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ABSTRACT 

 

GM-CSF is an important haematopoietic growth factor and immune modulator. 

Studies-on T cells revealed that efficient activation of the human GM-CSF gene 

is dependent upon the activation of an enhancer located 3 kb upstream of the 

promoter, inducible by phorbol myristate acetate and calcium ionophore (PMA/I) 

via kinase- and Ca2+-dependent signalling pathways, respectively. This 

enhancer is often aberrantly remodelled as a constitutive DNase hypersensitive 

site (DHS) in acute myeloid leukaemia (AML). To investigate the role of MAPKs 

in enhancer activity and chromatin remodelling, I used activated T blasts and 

human leukaemic cell lines as inducible model systems. The combination of 

MEK and p38 MAPK inhibitors reduced PMA/I-induced GM-CSF gene 

expression and the DHS at the enhancer. This was associated with a reduction 

in DNA-binding activity for the MAPK-inducible AP-1 and in the phosphorylation 

of MSK1, which in turn stimulates NF-B transcriptional activity by 

phosphorylating p65 at Ser276. The combination of MEK and p38 inhibitors also 

reduced the PMA/I-mediated recruitment of AP-1, MSK1 and NF-B at the 

enhancer. 

These data demonstrate a cross-talk between the MAPK and NF-B signalling 

pathways in regulating GM-CSF gene transcription and therefore represent 

potential targets for the treatment of AML cases where aberrant chromatin 

remodelling occurs. 
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1.  INTRODUCTION 

 

1.1       HAEMATOPOIESIS 

 

1.1.1     Haematopoietic cascade  

 

Haematopoiesis is the process responsible for the formation and development 

of all types of blood cells from common multipotent haematopoietic stem cells 

(HSCs). Haematopoiesis is usually represented as a hierarchical cascade, 

where progenitors and precursors originate from HSCs through single or 

multiple pathways directed by specific cytokines and growth factors (Figure 

1.1.1). Progress through the pathways is mediated by alterations of gene 

expression.  

HSCs have the potential to differentiate into various progenitor cells and divide 

to generate more HSCs (self-renewal ability) [1]. During the differentiation 

process HSCs gradually lose their self-renewal ability. At every step of 

differentiation, cells are characterised by specific cell surface markers. HSCs 

are lin- (lineage negative, meaning they don’t show on their surface any marker 

of differentiated immune cells), Sca-1+ and c-kit+ (LSK) [2]. In humans, lineage 

negative cells are negative for CD3 (T lymphocytes), CD14 (monocytes), CD16 

(NK cells, granulocytes), CD19 (B lymphocytes), CD20 (B lymphocytes), 

and CD56 (NK cells). LSK cells can be subdivided into long-term (LT-) HSCs 

(Thy-1lowFlk2/Flt3-), short-term (ST-) HSCs (Thy-1lowFlt3+) and multipotent 

progenitors (MPPs) (Thy-1-Flt3+) [3, 4]. LT-HSCs differentiate into multipotent 

ST-HSCs, which maintain self-renewal capability for about 6 weeks in vivo.   

http://en.wikipedia.org/wiki/CD19
http://en.wikipedia.org/wiki/CD20
http://en.wikipedia.org/wiki/CD56
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ST-HSCs differentiate into MPPs, which retain multi-lineage differentiation 

potential but lack self-renewal capability [3]. 

MPPs can differentiate into common lymphoid progenitors (CLPs) and common 

myeloid progenitor (CMPs). CLPs give rise to all classes of lymphocytes (B, T 

and NK cells) [5, 6]. CMPs in turn give rise to early precursors for 

megakaryocyte and erythroid progenitors (MEPs) and granulocyte, macrophage 

progenitors (GMPs) [7]. Both CLPs and CMPs can give rise to dendritic cells 

(DCs) [8]. 

Adolfsson and colleagues [9] have identified a class of progenitor cells with  

lymphoid and myeloid potential but little or no megakaryocyte-erythrocyte 

potential. These cells, termed lymphoid-primed multi-potent progenitors 

(LMPPs), are Lin-Sca-1+c-kit+CD34+ (LSK) and express high level of Flt3. 

This discovery led to the proposal of an alternative HSC differentiation program 

where LMPPs can differentiate into all different haematopoietic cell types apart 

from megakaryocytes and erythrocytes and GMPs can be generated by both 

CMPs and LMPPs (Figure 1.1.2). 
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Figure 1.1.1   Hierarchy of hematopoietic differentiation 
 
 
 
 
 
 
 

 

 

 

 

 

Transcription factors involved in cell transitions are illustrated on the arrows; soluble 

factors that contribute to the differentiation process are written in blue. SCF, stem cell 

factor; EPO, erythropoietin; TPO, thrombopoietin. Taken from Fauci A.S. 2008 [10]. 
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Figure 1.1.2   Hierarchy of differentiation in the haematopoietic system 

 

 

 

 

 

 

CLP: common lymphoid progenitor; CMP: common myeloid progenitor; EP: erythrocyte 

progenitor; GMP: granulocyte–macrophage progenitor; GP: granulocyte progenitor; 

LMPP: lymphoid primed multipotent progenitor; MacP: macrophage progenitor; MEP: 

megakaryocyte–erythrocyte progenitor; MkP: megakaryocyte progenitor; MPP: 

multipotent progenitor; NK: natural killer. Taken from Cedar and Bergman, 2011 [11]. 
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1.1.2   Lymphoid development 

 

MPPs go through a series of developmental stages where they gradually lose 

their myeloid lineage differentiation potential to become lymphoid-committed 

CLPs. In a study conducted by Lai and Kondo, MPPs were subdivided into 

three groups: FLT3lowVCAM-1+, FLT3highVCAM-1+ and FLT3highVCAM-1- [12]. 

Flt3lowVCAM-1+ MPPs represent the most primitive multi-lineage progenitors: 

they retain the ability to give rise to MegE, macrophages, granulocytes and 

lymphoid lineages [13] and they are the only ones which can give rise to CMPs. 

Flt3highVCAM-1+ MPPs correspond to the LMPPs population defined by 

Adolfsson; they have lost MegE differentiation potential, but they can still 

differentiate into macrophages/granulocytes and lymphocytes both in vitro and 

in vivo [13].  

The most developmentally advanced Flt3highVCAM-1− MPPs are lymphoid-

specified progenitors, meaning they predominately give rise to lymphocytes in 

vivo. CLPs are characterized by the expression of IL-7R surface marker and 

IL-7/IL-7R signalling is essential for both T and B cell development [14, 15]. 

 

1.1.2.1   B cell development 

 

B lymphocytes derive from CLPs through several stages. The first step is 

represented by Ly6D positive B-primed lymphoid progenitor (BLP), that 

differentiate into pre-pro-B cell (B220intCD43high) and then into pro-B cell 

(B220highCD19high). The last stage is represented by CD25 positive pre-B cell 

[16]. The main transcription factors involved in B cell development are PU.1, 

Ikaros, EBF, E2A and PAX5. PU.1, encoded by the SFPI1 gene, is an ETS 
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transcription factor essential for both myeloid and lymphoid cell development, 

but not for normal erythroid differentiation [17]. High levels of PU.1 drive myeloid 

differentiation, whereas low levels promote B-cell differentiation. In MPPs PU.1 

levels are under control of the zinc-finger transcription protein Gfi1 (Growth 

factor independence 1), which represses the SFPI1 gene. Interestingly, Ikaros 

promotes Gfi1 and antagonizes PU.1 expression in MPPs [18]. PU.1 and Ikaros 

have been demonstrated to work together in also regulating Flt3 and IL-7R 

expression in CLPs [19]. The ability of Ikaros to repress myeloid genes is also 

linked to its capability to associate with transcription repressive complexes, 

such as the histone deacetylase (HDAC)-containing complexes NURD or Sin3 

[20]. 

Loss of either E2A, a basic helix-loop-helix E protein, or the early B cell factor 

EBF leads to a block in B cell development at the pro-B stage, before B cell 

receptor (BCR) rearrangement occurs [21, 22]. E2A and EBF collaborate at the 

promoters of target genes, such as genes encoding proteins necessary for BCR 

rearrangement and signalling [23]. The transcription factor PAX5 is regulated by 

both E2A and EBF as well as by PU.1, IRF4 and IRF8. PAX5 is expressed only 

in B cells and it is essential for progression of B cell development beyond the 

early pro-B cell stage [24]. PAX5 sustains B-cell differentiation by both activating 

B cell specific genes, including genes modulating homing and migration of B 

cell progenitors, and suppressing alternate lineage specific genes, such as s 

Csf1r, Flt3, and Notch1 [25].    
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1.1.2.2    T cell development 

 

Different to other haematopoietic lineages, that complete their differentiation 

within the bone marrow, T lymphocytes mature in the thymus. Mature T cells 

are characterized by the expression of T-cell receptors (TCR) and of the co-

receptor molecules CD4 or CD8. Most T cells (> 95%) express a TCR 

composed of two glycoprotein chains called α and β. Just a small subset of T 

lymphocytes expresses a TCR that is made up of one γ and one δ chain. CD4 

positive cells are defined as T helper or regulatory T cells and they recognize 

antigens presented by the MHC class II complex expressed on the surface 

of antigen-presenting cells (APC); CD8 positive cells are known as cytotoxic T 

cells and they recognize antigens presented by the MHC class I complex. Both 

CD4 and CD8 positive cells can become memory T cells. These cells persist a 

long time after an infection has been resolved. They quickly expand to large 

numbers of effector T cells upon re-exposure to the same infection/antigen thus 

providing an immune memory. The first step of T cell maturation is the 

differentiation of CLPs into double negative early T-cell progenitors (ETPs or 

DN), CD4- and CD8-, that still maintain their ability to give rise to myeloid cells, 

dendritic cells and natural killer (NK) [26]. DN thymocytes undergo four further 

differentiation steps according to the surface expression of CD25 and CD44 

(DN1: CD44+CD25−; DN2: CD44+CD25+; DN3: CD44−CD25+; and DN4: 

CD44−CD25−) [27]. T lineage commitment occurs at DN3 stage, since DN1 and 

DN2 populations maintain differentiation potential for other lineages. DN3 cells 

express a pre-TCR  encoded by a non-rearranging locus, and a rearranged 

TCR  chain; the pre-TCR  associates with the CD3 protein complex, 

involved in signal transduction [28]. During the last stage of maturation a newly 

http://en.wikipedia.org/wiki/Glycoprotein
http://en.wikipedia.org/wiki/Antigen-presenting_cell
http://en.wikipedia.org/wiki/Memory_T_cell
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rearranged TCR  chain replaces the pre-TCR  chain and cells start 

expressing CD4 and CD8, forming the double positive population (DP). DP cells 

interact with cortical epithelial cells that express high density of both MHC class 

I and II molecules associated with self-peptides. Just a few TCRs adequately 

bind to self-peptide-MHC ligands: most of the time this interaction is too weak 

(death by neglect) or too strong (negative selection) and cells undergo 

apoptosis. How DP cells become CD4 or CD8 single positive (SP) cells is still a 

matter of debate. In the “stochastic” (or “selection”) model it is assumed that 

either CD4 or CD8 is randomly switched off. Instead, in the “instruction” 

model the binding of the TCR  to a certain class of MHC molecules would 

generate a specific signal instructing the DP precursors to switch off the 

expression of either CD4 or CD8 [29]. A schematic representation of T cell 

development is shown in Figure 1.1.3. 

Notch1 and GATA-3 are key regulatory factors required for development of T 

cell lineage. Notch1 triggers T cell program in DN cells mediating the 

upregulation of GATA-3 [30, 31]. A proper balance of GATA-3 and PU.1 

expression is also essential. Opposite to GATA-3, PU.1 levels are high in DN1 

cells and decrease towards the DN3 stage. The absence of PU.1 causes a 

block of T cell differentiation at the early stages [32]. PU.1 levels are in turn 

regulated by RUNX1, which is also required for proper T-lineage commitment 

[33].  
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Figure 1.1.3     T cell development in the thymus 
 
 
 
 
 

 
 

 

 

The first step of T cell maturation is the differentiation lymphoid progenitors into double 

negative (DN) cells, CD4- and CD8-. DN thymocytes undergo four further differentiation 

before becoming double positive (DP). DP cells interact with cortical epithelial cells that 

express high density of both MHC class I and II molecules associated with self-

peptides. After this interaction DP cells become CD4 or CD8 committed. The final step 

of differentiation into single positive (SP) cells occurs in the medulla. Taken from 

Germain R.N., 2002 [28]. 
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1.1.3    T cell receptor (TCR) signalling  

 

CD4 and CD8 SP T cells are released from the thymus into the bloodstream as 

naïve T cells. They become active as they encounter antigen presented by 

MHC molecules on APC in the peripheral lymphoid organs, mainly lymph nodes 

and spleen.  

TCR forms a complex with CD3, containing the motif for tyrosine 

phosphorylation ITAMs (Immunoreceptor Tyrosine-based Activation Motifs). 

Simultaneous binding of the MHC molecules by TCR complex and CD4 or CD8 

co-receptor triggers the signal. The contact with the antigen recruits the Src 

family kinases Lck and Fyn, activated through their dephosphorylation by CD45. 

Lck and Fyn initiate the signal by phosphorylating the ITAMs on the CD3. This 

recruits ZAP-70 [34], which in turn phosphorylates LAT (Linker Activator for T 

cells). LAT attracts PLC-[35, 36] which cleaves PIP2 (Phosphatidylinositol-

4,5-Bisphosphate) into DAG (Diacylglycerol) and IP3 (Inositol Triphosphate). 

IP3 leads to an increase of cytoplasmatic level of Ca2+, both because of the 

release of Ca2+ from the endoplasmic reticulum and because of an increased 

entry of extracellular Ca2+ into the cell. The increased Ca2+ levels disrupt the 

interaction between calcineurin and its inhibitory protein calmodulin. Active 

calcineurin dephosphorylates the transcription factor NFAT (Nuclear Factor of 

Activated T cells), allowing it to enter the nucleus and to cooperate with other 

transcription factors to bind promoters and regulate gene transcription [37]. The 

NFAT family consists of five members: NFATc1-c4 and NFAT5, which is the 

only one not regulated by calcium signalling [38]. 

Phosphorylated LAT recruits additional proteins through different members of 

the GRB2 family proteins. One of these is SLP-76, which in turn recruits Vav 

http://en.wikipedia.org/wiki/Co-receptor
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and triggers the p38 and JNK/MAPK pathways [39]. Another example is the 

recruitment of SOS1 which activates Ras and ERK/MAPK pathway [40]. AP-1 is 

one of the main transcription factors activated by MAPK signal pathway and 

involved in TCR receptor signalling (see section 1.5.4). A schematic 

representation of TCR signalling is shown in Figure 1.1.4. Essential for TCR 

signalling is the stimulation of the coreceptor CD28, which interacts with CD80 

(B7.1) and CD86 (B7.2) molecules on activated APC, and stimulates IL-2 

production and T cell proliferation.  

TCR activation, together with CD28 costimulation, leads also to the activation of 

NF-B pathway. DAG activates Protein kinase C (PKCθ), which in combination 

with the PKB/Akt, activated by the CD28 co-receptor, is able to regulate NF-B 

activity through the IKK complex [41]. This phosphorylates IB (Inhibitor of 

Kappa Light Chain Gene Enhancer in B-Cells) and leads to its degradation, 

causing the release of NF-B into the nucleus where it activates gene 

transcription. 
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Figure 1.1.4      TCR signal transduction 

 

 

 

TCR forms a complex with CD3. The contact with the antigen recruits Lck, activated 

through their dephosphorylation by CD45. Lck initiates the signal by phosphorylating 

CD3. This recruits ZAP-70, which in turn phosphorylates LAT. LAT attracts PLC- 

which cleaves PIP2 (Phosphatidylinositol-4,5-Bisphosphate) into DAG (Diacylglycerol) 

and IP3 (Inositol Triphosphate). IP3 leads to an increase of cytoplasmatic level of Ca2+. 

The increased Ca2+ levels activates Calcineurin, which dephosphorylates the 

transcription factor NFAT (Nuclear Factor of Activated T cells), allowing it to enter the 

nucleus and to cooperate with other transcription factors to bind promoters and 

regulate gene transcription. Phosphorylated LAT recruits additional proteins through 

different members of the GRB2 family proteins. One of these is SLP-76, which in turn 

recruits Vav and triggers the JNK/MAPK pathway. TCR activation, together with CD28 

costimulation, leads also to the activation of NF-B pathway, through DAG and Protein 

kinase C (PKCθ) activation. Taken from Jerome 2008 [42]. 
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1.1.4      Myelopoiesis 

 

Myelopoiesis is the generation of myeloid cells (erythroid, megakaryocytic, 

granulocytic and monocytic cells) in the bone marrow. GMPs can be generated 

by either LMPPs or CMPs and they are LSK expressing the FcR and CD34 

surface markers. GMPs can give rise to granulocytes (neutrophils, eosinophils 

and basophils) or macrophages and essential transcription factors in their 

regulation are PU.1 and C/EBP. PU.1 expression in early progenitor cells is 

induced by Runx1 [33] and it is required for both lymphopoiesis and 

myelopoiesis. However, high levels of PU.1 in LMPPs drive the myeloid cell 

development at the expense of B-cell differentiation [43]. C/EBP regulates the 

expression of M-CSF and G-CSF receptors and its absence arrests myeloid 

differentiation prior to the GMPs stage [44]. C/EBP also regulates the 

differentiation of eosinophils and basophils, together with GATA-2. Iwasaki and 

co-workers [45] demonstrated that eosinophils are generated if C/EBPα 

expression is induced before GATA-2; in contrast if GATA-2 is expressed first 

followed by C/EBPα, then basophils are generated. 

CMPs can also differentiate into megakaryocytes-erythroid progenitor cells 

(MEPs). Megakaryocytes and erythrocytes differentiation is mainly regulated by 

PU.1 and GATA-1. GATA-1 is essential for the maturation of megakaryocytes 

[46] and it collaborates with FOG-1 (Friend of GATA-1) during erythropoiesis.  
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1.2    LEUKAEMIA 

 

1.2.1    Acute myeloid leukaemia (AML) 

 

Several types of committed precursors (monocyte, granulocyte, erythrocyte, 

megakaryocyte precursors) can originate from CMPs, giving rise to different 

final mature cells. A block of the differentiation at any stage of the cascade 

leads to an abnormal proliferation of myeloid progenitor cells in the bone 

marrow and defines the characteristics associated with myeloid leukaemia 

(AML).  

To establish a diagnosis of AML ≥ 20% myeloblasts need to be present in the 

blood or bone marrow. Myeloblasts can be identified by the presence of Auer 

rods (cytoplasmatic clumps of azurophilic granular material forming elongated 

needles), by myeloperoxidase (MPO) cytochemical staining or by the 

expression of myeloid markers such as CD13, CD33 or CD117 [47]. An 

exception in which a diagnosis of AML can be made irrespective of blast count 

is the evidence of cytogenetic abnormalities such as t(15;17), inv(16)/t(16;16) or 

t(8;21). 

According to the two-hit model of AML pathogenesis, AML is the result of two 

types of genetic alterations. Class I mutations support proliferation/survival of 

hematopoietic progenitors [48, 49]; they typically involve alterations in receptor 

tyrosine kinase (RTK) signalling pathways such as mutations in FMS-like 

tyrosine kinase 3 (Flt3), c-Kit and Ras or activation of PI3K/Akt pathways. 

Acting in cooperation, class II mutations lead to impaired haematopoietic 

differentiation [48] and typically involve alterations of transcription factors 

required for normal myeloid cell differentiation. Class II mutations include fusion 

http://en.wikipedia.org/wiki/Azurophil
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proteins such as RUNX1-ETO, CBF-MYH11, PML-RAR [48, 50] and mutations 

of the transcription factors RUNX1, mixed lineage leukaemia (MLL), C/EBP or 

nucleophosmin 1 (NPM1) [51]. 

In the last 5 years a comprehensive genomic analysis has been used to find 

new gene mutations, such as those in TET2, isocitrate dehydrogenase 1/2 

(IDH1/2), DNMT3A, which directly targets epigenetic control such as DNA or 

histone methylation status [52]. Some authors, including Naoe and Kiyoi, have 

called this last class of gene mutations “class III” and they have proposed a 

model in which the three classes of mutations are functionally linked to generate 

AML [53]. 

 

1.2.1.1 Epigenetics in AML 

 

Many fusion proteins generated by chromosomal translocations have a critical 

role in leukaemogenesis because their target genes are involved in stem cell 

development or lineage differentiation in haematopoiesis. These chimeric fusion 

oncoproteins are capable of directly interacting with chromatin remodelling 

complexes or histone modifier enzymes, leading to gene deregulation and a 

differentiation block [54]. 

So far more than 50 different fusion partners of the MLL gene have been 

identified in both AML and acute lymphoblastic leukaemia (ALL). MLL 

methylates lysine 4 at histone 3 through its SET domain. Moreover, it is part of 

a large complex of proteins able to interact with chromatin remodelers, HATs, 

HDACs and other histone modifiers [55]. MLL fusion proteins, such as MLL-CBP 

or MLL-p300, lack the SET domain but they retain the bromodomain and HAT 

domain and so they increase the acetylation and the expression of target genes 
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(e.g. Hox genes), which are normally highly expressed in pluripotent 

haematopoietic stem cells and downregulated upon differentiation; MLL fusion 

proteins act as constitutive activators, preventing proper cell differentiation 

(Figure 1.2.1).  

The t(8;21) translocation generates the RUNX1-ETO fusion protein. RUNX1 is 

part of the core-binding factor (CBF) complex, together with CBF subunit. 

RUNX1 can function as either a transcriptional activator or repressor, whereas 

its partner ETO binds co-repressors such as HDACs, Sin3, N-CoR and SMRT 

[56]. RUNX1-ETO recruits the co-repressors N-CoR/Sin3/HDAC1 complex at 

RUNX1 target genes, leading to transcriptional repression [57].  

Acute promyelocytic leukaemia is also characterised by the translocation of the 

retinoic acid receptor alpha (RAR) and one of five different partner genes, 

amongst which the most frequent is PML. In the absence of retinoic acid (RA), 

RAR binds to specific DNA sequences on target genes (called RA responsive 

elements or RARE) and represses transcription by recruiting repressive 

complexes such as NCoR-HDAC. Physiological doses of RA promote the 

dissociation of the co-repressor complexes and the recruitment of co-activators, 

leading to transcriptional activation of target genes and promoting cell 

differentiation. The fusion protein PML-RAR binds the co-repressor complexes 

with higher efficiency than RAR and it is responsible for the differentiation 

block. Pharmacological doses of all-trans-RA are able to remove these 

repressive complexes and recruit HATs, inducing re-expression of the silenced 

genes and differentiation of the promyelocytic cells [58] (Figure 1.2.1).  
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Figure 1.2.1  Model of gene repression mediated by leukaemia fusion     

proteins 

 

 

 

 

  

(A) In leukaemic cells, MLL fusion proteins block cell differentiation acting as  

constitutive activators of target genes critical for normal haematopoietic development. 

(B) Haematopoietic transcription factors (HTF) regulate cell differentiation via 

interaction with either co-activator (HAT) or co-repressor (HDAC). Fusion proteins, 

such as PML–RAR and RUNX1–ETO, show a constitutively repressed gene 

transcription because of their stronger affinity for co-repressor complexes.  

Taken from Di Croce L., 2005 [59]. 
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Both PML-RARand RUNX1-ETO are able to interact with DNMTs, leading to 

methylation of CpG islands of target promoters [58, 60]. Aberrant DNA 

methylation is a common feature in AML [61] and it has been shown that there 

is an increase of DNMT1, DNMT3A and DNMT3B levels in AML blasts [62, 63].  

 

 

1.2.2      T cell acute lymphoblastic leukaemia (T-ALL) 

 

T cell acute lymphoblastic leukaemia (T-ALLs) is an aggressive haematological 

tumour resulting from the malignant transformation of lymphoid progenitors 

cells. Normally immature CD34+ cells leave the bone marrow and enter the 

thymus, where they differentiate through progressive stages into mature T-cells 

harbouring a functional TCR receptor. However, in primary T-ALL patient 

samples there is a clonal expansion of malignant T-cells arrested at a specific 

stage during T-cell differentiation. The T cell transformation process is regulated 

by different genetic alterations that contribute to alter the normal process of T 

cell growth and differentiation. The most relevant oncogenic pathway in T cell 

transformation is governed by NOTCH1 signalling (Figure 1.2.2) [64].  
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Figure 1.2.2  Schematic representation of NOTCH1 signalling in T cell 

progenitors 

 

 

 

 

Interaction of the NOTCH ligand delta-like 4 with NOTCH1 triggers a double cleavage 

of the receptor, first by the metalloprotease ADAM10 and subsequently by the -

secretase complex. Release of the intracellular domains of NOTCH1 from the 

membrane activates the expression of NOTCH target genes in the nucleus. FBXW7 

recognizes the PEST domain of activated NOTCH1 and terminates NOTCH signalling 

through its proteasome degradation. Taken from Van Vlierberghe et al., 2012 [64]. 
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Activating mutations of NOTCH1 signalling have been found in over 50% of T-

ALLs cases [65]. Constitutive activation of NOTCH1 signalling often cooperates 

with alterations of cell cycle regulators, such as deletions of the cyclin-

dependent kinase inhibitor 2A (CDKN2A) [66].  

Moreover, T-ALLs show chromosomal translocations that place T-ALL 

transcription factor oncogenes under the control of strong T-cell specific 

enhancers located in the TCR and TCR loci, leading to their aberrant 

expression in T cell progenitors. Examples of these transcription factors are 

TAL1 [67] and TAL2 [68] belonging to the basic helix-loop-helix (bHLH) family; 

LIM-only domain (LMO) genes such as LMO1 and LMO2 [69]; the HOX 

transcription factors HOXA [70]; MYC [71] and MYB [72].  

Important signal transduction pathways are also altered in T-ALLs. Constitutive 

activation of PI3K-AKT [73], RAS and JAK/STAT [74, 75] signalling pathways 

has been found in about 5-10% of T-ALLs. 
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1.3    TRANSCRIPTION 

 

1.3.1    Basal transcription machinery 

 

Messenger RNAs (mRNAs) are transcribed by the DNA-dependent RNA 

polymerase II (Pol II) machinery. The process of transcription starts at the 

transcription start site (TSS) located in the core promoter element (see section 

1.3.2.1) with the assembly of the ‘transcription machinery’. The assembled 

apparatus contains a 12-subunit (Rpb1-Rpb12) RNA polymerase II core 

complex, general transcription factors (GTFs) (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, 

TFIIH) and co-activators [76]. Co-regulators are often multiprotein complexes, 

many of which can interact directly with Pol II and GTFs and influence 

expression, or have chromatin remodelling activity changing the chromatin 

architecture of the gene. The activity of co-regulators influences transcription-

factor association and the transcriptional status [77]. 

In vitro studies demonstrated a stepwise recruitment of the GTFs to form a 

stable pre-initiation complex (PIC) at the core promoter region. TFIID first binds 

to the promoter, followed by TFIIA and TFIIB that help stabilize promoter-bound 

TFIID, and then the recruitment of RNA Pol II/TFIIF. After formation of a stable 

complex, TFIIE and TFIIH are recruited (Figure 1.3.1) [78].  

The largest subunit of RNA Pol II (Rpb1) contains a carboxy-terminal repeat 

domain (CTD) consisting of 52 (in human) repeats of Tyr-Ser-Pro-Thr-Ser-Pro-

Ser. The Cdk7 subunit of TFIIH is able to phosphorylate CTD at Ser5 (as well 

as at Ser7) and this phosphorylation allows transcriptional initiation to occur. 

RNA Pol II complex transcribes about 20-30 base pairs and then pauses. 

Transcription is resumed and transcriptional elongation occurs once CTD has 
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been phosphorylated at Ser2 by CDK9 and cyclin T subunits of the positive 

transcription elongation factor b (pTEFb). TFIIF moves along with the RNA Pol 

II enzyme, whereas TFIIA and TFIID remain attached to the promoter and 

promotes the subsequent recruitment of TFIIB and RNA Pol II for repeated 

cycles of transcription.  

RNA polymerase II produces not only coding mRNAs that will be translated into 

proteins, but also transcripts called noncoding RNAs (ncRNA)s which have 

regulatory functions and do not encode proteins. ncRNAs can regulate gene 

expression through several mechanisms, for example interacting with 

transcriptional coregulators that can influence their recruitment to specific 

transcriptional control regions [79]. 

Different ncRNAs have been identified, among which long non coding RNAs 

(lncRNAs), longer than 200 nucleotides, and the small double-stranded (ds)  

siRNAs and miRNAs. siRNAs and miRNAs are involved in translation arrest, 

mRNA stability and gene silencing, a phenomenon called RNA interference 

(RNAi). 
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Figure 1.3.1 Sequential assembly pathway of the basal transcription 

machinery 

 

 

Picture represents a stepwise recruitment of the general transcription factors to form 

stable pre-initiation complex at the core promoter region. TFIID first binds to the 

promoter, followed by TFIIA and TFIIB that help stabilize promoter-bound TFIID, and 

then the recruitment of RNA Pol II/TFIIF. After formation of a stable complex, TFIIE and 

TFIIH are recruited. TFIIH phosphorylates RNA Pol II at Ser5 and this phosphorylation 

allows transcriptional initiation to occur. RNA Pol II complex transcribes about 20-30 

base pairs and then pauses. Transcription is resumed and transcriptional elongation 

occurs once CTD has been phosphorylated at Ser2 by positive transcription elongation 

factor b (pTEFb). Taken from D.Ray’s PhD thesis, University of Birmingham 2012. 
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1.3.2    Cis-regulatory elements and DNAse I hypersensitive sites (DHSs) 

 

The information about when and where a gene is going to be expressed resides 

in defined genomic elements called cis-regulatory elements. These are regions 

of DNA or RNA that regulates the expression of genes located on that same 

molecule of DNA. They contain binding sites for trans-acting proteins involved in 

the positioning of the basic transcriptional machinery and in the regulation of 

transcription. Promoters are DNA regions used to position the basic 

transcriptional machinery, which is a DNA-dependent RNA polymerase (RNA 

Pol). Other DNA cis-regulatory elements are enhancer, silencers, insulators, 

locus control regions (LCRs). Active cis-regulatory elements are typically 

characterized by an enhanced sensitivity to DNase I digestion [80]. DNase I is a 

nuclease that cleaves DNA (single-stranded DNA, double-stranded DNA 

and chromatin) preferentially at phosphodiester linkages adjacent to 

a pyrimidine nucleotide, yielding 5'-phospho-polynucleotides with a free 

hydroxyl group on position 3', on average producing tetranucleotides. Most of 

the DNA in the nucleus is relatively inaccessible to proteins, because it exists as 

condensed chromatin. However, about 1% of the genome exists as regions of 

decondensed chromatin called DNAse I hypersensitive sites (DHSs), which are 

usually nucleosome-free and provide increased access for factors to interact 

with DNA [81, 82]. The normal process of gene activation involves the 

recruitment of factors that bind the DNA in a cooperative manner and can 

create these nucleosome-free regions which are the DHSs. Indeed, genes that 

are being transcribed are normally characterized by the presence of DHSs, 

which are indication of a more open chromatin structure [83, 84].  

 

http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/RNA
http://en.wikipedia.org/wiki/Genes
http://en.wikipedia.org/wiki/Nuclease
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Chromatin
http://en.wikipedia.org/wiki/Pyrimidine
http://en.wikipedia.org/wiki/Nucleotide
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1.3.3   General structure of a typical eukaryotic gene 

 

1.3.3.1     Promoters  

 

In eukaryotes messenger RNAs (mRNAs) are transcribed by the RNA 

polymerase II (RNA Pol II) machinery. Promoters usually encompass upstream 

promoter elements (UPEs) and a core promoter. The core promoter is a region 

around the transcriptional start site (TSS) of a gene and contains DNA elements 

that promote the binding of regulatory transcription factors and the formation of 

the pre-initiation complex (PIC) (See section 1.3.3.3). Core promoters contain 

an AT-rich sequence called the TATA box. The TATA box binds the TATA-

binding protein (TBP) [85] which, together with TATA-associated factors form 

the complex TFIID. Most of the time TFIID is recruited by other elements within 

the core promoter, such as the initiator (Inr) and the downstream promoter 

element (DPE). The BRE region recognizes TFIIB complex. Core promoters 

can be divided into two classes: focused core promoters, with a single TSS or a 

cluster of TSSs over a narrow region of several nucleotides, and dispersed core 

promoters, that have a dispersed range of potential TSSs over a 50-100 bp 

region [86]. The TATA box is the most ancient promoter element. Its consensus 

sequence is TATAWAAR and it is preferably located 30-31 bp upstream from 

the TSS in mammals [87]. 

The Inr straddles the TSS. It is the most prevalent region in focused core 

promoters [88] and contains the consensus sequence YYANWYY in humans, 

where the A frequently represents the TSS. The BRE region can be located 

upstream as well as downstream of the TATA box and has both activating or 

inhibitory effect on transcription [89].  
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The downstream promoter element (DPE) cooperates with the Inr and is located 

between +28 and +33 bp from the TSS. 

Other known elements are the motif ten element (MTE), conserved from 

Drosophila to mammals, located between +18 and +27 bp from the TSS. 

Usually core promoters contain either both a TATA box and an Inr element or 

an Inr and a downstream promoter element (DPE) [90]. There is also evidence 

that a DPE and a TATA elements can co-exist in the same gene, and that some 

genes have neither a DPE or a TATA region [91]. However, some promoters do 

not contain any of the three core regulatory regions defined in Drosophila [92].  

 

1.3.3.2    Silencers 

 

Silencers are cis-regulatory elements responsible for the downregulation of 

gene expression. Two different classes of silencers exist: classical silence 

elements and negative regulatory elements (NREs). Classical silence elements 

are short, position-independent motifs that interfere with the PIC assembly 

through the binding of repressor proteins and are normally found upstream of 

the TSS. The NREs are position-dependent silencers that prevent the binding of 

transcription factors to their respective cis-regulatory motifs and are found within 

introns and exons, both up- and downstream of the TSS [93].  
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1.3.3.3  Enhancers and locus control regions (LCR) 

 

Enhancers are cis-acting DNA regions containing binding sites for activator 

transcription factors and they increase the rate of transcription in a manner that 

is independent of their orientation and distance from the TSS. In fact they can 

be located upstream or downstream of the TSS (even thousands of base pairs 

distant  from the gene that they regulate) within introns or exons and in the 5’ or 

3’ untranslated (UTR) gene regions [94]. Transcription factors and co-activators 

bind enhancers forming a complex defined as an “enhanceosome”, which is 

able to directly or indirectly interact with the pre-initiation complex (PIC) of the 

transcription machinery, stabilizing its binding at the promoter and increasing 

transcription. It seems that the interaction between enhancer and promoter 

occurs through chromatin looping, but it’s not clear whether the contact 

happens by chance, due to free motion of the chromatin strand or through the 

action of protein complexes that bind the enhancer and track the chromatin 

strand until it encounters the promoter [95]. During development, transcriptional 

specificity is guaranteed by both the enhancer-promoter and the tissue 

specificities (enhancers get activated by specific transcription factors in specific 

cell types only). 

Locus control regions (LCRs) are DNA regulatory elements consisting of 

multiple activator binding sites. Contrary to enhancers, LCR stimulate 

transcription independently of their site of integration into native chromatin and 

their effect is limited by distance and orientation  [76]. 
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1.3.3.4   Insulators  

 

Two different types of insulators have been identified: enhancer-blocking 

insulators and barrier insulators. The enhancer-blocking insulators are located 

between the enhancer and the promoter and block the signal between the two 

elements. This also represents a way to guarantee the enhancer-promoter 

selectivity preventing interactions with inappropriate promoters. Barrier 

insulators block heterochromatin spreading by promoting enzymatic activities 

like HATs and chromatin remodelling complexes, thus recruiting euchromatin.  

Three different models for enhancer-blocking activities have been identified [96]. 

In the decoy model the insulator competes with the promoter for the contact 

with the enhancer (Figure 1.3.2a). In the facilitator model the contact between 

the insulator and the facilitator proteins interrupts the signal between enhancer 

and promoter (Figure 1.3.2b). In the looping model insulators organise 

chromatin looping by promoting contacts between insulators or with other 

genomic structures (Figure 1.3.2c). Interaction between enhancers and 

promoters can only occur if they are located in the same loop. Looping can 

either interfere with enhancer-promoter interaction (thus mediating the 

enhancer-blocking function of insulators) or it can assist in increasing enhancer-

promoter contact, resulting in an active gene.  
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Figure 1.3.2   Structural models for enhancer-blocking activities 

 
 
 

 

 

 

 

Picture represents three different models for enhancer-blocking activities. In the decoy 

model the insulator competes with the promoter for the contact with the enhancer 

(Figure 1.3.2a). In the facilitator model the contact between the insulator and the 

facilitator proteins interrupts the signal between enhancer and promoter (Figure 

1.3.2b). In the looping model insulators organise chromatin looping by promoting 

contacts between insulators or with other genomic structures (Figure 1.3.2c). Taken 

from Valenzuela et al., 2006 [96]. 
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In vertebrates all the identified enhancer-blocking insulators contain cis-

regulatory binding motifs for the CCCTC-binding factor (CTCF). CTCF was one 

of the first proteins demonstrated to be involved in chromatin looping. Initially 

CTCF was described as a transcriptional repressor of the chicken c-myc gene 

[97]. The versatile role of CTCF is confirmed by the fact that its binding sites can 

be found at boundaries that separate active and inactive domains but also at 

enhancer, gene promoters and inside gene bodies. CTCF functions were 

initially studied at the -globin locus and the imprinted H19-Igf2 locus. The 

human -globin locus contains five developmentally regulated beta-type globin 

genes, under the control of one locus control region (LCR) and it is flanked by 

CTCF binding sites [98]. In erythroid progenitor cells CTCF binding sites interact 

with each other to create an inactive chromatin hub in which LCR and the -

globin genes are not in contact. Upon erythroid differentiation specific 

transcription factors and cohesin promote the formation of a chromatin hub 

where the LCR interacts with the -globin genes and enhance transcription 

(Figure 1.3.4a). 

However,  CTCF functions were initially studied at the chicken -globin locus. 

A schematic picture of the locus is represented in picture 1.3.3. 
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Figure 1.3.3   The chicken β-globin locus 
 

 

 

 

 
 

 
 
 

The locus control region (LCR) is located between the 5’HS4 and the  gene. The 

insulator region is defined by the SacI and SspI retriction enzymes; it is 1.2 kb long and 

it contains the CTCF binding site. Picture taken from Targa et al, 2002 [99]. 
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The 30 kb chicken β-globin gene locus includes four globin genes that are 

developmentally regulated and expressed in erythroid cells [100]: rho , beta 

H (H), beta A (A), epsilon () (5’-3’ direction). There are two insulator regions. 

The 1.2 kb insulator region at 5’ includes the DNase I-hypersensitive site 5′HS4, 

which has both enhancer-blocking and barrier properties. The region II depicted 

in the picture below contains the CTCF binding motif. Upstream of the 5’HS4 is 

a 16 kb condensed chromatin region, followed by a folate receptor gene (FR) 

[101]. The constitutive hypersensitive site, 3′HS, has enhancer-blocking 

properties, and beyond a gene for an odorant receptor (OR) is located [102]. 

The H19/Igf2 locus contains an imprinting control region (ICR) between the H19 

and the Igf2 genes. On the maternal allele CTCF binds the unmethylated ICR 

and blocks the communication between the Igf2 gene and the distal enhancer, 

leading to H19 expression. On the paternal allele ICR is methylated; this 

prevents CTCF binding and allows the distal enhancer to interact with the Igf2 

genes and to enhance its expression (Figure 1.3.4b) [103].  

ChIP-Seq analysis revealed that more than 14,000 CTCF binding sites are 

present in the human genome and more than 5000 sites are ultra-conserved 

between tissues and species and bind CTCF with high affinity [104]. Genome-

wide analysis also revealed that CTCF globally co-localises with cohesin, which  

has been demonstrated to have a role in looping formation [105]. Cohesin 

localization to CTCF sites is dependent on CTCF binding; on the contrary CTCF 

can bind its DNA binding motifsin the absence of cohesin binding. CTCF shares 

binding sites with several other factors, such as the histone deacetylase SIN3 

[106], nucleophosmin [107], FOXA1 and the oestrogen receptor (ER).  
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Figure 1.3.4     CTCF activity at -globin and H19/Igf2 loci 

 

 

 

 

 

 

a) In erythroid progenitor cells CTCF binding sites interact with each other to 

create an inactive chromatin hub in which LCR and the -globin genes are not in 

contact. Upon erythroid differentiation specific transcription factors and cohesin 

promote the formation of a chromatin hub where the LCR interacts with the -globin 

genes and enhance transcription. b) The H19/Igf2 locus contains an imprinting control 

region (ICR) between the H19 and the Igf2 genes. On the paternal allele ICR is 

methylated; this prevents CTCF binding and allows the distal enhancer to interact with 

the Igf2 genes and to enhance its expression (i). On the maternal allele CTCF binds 

the unmethylated ICR and blocks the communication between the Igf2 gene and the 

distal enhancer, leading to H19 expression (ii). Taken from Holwerda et al., 2013 [103]. 
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1.3.4    Transcriptional activators and repressors 

 

Gene expression is regulated by the interaction in trans of specific transcription 

factors (TFs), activators or repressors, with the cis regulatory elements present 

on the DNA. Transcription factors are proteins that recognize and bind specific 

DNA sequences. Activators consist of two different domains: a DNA binding 

domain and an activator domain that recruits and stimulates the activity of the 

transcription apparatus. The main DNA binding domains can be classified as: 

1) basic leucine zipper (bZIP) motifs, found in dimeric complexes of two 

proteins that each contains short -helices with a leucine residue at every 

seventh position and an adjacent basic DNA-binding domain. Leucines in the 

two helices interact with each other forming a Y shape which bifurcates to 

enable -helix to interact with the major groove of the DNA. The c-Fos and c-

Jun components of the activator protein AP-1 are leucine zipper regulatory 

proteins; 

2) zinc finger domains, characterized by the coordination of one or 

more zinc ions  in order to stabilize the fold. The most common zinc fingers are 

the Cys2His2-like proteins, where the zinc finger motif consists of an  helix and 

an antiparallel  and the zinc ion is coordinated by two histidines and 

two cysteine residues; 

3) basic-helix-loop-helix (bHLH) domains are characterized by two -helices 

connected by a flexible loop; 

4) helix-turn-helix (HTH) domains, composed of two  helices joined by a 

short strand of amino acids [108].    

http://en.wikipedia.org/wiki/Alpha_helix
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Enhancers and promoters can encompass multiple DNA binding sites for TFs, 

so that they can bind in a cooperative way and provide a mechanism for 

combinatorial control. In fact the presence of a binding site of a TF is usually 

insufficient to generate a functional productive interaction in terms of 

transcriptional regulation. Some TFs are also able to recruit and regulate the 

activity of chromatin-modifying complexes and the transcription machinery, 

promoting or repressing gene transcription. Histone acetylases are components 

of many transcriptional coactivators. Transcriptional repressors can be divided 

into two categories: general and gene specific. 

Many general repressors interact with the TATA-binding protein (TBP) and 

prevent the formation of the transcription initiation complex. An example is 

represented by Mot1, which causes the dissociation of TBP from DNA in an 

ATP-dependent manner [109]. Gene specific repressors can either bind to 

activators or compete for activator binding sites. Deacetylase complexes such 

as mSin3A and NuRD have a repressor activity and they can be recruited to 

DNA by DNA-binding proteins or through corepressors such as N-Cor [110].  
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1.4     CHROMATIN 

 

1.4.1     Chromatin structure 

Chromosomal DNA, which contains the genome of eukaryotic cells, exists in 

association with histone proteins as chromatin [111]. The repeating unit of 

chromatin is the nucleosome, where about 146 base pairs (bp) of DNA are 

typically wrapped around a core histone octamer formed by two of each of the 

histones H2A, H2B, H3 and H4 [112] (Figure 1.4.1A). Core particles are 

connected by linker regions, which are typically 40 to 60 bp long. Considering 

the length of core and linker region, nucleosomes are regularly spaced at 180-

200 bp intervals. Linker histones such as H1 and its isoforms are involved in 

chromatin compaction and bind to DNA at the point where it exits the 

nucleosome [113]. However, under normal conditions, chains of nucleosomes 

spontaneously fold into a more compact and stable 30 nm diameter fibres, even 

when H1 histone is absent. Through interactions with nuclear scaffolding 

proteins, the 30 nm diameter fibers form a series of loops and coils and become 

more and more condensed, reaching an approximately packing ratio of 1000 

during the interphase and 10000 in mitotic chromosomes (Figure 1.4.1B). 

As observed by electron microscopy (EM), chromatin exists as two different 

forms: euchromatin and heterochromatin [114]. Euchromatin is a lightly packed 

form of chromatin enriched for genes undergoing active transcription. 

Heterochromatin is a tightly packed form of chromatin less accessible to 

proteins and transcription factors (TFs) thus showing very little transcriptional 

activity. Heterochromatin is mostly present at telomeres, centromeres and 

repetitive DNA elements but at some specific loci it is able to switch into 

euchromatin conformation in response to developmental signals.  
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A) High-resolution crystal structure of the nucleosome, an octamer formed 

by two of each of the histones H2A, H2B, H3 and H4, shown in different 

colours. H3 is represented in blue, H4 in green, H2A in yellow and H2B in red, 

the DNA is shown in grey. 146 base pairs of DNA are wrapped around the 

histone octamer. H3/H4 tetramer makes up the inner core, the two dimers 

H2A/H2B bind DNA at entry and exit points of the nucleosomes. On the left 

the nucleosome core particle is viewed down the superhelical axis. On the 

right  the same structure is rotated by 90° around the y-axis. α-helices of the 

histone proteins are shown as spirals. Picture taken from Luger et al., 1997 

[112].  

B) Folding of DNA into nucleosomes (1-5). 1: DNA wraps around a 

histone octamer to form the nucleosome core; 2: chains of nucleosomes fold 

into a more compact and stable 30 nm diameter fibres; 3: through interactions 

with nuclear scaffolding proteins, the 30 nm diameter fibres form a series of 

loops and coils and become more and more condensed, reaching an 

approximately packing ratio of 1000 during the interphase (4) and 10000 in 

mitotic chromosomes (5).  

The structure and organization of chromatin loops inside the chromosome is 

still matter of debates. The models proposed are the forms of solenoid, zigzag, 

nucleosomes or a hybrid of those [115]. Picture taken from the website 

http://www.mechanobio.info. 
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Figure 1.4.1   Structure of nucleosome core and chromatin organisation 
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1.4.2      Gene regulation and chromatin remodelling 

 

Eukaryotic cells use many different ways to regulate genes and the accessibility 

of chromatin to transcription factors. During all DNA-templated cellular 

processes chromatin structures undergo dynamic remodelling (opening and 

closing of higher-order structures) to allow access to associated DNA segments 

[116]. Chromatin remodelling can be achieved through different but 

interconnected mechanisms: 1) covalent histone modifications, 2) DNA 

methylation, 3) utilization of histone variants, 4) ATP-dependent chromatin 

remodelling [117]. These mechanisms allow optimal chromatin remodelling for 

efficient transcriptional regulation, DNA replication and repair. 

Epigenetics studies all the modifications of DNA and histones that do not 

change the genetic code but have an effect on gene expression or chromatin 

condensation. The entire collection of epigenetic modifications of DNA and 

histones in the genome of a tissue is defined as the epigenome [118].  

Some of these changes, such as promoter methylation, determine an “ON” or 

“OFF” state in gene expression; some others, such as enhancer methylation, 

modulate gene expression levels. All these epigenetic changes require 

enzymes called “writers” that add the modification to the DNA or histone (such 

as DNA and histone methyltransferases or histone acetyltransferases), 

“readers” enzyme that mediate the interaction of protein/protein complexes with 

the modification (such as MeCP2, methyl-CpG-binding protein 2, that 

recognizes methylated CpG) and “erasers” enzymes that modify or remove the 

modification (such as histone deacetylases) [118]. 
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1.4.2.1    Chromatin modifications  

 

The N-terminal tails of histones are subject to several post-translational 

modifications. At least eight different types of modifications have been 

identified: acetylation, methylation, phosphorylation, ubiquitination, sumoylation, 

ADP ribosylation, deimination and proline isomerisation [119]. These 

modifications define the “histone code” hypothesis, where the specific 

combination of modifications forms the recognition surface for chromatin 

regulatory factors [120]. Lysine, arginine, serine, threonine and proline are the 

amino acids modified (Figure 1.4.2). Lysines can be mono-, di- or trimethylated, 

arginines can be mono- or dimethylated, with either two methyl groups on one 

nitrogen (asymmetric methylation) or one methyl group on both nitrogens 

(symmetric methylation). Since a large variety of modifications occur at the 

same lysine residue some modifications are mutually exclusive. 

Histone modifications influence different cellular processes, including 

transcription, replication, cell cycle progression and DNA repair [121]. To 

perform these functions, contacts between nucleosomes have to be disrupted in 

order to create a more relaxed form of chromatin; in this regard acetylation is 

the most potential modification because it neutralizes the basic charge of the 

lysine. Non-neutralising modifications such as methylation may have less 

impact on structure, but they might serve as docking sites for chromatin 

remodelling factors [119]. Regulatory proteins are recruited to modified sites via 

specific domains: plant homeodomains (PHDs) and chromo-like domains 

(chromo, tudor, Malignant Brain Tumor MBT) recognize methylated histones 

whereas bromodomains recognise acetylated histones. 
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Figure 1.4.2     Post-translational modifications of human histones  

 

 

 

 

 

 

Most of the known histone modifications occur on the N-terminal tails, with exceptions 

in the C-terminal tails and in the globular domain of H3. ac = acetylation, me = 

methylation, ph = phosphorylation, ub1 = ubiquitination. Globular domains of each core 

histone are represented as coloured ovals. Taken from Bhaumik et al., 2007 [122]. 
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However, so far no chromo or MBT domain containing protein has been shown 

to recognize R-methyl marks. So far only Tudor domains and the BRCT domain of 

BRCA1 have been shown to bind methylated R-residues. Proteins that bind histone 

modifications can have enzymatic activity; for instance JMJD2A is a histone 

lysine demethylase that interacts with H3K4-methylated histone tails through a 

tudor domain. Other proteins can either tether chromatin remodelling complexes 

or are part of the complex itself. For example Inhibitor of growth family 2 (ING2) 

recognises a bromodomain and tethers the repressive mSin3a-HDAC1 histone 

deacetylases complex [123] whereas BPTF, subunit of the NURF chromatin 

remodelling complex, recognises H3K4me3 via a PHD domain [124]. Some 

modifications can disrupt the binding of a protein or, on the contrary, they can 

help the protein to bind more effectively. The vast array of possible 

modifications gives great potential for functional responses but the timing of the 

appearance of a modification depends on the signalling conditions within the 

cells [119]. In fact, a close relationship has been demonstrated between 

chromatin-associated proteins and important signal transduction pathways 

during processes like differentiation and development and a lot of ongoing 

research is aimed to understand the linking between cell signalling and 

epigenetics [125]. Most histone modifications are dynamic. Specific enzymes 

that modify histone tails as well as enzymes that remove the modification have 

been identified. Some of them are listed in Table 1.1. The only exception is the 

methylation of arginines, where demethylating enzymes have yet to be 

identified. Histone modifying enzymes can often be found in complexes and in 

some cases the specificity of the enzyme can be influenced by the association 

with other proteins [126]. 
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Table 1.1    Enzymes that modify histones and residues modified 

 

Enzymes that Modify Histones Residues Modified 

Acetyltransferase 

HAT1 H4 (K5, K12) 

CBP/P300 H3 (K14, K18) H4 (K5, K8) H2A (K5) H2B (K12, K15) 

PCAF/GCN5 H3 (K9, K14, K18) 

TIP60 H4 (K5, K8, K12, K16) H3 K14 

Deacetylases 

SirT2 (ScSir2) H4K16 

Lysine Methyltransferase 

SUV39H1/2, G9a, RIZ1 H3K9 

MLL1/2/3/4/5 H3K4 

SET1B H3K4 

ASH1 H3K4 

SET2 ,NSD1, SYMD1 H3K36 

DOT1 H3K79 

SUV420H1/H2 H4K20 

EZH2 H3K27 

Lysine Demethylases 

LSD1/BHC110 H3K4 

JHDM1a/1b H3K36 

JHDM2a/2b H3K9 

JMJD2A/2B/2C/2D H3K9 

Arginine Methlytransferases 

CARM1 H3 (R2, R17, R26) 

PRMT4 H4R3 

PRMT5 H3R3, H4R8 

Serine/Thrionine Kinases 

MSK1/2 H3 (S10, S28) 

CKII H4S1 

Mst1 H2BS14 

Ubiquitilases 

Bmi/Ring1A H2AK119 

RNF20/RNF40 H2BK120 

 

Taken from Kouzarides 2007 [119]. 
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1.4.2.1.1 Histone acetylation 

 

Histone acetylation occurs at specific lysines of the four core histones and it is 

catalyzed by histone acetyltransferases (HATs); some HATs can modify more 

than one lysine residue, some others are more specific. Type A HATs are 

localized in nuclei and preferably acetylate nuclear factors; type B HATs are 

localized in the cytoplasm and they acetylate newly synthesized histones. 

Histone acetylation can be reversed by histone deacetylases (HDACs). Histone 

acetylation can create a more relaxed chromatin structure and for this reason it 

is associated with active chromatin. Many transcriptional coactivators, such as 

CBP and p300, possess intrinsic HAT activity, while conversely, some 

transcriptional corepressor complexes (e.g. mSin3a) contain subunits with 

HDAC activity. In ChIP-Seq analysis, Wang et al. [127] demonstrated that 

different acetylations are concentrated in different regions of genes. For 

example, H3K9ac, H3K27ac and H3K36ac are mainly located around the TSS, 

whereas other such as H3K4ac, H4K12ac and H4K16ac are elevated in the 

promoter and transcribed regions of active genes. H3K27 acetylation 

(H3K27ac) and H3K4 mono-methylation (H3K4me1) are usually marks of active 

enhancers. However, these modifications are also associated with other regions 

downstream of (H3K4me1) and around (H3K27ac) the TSSs of actively 

transcribed genes [128]. 
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1.4.2.1.2 Histone phosphorylation 

Phosphorylation targets serine residues on H3, H4 and H2B and threonine 

residues on H3. Phosphorylation is also likely to affect chromatin structure via a 

change in charge on amino acid residues in the histone tails [129]. Distinct 

kinases are required for the phosphorylation of histones on different residues. In 

humans MSK1/2 and RSK2 phosphorylate Ser10 on histone H3. 

Phosphorylation at histone H3Ser10 and H3Ser28 during mitosis is regulated by 

Aurora kinases. Phosphorylation of H3Ser10 has been shown to be involved in 

the activation of NF-B regulated genes as well as immediate early genes such 

as jun and fos [130].  

 

1.4.2.1.3  Histone methylation 

Methylation occurs on lysine and arginine residues on histones H3 and H4 

[131]. In eukaryotes, arginine residues can be mono- or dimethylated by protein 

arginine methyltransferases (PRMTs). Coactivator arginine methyltransferases 

1 (CARM1) is a PRMT family member. Lysines can be mono-, di- or 

trimethylated on position 4, 9, 27 36 and 79 of histone H3 and on position 20 of 

histone H4. Histone methyltransferases typically contain a SET domain and are 

more specific than HATs with respect to their histone targets.  

Methylation of H3K9 and H3K27 is associated with transcriptional repression via 

two distinct mechanisms. H3K9me3 is highly correlated with constitutive 

heterochromatin. It recruits heterochromatin protein 1 (HP1) which leads to 

further modifications, including histone deacetylation and DNA methylation and 

results in chromatin compaction and gene silencing [132, 133]. H3K27 
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methylation is associated with gene repression by Polycomb Repressive 

Complex (PRC) 1 and 2. Establishment of H3K27me3 by PRC2 complex can 

induce the recruitment of PRC1; once recruited, PRC1 induces transcriptional 

repression of target genes by catalyzing the ubiquitination of lysine 119 on 

histone H2A or by an H2Aub-independent mechanism [134, 135]. 

In contrast, methylation of H3K4 and H3K36 is correlated with transcriptional 

activation. H3K4me2 marks promoters that are poised for activation [136]. A 

genome-wide analysis demonstrated that enhancers are characterized by the 

monomethylation of lysine 4 of histone H3 (H3K4me1+/H3K4me3-) [137]. 

H3K36me3 and H3K79me3 are found in the gene body of transcribed genes 

[138], suggesting the possible interaction of methyltransferases with the 

elongating RNA Polymerase II  [139]. 

Two families of demethylases reverse lysine methylation: amine oxidases, such 

as LSD1, which demethylate only mono- and dimethylated lysines, whereas 

hydroxylases of the JmjC family also demethylate trimethylated lysines and they 

have unique substrate specificity [140]. 

 

1.4.2.2 DNA methylation  

 

DNA methylation has been implicated in numerous biological processes, 

including genomic imprinting and X chromosome inactivation [141]. DNA 

methylation occurs predominantly in the context of CpG (C followed by G) 

dinucleotides. De novo methylation is established by DNA methyltransferases 

DNMT3A and DNMT3B [142] and it is  maintained after cell division by DNMT1, 

which fully methylates the hemi-methylated CpG sites [143]. Passive DNA 

demethylation is achieved during DNA replication in the absence of DNMT1 
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activity; active DNA demethylation is the enzymatic removal of the methyl group 

from 5-methylcytosine (5meC) and is often carried out by several DNA repair 

enzymes [141]. Alternatively, ten-eleven-translocation (TET) proteins are 

capable of hydrolysing 5meC to produce 5-hydroxymethylcytosine (5hmC) 

[144]. DNA methylation is generally associated with transcriptional repression 

[145], with the majority of CpGs in the human genome being methylated. Active 

promoters (as well as enhancers and boundary elements) generally lack DNA 

methylation. Gene repression occurs when increased DNA methylation either 

prevents the binding with a transcriptional activator or promotes the recruitment 

of corepressor complexes associated with HDAC activity [146]. Generally this 

recruitment is mediated by methyl-binding domain (MBD) proteins, that are 

specialized in the recognition of methyl-CpGs. However, about 70% of 

mammalian promoters are characterized by GC-rich regions containing a 

greater content of CpG dinucleotides called CpG islands (CGIs) which are 

predominantly not methylated. Most CGIs are sites of transcription initiation and 

are also marked specifically by histone acetylation (H3/H4Ac) and methylation 

(H3K4me3) which is directed by Cfp1, and show Kdm2a-dependent H3K36me2 

depletion (Figure 1.4.3) 

 

 

 

 

 

 

 

 



48 

 

Figure 1.4.3       Chromatin state at CpG islands   

 

 

 

 

 

 

A) Transcriptionally permissive state at CpG islands. In this case CpG islands are 

marked specifically by histone acetylation (H3/H4Ac) and show Kdm2a-dependent 

H3K36me2 depletion. Cfp1 binds unmethylated DNA and interacts with Setd1 to direct 

H3K4me3. B) Repressed transcription status at CpG islands is characterized by DNA 

methylation. DNA methylation can inhibit the binding of transcription factors (TFs) or 

recruit histone deacetylase complexes (HDAC) through methyl-binding domain (MBD) 

proteins. Taken from Deaton and Bird, 2011 [147] 
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1.4.2.3  Histone variants  

 

The canonical histones H2A, H2B, H3 and H4 are almost exclusively expressed 

during the S-phase of the cell cycle and incorporated into chromatin in a DNA 

replication-dependent way. Histone variants can be subsequently incorporated 

into chromatin by specific histone chaperones in the absence of DNA 

replication, replacing the equivalent canonical histones. Introduction of histone 

variants affects nucleosome stability and chromatin conformation [148]. In 

mammals three ubiquitously expressed H3 variants are known (H3.1, H3.2, 

H3.3), which have the same molecular weight and differ by only four to five 

amino acid residues [149] (Figure 1.4.4). Four H2A histone variants have been 

reported in mammals: H2A.Z, H2A.X, H2A.Bdb and macroH2A, which contains 

a large (200 residue) C terminal domain called “macro domain” that shares no 

sequence similarity with any other histone [150].  
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Figure 1.4.4    Schematic representations of histone H3 and H2A variants 

 

 

 
 

 
 
 

 

 

 

 

Schematic representations of histone H3 (a) and H2A (b) variants. Ovals and lines 

represent globular domains and flexible N- or C-terminal tails respectively. Difference in 

amino acid sequence of the variant compared to the canonical histone is represented 

by patterning in white. Percentage of similarity is also shown. Taken from Biterge and 

Schneider, 2014 [148]. 
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1.4.2.4     ATP-dependent chromatin remodelling complexes  

ATP-dependent chromatin remodelling complexes are highly conserved from 

yeast to humans. These complexes contain a catalytic ATPase subunit and, 

utilising energy from ATP hydrolysis, can mobilise nucleosomes along DNA, 

evict histones or promote the exchange of histone variants [116]. Four families 

of chromatin remodelling ATPases can be distinguished in mammals: 1) the 

SWI/SNF family, 2) the ISWI family, 3) the NuRD/Mi.2/CHD family and 4) the 

INO80 family.  

The SWI/SNF (switching defective/sucrose non-fermenting) complexes 

comprise nine or more proteins, including both conserved (core) and non 

conserved subunits [151], which can help to target the complex to a specific 

DNA region. The catalytic core contains one of two closely related alternative 

ATPases: Brahma (BRM) or Brahma-related gene 1 (BRG1). These subunits 

also contain a BROMO domain, important in recognizing acetylated histones.  

SWI/SNF remodelling complexes mainly disorganise and reorganise 

nucleosome positioning to promote accessibility for transcription-factor binding 

and gene activation [151]; however, under certain conditions, they can also 

promote transcriptional-repressor binding and gene repression [152].  

ISWI (Imitation of SWItch) complexes also exist as multi protein complexes, but 

it exhibits a more limited range in subunit composition. SNF2H and SNF2L 

subunits have a SANT (‘SWI3, ADA2, NCOR and TFIIIB’) domain and a SLIDE 

(SANT-like ISWI) domain that mediate interaction with unmodified histone tails 

and linker DNA respectively. ISWI complexes primarily organise nucleosome 

positioning to induce gene repression, but they have also been shown to 

mediate transcriptional activation and elongation [153].  
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CHDs 1-5, members of NuRD (nucleosome remodelling and deacetylation) 

/Mi.2/CHD (chromodomain, helicase, DNA binding) family, have unique tandem 

chromodomains that recognize methylated histones. This family of chromatin 

remodelers is primarily involved in transcriptional repression in the nucleus and 

in the transcriptional activation of rRNAs in the nucleolus [154]. 

The INO80 (INOsitol requiring 80) subfamily includes the INO80 remodelling 

complex and the SWR1 remodelling complex which are characterized by split 

ATPase domains and the presence of two RuvB-like proteins, Rvb1 and Rvb2. 

The INO80 complex, as well as the SWI/SNF family remodelers, participates in 

DNA double-strand break (DSB) repair. The SWR1 complex was found to be 

able to specifically exchange histone H2A in nucleosomes for its variant H2A.Z 

[155]. 
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1.5  SIGNAL TRANSDUCTION PATHWAYS 

 

1.5.1 Mitogen-activated protein kinase (MAPK) signalling pathways 

 

Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine 

kinases. They are expressed ubiquitously and they are involved in physiological 

processes such as cell growth, differentiation and apoptosis [156, 157]. In 

humans, the MAPK family consists of six subgroups according to sequence 

similarity: 1) ERK1, ERK2; 2) ERK3; 3) ERK5; 4) ERK7; 5) p38 MAPKs 

(p38); 6) JNK1, JNK2, JNK3.  

Each group represents a distinct kinase cascade. Growth factors, cytokines, 

radiation and different stimuli activate the pathway. The MAPK module is 

formed of an initial MAPKKK, which phosphorylates and activates a 

downstream MAPKK, which in turn phosphorylates the last MAPK on threonine 

and tyrosine residues (Figure 1.5.1). This last phosphorylation leads to a 

conformational change that increases substrate accessibility and increases 

enzyme activity [158]. GTPases belonging to Ras or Rho families relay signals 

from the receptor to the first MAPKKK. MAPKs associate with many regulatory 

proteins such as phosphatases and scaffold proteins. Phosphatases 

dephosphorylate and inactivate the protein kinases; scaffold proteins often 

direct the pathway to specific substrates or co-localise pathway components. 
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Figure 1.5.1       MAPK signalling pathways 

 

 

 

 

 

 

Picture representing the main MAPK pathways (ERK, p38, JNK and ERK5) and their 

cross-talk. Each pathway can be activated by different stimuli, which activate the MAPK 

cascade. An initial MAPKKK (or MEKK) phosphorylates and activates a downstream 

MAPKK (or MEK), which in turn phosphorylates the last MAPK on threonine and 

tyrosine residues. Different MAPK pathways have mutual downstream effectors, 

usually transcription factors able to enter the nucleus and activate the transcription of 

several target genes. Taken from Juntilla M.R. 2008 [159]. 
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1.5.1.1     ERK pathway 

 

ERK1 and ERK2, also known as p44MAPK and p42MAPK respectively,  are 

activated mainly by growth factors and mitogens and are associated with cell 

growth, proliferation and survival [159]. As a result of stimulation of the Ras, Raf 

and MEK1 or MEK2 pathway, ERK1 or ERK2 can translocate to the nucleus 

and activate transcription factors such as c-Fos, c-Jun, ATF-2 and Ets family 

members. Activated ERK1/2 can also phosphorylate cytoplasmic and nuclear 

kinases such as the 90 kDa ribosomal protein S6 kinase 1 (RSK1), the MAP 

kinase-interacting kinases 1/2 (MNK1/2), and the mitogen- and stress-activated 

protein kinases 1/2 (MSK1/2). MSK1 can in turn activate CREB and NF-B and 

is also implicated in chromatin remodelling [160]. 

The ERK pathway is also required for normal haematopoiesis. In ERK1 

knockout mice defects in T cell development, mesoderm development and 

placenta function are observed [161], whereas in  ERK2 knockout mice defects 

in Th2 differentiation and T cell activation are evident [162]. 

ERK1/2 phosphorylates C/EBP on Ser21, inhibiting granulocyte differentiation 

[163]. Several studies have also demonstrated the importance of the ERK 

pathway in the survival of erythroid CD34+ progenitors. Treatment of CD34+ 

cells with a MEK1/2 inhibitor induced cell apoptosis due to the abrogation of 

anti-apoptotic Bcl-XL levels [164].  

 

1.5.1.2     p38 MAPK pathway 

 

p38 MAPK family is formed from four different splice variants: p38, p38, p38 

and p38. p38 and p38 are expressed ubiquitously whereas the other two are 
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more tissue-specific [165]. p38 MAPKs are stimulated mainly by inflammatory 

cytokines or cellular stress such as hypoxia or UV radiation but they can 

mediate either apoptosis or survival depending on the kind of stimuli and on 

cellular conditions. Some of the substrates are ATF-1/2, STAT1 and STAT3, 

protein kinases such as p90 RSK and MSK1/2 (as for ERK pathway). 

p38(-/-) deficiency is embryonic lethal and causes defects in EPO production 

[166]. Mice deficient in the other p38 isoforms survive normally. p38 MAPKs 

also have a role in regulating neonatal haematopoiesis, phosphorylating and 

reducing the transcriptional repressor ability of TEL (a member of Ets family) 

[167]. p38 MAPKs are also involved in regulation of erythroid and myeloid 

differentiation. Moreover, specific expression of the four different p38 isoforms 

has been found to occur at different specific stages of erythroid differentiation 

[168]. Geest et al. [169] demonstrated that p38 MAPK inhibits neutrophil 

development through phosphorylation of C/EBP on Ser21.  

 

1.5.1.3     JNK pathway 

 

Three different genes have been identified: JNK1, JNK2 and JNK3. JNK1 and 

JNK2 are ubiquitously expressed, JNK3 is expressed mainly in brain, heart and 

testis. Mice lacking one of the JNK proteins are viable, a double knockout of 

JNK1 and JNK2 shows defects in T cell activation [170]. 

As for the p38 MAPK pathway, JNKs are activated by inflammatory cytokines 

and cellular stress. Among the downstream substrates of JNKs are c-Jun, ATF-

2, Elk-1, p53 and NFAT. However, JNK proteins are also activated by growth 

factors such as EPO, TPO, IL-3 and GM-CSF [171]. JNK proteins and the 

upstream MEKK1-JNK connection are involved in the regulation of 



57 

 

erythropoiesis [172] and treatment with SP600125 (JNK1/2/3 inhibitor) inhibited 

EPO-dependent proliferation of several erythroid cell lines [173]. Instead the 

MKK7-JNK signalling pathway functions as a negative regulator of mast cells 

growth [174]. 

 

1.5.2 MAPK signalling in haematological malignancies 

 

Since MAPK pathways play a role in regulation of haematopoiesis, their 

aberrant activation has been found in many haematological diseases. Sustained 

activation of the MEK-ERK pathway has been reported in a large percentage of 

AML and CML [175, 176]. Raf/Ras mutations as well as FLT3 mutations 

mediate their effects through the activation of the downstream MEK-ERK 

pathway. Moreover in patients with FLT3 mutations the activation of MEK-ERK 

pathway contributes to the granulocytic differentiation block, through the 

phosphorylation on C/EBP on Ser21. 

The role of p38 MAPK and JNK pathways in haematological disorders is less 

defined. p38 has been found to be constitutively activated in myeloproliferative 

disorders and myelodysplastic syndromes [177] and, since it is involved in the 

regulation of cell cycle checkpoint controls, it could contribute to tumorigenesis.  

Analysis of AML patients with t(8;21), t(15;17) or inv(16) showed increased 

expression of c-Jun, and in RUNX1-ETO cells this expression has been found 

to be JNK-dependent. Also both the BCR-ABL fusion gene (in CML) and FLT3 

mutations lead to the activation of the JNK pathway [178-180].   
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1.5.3     MAPKs and transcription 

 

The MAPKs signalling pathway is also involved in transcriptional regulation. The 

advent of next-generation sequencing technologies helped to clarify how MAPK 

proteins can bind to chromatin and promote or inhibit transcriptional outputs, 

with different modes of interaction with chromatin being identified [181]: 

1) direct DNA binding: ERK2 has been demonstrated to bind to DNA in vitro 

at the defined DNA motif C/GAAAG/C [182]; 

2) binding to histone modifiers: ERK1/2 can phosphorylate and activate 

p300 [183];  

3) binding to chromatin remodelling complexes: an example is the 

recruitment of SWI/SNF complex by p38 during cardiomyocyte differentiation 

[184]; 

4) binding to RNA Polymerase II: in yeast, Mpk1 (functionally similar to 

ERK5) drives transcription by binding the Paf1 elongation complex [185]. 

5) binding to transcription factor substrates: in response to stress, p38 

phosphorylates and recruits ELK1 to the c-Fos promoter [186], while in 

response to mitogens ELK1 recruits ERK to the same promoter and to the 

promoter of other immediate-early genes (IEGs) [187]. ERK1/2 and p38MAPKs 

can drive histone modification and chromatin remodelling by phosphorylating 

the mitogen- and stress-activated protein kinase 1 and 2 (MSK1/2). 
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1.5.4 Activator protein-1 (AP-1) 

 

The mammalian activator protein-1 (AP-1) is a homodimer or heterodimer 

composed of proteins from the Jun family (c-Jun, JunB, JunD) and the Fos 

family (c-Fos, FosB, Fra-1, Fra-2), and the closely related activating 

transcription factors (ATFs), the cyclic AMP response element binding proteins 

(CREB) and the Maf subfamily [188]. Several kinases (including MAPKs) have 

been demonstrated to phosphorylate and activate AP-1, which regulates the 

expression of different genes and also auto-regulates itself, thus amplifying the 

signal [189]. AP-1 is essential in normal cell growth and development and 

genes which play important roles in differentiation, inflammation, apoptosis and 

immune response contain AP-1 binding site(s) in their promoter and/or 

enhancer regions [190]. Thus, alterated AP-1 protein activation or expression by 

toxicants can lead to the development of various diseases. Fos and Jun 

proteins belong to the basic region-leucine zipper (bZIP) group of DNA binding 

proteins. They contain a positively charged DNA binding domain (DBD) and a 

leucine-zipper domain (LZD) containing a heptad repeat of leucine residues 

located immediately downstream of the DBD (Figure 1.5.2).  The LZD mediates 

the dimerisation of proteins, bringing two DBDs into juxtaposition and facilitating 

the interaction with DNA. Because of their LZD composition, Fos proteins 

cannot form homodimers. Instead, Jun-Fos heterodimers are more stable and 

have a higher DNA binding activity than Jun-Jun homodimers. As shown in 

Figure 1.5.2 Jun proteins contain the transactivation domain (TAD) at their 

amino terminal region whereas c-Fos and FosB contain the TADs at both amino 

and carboxy terminal regions. AP-1 homo- and heterodimers can bind the 7 bp 

DNA sequence 5’-TGA(G/C)TCA-3’, known as 12-O-tetradecanoylphorbol-13-
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acetate (TPA)-responsive element (TRE), as well as the two variant sequences 

5’-TTAGTCA-3’ and 5’-TGATTCA-3’ [191]. AP-1 heterodimers containing ATF 

or CREB proteins, prefer to bind to the cyclic-AMP-responsive element (CRE), 

the 8 bp DNA sequence 5’-TGACGTCA-3’. Jun and Fos AP-1 dimers have a 

lower affinity to the CRE [189].  

As mentioned above, AP-1 proteins can be phosphorylated by a number of 

kinases, such as protein kinase C (PKC) [192], protein kinase A (PKA) [193] 

and MAPKs. Most cells possess already a level of pre-existing Jun and Fos 

proteins but they can also be induced by different stimuli [194]. JNKs and ERKs 

phosphorylate both pre-existing and newly synthesized AP-1 proteins. JNKs 

mainly phosphorylate Jun proteins on Ser63 and Ser73 in its TAD [194], 

whereas ERKs mainly phosphorylate Fos proteins on serine and/or threonin 

residues within their carboxy terminal domain [195]. c-Fos is phosphorylated by 

ERKs on Ser374 [196] whereas FosB can be phosphorylated on different serine 

residues (284, 297, 299, 302, 303) [197]. ERKs can also phosphorylate Fra-1 

and Fra-2 at different sites both in vivo and in vitro [198, 199]. p38 MAPKs 

regulate jun and fos gene transcription through phosphorylation of transcription 

factors able to bind jun and fos promoter elements (e.g. ATF-2, Elk1, CCAAT 

enhancer binding proteins (C/EBPs), SAP-1). 
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Figure 1.5.2    Structure, dimerisation and DNA binding properties of Jun 

and Fos proteins 

 
 
 

 

 

 

 

 

A) Structure of Fos and Jun proteins. TAD = transcription-activating domain; LZD = 

leucine-zipper domain; DBD = DNA binding domain; N = amino terminus; C = carboxyl 

terminus. B) LZD-mediated dimerisation of Fos and Jun proteins and their binding to 

DNA. ATF = activation transcription factor; TRE = 12-O-tetradecanoylphorbol-13-

acetate(TPA)-responsive element; CRE = cyclic AMP-responsive element. Taken from 

Reddy S.P.M. and Mossman B.T., 2002 [189]. 
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1.5.5    Mitogen- and stress-activated protein kinase 1 and 2 (MSK1/2) 

 

Mitogen- and stress-activated protein kinase 1 and 2 (MSK1/2) can be activated 

by agents that trigger ERK and p38 MAPK pathways and by other agents such 

as arsenite, fibroblast growth factor (FGF), transforming growth factor  (TGF). 

MSKs show a large structural homology with the ribosomal S6 kinase (RSKs). 

There is a nuclear localization sequence in their C-terminal region and they are 

mainly found in the nucleus [200]. In MSK proteins, an N-terminal kinase 

domain (NKD) and a C-terminal kinase domain are connected by a linker 

region. In the case of human MSK1, either ERK or p38 MAPK pathways, or 

both, phosphorylate Ser360, Thr581 and Thr700. Among these, 

phosphorylation of Thr581 is essential for MSK1 activity. Then the activated 

CKD phosphorylates Ser212 (in the NKD), Ser376 and Ser381(in the linker 

region). Finally the active NKD phosphorylates MSK substrates as well as the 

MSK1 C-terminal region [160] (Figure 1.5.3). MSK2 activation seems to be very 

similar to MSK1 activation [200].  

The first MSK target to be identified was cAMP response element (CRE)-

binding protein (CREB). MSKs phosphorylate CREB at Ser133, promoting the 

recruitment of CREB-binding protein (CBP) and p300. These two proteins 

acetylate histone tails, leading to a more relaxed chromatin structure and gene 

activation [201]. RSKs and PKA are alternative kinases able to phosphorylate 

CREB [202]. MSKs can also phosphorylate activating transcription factor 1 

(ATF1) at Ser63, which is a member of the same class of CRE-binding factors 

[202]. 
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Figure 1.5.3     Schematic view of MSK1 structure and activation 

 

 

 

 

 

 

 

Picture represents the structure of MSK1 and its activation. An N-terminal kinase 

domain (NKD) and a C-terminal kinase domain are connected by a linker region. Either 

ERK or p38 MAPK pathways, or both, phosphorylate Ser360, Thr581 and Thr700. 

Then the activated CKD phosphorylates Ser212 in the NKD, Ser376 and Ser381 in the 

linker region. Finally the active NKD phosphorylates MSK substrates as well as the 

MSK1 C-terminal region [160]. Taken from Vermeulen et al, 2009 [160] 
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Another interesting MSKs target is NF-B p65. Phosphorylation at Ser276 by 

MSKs (or PKA) recruits CBP and p300 [203]. Beyond acetylating histones, CBP 

and p300 can also acetylate p65 itself, resulting in an enhanced transcriptional 

activity [204]. 

MSKs also regulate chromatin environment, phosphorylating histone 3 at Ser10 

and Ser28 (H3Ser10 and H3Ser28). Vicent at al. [205] demonstrated that the 

phosphorylation of H3Ser10 displaces an HP1-containing repressor complex 

and promotes the recruitment of BRG1, PCAF and RNA polymerase II to initiate 

transcription. Interestingly Duncan and colleagues [206] reported that MSK1/2 is 

necessary for epidermal growth factor (EGF)- but not for TNF-induced 

H3Ser10 phosphorylation of the c-fos promoter.  

Phosphorylation of H3Ser28 by MSKs is also related to gene activation. Lau et 

al. [207] demonstrated that H3Ser28 phosphorylation induces a methyl-

acetylation switch of the adjacent K27 residue. MSK1 and H3Ser28 

phosphorylation antagonize polycomb silencing through the displacement of 

PRCs and the removal of H3K27me3. This double mark can recruit specific 

chromatin modifiers or transcription regulators to further modulate gene 

expression. JNKs also seem to be implicated in the phosphorylation of H3Ser10 

and H3Ser28 during the differentiation of stem cells into neurons but it has not 

been investigated whether this effect is mediated by MSK1/2 [208].  
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1.5.6   Nuclear factor kappa B (NF-B) signalling pathway 

 

Nuclear factor kappa B (NF-B) was identified in 1986 as a transcription factor 

present in the nucleus of B cells that bound to the enhancer of the 

immunoglobulin  light chain gene [209]. It is involved in the regulation of 

immune and inflammatory response as well as in carcinogenesis. NF-B 

consists of a family of proteins that share a highly conserved dimerisation and 

DNA-binding domain called Rel homology domain (RHD). The family includes 

Rel A (p65), Rel B, c-Rel, p50 (NF-B1) and p52 (NF-B2). Phosphorylation-

dependent cleavage of inactive p100 gives rise to active p52, whereas cleavage 

of p105 yields p50 [210]. NF-B proteins form different homo- and heterodimers 

and their activity is regulated by two main pathways: the canonical and the 

alternative pathways. The canonical pathway is activated in response to 

infections or pro-inflammatory cytokines. In this pathway the heterodimer p50-

p65 is held in the cytoplasm as an inactive form, bound to a specific inhibitor 

which masks the nuclear localization sequence of associated Rel proteins 

(Inhibitor of kB: IB, IB, IBor NEMO: NF-B essential modulator). 

Triggering of the canonical pathway activates IB kinase (IKK) protein complex 

and leads to IB phosphorylation. Then phosphorylated IB gets ubiquitinated 

and degraded by the 26S proteasome, releasing the p50-p65 heterodimer that 

translocates to the nucleus and binds to specific B sites within the promoter 

and enhancer regions of NF-B target genes [211, 212]. 

The alternative pathway preferentially affects the p100-Rel B heterodimer and it 

is activated by members of the TNF- cytokine family. These cytokines 

selectively activate IKK and lead to the cleavage of p100, allowing the p52-Rel 
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B heterodimer to translocate to the nucleus (Figure 1.5.4). Once in the nucleus, 

the transcriptional functions of NF-B are further modulated by post-

translational modification. NF-B target genes belong to four different 

categories: inflammatory and immunoregulatory genes (i.e. IL-6, IL-8); anti-

apoptotic genes, such as BCL-XL, c-FLIP, c-IAPs; genes that positively regulate 

cell proliferation (Cyclin D1, c-MYC) and genes that encode negative regulators 

of NF-B (i.e. IBIB). Genes of all four categories can contribute to 

tumorigenesis [210]. 

 

1.5.6.1   NF-B signalling pathway in inflammation and cancer 

 

Inflammation and cancer are tightly related. Inflammation is the response of the 

innate immune system to physiological and/or oxidative stress and it is 

associated with activation of the canonical NF-B pathway [213]. On one hand, 

NF-B targets and tries to eliminate cancer cells. On the other hand, NF-B is 

constitutively activated in a number of haematological and solid tumours and it 

can exert pro-tumorigenic functions. In acute inflammation NF-B activation is 

accompanied by a high activity of cytotoxic immune cells against transformed 

cells [214]. However cancer cells tend to “escape” and outperform the immune 

system and this establishes a chronic inflammatory condition with moderately 

elevated levels of NF-B activity, related to a high risk to develop cancer. In 

fact, NF-B activation usually leads to cell survival through the up-regulation of 

anti-apoptotic genes. Moreover, NF-B induces cytokines such as IL-8, IL-6, IL-

1 and TNF- that recruits leukocytes and granulocytes to the sites of 

inflammation.  
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Figure 1.5.4     Canonical and alternative NF-B activation pathways 

 

 

 

In the canonical pathway the heterodimer p50-p65 is held in the cytoplasm as an 

inactive form, bound to the specific inhibitor of kB (IB). Triggering of this pathway 

activates IB kinase (IKK) protein complex and leads to IB phosphorylation. Then 

phosphorylated IB gets ubiquitinated and degraded by the proteasome, releasing the 

p50-p65 heterodimer that translocates to the nucleus and binds to specific B sites 

within the promoter of NF-B target genes [211, 212]. In the alternative pathway 

activated IKK leads to the cleavage of p100, allowing the p52-Rel B heterodimer to 

translocate to the nucleus. BAFF= B-cell activating factor; CD40L= CD40 ligand; IL= 

interleukin; IRAK= IL-1R-associated kinase; FADD= Fas-associated death domain 

protein; LPS= lipopolysaccharides; LTb= lymphotoxin b; NEMO=NF-B essential 

modulator; NF-B= nuclear factor kappa B; NIK= NF-B-inducing kinase; RIP= 

receptor interacting protein; TLR= toll-like receptor; TNF= tumour necrosis factor; 

TRADD= TNF receptor-associated protein with a death domain; TRAF= TNF receptor-

associated factor; Ub, ubiquitin. Taken from Braun et al., 2006 [209]. 
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The release of reactive oxygen species (ROS) by neutrophils might cause DNA-

damage and genetic mutations, triggering tumour initiation [215]. 

NF-B has been shown to contribute to tumour progression and metastasis 

formation. In fact, it can control the epithelial-mesenchymal transition (EMT) 

[216], it is often related to high levels of matrix metalloproteinases (MMPs) [217] 

and it can control vascularisation of tumours via upregulation of vascular 

endothelium growth factor (VEGF) and its receptors [218]. In tumours, high level 

of NF-B activity can be induced by either mutations of NF-B genes and/or 

genes that activate the NF-B pathways or through an increased release of 

cytokines from the tumour microenvironment [219]. 

 

1.5.6.2    NF-B signalling pathway in solid and haematological tumours 

 

In solid tumours there is often an aberrant activity of IKK proteins, which leads 

to an aberrant sustained NF-B activity. An example is prostate cancer, where 

the gene fusion between IKK2 and TNPO1 (transportin 1) leads to an increase 

in IKK2 expression [220]. Other alterations occur at NF-B1 and/or NF-B2 

level [221]. In haematological malignancies the underlying pathways are quite 

different. These include: the short half-life of IB in B-cell lymphoma, the 

mutation of IB in Hodgkin’s lymphoma, TNF production in Burkitt’s 

lymphoma and cutaneous T-cell lymphoma [222]. In B-/T-cell lymphomas and in 

myelomas, alterations or deletions of p52 locus result in the cleavage of p100 

and the generation of constitutive active p52 protein. Increased degradation of 

IB has been reported in T cell leukaemia  [223]. In Philadelphia positive acute 

lymphoblastic leukaemias BCR/ABL1 expression promotes nuclear 
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translocation of NF-B [224]. High IKK kinase activity [225] and high production 

of IL-1 has also been demonstrated in AML cells. It is possible that NF-B 

stimulates IL-1 expression, which in turn activates NF-B and promotes AML 

cell proliferation [226].  

 

1.5.6.3  NF-B and transcription 

 

NF-B proteins bind to a variation of the consensus DNA sequence of 5’-

GGGRNYYYCC-3’ (where R is a purine, Y is a pyrimidine and N is any 

nucleotide) called B sites [227]. NF-B activation can be regulated by post-

translational modifications on IB and Rel subunits. Acetylation and 

phosphorylation of Rel subunits (especially p65 subunit) and the recruitment of 

HATs and HDACs control NF-B activation and transcriptional activity [228] and 

generate a “NF-B-signalling code” which could regulate biological responses in 

an inducer-, cell line- and promoter-dependent manner [229]. p65 

phosphorylation on Ser536 accelerates p65 nuclear localization and binding to 

DNA because this phosphorylated form cannot interact with cytosolic IB [230]. 

Phosphorylation of p65 on Thr254 by Pin1 also decreases the affinity for IB 

leading to p65 nuclear translocation and increasing DNA binding activity [231].  

PKA and MSK1/2 can phosphorylate p65 on Ser276 in response to different 

stimuli [232-234]. It has been shown that Ser276 phosphorylated p65 is 

recruited to several NF-B-dependent genes and is required for P-TEFb 

recruitment [235]. p65 phosphorylation on Ser276 and Ser536 promote 

interaction with CBP/p300, which in turn acetylates p65 at Lys310 and promotes 

Brd4 and P-TEFb recruitment and transcriptional activity [236]. Brd4 is a 
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bromodomain-containing protein of the BET family and it has the ability to 

interact with acetylated lysines on histones and on P-TEFb. This latter 

interaction leads to the recruitment of P-TEFb to promoters where it 

phosphorylates the Pol II CTD to stimulate elongation [237] (Figure 1.5.5). 

Brd4 and P-TEFb can also be recruited through histone acetylation [238]. 

p65 NF-B subunit can also be acetylated by p300 and PCAF and deacetylated 

by SIRT or HDAC-3. Acetylation of Lys221 and Lys218 impairs the interaction 

between p65 and IB, increasing p65 DNA binding and prolonging the NF-B 

response in the nucleus [239].  Thus, p65 deacetylation of these two lysines by 

HDAC-3 promotes the interaction with IB and NF-B nuclear export [240]. The 

same effect of dissociation from DNA and successive nuclear export has been 

seen after acetylation of p65 at Lys122 and Lys123 [241]  . 

When NF-B enters the nucleus it activates two types of promoters: those that 

are already accessible due to acetylated before stimulation and those that 

require stimulus-dependent chromatin remodelling in order to make NF-B site 

accessible [242]. An example is the mcp-1 gene, which requires AP-1 binding to 

the promoter and subsequent ATP-dependent chromatin remodelling by the 

SWI/SNF complex. This remodelling leads to the recruitment of NF-B and 

HATs, promoting gene activation. 
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Figure 1.5.5  Role of phosphorylation of serine 276 and 536 in the 

regulation of RelA (p65) acetylation 

 

 

 

 

 

 

 

Phosphorylation of RelA at serine 276 by PKA or MSK1 or phosphorylation at serine 

536 by IKK (A) leads to the recruitment of p300 (B). p300 acetylates lysine 310 (C) and 

promotes Brd4 and P-TEFb recruitment, thus leading to transcriptional activation (D). 

Adapted from Chen at al., 2005 [243]. 
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1.6 CYTOKINES 

 

1.6.1   Cytokines and their role in haematopoiesis and immune system 

 

Cytokines are proteins, peptides or glycoproteins which mediate communication 

among cells and between cells and tissues and are secreted by numerous cells 

of the immune system at nano to picomolar concentration. Cytokines act on 

specific receptors whose cytoplasmic domains contain specialized regions able 

to initiate different responses such as proliferation, survival, differentiation 

commitment, and functional activation [244]. Cytokines are fundamental to the 

development of immune system and in the regulation of an immune response.  

Cytokines are also essential in normal haematopoiesis, either acting in a 

lineage-specific manner or directing more than one lineage at the same time. 

Some cytokines are known as Interferons (IFNs) because they are involved in 

antiviral responses, whilst others are called Interleukins (ILs) since initially they 

were thought to be produced and act upon leukocytes only. Chemokines are 

involved in chemotaxis whereas colony stimulating factors (CSF) or growth 

factors induce clone formation in liquid or semi-solid media and support cell 

growth of specific cell types (such as IL-3 and GM-CSF). Cytokines such as IL-

1, TNFand, IFN- stimulate in turn the release of other haematopoietic 

cytokines [245] whereas others (e.g. IL-1, IL-2, IL-5, IL-6) synergise with 

effectors proteins to promote cell growth and differentiation. 

Cytokine genes are deregulated in a number of immune-related diseases, 

confirming the importance of cytokines in the development and regulation of the 

immune system and its responses. 
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1.6.2    Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and 

Interleukin-3 (IL-3)  

 

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and   

Interleukin-3 (IL-3) are pro-inflammatory cytokines produced at sites of 

inflammation which also regulate growth, differentiation and survival of several 

haematopoietic lineages. 

GM-CSF regulates the terminal differentiation of granulocytes and 

macrophages and it is produced by different cell types including activated T 

cells, NK cells, mast cells, basophils, eosinophils, megakaryocytes, endothelial 

cells, epithelial cells and fibroblasts [246, 247]. IL-3 is only produced by 

activated T cells, mast cells, NK cells and eosinophils but it supports 

development and proliferation of almost all types of myeloid progenitor cells 

[248] and promotes the self-renewal of haematopoietic progenitor cells [249].  

However, IL-3 and GM-CSF expression in bone marrow stroma cells is minimal. 

For this reason it seems that the stimulation of haematopoietic cells by these 

cytokines is associated with the inflammatory reaction [250]. In the inflammatory 

response IL-3 induces the proliferation of macrophages and mast cells and 

promotes the synthesis of histamine by mast cells and phagocytosis in 

macrophages. 

IL-3, GM-CSF and also IL-5 exert very similar biological activities on their 

common target cells. This is due in part to the fact that their high-affinity 

receptors, consisting of two subunits, alpha and beta, share the same c 

subunit. The  subunit is specific for the different cytokines [250] and although 

none of these receptor subunits has intrinsic kinase activity, these cytokines 

induce protein tyrosine phosphorylation and activation of several cellular 
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proteins, including JAK kinases [251], phosphoinositide 3 (PI-3) kinase, Ras, 

Raf-1 and MAPKs as well as the transcriptional activation of nuclear proto-

oncogenes such as c-myc, c-fos and c-jun [252].  

 

1.6.3      Cytokines and AML  

 

The role of specific growth factors in controlling the proliferation of 

haematopoietic cells has been demonstrated in in vitro clonogenic assays with 

AML blasts [253]. IL-3 and GM-CSF demonstrated an equivalent activity, 

greater than G-CSF, in stimulating progenitor cell proliferation. In this regard, 

combination of G-CSF with GM-CSF showed a synergistic effect, but IL-3 

combined with GM-CSF did not synergize [254]. This suggests that G-CSF acts 

upon a different population within the same clone, whereas the other two 

cytokines act upon the same population.  

IL-1 acts synergistically with GM-CSF in supporting AML blast cell colony 

formation [255]. Endogenous IL-1 secretion varies among individual patients. 

Despite this variation, IL-1 inhibition significantly decreases both spontaneous 

blast proliferation and blast secretion of IL-1, GM-CSF, G-CSF, IL-6 and TNF-

. Moreover, it has been shown that IL-1 induces GM-CSF production by AML 

blasts but its proliferative effect is inhibited by neutralizing antibodies to GM-

CSF. This suggests that IL-1 effects are mediated by an autocrine GM-CSF 

secretion [256]. 

TNF- synergizes with IL-3 and GM-CSF to stimulate AML blasts proliferation 

[257]. Similarly to IL-1, IL-6 synergises with GM-CSF in stimulating AML blast 

cell growth and enhances IL-3 dependent proliferation of normal pluripotent 

stem cells [258]. Several studies have reported the presence of GM-CSF mRNA 
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in AML blasts and secretion of GM-CSF [259-261]. AML samples which express 

GM-CSF often express also G-CSF, TNF-, IL-1 and IL-6 [262].  

 

1.6.4    The IL-3/GM-CSF locus  

 

The human GM-CSF and IL-3 genes reside on chromosome 5, separated by 

just 10.5 kb and by approximately 500 kb from the genes encoding  IL-5, IL-13 

and IL-4  [263]. GM-CSF and IL-3 are expressed in all T cells subtypes 

following activation of TCR receptor and in mast cells after IgE receptor 

activation. GM-CSF and IL-3 can also be expressed by myeloid progenitor cells 

[259, 264], and by epithelial and endothelial cells after stimulation with 

inflammatory cytokines [247]. IL-3 and GM-CSF mRNA are controlled at both 

transcriptional and post-transcriptional level. In fact their transcripts include an 

AU-rich sequence in the 3’ untranslated region (3’-UTR), required for the 

binding of a transcription factor which mediates mRNA decay [265, 266]. 

 

1.6.4.1    DHSs within the IL-3 gene 

 

The IL-3/GM-CSF locus contains many different regulatory elements, most of 

which were first identified as inducible or tissue-specific DHSs (Figure 1.6.1a) 

[267].  

The lL-3 gene has a highly inducible promoter and three inducible enhancers at 

-37 kb, -14 kb and -4.5 kb which have different tissue-specificities and can 

increase IL-3 promoter activity (Figure 1.6.1b) [264, 268-270].  

The IL-3 promoter is located within the first 315 bp upstream of the TSS. A 

TATA box is present between -25 and -30 bp from the TSS. Essential for 
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efficient promoter activity is a region at -300 bp from TSS, containing an AP-1 

binding site, and a highly conserved region from -160 to -100 bp, called 

activator-1 (ACT-1). This region contains the element ATGAATAAT [270], which 

is a binding site for the T cell specific protein NFIL-3A, but is also an imperfect 

consensus sequence for AP-1 and Oct-1. A RUNX1 and GATA binding sites are 

also present downstream of the ACT-1, and they are occupied in vivo only upon 

T cell activation. Between these two elements, there is CK1 consensus 

element, which is not necessary for the promoter activity, that seems to 

represent a strong NFAT binding site [267]. Between the GATA region and the 

TATA box there is a GC-rich region which can bind several Zn-finger proteins, 

including the Early growth response factor 1 and 2 (ERG1, ERG2) and the 

constitutive factor Sp1. The IL-3 promoter can also be negatively regulated by 

the binding of the nuclear inhibitory protein NIP to a region located between -

271 and -250 bp [271]. 

The -4.5 kb inducible enhancer is active in induced human T cells and mast 

cells, where is activated via Ca2+ and kinase-signalling pathways and shows 

high homology with the mouse genome. Essential for its enhancer activity is the 

presence of three NFAT binding sites in the core region [269]. RUNX-1, AP-1, 

Sp1 and GATA3 binding sites are also present in this region.  

In contrast to the -4.5 kb enhancer, the -14 kb enhancer is only known to 

function in two T cell lines, Jurkat and CEM cells and it doesn’t show any mouse 

homology. This enhancer encompasses four NFAT binding sites, with an 

essential core region spanning two of them. One of the NFAT binding site 

overlaps an Oct-1 element, and is essential for its activity and its T cell 

specificity, together with the recruitment of OCA-B, a lymphoid-specific Oct-1 

factor [268, 272].  
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The -37 kb enhancer is also strictly inducible in T blast cells and leukaemic cell 

lines such as Jurkat and KG1a (AML cell line) and it is 10-20 times more 

powerful than either the -14 or the -4.5 kb enhancers. It is highly conserved and 

contains consensus sequences for the Ca2+-inducible factor NFAT and the 

MAPK-inducible factor AP-1, suggesting a cooperation between these two 

pathways in the activation of the IL-3 locus. Moreover, the -37 kb enhancer 

encompasses also ETS-1, GATA and PU.1 binding sites, although these last 

two sites are not required for enhancer activity in Jurkat cells  [264]. 

Other constitutive DHSs are present both downstream and upstream of the IL-3 

gene. The downstream sites are present in every lineage, they bind the 

insulator factor CTCF, and they function as an insulator between the IL-3 and 

GM-CSF genes [273]. The upstream DHSs are tissue-specific and are present 

in T cells and myeloid cells [268, 274]. Of particularly interest is the -4.1 kb 

DHS, which lacks any classical enhancer activity, and is present in all cells 

expressing IL-3, in leukaemic cells and in primitive CD34+ myeloid cells which 

do not yet express IL-3. These observations suggest that this DHS might 

represent a locus that has been primed for activation by other inducible pathway 

[267]. This is consistent with the observation that the -4.1 kb DHS is marked by 

histone H3K4me2 and is stably maintained in circulating CD4+ memory T cells, 

but is absent in the thymus and in naive T cells [274]. This observation raised 

the suggestion that some elements in the genome, such as the -4.1 kb element, 

may serve the function of maintaining an epigenetic activation signature that 

allows more efficient reactivation. 
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1.6.4.2     DHSs within the GM-CSF gene 

 

All the gene regulatory elements required for the efficient activation of the 

human GM-CSF gene in transgenic mice are located on a 10 kb segment of 

DNA that extends to 5 kb upstream of the GM-CSF promoter [246]. This implies 

that the GM-CSF gene is regulated independently of the IL-3 gene, consistent 

with the presence of an enhancer-blocking insulator between the two genes 

[273] (Figure 1.6.1A). At least three DHSs exist upstream of the GM-CSF gene: 

one inducible at the promoter; another inducible enhancer at -3 kb in all the 

cells expressing GM-CSF and a constitutive site at -4.1 kb characteristic of the 

myeloid lineage [275-277]. The -3 kb enhancer encompasses four NFAT 

binding sites, defined as the GM170, GM330, GM420 and GM550 elements, 

according to their positions in a 717 bp Bgl II fragment that defines the 

enhancer [276]. Three of these sites show a cooperation with AP-1 binding, 

suggesting a collaboration between the Ca2+ signalling pathway, mediated by 

NFAT, and kinase signalling pathways, mediated by AP-1 [275, 276, 278, 279]. 

The two central composite NFAT/AP-1 binding sites (GM330 and GM420) are 

essential for the enhancer activity in T cells. One Sp1 and two GATA sites are 

present upstream of the core region, whereas two RUNX1 sites are located 

downstream [280]. The GATA elements and the adjacent GM170 AP-1 site are 

required for efficient enhancer activation in mast cells but not in T cell lines 

[281]. The RUNX element is a member of an unusual class whereby it binds two 

molecules of RUNX1 to overlapping binding sites and requires both sites for full 

activity [280]. 

Moreover, GM-CSF enhancer also contains a NFAT/B binding motif (at 

GM220 in the Bgl II fragment), suggesting that NF-B pathway might have a 
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role in GM-CSF gene regulation. Unpublished data from luciferase assays 

performed in Peter Cockerill’s lab showed that modification of the NFAT/B 

binding site at GM220 significantly decreases the enhancer activity in Jurkat 

cells. 

A scheme of the 717 bp Bgl II fragment that defines the enhancer and the 

location of the regulatory elements within it is represented in Figure 1.6.1B. 

The GM-CSF DHS at -4.1 kb is restricted to the myeloid lineage and it 

encompasses consensus sequences for RUNX1, AP-1 and for the specific 

myeloid lineage PU.1, suggesting its possible role in regulating myeloid cells 

[267]. The GM-CSF promoter is highly inducible by AP-1 and NF-B/rel upon 

activation of kinase signalling pathways (e.g. TNF- can activate both 

transcription factors) or upon activation of Ca2+ signalling and NFAT 

recruitment. The core of the GM-CSF promoter consists of a TATA element and 

a CLE0 element (conserved lymphokine element 0) just upstream. The CLE0 

element is activated by Ca2+/calcineurin and kinase signalling pathway and it 

represents a composite AP-1/Ets element able to bind also NFAT with low 

affinity. Upstream of CLE0 there are a RUNX1 and a B site. This B site, 

located at -86, binds p65/p50 complexes in response to signal activation by 

agents such as IL-1, LPS or TNF-. The B site overlaps with a Sp1 site, 

creating a composite element that has the ability to recruit BRG1-containing 

complexes, leading to chromatin remodelling [282].  
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A) Map of the DHSs in the IL-3/GM-CSF locus in activated T blast cells 

and myeloid progenitor (MP) cells. Gray arrows indicate constitutive DHSs, 

black arrows indicate PMA/I-inducible DHSs. E, enhancer; Prom, promoter. 

Taken from Baxter at al., 2012 [264].  

B)  Map of the human GM-CSF enhancer, defined in a Bgl II fragment, 

and the sequence of the regions containing the NFAT, AP-1 and kB binding 

motifs. Perfect consensus sequences are: (A/T)GGAAA for NFAT, TGAGTCA 

for AP-1 and GGGRNYYYCC for NF-B (where R is a purine, Y is a 

pyrimidine and N is any nucleotide). The four NFAT binding sites are located 

in the regions defined as GM170, GM330, GM420 and GM550 elements, 

according to their positions in the Bgl II fragment [276]. Three of these sites 

show a cooperativity with AP-1 binding. GM330 contains a perfect consensus 

sequence for AP-1. The NFAT/kb site is located at GM220. Adapted from Bert 

et al., 2007 [281]. 
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Figure 1.6.1  Map of the DHSs in the IL-3/GM-CSF locus and location of the 

regulatory elements in the GM-CSF enhancer  
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Upstream of the B site is a CK1 element, an atypical NF-B site able to bind 

p65/cRel complexes in response to CD28 activation in T cells as well as NFAT 

[283]. 

 

1.6.4.3      Activation of GM-CSF enhancer and chromatin remodelling 

 

In contrast to the promoter, the GM-CSF enhancer requires both Ca2+ and 

kinase signalling pathways for activity. The GM-CSF enhancer contains four 

NFAT binding sites: three of them bind cooperatively with AP-1 and two are 

essential for the enhancer activity.  

In T cells the DHS at the enhancer is highly inducible within 20 min of 

stimulation with the PKC activator phorbol myristate acetate (PMA) and calcium 

ionophore (I) and its induction is associated with increased GM-CSF gene 

expression [275]. In fact, the induction of GM-CSF gene expression in T cells is 

the result of both a Ca2+-dependent signal pathway, mediated by the nuclear 

factor of activated T cells (NFAT), and a kinase signal pathway, mediated by 

several transcription factors, such as AP-1. Ca2+ activates calcineurin, which 

interacts with and dephosphorylates NFAT. This dephosphorylation allows 

NFAT to enter the nucleus and bind DNA, promoting gene transcription. On the 

other hand, PMA activates different PKC isoforms. Some of them, such as 

PKC activates NF-B [42] and some others, such as PKC or , activate 

different MAPK pathways [284, 285], which have AP-1 as downstream mutual 

transcription factor.  

A schematic representation of the signalling pathways cooperating in GM-CSF 

gene expression after TCR activation or PMA/I-treatment is shown in Figure 

1.6.2.  
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Figure 1.6.2 Schematic representation of the signalling pathways 

cooperating in GM-CSF expression after TCR activation or 

PMA/I-treatment 

 

A 

 

 

 

Picture shows the cooperation between the Ca2+ signal pathway, mediated by NFAT, 

and the kinase pathways, mediated by AP-1 and NF-B, in the induction of GM-CSF 

gene expression. The different pathways can be activated either by TCR antigen 

stimulation or with phorbol myristate/calcium ionophore (PMA/I) treatment (adapted 

from a figure made by Peter Cockerill). 
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The -3 kb DHS is inducible in all the cells expressing GM-CSF. In some cells, 

such as T cells, it is entirely inducible upon stimulation. In others, like mast cells 

and myeloid cells, it is partly inducible and partly pre-existing [281]. As shown 

schematically in figure 1.6.2, the location of this DHS is also different, because 

in myeloid cells there are different transcription factors involved in specific gene 

expression, such as GATA-2. 

The difference between T cells and myeloid cells has been confirmed in 

leukaemic cell lines. In the human cell lines Jurkat (T-ALL leukaemia model) 

and CEM (T cell lymphoma model) the DHS is entirely inducible. In several 

myeloid cell lines, the DHS is already present before the stimulation, with the 

exception of the AML cell line KG1a, where the DHS is entirely inducible [281].   

Moreover, unpublished data from our lab show that, in some AML patients, both 

DHSs at the GM-CSF promoter and enhancer are already present before 

stimulation with IL-1, indicating that the gene is already primed for activation 

with the characteristics of open chromatin.  

The activation of the GM-CSF enhancer in T cells requires the recruitment of 

two multi-protein complexes able to disrupt two positioned nucleosomes (N1 

and N2). It seems that NFAT first induces the chromatin remodelling and, 

through the cooperation with AP-1 binding, it creates a more accessible 

environment for the binding of other transcription factors such as Sp1 and 

RUNX1. Indeed, in vivo footprinting of the RUNX motifs revealed complete 

occupancy of these sites after induction, but no detectable binding before 

stimulation [280]. Both NFAT and AP-1 can recruit CBP and p300 (two HATs) 

as well as chromatin remodelling complexes like SWI/SNF (Figure 1.6.3) [81].  

Mirabella et al. [274] showed that active forms of RNA Pol II are bound within 

the DHSs in the IL-3 and GM-CSF locus after induction, including at the GM-
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CSF enhancer, indicating that both GM-CSF and IL-3 enhancers could generate 

intergenic transcripts. The presence of non coding RNAs, which could be 

responsible for nucleosome mobilization, has been demonstrated at both the IL-

3 [274] and GM-CSF enhancer (unpublished data from Cockerill’s laboratory). 

However, their role in gene regulation has not been investigated. 
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Figure 1.6.3   Anatomy of the inducible DHS in the GM-CSF enhancer in 

activated T cells 

 

 

 

 

 

 

Picture represents the DHS formation and nucleosome mobilization at the human GM-

CSF locus. The activation of the GM-CSF enhancer in T cells requires the recruitment 

of two multi-protein complexes able to disrupt two positioned nucleosomes (N1 and 

N2). It seems that NFAT first induces the chromatin remodelling and, through the 

cooperation with AP-1 binding, it creates a more accessible environment for the binding 

of other transcription factors such as Sp1 and RUNX1. Both NFAT and AP-1 can 

recruit CBP and p300 as well as chromatin remodelling complexes like SWI/SNF. 

Taken from Cockerill P.N. 2011 [81]. 
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AIMS OF THE PROJECT: 

1) To define the role of signalling transduction pathways, focusing on MAPK  

and NF-B signalling, in the regulation of the PMA/I-induced GM-CSF 

gene expression and chromatin remodelling. Activated T blasts, which 

physiologically produce GM-CSF, and a T-ALL leukaemia cell line, which 

shows an inducible GM-CSF gene activation and DHS at the enhancer will 

be used. In order to do this selective kinase inhibitors will be tested; 

2) GM-CSF has been demonstrated to be produced by AML blasts to support 

their growth and proliferation and GM-CSF enhancer is often aberrantly 

remodelled as a constitutive DHS in AML. For these reasons, two AML cell 

lines will be used to study the role of signalling pathways in the regulation 

of the GM-CSF gene transcription as in 1); 

3) to study the role of single MAPK and NF-B downstream transcription 

factors in order to find a possible cross-talk between the two signalling 

pathways in the regulation of the PMA/I-induced GM-CSF gene 

expression in leukaemia cell lines; 

4) this study could represent the starting point for a genome-wide DHS 

analysis on AML samples, in order to find specific remodelled target genes 

and to investigate which transcription factors and signalling pathways are 

responsible for their regulation. 

Consequently, these pathways might represent potential targets for the 

treatment of AML cases where aberrant DHSs exist.  
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2.  MATERIALS AND METHODS 

 

2.1 Tissue culture procedures 

 

2.1.1 Cell culture 

 

Jurkat (human T cell leukaemia), KG1a (human acute myeloid leukaemia) and 

HEL (human erythroleukaemia) cells were grown in GIBCOTM 1640 RPMI + 

GlutamaxTM medium supplemented with 10% heat inactivated fetal calf serum 

(GIBCO), 100 U/ml Penicillin, 100 mg/ml Streptomycin. According to the DSMZ 

cell bank’s protocol, Jurkat and KG1a cells were passaged 1:2 to 1:3 every 2-3 

days, maintaining them at 0.5-1.5 x 106 cells/ml; HEL cells were grown to 0.2-

1.0 x 106 cells/ml, before passaging them 1:3 to 1:5 every 2-3 days. 

Human GM-CSF transgenic mouse T blast cells were isolated from spleen and 

cultured in Iscove’s modified Dulbecco’s medium + GlutamaxTM, supplemented 

as above plus 150 M Monothioglycerol. 

All cells were incubated the cells at 37 °C, in a humidified atmosphere 

containing 5% CO2. 

 

2.1.2 Preparation and expansion of splenic primary T blast cells from 

transgenic mice 

 

Actively dividing T lymphoblastoid cells (to be referred to as T blast cells) were 

prepared from the spleen and cultured in Iscove’s modified Dulbecco’s medium 

+ GlutamaxTM(Gibco) supplemented as above plus 150 M Monothioglycerol. 
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To prepare a suspension of lymphocytes, the spleen was isolated from C42 

transgenic mice containing six copies of an Age I fragment encompassing the 

entire human IL-3/GM-CSF locus. The spleen was minced to small pieces using 

sterilised scissors, before crushing in 5 ml of fresh medium and passing through 

a 70 M cell strainer.  

To induce the transformation of T lymphocytes to T blast cells, purified cells 

were incubated with 2 g/ml Concanavalin A (GE Healthcare) for 48h. 

Afterwards Concavalin A was removed and  replaced with 50 U/ml recombinant 

mouse (rm) IL-2 (Peprotech Inc.) for 3 or 4 more days to stimulate proliferation, 

passaging every day to maintain them at a concentration not higher than 2x106 

cells/ml. 

 

2.1.3       Stimulation and treatments  

 

All cells were pre-treated for 45 minutes to 4 hours (depending on the 

experiment) with 20 ng/ml phorbol 12-myristate 13-acetate (PMA) and 2 M 

calcium ionophore A23187 (I). To test inhibitors, cells were pre-treated for 1 h 

with each inhibitor before stimulation, either alone or in combination. Inhibitors 

of MEK (PD98059), p38 (SB202190), JNK (SP600125), NFAT (11R-VIVIT), 

MSK1 (H89 dihydrocloride hydrate) and the proteasome inhibitor MG132 were 

purchased from Calbiochem/Merck. The calcineurin inhibitor Cyclosporin A 

(CsA) was obtained from Sigma-Aldrich. All inhibitors were dissolved in sterile 

dimethyl sulfoxide (DMSO)-Hybri-Max® (Sigma-Aldrich) and stored as a 10 mM 

stock at -80 °C.  
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2.2 DNase I treatment  

 

Permeabilized cell digestions were performed by suspending the cells at a 

concentration of 3x106 cell/100 l in nuclei digestion buffer (60 mM KCl, 15 mM 

NaCl, 5 mM MgCl2, 10 mM Tris pH 7.4, 0.3 M sucrose) at 21 °C. Usually 18x106 

cells were required per treatment, in order to test three different concentrations 

of DNase I in a range from 6 to 16 g/ml to obtain optimally digested samples in 

which constitutive and inducible DHSs could be efficiently detected. Therefore, 

6 x106 cells were resuspended in 200 l in nuclei digestion buffer; then DNase I 

(Worthington) was added in an equal volume of digestion buffer containing 

0.4% Nonidet P-40 and 2 mM CaCl2.  After exactly 3 minutes  the digestion was 

terminated with a double volume (400 l) of nuclei lysis buffer containing 0.3 M 

sodium acetate pH 7.0, 0.5% SDS, 5 mM EDTA and 1 mg/ml proteinase K (PK), 

giving a final volume of about 800 l. Samples were incubated at 55°C for 1 h 

and then at 37 °C for 18 hours. The rate of digestion of the samples was 

analysed via 0.8% agarose gel electrophoresis using 1X TAE buffer (40 mM 

Tris, 20 mM acetic acid and 1 mM EDTA) and 0.5 g/ml ethidium bromide. 8 l 

of lysate solution (8 l from 800 l lysate = 1% of 6 x 106 cells = ~ 300 ng DNA) 

were loaded per well and electrophoresis was performed at 30 Volts for 15-16 h 

and visualised under UV. Samples which showed optimal extents of DNase I 

digestion were selected, using as reference a λ DNA-HindIII Digest ladder (New 

England BioLabs). Picture 2.1 shows a representative gel with an explaination 

on how samples were identified and selected for subsequent Southern Blot 

analysis. Afterwards 100 g/ml of RNase A were added and samples were 

incubated for 1 h at 37 °C before an extra PK treatment at 55 °C for 1 h. 
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Figure 2.1     Check gel for DNAse I digestion 

 

 

 

 

 

Picture represents a 0.8% agarose gel after an overnight run at 30 V.  

Lanes 1, 2 and 3 show about 300 ng of DNA from KG1a cells treated with 6, 10 and 12 

g/ml of DNAse I, respectively. On the left 1 g of λ DNA-HindIII Digest ladder has 

been loaded (molecular weight of the bands is indicated by the arrows). 

In this analysis most of the DNA of sample 3 has been digested into fragments smaller 

than 23 kb. For this reason, I decided to exclude sample 3 and to use the samples 1 

and 2 for Southern blot analysis of DHSs.  
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2.3      DNA purification 

 

After selecting samples with an optimal rate of digestion, DNA was purified 

using phenol/chloroform. An equal volume of phenol was added to the genomic 

DNA solution and the mixture was incubated with rotation at RT for 1 hour. 

Following centrifugation for 5 minutes at 13000 rpm, the aqueous phase was 

transferred to a fresh eppendorf and an equal volume of phenol:chloroform (1:1) 

solution added, incubated at RT for 30 minutes under constant rotation and then 

centrifuged as before. An equal volume of chloroform was then added  to the 

aqueous phase, incubated with rotation at RT for 20 minutes and centrifuged; 

then the DNA was precipitated using 2 volume of absolute ethanol, in the 

presence of salt (sodium acetate 0.3 M pH 5.2) and 20 g glycogen on ice for 5 

minutes and then centrifuged at 13000 rpm for 10 minutes at 4 °C. The pellet 

was washed with 70% ethanol before air drying and then resuspended in 1X TE 

(10 mM Tris-HCl, 1 mM EDTA, pH 7.4). 

 

2.4 DNase hypersensitive site (DHSs) mapping and Southern blot 

 

After purification 5 g of DNA were digested with 30 Units of either EcoR I or 

BamH I (New England BioLabs Inc.) in 17.5 l solution containing 1X NEBuffer 

and 0.1 mg/ml BSA using the recommended NEBuffer 2 for EcoR I digestion 

(100 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2 

0.025% Triton® X-100, pH 7.5 at 25°C) and NEBuffer 3 for BamH I digestion 

(100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2, 100 μg/ml BSA, pH 7.9 at 

25°C). After 3-4 hours at 37 °C the digestion was stopped with 4 ml of stop 

buffer containing 1 % SDS, 20% ficoll and Orange G dye. In this study the DHSs 
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across a 9.4 kb EcoRI fragment spanning the GM-CSF enhancer and promoter 

were mapped, using a 1.5 kb BamH I fragment of DNA as a probe. The DHSs 

spanning the insulator downstream of the IL-3 gene were mapped in a BamHI 

fragment, using a 1 kb Bgl I/BamH I fragment as a probe. A schematic 

representation of the technique used to identify cis-regulatory elements by 

Southern blot and the strategy used to map the DHSs in the GM-CSF/IL-3 locus 

is represented in Figure 2.2.  

Digested DNA was analysed on a 0.8% agarose gel made up with 1X TAE 

buffer (Tris base, acetic acid and EDTA) and 0.5 g/ml ethidium bromide and  

run at 30 Volts for 15-16 hours. Afterwards, the gel was washed twice for 15 

minutes in a solution containing 0.5 M NaOH and 1.5 M NaCl to denature the 

DNA and then twice for 20 minutes in a neutralization solution containing 1 M 

Tris pH 7.0 and 1.5 NaCl. Denatured DNA was transferred onto Hybond-XL 

membrane (Amersham) in 10X SSC buffer (0.15 M sodium citrate, 1.5 M NaCl 

plus 0.1 M EDTA). The filter was washed in 2X SSC and then the DNA fixed 

onto the membrane using UV at 0.07 Joules/cm2.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



94 

 

Figure 2.2    Identification of cis-regulatory elements by Southern blot and 

strategy of the DHSs mapping in the GM-CSF/IL-3 locus 

A 

B 

 

Schematic representation of the identification of cis-regulatory elements by Southern 

blotting. B) Strategy of DHSs mapping. DHSs within a 9.4 kb EcoR I fragment were 

identified by using a 1.5 kb BamH I fragment as a probe (P 1). DHSs spanning the 

insulator region downstream of the IL-3 gene were identified in a BamH I fragment 

using a 1.0 kb Bgl I/BamH I fragment as a probe (P 2). R, EcoR I site; B, BamH I site; 

L, Bgl I site. 
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2.5 Southern blot hybridization 

 

After DNA transfer to membranes, DHSs were mapped by indirect end-labelling 

as follows. The membrane following Southern Blot was incubated with rotation 

for at least 2 hours at 65°C with 20 ml of RapidHyb buffer (Amersham) 

containing 0.25 mg/ml heat denaturated sonicated herring sperm DNA. Probes 

were prepared using an Amersham kit. To prepare a specific probe, 30 ng of 

DNA probe was combined with 5 l of random primers in a final volume of 33 l 

water, and heated at 99°C for 5 min. After cooling the mixture briefly on ice, 10 

µl of labelling buffer, 2 µl (1 U/µl) of Klenow fragment of DNA polymerase 

(Amersham) and 5 µl 32P dCTP were added and incubated at 37 ˚C for 20-30 

minutes. To purify the probe from free 32P-dCTP, the probe was centrifuged 

through Sephadex G50 spin columns (GE Healthcare). The probe was heat 

denaturated in the presence of 0.5 ml of 10 mg/ml herring sperm DNA at  99°C for 

5 minutes, cooled on ice, and then added to the hybridization buffer. After 

hybridization (2 hours at 65°C) the filter was washed twice for 15 minutes with 2X 

SSC containing 25 mM NaPhosphate and 0.1 % SDS, then twice for 20 minutes 

with pre-warmed 0.1X SSC wash buffer containing 1 mM sodium pyrophosphate 

pH 7 and 0.1% SDS.  The final wash was in a high salt buffer (2X SSC, 50 mM 

NaPO4, 10 mM NaPyrophosphate, 0.5% SDS) for 15 minutes to reduce the 

background. The labelled membrane was then exposed to a Kodak 

phosphorimager screen and visualised using a PharoxFXTM phosphoimager 

(Bio-Rad). Images were analysed using Bio-Rad Quantity One® Software. 
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2.6 mRNA extraction and purification 

 

5x106 cells were incubated with 1 ml Trizol® (Invitrogen) for 5-10 minutes before 

addition of 0.2 ml of chloroform and centrifugation at 13000 rpm for 15 min at 

4°C. The supernatant was removed and the RNA was precipitated by adding 

500 l of isopropanol. Samples were incubated for 10 minutes at RT and then 

centrifuged at 13000 rpm for 10 min at 4°C. The pellet was washed  in 70% 

ethanol, air dried and resuspended in 20-40 l of DEPC treated water. Genomic 

DNA was removed by digestion with 2 U of TURBOTM DNase I (Ambion), after 

adding 0.1 volume of 10X TURBOTM DNase I buffer. After 30 min at 37°C 

digestion was stopped with 0.1 volume of 10X TURBOTM DNase I inactivation 

buffer. Finally the samples were centrifuged at 7500 g for 1.5 min and the 

supernatant containing the purified mRNA transferred to a fresh eppendorf.  

 

2.7 Reverse transcription and Real Time PCR 

 

1 g of purified mRNA was mixed with 0.5 mM of each of dCTP, dGTP, dATP, 

TTP and 1 µl of 176 µM oligo dT primers and incubated for 5 min at 95°C. Then 

4 l of 5X first strand buffer, 1 l of RNase out recombinant ribonuclease 

inhibitor, 10 mM DTT and 1 l of M-MLV Reverse transcriptase (Invitrogen) 

were added and incubated at 37°C for 50 min. M-MLV enzyme was inactivated 

at 70°C for 15 min. 

Quantitative Reverse Transcriptase PCR experiments (qRT-PCR) were 

performed using the Applied Biosystem® 7500 System. PCR conditions were: 

50˚C for 2 minutes, 95˚C 10 minutes, then 40 cycles of 95˚C for 15 seconds and 

60 ˚C for 1 minute. To measure the levels of expression of each gene, I used 20 



97 

 

l of a mix containing a 2X Sybr Green Master Mix (Applied Biosystem) (1X final 

concentration), 500 ng of forward and reverse primers and 2 l of cDNA, 

previously diluted 1:20 or 1:100 (in the case of GAPDH). Data from the 

threshold values for each amplification was analysed against a standard curve 

prepared using serial dilutions (usually 1:20, 1:100, 1:1000 and 1:10000) of 

cells stimulated with PMA/I and normalised to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) gene values.  

Primer pairs were designed using the aid of Primer3 software and were made 

by Sigma-Aldrich. The sequences used as primers in Real Time experiments 

are listed in table 2.1. 

In every biological experiment, the expression of the genes was measured in 

triplicate after each treatment and the average was calculated. Values with 

threshold cycles > or < 0.5 compared to the other two were excluded. Statistical 

difference in gene expression between two different groups (e.g treated vs 

untreated cells) was determined using the student t-test (samples different if 

value ≤ 0.05). 
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Table 2.1        Primers used in Real Time PCR   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = mouse   h = human  

 

 

 

 

 

 

Primer name Sequence 5’-3’ 

h GM-CSF forward CACTGCTGCTGAGATGAATGAAA 

h GM-CSF reverse GTCTGTAGGCAGGTCGGCTC 

m GAPDH forward  AACAGCGACACCCACTCCTC 

m GAPDH reverse  CATACCAGGAAATGAGCTTGACAA 

h GAPDH forward CCCACTCCTCCACCTTTGAC 

h GAPDH reverse ACCCTGTTGCTGTAGCCAAAT 

m c-Fos forward TCCAAGCGGAGACAGATCAAC 

m c-Fos reverse TTTTTCCTTCTCTTTCAGCAGATTG 

m c-Jun forward GCCGGAAAAGGAAGCTGGAGC 

m c-Jun reverse CTGTTCCCTGAGCATGTTGGC 

h c-Fos forward  AGGCCGAGCGCAGAGCATTG 

h c-Fos reverse CGGTTGCGGCATTTGGCTGC 

h c-Jun forward GTTTGCAACTGCTGCGTTAG 

h c-Jun reverse CAGGTGGCACAGCTTAAACA 

h Fra-1 forward CTGCAGCCCAGATTTCTCAT 

h Fra-1 reverse AACCGGAGGAAGGAACTGAC 

h Fra-2 forward ATCAAGACCATTGGCACCAC 

h Fra-2 reverse GACGCTTCTCCTCCTCTTCA 

h JunB forward CACCTCCCGTTTACACCAAC 

h JunB reverse GGAGGTAGCTGATGGTGGTC 

h JunD forward TTGACGTGGCTGAGGACTTT 

h JunD reverse CGCCTGGAAGAGAAAGTGAA 
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2.8     siRNA genes knock-down in KG1a cells 

 

SignalSilence® p44/42 MAPK ERK1/2 siRNA (#6560) was purchased from Cell 

Signaling Technology; p38 (sc-29433) and c-Jun (sc-29223) siRNA (h) were 

purchased from SantaCruz Biotechnology. siRNAs were resuspended in 

nuclease free water according to the manufacturer’s protocol and stored at -

80°C. MISSION® siRNA Universal Negative Control #1 from Sigma-Aldrich 

(SIC001) was used as a control for nonsequence-specific effects. Up to 2X107 

KG1a or Jurkat cells were transfected with 100-200 nM siRNA in RPMI media 

(10% FCS, L-Glutamine and antibiotics) using a Fischer 3500 electroporator 

(Fischer, Heidelberg, Germany) at 350 Volts with an electrical pulse of 10 msec. 

Following electroporation, the transfected cells were seeded in pre-warmed 

medium at a concentration of 5x105 cells/ml and incubated at 37°C with 5% 

CO2. mRNA levels were analysed via qRT-PCR 48h after transfection, and 

protein levels via western blotting after 72 h. In the case of ERK1/2 and p38, the 

cells were transfected again and the level of protein expression was verified 

after further 24 h.  

Although exogenous siRNAs can be introduced in the cells to silence specific 

genes, endogenous siRNAs have been identified in various organisms. In 

human siRNA-mediated RNAi the RNAse enzyme Dicer can convert both 

hairpin RNAs and lncRNAs into 21-23 nucleotides (nt) siRNAs, carrying a 

phosphate group at 5’ end and a 2-nt overhangs at the 3’ end. These dsRNAs 

assemble into a RNA-induced silencing complex (RISC), containing Dicer, 

AGO2 and other protein subunits. RISC complex containing the antisense 

strand (called guide strand) binds the target mRNA and leads to its cleavage 

and degradation. After cleavage, RISC is recycled (Figure 2.3) [286]. 
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Figure 2.3     siRNA gene silencing mechanism 

 

 

 

 

 

 

The RNAse enzyme Dicer can convert both hairpin RNAs and lncRNAs into 21-23 

nucleotides (nt) siRNAs, carrying a phosphate group at 5’ end and a 2-nt overhangs at 

the 3’ end. These dsRNAs assemble into a RNA-induced silencing complex (RISC), 

containing Dicer, AGO2 and other protein subunits. The RISC complex containing the 

antisense strand (called guide strand) binds the target mRNA and leads to its cleavage 

and degradation [286]. Taken from Rana T.M., 2007 [286]. 
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2.9       Electrophoretic Mobility Shift Assay (EMSA) 

 

2.9.1  Nuclear extract preparation  

 

Nuclear extracts were obtained from Jurkat and KG1a cells by homogenizing 

the cells in ice cold buffer A, containing 10 mM HEPES, 10 mM KCl, 1.5 mM 

MgCl2, 0.5 mM DTT, 0.5 mM PMSF, 50 g/ml aprotinin and leupeptin [60]. After 

centrifugation at 1500 rpm for 5 minutes the pellet was resuspended in buffer A 

and 4 volumes of buffer C (20 mM HEPES, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 

mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, 50 g/ml aprotinin and 50 g/ml 

leupeptin). Following centrifugation at 13000 rpm for 10 minutes protein 

concentration was determined by the Bradford assay (Pierce), following the 

manufacturer’s instructions. 

A known volume of sample (2-5 l) was mixed with 1 ml of Bradford reagent 

(which contains the protein stain Coomassie Blue G250) and after 5 minutes the 

absorbance was read at a wavelength of 595 nm  using a spectrophotometer. 

Concentration of the samples was determined using a calibration curve made of 

serial dilutions of BSA.  

 

2.9.2  Labelling and purification of EMSA probes 

 

The probes used for AP-1 and Oct-1 EMSA assays were duplexes of DNA 

oligonucleotides containing either the AP-1 or Oct-1 consensus sequence 

(Stromelysin gene AP-1 site: GCAAGGATGAGTCAAGCTGCGGGTGATCC; 

Oct-1 consensus: TGGACACCAAATTTGCATAAATC). 
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To anneal the forward and reverse oligonucleotides 100 l of sample containing 

50 M of both oligos in TE plus 50 mM NaCl was incubated at 90 °C for 5 

minutes and left to cool slowly. The probe was then radiolabelled as follows. In 

the labelling reaction 25 ng of oligonucleotide duplex in TE + 50 mM NaCl were 

mixed with 0.5-2 units T4 DNA polymerase, 1 l 10X T4 DNA polymerase 

buffer, 3 l 0.33 mM dCTP + dATP + TTP and 5 ul 32P dCTP. After 10 minutes 

at RT, 3 l 20% ficoll + Bromophenol Blue were added and, in order to purify 

the EMSA probe from free radioactive, the mixture was loaded onto a 7.5% 

polyacrylamide TAE gel, which had been pre-run for 1 hour at 150 V. After 45-

50 minutes at 250 V in TAE buffer the run was stopped; the gel was sealed in a 

plastic bag and exposed to an X-Ray film (Amersham), using luminous stars 

that had been previously exposed to light to help localise the position of the 

probe on the gel. The radioactive probe was excised from the gel, transferred 

onto a midi D-tube dialyser (Merck Millipore) with 300 l TAE buffer and placed 

it in a mini-agarose gel tank in TAE buffer for 20-30 minutes at 80 V for 

eletroelution. After elution the gel slice was dialysed in 1X TE + 50 mM NaCl 

overnight at 4°C.  

  

2.9.3    EMSA gel shift 

 

Each EMSA was performed using a 4% polyacrylamide gel in 25 mM Tris 

borate/0.5 mM EDTA (TBE). The gel was pre-run at 200 V for 1 hour and left to 

cool down.  In each assay, 4 g of nuclear protein, 4 g of poly(dI·dC) and 0.2 

ng of radiolabeled DNA probe were incubated for 10 min at room temperature in 
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a final 20 l of 18 mM HEPES, 45 mM NaCl, 15 mM KCl, 10% glycerol, 0.1 mM 

PMSF, 1 mM DTT, 5 g/ml aprotinin and 5 g/ml leupeptin.  

In competition assays and supershift assays an excess of unlabeled  specific 

competitor or 1 g of specific antibody was added, respectively, to the nuclear 

extracts and incubated for 10 minutes at RT before adding the radioactive 

probe. At the end of the incubation samples were loaded on the gel including a 

Bromophenol Blue marker on one side lane only. The gel was run at 200 V for 

exactly 1.5 hours, when the dye migrated about 9.5 cm. Then the gel was fixed 

in 0.5% Cetyl Trimethyl Ammonium Bromide, 50 mM NaAcetate pH 5.5 for 

about 45-60 minutes to reduce the risk of diffusion of probe during drying. After 

fixation the gel was transferred on one sheet of Whatman 3MM, covered in 

clingfilm and dried at 80°C for approximately 1 hour.     

Autoradiography was performed using a Kodak phosphorimager. Images were 

visualised using a PharoxFXTM phosphoimager (Bio-Rad) and analysed using 

Bio-Rad Quantity One® Software. 

 
 
2.10 Western blotting 

 
 
2.10.1     Whole protein extraction  

 

107 cells were harvested by centrifugation at 1200 rpm for 5 minutes, washed 

twice in PBS after treatments and then resuspended in 1X RIPA buffer (20 mM 

Tris-HCl pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% 

sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM -

glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin). After 30 minutes at 4°C 

cells were centrifuged at 16000 g at 4°C for 15 minutes. The resulting pellet was 
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discarded and the supernatant was either used for western blotting or stored at 

-20°C. Protein concentration was determined by Bradford assay as described 

above. 

 

2.10.2  SDS – Polyacrylamide gel electrophoresis (PAGE)  

 

30 g of total proteins was mixed with a 2x Laemmli sample buffer from Bio-Rad 

(65.8 mM Tris-HCl, pH 6.8, 2.1% SDS, 26.3% (w/v) glycerol, 0.01% 

bromophenol blue), supplemented with 5% (v/v) β-mercaptoethanol and heated 

at 100 °C for 5 minutes. Then samples were loaded onto a 10% polyacrylamide 

gel containing SDS or onto a 4-20% Mini-PROTEAN®TGXTM Precast Gels (Bio-

Rad).  The 10% polyacrylamide + SDS gel was formed of 2 parts: a resolving 

gel (375 mM Tris-HCl pH 8.8, 10% (w/v) acrylamide/bis-acrylamide (37.5:1) 

(Bio-Rad), 0.1% (w/v) SDS, polymerised with 0.04% (w/v), ammonium 

persulphate (APS) and 0.08% (v/v) TEMED) and a stacking gel (125 mM Tris-

HCl pH 6.8, 4.5% (w/v) acrylamide/bis-acrylamide (37.5:1), 0.1% (w/v) SDS, 

polymerised with 0.05% (w/v) APS and 0.125% (v/v) TEMED). Gel 

electrophoresis was performed at constant voltage (100V) for about 1.5 hours in 

1X Running buffer (25 mM Tris-HCl, glycine 192 mM, 0.1% (w/v) SDS)  using a 

Mini-PROTEAN tetra electrophoresis system (Bio-Rad). To determine molecular 

weight of proteins of interest the Full Range Rainbow Molecular Weight marker 

was used (GE Healthcare). After electrophoresis, proteins were transferred to 

nitrocellulose membrane (Thermo scientific, Pierce) using Mini-Trans blot cell 

(Bio-Rad) at 100 Volts for 1 h at 4 °C in transfer buffer (25 mM Tris-HCl, 192 

mM glycine, 20% (v/v) methanol). Membranes were then blocked at room 

temperature for 1 h with 5% (w/v) milk powder in TBS-Tween 20 (0.1%) (TBST). 
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After brief washes with 1X TBST, membranes were incubated first overnight at 

4°C with primary antibody (1:1000 in 5% (w/v) BSA in TBST) (Table 2.2). 

Membranes were washed 3 times for 5 minutes with 1X TBST and then they 

were incubated for 1h at room temperature with an anti-rabbit IgG, HRP-linked 

secondary antibody diluted 1:10000 in 5% BSA in TBST (#7074 Cell Signaling 

Technology). Before detection, membranes were washed again 3 times for 5 

minutes with 1X TBST. Membranes were developed using the ECL Plus 

Western Blotting detection system (GE Healthcare) according to the 

manufacturer’s protocol and the signal was detected using x-ray films. 

The intensity of the band was measured using Image J software and results 

were expressed as relative to either a housekeeping protein (e.g. GAPDH) or, in 

case of a phosphorylated protein, to its total form (e.g. MAPK proteins). 
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Table 2.2       List of primary antibodies used in Western blot analysis 

 

 

 

 

 

 

Antibody Cat. No.   Company 

p44/42 MAPK (ERK1/2) Rabbit mAb 4695 Cell Signaling Tech. 

p38 MAPK   Rabbit mAb 9212 Cell Signaling Tech. 

SAPK/JNK  Rabbit mAb 9252 Cell Signaling Tech. 

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)  

Rabbit mAb 

9101 Cell Signaling Tech. 

Phospho-p38 MAPK (Thr180/Tyr182) (3D7) 

Rabbit mAb 

9215 Cell Signaling Tech. 

Phospho-SAPK/JNK (Thr183/Tyr185) (98F2) 

Rabbit mAb 

4671 Cell Signaling Tech. 

MSK1 (C27B2) Rabbit mAb 3489 Cell Signaling Tech. 

Phospho-MSK1 (Thr581) Rabbit mAb 9595 Cell Signaling Tech. 

c-Fos  4384 Cell Signaling Tech. 

c-Jun (60A8) Rabbit mAb 9165 Cell Signaling Tech. 

Phospho-c-Jun (Ser63) (54B3) Rabbit mAb 2361 Cell Signaling Tech. 

NF-κB p65 Antibody 3034 Cell Signaling Tech. 

Phospho-NF-κB p65 (Ser276) Antibody ab106129 Abcam 

Phospho-NF-κB p65 (Ser536) Rabbit mAb 3033 Cell Signaling Tech. 

GAPDH (14C10) Rabbit mAb 2118 Cell Signaling Tech. 

http://www.cellsignal.com/products/primary-antibodies/9101?Ntt=mapk&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/9215?No=30&Nrpp=30&Ntt=mapk&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/9215?No=30&Nrpp=30&Ntt=mapk&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/4671
http://www.cellsignal.com/products/primary-antibodies/4671
http://www.cellsignal.com/products/primary-antibodies/3489
http://www.cellsignal.com/products/primary-antibodies/9595
http://www.cellsignal.com/products/primary-antibodies/4384
http://www.cellsignal.com/products/primary-antibodies/9165?Ntt=c-jun&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/2361?Ntt=c-jun&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/3034?No=30&Nrpp=30&Ntt=nf-kb&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/3037?No=30&Nrpp=30&Ntt=nf-kb&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/3033?No=0&Nrpp=30&Ntt=nf-kb&fromPage=plp
http://www.cellsignal.com/products/primary-antibodies/2118
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2.11    Chromatin immunoprecipitation (ChIP) 

 

2.11.1   Chromatin preparation 

 

For histone modification ChIPs, a single cross-linking protocol with 

formaldehyde was used, starting from 1.5x107 cells. Alternatively, when an 

antibody against a transcription factor was used, a double cross-linking protocol 

was performed, starting from 5x107 cells. In this case cells were washed three 

times with PBS after treatments. Then they were resuspended in 15 ml PBS 

and DNA-protein interactions were first cross-linked for 45 minutes at RT by the 

addition of 12.5 mg disuccinimidyl glutarate (DSG). Cells were then washed four 

times with PBS and a second cross-linking was performed by adding 16% 

formaldehyde to a final concentration of 1%. For all ChIP assays, after 10 

minutes at RT, the cross-linking was stopped by addition of glycine to a final 

concentration of 0.125 M. Cells were washed twice with cold PBS and 

resuspended in ice cold Buffer A (10 mM Hepes 1 M pH 8, 10 mM EDTA 0.5 M 

pH 8, 0.5 mM EGTA 0.2 M pH 8, 0.25% TritonX100 10%) plus a protease 

inhibitor cocktail and rotated on a rotating wheel at 4°C for 5-10 min. Then pellet 

was spun down and resuspended in ice cold Buffer B (10 mM Hepes pH 8, 200 

mM NaCl, 1 mM EDTA pH 8, 0.5 mM EGTA pH 8, 0.01% TritonX100) and 

rotated again on a rotating wheel for 5-10 min. For sonication, chromatin was 

resuspended in 300 l IP buffer I (25 mM Tris pH 8, 150 mM NaCl, 2 mM EDTA 

pH 8, 1% TritonX100, 0.25% SDS) and was shredded in order to obtain ~ 200-

500 bp DNA fragments using Bioruptor™ (Diagenode) at 240W for 15 cycles of 

30 sec on and 30 sec off at 5°C. Samples were then centrifuged at 16000 g, 10 

min at 4°C and the supernatant was diluted by adding 2 volumes of ice-cold  IP 
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buffer II (0.083% SDS, 5% glycerol final concentration). The chromatin solution 

was then split into two aliquots to be used for two immunoprecipitations. 10% 

input material was taken from one of the aliquots.  

To verify the size of chromatin after sonication, a few microlitres of input were 

loaded onto a 0.8% agarose gel made up with TBE buffer (89 mM Tris borate, 

0.01 M EDTA, pH 8.2-8.4 at 25 °C). The gel was run at 50 V for about 45 

minutes using 1 g of 100 bp DNA ladder (New England BioLabs) as reference 

and then visualised under UV light. A picture of a typical gel is shown in Figure 

2.4. 

 

2.11.2  Immunoprecipitation and DNA quantification 

 

15 l Dynabeads were incubated for 2 hours with 10 g antibody (against a 

transcription factor) or 2 g antibody (against a histone modification) (Table 2.3) 

together with 0.5% BSA to reduce the non-specific binding. Then, antibodies 

were added to 450 l chromatin and samples were rotated at 4 degrees. After 4 

hours of incubation samples were washed once with Wash Buffer I (20 mM Tris 

pH 8, 150 mM NaCl, 2 mM EDTA pH 8, 1% TritonX100, 0.1% SDS), then twice 

with Wash Buffer II (20 mM Tris pH 8, 500 mM NaCl, 2 mM EDTA pH 8, 1% 

TritonX100, 0.1% SDS), once with LiCl Buffer (10 mM Tris pH 8, 250 mM LiCl, 1 

mM EDTA pH 8, 0.5% NP40, 0.5% Na-deoxycholate) and twice with TE/NaCl 

buffer (10 mM Tris pH 8, 50 mM NaCl, 1 mM EDTA pH 8). Histone complexes 

were eluted with 100 l Elution Buffer (1% SDS, 0.1 M NaHCO3). 
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Figure 2.4     Agarose gel to check chromatin size after sonication 

 

 

The gel shows input fractions from KG1a untreated (1), treated with PMA/I for 1.5 h (2) 

and pretreated for 1 h with the combination of MEK and p38 inhibitors before PMA/I 

stimulation (3). In the three samples, most of the chromatin shows a size between 100 

and 300 bp. On the right side, arrows indicate the molecular weights corresponding to 

the bands of the 100 bp DNA ladder. 
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Input samples were also diluted in Elution Buffer up to 100 l. 1 l RNaseA (10 

mg/ml)  was added to the samples and incubated for 30 min at 37°C. Then 4 l 

5 M NaCl and 2 l 0.5 M EDTA were added and cross-linking was reversed by 

adding 0.5 l Proteinase K (50 mg/ml) and heating at 65°C overnight. For input 

samples, 1 l Proteinase K (50 mg/ml) was used. The following day samples 

were purified by using 180 l Agencourt AMPure reagent (Beckman Coulter 

Genomics). They were washed twice with 750 l EtOH 70% and then 

resuspended in 100 l 0.1 X TE.  

The qRT-PCR reaction and analysis were performed as described before, using 

4 l of DNA sample in 20 l PCR reaction and the primers listed in Table 2.4. 

Input samples were diluted 1:10. For each ChIP analysis, an IgG antibody has 

been used as control for non specific binding.  

For c-Fos and c-Jun ChIP assays, primers were designed in order to span the 

NFAT/AP-1 site GM420 [276]; in MSK1 and NF-B ChIPs, primers are spanning 

the b site at GM220 [281]. Finally, for analysis at histone modifications 

analysis, primers were designed at the edge of the DHS, spanning the region 

between positions 600 and 717 of the Bgl II fragment spanning the GM-CSF 

enhancer, in the proximity of a positioned nucleosome referred to as N3, and 

were indicated as GM-N3. Data were normalised to either IVL or Chr18, two 

gene desert regions. A schematic representation of the GM-CSF enhancer, 

including the position of the primers, is shown in Figure 2.5. 
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Table 2.3       List of antibodies used in ChIP assays 

 

 

 

 

 

 

Table 2.4       List of Real time PCR primers used in ChIP assays 

 

 

 

 

Antibody Catalogue number Company 

Normal Rabbit IgG 12-370 Merck Millipore 

p300 (C-20) sc-585 Santa Cruz Biotech. 

MSK1 (H-65) sc-25417 Santa Cruz Biotech. 

c-Fos (H-125) sc-7202X Santa Cruz Biotech. 

c-Jun (H-79) sc-1694X Santa Cruz Biotech. 

NF-kB p65 ab7970 Abcam 

Histone H3  ab1791 Abcam  

Acetyl-Histone H3 (Lys27)  07-360 Millipore 

Primer name Sequence 5’-3’ 

GM-CSF enhancer (GM420) Fw GGAGCCCCTGAGTCAGCAT 

GM-CSF enhancer (GM420) Rev 

 

 

 

CATGACACAGGCAGGCATTC 

GM-CSF enhancer (GM-N3) Fw  CTTGCCCATCTGTTATGTCC 

GM-CSF enhancer (GM-N3) Rev 

ReRRevReenucleosome 

 

 

 

AGCGGTACATGTCTGTGTGG 

GM-CSF enhancer (GM220) Fw  GGTGGACACGCATAGGAAAC 

GM-CSF enhancer (GM220) Rev  

 

 

 

ATGGGTGGTATGACCCCTCT 

IVL Fw  GCCGTGCTTTGGAGTTCTTA 

IVL Rev CCTCTGCTGCTGCCACTT 

Chr18 Fw ACTCCCCTTTCATGCTTCTG 

Chr18 Rev AGGTCCCAGGACATATCCATT 

http://www.millipore.com/catalogue/item/07-360


112 

 

Figure 2.5   Schematic view of the GM-CSF enhancer, including the 

position of the primers used in ChIP assays 

 

 

 

 

 

 

 

The diagram shows the Bgl II fragment which defines the GM-CSF enhancer, including 

the location of the binding sites for the different transcription factors. Arrows indicate 

the region amplified by the primers used in ChIP-Real Time PCR assays.  
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3.  RESULTS 

 

3.1 The NFAT inhibitor 11R-VIVIT doesn’t reduce the PMA/I-induced        

GM-CSF mRNA levels and chromatin remodelling at the GM-CSF enhancer 

 

GM-CSF has been demonstrated to be produced by AML blasts thus supporting 

their growth and proliferation [259-261]. The aim of this study is to understand 

the mechanism by which GM-CSF gene is expressed and regulated in an AML 

model, focusing especially on the signalling pathways involved in its regulation. 

However, before studying GM-CSF gene regulation in pathological conditions 

such as AML, I decided to first study it in T blast cells, which physiologically 

produce GM-CSF when activated. It has been already demonstrated that, 

beyond TCR activation, treatment with phorbol myristate acetate (PMA) and 

calcium ionophore A23187 (I), which activate PKC and the Ca2+-dependent 

signal pathways respectively, can induce GM-CSF gene expression in T blast 

cells [274]. In fact, the induction of GM-CSF gene expression in T cells is the 

result of both a Ca2+-dependent signal pathway and a kinase signal pathway. 

Ca2+ activates calcineurin, which interacts with and dephosphorylates NFAT. 

This dephosphorylation allows NFAT to enter the nucleus and bind DNA, 

promoting the transcription of several genes, including GM-CSF. Alternatively, 

PKC activates several specific kinase pathways, such as NF-B [287] and 

MAPKs, which have the transcription factor AP-1 as a downstream target [288].  

A schematic representation of the signalling pathways cooperating in GM-CSF 

expression after TCR activation or PMA/I-treatment is shown in Figure 3.1. 
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Figure 3.1 Schematic representation of the signalling pathways 

cooperating in GM-CSF gene expression after TCR 

activation or PMA/I-treatment 

 

 

 

 

 

The diagram shows the cooperation between the Ca2+ signalling pathway, mediated by 

NFAT, and the kinase pathways, mediated by AP-1 and NF-B, in the induction of GM-

CSF gene expression. The different pathways can be activated either by TCR antigen 

stimulation or with phorbol myristate and calcium ionophore (PMA/I) treatment 

(adapted from a figure made by Peter Cockerill). 
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Because it is difficult to reliably obtain uniform batches of human T cells, in this 

study I used T cells isolated from a well characterised transgenic mouse strain 

which contains six copies of a 130 kb Age I fragment spanning the entire human 

IL-3/GM-CSF locus (Figure 3.2A) and produces high levels of IL-3 and GM-CSF 

following activation. To prepare large quantities of actively dividing T blast cells, 

I first isolated T cells from the spleen of these mice and I put them in culture in 

the presence of Concanavalin A (ConA) to activate them to become T blasts. 

After two days, I removed the ConA and I expanded the cells by culturing them 

in the presence of mouse recombinant IL-2 for a further three days, before 

stimulating them with PMA and ionophore A23187 (PMA/I) to induce the 

production of IL-3 and GM-CSF (Figure 3.2B). Following extraction of the 

mRNA, I performed a qRT-PCR to measure GM-CSF gene expression. Figure 

3.3 shows that PMA/I treatment led to about a 400 fold induction of GM-CSF 

gene expression in transgenic T blast cells, compared to untreated cells. mRNA 

levels were normalised using the mouse GAPDH gene as an internal control. 
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Figure 3.2  Schematic representation of T cells activation and  stimulation 

 

A 

 

 

B 

 

 

A) Scheme of one of the six Age I fragments spanning the entire IL-3/GM-CSF 

locus present in the transgenic mice used in this study. B) Representation of the 

procedure used to isolate T cells from the spleen of transgenic mice and following T 

cell activation, expansion and stimulation with PMA/I. T cells were cultured in presence 

of 2 g of Concanavalin A (ConA) for 2 days to activate them to T blasts. Then T cells 

were expanded by using 10 U of recombinant mouse IL-2 per ml of culture for a further 

three days at a density of 0.5 X 106 to 1.5 X 106. Finally, I stimulated them for 4 h with 

20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I) to induce the production of IL-3 

and GM-CSF. Figure made by Peter Cockerill. 

 

 

 

 



117 

 

I first confirmed the induction of GM-CSF gene expression by PMA/I treatment 

(about 1200 times higher than in unstimulated cells) (Figure 3.3), as 

demonstrated previously by Cockerill et al. [289].  My main aim, however, was 

to study the role of the Ca2+ signalling pathway and other kinase pathways in its 

regulation. To do this, I used specific inhibitors in order to interfere with these 

pathways.  

I first focused on the Ca2+-dependent pathway involved in GM-CSF activation 

and I tested the calcineurin inhibitor Cyclosporin A (CsA) and the NFAT inhibitor 

11R-VIVIT, using concentrations previously described in the literature [274, 290, 

291]. I pretreated the cells for 1 h with CsA and 11R-VIVIT before stimulating 

them for 4 h with PMA and ionophore A23187 (PMA/I). Figure 3.3 shows that 

CsA abolished PMA/I-induced GM-CSF gene expression whereas 11R-VIVIT 

only reduced it by about 20%.  

Because it is well established that changes in gene expression are often 

accompanied by changes in chromatin structure, I next examined the regulation 

of DHSs in the GM-CSF locus. PMA/I has already been described to induce 

chromatin remodeling at the GM-CSF enhancer in T blast cells, and this is 

inhibited by CsA [289]. In order to confirm this result and to test whether the 

NFAT inhibitor 11R-VIVIT reduced the PMA/I-induced chromatin remodelling at 

the GM-CSF enhancer, I studied chromatin conformation in a DNase 

hypersensitive site (DHSs) assay, using Southern blot DNA hybridization 

analysis. 
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Figure 3.3  Effect of Ca2+ signal pathway inhibitors on PMA/I-induced     

GM-CSF gene expression in transgenic T blast cells  

 

 

 

 

 

 

 

 

Cells were pre-treated with CsA 0.1 M and NFAT inhibitor 11R-VIVIT 1 M for 1 h and 

then stimulated for 4 h with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). 

Human GM-CSF mRNA levels were measured by qRT-PCR. Data shown are 

normalised to mouse GAPDH gene. Each bar represents the average of three technical 

replicates. Error bars represent SE. 
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For the DHS analyses, I used DNase I-digested samples from cells either 

untreated or treated with the same concentration of inhibitors used in the 

previous qRT-PCR analysis prior to the 4 h PMA/I stimulation. I used increasing 

concentrations of DNAse I (range 8-12 g/ml) in order to identify the optimal 

rate of digestion able to show clearly all the DHSs in the fragment (see 

Materials and methods). Then, I purified the DNA and digested it with EcoR I. A 

schematic representation of the strategy is represented in Figure 3.4A. To 

identify the DHSs within the 9.4 kb EcoR I fragment spanning the GM-CSF 

enhancer and promoter, I performed an electrophoresis on a 0.8% agarose gel, 

blotted the DNA onto a Hybond N membrane, and hybridized it to a 32P-labeled 

1.4 kb BamHI fragment located at the 5’ end of the EcoRI fragment. In Figure 

3.4B  the highest band detected in the upper blot represents the full length 9.4 

kb EcoR I fragment. The lower band indicates DNaseI digestion at the DHS at 

the -3kb enhancer, whereas the middle one represents cleavage at GM-CSF 

promoter. PMA/I treatment induced a strong DHS at the enhancer which was 

strongly inhibited by CsA treatment. In contrast, the NFAT inhibitor 11R-VIVIT 

does seem not to have a strong effect in reducing chromatin remodelling. The 

DHS at the promoter appears to be present also in unstimulated cells and 

showed minimal changes under any of the conditions tested. 

As an internal control I reprobed the same membrane with a 32P-labeled 1 kb 

Bgl I/BamH I fragment, which extends upstream of the EcoR I fragment 

previously examined. This was in order to identify the constitutive DHSs 

corresponding to the CTCF insulator region between the GM-CSF and the IL-3 

loci. This blot was used as loading control as well as a control for the overall 

extent of DNase I digestion [246]. Beyond the ubiquitous CTCF sites, in this 

fragment I also detected the presence of another inducible hypersensitive site 
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between them, located 4.5 kb downstream of the IL-3 promoter, which was 

partially inhibited by CsA but not by 11R-VIVIT. A previous study demonstrated 

that this +4.5 kb DHS can function as an inducible non-coding promoter in 

Jurkat T cells, but this study did not show that the DHS is partially inhibited by 

CsA [264]. 

Undigested genomic DNA was also included as an additional control and 

showed no additional bands, confirming that the DHS bands defined above 

were products of the DNase I digestion, and not unrelated or non-specific 

bands. 

These results confirm that the treatment with PMA/I induces chromatin 

remodelling at the enhancer and this change in chromatin conformation 

corresponds to an increase of GM-CSF gene expression. The role of the Ca2+ 

signalling pathway in GM-CSF gene regulation is confirmed by the inhibitory 

effect of CsA, whereas the NFAT inhibitor 11R-VIVIT didn’t show the same 

strong effect.  
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A) Strategy of DHS mapping. DHSs within a 9.4 kb EcoR I fragment were 

identified by using a 1.5 kb BamH I fragment as a probe (P 1). DHSs spanning 

the insulator region downstream of the IL-3 gene were identified in an EcoR I 

fragment using a 1.0 kb Bgl I/BamH I fragment as a probe (P 2). R, EcoR I 

site; B, BamH I site; L, Bgl I site. B) The upper blot shows the mapping of 

DHSs in a 9.4 kb EcoR I fragment, encompassing the GM-CSF enhancer and 

promoter. The lower panel represents the same blot after reprobing it to map 

DHSs in the insulator region between the GM-CSF and the IL-3 loci in the 

EcoR I fragment. Black triangles indicate increasing concentrations of DNase 

I. 8, 10 and 12 g/ml of DNAse I were used for the untreated cells, whereas 

just 8 and 12 g/ml were used for the others. Genomic DNA serves as control 

for DNA not digested with DNAse I. The dashed arrow indicates an inducible 

DHS at +4.5 kb within the insulator region.  
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Figure 3.4  Mapping of DHSs between the IL-3 and GM-CSF genes in 

transgenic T blast cells   

 

A 

 

B 
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3.2   PMA/I treatment activates MAPK signalling pathways in transgenic T 

blast cells 

 

GM-CSF gene activation is dependent on the cooperation between a Ca2+-

dependent signal pathway and kinase pathways, among which are the MAPK 

and NF-B pathways. After investigating the role of the Ca2+-signalling pathway 

on GM-CSF gene regulation by using its inhibitors CsA and 11R-VIVIT, I 

decided to focus on the kinase pathways, starting with MAPKs. First of all I 

studied the effect of PMA/I on the activation of the main MAPK pathways: 

MEK/ERK, p38 and SAPK/JNK (Figure 3.5). For this purpose, I treated T blast 

cells with PMA/I for 1 hour and then extracted the whole cell proteins to perform 

a western blot analysis. I used antibodies against the total forms of ERK1/2, p38 

and JNK and also antibodies against their phosphorylated forms, which 

represent the active form of the pathways. Figure 3.5B shows that ERK1/2 and 

JNK were strongly activated by PMA/I. In both cases, two bands were visible on 

the blot. In fact ERK1/2 could be also called p44/42 MAPK, where 44 and 42 

are the molecular weights in kDa of ERK1 and ERK2 respectively. A weak level 

of ERK1/2 activation and p38 is visible on the blot before PMA/I stimulation, 

maybe due to the fact that cells were cultured in presence of IL-2, which can 

activate MAPKs. The antibody against SAPK/JNK recognises the p46 and p54 

SAPK/JNK isoforms, where 46 and 54 represent the molecular weight in kDa. 

The level of the total form of the protein didn’t change upon PMA/I treatment 

and it was used as a loading control. Interestingly, the effect of PMA/I on p38 

activation wasn’t as strong as on ERK and JNK pathways. 
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Figure 3.5    PMA/I treatment phosphorylates MAPK proteins in T blast 

cells  

 
 
 
 
 
 

 
 
     
 

 

A) Schematic representation of MAPK signal pathways and their crosstalk. Taken 

from Junttila et al. [159]. B) Western blot of whole-cell lysates prepared from T blast 

cells before (nil) and after 1h stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). A representative experiment of two biological replicates is shown.  
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3.3   MAPK inhibitors decrease PMA/I-induced GM-CSF gene expression 

and chromatin remodelling at GM-CSF enhancer  

After verifying that the three MAPK pathways were activated by PMA/I 

treatment in T blast cells, I investigated which specific pathways have a role in 

the PMA/I-induced GM-CSF gene expression and chromatin remodelling. To do 

this, I tested the effect of MAPK inhibitors and their combinations on PMA/I-

treated T blast cells, using concentrations previously described in the literature 

[292-294]. I used three selective inhibitors: the MEK inhibitor PD98059, which 

can also block the downstream proteins ERK1/2, the p38 inhibitor SB202190 

and the JNK inhibitor SP600125. Pre-treatments of the cells before PMA/I 

stimulation was for 1 h, after which I performed a Trypan Blue exclusion test to 

make sure that cell viability was not affected. Before PMA/I treatment, cell 

viability was about 90%; none of the inhibitors, used singularly or in 

combination, decreased cell viability to under 80% (data not shown). After 1h 

pretreatment with MAPK inhibitors, I stimulated the cells for 4 h with PMA/I as 

described before. To measure GM-CSF gene expression, I extracted the mRNA 

and converted it to cDNA before performing qRT-PCR analysis  (Figure 3.6). 

The MEK inhibitor, PD98059 (50 M) and the JNK inhibitor, SP600125 (50 M) 

showed only a small effect in reducing PMA/I-induced GM-CSF gene 

expression (between 10 and 20%), whereas the p38 MAPK inhibitor, SB202190 

(25 M) reduced mRNA level by about 50%. The combination of MEK and JNK 

inhibitors had about the same effect as the p38 inhibitor alone, whereas the 

most effective treatment was the combination of MEK and p38 inhibitors. 

Interestingly, the three inhibitors together were not more effective than the 

combination of MEK and p38 inhibitors, although the effect was much stronger 

than all the inhibitors alone.  



126 

 

Figure 3.6  Effect of MAPK inhibitors on PMA/I-induced GM-CSF gene 

expression in transgenic T blast cells  

 

A 

 

 

 

T blast cells were pre-treated for 1 h with MAPK inhibitors, singularly or in combination 

(MEK inhibitor PD98059 50 M; p38 inhibitor SB202190 25 M; JNK inhibitor 

SP600125  50 M) and then stimulated for 4h with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). GM-CSF mRNA levels were measured by qRT-PCR. Y-axis shows 

expression relative to murine GAPDH expression. Error bars represent SE of at least 

three biological replicates. 
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Results are expressed as relative to murine GAPDH mRNA expression. In 

these studies, I used GAPDH as a control housekeeping gene, since none of 

the treatments above affected its expression as a proportion of total mRNA 

(data not shown). 

Using the same strategy as before (section 3.1), I performed a DHSs analysis 

using  DNase I-digested samples from either untreated cells or cells treated with 

the same concentration of inhibitors used in the previous RT-PCR analysis prior 

4h PMA/I stimulation. I used increasing doses of DNAse I in order to identify the 

optimal rate of digestion able to clearly detect all the DHSs in the fragment. As 

before, I ran the digested DNA on a 0.8% agarose gel and I excluded the 

samples which showed a too high level of DNA digestion (data not shown). 

Purified DNA was digested with either EcoR I or BamH I. Distinct from the 

previous DHSs analysis shown in Figure 3.4B, here I used a BamH I fragment 

to identify the DHSs spanning the insulator region. The data obtained with the 

EcoR I fragment show that PMA/I treatment induced a strong DHS at the 

enhancer, whereas the DHS at the promoter appeared to be present also in 

unstimulated cells. The DHS at the enhancer became weaker after treatment 

with either the combination of the MEK inhibitor PD98059 and the p38 inhibitor 

SB202190 or the combination of the two plus the JNK inhibitor SP600125. The 

reduction of the signal for the DHS at the enhancer by the combinations of 

inhibitors corresponded well to the reduction of GM-CSF mRNA levels shown in 

Figure 3.6. Figure 3.7 shows the DHSs between the IL-3 and GM-CSF genes in 

a BamH I fragment. As observed previously, beyond the three pre-existing 

CTCF sites, in this fragment I also confirmed the presence of the inducible +4.5 

kbDHS located downstream of the IL-3 gene, which was not inhibited by any of 

the MAPK inhibitors or their combinations.  
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Overall, these results strongly suggest that the PMA/I-induced GM-CSF gene 

expression and its chromatin remodelling at the enhancer are dependent on 

MAPK pathways in T blast cells. 

 

 

 

3.4       PMA/I treatment activates MAPK signalling pathways in Jurkat and 

            KG1a leukaemia cell lines 

  

 

In the above studies, I tested MAPK inhibitors on cultured transgenic mouse T 

cells, which produce GM-CSF upon TCR activation. I questioned whether these 

inhibitors would have the same effect on different human leukaemic cell lines, 

where the GM-CSF enhancer is also entirely inducible upon treatment with 

PMA/I, as in T blast cells. Bert et al. [281] already demonstrated that the 

leukaemic T cell line Jurkat and the AML cell line, KG1a show an inducible DHS 

at the enhancer and this change in chromatin structure is associated with an 

increase in GM-CSF gene expression. Moreover, AML blast cells have been 

demonstrated to produce GM-CSF and its production supports blast cell growth 

and proliferation [259-261]. 
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Mapping of DHSs in a 9.4 kb EcoR I fragment encompassing the GM-CSF 

enhancer and promoter. Mapping of DHSs in a 4.6 kb BamH I fragment 

downstream of the IL3 gene showing three constitutive CTCF sites plus one 

inducible DHS (dashed arrow) located at +4.5 kb relative to the IL-3 gene. To 

perform both Southern blots, T blasts were pre-treated for 1 h with MAPK 

inhibitors, singularly or in combination (MEK inhibitor, PD98059 50 M; p38 

inhibitor, SB202190 25 M; JNK inhibitor, SP600125 50M) and then 

stimulated for 4h with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). 

Black triangles indicate increasing concentrations of DNase I and genomic 

DNA is used as control.  
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Figure 3.7   Mapping of DHSs in the region between the IL-3 and the      

GM-CSF gene in transgenic T blast cells 

 

 EcoR I fragment 

 
 

BamH I fragment
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One of my aims is to understand the mechanisms by which GM-CSF is 

expressed and regulated in a model of AML. Amongst many different AML cell 

lines, I chose to use KG1a cells as a model because they show an inducible 

DHS at the GM-CSF enhancer, whereas in other myeloid tumour cell lines, this 

site is already present prior to PMA/I stimulation [281]. As for T blasts, I tested 

the phosphorylation of the different MAPK pathways upon treatment with PMA/I. 

I treated Jurkat and KG1a cells with PMA/I for 1 hour before extracting the 

whole cell lysate. I performed a western blot, and labelled antibodies against the 

total and phosphorylated form of ERK1/2, p38 and JNK. As for T blast cells, 

western blot analysis confirmed that all three MAPK pathways (ERK, p38 and 

JNK) were activated by PMA/I treatment (Figure 3.8).  

Interestingly, quite a strong level of p38 phosphorylation was detected in 

untreated KG1a (as previously reported by Kale V.P. in 2004 [295]), which was 

not evident in Jurkat cells. This is not surprising because KG1a is a cancer cell 

line and many tumour cells show constitutively activation of specific signal 

pathways. This difference in p38 activation between KG1a and Jurkat should be 

taken into account in order to explain their possible different response to 

specific stimuli or treatment. 
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Figure 3.8   PMA/I treatment phosphorylates MAPK proteins in Jurkat and 

KG1a cell lines 

 

 

 

 

Western blot of whole-cell lysates prepared from Jurkat and KG1a cell lines before (nil) 

and after 1h stimulation with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). A 

representative experiment of two biological replicates is shown.  
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3.5  The MEK inhibitor PD98059 and p38 inhibitor SB202190 inhibit           

PMA/I-induced GM-CSF gene expression and chromatin remodelling at the 

GM-CSF enhancer in Jurkat and KG1a leukaemia cell lines  

 

After demonstrating that PMA/I treatment activated MAPK pathways in the 

leukaemic cell lines Jurkat and KG1a and knowing that both cell lines show an 

inducible DHS at the GM-CSF enhancer upon PMA/I treatment [281], I decided 

to test the role of the different MAPK pathways in the PMA/I-induced GM-CSF 

chromatin remodelling. In order to do this, I pre-treated the cells with MAPK 

inhibitors before PMA/I stimulation and then performed a DHS analysis. 

Since the combination of MEK and p38 inhibitors was the most effective in 

reducing PMA/I-induced GM-CSF mRNA levels and its chromatin remodelling in 

T blast cells, I decided to focus on the study ERK/MEK and p38 pathways in 

these cell lines. After 1 h pre-treatment with the inhibitors, I stimulated the cells 

for 4 h with PMA/I and then I performed a DHS analysis. I treated the cells with 

increasing concentrations of DNAse I (range 6-16 g/ml) in order to achieve a 

suitable rate of digestion, which varies amongst different cell types. 50 M of 

MEK inhibitor, PD98059 and especially 25 M of p38 MAPK inhibitor, 

SB202190 alone reduced the DHS at the GM-CSF enhancer induced by PMA/I 

in KG1a but not in Jurkat cells, whereas the combination of both inhibitors 

resulted in a loss of the DHS in both cell lines (Figure 3.9A). These results 

suggest that MAPKs are involved in the regulation of the PMA/I-induced DHS at 

the GM-CSF enhancer in Jurkat cells and KG1a cells.  

The parallel analyses of the same samples using the BamH I fragment 

confirmed that a similar amount of DNA was loaded because the bands 

belonging to one sample have similar intensity to the bands belonging to the 
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other samples; moreover, in most of the treatments a good rate of digestion was 

achieved because all the DHSs are clearly visible. Interestingly, the inducible 

DHS located 4.5 kb downstream of the IL-3 gene, between two of the CTCF 

sites, seemed to be inhibited by the combination of MAPK inhibitors in KG1a 

cells. To confirm this result, I repeated the experiment pre-treating the cells just 

with the combination of MEK and p38 inhibitors. Figure 3.9B shows more clearly 

that the inducible +4.5 kb DHS disappeared after treatment with the inhibitors in 

KG1a. Figure 3.9A is not very clear on the Jurkat side, but it seems that the 

DHS was still present in Jurkat cells, maybe a bit weaker, after the treatment 

with inhibitors. A further experiment with a stronger overall signal would be 

needed to confirm its presence. 

These data suggest that the IL-3 +4.5 kb DHS is regulated differently in KG1a 

cells compared to T blast cells. The function of this non-coding promoter 

element is not known, but it would be interesting to further investigate the role of 

this DHS in the regulation of the GM-CSF/IL-3 locus.  
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Figure 3.9  Effect of MEK and p38 inhibitors on PMA/I-induced GM-CSF 

chromatin remodelling in Jurkat and KG1a cells 

 

 A      EcoR I fragment  

 

   BamH I fragment  
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Figure 3.9  Effect of MEK and p38 inhibitors on PMA/I-induced GM-CSF 

chromatin remodelling in Jurkat and KG1a cells 

 

B     BamH I fragment 

 

 

 

 

 

A and B) DHS analyses of permeabilised Jurkat and KG1a cells, before and after 

treatment with inhibitors in a 9.4 kb EcoR I fragment of the GM-CSF locus (B, upper 

blot). Mapping of DHSs in a 4.6 kb BamH I fragment downstream of the IL3 gene 

showing 3 constitutive CTCF sites (B, lower blot and C). The dashed arrow indicates 

an inducible DHS located 4.5 kb downstream of the IL-3 promoter. For each Southern 

Blot cells were pre-treated for 1 h with MEK and p38 inhibitors, singularly or in 

combination (MEK inhibitor PD98059 50 M; p38 inhibitor SB202190 25 M) and then 

stimulated for 4h with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). Black 

triangles indicate increasing concentrations of DNase I (10-12 g/ml). In A and B 

genomic DNA was used as a non-DNase I-digested control DNA sample. 
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To test whether the loss of DHS at the enhancer was associated with a 

reduction of GM-CSF mRNA levels, I performed a qRT-PCR analysis. First of all 

I verified the induction of GM-CSF gene expression after PMA/I in both cell 

lines. Treatment with PMA/I for 4 h strongly increased GM-CSF mRNA levels in 

both Jurkat and KG1a cells (Figure 3.10). The level of GM-CSF gene expressed 

in Jurkat and KG1a cells was about 2% of the level for GAPDH, which was 

much lower than the level measured above in T blast cells. In fact, cell lines do 

not always behave in the same way as primary cells and this could explain the 

difference in GM-CSF expression between the leukaemia cell lines and T blast 

cells. In both Jurkat and KG1a cells the combination of MEK inhibitor, PD98059 

and p38 inhibitor, SB202190 decreased the PMA/I-induced GM-CSF gene 

expression down to control levels (Figure 3.10A and B). The p38 inhibitor alone 

(25 M) reduced the PMA/I-induced GM-CSF gene expression down to the 

control level in both cell lines. Also the MEK inhibitor (50 M) had a strong 

effect, since it reduced the PMA/I-induced GM-CSF gene expression by about 

90%. The results obtained in the PCR analysis don’t mirror the results from the 

DHSs analysis, where the single inhibitors were ineffective in reducing the DHS 

at the enhancer in Jurkat cells. However, the DHS is not a quantitative assay; 

moreover, the DHS band is weak and it is not easy to detect the changes in 

intensity. This discrepancy suggests that gene expression and chromatin 

remodelling are regulated via distinct mechanisms in Jurkat cells. This may 

indicate that the single inhibitors are sufficient to inhibit factors required for 

transcription at the promoter, but not for remodelling at the enhancer in Jurkat 

cells. 
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Figure 3.10   Effect of MEK and p38 inhibitors on PMA/I-induced GM-CSF  

gene expression in Jurkat and KG1a cells  

A                                                

 

 

B                                                           

 

 

Effect of MEK and p38 inhibitors on PMA/I-induced GM-CSF mRNA levels in Jurkat (A) 

and KG1a cells (B). The analysis was performed by qRT-PCR. Treatments and 

concentrations are as above. The Y-axis shows expression relative to human GAPDH 

expression. Each bar represents the average of least three independent experiments. 

Error bars represent SE. 
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3.6  Two alternative MEK and p38 inhibitors (U0126 and SB203580) reduce 

the PMA/I-induced GM-CSF gene expression in Jurkat and KG1a cells 

 

To test whether the effect shown by the inhibitors on PMA/I-induced GM-CSF 

gene expression was specifically related to MAPKs inhibition and not to a non 

specific effect on other pathways, I decided to test two alternative MEK and p38 

inhibitors (U0126 and SB203580, respectively). I was particularly interested in 

finding a possible cooperation or synergism of the two chemicals in reducing the 

PMA/I-induced GM-CSF gene expression, as was seen with PD98059 and 

SB202190. To this end, I treated Jurkat and KG1a cells with increasing 

concentrations of both U0126 and SB203580 (1-10 M) for 1 hour, before 

stimulating the cells with PMA and ionophore A23187 for 4 h. Then I extracted 

the mRNA and I evaluated the effect of the inhibitors on the PMA/I-induced GM-

CSF gene expression by qRT-PCR (data not shown). I selected the doses 

which reduced GM-CSF gene expression by less than 50% and used these in 

combination. In Jurkat cells 1 M U0126 (MEK inhibitor) and 0.5 M SB203580 

(p38 inhibitor) decreased PMA/I-induced GM-CSF expression by 40% and 35%, 

whereas their combination slightly decreased GM-CSF gene expression 

compared to the single inhibitors. In fact the combination of U0126 and 

SB203580 reduced the PMA/I-induced GM-CSF mRNA levels by about 60% 

(additive effect) (Figure 3.11A). 

The effect of the two inhibitors together was more pronounced in KG1a cells. In 

fact the combination of 1.5 M U0126 and 5 M SB203580 reduced the PMA/I-

induced GM-CSF mRNA levels by around 80%, whereas the single inhibitors 

reduced it by 35% and 10% respectively (synergistic effect). The combination of 

U0126 and SB203580 showed a more synergistic effect than the 



140 

 

PD98059/SB202190 combination in KG1a cells. In fact both 10 M PD98059 

and 5 M SB202190 reduced PMA/I-induced GM-CSF gene expression by 

around 30-35%, whereas the combination decreased it by around 55% (Figure 

3.11B). Interestingly, U0126 was effective at lower doses than the MEK inhibitor 

PD98059. U0126 reduced PMA/I-induced gene expression by around 35% at 

1.5 M, PD98059 led to the same reduction at 10 M.  

These results demonstrate that the effect of the chemicals in reducing PMA/I-

induced GM-CSF gene expression is most likely due to a specific inhibition of 

the MEK/ERK and p38 MAPK pathways. 

 

3.7   MAPK inhibitors selectivity in KG1a cells 

 

Even though the chemicals I used are known as selective inhibitors, they might 

cross-react with different signal pathways and show non-specific effects, 

especially at high doses. To test the specificity of the inhibitors on the different 

MAPK pathways, I performed a Western Blot analysis, testing the effect of the 

MEK inhibitor PD98059 on p38 phosphorylation and the effect of the p38 

inhibitor SB202190 on ERK1/2 phosphorylation in KG1a cells. 

Figure 3.12 demonstrates that increasing concentrations (1-25 M) of MEK 

inhibitor do not  reduce PMA/I-induced p38 phosphorylation; likewise, the p38 

inhibitor (used at concentrations between 10 and 50 M) does not reduce 

PMA/I-induced ERK 1/2 phosphorylation. By contrast, small doses of SB202190 

(1 M) activated the MEK/ERK pathway, increasing ERK1/2 phosphorylation 

level by more than 100%, as previously reported by Hirosawa and colleagues 

[296]. 
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Figure 3.11  Effect of U0126 and SB203580 inhibitors on Jurkat and KG1a 

cells 

A 

 

B 

 

 

GM-CSF mRNA levels were measured by qRT-PCR in Jurkat (A) and KG1a (B) cells. 

Cells were pre-treated for 1 h with the indicated concentrations of MAPK inhibitors and 

then stimulated for 4h with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). The Y-

axis shows expression relative to GAPDH gene. Each bar represents the average 

value of at least three biological replicates. Error bars represent SE. 
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Figure 3.12      MEK and p38 MAPK inhibitors cross-react in KG1a cells 

 

 

 

 

 

 

 

Western blot analysis of whole-cell lysates prepared from KG1a cells after 1h pre-

treatment with inhibitors and 1h stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). A) Levels of PMA/I-induced ERK1/2 phosphorylation were evaluated 

after treatment with increasing doses of p38 inhibitor (1-25 M), whereas levels of 

PMA/I-induced p38 phosphorylation were measured after increasing concentration of 

MEK inhibitor (10-50 M). The arrow indicates the specific band for p38. % of 

phosphorylation represented by the histograms is relative to the level of total protein 

and is normalised to the % of phosphorylation shown by PMA/I-treated cells. The 

intensity of the bands and the % of phosphorylation was evaluated by using Image J 

software. A representative experiment of three biological replicates is shown. 
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ERK1/2 phosphorylation stayed high also after treatment with 10 M and 25 M 

SB202190. Similarly, MEK inhibitor activated p38 pathway, but just at high 

doses. In fact 50 M PD98059 increased p38 phosphorylation by 50% 

compared to PMA/I-treated cells, whereas 10 and 25 M PD98059 did not 

increase the PMA/I-induced p38 phosphorylation levels. These results are not 

surprising, since there is a complex cross-talk amongst the different MAPK 

pathways and the inhibition of one pathway may lead to a compensatory 

activation of a different one. On the contrary, neither PD98059 (10-50 M) or 

SB202190 (1-25 M) increased or decreased the level of phosphorylation of 

SAPK/JNK induced by PMA/I (Figure 3.13). However, in all these blots the 

untreated control is missing. An untreated control would have been essential to 

proof that the stimulation worked. 

These results confirmed a strong interconnection between the MAPK pathways, 

especially between the MEK/ERK and the p38 pathways in KG1a cells and 

caution should be used when dealing with inhibitors, especially at high doses. 

 

3.8  siRNA-mediated knockdown of ERK1/2 and p38 decreases GM-CSF 

mRNA level 

 

Since I have already demonstrated that selective MAPK inhibitors could affect 

other MAPK pathways in a non specific manner, I wanted to verify that the 

results shown by the inhibitors on GM-CSF gene expression were specifically 

due to the inhibition of ERK1/2 and p38. In order to do this, I decided to 

measure the PMA/I-induced GM-CSF gene expression after knockdown of 

specific ERK1/2 and p38 proteins. The most targeted method to knockdown the 

MAPK proteins makes use of specific small-interfering RNAs (siRNAs). 
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Figure 3.13     MEK and p38 inhibitors don’t cross-react with JNK pathway 

in KG1a cells 

 

 

 

 

 

 

 

Western blot analysis of whole-cell lysates prepared from KG1a cells after 1h pre-

treatment with inhibitors and 1h stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). PMA/I-induced SAPK/JNK phosphorylation levels after treatment with 

increasing doses of MEK and p38 inhibitors. % of phosphorylation represented by the 

histograms is relative to the level of total protein and is normalised to the % of 

phosphorylation shown by PMA/I-treated cells. The intensity of the bands and the % of 

phosphorylation was evaluated by using Image J software. A representative 

experiment of three biological replicates is shown.  
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Jurkat and KG1a cells were transfected via electroporation with either 100 nM 

universal negative control siRNA (siCTRL), or 100 nM siERK1/2 and sip38. The 

universal negative control siRNA has no homology to any known mammalian 

gene and it should have minimal non-specific effects on gene expression. After 

48 hours transfection with siRNAs, cells were treated with PMA and ionophore 

A23187 (PMA/I) for 4 hours and then mRNA was extracted. To test the 

efficiency of siRNA-mediated knockdown, ERK1 and p38 mRNA levels were 

measured by qRT-PCR. I decided to first test ERK1 mRNA levels to verify the 

role of the ERK pathway in GM-CSF gene expression. GM-CFS mRNA levels 

were measured after verifying ERK1 and p38 significant silencing. In Jurkat 

cells ERK1 mRNA levels decreased by about 80% compared to siCTRL and 

this reduction corresponded to a decrease of GM-CSF gene expression by 

about 50%. Similarly, the reduction of p38 gene expression compared to the 

siCTRL (about 65%) corresponded to about 25-30% reduction of GM-CSF gene 

expression (Figure 3.14A). I achieved a similar level of ERK1/2 and p38 gene 

knockdown in KG1a cells and this resulted in a corresponding reduction of 

PMA/I-induced GM-CSF gene expression (Figure 3.14B). The effect of MAPK 

protein knockdown on GM-CSF gene expression was stronger in KG1a than in 

Jurkat cells, since GM-CSF mRNA levels decreased by about 65% and 50% 

after ERK1/2 and p38 knockdown compared to siCTRL. The reduction of GM-

CSF gene expression after ERK1/2 knockdown was a little more effective than 

after p38 knockdown, similarly to the results obtained in Jurkat cells. This might 

be due to a slightly stronger reduction in ERK1 gene expression compared to 

p38 gene expression.  
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Figure 3.14  ERK1/2 and p38 siRNAs reduce PMA/I-induced GM-CSF 

mRNA levels in Jurkat cells 

 

 

A 

 

 

 

 

 

A) Jurkat cells were transfected with either 100 nM negative control siRNA 

(siCTRL) or 100 nM specific siERK1/2 and sip38; 48 hours after transfection, cells were 

treated with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I) for 4 hours and then 

mRNA was extracted. GM-CSF mRNA levels, as well as ERK1 and p38 mRNA levels, 

were measured by qRT-PCR. The Y-axis shows expression normalised to GAPDH 

gene expression. mRNA levels are relative to siCTRL. Each bar represents the 

average value of two or three biological replicates. Error bars represent SE. Where 

error bars are not present values from a representative experiment are shown. 
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Figure 3.14  ERK1/2 and p38 siRNAs reduce PMA/I-induced GM-CSF 

mRNA levels in KG1a cells 

 

 

B 

 

 

 

 

 

B)  KG1a cells were transfected with either 100 nM negative control siRNA 

(siCTRL) or 100 nM specific siERK1/2 and sip38; after 48 hours from transfection cells 

were treated with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I) for 4 hours and 

then mRNA was extracted. GM-CSF mRNA levels, as well as ERK1 and p38 mRNA 

levels, were measured by qRT-PCR. Y-axis shows expression normalised to GAPDH 

gene expression. mRNA levels are relative to siCTRL. Bars represent the average 

value of two or three biological replicates. Error bars represent SE. Where error bars 

are not present values from a representative experiment are shown. 
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Moreover, the use of both siERK1/2 and p38 at the same time led to a further 

reduction of PMA/I-induced GM-CSF gene expression compared to the use of 

single siRNAs in KG1a cells. I didn’t achieve 100% knockdown of ERK1 and 

p38 gene expression but the corresponding reduction in GM-CSF mRNA levels 

was enough to show a specific role of ERK and p38 pathways in regulating 

PMA/I-induced GM-CSF gene expression. Maybe an analysis a longer time 

after transfection or a further transfection with siRNA would have been required 

to see a better knockdown of ERK1 and p38 mRNA. 

Beyond mRNA knockdown, I also wanted to verify ERK1/2 and p38 protein 

knockdown. To do this, KG1a cells were transfected again via electroporation 

after 72 hours from the first transfection with either 100 nM siCTRL or specific 

MAPK siRNAs. Whole cell extracts were analysed by Western blot after one 

day (after a total of 96 h from the first transfection). Figure 3.15 shows that in 

KG1a cells ERK1 protein levels were reduced by 90% (the corresponding upper 

band in the Western Blot is barely visible), whereas ERK2 and p38 protein 

levels were reduced by around 75% respect to siCTRL. Analysis of the intensity 

of the bands was performed by using ImageJ software. 
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Figure 3.15     ERK1/2 and p38 siRNAs in KG1a cells 

 

 

 

 

 

Western blot analysis of whole cell extracts from KG1a cells transfected with either 100 

nM siCTRL or specific siMAPK (siERK1/2 or sip38). Cells were transfected via 

electroporation a second time after 72 hours from the first transfection. After one day (a 

total of 96 h from the initial transfection), whole cell proteins were extracted and the 

efficiency of ERK1/2 and p38 knockdown was evaluated. About 30 g of proteins were 

loaded. GAPDH was used as loading control. The intensity of the bands was measured 

by using Image J software. The Y-axis shows the value of protein levels normalised to 

GAPDH and relative to siCTRL. One representative experiment is shown. 
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3.9 The JNK inhibitor SP600125 reduces the PMA/I-induced JNK 

phosphorylation and GM-CSF gene expression in Jurkat and KG1a cells 

 

The reason why I focused on the use of MEK/ERK and p38 inhibitors is 

because high doses of JNK inhibitor SP600125 did not show any significant 

effect either in the reduction of PMA/I-induced GM-CSF gene expression or in 

the inhibition of DHS formation at the enhancer in T blast cells. This didn’t 

exclude a possible effect of SP600125 on Jurkat and KG1a cells. Therefore, I 

tested the effect of SP600125 on the activation of JNK pathway and on its 

downstream protein c-Jun after treatment with PMA/I. The transcriptional 

activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through 

SAPK/JNK [297]. c-Jun is preferably a JNK target, although it can be 

phosphorylated and activated also by ERK [298]. Therefore, I decided to 

measure the phosphorylation of c-Jun at Ser73 to verify the activation of JNK 

and/or ERK pathway in Jurkat and KG1a cells after treatment with PMA/I. For 

this purpose, I pre-treated both cell lines with 50 M of the JNK inhibitor 

SP600125 for 1 hour and then I stimulated them for 2 hours with PMA/I. Figure 

3.16 shows that PMA/I strongly increased both c-Jun protein levels and its 

phosphorylation at Ser73. In both cell lines, SP600125 50 M, as well as the 

MEK inhibitor, PD90589 50 M, greatly reduced c-Jun protein levels and 

completely abolished the PMA/I-induced c-Jun phosphorylation at Ser73 (just a 

weak band can be detected after PD98059 in KG1a cells). These results 

demonstrated that PMA/I treatment induces JNK activation in both Jurkat and 

KG1a cells and that the phosphorylation of c-Jun at Ser73 is dependent on both 

JNK and ERK MAPK pathways.  
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Figure 3.16  Effect of the MEK and JNK inhibitors on the PMA/I-induced    

c-Jun phosphorylation in Jurkat and KG1a cells 

 

 

 

 
 
 
 
Effect of the JNK inhibitor, SP600125 on PMA/I-induced c-Jun phosphorylation at 

Ser73. Western blot analysis of whole-cell lysates prepared from Jurkat and KG1a cells 

after 1h pre-treatment with either the MEK inhibitor PD98059 (50 M) or the JNK 

inhibitor, SP600125 (50 M) and following 2h stimulation with 20 ng/ml PMA and 2 μM 

ionophore A23187 (PMA/I). A representative experiment of two biological replicates is 

shown. 
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Then, to test whether JNK activation was involved in the PMA/I-induced GM-

CSF gene expression, I measured GM-CSF mRNA levels in both cell lines after 

treatment with the JNK inhibitor, SP600125. I pre-treated both cell lines for 1 h 

with increasing concentrations of SP600125 (5-50 M) and then I stimulated 

them for 4h PMA/I. In Jurkat cells, both 5 and 20 M SP600125 reduced PMA/I-

induced GM-CSF gene expression by about 25%, whereas 50 M decreased 

expression by around 90%. In KG1a cells, the JNK inhibitor was ineffective at 5 

M, whereas it reduced PMA/I-induced GM-CSF gene expression by 70% and 

85% at 20 and 50 M respectively (Figure 3.17).  

These results show that JNK pathway seems to be involved in the regulation of 

GM-CSF gene expression induced by PMA/I in Jurkat and KG1a cell lines. Not 

surprisingly these results showed a different behaviour between primary cells (T 

blast cells) and cell lines, since in T blast cells 50 M of the JNK inhibitor 

SP600125 didn’t have more than 10% effect in reducing PMA/I-induced GM-

CSF mRNA levels (see Figure 3.6). 

 

3.10  The combination of MEK and p38 inhibitors reduces the PMA/I-

induced AP-1 DNA binding in transgenic T blast cells, Jurkat and KG1a 

cells 

 

So far I have demonstrated that in T blast cells, Jurkat and KG1a cells GM-CSF 

gene expression is in part dependent on the activation of MAPK pathways. 

These pathways lead to the activation of transcription factors that can interact 

with the IL-3/GM-CSF locus, thus inducing chromatin conformational changes 

as well as gene expression. 
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Figure 3.17    Effect of the JNK inhibitor, SP600125 on the PMA/I-induced 

GM-CSF expression in Jurkat and KG1a cells 

 
 
 
 

 

 

 

 

Effect of the JNK inhibitor, SP600125 on PMA/I-induced GM-CSF mRNA levels in 

Jurkat and KG1a cells. Cells were pre-treated for 1 h with increasing doses of 

SP600125 (5-50 M) and then stimulated for 4h with 20 ng/ml PMA and 2 μM 

ionophore A23187 (PMA/I). The Y-axis shows expression relative to GAPDH gene 

expression. One representative experiment is shown. The bars are the average values 

of three technical replicates. Error bars represent SE. 
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One of these transcription factors is the Activating Protein 1 (AP-1). The -3 kb 

GM-CSF enhancer encompasses three composite NFAT/AP-1 binding sites and 

two of them have been demonstrated to be essential for the enhancer activity in 

T cells [276]. To test the AP-1 binding ability to the DNA after PMA/I treatment, I 

treated the cells for 2 h with PMA/I and prepared the nuclear extracts from 

treated and untreated cells before performing an Electrophoretic mobility shift 

assay (EMSA). The EMSA shows the ability of a protein, in this case AP-1, to 

bind a specific sequence of DNA, in this case an oligonucleotide probe from the 

Stromelysin gene containing a perfect AP-1 consensus sequence (TGAGTCA).   

Figure 3.18 shows that the AP-1 DNA binding activity increased after only 2 h 

stimulation with PMA/I in T blast cells (A) as well as in Jurkat (B) and KG1a (C) 

cells. 1 h pre-treatment using a combination of the MEK inhibitor, PD98059 (50 

M) and the p38 inhibitor, SB202190 (25 M) decreased AP-1 DNA binding 

activity in T blast cells and Jurkat cells and abolished it in KG1a cells. 

Treatments with single inhibitors were effective in KG1a cells but not in Jurkat 

or in T blast cells. Also the level of AP-1 binding in untreated cells was much 

higher in Jurkat than in KG1a cells. 

AP-1 is a homodimer or heterodimer formed of proteins from the Jun family and 

the Fos family and the closely related activating transcription factors (ATFs), the 

cyclic AMP response element binding proteins (CREB) and the Maf subfamily 

[188]. I confirmed the specificity of the AP-1 band in EMSA by using a c-Fos 

antibody or c-Jun antibodies (supershift) and high concentrations of unlabelled 

oligo duplex (competitor). In fact the use of a specific antibody not only reduces 

the intensity of AP-1 binding to the DNA, but its binding to the protein:DNA 

complex makes the complex migrate with a slower mobility.  
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Figure 3.18   MAPK inhibitors effect on the PMA/I-induced AP-1 DNA 

binding 

 

A     T blast cells 

 

 

 

 

 
B    Jurkat 
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Figure 3.18   MAPK inhibitors effect on the PMA/I-induced AP-1 DNA 

binding 

C     KG1a 
 

  
D 
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Figure 3.18   MAPK inhibitors effect on the PMA/I-induced AP-1 DNA 

binding 

 

E    

 

 

 

 

 

 

 

 

AP-1 EMSA assay performed on nuclear extracts of T blast cells (A), Jurkat (B) and 

KG1a cells (C). Cells were pre-treated for 1 h with the MEK inhibitor PD98059 (50 M) 

and the p38 inhibitor SB202190 (25 M), singularly or in combination and then 

stimulated for 2h with 20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I). D) Oct-1 

EMSA used as loading control for Jurkat and KG1a cells. In each lane 4 g of nuclear 

extracts were used. E) AP-1 EMSA on nuclear extracts from Jurkat and KG1a cells 

treated with PMA/I.  Nuclear extracts were pre-incubated with either c-Fos or c-Jun 

antibodies. Dashed arrows indicate supershift bands. One representative experiment 

for each EMSA is shown. Analysis of the bands intensity has been performed by Image 

J software. 
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Indeed, in Figure 3.18C and E a new band is detected above the specific one 

for AP-1. The competition with an unlabelled oligo duplex for the AP-1 binding 

reduced the intensity of the specific AP-1 band. I used an Oct-1 (octamer-

binding protein-1) EMSA as loading control, since Oct-1 is a nuclear 

transcription factor that is constitutively expressed in the cells and it is not 

affected by any of the treatments (Figure 3.18D).  

As described in section 3.8 for PMA/I-induced GM-CSF gene expression, I 

wanted to verify that the effect of the MAPK inhibitors on AP-1 DNA binding 

activity is due to the specific inhibition of MEK/ERK and p38 pathways, rather 

than to non-specific effects. To this end, I transfected KG1a cells via 

electroporation with either 200 nM siCTRL or 100 nM siERK1/2 together with 

100 nM sip38. After 48 h from transfection I stimulated the cells for 2 h with 

PMA and ionophore A23187 (PMA/I) and then prepared the nuclear extracts. 

The AP-1 EMSA represented in Figure 3.19 shows that the combination of 

siERK1/2 and sip38 decreased AP-1 binding to the DNA by about 70% respect 

to the negative siCTRL.  

These results demonstrated that the AP-1 binding ability to DNA induced by 

PMA/I is dependent on ERK and p38 MAPK pathways in KG1a cells and it is 

likely to be also dependent on them in T blast cells and Jurkat cells. However, 

additional siMAPK knockdown experiments would be required to verify this 

assumption. 
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Figure 3.19   Effect of siERK1/2 and sip38 on the PMA/I-induced AP-1 DNA  

binding in KG1a cells 

 

 

KG1a 

 

 

 

 

AP-1 and Oct-1 EMSA in KG1a cells treated with either 200 nM siCTRL or a 

combination of 100 nM siERK1/2 and 100 nM sip38. Analysis of the intensity of the 

bands was performed using Image J software. The Y-axis shows the levels of AP-1 

binding normalised to Oct-1 and relative to the siCTRL. One representative experiment 

is shown. 
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3.11 c-Fos and c-Jun mRNA and protein expression increase after PMA/I 

treatment in T blast cells, Jurkat and KG1a cells 

 

I already demonstrated that AP-1 is activated by PMA/I in T blast cells, Jurkat 

and KG1a cells and its binding to DNA is mediated by ERK and p38 MAPK 

pathways. Next, I wanted to study the protein composition of the AP-1 dimers. 

To this end, I measured the level of c-Fos and c-Jun mRNA and protein after 

PMA/I stimulation. c-Fos and c-Jun are immediate-early (IE) genes and are 

quickly expressed after stimulation. To find out the best timing of PMA/I 

stimulation in order to get the highest c-Fos and c-Jun gene expression, I 

treated KG1a cells with PMA/I for 30 min, 45 min, 1 hour and 2 hours. Results 

showed that the highest c-Fos mRNA levels were detected after 45 min, after 

which they decreased. Maximum c-Jun gene expression was reached after 2 

hours, and its levels remained high after 4 hours (data not shown).  

After finding the best time for gene induction in KG1a cells, I treated with PMA/I 

also T blast cells and Jurkat cells and measured c-Fos and c-Jun mRNA levels 

after 45 minutes and 2 hours, respectively, by qRT-PCR analysis. I detected a 

strong increase of c-Jun and especially c-Fos mRNA levels after PMA/I 

treatment in both T blast cells and the cell lines (Figure 3.20).  

Next, I wanted to investigate the role of ERK and p38 pathways in the induction 

of c-Fos and c-Jun gene expression. Therefore, I pre-treated the cells for 1 h 

with the MEK inhibitor, PD98059 (50 M) and the p38 inhibitor, SB202190 (25 

M), singularly and in combination.  

The combination of the two inhibitors reduced both FOS and JUN mRNA to the 

levels measured in untreated cells. In T blast cells and Jurkat cells the single 

p38 inhibitor SB202190 decreased both PMA/I-induced FOS and JUN gene 
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expression by 25% and 40% respectively (Figure 3.20A and B). In KG1a cells, 

the p38 inhibitor was more effective, reducing both genes by around 50% 

compared to PMA/I treated cells (Figure 3.20C). On the contrary, the MEK 

inhibitor, PD98059 didn’t reduce JUN mRNA levels in T blast cells and KG1a 

cells (Figure 3.20A and C, respectively). Pre-treatment of T blast cells with MEK 

inhibitor PD98059 even caused a small increase of the PMA/I-induced JUN 

expression. This effect might be due to a cross-talk among the different MAPK 

pathways, since I have already demonstrated that the inhibition of one of the 

pathways by using specific chemicals might lead to the activation of a different 

pathway. In Jurkat cells, MEK inhibitor was not effective in reducing FOS mRNA 

levels (Figure 3.20B). Interestingly, in KG1a and T blast cells FOS mRNA levels 

are at least 100 times higher than JUN mRNA levels after PMA/I stimulation, 

whereas in Jurkat cells they are comparable.  However, these were measured 

at different times, and the levels may be balanced by other Fos and Jun family 

members that can compensate for FOS and JUN.   
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Figure 3.20  Effect of MAPK inhibitors on PMA/I-induced c-Fos and c-Jun 

gene expression  

 

A      T blast cells 

 

  

 

 

A)    FOS and JUN mRNA levels measured by qRT-PCR in T blast cells after 1h 

pre-treatment with MAPK inhibitors (MEK inhibitor PD98059 50 M and p38 inhibitor 

SB202190 25 M), singularly or in combination, and stimulation with 20 ng/ml PMA and 

2 μM ionophore A23187 (PMA/I) for 45’ (FOS) or 2 h (JUN). The Y-axis shows 

expression relative to GAPDH gene expression. Each bar represents the average of 

three independent experiments, error bars represent SE. 
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Figure 3.20    Effect of MAPK inhibitors on PMA/I-induced c-Fos and c-Jun  

gene expression  

 

B     Jurkat 

 

   

 

 

B) FOS and JUN mRNA levels measured by qRT-PCR in Jurkat cells after 1h pre-

treatment with MAPK inhibitors (MEK inhibitor, PD98059 50 M and p38 inhibitor, 

SB202190 25 M), singularly or in combination, and stimulation with 20 ng/ml PMA and 

2 μM ionophore A23187 (PMA/I) for 45’ (FOS) or 2 h (JUN). The Y-axis shows 

expression relative to GAPDH gene expression. Each bar represents the average of 

three independent experiments, error bars represent SE. 
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Figure 3.20  Effect of MAPK inhibitors on the PMA/I-induced c-Fos and     

c-Jun gene expression  

 

 

C     KG1a 

 

 

 

 

C) FOS and JUN mRNA levels measured by qRT-PCR in KG1a cells after 1h pre-

treatment with MAPK inhibitors (MEK inhibitor, PD98059 50 M and p38 inhibitor, 

SB202190 25 M), singularly or in combination, and stimulation with 20 ng/ml PMA and 

2 μM ionophore A23187 (PMA/I) for 45’ (FOS) or 2 h (JUN). The Y-axis shows 

expression relative to GAPDH expression. Each bar represents the average of three 

independent experiments, error bars represent SE. 
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I wanted to confirm the results obtained in the qRT-PCR analysis by measuring 

c-Fos and c-Jun protein levels. Therefore, I performed a Western blot analysis. I 

pre-treated Jurkat and KG1a cells with the MEK inhibitor, PD98059 (50 M) and 

the p38 inhibitor, SB202190 (25 M), singularly and in combination and then I 

stimulated them for 1 h with PMA and ionophore A23187 (PMA/I). I detected the 

levels of c-Fos and c-Jun protein expression by using specific primary 

antibodies and I used GAPDH protein as loading control, because it is 

constitutive and its levels don’t change upon any of the treatments used. As 

seen in gene expression analysis, PMA/I treatment increased also c-Fos and c-

Jun protein levels. In both cell lines, pre-treatment with MEK and p38 inhibitor 

combination decreased both c-Fos and c-Jun genes down to the level of 

untreated cells (Figure 3.21A and B).  

 

 

3.12   PMA/I treatment induces Elk1 phosphorylation in KG1a cells 

 

Since I demonstrated that c-Fos expression is MEK/ERK-dependent in KG1a 

cells, I investigated whether the ERK downstream target, Elk1, could have a 

role in the regulation of c-Fos transcription. Elk1 is a transcription factor which 

can bind FOS promoter at serum responsive elements (SRE), activating its 

transcription [165]. Elk1 is mainly phosphorylated by ERK and JNK MAPKs but 

some studies demonstrated that it can also be phosphorylated by p38 upon its 

activation with different stimuli [186, 276, 299].  
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Figure 3.21   Effect of MAPK inhibitors on the PMA/I-induced c-Fos and    

c-Jun protein levels 

 

 

A    Jurkat   

  

 

 

B   KG1a 

 

 

 

Western blotting of whole-cell lysates prepared from Jurkat (A) and KG1a (B) cells after 

1h pre-treatment with MAPK inhibitors (MEK inhibitor PD98059 50 M and p38 inhibitor 

SB202190 25 M), singularly or in combination, and 1 h stimulation with 20 ng/ml PMA 

and 2 μM ionophore A23187 (PMA/I). GAPDH was used as loading control. A 

representative experiment of three biological replicates is shown.  
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In order to show a possible involvement of Elk1 in stimulated KG1a cells and 

also its putative role in FOS transcription I stimulated the cells for 1 h with 

PMA/I. Then I isolated whole-cell protein extracts and performed a Western blot 

analysis. PMA/I treatment induced the phosphorylation of Elk1, which was 

completely absent in untreated cells. Pre-treatment of cells with the MEK 

inhibitor PD98059 (50 M) and with the combination of MEK and p38 inhibitors 

(50 M and 25 M respectively) seemed to completely abolish Elk1 

phosphorylation (Figure 3.22A), whereas p38 did not show any effect. 

Therefore, the inhibitory effect shown by the combination of MAPK inhibitors 

seemed to be due to the MEK inhibitor only. It would be interesting to see 

whether also JNK inhibition could reduce PMA/I-induced Elk1 phosphorylation. 

From these results, I can conclude that PMA/I-induced Elk1 phosphorylation is 

ERK-mediated but not p38-mediated in KG1a cells. To check whether Elk1 

could be responsible for an increase in FOS gene expression in KG1a cells, I 

performed a ChIP assay for Elk1, designing primers on the FOS promoter 

region, on PMA/I-stimulated cells for 1.5 h, with or without 1 h pre-treatment 

with the combination of MEK and p38 inhibitors (50 M and 25 M 

respectively). Subsequent qRT-PCR analysis showed that Elk1 enrichment at 

FOS promoter increased from 2.6 to 5.8 (over 100%) in PMA/I-treated cells and 

was almost completely reduced by the combination of inhibitors (Figure 3.22B). 

Values for Elk1 enrichment are expressed relative to Elk1 enrichment at the 

inactive IVL gene promoter. Since in Figure 3.22A I demonstrated that Elk1 

phosphorylation is dependent only on MEK/ERK pathway, the effect of the 

MAPK inhibitors combination is most likely due to the MEK inhibitor only. A 

ChIP-qPCR on KG1a cells pre-treated with the single inhibitors would be useful 

to answer this question. 
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Figure 3.22   Elk1 phosphorylation increases in PMA/I-treated KG1a cells 

 

 

A 

 

 

B 

 

 

 

A) Western blot analysis of whole-cell lysates prepared from KG1a cells after 1h 

pre-treatment with MAPK inhibitors and 1h stimulation with 20 ng/ml PMA and 2 μM 

ionophore, A23187 (PMA/I). A representative experiment of three biological replicates 

is shown. B) ChIP-qPCR showing relative Elk1 enrichment at the FOS promoter in 

KG1a cells after 1.5 hours PMA/I stimulation and 1h pre-treatment with PD98059 (MEK 

inhibitor) and SB202190 (p38 inhibitor). The Y-axis shows Elk1 enrichment normalized 

to the IVL promoter as an inactive control. Eah bar represents the average value of 

three technical replicates. Error bars represent SE.  
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3.13  siRNA-mediated knockdown of c-Jun reduces GM-CSF mRNA level 

 

Since I demonstrated that PMA/I-induced GM-CSF expression is associated 

with an increase of AP-1 DNA binding and an increase in mRNA levels of its 

components c-Fos and c-Jun, I used a siRNA against c-Jun to test its specific 

relevance in regulating GM-CSF gene expression.  

KG1a cells were transfected with either 100 nM negative control siRNA (siRNA 

CTRL) or 100 nM JUN siRNA; after 48 hours from transfection cells were 

treated with PMA/I for 4 hours and mRNA was extracted to evaluate GM-CSF 

and JUN mRNA levels. RT-PCR analysis in Figure 3.23A shows that the 

reduction in JUN gene expression mirrored the reduction in GM-CSF gene 

expression (about 55% reduction compared to siCTRL treated cells), 

suggesting a requirement for JUN in GM-CSF gene activation.  

I checked c-Jun protein knockdown by Western blot after 72 hours from 

transfection, after treating the cells for 2 h with PMA/I to induce JUN expression. 

Figure 3.23B shows that after 72 hours c-Jun protein levels were about 50% 

less than in siCTRL treated cells. It is notable that there is a correlation between 

the reduction in c-Jun protein/gene expression and the one in GM-CSF gene 

expression. It would be interesting to transfect the cells again or perform the 

analysis after longer time from transfection to reach a higher level of c-Jun 

knockdown and then see if there is a corresponding reduction in GM-CSF gene 

expression. 
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Figure 3.23  siRNA against c-Jun influences the PMA/I-induced GM-CSF 

gene expression in KG1a cells 

 

A 

 

 

 

B 

 

 

 

A) Cells were transfected with either 100 nM scrambled siRNA (CTRL) or 100 nM JUN 

siRNA; 48 hours after transfection, cells were treated for 4 hours with 20 ng/ml PMA 

and 2 μM ionophore, A23187 (PMA/I) and mRNA was extracted to measure GM-CSF 

and JUN mRNA levels in RT-PCR analysis. B) c-Jun protein knockdown was checked 

72 hours after transfection, after treating the cells with PMA/I for 2 hours to induce c-

Jun expression. Analysis of protein levels after transfection was performed by using 

Image J software by measuring the intensity of the bands and normalizing them to 

GAPDH. c-Jun protein levels are relative to siCTRL. One representative experiment is 

shown. 
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3.14.  PMA/I stimulation induces gene expression of AP-1 components 

 

After evaluating the effect of MAPK inhibitors on PMA/I-induced FOS and JUN 

gene expression, I decided to measure the level of expression of other AP-1 

components in Jurkat and KG1a cell lines after treatment with PMA/I and 

whether this expression was affected by MAPK inhibitors. Therefore, I treated 

the cells for 1 h with PMA/I at the same doses used so far and I performed a 

qRT-PCR analysis to measure FRA1 and FRA2 gene expression (amongst the 

Fos proteins) and JUNB and JUND mRNA levels (amongst the Jun proteins) 

(Figure 3.24-25). Gene expression analysis revealed that in Jurkat cells PMA/I 

stimulation increased FRA1 gene expression by approximately 15 fold 

compared to untreated cells, whereas FRA2 gene expression increased by 

about 3.5 fold. PMA/I-induced FRA1 and FRA2 gene expression were 

decreased by the MEK inhibitor (50 M) and the p38 inhibitor (25 M) by 

around 50% and 75% respectively, whereas in combination these inhibitors 

reduced the mRNA levels down to the levels of untreated cells (Figure 3.24). In 

KG1a cells FRA1 gene didn’t show any significant increase after PMA/I 

stimulation, and none of the treatment with the inhibitors affected its expression. 

In contrast, FRA2 mRNA levels in PMA/I-treated cells were about 2.5 times 

higher than in untreated cells. MAPK inhibitors alone reduced PMA/I-induced 

FRA2 gene expression by around 40%, whereas in combination with p38 

inhibitor, the mRNA levels were reduced down to the levels of untreated cells 

(Figure 3.25).  

RT-PCR analysis of JUN transcripts revealed that JUNB and JUND gene 

expression increased in Jurkat cells after treatment with PMA/I by about 20 and 

2.5 folds respectively, compared to untreated cells. The MEK inhibitor PD98059 



172 

 

and the p38 inhibitor SB202190 reduced JUNB and JUND gene expression by 

about 30 and 50% respectively, compared to the PMA/I-treated cells, whereas 

their combination reduced the mRNA levels down to the levels of untreated cells 

(Figure 3.24). In KG1a cells, PMA/I treatment increased JUNB and JUND 

mRNA levels by 10 and 2 folds respectively. The MEK inhibitor PD98059 and 

the p38 inhibitor SB202190 reduced JUNB mRNA levels by about 25% and 

50% respectively, compared to the cells treated with PMA/I. In Jurkat cells, 

MAPK inhibitors alone decreased PMA/I-induced JUND gene expression by 

about 25%, but t-test statistical analysis revealed that this reduction is not 

significant. However, their combination reduced the JUND gene expression 

down to the levels of untreated cells, as seen so far for the expression of all the 

AP-1 components analysed, apart from FRA1 in KG1a cells. It is notable that 

the effect of the combination of MEK and p38 inhibitors in reducing gene 

expression is always significant compared to the inhibitors alone, apart from the 

case of JUND gene expression in KG1a cells, where the effect of the 

combination is not significantly stronger than p38 inhibitor alone.  

Interestingly, in both cell lines, JUNB and JUND mRNA levels were higher than 

FRA1 and FRA2 mRNA levels, even before PMA/I treatment. 

These results demonstrate that PMA/I induced the expression of FRA2, JUNB, 

JUND in Jurkat and KG1a cells and also FRA1 expression in Jurkat cells. 

Moreover, treatment of both cell lines with the combination of MEK and p38 

inhibitors abolished the increase of gene expression induced by PMA/I. 
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FRA1, FRA2, JUNB, JUND mRNA levels were measured by RT-PCR in Jurkat cells 

after 1h pre-treatment with MAPK inhibitors (MEK inhibitor PD98059 50 M and p38 

inhibitor SB202190 25 M) and 1 h stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). The Y-axis shows expression relative to GAPDH expression. Each 

bar represents the average of three independent experiments, error bars represent SE. 

n.s. = student’s t-test value > 0.05 compared to p38 inhibitor alone. 
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Figure 3.24     AP-1 components mRNA levels after PMA/I treatment in 

Jurkat cells 
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FRA1, FRA2, JUNB, JUND mRNA levels were measured by RT-PCR in KG1a cells 

after 1h pre-treatment with MAPK inhibitors (MEK inhibitor PD98059 50 M and p38 

inhibitor SB202190 25 M) and 1 h stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). The Y-axis shows expression relative to GAPDH expression. Each 

bar represents the average of three independent experiments, error bars represent SE. 

n.s. = student’s t-test value > 0.05 compared to p38 inhibitor alone. 
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Figure 3.25      AP-1 components mRNA levels after PMA/I treatment in 

KG1a cells 
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3.15 MAPK inhibitors reduce the PMA/I-mediated recruitment of c-Fos 

and c-Jun at the GM-CSF enhancer in vivo 

 

Having demonstrated that PMA/I stimulation induces the AP-1 DNA binding in 

vitro in T blast cells, Jurkat and KG1a, and that the combination of MEK and 

p38 inhibitors is able to reduce it, I decided to verify the recruitment of c-Fos 

and c-Jun proteins to the GM-CSF enhancer in vivo, using chromatin 

immunoprecipitation (ChIP).   

I performed c-Fos and c-Jun ChIP on the region of the GM-CSF enhancer 

containing the composite NFAT/AP1 binding site (GM420) on PMA/I-stimulated 

cells for 1.5 h, with or without 1 h pre-treatment with the combination of MEK 

and p38 inhibitors (50 M and 25 M respectively). qPCR analysis showed that 

c-Fos enrichment at GM-CSF enhancer increased by five and four times in 

PMA/I-treated KG1a and Jurkat cells, respectively, whereas c-Jun occupancy 

increased by about three fold in KG1a cells. c-Fos enrichment was completely 

abolished by the treatment with the combination of MEK and p38 inhibitors in 

both cell lines (Figure 3.26A and B), whereas c-Jun occupancy was reduced by 

about 50% (Figure 3.26A).  

These results confirm the recruitment of AP-1 to the GM-CSF enhancer in vivo 

in KG1a-stimulated cells, and suggest that the effect is mediated by the ERK 

and p38 MAPK pathway. 
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Figure 3.26  PMA/I treatment induces the recruitment of c-Fos and c-Jun at 

the GM-CSF enhancer 

A     KG1a 

 

B   Jurkat  

 

ChIP-qPCR showing relative c-Fos and c-Jun enrichment at the GM-CSF enhancer in 

KG1a (A) and Jurkat (B) cells after 1h pre-treatment with PD98059 50 M (MEK 

inhibitor) and SB202190 25 M (p38 inhibitor) followed by 1.5 h PMA/I stimulation. 

Parallel control IgG precipitations gave values comparable to background levels (not 

shown). Y-axis shows relative enrichment to the gene desert region IVL. In the c-Fos 

graph each bar represents the average of three independent biological experiments. 

Error bars represent SE. For the c-Jun, ChIP-qPCR one representative experiment is 

shown.  
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3.16 The p300 inhibitor C646 reduces PMA/I-induced GM-CSF gene    

expression  

 

The results obtained so far demonstrated that AP-1 plays an important role in 

PMA/I-induced GM-CSF gene expression. Several reports showed that AP-1 

can regulate gene transcription interacting with transcriptional co-activators 

such as p300, which has histone acetyltranferase activity [300, 301]. Hence, I 

investigated the putative role of p300 in the PMA/I-induced GM-CSF gene 

expression by pre-treating Jurkat and KG1a cells for 1 h with increasing doses 

(5-20 M) of the specific p300 inhibitor, C646 [302] before stimulation. qRT-

PCR analysis of GM-CSF mRNA levels revealed that in Jurkat cells 5 M and 

10 M C646 reduced PMA/I-induced GM-CSF mRNA levels by about 50% and 

90% respectively;  20M  C646 completely abolished GM-CSF gene 

expression. In KG1a cells, the same doses were less effective than in Jurkat; in 

fact both 5 M and 10 M reduced PMA/I-induced GM-CSF gene expression by 

about 40%, whereas 20 M reduced it by about 65% (Figure 3.27).  

These results confirm a role of p300 in regulating PMA/I-induced GM-CSF gene 

expression in KG1a and Jurkat cells. 
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Figure 3.27   The p300 inhibitor C646 reduces the PMA/I-induced  GM-CSF 

gene expression in Jurkat and KG1a cells 

 
 

 

 

 

 

qRT-PCR showing GM-CSF gene expression after pre-treatment of Jurkat and KG1a 

cells with increasing doses of C646 and an induction with 20 ng/ml PMA and 2 μM 

ionophore, A23187 (PMA/I) for 4 hours. The y-axis shows GM-CSF gene expression 

relative to GAPDH expression. Each bar represents the average of at least two 

independent biological experiments and error bars represent SE. 
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3.17 PMA/I stimulation recruits p300 to the GM-CSF enhancer and 

increases histone H3 acetylation levels in Jurkat and KG1a cells  

 

Since the results obtained so far suggest an involvement of p300 in the 

regulation of PMA/I-induced GM-CSF gene expression and since p300 has 

been demonstrated to interact with AP-1 [300, 301], I decided to perform a ChIP 

assay to evaluate p300 recruitment to the GM-CSF enhancer at the NFAT/AP-1 

site (GM420). Moreover, p300 is also known to be an excellent chromatin 

marker of enhancers [137, 303].  

I treated the cells for 1.5 h with the same doses of PMA/I used so far for all the 

experiments, with or without 1 h pre-treatment with the combination of MEK 

inhibitor, PD98059 (50 M) and p38 inhibitor, SB202190 (25 M). In both cell 

lines p300 occupancy strongly increased after PMA/I stimulation. The 

enrichment was about 8 fold in Jurkat cells and about 90 times in KG1a cells, 

compared to untreated cells. Pre-treatment with MAPK inhibitors combination 

reduced the levels of p300 occupancy by 90% in KG1a cells and down to the 

level of untreated cells in Jurkat cells (Figure 3.28A and B).  

These results suggest that PMA/I treatment stimulates the recruitment of p300 

to the GM-CSF enhancer via MAPK signalling pathways. 
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Figure 3.28 PMA/I treatment induces the recruitment of p300 to the         

GM-CSF enhancer 

A     Jurkat 

 

B      KG1a 
 

 

ChIP-qPCR showing relative p300 enrichment at the GM-CSF enhancer in Jurkat (A) 

and KG1a (B) cells after 1h pre-treatment with PD98059 (MEK inhibitor) and SB202190 

(p38 inhibitor) and following stimulation with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I) for 1.5 h. Parallel control IgG precipitations gave values comparable to 

background levels (not shown). The Y-axis shows relative enrichment to the gene 

desert region IVL. Each bar represents the average of at least three independent 

experiments. Error bars represent SE. 
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p300 is known to have histone acetyltranferase activity [300, 301]. H3 Lysine 27 

acetylation (H3K27ac) is a marker of active enhancers and it is often observed 

at p300 positive enhancers [304]. 

For this reason, I decided to perform a ChIP assay for H3K27ac at the GM-CSF 

enhancer, at the same site used for p300 and AP-1 ChIP (GM420), and also a 

global H3 acetylation, since p300 can acetylate other histone residues [305, 

306]. 

In KG1a cells, the levels of H3K27ac increased by approximately three fold after 

PMA/I stimulation, and they were reduced down to the control level by the 

combination of MEK and p38 inhibitors (Figure 3.29A). These results were 

confirmed in Jurkat cells, although the increase of H3K27 acetylation induced 

by PMA/I was less pronounced than in KG1a cells (only 50% compared to 

untreated cells) (Figure 3.29B).  

Finally, in KG1a cells the use of an anti-acetyl-histone H3 antibody revealed 

that PMA/I induced an increase of global acetylation by 100% at the 

nucleosome H3 flanking the DHS at the enhancer; once again the enrichment 

was strongly reduced by the combination of MEK and p38 inhibitors (Figure 

3.29A). 

The qRT-PCR analyses of the ChIP assay for transcription factor binding 

expressed the enrichment at the GM-CSF enhancer relative to IVL. In the ChIP 

assay for histone marks the results are normalized to total H3. 

These results demonstrate that PMA/I treatment induces the acetylation of H3 

and H3K27ac at the GM-CSF locus, confirming it has characteristics of an 

active enhancer, and the PMA/I-induced acetylation seems to be MAPK 

dependent.  
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Figure 3.29 PMA/I treatment increases H3 acetylation levels in KG1a and 

Jurkat cells 

 

A        KG1a 

 

 

B            Jurkat 

 

 

 

ChIP-qPCR showing relative H3K27ac/H3 and global H3 acetylation enrichment at the 

GM-CSF enhancer in KG1a (A) and Jurkat (B) cells after 1h pre-treatment with 

PD98059 (MEK inhibitor) and SB202190 (p38 inhibitor) and following stimulation with 

20 ng/ml PMA and 2 μM ionophore A23187 (PMA/I) for 1.5 h.  Parallel control IgG 

precipitations gave values comparable to background levels (not shown). Results are 

normalized to total H3 levels and the Y-axis shows the relative enrichment to the gene 

desert region IVL. Each bar represents the average of three independent experiments. 

Error bars represent SE.  
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3.18 The p300 inhibitor C646 fails to inhibit the PMA/I-induced chromatin 

remodelling at GM-CSF enhancer in Jurkat and KG1a cells 

 

Since the results obtained so far demonstrate that PMA/I recruits p300 to the     

GM-CSF enhancer in vivo, I wondered whether its specific inhibition by C646 

could change the chromatin conformation at the GM-CSF enhancer. To test 

this, I performed a DHSs analysis of cells stimulated with PMA/I with or without 

pre-treatment for 1 h with C646. I used 10 M C646 in Jurkat cells and 20 M 

C646 in KG1a cells, which were found to reduce PMA/I-induced GM-CSF gene 

expression by 90% and 50% respectively (see Figure 3.27). In the DHSs 

analysis, I used DNase I-digested nuclei isolated from untreated cells or cells 

treated with PMA/I and PMA/I + C646 inhibitor, using the same strategy as 

before. As already seen in previous experiments PMA/I treatment induced a 

strong DHS at the enhancer in both cell lines, but pre-treatment with the p300 

inhibitor C646 failed to reduce this (Figure 3.30). These results suggest that 

p300 could be recruited by other transcription factors after the formation of the 

DHS, therefore its inhibition might not influence the chromatin conformation at 

the GM-CSF enhancer after PMA/I treatment or p300 is not needed for HS 

formation. 

 

3.19 The combination of MEK and p38 MAPK inhibitors decreases            

the PMA/I-induced phosphorylation of MSK1 in Jurkat and KG1a cells 

So far I focused on the combination of MEK and p38 inhibitors (PD98059 an 

SB202190 respectively) because, amongst all the different combinations of 

MAPK inhibitors tested (including the ones using the JNK inhibitor SP600125), 



186 

 

these were the most effective in reducing the PMA/I-induced GM-CSF gene 

expression and chromatin remodelling at the GM-CSF enhancer. 

Figure 3.30  Effect of the p300 inhibitor C646 on the PMA/I-induced    

chromatin remodelling at the GM-CSF enhancer 

 

 

 

 

 

 

 

Mapping of DHSs within GM-CSF enhancer and promoter in a 9.4 kb EcoR I fragment 

and in a 4.6 kb BamH I fragment downstream of the IL3 gene showing three 

constitutive CTCF sites. Cells were pre-treated with C646 for 1h and then stimulated 

for 4h with 20 ng/ml PMA and 2 μM ionophore, A23187 (PMA/I). Black triangles 

indicate increasing concentrations of DNase I (8 and 10 g/l) and genomic DNA 

serves as control. Just one dose of DNAse I (10 g/l) is represented for KG1a cells 

pre-treated with C646. 
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One of the reasons why the combination of MEK and p38 inhibitors resulted the 

highest effect in my model system could be because MEK/ERK pathway have 

mutual downstream target proteins, including the mitogen- and stress-activated 

protein kinase MSK1/2. MSK1/2 are nuclear serine/threonine protein kinases 

which can phosphorylate several substrates including NF-B [203], histone H3 

[307] and CREB [308, 309], mediating the transcriptional activation of several 

genes. MSK1/2 can be phosphorylated at Thr581 by either ERK or p38 MAPKs 

[310, 311]. 

In order to investigate whether MSK1 is phosphorylated in response to 

stimulation with PMA/I and whether this phosphorylation is mediated by both 

ERK and p38 pathways, I performed a Western blot analysis using 30 g of 

whole cell extract isolated from Jurkat or KG1a cells. I used primary antibodies 

against either the phosphorylated form of MSK1 (Phospho-Thr581) or the total 

form, which should recognise both modified and unmodified protein. As 

represented in Figure 3.31, untreated cells (both Jurkat and KG1a cells) show 

an insignificant level of MSK1 phosphorylation, which is considerably increased 

by PMA/I treatment. Interestingly, in both cell lines the phosphorylation of MSK1 

decreased upon MEK and p38 inhibitor pre-treatment and was completely 

abolished by the combination of the two. In Jurkat cells it seemed that the two 

inhibitors had about the same effect in reducing MSK1 phosphorylation, 

whereas in KG1a cells the MEK inhibitor PD98059 seemed to be more 

effective. The amount of total MSK1 should not change upon these different 

treatments and in fact it remained about constant in this analysis. However a 

GAPDH would have been a better loading control.  
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These results demonstrate that PMA/I stimulation induce MSK1 phosphorylation 

in Jurkat and KG1a cells and this phosphorylation is ERK and p38-dependent. 

 

 

Figure 3.31    PMA/I treatment phosphorylates MSK1 in Jurkat and KG1a 

cells 

 

 

 

 

 

 

 

Western blotting of whole-cell lysates prepared from Jurkat and KG1a cells after 1h 

pre-treatment with MAPK inhibitors and 1h stimulation with 20 ng/ml PMA and 2 μM 

ionophore A23187 (PMA/I). A representative experiment of three biological replicates is 

shown.  
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3.20 MSK1 knockdown reduces the PMA/I-induced GM-CSF gene 

expression and inhibits chromatin remodelling at the GM-CSF enhancer in 

Jurkat and KG1a cells 

 

Since I demonstrated that the single MEK and p38 inhibitors reduced MSK1 

phosphorylation and their combination completely abrogated MSK1 

phosphorylation, I decided to investigate the role of this kinase in PMA/I-

induced GM-CSF gene expression and chromatin remodelling in Jurkat and 

KG1a cell lines. In order to do this, I used the MSK inhibitor H89, at 

concentrations previously described in the literature [312, 313]. This compound 

is known to inhibit also Protein Kinase A (PKA), which is activated via cAMP 

[314]. 

In order to test the effect of MSK on PMA/I-induced GM-CSF gene expression, I 

pre-treated Jurkat and KG1a with 10 M H89 for 1 h, before PMA/I stimulation 

for 4 hours. H89 reduced the PMA/I-induced GM-CSF mRNA levels in Jurkat 

cells by approximately 85%. The same concentration inhibited PMAI-induced 

GM-CSF gene expression by 50% in KG1a cells, suggesting that other 

downstream components of MAPK signalling may be involved in GM-CSF gene 

regulation in these cell line (Figure 3.32).  

From these results it seems that MSK plays an important role in the regulation 

of GM-CSF gene in Jurkat and KG1a cells. However, H89 is a chemical that 

can also inhibit PKA kinase and, as for other drugs, it might show off target 

effects. For these reasons, I used a specific siRNA to knockdown MSK1 

expression in KG1a cells.  

 

 



190 

 

Figure 3.32  Effect of the MSK1 inhibitor H89 on the PMA/I-induced       

GM-CSF gene expression in Jurkat and KG1a cells 

 

 

 

 

 

qRT-PCR showing GM-CSF gene expression after pre-treatment of Jurkat and KG1a 

cells with H89 10 M for 1 h and an induction with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I) for 4 hours. The Y-axis shows GM-CSF gene expression relative to 

GAPDH expression. Each bar represents the average of at least two independent 

repeats and the error bars represent SE. 
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As described in section 3.8 to knockdown ERK1/2 and p38, I transfected the 

cells with either 100 nM of negative control siRNA (siCTRL) or 100 nM specific 

siRNA against MSK1. 48 hours after transfection, I treated the cells with PMA/I; 

after 4 hours I extracted the mRNA and I measured both GM-CSF and MSK1 

gene expression, to check the level of knockdown. Figure 3.33A shows that a 

90% reduction of MSK1 gene expression is achieved by siMSK1 (compared to 

siCTRL) corresponding to about a 50% reduction in PMA/I-induced GM-CSF 

gene expression, confirming the results obtained by the use of the H89 inhibitor. 

I also measured the levels of MSK1 protein after siRNA transfection by Western 

Blot analysis (Figure 3.33B). 72 h after transfection, I achieved only 60% 

reduction compared to siCTRL. To obtain a further knockdown, I could have 

transfected again the cells with the siRNA and waited for longer time, as I 

previously did for ERK1/2 and p38. However, the level of knockdown was 

satisfactory for a gene expression analysis.     

These results confirmed an important role of MSK1 in the regulation of PMA/I-

GM-CSF gene expression in my model systems. 

Given the inhibitory effect shown by the MSK inhibitor H89 on PMA/I-induced 

gene expression, I wondered whether H89 can also reduce PMA/I-induced 

chromatin remodelling at the GM-CSF enhancer.  

I performed a Southern blot using the same strategy as before, mapping the 

DHSs in an EcoR I and BamH I fragment in DNase I-digested samples. Cells 

were either treated only with PMA/I for 4 h or pre-treated for 1 h with 10 M H89 

before stimulation. Untreated cells were used as control. In this analysis, the 

two cell lines showed different results. In fact the treatment with H89 resulted in 

a loss of the DHS in Jurkat cells whereas it did not affect DHS formation in 

KG1a cells (Figure 3.34).  
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Figure 3.33   Effect of siMSK1 on PMA/I-induced GM-CSF gene expression 

in KG1a cells 

 

A 

 

 

 

 
 
 
 
B 
 

 
 
 
 
 

A) KG1a cells were transfected with either 100 nM siRNA (siCTRL) or 100 nM MSK1 

siRNA; 48 hours after transfection, cells were treated for 4 hours PMA/I and mRNA 

was extracted to evaluate GM-CSF and MSK1 mRNA levels. B) MSK1 protein 

knockdown was checked 72 hours after transfection by Western Blot analysis. The 

intensity of the bands was analysed using ImageJ software. One representative 

experiment is shown.  
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Figure 3.34  Effect of MSK1 on the PMA/I-induced chromatin remodelling 

at the GM-CSF enhancer in Jurkat and KG1a cells  

 

 

 

 

 

 

Mapping of DHSs within the GM-CSF enhancer and promoter in a 9.4 kb EcoR I 

fragment and in a 4.6 kb BamH I fragment downstream of the IL3 gene showing three 

constitutive CTCF sites. Jurkat and KG1a cells were pre-treated with H89 for 1 h and 

then stimulated for 4h with PMA/I. Black triangles indicate increasing concentrations of 

DNase I and genomic DNA serves as control.   
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These results suggest that, in the two cell lines, two different mechanisms 

control chromatin remodelling at the GM-CSF enhancer after PMA/I stimulation, 

and that one of these is independent of MSK1. 

 

3.21   Cross-talk between MAPK and NF-B signalling 

 

So far I studied the involvement of MAPK pathways in PMA-induced GM-CSF 

gene expression. I found that MEK/ERK and p38 pathways are essential in the 

regulation of PMA/I-induced GM-CSF gene regulation in Jurkat and KG1a 

leukaemic cell lines, and their action is mediated by their mutual downstream 

target MSK1. MSK1 represents an important junction between MAPK and NF-

B pathways. In fact, MSK1 has been known to activate NF-B through the 

phosphorylation of p65 subunit at Ser276 [315]. This phosphorylation promotes 

the recruitment of the co-activator p300/CBP [316], followed by the acetylation 

of both NF-B p65 at Lys314 and histones at the NF-B bound promoters [243]. 

In order to find a possible connection between the MAPK and NF-B pathways 

in the regulation of PMA/I-induced GM-CSF gene expression, I performed a 

Western blot analysis to measure the phosphorylation of NF-B p65 at Ser276 

in Jurkat and KG1a cells.  

Figure 3.35 shows that PMA/I treatment induces NF-B phosphorylation at 

Ser276 in both cell lines. Cells were also pre-treated with MEK and p38 

inhibitors alone or in combination as previously described in order to investigate 

how these pathways could interfere with NF-B signalling pathways. The 

MEK/p38 inhibitors in combination were more effective in reducing p65 

phosphorylation at Ser276 compared to the single inhibitors. These results are 
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very similar to the ones observed on MSK1 phosphorylation (Figure 3.31), 

indicating that MSK1 could be the kinase responsible for Ser276 

phosphorylation. To further confirm this speculation, I repeated the Western blot 

to measure the level of phosphorylation of p65 at Ser276 in PMA/I-stimulated 

cells pre-treated with MSK1 inhibitor H89 (10 M). In both cell lines, treatment 

with H89 abrogated the phosphorylation of Ser276 (Figure 3.35).  

These results suggest that ERK and p38 MAPK pathways could be responsible 

for PMA/I-induced NF-B activation through MSK1.  

However, phosphorylation of p65 at Ser276 occurs in the nucleus and is not the 

only way NF-B is activated. Inactive NF-B is bound to its inhibitor I-B in the 

cytoplasm. Activation of the NF-B canonical pathway leads to the 

phosphorylation of I-B and its degradation by the proteasome, whereas the 

p65 subunit undergoes phosphorylation at different sites.  The most common 

site of phosphorylation is Ser536, which is accompanied by the translocation of 

p65 to the nucleus, where it can activate gene transcription [211, 212]. In 

several solid tumours and haematological malignancies NF-B is already active 

and phosphorylated at this site in untreated cells [317, 318]. 

To investigate whether NF-B is already active in untreated Jurkat and KG1a 

cells, I measured the phosphorylation of p65 at Ser536 using the same whole-

cell lysates from cells either treated or not with the inhibitors. In KG1a cells NF-

B was already phosphorylated at Ser536 before stimulation with PMA/I, 

whereas in Jurkat cells this phosphorylation was almost entirely inducible. 

Neither the single MEK and p38 inhibitors nor their combination significantly 

decreased the NF-B phosphorylation level in Jurkat cells (Figure 3.36). 
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Figure 3.35    H89 decreases the PMA/I-induced NF-B phosphorylation at 

Ser276 in Jurkat and KG1a cells 

 

 

 

 

 

 

Western blotting of whole-cell lysates prepared from Jurkat and KG1a cells after 1h 

pre-treatment with inhibitors and 1h stimulation with PMA/I. The arrow indicates the 

specific band. A representative experiment of three biological replicates is shown.  
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Figure 3.36  Effect of the combination of the MEK and p38 inhibitors on       

the PMA/I-induced NF-B phosphorylation in Jurkat and KG1a cells 

 

 

 

                     

            

 

Western blotting of whole-cell lysates prepared from Jurkat and KG1a cells after 1h 

pre-treatment with inhibitors as before and 1h stimulation with PMA/I. A representative 

experiment of three biological replicates is shown. The arrow indicates the specific 

band for p-NF-B (Ser276). 
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In KG1a cells it seems that the MEK inhibitor PD98059 slightly decreased the 

p65 phosphorylation, as well as the combination of MEK/p38 inhibitor, probably 

due to the effect of the MEK inhibitor only. 

These results show that NF-B pathway is activated by PMA/I treatment in 

Jurkat and KG1a cells. This activation is mediated by p65 phosphorylation at 

Ser276 and Ser536 in Jurkat cells, but only by its phosphorylation at Ser276 in 

KG1a cells.  

 

 

3.22 The NF-B pathway is involved in the PMA/I-induced GM-CSF gene 

expression and chromatin remodelling at the -3 kb GM-CSF enhancer 

 

Results shown so far imply that PMA/I activates NF-B through its 

phosphorylation at Ser276 and this activation seems to be mediated by MSK1. 

The GM-CSF promoter encompasses an NF-B site and the GM-CSF enhancer 

also contains a NF-B/NFAT binding motif, suggesting that NF-B pathway 

might have a role in GM-CSF gene regulation.  

Unpublished data from luciferase assays performed in Peter Cockerill’s 

laboratory showed that modification of the B/NFAT binding site at GM220 

significantly decreases the enhancer activity in Jurkat cells. Holloway et al. [319] 

already demonstrated the importance of NF-B in the GM-CSF promoter 

chromatin remodelling, showing that NF-B recruits Brg1-containing complexes 

to the promoter in T cells and that low levels of NF-B in the nucleus lead to a 

reduction in GM-CSF gene transcription.  
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For all these reasons I decided to inhibit the canonical NF-B pathway by using 

the proteasome inhibitor MG132 during PMA/I-induced GM-CSF gene 

expression.  

I pre-treated Jurkat and KG1a cells with increasing doses of MG132, prior 

stimulation for 4 hours with PMA/I, in order to find doses capable at significantly 

reducing PMA/I-induced GM-CSF gene expression. qRT-PCR analysis in 

Figure 3.37 shows that 1 M MG132 almost totally inhibited the PMA/I-induced 

GM-CSF mRNA levels in Jurkat whereas a dose of 5 M was required to 

reduce gene expression down to the level of untreated cells. MG132 seemed to 

be less effective in KG1a cells, because 1 M ad 2.5 M decreased GM-CSF 

gene expression by 70% and 85% respectively, whereas only the highest 

concentration tested (5 M) completely abolished the GM-CSF gene expression 

induced by PMA/I. These results confirm the involvement of NF-B pathways in 

PMA/I-induced GM-CSF gene expression in Jurkat and KG1a cells. 

In order to test the effect of the proteasome inhibitor MG132 on the PMA/I-

induced chromatin remodelling at GM-CSF enhancer, I mapped the DHSs in an 

EcoR I fragment in DNase I-digested nuclei by Southern blot as described 

previously. I pre-treated Jurkat and KG1a cells for 1 h with 1 M and 5 M 

MG132 respectively, doses shown to completely (or almost completely) inhibit 

the PMA/I-induced GM-CSF expression. As I observed previously after 

treatment with the MSK inhibitor H89, the two cell lines showed different results. 

In fact, treatment with MG132 resulted in a loss of the DHS at the GM-CSF 

enhancer in Jurkat, whereas it did not affect DHS formation in KG1a cells 

(Figure 3.38).  
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These results suggest again that, in the two cell lines, two different protein 

complexes might be present at the GM-CSF enhancer after PMA/I stimulation 

and confirm an important role for NF-B pathway in the regulation of chromatin 

remodelling at the GM-CSF enhancer induced by PMA/I in Jurkat T cells.  

 
 
Figure 3.37   Effect of the proteasome inhibitor MG132 on the PMA/I-

induced GM-CSF gene expression in Jurkat and KG1a cells 

 
 
 

 
 

qRT-PCR showing GM-CSF gene expression after pre-treatment of Jurkat and KG1a 

cells with increasing doses of MG132 and an induction with 20 ng/ml PMA and 2 μM 

ionophore A23187 (PMA/I) for 4 hours. The y-axis shows GM-CSF gene expression 

relative to GAPDH gene expression. Each bar represents the average of three 

independent repeats and the error bars represent SE. 
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Figure 3.38. Effect of the proteasome inhibitor MG132 on the PMA/I-

induced chromatin remodelling at the GM-CSF enhancer in 

Jurkat and KG1a cells 

 

 

 

 

 

Mapping of DHSs within GM-CSF enhancer and promoter in a 9.4 kb EcoR I fragment 

and in a 4.6 kb BamH I fragment downstream of the IL3 gene showing three 

constitutive CTCF sites. Cells were pre-treated with MG132 (1 M for Jurkat and 5 M 

for KG1a) for 1h and then stimulated for 4h with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I). Black triangles indicate increasing concentrations of DNase I; 

genomic DNA was used as control.   
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3.23  MSK1 and NF-B are recruited at the GM-CSF enhancer by treatment 

with PMA/I in KG1a cells 

In previous sections, I demonstrated a connection between MAPK pathways 

and NF-B pathways, showing that MSK1 phosphorylates p65 at Ser276 in 

PMA/I-stimulated cells and also that MAPK inhibitors can reduce this 

phosphorylation. Since the GM-CSF enhancer encompasses a NFAT/B 

binding site (GM220), I wondered whether the two transcription factors could be 

recruited to the GM-CSF enhancer after PMA/I induction. To answer this 

question, I performed a ChIP assay on KG1a cells either treated with PMA/I or 

pre-treated with inhibitors as described previously. Untreated cells were used as 

control. In KG1a cells, both MSK1 and NF-B occupancy increased by about 

five fold after PMA/I stimulation, compared to untreated cells. Treatment with 

MEK and p38 MAPK inhibitors in combination reduced the level of enrichment 

down to the level of untreated cells (Figure 3.39A). MSK1 occupancy was 

measured at the NF-B binding site within the enhancer (GM220) and treatment 

with the MSK inhibitor H89 reduced NF-B occupancy at this site by about 70% 

(similar to the combination of MAPK inhibitors). This might suggest a direct 

interaction between the two transcription factors. Since I demonstrated that 

MSK1 phosphorylates NF-B at Ser276 and this phosphorylation promotes the 

recruitment of the co-activator p300/CBP [243], I next performed a ChIP 

analysis to test whether the MSK1 inhibitor H89 had an effect on the PMA/I-

induced p300 recruitment to the enhancer at GM220. The inhibitory effect 

shown by H89 (about 55% compared to PMA/I-treated cells) demonstrates that 

MSK1 is likely to induce recruitment of p300 at the GM220 (NFAT/B site), 

probably through the phosphorylation of NF-B p65 at Ser276 (Figure 3.39B). 
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Figure 3.39  MSK1 and NF-B p65 are recruited at the GM-CSF enhancer  

by PMA/I stimulation in KG1a cells 

A 

 

B 

 

 

 

ChIP-qPCR showing relative A) MSK1, NF-B p65 and B) p300 enrichment at the GM-

CSF enhancer in KG1a cells after 1.5 hours PMA/I stimulation and 1h pre-treatment 

with H89 (MSK1 inhibitor) or with the combination of PD98059 (MEK inhibitor) and 

SB202190 (p38 inhibitor). Parallel control IgG precipitations gave values comparable to 

background levels (not shown). The Y-axis shows relative enrichment compared to IVL. 

Each bar represents the average of at least three independent experiments. Error bars 

represent SE. 
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3.24. MSK1 does not seem to be responsible for the PMA/I-induced FOS 

gene transcription in Jurkat and KG1a cells 

I previously showed that PMA/I treatment increases the expression of several 

AP-1 components, including FOS, and this increase is MAPK-dependent. I also 

showed that some of the effects of the combination of MEK and p38 inhibitor on 

PMA/I-induced GM-CSF gene expression are mediated by their mutual target 

MSK1. MSK1 have been reported to phosphorylate H3 at Ser10 at FOS 

promoter, inducing its transcriptional activation [320, 321]. Therefore, I wonder 

whether MSK1 could be in part responsible for the increase in FOS transcription 

mediated by PMA/I. To investigate this, I measured the levels of FOS gene 

expression by qRT-PCR. I pre-treated the cells for 1 h with MSK inhibitor H89 

(10 M) before PMA/I stimulation for 45 minutes. Treatment with H89 not only 

failed to decrease FOS gene expression (Figure 3.40), but it seemed to cause a 

small increase in KG1a cells, albeit not significant.  

I also performed an EMSA to check whether the H89 inhibitor can reduce the 

PMA/I-induced AP-1 binding already demonstrated in the cell lines. In Jurkat 

cells, treatment with H89 decreased the PMA/I-induced AP-1 binding whereas it 

didn’t show any inhibitory effect on KG1a cells (Figure 3.41A and B). The 

reduction in AP-1 DNA binding in Jurkat could be due to an inhibitory effect of 

MSK1 on different components of AP-1, or it could be mediated by PKA, since 

also this kinase is inhibited by H89.  

These results show that the PMA/I-mediated increase of FOS expression 

seems not to be mediated by MSK1 in both cell lines. On the contrary, MSK1 or 

PKA (H89 is also a PKA inhibitor) seem to regulate the induction of AP-1 in 

Jurkat cells. Further analysis would be needed to verify this hypothesis and also 

to find out which AP-1 components are involved. 
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Figure 3.40   H89 fails to reduce FOS gene expression in Jurkat and KG1a 

cells 

 

 

 

 

 

 
 
 
 
 
 
qRT-PCR showing GM-CSF gene expression after pre-treatment of Jurkat and KG1a 

cells with H89 10 M for 1h and an induction with 20 ng/ml PMA and 2 μM ionophore 

A23187 (PMA/I) for 45 minutes. The y-axis shows GM-CSF gene expression relative to 

GAPDH gene expression. Each bar represents the average of at least three 

independent repeats and the error bars represent SE. n.s. = student’s t-test value > 

0.05 between the group of samples treated with PMA/I and the ones pre-treated with 

H89. 
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Figure 3.41     H89 effect on the PMA/I-induced AP-1 DNA binding ability   

 
A        Jurkat 
 

 
 
B      KG1a 

 

EMSA assay to detect AP-1 binding performed on nuclear extracts of Jurkat (A) and 

KG1a (B) cells. The EMSA to detect Oct-1 binding was performed as loading control. In 

B) the supershift assay has been performed using a specific c-Fos antibody. 
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3.25 MAPK inhibitors and CsA do not induce chromatin remodelling in 

HEL cells but inhibit the PMA/I-induced GM-CSF gene expression 

 

So far I used as model for GM-CSF regulation three different cell types (Jurkat, 

KG1a and murine T blast cells) which all show an inducible DHS at the GM-

CSF enhancer. In contrast to these cell types, untreated erythroleukaemic HEL 

cells already show a constitutive DHS at the enhancer, as has been observed in 

a high proportion of AML cells from patients (unpublished data from the 

Cockerill laboratory). These cells also have a DHS between -4.1 and -4.3 kb, as 

has also been observed in cells derived from AML patients [246]. 

To get an idea of which signalling pathways mediate the creation of this DHS, I 

treated HEL cells for 4h and 8h with MAPK inhibitors and Cyclosporin A (CsA), 

a calcineurin phosphatase inhibitor, testing concentrations already used on the 

other cell lines. Then I performed a Southern blot analysis, using the strategy 

already described, mapping the DHSs in an EcoR I in DNase I-digested 

samples. Results showed that none of the drugs used inhibited the constitutive 

DHSs at the enhancer or at -4.1 kb (Figure 3.42). Since HEL cells don’t express 

high levels of the GM-CSF gene, I had to stimulate them with PMA/I for 4h after 

1h pre-treatment with the inhibitors, as already described. Treatment with PMA/I 

led to over 100 fold induction in GM-CSF gene expression. Surprisingly CsA 

and the p38 inhibitor SB202190 decreased GM-CSF gene expression down to 

control levels (Figure 3.43), whereas the MEK inhibitor PD98059 reduced it by 

around 80%. The effect of the MEK and p38 inhibitor together couldn’t be 

determined because p38 inhibitor alone already abolished GM-CSF gene 

expression. Lower doses of both inhibitors should have been used to estimate 
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their possible cooperative/synergistic effect on the reduction of GM-CSF mRNA 

levels. 

 

Figure 3.42    Effect of inhibitors on GM-CSF chromatin structure in HEL cells 

 

 

  
 
 
 

 

Mapping of DHSs within the GM-CSF enhancer in a 9.4 kb EcoR I fragment. HEL cells 

were treated with the inhibitors for 8h (MEK1 inhibitor, PD98059 50 M, p38 inhibitor, 

SB202190 25 M, CsA 0.1 M). 

 

 

 

 



209 

 

Figure 3.43  Effect of inhibitors on GM-CSF gene expression in HEL cells 

 

 

 

 

 

 

 

 

qRT-PCR analysis to measure human GM-CSF mRNA levels after 1h pre-treatment of 

HEL cells with MAPK inhibitors (MEK inhibitor, PD98059 50 M, p38 inhibitor, 

SB202190 25 M) or  CsA 0.1 M and 4h stimulation with 20 ng/ml PMA and 2 μM 

ionophore A23187 (PMA/I). GM-CSF gene expression is relative to GAPDH 

expression. Each bar represents the average of at least three independent repeats. 

Error bars represent SE. 
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These results demonstrate that GM-CSF transcription is MAPK and Ca2+ 

dependent, whereas its chromatin remodelling at the enhancer is not, 

suggesting distinct mechanisms of regulation in HEL cells. 

 

3.26 RUNX1 is present at both -3 kb and -4.1 kb DHSs in HEL cells 

 

The GM-CSF enhancer is also known to interact with the constitutively 

expressed factor RUNX1, but only after induction of the DHS in other cell types 

where the DHS is inducible [280]. The DHS at -4.1 kb also contains several 

potential RUNX1 binding motifs which have not been investigated in previous 

studies. 

Since neither the treatment with MAPK inhibitors nor CsA inhibited chromatin 

remodelling at -3 kb and/or -4.1kb DHS in HEL cells, I decided to perform a 

ChIP assay at both sites to verify the presence of the transcription factor 

RUNX1, whose recruitment is likely to be independent on MAPK and Ca2+ 

signalling pathways. Results confirmed the presence of RUNX1 at both DHSs 

(Figure 3.44). RUNX1 occupancy at the -4.1 kb DHS was comparable to the 

one measured at the upstream PU.1 enhancer, used as positive control. In fact 

the PU.1 enhancer element is bound by RUNX1 at multiple sites and this 

binding is essential for enhancer activity [322, 323]. 

These results suggest a completely different composition of the protein complex 

present at the GM-CSF enhancer in HEL cells compared to cells where the 

DHS is inducible (e.g. T blasts, Jurkat and KG1a cells) and this might be the 

reason why in HEL cells the DHS at the GM-CSF enhancer is not sensitive to 

either MAPK inhibitors or the Ca2+ signalling inhibitors CsA. This same pattern 

may exist in AML cells where these two DHSs are observed. 
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Figure 3.44     RUNX1 occupancy at -3 kb and -4.1 kb DHSs in HEL cells  

 

 

 

 

 

 

 

ChIP-qPCR showing relative RUNX1 enrichment at the -3 kb enhancer (E) and -4.1 kb 

DHSs in the GM-CSF locus in HEL cells. Parallel control IgG precipitations gave values 

comparable to background levels (not shown). The Y-axis shows relative enrichment 

compared to the gene desert region Chr18. Bars represents the average of at least 

three independent experiments. Error bars represent SE.  
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4.  DISCUSSION 

 

In this study I investigated the role of signalling pathways in the regulation of the 

IL-3/GM-CSF locus, analysing in particular the expression and chromatin 

structure of the GM-CSF gene. The models I used were activated T blast cells, 

which normally produce GM-CSF when stimulated, plus the Jurkat T-ALL-

derived cell line and the KG1a AML-derived cell line, which can both be induced 

to express GM-CSF. We wanted to gain an understanding of pathways that 

activate the GM-CSF locus because several papers [259-261] demonstrated 

that AML blast cells produce high levels of GM-CSF, which can in turn activate 

its own receptor to support blast cell growth and proliferation in an autocrine or 

paracrine way. In some cases of AML, GM-CSF production may be the result of 

the constitutive activation of a surface receptor such as FLT3 of cKIT, or 

components of signalling pathways such as RAS. In KG1a cells, the -3 kb GM-

CSF enhancer is inducible upon stimulation with PMA and a calcium ionophore 

(PMA/I) and this is associated with an increase of GM-CSF mRNA levels. The 

enhancer is also inducible in activated T blast cells and in the leukaemic cell 

line Jurkat. T cells were used in this study to find similarities and differences in 

the regulation of GM-CSF gene between normal blood cells and leukaemic 

cells. The T blast cells used in this study were derived from transgenic mice, 

which contain six copies of an Age I fragment encompassing the entire IL3/GM-

CSF locus and for this reason produce high levels of GM-CSF following TCR 

activation. Jurkat cells are derived from a T-ALL leukaemia and they have been 

used over the years to better understand the TCR signalling, because of their 

similarities with primary T cells [324]. The activation of kinase signal pathways, 

mediated by PMA, along with the Ca2+-dependent signal pathway triggered by 
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calcium ionophore, induces a robust TCR activation response, with a strong 

production of IL-2 and an increase of the free intracellular Ca2+ concentration 

[325, 326]. A similar TCR artificial stimulation can be achieved by using a 

combination of antibodies anti-CD3 and anti-CD28. The choice to use PMA/I 

was based on the results obtained by Smeets et al. [327], who showed that 

PMA/I treatment induces a stronger activation of MAPK pathways together with 

a stronger and faster release of intracellular Ca2+ in Jurkat cells, compared to a 

CD3/CD28 stimulation. A more pronounced response is in fact ideal to study the 

effect of inhibitors. According to Smeet’s study the nuclear translocation of NF-

B is similar upon the two different stimulations. 

In all the three models, I verified the phosphorylation of ERK, p38 and JNK 

MAPKs after treatment with PMA/I. I then tested different inhibitors, alone or in 

combination, to find which pathways are more relevant to GM-CSF gene 

regulation, in terms of transcription and chromatin remodelling. 

Cockerill at al. [289] have already demonstrated that the DHS at the GM-CSF 

enhancer is highly inducible in T cells and is inhibited by CsA. In this study I 

demonstrated that another inhibitor of the Ca2+ signal pathways, the NFAT 

inhibitor 11R-VIVIT, did not reduce the DHS at the enhancer in T blast cells 

when used at 10 M. Both CsA and 11R-VIVIT lead to the inhibition of the 

NFAT signalling pathway, preventing the transcription of cytokine genes, 

including GM-CSF [328, 329]. CsA is a chemical compound which strongly 

inhibits calcineurin phosphatase activity, whereas 11R-VIVIT is a cell-

permeable peptide which inhibits the interaction between NFAT and calcineurin, 

resulting in competitive inhibition of NFAT signalling pathway. The presence of 

11 residues of arginine (11R) improves cell permeability. However, 11R-VIVIT 

does not affect calcineurin phosphatase activity nor does it interfere with 
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calcineurin-dependent pathways, such as NF-B pathway [278]. CsA has been 

demonstrated to interfere with the calcineurin-dependent NF-B activation by 

inhibiting the transcriptional induction of the p50 subunit and the c-Rel protein 

and by reducing IB degradation [330]. The 11R-VIVIT NFAT selective 

specificity could explain why this compound showed a very weak effect in 

reducing GM-CSF gene expression and chromatin remodelling at the enhancer 

in T blast cells. My results are in contrast with the observations of Aramburu et 

al. [278], who demonstrated that transfection of Jurkat cells with GFP-VIVIT 

greatly reduced the PMA/I-dependent GM-CSF gene expression. However, 

Aramburu tested the compound on a cell line, whereas I tested it on activated T 

blasts and this could explain the different results. After a first analysis of the 

Ca2+ signalling pathway, I focused on the kinase activation induced by PMA/I.  

I first verified the phosphorylation of the three main MAPK pathways 

(MEK/ERK, p38 and JNK) before and after treatment with PMA/I. Western blot 

analysis showed a PMA/I-induced phosphorylation of the three proteins. 

However, low levels of ERK1/2 and p38 phosphorylation were already 

detectable in T blasts, maybe due to the fact that cells were cultured in 

presence of IL-2, which has mitogenic effects and is able to activate MAPK 

signalling. Instead, the leukaemia cell line KG1a showed high levels of p38 

phosphorylation, as already demonstrated by Kale et al. [295], in line with the 

observation that cancer cells often show constitutive activation of signalling 

pathways. Jurkat cells seemed to show constitutive low levels of JNK/SAPK 

phosphorylation.  

Previous studies already demonstrated that treatment with PMA/I leads to a 

stronger activation of p38 and JNK MAPKs, compared to PMA alone, at least in 

Jurkat cells, whereas ERK1/2 activation is comparable [327]. Importantly, KG1a 
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cells do not differentiate upon PMA/I treatment, which is distinct from the similar 

myelomonocytic CD34+ KG1 cells, which instead differentiate into dendritic-like 

cells [331].  

In this study MAPK inhibitors reduced the PMA/I-induced GM-CSF gene 

expression and chromatin remodelling at the enhancer. In fact, in Jurkat and 

KG1a cells, high doses of single MAPK inhibitors greatly decreased PMA/I-

induced GM-CSF gene expression. In primary transgenic T blast cells the single 

inhibitors were less effective than in cell lines. The p38 inhibitor, SB202190 was 

the most effective in reducing GM-CSF mRNA levels whereas high doses of the 

JNK inhibitor, SP600125 were almost ineffective. The results obtained from 

western blot analysis do not give precise information about the total amount of 

MAPK proteins in the cells, but it can be speculated that the poor efficacy of 

SP600125 on T blast cells could be in part due to the predominant activation of 

MEK/ERK and p38 in response to PMA/I treatment.  

Amongst the combinations tried, the combination of MEK plus p38 inhibitors 

showed the strongest effect in reducing GM-CSF gene expression. DHS 

analysis in T blast cells demonstrated that the combination of MEK and p38 

inhibitors reduced the formation of the DHS at the GM-CSF enhancer by around 

50%. Interestingly, the addition of JNK inhibitor, SP600125 to this combination 

did not increase this effect. The same inhibitory effect on PMA/I-induced GM-

CSF gene expression and chromatin remodelling was also confirmed in Jurkat 

cells and KG1a cells.  

DHS analysis of the three cell models showed different effects of the inhibitors 

on the DHS located 4.5 kb downstream of the IL-3 promoter. This region has 

been demonstrated to be inducible in myeloid progenitor cells and Jurkat cells 

and it represents a non-coding promoter in Jurkat cells [264]. In this study, I 
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demonstrated that the +4.5 kb DHS could be detected in T blast cells prior to 

any stimulation (although PMA/I treatment clearly enhanced chromatin 

remodelling) and it was partially inhibited by CsA; on the other hand, the DHS 

was completely inhibited by the combination of MEK and p38 inhibitors in KG1a 

cells, but not in T blast cells. These results showed again a further difference 

between activated T cells and myeloid cells in GM-CSF gene regulation. Further 

experiments would be needed to find out the role of this DHS in myeloid cells 

and which signalling pathways are involved in its regulation. 

Although high doses of the JNK inhibitor SP600125 could reduce the PMA/I-

induced GM-CSF gene expression and also the PMA/I-induced c-Jun 

phosphorylation in Jurkat and KG1a cells, I decided to keep studying the 

combination of MEK and p38 inhibitors in the cell lines because of its powerful 

effect shown on T blast cells. In fact it is not unusual to find different results 

between primary cells and cell lines, which often carry gene 

mutations/translocations or show constitutively activation of protein signalling 

pathways.   

To make sure that the reduction of GM-CSF gene expression was due to the 

specific inhibition of MAPK pathways and not to off-target effects of the 

inhibitors, I also used specific ERK1/2 and p38 siRNAs as well as two 

alternative MEK and p38 inhibitors, U0126 and SB203580. Caution has to be 

used when dealing with chemical compounds because these ‘specific’ inhibitors 

might also act on other kinases. SB202190 and its close relative SB203580 

have been used in numerous of reports to study the physiological roles of p38α 

and p38β MAPKs [332]. Although these compounds are still used, more recent 

studies showed that they can inhibit other kinases with similar or greater 

potency [333]. SB203580 also inhibits c-Raf and GSK3 in vitro [334]. Bain and 
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colleagues [332] reported that, at the same dose, SB202190 is slightly more 

effective than SB203580 in inhibiting p38α and p38β MAPK activity. In terms of 

selectivity, in the same study both SB202190 and SB203580 were reported to 

inhibit in part JNK activity, but not ERK1 and ERK2. A slight reduction of MEK 

and ERK1/2 activity was reported for SB203580. PD98059 and U0126 are non-

competitive inhibitors that interact mainly with the complex enzyme-substrate, 

thus preventing the phosphorylation of MEK and/or the conformational change 

that leads to the activated kinase [335, 336]. In their study, Ahn and colleagues 

compared the activity of PD98059 and U0126 and they found that U0126 

inhibited MEK1 kinase activity at a lower concentration than PD98059 [337]. 

These findings are in line with the results obtained in KG1a cells because, as 

shown in Figure 3.11, I used a lower dose of U0126 compared to PD98059 to 

inhibit GM-CSF gene expression. In terms of selectivity, these two MEK 

inhibitors seem not to interfere significantly with either p38 or JNK activity. Just 

a small inhibitory effect on JNK2 kinase activity was reported by U0126 [332]. In 

this study neither the MEK inhibitor PD98059 nor p38 inhibitor SB202190 

decreased JNK phosphorylation in KG1a cells. On the contrary, inhibition of the 

MEK/ERK pathway seemed to stimulate the p38 pathway and vice versa. A 

similar effect was already reported by Hirosawa at al., who demonstrated that 

SB202190 was able to activate MEK/MAPK to stimulate the growth of 

leukaemia cells [296].  

To further avoid any possible effect due to the non-specificity or cross-reactivity 

of the inhibitors, I decided to also knockdown ERK and p38 pathways by using 

siRNAs. The inhibition of the PMA/I-induced GM-CSF gene expression obtained 

with the use of siRNAs mirrored the ones obtained with MEK and p38 inhibitors, 
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concluding that in Jurkat and KG1a leukaemia models the PMA/I-induced GM-

CSF gene expression is MEK/ERK and p38 MAPK-dependent. 

As already mentioned, essential for GM-CSF enhancer activity is the 

cooperation between the Ca2+ signalling pathway, mediated by NFAT, and the 

kinase signalling pathways, mediated by AP-1. The AP-1 family of transcription 

factors assemble as homodimers and heterodimers of Jun, Fos or activating 

transcription factors (ATFs). Jun and ATF can form both heterodimers and 

homodimers, but Fos cannot form homodimers. Jun-Jun and Jun-Fos dimers 

prefer to bind to the PMA-responsive element TGA(C/G)TCA. Jun-ATF and ATF 

dimers preferentially bind to the cAMP-responsive element TGACGTCA (CRE) 

[338]. Fos-Jun heterodimers have higher stability than Jun-Jun homodimers and 

therefore they have an increased DNA binding activity [339]. ATF-2 and c-Fos 

are mainly p38 and ERK targets. The activation of ERK and its downstream 

targets such as 90K-ribosomal S6 kinase (RSK) leads to the phosphorylation of 

multiple residues in the carboxy-terminal transactivation domain of c-Fos, which 

results in its increased protein stability and transcriptional activity [340, 341]. 

Moreover ERK can phosphorylate and activate Elk1, which binds the serum 

responsive element (SRE) at the FOS promoter, stimulating its transcriptional 

activity [165]. p38 MAPK [186] and JNK have also been reported to 

phosphorylate Elk1 upon their activation by different stimuli [299]. In this study, I 

demonstrated that PMA/I stimulation induces Elk1 phosphorylation in KG1a 

cells and this phosphorylation is ERK-dependent but not p38-dependent. It is 

likely, therefore, that Elk1 binding to the FOS promoter is responsible for the 

increase of FOS gene expression in KG1a cells. c-Jun is preferably a JNK 

target, although it can be phosphorylated and activated also by ERK [298] and 

p38 [342]. My results showed that in both KG1a and Jurkat cells the PMA/I-
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mediated c-Jun phosphorylation is both ERK- and JNK-dependent (Figure 

3.16). Phosphorylation of Ser63 and Ser73 in the c-Jun transactivation domain 

are known to increase c-Jun activity [343, 344]. The formation of the more 

stable Jun-Fos heterodimer is likely prevented when both MEK and p38 

pathways are inhibited and this might in part explain why these two pathways 

are so relevant for GM-CSF gene regulation in the models used in this study. In 

fact results from qRT-PCR analysis demonstrated that the two inhibitors 

synergistically decreased both FOS and JUN gene expression in activated T 

blast cells and leukaemia cell lines. Interestingly, whereas p38 inhibitor reduced 

both c-Fos and c-Jun expression (both protein and mRNA level) in all the three 

cell models, MEK inhibitor had no effect on JUN expression in either T blast 

cells or KG1a cells- Moreover, whereas it did not reduce FOS expression in 

Jurkat cells. This might in part explain the stronger effect of p38 inhibitor in 

reducing GM-CSF gene expression. The controversial results shown in Figure 

3.16A, where a significant decrease in c-Jun expression is detected after 

PD98059 treatment, might be explained by the different duration of PMA/I 

stimulation. It is possible that the reduction in c-Jun expression could be 

appreciated after a longer PMA/I stimulation (2 hours or longer). It is also 

notable that there are different mRNA levels between the PMA/I-induced FOS 

and JUN in the different cell types. Jurkat cells showed a similar level of FOS 

and JUN gene expression after PMA/I stimulation, whereas T blast cells and 

KG1a cells showed a strong predominance of FOS gene expression over JUN 

gene. However, both c-Fos and c-Jun proteins could be detected in the EMSA 

supershift assay in the two cell lines, indicating that they are both responsible 

for AP-1 DNA binding.  
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However, in this study, I didn’t investigate the possibility of p38 to phosphorylate 

and activate c-Jun, as previously demonstrated by Humar et al. [342] in T 

lymphocytes. This could explain why the p38 inhibitor SB202190 decreases 

JUN expression levels. AP-1 relevance on GM-CSF gene regulation has been 

confirmed by the siRNA-mediated c-Jun knockdown, which caused a significant 

decrease in the PMA/I-induced GM-CSF gene expression. 

I also measured the mRNA level of other Fos and Jun family proteins. The 

combination of MEK and p38 inhibitors was more effective on Jurkat than KG1a 

cells in inhibiting the expression of AP-1 proteins and this could in part explain 

why they showed a stronger effect also in reducing GM-CSF mRNA levels in 

Jurkat cell line.  

After measuring mRNA expression of AP-1 components, I performed an EMSA 

assay to test the AP-1 DNA binding ability to the DNA. My results showed that 

PMA/I treatment strongly induced the AP-1 binding to the DNA and this was 

reduced by the combination of MEK and p38 inhibitors in T blast cells, Jurkat 

and KG1a cells. The EMSA band representing AP-1 binding to DNA in 

untreated T blast cells and KG1a cells reflects the activation of MAPK pathways 

in these cell types. However, the intensity of the bands seen in EMSA and 

western blots, and sometimes even their presence, are highly dependent on the 

duration of exposure of the membrane. In fact c-Jun protein levels are already 

detectable in untreated Jurkat cells and this could suggest a possible 

constitutive activation of the JNK pathway. On the other hand, neither c-Fos nor 

c-Jun protein was detected in untreated KG1a cells, despite the high levels of 

p38 phosphorylation already detected. However, to better study the activation of 

these signalling pathways, an analysis of the MAPK protein kinases activity and 

c-Fos and c-Jun phosphorylation should be performed. 
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The AP-1 EMSA analysis were performed using an oligonucleotide duplex 

probe derived from the stromelysin gene containing the perfect AP-1 consensus 

sequence TGAGTCA. A more specific analysis should be conducted by using 

an oligonucleotide spanning either just the AP-1 site from the GM330 enhancer 

region (also containing a perfect AP-1 binding motif) or one of the composite 

NFAT/AP-1binding motifs, such as the GM420 region.  

Both in Jurkat cells and in T blast cells, the single inhibitors did not significantly 

reduce AP-1 binding to the DNA (especially the MEK inhibitor), whereas they 

had a stronger effect in KG1a cells. The ineffectiveness of the MEK inhibitor in 

T blast cells and in Jurkat cells mirrors could be due to the fact that PD98059 

did not reduce neither the PMA/I-induced JUN gene expression in T blast cells 

nor the induced FOS gene expression in Jurkat cells. PD98059 did not reduce 

FOS protein levels in Jurkat cells either, whereas it was more effective in KG1a 

cells and this could explain why this inhibitor reduced AP-1 DNA binding in 

KG1a cells but not in Jurkat cells. On the other hand, the p38 inhibitor 

SB202190 was more effective in reducing FOS and JUN mRNA and protein 

levels in both cell lines and this might explain why it had a stronger effect than 

the MEK inhibitor in reducing the level of PMA/I-induced AP-1 DNA binding 

activity.  

ChIP analysis showed that treatment with PMA/I leads to the recruitment of  

both c-Fos and c-Jun to chromatin in vivo and this was reduced by the 

combination of MEK and p38 inhibitors. These results suggest that PMA/I 

treatment induces GM-CSF gene expression and chromatin remodelling at the 

enhancer via ERK1/2 and p38 MAPK-dependent AP-1 activation. This study 

complements earlier work showing that the calcium-dependent induction of 

NFAT was also required for GM-CSF gene expression and chromatin 
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remodelling [289], and it helps to explain the inhibitory actions of transcription 

and translation inhibitors observed in this study. 

Since several reports showed that AP-1 can regulate gene transcription by 

interacting with the histone acetyltranferase p300 [300, 301], I investigated the 

putative role of p300 in the PMA/I-induced GM-CSF gene expression by using 

its specific inhibitor, C646. Results from qRT-PCR analysis confirmed that 

PMA/I-induced GM-CSF gene expression is dependent on p300 in Jurkat cells 

and KG1a cells. I also demonstrated that p300 is recruited at GM-CSF 

enhancer in vivo after PMA/I stimulation and this is associated with an increase 

of global histone H3 acetylation in KG1a cells and H3K27 acetylation in both 

cell lines. H3K27ac has been reported to mark active enhancers and has been 

often observed at p300 positive enhancers [304]. However, the p300 inhibitor, 

C646 failed to reduce the DHS at the enhancer, suggesting that p300 is 

recruited to chromatin by other transcription factors after the DHS is formed. 

The strong effect of the combination of MEK and p38 inhibitors seen in this 

study could be in part explained by the fact that both MEK/ERK and p38 

pathways can activate the nuclear kinases MSK1/2. MSK1/2 are nuclear 

serine/threonine protein kinases which can phosphorylate several substrates, 

including NF-B [203], histone H3 [307] and CREB [308, 309], mediating the 

transcriptional activation of several genes. My results showed that MSK1 is 

strongly phosphorylated by PMA/I treatment and this phosphorylation is 

mediated by both ERK and p38 MAPKs. I demonstrated that MSK1 is likely to 

be involved in PMA/I-induced GM-CSF gene expression, by showing that both 

the MSK/PKA H89 inhibitor and a specific MSK1 siRNA reduced GM-CSF 

mRNA levels. The effect of MSK1 inhibition on the PMA/I-induced GM-CSF 

gene expression seemed to be stronger in Jurkat cells than in KG1a cells. In 
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fact, treatment with the MSK inhibitor H89 decreased gene expression just by 

50%, against the 80-90% reduction obtained after the treatment with MEK1 and 

p38 inhibitors, suggesting the involvement of other transcription factors in 

addition to AP-1 in the KG1a model.  

Moreover, H89 reduced the induction of the DHS at the GM-CSF enhancer in 

Jurkat cells but not in KG1a cells, suggesting the presence of different protein 

complexes in the two models. This is not surprising, since in myeloid cells other 

transcription factors are involved in the regulation of GM-CSF gene, including 

GATA factors [281]. Further ChIP analysis of myeloid transcription factors would 

help to better understand the composition of these two different protein 

complexes. 

MSK1/2 phosphorylate the NF-B p65 subunit at Ser276 leading to NF-B 

activation [315]. This phosphorylation promotes the recruitment of the co-

activator p300/CBP [316], followed by the acetylation of both NF-B p65 at 

Lys314 and histones at the NF-B bound promoters [243]. Both the GM-CSF 

promoter and enhancer encompass a NF-B binding motif. Moreover, 

unpublished data from luciferase assays performed in the Cockerill lab showed 

that mutation of the NF-B motif at the enhancer reduces the enhancer activity.  

For all these reasons I decided to investigate the role of NF-B in the regulation 

of GM-CSF gene expression, focusing especially on its cross-talk with MAPK 

signalling pathways.  Holloway et al. [319] already demonstrated the importance 

of NF-B in chromatin remodelling at the GM-CSF promoter, showing that NF-

B recruits Brg1-containing complexes to the promoter in T cells in vitro and 

that low levels of NF-B in the nucleus lead to a reduction in GM-CSF gene 

transcription. Here, I confirmed the role of NF-B on gene transcription in both 
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cell lines by using the proteasome inhibitor MG132. The canonical activation of 

NF-B pathway consists in the phosphorylation of I-B by the IKK kinases. This 

phosphorylation causes the detachment of I-B from NF-B, leading to the 

degradation of I-B by the proteasome and the release of p50-p65 heterodimer 

into the nucleus where it binds to specific B sites within the promoter and 

enhancer regions of NF-B target genes [211, 212]. The proteasome inhibitor 

MG132 is known to prevent IB degradation and the translocation of NF-B p65 

to the nucleus; this caused a decrease of GM-CSF mRNA levels in a dose-

dependent way. On the other hand, as observed after H89 treatment, MG132 

reduced the intensity of the DHS at the enhancer in Jurkat cells but not in KG1a 

cells, further suggesting the presence of two different protein complexes in the 

two cell lines. Moreover, the fact that H89 and MG132 inhibited PMA/I-induced 

GM-CSF gene expression but not chromatin remodelling at the enhancer may 

indicate that these two chemicals are sufficient to inhibit factors required for 

transcription at the promoter, but not for remodelling at the enhancer in KG1a 

cells. In order to address this question it would be interesting to investigate 

whether both p65 and MSK1 are recruited at the GM-CSF promoter after PMA/I 

treatment and verify their interaction. In fact, their interaction could explain why 

both H89 and MG132 reduced GM-CSF mRNA levels but neither of them 

inhibited chromatin remodelling at the enhancer. However, MG132 doesn’t 

affect only p65, but inhibits the degradation of all the proteins regulated through 

the proteasome system, including several MAPK targets. For this reason 

MG132 is not the best chemical to study NF-B pathway. My data should be 

confirmed using additional inhibitors or more specific p65 siRNAs. 



225 

 

I also demonstrated that NF-B was phosphorylated at Ser276 upon PMA/I 

stimulation and that this phosphorylation was dependent on MAPKs. In fact the 

pattern of NF-B phosphorylation strongly correlated with MSK1 

phosphorylation; NF-B phosphorylation was reduced by MAPKs inhibitors and 

abrogated by either the MEK/p38 inhibitors combination or the MSK1 inhibitor 

H89. These results suggest that MSK1 is likely to be the major factor 

responsible for NF-B phosphorylation at Ser276 after PMA/I stimulation in 

Jurkat cells and KG1a cells and a cross-talk between MAPK and NF-kB in GM-

CSF gene regulation can be speculated.  A hypothetical model is represented in 

Figure 4.1. 

However, a possible role of PKA cannot be excluded, since it can also 

phosphorylate p65 at Ser276 and it can be inhibited by H89. To address this 

question, experiments should be conducted after transfection of the cells with a 

kinase-dead mutant of MSK1.  

NF-B was already phosphorylated at Ser536 in the KG1a model, as in several 

forms of solid tumours and haematological malignancies [317, 345]. The weak 

reduction of p65 phosphorylation observed in KG1a after treatment with MEK 

inhibitor and the combination of MEK and p38 inhibitors could be mediated by 

the inhibition of the downstream serine/threonine kinase ribosomal S6 kinase 1 

(RSK1). In fact RSK1 has been demonstrated to phosphorylate NF-B in 

different models and upon different stimuli [318, 346, 347]. It would be 

interesting to test this hypothesis by measuring the phosphorylation levels of 

RSK1 after PMA/I treatment and inhibitors.  

Although both the MSK1 inhibitor H89 and the proteasome inhibitor MG132 

failed to reduce the intensity of the DHS, ChIP analysis confirmed the presence 
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in vivo of both MSK1 and NF-B p65 at the enhancer. Their occupancy was 

reduced by the combination of MEK and p38 inhibitors and NF-B recruitment 

was inhibited also by the MSK1 inhibitor H89, suggesting that phosphorylation 

of Ser276 could increase p65 binding to chromatin in vivo [348]. 
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Figure 4.1. Hypothetical model of PMA/I-induced GM-CSF gene activation 

in Jurkat and KG1a cells 

 

 

 

 

 

PMA/I activate ERK and p38 MAPK signalling pathways, leading to the activation of 

AP-1, which binds the GM-CSF enhancer (represented as a green rectangle). The ERK 

and p38 mutual transcription factor MSK phosphorylates p65, which is also recruited to 

the enhancer. A cross-talk between MAPK and NF-B signalling pathways seems 

essential for the PMA/I-induced GM-CSF gene activation. Most likely PMA/I stimulation 

activates NF-B pathway also through IKK in Jurkat cells (red dashed arrow), whereas 

this pathway is constitutively activated in KG1a cells. p300 is also recruited to the    

GM-CSF enhancer by PMA/I; however, further studies are needed to verify its 

association with AP-1 and/or NF-B. The inhibitors used in this study are written in red.   
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However, these results don’t give any information about p65 nuclear 

localisation. In fact, Carpenter and colleagues demonstrated that H89 inhibited 

p65 DNA binding ability in vitro without reducing its translocation to the nucleus 

[349]. An immunocytochemical staining would be needed to address this 

question. 

H89 also inhibited the occupancy of p300 to the enhancer. My results suggest 

that MSK1 is likely to recruit p300 at the enhancer, probably through the 

phosphorylation of NF-B p65 at Ser276. However, ChIP analysis showed that 

p300 was recruited to the GM-CSF enhancer both at the GM420 (NFAT/AP-1 

binding motif) and GM220 site (B motif). Co-immunoprecipitation and time 

course analysis would be required to define the interaction amongst the 

different transcription factors and the sequence of events which leads to the 

creation of the DHS at the enhancer.  

MSK1 is also involved in chromatin remodelling and histone modifications, 

being able to phosphorylate Ser10 and Ser28 on histone H3. Ser10 

phosphorylation has been shown to occur at the promoter of several immediate 

early (IE) genes in mammalian cells, including c-Fos and c-Jun, in response to 

mitogenic stimulation or cellular stress [315] and this phosphorylation induces 

gene transcription [320]. In this regard, since our results showed that PMA/I 

treatment increased AP-1 activity, I investigated whether MSK1 could be in part 

responsible for the increased c-Fos transcription. In both Jurkat and KG1a cell 

lines treatment with the MSK1 inhibitor H89 failed to decrease c-Fos gene 

expression as well as the AP-1 binding ability to the DNA in KG1a. My results 

showed that the increase in c-Fos expression seems not to be mediated by 

MSK1. The small reduction in AP-1 DNA binding in Jurkat cells could be due to 

an inhibitory effect of MSK1 on different components of AP-1, like c-Jun or  
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ATF-2. In fact, Aggeli and colleagues [312] demonstrated that phospho-MSK1 is 

able to form a complex with either phospho-c-Jun or phospho-ATF-2 and in 

their model H89 decreased the AP-1 activity induced by oxidative stress.  

MAPK-mediated phosphorylation of both Ser10 and Ser28 has been shown 

also after PMA stimulation in mouse embryonic fibroblast cells [350]. However, 

histone H3 phosphorylation is not always related to transcriptional activation, 

but it is dependent on promoter context [351]. Lau et al. [207] demonstrated that 

phosphorylation at Ser28 on histone H3  by MSK1 can antagonize Polycomb 

silencing at targeted genes reducing the amount of H3K27me3 at the promoter 

and thereby promoting the activities of H3K27 HATs. The two modifications 

H3K27ac/Ser28ph are directly associated with the transcription-initiating form of 

RNA Polymerase II. Therefore, by inhibiting both MEK/ERK and p38 pathways, 

the effect of MSK1 on gene activation and accessibility might be lost. Histone 

modification and RNA Pol II ChIP analysis would be required to confirm this 

hypothesis.  

In this study I also investigated the effect of MAPK inhibitors on a different 

model of leukaemia. With this purpose I used HEL cells as model of human 

erythroleukaemia. In contrast to Jurkat and KG1a cells, HEL cells showed a 

constitutive DHS at the GM-CSF enhancer and a second DHS at 4.1 kb 

upstream of the GM-CSF promoter. Neither MAPK inhibitors nor CsA were able 

to inhibit the two DHSs, whereas all the chemicals, singularly, greatly decreased 

the PMA/I-induced GM-CSF gene expression. It is possible that 8 hours 

treatment wasn’t long enough to inhibit the constitutive DHSs, but it is also 

possible that NFAT and AP-1 are not the only transcription factors responsible 

for the creation of these DHSs. In fact both DHSs contain also RUNX1 motifs 

and, by ChIP analysis, I demonstrated that RUNX1 bound chromatin at both 
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sites, especially at the -4.1kb DHS. These data demonstrated that GM-CSF 

gene transcription and chromatin remodelling at the enhancer are regulated via 

distinct mechanisms in HEL cells. From these results I can conclude that PMA/I-

induced GM-CSF gene expression and its chromatin structure are regulated 

differently in different models of leukaemia.  

Unpublished data from the Cockerill lab revealed that, similarly to the HEL cells 

and other types of myeloid leukaemia, a few AML patient samples showed the 

presence of a DHS at the GM-CSF enhancer before any stimulation. It would be 

interesting to test the efficacy of MAPK and other inhibitors in reducing GM-CSF 

gene expression and chromatin remodelling in AML primary cells, especially in 

those types of AML carrying specific chromosomal mutations or translocations. 

In fact, cell lines represent just a model of study and the stimulation with PMA/I 

an artificial way to induce GM-CSF gene transcription. Different stimuli (i.e. 

CD3/CD28 stimulation) could lead to a slightly different activation of signal 

pathways, in terms of entity and duration. Morever, this study on GM-CSF gene 

regulation could represent the starting point for a genome-wide DHS analysis 

on AML samples, in order to find specific remodelled target genes and to 

investigate which transcription factors and signalling pathways are responsible 

for their regulation. 

In conclusion my study demonstrates a fundamental role for MAPK (especially 

MEK/ERK and p38) and NF-B signalling pathways in mediating the PMA/I-

induced GM-CSF gene transcription and chromatin remodelling in T blast cells 

and leukaemia cell lines showing an inducible DHS at the -3kb enhancer. In 

particular, I showed a crucial role of the AP-1 transcription factor in the PMA/I-

induced GM-CSF gene expression and an interesting connection between 

MAPK and NF-B pathways through MSK1. Consequently, these pathways 
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might represent potential targets for the treatment of AML cases where aberrant 

DHSs exist. However, other types of leukaemia could be regulated differently 

and different signalling pathways might be activated according to the presence 

of particular mutations or chromosomal abnormalities; for this purpose, further 

studies on primary cells or different leukaemia cell lines should be carried out.  
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