractive particles and hence IB-containing cells will show increased light 

scatter. To determine whether this was true for the system used here terminal 

DCW/OD650 ratios for A, B1-3 and C2&3 were correlated against the percentage 

solubility of CheY::GFP. The correlation was found to not be statistically significant (r = 

0.611, p =0.198). However the DCW/OD650 ratio was found to have significant 

correlations with 2 other observed parameters; the mean FSC-A of GFP+ cells (r = -0.956, 
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p >0.01) and the percentage of total protein that was CheY::GFP (r = -0.877, p =0.021). 

The former relationship is not unexpected as FSC-A is itself a measure of light scattering 

and has been used previously to predict biomass (Section 1.5.4.1). The latter 

relationship is more interesting, suggesting that for the system used here it is the total 

cellular content of CheY::GFP that affects culture turbidity as opposed to its solubility 

state. This is still in itself a potentially useful diagnostic as DCW measurements typically 

require less time than SDS-PAGE analysis.  

4.2.9.2. The use of typical cellular composition values for fermentation yield 

calculations 

As demonstrated above the relationship between DCW and OD650 data during this study 

varied substantially from the typically cited ratio of 0.4, likely dependent on cellular RP 

content. DCW is often predicted from OD650 data as opposed to directly measuring DCW 

(as was done by Sevastsyanovich et al. (2009)), but predicted biomass yields may be 

highly inaccurate; from the data here presented OD650 100 could correspond to a DCW of 

24-47 g·L-1 and therefore where possible DCW should be measured directly. 

In addition to predicting biomass yields from turbidometric data, RP yields can also be 

predicted from biomass data and typical cellular protein composition, as was done by 

Sevastsyanovich et al. (2009) and Alfasi (2010) assuming E. coli contains 70% protein 

and in the previously published version of the data here presented (Wyre & Overton, 

2014b) assuming E. coli contains 60% protein. Subsequent reanalysis of the 

fermentations above to determine total protein concentrations derived using BCA 

analysis showed that there was a range of protein contents achieved from 71-86%, 

showing that the 60% figure previously used to predict yields on this data and in fact the 

70% figure used by Sevastsyanovich et al. (2009) and Alfasi (2010) were in both cases 

substantial underestimates of the actual values. The resultant yield data were therefore 
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also all higher than the predicted values. Although the total cellular protein content 

varied somewhat this did not appear to be sufficient to alter the trends in the resultant 

yield data from those predicted previously (Figure 4.16). These observations suggest 

that the use of typical protein content figures to predict RP yield data may be useful as 

an interim measure to compare on-going work but can introduce substantial potential 

for error when stating final yields and therefore biochemically determining protein 

content would be highly advised.  

 

4.3. Conclusions 

Preliminary analysis of the RPP-fermentation protocol by Sevastsyanovich et al. (2009) 

incorporating the novel application of a physiological stress-minimisation paradigm for 

‘improved’ RPP identified a number of potential limitations for its application to 

industrial practices, principally regarding the complex fermentation medium used. 

Attempts to replicate this work (A) appeared to confirm the preliminary analysis that 

the heavy reliance on complex medium components with inherent variation in content 

place limitations on the wider applicability of this protocol. Despite evidence that high-

quality, soluble CheY::GFP was produced and cell physiology remained relatively 

unstressed, as would be expected from successful use of the stress-minimisation 

method, biomass and RP accumulation appeared to be limited compared to published 

instances, severely limiting product yields. Although it is likely that these effects may be 

relieved by supplementation of the growth medium and feed with, for example, 

alternate amino acids, phosphate and ammonium, determining an optimal strategy 

would be time consuming, costly and must be repeated for any change to batch or 

supplier, therefore strongly precluding industrial utility of this protocol.  
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Figure 4.16: Comparison of BCA assay-derived and predicted end-point CheY::GFP 

yield data  

a) Yields of total CheY::GFP at termination for fermentation protocols A, B1-3, C2 & C3 

calculated using experimentally-derived total protein content by BCA assay (blue) and 

estimated from biomass data using typical published values for E. coli protein content 

(red). b) As (a) for yields of soluble CheY::GFP. 
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Stress-minimisation was found to be readily applicable to an industrially-derived 

fermentation protocol using semi-defined growth medium, increasing reproducibility 

and homogeneity of the culture, biomass yields and cell productivity over the 

unmodified protocol. In addition, it was shown that the improved, industrially derived 

fermentation protocol (B1) provides an attractive alternative to the original improved 

protocol (A). B1 showed higher yields of both total and soluble CheY::GFP and improved 

reproducibility, while being more favourable to industrial applications due to a 

decreased run time, lower cost growth medium, the elimination of animal-derived 

medium components and an overall reduction in the amount of complex medium 

components used.  

An investigation into the specific effects of the principal differences between protocols A 

and B revealed that the largest effects came from changing the growth medium, 

resulting in increases in biomass generation and in the yields of both total and soluble 

CheY::GFP, although also resulting in a decrease in CheY::GFP solubility (insufficient to 

decrease overall soluble yields) and an unexpected culture acidity. Despite the simplicity 

of using glycerol as carbon source it appeared that there might be some benefits to 

retaining glucose as the efficiency of conversion to biomass was higher and media costs 

were lower. Despite evidence that it does under standard conditions, changing the point 

of induction was shown to have little overall effect on improved RPP although earlier 

induction (and hence a longer production window) appeared to favour culture 

heterogeneity. This suggests that, as would be expected, the decreased rates of RPP and 

increased productive period of cells under improved conditions, drastically alters the 

productivity window of improved RPP processes over standard. 

In all cases modified B-type fermentations (B1-3) gained higher yields of biomass, total 

and soluble CheY::GFP over A, A(1) and A(2), in shorter time periods and using lower 
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cost growth medium and in a manner substantially more applicable to current industrial 

practices. It can therefore be concluded that the application of stress-minimisation to 

protocol B was successful, that the methods detailed here could be readily applied to 

wider use in industrial RPP-bioprocesses and that this work represents a worthwhile 

and novel development for the stress-minimisation methodology. 

This chapter also demonstrated the development of an industrially-derived HCDC 

fermentation using improved RPP conditions and defined growth medium that would 

fully eliminate reliance on inherently variable complex medium components. Following 

adaptation of the growth medium to allow greater biomass formation by the 

supplementation of ammonium and phosphate, high yields of biomass, total and soluble 

CheY::GFP were generated, comparable to the most productive instances from A-B3, 

albeit in separate fermentations. It is concluded that with further development it may be 

possible to devise a protocol with comparable results to B1-3 and hence be a viable 

alternative. 

During these fermentations issues regarding limitation of key nutrients were observed, 

prompting a reassessment of all 3 fermentation protocols used. It was found that all 3 

protocols became limited to varying extents for both phosphate and nitrogen, 

potentially influencing both growth and RPP productivity and to which, further 

investigation would be advised. A possible effect of growth rate, as controlled by growth 

medium content on RPP productivity was also observed and again further investigation 

is advised. 
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Chapter 5:  General Conclusions & Further Work
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5.1.  General conclusions 

The production of recombinant proteins in E. coli is a widely used technique in modern 

bioprocessing particularly in the biopharmaceutical industry requiring production at 

industrial scale. For an RPP process to be effective at industrial scale it must attempt to 

maximise product yields for minimal costs in a reliable, reproducible manner while 

obeying all necessary regulations. Optimisation of an industrial-sale RPP process will 

often involve a compromise between multiple factors including biomass generation, 

product yield, product quality and process costs and any proposed modification must 

provide an aggregate improvement over all factors for it to be effective. For example, an 

improvement to product yield will not be effective if it causes a sufficiently reduced 

biomass yield (a phenomenon that was noted by (Want et al., 2009)) or increased 

process costs. Similarly any modification to the analysis of an industrial process must 

present a valid cost-benefit for the overall process for example in replacing a more 

costly existing method or increasing reliability. These concerns are substantially 

different from those involved in RPP at the laboratory-scale that will typically require 

small single batches of product without such rigorous economic pressures. 

This work has presented the development of both analytical and production methods for 

RPP in E. coli aimed particularly at industrial applications showing benefits to the 

analysis of the currently little-studied initial period of RPP culture growth and in the use 

of production conditions that have to this point not shown widespread adoption.   

 

5.1.1. Novel Applications of Flow Cytometry for Bioprocess Monitoring and Control 

Flow cytometry is a technique of great utility for the monitoring of RPP bioprocesses at 

the industrial scale with the potential for substantial further exploitation (Section 1.5). 

FCM is a rapid technique that requires very low sample volumes and can assess 
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numerous cellular parameters (Shapiro, 2005). In addition, recent innovations have 

reduced both the costs and complexity of both instrumentation and operation (Section 

1.5.5) and raised the potential for automated analysis (Gatza et al., 2012). Development 

of novel FCM applications for RPP monitoring will increase the potential utility of the 

technique and hence increase the likelihood of its routine use in industry.  

The amyloidophilic fluorescent dye Congo red was used to identify and enumerate by 

FCM cells containing ‘classical’ IBs with high amyloid content (Section 3.2). The use of 

FCM and amyloid staining dyes has many benefits for monitoring RPP. When producing 

proteins solubly the ability to detect IB formation would allow the determination of sub-

optimal production conditions. Additionally when producing proteins as IBs for 

refolding, as is often done industrially (Section 1.2.1.2), it may also be possible to use CR 

staining to monitor product formation or to enumerate non-productive cells. One 

limitation of CR-staining for IB detection is that it is dependent on the amyloid character 

of ‘classical’ IBs, as shown by CheY::GFP IBs formed at 25°C failing to stain and therefore 

its efficacy will be case-dependent. It may however be possible to exploit this 

phenomenon and use amyloid detection to probe IB structure in vivo during deliberate 

IB production. When producing IBs for refolding increased classical character is likely to 

increase resistance to solubilisation (de Groot & Ventura, 2006; Upadhyay et al., 2012) 

and when producing IBs as biologically active nanoparticles (Sans et al., 2012; Villaverde 

et al., 2012) amyloid character will be indicative of reduced biologically activity (García-

Fruitós et al., 2007a). In both cases amyloid formation will be detrimental and therefore 

the ability to rapidly detect it is of great potential. 

The initial stages of culture for RPP, particularly on agar plates, are little studied (Wyre 

& Overton, 2014a). FCM is ideally suited to analysis of these cultures due to the low cell 

numbers required and multivariate analysis available. This work presented what is 
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thought to be the first analysis by FCM of RPP bacteria on agar plates (Sections 3.3, 3.4). 

FCM screening of E. coli BL21* transformants expressing CheY::GFP on agar plates 

allowed the identification of abnormal, less productive cells at the earliest possible stage 

of culture. This would present a substantial time-saving and hence be of use during 

industrial strain development and in the production of cell banks. During storage agar 

plate cultures were also shown to progressively generate a population of cells with 

intermediate fluorescence and low culturability (population P2), shown by CR staining 

to be due to the stochastic formation of amyloid deposits within existing non-classical 

IBs that were likely cytotoxic (González-Montalbán et al., 2005; Lindner et al., 2008; 

Kagan et al., 2012). As population P2 cells were of low culturability, increasing P2 

content reduced initial growth rates in subsequent liquid culture. Determination of P2 

content prior to inoculation will therefore allow for more accurate prediction of 

subsequent growth rates and hence likely be beneficial for process reproducibility. It is 

likely that this phenomenon will occur in other (non-GFP fusion) proteins and therefore 

FCM analysis of agar plate cultures prior to inoculation particularly with staining for 

amyloid may be of wide application for RPP processes. 

 

5.1.2. Application of ‘Improved’ Physiological Stress-Minimised Production 

Conditions to Industrially Derived Fed-Batch RPP Protocols 

The development of the improved RPP protocol by Sevastsyanovich et al. (2009) 

represents a significant development in the theory behind RPP processes. The 

fermentation protocol it was applied to however, showed substantial limitations for 

application in industry, predominantly due to the heavy reliance on complex growth 

medium components that can incur regulatory concerns and batch variation of which 
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was shown here to negatively affect culture growth using the E. coli BL21*/CheY::GFP 

model RPP system (Section 2.10.1).  

Replication of the original improved protocol (A) showed high levels of plasmid 

retention, culture viability and CheY::GFP solubility indicative of successful stress-

minimised RPP but identified further limitations for wider applications (Section 4.2.1). 

Both total biomass accumulation and the percentage of total protein that was CheY::GFP 

were substantially lower than previously published data (Sevastsyanovich et al., 2009; 

Alfasi, 2010) demonstrating reproducibility issues that would substantially limit 

industrial use. This was ascribed to the aforementioned reliance on complex medium 

components, that despite preliminary attempts to optimise the sources and batches of 

complex components (Section 2.10.1) this was not completely effective and that there 

remained compositional inadequacies for high cell density production, for example in 

the amino acid distributions or phosphate content.  

Stress-minimised growth conditions were shown to be readily applicable to an 

industrially-derived RPP fermentation protocol using semi-defined growth medium (B) 

with improved reproducibility and increases in yields of biomass and RP (both soluble 

and total) over the original stress minimised RPP protocol and the unmodified 

industrially-derived protocol (Section 4.2.3). It can be therefore concluded that the 

physiological stress-minimising paradigm possesses substantial potential for industrial 

exploitation and that the novel protocol developed presents this concept in a format 

more easily adapted towards existing practices. 

Having established that stress-minimisation can be applied to industrially-relevant RPP 

protocols the effects of 3 specific differences between protocols A & B were examined in 

further detail; growth medium, induction point and carbon source. The improvements in 

biomass and RP generation observed between A and B-derivatives were principally due 
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to changing the growth medium (Section 4.2.6). This is consistent with preliminary 

analysis of protocol A that identified its reliance on large amounts of complex medium 

components as the principal limitation for industrial application. The sole benefit of 

using a complex medium was an increase in RP solubility, as has already been 

established (Moore et al., 1993). However increases in both total RP and biomass yields 

using medium B resulted in a higher yield of soluble CheY:GFP, despite lower percentage 

solubility. Overall the data strongly supports the prevailing practice among industry that 

limitation of complex medium components is beneficial for RPP process efficacy and 

that this practice is equally valid for stress-minimised RPP. 

Use of both glycerol and glucose was shown to be effective for stress-minimised RPP 

(Section 4.2.5). While glycerol allowed higher amounts of biomass to be formed and was 

simpler to use, glucose allowed greater efficiency of conversion to biomass and was 

cheaper than glycerol. This suggests that, in line with current practices (Section 1.4.3.2), 

both glucose and glycerol can be used as carbon source for E. coli fermentation using 

stress-minimised RPP and that the choice will be case-dependent. 

There was little overall effect of changing the induction point apart from a slight 

increase in culture heterogeneity following early induction (Section 4.2.4), unlike 

studies on standard RPP that suggest an inverse relationship between biomass and RPP 

yields dependent on induction point (Want et al., 2009). As RPP induction under stress-

minimised conditions does not substantially reduce viability of the culture, changing the 

point of induction predominantly changed the length of induction period. From this it 

can be concluded that once formed, CheY::GFP is relatively stable and that the culture 

has a broad productivity window. The increase in heterogeneity observed following 

early induction (i.e. a longer induced period) would be detrimental for industrial use, 
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therefore later induction (i.e. minimisation of the induced period) will likely be 

beneficial for industrial applications of stress-minimised RPP. 

Stress-minimised production conditions were also applied to a second industry-derived 

fermentation protocol (C) using a chemically-defined growth medium in order to 

completely eliminate the need for complex medium components (Section 4.2.7). This 

was met with only limited success. The growth medium did not contain sufficient 

nitrogen and phosphate to support cell densities OD650 >100. On supplementation of 

nitrogen (i.e. phosphate limited) high RPP productivity but low biomass was achieved 

and on supplementation of both nitrogen and phosphate high biomass was achieved but 

with poorer RPP productivity. From these observations it was concluded that with 

further development this protocol would likely be as effective as the improved B-

derivatives. It was also hypothesised that phosphate limitation may be beneficial for 

RPP accumulation by limiting cell growth but not protein synthesis. 

Prompted by the discovery of nitrogen and phosphate limitations in medium C nitrogen 

and phosphate contents were assessed for all fermentations and a number of 

observations were made. Medium A was found to be phosphate limited and this may 

have contributed to the low biomass accumulation and high CheY::GFP solubility 

observed. 

It was demonstrated that both media B and C were nitrogen limited and that this may 

have caused unexpected increases in culture acidity by accumulation of intermediates in 

the ammonium assimilation pathways (Tyler, 1978; Umbarger, 1978). It is hypothesised 

that this is likely linked to the atypicalities of central carbon metabolism in derivatives 

of E. coli B (Noronha et al., 2000; Phue & Shiloach, 2004), as these strains are often used 

industrially to limit acetate formation in fermentations (Overton, 2014) this is likely a 

highly pertinent avenue of further study. 
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5.1.3. Summary 

The aims of this work were first ‘to investigate and develop additional methods by 

which FCM can be used for the monitoring and analysis of RPP cultures in E. coli’ and 

second ‘to optimise protocols for RPP in E. coli using the physiological stress-minimising 

improved protocol of Sevastsyanovich et al. (2009), specifically regarding its application 

to industrially-relevant fermentation conditions’. Chapter 3 demonstrated the 

development of a novel FCM staining protocol for RPP monitoring and applied FCM 

monitoring to RPP process stages that it appears to have not previously been applied to. 

Chapter 4 demonstrated the successful application of improved RPP conditions to an 

industry-derived fermentation protocol and partial success for a second, in addition to 

exploring the effects of individual process variables and of growth medium composition 

on ‘improved’ RPP. From this it can be concluded overall that the aims of this work were 

successfully met. 

 

5.2. Further work 

During this work many opportunities for future work were identified, including the 

following: 

5.2.1. Further development of FCM protocols 

The efficacy of the CR staining protocol developed here is likely to be case-dependent 

and therefore validation with further RP products is necessary, particularly those of 

industrial interest. Proteins produced both solubly and as IBs would be equally valid 

targets for this, the latter to determine whether increasing classical IB (i.e. amyloid) 

character may affect refolding efficiency. In addition to the general CR-staining protocol, 

the use of CR staining to identify less-culturable amyloid+ cells in agar plate cultures 

would benefit from validation with additional RP products. Industrial RPP frequently 
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uses cryogenically stored cell banks to inoculate fermentations as opposed to agar plate 

cultures therefore it may be of use to determine whether the aging-associated amyloid 

formation observed here also occurs in cell banks. 

 

5.2.2. Further optimisation of fermentation protocols.  

This study demonstrated deficiencies in nitrogen or phosphate for all fermentation 

media used with possible effects on both RPP productivity and biomass generation. It 

would be of great use to determine the specific effects of these deficiencies and to 

determine optimal formulations or supplementation regimes for each medium.  

RP and biomass yield limitations in A may also have been attributable to sub-optimal 

amino acid distributions in the complex components. Redevelopment of an amino acid 

supplementation regime would be time-consuming and costly but as Wang et al. 

(2009b) suggested complex media may still show N-limitation and hence benefit from 

ammonium supplementation. It may therefore be of interest to investigate this further 

as a more generic optimisation method for complex media-based protocols. 

Nitrogen limitation in media B and C was thought to be the cause of high culture acidity. 

It may be of use to determine whether increased nitrogen content decreases acid 

production and hence base addition and if so, metabolomic analysis of E. coli BL21* to 

determine the biochemical cause would be of great interest. As this phenomenon may 

potentially be linked to the metabolic atypicality of B-derivative strains (Noronha et al., 

2000; Phue & Shiloach, 2004) comparison to a K12-derivative strain would also be of 

use. 

Protocols A and C2 were shown to be phosphate limited and this appeared to cause 

lower biomass yields but increased RP solubility, likely due to limiting growth rates. 

Phosphate supplementation increased biomass generation in C3, therefore this may be a 
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strategy to increase biomass in A. It may also be worthwhile to investigate further 

whether growth rate control by phosphate limitation can improve CheY::GFP production 

as hypothesised, possibly by decreasing the initial concentration of phosphates in media 

B and feeding limiting concentrations during the induced period. 

Moving the point of induction later in the culture (from OD650 ~0.5 to 40-50) resulted in 

a more homogeneous culture and hence may likely be beneficial. It would possibly be of 

interest to determine the latest point in a fermentation that would allow for satisfactory 

levels of RP accumulation and hence define the limits of the productivity window. 

 A major limitation for the work presented here is that it was developed using a single 

model protein. To further demonstrate the utility of the protocols here developed they 

must be validated by the use of additional proteins, particularly those of industrial 

relevance such as antibody fragments and hormones (see Table 1.1). Proteins that 

require translocation and PTM would also be useful for further work as stress-

minimised RPP can prevent overload of the export and modification pathways and 

hence improve production (Sevastsyanovich et al., 2009) and industrial products 

frequently require export and modification.  

The experimental methodology used in this study for fermentation protocol 

development changed a single factor at a time, it is acknowledged that this approach has 

since been superseded by more systematic methods (Bora et al., 2012; Papneophytou & 

Kontopidis, 2014) (Section 1.4.5). This section has outlined numerous factors for further 

development that would require assessment at a range of values and therefore it would 

be recommended when investigating these factors to adopt a DoE methodology. 

Finally, the fermentations in this study were substantially lower in volume (≤2.5 L) than 

those used industrially, therefore it would be logical to determine performance of the 

protocols developed here during scale-up, at least to pilot-scale. 
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5.2.3.  Further investigations into the effects of oxygen-limitation on recombinant 

GFP production 

Although FPs and FP-fusions are not RP targets of particular industrial relevance, they 

are often exploited during research due to the relationship between fluorescence and RP 

synthesis (Vizcaino-Caston et al., 2012) (Section 1.6.5). Observations made during this 

work suggested that the oxygen limitation typical of high cell density fermentation may 

affect the use of fluorescent model proteins during RPP research due to the requirement 

of O2 for maturation of the avGFP fluorophore (Figure 1.7a). 

Preliminary investigations into the effects of oxygen limitation on CheY::GFP 

fluorescence proved inconclusive. While one test determined that insufficient 

imCheY::GFP had accumulated to affect FCM fluorescence measurements (Section 

2.10.2.2) an earlier observation showed substantial increase in fluorimetry readings 

following culture reoxygenation (summarised in Appendix 2, Chapter 8). Further 

investigation in this phenomenon would be of interest, for example into the effects of 

varying the length and extent of oxygen limitation.  
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Figure 7.1: Culture growth data from repeat protocol A fermentations 

OD650 data during additional protocol A fermentations showing an inability to replicate 

the high biomass yields of A(1) and A(2):  Fermentation presented in Chapter 4 (○), 

fermentation using equipment and chemicals used in Sevastsyanovich et al. (2009) and 

Alfasi (2010) (in collaboration with L. Zaffaroni & Prof J.A. Cole, School of Biosciences, 

University of Birmingham) (fermentation terminated prematurely due to excessive 

culture foaming) (●), 7 replicate fermentations protocol A to that presented in Chapter 

4 (□,■,△,▲,▽,▼). 
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Figure 7.2: Online data from a protocol A fermentation (Section 4.2.1) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Arrows indicate points at which feed was turned on or rate of feeding increased. 
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Figure 7.3: Culture growth, plasmid retention and viability data from 2 protocol B 

fermentations (Section 4.2.2) 

a) Growth data: OD650 data for repeat 1 (○) and repeat 2 (●), CFU counts for repeat 1     

(□) and repeat 2 (■). b) Plasmid retention and viability data for repeat 1: percentage 

colonies plasmid+ (△), percentage colonies GFP+ (▲), percentage cells GFP+ (by FCM)     

(▽) and percentage cells dead (PI+, by FCM) (▼). c) Plasmid retention and viability data 

for repeat 2: percentage colonies plasmid+ (◇), percentage colonies GFP+ (◆), 

percentage cells GFP+ (by FCM) (⬡) and percentage cells dead (PI+, by FCM) (⬢) for 

repeat 2. Arrow indicates point at which feed was turned on.  
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Figure 7.4: FCM and SDS-PAGE data from 2 protocol B fermentations (Section 

4.2.2) 

a) FCM data: Mean cellular green fluorescence (FL1-A) of GFP+ cells for repeat 1  (○) 

and repeat 2 (●), mean cellular forward scatter (FSC-A) of GFP+ cells for repeat 1 (□) 

and repeat 2 (■). b) SDS-PAGE data: Percentage of CheY::GFP that was soluble for 

repeat 1 (△) and repeat 2 (▲), percentage of total cellular protein that was CheY::GFP 

for repeat 1 (▽) and repeat 2 (▼). 
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Figure 7.5: Online data from a protocol B1 fermentation (Section 4.2.3) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Arrows indicate point at which feed was turned on. 
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Figure 7.6: Online data from a protocol B2 fermentation (Section 4.2.4) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Arrows indicate points at which the feed was turned on, paused and resumed. 
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Figure 7.7: Online data from a protocol B3 fermentation (Section 4.2.6) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Arrows indicate point at which feed was turned on. 
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Figure 7.8: Online data from a protocol C1 fermentation (Section 4.2.7.1) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Black arrows indicate point at which feed was turned on, blue arrows indicate 

addition of 15 g (NH4)2SO4. 
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Figure 7.9: Online data from a protocol C2 fermentation (Section 4.2.7.2) 

a) Agitation (blue), DOT (red) and temperature (green) data. b) Gas-MS data; CDC (blue) 

OXC (red), RQ (green). c) pH (blue), volumes of acid (red), base (green) and feed 

(orange) added to vessel. Black arrows indicate point at which feed was turned on, blue 

arrows indicate addition of (NH4)2SO4, red arrows indicate addition of 20 g Na2HPO4 and 

10 g NaH2PO4.  
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Figure 7.10: Online data from a protocol C3 fermentation (Section 4.2.7.3) 

a) Agitation (blue) and DOT (red) data. b) Gas-MS data; CDC (blue) OXC (red), RQ 

(green). c) pH (blue), volumes of acid (red), base (green) and feed (orange) added to 

vessel. Arrows indicate points at which feed was turned on or rate of feeding increased. 
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Figure 7.11: SDS-PAGE gel images from protocol A & B fermentations 

SDS-PAGE gel images of BugBuster®-fractionated fermentation cell samples, ‘S’ and ‘I’ 

indicate soluble and insoluble fractions respectively. Time of sampling is indicated 

above lanes, all times in h post-induction. Arrows indicate approx. 42 kDa. a) Protocol A 

(Section 4.2.1). b) Protocol B replicate 1 (Section 4.2.2). c) Protocol B replicate 2 

(Section 4.2.2).  
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Figure 7.12: SDS-PAGE gel images from protocol B1-B3 fermentations 

SDS-PAGE gel images of BugBuster®-fractionated fermentation cell samples, ‘S’ and ‘I’ 

indicate soluble and insoluble fractions respectively.  Time of sampling is indicated 

above lanes, all times in h post-induction. Arrows indicate approx. 42 kDa. a) Protocol 

B1 (Section 4.2.3). b) Protocol B2 (Section 4.2.4). c) Protocol B3 (Section 4.2.4).  
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Figure 7.13: SDS-PAGE gel images from protocol C2 & C3 fermentations 

SDS-PAGE gel images of BugBuster®-fractionated fermentation cell samples, ‘S’ and ‘I’ 

indicate soluble and insoluble fractions respectively.  Time of sampling is indicated 

above lanes, all times in h post-induction. Arrows indicate approx. 42 kDa. a) Protocol 

C2 (Section 4.2.7.2). b) Protocol C3 (Section 4.2.7.3). 
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Chapter 8:  Appendix 2 - Observations Regarding Excessive 

Foaming in Fermentations  
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8.1. Introduction 

A frequent problem observed with the model BL21*/CheY::GFP-RPP system used in this 

work is that it is highly prone to excessive culture foaming, often sufficient to necessitate 

termination of the experiment (terminal foaming) due to blockage of the exhaust filter 

and leakage of culture from the vessel. The reason for this is at present unknown. The 

occurrence of terminal foaming during this study ceased following the replacement of 

silicon antifoam by PPG, but prior to this a phenomenon of potential interest occurred. 

The majority of terminal foaming incidents occurred during the night while the vessel 

was not directly monitored and due to the absence of a foam sensor it was not possible 

to determine exactly when foaming occurred in order to correlate the incident to on-line 

data and hence determine a cause. On a single instance however, terminal foaming 

occurred while the vessel was being monitored, allowing not only a sufficiently limited 

time-frame to examine on-line data but also off-line data before and after the foaming 

incident. 

 

8.2.  Results & Discussion 

E. coli BL21* pETCheY::GFP was grown in a 1.5 L fed-batch fermentation (protocol B3, 

silicone antifoam), terminal foaming was observed to have occurred between 37 and 41 

h post-induction when the fermentation was terminated. Samples were taken during the 

fermentation, including before and after foaming at 37 and 41 h and analysed for OD650 

and fluorescence (by fluorimetry). While there was a small decrease in OD the most 

dramatic changes occurred in fluorescence (Figure 8.1a,b). Following foaming, specific 

fluorescence (fluorescence per unit OD) had almost tripled and background fluorescence 

(absolute fluorescence of 0.22 μm-filtered culture broth) increased by over 60%, 

suggesting rapid accumulation of mature GFP and leakage of protein into
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Figure 8.1: Data from terminal foaming of a fermentation  

a) OD650 (○) and specific fluorescence (fluorescence per unit OD650) (●) throughout the 

fermentation. b) Background fluorescence (□) and absolute fluorescence (■) 

throughout the fermentation. c) Agitation (△) and DOT (▲) data during foaming 

incident. d) CDC (▽), OXC (▼) and RQ (◇) data during foaming incident. Sample points 

before and after foaming incident are indicated by arrows.  

  

b 

a 

c d 



 258 

the extracellular milieu. This coincided with a rapid increase in the DOT (and 

consequent decrease in agitation rate along with decreases in CDC and OXC readings) 

following the addition of the entire 0.5 L feed (at approximately 36 h), which is 

presumed to be indicative of exhaustion of carbon-source and cessation of growth 

(Figure 8.1c,d). 

Based on these data, the following hypothesis to explain the high frequency of terminal 

foaming for the BL21*/CheY::GFP model RPP system was proposed. Increasing the 

agitation rate can cause foaming (Junker, 2007) but is unlikely to be the cause in this 

case. Prior to foaming the DOT was exhausted due to the high oxygen demands of the 

culture, but on consumption of the carbon source oxygen demands decreased and the 

DOT rapidly increased. Although it is acknowledged that this does possibly contradict 

the findings in Section 2.10.2 if sufficient imGFP did in fact form during the oxygen-

limited period, then rapid oxygenation could have triggered a burst of GFP maturation. 

This is supported by the dramatic increase in fluorescence observed following 

reoxygenation as it is unlikely as large an increase would result from de novo CheY::GFP 

synthesis alone. As GFP maturation produces hydrogen peroxide (Figure 1.7) (Tsien, 

1998) a burst of GFP maturation could result in an equivalent pulse of intracellular H2O2. 

If the pulse of H2O2 is sufficient to trigger oxidative stress and cell death/lysis, this 

would result in an increase in extracellular protein concentration that is known to cause 

foaming in later-stage bioreactor cultures (Junker, 2007). This is supported by the 

increase in fluorescence of the culture medium, as this suggests an increase in leakage of 

cytoplasmic proteins.  

Section 2.10.2 concluded that insufficient immature CheY::GFP accumulated during 

oxygen-limited HCDC to require routine additional sample processing by AFR, whereas 

the data presented here suggests the accumulation of large quantities of immature 
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CheY::GFP. It is thought that this discrepancy is likely to result from variability in the 

oxygen-limited phase such as the length of oxygen-limitation, the rate of CheY::GFP 

production, cell density and the growth rate. As such it is concluded that while routine 

use of AFR would be discouraged the possibility that accumulation of immature 

CheY::GFP may occur should not be discounted. If this should occur it is likely that it 

could be identified, as here, by comparison to the final measurement where the DOT had 

returned to ~100%. 

 

8.3. Conclusions & further work 

As this phenomenon was only observed on a single instance it was not possible to 

investigate further and therefore make any firm conclusions. This does, however 

provide a potential route of further study, dependent on replication of   the conditions 

and therefore the foaming incident. Quantification of PI+ cells by FCM of samples pre and 

post-foaming ought to identify any increase in cell death and comparison of absolute cell 

counts may allow determination of cell lysis. It may be possible to directly detect 

intracellular H2O2 through use of ROS-responsive fluorescent dyes such as the 

CELLROX® Deep Red and Orange Reagents (Life Technologies Corp.) (other ROS-

responsive dyes such as H2DCFDA would not be of use in this case as their fluorescence 

spectra overlap that of GFP) (Johnson & Spence, 2010). It may also be possible to test for 

a cellular response to the presence of H2O2. E. coli responds to peroxide stress by 

production of catalase (KatG), which can be detected and quantified biochemically and 

either gene reporter studies (such as the pUA66 katG reporter (Zaslaver et al., 2006)) or 

qRT-PCR could be used to detect upregulation of genes involved in the oxidative stress 

response.
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Chapter 9:  Appendix 3 – Publications Derived from this Work  
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