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ABSTRACT 

The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that 

regulates mitotic progression through targeting substrates for degradation by the 26S proteasome. In 

order to assess APC/C post-translational modification status, and identify novel APC/C substrates and 

regulators, a comprehensive analysis of the APC/C and APC/C-interacting proteins by mass 

spectrometry was undertaken. 

RNA polymerase I was identified as an APC/C-interacting complex, and the interaction was validated 

by reciprocal co-immunoprecipitation, GST pull-down and immunofluorescent confocal microscopy. 

Both RPA194 protein levels and RNA Polymerase I transcription were shown to be dependent upon 

APC/C activity. Ablation of APC/C function by RNAi increased RPA194 protein levels, and elevated 

RNA polymerase I activity significantly, as quantified by 5’-Fluorouridine incorporation into nascent 

pre-rRNA, and the increase in absolute levels of 45S, 28S and 18S rRNA transcripts, relative to non-

silencing controls. 

A number of other potential APC/C substrates and regulators were identified by mass spectrometry. 

Many of these interacting proteins contained APC/C consensus degron motifs. The APC/C was also 

shown to be a major substrate for acetylation; a number of APC/C subunits were identified as being 

acetylated in vivo. In this regard, APC3 was shown to be a substrate for both CBP and p300 

acetyltransferases. 
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1. INTRODUCTION 
 

 

1.1. The Anaphase Promoting Complex/Cyclosome 
 

The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit Cullin-RING E3 ubiquitin 

ligase which targets substrates for degradation by the 26S proteasome in order to regulate cell cycle 

progression (Peters 2006, Pines 2011). The APC/C was identified independently by two separate 

groups: the first group identified a 20S complex in Xenopus extract which they termed the “Anaphase 

Promoting Complex” whilst the second group identified a 1.5MDa complex in clams, which they 

termed the “Cyclosome”; both complexes were shown to possess E3 ubiquitin ligase activity which 

could target Cyclin B for degradation (King, Peters et al. 1995, Sudakin, Ganoth et al. 1995). Over the 

last two decades, further investigation has uncovered additional APC/C subunits (Table 1) and a 

multitude of substrates (Table 2) (Pines 2011, Primorac and Musacchio 2013). Through its E3 

ubiquitin ligase activity, the APC/C has been described as a master regulator of the cell cycle, 

controlling the onset of anaphase and coordinating mitotic exit, as well as preventing early S phase 

entry. Further roles for the APC/C have been described in the DNA damage response, as well as cell 

cycle-independent functions in neuronal development (Sudo, Ota et al. 2001, Bassermann, Frescas et 

al. 2008, Manchado, Eguren et al. 2010, Cotto-Rios, Jones et al. 2011, Eguren, Manchado et al. 2011). 

The APC/C has also been implicated in the regulation of transcription, both through epigenetic 

control of the chromatin state and through direct targeting of transcription factors (Turnell, Stewart 

et al. 2005, Turner, Malo et al. 2010, Islam, Turner et al. 2011, Nath, Banerjee et al. 2011). The APC/C 

also has strong links to tumourigenesis, and has been described as possessing, perhaps paradoxically, 

both oncogenic and tumour suppressive properties, and as such is of interest therapeutically in the 
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treatment of cancer (Turnell, Stewart et al. 2005, Penas, Ramachandran et al. 2011, Zhang, Wan et al. 

2014). 

 

1.2. The Ubiquitin-Proteasome Pathway 
 

Ubiquitin was discovered within the bovine thymus in 1975 by Gideon Goldstein, and was shown to 

be a highly conserved 76 amino acid protein (Goldstein, Scheid et al. 1975). Nearly three decades 

later, the 2004 Nobel Prize in Chemistry was awarded to Aaron Ciechanover, Avram Hershko and 

Irwin Rose for elucidating the role of ubiquitin in the cellular proteasomal degradation of proteins. 

The addition of a ubiquitin moiety to a target substrate is a process termed ubiquitylation. This often 

occurs upon the ε-amino group upon lysine residues, although other sites, such as serines and N-

terminal α-amino groups, have also been described. Ubiquitin chains can form through any of its 

seven lysine residues at positions K6, K11, K27, K33, K48 and K63. Polyubiquitin chains most 

commonly implicated within the cell cycle are K11, K48 and K63, with K48 chains being the most 

commonly utilised proteasomal degradation signal. As yet, the APC/C is the only enzyme for which 

K11 ubiquitylation has been reported (Kerscher, Felberbaum et al. 2006, Xu, Duong et al. 2009, 

Clague and Urbe 2010). 

The ubiquitylation pathway consists of an enzymatic cascade of three ubiquitin-binding complexes 

(Glickman and Ciechanover 2002). Firstly, an E1 ubiquitin-activating enzyme catalyses ATP-

dependent acyl-adenylation of the C-terminus of a ubiquitin moiety. This is then transferred to the 

catalytic cysteine residue of the E1, forming a high energy thioester bond (Figure Int.1i). This E1-

ubiquitin is then recognised by, and interacts with, an E2 ubiquitin-conjugating enzyme, resulting in 

the transfer of ubiquitin onto the E2 (Figure Int.1ii). This activated E2 then transfers ubiquitin either 

directly onto a target substrate, or via an E3 ubiquitin ligase (Figure Int.1iii). An E3 enzyme can bind 
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the activated E2 as well as target substrates, thereby bringing the charged ubiquitin and target 

substrate together. It remains unclear whether the E3 ligase itself is ubiquitylated during this 

process, or whether it merely facilitates the transfer of activated ubiquitin from the E2 to the 

substrate. Should another activated E2 subsequently bind the E3, another ubiquitin molecule will be 

added to the target substrate, resulting in a polyubiquitin chain in a process which may be enhanced 

by E4 ubiquitin-elongation enzymes (Figure Int.1iv) (Ciechanover and Schwartz 1998, Koegl, Hoppe et 

al. 1999, Hochstrasser 2006, Schulman and Harper 2009). Currently, there are three known types of 

E3 ligases: HECT-domain, U-box and RING-finger-domains. Of the RING-finger E3 ligases, another 

subcategory consists of those which also contains a Cullin protein, including the Skp1-Cul1-Fbox-Roc1 

(SCF) E3 ligases and the APC/C (Bedford, Lowe et al. 2011). 
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Figure Int.1 – The Ubiquitylation Pathway 

i) Ubiquitin (Ub) is activated by E1 and ATP, and forms an E1-Ub intermediate 
ii) Ubiquitin is transferred from E1 to E2 
iii) E3 mediates the transfer of Ubiquitin from E2 to substrate 
iv) Repeated Ubiquitin transfer from E2-Ub onto substrate forms a polyubiquitin chain 
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One possible consequence of ubiquitylation is the degradation of the target protein. This can occur 

through proteasomal and lysosomal pathways (Clague and Urbe 2010). Proteins polyubiquitylated 

with K48 chain linkages are targets for degradation by the 26S proteasome, whereupon they are 

recognised by 19S polar regulatory particles (Finley 2009). Other “scavenger” proteins are also 

involved in the recruitment of substrates for proteasomal degradation. These include UBL/UBA 

proteins, which act as a bridge between the regulatory subunits and ubiquitin, conferred by binding 

through its UBA (Ubiquitin-associated) and UBL (Ubiquitin-like) domains, respectively (Clague and 

Urbe 2010). 

The roles of the regulatory particles are twofold: to unfold the proteins to permit entry into the 20S 

core compartment and to remove and recycle ubiquitin. A hexameric ring of ATPases catalyses the 

ATP-dependent unfolding of the target protein, thereby allowing it to pass into the 20S subunit for 

degradation. Prior to this, ubiquitin is removed by a series of deubiquitinating enzymes (DUBs) (Lee, 

Lee et al. 2011). Deubiquitylation recycles ubiquitin, maintaining the cellular pool at a constant level, 

rather than letting it simply be degraded along with the rest of the protein. Different DUBs have 

specificity for a certain K-linked ubiquitin (Soboleva and Baker 2004). It is hypothesised that this may 

act as a proof-reading mechanism, thereby ensuring transition to the proteolytic subunit can only 

occur if the ubiquitin signal, i.e. length and type of chain, is exactly correct for 26S proteasomal 

degradation (Lam, Xu et al. 1997). 

The 20S core particle consists of two copies of each of seven different α- and β-subunits. These are 

arranged as a stack of four heptameric rings and form a barrel-like structure, into which unfolded 

proteins may fit (Voges, Zwickl et al. 1999, Verma, Chen et al. 2000). The α-subunits form the two 

outer rings whilst the catalytic β-subunits lie within the inner two rings of the barrel, which contain 

the active sites of the proteasome. The β-subunits exhibit trypsin-, chymotrypsin- and caspase-like 

proteolytic activity (Wilk and Orlowski 1983). 
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1.3. Form and Function of the APC/C 

1.3.1. Structure and Subunits of the APC/C 

 
The human APC/C is currently thought to contain 20 subunits in a 1.2MDa complex (Table 1) (Chang, 

Zhang et al. 2014). Many of these subunits are conserved across eukaryotes, although some species-

specific subunits have been described, such as the budding yeast-specific Apc9, fission yeast-specific 

Apc14, as well as APC7 and APC16 which are only found in higher eukaryotes (Table 1) (Schreiber, 

Stengel et al. 2011, Primorac and Musacchio 2013, Zhang, Yang et al. 2013, Chang, Zhang et al. 2014). 

The precise structure of the S. cerevisiae APC/C was established using recombinant protein 

expression coupled with electron microscopy, mass spectrometry and X-ray crystallography 

(Schreiber, Stengel et al. 2011). Recently, the corresponding APC/C structure within H. sapiens was 

elucidated using a recombinant APC/C together with electron microscopy and single-particle analysis, 

with a further study utilising cryo-electron microscopy (cryo-EM) providing even greater detail 

(Figure Int.2) (Zhang, Yang et al. 2013, Chang, Zhang et al. 2014). 

 

 

Figure Int.2 – Structure of an APC/C-Cdh1-substrate complex, elucidated by Cryo-EM 

Structural determination of each subunit within the human APC/C-Cdh1-substrate complex by Cryo-

EM, viewed in three planes (a, b, c). Shown are the TPR lobe (APC3, APC6, APC7, APC8, APC12 APC13, 

APC16) and the Platform (APC1, APC4, APC5, APC15). Also shown are APC2, APC10, APC11 and Cdh1 

within the central cavity. Taken from (Chang, Zhang et al. 2014). 
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The APC/C has been shown to possess three distinct regions, known as the “TPR lobe”, the 

“platform” and the “central cavity” (Figure Int.2). Within the human APC/C TPR lobe, also called the 

“arc lamp”, are the four canonical TPR subunits APC3, APC6, APC7 and APC8, which all contain 

multiple TPR (tetratricopeptide repeats) motifs and exist as homodimers (Dube, Herzog et al. 2005, 

Pines 2011, Schreiber, Stengel et al. 2011, Zhang, Chang et al. 2013, Chang, Zhang et al. 2014). Also 

found within this TPR lobe are the accessory subunits APC13 and APC16, as well as an APC12/Cdc26 

homodimer (Schreiber, Stengel et al. 2011, Chang, Zhang et al. 2014). APC12 and APC13/Swm1 

stabilise this TPR subcomplex, whilst the function of APC16 is currently unknown, although, given its 

location spanning both APC3 and APC7, it is also thought be to be involved in stabilisation 

(Schwickart, Havlis et al. 2004, Wang, Dye et al. 2009, Chang, Zhang et al. 2014). Other accessory 

stabilising proteins have been identified in other organisms, including Apc9 in S. cerevisiae and Apc14 

in S. pombe (Ohi, Feoktistova et al. 2007, Pines 2011, Schreiber, Stengel et al. 2011).  

The platform subcomplex of the APC/C contains APC1, APC4 and APC5 (Schreiber, Stengel et al. 2011, 

Chang, Zhang et al. 2014). These proteins act as scaffolds, binding both the TPR subcomplex and the 

substrate recognition/E3 ubiquitin ligase components, thereby holding the two subcomplexes 

together (Vodermaier, Gieffers et al. 2003, Thornton, Ng et al. 2006). APC1 and APC5 both bind to 

APC8 within the TPR lobe, with the ancillary protein APC15/Mnd2 acting as a bridging factor between 

APC5 and APC8 (Schreiber, Stengel et al. 2011, Chang, Zhang et al. 2014). Whilst the proteasome-

cyclosome (PC) motif within APC1 mediates its interaction with APC8, it is also necessary for the 

APC1-APC10/Doc1 interface. 

The central cavity contains the catalytic core of the APC/C, such that it contains the substrate 

recognition particle, a heterodimer between APC10/Doc1 and co-activator, as well as the Cullin and 

RING-finger E3 ligase subunits APC2 and APC11. These reside in a flexible state upon the edge of the 

platform, such that the C-terminal domain of APC2 and APC11 protrude into the cavity, above which 
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the processing factor APC10 and one of the co-activators (Cdc20 or Cdh1) are found (Schreiber, 

Stengel et al. 2011, Chang, Zhang et al. 2014). Together, these recognise target substrates and 

perform the E3 ubiquitin ligase activity of the APC/C (Peters 2006, Pines 2011, Primorac and 

Musacchio 2013). Further to its interaction with APC1, APC10 also binds through its isoleucine-

arginine (I-R) tail to one monomer of the APC3 heterodimer within the TPR lobe (Wendt, Vodermaier 

et al. 2001). 

Co-activator binding differs slightly between yeast and man. For both organisms, Cdh1 and Cdc20 

bind through C-terminal I-R motifs to TPR domains within both APC3 and APC8, albeit the opposite 

APC3 subunit to which APC10 binds, as well as binding APC2 via a C-box and also contacting APC6 

(Schwab, Neutzner et al. 2001, Thornton, Ng et al. 2006, Buschhorn, Petzold et al. 2011, Schreiber, 

Stengel et al. 2011, Chang, Zhang et al. 2014). However, in humans, APC7 has been shown to interact 

with the I-R domain of Cdh1 and more weakly with Cdc20 (Vodermaier, Gieffers et al. 2003). As APC7 

appears to be a metazoan-specific subunit thought to be formed by duplication of the APC3 gene, 

the absence of a corresponding interaction in yeast is understandable (Vodermaier, Gieffers et al. 

2003). The precise mechanism of co-activator binding also appears to differ between organisms. In 

yeast, should either the C-box or I-R dipeptide be mutated, the co-activator ceases to bind; in higher 

eukaryotes mutation of either motif decreases binding, whilst mutation of both causes a greater 

decrease in binding, signifying a cooperative mechanism for co-activator binding to the APC/C 

(Vodermaier, Gieffers et al. 2003, Thornton, Ng et al. 2006). Similarly, a vertebrate APC/C complex 

lacking APC2-APC11 is still capable of binding Cdh1, further showing that APC2 is dispensable for co-

activator binding (Vodermaier, Gieffers et al. 2003). 
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Table 1 – list of APC/C subunits and co-activators in different species 

 

Subunits, domains, locations and functions which have not been characterised are denoted by "-" 

Adapted from (Pines 2011, Primorac and Musacchio 2013, Zhang, Wan et al. 2014) 

No. in     

human 

APC/C

Human
Budding      

Yeast

Fission      

Yeast
Fly Worm Structural motifs Location Function and properties

1 APC1 Apc1 cut4 Shattered
MAT-2          

(POD-3)

PC repeats/ WD40/  

mid-helical
Platform Scaffolding

1 APC2 Apc2 apc2 Morula K06H7.6 Cullin homology Catalytic Module Catalytic

2 APC3 Cdc27 nuc2 CDC27
MAT-1         

(POD-5)
TPR motifs TPR lobe

Binds APC10 and Cdc20/Cdh1 

Scaffolding

1 APC4 Apc4
cut20           

(lid1)
CG4350 EMB-30

WD40/                              

four-helix-bundle
Platform Scaffolding

1 APC5 Apc5
apc5      

(spac959)
IDA M163.4

TPR motifs/                             

N-terminal helical
Platform Scaffolding

2 APC6 Cdc16 cut9 CDC16
EMB-27        

(POD-6)
TPR motifs TPR lobe

Binds Cdc20                             

Scaffolding

2 APC7 - - APC7 - TPR motifs TPR lobe Scaffolding

2 APC8 Cdc23
cut23         

(cdc23)
CDC23

MAT-3          

(POD-4)
TPR motifs TPR lobe

Binds CDC20 and Cdh1                             

Scaffolding

- - Apc9 - - - - TPR lobe Stabilizes CDC27

1 APC10 Doc1 apc10 APC10 F15H10.3
DOC domain/                       

I-R tail

Substrate recognition         

module
D/KEN box recognition

1 APC11 Apc11 apc11 Lemming F35G12.9 RING finger Catalytic Module
Binds E2 enzyme                       

Catalytic

2 APC12 Cdc26 hcn1 - - Extended/α-helix TPR lobe APC6 stability

1 APC13 Swm1 apc13 APC13 - Extended/α-helix TPR lobe APC8 stability

- - - apc14 - - - - -

1 APC15 Mnd2 apc15 - - Extended/α-helix Platform
MCC interaction                               

Inhibits Ama1 (budding yeast)

1 APC16 - - - EMB-1 α-helix TPR lobe -

1 Cdc20 Cdc20 slp1 Fizzy FZY-1
WD40/IR/                           

C-box/ helical

Substrate recognition     

module

Mitotic regulator                                   

D/KEN box recognition

1 Cdh1
Cdh1          

(Hct1)

ste9        

(srw1)
FZR FZR-1

WD40/IR/                           

C-box/ helical

Substrate recognition       

module

G1 and endoreplication                  

D/KEN box recognition

- - - - FZR2 - WD40
Substrate recognition     

module?

Meiosis regulator                              

D/KEN box recognition

- - - - Cortex - WD40
Substrate recognition     

module?

Meiosis regulator                              

D/KEN box recognition

1 AMA1 Ama1 mfr1 (fzr1) - - WD40 and IR
Substrate recognition     

module?

Meiosis regulator                              

D/KEN box recognition
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1.3.2. Substrate Recognition 
 

Substrate specificity for the APC/C is conferred by the binding of a co-activator such as Cdh1 or Cdc20 

(Table 1), with over a hundred APC/C substrates currently identified (Table 2) (Pfleger, Lee et al. 

2001, Pines 2011, Primorac and Musacchio 2013). Co-activator binding is regulated temporally, such 

that Cdc20 is only able to form an active complex with the APC/C from the beginning of mitosis, 

following satisfaction of the Spindle Assembly Checkpoint (SAC) and the onset of anaphase, whilst 

APC/C-Cdh1 is active during the latter mitotic stages and subsequent G1. This switch in co-activator 

binding permits a change in the substrates targeted by the APC/C (Peters 2006, Pines 2011). 

Co-activators recognise specific motifs within target substrates termed degrons. The canonical 

degron motifs include the D-box (RxxL) and KEN-box (KEN) (Pines 2011). The D-box was first 

identified upon comparison of sequence homology between cyclins of different organisms, and was 

shown to consist of a conserved RxxLxxxxN motif which, when deleted, inhibited proteolysis (Glotzer, 

Murray et al. 1991). Further variants upon this D-box have also been described, such as RxxLxN/D/E, 

RxxLxxI/VxN or RxxLxxL/I/V/M (Glotzer, Murray et al. 1991, Peters 2006, Barford 2011, Dinkel, Van 

Roey et al. 2014). Similarly, an extended KEN-box has also been discovered, consisting of the 

sequence KENxxxN/D (Pfleger and Kirschner 2000). APC/C activated by Cdc20 (APC/C-Cdc20) tends to 

recognise D-boxes, whilst APC/C activated by Cdh1 (APC/C-Cdh1) preferentially recognises KEN-

boxes, although these are not exclusive (Zur and Brandeis 2002, Passmore and Barford 2005). 

Initially, most KEN-boxes appeared in proteins alongside D-boxes, although further studies 

demonstrated more proteins containing either one or the other (Pfleger and Kirschner 2000, Zur and 

Brandeis 2002). Interestingly, proteins which contain both D- and KEN-boxes can be targeted for 

ubiquitylation by both APC/C-Cdc20 and APC/C-Cdh1, and often both degrons are required for 

efficient co-activator binding and ubiquitylation (Burton and Solomon 2001, Passmore, McCormack 

et al. 2003, Burton and Solomon 2007, Tian, Li et al. 2012). 



11 
 

Cdc20 and Cdh1 contain a WD40 propeller motif, which is able to bind KEN and D-box motifs (Kraft, 

Vodermaier et al. 2005, He, Chao et al. 2013). Although the co-activator-D-box interaction can occur 

in the absence of the APC/C, it does so with relaxed specificity and reduced affinity, suggesting that 

the APC/C facilitates this interaction (Burton and Solomon 2001, Hilioti, Chung et al. 2001, Pfleger, 

Lee et al. 2001, Schwab, Neutzner et al. 2001). Furthermore, the binding between Cdh1 and 

substrate appears to strengthen upon simultaneous APC/C-Cdh1 interaction (Vodermaier, Gieffers et 

al. 2003, Burton, Tsakraklides et al. 2005, Passmore and Barford 2005). Indeed, the binding of D-

boxes to the APC/C has been shown to occur cooperatively through both Cdh1 and the APC/C 

subunit APC10/Doc1, such that Cdh1 and APC10/Doc1 can bind D-boxes independently, yet both are 

required for sufficient APC/C-substrate binding and ubiquitylation (Carroll, Enquist-Newman et al. 

2005, Buschhorn, Petzold et al. 2011, da Fonseca, Kong et al. 2011, Chang, Zhang et al. 2014). 

Conversely, it has also been demonstrated that the recognition of KEN-boxes is mediated by Cdh1 

only, and that other APC/C subunits, such as APC10, are not required (Barford 2011, Chao, Kulkarni 

et al. 2012).  

Although the majority of targets for APC/C-mediated ubiquitylation contain either D-boxes or KEN-

boxes, several non-canonical degrons have been described. These include the A-box, a conserved 

peptide motif within vertebrate Aurora A kinases which, together with a C-terminal D-box, is 

required for recognition by the APC/C-Cdh1 during mitotic exit (Littlepage and Ruderman 2002). 

Similarly, an A-box derivative is present within Aurora B which is necessary for its degradation 

(Nguyen, Chinnappan et al. 2005). Other non-canonical binding motifs include the CRY box in Cdc20 

(Reis, Levasseur et al. 2006), the KEN derivative, GxEN, within Xenopus XKid (Castro, Vigneron et al. 

2003), the O-box within Drosophila ORC1 (Araki, Yu et al. 2005) and an LxExxxxN motif within the S. 

cerevisiae meiotic regulator Spo13 (Sullivan and Morgan 2007). Claspin also contains a conserved N-

terminal LLK motif which is required for Cdh1-mediated degradation (Gao, Inuzuka et al. 2009). 
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Some substrates appear to be able to bind the APC/C in the absence of a co-activator. Indeed, this is 

an integral mechanism for the degradation of substrates during the SAC. Such examples include 

NEK2A, which, upon the formation of homodimers, can bind to the APC/C through a C-terminal M-R 

dipeptide similar to the I-R tail upon Cdc20 and Cdh1, although a small proportion of Cdc20, free 

from SAC-inhibition, is still required for D-box-mediated degradation of NEK2A (Hames, Wattam et al. 

2001, Hayes, Kimata et al. 2006, Kimata, Baxter et al. 2008, Sedgwick, Hayward et al. 2013). Similarly, 

KIF18A contains a C-terminal L-R dipeptide which also binds the APC/C during the SAC, however its 

degradation is delayed until anaphase, thereby suggesting further as yet unknown regulatory 

mechanisms (Sedgwick, Hayward et al. 2013). 
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Substrate UniProt ID Gene Reference 

Anillin Q9NQW6 ANLN (Zhao and Fang 2005) 

Aurora A O14965 AURKA 
(Honda, Mihara et al. 2000, Taguchi, Honda et al. 

2002) 

Aurora B Q96GD4 AURKB (Stewart and Fang 2005, Feine, Zur et al. 2007) 

B99 Q9NYZ3 GTSE1 (Pfleger and Kirschner 2000) 

BARD1 Q99728 BARD1 (Song and Rape 2010) 

BRD7 Q9NPI1 BRD7 (Hu, Liao et al. 2014) 

BRSK2 Q8IWQ3 BRSK2 (Li, Wan et al. 2012) 

BUB1 O43683 BUB1 (Qi and Yu 2007) 

BUBR1 O60566 BUB1B (Choi, Choe et al. 2009) 

CBP Q92793 CREBBP (Turnell, Stewart et al. 2005) 

Cdc20 Q12834 CDC20 (Pfleger and Kirschner 2000) 

Cdc25A P30304 CDC25A (Donzelli, Squatrito et al. 2002) 

Cdc25B P30305 CDC25B (Kieffer, Lorenzo et al. 2007) 

Cdc25C P30307 CDC25C (Chen, Zhang et al. 2002) 

Cdc6 Q99741 CDC6 (Petersen, Wagener et al. 2000) 

Cdh1 Q9UM11 FZR (Listovsky, Oren et al. 2004) 

CDR2 Q01850 CDR2 (O'Donovan, Diedler et al. 2010) 

Cdt1 Q9H211 CDT1 (Sugimoto, Kitabayashi et al. 2008) 

CENPF P49454 CENPF (Gurden, Holland et al. 2010) 

Centrin O15182 CETN3 (Lukasiewicz, Greenwood et al. 2011) 

CKAP2 Q8WWK9 CKAP2 (Seki and Fang 2007) 

Cks1 P61024 CKS1B (Bashir, Dorrello et al. 2004) 

Claspin Q9HAW4 CLSPN 
(Bassermann, Frescas et al. 2008, Gao, Inuzuka et al. 

2009) 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995) 

Cyclin B3 Q8WWL7 CCNB3 (Nguyen, Manova et al. 2002) 

Cyclin D1 P24385 CCND1 
(Agami and Bernards 2000, Pawar, Sarkar et al. 

2010) 

Drp1 O00429 DNM1L (Horn, Thomenius et al. 2011) 

DVC1 Q9H040 SPRTN (Mosbech, Gibbs-Seymour et al. 2012) 

DVL1P1 P54792 DVL1P1 (Ganner, Lienkamp et al. 2009) 

E2F1 Q01094 E2F1 
(Peart, Poyurovsky et al. 2010, Budhavarapu, White 

et al. 2012) 

E2F3 O00716 E2F3 (Ping, Lim et al. 2012) 

Ect2 Q9H8V3 ECT2 (Liot, Seguin et al. 2011) 

ERBB4 Q15303 ERBB4 (Strunk, Husted et al. 2007) 

ETS2 P15036 ETS2 (Li, Shin et al. 2008) 

FAN1 Q9Y2M0 FAN1 (Lai, Hu et al. 2012) 
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FBXW5 Q969U6 FBXW5 (Puklowski, Homsi et al. 2011) 

FoxM1 Q08050 FoxM1 (Park, Costa et al. 2008) 

G9a Q96KQ7 EHMT2 (Takahashi, Imai et al. 2012) 

Geminin O75496 GMNN (McGarry and Kirschner 1998) 

GLP Q96KQ7 EHMT1 (Takahashi, Imai et al. 2012) 

Glutamate 
receptor 1 

P42261 GRIA1 (Fu, Hung et al. 2011) 

Glutaminase 1 O94925 GLS (Colombo, Palacios-Callender et al. 2010) 

Hec1 O14777 NDC80 (Li, Zhou et al. 2011) 

Hmmr O75330 HMMR (Song and Rape 2010) 

HOXC10 Q9NYD6 HOXC10 (Gabellini, Colaluca et al. 2003) 

HSF2 Q03933 HSF2 (Ahlskog, Björk et al. 2010) 

HURP Q15398 DLGAP5 (Song and Rape 2010) 

ID1 P41134 ID1 (Kim, Puram et al. 2009) 

ID2 Q02363 ID2 (Lasorella, Stegmuller et al. 2006) 

JNK1 P45983 MAPK8 (Gutierrez, Tsuji et al. 2010) 

JNK2 P45984 MAPK9 (Gutierrez, Tsuji et al. 2010) 

KIF11 P52732 KIF11 (Drosopoulos, Tang et al. 2014) 

KIF18A Q8NI77 KIF18A (Sedgwick, Hayward et al. 2013) 

KIF22 Q14807 KIF22 (Feine, Zur et al. 2007) 

KIF2C Q99661 KIF2C (Singh, Winter et al. 2014) 

KIF4A O95239 KIF4A (Singh, Winter et al. 2014) 

KIFC1 Q9BW19 KIFC1 (Singh, Winter et al. 2014) 

MAD2L2 Q9UI95 MAD2L2 (Listovsky and Sale 2013) 

Mcl1 Q07820 MCL1 (Harley, Allan et al. 2010) 

MCPH1 Q8NEM0 MCPH1 (Arquint and Nigg 2014) 

MOAP-1 Q96BY2 MOAP1 (Huang, Zhang et al. 2012) 

Mps1 P33981 TTK (Cui, Cheng et al. 2010) 

Myf5 P13349 MYF5 (Lindon, Albagli et al. 2000) 

NEK2A P51955 NEK2 (Hames, Wattam et al. 2001) 

NEDL2 Q9P2P5 NEDL2 (Lu, Hu et al. 2013) 

NeuroD2 Q15784 NEUROD2 (Yang, Kim et al. 2009) 

NIPA Q86WB0 ZC3HC1 (Klitzing, Huss et al. 2011) 

Nlp Q9Y2I6 NINL (Wang and Zhan 2007) 

NuSAP Q9BXS6 NUSAP1 (Li, Zhou et al. 2007, Song and Rape 2010) 

OCT1 P14859 POU2F1 (Kang, Goodman et al. 2011) 

p190RhoGAP Q9NRY4 ARHGAP35 (Naoe, Araki et al. 2010) 

p21 P38936 CDKN1A (Amador, Ge et al. 2007) 

p63 Q9H3D4 TP63 (Hau, Yip et al. 2011) 

p300 Q09472 EP300 (Turnell, Stewart et al. 2005) 

PAF Q15004 PAF 
(Emanuele, Ciccia et al. 2011, Williamson, Banerjee 

et al. 2011) 



15 
 

Pfkfb3 Q16875 PFKFB3 (Herrero-Mendez, Almeida et al. 2009) 

PIF Q9H611 PIF1 (Mateyak and Zakian 2006) 

Plk1 P53350 PLK1 (Lindon and Pines 2004) 

RAC1 P63000 RAC1 
(Lanning, Daddona et al. 2004, Pop, Aktories et al. 

2004) 

RAD17 O75943 RAD17 (Zhou, Jing et al. 2013) 

RAP80 Q96RL1 UIMC1 (Cho, Lee et al. 2012) 

RASSF1A Q9NS23 RASSF1A (Chow, Wong et al. 2012) 

Rcs1 Q9BSJ6 FAM64A (Zhao, Coppinger et al. 2008) 

REV1 Q9UBZ9 REV1 (Chun, Kok et al. 2013) 

Securin Q5FBB7 PTTG1 (Zou, McGarry et al. 1999) 

Sgo1 Q5FBB7 SGOL1 (Fu, Hua et al. 2007) 

Skp2 Q13309 SKP2 (Bashir, Dorrello et al. 2004) 

SnoN P12757 SKIL (Stroschein, Bonni et al. 2001, Wan, Liu et al. 2001) 

Sororin Q96FF9 CDCA5 (Rankin, Ayad et al. 2005) 

Sp100 P23497 SP100 (Wang, Li et al. 2011) 

TK1 P04183 TK1 (Ke and Chang 2004) 

TMPK P23919 DTYMP (Ke and Chang 2004) 

Tome-1 Q99618 CDCA3 (Ayad, Rankin et al. 2003) 

TOP2A P11388 TOP2A (Eguren, Álvarez-Fernández et al. 2014) 

TPX2 Q9ULW0 TPX2 (Stewart and Fang 2005) 

TRB3 Q96RU7 TRIB3 (Ohoka, Sakai et al. 2010) 

UbcH10 O00762 UBE2C (Rape and Kirschner 2004) 

USP1 O94782 USP1 (Cotto-Rios, Jones et al. 2011) 

USP37 Q86T82 USP37 (Huang, Summers et al. 2011) 

VHL P40337 VHL (Liu, Xin et al. 2011) 

 
Table 2 – List of known human APC/C substrates 

Adapted from (Meyer and Rape 2011, Liu, Yuan et al. 2012, Min, Mayor et al. 2013). 
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1.3.3. Mechanism of APC/C E3 ubiquitylation 

 

The catalytic E3 ubiquitin ligase activity of the APC/C is conferred by APC11, containing a RING (Really 

Interesting New Gene) domain, and the Cullin-containing APC2 (Yu, Peters et al. 1998, Zachariae, 

Shevchenko et al. 1998, Leverson, Joazeiro et al. 2000). Indeed, under specific conditions, APC2 and 

APC11, together with E1 and E2 enzymes Ubc4 or UbcH10, are sufficient to reconstitute the ligase 

activity of the human APC/C in vitro, albeit with a lack of substrate specificity (Gmachl, Gieffers et al. 

2000, Tang, Li et al. 2001). However, one group has also demonstrated that yeast Apc11 is sufficient 

to ubiquitylate Clb2p, a B-type Cyclin, in vitro independently of Apc2 (Leverson, Joazeiro et al. 2000). 

The APC/C uses two types of E2 ubiquitin-conjugating enzymes: a chain-initiating E2, UbcH10 in 

humans and Ubc4 in yeast, and a chain-elongating E2, such as the human UBE2S and yeast Ubc1 

(Rodrigo-Brenni and Morgan 2007, Pines 2011, Primorac and Musacchio 2013, Meyer and Rape 

2014). Although UbcH10 is traditionally associated with ubiquitin linkage via the K11 moiety, it has 

also been suggested to form K48- and K63-linkages (Kirkpatrick, Hathaway et al. 2006, Williamson, 

Banerjee et al. 2011). Further ubiquitin molecules are then added to form K11-polyubiquitin chains 

under the influence of UBE2S (Garnett, Mansfeld et al. 2009, Williamson, Wickliffe et al. 2009, Wu, 

Merbl et al. 2010, Wickliffe, Lorenz et al. 2011). Although these K11-polyubiquitin chains are the 

traditional degradation signal for APC/C substrates, multiple monoubiquitin tags formed by UbcH10 

have also been shown to mediate the degradation of Cyclin B1 (Dimova, Hathaway et al. 2012). 

In S. cerevisiae, however, K48 chains are predominantly formed through initiation by Ubc4, followed 

by elongation under Ubc1 (Rodrigo-Brenni and Morgan 2007, Rodrigo-Brenni, Foster et al. 2010). This 

is a major difference between lower and higher eukaryotic APC/C, and has great implications for 

further control of substrate stability by DUBs, considering DUBs in yeast and humans must therefore 

recognise different ubiquitin chains. 



17 
 

Several consensus motifs containing the lysine for the initial ubiquitylation have been described upon 

the substrate. These are the KEN motif, also utilised for substrate recognition, in particular an SKEN 

variant, and the linear TEK motif, which has been shown to permit nucleation of ubiquitin chains in 

Securin (Jin, Williamson et al. 2008, Min, Mayor et al. 2013). Although this TEK motif is conserved in 

Geminin and Cyclin B1 and has been suggested to be important for APC/C binding and as a ubiquitin 

acceptor, other authors have suggested, albeit without peer-reviewed publication of data, that it is 

irrelevant for the APC/C-dependent ubiquitylation and degradation of Cyclin B1 (Pines 2011). 

Other ubiquitylation initiation motifs have also been characterised. A series of positively charged 

amino acids that lie in proximity to the canonical RxxL and KEN motifs have been deemed to be 

important for the APC/C-dependent ubiquitylation of Geminin and PAF (Williamson, Banerjee et al. 

2011). The authors further demonstrate that this initial ubiquitylation acts as the rate-limiting step 

for the formation of polyubiquitin chains and substrate degradation (Williamson, Banerjee et al. 

2011). Interestingly, Jin et al. postulated that it is not the linear TEK tripeptide itself which is 

essential, but the tertiary structure formed by neighbouring charged amino acids (Jin, Williamson et 

al. 2008). 

In addition to their role in substrate recognition, co-activators also appear to be necessary for the 

stimulation of APC/C activity. The substrate NEK2A, which avoids SAC-inhibition of the APC/C by 

binding the APC/C directly, does not require Cdc20-mediated recognition, but does require the N-

terminal C-box interaction with APC2 (Kimata, Baxter et al. 2008), although Cdc20 needs to be 

dephosphorylated in order for this activation to occur (Labit, Fujimitsu et al. 2012). 

Similarly, the binding of Cdh1 to the APC/C can activate the complex (Pines 2011, Primorac and 

Musacchio 2013). In humans and Xenopus, this is thought to be mediated by a conformational 

change in the platform subunits of the APC/C, which is proposed to facilitate the transfer of ubiquitin 

from the E2-conjugating enzyme to the substrate (Dube, Herzog et al. 2005, Herzog, Primorac et al. 
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2009, Buschhorn, Petzold et al. 2011). Indeed, this was subsequently verified by two separate 

groups: Chang and colleagues used higher resolution 3D imaging, in which the N-terminal domain of 

Cdh1 caused a movement within the platform to force the APC2-APC11 catalytic domain upwards, 

facilitating an interaction with the E2, UbcH10 (Chang, Zhang et al. 2014); Van Voorhis and Morgan, 

however, adopted a biochemical approach, demonstrating that both E2 sensitivity and catalytic rate 

increased significantly upon co-activator-APC/C interaction, and was dependent upon substrate 

degron recognition (Van Voorhis and Morgan 2014). Strikingly, this allosteric transition following 

Cdh1 binding is not seen by budding yeast APC/C, and thus appears to be a metazoan-specific 

phenomenon (da Fonseca, Kong et al. 2011). 
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1.4. The APC/C as a cell cycle regulator 

1.4.1. The APC/C is inhibited by the Spindle Assembly Checkpoint 
 

During prophase and prometaphase stages of mitosis, DNA condenses into chromosomes, consisting 

of sister chromatids joined at the kinetochore and held together by centromeric Cohesin (Nasmyth 

2011). During metaphase, these chromosomes align upon the equator of the cell under the influence 

of microtubules, known as KT fibres, emanating from centrosomes and contacting the kinetochore 

(Inoue and Sato 1967). These KT fibres can form four types of attachments: amphitelic, monotelic, 

syntelic and merotelic (Figure Int.3A)(Musacchio and Salmon 2007). In monotelic attachments, only 

one sister chromatid kinetochore is bound to microtubules (Figure Int.3Ai), whilst in syntelic 

attachments KT fibres from one centrosome bind kinetochores from both sister chromatids (Figure 

Int.3Aii). Similarly, merotelic attachments occur when one centrosome binds both kinetochores, 

whilst the other centrosome only binds one kinetochore (Figure Int.3Aiii)(Musacchio and Salmon 

2007). In each of these cases, the Spindle Assembly Checkpoint (SAC) is activated to prevent cell cycle 

progression, thus preventing inappropriate sister chromatid segregation which would result in 

aneuploidy. The SAC is exceptionally sensitive, such that one single unattached kinetochore is 

sufficient to halt cell division (Rieder, Cole et al. 1995, Musacchio and Salmon 2007). Despite this 

sensitivity, rather than an all-or-nothing response, the SAC has been described as a rheostat, i.e. 

fewer unattached kinetochores results in a lesser inhibitory signal (Collin, Nashchekina et al. 2013). 
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Figure Int.3 –Microtubule attachment to sister chromatid kinetochores and activation of the SAC 

A) Types of microtubule attachments. Sister chromatids (blue) are shown with kinetochores (yellow). 

Centrosomes are shown in green, and microtubules in red (NB – for simplicity, only one microtubule 

per centrosome/kinetochore is shown). 

i) Monotelic: one unattached kinetochore 

ii) Syntelic: both kinetochores attached to microtubules from the same centrosome 

iii) Merotelic: one kinetochore correctly attached, the other bound to microtubules from both 

centrosomes 

iv) Amphitelic: correct attachment of both kinetochores to microtubules from one centrosome only 

B) i) Unattached kinetochores recruit MAD1 (lilac) which recruits MAD2 in a closed conformation 

(light blue). ii) MAD1/C-MAD2 produces diffusible C-MAD2 which associates into the MCC (iii). iv) 

MCC binds and inhibits substrate recruitment into the APC/C. v) Cdc20 is ubiquitylated by the APC/C. 

 



21 
 

The SAC signal is thought to derive from a MAD1-MAD2 dimer which is present upon unattached 

kinetochores. MAD1 localised to unattached kinetochores binds to MAD2, causing a change in its 3D 

structure such that it resides in a “closed” conformation (C-MAD2; Figure Int.3Bi) (Luo, Tang et al. 

2002, Sironi, Mapelli et al. 2002). MAD1-C-MAD2 dimers interact with another MAD2 protein, 

inducing a further conformational change in this second MAD2 to form free C-MAD2 (Figure Int.3Bii), 

which is capable of binding Cdc20 and results in APC/C inhibition (De Antoni, Pearson et al. 2005, 

Lad, Lichtsteiner et al. 2009).  

The main effector mechanism of the SAC is termed the Mitotic Checkpoint Complex (MCC), which in 

mammals consists of MAD2, BUB3, BUBR1 (Mad3 in budding yeast) and Cdc20 (Figure Int.3Biii), 

which together inhibit the APC/C (Figure Int.3Biv), thereby preventing Securin degradation and the 

onset of anaphase (Sudakin, Chan et al. 2001, Tang, Bharadwaj et al. 2001). However, an alternative 

effector has been described, termed the BBC (BUBR1/BUB3/Cdc20), which requires MAD2 for its 

formation, but binds and inhibits the APC/C independently of MAD2 (Nilsson, Yekezare et al. 2008, 

Kulukian, Han et al. 2009, Lara-Gonzalez, Scott et al. 2011). The BBC has been proposed to be formed 

by the activity of p31Comet, which can remove MAD2 from free MCC (Westhorpe, Tighe et al. 2011). 

The MCC was originally thought to bind and sequester Cdc20, thus preventing APC/C-Cdc20 complex 

formation (Musacchio and Salmon 2007). However, further research showed the binding of the 

MCC/BBC to the APC/C via APC8 resulted in APC/C-mediated ubiquitylation and degradation of 

Cdc20 (Figure Int.3Bv) (Pan and Chen 2004, Nilsson, Yekezare et al. 2008, Ge, Skaar et al. 2009, 

Kulukian, Han et al. 2009, Primorac and Musacchio 2013). Interestingly, the APC/C subunit, APC15, is 

required for this SAC-dependent ubiquitylation of Cdc20, but not for its targeting for degradation by 

APC/C-Cdh1 during interphase (Mansfeld, Collin et al. 2011, Foster and Morgan 2012, Uzunova, Dye 

et al. 2012). 
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The MCC/BBC also inhibits the APC/C by acting as a pseudosubstrate, preventing the recruitment of 

bona fide substrates via the KEN boxes within BUBR1 (Sudakin, Chan et al. 2001, Burton and Solomon 

2007, King, van der Sar et al. 2007, Lara-Gonzalez, Scott et al. 2011, Chao, Kulkarni et al. 2012). 

Structural studies have further shown that binding of the MCC to the APC/C causes conformational 

changes, such that Cdc20 and APC10 can no longer function cooperatively as the bipartite substrate 

recognition module, thus preventing substrate binding (Herzog, Primorac et al. 2009, Chao, Kulkarni 

et al. 2012, Chang, Zhang et al. 2014). Furthermore, alteration of the APC2-APC11 structure by the 

MCC was suggested to reduce its flexibility and decrease affinity for the E2 enzyme, UbcH10 (Herzog, 

Primorac et al. 2009, Chang, Zhang et al. 2014). 

Another protein related to MAD2, termed MAD2L2, was shown to bind MAD2, but not MAD1, and 

sequester and inhibit Cdh1 during early mitosis (Listovsky and Sale 2013). Interestingly, MAD2L2 can 

bind and inhibit Cdh1 in vitro and in Xenopus extracts, however there is conflicting evidence 

regarding its ability to bind Cdc20 (Chen and Fang 2001, Pfleger, Salic et al. 2001, Listovsky and Sale 

2013). 

The role of DNA damage proteins in mitosis is currently under a great deal of investigation, in 

particular with regard to the inhibition of the DNA damage response on chromosomal arms during 

mitosis (Cesare 2014, Silva, Stambaugh et al. 2014). However, some DNA damage response proteins 

have been implicated in containing a damage-independent function during mitosis, particularly ATM. 

Indeed, recent evidence has suggested that ATM regulates correct spindle assembly and the spindle 

checkpoint (Eliezer, Argaman et al. 2014, Palazzo, Della Monica et al. 2014, Yang, Hao et al. 2014). 

ATM-dependent phosphorylation of MAD1 promotes MAD2 binding whilst phosphorylation of γH2AX 

on kinetochores recruits MDC1 (Eliezer, Argaman et al. 2014, Yang, Hao et al. 2014). MDC1 has 

previously been demonstrated to be a novel binding partner and regulator of APC/C activity (Coster, 

Hayouka et al. 2007, Townsend, Mason et al. 2009, Eliezer, Argaman et al. 2014). Interestingly, MDC1 
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has been shown to bind MAD2, and has been suggested to facilitate the incorporation of Cdc20 into 

the MCC, thus promoting the SAC (Eliezer, Argaman et al. 2014). Furthermore, ablation of MDC1 

accelerates mitotic progression, supposedly due to inappropriate sister chromatid separation and an 

early anaphase onset (Eliezer, Argaman et al. 2014), although an alternative study has demonstrated 

that MDC1 knockdown lengthens the mitotic phase through inhibition of APC/C activity (section 

1.3.3)(Townsend, Mason et al. 2009). 

The APC/C is not completely inhibited during the SAC, however. The substrates NEK2A, HOXC10 and 

Cyclin A have mechanisms by which they can evade the SAC such that they are still ubiquitylated 

despite MCC inhibition of the APC/C (den Elzen and Pines 2001, Geley, Kramer et al. 2001, Hames, 

Wattam et al. 2001, Gabellini, Colaluca et al. 2003, Hayes, Kimata et al. 2006). For Cyclin A, this is 

mediated by the Cyclin-dependent kinase cofactor Cks; the N-terminal region of Cyclin A dislodges 

the MCC from Cdc20, and Cks permits Cdc20-Cyclin A binding to the APC/C via an interaction with 

phosphorylated APC3, resulting in Cyclin A ubiquitylation (Sudakin, Shteinberg et al. 1997, Wolthuis, 

Clay-Farrace et al. 2008, Di Fiore and Pines 2010). Intriguingly, Cks also permits the binding of Cyclin 

B1 to the APC/C through APC3. This does not result in its ubiquitylation, although it primes Cyclin B1 

for timely degradation upon satisfaction of the SAC (van Zon, Ogink et al. 2010). Another protein, 

Apollon, has also been shown to interact with the APC/C and promote its ubiquitylation and 

degradation of Cyclin A during the SAC (Kikuchi, Ohata et al. 2014). Whereas Cks targets Cyclin 

A/Cdk1 to the APC/C, Apollon binds free Cyclin A, leading the authors to suggest that Cks and Apollon 

act cooperatively to ensure Cyclin A destruction during the SAC (Kikuchi, Ohata et al. 2014). 

NEK2A has evolved a different mechanism for avoiding the SAC. Rather than using accessory binding 

factors, the C-terminus of NEK2A contains a methionine-arginine (M-R) dipeptide, similar to the I-R 

motif of Cdc20 and Cdh1, which is necessary for binding to the APC/C independently of Cdc20 

(Hayes, Kimata et al. 2006). Although it is not required for binding, Cdc20 does appear to be 
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necessary for the degradation of NEK2A through its C-box interaction (Kimata, Baxter et al. 2008). 

Unlike Cyclin A, NEK2A cannot outcompete the MCC in affinity for the APC/C-Cdc20, instead it 

requires the formation of homodimers, which bind to APC/C uninhibited by the MCC and unbound by 

co-activator, termed apo-APC/C (Sedgwick, Hayward et al. 2013). Interestingly, an L-R dipeptide 

motif is present at the C-terminus of the APC/C-Cdc20 substrate, KIF18A, which is necessary for its 

degradation (Sedgwick, Hayward et al. 2013). Like Cyclin B1, KIF18A associates with the APC/C during 

the SAC, but is only degraded following the onset of anaphase, suggesting the interaction between 

APC/C and KIF18A during prometaphase does not result in ubiquitylation, and instead might increase 

the efficiency of its degradation upon APC/C-Cdc20 activation (Sedgwick, Hayward et al. 2013). 

Although the MCC acts as a potent inhibitor of the APC/C, recent evidence has suggested a minor 

population of the APC/C which is activated by Cdh1 during metaphase (Nagai and Ushimaru 2014). In 

addition, it was proposed that APC/C-Cdh1 was capable of ubiquitylating Cdc20 during metaphase 

arrest, and it was suggested that the MCC also inhibits Cdh1 (Nagai and Ushimaru 2014). This would 

indicate that there is low basal APC/C-Cdh1 activity throughout mitosis, which is capable of 

degrading APC/C substrates despite SAC activation, opposing all current hypotheses and tenets 

regarding Cdh1 in mitosis (Pines 2011, Primorac and Musacchio 2013). 
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A: APC/C Substrates 

Protein UniProt ID Gene Reference 

Cdc20 Q12834 CDC20 (Nilsson, Yekezare et al. 2008) 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

HOXC10 Q9NYD6 HOXC10 (Gabellini, Colaluca et al. 2003) 

NEK2A P51955 NEK2 (Hames, Wattam et al. 2001) 

B: APC/C Inhibitors 

Protein UniProt ID Gene Reference 

BUB3 O43684 BUB3 (Sudakin, Chan et al. 2001) 

BUBR1 O60566 BUB1B (Sudakin, Chan et al. 2001) 

MAD2 Q13257 MAD2L1 (Sudakin, Chan et al. 2001) 

MAD2L2 Q9UI95 MAD2L2 
(Chen and Fang 2001, Pfleger, Salic et al. 2001, 

Listovsky and Sale 2013) 

MDC1* Q14676 MDC1 (Eliezer, Argaman et al. 2014) 

C: Other APC/C Interactors 

Protein UniProt ID Gene Reference 

Apollon Q9NR09 BIRC6 (Kikuchi, Ohata et al. 2014) 

Cks P61024 CKS1B (Wolthuis, Clay-Farrace et al. 2008) 

Cyclin B1** P14635 CCNB1 (van Zon, Ogink et al. 2010) 

KIF18A** Q8NI77 KIF18A (Sedgwick, Hayward et al. 2013) 

 

Table 3: Substrates (A), inhibitors (B) and other interactors (C) of the human APC/C during the SAC 

*MDC1 has been shown to promote the SAC by facilitating the incorporation of Cdc20 into the MCC 

(Eliezer, Argaman et al. 2014), although it has also been described as an activator of the APC/C 

(Townsend, Mason et al. 2009). 

** Although Cyclin B1 and KIF18A are both APC/C substrates, their association with the APC/C during 

the SAC does not result in their degradation (van Zon, Ogink et al. 2010, Sedgwick, Hayward et al. 

2013)  
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1.4.2. SAC reactivates the APC/C 
 

Upon correct microtubule attachment at the kinetochores, i.e. an amphitelic attachment in which 

one centrosome contacts one sister chromatid only (Figure Int.3iv), in a bi-orientated manner, the 

SAC is silenced (Musacchio and Salmon 2007). The amount of MAD2 decreases at attached 

kinetochores under dynein-mediated relocalisation, thereby preventing nascent MCC formation 

(Waters, Chen et al. 1998, Musacchio and Salmon 2007, Foley and Kapoor 2013, Jia, Kim et al. 2013). 

However, if attachment were the only condition to satisfy the SAC, syntelic microtubule 

arrangements would result in anaphase progression. In these conditions the SAC remains active due 

to a second checkpoint: the absence of tension between sister chromatids (Musacchio and Salmon 

2007). Microtubules are destabilised at kinetochores in both syntelic and merotelic attachments by 

Aurora B kinase, thus maintaining the SAC (Musacchio and Salmon 2007, Jia, Kim et al. 2013). The 

SAC is partly switched off by the localised activity of protein phosphatase, PP1, which removes this 

Aurora B-mediated phosphorylation of the kinetochores, thereby silencing their pro-SAC signalling, 

as well as counteracting other kinase activity, such as MPS1 (Foley and Kapoor 2013, Jia, Kim et al. 

2013). 

The production of free C-MAD2 is inhibited at attached kinetochores by the activity of p31Comet, which 

binds and caps the MAD1-C-MAD2 dimer, as well as causing the disassembly of cytosolic, diffusible 

MCC (Habu, Kim et al. 2002, Reddy, Rape et al. 2007, Yang, Li et al. 2007, Jia, Kim et al. 2013, 

Primorac and Musacchio 2013). This interaction with the MCC is regulated by the ATPase TRIP13, and 

is also modulated by phosphorylation, such that phosphorylated p31Comet has decreased affinity for 

MAD2 in early mitosis (Date, Burrows et al. 2014, Eytan, Wang et al. 2014, Wang, Sturt-Gillespie et al. 

2014). Interestingly, another protein, CUEDC2, has also been suggested to be important in the 

release of Cdc20 from MAD2 (Gao, Li et al. 2011). As discussed earlier, the ubiquitylation of Cdc20 in 

an APC15-dependent manner causes its release from the MCC, and targets it for degradation as part 
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of the SAC (Mansfeld, Collin et al. 2011, Foster and Morgan 2012, Uzunova, Dye et al. 2012, Primorac 

and Musacchio 2013). However, this ubiquitylation is also necessary to reactivate Cdc20 following 

SAC satisfaction, as it causes disassembly of the MCC concomitant with the prevention of nascent 

MCC formation, thus preventing further free Cdc20 molecules from becoming inhibited (Reddy, Rape 

et al. 2007). Furthermore, the ubiquitylation of Cdc20 is counteracted by the DUB USP44, which 

protects Cdc20 from proteasomal degradation, permitting its reactivation of the APC/C following 

MCC disassembly (Stegmeier, Rape et al. 2007). 

1.4.3. The APC/C promotes sister chromatid separation 
 

Upon silencing of the SAC, APC/C-Cdc20 ubiquitylates Securin and Cyclin B1, resulting in their 

degradation by the 26S proteasome (Pines 2011, Primorac and Musacchio 2013). The degradation of 

Securin relieves its inhibition of Separase, which is then free to cleave the Scc1/RAD21 subunit of 

Cohesin (Ciosk, Zachariae et al. 1998, Jensen, Segal et al. 2001, Stemmann, Zou et al. 2001, Hornig, 

Knowles et al. 2002, Waizenegger, Gimenez-Abian et al. 2002). This opens the Cohesin ring 

surrounding the centromere, allowing KT-fibres to pull sister chromatids towards opposite poles, 

marking the start of anaphase. 

Another method of Separase inhibition must exist, however, as cells not expressing Securin still 

exhibit timely Cohesin degradation and anaphase onset (Jallepalli, Waizenegger et al. 2001, Mei, 

Huang et al. 2001, Wang, Yu et al. 2001). This is believed to be regulated by Cyclin B1/Cdk1, which 

inhibits Separase through phosphorylation during early mitosis when Cdk activity is high (Stemmann, 

Zou et al. 2001, Gorr, Boos et al. 2005). Upon SAC satisfaction, Cyclin B1 is ubiquitylated by APC/C-

Cdc20 and is degraded, thereby inactivating Cdk1 (Pines 2011, Primorac and Musacchio 2013). 

Furthermore, protein phosphatases such as PP1 and Cdc14 counteract Cdk1, removing its inhibitory 

phosphorylation of Separase and permitting Cohesin cleavage, as well as activating Cdc25 (Skoufias, 

Indorato et al. 2007, Tumurbaatar, Cizmecioglu et al. 2011). 
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Another complex has been described which augments APC/C activity to promote the onset of 

anaphase. The spindle and kinetochore-associated (Ska) complex has been shown to be necessary for 

accurate mitotic degradation of Cyclin B1 and Securin, perhaps due to Ska complex-mediated 

localisation of the APC/C to chromosomes, thus enhancing the ubiquitylation of APC/C substrates 

(Sivakumar, Daum et al. 2014). 

Although necessary for APC/C activity, the cellular pool of the E2, UbcH10, becomes depleted during 

G1 phase due to its ubiquitylation by APC/C-Cdh1 (Rape and Kirschner 2004). However, its 

transcription is activated by the APC/C-Cdc20 together with CBP/p300, thereby replenishing the 

cellular supply of UbcH10 such that the APC/C can become fully active upon SAC satisfaction (Nath, 

Banerjee et al. 2011). 

As mentioned in section 1.3.1, MDC1 has been suggested to ensure appropriate SAC signalling 

through recruitment of Cdc20 in the MCC (Eliezer, Argaman et al. 2014). However a different group 

have demonstrated that MDC1 interacted with numerous APC/C subunits, and potentiated APC/C 

activity in vivo (Townsend, Mason et al. 2009). Contrary to more recent evidence, this study 

demonstrated that ablation of MDC1 expression increased the number of cells in mitosis, delayed 

the metaphase-anaphase transition and decreased the interaction between APC/C and Cdc20 

(Townsend, Mason et al. 2009, Eliezer, Argaman et al. 2014). As such, MDC1 was suggested to be a 

bridging factor for Cdc20 and the APC/C, thereby controlling faithful mitotic progression upon SAC 

satisfaction (Townsend, Mason et al. 2009). 
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A: APC/C Substrates 

Protein UniProt ID Gene Reference 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995) 

Securin Q5FBB7 PTTG1 (Zou, McGarry et al. 1999) 

B: APC/C Activators 

Protein UniProt ID Gene Reference 

CBP Q92793 CREBBP (Nath, Banerjee et al. 2011) 

MDC1 Q14676 MDC1 (Townsend, Mason et al. 2009) 

P300 Q09472 EP300 (Nath, Banerjee et al. 2011) 

Ska3 Q8IX90 SKA3 (Sivakumar, Daum et al. 2014) 

 

Table 4: Substrates (A) and activators (B) of the human APC/C-Cdc20 during the metaphase-
anaphase transition. 
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1.4.4. The APC/C coordinates mitotic exit 
 

Upon the onset of anaphase, Cdh1 becomes reactivated due to the decrease in Cdk activity 

promoted by the controlled degradation of Cyclin B1 by APC/C-Cdc20 (Pines 2011). APC/C-Cdc20 also 

initiates the degradation of the Cdh1-sequestering protein, MAD2L2, during anaphase, thus relieving 

further inhibition of Cdh1 (Listovsky and Sale 2013). The APC/C then exhibits a co-activator switch 

from Cdc20 to Cdh1 (Hagting, Den Elzen et al. 2002, Pines 2011). This allows Cdh1-mediated 

activation of the APC/C, and targets substrates for degradation to promote mitotic exit (Kramer, 

Scheuringer et al. 2000, Peters 2006, Pines 2011). One of the key targets of APC/CCdh1 is Cdc20, which 

ensures a rapid transition from Cdc20- to Cdh1-activated APC/C (Shirayama, Zachariae et al. 1998, 

Robbins and Cross 2010). Interestingly, some APC/C substrates in mitosis are able to be ubiquitylated 

by either Cdh1 or Cdc20. APC/C-Cdc20 and APC/C-Cdh1 both target the degradation of Cyclins A and 

B1, ensuring that Cdk activity remains low from anaphase throughout late mitosis and into the next 

G1 (Peters 2006, van Leuken, Clijsters et al. 2008, Pines 2011). Cdh1-specific substrates are targeted 

in late mitosis, however, including those whose inactivation is required for mitotic exit, including 

Aurora A and B kinases, UbcH10 and Plk1 (Lindon and Pines 2004).  

The targeting of Aurora kinases by Cdh1 ensures faithful spindle formation and cytokinesis (Floyd, 

Pines et al. 2008). Despite this, Cdh1 is not essential for cytokinesis, as Cdh1 knockout only produces 

a mild phenotype resulting from prolonged Aurora A activity (Floyd, Pines et al. 2008). However, 

problems arise upon entering the next S phase, since Cdh1 plays an important role in replication 

licensing. The cells also develop chromosomal defects and exhibit aneuploidy, demonstrating that 

Cdh1 promotes genetic stability (Engelbert, Schnerch et al. 2008, Garcia-Higuera, Manchado et al. 

2008). 

As previously mentioned, DNA damage proteins have recently been identified as mitotic regulators. 

Two damage proteins have been described as becoming APC/C targets during mitosis: FAN1 nuclease 
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and RAP80 (Cho, Lee et al. 2012, Lai, Hu et al. 2012). FAN1 nuclease functions in interstrand crosslink 

repair, and is targeted by APC/C-Cdh1, whilst RAP80, which localises BRCA1 to damage foci, can be 

ubiquitylated by either APC/C-Cdc20 or APC/C-Cdh1 (Cho, Lee et al. 2012, Lai, Hu et al. 2012). 

Although their mitotic function is unknown, overexpression of either FAN1 or RAP80 delays mitotic 

progression, whilst their knockdown accelerates mitotic exit, suggesting that they act as novel 

regulators of mitosis (Cho, Lee et al. 2012, Lai, Hu et al. 2012). It is therefore possible that in the 

future, the mitotic functions of other DNA damage proteins will be elucidated. 

 

 

APC/C Substrates 

Protein UniProt ID Gene Reference 

Aurora A O14965 AURKA 
(Honda, Mihara et al. 2000, Taguchi, Honda et al. 

2002) 

Aurora B Q96GD4 AURKB (Stewart and Fang 2005, Feine, Zur et al. 2007) 

Cdc20 Q12834 CDC20 (Robbins and Cross 2010) 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995) 

FAN1 Q9Y2M0 FAN1 (Lai, Hu et al. 2012) 

MAD2L2 Q9UI95 MAD2L2 (Listovsky and Sale 2013) 

Plk1 P53350 PLK1 (Lindon and Pines 2004) 

RAP80 Q96RL1 UIMC1 (Cho, Lee et al. 2012) 

UbcH10 O00762 UBE2C (Rape and Kirschner 2004) 

 

Table 5: Substrates of the human APC/C during post-anaphase mitosis. 
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1.4.5. The APC/C prevents early S phase entry 
 

Following cytokinesis, APC/C-Cdh1 remains active to coordinate the subsequent G1 phase of the cell 

cycle. Under the control of Cdh1, the APC/C mediates the degradation of a number of S-phase-

promoting proteins such as Cyclin A, Skp2, Geminin, Ets2 and Tome-1, thereby arresting the cell cycle 

and preventing S phase entry until the correct signalling mechanisms have been activated (Peters 

2006, Li, Shin et al. 2008, van Leuken, Clijsters et al. 2008, Pines 2011). There is also evidence for the 

APC/C-mediated degradation of Cyclin D1, although this can also be targeted by SCF E3 ubiquitin 

ligases (Agami and Bernards 2000, Pawar, Sarkar et al. 2010). 

It has been suggested that Cdh1 and the Retinoblastoma protein, Rb, function redundantly to control 

the G1/S transition (Fay, Keenan et al. 2002). Amongst its numerous functions, Rb has been shown to 

halt S phase progression via the inhibition of two major pro-proliferative proteins, Skp2 and E2F (Dick 

and Rubin 2013). Hypophosphorylated Rb binds Skp2 and directly inhibits its ubiquitylation of target 

substrates, resulting in the stabilisation of the Cdk inhibitor (CKI) p27, thereby inhibiting Cdk activity 

and halting cell cycle progression (Ji, Jiang et al. 2004). However, an alternate mechanism for the 

inhibition of Skp2 by Rb has been suggested, in which Rb acts as a molecular bridge, presenting Skp2 

to the APC/C as a substrate, thereby potentiating APC/C ubiquitylation of Skp2 and stabilising p27Kip1 

(Binné, Classon et al. 2007). Another Rb family member, p107, has also been shown to downregulate 

Skp2 protein levels (Rodier, Makris et al. 2005). 

Rb also prevents entry into S phase by repressing the activity of E2F transcription factors through 

binding to their transactivation domains, preventing their transcription of target genes such as Cyclin 

A, Cyclin E and Emi1 (Chellappan, Hiebert et al. 1991, Hiebert, Chellappan et al. 1992, Dick and Rubin 

2013). Furthermore, Rb-E2F complexes are also able to silence DNA through chromatin remodelling 

by the recruitment of histone deacetylases (HDACs) and SWI/SNF complexes (Brehm, Miska et al. 

1998, Luo, Postigo et al. 1998, Magnaghi-Jaulin, Groisman et al. 1998, Zhang and Dean 2001), as well 
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as binding Polycomb proteins, methyltransferases and co-repressors (Lai, Lee et al. 1999, Meloni, 

Smith et al. 1999, Dahiya, Wong et al. 2001, Nielsen, Schneider et al. 2001). The Rb family proteins, 

p107 and p130, are also capable of keeping Cdk2 activity low by binding Cyclin E/Cdk2 and Cyclin 

A/Cdk2 complexes directly, resulting in their inhibition (Giacinti and Giordano 2006). Interestingly, 

ablation of APC/C-Cdh1 activity also results in amplification of E2F-mediated transcription of Cyclin E, 

as well as increased degradation of p27Kip1, suggesting that Cdh1 might also influence the inhibition 

of E2F (Sorensen, Lukas et al. 2000). Further inhibition of the E2F transcription factors, E2F1 and 

E2F3, have been suggested to be mediated through their ubiquitylation by APC/C-Cdc20 in 

metaphase followed by APC/C-Cdh1 (Peart, Poyurovsky et al. 2010, Budhavarapu, White et al. 2012, 

Ping, Lim et al. 2012). 

The APC/C also targets Cdc6 and Cdt1 for degradation during early G1 (Petersen, Wagener et al. 

2000, Sugimoto, Kitabayashi et al. 2008). These are important in replication licensing (see below), 

and their degradation prevents the formation of the pre-replication complex upon origins of 

replication until suitable mitogenic signals stimulate the cell to continue with the cell cycle (Sacco, 

Hasan et al. 2012). 

 

1.4.6. APC/C-Cdh1 is inhibited to promote S phase progression 
 

The APC/C-Cdh1 holds cells within G1 until suitable mitogenic signals results in its inactivation (Pines 

2011). Positive growth signals stimulate pathways such as Ras-MAPK, resulting in downstream 

kinases such as MEK and ERK becoming activated and phosphorylating downstream targets, including 

Ets2 (Rivard, Boucher et al. 1999). Mitogenic stimulation induces the transcription and stabilisation of 

Cyclin D1, which then forms complexes with, and activates, Cdk4 and Cdk6 (Hitomi and Stacey 1999, 

Anderson, Child et al. 2010). Cyclin D/Cdk4 and Cyclin D/Cdk6 then phosphorylate Rb on a number of 
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residues, causing a conformational change which releases its repressive binding to E2F and Skp2, 

thus alleviating its cell cycle inhibition (Dowdy, Hinds et al. 1993, Sherr 1994). 

The activation of E2F transcription factors results in the expression of a number of S phase-

promoting proteins. One important protein which is expressed in response to E2F is Emi1 (Early 

Mitotic Inhibitor 1), which inhibits APC/C-Cdh1 (Hsu, Reimann et al. 2002). Emi1 inhibits the APC/C-

Cdh1 by acting as a pseudosubstrate, thereby blocking the recognition of bona fide substrates 

(Miller, Summers et al. 2006). More recent studies have suggested molecular mechanisms for the 

inhibitive features of Emi1; substrate binding is prevented through the interference of the WD40 

propeller of Cdh1 (Frye, Brown et al. 2013). Moreover, Emi1 was also shown to inhibit the binding of 

the E2, Ube2S, through modulation of the APC/C platform, thus preventing polyubiquitin chain 

formation (Frye, Brown et al. 2013, Wang and Kirschner 2013). Intriguingly, binding of Emi1 to 

APC/C-Cdh1 causes a similar conformational change to that exhibited by APC/C-Cdh1-substrate and 

APC/C-MCC complexes, which is necessary for APC/C activation by Cdh1 (Chang, Zhang et al. 2014). 

Cyclin E is similarly transcribed under the control of an E2F promoter, whereupon it binds Cdk2 to 

form an active Cyclin E/Cdk2 complex (Koff, Cross et al. 1991, Dulić, Lees et al. 1992, Koff, Giordano 

et al. 1992, Duronio and O'Farrell 1995, Ohtani, DeGregori et al. 1995, Rizzardi and Cook 2012). Cyclin 

E/Cdk2 phosphorylates Rb (Hinds, Mittnacht et al. 1992, Zhang and Kumar 1994, Rizzardi and Cook 

2012), providing a greater inhibitive signal than that mediated by D-type Cyclins alone (Lundberg and 

Weinberg 1998), as well as phosphorylating Skp2 to aid its escape from APC/C-Cdh1-mediated 

ubiquitylation and degradation (Rodier, Coulombe et al. 2008). Interestingly, Skp2 can also be 

phosphorylated and protected from degradation by Akt1 upon mitogenic stimulation (Gao, Inuzuka 

et al. 2009, Gao, Inuzuka et al. 2009). Cyclin E/Cdk2 is also capable of phosphorylating p21Cip1 and 

p27Kip1, resulting in their SCFSkp2-mediated proteasomal degradation (Carrano, Eytan et al. 1999, 

Tsvetkov, Yeh et al. 1999, Rizzardi and Cook 2012). This alleviates their inhibition of Cyclin/Cdk 
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complexes, thereby permitting increased formation of S-phase promoting complexes of Cyclin 

E/Cdk2 and Cyclin A/Cdk2 (Rizzardi and Cook 2012). 

Another protein under transcriptional control of E2F is Cyclin A (Henglein, Chenivesse et al. 1994). 

Upon E2F and Skp2 activation, Cyclin A is transcribed and translated, and activates Cdk2 (Pines and 

Hunter 1990, Tsai, Harlow et al. 1991). Cyclin A/Cdk2 has a number of targets, including Rb, thus 

further promoting its hyperphosphorylation, and Cdh1. Phosphorylation of Cdh1 causes its 

dissociation from the APC/C, thus rendering the complex inactive and increasing the pool of “free” 

unbound Cdh1 (Zachariae, Schwab et al. 1998, Lukas, Sorensen et al. 1999). This free Cdh1 can 

compete with hypophosphorylated E2F for binding sites upon Rb, thereby increasing the proportion 

of uninhibited E2F, promoting further transcription of target genes such as Cyclin A and Emi1 (Gao, 

Inuzuka et al. 2009). There is also evidence that phosphorylated Cdh1 is exported from the nucleus, 

minimising the possibility of APC/C-Cdh1 contacting its nuclear targets (Jaquenoud, van Drogen et al. 

2002, Zhou, Ching et al. 2003). 

E2F also promotes the transcription of the DUB, USP37 (Huang, Summers et al. 2011). USP37 binds to 

Cdh1 and removes APC/C-Cdh1-mediated ubiquitylation of Cyclin A in a Cdk2-dependent manner, 

thus promoting greater Cyclin A/Cdk2 formation and promoting entry into S phase (Huang, Summers 

et al. 2011). Interestingly, USP37 itself is also a substrate for the APC/C during Cdk2 inactivity, and 

becomes degraded upon APC/C-Cdh1 reactivation during the latter stages of mitosis (Huang, 

Summers et al. 2011). 

Although the APC/C is actively inhibited by cellular factors, there is also evidence that it is self-

limiting over time (Rape and Kirschner 2004, Pines 2011). The monoubiquitylating E2, UbcH10, is 

targeted for degradation by APC/C-Cdh1, and becomes progressively depleted as G1 progresses 

(Rape and Kirschner 2004). Furthermore, there is evidence to suggest that Cdh1 can also mediate its 
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own degradation (Listovsky, Oren et al. 2004), as well as being targeted by SCFβ-TrCP (Fukushima, 

Ogura et al. 2013). 

Together, these pathways represent an irreversible positive feedback loop such that phosphorylation 

of Rb following mitogenic stimulation triggers the expression of a series of E2F-controlled genes, 

including Emi1, USP37 and Cyclin A. These further phosphorylate and/or inhibit Rb and Cdh1, 

accelerating E2F transcription and Skp2 activation until the cell can pass the restriction point and 

enter S phase. 

 

1.4.7. The APC/C and replication licencing 
 

In most eukaryotic cells, DNA is replicated once per cell division, although exceptions occur following 

prolonged APC/C-Cdh1 activity in multi-nucleate bodies such as those found in early Drosophila 

embryos and in placentae (Pines 2011). In order to prevent re-replicative events, replication licensing 

ensures each origin of replication is only fired once per cell cycle (Arias and Walter 2007, Truong and 

Wu 2011, Sacco, Hasan et al. 2012). This relies upon the temporal regulation of APC/C-Cdh1 and SCF 

E3 ubiquitin ligases, and their mutual inhibition (Rizzardi and Cook 2012). 

The pre-replication complex (pre-RC) forms upon DNA origins of replication, concomitant with sister 

chromatid separation in mitosis (Arias and Walter 2007, Boos, Frigola et al. 2012, Sacco, Hasan et al. 

2012). The pre-RC consists of the Origin of Replication Complex (ORC), the Mini Chromosome 

Maintenance (MCM) hexamer MCM2-7, Cdt1 and Cdc6 (Arias and Walter 2007, Boos, Frigola et al. 

2012, Sacco, Hasan et al. 2012). Firstly, the ORC is recruited to the origin, to which Cdc6 and Cdt1 

bind, together with a dimeric MCM2-7 hexamer (Arias and Walter 2007, Boos, Frigola et al. 2012, 

Sacco, Hasan et al. 2012, Yardimci and Walter 2014). In mammalian cells, further factors are also 

recruited, including HMGA1, MCM8, MCM9 and HOXD13 (Sacco, Hasan et al. 2012). During G1, Cdt1 



37 
 

and Cdc6 render this pre-RC inactive until S-phase entry (Boos, Frigola et al. 2012, Sacco, Hasan et al. 

2012). 

Following hyperphosphorylation of Rb and APC/C-Cdh1 inactivation, Cdk activity, Skp2 and Geminin 

are stabilised, pushing cells toward S phase (Peters 2006, van Leuken, Clijsters et al. 2008, Pines 

2011). Subsequently, Cdk and Ddk (Dbf4-dependent kinase) phosphorylate MCM2-7 and promote 

the recruitment of replication factors to DNA, including Cdc45 and GINS to form the active CMG 

(Cdc45-MCM-GINS) helicase, as well as MCM10 and DNA polymerase to permit replication fork 

progression and DNA replication (Arias and Walter 2007, Boos, Frigola et al. 2012, Sacco, Hasan et al. 

2012). In vertebrates, further factors are also required for faithful initiation of DNA replication, such 

as Treslin, DUE-B and GEMC1, which are important for Cdc45 loading, and RecQ4, which regulates 

GINS recruitment (Sacco, Hasan et al. 2012).   

Replication licensing can only occur during G1, and is actively inhibited during S-phase in order to 

prevent re-replication. During G1, the APC/C-Cdh1 mediates the degradation of Geminin; in S-phase 

Geminin is no longer ubiquitylated, and is thus free to bind and inhibit Cdt1 recruitment to pre-RCs 

(Arias and Walter 2007). Cdt1 also becomes phosphorylated by Cyclin A/Cdk2 and Cyclin E/Cdk2, 

targeting it for proteolysis by SCFSkp2, whilst mammalian Cdt1 is also targeted by PCNA-dependent 

Cul4-DDB1Cdt2 as well as APC/C-Cdh1 during late mitosis and early G1 (Arias and Walter 2007, 

Sugimoto, Kitabayashi et al. 2008, Sacco, Hasan et al. 2012).  

Interestingly, Geminin binding to Cdt1 during mitosis can also promote pre-RC formation, since it 

protects Cdt1 from mitotic proteolysis by SCFSkp2 (Arias and Walter 2007). Although Geminin-Cdt1 

binding does not prevent Cdt1 degradation by Cul4-DDB1Cdt2, this pathway is inactivated during G2, 

and therefore is not an issue during mitosis (Arias and Walter 2007). Upon APC/C-Cdc20 activation 

during the metaphase-anaphase transition, Geminin degradation is initiated, and Cdt1 is released, 

however by this time Cdk activity is diminished by the APC/C and by phosphatases, whilst Skp2 is a 
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target for the APC/C, culminating in Cdt1 stabilisation (Arias and Walter 2007). Although the APC/C 

degrades Geminin, this is initially inhibited during early mitosis through its phosphorylation by 

Aurora A, itself a target for APC/C-mediated ubiquitylation, thus preventing SCFSkp2-mediated 

degradation of Cdt1 until the APC/C becomes completely active and is able to inhibit Skp2 fully 

(Tsunematsu, Takihara et al. 2013). 

Mammalian ORC also appears to be regulated in order to prevent re-replication, although the 

evidence for this remains inconclusive. Although the prevalent theory is that Cdk1 inhibits the ORC 

during mitosis, some studies have suggested that phosphorylation of ORC1 by Cyclin A/Cdk1 is 

sufficient to prevent its binding to chromatin through nuclear export, and indeed might promote 

proteolysis during S and G2 phases (Arias and Walter 2007, Sacco, Hasan et al. 2012). Conversely, 

other groups have shown that inhibition of Cdk activity causes no alteration in ORC1 protein levels or 

binding to DNA during these phases (Arias and Walter 2007). Interestingly, ORC1 in Drosophila is 

targeted for degradation by the APC/C, although this is not the case in mammals (Araki, Yu et al. 

2005). 

The regulation of Cdc6 by Cdk activity is also controversial. Phosphorylated Cdc6 is exported from the 

nucleus during S phase; however, Cdc6 can still be detected upon chromatin during this time (Arias 

and Walter 2007, Sacco, Hasan et al. 2012). This phosphorylation removes Cdc6 from previously-fired 

origins until mitosis and early G1, during which time it is targeted for degradation by APC/C-Cdh1, 

thus preventing another cycle of DNA replication (Petersen, Wagener et al. 2000, Sacco, Hasan et al. 

2012). 
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A: APC/C Substrates 

Protein UniProt ID Gene Reference 

Cdc6 Q99741 CDC6 (Petersen, Wagener et al. 2000) 

Cdh1 Q9UM11 FZR (Listovsky, Oren et al. 2004) 

Cdt1 Q9H211 CDT1 (Sugimoto, Kitabayashi et al. 2008) 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995) 

Cyclin D1 P24385 CCND1 (Pawar, Sarkar et al. 2010) 

E2F1 Q01094 E2F1 
(Peart, Poyurovsky et al. 2010, Budhavarapu, White 

et al. 2012) 

E2F3 O00716 E2F3 (Ping, Lim et al. 2012) 

Ets2 P15036 ETS2 (Li, Shin et al. 2008) 

Geminin O75496 GMNN (McGarry and Kirschner 1998) 

Skp2 Q13309 SKP2 (Bashir, Dorrello et al. 2004) 

Tome-1 Q99618 CDCA3 (Ayad, Rankin et al. 2003) 

UbcH10 O00762 UBE2C (Rape and Kirschner 2004) 

B: APC/C Inhibitors 

Protein UniProt ID Gene Reference 

Cdk2 P24941 CDK2 (Lukas, Sorensen et al. 1999) 

CUEDC2 Q9H467 CUEDC2 (Zhang, Zhou et al. 2013) 

Emi1 Q9UKT4 FBXO5 (Hsu, Reimann et al. 2002) 

USP37 Q86T82 USP37 (Huang, Summers et al. 2011) 

C: Other APC/C Interactors 

Protein UniProt ID Gene Reference 

Rb P06400 RB1 (Fay, Keenan et al. 2002, Binné, Classon et al. 2007) 

 

Table 6: Substrates (A), inhibitors (B) and activators (C) of the human APC/C during interphase 
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1.4.8. The role of the APC/C in differentiation and G0 
 

The majority of cells within a metazoan organism exist in a non-replicative state, having exited the 

cell cycle and entered into quiescence, or G0 (Manchado, Eguren et al. 2010, Eguren, Manchado et 

al. 2011). Re-entry into G1 is prevented by the maintenance of low levels of Cdk activity and the 

inhibition of pre-RC formation (Manchado, Eguren et al. 2010, Eguren, Manchado et al. 2011). Cdh1 

has been shown to be necessary for exiting the cell cycle and maintaining quiescence, since Cdh1 

knockdown prevents mammalian cells from entering quiescence, and APC/C inhibition in quiescent 

cells causes re-entry into G1 (Wirth, Ricci et al. 2004, Almeida, Bolanos et al. 2005, Garcia-Higuera, 

Manchado et al. 2008). In yeast the Cdh1 homologue, Hct1, is also important for G1 arrest following 

treatment with the pheromone, α-factor, through its degradation of Cyclin Clb2, since Hct1 mutant 

cells are unable to arrest (Schwab, Lutum et al. 1997). 

In cycling cells, Cdh1 is inactivated and APC/C activity is repressed during G1 in order to promote the 

G1/S transition (Pines 2011). If these inhibitory events do not occur, for example due to withdrawal 

of mitogenic stimuli or the presence of anti-proliferative signals, the cell will enter quiescence 

(Manchado, Eguren et al. 2010, Eguren, Manchado et al. 2011). This has been shown to rely upon the 

interaction between Cdh1 and Rb, specifically through the enhancement of Skp2 degradation, as 

seen during normal G1 phase (Binné, Classon et al. 2007). Indeed, signalling by the mitotic inhibitor 

TGF-β (Transforming Growth Factor β) results in the APC/C-mediated proteolysis of Skp2 (Liu, Wu et 

al. 2007). The APC/C also interacts with the TGF-β pathway through its promotion of SnoN 

degradation in response to SMAD3 activation (Stroschein, Bonni et al. 2001, Wan, Liu et al. 2001). 

Differentiation is an important process in development, in which cells become specified, determined 

and leave the cell cycle to become quiescent. The APC/C has been implicated in the differentiation of 

a number of cell types, including the lens, muscle tissue and neurons (Manchado, Eguren et al. 2010, 

Wasch, Robbins et al. 2010). TGF-β signalling within the lens promotes APC/C-Cdh1-mediated 
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degradation of Skp2 and SnoN, resulting in p21Cip1, p27Kip1 and p15 activation and cell cycle arrest 

(Wu, Glickstein et al. 2007), whilst in myogenesis it also induces the degradation of Myf5 and 

promotes myogenic fusion (Li, Wu et al. 2007). 

Cdh1 has also been described as playing a role in neural development and the maintenance of 

neuronal quiescence. Indeed, Cdh1 has been detected within the nuclei of post-mitotic neurons 

within both rodent and human brain tissue, and is important in Drosophila photoreceptors, in which 

it maintains cell cycle arrest by ensuring the continuous proteolysis of Cyclin B1 (Gieffers, Peters et 

al. 1999, Ruggiero, Kale et al. 2012). Furthermore, shRNA knockdown of Cdh1 permits Cyclin B1 re-

accumulation, resulting in S phase re-entry and apoptosis (Almeida, Bolanos et al. 2005). Cdh1 has 

also been shown to control axonal growth and patterning in mammalian brains both in vivo and ex 

vivo, and is important in long-term potentiation and memory in the amygdala and hippocampus 

(Konishi, Stegmuller et al. 2004, Kannan, Lee et al. 2012, Pick, Malumbres et al. 2013, Pick, Wang et 

al. 2013). These inhibitory mechanisms for Cdh1-mediated neural patterning are exhibited via its 

aforementioned ability to degrade SnoN in response to TGF-β signalling (Stegmuller, Konishi et al. 

2006). Similarly, Cdh1 can also prevent astrocyte proliferation following metabolic stress and hypoxia 

(Qiu, Zhang et al. 2013). 

APC/C-Cdh1 also ubiquitylates ID2, resulting in its degradation and the promotion of neurogenic 

bHLH transcription factor activity and Nogo receptor accumulation (Lasorella, Stegmuller et al. 2006). 

Interestingly, ID2 is also a negative regulator of B-cell and erythroid lineage differentiation, thus Cdh1 

might hold a role in promoting accurate lymphoid and myeloid development similar to that within 

the central nervous system (Ji, Li et al. 2008, Wasch, Robbins et al. 2010). 

Cdc20 also appears to be important for neural development, since dendritic morphogenesis is reliant 

upon the stabilisation of polyubiquitylated Cdc20 by centrosomal HDAC6 in order to promote ID1 

degradation and cellular differentiation (Kim, Puram et al. 2009). Given that Cdc20 is only active 
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during a short window during mitosis in cycling cells to promote anaphase, its role in promoting G0 is 

somewhat surprising, as one would expect Cdh1 to be the major co-activator for the APC/C during 

these conditions. 

 

 

A: APC/C Substrates 

Protein UniProt ID Gene Reference 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995, Almeida, Bolanos et al. 2005) 

ID1 P41134 ID1 (Kim, Puram et al. 2009) 

ID2 Q02363 ID2 (Lasorella, Stegmuller et al. 2006) 

Myf5 P13349 MYF5 (Lindon, Albagli et al. 2000, Li, Wu et al. 2007) 

Skp2 Q13309 SKP2 (Binné, Classon et al. 2007, Liu, Wu et al. 2007) 

SnoN P12757 SKIL (Stroschein, Bonni et al. 2001, Wan, Liu et al. 2001) 

B: APC/C Activators 

Protein UniProt ID Gene Reference 

HDAC6 Q9UBN7 HDAC6 (Kim, Puram et al. 2009) 

 

Table 7: Substrates (A) and activators (B) of the human APC/C during cell cycle exit and quiescence 

 

  



43 
 

1.4.9. The APC/C is reactivated following DNA damage 
 

During their normal life cycle, cells are exposed to many stimuli which can damage DNA, such as 

Ionising Radiation (IR), UV light or mutagenic chemicals, as well as endogenous sources such as 

reactive oxygen species (ROS) or incorrect DNA synthesis (Ciccia and Elledge 2010, Iyama and Wilson 

2013). Many DNA damage response (DDR) pathways exist in order to repair each specific type of DNA 

damage, such as single-stranded DNA breaks (SSBs), double-stranded DNA breaks (DSBs), mis-

matched DNA bases, modified bases as well as stalled replication forks and transcription machinery 

(Ciccia and Elledge 2010, Iyama and Wilson 2013). 

Ultimately, the aim of the DDR within dividing cells is to halt the cell cycle and inhibit proliferation 

until the DNA has been repaired, or to promote apoptosis should the damage be irreparable (Ciccia 

and Elledge 2010). This is achieved through protein kinase cascades, elicited predominantly by ATM 

and DNA-PK for DSBs and ATR for SSBs, as well as other kinases such as CK2, p38 and MK2. One 

important outcome of these cascades is the stabilisation of the tumour suppressor p53, which is 

often mutated or deleted in cancer (Ciccia and Elledge 2010). A plethora of genes are under 

transcriptional control by p53, including p21Cip1, which inhibits Cdk activity in order to prevent cell 

cycle progression, as well as pro-apoptotic factors such as BAX and PUMA (Riley, Sontag et al. 2008). 

Continuing cell proliferation in the presence of DNA damage can result in chromosomal aberrations 

and genetic instability, an important stage in tumourigenesis. 

Different repair pathways target different type of breakages. The two main methods of repairing 

DSBs are Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) (Ciccia and 

Elledge 2010, Iyama and Wilson 2013). NHEJ functions during G1, in which the two ends of the DSB 

are ligated back together, whilst HR occurs during S and G2 following replication of DNA to produce a 

homologous sister chromatid. In HR, the DSB is resected and associates with the homologous region 

of DNA, which is then used as a template to synthesise nascent DNA, followed by ligation (Ciccia and 
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Elledge 2010, Iyama and Wilson 2013). The choice between the two pathways is thought to be a 

balance between BRCA1 and 53bp1, in that 53bp1 promotes NHEJ, whilst BRCA1 inhibits 53bp1, 

thereby promoting HR (Ciccia and Elledge 2010, Kakarougkas and Jeggo 2014). 

Another DDR pathway is Base Excision Repair (BER), which removes non-bulky adducts caused by 

deamination, oxidation or alkylation and abasic sites (Ciccia and Elledge 2010, Iyama and Wilson 

2013, Caldecott 2014). Here, the damaged base is excised to produce a SSB containing a gap in the 

DNA sequence, which is synthesised by DNA polymerases and ligated to seal the break. If the gap is a 

single nucleotide, this occurs by the short-patch pathway, whilst larger DNA gaps between two and 

twelve nucleotides are repaired by the long-patch pathway (Ciccia and Elledge 2010, Iyama and 

Wilson 2013, Caldecott 2014). 

Similarly, Nucleotide Excision Repair (NER) removes thymidine dimers caused by UV-irradiation and 

bulky base adducts (Ciccia and Elledge 2010, Iyama and Wilson 2013). Here, the DNA is unwound 

around the damaged base or stalled Pol II enzyme, followed by excision of the damaged nucleotide. 

DNA polymerases then synthesise DNA to fill the gap, followed by ligation in a similar mechanism to 

BER (Ciccia and Elledge 2010, Iyama and Wilson 2013). 

Another type of DDR is Mismatch Repair (MMR), in which inappropriately paired bases and insertion-

deletion loops are recognised by MutSα (MSH2/MSH6 heterodimer) and MutSβ (MSH2/MSH3 

heterodimer), respectively. These recruit a MutLα heterodimer (MLH1/PMS2) which coordinates 

base excision upon the nascently-synthesised DNA strand, following by DNA resynthesis and ligation 

(Ciccia and Elledge 2010, Iyama and Wilson 2013). 

A back-up mechanism is in place should ligation attempts fail, resulting in deadenylated 5’-AMP 

modifications upon breaks. These are recognised and removed by Aprataxin, which then permits 

further ligation attempts (Rass, Ahel et al. 2007, Ciccia and Elledge 2010, Iyama and Wilson 2013, 

Caldecott 2014). 
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The APC/C has been shown to be reactivated as part of the DDR. Primarily, this ensures cell cycle 

arrest through the targeting of pro-proliferative targets for proteasomal degradation, although it is 

theorised that the APC/C is also reactivated in order to switch off the DDR following successful repair 

(Turnell AS and Teodoro JS, personal communication). 

During G1, APC/C-Cdh1 is active, however during S- and G2-phases Cdh1 is inactivated by Cdk2-

mediated phosphorylation (section 1.3.6). Following DNA damage in G2, the phosphatase Cdc14B 

relocates from the nucleolus to the nucleoplasm whereupon it binds Cdh1 and strips its inhibitory 

phosphorylation (Bassermann, Frescas et al. 2008). This permits Cdh1 reactivation of the APC/C, 

allowing it to target substrates for degradation. Furthermore, the yeast Chk2 homologue, Rad53, 

inactivates the polo kinase Cdc5, thereby preventing further phosphorylation-mediated inhibition of 

Cdh1 (Zhang, Nirantar et al. 2009). 

A number of substrates have been identified for the APC/C following various forms of DNA damage. 

Although one of its classical mitotic substrates is Cyclin B, the reactivation of Cdh1 by X-irradiation 

did not cause its degradation, rather it arrested cells in G1 or G2 through the degradation of Cdc20 

instead, although this was not seen following UV (Sudo, Ota et al. 2001). Interestingly, Cdc20 

transcription is also inhibited by p53 following DNA damage, further preventing mitotic progression 

(Banerjee, Nath et al. 2009). 

Other APC/C mitotic substrates are also degraded as part of the DDR. One such example is Plk1, 

which is degraded by APC/C-Cdh1 following G2 genotoxic stress (Bassermann, Frescas et al. 2008). 

Securin is also degraded by the APC/C following UV damage, an interesting result given that Securin 

also associates with DNA-PK (Romero, Multon et al. 2001, Romero, Gil-Bernabe et al. 2004). Although 

free Securin is degraded, the total level of Securin-Separase complexes remains constant, thus 

anaphase is still inhibited. In yeast, an opposite result is seen in which Rad53 activates the Cdk1 

homologue, Cdc28, which in turn phosphorylates and stabilises the Securin homologue, Pds1 
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(Sanchez, Bachant et al. 1999). Other yeast substrates which become degraded include Kip1 and 

Cin8, thereby preventing the formation of the mitotic spindle and preventing mitotic entry (Zhang, 

Nirantar et al. 2009). 

During G1, Cdh1 is active to prevent early S-phase entry (section 1.3.5). One important consequence 

of DNA damage in G1 is to ensure the maintained activation of Cdh1. One example of this is its 

targeting of Cyclin D1 following treatment with IR, thereby releasing p21Cip1 from Cdk4 in order to 

inhibit Cdk2 (Agami and Bernards 2000, Germain, Russell et al. 2000). CUEDC2 is also important in 

inhibiting Cdh1 at the G1/S transition; however, CUEDC2 undergoes proteolysis following ERK1/2-

dependent phosphorylation after treatment with UV (Zhang, Zhou et al. 2013). The APC/C also 

targets USP1 after UV-irradiation in order to promote PCNA monoubiquitylation and DDR signalling 

(Cotto-Rios, Jones et al. 2011).  

Although Claspin is also a substrate for the APC/C, this is protected from degradation by reactivated 

APC/C-Cdh1 by the DUB USP28 (Zhang, Zaugg et al. 2006, Bassermann, Frescas et al. 2008). 

Interestingly, the transcription factor E2F1, a substrate for the APC/C from prometaphase until G1/S 

transition, was similarly regulated; although E2F1 is ubiquitylated by the APC/C following DNA 

damage, its proteasomal degradation is inhibited (Peart, Poyurovsky et al. 2010, Budhavarapu, White 

et al. 2012). Although E2F1-mediated transcription promotes S-phase entry during normal cellular 

progression, following DNA damage it alters its pattern of activation to induce the expression of a 

number of pro-apoptotic genes (Blattner, Sparks et al. 1999, Lin, Lin et al. 2001, Pediconi, Ianari et al. 

2003). 

Other links between the DDR and the APC/C have also been described. The ATR-responsive RAD17 

protein has been shown to be under control of the APC/C, whilst its degradation is potentiated by 

UV-irradiation, although this is perturbed in breast cancer cells (Zhou, Jing et al. 2013). Another 

example is MAD2L2, also called REV7, which inhibits Cdh1 during early mitosis; however, it has also 
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been shown to facilitate the APC/C-mediated degradation of REV1, a polymerase important in 

translesion synthesis at stalled replication forks (Chun, Kok et al. 2013, Listovsky and Sale 2013). 

Furthermore, the yeast XPC homologue, Rad4, has been suggested to be a novel substrate for the 

APC/C following UV-irradiation, thus demonstrating a link between the APC/C and NER (Connors, 

Rochelle et al. 2014). 

Similarly, FAN1 nuclease and RAP80 have been shown to be targets for the APC/C-Cdh1, with RAP80 

also able to be targeted by Cdc20 (Cho, Lee et al. 2012, Lai, Hu et al. 2012). Given that RAP80 binds 

BRCA1 and could be important in controlling HR through BRCA1 recruitment to damage foci, it could 

be possible that its proteolysis by the APC/C during G1 promotes NHEJ in the absence of homologous 

sister chromatids (Kakarougkas and Jeggo 2014). 

The DSB repair protein, MDC1, can potentiate APC/C activity and is important in regulating the SAC 

and the onset of anaphase (section 1.3.1) (Coster, Hayouka et al. 2007, Townsend, Mason et al. 2009, 

Eliezer, Argaman et al. 2014). However, the phospho-dependent interaction between MDC1 and 

APC3 was greater following IR treatment, suggesting it might also have a role in modulating APC/C 

function as part of the DDR (Coster, Hayouka et al. 2007). Interestingly, another BRCT domain-

containing protein, 53bp1, has been shown to interact with APC3 and purported to regulate the 

APC/C prior to chromosomal condensation (Akhter, Richie et al. 2004).This interaction between APC3 

and 53bp1 was also mediated through the BRCT domain of 53bp1, therefore there could be 

competition between 53bp1 and MDC1 for a binding site upon APC3, which could impact upon 

APC/C function and the promotion of NHEJ by 53bp1 or HR by MDC1 (Coster and Goldberg 2010, 

Woods, Mesquita et al. 2012, Panier and Boulton 2014). 
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A: APC/C Substrates 

Protein UniProt ID Gene Reference 

Cdc20 Q12834 CDC20 (Sudo, Ota et al. 2001) 

Cyclin A P20248 CCNA2 
(Sudakin, Ganoth et al. 1995, Geley, Kramer et al. 

2001) 

Cyclin B1 P14635 CCNB1 
(King, Peters et al. 1995, Sudakin, Ganoth et al. 

1995) 

Cyclin D1 P24385 CCND1 (Agami and Bernards 2000) 

FAN1 Q9Y2M0 FAN1 (Lai, Hu et al. 2012) 

Plk1 P53350 PLK1 (Bassermann, Frescas et al. 2008) 

RAD17 O75943 RAD17 (Zhou, Jing et al. 2013) 

RAP80 Q96RL1 UIMC1 (Cho, Lee et al. 2012) 

REV1 Q9UBZ9 REV1 (Chun, Kok et al. 2013) 

Securin Q5FBB7 PTTG1 (Romero, Gil-Bernabe et al. 2004) 

USP1 O94782 USP1 (Cotto-Rios, Jones et al. 2011) 

B: APC/C Activators 

Protein UniProt ID Gene Reference 

Cdc14B O60729 CDC14B (Bassermann, Frescas et al. 2008) 

MAD2L2* Q9UI95 MAD2L2 (Chun, Kok et al. 2013) 

MDC1 Q14676 MDC1 (Coster, Hayouka et al. 2007) 

 

Table 8: Substrates (A) and activators (B) of the human APC/C following DNA damage 

 

*Although MAD2L2 inhibits Cdh1 during early mitosis, it promotes APC/C-Cdh1-dependent 

degradation of REV1 following DNA damage (Pfleger, Salic et al. 2001, Chun, Kok et al. 2013, 

Listovsky and Sale 2013). 
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1.5.  Regulation of APC/C-mediated ubiquitylation 
 

In order to control the cell cycle effectively, APC/C-mediated degradation must be tightly regulated. 

This ensures the cell cycle progresses in one direction only, and only upon suitable mitogenic 

stimulation. Misregulation of the APC/C results in aberrant sister chromatid segregation, genetic 

instability and cancer susceptibility (Wasch, Robbins et al. 2010, Penas, Ramachandran et al. 2011). 

Control of the APC/C is exerted in a number of ways, including: post-translational modifications 

(PTMs); Co-activator binding and activation of the APC/C; affinity for E2s; substrate recognition and 

binding as well as localisation. 

1.5.1. Regulation of co-activators and APC/C subunits 
 

APC/C activity and specificity is regulated predominantly by co-activator binding, which allows for the 

formation of the substrate recognition particle and, moreover, activation of the APC/C (Pines 2011, 

Primorac and Musacchio 2013). Although Cdc20 is transcribed from S phase and stabilised by the 

inactivation of Cdh1, it is prevented from activating the APC/C by Emi1 (section 1.3.6) (Reimann, 

Freed et al. 2001, Morris, Kaiser et al. 2003, Haugwitz, Tschöp et al. 2004). During S and G2, Emi1 

inhibits the APC/C by preventing E2 binding to the catalytic core and by blocking substrate 

recognition through acting as a pseudosubstrate (Miller, Summers et al. 2006, Frye, Brown et al. 

2013, Wang and Kirschner 2013). Emi1 is stable during G2 due to Pin1 preventing its proteolysis 

(Bernis, Vigneron et al. 2007); however, Plk1 and Cdk1 phosphorylation upon mitotic entry promote 

its targeting by SCFβ-TrCP for proteasomal degradation (Guardavaccaro, Kudo et al. 2003, Margottin-

Goguet, Hsu et al. 2003, Moshe, Bar-On et al. 2011). Although the APC/C is no longer inhibited by 

Emi1, it is still inactive at this point due to the SAC (section 1.3.1). 

The interaction between Cdc20 and the APC/C is also regulated by PTMs. Indeed, the APC/C has been 

shown to be extensively phosphorylated, particularly on the TPR lobe, by Cdk1 and Plk1 during early 
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mitosis (Kraft, Herzog et al. 2003, Steen, Steen et al. 2008). This phosphorylation is necessary for 

Cdc20-mediated activation of the APC/C, although Cdc20 has to be dephosphorylated first in order 

for complete C-box activation (Kramer, Scheuringer et al. 2000, Rudner and Murray 2000, Labit, 

Fujimitsu et al. 2012). 

Similarly, phosphorylation of Cdh1 by Cdk1 inhibits APC/C-Cdh1 binding (Zachariae, Schwab et al. 

1998, Kramer, Scheuringer et al. 2000). Mitotic phosphatases, such as Cdc14, then remove this 

inhibitory phosphorylation of Cdh1, such that it becomes free to activate the APC/C during late 

mitosis (Jaspersen, Charles et al. 1999, Primorac and Musacchio 2013). Furthermore, Cdh1 is 

sequestered during early mitosis by MAD2L2, further preventing premature APC/C-Cdh1 activity and 

ensuring faithful sister chromatid separation (Listovsky and Sale 2013). Cdh1 is again inactivated by 

Cdk-dependent phosphorylation together with Emi1 inhibition during the G1/S transition (section 

1.3.6). 

Another important post-translational modification which affects APC/C function is acetylation. 

Previous work within our group has demonstrated a link between the Histone Acetyl Transferases 

(HATs) CBP/p300 and the APC/C (Turnell, Stewart et al. 2005). Immunopurified CBP and p300 can 

promote the polyubiquitylation of Cyclin B1 in vitro, and CBP/p300 also potentiates APC/C activity in 

vitro, whilst CBP knockdown delays progression through mitosis and increases the protein levels of 

known APC/C substrates such as Cyclin B1 (Turnell, Stewart et al. 2005). As such, it is postulated that 

the HAT activity of CBP/p300 might important in the regulation of APC/C activity. CBP/p300 could 

also potentiate APC/C activity through their E4 domain, which has been shown to promote the 

polyubiquitylation of p53 (Grossman, Deato et al. 2003, Shi, Pop et al. 2009). Interestingly, the APC/C 

subunits APC5 and APC7 have previously been shown to interact with the E4 domain of CBP/p300 

(Turnell, Stewart et al. 2005). 
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There is also evidence to suggest that the co-activators Cdc20 and Cdh1 are acetylated in vivo; 

deacetylation of Cdc20 and Cdh1 by SIRT2 has been show to regulate APC/C activity, and ablation of 

SIRT2 expression increases the protein levels of known APC/C substrates Aurora A and B (Kim, 

Vassilopoulos et al. 2011). Furthermore, the fission yeast homologue of APC8, Cut23, has similarly 

been shown to be acetylated in vivo (Kimata, Matsuyama et al. 2008). 

Individual subunit protein levels might also be a regulatory mechanism for APC/C activity. Indeed, 

this phenomenon can be exploited as a tool to investigate APC/C function, as ablation or 

overexpression of APC/C subunits can, respectively, down- or up-regulate its E3 ubiquitin ligase 

accordingly. Furthermore, the altered expression of APC/C subunits has been implicated in 

tumourigenesis (section 1.6). Also, during normal cell cycle, the protein levels of APC5 appear to 

decrease during mitotic progression (Turnell AS unpublished data; Teodoro JS personal 

correspondence), and APC3 becomes transcriptionally induced by C/EBPδ to promote APC/C 

substrate degradation (Pawar, Sarkar et al. 2010). Similarly, Cdc20 transcription is switched on 

following S phase, which then activates UbcH10 transcription (Morris, Kaiser et al. 2003, Haugwitz, 

Tschöp et al. 2004, Nath, Banerjee et al. 2011). Both Cdc20 and UbcH10 are also targets for APC/C-

mediated ubiquitylation, which, together with the targeting of Cdh1 for degradation by the APC/C 

and SCFβ-TrCP, result in the APC/C being self-inhibitory (Shirayama, Zachariae et al. 1998, Listovsky, 

Oren et al. 2004, Rape and Kirschner 2004, Robbins and Cross 2010, Fukushima, Ogura et al. 2013). 

There is also the potential for localisation to be a regulatory mechanism for the APC/C. As discussed 

in section 1.3.3, the Ska complex is required for appropriate degradation of Securin and Cyclin B1 

owing to its ability to ensure the chromosomal localisation of the APC/C, thereby bringing it into 

close proximity with its target substrates (Sivakumar, Daum et al. 2014). Furthermore, APC5 and 

APC7 have been described as having important functions in transcriptional regulation by the APC/C 

(section 1.5) (Turnell, Stewart et al. 2005, Ho, Garg et al. 2013). Evidence for this is provided by the 
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discovery of APC5 upon actively transcribed regions of the genome, as well as the ability of APC5 and 

APC7 to localise the APC/C to CBP/p300-responsive gene promoters (Turnell, Stewart et al. 2005), 

and repress IL-17 promoters through its interaction with A20 (Ho, Garg et al. 2013). 

 

1.5.2. Regulation of APC/C activity by modulation of substrates 
 

Another method by which the activity of the APC/C is regulated is the modulation of its substrates 

themselves. The major method by which this is achieved is by PTM of substrates, producing a 

number of consequences such as altered affinity for APC/C-co-activator complexes, relocalisation or 

modified protein stability. 

The PTM most commonly reported upon APC/C substrates which affects its ubiquitylation is 

phosphorylation, which has important consequences for the cell cycle. Indeed, phosphorylation of 

Cdc6 by Cyclin E/Cdk2 and Skp2 by Akt and Cdk2 prevent their recognition by the APC/C, thus 

inhibiting their ubiquitylation and degradation (Mailand and Diffley 2005, Gao, Inuzuka et al. 2009, 

Gao, Inuzuka et al. 2009). Conversely, Cdc20 requires phosphorylation by Plk1 in its CRY box, and 

Mcl-1 requires Cyclin B1/Cdk1 phosphorylation for their APC/C-mediated degradation (Harley, Allan 

et al. 2010, Hyun, Sarantuya et al. 2013). Furthermore, phosphorylation at the serine residue 

immediately preceding the KEN box (SKEN) in Aurora A potentiates its ubiquitylation, whilst a 

phosphomimetic mutated SKEN motif, DKEN, in NEK2A exhibited enhanced degradation compared to 

AKEN, which is unable to be phosphorylated (Littlepage and Ruderman 2002, Min, Mayor et al. 

2013). The promotion of ubiquitylation following substrate phosphorylation has been proposed to be 

due to the negative charge imparted upon the substrate following the addition of the phosphate 

group, containing a triple-negative charge (Min, Mayor et al. 2013). 
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Similarly, the acetylation of substrates also appears to be important in their regulation by the APC/C. 

Cyclin A requires acetylation by P/CAF prior to its mitotic ubiquitylation, whilst, conversely, BUBR1 

must exhibit an acetyl-SUMO switch before it can be degraded by the APC/C (Mateo, Vidal-Laliena et 

al. 2009, Mateo, Vidal-Laliena et al. 2010, Yang, Hu et al. 2012, Yang, Huang et al. 2012). The stability 

of Skp2 has also been shown to be regulated by acetylation; p300-dependent acetylation of Skp2 

protects it from degradation by the APC/C-Cdh1, whilst deacetylation by SIRT3 results in its 

recognition by Cdh1 (Inuzuka, Gao et al. 2012). Skp2 also exhibits another regulatory mechanism, 

such that its translocation from the cytoplasm to the nucleus following TGF-β signalling promotes its 

Cdh1-dependent degradation in order to halt cell cycle progression (Hu, Liu et al. 2011). 

Another method by which the activity of the APC/C can be controlled is the removal of ubiquitin from 

its substrates by a DUB prior to its degradation by the 26S proteasome. USP37, transcribed by E2F 

transcription factors, removes APC/C-mediated ubiquitin epitopes upon Cyclin A, thus ensuring its 

stability in order to promote S phase entry (section 1.3.6) (Huang, Summers et al. 2011). Similarly, 

USP2 has been shown to potentiate Emi-mediated inhibition of the APC/C (Wang and Kirschner 

2013). Another example exists in USP44, which strips the APC/C-MCC-induced ubiquitylation of 

Cdc20 following satisfaction of the SAC, allowing formation of active APC/C-Cdc20 in order to 

promote anaphase (section 1.3.2) (Stegmeier, Rape et al. 2007). In budding yeast, DUBs such as 

Ubp15 have been shown to show preference for monoubiquitin rather than polyubiquitin chains 

upon Pds1, a Securin homologue, and Cyclin B in vitro (Schaefer and Morgan 2011). Considering that 

UBE2S is dispensable for mitotic exit, Emi1 inhibits polyubiquitylation, DUBs preferentially target 

monoubiquitin, and Cyclin B1 can be degraded following multiple monoubiquitylation, these 

observations suggest that DUBs form a major regulatory mechanism for UbcH10-mediated 

ubiquitylation by the APC/C (Garnett, Mansfeld et al. 2009, Schaefer and Morgan 2011, Dimova, 

Hathaway et al. 2012, Wang and Kirschner 2013). It should, however, be noted the DUB, Cezanne, 
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can cleave polyubiquitin from K11-chains, indicating there are also regulatory elements for APC/C-

mediated polyubiquitin chains as well as monoubiquitin (Bremm, Freund et al. 2010). 

 

1.6. Transcriptional Regulation by the APC/C 
 

Nascent protein synthesis is an essential part of the cell cycle; S phase entry requires transcription of 

the replicative machinery under control of E2F transcription factors (section 1.3.6), whilst 

proliferation is inhibited by tumour suppressive transcription factors such as p53 and NF-κB (Giacinti 

and Giordano 2006). 

Other important cellular regulators are CBP and p300 (CBP/p300), which are highly related HATs 

which possess both distinct and redundant functions (Wang, Marshall et al. 2013). CBP/p300 affect 

Pol II transcription in a number of ways. Firstly, CBP/p300 can act as an assembly factor to facilitate 

pre-initiation complex formation through concomitant binding of transcription factors and 

replication machinery. Secondly, acetylation of histones by CBP/p300 or its binding partners P/CAF 

and GCN5 remodels chromatin into an active transcribable state, or, thirdly, CBP/p300 can acetylate 

transcription factors directly (e.g. p53), thus affecting their activity (Wang, Marshall et al. 2013). The 

APC/C has been shown to interact with CBP and p300, with reciprocal regulation such that CBP/p300 

potentiates APC/C activity and the APC/C facilitates CBP/p300-dependent acetylation and 

transcription (Turnell, Stewart et al. 2005). The APC/C-Cdc20 has also been shown to co-operate with 

CBP/p300 in order to transactivate UbcH10 expression (Nath, Banerjee et al. 2011). Consistent with 

the studies outlined above, overexpression of the budding yeast orthologue of CBP, Rtt109, can 

overcome an Apc5 mutant which exhibited aberrant chromatin assembly, whilst deletion of Rtt109’s 

accessory factor, Asf1, augmented the Apc5 mutant phenotype. This suggests that, in yeast, the 

regulation of chromatin by Apc5 was effected by the CBP orthologue, Rtt109 (Turner, Malo et al. 

2010).  
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One mechanism by which the APC/C is suggested to regulate transcription is by the modulation of 

histone acetylation by HATs. Indeed, it has been shown that the APC/C controls CBP/p300-dependent 

acetylation of histone H4 (Turnell, Stewart et al. 2005), whilst in yeast a number of studies have 

demonstrated the necessity of Apc5 in ensuring faithful chromatin assembly through the regulation 

of histone acetylation by various HATs, such as Gcn5, Elp3, Rtt109, the HDAC Hda1 and the chromatin 

assembly factor CAF-1 (Harkness, Davies et al. 2002, Arnason, Pisclevich et al. 2005, Harkness, 

Arnason et al. 2005, Turner, Malo et al. 2010, Islam, Turner et al. 2011). Interestingly, these studies in 

yeast from Troy Harkness’s group and our laboratory have focused predominantly upon the APC/C 

subunit APC5, suggesting it has an integral cellular function in localising the APC/C to chromatin in 

order to regulate transcription. Indeed, APC5, along with other APC/C subunits, is found upon the 

actively transcribed regions of the genome (Turnell, Stewart et al. 2005). 

The APC/C can also promote transcription by targeting repressors for proteasomal degradation. 

Examples for this have been suggested in yeast, whereby the transcriptional repressors Nrm1 and 

Yhp1 were shown to be under the proteolytic control of the APC/C (Ostapenko and Solomon 2011). 

Concomitant with remodelling of chromatin into an active state, this demonstrates a clear pro-

transcriptional outcome for the APC/C. 

Our laboratory has demonstrated that the APC/C, guided by APC5 and APC7, augments E2F1-

dependent transcription in a CBP/p300-dependent manner (Turnell, Stewart et al. 2005). Given that 

APC/C-Cdh1 can bind Rb and prevent S phase entry by promoting SKP2 degradation, and has also 

been suggested to mediate the destruction of E2F1 and E2F3, this might seem counterintuitive 

(Binné, Classon et al. 2007, Peart, Poyurovsky et al. 2010, Pines 2011, Ping, Lim et al. 2012, Dick and 

Rubin 2013). However, the prevailing hypothesis is that when the APC/C is localised to the promoters 

by APC5- and APC7-mediated interactions, such as with CBP/p300, it can ubiquitylate transcription 
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factors, thereby removing them from promoters and permitting another round of transcription 

(Turnell, Stewart et al. 2005). 

Consistent with a role for the APC/C in transcriptional control, several transcription factors have been 

described as substrates for the APC/C, including the S-phase-promoting Ets2 and FoxM1 (Park, Costa 

et al. 2008). Furthermore, Tos4 and Pdr3 were identified as putative APC/C substrates in S. cerevisiae 

(Ostapenko, Burton et al. 2012), and both initiate transcription as part of the DNA damage response 

(Zhu and Xiao 2004, Bastos de Oliveira, Harris et al. 2012). It is therefore possible that their targeting 

by the APC/C, which is re-activated as part of the DDR (section 1.3.9), is part of the theorised “clean-

up” operations of the APC/C in order to switch off the DDR. 

APC5 and APC7 have also been shown to associate with the IL-17 receptor, whereupon APC5 acts 

synergistically with A20 to repress IL-17-induced transcription (Ho, Garg et al. 2013). The mechanism 

of this inhibition has yet to be elucidated, although A20 has been shown to inhibit IL-17 signalling 

through its activity as a DUB (Garg, Ahmed et al. 2013, Ho, Garg et al. 2013). 

 

1.7. The APC/C and Cancer 
 

The APC/C has been implicated in tumourigenesis, and appears to be deregulated in a number of 

different cancers. Indeed, APC/C-Cdh1 has been described as possessing tumour suppressor activity, 

whilst the APC/C co-activator Cdc20 has been described as an oncogene (Turnell, Stewart et al. 2005, 

Penas, Ramachandran et al. 2011, Wang, Wan et al. 2013, Zhang, Wan et al. 2014). 

The observation that Cdh1 and APC/C subunits are downregulated in a number of human cancers 

supports the notion that they might possess tumour suppressor activity. Expression of Cdh1 is 

reduced in a range of tumours, including breast, prostate, ovary, liver, colon and brain (Bassermann, 

Frescas et al. 2008, Engelbert, Schnerch et al. 2008, Fujita, Liu et al. 2008, Fujita, Liu et al. 2008). Loss 
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of Cdh1 results in genetic instability which promotes tumourigenesis through increased mis-

segregation of chromosomes, aneuploidy, non-disjunction and chromosomal breaks (Ross and 

Cohen-Fix 2003, Wäsch and Engelbert 2005, Engelbert, Schnerch et al. 2008, Garcia-Higuera, 

Manchado et al. 2008). 

Similarly, APC2 expression is reduced in human cancers. In this regard the APC/C has been purported 

to promote the ubiquitylation of MDM2; loss of APC2 correlates with overexpression of MDM2 and 

p53 instability (He, Tollini et al. 2014). APC3 and APC7 are also downregulated in a number of breast 

cancers (Park, Choi et al. 2005, Pawar, Sarkar et al. 2010). Indeed, this loss of APC3 expression has 

been correlated with a poor prognosis and survival in breast cancer patients (Talvinen, Karra et al. 

2013). Furthermore, APC3, APC4, APC6, APC7 and APC8 were all shown to exist in mutant form in 

colon cancers (Wang, Moyret-Lalle et al. 2003). 

This tumour suppressive function is likely to be exerted by the targeting of APC/C substrates for 

degradation. Indeed, oncogenic APC/C substrates such as Skp2 have been shown to be 

overexpressed and relocalised in cancers, coinciding with downregulation of Cdh1 thus preventing its 

destruction (Gstaiger, Jordan et al. 2001, Signoretti, Di Marcotullio et al. 2002, Fujita, Liu et al. 2008, 

Gao, Inuzuka et al. 2009, Gao, Inuzuka et al. 2009). Furthermore, experimental knockdown of Cdh1 

expression can elicit the same phenotype as seen in vivo, whilst knockdown of Skp2 prevents further 

proliferation (Fujita, Liu et al. 2008). Other APC/C substrates have been shown to be overexpressed 

in cancer (Lehman, Tibshirani et al. 2007, Penas, Ramachandran et al. 2011), including Securin (Zou, 

McGarry et al. 1999, Heaney, Singson et al. 2000, Vlotides, Eigler et al. 2007, Smith, Franklyn et al. 

2010), Plk1 (Takai, Hamanaka et al. 2005) and Aurora kinase (Giet, Petretti et al. 2005). 

The ability of the APC/C to act as a tumour suppressor might also be elicited through its interaction 

with CBP/p300, through which it can regulate transcription (section 1.5). Deregulation of the tumour 

suppressive functions of CBP/p300 have previously been implicated in promoting tumourigenesis 



58 
 

(Wang, Marshall et al. 2013). Indeed, it has been established that APC5 and APC7 possess tumour 

suppressor capabilities through their ability to suppress E1A/activated-Ras transformation of primary 

rat embryo fibroblasts in a CBP/p300-dependent manner (Turnell, Stewart et al. 2005). 

From these data, the APC/C appears to be a good target for cancer therapy, as reactivation ought to 

ensure the degradation of its oncogenic substrates. However, APC/C subunits have also been 

described as being overexpressed in other tumours, suggesting it can also function as an oncogene. 

In particular, Cdc20 is overexpressed in a wide range of cancers and denotes a poor prognosis and 

survival (Mondal, Sengupta et al. 2007, Marucci, Morandi et al. 2008, Jiang, Jedinak et al. 2011, 

Rajkumar, Sabitha et al. 2011, Chang, Ma et al. 2012, Kato, Daigo et al. 2012, Choi, Kim et al. 2013, 

Wu, Hu et al. 2013, Ding, Wu et al. 2014, Karra, Repo et al. 2014, Kim, Choi et al. 2014, Li, Gao et al. 

2014, Moura, Delgado et al. 2014). Similarly, the E2, UbcH10, has been shown to be overexpressed in 

a plethora of cancers and is linked to a poor prognosis, whilst ectopic expression promotes aberrant 

chromosomes and mitotic slippage (Okamoto, Ozaki et al. 2003, Pallante, Berlingieri et al. 2005, 

Berlingieri, Pallante et al. 2007, Jiang, Huang et al. 2008, van Ree, Jeganathan et al. 2010, Jiang, Wang 

et al. 2012, Perrotta, Bruno et al. 2012, Zhao, Jiang et al. 2012, Morikawa, Kawai et al. 2013, Pallante, 

Malapelle et al. 2013, Zhao, Wu et al. 2013, Matsumoto, Ishibashi et al. 2014, Xie, Powell et al. 2014). 

The oncogenic properties of Cdc20 and UbcH10 are thought to stem from the early onset of 

anaphase, thus promoting genetic instability by inaccurate chromosome segregation. Surprisingly, 

both APC8 and Cdh1 have also been described as being overexpressed (Lehman, Tibshirani et al. 

2007, Zhang, Rahbari et al. 2011).  

These data clearly show that the APC/C has both tumour suppressive and oncogenic properties, and 

has subunits which are commonly up- and down-regulated, as well as substrate overexpression, in 

cancer. As such, it would be appropriate to investigate the role of the APC/C in various cancers 

further, with an aim to discover novel therapeutic strategies for cancer treatment. 
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2.1. The nucleolus and RNA Polymerase I 

The nucleolus is a distinct region of the nucleus easily visible under a phase contrast microscope. 

Following its initial documentation in the 19th century, it has since been shown to be highly 

conserved and function as a “ribosome factory”, transcribing ribosomal DNA (rDNA) to produce pre-

ribosomal RNA (pre-rRNA), which is subsequently processed to form rRNA and associated with 

ribosomal proteins to form ribosomes (Hernandez-Verdun, Roussel et al. 2010, Pederson 2011, 

Grummt 2013). 

The nucleolus has also been shown to be a vital component of a number of cellular signalling 

pathways, including a great number of stress pathways, in which it coordinates the necessary 

intracellular response and ensures temporal inhibition of ribosomal biogenesis, as well as controlling 

apoptosis, the cell cycle and telomere formation. Furthermore, it holds novel functions in mRNA 

processing and formation of the Signal Recognition Particle. The nucleolus has also been implicated 

in a number of diseases, including ribosomopathies and cancer, in which dysregulation by tumour 

suppressors and oncogenes affects ribosomal function (Drygin, Rice et al. 2010, Hernandez-Verdun, 

Roussel et al. 2010, Pederson 2011, Grummt 2013, Quin, Devlin et al. 2014). 

 

2.2.  Nucleolar architecture and mitotic regulation 
 

The nucleolus is a membrane-free organelle containing the rDNA genetic loci and a large protein 

network which forms during the latter stages of mitosis around Nucleolar Organiser Regions (NORs), 

of which human cells contain ten, upon each of chromosomes 13, 14, 15, 21 and 22. Multiple active 

NORs often cooperate to form a single nucleolus, such that mammalian cells typically contain 

between one and four, depending upon the cell type (Raska, Shaw et al. 2006, Hernandez-Verdun, 

Roussel et al. 2010, Goodfellow and Zomerdijk 2012). Interestingly, one of each NOR allele appears 
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to be inactivated in a similar manner to X-inactivation in mammalian females (Schlesinger, Selig et al. 

2009). 

About 400 rDNA repeats are found within the human genome, and are arranged in tandem arrays 

within each of the NORs. Each rDNA repeat is about 43kb in length, and consists of an intergenic 

spacer (IGS) region around 30kb long, containing enhancers and both the spacer and 47S pre-rRNA 

promoter, which is followed by a 5’External transcribed spacer (ETS), the 47S pre-rRNA gene and a 

3’ETS (Goodfellow and Zomerdijk 2012). 

The nucleolus consists of three morphologically distinct areas: the Fibrillar Centre (FC), the Dense 

Fibrillar Component (DFC) and the Granular Component (GC) (Figure Int.4). The FC contacts the DFC, 

around which the GC is formed. Each nucleolar compartment is distinct, containing different DNA 

and protein elements which relate to its function. As such, the FC contains untranscribed regions of 

rDNA, RNA Polymerase I (Pol I), Upstream Binding Factor (UBF) and Top1. These promote Pol I 

transcription either at the FC:DFC interface or in the DFC itself. The DFC contains active rDNA 

elements (section 2.3.1), and is also important in the early processing of pre-rRNA. Late pre-rRNA 

processing and ribosomal assembly occurs within the GC prior to nucleolar export (Raska, Shaw et al. 

2006, Hernandez-Verdun, Roussel et al. 2010, Goodfellow and Zomerdijk 2012).  

 

 

 

Figure Int.4 – Electron Micrograph of a purified HeLa cell 
nucleolus. 

FC: Fibrillar Centre. DFC: Dense Fibrillar Component. GC: 

Granular Component. 

Taken from (Andersen, Lyon et al. 2002). 
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During mitotic prophase, nucleoli disassemble prior to nuclear envelope breakdown (NEBD), leaving 

NORs upon the chromosomes. First rRNA processing then Pol I transcription is inhibited by mitotic 

kinases such as Cyclin B1/Cdk1, which target Pol I transcription factors, such as SL1, UBF and TTF-I 

(section 2.3.1). This is followed by the release of nucleolar proteins from the DFC and GC 

compartments, whilst condensation of chromatin occurs to form a perichromosomal compartment 

around rDNA, in which pre-rRNA and rRNA processing machinery are located. This perichromosomal 

complex remains associated with the chromosomes through mitosis, segregating accordingly during 

anaphase (Hernandez-Verdun 2011). 

Nucleolar reassembly commences in late mitosis during telophase, following APC/C-mediated 

inactivation of Cyclin B1/Cdk1 and reversal of the inhibitory phosphorylation of Pol I-specific 

transcription factors by PP1 and PP2A. Because Pol I, TTF-I, UBF and SL1 are retained in active NORs 

during mitosis, release of their inhibition ensures rapid reinitiation of rDNA transcription, since 

recruitment of the polymerase machinery is not required. In addition, nucleolar reassembly requires 

the perichromosomal compartments to reorganise with other nucleolar proteins into prenucleolar 

bodies (PNBs). Over time, proteins relocate from these PNBs into the active NORs, starting with early 

rRNA processing machinery and DFC reformation, followed by late rRNA processing machinery and 

reformation of the GC (Hernandez-Verdun 2011). 

 

2.3. RNA Polymerase I 
 

Pol I is a multi-subunit RNA Polymerase which transcribes the rDNA genes to produce the pre-rRNA 

required for ribosomal assembly. Its subunits are highly conserved throughout eukaryotes, with 

some shared between Pol I, II and III. The two largest subunits, RPA194 and RPA135, confer the 

majority of its transcriptional activity, and are unique to Pol I, together with PAF53, RPA43, PAF49 
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and RPA12. The heterodimer RPA40-RPA19 is shared between Pol I and Pol III, whilst RPB5, RPB6, 

RPB8, RPB10 and RPB12 are common to all three Pols (Russell and Zomerdijk 2006). 

 

2.4.  Ribosomal Assembly 
 

Translation of mRNA to produce nascent polypeptides occurs at the ribosomes. Therefore, the state 

of the ribosomal pool is integral to controlling de novo protein synthesis. As such, the regulation of 

ribosomal biogenesis is an important control mechanism for cellular homeostasis and the response 

to cellular stresses and stimuli, with aberrations in this pathway a driving factor for disease 

(Hernandez-Verdun, Roussel et al. 2010, Pederson 2011, Grummt 2013). 

 

2.4.1. Pol I transcription 
 

The first step in ribosomal biogenesis is the transcription of active rDNA repeats to produce a 47S 

pre-rRNA transcript. First and foremost, this requires the rDNA locus to be suitably epigenetically 

regulated such that the chromatin is in an open conformation as euchromatin (Goodfellow and 

Zomerdijk 2012). A number of nucleolar chromatin regulators have been described, including NoRC 

(Nucleolar Remodelling Complex) and eNoSC (Energy-dependent Nucleolar Silencing Complex), whilst 

UBF is also important in regulating chromatin decondensation (Chen, Belmont et al. 2004, 

Murayama, Ohmori et al. 2008, Goodfellow and Zomerdijk 2012, Guetg and Santoro 2012). 

The transcription termination protein TTF-I binds the NoRC subunit, TIP5, which recruits DNA 

methyltransferases and HDACs to inactive rDNA genes, thereby promoting heterochromatin 

formation and genetic silencing through promoter CpG methylation and histone modifications 

(Strohner, Nemeth et al. 2001, Santoro, Li et al. 2002, Zhou, Santoro et al. 2002, Goodfellow and 
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Zomerdijk 2012). The NoRC complex can also induce rDNA silencing by association with pRNAs 

produced by Pol I transcription of the IGS, although these pRNAs are also capable of inducing 

promoter methylation independently of NoRC (Mayer, Schmitz et al. 2006, Mayer, Neubert et al. 

2008, Schmitz, Mayer et al. 2010, Goodfellow and Zomerdijk 2012). 

Conversely, TTF-I can also maintain active euchromatic rDNA as well as reactivate silenced rDNA 

through its interaction with CSB and the methyltransferase G9a, whilst reactivation also requires the 

NuRD (Nucleosome Remodelling and Deacetylation) complex (Längst, Blank et al. 1997, Yuan, Feng et 

al. 2007, Guetg and Santoro 2012, Xie, Ling et al. 2012). The epigenetic state of active rDNA elements 

is similarly maintained by a number of mechanisms (Goodfellow and Zomerdijk 2012), including the 

demethylation of promoters and inhibition of methylases (Brown and Szyf 2007, Zentner, Hurd et al. 

2010), removal of methyl-Cytosine bases by the NER pathway (Schmitz, Schmitt et al. 2009) and 

histone modifications by B-WICH and PHF8 (Feng, Yonezawa et al. 2010, Vintermist, Böhm et al. 

2011). 

In order to promote rDNA transcription, Pol I associates with a number of ancillary proteins upon the 

promoter to form a pre-initiation complex (PIC). In addition to the core subunits described in section 

2.2, Pol I must also associate with SL1 (selectivity factor 1), consisting of TBP and TAF1A, TAF1B, 

TAF1C, TAF1D, and TAF12. SL1 has several roles to ensure accurate Pol I transcription, namely by 

providing promoter selectivity for Pol I by its recruitment to the 47S rDNA promoter along with UBF. 

SL1 is also important in maintaining hypomethylation of the promoter, and ensuring its correct 

structural formation (Goodfellow and Zomerdijk 2012). 

Other factors to which Pol I has to bind in order to form a PIC and initiate transcription are RRN3, CK2 

and UBF. Interestingly, Pol I exists as two different complexes, Pol Iα and Pol Iβ, and it is only Pol Iβ 

which can form a PIC (Miller, Panov et al. 2001, Goodfellow and Zomerdijk 2012). This is due to the 

inclusion of RRN3 within Pol Iβ, which binds SL1 and Pol I, promoting their interaction upon rDNA 
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promoters (Miller, Panov et al. 2001, Goodfellow and Zomerdijk 2012). Furthermore, as a constituent 

of Pol Iβ, CK2 is capable of phosphorylating TAF1C and UBF to ensure PIC formation and stability, as 

well as RRN3 to promote transcription elongation (Goodfellow and Zomerdijk 2012). 

Another important constituent of the PIC is Top2A, which interacts with RRN3 within the Pol Iβ 

holoenyzyme. This has been suggested to facilitate the interaction between the holoenzyme and the 

rDNA promoter by rearranging the torsional state of the rDNA to promote SL1-UBF-Pol Iβ binding 

(Panova, Panov et al. 2006, Goodfellow and Zomerdijk 2012, Ray, Panova et al. 2013). 

The cooperative binding between SL1 and UBF is also important in localising Pol Iβ to rDNA 

promoters and UBF-mediated transcriptional activation. Furthermore, UBF is also implicated in 

transcription initiation and promoter escape, whereby Pol I dissociates from its transcriptional 

activators such as RRN3 and starts transcribing the rDNA genetic element (Panov, Friedrich et al. 

2006, Goodfellow and Zomerdijk 2012). As well as UBF-mediated dissociation of RRN3 from Pol I, 

RRN3 phosphorylation by CK2 has also been shown to be required for promoter escape in mice 

(Bierhoff, Dundr et al. 2008, Goodfellow and Zomerdijk 2012). 

The next step in pre-rRNA synthesis is the elongation of the pre-rRNA transcript. Evidence suggests 

that SL1 and UBF are also important in this process, in that UBF binds and ensures an active 

chromatin state throughout the gene, and SL1 recruits factors to promote termination at the end of 

the elongation step as well as arranging the rDNA and nascent transcripts in a 3D conformation 

which prevents their entanglement (Stefanovsky, Langlois et al. 2006, Denissov, Lessard et al. 2011, 

Goodfellow and Zomerdijk 2012). Other nucleolar proteins have also been described as having a 

function in Pol I transcript elongation, including Nucleolin, the FACT complex and B23, as well as a 

series of chromatin remodelling enzymes, including histone methylases and HATs (Goodfellow and 

Zomerdijk 2012). Furthermore, Top2A functions as part of Pol Iβ, which relieves torsional stress 

exhibited during Pol I transcription (Panova, Panov et al. 2006, Goodfellow and Zomerdijk 2012). 
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Although it is not part of Pol Iβ, Top1 has also been implicated in transcriptional elongation, 

potentially functioning with BLM helicase (El Hage, French et al. 2010, Goodfellow and Zomerdijk 

2012, Grierson, Acharya et al. 2013). In yeast, Top2A relieves positive torsional stress preceding the 

Pol I enzyme, whilst Top1 functions after Pol I to remove negative torsion (French, Sikes et al. 2011). 

There is also evidence for successive Pol I holoenzymes to interact upon rDNA, ensuring a continuous 

chain of Pol I holoenzymes transcribing the rDNA loci, facilitating pre-rRNA production (Albert, Léger-

Silvestre et al. 2011). 

The final step in Pol I transcription is termination, which is mediated by TTF-I. TTF-I can bind to the 

termination domains and force the arrest of the Pol I holoenzyme, which stimulates the PTRF-

dependent release of Pol I and pre-rRNA transcript from the rDNA (Jansa and Grummt 1999, 

Goodfellow and Zomerdijk 2012, Németh, Perez-Fernandez et al. 2013). In yeast, there is evidence 

that the RPA12 homologue acts as a termination factor, cleaving the 3’ end of pre-rRNA (Prescott, 

Osheim et al. 2004, Kuhn, Geiger et al. 2007, Goodfellow and Zomerdijk 2012). However, in 

mammals, RPA12 is not involved in termination, and the 3’ trimming of pre-rRNA is not mediated by 

polymerases, nor is it required for termination (Kuhn and Grummt 1989, Németh, Perez-Fernandez 

et al. 2013). 

The presence of multiple independent methods to ensure timely transcription termination would 

indicate that it is an important cellular process. The reason for such fail-safe mechanisms could be 

explained by the observation that terminated transcripts promote reinitiation of Pol I transcription, 

thereby increasing the rate of pre-rRNA synthesis compared to run-off transcripts (Jansa, Burek et al. 

2001). Indeed, this phenomenon was only seen upon measuring multiple rounds of transcription, 

suggesting it made little difference to the efficiency of the first transcript produced (Jansa, Burek et 

al. 2001). 
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The reinitiation of Pol I transcription is primarily driven by the creation of loops within rDNA, caused 

by the binding of TTF-I to multiple binding sites within the rDNA array, including the termination 

domain downstream of one rDNA genetic element and the two juxtaposed domains in between the 

spacer and 47S pre-rRNA promoter within the neighbouring rDNA repeat (Németh, Guibert et al. 

2008). Reinitiation of transcription also appears to require the termination factor PTRF, the 

selectivity factor SL1 and c-Myc signalling, as well as the reassociation of RRN3 (Jansa, Burek et al. 

2001, Shiue, Berkson et al. 2009, Denissov, Lessard et al. 2011, Goodfellow and Zomerdijk 2012). 

Indeed, SL1 and UBF remain bound upon the promoter, thus when Pol I finishes one round of 

transcription, it can reform the Pol Iβ complex with SL1, UBF and RRN3 at neighbouring promoters, 

but only if FCP1 has removed the CK2-mediated inhibitory phosphorylation of RRN3 (Bierhoff, Dundr 

et al. 2008, Goodfellow and Zomerdijk 2012). 

 

2.4.2. Pre-rRNA processing and ribosomal assembly 
 

Ribosomal assembly requires four rRNAs: 28S, 18S and 5.8S from Pol I transcripts and 5S from Pol III 

(Fatica and Tollervey 2002, Mullineux and Lafontaine 2012). As such, the initial 47S pre-rRNA 

transcript requires processing in order to cleave it into the three mature rRNAs, which requires a 

multitude of proteins, with a screen identifying 286 in humans, including nucleases and helicases, as 

well as small nucleolar RNAs (snoRNAs) (Fromont-Racine, Senger et al. 2003, Henras, Soudet et al. 

2008, Mullineux and Lafontaine 2012, Tafforeau, Zorbas et al. 2013). Concomitant with rRNA 

cleavage are maturation events, such as pseudouridylation and methylation, and the association with 

proteins to form pre-ribosomes (Fatica and Tollervey 2002, Henras, Soudet et al. 2008, Mullineux and 

Lafontaine 2012). 



67 
 

The first processing event within human cells is the rapid trimming of the 47S pre-rRNA within the 5’-

ETS and the 3’-ETS to produce a 45S pre-rRNA. In yeast, but not mammals, the initial pre-rRNA 

cleavage events occur co-transcriptionally under the control of Rnt1, exonucleases and RNA helicases 

(Braglia, Heindl et al. 2010, Braglia, Kawauchi et al. 2011, Goodfellow and Zomerdijk 2012). 

 Two separate pathways can be engaged to generate all three rRNAs, depending upon the order of 

cleavages. In pathway 1, the 45S pre-rRNA is first trimmed within the 5’- and 3’-ETS regions to 

produce a 41S rRNA intermediate, following by cleavage within the Internal Transcribed Spacer (ITS), 

ITS1, between the 18S and 5.8S rRNA genes to produce 32S and 21S rRNA precursors. In pathway 2, 

the 45S pre-rRNA is first cleaved within ITS1, yielding a 32S and a 30S precursor; the 30S precursor is 

then cleaved to produce the 21S precursor, realigning the two pathways. The 21S pre-rRNA is 

subsequently trimmed to produce an 18S-E rRNA, which shuttles into the cytoplasm, whereupon it 

undergoes final processing to produce the 18S rRNA. The 32S pre-rRNA is similarly cleaved within 

ITS2 (between the 5.8S and 28S rDNA genes) to produce the 28S rRNA and a 12S pre-rRNA, which 

relocates to the cytoplasm and is spliced to produce the 5.8S rRNA (Mullineux and Lafontaine 2012). 

These events occur within pre-ribosomal structures, containing all the proteins necessary for pre-

rRNA processing. As such, the initial splicing occurs as part of a pre-90S ribosome within the DFC. 

Following production of the 21S precursor, this is then incorporated into the pre-40S ribosome, 

which shuttles into the cytoplasm for final processing. Similarly, the pre-60S ribosome, after 

separation of the pre-40S particle from the pre-90S ribosome, undergoes processing starting in the 

DFC, then the GC and nucleoplasm prior to cytoplasmic relocalisation and final maturation (Fromont-

Racine, Senger et al. 2003, Henras, Soudet et al. 2008). 

The non-ribosomal proteins incorporated within each pre-ribosome decrease over the maturation 

pathway, suggesting that as proteins are not needed and the pre-ribosome translocates from the 

nucleolus into the nucleoplasm and cytoplasm, they become excluded from the pre-ribosomal 
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complex (Henras, Soudet et al. 2008). Furthermore, human ribosomal proteins have been shown to 

be associated with pre-ribosomes at different stages; proteins which coordinate early cleavage 

events associate with early pre-ribosomes, whilst those which mediate later processing events 

associate with late pre-ribosomes (Robledo, Idol et al. 2008, O'Donohue, Choesmel et al. 2010, 

Mullineux and Lafontaine 2012). These late ribosomal proteins are also necessary for the migration 

of pre-ribosomes from the nucleolus into the nucleoplasm, and the subsequent translocation into the 

cytoplasm prior to final maturation (Rouquette, Choesmel et al. 2005, O'Donohue, Choesmel et al. 

2010, Mullineux and Lafontaine 2012). 

The cleavage events themselves are mediated by either an endonuclease or exonuclease in 

cooperation with RNA helicases and sno-RNAs (Fatica and Tollervey 2002, Fromont-Racine, Senger et 

al. 2003, Henras, Soudet et al. 2008, Sloan, Mattijssen et al. 2013). The precise functions of all the 

proteins within the pathway have not been identified within mammalian cells; however, they are 

well documented in yeast (Fatica and Tollervey 2002, Fromont-Racine, Senger et al. 2003, Sloan, 

Mattijssen et al. 2013). A large number of different endo- and exo-nucleases have been described in 

yeast, many of which have human homologues, including the Exosome/Rrp6, RNase MRP, Rat1, Xrn1 

and the helicase Mtr4 (Fatica and Tollervey 2002, Fromont-Racine, Senger et al. 2003, Henras, 

Soudet et al. 2008). Given that different nucleases catalyse different cleavage events, this would 

suggest a highly regulated system, such that rRNA processing can be fine-tuned by modulation of 

individual cleavages (Fatica and Tollervey 2002, Henras, Soudet et al. 2008). 

The snoRNAs are vital for enhancing these cleavage events, in particular the box C/D U3 sno-RNA, 

which forms an integral part of the U3 snoRNP and is required for early processing and 18S precursor 

stability in both yeast and humans (Fatica and Tollervey 2002, Fromont-Racine, Senger et al. 2003, 

Henras, Soudet et al. 2008, Mullineux and Lafontaine 2012). Other protein complexes, such as t-UTP 

(U Three Protein Complex), UTP-B or UTP-C, also associate with pre-rRNA to form the small subunit 
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processome, and are important for their cleavage (Fromont-Racine, Senger et al. 2003, Henras, 

Soudet et al. 2008). The U3 snoRNP complex probably acts as a chaperone, mediating correct folding 

through complementary base-pair binding, which subsequently permits cleavage in a process 

requiring supplementary binding- and stability-factors, as well as either an exonuclease or 

endonuclease and an RNA helicase (Hughes and Ares 1991, Henras, Soudet et al. 2008). 

Other snoRNAs are also important in the production of mature rRNAs, including U8 (which is absent 

in yeast), U22, U14, U17/snR30, U33 and snR10 (absent in mammals), whilst others function only in 

ensuring accurate rRNA modifications (Henras, Soudet et al. 2008, Watkins and Bohnsack 2012). To 

form snoRNPs, the box C/D snoRNAs associate with NOP56, NOP58, h15.5K/Snu13 and 

Fibrillarin/Nop1, whilst H/ACA snoRNAs bind NOP10, NHP2, GAR1 and Dyskerin/Cbf5 (Fromont-

Racine, Senger et al. 2003, Watkins and Bohnsack 2012). The pseudouridine and 2’-O-methyl 

modifications exhibited upon rRNAs are important in regulating their structure, and are formed 

under the control of snoRNAs. Uridines are converted to pseudouridines by the Dyskerin/Cbf5 

component of H/ACA-type snoRNAs, whilst box C/D sno-RNAs promote methylation of the ribose 2’-

O through Fibrillarin/Nop1 (Fromont-Racine, Senger et al. 2003, Henras, Soudet et al. 2008, 

Mullineux and Lafontaine 2012, Watkins and Bohnsack 2012). These modifications persist upon 

mature rRNAs, and are suggested to play a role in ribosomal function (Henras, Soudet et al. 2008, 

Mullineux and Lafontaine 2012). 

Finally, following pre-60S and pre-40S pre-ribosomal export into the cytoplasm, the pre-ribosomes 

undergo maturation such that all non-ribosomal proteins are excluded and all ribosomal proteins 

become incorporated. PTMs which are required for its activation, such as dephosphorylation occur at 

this time (Fatica and Tollervey 2002, Henras, Soudet et al. 2008). The mature 60S ribosome contains 

the 28S, 5.8S and 5S rRNAs, whilst the 40S ribosome contains the 18S rRNA. Interestingly, the 5.8S 

rRNA exists as long and short forms, 5.8SL and 5.8SS (Fromont-Racine, Senger et al. 2003, Heindl and 
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Martinez 2010, Morello, Hesling et al. 2011, Mullineux and Lafontaine 2012). Given that a 60S 

ribosome only incorporates one of these forms, it has been suggested that these might hold a 

preference for different mRNA forms (Mullineux and Lafontaine 2012). 

 

2.5. The nucleolus and stress 
 

The nucleolar proteome is dynamic, such that proteins are constantly shuttling between the 

cytoplasm, nucleoplasm and nucleolus. They provide surveillance and can relocate in order to signal 

and respond to endogenous and exogenous stimuli (Andersen, Lam et al. 2005, Mayer and Grummt 

2005, Bański, Kodiha et al. 2010, Boisvert and Lamond 2010, Boulon, Westman et al. 2010, Grummt 

2013). These proteins can then elicit a response, and promote a downstream signalling cascade 

causing cell cycle arrest or apoptosis, whilst inducing the shut-off of ribosome production in order to 

save energy (Mayer and Grummt 2005, Boulon, Westman et al. 2010, Grummt 2013). A plethora of 

endogenous and exogenous stimuli can induce these nucleolar changes, including nutrient 

deprivation, hypoxia, and heat shock, as well as genotoxic, metabolic, ribotoxic, transcriptional and 

osmotic stresses. These all have common effector mechanisms to shut down the production of 

ribosomes, detailed below (Mayer and Grummt 2005, Boulon, Westman et al. 2010, Grummt 2013). 

Inhibition of Pol I transcription through any stress response or nucleolar disassembly activates and 

sequesters p53 within the nucleolus, promoting cell cycle arrest and apoptosis (Rubbi and Milner 

2003, Wsierska-Gadek and Horky 2003, Mayer and Grummt 2005, Boulon, Westman et al. 2010, 

Grummt 2013). In the absence of de novo pre-rRNA production, B23, p14ARF and ribosomal proteins 

associate with and inhibit HDM2/Mdm2, which reduces its ubiquitylation of p53, causing its 

stabilisation and accumulation (Zhang, Wolf et al. 2003, Kurki, Peltonen et al. 2004, Yuan, Zhou et al. 

2005). 
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Modulation of ribosomal production occurs at numerous steps, including regulation of Pol I, rDNA 

transcription, rRNA processing and ribosome assembly. This can be produced by direct modification 

of proteins, such as those involved in PIC formation, epigenetic regulation of rDNA or even 

reorganisation of nucleolar structure, thereby affecting the spatial regulation of rRNA processing and 

transport (Mayer and Grummt 2005, Boulon, Westman et al. 2010, Grummt 2013). 

Repression of Pol I transcription can occur in a number of ways, one of which is the inhibition of 

RRN3/TIF-IA. Stress signalling activates the MAP kinase JNK2, whilst nutritional stress inhibits the 

mTOR (mammalian target of rapamycin) pathway, which both result in the phosphorylation of 

RRN3/TIF-IA, albeit on different sites, thus inhibiting its association with Pol I and SL1 as well as 

forcing its relocalisation into the nucleoplasm, preventing PIC formation (Davis 2000, Mayer, Zhao et 

al. 2004, Mayer, Bierhoff et al. 2005, Weston and Davis 2007). Similarly, metabolic stress, such as low 

levels of ATP, stimulate AMPK (AMP-activated protein kinase) which also phosphorylates RRN3/TIF-IA 

at a different site to JNK2 or mTOR, and prevents association with SL1 but not Pol I (Hoppe, Bierhoff 

et al. 2009).  

Similarly, the acetylation status of the SL1 subunit, TAFI68/TAF1B is also important in the regulation 

of Pol I transcription. In interphase, P/CAF acetylates TAF1B to promote its association with the rDNA 

promoter, whilst its deacetylation by the HDAC SIRT1 in response to oxidative stress and energy 

levels represses transcription initiation (Muth, Nadaud et al. 2001). Conversely, the HDAC SIRT7 

promotes Pol I transcription by deacetylating the Pol I subunit PAF53, thereby enhancing the 

association of Pol I with rDNA and facilitating elongation (Ford, Voit et al. 2006, Chen, Seiler et al. 

2013). Following various stress responses, SIRT7 is excluded from nucleoli, whereupon CBP acetylates 

PAF53, repressing transcription (Chen, Seiler et al. 2013). 

The transcription termination and reinitiation protein, TTF-I, has also been shown to be regulated in 

response to stress. Its nucleolar localisation is usually controlled by B23, however this interaction is 
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blocked by p14ARF following nucleolar stress, sequestering TTF-I within the nucleoplasm and 

therefore inhibiting Pol I transcription (Lessard, Morin et al. 2010). Interestingly, the protein levels of 

TTF-I have been shown to be tightly regulated, such that both overexpression and underexpression 

represses ribosome production. This is regulated by the antagonistic relationship between p14ARF and 

HDM2/Mdm2, such that p14ARF inhibition of HDM2/Mdm2 following stress alleviates its targeting of 

TTF-I for proteolysis, thus stabilising TTF-I and inhibiting efficient pre-rRNA synthesis (Lessard, 

Stefanovsky et al. 2012). 

Similarly, UBF protein levels have been shown to fluctuate in response to serum starvation in order 

to control Pol I transcription; however, this was achieved through modulation of de novo UBF protein 

synthesis rather than ubiquitylation-mediated instability (Glibetic, Taylor et al. 1995). However, the 

ability of UBF to control Pol I transcription and elongation is also impaired as part of a p53-

independent stress response through its dephosphorylation downstream of p14ARF (Ayrault, Andrique 

et al. 2006). A p53-dependent response also exists, whereby p53 binds to SL1 and prevents its 

interaction with UBF, preventing the formation of the Pol I-SL1-UBF complex and inhibiting 

transcription initiation (Zhai and Comai 2000). 

There is also evidence that the epigenetic state of rDNA can be altered upon cellular stress. In 

particular, the eNoSC complex, consisting of Nucleomethylin, SIRT1 and the methyltransferase 

SUV39H1, induces heterochromatin formation upon active rDNA genes in response to glucose 

starvation and reduced energy levels (Murayama, Ohmori et al. 2008), whilst the TIP5 subunit of 

NoRC regulates rDNA silencing in response to serum starvation (Zillner, Filarsky et al. 2013). Similarly, 

the demethylase KDM2A removes the pro-transcriptional methylation of histone H3 on rDNA 

elements in a response to starvation (Tanaka, Okamoto et al. 2010). 

The inhibition of rDNA transcription, whether by stresses, for example DNA damage, or chemical 

treatments such as Actinomycin D (Act D), promotes a dramatic reorganisation of the nucleolus, such 
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that the GC and DFC dissociate, with the resulting structure condensing together with nucleoplasmic 

proteins to form a nucleolar cap (Reynolds, Montgomery et al. 1964, Simard and Bernhard 1966, 

Shyy, Subjeck et al. 1986, Govoni, Farabegoli et al. 1994, Andersen, Lam et al. 2005, Shav-Tal, 

Blechman et al. 2005, Grummt 2013). This spatial separation of the FC, DFC and GC inhibits the later 

stages of the rRNA processing pathway, thus inhibiting ribosomal assembly and nuclear export. 

Relocalisation of proteins is an important mechanism for the control of ribosomal assembly, and has 

already been described in the case of SIRT7, TTF-I and RRN3/TIF-IA (Mayer, Zhao et al. 2004, Mayer, 

Bierhoff et al. 2005, Lessard, Morin et al. 2010, Chen, Seiler et al. 2013). 

 

3. Aims 

The APC/C targets substrates for proteasomal degradation in order to coordinate cell cycle 

progression (Pines 2011, Primorac and Musacchio 2013). As such, the precise regulation  of the 

APC/C is imperative for accurate cell division and the maintenance of genetic stability (Wasch, 

Robbins et al. 2010, Penas, Ramachandran et al. 2011); this is achieved primarily through the 

modulation of APC/C activation by Cdc20 and Cdh1, and the affinity of the APC/C holoenzyme for 

E2’s and substrates (Pines 2011, Chao, Kulkarni et al. 2012, Frye, Brown et al. 2013, Primorac and 

Musacchio 2013, Wang and Kirschner 2013). 

The aims of this study were to identify and characterise novel APC/C substrates, regulators and post-

translational modifications, and consequently define new functions of the APC/C. The prinicipal 

experimental objectives were: firstly, to identify novel APC/C-interacting proteins by mass 

spectrometric analysis of APC/C subunit and co-activator immunoprecipitates and characterise 

functionally APC/C interactions with new partner proteins, and secondly, to determine the role of 

acetylation in the regulation of APC/C activity. 
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4. MATERIALS AND METHODS 
 

4.1. Cell Culture, Drug Treatments and Irradiation 

HeLa (human cervical adenocarcinoma) and A549 (human lung carcinoma) cell lines were passaged in 

growth medium (High Glucose DMEM (Sigma; D5796) supplemented with 8% (v/v) FCS (Sigma)) and 

cultured in a humidified incubator at 37°C, 5% (v/v) CO2. HeLa cells are known to contain integrated 

HPV18 genomes, resulting in the overexpression of C-MYC, as well as a hypertriploid genome (3n+; 

modal chromosome number=82) and numerous chromosomal rearrangements (Chen 1988, Macville, 

Schröck et al. 1999). HeLa cells do not contain functional p53 due to the presence of the HPV18 E6 

protein (May, Jenkins et al. 1991). A549 cells are hypotriploid (modal chromosome number=66), but 

have wild-type p53. The growth medium for U2OS-TetR cells (human osteosarcoma; hypertriploid 

but express wild-type p53; stably transfected with pcDNA6-TR expressing the TetR (Tet Repressor) 

gene (Life Technologies)) was supplemented with 5μg/ml Puromycin (Life Technologies) and 

1.5μg/ml Blasticidin (Source Bioscience) after infection, and HeLa-FRT cells (HeLa cells containing 

integrated pFRT⁄lacZeo (Life Technologies)) were supplemented with 1.5μg/ml Blasticidin and 

500μg/ml Zeocin (Life Technologies) before transfection and 1.5μg/ml Blasticidin together with 

200μg/ml Hygromycin B (Life Technologies) after transfection. Spodoptera frugiperda (Sf9) cells were 

grown in TMN-FH medium (Gibco) in a humidified incubator at 26°C, 5% (v/v) CO2. Cells were 

trypsinised using TrypLE express (Life Technologies) for 5 min at 37°C, followed by neutralisation in 

growth medium and centrifugation at 300g for 5 min. Pelleted cells were resuspended in growth 

medium and, typically, one fifth were reseeded onto a new dish. If a precise number of cells were 

required, the density of cells was determined using a haemocytometer (Sigma) and an inverted 

phase-contrast microscope (Nikon eclipse TS100). 
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Cells were synchronised in mitosis by treatment with 400ng/ml nocodazole (Sigma) for 20h. Mitotic 

cells were released by mechanical shake-off, washed in Phosphate-Buffered Saline (PBS) and 

reseeded into fresh medium for the time required. 

Pre-rRNA synthesis was inhibited by incubation with Actinomycin D (Fisher Scientific) either at 0, 0.1, 

0.5, 1 or 5μg/ml for 2h, or at 0.1μg/ml for 0, ½, 1, 2, 4, 8 or 24h. 

Cells were arrested in G1/G0 by glucose and/or serum starvation. HeLa cells were incubated with 

DMEM powder (Sigma; D5030) dissolved in ddH2O containing 0.375% (w/v) sodium bicarbonate and 

2mM L-Glutamine (Sigma) and passed through a sterile 0.22μm syringe filter. Cells were then 

incubated with this media, or further supplemented with 4.5g/l Glucose and/or 10% (v/v) FCS for 

20h. 

DNA damage was induced by irradiating cells with either 25J/m2 UV-C or 5 Gy of Ionising Radiation 

(IR) and left to recover in full growth medium for 1, 2, 4, 8 or 24h. Alternatively, cells were treated 

with Cisplatin (David Bull Laboratories) either at 0, 10, 20, 30, 40 or 50μg/ml for 16h, or at 20μg/ml 

for 0, 2, 4, 8, 16, 24 or 48h. 

 

 

4.2. siRNA-mediated knockdown 

3x105 HeLa cells were seeded onto a 6cm dish 18h prior to transfection. 4μl of 40μM siRNA duplexes 

(Ambion; Table 9) was incubated for 20 min with 1ml OptiMEM and 10μl Lipofectamine RNAiMAX 

(both Life Technologies), then applied to the cells for 6h, washed and fresh growth medium applied. 

Cells were harvested 72 h post-knockdown.  
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Target Protein 5’-3’ Sequence 

APC3 GGAAAUAGCCGAGAGGUAAdTdT 

APC5 AACCTCCGTGTTCAAGATGTTdTdT 

APC7 AAGAGCGATCAACACCATCTGdTdT 

APC8 GAAAUUAAAUCCUCGGUAUdTdT 

Cdc20 CCUUGUGGAUUGGAGUUCUdTdT 

Cdh1 CGACUUCUACCUCAAUCUGdTdT 

Non-Silencing (LacZ) CGUACGCGGAAUACUUCGAdTdT 

CBP AATCAACTCCTGTGTCGTCTTdTdT 

P300 AAGTTCAAACGCCGAGTCTTCdTdT 

 
Table 9 – sequence of siRNAs used in this study 

 

4.3. Generation of dox-inducible APC3 shRNA cell line 

APC3 shRNA sequences were synthesised, with sequences: shRNA1 For – 

GATCCCCGGAAATAGCCGAGAGGTAATTCAAGAGATTACCTCTCGGCTATTTCCTTTTTA and Rev – 

AGCTTAAAAAGGAAATAGCCGAGAGGTAATCTCTTGAATTACCTCTCGGCTATTTCCGGG; shRNA2: For – 

GATCCCCCAAAAGAGCCTTAGTTTAATTCAAGAGATTAAACTAAGGCTCTTTTGTTTTTA and Rev – 

AGCTTAAAAACAAAAGAGCCTTAGTTTAATCTCTTGAATTAAACTAAGGCTCTTTTGGGG. 3µg of each 

complementary oligonucleotide strand were annealed in 48μl annealing buffer (100mM NaCl, 50mM 

HEPES pH7.4) and incubated at 90°C for 4 min, 70°C for 10 min and step-cooled to 37°C for 20 min 

then step-cooled to room temperature.  The annealed oligos were cloned into a 

pSuperior.Retro.Puro cDNA (Oligoengine) and transfected into 293FT viral packaging cells using 

Lipofectamine 2000 and OptiMEM (Life Technologies). 48h after transfection, viral progeny were 

harvested from the medium, passed through a sterile 0.22μm syringe filter and used to infect U2OS-

TetR cells (Grant Stewart, University of Birmingham). 24h after infection, U2OS-TetR cells were 



77 
 

selected for positive clones by the addition of 5μg/ml Puromycin and 1.5μg/ml Blasticidin into the 

growth medium. APC3 shRNA expression was induced by treatment with Doxycycline (Dox; Clontech) 

at 0, 1, 5, 10 or 50μg/ml for 48h or 72h. 

4.4. Targeted recombination of DNA into HeLa-FRT cell lines 

Flag-APC3 was mutated to become resistant to siRNA, and was cloned into pcDNA5-FRT (Jakob 

Nilsson, University of Copenhagen). Flag-APC3-pcDNA5-FRT K336 was mutated to Q or R. An siRNA-

resistant 3xFlag-APC8-pcDNA5-FRT (Jakob Nilsson) was used as a template to mutate K359 and K396 

to either Q or R. 0.5μg of these pcDNA5-FRT cDNAs were co-transfected with 4.5μg pOG44 (Life 

Technologies) using the following protocol: HeLa-FRT cells (Stephen Taylor, University of 

Manchester) were seeded onto a 6cm dish in antibiotic-free growth medium to 80% confluency. DNA 

was mixed with OptiMEM (Life Technologies) to a total volume of 200μl, and 10μl of Lipofectamine 

2000 (Life Technologies) was mixed with 190μl OptiMEM for 5 min. The mixtures were then 

incubated together for a further 15 min, and then added to HeLa-FRT cells incubated in 1.6ml 

OptiMEM for a total of 8h. 24h post-transfection, cells were seeded onto a 10cm dish. 48h later, cells 

were selected with 1.5μg/ml Blasticidin (Source Bioscience) and 200μg/ml Hygromycin B. 

4.5. Adenoviral infection 

2x106 HeLa cells were seeded onto 10cm dishes and infected with 20pfu/cell of an adenovirus vector 

containing either LacZ or HA-Apoptin cDNA (Jose Teodoro, McGill University) in 2ml serum-free 

DMEM for 2h, followed by further incubation in growth medium for 60h. 

4.6. Preparation of Whole-Cell Extracts 

Lysates were obtained by washing cells twice in ice-cold saline, and scraping into lysis buffer. For 

Western blotting, cells were lysed in UTB (9M Urea, 50mM Tris-HCl pH 7.5, 0.15M β-

Mercaptoethanol), whilst Immunoprecipitations (IPs) were typically performed in NETN (250mM 

NaCl, 0.5mM EDTA (Ethylenediaminetetraacetic acid) pH 8, 50mM Tris-HCl pH 7.5, 1% (v/v) Nonidet-
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P40 (NP-40)). Cells used for IPs of CBP and p300 for in vitro acetyltransferase assays were lysed in 

50mM Tris pH 8, 150mM NaCl, 1mM EDTA pH 8, 10mM sodium butyrate, 0.5% (w/v) sodium 

deoxycholate and 0.5% (v/v) NP-40. For UTB, the sample was sonicated for 10s on ice, whilst samples 

prepared in NETN were subjected to Dounce homogenisation with a tight pestle for 2x10 strokes. 

The lysates were then cleared by centrifugation at 16,200g for 30 min at 4°C. 

4.7. Protein Concentration Determination 

A 1mg/ml solution of Bovine Serum Albumin (BSA; Sigma) was diluted in Bradford reagent (Bio-Rad) 

to a final concentration of 0, 5, 10, 20, 30μg/ml and the absorbance at 595nm calculated upon a Cecil 

CE9200 spectrophotometer to give a standard curve. 2μl of protein lysate/GST-protein was added to 

1ml Bradford reagent, and the absorbance at 595nm compared to the standard curve to give protein 

concentration. 

4.8. Nuclear Fractionation 

A method to perform cellular fractionation into nucleolar and nucleoplasmic fractions was adapted 

from a published protocol from Angus Lamond’s group (Andersen, Lyon et al. 2002). 5x10cm dishes 

of confluent HeLa cells were obtained by trypsinisation and allowed to swell in 5ml hypotonic buffer 

(Buffer A; 10mM HEPES pH 7.9, 10mM KCl, 1.5mM MgCl2, 0.5mM DTT) for 5 min. Pure nuclei were 

obtained by Dounce homogenising with a tight pestle on ice for 20 strokes, left on ice for 10 min, 

followed by another 20 strokes. The selective permeabilisation of the plasma membrane and the 

retention of intact nuclei were checked using an inverted phase-contrast microscope (Nikon eclipse 

TS100) as were all subsequent steps. The nuclei were pelleted by centrifugation at 218g for 5 min at 

4°C and purified by resuspension in 3ml Buffer S1 (0.25M Sucrose, 10mM MgCl2) and layering over 

3ml Buffer S2 (0.35M Sucrose, 0.5mM MgCl2) followed by centrifugation at 1,430g for 5 min at 4°C. 

The nuclear pellet was resuspended in 3ml Buffer S2 and sonicated on ice at 35% amplitude for 

8x10s, with 10s intervals in between. Further 10s bursts were performed if all nuclei had not lysed. 
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Sonicated nuclei were then layered over 3ml Buffer S3 (0.88M Sucrose, 0.5mM MgCl2) and 

centrifuged at 3,000g for 10 min at 4°C. To purify nucleoli, the nucleolar pellet was resuspended in 

0.5ml Buffer S2 and centrifuged at 1,430g for 5 min at 4°C. This nucleolar pellet was then 

resuspended in lysis buffer and sonicated for a further 30s to disrupt the nucleolus completely. 

4.9. FPLC (Fast Protein Liquid Chromatography) 

Pure nucleoli were solubilised in FPLC Buffer A (20mM Tris pH 7.5, 100mM NaCl, 20mM β-

glycerophosphate, 0.2% (v/v) NP-40, 10% (v/v) glycerol, 0.5mM DTT and cOmplete, Mini protease 

inhibitors (Roche)) and passed through a 0.22μm syringe filter. 2.5mg of nucleolar lysate was loaded 

onto a pre-equilibrated Superose-6 column (GE Healthcare) and run at a flow rate of 0.5ml/min and 

pressure limit of 1.5MPa. 0.5ml fractions were collected and precipitated using 1ml 100% (v/v) EtOH, 

followed by centrifugation to pellet the protein. The protein pellet was resolubilised using UTB and 

sonicated prior to SDS-PAGE and Western blot analysis. 

4.10. Immunoprecipitation (IP) 

Cells were generally lysed in NETN for IPs, except for in vitro enzyme assays (see sections 4.6 and 

4.20). Typically, 5μg of antibody was added to lysates, and incubated overnight at 4°C, 15rpm. 

Negative controls were performed in which the lysates were incubated with non-specific antibodies 

raised in the same host species as the IP antibody (“normal IgG”). 10μl of packed Protein G-Agarose 

beads (KPL) were then added, and incubated for an additional 2h at 4°C, 15rpm. The beads were 

washed 6x by centrifugation at 2,800g, 4°C and resuspended in lysis buffer. For mass spectrometry, 

20µg of antibody and 20µl of packed Protein G-agarose beads were used. 

4.11. SDS-PAGE 

Samples were boiled in sample buffer (6M Urea, 33.3mM Tris pH 7.5, 3.33% (w/v) Sodium Dodecyl 

Sulphate (SDS), Bromophenol Blue) and separated by SDS-PAGE (SDS-Polyacrylamide Gel 

Electrophoresis) in running buffer (100mM Tris, 100mM Bicine, 0.1% (w/v) SDS) using a vertical gel 
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electrophoresis system (Hoefer), typically run overnight at 14mA. Continuous acrylamide gels were 

cast, containing 100mM Tris, 100mM Bicine, 0.1% (w/v) SDS, 150μl TEMED and 300μl 10% (w/v) APS 

(all Sigma) made up to 50ml with the desired volume of acrylamide/bis-acrylamide (37.5%) (Severn 

Biotech) and ddH2O. For mass spectrometry, samples were boiled in NuPAGE LDS sample buffer (4x) 

and run on a NuPAGE 4-12% tris/bis-tris gel (both Life Technologies) in MOPS running buffer (50mM 

MOPS, 50mM Tris, 0.1% (w/v) SDS, 1mM EDTA pH 7.7) at 100V until fully resolved. 

4.12. Western Blotting 

Proteins were separated by SDS-PAGE, then transferred onto a nitrocellulose membrane (VWR) for 

6h at 275mA in transfer buffer (24mM Tris, 193mM Glycine, 20% (v/v) MeOH). Membranes were cut 

to size, washed in TBST (Tris-buffered Saline – Tween 20; 20mM Tris-HCl pH 7.5, 150mM NaCl, 0.1% 

(v/v) Tween-20), then blocked in blocking buffer, consisting of 5% (w/v) milk powder in 1x TBST. 

Antibodies were diluted in blocking buffer at the desired dilution (Table 10) and incubated overnight 

at 4°C on a rocker. Blots were washed 3x15 min in TBST followed by incubation with secondary 

antibody conjugated to HRP (Table 10) for 2h at room temperature on a rocker. Blots were washed 

3x15 min in 1x TBST and visualised using Immobilon Western Chemiluminescent HRP Substrate 

(Millipore) and X-ray film (Wolf Laboratories). 
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Protein Species Manufacturer 
Catalogue/ 
Clone No. 

 
   

IF 
IP 

(WB) 
IP 

(MS) 
WB 

Ac-K Rabbit Upstate 06-933 - 5µg - 1:500 

β-Actin Mouse Sigma A2228 - - - 1:10000 

APC1 Rabbit Bethyl A301-653A 1:50 - - - 

APC3 Mouse 
CRUK/Hiro 

Yamano 
AF3.1 - 

5µg/ 
200μl 

20µg/ 
600μl 

- 

APC3 Mouse BD Biosciences 610455 - 5µg - 1:2000 

APC5 Mouse In-house  #4 1:50 5µg 20µg 1:2000 

APC5  Mouse In-house #24 1:1 - - - 

APC7 Rabbit In-house #197 1:50 5µg 20µg 1:2000 

B23 Rabbit Santa Cruz sc-6013-R - - - 1:1000 

BrdU Mouse Sigma B2531 1:1000 - - - 

CBP Rabbit Santa Cruz A-22 - 5µg - 1:200 

Cdc20 Mouse Santa Cruz sc-13162 - - 20µg 1:1000 

Cdh1 Mouse Calbiochem DH01 - - 20µg - 

Cdh1 Mouse Santa Cruz sc-56312 - - - 1:1000 

Cyclin A Rabbit Santa Cruz sc-751 - - - 1:1000 

Cyclin B1 Mouse Santa Cruz sc-055 - - - 1:1000 

Cyclin D1 Rabbit Santa Cruz sc-754 - - - 1:1000 

Fibrillarin Mouse Abcam Ab4566 1:1000 - - - 

Fibrillarin Rabbit CST 2639 1:500 - - - 

HA  Mouse Covance MMS-101P - - - 1:1000 

normal IgG Mouse Sigma I5381 - 5µg 20µg - 

p300 Rabbit Santa Cruz N-15 - 5µg - 1:200 

p53 Mouse In-house DO-1 - - - 1:10 

PARP Mouse Santa Cruz sc-8007 - - - 1:1000 

RPA135 Goat Santa Cruz sc-17914 - 5µg - 1:500 

RPA194 Mouse Santa Cruz sc-48385 1:50 5µg 20µg 1:2000 

RPA194 Rabbit Santa Cruz sc-28714 1:50 - - 1:1000 

RPA40 Mouse Santa Cruz sc-374443 - 5µg - 1:1000 

UbcH10 Rabbit In-house - - - - 1:1000 

α-Goat-Alexa Fluor 488 Donkey Life Technologies A11055 1:100 - - - 

α-Mouse-Alexa Fluor 488 Goat Life Technologies A11001  1:100 - - - 

α-Mouse-Alexa Fluor 594 Donkey Life Technologies A21203 1:100 - - - 

α-Rabbit-Alexa Fluor 488 Donkey Life Technologies A21206 1:100 - - - 

α-Rabbit-Alexa Fluor 594 Donkey Life Technologies A21207 1:100 - - - 

α-Goat-HRP Rabbit Dako P0449 - - - 1:3000 

α-Mouse-HRP Goat Dako P0447 - - - 1:3000 

α-Rabbit-HRP Swine Dako P0399 - - - 1:4000 

 
Table 10 – Concentration and catalogue numbers of antibodies used for IF, Western blotting (WB), 
and IPs for Western blotting (IP (WB)) and Mass Spectrometry (IP (MS)).  
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4.13. Site-directed PCR mutagenesis 

 

DNA mutagenesis was performed using the QuikChange Site-Directed Mutagenesis Kit (Agilent). 50ng 

cDNA was used as a template together with 125ng forward and reverse primers (Table 11i), 1μl 

dNTPs, 5μl 10x buffer and 2.5U Pfu Turbo made up to 50μl with nuclease-free H2O. The PCR 

conditions used were: 95°C for 30s, followed by 18 cycles of 95°C for 30s, 55°C for 1 min and 68°C for 

1 min per kb of cDNA, using a 2720 Thermocycler PCR (Applied Biosystems). Template cDNA was 

digested by incubation with 10U Dpn I for 1h at 37°C. XL-1 blue cells were then transformed with 

digested DNA, as described below. 

i. Mutagenesis Primers 

Primer Sequence/ Catalogue No. Manufacturer 

APC3 siRNA resis For CACAGAGTGGAAACTCCAGGGAGGTAACTCCAATT Alta Bioscience 

APC3 siRNA resis Rev AATTGGAGTTACCTCCCTGGAGTTTCCACTCTGTG Alta Bioscience 

APC3 K336Q For GGCCAAACTGGAACACAGTCTGTCTTCTCACA Alta Bioscience 

APC3 K336Q Rev TGTGAGAAGACAGACTGTGTTCCAGTTTGGCC Alta Bioscience 

APC3 K336R For GGCCAAACTGGAACACGGTCTGTCTTCTCACA Alta Bioscience 

APC3 K336R Rev TGTGAGAAGACAGACCGTGTTCCAGTTTGGCC Alta Bioscience 

APC5 Fr1 For GTCATGAATTCATGGCCAGCGTCCACGAGAGCCTC Alta Bioscience 

APC5 Fr1 Rev ATTGCCTCGAGTCTACTGGTCAGTTCCATATCAGC Alta Bioscience 

APC5 Fr2 For GTCATGAATTCGATGAGGGTGAAAGAAAAATGGAA Alta Bioscience 

APC5 Fr2 Rev ATTGCCTCGAGCAGAACATAGCTATCGGATCTCTT Alta Bioscience 

APC5 Fr3 For GTCATGAATTCCTGGAGCATTCTGTGAAGAAGGCA Alta Bioscience 

APC5 Fr3 Rev ATTGCCTCGAGTGCCTCTGACATTTGGTTCTGAGC Alta Bioscience 

APC5 Fr4 For GTCATGAATTCCATAAGCTTTTACAAAAATTGTTG Alta Bioscience 

APC5 Fr4 Rev  ATTGCCTCGAGCTAGAGATGGTTTATCAAGGGTAC Alta Bioscience 

APC8 K359Q For TTCCAGAGAGCCCTGCAACTGAACCCCCGGTATCT Alta Bioscience 

APC8 K359Q Rev AGATACCGGGGGTTCAGTTGCAGGGCTCTCTGGAA Alta Bioscience 

APC8 K359R For TTCCAGAGAGCCCTGAGACTGAACCCCCGGTATCT Alta Bioscience 

APC8 K359R Rev AGATACCGGGGGTTCAGTCTCAGGGCTCTCTGGAA Alta Bioscience 

APC8 K396Q For GCCATTGAGGTCAACCAACGGGACTACAGAGCTTG Alta Bioscience 

APC8 K396Q Rev CAAGCTCTGTAGTCCCGTTGGTTGACCTCAATGGC Alta Bioscience 

APC8 K396R For GCCATTGAGGTCAACAGACGGGACTACAGAGCTTG Alta Bioscience 

APC8 K396R Rev CAAGCTCTGTAGTCCCGTCTGTTGACCTCAATGGC Alta Bioscience 
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ii. Sequencing Primers 

Primer Sequence/ Catalogue No. Manufacturer 

pcDNA3_F TAATACGACTCACTATAGG Alta Bioscience 

pcDNA3_R TAGAAGGCACAGTCGAGG Alta Bioscience 

APC3 seq 461 GAATCATTATGTGAAATAGGTGAAAAGCCA Alta Bioscience 

APC3 seq 821 GCAGCTCTTAGTCCATTAACCCCAAGTTTT Alta Bioscience 

APC3 seq 1181 TCCACAACCAAGGAGAATAGCAAAAAATTA Alta Bioscience 

APC3 seq 1531 CCAAATTGGAAGGGCCTATTTTGAACTTTC Alta Bioscience 

APC3 seq 1981 TGCAGAAATGCATTTCCAAAAAGCGCTTGA Alta Bioscience 

APC3 rev seq 253 GCTTGCTGAGATCAACACAAC Alta Bioscience 

APC3 rev seq 830 ATAAGACACTGAGGAATCTGTATT Alta Bioscience 

APC3 rev seq 1130 TGAGAAGACAGACTTTGTTCCAGT Alta Bioscience 

APC3 rev seq 1333 CTGAAATGCTGGAAGAGTCC Alta Bioscience 

APC3 rev seq 1691 TATTCTTTCAGCTTGCATGTA Alta Bioscience 

APC8 seq 421 AAAAATGAGGCGCTTAGAGAAT Alta Bioscience 

APC8 seq 818 TGACAAAGCCCTCTCCATTTTT Alta Bioscience 

APC8 seq 1212 CAGACCTATGAAATCCTTAAGA Alta Bioscience 

 
 

iii. qPCR Primer/Probes 

Primer Sequence/ Catalogue No. Manufacturer 

45S pre-rRNA For TGTCAGGCGTTCTCGTCTC Alta Bioscience 

45S pre-rRNA Rev AGCACGACGTCACCACATC Alta Bioscience 

Actin For CAGGAAGGAAGGCTGGAAGA Alta Bioscience 

Actin Rev GCTGTGCTATCCCTGTACGC Alta Bioscience 

28S rRNA TaqMan Assay - FAM/MGB Hs03654441_s1 Applied Biosystems 

18S rRNA TaqMan Assay - VIC/MGB 4319413E Applied Biosystems 

GAPDH TaqMan Assay - VIC/MGB Hs03929097_g1 Applied Biosystems 

Hprt1 TaqMan Assay - VIC/MGB Hs03929096_g1 Applied Biosystems 

APC3 TaqMan Assay-FAM/MGB Hs00265810_m1 Applied Biosystems 

APC5 TaqMan Assay-FAM/MGB Hs01102438_m1 Applied Biosystems 

Cdc20 TaqMan Assay-FAM/MGB Hs00426680_mH Applied Biosystems 

 

Table 11 – list of oligonucleotide primers used in this study 
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4.14. Purification of DNA by agarose gel electrophoresis and DNA Gel Extraction 

Typically, agarose gels were cast at 0.8% (w/v) agarose (AGTC) in 75ml TBE (100mM Tris, 100mM 

boric acid, 2mM EDTA pH 8.3) containing 3μl SYBR Safe (Life Technologies). DNA was heated at 65°C 

for 10 min in 6x Gel Juice (30% (v/v) glycerol, 0.25% (w/v) bromophenol blue, 0.25% (w/v) of xylene 

cyanol FF) and separated by electrophoresis until suitably resolved, as determined by a DNA ladder 

(DNA Molecular Weight X or XIII; Roche). Gels were visualised under blue light and orange filter 

(Invitrogen Safe Imager). Bands were excised with a clean scalpel and DNA was extracted using a 

QIAquick Gel Extraction Kit (Qiagen). Briefly, gels were weighed and solubilised in 3x volume of Buffer 

QG and heated at 55°C for 10 min, to which 1x volume isopropanol was added. This solution was 

mixed and centrifuged through a QIAquick column at 16,200g for 1 min. The column was washed by 

centrifugation with 0.5ml Buffer QG, then 0.75ml Buffer PE. The column was spun again to dry, and 

moved into a clean collection tube. 50μl nuclease-free H2O was added, and incubated at room 

temperature for 1 min prior to centrifugation at 16,200g for 1 min. 

4.15. Cloning of DNA 

Amplification of DNA sequences typically consisted of a 50μl reaction mixture containing: 100ng 

DNA, 5pmoles forward and reverse primer, 1μl dNTPs (10mM), 5μl 10x buffer and 1μl Pfu (Promega). 

The PCR was run in a 2720 Thermocycler PCR (Applied Biosystems) with the following programme: 

Pre-PCR - 95°C for 5 min, 50°C for 2 min, 72°C for 5 min; 35 cycles of 95°C for 30s, 50°C for 30s, 72°C 

for 2 min per kb of DNA; Final extension - 72°C for 7 min. PCR products were purified by agarose gel 

electrophoresis and DNA gel extraction. Alternatively, DNA was subcloned from one vector into 

another. In both cases, DNA was digested with 1/10x volume restriction endonucleases (NEB, Roche), 

typically for 2h at 37°C in the correct 10x Buffer, according to Roche and NEB double-digest tables. 

The vector (listed in Table 13) into which the insert was to be ligated was also digested with the same 

endonucleases. Digest mixtures were heat-inactivated at 65°C for 10 min and digested DNA was 

purified by agarose gel electrophoresis. Ligation mixtures were made, initially starting with 1:10 
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vector:insert volume ratio together with 2μl 10x ligation buffer and 1μl T4 DNA Polymerase (NEB) in 

20μl total volume and incubated overnight at 16°C. 

4.16. Use of Bacterial Cultures to amplify DNA 

Bacterial strains used in this study are listed in Table 12. DNA was amplified by bacterial 

transformation and culture. For purified plasmids, 100ng of DNA was transformed into 10μl DH5α 

(Life Technologies). For ligations, 4μl of ligation mixture was transformed into 20μl DH5α. For PCR 

mutagenesis, 4μl digested DNA was transformed into 25μl XL-1 blue bacteria (Agilent). Bacteria were 

heat-shocked at 42°C for 2 min, left to recover on ice for 5 min and incubated for 1h at 200rpm in 

0.5ml LB (1% (w/v) NaCl, 1% (w/v) Tryptone (DIFCO), 0.5% (w/v) Yeast extract (DIFCO); ligations and 

purified plasmids) or 0.5ml NZY+ (1% (w/v) NZ amine, 0.5% (w/v) Yeast extract, 0.5% (w/v) NaCl, 

12.5mM MgCl2, 12.5mM MgSO4, 0.4% (w/v) Glucose; PCR mutagenesis). The bacterial culture was 

then spread onto LB-agar plates (1.5% (w/v) bacto-agar (DIFCO) in LB) containing 100μg/ml Ampicillin 

(Sigma) using a disposable hockey spreader and cultured overnight at 37°C. 

Individual colonies were picked using a bacterial loop and grown in 5ml LB supplemented with 

100μg/ml Ampicillin overnight at 37°C, 200rpm. DNA was extracted using GenElute plasmid miniprep 

kit (Sigma) as per manufacturer’s instructions with final elution by 50μl nuclease-free H2O. Briefly, 

bacteria were pelleted by centrifugation and resuspended in 200μl cold Resuspension Buffer. Then, 

bacteria were lysed by the addition of 200μl Lysis Buffer and inverted to mix. Lysis was then inhibited 

by addition of 350μl Neutralisation/Binding Solution, and mixed by inversion. The lysate was 

centrifuged at 16,200g for 10 min to pellet cell debris. The GenElute Miniprep Binding Column was 

washed with 0.5ml Column Preparation Solution and centrifuged at 16,200g, 1 min. The cleared 

lysate was then spun through the column at 16,200g for 1 min, and washed by centrifugation with 

0.75ml Wash Solution (+EtOH) at 16,200g for 1 min. The column was spun again to dry, and then 
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transferred into a clean tube. 50μl nuclease-free H2O was added and incubated at room temperature 

for 1 min, then eluted by centrifugation at 16,200g for 1 min. 

If a large yield of DNA was required, bacterial colonies were grown in 5ml LB/ampicillin for 8h at 

37°C, 200rpm, which was then added to 250ml LB/ampicillin and cultured overnight at 37°C, 200rpm. 

DNA was then harvested using a GenElute HP Maxiprep Kit (Sigma). Bacterial cultures were pelleted 

by centrifugation at 5,000g for 10 min. Bacteria were resuspended in 12ml cold Resuspension/RNase 

A Solution, to which 12ml Lysis Solution was added and mixed by inversion. 12ml Neutralisation 

Solution was added to inhibit lysis, and was mixed by inversion. 9ml Binding Solution was added, 

mixed and added to a filter syringe and incubated for 5 min. 12ml Column Preparation Solution was 

centrifuged through a GenElute HP Maxiprep Binding Column at 3,000g for 2 min. The lysate was 

then filtered through the syringe onto the column, which was centrifuged at 3,000g for 2 min. 12ml 

Wash Solution 1 was centrifuged through the column at 3000g for 2 min, followed by 12ml Wash 

Solution 2 (+EtOH) at 3,000g for 5 min. DNA was eluted by the addition of 3ml Elution Solution and 

centrifugation at 3,000g for 5 min. The DNA was then precipitated by the addition of 0.1x volume of 

3M Na-acetate (Sigma) and 0.7x volume isopropanol. The tube was mixed by inversion and 

centrifuged at 15,000g for 30 min to pellet DNA. The pellet was washed by 1.5ml 70% (v/v) EtOH and 

spun at 15,000g for 10 min. The pellet was air-dried and resuspended in approximately 200μl 

nuclease-free H2O, dependent upon size. 

 

Bacterial Strain Initial broth Cultured broth Manufacturer 

BL21-RIPL LB LB Agilent 

DH5α LB LB Life Technologies 

XL1-blue NZY+ LB Agilent 

Table 12 – list of bacterial strains used in this study 
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Plasmid Origin 
Bacterial 
Antibiotic 
Resistance 

Inserts Uses 

Adenovirus vector 
Joe 

Teodoro 
- (LacZ, HA-Apoptin) Adenoviral infection 

pcDNA3 
Jonathon 

Pines 
Ampicillin (Cyclin A, Cyclin B1) IVT, Subcloning 

pcDNA3 
Andy 

Turnell 
Ampicillin (APC3, CBP) IVT, Subcloning 

pcDNA5-FRT 
Jakob 

Nilsson 
Ampicillin HA-APC3 K336 wt/Q/R 

Incorporation into HeLa-
FRT cells 

3xFlag-APC8-siRNA 
resis-pcDNA5-FRT 

Jakob 
Nilsson 

Ampicillin APC8 K359/K396 wt/Q/R 
Incorporation into HeLa-

FRT cells 

pGEX-4T1 
GE 

Healthcare 
Ampicillin APC3, APC5 and fragments GST-proteins 

CBP-pGEX-4T1 
Andy 

Turnell 
Ampicillin (CBP) GST-proteins 

CBP-fragments-
pGEX-4T1 

Andy 
Turnell 

Ampicillin (CBP fragments) GST-proteins 

Ad5-E1A-pGEX-4T1 
Andy 

Turnell 
Ampicillin (Ad5 12S-E1A) GST-proteins 

pSuperior.Retro.Puro Oligoengine Ampicillin APC3 shRNA1 and shRNA2 
Creation of dox-inducible 

shRNA U2OS-TetR cells 

pOG44 
Jakob 

Nilsson 
Ampicillin - 

Incorporation into HeLa-
FRT cells 

P300 baculovirus Lee Kraus - (p300) 
Infection into insect cells 

for His-purification 

POLR1A-pCR4-TOPO 
IMAGE 

8992019 
Ampicillin (POLR1A (RPA194)) IVT 

POLR1B-pCMV-
SPORT6 

IMAGE 
6053210 

Ampicillin (POLR1B (RPA135)) IVT 

Table 13 – list of plasmids and viruses used in this study 

(Inserts already provided within plasmids/viruses are enclosed by brackets) 

 

4.17. Measuring nucleic acid concentration 

DNA and RNA concentrations were measured by a NanoDrop ND-1000 Spectrophotometer and ND-

1000 Spectrophotometer v3.2 software (Thermo Fisher Scientific). The absorbance at 230, 260 and 

280nm wavelengths were measured and compared to H2O control, and the ratios calculated to give 

DNA and RNA concentrations. 

4.18. Sequencing of DNA 

4μl of DNA from a miniprep or 100ng of purified DNA were used in a sequencing PCR consisting of 

10ng sequencing primer (Table 11ii), 4μl 5x sequencing buffer and 1μl Big Dye Terminator (Applied 
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Biosystems), made up to 20μl with nuclease-free H2O. The sequencing PCR was performed with 25 

cycles of:  96°C for 10s, 55°C for 5s, 60°C for 4 min. The PCR product was precipitated by the addition 

of 62.5μl 100% (v/v) EtOH, 3μl 3M Na-Acetate, 14.5μl H2O and incubation at room temperature for 

30 min followed by centrifugation at 16,200g rpm for 20 min. The pellet was washed with 100μl 70% 

(v/v) EtOH and spun at 16,200g for 15 min. The pellet was air-dried, resuspended in 11μl HiDi 

formamide and heated at 100°C for 5 min. The DNA was then sequenced using a 3500xl Genetic 

Analyzer (Applied Biosystems) and compared to a consensus sequence by BLAST (NCBI, NIH). 

4.19. In vitro transcription/translation 

In vitro transcription/translation (IVT) was carried out using TNT-coupled rabbit reticulocyte lysate 

system (Promega). Reaction mixtures included: 25μl TNT rabbit reticulocyte lysate, 2μl TNT reaction 

buffer, 1μl TNT T7 RNA Polymerase, 1μl methionine-free amino acid mixture, 40U RNasin 

Ribonuclease Inhibitor (All Promega), 2μl 10mCi/ml L-α-[35S]-methionine (Amersham), and 1μg DNA 

(Table 13) made up to a total volume of 50μl with nuclease-free H2O. Reactions were performed at 

30°C for 90 min. 

4.20. In vitro APC/C E3 ubiquitin ligase assay 

In vitro ubiquitylation assays were adapted from published protocols (Gieffers, Dube et al. 2001, 

Kraft, Gmachl et al. 2006). 1x10cm dish of asynchronous HeLa cells was lysed in buffer (20mM Tris-

HCl pH 7.5, 100mM NaCl, 20mM β-glycerophosphate, 5mM MgCl2, 0.2% (v/v) NP-40, 10% (v/v) 

glycerol, 1mM NaF, 0.5mM DTT), and the APC/C holoenzyme was purified by IP with 20μg APC3 

AF3.1 antibodies (CRUK) or normal IgG overnight and 10μl packed Protein G-Agarose beads (KPL) for 

3h, at 15rpm and 4°C. IPs were washed four times in Buffer BL (20mM Tris-HCl pH 7.5, 150mM NaCl, 

0.02% (v/v) Tween-20) and twice in Buffer BH (20mM Tris–HCl pH 7.5, 450mM NaCl, 0.02% (v/v) 

Tween-20). To obtain APC/C activated by Cdc20, HeLa cells were arrested in prometaphase by 

treatment with 400ng/ml nocodazole and released for 1h into fresh growth medium prior to 
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harvesting. To each IP, 20μl of a reaction buffer containing 50mM Tris-HCl pH 7.5, 5mM MgCl2, 

25μg/ml His-E1 (Boston Biochem), 40μg/ml GST-UbcH4, GST-UbcH5 and GST-UbcH10 (Hiro Yamano, 

University College London), 1.25mg/ml Ubiquitin (Boston Biochem), 20μg/ml Ubiquitin aldehyde 

(Boston Biochem) and an ATP regeneration system (350U/ml creatine phosphokinase, 10mM 

creatine phosphate, 5mM ATP). 1μl [35S]-substrate was then added and incubated at 37°C for 1h. The 

reaction mixture was separated by SDS-PAGE, sensitised with Amersham Amplify Fluorographic 

Reagent (GE Healthcare) for 30 min, dried under a vacuum and polyubiquitylation of substrates 

detected by autoradiography with X-ray film (Wolf Laboratories). 

4.21. Bacterial expression of GST-fusion proteins 

Full length and fragments of cDNA were cloned into pGEX 4T-1 (GE Healthcare) containing an N-

terminal fusion gene for Glutathione-S-Transferase (GST), expressed in BL21 Competent Cells 

(Agilent) and grown overnight in 20ml LB at 37°C, 200rpm. This culture was expanded in 500ml LB for 

3h at 37°C, 200rpm, then dropped to 30°C for 1h. GST-protein expression was induced by the 

addition of 0.5mM IPTG (Isopropyl-β-D-thio-galactoside; Sigma) and the culture was incubated at 

30°C, 200rpm for 3h. Bacteria were pelleted at 5,000g, 4°C for 10 min, then lysed in 14ml GST lysis 

buffer (1% (v/v) Triton X-100, 1mM EDTA pH 8 in PBS). Lysates were sonicated 3x1 min on ice with 

20% output and 1 min rest in between pulses. Debris was pelleted by centrifugation at 20,000g, 4°C 

for 2x15 min, with the supernatant collected each time. The supernatant was incubated with 1ml 

glutathione-agarose beads (Sigma) resuspended in GST lysis buffer overnight at 4°C, 15rpm. Beads 

were centrifuged at 3,000g for 2 min and washed thrice in GST lysis buffer and once in 1mM EDTA pH 

8 in PBS. Protein was eluted from the beads by addition of 2ml buffer (20mM Glutathione (Sigma) in 

50mM Tris pH 8). Pure GST-proteins were obtained by dialysing overnight at 4°C with 25mM Tris pH 

8, 1mM Dithiothreitol (DTT; Sigma), 100mM NaCl and 10% (v/v) glycerol. 
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4.22. Purification of His6-p300 expressed in insect cells 

Sf9 cells were infected at a multiplicity of infection of 10 particles/cell with a baculovirus expressing 

His6-p300 (Kraus and Kadonaga 1998). His6-p300 was purified 60h post-infection, from cellular 

extracts (20mM Tris-HCl pH 7.5, 250mM NaCl, 10mM Imidazole (Sigma) 1% (v/v) Triton X-100) using 

nickel-agarose beads (Qiagen), 15rpm at 4°C for 2h. Beads were washed 5x (20mM Tris-HCl pH 7.5, 

150mM NaCl, 10mM Imidazole) followed by incubation with elution buffer (20mM Tris-HCl pH 7.5, 

100mM NaCl, 250mM Imidazole) twice. Eluate was dialysed in 50mM Tris-HCl pH 8, 1mM DTT, 

150mM NaCl and 10% (v/v) glycerol overnight at 4°C. 

4.23. GST-protein interaction with IVT-[35S]-proteins 

10μg GST-proteins were incubated with 10μl IVT-[35S]-proteins on ice for 1h. 20μl glutathione-

agarose beads were added, and incubated for 1h at 4°C, 15rpm. The beads were then washed in 

50mM Tris-HCl pH 7.5, 150mM NaCl and 1% (v/v) NP-40, and the GST-fusion proteins plus interactors 

were eluted by addition of 20mM glutathione and 50mM Tris-HCl pH 8. The proteins were then 

boiled in sample buffer and separated by SDS-PAGE. The gel was sensitised in Amersham Amplify (GE 

Healthcare) for 30 min, dried under a vacuum and visualised by autoradiography with X-ray film 

(Wolf Laboratories). 

4.24. In vitro acetyltransferase assays 

The APC/C holoenzyme was purified by IP with α-APC3 AF3.1 antibodies, washed and eluted with 

AF3.1 peptide. Either 200ng His6-p300 or immunoprecipitated CBP or p300 from asynchronous A549 

lysates were incubated with 0.5μCi [3H]-Ac-CoA (Amersham) and either 10μg of the appropriate GST-

protein or 200ng immunopurified APC/C holoenzyme in a reaction buffer containing 50mM Tris pH 8, 

10mM sodium butyrate, 1mM DTT and 10% (v/v) glycerol for 90 min at 37°C. The reaction mixture 

was separated by SDS-PAGE, sensitised with Amersham Amplify (GE Healthcare) for 30 min, dried 
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under a vacuum and acetylated proteins detected by autoradiography with X-ray film (Wolf 

Laboratories). 

4.25. Mass Spectrometry 

4.25.1. In-gel tryptic digestion of IPs 

IPs separated by SDS-PAGE were stained overnight in colloidal Coomassie solution (0.08% (v/v) 

Coomassie Brilliant Blue G250 (CBB 250), 1.6% (v/v) Orthophosphoric Acid, 8% (w/v) Ammonium 

Sulphate, 20% (v/v) MeOH) then destained with 1% (v/v) glacial acetic acid. The bands were excised 

with a clean scalpel and washed twice in 50% (v/v) Acetonitrile (AcN; Millipore) and 50mM 

Ammonium Bicarbonate (ABC; Sigma) for 1h at 37°C with agitation. The bands were then reduced by 

50mM DTT in 10% (v/v) AcN/50mM ABC for 1h at 55°C, carboxymethylated by 100mM 

iodoacetamide (Sigma) in 10% (v/v) AcN/50mM ABC for 30 min in the dark and washed thrice in 10% 

(v/v) AcN/40mM ABC for 15 min with agitation. The gel bands were then dried in a vacuum 

centrifuge and rehydrated with Sequence-Grade Modified Trypsin (Promega), resuspended in 10% 

(v/v) AcN/40mM ABC, at 37°C overnight. The bands were then washed with 3% (v/v) Formic Acid (FA; 

Sigma), and the supernatants containing tryptic peptides were dried until analysed. All solutions 

were made up in HPLC (High-Performance Liquid Chromatography)-grade H2O (Chromanorm, VWR). 

4.25.2. FASP tryptic digestion of nucleolar lysates 

Pure nucleoli of nucleolar lysates from cells incubated with non-silencing, APC3 or APC5 siRNA were 

prepared for tryptic digest by the FASP (Filter-Aided Sample Preparation) method. Pelleted nucleoli 

were solubilised in 9M Urea and 100mM TEAB (Tetraethylammonium bromide; Sigma) and 

normalised by protein concentration. The samples were then reduced with 50mM DTT/10% (v/v) 

AcN/100mM TEAB for 1h at 55°C and carboxymethylated by 100mM iodoacetamide/10% (v/v) 

AcN/100mM TEAB for 30 min in the dark. The denatured lysate was filtered through a 0.5ml Amicon 

Ultra 30 kDa centrifugal filter (Millipore), washed four times with 100mM TEAB and digested with 
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Sequence-Grade Modified Trypsin (Promega) in 100mM TEAB at 37°C for 16h. The peptides were 

then centrifuged and the filtrate collected. The filter was then washed twice with 100mM TEAB to 

obtain tryptic peptides. 

4.25.3. Dimethyl-labelling of tryptic peptides from nucleolar lysates of knockdown 

cells 

The tryptic peptides from the normalised nucleolar lysates of APC3- or APC5-knockdown cells were 

incubated with 1/10x volume 10.73% (w/v) heavy formaldehyde ([2H]-CH2O); Isotec) and those from 

non-silencing cells were incubated with 1/10x volume 10.73% (w/v) light formaldehyde (CH2O; 

Sigma), both for 1 min with constant mixing. The sample was pulse-centrifuged, and 1/10x volume 

1.5M sodium cyanoborohydride added for 30s with constant mixing, followed by pulse-

centrifugation and incubation for 1h on a shaker at 600rpm. To quench, 1/10x volume 10.73% (w/v) 

NaOH and 1/10x volume FA were added and mixed thoroughly. Equimolar heavy and light peptides 

were mixed and purified through a C18 reverse-phased column (Sigma), then separated by a Mixed-

Mode WAX-1 LC column (Dionex) into 20 fractions, which were dried by vacuum centrifugation until 

required. 

4.25.4. Mass spectrometric analysis of tryptic peptides 

Dried tryptic peptides were resuspended in 20μl 1% (v/v) AcN/1% (v/v) FA, of which 10μl was 

analysed by LC-MS/MS. Each sample was loaded into an Ultimate 3000 HPLC column (Dionex) and 

introduced into a maXis Impact Time-of-flight (TOF) or amaZon ion-trap mass spectrometer (both 

Bruker Daltonics). Alternatively, samples were loaded into a Tempo nano-LC and Q-TRAP 4000 mass 

spectrometer (both AB SCIEX). For the Impact and amaZon, ms/ms spectra were analysed using 

ProteinScape (Bruker Daltonics) through comparison to a Mascot database (Matrix Science). For the 

Q-TRAP 4000, fragmented peptides were analysed by Analyst 1.4.2 and Bioanalyst (both AB SCIEX) 

and compared to a Mascot database. In both Bruker and AB SCIEX systems, acetylation and 
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phosphorylation modifications were included in the searches. Further acetylation residues were 

identified using precursor ion analysis and the MIDAS workflow (AB SCIEX). The list of identified 

proteins was subjected to a 1% False Discovery Rate (FDR) to reduce false positives. 

To remove background proteins in the IP studies, the list of interacting proteins were compared to a 

normal IgG control and duplicate proteins removed. Obvious contaminants, such as keratins, were 

also removed. The presence of TEK boxes was determined by manual screening of protein sequences 

within the Uniprot database (UniProt-Consortium 2014), and D-boxes and KEN-boxes were scored by 

GPS-ARM (Liu, Yuan et al. 2012). Degron conservation was established by comparison of homologous 

protein sequences from human, rat, mouse, frog, worm, fly and budding and fission yeast by Clustal 

omega (Goujon, McWilliam et al. 2010, Sievers, Wilm et al. 2011, Sievers and Higgins 2014). 

Quantitation of LC-MS data from identified peptides was performed using WARP-LC (Bruker) and 

ProteinScape, whereupon the ratios of Heavy:Light peptides were calculated to give a quantitative 

ratio of nucleolar proteins from non-silencing and APC3/APC5 siRNA cells. 

4.26. Immunofluorescence (IF) 

A confluent 10cm dish of HeLa cells was split 1 in 4 and seeded onto 12-well slides within 10cm 

dishes. The following day, cells were washed twice in PBS, dried and fixed in 4% (w/v) PFA in PBS for 

8 min. Cells were then permeabilised in ice-cold acetone for 10 min at -20°C. Slides were air-dried, 

and then blocked in HINGS (Heat-Inactivated Normal Goat Serum; 20% (v/v) HINGS, 0.2% (w/v) BSA 

in PBS) for 45 min at room temperature. Slides were then washed twice for 10 min in PBS and 

incubated with primary antibodies diluted in HINGS to the appropriate concentration (Table 10) for 

2h at 37°C in a humidified box. The slides were then washed twice in PBS for 10 min, followed by 

incubation with secondary antibody conjugated to a fluorophore (Table 10) for 2h at 37°C in a 

humidified box. Slides were then washed thrice for 15 min in PBS, air-dried and then mounted in 

Vectashield containing DAPI (4’,6-diamidino-2-phenylindole; Vector Laboratories). The slides were 
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visualised using an LSM510 META confocal laser scanning microscope (Zeiss) and a 63x oil objective 

lens (Zeiss), utilising lasers with wavelengths of 364nm, 488nm and 543nm. Images were analysed 

and nucleoli were profiled using Zeiss LSM Image Browser (Zeiss). 

4.27. Semi-quantitative measurement of de novo rRNA synthesis 

Gene expression was ablated in HeLa cells by transfection with non-silencing, APC3, APC5 or Cdc20 

siRNA. 48h later, cells were seeded onto 12-well slides. The following day, cells were incubated in 

2mM 5’-Fluorouridine (5-FUrd; Sigma) for 10 min, washed thrice with ice-cold PBS, fixed for 8 min in 

4% PFA and permeabilised for 10 min in 1% Triton X-100. Slides were then blocked and probed with 

α-BrdU and α-Fibrillarin antibodies and mounted as per standard IF procedure (Above; Table 10). 

The slides were visualised using an Eclipse E600 microscope (Nikon) and a 63x oil objective lens, with 

the following filters: G-1a (Ex 546/10, DM 575, BA580), UV-2A (Ex 330-380, DM 400, BA420) and FITC 

(Ex 465-495, DM 505, BA 515-555). Images were taken with a Hamamatsu c4742-95 digital camera 

and imported into Volocity (Perkin Elmer). The images were then analysed using Image J (NIH). 

Fibrillarin staining was used to denote nucleoli, around which regions of interest were drawn. The 

area, mean signal and total signal from the BrdU staining were measured for each nucleolus as well 

as three background readings per image. The mean background signal was calculated and subtracted 

from nucleolar values. The mean nucleolar and total nucleolar incorporation of 5-FUrd were then 

calculated per nucleolus, and the total nucleolar incorporation of 5-FUrd was calculated per cell. 

These were then calculated relative to non-silencing controls. Significant changes in 5-FUrd 

incorporation were determined by a two-tailed Student’s t-test (p<0.05). 

4.28. RNA extraction  

Gene expression was ablated in HeLa cells by transfection with non-silencing, APC3, APC5 or Cdc20 

siRNA. RNA was harvested from cells using the RNeasy mini kit (Qiagen). Briefly, a confluent 6cm dish 

of cells was washed twice in PBS and lysed in 0.35ml Buffer RLT. Lysates were homogenised by 
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centrifugation through a QIAshredder column (Qiagen) at 16,200g for 2 min. 0.35ml 70% (v/v) EtOH 

was added to homogenised lysates, which were then centrifuged through an RNeasy spin column at 

10,000g for 15s. Lyophilised DNase I (1500 Kunitz Units; Qiagen) was resuspended in 550μl RNase-

free H2O. 10μl of resuspended DNase I was mixed with 70μl Buffer RDD and added to the column and 

incubated for 15 min at room temperature. 350μl Buffer RW1 was added, and spun at 10,000g for 

15s. The column was then washed twice with 500μl Buffer RPE (+EtOH) and spun at 10,000g, the first 

wash for 15s and the second for 2 min. The column was placed into a fresh tube and spun at 16,200g 

for 1 min to dry. The column was placed into a fresh collection tube, and RNA was eluted twice in 

50μl nuclease-free H2O and spun at 1,000g for 1 min to give a final volume of 100μl. 

4.29. qRT-PCR 

RNA was reverse-transcribed using the AMV Reverse Transcription System (Promega). 500ng RNA 

was made to a volume of 4.9μl in nuclease-free H2O and heated at 70°C for 10 min. To this volume, 

2μl 25mM MgCl2, 1μl 10x buffer, 1μl dNTPs (10mM), 0.25μl RNasin, 0.3125μl AMV Reverse 

Transcriptase and 0.5μl random primers were added. An enzyme-free control (-RT) substituted H2O 

for AMV Reverse Transcriptase. The reaction was incubated at room temperature for 10 min, 42°C 

for 1h, 95°C for 5 min and 4°C for 5 min. 40μl of nuclease-free H2O was added to give a final cDNA 

concentration of 10ng/μl. 

20ng cDNA was then used as a template in qPCR reactions, in which 5 replicates were performed in 

duplicate. TaqMan qPCR reaction mixtures contained 2μl cDNA or H2O control, 1μl TaqMan Gene 

Expression assay primer/probe sets (Table 11iii), 10μl 10x Master Mix (Applied Biosystems) and 7μl 

nuclease-free H2O. TaqMan qPCR reactions were analysed using a 7500 Real-time PCR system 

(Applied Biosystems) and were run on the following programme: 50°C for 2 min, 95°C for 10 min, 

then 44 cycles of 95°C for 15s and 60°C for 1 min. SYBR green qPCR reaction mixtures contained 2μl 

cDNA/H2O, 100nM forward and reverse primers (Table 11iii), 2x SensiMIX SYBR No-ROX kit (Bioline) 
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and made up to 20μl with nuclease-free H2O. The qPCR was performed as follows:  95°C for 10 min; 

40 cycles of 95°C for 30s, 55°C for 1 min, 72°C for 1 min; followed by 95°C for 1 min, 55°C for 30s, 

then a slow increase to 95°C for 30s to provide a dissociation curve to prove specificity. SYBR green 

assays were performed upon a Stratagene Mx3005p PCR machine using MxPro software (both 

Agilent). 

Relative gene expression was calculated using the ddCt method. Ct values were calculated as a mean 

of duplicated samples. The dCt was calculated by subtracting the mean control Ct from the mean test 

Ct for each duplicate. The mean dCt for all non-silencing siRNA samples was then calculated, and 

subtracted from each dCt value to give the ddCt. The percentage change in gene expression was then 

calculated from the ddCt value. The dCt and percentage change were then compared between APC3, 

APC5 or Cdc20 siRNA samples and non-silencing control, and significance calculated by a two-tailed 

Student’s t-test (p<0.05). 
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5. CHAPTER 1: NUCLEOLAR FUNCTIONS OF APC5 AND 

THE ANAPHASE PROMOTING COMPLEX/ 

CYCLOSOME 

 
 

The Anaphase Promoting Complex/Cyclosome (APC/C) is an E3 ubiquitin ligase most commonly cited 

for its activity during mitotic cell division, during which it targets substrates for degradation by the 

26S proteasome. It is integral to numerous checkpoints within the cell cycle, such as its ubiquitylation 

of Securin to permit the onset of anaphase, Cyclin B1 and Aurora kinases to promote mitotic exit, and 

Cyclin A and Geminin to prevent early S phase entry (Peters 2006, Pines 2011). 

Previous work within our laboratory has determined that the APC/C cooperates with the 

transcriptional activators CBP and p300 to promote transcriptional activation, cell cycle progression 

and cellular transformation (Turnell, Stewart et al. 2005). The interaction between CBP/p300 was 

shown to be specific to the APC/C subunits APC5 and APC7 through domains evolutionarily 

conserved in adenovirus E1A. Both APC5 and APC7 were shown to stimulate CBP and p300 

acetyltransferase activity in vitro, and potentiate CBP/p300-dependent transcription in vivo. 

Furthermore, CBP and p300 were identified as potential APC/C substrates. This work was important 

in establishing a role for APC/C subunits in CBP and p300 transcription programmes, and more 

broadly, as a regulator of RNA polymerase II-dependent transcription (Turnell, Stewart et al. 2005). 

APC5 has also been shown to be important in chromatin assembly in budding yeast, where it 

regulates histone acetylation by various HATs, HDACs and assembly factors (Harkness, Davies et al. 

2002, Arnason, Pisclevich et al. 2005, Harkness, Arnason et al. 2005, Turner, Malo et al. 2010, Islam, 

Turner et al. 2011).  
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The APC/C subunit, APC5 is also of particular interest, as it has functions that are not dependent 

upon being a component of the APC/C holoenzyme, and that are independent of APC/C ubiquitin 

ligase activity. Indeed, there is evidence to suggest that APC5 may be found within the ribosomal 

fractions, where it has the potential to regulate protein translation through the binding of Poly(A) 

Binding Protein (PABP) and the IRES of mRNA (Koloteva-Levine, Pinchasi et al. 2004). 

Given all of these attributes of APC5, the aim of this chapter was to investigate its molecular function 

in more detail. To achieve this, a series of experiments were undertaken to identify novel APC5-

binding proteins and subsequently clarify their functional relationship with APC5 and the APC/C. This 

chapter details and characterises the functional relationship between APC5 and RNA Polymerase I 

(Pol I) during the cell cycle, and following various forms of nucleolar stress. 
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5.1. Identification of Novel Binding Proteins of APC5 by Mass 

Spectrometry 
 

Given the aforementioned APC/C-independent function of APC5, a mass spectrometric approach was 

adopted to identify any potential novel APC5-binding proteins. APC5 immunoprecipitates (IPs) from 

asynchronous HeLa cells were compared to IgG controls, followed by a cut-off of 1% False Discovery 

Rate (FDR) and the removal of obvious contaminants (Figure 1.1; Appendix Figure S1.1A). Multiple 

subunits of the APC/C were identified, however many previously unidentified APC5-binding proteins 

were also recovered, including three subunits of RNA Polymerase I (Pol I): RPA194, RPA135 and 

RPA40 (Appendix Figures S1.1B-D). It is interesting to note that these Pol I proteins were not 

detected within immunoprecipitates from other APC/C subunits such as APC3 and APC7 (Chapter 2; 

Appendix Figure S1.4), the reasons for which will be considered in the discussion at the end of this 

chapter. 

RNA Polymerase I (Pol I) is a macromolecular complex consisting of multiple subunits. It transcribes 

nucleolar ribosomal DNA (rDNA) regions to produce a 45S pre-rRNA, which is then processed into the 

28S, 18S and 5.8S rRNAs required for ribosomal assembly and function (Goodfellow and Zomerdijk 

2012). Since multiple subunits of Pol I were found within APC5 IPs, further experiments were 

commenced to determine the relationship between APC5 and Pol I. 
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Figure 1.1 – Selected APC5-interacting proteins identified by mass spectrometric analysis of APC5 
immunoprecipitates. 

Asynchronous HeLa cell lysates were incubated with 20µg APC5 antibody overnight at 4°C followed 
by the addition of 20µl of packed Protein G-Agarose beads for 2h. An equal amount of lysate was 
incubated with normal IgG and Protein G-Agarose to act as a negative control. The IPs were washed, 
boiled and separated by SDS-PAGE. The gel was then stained by colloidal Coomassie solution, and 
each lane excised with a clean scalpel. Each gel slice was reduced and alkylated, dried and incubated 
with trypsin overnight at 37°C. Tryptic peptides were eluted by washing twice in 3% FA and the 
eluate dried and resuspended in 40µl 1% AcN/FA in H2O. 20µl was analysed by LC-MS/MS using a 
Bruker AmaZon ion trap mass spectrometer. Peptides were identified by ProteinScape (Bruker) 
through comparison to a Mascot database (Matrix Science). Both obvious contaminants and proteins 
identified within the IgG control were removed from the list, onto which a 1% False Discovery Rate 
and a cut-off Score of 30 were applied. The upper table shows APC/C subunits, the lower shows 
subunits of RNA Polymerase I. MW stands for molecular weight, and S.C. for sequence coverage. 
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5.2. Validation of the interaction between APC5 and RNA Polymerase I 
 

In order to validate the interactions identified by the mass spectrometry screen, reciprocal IPs using 

HeLa cell lysates were performed between the APC/C subunits APC3, APC5 and APC7 and the Pol I 

subunits RPA194, RPA135 and RPA40. These were subsequently analysed by SDS-PAGE and Western 

blotting (Figure 1.2). All three Pol I subunits identified in the screen (RPA194, RPA135 and RPA40) 

were able to co-IP APC5 (Figure 1.2A), whilst APC5 pulled-down RPA194 (Figure 1.2B). Consistent 

with the mass spectrometry results however, neither APC3 nor APC7 were able to co-IP RPA194 

(Figure 1.2B). This could be due to a number of reasons, for example if APC5 primarily interacts with 

RPA194 independently of the APC/C complex. It is also possible that only a small fraction of APC5 

interacting with RPA194 is pulled-down by APC3 and APC7 antisera, which is below the threshold for 

detection by Western blotting. 

The diminished ability of RPA135 to co-IP APC5 compared to RPA194 and RPA40 does not necessarily 

reflect a poorer binding affinity in vivo, as RPA135 IPs also contained much less RPA194 than RPA40 

IPs (Top panel), and therefore is more likely to be due to the relatively poor capacity of the antibody 

for IP experiments. 

Taken together, these data establish a novel interaction between Pol I and APC5 in vivo. This 

interaction was determined to be specific to APC5 rather than other APC/C subunits, and could 

suggest that APC5 recruits Pol I to the APC/C holoenzyme, or might indicate another APC/C-

independent function for APC5. Further experiments were therefore designed to elucidate the 

functional relationship between APC5 and Pol I, i.e. to investigate whether APC5 or the APC/C can 

modulate the transcriptional capacity of Pol I through its E3 ubiquitin ligase activity. 
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Figure 1.2 - Validation of Mass Spectrometric screen by co-IP and Western blotting: APC5 and Pol I 
interact in vivo. 

HeLa cell lysates were immunoprecipitated using 5µg antibodies raised against Pol I (RPA194, 
RPA135 or RPA40; A) or APC/C (APC3, APC5, APC7; B) overnight at 4°C, followed by the addition 10µl 
of Protein G-agarose beads for 2h. IPs were washed, boiled and separated by SDS-PAGE. Proteins 
were detected by transfer to nitrocellulose membrane and Western blotting, 

APC5 can be detected within Pol I IPs, whilst RPA194 can be pulled-down by APC5 IP, but not by APC3 
or APC7.  
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5.3. GST-APC5 binds directly to In Vitro Transcribed/Translated 

RPA194 and RPA135 
 

In order to determine whether the interaction between APC5 and Pol I was due to direct binding 

between the different proteins, an in vitro approach was taken. N-terminal GST tags were utilised to 

express APC5, or fragments thereof, in bacteria (Figure 1.3A). These were then incubated with IVT 

RPA194 or RPA135 radiolabelled by the incorporation of L--[35S]-Methionine. GST pull-downs were 

collected by the addition of glutathione-agarose and separated by SDS-PAGE; specific APC5-Pol I 

binding was detected by autoradiography (Figure 1.3B). Whilst GST-APC5 was able to bind both 

RPA194 and RPA135, analysis of the four fragments of GST-APC5 suggested that the major binding 

site for RPA194 and RPA135 resided within the fourth fragment (567-755aa), although Fragment 2 

(189-377aa) also bound strongly to RPA135 (Figure 1.3B). Interestingly, there appeared to be a low 

level of interaction within all fragments analysed (Figure 1.3B). Although APC5 contains multiple TPR 

domains, these are only located within the second, third and fourth fragments, and thus could not 

account for the interaction seen within the first fragment. These data indicated that APC5 can 

associate with both RPA194 and RPA135 directly in vitro, and support the in vivo data previously 

described. 

Given that multiple fragments of APC5 are capable of binding RPA194 and RPA135 in vitro, this could 

suggest multiplicity in binding sites for RPA194 and RPA135 within the APC5 sequence. However, it is 

unknown whether this denotes a multipartite interaction between single APC5 and RPA194 or 

RPA135 proteins, or whether there is due to multiple APC5 and RPA194 or RPA135 proteins binding 

upon different locations. 
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Figure 1.3 - GST-APC5 interacts with IVT RPA194 and RPA135 

Full length GST-APC5 (FL) and GST-APC5 amino acid fragments 1-188, 189-377, 378-566, 567-755 
were expressed in bacteria, separated by SDS-PAGE and protein levels visualised by incubation with 
Coomassie Solution (A). 10µg of each GST-protein was incubated with 10µl of either [35S]-RPA194 or 
[35S]-RPA135 on ice prior to the addition of glutathione-agarose beads. These were then washed and 
separated by SDS-PAGE. The gels were dried and proteins detected by autoradiography (B). 
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5.4. The interaction between APC5 and Pol I is restricted to the 

nucleolus 
 

Having established a link between APC5 and Pol I, we next wished to determine the cellular 

localisation of this interaction. Since Pol I activity is inherent to the nucleolus, we wished to 

determine whether the interaction between APC5 and Pol I was also restricted to the nucleolus. To 

investigate this possibility, we adopted a nucleolar fractionation technique developed by Professor 

Angus Lamond’s group (Andersen, Lyon et al. 2002). Firstly, pure nuclei were isolated from HeLa cells 

by Dounce homogenisation in a hypotonic lysis buffer and centrifugation through a sucrose density 

gradient. These nuclei were then lysed by sonication, leaving nucleoli intact, followed by further 

centrifugation through a higher sucrose density gradient yielding nucleoplasmic and nucleolar 

fractions (Figure 1.4A). Analysis of the fractionated lysates revealed that Pol I subunits were present 

in both nucleolar and nucleoplasmic fractions, as were many APC/C subunits (Figure 1.4B). However, 

of the two APC/C co-activators, Cdc20 was detected within both fractions, whilst Cdh1 was only 

detected within the nucleoplasmic fraction. Similarly, the nucleolar marker protein 

B23/Nucleophosmin was shown to be entirely nucleolar in localisation, demonstrating the validity of 

the protocol. The presence of multiple APC/C subunits and the ability of APC3 and APC7 to co-IP 

APC5 from within the nucleolus suggest a nucleolar role for the APC/C holoenzyme, and not just for 

APC5.  

Having demonstrated the efficacy of the nucleolar isolation procedure, we were then in a position to 

perform APC/C and Pol I co-IPs from nucleolar and nucleoplasmic fractions. Figure 1.5 shows these 

results, indicating that APC5 interacts with RPA194 and RPA135 only within nucleoli and not within 

the nucleoplasm, despite the expression of each of these proteins within both fractions. Consistent 

with previous results, APC3 and APC7 antisera were unable to co-IP RPA194 and RPA135 (Figures 1.2 

and 1.5). These data indicate that APC5-Pol I interaction is restricted to the nucleolus. 
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A 

 

B 

      

Figure 1.4 - Nucleolar Fractionation into Nucleolar and Nucleoplasmic compartments 

A: Phase contrast microscopic images depicting the isolation of nucleoli by sucrose density 
centrifugation. i) HeLa cells were isolated by trypsination and incubated with ice-cold Buffer A 
(10mM HEPES pH 7.9, 10mM KCl, 1.5mM MgCl2, 0.5mM DTT) for 5 min. ii) The cellular membrane 
was lysed by Dounce homogenisation with a tight pestle for 20 strokes, left for 10 min to rest 
followed by a further 20 strokes. iii) pure nuclei were pelleted by centrifugation and resuspended in 
Buffer S1 (0.25M Sucrose, 10mM MgCl2), layered over 3ml Buffer S2 (0.35M Sucrose, 0.5mM MgCl2) 
and centrifuged at 1,430g for 5 min. iv) The pure nuclear pellet was lysed by 8x10s pulses with a 
sonicator at 35% amplitude. The sonicated lysate was layered over 3ml Buffer S3 (0.88M Sucrose, 
0.5mM MgCl2) and centrifuged at 3,000g for 10 min to obtain a soluble nucleoplasmic fraction and 
pelleted nucleoli. 
B: Nucleolar (NL) and Nucleoplasmic (NP) fractions were analysed by Western blotting for APC/C 
subunits (Right Panel) and for Pol I subunits and the nucleolar marker B23 (Left Panel) 
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Figure 1.5 - RPA194 and RPA135 interact with APC5 within the nucleolus, but not the nucleoplasm. 

Cells were separated into nucleolar (NL) and nucleoplasmic (NP) fractions. Antibodies against APC3, 
APC5 or APC7 were then used to co-IP any interacting proteins. These were separated by SDS-PAGE 
and the presence of Pol I subunits RPA194 and RPA135 as well as APC5 were detected by Western 
blotting. 
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5.5. The APC/C and Pol I co-elute following FPLC fractionation 
 

The APC/C and Pol I both exist as macromolecular complexes of different sizes. Whilst the APC/C 

exists at a size of 1.2MDa in vivo (Chang, Zhang et al. 2014), it commonly elutes around 700-800 kDa 

upon FPLC fractionation. Interestingly, APC5 has previously been described as associating with 

heavier protein complexes which do not contain other APC/C subunits such as APC3, a vital 

component for APC/C activity (Koloteva-Levine, Pinchasi et al. 2004). We therefore wished to 

establish whether APC5, and indeed other APC/C subunits, co-eluted with Pol I subunits.  

Nucleolar lysates from HeLa cells were fractionated by FPLC using a Superose-6 column. The protein 

was precipitated using ethanol, and resolubilised in UTB lysis buffer, followed by separation by SDS-

PAGE and immunoblotting. Although APC3 could not be detected by Western blotting, another 

APC/C subunit, APC7, was shown to have identical co-elution patterns to APC5 (Figure 1.6). The 

inability to detect APC3 is unlikely to be due to its absence, moreover its protein level is likely to be 

below a detectable threshold, or the antibody might not bind with sufficient avidity upon the 

membrane since APC3 has already been shown to be part of a nucleolar APC/C complex containing 

APC5 (Figure 1.5). 

Interestingly, the Pol I subunits RPA194, RPA135 and RPA40 were also found in the same fractions as 

APC5 and APC7 (Figure 1.6). This indicates that APC5 and Pol I exist in macromolecular complexes of 

comparable size in the nucleolus and suggests either that APC5 and Pol I are present in the same 

macromolecular complex, a result consistent with the interaction data, or that APC5 and Pol I exist 

separately in complexes of similar size and the FPLC protocol utilised did not provide the necessary 

resolution to distinguish between them. These observations are further complicated by the fact that 

subunits may not be bound to the complex at all times, for example if complex assembly occurs 

sequentially, hence the broad spectrum of fractions in which Pol I and APC/C are found.  
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Figure 1.6 - FPLC fractionation shows similar co-elution patterns for Pol I and the APC/C. 

2.5mg of nucleolar lysate from HeLa cells was loaded onto a pre-equilibrated Superose-6 column. 
The pressure limit was set to 1.5MPa and the flow rate to 0.5ml/min. 0.5ml fractions were collected, 
precipitated using 2x volume 100% ethanol and re-solubilised in UTB lysis buffer. 25% of each 
fraction was analysed by Western blotting for the presence of Pol I and APC/C subunits. The 
approximate fractions in which the markers for 669kDa and 443kDa elute are shown with arrows. 
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5.6. Confocal microscopy establishes co-localisation of APC/C and Pol I 

within the nucleolus 
 

To provide further evidence for a physical interaction between APC5 and Pol I we used a dual staining 

immunofluorescence (co-IF) protocol coupled with confocal microscopy to establish their respective 

cellular localisation. To do this, asynchronous HeLa cells were seeded onto 12-well slides, fixed and 

permeabilised in 4% (w/v) PFA then ice-cold acetone, and subsequently probed with antibodies 

raised against APC/C subunits, RPA194 or the nucleolar marker, Fibrillarin.  

Although APC5 exhibited cytoplasmic fluorescence, and to a lesser extent nucleoplasmic, there was a 

relatively strong signal within the nucleolus (Figure 1.7 Ai, iv). Indeed, upon comparison to the 

localisation of RPA194, it was evident that both APC5 and RPA194 exhibited similar nucleolar 

fluorescence (Figure 1.7 Ai, merge). Indeed, intensity profiles for APC5 and RPA194 were indicative of 

regions of substantial co-localisation (Figure 1.7 Bi). 

However, due to species restriction imposed by the primary antibodies, a different nucleolar marker 

was required to ascertain the nucleolar localisation of other APC/C subunits. Fibrillarin is known to be 

expressed within the FC and DFC compartments of the nucleolus (Ochs, Lischwe et al. 1985), and 

exhibits equivalent expression to RPA194 (Figure 1.7 ii), thus it was chosen as an alternative 

nucleolar marker. Interestingly, dual staining of Fibrillarin with APC1 (Figure 1.7 iii) and APC7 (Figure 

1.7 v) indicated the presence of these APC/C subunits within the nucleolus. These data are consistent 

with those from nucleolar fractionation studies, where APC5 and APC7, as a minor proportion of the 

cellular pool of the APC/C, were shown to reside within the nucleolus (Figure 1.4; Figure 1.7 i, iv, v). 

Despite not being able to co-IP RPA194, it is interesting to note that APC7 and APC1, as well as APC5, 

are expressed within the same sub-nucleolar compartments as Pol I. Taken together, these data 

suggest that there might be a role for the APC/C within the nucleolar regions responsible for rDNA 

transcription and rRNA maturation, perhaps through an interaction with Pol I, as mediated by APC5. 
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Figure 1.7 - Confocal microscopy displaying nucleolar localisation of APC/C and co-localisation of 
APC5 and RPA194 

HeLa cells were grown upon a 12-well slide, fixed and permeabilised in 4% (w/v) PFA (8 min) then ice-
cold acetone (5 min). After blocking in HINGS (45 min), the slides were incubated with the primary 
then secondary antibodies conjugated to a fluorophore (2h, 37°C), before being mounted in 
Vectashield containing DAPI to visualise DNA. The slides were imaged using an LSM510 META 
confocal laser scanning microscope (Zeiss) (A) and the nucleoli profiled using Zeiss LSM Image 
Browser (Zeiss) (B). 

RPA194 was shown to co-localise with APC5 (i) and Fibrillarin (ii) within the nucleolus. Similarly 
various APC/C subunits were shown to be expressed within the nucleolus (iii-v). The white arrow on 
the image shows the direction and length of profile (B). 

 

 

 

 

 

 

5.7. RPA194 and RPA135 are not substrates for APC/C E3 ubiquitin 

ligase activity in vitro. 
 

Having previously demonstrated and subsequently validated an interaction between APC5 and Pol I 

both in vivo and in vitro, we next wished to determine whether the Pol I subunits, RPA194 and 

RPA135, were bona fide substrates for APC/C E3 ubiquitin ligase activity. RPA194 contains several D-

boxes, whilst RPA135 contains several D-boxes and a KEN-box (Figure 1.8A). These are the canonical 

sequences found within APC/C substrates which are required for its ubiquitin-mediated degradation 

(Peters 2006, Pines 2011). Using GPS-ARM 1.0, a computerised modelling software package, it is 

possible to assign a score to these degron motifs, signifying their probability of being true APC/C 

targets (Liu, Yuan et al. 2012). RPA194 contains three D-boxes with the highest threshold of 

stringency and two with medium stringency, whilst RPA135 has a high-scoring KEN-box. It is 

therefore possible that both of these are APC/C substrates given these motifs and calculated values. 
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RPA194 also contains a TEK motif, which has recently been shown to provide the lysine for 

ubiquitylation by the APC/C within some of its substrates (Jin, Williamson et al. 2008). Other mass 

spectrometric studies have also shown that K1180 within the TEK motif in RPA194 is ubiquitylated in 

vivo, providing further evidence that it might be an APC/C target (Kim, Bennett et al. 2011). 

Interestingly, RPA194 also contains a C-terminal L-R dipeptide motif, which has recently been 

demonstrated to be integral to the degradation of another APC/C substrate, KIF18A (Figure 1.8A) 

(Sedgwick, Hayward et al. 2013). 

To test the hypothesis that RPA194 and RPA135 are APC/C substrates, an in vitro assay was 

performed whereby immunopurified APC/C was incubated with IVT [35S]-Cyclin B1, [35S]-RPA194 or 

[35S]-RPA135 in the presence of ubiquitin, E1, E2’s and an ATP regeneration buffer (Figure 1.8Bi). 

Upon detection by autoradiography, polyubiquitin chains cause a progressive increase in size, which 

can be seen on Cyclin B1 as a smear within the APC3 IP lane, compared to IgG control, thereby 

proving it is a substrate under in vitro conditions. However, APC/C purified by either APC3 or APC5 IP 

was not able to ubiquitylate RPA194 or RPA135, suggesting that they are not substrates, at least 

under the in vitro conditions investigated here (Figure 1.8Bi). Since the majority of cells from which 

the APC/C is immunoprecipitated are in interphase, most APC/C in this assay is activated by Cdh1. In 

order to obtain a greater proportion of APC/C activated by Cdc20, the process was repeated from 

cells arrested in prometaphase by the mitotic spindle-inhibiting drug nocodazole and then released 

from the SAC for 1h (Figure 1.8Bii). This was of great importance, since Cdc20, but not Cdh1, was 

detected within nucleolar fractions by Western blot (Figure 1.4B). However, these were also unable 

to ubiquitylate RPA194 and RPA135 under these in vitro conditions.  
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A i) - RPA194 

        10         20         30         40         50         60         70         80         90 

MLISKNMPWR RLQGISFGMY SAEELKKLSV KSITNPRYLD SLGNPSANGL YDLALGPADS KEVCSTCVQD FSNCSGHLGH IELPLTVYNP 

       100        110        120        130        140        150        160        170        180 

LLFDKLYLLL RGSCLNCHML TCPRAVIHLL LCQLRVLEVG ALQAVYELER ILNRFLEENP DPSASEIREE LEQYTTEIVQ NNLLGSQGAH  

       190        200        210        220        230        240        250        260        270  

VKNVCESKSK LIALFWKAHM NAKRCPHCKT GRSVVRKEHN SKLTITFPAM VHRTAGQKDS EPLGIEEAQI GKRGYLTPTS AREHLSALWK 

       280        290        300        310        320        330        340        350        360  

NEGFFLNYLF SGMDDDGMES RFNPSVFFLD FLVVPPSRYR PVSRLGDQMF TNGQTVNLQA VMKDVVLIRK LLALMAQEQK LPEEVATPTT 

       370        380        390        400        410        420        430        440        450 

DEEKDSLIAI DRSFLSTLPG QSLIDKLYNI WIRLQSHVNI VFDSEMDKLM MDKYPGIRQI LEKKEGLFRK HMMGKRVDYA ARSVICPDMY 

       460        470        480        490        500        510        520        530        540  

INTNEIGIPM VFATKLTYPQ PVTPWNVQEL RQAVINGPNV HPGASMVINE DGSRTALSAV DMTQREAVAK QLLTPATGAP KPQGTKIVCR 

       550        560        570        580        590        600        610        620        630 

HVKNGDILLL NRQPTLHRPS IQAHRARILP EEKVLRLHYA NCKAYNADFD GDEMNAHFPQ SELGRAEAYV LACTDQQYLV PKDGQPLAGL 

       640        650        660        670        680        690        700        710        720  

IQDHMVSGAS MTTRGCFFTR EHYMELVYRG LTDKVGRVKL LSPSILKPFP LWTGKQVVST LLINIIPEDH IPLNLSGKAK ITGKAWVKET 

       730        740        750        760        770        780        790        800        810  

PRSVPGFNPD SMCESQVIIR EGELLCGVLD KAHYGSSAYG LVHCCYEIYG GETSGKVLTC LARLFTAYLQ LYRGFTLGVE DILVKPKADV 

       820        830        840        850        860        870        880        890        900  

KRQRIIEEST HCGPQAVRAA LNLPEAASYD EVRGKWQDAH LGKDQRDFNM IDLKFKEEVN HYSNEINKAC MPFGLHRQFP ENSLQMMVQS  

       910        920        930        940        950        960        970        980        990 

GAKGSTVNTM QISCLLGQIE LEGRRPPLMA SGKSLPCFEP YEFTPRAGGF VTGRFLTGIK PPEFFFHCMA GREGLVDTAV KTSRSGYLQR 

      1000       1010       1020       1030       1040       1050       1060       1070       1080  

CIIKHLEGLV VQYDLTVRDS DGSVVQFLYG EDGLDIPKTQ FLQPKQFPFL ASNYEVIMKS QHLHEVLSRA DPKKALHHFR AIKKWQSKHP  

      1090       1100       1110       1120       1130       1140       1150       1160       1170 

NTLLRRGAFL SYSQKIQEAV KALKLESENR NGRSPGTQEM LRMWYELDEE SRRKYQKKAA ACPDPSLSVW RPDIYFASVS ETFETKVDDY 

      1180       1190       1200       1210       1220       1230       1240       1250       1260 

SQEWAAQTEK SYEKSELSLD RLRTLLQLKW QRSLCEPGEA VGLLAAQSIG EPSTQMTLNT FHFAGRGEMN VTLGIPRLRE ILMVASANIK  

      1270       1280       1290       1300       1310       1320       1330       1340       1350 

TPMMSVPVLN TKKALKRVKS LKKQLTRVCL GEVLQKIDVQ ESFCMEEKQN KFQVYQLRFQ FLPHAYYQQE KCLRPEDILR FMETRFFKLL 

      1360       1370       1380       1390       1400       1410       1420       1430       1440  

MESIKKKNNK ASAFRNVNTR RATQRDLDNA GELGRSRGEQ EGDEEEEGHI VDAEAEEGDA DASDAKRKEK QEEEVDYESE EEEEREGEEN  

      1450       1460       1470       1480       1490       1500       1510       1520       1530 

DDEDMQEERN PHREGARKTQ EQDEEVGLGT EEDPSLPALL TQPRKPTHSQ EPQGPEAMER RVQAVREIHP FIDDYQYDTE ESLWCQVTVK 

      1540       1550       1560       1570       1580       1590       1600       1610       1620  

LPLMKINFDM SSLVVSLAHG AVIYATKGIT RCLLNETTNN KNEKELVLNT EGINLPELFK YAEVLDLRRL YSNDIHAIAN TYGIEAALRV  

      1630       1640       1650       1660       1670       1680       1690       1700       1710 

IEKEIKDVFA VYGIAVDPRH LSLVADYMCF EGVYKPLNRF GIRSNSSPLQ QMTFETSFQF LKQATMLGSH DELRSPSACL VVGKVVRGGT 

      1720  

GLFELKQPLR  

 

 

A ii) - RPA135 
 
        10         20         30         40         50         60         70         80         90 

MDPGSRWRNL PSGPSLKHLT DPSYGIPREQ QKAALQELTR AHVESFNYAV HEGLGLAVQA IPPFEFAFKD ERISFTILDA VISPPTVPKG 

       100        110        120        130        140        150        160        170        180  

TICKEANVYP AECRGRRSTY RGKLTADINW AVNGISKGII KQFLGYVPIM VKSKLCNLRN LPPQALIEHH EEAEEMGGYF IINGIEKVIR  

       190        200        210        220        230        240        250        260        270 

MLIMPRRNFP IAMIRPKWKT RGPGYTQYGV SMHCVREEHS AVNMNLHYLE NGTVMLNFIY RKELFFLPLG FALKALVSFS DYQIFQELIK 

       280        290        300        310        320        330        340        350        360 

GKEDDSFLRN SVSQMLRIVM EEGCSTQKQV LNYLGECFRV KLNVPDWYPN EQAAEFLFNQ CICIHLKSNT EKFYMLCLMT RKLFALAKGE  

       370        380        390        400        410        420        430        440        450 

CMEDNPDSLV NQEVLTPGQL FLMFLKEKLE GWLVSIKIAF DKKAQKTSVS MNTDNLMRIF TMGIDLTKPF EYLFATGNLR SKTGLGLLQD 

       460        470        480        490        500        510        520        530        540  

SGLCVVADKL NFIRYLSHFR CVHRGADFAK MRTTTVRRLL PESWGFLCPV HTPDGEPCGL MNHLTAVCEV VTQFVYTASI PALLCNLGVT 

       550        560        570        580        590        600        610        620        630 

PIDGAPHRSY SECYPVLLDG VMVGWVDKDL APGIADSLRH FKVLREKRIP PWMEVVLIPM TGKPSLYPGL FLFTTPCRLV RPVQNLALGK 

       640        650        660        670        680        690        700        710        720  

EELIGTMEQI FMNVAIFEDE VFAGVTTHQE LFPHSLLSVI ANFIPFSDHN QSPRNMYQCQ MGKQTMGFPL LTYQDRSDNK LYRLQTPQSP  

       730        740        750        760        770        780        790        800        810 

LVRPSMYDYY DMDNYPIGTN AIVAVISYTG YDMEDAMIVN KASWERGFAH GSVYKSEFID LSEKIKQGDS SLVFGIKPGD PRVLQKLDDD 

       820        830        840        850        860        870        880        890        900  

GLPFIGAKLQ YGDPYYSYLN LNTGESFVMY YKSKENCVVD NIKVCSNDTG SGKFKCVCIT MRVPRNPTIG DKFASRHGQK GILSRLWPAE  

       910        920        930        940        950        960        970        980        990 

DMPFTESGMV PDILFNPHGF PSRMTIGMLI ESMAGKSAAL HGLCHDATPF IFSEENSALE YFGEMLKAAG YNFYGTERLY SGISGLELEA 

      1000       1010       1020       1030       1040       1050       1060       1070       1080  

DIFIGVVYYQ RLRHMVSDKF QVRTTGARDR VTNQPIGGRN VQGGIRFGEM ERDALLAHGT SFLLHDRLFN CSDRSVAHVC VKCGSLLSPL 

      1090       1100       1110       1120       1130  

LEKPPPSWSA MRNRKYNCTL CSRSDTIDTV SVPYVFRYFV AELAAMNIKV KLDVV  

 

 

Figure 1.8A – D-box, KEN boxes and TEK motifs within RPA194 and RPA135 
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Amino acid sequences of RPA194 (i) and RPA135 (ii) were obtained from the Uniprot database and 
run through the GPS-ARM 1.0 software. D-boxes are highlighted in yellow, whilst KEN motifs are 
highlighted in blue and TEK in green. The C-terminal L-R dipeptide in RPA194 is highlighted in pink. 
The D-boxes that passed the high threshold are written in a red font and double underlined, whilst 
those of medium threshold are just written in a red font. 

 

 

 

 

Figure 1.8B - RPA194 and RPA135 are not substrates for the APC/C in vitro 

 

Either asynchronous (i) or cells arrested in prometaphase by incubation of 400ng/ml nocodazole for 
20h (ii) were lysed and immunoprecipitated by the addition of 20µg of either normal IgG, APC3 or 
APC5 antibodies overnight followed by 10µl Protein G-agarose for 3h. The resulting IPs were washed 
and incubated with rabbit E1 and human E2 UbcH10 and UbcH5 together with 1µl of either [35S]-
Cyclin B1, [35S]-RPA194 or [35S]-RPA135 at 37°C for 1h prior to separation by SDS-PAGE and detection 
by autoradiography. 
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5.8. Expression of RPA194, RPA135 and RPA40 following siRNA-

mediated knockdown of the APC/C 
 

Since the in vitro ubiquitylation assay proved unsuccessful, we adopted alternative approaches to 

determine the likelihood of Pol I subunits being substrates for APC/C activity in vivo. Since APC/C-

mediated ubiquitylation acts as a degradation signal for the 26S proteasome, ablation of APC/C 

activity typically results in the stabilisation of its substrates, increasing their relative abundance 

within the proteome, which can be detected by Western blotting. We therefore investigated the 

protein levels of Pol I subunits following the siRNA-mediated knockdown of APC/C subunits. Through 

siRNA-mediated abrogation of APC/C subunit expression, particularly following APC3 and APC5 

knockdowns, it was evident that the known substrates Cyclin A, Cyclin B1 and Cdc20 were stabilised 

(Figure 1.9). Interestingly, RPA194 protein levels appeared to mimic these APC/C substrates following 

APC/C subunit knockdown, indicating that RPA194 protein levels might be regulated by APC/C 

activity, whether by direct or indirect means. RPA135 and RPA40, however, did not show any obvious 

changes in protein levels following knockdown of APC/C subunits (Figure 1.9). 

 

5.9. Expression of RPA194, RPA135 and RPA40 through mitosis 
 

APC/C activity is inhibited during early mitosis by the Mitotic Checkpoint Complex due to the 

prevention of Cdc20-mediated APC/C activation (Sudakin, Chan et al. 2001). Upon satisfaction of the 

SAC, the inhibition of Cdc20 is alleviated, permitting APC/C-Cdc20 to degrade its target substrates, 

including Securin and Cyclin B1, thereby permitting the onset of anaphase. The APC/C then exhibits a 

co-activator switch, becoming activated preferentially by Cdh1, thus promoting mitotic exit and re-

entry into the subsequent G1 phase in cycling cells, or entry into quiescence and differentiation 

(Peters 2006, Musacchio and Salmon 2007, Pines 2011). As such, substrates ought to exhibit an 
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expression pattern inverse to that of APC/C activity, in that expression should remain high during 

prophase, followed by a marked decrease following anaphase progression. By synchronising cells in 

prometaphase with nocodazole followed by their subsequent release through mitosis, it is possible 

to observe protein levels throughout each mitotic phase. We therefore adopted this approach to 

analyse Pol I subunit expression during mitosis. 

Mitotic progression can be followed by the expression of Cyclin B1, which was elevated during 

nocodazole arrest, and subsequently decreased as the cells entered anaphase and progressed 

through mitosis into G1 (Figure 1.10iv). The proportion of phosphorylated APC3, which migrated as a 

higher molecular weight band following SDS-PAGE, can also be used as a mitotic indicator; this is 

regulated by the mitotic kinases Cdk1 and Plk1 (Figure 1.10v). Similar to Cyclin B1, RPA194 protein 

levels were elevated during prometaphase, and started to decrease by 1h post-release, decreasing 

further by 2h (Figure 1.10, panel i). RPA135 was elevated slightly throughout the duration of mitosis, 

whilst RPA40 showed no change (Figure 1.10, ii and iii, respectively). Given these findings, it cannot 

be concluded definitively that RPA194 is a substrate for the APC/C; however, its stability does appear 

to be dependent upon APC/C activity, as RPA194 protein levels mirror those of the bona fide APC/C 

substrate Cyclin B1.  

Taken together, the protein levels of RPA194 during mitosis and following siRNA-mediated 

knockdown of APC3 and APC5 are consistent with the notion that RPA194 could be a novel substrate 

for the APC/C. 
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Figure 1.9 - Protein expression following siRNA-mediated knockdown of APC/C subunits 

 

HeLa cells were harvested 72h after incubation with siRNA duplexes against either APC3, APC5, APC7 
or Cdc20 mRNA or non-silencing control (non-sil). Lysates were separated by SDS-PAGE and analysed 
by Western blotting. 

RPA194 protein levels increase following knockdown of APC3 and APC5, whilst RPA135 and RPA40 
show no change in expression. 
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Figure 1.10 - Expression of Pol I subunits during mitotic progression 

 

HeLa cells were treated with DMSO (-) or 400ng/ml nocodazole for 20h. Cells arrested in mitosis 
were obtained by mechanical shake-off and released into fresh growth medium for the time 
indicated (0,1,2,4h). Lysates were separated by SDS-PAGE an analysed by Western blotting with the 
indicated antibodies. 

Cyclin B1 protein levels and the gel shift caused by APC3 phosphorylation are used as positive 
controls to show mitotic progression. 
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5.10. The APC/C regulates abundance of Pol I rRNA transcripts. 
 

Having established a link between APC5 and Pol I and demonstrated that the APC/C might regulate 

RPA194 protein levels, we next investigated whether the APC/C can affect the activity of Pol I. To 

achieve this, we examined the relative levels of its transcriptional products upon siRNA-mediated 

knockdown of the APC/C. 

To do this, RNA from non-silencing (LacZ), APC3, APC5 or Cdc20 knockdown HeLa cells was harvested 

and reverse-transcribed to form cDNA. This was then used in qPCR reactions using pre-designed 

TaqMan assays (Applied Biosystems) consisting of primers and probes specific to either 28S or 18S 

rRNA, or to the controls Hprt1 or GAPDH. Out of the two most commonly used methods of qPCR, 

TaqMan was chosen over SYBR green due to its increased specificity. To further decrease background 

signal, genomic DNA (gDNA) was digested using DNase I prior to the RT-PCR reaction. This was 

particularly important, because the TaqMan primers and probe for 18S and 28S rRNA do not span 

different exons, and therefore may amplify gDNA, and there are around 400 copies of the rDNA 

repeat within the human genome. 

To analyse the data from the qPCR, we adopted the ddCt method. The Ct value is calculated at a 

fluorescence threshold during the logarithmic growth part of the curve. Duplicates are averaged, and 

an average of the two controls (Hprt1 and GAPDH) is calculated. The dCt is calculated by the 

subtraction of these averaged control Ct values from the test Ct (i.e. 18S or 28S) for each input 

sample. The mean dCt from the LacZ siRNA samples is then subtracted from each dCt value to give 

the ddCt, from which the percentage change in gene expression is calculated. The mean dCt and 

mean relative gene expression are shown (Figure 1.11A). Proof of knockdown efficiency was 

demonstrated by calculating the relative gene expression of APC3, APC5 and Cdc20 from each siRNA 

sample used (Figure 1.11B). 
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Following siRNA knockdown of APC3, APC5 and Cdc20, the abundance of 18S rRNA increased to a 

statistically significant level relative to LacZ controls (Figure 1.11A – i, right panel). It is important to 

note that a decrease in the value of dCt between LacZi control and the siRNA samples implies that a 

particular fluorescence threshold had been reached earlier, and therefore there was relatively more 

of the cDNA within the input, signifying an increase in RNA abundance in vivo (Figure 1.11A – i, left 

panel). 

The abundance of 28S rRNA was similarly elevated following knockdown of APC3, APC5 or Cdc20 

relative to LacZ controls (Figure 1.11A – ii, right panel). However, the increase in 28S rRNA was only 

deemed to be significant by Student’s t-test (p<0.05) following APC5 and Cdc20 knockdown, and not 

APC3 (Figure 1.11A – ii) (p-value Mean dCt = 0.089, p-value Mean Relative Gene Expression = 0.11). 

This is likely to be due to the more variable results obtained in the APC3 siRNA samples, as shown by 

the wider error bars, though it does appear to follow a similar trend to the other graphs. 

One flaw in the use of 28S and 18S rRNA as markers of Pol I transcription is that although indicative 

of Pol I activity, they have been processed from the initial 45S pre-rRNA transcript. It is therefore 

feasible that any differences may be attributable to an increase in pre-rRNA processing rather than 

heightened Pol I transcription. To address this issue it was evident that the qPCR must be repeated 

and the relative expression of 45S pre-rRNA must be measured. However, a pre-designed TaqMan 

assay was not available, and several designing software packages were unable to identify a primer 

and probe set with the correct biochemical properties. It was therefore necessary to utilise a SYBR 

green PCR instead, despite its potential drawbacks. 

In a similar trend to the results seen for 18S and 28S rRNA, knockdown of APC3 and Cdc20 resulted in 

a significant increase in abundance of 45S pre-rRNA (Figure 1.11A – iii). However, whilst APC3 and 

Cdc20 knockdown caused an appreciable increase in 45S pre-rRNA, the slight increase following 
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knockdown of APC5 was deemed insignificant by a Student’s t-test (Figure 1.11A – iii) (p-value Mean 

dCt = 0.85, p-value Mean Relative Gene Expression = 0.77). 

Taken together, these results showed that ablation of APC/C activity through knockdown of APC/C 

subunits resulted in elevated levels of the 45S pre-rRNA and 28S and 18S rRNA transcripts. 

Initially, the data from the APC5 knockdown qPCR seems somewhat counterintuitive. An increase in 

18S and 28S rRNA was coupled with an increase in 45S pre-rRNA for both APC3 and Cdc20 

knockdowns, as expected. However, for APC5 there was no change in 45S pre-rRNA transcript levels 

despite the relative increase for 18S and 28S rRNA. This could be attributable to two likely scenarios: 

firstly, any increase in Pol I transcription to produce the 45S pre-rRNA transcript was masked by a 

concomitant increase in the rRNA maturation pathway, resulting in a greater proportion of end-

product 18S and 28S rRNA; secondly, 18S and 28S rRNA stability has increased. 
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Figure 1.11 - qRT-PCR denoting relative expression of 18S and 28S rRNA, 45S pre-rRNA and APC3, 
APC5 and Cdc20 mRNA following knockdown of APC/C subunits. 

RNA was harvested 72h after siRNA-mediated knockdown of either APC3, APC5, Cdc20 or LacZ as a 
non-silencing control using an RNeasy mini kit (Qiagen). QIAshredder columns were used to 
homogenise the lysate, and gDNA was digested with DNase I. 500ng RNA was used as input into an 
RT-PCR reaction to produce cDNA. 20ng of cDNA was then used as input into each qPCR reaction, 
with 5 biological replicates run in duplicate. 

(A) Relative gene expression was calculated using the ddCt method upon Ct values obtained by 
TaqMan (18S, 28S rRNA) or SYBR green (45S pre-rRNA) qPCRs. The darker coloured bar depicts LacZ 
siRNA control, whilst the lighter bar represents the indicated APC/C siRNA. Error bars shown are 
standard deviation. Statistically significant changes are indicated by an asterisk as calculated by a 
two-tailed Student’s t-test (p<0.05). 

p-values calculated to 3 significant figures are as follows: 

i) 18S   – Mean dCt: APC3i (p=0.0216), APC5i (p=0.00938), Cdc20i (p=0.000593) 
             – Mean Relative Gene Expression: APC3i (p=0.0289), APC5i (p=0.0167), Cdc20i (p=0.00240) 
ii) 28S  – Mean dCt: APC3i (p=0.0884), APC5i (p=0.00641), Cdc20i (p=0.0159) 
             – Mean Relative Gene Expression: APC3i (p=0.106), APC5i (p=0.00143), Cdc20i (p=0.0349) 
iii) 45S – Mean dCt: APC3i (p=0.0123), APC5i (p=0.850), Cdc20i (p=0.0000722) 
             – Mean Relative Gene Expression: APC3i (p=0.0123), APC5i (p=0.769), Cdc20i (p=0.0000332) 

 (B) – TaqMan qPCR of APC3, APC5 and Cdc30 cDNA highlighting efficiency of APC/C siRNA-mediated 
knockdown. 
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5.11. APC/C knockdown causes an increase in de novo rRNA synthesis 
 

To assess further the effect of the ablation of APC/C activity upon Pol I activity, it was considered 

necessary to investigate de novo pre-rRNA synthesis. As such, the nucleoside analogue 5’-

Fluorouridine (5-FUrd) was used as a marker for de novo RNA synthesis, since it incorporates into 

nascent RNA transcripts and can be measured semi-quantitatively by α-BrdU antibodies and IF. The 

use of 5-FUrd by RNA Polymerase enzymes is non-specific, such that both Pol I and Pol II will use it in 

the place of uridine, however it is possible to measure Pol I transcription selectively rather than Pol II 

by keeping incubation times and dosage low, as Pol I transcription occurs at a much higher rate than 

Pol II. Accordingly, HeLa cells, following siRNA-mediated knockdown of LacZ, APC3, APC5 or Cdc20 

expression, were seeded onto 12-well slides and incubated with 2mM 5-FUrd for 10 minutes, 

followed by fixation and permeabilisation by 4% (w/v) PFA and 1% (v/v) Triton X-100. Slides were 

then incubated with the appropriate primary and secondary antibodies, and fluorescent images were 

taken and subsequently quantified using Image J. 

In order to control for changes in nucleolar size and the number of active nucleoli within a cell, three 

different analyses were performed: the mean nucleolar BrdU fluorescence, which represents the 

average rate at which Pol I is transcribing each active rDNA repeat (Figure 1.12Ai); the total nucleolar 

BrdU fluorescence, expressed both per nucleolus (Figure 1.12Aii) and per cell (Figure 1.12Aiii), which 

signifies the total Pol I transcription over the 5-FUrd incubation period. For all three methods of 

analysis, knockdown of APC3, APC5 and Cdc20 resulted in a statistically significant increase of 5-FUrd 

nucleolar incorporation relative to non-silencing LacZ controls, representing an increase in de novo 

rRNA synthesis by Pol I. 

Taken together, the data shown in Figures 1.11 and 1.12 highlight a novel method of regulation for 

Pol I transcription as orchestrated by the APC/C. Given that knockdown of APC3, APC5 and Cdc20 

resulted in an increase in de novo pre-rRNA synthesis (Figure 1.12) and in the absolute levels of rRNA 
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transcripts (Figure 1.11), it can be concluded that Pol I activity is regulated, at least in part, by the 

APC/C holoenzyme, activated by Cdc20. This could be achieved by the targeting of RPA194 for APC/C-

mediated proteolysis, under the control of APC5. However, it is also possible that APC5 has further 

roles in regulating mature rRNA production, given that its knockdown increased de novo pre-rRNA 

synthesis (Figure 1.12) and the levels of 18S and 28S rRNA transcripts (Figure 1.11i, ii), but not those 

of 45S pre-rRNA (Figure 1.11iii). 
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Figure 1.12 – 5’-Fluorouridine incorporation as a marker for Pol I activity following siRNA-mediated 
knockdown of either LacZ, APC3, APC5 or Cdc20 

HeLa cells were subjected to siRNA-mediated knockdown of LacZ, APC3, APC5 or Cdc20 for 72h. Cells 
were then incubated with 2mM 5-FUrd for 10 minutes and processed for immunofluorescence (A, C) 
or Western Blotting (B) 

(A) IF images were imported into Image J (NIH), and a region of interest drawn around each 
nucleolus, as denoted by Fibrillarin staining. The area, mean signal and total signal from the BrdU 
staining were then measured, along with 3 background readings. The average mean signal from the 
background values was established and use for the following calculations: 

i) Mean nucleolar incorporation of 5-FUrd = Mean nucleolar signal – mean background signal 
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ii) Total nucleolar incorporation of 5-FUrd = Total nucleolar signal – (Area of nucleolus x mean 
background signal) 

iii) Total nucleolar incorporation of 5-FUrd per cell = Sum of total nucleolar incorporation of 5-
FUrd for all nucleoli within the same cell 

The mean of these three values was calculated for each siRNA treatment and expressed relative to 
LacZ control. The two bars in each siRNA treatment represent two independent repeats. 

All differences were calculated to be significant by a Student’s t-test (P<0.0001). 

Number of nucleoli analysed:  
repeat 1 (dark bar) – LacZ (806), APC3 (685), APC5 (456), Cdc20 (495)  
repeat 2 (light bar)  – LacZ (641), APC3 (317), APC5 (543), Cdc20 (279) 

Number of cells analysed:  
repeat 1 (dark bar) – LacZ (345), APC3 (285), APC5 (212), Cdc20 (279)  
repeat 2 (light bar)  – LacZ (273), APC3 (144), APC5 (262), Cdc20 (155) 

 

(B) Western blots verifying knockdown efficiency of APC3, APC5 and Cdc20. 

(C) Representative IF images showing Fibrillarin staining of nucleoli (red), BrdU staining of 5-FUrd pre-
rRNA incorporation (green) and merged with DNA stained with DAPI (blue). 
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5.12. The Chicken Anaemia Virus protein, Apoptin does not disrupt 

APC5 interaction with RPA194. 
 

Having demonstrated that cellular RPA194 protein levels were at least in part dependent upon APC/C 

subunit expression, we wished to determine whether a functional APC/C complex was required for 

its interaction with APC5. In this regard, we took advantage of the ability of the Chicken Anaemia 

Virus (CAV) protein, Apoptin to bind APC1 and disrupt the APC/C, which has previously been shown 

to inhibit the E3 ligase capacity of the APC/C (Teodoro, Heilman et al. 2004). 

HeLa cells were therefore infected with an Adenoviral vector expressing either LacZ or CAV Apoptin 

tagged with HA (HA-Apoptin). APC5 IPs were then performed to compare its ability to bind RPA194 in 

vivo in the presence or absence of HA-Apoptin (Figure 1.13). However, the expression of Apoptin did 

not affect the binding between APC5 and RPA194 (Figure 1.13). It can be deduced, therefore, that 

the interaction between APC5 and RPA194 is not dependent upon an active APC/C holoenzyme. 
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Figure 1.13 - The interaction between RPA194 and APC5 is not altered by inhibition of the APC/C by 
CAV Apoptin 

HeLa cells were infected by 20pfu/cell adenovirus vector expressing either LacZ or HA-Apoptin cDNA 
for 2h. Cells were harvested 60h post-infection, either from whole cell lysates (i) or nucleolar extracts 
(ii), into which 5µg IgG or APC5 antibody was added overnight, followed by 10µl packed Protein G-
agarose beads for 2h. These IPs were then washed, boiled, separated by SDS-PAGE and analysed by 
immunoblotting using the denoted antibodies. Apoptin was detected using an HA antibody. 
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5.13. APC5 binds Pol I both in interphase and during mitotic 

disassembly of the nucleolus 
 

Transcription of rDNA has been shown to be dynamic, such that it is constantly being regulated as 

part of various signalling pathways. The nucleolus is integral to the cellular response to different 

forms of stress, and may act as a central sensory hub with an effector mechanism which results in 

the inhibition of rRNA synthesis and processing (Mayer and Grummt 2005, Boulon, Westman et al. 

2010, Grummt 2013). As it has previously been shown that the APC/C regulates Pol I transcription 

(Figures 1.11 and 1.12), it was considered whether the APC/C was involved in the repression of Pol I 

activity as part of the stress response. To investigate this, a series of experiments were instigated to 

examine the interaction between APC5 and Pol I following the inhibition of rDNA transcription. 

During mitosis in human cells, the nucleoli disassemble, and genomic regions of rDNA arrange into 

nucleolar organiser regions (NORs). Active NORs, i.e. those which have not become silenced by 

heterochromatin, retain the inhibited Pol I throughout mitosis until Cdk1 inhibition and Pol I 

reactivation during late mitosis, upon which pre-rRNA synthesis recommences (Hernandez-Verdun 

2011). It was therefore of interest to see whether the interaction between APC5 and Pol I was 

altered during nocodazole-induced mitotic arrest. 

HeLa cells were either grown asynchronously or arrested in prometaphase by nocodazole. The 

binding between APC5 and RPA194 was then analysed by Western blot analysis of APC5 IPs. The total 

amount of RPA194 co-immunoprecipitated by APC5 antibodies was equal between asynchronous 

and mitotic cells (Figure 1.14A). However, closer examination of the APC5 Western blot suggests that 

APC5 is depleted during mitosis, a phenomenon independently corroborated by another group 

(Teodoro JS, personal communication; Figures 1.10 and 1.14A). Therefore, whilst the total binding of 

APC5 to RPA194 remained unchanged, the binding relative to APC5 abundance was increased (Figure 

1.14A). This suggests that either binding between the two proteins has increased, or that the APC5 
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bound to Pol I is somehow protected from its mitotic instability. As such, there is insufficient 

evidence provided here to establish a definitive role for APC5 in mitotic inhibition of Pol I. 

 

 

Figure 1.14 – Comparison of APC5-RPA194 interaction between asynchronous and mitotic cells. 

HeLa cells were treated with DMSO (-) or 400ng/ml nocodazole (Noc.) for 20h (+). Mitotic cells in 
Noc-treated samples were harvested by mitotic shake-off. Lysates were normalised and APC5 IPs 
were performed. These were separated by SDS-PAGE and analysed by Western blotting (A). Further 
lysate controls are shown to confirm mitotic arrest (B). 
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5.14. Selective inhibition of RNA Polymerase I by Actinomycin D 

increases the interaction between APC5 and RPA194. 
 

It is possible to inhibit rDNA transcription artificially using the DNA-intercalating drug Actinomycin D 

(Act D), which at low doses has been shown to be specific for Pol I inhibition rather than Pol II or III 

(Perry and Kelley 1970, Iapalucci-Espinoza and Franze-Fernández 1979). Act D treatment elicits many 

cellular changes, some of which are capable of altering rRNA production. One method is by inhibition 

of the elongation step within Pol I transcription, due to stabilisation of Topoisomerase I-cleaved DNA 

intermediates, causing rDNA genes to become supercoiled and increasing the proportion of Pol I 

holoenzymes associated with promoters (Trask and Muller 1988, Hadjiolova, Hadjiolov et al. 1995). 

Act D also causes nucleolar structure to become disrupted, such that the subnucleolar compartments 

dissociate, and proteins important for Pol I transcription, such as UBF, as well as nucleoplasmic 

proteins sequester into nucleolar caps around the cellular compartments in which nucleoli were 

originally located (Andersen, Lam et al. 2005, Shav-Tal, Blechman et al. 2005). 

We therefore investigated the interaction between APC5 and Pol I during rDNA inhibition by 

Actinomycin D. HeLa cells were incubated with Act D, either at 0, 0.1, 0.5, 1 or 5µg/ml for 2h (Figure 

1.15A – “dose response”), or at 0.1µg/ml for 0, ½, 1, 2, 4, 8 or 24h (Figure 1.15B – “time course”). The 

ability of Act D to inhibit RNA Pol I activity at all doses and time points used was verified by assessing 

the nucleolar incorporation of 5-FUrd by IF (data not shown). Subsequently, the amount of RPA194 

immunoprecipitated by anti-APC5 antibodies was then analysed. 

Comparing the ability of APC5 to co-IP RPA194 following the increase in Act D dosage, it was evident 

that a low dosage specific to Pol I inhibition (0.1µg/ml) resulted in an increased association between 

Pol I and APC5 (Figure 1.15A). At higher doses, where RNA Polymerase II and III enzymes are also 

inhibited, the interaction between APC5 and RPA194 was reduced appreciably (Figure 1.15A). 

Further study revealed that specific inhibition of Pol I activity by a low dose of Act D resulted in an 
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initial time-dependent increase in APC5-RPA194 binding, which was then followed by a clear 

reduction in binding, which presumably reflected increased cellular stress and the decrease in APC5 

protein levels (Figure 1.15B). It can thus be concluded that specific inhibition of Pol I transcription by 

Act D initially stabilises the interaction between APC5 and Pol I. Whether this is a direct response to 

transcription inhibition or merely an indirect consequence of nucleolar dysfunction and increased Pol 

I bound to rDNA remains to be elucidated. 

It is interesting to note that the decrease in RPA194-APC5 binding observed during increased stress 

mimics the decrease in APC5 protein levels, and thus could merely reflect the decreased availability 

of APC5 rather than a stress effector mechanism. This is in direct contrast to the mitotic decrease of 

APC5, during which APC5 interaction with Pol I did not decrease (Figure 1.14). APC3 protein levels 

also decreased during increased and prolonged transcriptional inhibitory stress, albeit at a greater 

rate than APC5, suggesting this could be a response affecting entire APC/C function rather than 

APC5-specific. However, it should also be noted that RPA194 protein levels are also reduced at both 

high doses of Act D (Figure 1.15A), and during prolonged Pol I inhibition (Figure 1.15B). 
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A 

 
B 

 

Figure 1.15 – Inhibition of rDNA transcription by Actinomycin D affects APC5 binding to Pol I 

 

HeLa cells were incubated with Actinomycin D (Act D) for 2h at the designated doses (A), or at 
0.1µg/ml for the designated time (B). Cells were harvested, incubated with APC5 antibodies 
overnight and Protein G-agarose for 2h. IPs were washed, separated by SDS-PAGE and analysed by 
Western blotting. 
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5.15. Glucose and Serum deprivation-induced quiescence disrupts 

APC5-RPA194 binding 
 

The next form of nucleolar stress which was investigated was metabolic stress, mediated by the 

deprivation of glucose. This has previously been shown to decrease Pol I transcription through 

several different mechanisms, including the phosphorylation and inactivation of RRN3/TIF-1A by 

AMP-Activated Protein Kinase (AMPK) and rDNA epigenetic silencing by eNoSC (Energy-Dependent 

Nucleolar Silencing Complex) (Murayama, Ohmori et al. 2008, Hoppe, Bierhoff et al. 2009). In order 

to deplete cells of glucose, a formulation of DMEM was created which was deprived of glucose. 

However, the FCS used to supplement the DMEM would contain some glucose, and so this 

experiment was performed alongside serum starvation, which depletes cells of important 

proliferation growth factors and hormones required for cellular signalling to pass the restriction point 

in G1 and enter S phase. Therefore, HeLa cells were incubated in glucose-free, serum-free or glucose-

and-serum-free growth media, or incubated in full growth media, for 20h. It is important to note that 

serum starvation has also been described as inducing a reduction in Pol I activity by heterochromatin 

remodelling of rDNA and UBF modulation (Glibetic, Taylor et al. 1995, Zillner, Filarsky et al. 2013).  

Withdrawal of both glucose and FCS caused cells to enter quiescence, as shown by the decreased 

expression of Cyclins A, B1 and D1, Cdc20 and UbcH10, whilst removal of either glucose or FCS 

caused some cell cycle arrest, with glucose withdrawal proving more effective than serum starvation 

(Figure 1.16B). It is interesting to see, however, that the ability of APC5 to co-IP RPA194 was 

diminished considerably upon removal of both glucose and FCS, however removal of only either one 

of these supplements had no appreciable effect on Pol I binding (1.16A). This implies that rDNA 

inhibition following withdrawal of growth factors is not mediated by APC5; however, it may play a 

role following glucose starvation. As with Actinomycin D-mediated inhibition of Pol I, there was a 

decrease in APC5 protein levels following serum and glucose withdrawal, which is likely to be the 
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cause of reduced RPA194 binding to APC5. This change likely reflects induction of quiescence or pro-

apoptotic pathways, but this awaits further investigation. The lack of effect upon APC5 binding to 

RPA194 following the removal of only glucose might be due to the presence of glucose within the FCS 

used to supplement the media. To test this more accurately, it would be prudent to dialyse the FCS 

prior to use to remove any potential respiratory substrates, yet retain its protein content. 
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Figure 1.16 – The effect of Glucose and/or FCS deprivation on APC5-RPA194 binding 

HeLa cells were washed into DMEM containing 2mM L-Glutamine and 0.375% (w/v) Sodium 
Bicarbonate (reduced DMEM), or reduced DMEM supplemented with either 4.5g/l glucose or 10% 
FCS, or both, and were cultured for 20h. Lysates were harvested and immunoprecipitated with 5µg 
APC5 antibody and 10µl packed Protein G-agarose beads. IPs were washed and separated by SDS-
PAGE and immunoblotted with the designated antibodies. 

A) APC5 IPs showing co-IP of RPA194 
B) input lysates 
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5.16. Ionising Radiation has no effect on the interaction between APC5 

and RPA194 
 

The interaction between APC5 and Pol I was next investigated following DNA damage by UV and IR, 

which predominantly cause single- and double-stranded breaks, respectively. These evoke an anti-

proliferative response such that the cell cycle arrests and DNA repair machinery can resolve these 

breakages. Should the DNA be rendered irreparable, cells undergo apoptosis via the intrinsic 

pathway.  Errors in these processes result in cellular division in the presence of incorrectly repaired 

DNA, resulting in genetic instability and increased oncogenic potential (Ciccia and Elledge 2010, 

Iyama and Wilson 2013). The nucleolus has been implicated as playing a key role within the DNA 

damage response, in a p53-dependent manner. P53 is stabilised within the nucleolus (Rubbi and 

Milner 2003, Wsierska-Gadek and Horky 2003) and Nucleophosmin/B23 is released from the 

nucleolus and inhibits the p53-directed E3 ubiquitin ligase, HDM2/Mdm2 (Kurki, Peltonen et al. 

2004). A p53-independent response has also been described following UV-irradiation, causing the 

relocalisation of Ki-67 from the nucleolus to the nucleoplasm in the absence of p53 (Al-Baker, Boyle 

et al. 2004). The transcription of rDNA has been shown to be inhibited by a variety of mechanisms 

following DNA damage, including the inactivation of necessary transcription initiation factors, such as 

JNK2-mediated inactivation of RRN3/TIF-1A, and the inhibition of UBF by p53 and p14ARF (Zhai and 

Comai 2000, Mayer, Bierhoff et al. 2005, Ayrault, Andrique et al. 2006). There is also evidence for 

ATM-dependent regulation and remodelling of the nucleolus (Kruhlak, Crouch et al. 2007). Given the 

known effects of DNA damage upon Pol I activity, we therefore analysed the ability of APC5 to co-IP 

RPA194 upon DNA damage to determine whether this poses an alternative mechanism for DNA 

damage-mediated Pol I inhibition. 

Firstly, HeLa cells were treated with IR in order to assess the response of APC5 and its interaction 

with Pol I following double-stranded DNA breaks. It is evident, however, that the interaction between 
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APC5 and RPA194 is not affected by IR treatment (Figure 1.17), neither as a result of the activation of 

DNA damage signalling pathways (1h) or upon resolution of DNA breaks and Pol I reactivation (8h), 

implying modulation of the APC5-RPA194 interaction is not important in this signalling pathway. 

 

 

 

 

Figure 1.17 – Time course showing co-IP/Western blots of APC5 pull-down of RPA194 following IR. 

Double-stranded DNA breaks were induced by 5Gy of ionising radiation. Cells were left to recover for 
the time indicated prior to harvesting and IP by APC5 antibodies and Protein G-agarose. IPs were 
washed, separated by SDS-PAGE and precipitated proteins determined by Western blotting. 
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5.17. Apoptosis induced by UV-irradiation causes degradation of APC5, 

thereby eliminating its binding to Pol I. 
 

Having shown that double-stranded DNA break-repair pathways had no effect on the interaction 

between APC5 and Pol I, it was next necessary to investigate the interaction following the induction 

of single-stranded breaks. HeLa cells were thus treated with 25J/m2 of UV-irradiation, and allowed to 

recover over a time course up to 8h to permit analysis of the initial damage-sensing response, during 

which time Pol I is inhibited, followed by its reactivation following DNA repair. As before, the 

interaction between APC5 and RPA194 was investigated by analysing the ability of APC5 to co-IP 

RPA194. 

Results obtained from this experiment demonstrated that less RPA194 was co-precipitated by APC5 

antisera both 4 and 8 hours after irradiation relative to untreated cells (Figure 1.18). However, the 

amount of APC5, both in the input lysate and in the IPs, decreased over the same time frame (Figure 

1.18). The reduction in RPA194 co-IP could therefore be due to the reduced availability of APC5 

rather than the specific modulation of APC5 binding to RPA194. 

Before reaching any conclusions regarding the role of APC5 and Pol I in the DNA damage response, 

an important observation must be documented. Prior to harvesting, the cells did not appear to be 

healthy in the 4h and 8h time points, and indeed appeared to be in the initial stages of apoptosis. 

Subsequent immunoblotting for PARP showed that there was a lower degradation product for these 

samples, which is produced following cleavage by caspases, signifying some cells were starting to die 

by apoptosis (Figure 1.18). Therefore, it is unclear whether the different binding patterns of APC5 

and RPA194 between our –UV control and 4 and 8 hours after UV treatment is a consequence of a 

traditional DNA repair mechanism or the stimulation of pro-apoptotic pathways. 
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Figure 1.18 – UV-induced Apoptosis results in a decrease in binding between APC5 and RPA194 

 

HeLa cells were irradiated with 25J/m2 UV and cultured for the time indicated. Cells were harvested 
and APC5 IPs performed, which were separated by SDS-PAGE and detected by Western blotting with 
the designated antibodies. 
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5.18. Cisplatin treatment causes a decrease in APC5-Pol I interaction by 

degradation of APC5. 
 

In order to determine whether APC5 degradation following UV-irradiation was part of a normal DNA 

damage response or as a result of the activation of pro-apoptotic signalling pathways, HeLa cells 

were incubated with the anti-cancer drug Cisplatin to induce an experimentally-controlled cell death. 

Cells were either incubated with an increasing dose (0, 10, 20, 30, 40 or 50µg/ml) of Cisplatin for 16h 

(Figure 1.19), or treated with 20µg/ml Cisplatin over a 48h time course (Figure 1.20). APC5 IPs were 

then performed, and the ability of APC5 to co-precipitate RPA194 was determined by Western 

blotting. 

Progressively increasing the dose of Cisplatin was shown to result in considerably reduced levels of 

both APC3 and APC5 proteins in the cellular lysate (Figure 1.19). Moreover, Cisplatin treatment also 

promoted a reduction in APC5-RPA194 binding (Figure 1.19). As per previous experiments, however, 

it is likely that the reduction in binding could reflect the reduction in absolute levels of APC5 

following Cisplatin treatment. 

In order to investigate the dynamics of APC3 and APC5 instability during apoptosis, a time course was 

adopted following treatment with 20µg/ml Cisplatin. This concentration was chosen as it ablated p53 

expression as well as showed cleavage of PARP after 16h (Figure 1.19), and therefore elicited an 

apoptotic response in a time scale which was easy to produce experimentally. This experiment 

revealed that APC3 and APC5 protein levels decreased as the cells progressed through the cellular 

apoptotic programme, and that APC3 levels were reduced at a faster rate than APC5 (Figure 1.20). 

Again, the levels of RPA194 that co-precipitated with APC5 antisera appears to follow the same 

pattern as APC5 degradation. These data imply that Pol I inhibition during apoptosis is regulated by 

means other than its interaction with APC5. 
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Figure 1.19 – Increased dosage of Cisplatin results in a decrease in APC5 abundance and a reduction 
in its binding to RPA194 

HeLa cells were incubated in Cisplatin at the described dosage for 16h. Cell lysates were harvested, 
and subjected to APC5 IP. These were then washed, separated by SDS-PAGE and analysed by 
immunoblotting. A shows APC5 IPs, whilst further lysate blots are shown in B. 
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Figure 1.20 – Cisplatin time course showing progressive decrease in APC3 and APC5 abundance 

 

HeLa cells were incubated in 20µg/ml for the designated incubation time before lysates were 
harvested and APC5 antibodies used to co-IP RPA194, as detected by SDS-PAGE and Western blot. 
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5.19. Discussion 
 

5.19.1. APC5 interacts with RNA Polymerase I within the nucleolus 

In this chapter a novel interaction between APC5 and Pol I has been identified by mass spectrometry 

and subsequently validated both in vivo by co-IP/Western blots and in vitro by GST pull-down assays 

(Figures 1.1, 1.2 and 1.3). This interaction was shown to be specific to APC5, as other APC/C subunits 

such as APC3 and APC7 were not able to co-IP Pol I (Figures 1.2 and 1.5) and disruption of the APC/C 

by CAV Apoptin did not affect the binding (Figure 1.13). The interaction between APC5 and Pol I was 

shown to be restricted to the nucleolus (Figure 1.5), and the APC/C subunits APC5 and APC7 co-

eluted with Pol I following FPLC fractionation of nucleolar lysates (Figure 1.6). The reasons why this 

interaction between APC5 and Pol I is only nucleolar are not yet understood, although it is possible 

that post-translational modifications or further nucleolar binding factors are required to facilitate the 

interaction. It is also possible that APC5 associates with Pol I directly upon rDNA to regulate Pol I 

transcription. Although GST-APC5 was shown to bind RPA194 and RPA135 directly (Figure 1.3), it is 

possible that other bridging factors may have been present at low levels within the rabbit 

reticulocyte lysate used to transcribe and translate the Pol I subunits in vitro, and therefore the 

possibility of ancillary proteins for the APC5-Pol I interaction cannot be disregarded. However, the 

requirement of PTMs for the binding between APC5 and Pol I is unnecessary in this case, as proteins 

expressed in vitro do not display the same modifications as seen in vivo, yet binding is still observed 

(Figure 1.3). 

In order to elucidate the mechanism of binding, GST-APC5 fragments were incubated with IVT 

RPA194 and RPA135 to identify putative binding domains (Figure 1.3). Binding to RPA194 and 

RPA135 was predominantly mediated by APC5 Fragment 4, consisting of amino acids 567-755, 

although Fragment 2 (amino acids 189-377) also bound strongly to RPA135; however, all four 

fragments of APC5 were capable of binding both RPA194 and RPA135. Although APC5 contains TPR 



147 
 

repeats, these are only located within the second, third and fourth fragments; this suggests that 

APC5 interacts with Pol I through multiple contact points. As such, it would be interesting to refine 

interactions to the amino acid level, and see where the key interaction sites lie within the 3D 

structure of the APC5 protein. 

 

5.19.2. The APC/C exists as a holoenzyme within the nucleolus. 

Mass spectrometric screens have been utilised to form a periodically-updated database containing all 

known nucleolar proteins (Ahmad, Boisvert et al. 2009). Within these lists, the only subunit of the 

APC/C which has been identified to date is APC7. Using the same nucleolar fractionation protocol 

deployed to create this database, experimental evidence presented within this chapter clearly shows 

the presence of several subunits of the APC/C within the nucleolus; APC3, APC5, APC7 and Cdc20, but 

not Cdh1, were identified within the nucleolar lysate by Western blotting (Figure 1.4), and APC1, 

APC5 and APC7 were shown to be present in the nucleolus by IF (Figure 1.7). Similarly, APC5 and 

APC7 co-eluted within large nucleolar complexes of the same size upon FPLC fractionation (Figure 

1.6), and APC3 and APC7 co-immunoprecipitated APC5 from nucleolar lysates (Figure 1.5). Together, 

these data suggest the APC/C is present as a holoenzyme within the nucleolus. 

Given that the APC/C exists as a nucleolar holoenzyme, it is necessary to re-examine the interaction 

previously described between APC5 and Pol I. Although APC3 and APC7 were unable to co-IP RPA194 

(Figure 1.2), this does not necessarily mean the APC5-Pol I interaction is independent of the APC/C. 

Indeed, the IF staining exhibited by APC1, APC5 and APC7 all showed a degree of overlap with the 

nucleolus, as defined by Fibrillarin staining (Figure 1.7B). Whilst this experiment  does not prove an 

interaction between the APC/C complex and Pol I per se, it suggests that the APC/C is present within 

the Fibrillar and Dense Fibrillar Compartments, in which Pol I transcription occurs (Goodfellow and 

Zomerdijk 2012).  Together with the nucleolar FPLC co-elution pattern of APC5 and APC7 (Figure 1.6) 
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and the APC5 results discussed earlier, it is possible that APC5 might present RPA194 as a substrate 

for APC/C-mediated degradation. Given this notion, it would not be surprising that Pol I was not 

found associated with the APC/C holoenzyme. Indeed, it has been suggested to be difficult to isolate 

APC/C substrates through co-immunoprecipitation with APC/C subunits due to low affinity 

interactions (Ayad, Rankin et al. 2005). 

 

5.19.3. RPA194 as a putative substrate for APC/C-mediated ubiquitylation 

There are numerous ways to test if a protein is a substrate for APC/C-mediated ubiquitylation. 

Perhaps the most common approach is to IP the APC/C holoenzyme from cellular lysates and 

perform an in vitro ubiquitylation assay using [35S]-labelled substrates. Indeed, we adopted this 

protocol to investigate whether APC/C-Cdc20 or APC/C-Cdh1 immunocomplexes would support the 

ubiquitylation of Pol I subunits (Figure 1.8B). Unfortunately, however, immunopurified APC/C was 

unable to support the ubiquitylation of IVT-RPA194 or -RPA135 in vitro. As mentioned previously, IVT 

proteins might not be appropriately post-translationally modified. Although IVT-RPA194 and -RPA135 

can associate with GST-APC5 in vitro to varying degrees (Figure 1.3), it is possible that post-

translational modification of APC5, RPA194 and/or RPA135 might increase binding capacity between 

the APC/C holoenzyme and Pol I and support APC/C-directed ubiquitylation of Pol I subunits.  

Indeed, a role for PTMs as a requirement for APC/C-dependent ubiquitylation has already been 

suggested for the fission yeast substrate, Est1p; immunopurified APC/C complexes were unable to 

ubiquitylate in vitro-expressed Est1p, but directed its ubiquitin-mediated degradation in vivo 

(Ferguson, Chao et al. 2013). It has also been shown that other APC/C substrates require specific 

PTMs for ubiquitylation to occur, including the acetylation of Cyclin A (Mateo, Vidal-Laliena et al. 

2009), an acetylation-sumoylation switch in BubR1 (Choi, Choe et al. 2009, Yang, Huang et al. 2012) 

and the phosphorylation of Mcl-1 (Harley, Allan et al. 2010) and RASSF1A (Chow, Wong et al. 2012). 
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Moreover, Nek2A and Aurora A have been shown to have serine residues directly preceding the KEN 

box (SKEN) that when phosphorylated promote APC/C-directed polyubiquitylation (Min, Mayor et al. 

2013).  Whilst RPA194 does not contain any KEN-boxes, it does contain a TEK motif, another 

proposed acceptor site for APC/C-mediated ubiquitylation (Figure 1.8A) (Jin, Williamson et al. 2008), 

which has been shown to be ubiquitylated in vivo (Kim, Bennett et al. 2011). Indeed, there are 

several S and Q moieties both upstream and downstream of this TEK motif, which could potentially 

alter its substrate potential, and RPA194 has been shown to be phosphorylated in vivo (Dephoure, 

Zhou et al. 2008, Ruse, McClatchy et al. 2008, Olsen, Vermeulen et al. 2010). 

Given the inability of the APC/C to ubiquitylate RPA194 in vitro, it was clear that different techniques 

would have to be employed to determine whether RPA194 is a bona fide novel substrate for the 

APC/C. In this regard, RPA194 protein levels were analysed following inhibition of APC/C activity by 

subunit knockdown (Figure 1.9) and measured during a time course through mitosis (Figure 1.10), 

during which APC/C activity progressively increases. In both cases, RPA194 protein levels were shown 

to mimic those of known APC/C substrates, such as Cyclin B1.  

These data suggest that the APC/C, at least in part, regulates the protein levels of RPA194. However, 

further study is required to be certain this is a direct consequence of APC/C-mediated ubiquitylation. 

Mutational analyses of the D-boxes within RPA194, as well as its TEK motif and C-terminal L-R 

dipeptide, would provide greater evidence that RPA194 protein levels are regulated by APC/C 

activity. In this regard, it would be interesting to look at the type of ubiquitin chain formed upon 

RPA194, particularly upon the K1180 residue within the TEK motif. This is because the APC/C 

predominantly forms K11 polyubiquitin chains in humans, under the influence of the chain 

elongation E2, UBE2S, and it is the only E3 ubiquitin ligase discovered thus far which uses K11 

linkages (Jin, Williamson et al. 2008, Garnett, Mansfeld et al. 2009, Wu, Merbl et al. 2010). Should 
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K11 polyubiquitin chains be identified upon RPA194, it would provide further evidence that it is a 

substrate for APC/C-mediated ubiquitylation. 

It is possible that APC5 mediates the recognition of RPA194 by the APC/C, and presents RPA194 as a 

substrate for ubiqutylation rather than the typical co-activators and substrate recognition proteins 

Cdc20 and Cdh1, which were unable to co-IP RPA194. This has previously been proposed in the case 

of the transcription factor E2F1, which is targeted for proteolysis by the APC/C during prometaphase 

(Budhavarapu, White et al. 2012). Here, it was postulated that E2F1 degradation required direct 

binding to APC5, whereupon E2F1 was polyubiquitylated by the APC/C (Budhavarapu, White et al. 

2012). Furthermore, the D. melanogaster APC5 homologue, IDA, was suggested to regulate the 

degradation of certain substrates, as its downregulation affected Cyclin B levels but not Securin 

(Bentley, Williams et al. 2002). 

 

5.19.4. The APC/C represses Pol I transcription 

Next, the functional relationship between the APC/C and Pol I was investigated, specifically 

examining whether the APC/C affects Pol I transcription of rDNA genes. It was determined that 

downregulation of APC/C activity by siRNA-mediated knockdown of APC/C subunits resulted in an 

increase in Pol I transcription. Specifically, knockdown of APC/C subunits APC3, APC5 and the APC/C 

co-activator Cdc20 caused an increase in abundance in 28S and 18S rRNA (Figure 1.11A – i, ii) as well 

as 45S pre-rRNA (1.11A – iii) relative to non-silencing controls. Knockdown of APC3, APC5 and Cdc20 

also increased the rate of de novo rDNA transcription, as measured by the incorporation of 5-FUrd 

and quantitation of nucleolar fluorescence by IF (Figure 1.12). We can therefore postulate that APC/C 

inhibits Pol I activity, perhaps through the targeting of RPA194 for degradation by the 26S 

proteasome. 
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Given that APC/C subunit knockdown augments Pol I transcription, one would expect the opposite 

effect upon Pol I transcription in the presence of increased APC/C activity, which can be introduced 

by overexpression of APC/C components. Should domains be discovered within RPA194 which are 

necessary for APC/C-mediated ubiquitylation, it would be interesting to see whether reintroduction 

of these non-degradable mutants would rescue the proposed Pol I downregulation upon APC/C 

overexpression. This would then provide more evidence that the effect of the APC/C upon Pol I 

activity is indeed due to regulation of RPA194 protein levels.  

Although knockdown of APC5 increased the abundance of 18S and 28S rRNA transcripts, the increase 

in 45S pre-rRNA was deemed statistically insignificant (Figure 1.11), despite increasing de novo rRNA 

synthesis (Figure 1.12). This could be attributable to two possible scenarios: firstly, any increase in 

Pol I transcription to produce the 45S pre-rRNA transcript is masked by a concomitant increase in the 

rRNA maturation pathway, resulting in a greater proportion of end-product 18S and 28S rRNA; 

secondly, 18S and 28S rRNA stability has increased. Effects upon the pre-rRNA processing could be 

analysed by Northern blotting, with each intermediate rRNA transcript resolving quantified following 

their resolution by electrophoresis. 

 

5.19.5. The interaction between APC5 and Pol I is altered during nucleolar 

stress 

Pol I transcription is inhibited following nucleolar stresses or disruption. In order to establish whether 

APC5 had a role in this process, it was investigated whether the interaction between RPA194 and 

APC5 was similarly altered in these circumstances. It was evident that there was a decrease in this 

interaction between APC5 and RPA194 during extended Pol I inhibition by Act D (Figure 1.15), 

apoptotic induction by UV (Figure 1.18) and Cisplatin treatment (Figure 1.19) and following metabolic 

stress initiated by the withdrawal of glucose or serum (Figure 1.16). However, the reduction in APC5-
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RPA194 binding was paralleled by a similar decline in the cellular levels of APC5 and APC3 proteins, 

and therefore was more likely to be caused by an inhibitory mechanism for APC/C activity as the cell 

switches from pro-survival signalling pathways to pro-apoptotic signalling pathways rather than a 

specific cellular inhibition of APC5-Pol I interaction. The mechanism by which the APC/C is inhibited 

during apoptosis has yet to be investigated but it is likely, given the data presented in this chapter, 

that APC/C subunits are targeted directly during the apoptotic programme. In this regard it would be 

interesting to see whether prolonged inhibition of APC/C activity promotes apoptosis, whether the 

reduction in APC3 and APC5 levels observed during cell death are caspase-dependent, and whether 

other APC/C subunits are similarly targeted. 

It should be noted that RPA194 levels also decreased following these particular forms of stress. 

Without further analysis into the dynamics and biochemistry of the APC5-RPA194 interaction in these 

cases, it is impossible to draw a firm conclusion as to whether the interaction between APC5 and 

RPA194 has actually decreased proportionally and also whether this was as a result of RPA194 

downregulation, perhaps by the APC/C. 

Although high dosage and prolonged transcriptional inhibition by Act D resulted in a decrease in 

APC5-RPA194 binding, short-term treatment with a low dosage specific to the inhibition of Pol I 

transcription augmented the ability of APC5 antisera to co-precipitate RPA194 (Figure 1.15).  It is 

therefore possible that APC5 is important in the repression of Pol I transcript elongation following 

treatment with Act D. However, one known consequence of Act D treatment is the stabilisation of 

Pol I holoenzymes upon rDNA promoters caused by an increase in transcription initiation (Hadjiolova, 

Hadjiolov et al. 1995). Conversely, this could indicate that APC5 might be important for transcription 

initiation, which could also account for the increased interaction between APC5 and RPA194 

following treatment with a low dosage of Act D (Figure 1.15). Although it has been shown that APC5 

and Pol I associated within the nucleolus (Figures 1.5 and 1.7), it is not known whether this 
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interaction occurs upon rDNA. Should this be the case, the increase in Pol I associated with rDNA 

could enhance the ability of APC5 to co-precipitate RPA194 following Act D treatment, regardless of 

any involvement of APC5 in the Act D-induced stress response. The ability of APC5 to associate with 

Pol I could be investigated by the use of Chomatin Immunoprecipitation (ChIP), in which IPs are 

performed upon cellular lysates, and the ability to pull-down DNA sequences is examined. In this 

regard, it would be possible to determine whether APC5 is associated with rDNA promoters or 

genetic elements, and thus could suggest whether APC5 is involved in Pol I transcription or 

elongation, respectively. 

Not all forms of nucleolar stress result in RPA194 degradation or altered binding to APC5, however. 

Double-stranded breaks elicited by IR caused no appreciable change in the interaction between APC5 

and Pol I, nor did the protein levels of APC5 and RPA194 differ compared to controls (Figure 1.17). As 

the cellular response and effector mechanisms of single- and double-stranded breaks differ, this 

result compared to that observed from UV-irradiation (Figure 1.18) is not unexpected.  

 

5.19.6. The interaction between APC5 and RPA194 persists in mitosis 

During mammalian mitosis, nucleoli disassemble following nuclear envelope breakdown and 

chromosome condensation, resulting in the inhibition of Pol I transcription (Hernandez-Verdun 

2011). The rDNA regions form NORs, and inhibited Pol I can be found at active NORs during mitosis 

(Hernandez-Verdun 2011). It was therefore examined whether the interaction between APC5 and 

RPA194 was modulated as part of this mitotic response; however, this interaction was shown to be 

unaltered between asynchronous and mitotic cells (Figure 1.14).  

One important observation to make is that although much of the cellular pool of APC5 is degraded 

during mitosis, no change in its binding capacity to RPA194 was observed (Figure 1.14). It can be 

hypothesised, therefore, that the APC5-RPA194 interaction is protected from the mitotic instability 
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of APC5. Current investigations within our laboratory aim to elucidate the mechanism and 

consequence of this degradation, which may in part explain why this nucleolar population of APC5 

was still capable of binding, whereas APC5 depleted following quiescence or induction of apoptosis 

lost this capability. 

 

5.20. Concluding remarks 
 

In conclusion, considerable data is presented in this chapter to indicate that APC5 associates 

specifically with Pol I in the nucleolus, and that the Cdc20 form of the APC/C holoenzyme is also 

present in the nucleolus.  Data is also presented to suggest that the APC/C might target RPA194 for 

ubiquitin-mediated proteolysis during mitosis and that APC/C-Cdc20 represses Pol I transcriptional 

activity.  I propose a model whereby APC5 serves to recruit RPA194 to the APC/C holoenzyme 

whereupon RPA194 is ubiquitylated and degraded (Figure 1.21). As such, the APC/C-targeted 

destruction of RPA194 would serve to augment the inhibition of Pol I activity during mitosis. Given 

that APC5 interacted with a number of Pol I subunits, it is also possible that APC5 associates with the 

Pol I holoenzyme, and has additional functions in the regulation of Pol I activity, which are 

independent to its role as an APC/C subunit. 
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Figure 1.21 – Proposed model for the role of APC5 and the APC/C in the regulation of Pol I activity 

i) Diagram of side view of RNA Polymerase I, adapted from X-ray crystallography images by (Engel, 
Sainsbury et al. 2013). Not shown (behind RPA194) are PAF43 and RPB6. 

ii) Proposed mechanism for the targeting of RPA194 for APC/C-mediated ubiquitylation by APC5 
 
a) APC5 associates with Pol I complex 
b) Additional functions for APC5 in regulating Pol I activity? 
c) APC5 recruits RPA194  
d) APC5-RPA194 then associates with the APC/C holoenzyme, whereupon RPA194 is ubiquitylated 
and targeted for degradation by the 26S proteasome  
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6. CHAPTER 2: MASS SPECTROMETRY AS A TOOL TO 

INVESTIGATE THE ANAPHASE PROMOTING 

COMPLEX/CYCLOSOME 
 

 

Mass spectrometry is a powerful tool that can be used to investigate protein function in vivo. When 

used as tandem mass spectrometry (MS/MS) in order to fragment tryptic peptides, it can be utilised 

to identify binding proteins, quantify the amount of a protein within each sample or even to identify 

PTMs, depending upon the controls and sample preparation techniques adopted.  

In Chapter 1, LC-MS/MS was used to identify 3 subunits of RNA Polymerase I as novel binding 

proteins of the APC/C subunit, APC5 (Figures 1.1-1.3). The APC/C was also shown to exist as a 

holoenzyme within the nucleolus (Figures 1.4-1.7). As no nucleolar functions for the APC/C have 

been described previously, studies were commenced into the role of the APC/C within the nucleolus 

with the aim to identify novel substrates and binding proteins. 

Rather than the more traditional mutational studies upon individual proteins, many new screening 

techniques have been adopted in an attempt to identify a wider range of putative novel substrates 

for the APC/C, including searching for APC/C degron motifs (Davey, Haslam et al. 2011, Liu, Yuan et 

al. 2012, Dinkel, Van Roey et al. 2014), in vitro expression cloning (Ayad, Rankin et al. 2005) and 

protein microarrays (Merbl and Kirschner 2009). Mass spectrometry has already been used to 

identify the di-Gly epitope left upon ubiquitylated peptides following tryptic digestion (Merbl and 

Kirschner 2009), and also to look at protein abundance throughout mitosis compared to those of 

known substrates (Singh, Winter et al. 2014). 

Cdc20 and Cdh1 are the co-activators which form part of the substrate recognition particle together 

with APC10 (Pines 2011, Primorac and Musacchio 2013). APC5 has also been suggested to play a role 
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in the recognition of certain substrates (Budhavarapu, White et al. 2012), whilst APC3 has been 

shown to interact with proteins independently of co-activators (Pines 2011, Primorac and Musacchio 

2013). 

In order to identify novel interactors which might potentially regulate the APC/C and discover 

putative APC/C substrates, a mass spectrometric approach was adopted. The APC/C was 

immunoprecipitated from whole cell extracts and nucleolar fractions using antibodies raised against 

a number of APC/C subunits. The nucleolar abundance of proteins was also calculated following 

inhibition of the APC/C. Identified proteins were then searched for canonical APC/C degrons, namely 

D-boxes, KEN-boxes and TEK motifs. A large number of APC/C-interacting-proteins were identified as 

co-immunoprecipitating with the APC/C and whose nucleolar abundance increased following 

knockdown of APC3 and/or APC5 expression. Many of these contained typical degrons, providing an 

extensive list of putative APC/C substrates, as well as some known substrates. These newly identified 

proteins represent a wide range of cellular functions, including ribosomal biogenesis, cell cycle, 

ubiquitin-proteasome pathway, DNA repair, transcriptional regulation, mRNA processing, 

differentiation, apoptosis and metabolism. 
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6.1. Nucleolar binding proteins of the APC/C 
 

In Chapter 1, evidence was presented suggesting that there is a population of the APC/C that resides 

within the nucleolus (Figure 1.4-1.7) and that ablation of APC/C function enhances Pol I activity 

(Figures 1.11-1.12). Whilst we have postulated that RPA194 could be a novel substrate, it is 

important to consider that there might be substrates for the APC/C in other nucleolar roles. 

Returning once more to mass spectrometry, IPs were performed from asynchronous HeLa cell 

nucleolar lysates to determine a nucleolar interactome for APC/C subunits (Figure 2.1; Appendix 

Figure S1.2). IPs were run in duplicate, with proteins found within the IgG control removed from the 

list, whilst those found in both replicates are shown in Figure 2.1. Whilst it is not the general 

consensus to accept proteins with a single peptide, these were included in these lists if found in both 

repeats. 

Whilst the efficacy of APC/C IPs from nucleolar lysates was lower than that from whole cell extracts, 

it was clear to see that an IP from either APC3, APC5 or APC7 was able to pull down multiple APC/C 

subunits, suggesting that the APC/C is precipitating as a complex (Figure 2.1). Together with the data 

from Chapter 1, in which APC/C subunits reciprocally co-IP each other from nucleolar fractions 

(Figure 1.5), APC/C subunits co-elute using FPLC from nucleolar fractions (Figure 1.6) and co-localise 

in the nucleolus by IF (Figure 1.7), this provides further evidence that the APC/C exists as a 

holoenzyme within the nucleolus, despite previous evidence suggesting that the only subunit present 

is APC7 (Ahmad, Boisvert et al. 2009). Cdc20 and Cdh1 nucleolar IPs were also performed, however 

these proved to be inefficient in these conditions (data not shown). 

Upon screening these co-immunoprecipitating proteins for D- and KEN-boxes, it was surprising that 

almost all the proteins contained one or more of these motifs (Figure 2.1; Appendix Figure S1.2). 

Although D-boxes are statistically more likely to appear at random, there are several more stringent 

D-boxes present within these proteins, i.e. those that contain a downstream amino acid sequence 
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more in comparison with those from known APC/C substrates, such as RxxLxxI/VxN, RxxLxxxxN or 

RxxLxxL/I/V/M, plus an extended KEN-box: KENxxxN/D (Glotzer, Murray et al. 1991, Pfleger and 

Kirschner 2000, Peters 2006, Barford 2011, Dinkel, Van Roey et al. 2014). Some of these proteins also 

contained a TEK-box, which has been proposed to contain the target lysine for ubiquitylation in some 

APC/C substrates (Jin, Williamson et al. 2008). 

It is interesting to consider the processes in which the co-immunoprecipitating proteins have been 

implicated, as many of the proteins have been shown to be important in 60S and 40S ribosomal 

assembly, both in terms of rRNA processing and ribosomal maturation. These lists included sno-RNP 

components, as well as DNA repair proteins, RNA helicases and ubiquitin-proteasomal proteins. 

Intriguingly, all three APC/C IPs co-IP’d a number of histones, which are important in epigenetic 

regulation of DNA, and indeed plays a role in rDNA silencing (Figure 2.1; Appendix Figure S1.2).  

ISG20L2 is of particular interest, as it contains an extended D-box sequence and was found within 

both APC3 (Figure 2.1A) and APC7 IPs (Figure 2.1C) as well as the RPA194 IP (Appendix Figure S1.2D), 

and has been shown to be important in ribosomal biogenesis though 5.8S rRNA maturation (Couté, 

Kindbeiter et al. 2008). Another protein important in the processing of 5.8S rRNA, SPS2L, was also 

shown to interact with APC7 within the nucleolus (Figure 2.1C)(Zhu, Kim et al. 2008). KRR1 was also 

found within the APC7 IP (Figure 2.1C), which is required for the assembly of the 40S ribosome 

through its activity as part of the Ribosomal Small Subunit Processome and production of mature 18S 

rRNA (Sasaki, Toh-E et al. 2000, Bernstein, Gallagher et al. 2004). Furthermore, the APC7 IP also 

contained CN021/NOP9, whilst the APC5 IP contained NOL11, which are also important in 18S rRNA 

production (Thomson, Rappsilber et al. 2007, Freed, Prieto et al. 2012). NOP9 contains D-boxes, 

whilst NOL11 contains both a D-box and a TEK motif, and therefore is a strong candidate for a novel 

APC/C substrate (Figure 2.1B and C). 



160 
 

Proteins important in ribosomal biogenesis which contain D-boxes have also been identified within 

the APC5 IP (Figure 2.1B), including BOP1, WDR74/NSA1, NIP7, RL5 and NOG1, which are important 

in rRNA processing and 60S ribosomal assembly, as well as NOG2 and RRP12, which promote the 

nuclear export of mature 60S ribosomes (Gautier, Bergès et al. 1997, Wu, Brockenbrough et al. 1998, 

Strezoska, Pestov et al. 2000, Kallstrom, Hedges et al. 2003, Saveanu, Namane et al. 2003, Oeffinger, 

Dlakic et al. 2004, Kressler, Roser et al. 2008, Donati, Peddigari et al. 2013). RRP12 is of interest, as it 

contains a highly stringent D-box as well as a TEK motif, whilst WDR74 also contains a KEN-box 

(Figure 2.1B). The APC5 IP also contained Cirhin, HEAT1, WDR36 and RRMJ3 which are involved in the 

processing of pre-rRNA intermediates into mature 18S rRNA, an important step in 40S ribosomal 

assembly, and BMS1 which in yeast has a role in 40S ribosomal activation (Wegierski, Billy et al. 2001, 

Azuma, Toyama et al. 2006, Freed and Baserga 2010, Gallenberger, Meinel et al. 2011, Morello, Coltri 

et al. 2011). Cirhin, WD36 and BMS1 all contain RxxL motifs, with RRMJ3 containing an extended D-

box, whilst HEAT1 also contains a KEN-box (Figure 2.1B). 

Furthermore the nucleolar IPs contained components of the Small Subunit Processome and U3 sno-

RNPs. NOP58, IMP4, UTP6, UTP11 and UTP18, and the UTP-B proteins PWP2 and TBL3 were all 

identified within the APC5 IP (Figure 2.1B), whilst RRP7A and RRP7B were pulled-down by APC5 and 

APC7, respectively (Figure 2.1B and C). These sno-RNPs are involved in many of the rRNA processing 

steps (Figure 2.1B) (Dragon, Gallagher et al. 2002, Tafforeau, Zorbas et al. 2013). NOP58 and RRP7A 

are of particular interest, since they also contains TEK motifs, whilst TBL3 and IMP4 contain extended 

D-boxes (Figure 2.1B). One function of sno-RNPs is to methylate pre-rRNA transcripts as part of their 

maturation. Whilst this is predominantly done by Fibrillarin/Nop1, NOP2 has been suggested to act 

as a methyltransferase within pre-rRNA processing in yeast, and was identified as an APC5-interactor 

within the nucleolus (Figure 2.1B) (Sharma, Yang et al. 2013). 
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Other ribosomal biogenesis proteins identified within the APC5 IP include NOL6/NRAP, the rRNA 

processing proteins Pescadillo/Nop7, RRP5 and RBM28/Nop4, the demethylase NO66, as well as 

WDR46, which retains DDX21 and nucleolin  within the GC to promote 18S rRNA processing (Venema 

and Tollervey 1996, Adams, Jakovljevic et al. 2002, Lerch-Gaggl, Haque et al. 2002, Oeffinger, Leung 

et al. 2002, Utama, Kennedy et al. 2002, Eilbracht, Reichenzeller et al. 2004, Hirai, Louvet et al. 2013, 

Lebaron, Segerstolpe et al. 2013). Of these, Pescadillo and RBM28 contain TEK motifs, whilst RRP5 

contains both a high consensus D-box and TEK motif (Figure 2.1B). 

APC5 also interacted with B23/Nucleophosmin, which contains an extended D-box (Figure 2.1B). B23 

is important for a number of cellular processes, in particular functioning within the nucleolus, 

controlling transcription elongation by Pol I and pre-rRNA processing within the GC, as well as acting 

as part of a nucleolar stress response to ensure repression of ribosomal assembly and p53 activation 

(Colombo, Palacios-Callender et al. 2011, Goodfellow and Zomerdijk 2012, Grummt 2013). Should 

this be a novel substrate for the APC/C, it would hold significant implications for the role of the 

APC/C within the nucleolus. 

The APC7 IP also contained two other proteins important for nucleolar function: UBP36 and CHD1 

(Figure 2.1C). UBP36/USP36 is a DUB, which in yeast promotes the deubiquitylation of RPA194, thus 

promoting its stability (Richardson, Reed et al. 2012). Should it be a novel substrate for the APC/C, it 

could highlight an extra level of regulation for RPA194 ubiquitylation mediated by the APC/C. 

The identification of CHD1 within the APC7 IP also provided an intriguing possibility (Figure 2.1C). 

CHD1 is a chromatin remodelling factor and is important in the termination of transcription for Pol I 

(Jones, Kawauchi et al. 2007). CHD1 also contains both a KEN box and multiple D-boxes which have 

been scored relatively highly by GPS-ARM software, and thus could potentially be an APC/C 

substrate. Another protein with epigenetic implications is the CBP/p300-inhibitor NOC2L, which was 
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identified within the APC5 and also contains a highly stringent D-box (Figure 2.1B). These could 

therefore provide a mechanism for another role for the APC/C in the regulation of Pol I transcription. 

There were also a number of potential DEAD- and DEAH-domain-containing RNA helicases which 

contain a number of D- and KEN-boxes, particularly within the APC5 IP (Figure 2.1A-C). These are 

important during pre-rRNA processing, and therefore potential APC/C modulation of their stability 

could alter rRNA maturation and, consequently, ribosomal assembly (Lüking, Stahl et al. 1998). 

The identification of SMC3, a subunit of Cohesin, also provided some interesting possibilities (Figure 

2.1C). Traditionally, Cohesin is released from DNA following APC/C-mediated degradation of Securin, 

thereby releasing Separase to cleave Cohesin (Nasmyth 2011). However, SMC3 itself contains several 

extended D-boxes and was identified as an APC7-interactor, and therefore its stability and Cohesin 

disassembly may be regulated both directly and indirectly by the APC/C (Figure 2.1C).  

Members of different DNA repair pathway have also been identified within this screen. The NHEJ 

protein Ku86 and SSB-ligating protein XRCC1 were identified within both APC3 and APC7 IPs and 

NONO was found the APC5 IP (Figure 2.1). Whilst DNA repair proteins have been implicated as 

residing within the nucleolus, their description as potential APC/C substrates does pose an 

interesting question regarding the regulation of the DNA repair pathway, since they contain D-boxes.  

APC5 IPs appeared to co-IP more proteins than those by APC3 or APC7, although the Pol I subunits 

identified within whole cell extracts were not found within the nucleolar IPs, despite prior evidence 

suggesting this is the area in which they interact (Figures 1.5 and 1.7). This could be due to a 

difference in mass spectrometer upon which the samples were analysed. Initial identification of 

RPA194, RPA135 and RPA40 within APC5 IPs used an amaZon ion-trap mass spectrometer, whilst the 

experiments described within Chapter 2 utilised an Impact time-of-flight (TOF). The absence of Pol I 

proteins within the nucleolar IPs could therefore be due to the lower resolution of an ESI-TRAP, 

which was set to a +/- 0.05Da MS/MS threshold, as opposed to the ESI-TOF, onto which a more 
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stringent +/- 0.02 Da threshold was placed. However, many other nucleolar proteins were identified 

within APC5 IPs, implying that APC5 poses an integral role within normal nucleolar functioning, 

whether that be as part of a functional APC/C or acting independently. 

Taken together, the data presented in Figure 2.1 suggests that the APC/C interacts with a number of 

nucleolar pathways, including those important in ribosomal biogenesis, pre-rRNA synthesis and 

processing, DNA damage reponse and mitotic progression. Further investigations into these 

interactions will provide evidence for supplementary roles for the APC/C within the nucleolus beyond 

the hypothesised ubiquitylation of RPA194. 
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A) – APC3 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 

APC1 Anaphase-promoting complex subunit 1 216.4 8 

APC3 Cell division cycle protein 27 homolog 91.8 11 

APC4 Anaphase-promoting complex subunit 4 92.1 6 

APC5 Anaphase-promoting complex subunit 5 85 3 

APC6 Cell division cycle protein 16 homolog 71.6 3 

APC8 Cell division cycle protein 23 homolog 68.8 4 

APC10 Anaphase-promoting complex subunit 10 21.2 1 

 

 

Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 
#D-
box 

#KEN TEK 
GPS-
ARM 

DDX5 Probable ATP-dependent RNA helicase DDX5 69.1 2 1 1 - 
 

GPTC4 G patch domain-containing protein 4 50.4 3 9.4 1 1 - 

H2A1C Histone H2A type 1-C 14.1 7 1 - -  

H2AJ Histone H2A.J 14 8 1 - -  

H2AZ Histone H2A.Z 13.5 4 1 - -  

H2B1H Histone H2B type 1-H 13.9 12 1 - -  

H31 Histone H3.1 15.4 11 1 - -  

I20L2 
Interferon-stimulated 20 kDa exonuclease-

like 2 
39.1 4 2 - - *** 

KU86 ATP-dependent DNA helicase 2 subunit 2 82.7 3 1 - - *** 

PP1B 
Serine/threonine-protein phosphatase PP1-

beta catalytic subunit 
37.2 5 1 - -  

RL26L 60S ribosomal protein L26-like 1 17.2 10 1 - -  

XRCC1 DNA repair protein XRCC1 69.5 1 5 - -  
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B) – APC5 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 

APC1 Anaphase-promoting complex subunit 1 216.4 5 

APC3 Cell division cycle protein 27 homolog 91.8 3 

APC4 Anaphase-promoting complex subunit 4 92.1 3 

APC5 Anaphase-promoting complex subunit 5 85 5 

APC6 Cell division cycle protein 16 homolog 71.6 3 

APC7 Anaphase-promoting complex subunit 7 63.1 1 

APC8 Cell division cycle protein 23 homolog 68.8 5 

 

 

Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 
#D-
box 

#KEN TEK 
GPS-
ARM 

BMS1 Ribosome biogenesis protein BMS1 homolog 145.7 3 9 - - * 

BOP1 Ribosome biogenesis protein BOP1 83.6 6 4 - - * 

CIR1A Cirhin 76.8 3 3 - -  

DDX17 
Probable ATP-dependent RNA helicase 

DDX17 
72.3 2 2 1 -  

DDX18 ATP-dependent RNA helicase DDX18 75.4 10 4 - -  

DDX21 Nucleolar RNA helicase 2 87.3 14 1 - - *** 

DDX27 
Probable ATP-dependent RNA helicase 

DDX27 
89.8 8 3 - + *** 

DDX54 ATP-dependent RNA helicase DDX54 98.5 1 6 - - *** 

DDX56 
Probable ATP-dependent RNA helicase 

DDX56 
61.6 2 7 - - *** 

DHX15 
Putative pre-mRNA-splicing factor ATP-

dependent RNA helicase DHX15 
90.9 2 9 - + ** 

DHX9 ATP-dependent RNA helicase A 140.9 8 5 - - ** 

H2B3B Histone H2B type 3-B 13.9 4 1 - -  

H3L Histone H3-like 15.2 1 1 - - * 

HDAC1 Histone deacetylase 1 55.1 1 - - -  

HEAT1 HEAT repeat-containing protein 1 242.2 1 9 1 - *** 

IMP4
%

 
U3 small nucleolar ribonucleoprotein protein 

IMP4 
33.7 1 5 - - ** 

NIP7 
60S ribosome subunit biogenesis protein 

NIP7 homolog 
20.4 1 - - -  

NO66 Lysine-specific demethylase NO66 71 1 4 - - * 

NOC2L Nucleolar complex protein 2 homolog 84.9 1 3 - - *** 

NOG1 Nucleolar GTP-binding protein 1 73.9 10 6 - - * 

NOG2 Nucleolar GTP-binding protein 2 83.6 5 3 - -  
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NOL11 Nucleolar protein 11 81.1 1 4 - + * 

NOL6 Nucleolar protein 6 127.5 6 12 - - * 

NONO 
Non-POU domain-containing octamer-

binding protein 
54.2 7 5 - - * 

NOP2 
Putative ribosomal RNA methyltransferase 

NOP2 
89.2 5 2 - -  

NOP58 Nucleolar protein 58 59.5 11 3 - +  

NPM Nucleophosmin 32.6 1 1 - - *** 

NUMA1 Nuclear mitotic apparatus protein 1 238.1 2 19 1 + 
***/ 
+++ 

PESC Pescadillo homolog 68 2 5 - + * 

PP1B 
Serine/threonine-protein phosphatase PP1-

beta catalytic subunit 
37.2 2 1 - -  

PRKDC 
DNA-dependent protein kinase catalytic 

subunit 
468.8 34 25 - - *** 

PWP2 Periodic tryptophan protein 2 homolog 102.4 2 6 - -  

RBM28 RNA-binding protein 28 85.7 4 8 - + * 

RL1D1 Ribosomal L1 domain-containing protein 1 54.9 12 7 - + ** 

RL3 60S ribosomal protein L3 46.1 1 3 - - *** 

RL5 60S ribosomal protein L5 34.3 4 2 - -  

RLA0
&%

 60S acidic ribosomal protein P0 34.3 1 3 - -  

RRMJ3 Putative rRNA methyltransferase 3 96.5 5 9 - - *** 

RRP12 RRP12-like protein 143.6 6 13 - + *** 

RRP5 Protein RRP5 homolog 208.6 1 9 - + *** 

RRP7A 
Ribosomal RNA-processing protein 7 

homolog A 
32.3 3 3 - +  

RRS1 
Ribosome biogenesis regulatory protein 

homolog 
41.2 2 - - -  

RS28 40S ribosomal protein S28 7.8 1 - - -  

TBL3 Transducin beta-like protein 3 89 3 6 - - *** 

UTP11 
Probable U3 small nucleolar RNA-associated 

protein 11 
30.4 1 3 - - * 

UTP18 
U3 small nucleolar RNA-associated protein 

18 homolog 
62 3 5 - -  

UTP6 
U3 small nucleolar RNA-associated protein 6 

homolog 
70.1 2 5 - -  

WDR36 WD repeat-containing protein 36 105.3 2 2 - - * 

WDR46 WD repeat-containing protein 46 68 2 4 - - ** 

WDR74 WD repeat-containing protein 74 42.4 2 1 1 -  
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C) – APC7 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 

APC1 Anaphase-promoting complex subunit 1 216.4 7 

APC6 Cell division cycle protein 16 homolog 71.6 4 

APC7 Anaphase-promoting complex subunit 7 63.1 20 

 

 

Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
# 

Peptides 
#D-
box 

#KEN TEK 
GPS-
ARM 

CHD1
&

 
Chromodomain-helicase-DNA-binding 

protein 1 
196.6 1 6 1 - 

**/ 
++ 

CN021 Pumilio domain-containing protein C14orf21 69.4 1 5 - - *** 

DDX5 Probable ATP-dependent RNA helicase DDX5 69.1 3 1 1 -  

DDX51 ATP-dependent RNA helicase DDX51 72.4 2 6 - - ** 

DHX37 
Probable ATP-dependent RNA helicase 

DHX37 
129.5 4 5 - - *** 

H2A1C Histone H2A type 1-C 14.1 7 1 - -  

H2A1J Histone H2A type 1-J 13.9 8 1 - -  

H2B1O Histone H2B type 1-O 13.9 14 1 - -  

H2B2F Histone H2B type 2-F 13.9 15 1 - -  

I20L2 
Interferon-stimulated 20 kDa exonuclease-

like 2 
39.1 5 2 - - *** 

KRR1 
KRR1 small subunit processome component 

homolog 
43.6 2 2 - - ** 

KU86 ATP-dependent DNA helicase 2 subunit 2 82.7 1 1 - - *** 

RRP7B 
Putative ribosomal RNA-processing protein 7 

homolog B 
12.6 3 2 - -  

RS27A
%

 40S ribosomal protein S27a 9.4 1 - - -  

SMC3 
Structural maintenance of chromosomes 

protein 3 
141.5 3 17 - - *** 

SPS2L SPATS2-like protein 61.7 1 - - -  

UBP36 Ubiquitin carboxyl-terminal hydrolase 36 122.6 2 3 - -  

XRCC1 DNA repair protein XRCC1 69.5 1 5 - -  

 

Figure 2.1 – Selected nucleolar APC/C-interacting proteins identified by mass spectrometry 

Nucleoli were obtained from HeLa cells, lysed and IPs using APC3 (A), APC5 (B), APC7 (C) and RPA194 

(Appendix Figure S1.2D) antisera were performed. The IPs were washed, separated by SDS-PAGE and 

subjected to in-gel tryptic digestion. Peptides were eluted and analysed by LC-MS/MS using a maXis 

Impact (Bruker). Ionisation spectra were compared to a Mascot database (Matrix Science) and 
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searched using ProteinScape (Bruker). Interacting protein lists from two independent experiments 

were compiled and compared to a nucleolar protein database, NoPDb3, published by Prof. Lamond 

(Ahmad, Boisvert et al. 2009) and searched for function and protein sequence using Uniprot 

(UniProt-Consortium 2014). The protein sequence was then searched manually for TEK motifs and for 

extended D-boxes and KEN-boxes using GPS-ARM 1.0 (Liu, Yuan et al. 2012).  

MW represents Molecular Weight. D-boxes and KEN boxes were analysed using GPS-ARM, with the 

highest threshold of motif denoted by * for D-boxes and + for KEN boxes. */+ represents a low 

threshold peptide, **/++ medium and ***/+++ high. 

Proteins in a red font were identified in other nucleolar APC/C IPs. 

& denotes proteins which were elevated in the nucleolus following siRNA-mediated knockdown of 

APC3 (Section 6.2 and Figure 2.2). 

% denotes proteins which were elevated in the nucleolus following siRNA-mediated knockdown of 

APC5 (Section 6.2 and Figure 2.2). 
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6.2. Quantitation of nucleolar proteins following siRNA-mediated 

knockdown of APC3 or APC5 
 

Another method by which it is possible to ascertain putative nucleolar APC/C substrates is to quantify 

the relative nucleolar abundance of proteins following ablation of expression of APC/C subunits 

relative to non-silencing controls. Previously, Western blots have been used to identify the stability 

of proteins following negation of APC/C activity, however mass spectrometry provides a more open-

ended approach, since it does not require knowledge of the protein in question prior to experimental 

analysis as per Western blots, for which a specific primary antibody is required. Instead, lysates from 

knockdown cells or non-silencing controls can be labelled with “heavy” or “light” formaldehyde 

following tryptic digestion such that all peptides have an N-terminal dimethyl adduct containing 2H or 

1H, respectively. This produces a mass difference between identical peptide sequences from the two 

siRNA treatments which can be detected using a mass spectrometer of high enough resolution. 

These can then be compared to produce a heavy:light peptide ratio, signifying relative abundance. 

Whilst this technique may produce issues, such as analytical errors, incomplete dimethylation or 

differing flow rates during the HPLC separation, it is considerably cheaper than other similar methods 

such as metabolic labelling by SILAC. Quantitation also requires both the heavy and the light forms of 

the peptide to be found in order to provide a ratio, and therefore not every nucleolar protein 

identified will produce a quantitative ratio, particularly those with low nucleolar abundance.  

To investigate the effect of the APC/C activity upon the nucleolar abundance of proteins, HeLa cells 

were subjected to siRNA-mediated knockdown of either APC3 or APC5, or a non-silencing control 

(LacZ). These siRNA targets were chosen due to the fact that substrate elevation is most noticeable 

following the ablation of either APC3 or APC5 than other APC/C subunits such as APC7 or Cdc20 

(Figure 1.9). Nucleoli were then isolated from these cells and denatured in urea prior to reduction 

and alkylation, followed by tryptic digest. Peptides from APC3 or APC5 knockdown cells were then 
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labelled with [2H]-dimethyl adducts, whilst non-silencing controls were [1H]-dimethyl-labelled. Equal 

amounts of non-silencing light-labelled peptides and either APC3i or APC5i heavy-labelled peptides 

were mixed, followed by fragmentation by a maXis Impact mass spectrometer and quantitative 

analysis using ProteinScape and WARP-LC (Bruker).  

Upon comparison of APC3i or APC5i samples to non-silencing controls, several hundred proteins have 

increased by over 25% in abundance (Figure 2.2; Appendix Figure S1.3). This arbitrary amount was 

chosen in order to minimise false-positive errors. Many of these proteins also contain the consensus 

APC/C recognition sequences RxxL and KEN, of which several also contain the TEK motif which in 

some substrates provides the lysine required for APC/C-mediated ubiquitylation (Figure 2.2; 

Appendix Figure S1.3)(Peters 2006, Jin, Williamson et al. 2008, Pines 2011). 

Proteins whose abundance increased following either APC3 or APC5 knockdown function in a 

number of biological processes, including DNA repair, cell cycle, rRNA and mRNA processing, nuclear 

membrane function, transcriptional control, apoptosis, translation, and protein folding and transport 

(Figure 2.2; Appendix Figure S1.3). These protein lists were scrutinised for proteins which are 

important in nucleolar function, Pol I transcription and rRNA processing by searching the Uniprot 

database in order to suggest a mechanistic outline for the earlier-described increase in Pol I 

transcription following APC/C inhibition (Figures 1.11 and 1.12) (UniProt-Consortium 2014). 

Several proteins have been identified which are directly implicated in the regulation of Pol I 

transcription, including CHD1 and PTRF. These proteins are important for Pol I transcription 

termination and reinitiation, and contain both D- and KEN-boxes (Jansa, Burek et al. 2001, Jones, 

Kawauchi et al. 2007). An increased rate of transcription termination permits earlier reinitiation of 

transcription, thereby increasing the total rate of pre-rRNA production. If these proteins are true 

substrates for the APC/C, their increased stability upon downregulation of the APC/C could 

theoretically result in increased de novo pre-rRNA synthesis; APC/C knockdown was shown to 
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increase de novo pre-rRNA synthesis (Figure 1.12). CHD1 was also identified within nucleolar APC7 

IPs (Figure 2.1), and so it would be highly interesting to investigate its relationship to the APC/C 

further. 

Another method by which Pol I transcription is regulated is by epigenetic modification of rDNA 

genomic regions. Indeed, several different nucleolar chromatin remodelling complexes have been 

described, such as eNoSC and NoRC, which are able to silence rDNA repeats in response to cellular 

stimuli (Murayama, Ohmori et al. 2008, Guetg and Santoro 2012). Several different proteins 

associated with chromatin remodelling were found to have increased within the nucleolus following 

APC/C knockdown, some of which have previously been identified as having nucleolar localisation, 

including Acl6a/BAF53, CHD1, SMRD2/BAF60B and a component of eNoSC, SUV91/SUV39H1 (Wang, 

Côté et al. 1996, Jones, Kawauchi et al. 2007, Murayama, Ohmori et al. 2008). It is therefore feasible 

that knockdown of the APC/C might also produce a different epigenetic pattern upon histones, thus 

altering the ability of Pol I to initiate transcription. 

One important function of the nucleolus is the assembly of ribosomes in order to control translation 

and protein synthesis. As well as the transcription of rDNA genes, this also requires the processing of 

the pre-rRNA into mature rRNAs and their assembly into ribosomes. Several proteins important in 

rRNA processing were identified as potential APC/C subunits in this screen, including IMP4 and 

WDR55 (Figure 2.2B and C) (Granneman, Gallagher et al. 2003, Iwanami, Higuchi et al. 2008). It is also 

interesting to note the increase in proteins of both the 60S and 40S ribosomes, implying that either 

ribosomal production itself might have increased, or nuclear export has decreased (Figure 2.2 A-C). 

Given the role of the APC/C in coordinating timely anaphase progression and mitotic exit, it is 

unsurprising to see the abundance increase for several proteins which are involved in the cell cycle 

and mitosis. Nipped-B-like-protein, NIPBL, contains high-threshold KEN- and D-boxes and a TEK motif, 

and increased in nucleolar abundance following knockdown of both APC3 and APC5 (Figure 2.2A). 
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NIPBL itself is important for sister chromatid cohesion via its activity as a cohesin accessory factor, 

and so its targeting by the APC/C could prevent further Cohesin complex reformation during late 

mitosis (Bermudez, Farina et al. 2012).  

Another potential substrate important in mitotic cohesion is SMC5, which also contains highly-scored 

D- and KEN-boxes and a TEK box and was elevated following APC3 knockdown (Figure 2.2B; Appendix 

Figure S1.3A). SMC5 forms a complex with SMC6 and aids chromosomal cohesion during interphase 

(Tapia-Alveal, Lin et al. 2014). Although SMC5 has been shown to be ubiquitylated in vivo, it is not 

known whether these are the K11 chains formed by the mammalian APC/C (Taylor, Copsey et al. 

2008). SMC5 could therefore be a substrate for the APC/C given its degron motifs and mitotic 

functions. 

The increase in abundance of WAPL, also containing D-, KEN-, and TEK-boxes, following APC5 

knockdown provided evidence for a further role for the APC/C in the mitotic regulation of cohesion 

(Figure 2.2C; Appendix Figure S1.3B). WAPL allows decatenation and resolution of sister chromatids 

by the removal of Cohesin from the chromosomal arms, leaving a subpopulation of Cohesin upon the 

centromeres to provide sufficient cohesion to prevent early anaphase (Gandhi, Gillespie et al. 2006, 

Kueng, Hegemann et al. 2006). As such, it is feasible that the APC/C could target WAPL for 

degradation upon its reactivation following SAC satisfaction. 

Other mitotic proteins which became stabilised within the nucleolus following APC/C knockdown 

included the previously-described substrates TOP2A and the kinesins KIF2C and KIFC1, which are 

important in chromosomal alignment and sister chromatid segregation as well as spindle assembly, 

and Plk1, an important kinase for G2/M transition (Lindon and Pines 2004, Eguren, Álvarez-

Fernández et al. 2014, Singh, Winter et al. 2014). The appearance of these proteins signified that 

knockdown of the APC/C did indeed increase nucleolar localisation of substrates, providing support 

for this experimental approach. 
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Cytokinesis is another process in which the role of the APC/C has been extensively examined. Various 

proteins involved in this process have increased abundance in the nucleolar lysates following APC3 or 

APC5 knockdown, including the previously identified substrates Aurora Kinase B, Anillin and ECT2 

(Stewart and Fang 2005, Zhao and Fang 2005, Liot, Seguin et al. 2011). Also found were two further 

kinesins, KIF20A and KIF23, as well as Rac GTPase activating protein 1 (RGAP1) and several 

cytoskeletal components such as Myosins and Nestin. It is possible that these represent novel targets 

for the APC/C in order to regulate mitotic exit and subsequent G1 re-entry. 

In our screen, the nucleolar localisation of several important proteins from DNA repair pathways 

including NHEJ, HR, Base Excision Repair (BER) and Mismatched Repair (MMR) appeared to increase 

upon APC/C inhibition. These included 53bp1, Aprataxin, WRN, BLM helicase, DDB1, MLH1, FANCI, 

SMC5, TOP2A and TOP2B, MDC1, TRIPC/TRIP12 and MSH6. The APC/C has been implicated as holding 

a role within the response to both UV and IR, whereby its reactivation during late G1, S or G2 phases 

promotes degradation of pro-mitotic substrates, such as Cyclins A and B1 and Plk1, thereby 

promoting cell cycle arrest (Coster, Hayouka et al. 2007, Bassermann, Frescas et al. 2008, Townsend, 

Mason et al. 2009, Zhang, Nirantar et al. 2009). There is also a theory that it may be involved with the 

removal of repair proteins following the successful repair of DNA (Turnell AS and Teodoro JS, 

personal communication). As such, it is theoretically possible that this subgroup of nucleolar proteins 

might be substrates for the APC/C given the presence of motifs typical of designated targets, 

particularly WRN, Aprataxin, SMC5, 53bp1 and FANCI. Of these proteins, TOP2A has already been 

suggested as being a substrate, and MDC1 has been shown to interact with APC3 in vivo and 

potentiate its activity, although it is not a target for ubiquitylation (Coster, Hayouka et al. 2007, 

Townsend, Mason et al. 2009, Eguren, Álvarez-Fernández et al. 2014). 

Also found within these lists were several constituent proteins of the Nuclear Pore Complex (NPC), 

including Nup85, Nup98, Nup107, Nup133, Nup160, Nup188, Nup205, Nup214, ELYS, Nesprin-2, 
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gp210, Nucleoprotein TPR and structural proteins involved in Nuclear Envelope Breakdown (NEBD) 

such as Lamins A/C and B1 (Güttinger, Laurell et al. 2009). Nucleoprotein TPR is of particular interest, 

as it also is implicated within the SAC, as well as containing extended consensus sequences for both 

KEN- and D-boxes as well as a TEK box, therefore is a likely candidate for a novel substrate 

(Schweizer, Ferrás et al. 2013). Nup205, Nesprin-2 and ELYS all contain both a TEK box and extended 

D-boxes, whilst Nup205 and Nesprin-2 also have high-threshold KEN-boxes.  

On a cautionary note, the data demonstrated here only represents the nucleolar subpopulation of 

the proteins described. The identification of putative substrates is pure conjecture, as without the 

representative data for cytoplasmic and nucleoplasmic compartments, any increase in nucleolar 

abundance may simply be due to relocalisation. Similarly, it cannot be determined that any increase 

is due to alleviation of APC/C-mediated instability, as there are many other cellular E3 ligases 

responsible for proteasomal degradation, although the likelihood of these was diminished by the 

evaluation of APC/C degron motifs.  

Although a great number of potential nucleolar APC/C substrates have been described within Figures 

2.1 and 2.2, there is very little overlap between the two experiments. Only the APC5-interacting 

IMP4 and RLA0, and the APC7-interacting CHD1 and RS27A were both identified within APC/C 

nucleolar IPs and shown to increase in nucleolar abundance upon APC/C inhibition (Figures 2.1 and 

2.2). In fact, a great number of APC/C-interacting proteins (Figure 2.1) were not elevated within the 

nucleolus following ablation of APC3 or APC5 expression (Figure 2.2). In several cases, this was 

because the APC/C-interacting protein from Figure 2.1 was not identified within both the heavy- and 

light-labelled nucleolar lysates from Figure 2.2, and therefore a relative ratio between the two could 

not be produced. Also, certain proteins exhibited a slight decrease in nucleolar abundance following 

siRNA-mediated knockdown of either APC3 or APC5, which would suggest that these are not bona 

fide substrates. Furthermore, although other proteins identified within Figure 2.1 as interacting with 
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the APC/C within the nucleolus, their increase within APC3- and APC5-knockdown nucleolar lysates 

was less than the 25% used as a cutoff for this experiment (Figure 2.2). 

Conversely, a large number of proteins portrayed as putative APC/C substrates within Figure 2.2 

were not identified as APC/C-interacting proteins in Figure 2.1. This is perhaps unsurprising, given 

that the affinity of the APC/C for substrates has been hypothesised as being low, and without 

inhibition of the proteasome in order to prolong APC/C-substrate interactions, some substrates 

might not be co-precipitated with the APC/C (Ayad, Rankin et al. 2005). 

A) 

Protein Full Name 
MW 

[kDa] 
NL 

APC3i 
increase 

APC5i 
increase 

#D-
box 

#KEN TEK 
GPS-
ARM 

APTX Aprataxin 40.7 Y 2.09 2.47 3 - - 
 

BLM 
Bloom syndrome 

protein 
158.9 Y 1.50 1.31 8 - + * 

KI20A 
Kinesin-like protein 

KIF20A 
100.2 x 1.60 1.36 7 - - 

 

KIF2C 
Kinesin-like protein 

KIF2C 
81.3 Y 1.28 2.04 1 - - 

 

MYH9 Myosin-9 226.4 Y 1.48 1.77 16 1 + 
**/ 
+++ 

NEST Nestin 177.3 x 1.48 1.38 11 5 + 
***/
+++ 

NIPBL Nipped-B-like protein 315.9 Y 1.79 1.29 8 1 + 
***/
+++ 

NU107 
Nuclear pore 

complex protein 
Nup107 

106.3 x 2.23 1.39 11 - + * 

NU205 
Nuclear pore 

complex protein 
Nup205 

227.8 Y 1.48 1.33 17 1 + 
***/
+++ 

NUP98 
Nuclear pore 

complex protein 
Nup98-Nup96 

187.7 x 1.97 1.34 9 - - *** 

RLA0
%

 
60S acidic ribosomal 

protein P0 
34.3 Y 1.28 1.51 3 - - 

 

RSSA 
40S ribosomal 

protein SA 
32.8 Y 1.45 1.47 2 - - 

 

TOP2A 
DNA topoisomerase 

2-alpha 
174.3 Y 1.66 1.68 4 1 + 

 

TOP2B 
DNA topoisomerase 

2-beta 
183.2 Y 1.28 1.36 4 1 - * 

TPR Nucleoprotein TPR 267.1 Y 1.70 1.83 11 1 + 
***/
+++ 
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B)  

Protein Full Name 
MW 

[kDa] 
NL 

APC3i 
increase 

#D-
box 

#KEN TEK 
GPS-
ARM 

ACL6A Actin-like protein 6A 47.4 Y 1.47 3 - - ** 

ANLN Actin-binding protein anillin 124.1 Y 1.50 14 - + *** 

CHD1
& Chromodomain-helicase-DNA-

binding protein 1 
196.6 Y 1.34 6 1 - 

**/ 
++ 

DDB1 DNA damage-binding protein 1 126.9 Y 1.35 5 - + * 

ELYS Protein ELYS 252.3 Y 1.25 8 - + *** 

KIF23 Kinesin-like protein KIF23 110.0 Y 1.35 1 1 + 
**/ 
+++ 

LMNA Lamin-A/C 74.1 Y 1.27 9 - - *** 

LMNB1 Lamin-B1 66.4 Y 1.52 8 - - *** 

MLH1 
DNA mismatch repair protein 

Mlh1 
84.5 Y 1.33 2 - - *** 

NU133 
Nuclear pore complex protein 

Nup133 
128.9 x 1.52 10 1 - *** 

PLK1 
Serine/threonine-protein kinase 

PLK1 
68.2 Y 1.92 7 - - *** 

RS10 40S ribosomal protein S10 18.9 Y 2.30 1 - - 
 

RS26 40S ribosomal protein S26 13.0 Y 1.60 - - - 
 

RS3 40S ribosomal protein S3 26.7 Y 1.94 2 - - 
 

SMC5 
Structural maintenance of 
chromosomes protein 5 

128.7 Y 1.60 4 1 + 
***/
++ 

SMRD2 

SWI/SNF-related matrix-
associated actin-dependent 

regulator of chromatin 
subfamily D member 2 

52.3 Y 1.27 4 - - * 

TP53B 
Tumor suppressor p53-binding 

protein 1 
213.4 x 1.47 5 3 - +++ 

WDR55 
WD repeat-containing protein 

55 
42.1 Y 1.37 3 - - ** 

WRN 
Werner syndrome ATP-

dependent helicase 
162.4 Y 1.57 10 1 + 

***/
+++ 
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C) 

Protein Full Name 
MW 
[kDa] 

NL 
APC5i 

increase 
#D-
box 

#KEN TEK 
GPS-
ARM 

AURKB 
Serine/threonine-protein kinase 

12 
39.3 Y 1.51 4 1 - 

***/
+++ 

ECT2 Protein ECT2 100.0 x 2.30 5 2 - 
**/ 
+++ 

FANCI Fanconi anemia group I protein 149.2 Y 1.71 6 2 - 
**/ 
+++ 

IMP4
%

 
U3 small nucleolar 

ribonucleoprotein protein IMP4 
33.7 Y 1.49 5 - - ** 

KIFC1 Kinesin-like protein KIFC1 73.7 Y 1.49 9 - - *** 

MDC1 
Mediator of DNA damage 

checkpoint protein 1 
226.5 Y 1.63 11 - + ** 

MSH6 
DNA mismatch repair protein 

Msh6 
152.7 Y 1.26 5 - - *** 

MYH14 Myosin-14 227.9 Y 3.66 33 - + ** 

MYO1C Myosin-Ic 121.6 Y 2.65 12 - - 
 

NU160 
Nuclear pore complex protein 

Nup160 
162.0 x 1.29 14 - - *** 

NU188 Nucleoporin NUP188 homolog 195.9 x 1.56 11 - - *** 

NU214 
Nuclear pore complex protein 

Nup214 
213.5 x 1.61 7 - - *** 

NUP85 
Nuclear pore complex protein 

Nup85 
75.0 x 1.29 5 - - ** 

PO210 
Nuclear pore membrane 

glycoprotein 210 
205.0 Y 2.30 8 - - *** 

PTRF 
Polymerase I and transcript 

release factor 
43.4 Y 1.80 6 1 - 

***/
+++ 

RGAP1 Rac GTPase-activating protein 1 71.0 x 3.12 5 - - *** 

RL11 60S ribosomal protein L11 20.2 Y 1.86 0 1 - 
 

RLA2 60S acidic ribosomal protein P2 11.7 Y 2.12 0 0 - 
 

RRBP1 Ribosome-binding protein 1 152.4 Y 1.49 7 0 - *** 

RS16 40S ribosomal protein S16 16.4 Y 1.28 1 0 - 
 

RS2 40S ribosomal protein S2 31.3 Y 1.34 1 0 - 
 

RS27A
& 

40S ribosomal protein S27a 9.4 Y 1.34 0 0 - 
 

RS30 40S ribosomal protein S30 6.6 Y 2.52 0 0 - 
 

SUV91 
Histone-lysine N-

methyltransferase SUV39H1 
47.9 x 1.43 7 - - *** 

SYNE2 Nesprin-2 795.9 x 106.00 27 3 + 
***/
+++ 

TRIPC 
Probable E3 ubiquitin-protein 

ligase TRIP12 
220.3 Y 1.49 11 - - ** 

WAPL 
Wings apart-like protein 

homolog 
132.9 Y 3.21 7 1 + 

*/ 
+++ 
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Figure 2.2 – Quantitation of selected nucleolar proteins by isotopic labelling and LC-MS/MS following 
APC3 or APC5 siRNA-knockdown 

 

HeLa cells were subjected to knockdown by either non-silencing, APC3 or APC5 siRNA for 72h. 

Nucleolar lysates were solubilised in 9M urea/100mM TEAB and normalised by protein 

concentration, as calculated by Bradford assay, and centrifuged through an Amicon Ultra 30kDa filter 

(Millipore). The denatured proteins were then reduced by 50mM DTT for 1h at 56°C and reduced by 

iodoacetamide in the dark at room temperature for 30 min, and then washed 4 times with 100mM 

TEAB before overnight digestion at 37°C with sequence grade modified Trypsin (Promega) 

resuspended in 100mM TEAB. Tryptic peptides were eluted by centrifugation and dimethylated by 

incubation with 1/10x volume 10.73% Heavy (APC3/5i) or Light (non-sil.) formaldehyde for 1 min 

with constant mixing. Samples were centrifuged briefly and 1/10x volume 1.5M sodium 

cyanoborohydride added for 30s with constant mixing, briefly centrifuged then incubated at 600rpm 

for 1h. 1/10x volume of 10.73% sodium hydroxide was added, followed by 1/10x volume formic acid. 

Heavy- and Light-dimethyl-labelled peptides were then mixed together and purified through a C18 

column, before analysis by LC-MS/MS using a maXis impact (Bruker). The Heavy/Light ratio for each 

peptide was produced by WarpLC and ProteinScape (Bruker), and used to calculate the Heavy/Light 

ratio for each protein. This was divided by the median Heavy/Light ratio to normalise input, and was 

averaged over two repeats, thus providing the percentage change in nucleolar abundance. 

Selected proteins for which abundance increased by >25% were filtered by GPS-ARM score of D- and 

KEN-boxes, the presence of a TEK box, localisation and function. A) shows selected proteins for which 

an increase was seen in both APC3i and APC5i. Selected proteins for which an increase was only 

observed in APC3i  are listed in B), and an increase in APC5i are shown in C). Complete lists of 

proteins whose nucleolar abundance increased by >25% are listed in Appendix Figure S1.3. 

MW represents Molecular Weight, nucleolar proteins are denoted by a Y (yes), whilst non-nucleolar 

are denoted by an x in the NL (Nucleolar) column. D-boxes and KEN boxes were analysed using GPS-

ARM, with the highest threshold of motif denoted by * for D-boxes and + for KEN boxes. * represents 

a low threshold peptide, ** medium and *** high. 

Proteins also identified within nucleolar APC5 and APC7 IPs (Figure 2.1) are denoted by % and & 

respectively. 
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6.3. Mass spectrometric analysis of APC/C-interacting proteins 
 

Earlier, evidence was provided that suggested a nucleolar role for the APC/C. However, the APC/C is 

expressed ubiquitously, with a high proportion evident within the cytoplasm as well as the 

nucleplasm (Figures 1.4 and 1.7). We therefore adopted a proteomic approach to identify binding 

proteins in whole cell extracts with an aim to discover novel putative substrates for ubiquitylation by 

the APC/C. 

Asynchronous HeLa cells were lysed and IPs against APC3, Cdc20 and Cdh1 were performed. These 

particular IPs were chosen, as Cdc20 and Cdh1 are the co-activators which form part of the substrate 

recognition particle, and therefore any interacting proteins are likely to be APC/C substrates, 

activators or inhibitors (Pines 2011, Primorac and Musacchio 2013). Similarly, APC3 has been shown 

to be important in the recognition of substrates in the absence of co-activators, such as during the 

SAC (Pines 2011, Primorac and Musacchio 2013). The IPs were separated by SDS-PAGE and processed 

for LC-MS/MS by in-gel tryptic digestion, with the entire length of the gel being excised into 16 slices. 

Peptides were identified, filtered by a 1% False Discovery Rate and compared to an IgG control.  

Proteins unique to the IPs and identified in two independent experiments were then searched in the 

Uniprot database to determine protein sequence and the biological processes in which they are 

involved. The proteins were then analysed using GPS-ARM to determine D- and KEN-boxes in order 

to establish the likelihood of it being a novel substrate. Identified proteins are detailed in full in 

Appendix Figure S1.4, with selected proteins grouped by cellular function in Figure 2.3. 

The processes which have been identified within this dataset are extensive, with particular coverage 

to proteins involved in the cell cycle and the ubiquitin-proteasome pathway. Also well-represented 

are proteins important in: the regulation of mRNA and its processing and splicing such as RNA 

helicases; rRNA processing and ribosomal proteins; transcriptional regulation and chromatin; 
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differentiation; DNA repair and oxidative stress; apoptosis; metabolism; intracellular transport, 

particular between the ER and Golgi and the cytoskeleton (Figure 2.3; Appendix Figure S1.4).  

As a positive control, it was important to detect known interactors of APC3, Cdc20 and Cdh1 within 

their corresponding IPs. Fortunately, this was the case, as numerous APC/C subunits and members of 

the MCC, including BUB1, BUB1B/BUBR1, BUB3 and Mad2A/MD2L1, were pulled-down in each IP. 

The substrates PAF, KIF4A, KIF22, Fbx5/Emi, NEK2 and RIR2 were also identified within the APC3 IP, 

with RIR2 also discovered binding to Cdh1 (Figure 2.3B). 

Further to these known interactors, many more proteins implicated in the cell cycle have been 

identified within these IPs. Interacting with APC3 were Cdk2, FAM96B, RHOC, ARL2 and 

MEK2/MP2K2 (Figure 2.3C). MEK2/MP2K2 was also identified within the Cdc20 IP, as were AKAP8, 

NSUN2 and S10AB (Figure 2.3C). Cdh1 also pulled-down different cell cycle proteins, namely KLHL9, 

Nestin and SMC4 (Figure 2.3C). Upon analysis by GPS-ARM, MEK2 has been shown to have an 

extended D-box, whilst Nestin contains numerous D- and KEN-boxes plus a TEK motif (Figure 2.3C). 

RHOC also contains a medium-threshold D-box. SMC4 is particularly interesting, as it contains fairly 

highly scoring D- and KEN-boxes, as well as 3 TEK motifs (Figure 2.3C). 

Many proteins involved in the ubiquitin-proteasome pathway were also identified by this screen, 

many of which are also integral to the cell cycle. The E3 ubiquitin ligase RO52 was found to interact 

with both Cdc20 and Cdh1, and also contained a highly-stringent D-box sequence (Figure 2.3C). 

Similarly, the DUB enzyme USP9X, the RING finger protein RNF4 and the SCF E3 ubiquitin ligase 

component CUL1 were all identified within the APC3 IP, whilst CUL5 and SKP1 interacted with Cdc20 

(Figure 2.3C). Of these, CUL5 appears to be an attractive target for APC/C-mediated ubiquitylation, as 

it also contains the TEK motif for the inititiation of ubiquitylation, whilst SKP1 also contains an 

extended KEN-box (Figure 2.3C). 
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Cdc20 also bound proteins implicated in differentiation and apoptosis. The proteins DMBT1, DOCK7 

and Drebrin are implicated in the regulation of neurogenic differentiation (Figure 2.3H), whilst 14-3-

3S, GGCT, Serpins B3 and B4 and TRAF2 all function in apoptotic pathways; GGCT and Serpins B3 and 

B4 contain KEN-boxes, whilst Serpin B4 also contains a TEK motif (Figure 2.3 I). The identification of 

these proteins is particularly interesting, as traditionally it is the co-activator Cdh1 rather than Cdc20 

which is associated with quiescence and differentiation. 

Another family of proteins well-represented by these data are the MCM proteins which mediate DNA 

replication by controlling replication licencing (Maine, Sinha et al. 1984, Costa, Hood et al. 2013, 

Yardimci and Walter 2014). Out of the MCM2-7 complex, MCM3, MCM4, MCM5 and MCM7 have all 

been identified within our dataset (Figure 2.3Di). MCM3 was found to bind both APC3 and Cdc20, 

whilst MCM7 was found in all three IPs. All the MCM proteins identified contain conserved D-boxes 

(Figure 2.3Dii), with MCM5 and MCM7 containing extended D-box sequences, whilst MCM4 contains 

a high-threshold D-box and a KEN box (Figure 2.3Di). These data suggest that the MCM complex 

could be a target for the E3 ubiquitin ligase activity of APC/C, and warrants further investigation. 

Several DNA repair mechanisms exist within eukaryotic cells in order to restore defective DNA 

following various forms of damage. Both Msh2 and Msh6, members of the MMR pathway, were 

found in both APC3 and Cdh1 IPs, whilst Msh2 also bound Cdc20 (Figure 2.3E). Msh2 contains a KEN 

motif, whilst Msh6 contains an extended D-box commensurate with those from known APC/C 

substrates (Figure 2.3E). Similarly, the NER protein MMS19 was pulled down by APC3, as were TRIP13 

and UBR5, which are important in the response to DSBs (Figure 2.3E). APC3 was also shown to 

interact with two components of the Replication Factor C complex, RFC3 and RFC5, which promote 

correct DNA replication both during normal S-phase and upon DNA damage (Figure 2.3E). Of these 

proteins, UBR5 contains multiple D-boxes, and RFC5 contains a highly-scored D-box as calculated by 

GPS-ARM (Figure 2.3E). Another DSB repair protein, TERA, was pulled down by both Cdc20 and Cdh1 
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IPs, which also contained an extended D-box motif (Figure 2.3E). Cdc20 was also able to co-IP 

MAPKAP2/MK2, which appears to alter mRNA stability following various forms of DNA damage 

(Figure 2.3E). Given the number of proteins within these data which contain degron motifs, it 

appears likely that the APC/C could be involved in several different DNA damage response (DDR) 

pathways. 

Given the data presented in Figures 2.1 and 2.2, in which the APC/C was shown to bind and affect the 

nucleolar localisation of many proteins important in ribosomal biogenesis and translation, it is 

unsurprising that further proteins were also identified following immunoprecipitation from whole 

cell extracts. As well as many 60S and 40S ribosomal proteins, both Nucleolin and the nucleolar RNA 

helicase DDX21, which contains an extended D-box sequence, were also pulled down by APC3, Cdc20 

and Cdh1 (Figure 2.3F). Similarly the ribosomal biogenesis protein BRX1 and the translational 

regulators LAR4B, TNR6B and elongation factors EF1G and EF2 were identified within these IPs 

(Figure 2.3F). 

The APC/C has been described as holding a role in the regulation of metabolism, particularly with 

regard to glycolysis (Colombo, Palacios-Callender et al. 2010, Colombo, Palacios-Callender et al. 2011, 

Estévez-García, Cordoba-Gonzalez et al. 2014). As such, it is perhaps unsurprising that proteins from 

several different metabolic pathways have been represented within this dataset, which all contain D-

boxes. These include C1TC, important in amino-acid biosynthesis and 1-Carbon metabolism and 

found in all three IPs, and K6PL and K6PP, which function in glycolysis (Figure 2.3J). Also found were 

CCHL, which is implicated in mitochondrial oxidative ATP synthesis, and the fatty acid metabolic 

proteins ACACA and APOA1 (Figure 2.3J). The Cdh1-interacting proteins ACACA, APOA1 and CCHL all 

contain KEN boxes, whilst C1TC, K6PL and K6PP contain TEK motifs (Figure 2.3J). 

The APC/C has already been implicated in the regulation of transcription at numerous levels. It has 

been shown to degrade transcription factors (Park, Costa et al. 2008, Ostapenko and Solomon 2011, 
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Ostapenko, Burton et al. 2012), and in yeast, Apc5 mutations affect the chromatin state of active 

genes (Gunjan and Verreault 2003, Turner, Malo et al. 2010). Similarly in humans, APC5 and APC7 

have been shown to potentiate the transcriptional capabilities of the HATs CBP and p300, and are 

associated with CBP/p300-regulated promoters (Turnell, Stewart et al. 2005). In our screen, and in 

agreement with previous mass spectrometry searches (Figures 2.1 and 2.2), multiple histones have 

been found (Figure 2.3G). A number of other proteins have also been identified, including two with 

TEK boxes – FLII (Flightless-1-homologue) and STAT3, which also contains a KEN box (Figure 2.3G). 

Furthermore, the histone methyltransferase DOT1L, and the transcriptional activators HELLS helicase 

and PURA also contain extended KEN motifs (Figure 2.3G). PURA, as well as the E3 ubiquitin ligase 

TRIM29 which contains several D-boxes, were found in both the Cdc20 and Cdh1 IPs, and therefore 

are good candidates for novel substrates (Figure 2.3G). Complementing the nucleolar APC/C IPs 

(Figure 2.1), several RNA helicases and mRNA processing and splicing enzymes were also found 

within IPs from whole cell lysates (Appendix Figure S1.4A). These are important in the processing of 

mRNA from nascent transcripts to those which are capable of being translated, thus play an 

important role in the regulation of protein synthesis.  

Multiple members of the heat-shock-protein family and T-complex were also found to interact with 

APC3, Cdc20 or Cdh1 (Appendix Figure S1.4A). These act as molecular chaperones, ensuring the 

correct folding of nascent polypeptides within the Endoplasmic Reticulum, and form part of the 

Unfolded Protein Response. Although numerous members of each family were found, particular 

attention shall be drawn to TCPG, as it contains two TEK motifs and extended D-box sequences, and 

HS105, HS74L, HS90A, HS90B and HSP72, which all contain KEN-boxes. As yet, no link between the 

APC/C and protein folding has been described, therefore this could provide an interesting line of 

novel research in this area. 
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These data demonstrate the association of APC3, Cdc20 and Cdh1 with many biological processes 

within the cell (Figure 2.3; Appendix Figure S1.4A). Investigation into degron motifs within these 

interacting proteins has suggested a number of putative substrates for APC/C-mediated 

ubiquitylation, for which further research is required. These include proteins important in the cell 

cycle, such as SMC4, SKP1, RO52, RHOC and the Cullins, CUL1 and CUL5, as well as several members 

of the MCM2-7 complex. Also found were several members of different DNA repair pathways, 

including MMS19, Msh2 and Msh6, 2 subunits of Replication Factor C and the E3 ubiquitin ligase 

TERA. Proteins were also found to be involved in metabolism, transcriptional regulation and mRNA 

processing, protein folding, the ubiquitin-proteasome pathway, apoptosis and nucleolar function, 

namely ribosomal proteins, Nucleolin and a nucleolar rRNA helicase, DDX21. 

 

 

A) APC/C subunits  

Protein Full Name 
MW 

[kDa] 
# Peptides 

APC3 IP Cdc20 IP Cdh1 IP 

APC1 Anaphase-promoting complex subunit 1 216.4 99 22 10 

APC2 Anaphase-promoting complex subunit 2 93.8 40 4 - 

APC3 Cell division cycle protein 27 homolog 91.8 63 17 4 

APC4 Anaphase-promoting complex subunit 4 92.1 49 13 - 

APC5 Anaphase-promoting complex subunit 5 85 64 2 - 

APC6 Cell division cycle protein 16 homolog 71.6 41 12 2 

APC7 Anaphase-promoting complex subunit 7 63.1 48 6 - 

APC8 Cell division cycle protein 23 homolog 68.8 61 18 4 

APC10 Anaphase-promoting complex subunit 10 21.2 15 - - 

APC12 Anaphase-promoting complex subunit CDC26 9.8 7 3 - 

APC16 UPF0448 protein C10orf104 11.7 4 - - 

Cdc20 Cell division cycle protein 20 homolog 54.7 4 19 - 

Cdh1 Fizzy-related protein homolog 55.1 16 - 12 
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B) Known Interactors and Substrates 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

BUB1
1
 

Mitotic checkpoint 
serine/threonine-protein kinase 

BUB1 
122.3 - 15 - 3 2 - +++ 

BUB1B
1
 

Mitotic checkpoint 
serine/threonine-protein kinase 

BUB1 beta 
119.5 31 64 - 8 2 - 

***/ 
+++ 

BUB3
1
 Mitotic checkpoint protein BUB3 37.1 9 17 1 1 1 -  

FBX5
2
 F-box only protein 5 50.1 13 - - 4 1 - 

***/ 
+++ 

KIF4A
3
 

Chromosome-associated kinesin 
KIF4A 

139.8 1 - - 7 1 1 
***/ 
+++ 

KIF22
4
 Kinesin-like protein KIF22 73.2 1   6 1 - 

**/ 
+++ 

MD2L1
1
 

Mitotic spindle assembly checkpoint 
protein MAD2A 

23.5 6 8  - - -  

NEK2
5
 

Serine/threonine-protein kinase 
Nek2 

51.7 3   5 1 - 
***/ 
+++ 

PAF
6
 PCNA-associated factor 12 2   1 1 - 

***/ 
+++ 

RIR2
7
 

Ribonucleoside-diphosphate 
reductase subunit M2 

44.8 13  8 3 1 - 
***/ 
+++ 

 

 

 

C) Cell Cycle and Ubiquitin-Proteasomal Pathway 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

    

AKAP8 A-kinase anchor protein 8 76.1 
 

1 
 

3 - - * 

ARL2 
ADP-ribosylation factor-like protein 

2 
20.9 2 

  
1 - - 

 

CDK2 Cell division protein kinase 2 33.9 3 
  

3 - - 
 

CUL1 Cullin-1 89.6 15 
  

4 - - 
 

CUL5 Cullin-5 90.9 
 

9 
 

4 - 1 
 

FA96B Protein FAM96B 17.7 3 
  

- - - 
 

KLHL9 Kelch-like protein 9 69.4 
  

2 2 - - 
 

MP2K2 
Dual specificity mitogen-activated 

protein kinase kinase 2 
44.4 2 1 

 
1 - - *** 

NEST Nestin 177.3 
  

1 11 5 1 
***/ 
+++ 

NSUN2 
tRNA (cytosine-5-)-

methyltransferase NSUN2 
86.4 

 
2 

 
5 1 - 

 

PRS7 26S protease regulatory subunit 7 48.6 1 
  

2 - 1 ** 

PSDE 
26S proteasome non-ATPase 

regulatory subunit 14 
34.6 1 1 

 
- - - 

 

PSMD2 
26S proteasome non-ATPase 

regulatory subunit 2 
100.1 

 
2 

 
7 - - ** 
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RHOC 
Rho-related GTP-binding protein 

RhoC 
22 2 

  
3 - - ** 

RNF4 RING finger protein 4 21.3 3 
  

1 - - 
 

RO52 52 kDa Ro protein 54.1 
 

10 7 3 - - *** 

S10AB Protein S100-A11 11.7 
 

2 
 

- - - 
 

SKP1 S-phase kinase-associated protein 1 18.6 4 
  

- 1 - +++ 

SMC4 
Structural maintenance of 
chromosomes protein 4 

147.1 
  

3 4 1 3 
**/ 
++ 

TRP13 
Thyroid receptor-interacting protein 

13 
48.5 9 

  
4 - 1 

 

USP9X 
Probable ubiquitin carboxyl-

terminal hydrolase FAF-X 
289.4 4 

  
13 - - ** 

 

 

 

 

D) i) MCM proteins 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

MCM3 
DNA replication licensing factor 

MCM3 
90.9 4 1 

 
4 - - 

 

MCM4 
DNA replication licensing factor 

MCM4 
96.5 13 

  
5 1 - *** 

MCM5 
DNA replication licensing factor 

MCM5 
82.2 2 

  
5 - - * 

MCM7 
DNA replication licensing factor 

MCM7 
81.3 36 2 1 6 - - * 

 

 

ii)  a) MCM3 

sp|P25205|MCM3_HUMAN        VAKSQLLRYVLCTAPRAIPTTGRGSSGVGLTAAVTTDQETGER-RLEAGAMVLADRGVVC 407 

sp|P25206|MCM3_MOUSE        VAKSQLLRYVLCTAPRAIPTTGRGSSGVGLTAAVTTDQETGER-RLEAGAMVLADRGVVC 407 

tr|D3ZFP4|D3ZFP4_RAT        VAKSQLLRYVLCTAPRAIPTTGRGSSGVGLTAAVTTDQETGKGVGLPVRGLVLADRGVVC 408 

sp|P49739|MCM3M_XENLA       VAKSQLLRYVLHTAPRAIPTTGRGSSGVGLTAAVTTDQETGER-RLEAGAMVLADRGVVC 407 

tr|F7CH15|F7CH15_XENTR      VAKSQLLRYVLYTAPRAIPTTGRGSSGVGLTAAVTTDQETGER-RLEAGAMVLADRGVVC 407 

sp|Q9XYU1|MCM3_DROME        VAKSQLLRYVLNTAPRAIPTTGRGSSGVGLTAAVTTDQETGER-RLEAGAMVLADRGVVC 402 

tr|Q9XVR7|Q9XVR7_CAEEL      VAKSQLLRYVLRMAPRAITTTGRGSSGVGLTAAVTTDPDSGER-RLEAGAMVLADRGVVC 410 

sp|P24279|MCM3_YEAST        TAKSQLLRFVLNTASLAIATTGRGSSGVGLTAAVTTDRETGER-RLEAGAMVLADRGVVC 471 

sp|P30666|MCM3_SCHPO        TAKSQLLRFVLNTAPLAIATTGRGSSGVGLTAAVTTDKETGER-RLEAGAMVLADRGVVC 418 

 
sp|P25205|MCM3_HUMAN        NIGLQDSLLSRFDLLFIMLDQMDPEQDREISDHVLRMHRYRAPGEQDGDAMPLGSA--VD 525 

sp|P25206|MCM3_MOUSE        NIGLQDSLLSRFDLLFIMLDQMDPEQDREISDHVLRMHQYRAPGEQDGDALPLGSS--VD 525 

tr|D3ZFP4|D3ZFP4_RAT        NIGLQDSLLSRFDLLFIMLDQMDPEQDREISDHVLRMHQYRAPGEQDGDALPLGSS--VD 526 

sp|P49739|MCM3M_XENLA       NIGLQDSLLSRFDLLFIVLDKMDADNDQEIADHVLRMHRYRTPGEQDGYALPLGCS--VE 525 

tr|F7CH15|F7CH15_XENTR      NIGLQDSLLSRFDLLFIVLDKMDADNDREIADHVLRMHRYRTPGEQDGYALPLGCS--VE 525 

sp|Q9XYU1|MCM3_DROME        NIGLQDSLLSRFDLLFVMLDVIDSDVDQMISDHVVRMHRYRNPKEADGEPLSMGSS--YA 520 

tr|Q9XVR7|Q9XVR7_CAEEL      NIGMQDSLLSRFDLIFVLLDEHDADKDANVAEHVLKLHTYRTQGEADGTVLPMGGG--VE 528 

sp|P24279|MCM3_YEAST        NIALPDSLLSRFDLLFVVTDDINEIRDRSISEHVLRTHRYLPPGYLEGEPVRERLNLSLA 591 

sp|P30666|MCM3_SCHPO        NIALPDSMLSRFDLLFIVTDDIDDKKDRALSEHVLRMHRYLPPGVEPGTPVRDSLNSVLN 538 
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b) MCM4 

sp|P33991|MCM4_HUMAN        DGAA---------------AEDIVASEQSLGQKLVIWGTDVNVAACKENFQRFLQRFIDP 176 

sp|P49717|MCM4_MOUSE        DGAA---------------AEDIVPSEQSLGQKLVIWGTDVNVATCKENFQRFLQCFTDP 175 

tr|G3V681|G3V681_RAT        DGAA---------------AEDTVASEQSLGQKLVIWGTDVNVATCKEHFQRFLQCFTDP 175 

sp|Q5XK83|MCM4A_XENLA       DQPA---------------AEELVTSEQSLGQKLVIWGTDVNVAICKEKFQRFVQRFIDP 171 

sp|Q6GL41|MCM4_XENTR        DQPA---------------AEELVTSEQSLGQKLVIWGTDVNVATCKEKFQRFVQRFIDP 176 

sp|Q26454|MCM4_DROME        GSGLEPI--PEKGS-----ETTDPVSESSQAPQLVVWGTNVVVSQCKSKFKSFIMRFIDP 178 

tr|Q95XQ8|Q95XQ8_CAEEL      ----------IRGM-------EDEMAGDDGQPRLYVWGTRICVADVQRSFRDFLTTFKIS 131 

sp|P30665|MCM4_YEAST        ---------TRSGVNTLDTSSSSAPPSEASEPLRIIWGTNVSIQECTTNFRNFLMSFKYK 204 

sp|P29458|MCM4_SCHPO        PGVSTPSSLLFSGSDALTFSQAHPSSEVADDTVRVIWGTNVSIQESIASFRGFLRGFKKK 183 

 
sp|P33991|MCM4_HUMAN        GALVLSDNGICCIDEFDKMNESTRSVLHEVMEQQTLSIAKAGIICQLNARTSVLAAANPI 620 

sp|P49717|MCM4_MOUSE        GALVLSDNGICCIDEFDKMNESTRSVLHEVMEQQTLSIAKAGIICQLNARTSVLAAANPI 619 

tr|G3V681|G3V681_RAT        GALVLSDNGICCIDEFDKMNESTRSVLHEVMEQQTLSIAKAGIICQLNARTSVLAAANPI 619 

sp|Q5XK83|MCM4A_XENLA       GALVLSDNGICCIDEFDKMNESTRSVLHEVMEQQTLSIAKAGIICQLNARTSVLAAANPV 615 

sp|Q6GL41|MCM4_XENTR        GALVLSDNGICCIDEFDKMNESTRSVLHEVMEQQTLSIAKAGIICQLNARTSVLAAANPV 620 

sp|Q26454|MCM4_DROME        GALVLADNGVCCIDEFDKMNDSTRSVLHEVMEQQTLSIAKAGIICQLNARTSILAAANPA 622 

tr|Q95XQ8|Q95XQ8_CAEEL      GALVLADNGVCCIDEFDKMNESARSVLHEVMEQQTLSIAKAGIICQLNARASVLAAANPV 579 

sp|P30665|MCM4_YEAST        GALVLSDGGVCCIDEFDKMSDSTRSVLHEVMEQQTISIAKAGIITTLNARSSILASANPI 678 

sp|P29458|MCM4_SCHPO        GALVLSDGGICCIDEFDKMSDATRSILHEVMEQQTVTVAKAGIITTLNARTSILASANPI 655 

 
sp|P33991|MCM4_HUMAN        ESQWNPKKTTIENIQLPHTLLSRFDLIFLLLDPQDEAYDRRLAHHLVALYYQSEE--QAE 678 

sp|P49717|MCM4_MOUSE        ESQWNPKKTTIENIQLPHTLLSRFDLIFLMLDPQDEAYDRRLAHHLVSLYYQSEE--QVE 677 

tr|G3V681|G3V681_RAT        ESQWNPKKTTIENIQLPHTLLSRFDLIFLMLDPQDEAYDRRLAHHLVSLYYQSEE--QVE 677 

sp|Q5XK83|MCM4A_XENLA       ESQWNPKKTTIENIQLPHTLLSRFDLIFLMLDPQDETYDRRLAHHLVALYYQSEE--QLK 673 

sp|Q6GL41|MCM4_XENTR        ESQWNPKKTTIENIQLPHTLLSRFDLIFLMLDPQDETYDRRLAHHLVALYYQSEE--QMK 678 

sp|Q26454|MCM4_DROME        ESQWNKRKNIIDNVQLPHTLLSRFDLIFLVLDPQDEIFDKRLASHLVSLYYVTRH--EEE 680 

tr|Q95XQ8|Q95XQ8_CAEEL      DSKWNRNKTIVENITLPHTLLSRFDLIFLIVDAQDEMQDRRLGNHLVSLYFENDGN-QEK 638 

sp|P30665|MCM4_YEAST        GSRYNPNLPVTENIDLPPPLLSRFDLVYLVLDKVDEKNDRELAKHLTNLYLEDKPEHISQ 738 

sp|P29458|MCM4_SCHPO        GSKYNPDLPVTKNIDLPPTLLSRFDLVYLILDRVDETLDRKLANHIVSMYMEDTPEHATD 715 

 

c) MCM5 

sp|P33992|MCM5_HUMAN       KYRDELKRHYNLGEYWIEVEMEDLASFDEDLADYLYKQPAEHLQLLEEAAKEVADEVTRP 113 

sp|P49718|MCM5_MOUSE       KYRDELKRHYNLGEYWIEVEMEDLASFDEELADHLHKQPAEHLQLLEEAAKEVADEVTRP 113 

tr|B2GUX3|B2GUX3_RAT       KYRDELKRHYNLGEYWIEVEMEDLASFDEELADYLYKQPAEHLQLLEEAAKEVADEVTRP 113 

sp|P55862|MCM5A_XENLA      KYRDELKRHYNLGEYWIEVEMEDLASFDEDLADYLYKQPTEHLQLLEEAAQEVADEVTRP 114 

sp|Q561P5|MCM5_XENTR       KYRDELKRHYNLGEYWIEVEMEDLASFDEDLADYLYKQPTEHLQLLEEAAQEVADEVTRP 114 

sp|Q9VGW6|MCM5_DROME       KYRDTLKRNYLNGRYFLEIEMEDLVGFDETLADKLNKQPTEHLEIFEEAAREVADEITAP 108 

sp|Q21902|MCM5_CAEEL       IYRDQLKRNYFSHEYRLEINLNHLKNFDEDIEMKLRKFPGKVLPALEEAAKIVADEITTP 113 

sp|P29496|MCM5_YEAST       IYRDQLRNNILVKNYSLTVNMEHLIGYNEDIYKKLSDEPSDIIPLFETAITQVAKRISIL 104 

sp|P41389|MCM5_SCHPO       IYRTQLRDNLVVKQYMLNIDLRHLISYNEDLAHLLLSQPTDILPLFESAVTTVAKRLLYR 107 

 

  d) MCM7 

sp|P33993|MCM7_HUMAN        ADYITAAYVEMRREAWASKDA----TYTSARTLLAILRLSTALARLRMVDVVEKEDVNEA 633 

sp|Q61881|MCM7_MOUSE        ADYITAAYVEMRREARASKDA----TYTSARTLLAILRLSTALARLRMVDIVEKEDVNEA 633 

tr|Q1PS21|Q1PS21_RAT        ADYITAAYVEMRREARASKDA----TYTSARTLLAILRLSTALARLRMVDIVEKEDVNEA 633 

sp|Q91876|MCM7A_XENLA       ADYLTAAYVEMRKEARTNKDM----TFTSARTLLSVLRLSTALARLRLEDVVEKEDVNEA 632 

sp|Q6NX31|MCM7_XENTR        ADYLTAAYVEMRKEARTNKDM----TFTSARTLLSILRLSTALARLRLEDVVEKEDVNEA 632 

sp|Q9XYU0|MCM7_DROME        TDYIVGAYVELRREARNQKDM----TFTSARNLLGILRLSTALARLRLSDSVEKDDVAEA 633 

tr|O16297|O16297_CAEEL      RERIVEAYVEMRRDARYSSDP----TFVSPRMILGIVRMATARAKLRLSTIVDESDVEEA 643 

sp|P38132|MCM7_YEAST        NDYVVQAYIRLRQDSKREMDSKFSFGQATPRTLLGIIRLSQALAKLRLADMVDIDDVEEA 716 

sp|O75001|MCM7_SCHPO        CDYVTGAYVQLRQNQKRDEANERQFAHTTPRTLLAILRMGQALARLRFSNRVEIGDVDEA 659 
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E) DNA Repair 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

MAPK2 
MAP kinase-activated protein kinase 

2 
45.5 

 
1 

 
2 - - 

 

MMS19 
MMS19 nucleotide excision repair 

protein homolog 
113.2 2 

  
8 - - 

 

MSH2 DNA mismatch repair protein Msh2 104.7 8 2 1 3 1 - ++ 

MSH6 DNA mismatch repair protein Msh6 152.7 7 
 

4 5 - - *** 

RFC3 Replication factor C subunit 3 40.5 1 
  

4 - - 
 

RFC5 Replication factor C subunit 5 38.5 2 
  

3 - - *** 

TERA 
Transitional endoplasmic reticulum 

ATPase 
89.3 

 
1 2 5 - - *** 

UBR5 E3 ubiquitin-protein ligase UBR5 309.2 1 
  

21 - 
 

*** 

 

 

F) Ribosomal Biogenesis 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

BRX1 
Ribosome biogenesis protein BRX1 

homolog 
41.4 

 
1 1 2 - - 

 

DDX17 
Probable ATP-dependent RNA 

helicase DDX17 
72.3 2 3  1 1 -  

DDX21 Nucleolar RNA helicase 2 87.3 4 21 14 1 - - *** 

DHX15 
Putative pre-mRNA-splicing factor 

ATP-dependent RNA helicase DHX15 
90.9  7 1 9 - 1 ** 

EF1G Elongation factor 1-gamma 50.1 
 

1 
 

5 - - ** 

EF2 Elongation factor 2 95.3 
 

15 
 

7 - - 
 

LAR4B La-related protein 4B 80.5 
 

5 
 

2 - - 
 

NOP2 
Putative ribosomal RNA 
methyltransferase NOP2 

89.2 
 

1 6 2 - - 
 

NUCL Nucleolin 76.6 18 19 20 2 - - 
 

R13AX 
Putative 60S ribosomal protein 

L13a-like MGC87657 
12.1 1 

  
- - - 

 

RL27 60S ribosomal protein L27 15.8 5 
  

- - - 
 

RL36A 60S ribosomal protein L36a 12.4 1 
  

- - - 
 

RL36L 60S ribosomal protein L36a-like 12.5 
  

2 - - - 
 

RS10 40S ribosomal protein S10 18.9 3 1 1 1 - - 
 

RS15 40S ribosomal protein S15 17 
 

3 
 

1 - - 
 

RS26L 
Putative 40S ribosomal protein S26-

like 1 
13 2 1 

 
- - - 

 

RS27 40S ribosomal protein S27 9.5 3 
  

- - - 
 

RS27A 40S ribosomal protein S27a 9.4 
  

1 - - - 
 

RS7 40S ribosomal protein S7 22.1 2 
  

2 - - 
 

TNR6B 
Trinucleotide repeat-containing 

gene 6B protein 
193.9 

  
2 1 - - 

 

XRN2 5'-3' exoribonuclease 2 108.5 3   5 - - * 
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G) Transcription 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

DOT1L 
Histone-lysine N-methyltransferase, 

H3 lysine-79 specific 
184.7 1 

  
11 1 - 

***/ 
+++ 

FLII Protein flightless-1 homolog 144.7 
 

1 
 

6 - 1 ** 

H14 Histone H1.4 21.9 
  

4 1 - - 
 

H2AV Histone H2A.V 13.5 2 2 
 

1 - - 
 

H3L Histone H3-like 15.2 
  

2 1 - - 
 

HELLS Lymphoid-specific helicase 97 
 

42 
 

4 1 - 
**/ 
+++ 

PURA 
Transcriptional activator protein 

Pur-alpha 
34.9 

 
1 1 5 1 - +++ 

STAT3 
Signal transducer and activator of 

transcription 3 
88 1 1 

 
3 1 1 ++ 

TRI29 
Tripartite motif-containing protein 

29 
65.8 

 
1 1 3 - - *** 

 

 

H) Differentiation 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

DMBT1 
Deleted in malignant brain tumors 1 

protein 
260.6 

 
1 

 
3 - - 

 

DOCK7 Dedicator of cytokinesis protein 7 242.4 
 

32 
 

10 - 1 ** 

DREB Drebrin 71.4 
 

3 
 

2 - - 
 

 

 

I) Apoptosis 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

1433S 14-3-3 protein sigma 27.8 
 

6 
 

4 - - 
 

GGCT Gamma-glutamylcyclotransferase 21 
 

1 
 

2 1 - */+++ 

SPB3 Serpin B3 44.5 
 

8 
 

1 1 - +++ 

SPB4 Serpin B4 44.8 
 

7 
 

- 2 1 +++ 

TRAF2 TNF receptor-associated factor 2 55.8 
 

3 
 

4 - - 
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J) Metabolism 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

ACACA Acetyl-CoA carboxylase 1 265.4 
  

3 13 1 - +++ 

APOA1 Apolipoprotein A-I 30.8 
  

1 6 1 - *** 

C1TC 
C-1-tetrahydrofolate synthase, 

cytoplasmic 
101.5 20 12 6 4 - 1 *** 

CCHL Cytochrome c-type heme lyase 30.6 
  

2 1 1 - *** 

K6PL 6-phosphofructokinase, liver type 85 
 

1 
 

1 - 1 
 

K6PP 6-phosphofructokinase type C 85.5 7 4 
 

2 - 1 
 

 
 

Figure 2.3 – Mass Spectrometric identification of APC3, Cdc20 and Cdh1 IPs from whole cell extracts 

Asynchronous HeLa cell lysates were incubated with 20µg normal IgG, APC3, Cdc20 or Cdh1 antisera 
overnight, followed by 2h with Protein G-agarose beads. The IP was then washed, boiled, separated 
by SDS-PAGE and stained with colloidal Coomassie solution. Gel slices were then excised, washed, 
reduced, alkylated then digested overnight at 37°C with trypsin. Peptides were eluted with 3%FA, 
dried and resuspended in 20µl 1%AcN/FA in H2O. 10µl was loaded onto a maXis Impact (Bruker) and 
analysed by LC-MS/MS.  Data was searched using Proteinscape (Bruker) against a Mascot database 
(Matrix Science). Identified peptides were filtered by a 1% False Discovery Rate and compared to a 
normal IgG control. Obvious contaminants were removed, and the proteins identified in two 
independent runs determined. The resulting interacting protein list was searched on Uniprot for 
protein sequence and function (UniProt-Consortium 2014). The protein sequences were then 
searched manually for TEK motifs and the presence of D-boxes and KEN-boxes ascertained and 
scored by GPS-ARM 1.0 (Liu, Yuan et al. 2012). 

Conservation of degrons for the MCM proteins are shown in D ii). Only D-boxes which are conserved 
from yeast to human are shown, and the KEN box in MCM4. Organisms chosen include Homo sapiens 
(HUMAN), Mus musculus (MOUSE), Rattus norvegicus (RAT), Xenopus laevis (XENLA), Xenopus 
tropicalis (XENTR), Drosophila melanogaster (DROME), Caenorhabditis elegans (CAEEL), 
Saccharomyces cerevisiae (YEAST) and Schizosaccharomyces pombe (SCHPO). Alignments were 
performed using Clustal Omega (Goujon, McWilliam et al. 2010, Sievers, Wilm et al. 2011, Sievers 
and Higgins 2014) 

Proteins are grouped by cellular function, with selected proteins shown in Figure 2.3. For full list of 
proteins in each group see Appendix Figure S1.4A. For all proteins identified within each IP see 
Appendix Figure S1.4B (APC3 IP), S1.4C (Cdc20 IP) and Figure S1.4C (Cdh1 IP). 

References for known interactors and substrates: 
1: BUB1, BUB1B, BUB3 - (Sudakin, Chan et al. 2001) 
2: FBX5/Emi1 - (Hsu, Reimann et al. 2002) 
3: KIF4A - (Singh, Winter et al. 2014) 
4: KIF22 - (Feine, Zur et al. 2007) 
5: NEK2A - (Hames, Wattam et al. 2001) 
6: PAF - (Emanuele, Ciccia et al. 2011, Williamson, Banerjee et al. 2011) 
7: RIR2 (murine) - (Chabes, Pfleger et al. 2003) 
 



191 
 

6.4. Discussion 
 

In Chapter 1, a distinct nucleolar population of the APC/C was identified which might regulate Pol I 

activity through the targeting of RPA194 for degradation by the 26S proteasome. To investigate novel 

nucleolar functions for the APC/C a mass spectrometric approach was adopted. As such, IPs of APC/C 

subunits and co-activators were performed from nucleolar fractions (Figure 2.1), whilst the 

abundance of nucleolar proteins was determined following knockdown of either APC3 or APC5 

(Figure 2.2). Similarly, to investigate novel functions of the APC/C in the context of the entire cell, 

mass spectrometric analysis of APC3 and co-activator IPs from whole cell extracts was performed 

(Figure 2.3). 

These data contain a large number of putative substrates and interactors for the APC/C, and are 

detailed in full within the appendix. These proteins represent a wide range of biological processes, 

including: the cell cycle; Pol I transcription and ribosomal biogenesis; DNA replication and repair; 

metabolism; Pol II transcription; metabolism; differentiation and apoptosis. 

In order to focus my attention upon certain proteins, those identified within the mass spectrometric 

screens were analysed for function, in particular with regard to nucleolar processes, and searched for 

canonical APC/C degrons, namely D-boxes, KEN-boxes and TEK motifs. Due to space and word limit 

considerations, the most likely substrates are described herein and the context of their potential as 

APC/C substrates outlined. 

6.4.1. The APC/C interacts with proteins important in nucleolar function 

 

A number of proteins identified within the IPs and whose nucleolar abundance increased following 

APC/C inhibition hold nucleolar functions. These include proteins which are important in the 

regulation of Pol I transcription, pre-rRNA processing and ribosomal assembly.  
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One such protein identified within the nucleolar APC7 IP is CHD1 (Figure 2.1C), which is required for 

elongation and termination termination of Pol I transcription in yeast and is a chromatin remodelling 

protein (Jones, Kawauchi et al. 2007). CHD1 contains a KEN-box, as well as a number of highly-scored 

D-boxes. Interestingly, CHD1 also increased in nucleolar abundance following siRNA-mediated 

knockdown of APC3 (Figure 2.2B). Another protein required for transcription termination and 

reinitiation, PTRF, was similarly elevated upon knockdown of APC5 and contains several extended D-

boxes and a KEN box (Figure 2.2C) (Jansa, Burek et al. 2001). Given that transcription termination is 

necessary for the subsequent reinitiation of rDNA transcription by Pol I, any modulation of this 

process will alter the rate of Pol I transcription. Therefore, should either CHD1 or PTRF be novel 

substrates, it could provide extra levels of regulation for Pol I transcription mediated by the APC/C. 

Pol I transcription is also regulated by epigenetic modifications of the chromatin state of rDNA. 

Accordingly, SUV91, a subunit of eNoSC also known as SUV39H1, was shown to increase in nucleolar 

abundance following knockdown of APC5 and contains extended D-boxes (Figure 2.2C). Other 

proteins important for chromatin remodelling were also found to increase following knockdown of 

either APC3 or APC5, including the aforementioned CHD1, as well as Acl6a/BAF53 and 

SMRD2/BAF60B, part of SWI-SNF complexes (Wang, Côté et al. 1996). Similarly, APC5 was shown to 

interact with NOC2L within the nucleolus (Figure 2.1B). NOC2L inhibits acetylation by CBP/p300, 

which has implications for Pol I transcription, as CBP-mediated acetylation of the Pol I subunit, 

PAF53, has been shown to repress transcription (Chen, Seiler et al. 2013). 

The presence of the DUB UBP36, also known as USP36, within the APC7 IP does provide an intriguing 

possibility (Figure 2.1C). The S. cerevisiae orthologue, Ubp10, has been shown to be important in Pol I 

stability and rRNA production through its deubiquitylation of the yeast form of RPA194 (Richardson, 

Reed et al. 2012). Given our earlier evidence that RPA194 stability might be regulated, in part, by the 
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APC/C (Chapter 1), the targeting of UBP36 could provide an alternative regulatory mechanism for Pol 

I activity. 

Numerous proteins important in pre-rRNA processing and maturation have also been identified 

within our mass spectrometric screens. These included a number of constituents of pre-ribosomes 

and sno-RNPs, such as RNA helicases, nucleases, methyltransferases and ribosomal proteins which 

are important in the folding, cleavage and maturation of pre-rRNA, as well as their transport and 

assembly into active ribosomes (Dragon, Gallagher et al. 2002, Mullineux and Lafontaine 2012, 

Tafforeau, Zorbas et al. 2013). One such protein, identified in both APC3 and APC7 nucleolar IPs, was 

the exoribonuclease ISG20L2, which regulates the maturation of the 5.8S rRNA required for the 

assembly of the 60S ribosome (Figure 2.1A, C)(Couté, Kindbeiter et al. 2008). ISG20L2 also contains a 

D-box sequence similar to that of known APC/C substrates (Figure 2.1A, C). It is therefore a likely 

candidate for a novel nucleolar substrate for the APC/C, and further work should be carried out to 

establish whether this is indeed the case. 

Other nucleolar proteins including KRR1 and CN021/NOP9 were found to interact with APC7 (Figure 

2.1C). These are important in the assembly of 40S ribosomes through the production and processing 

of 18S rRNA (Sasaki, Toh-E et al. 2000, Bernstein, Gallagher et al. 2004, Thomson, Rappsilber et al. 

2007). Whilst KRR1 does contain D-boxes, it is the highly-scored D-box within CN021/NOP9 to which 

particular attention should be focussed (Figure 2.1C).  

Of the multitude of proteins which were identified within the nucleolar APC5 IP, greater attention 

ought to be given to the D-box-containing proteins RRP12, NOP58 and WDR74, which also contain an 

extended D-box, a TEK motif and a KEN-box, respectively (Figure 2.1B). NOP58 is an essential 

component of U3 sno-RNPs, whilst RRP12 and WDR74 are important in the export of pre-ribosomes 

as part of their maturation (Gautier, Bergès et al. 1997, Oeffinger, Dlakic et al. 2004, Kressler, Roser 

et al. 2008). Similarly, BRX1 was identified within Cdc20 and Cdh1 IPs from whole cell extracts (Figure 
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2.3F), which in Xenopus and yeast has been shown to be important for 60S ribosome assembly and 

rRNA processing (Kaser, Bogengruber et al. 2001). 

Other Small Subunit Processome and snoRNP components have also been identified within these 

mass spectrometry screens. These include IMP4, and the extended D-box-containing NOP2 and TBL3, 

which all interacted with nucleolar APC5 (Figure 2.1B), with IMP4 also increasing in nucleolar 

abundance following APC5 knockdown (Figure 2.2C). The methyltransferase NOP2 was also 

precipitated by Cdc20 and Cdh1 IPs, and therefore is also a strong contender to be an APC/C 

substrate (Figure 2.3F). An exonuclease, XRN2, was also identified with APC3 IPs from whole cell 

extracts, which is integral to early processing of pre-rRNAs together with snoRNPs (Figure 2.3F) (Miki 

and Großhans 2013). 

APC5 also interacted with a number of proteins important in the processing of pre-rRNA to produce 

18S rRNA and the production of mature 40S ribosomes, including HEAT1 and RRMJ3 (Figure 2.1B). 

RRMJ3 contains an extended D-box, whilst HEAT1 contains numerous extended D-boxes plus a KEN 

box, and therefore hold good potential in being novel APC/C substrates (Figure 2.1B). APC5 also 

interacted with a number of TEK-box-containing proteins important in rRNA processing, namely 

RRP7A, RBM28, NOL11, Pescadillo and RRP5, which also contained an extended D-box (Figure 2.1B). 

Similarly, WDR55, another rRNA processor, contains several D-boxes and was elevated in the 

nucleolus following knockdown of APC3 (Figure 2.2B). 

Cleavage of pre-rRNA requires the activity of RNA helicases. These promote ATP-dependent 

rearrangement of the secondary structure of RNA, thereby facilitating RNA processing and splicing 

(Jarmoskaite and Russell 2014). Whilst RNA helicases commonly function within nuclear 

spliceosomes to process mRNA, a number of DEAD/H-box RNA helicases have also been identified 

within our mass spectrometry screens which have been implicated in rRNA processing and 

maturation and contain APC/C degrons. Interestingly, DDX5, containing a KEN-box and found within 
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nucleolar APC3 and APC7 IPs (Figure 2.1A, C), its heterodimeric partner DDX17, identified within 

nucleolar APC5 IPs and APC3, Cdc20 and Cdh1 IPs from whole cell extracts (Figure 2.3F), and DHX36, 

containing an extended D-box and stabilised in the nucleolus following APC3 knockdown (Figure 

2.1B), have all been shown to colocalise in vivo (Ogilvie, Wilson et al. 2003, Iwamoto, Stadler et al. 

2008). Nucleolar APC5 also interacted with two other RNA helicases implicated in ribosomal 

biogenesis, DDX27 and DH15, which both also contain highly-stringent D-box and TEK sequences 

(Figure 2.1B), with DHX15 also interacting with Cdc20 and Cdh1 (Figure 2.3F) (Ripmaster, Vaughn et 

al. 1992, Fouraux, Kolkman et al. 2002). 

Special attention also ought to be drawn to DDX21, which co-immunoprecipitated with APC5 from 

nucleolar fractions (Figure 2.1B) and APC3, Cdc20 and Cdh1 from whole cell extracts (Figure 2.3F). 

DDX21 is important for both the processing of the 20S pre-rRNA into the 18S rRNA and also for 28S 

rRNA production (Henning, So et al. 2003, Yang, Henning et al. 2005). Given the fact that it contains a 

D-box highly scored by GPS-ARM and its ability to be co-precipitated with multiple APC/C subunits, it 

warrants further research and is a good candidate for an APC/C substrate. 

Should any of these proteins be verified as APC/C substrates, such as by in vitro APC/C ubiquitylation 

assays or by it would demonstrate further mechanisms whereby the APC/C controls ribosomal 

production, from regulating Pol I transcription to pre-rRNA processing and ribosomal maturation. 

 

6.4.2. The identification of mitotic cell cycle proteins as putative APC/C 

substrates 

 

Given the role of the APC/C in the regulation of the cell cycle, it was unsurprising to see an 

abundance of proteins important in cell cycle progression interacting with, and whose nucleolar 

abundance was potentially regulated by, the APC/C. Many of these are important in mitosis, such as 

establishing and maintaining sister chromatid cohesion, chromosome condensation and cytokinesis. 
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6.4.2.1. Mitotic Kinases 

 

A key mitotic kinase, Plk1, was shown to increase nucleolar abundance following knockdown of APC3 

(Figure 2.2B). Plk1 is a pro-mitotic kinase that phosphorylates a plethora of proteins, including the 

APC/C, in order to regulate early mitosis (Kraft, Herzog et al. 2003, Petronczki, Lénárt et al. 2008, Liu, 

Ren et al. 2013). The APC/C subsequently targets Plk1 for degradation in order to promote mitotic 

exit (Lindon and Pines 2004). Similarly, nucleolar protein levels of Aurora Kinase B increased 

following ablation of APC5 expression (Figure 2.2C). Aurora Kinase B regulates various mitotic events 

prior to its ubiquitylation by the APC/C during late mitosis (Stewart and Fang 2005). These increases 

in substrate expression therefore acted as a proof-of-principle for this technique. 

Another mitotic kinase, MP2K2, also known as MEK2, was identified within both APC3 and Cdc20 IPs 

and contains an extended D-box sequence (Figure 2.3C). Although this has not been identified as an 

APC/C substrate, it has been described as holding important roles within the cell cycle through its 

phosphorylation of ERK as part of the MAP kinase signalling pathway, which regulates cell cycle 

progression according to external stimuli through transcriptional control of Cyclin D1, and inhibition 

of p27KIP1 (Rivard, Boucher et al. 1999). MEK2 has also been purported to hold another function in the 

activation of the G2/M checkpoint following Ionising Radiation (Abbott and Holt 1999). 

6.4.2.2. Sister Chromatid Cohesion 

 

Of these proteins, several are part of the Structural Maintenance of Chromosomes (SMC) family, 

which includes proteins important for chromosomal condensation and sister chromatid cohesion 

(Aragon, Martinez-Perez et al. 2013). One such example of a SMC family protein identified within our 

screen is SMC3, part of the Cohesin complex which keeps sister chromatids together until the onset 

of anaphase, whereupon it is cleaved under control of the APC/C (Peters 2006, Musacchio and 

Salmon 2007, Nasmyth 2011). Although this represents one method by which the APC/C regulates 

Cohesin, the identification of SMC3 within the APC7 IP and the presence of several D-boxes within its 
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sequence suggests that it might also be an APC/C substrate itself (Figure 2.1C). It is possible that 

direct cleavage of Cohesin by the APC/C could facilitate sister chromatid separation, particularly with 

regard to faster resolution of rDNA catenation within nucleolar regions, permitting mitotic 

progression with fewer delays, and therefore less susceptibility to chromosomal instability. 

 

6.4.2.3. Chromosome Condensation 

 

Another SMC family member, SMC4, was shown to interact with Cdh1 within whole cell extracts in 

vivo and contains D-, KEN- and TEK motifs (Figure 2.3C). SMC4 is a subunit of Condensin, which 

mediates the condensation of chromosomes during early mitosis (Hirano 2012, Thadani, Uhlmann et 

al. 2012, Piazza, Haering et al. 2013). Metazoan Condensin exists as two complexes with distinct 

functions; Condensin I binds to chromosomes in prometaphase following NEBD until the onset of 

anaphase and is involved in further condensation of chromosomes whilst Condensin II binds 

chromosomes throughout mitosis from prophase and is important for axial chromosomal shortening 

(Thadani, Uhlmann et al. 2012, Piazza, Haering et al. 2013). Condensin also appears to be important 

for the organisation of kinetochores, and therefore plays an important role in mitotic progression 

beyond that of the initial chromosomal compaction during prophase and prometaphase (Hirano 

2012).  

 

6.4.2.4. Anaphase 

 

FAM96B, also referred to as MIP18, and MMS19 were shown to interact with APC3 (Figure 2.3C, E). 

Together, FAM96B and MMS19 have been suggested to play a role in chromosome segregation, since 

their siRNA-mediated knockdown resulted in abnormalities consistent with a function in anaphase 

(Ito, Tan et al. 2010). TRIP13 was also discovered within APC3 IPs (Figure 2.3C), which has recently 
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been shown to have a role in the silencing of the SAC through disassembly of the MCC, thereby 

alleviating MCC-dependent inhibition of the APC/C (Eytan, Wang et al. 2014, Wang, Sturt-Gillespie et 

al. 2014). TRIP13 contains both D-boxes and a TEK motif (Figure 2.3C), and therefore has potential for 

being an APC/C substrate. As such, it is feasible that it could be targeted itself for degradation upon 

completion of mitosis, since its MCC-inhibitory mechanism would no longer be required. 

 

6.4.2.5. Cytokinesis 

 

Several proteins important in cytokinesis were also identified within APC/C IPs, including Nestin, 

RhoC, ARL2 and KLHL9 (Figure 2.3C). Nestin was identified within the Cdh1 IP and contains extended 

D- and KEN-boxes as well as a TEK motif, and therefore is a strong contender for an APC/C substrate 

(Figure 2.3C). Interestingly, the nucleolar abundance of Nestin also increased following knockdown of 

either APC3 or APC5 (Figure 2.2A). Nestin has been shown to regulate the mitotic cytoskeleton by 

ensuring the correct disassembly and segregation of Intermediate Filaments between the two 

resulting daughter cells (Michalczyk and Ziman 2005). It could therefore be degraded within daughter 

cells under the control of APC/C-Cdh1, akin to other APC/C substrates.  

 

6.4.3. Ubiquitin-Proteasomal Pathway proteins 

 

Several other proteins were identified within APC/C IPs from whole cell extracts which function in the 

ubiquitin-proteasomal degradation pathway during the cell cycle. These included the SCF E3 

ubiquitin ligase components RO52, SKP1 and CUL1, as well as CUL5, RNF4 and the DUB USP9X (Figure 

2.3C). An SCF E3 ubiquitin ligase contains SKP1 and CUL1, together with an F-box protein, and 

ubiquitylates a wide range of substrates, with its substrate specificity conferred by the particular F-

box protein contained within the complex (Skaar and Pagano 2009). One such SCF E3 ligase 
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containing RO52 has been shown to regulate p27 stability, as well as NFκB signalling (Sabile, Meyer et 

al. 2006, Wada, Niida et al. 2009). The identification of CUL1 is particularly interesting, as it is an 

essential part of the SCF E3 ubiquitin ligase(Yu, Gervais et al. 1998). Many SCF E3 ubiquitin ligases are 

important in the cell cycle, through the degradation of important cell cycle regulators. One example 

is SCFFbxw7, which ubiquitylates Cyclin E, c-Myc and c-Jun, whilst another SCF ligase, SCFSkp2, promotes 

cell cycle progression through the degradation of p21 and p27 (Yu, Gervais et al. 1998, Carrano, 

Eytan et al. 1999, Tsvetkov, Yeh et al. 1999). Another SCF complex, SCFβ-TrCP, regulates the APC/C 

through ubiquitylation of its inhibitor Emi1; SCFβ-TrCP also modulates Cdk1 activity through Wee1 and 

Cdc25A degradation (Frescas and Pagano 2008, Skaar and Pagano 2009). Should CUL1 be established 

as a novel binding protein or a substrate for the APC/C, it could permit the APC/C to modulate 

multiple signalling pathways through the regulation of a single protein. 

Cullin 5 (CUL5) is a component of a different form of Cullin-Ring-Ligases (CRLs) termed ECS (Elongin-

Cullin 2/5-SOCS-box protein). CUL5 functions in a number of antiproliferative cellular processes, such 

as Src-mediated transformation and ErbB2 degradation as well as downregulating MAP kinase and 

cAMP signalling pathways (Ehrlich, Wang et al. 2009, Bradley, Johnson et al. 2010, Teckchandani, 

Laszlo et al. 2014). CUL5 also contains a TEK motif, a known initiation site for APC/C-mediated 

ubiquitylation, and therefore is a strong candidate for an APC/C substrate. In a similar vein to CUL1, 

should CUL5 be designated a novel substrate for APC/C E3 ubiquitylation activity, it represents a  hub 

protein through which the APC/C can modulate a number of processes, thereby disseminating a 

broad cell cycle effect through the regulation of a single protein. 

These data suggest the APC/C has further roles in the regulation of mitosis beyond what has 

previously been published. Given the extensive list of known APC/C substrates in mitosis, these 

would be likely candidates for novel targets for the APC/C, and as such should be investigated 

further. 
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6.4.4. MCM and DNA replication 

 

The Mini Chromosome Maintenance (MCM) family of proteins are integral to replication licencing 

and DNA synthesis, ensuring that DNA is only replicated once per cell cycle. Six of these, MCM2-7, 

exist as a dimeric hexamer which is recruited to origins of replication during G1 by ORC together with 

Cdc6 and Cdt1 to form the pre-RC, thus licensing the DNA ready for origin firing (Boos, Frigola et al. 

2012, Sacco, Hasan et al. 2012). Given that the APC/C plays an important role in replication licencing, 

it is interesting that multiple members of the MCM family were identified within APC/C IPs, namely 

MCM3, MCM4, MCM5 and MCM7 (Figure 2.3D). Given that the MCM2-7 helicase appears to have 

evolved from a single monohexameric helicase, the presence of D-boxes within each subunit might 

suggest each subunit of the MCM2-7 helicase interacts with the APC/C, and indeed could be novel 

substrates. It is also worth noting that the D-boxes within MCM4, 5 and 7 are all extended, with 

downstream amino acids from the RxxL motif exhibiting homology to known substrates, whilst 

MCM4 also contains a KEN box (Figure 2.3D). Further research is therefore required upon these data 

to verify these interactions, and ascertain whether MCM proteins are indeed novel substrates for the 

APC/C. 

6.4.5. DNA damage proteins as Potential APC/C Substrates 

 

The nucleolus is integral to the response to DNA damage and might provide a sensory mechanism to 

determine the correct intracellular response (Mayer and Grummt 2005, Boulon, Westman et al. 

2010, Grummt 2013). As such, it is perhaps unsurprising that many proteins involved in the repair of 

damaged or abnormal DNA were identified as interacting with the APC/C within whole cell and 

nucleolar extracts, and whose nucleolar abundance is dependent upon APC/C expression, particularly 

given that the APC/C is thought to re-activate upon DNA damage in order to halt cell cycle 

progression through ubiquitylation of Plk1, Cdc20 and Cyclin A (Sudo, Ota et al. 2001, Coster, 

Hayouka et al. 2007, Bassermann, Frescas et al. 2008, Townsend, Mason et al. 2009, Zhang, Nirantar 
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et al. 2009, Mosbech, Gibbs-Seymour et al. 2012). Identified proteins function in a range of different 

DNA repair pathways, including NHEJ, HR, SSB repair (including NER and BER) and MMR. 

The DSB-detection protein Ku86/Ku80 was identified within the nucleolar APC7 IP and contains a 

high-threshold D-box (Figure 2.1C), whilst the D-box-containing NONO interacted with nucleolar 

APC5 (Figure 2.1B). Ku80 forms a heterodimer with Ku70, which signals DSBs, which are then ligated, 

assisted by NONO (Taccioli, Gottlieb et al. 1994, Bladen, Udayakumar et al. 2005, Krietsch, Caron et 

al. 2012). TRIP13, which co-immunoprecipitated with APC3 from whole cell extracts and whose role 

in mitosis has been described earlier, also promotes NHEJ (Banerjee, Russo et al. 2014). Other NHEJ 

proteins were stabilised within the nucleolus following inhibition of the APC/C, including 53bp1 and 

MDC1 (Figure 2.2B, C). MDC1 has previously been shown to interact with, and modulate the activity 

of, the APC/C, and has been shown to promote NHEJ at telomeres (Dimitrova and de Lange 2006, 

Coster, Hayouka et al. 2007, Townsend, Mason et al. 2009). 53bp1 contains both D- and KEN-boxes 

(Figure 2.2), whilst TRIP13 contains both D-boxes and TEK motifs (Figure 2.3C). 53bp1 has been well-

characterised in its role in promoting NHEJ by the recruitment of DNA repair proteins and inhibition 

of HR (Ciccia and Elledge 2010, Kakarougkas and Jeggo 2014, Panier and Boulton 2014), and has also 

been shown to co-IP reciprocally with APC3 through its BRCT domain (Akhter, Richie et al. 2004, 

Woods, Mesquita et al. 2012).  

The other major form of DNA repair for DSBs is HR. Proteins important in this pathway and identified 

by our nucleolar mass spectrometry screens include MDC1, which can also function in NHEJ. In HR, 

MDC1 is recruited to DSBs by γH2AX whereupon it binds and localises Rad51, NBS1 and ATM in order 

to promote DNA repair and HR (Zhang, Ma et al. 2005, Ciccia and Elledge 2010, Coster and Goldberg 

2010). The RecQ DNA helicases, BLM and WRN, were also identified as increasing in nucleolar 

abundance following APC/C inhibition (Figure 2.2A, B). These are both potential substrates for the 

APC/C, as BLM contains several D-boxes and WRN contains both D- and KEN-boxes showing good 
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homology to those of known substrates as well as a TEK motif (Figure 2.2A, B). BLM helicase is 

important in the initial resection around the DNA breaks, whilst both WRN and BLM are important in 

the actual recombination event (Constantinou, Tarsounas et al. 2000, Ciccia and Elledge 2010, Iyama 

and Wilson 2013). Other HR proteins were identified within APC/C IPs, including TRIP12/TRIPC, which 

was found within APC3 IPs and contain multiple high-scoring D-boxes (Figure 2.3E), and 

TERA/segregase p97, which was pulled down by both Cdc20 and Cdh1 antisera and contains an 

extended D-box (Figure 2.3E). TRIP12 represses RNF168 ubiquitylation, thus represses and controls 

the K63-linked ubiquitin cascade (Gudjonsson, Altmeyer et al. 2012), whilst TERA is important in 

promoting DSB repair (Acs, Luijsterburg et al. 2011, Meerang, Ritz et al. 2011, Davis, Lachaud et al. 

2012). 

A number of proteins involved in SSB repair were identified within the mass spectrometry screens 

detailed within this Chapter. For example, two constituents of the Replication Factor Complex, RFC3 

and RFC5, interacted with APC3 in whole cell extracts, with RFC5 containing a highly-scoring D-box 

(Figure 2.3E). These are important in resynthesising DNA over longer SSBs . Similarly, XRCC1 was 

present in nucleolar APC3 and APC7 IPs, and also contains several D-boxes (Figure 2.1A, C). XRCC1 

acts in concert with LIG1 to ligate the two ends of the SSB (Thompson, Brookman et al. 1990, Iyama 

and Wilson 2013). An interactor of XRCC1, Aprataxin, was elevated within nucleoli following 

knockdown of either APC3 or APC5 and also contains a number of D-boxes (Figure 2.2A). Aprataxin 

has been described as a proof-reader by deadenylating SSB ends, such as those exhibited upon 

aborted ligations, thereby permitting religation attempts (Clements, Breslin et al. 2004, Gueven, 

Becherel et al. 2004, Sano, Date et al. 2004, Rass, Ahel et al. 2007).  

Two components of the MMR pathway, Msh2 and Msh6, were identified within APC/C IPs from 

whole cell extracts, and contain degrons typical of APC/C substrates (Figure 2.3E). Similarly, Mlh1 was 

shown to be elevated within nucleoli following knockdown of APC3 and contains extended D-boxes 
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(Figure 2.2B). Msh2/Msh6 heterodimers recognise mismatched bases, whilst a heterodimer 

containing Mlh1 coordinates the repair response (Edelbrock, Kaliyaperumal et al. 2013, Iyama and 

Wilson 2013). 

 

6.5.  Concluding remarks 
 

Mass spectrometry is a valid tool to investigate functions of the APC/C, particularly in regard to the 

discovery of novel substrates. As such, many proteins either interacting with, or whose nucleolar 

abundance is regulated by, the APC/C have been discovered. Many of these identified proteins could 

be novel substrates, but further validation is required. These can be tested by performing in vitro 

APC/C ubiquitylation assays, by examining protein levels following APC/C inhibition and by searching 

upon the putative substrate for K11-ubiquitin chains, the archetypal chain-type formed by APC/C-

mediated E3 ubiquitin ligase activity. 

Many of the potential substrates described within this chapter are important in the cell cycle, which 

is particularly interesting given the extensive list of known cell cycle substrates for the APC/C. Other 

proteins described here have also been implicated in the DNA damage response, replication 

licencing, apoptosis, glycolysis, Pol II transcription and differentiation. A great deal of nucleolar 

proteins have also been identified which play a role in nucleolar function, such as Pol I transcription, 

pre-rRNA processing and ribosomal assembly. This suggests that the APC/C could regulate rRNA 

production at multiple levels. 

The APC/C already has an extensive list of known substrates, which grows longer as further 

substrates are found. Many of these substrates, and the putative substrates described within this 

chapter, function within the same pathway. This could provide a mechanism whereby the APC/C is 

able to modulate a particular pathway at multiple points, in order to elicit a faster and more 
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complete downstream response. Similarly, many APC/C substrates are also degraded at the same 

time within the cell cycle. It is feasible that the cell utilises the APC/C to target a number of 

substrates for degradation in order to avoid having separate E3 ubiquitin ligases for each protein, 

which would require a greater energy demand to maintain. Utilising one ligase also facilitates both 

spatial and temporal control mechanisms, which is particularly important during the cell cycle, in 

which a timely coordinated response is often required. Also, preferentially relying upon APC/C-

mediated ubiquitylation permits a divergent response, in which multiple pathways can be targeted at 

once. As such, the APC/C could be described as the master regulator of mitotic and G1 phases of the 

cell cycle. 

However, despite the ability of the APC/C to target a vast number of proteins for proteolysis, in vivo 

only a proportion of these substrates are degraded at one particular time. This suggests a level of 

control over which substrates are able to be recognised and ubiquitylated by the APC/C at a given 

time. These mechanisms are outlined within section 1.4.1, in which regulatory mechanisms for APC/C 

subunits and co-activators are detailed, and section 1.4.2, in which modulations upon substrates are 

described. Briefly, these mechanisms include pseudosubstrate blockage of substrate recognition, as 

exhibited by Emi1 and the MCC, spatial separation of APC/C and substrates, the presence of ancillary 

bridging proteins and PTMs. These PTMs can be exhibited upon APC/C subunits, such as Cdk1- and 

Plk1-mediated phosphorylation which activates the APC/C during mitosis, upon co-activators, such as 

inhibitory phosphorylation and acetylation in order to prevent their activation of the APC/C during S 

and G2, or upon substrates, with the precise PTM pattern determining their recognition by the 

APC/C. An important consideration in this regard is how these additional binding proteins and PTMs 

modify the structure of the APC/C, which could potentially occlude certain binding sites whilst 

making others accessible, thus changing substrate specificity. As such, this has a profound impact 

upon future research into the APC/C and the discovery of novel substrates. 
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7. CHAPTER 3: ACETYLATION AS A REGULATOR OF 

APC/C ACTIVITY 
 

The ubiquitin ligase activity of the APC/C is tightly regulated such that it ubiquitylates its target 

substrates in a temporally and spatially organised manner. One method by which the APC/C is 

regulated is through post-translational modification (PTM). Indeed, the general consensus is that the 

APC/C is phosphorylated in early mitosis, particularly upon the TPR lobe, by mitotic kinases such as 

Cdk1 and Plk1 to prime its activation by Cdc20, and then dephosphorylated by phosphatases during 

late mitosis to promote a switch to Cdh1-mediated activation; conversely, phosphorylation of Cdc20 

and Cdh1 prevents their activation of the APC/C during S and G2 phases (Zachariae, Schwab et al. 

1998, Jaspersen, Charles et al. 1999, Kramer, Scheuringer et al. 2000, Rudner and Murray 2000, Kraft, 

Herzog et al. 2003, Steen, Steen et al. 2008, Labit, Fujimitsu et al. 2012, Primorac and Musacchio 

2013). 

However, another PTM, acetylation, has been described as potentially being as important as 

phosphorylation in regulating protein function in vivo (Kouzarides 2000, Norvell and McMahon 

2010). The form of acetylation described herein is lysine acetylation, although acetylation can also be 

performed upon free N-terminal -NH2 groups. In lysine acetylation, an acetyl group (CH3CO) is 

conjugated from acetyl-CoA to the ε-amine group upon lysines by a HAT, whilst deacetylation is 

performed by an HDAC, although there is an argument to change this terminology to a KAT (Lysine 

Acetyltransferase) and KDAC (Lysine Deacetylase) to reflect the lysine specificity and the 

identification of non-histone protein targets  (Allis, Berger et al. 2007). 

Previous work within our group has demonstrated a link between the HATs CBP and p300 and the 

APC/C, such that the APC/C and CBP/p300 reciprocally regulate each other’s enzymatic activity 

(Turnell, Stewart et al. 2005). APC5 and APC7 can bind directly and independently to CBP and p300, 



206 
 

thereby stimulating their acetyltransferase activity and potentiating CBP/p300-dependent 

transcription (Turnell, Stewart et al. 2005). Moreover, immunopurified CBP and p300 can support the 

polyubiquitylation of Cyclin B1 in vitro, whilst CBP knockdown suppresses APC/C activity in vivo and 

delays progression through mitosis (Turnell, Stewart et al. 2005). 

Furthermore, using tandem mass spectrometry (MS/MS), the fission yeast APC8 homologue, Cut23, 

has been shown to be acetylated in vivo (Kimata, Matsuyama et al. 2008). Also, SIRT2-mediated 

deacetylation of Cdc20 and Cdh1 is required for their activation of the APC/C; ablation of SIRT2 

expression increases the protein levels of known APC/C substrates Aurora A and B (Kim, 

Vassilopoulos et al. 2011). 

Given these findings, we postulated that the acetylation of APC/C subunits and co-activators might 

be integral to the regulation of APC/C function and that this could be mediated by CBP and/or p300. 

Data presented within this chapter describe the mass spectrometric identification of novel 

acetylation sites upon APC/C subunits, and the development of cell lines to analyse the biological 

consequences of site-specific acetylation upon APC3 and APC8. The interaction between CBP/p300 

and the APC/C is characterised further: CBP and p300 interact with APC3 and promote APC3 

acetylation in vitro, whilst CBP coordinates APC3 acetylation in vivo. 
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7.1. APC3 is acetylated by p300 in vitro 

 

Previous work from our laboratory has established that there is an intimate functional relationship 

between CBP/p300 and the APC/C; the APC/C subunits, APC5 and APC7, potentiate CBP/p300-

dependent transcription, whilst CBP/p300 regulates APC/C E3 ubiquitin ligase activity (Turnell, 

Stewart et al. 2005). We therefore initiated experiments to determine whether CBP/p300 could 

acetylate the APC/C in vitro. 

Accordingly, recombinant His6-tagged p300 (His6-p300) was incubated with radiolabelled acetyl-

Coenzyme A ([3H]-Ac-CoA) in the absence or presence of APC/C holoenzyme, purified by 

immunoprecipitation from A549 cell lysate with APC3 AF3.1 antibodies and elution with AF3.1 

peptide. Upon separating the reaction mixtures by SDS-PAGE and detection by autoradiography, 

multiple bands were seen (Figure 3.1). The majority of these bands were present in the absence of 

APC/C (Figure 3.1, lane 1), and reflect autoacetylation of p300. However, a single band was 

prominent upon the addition of the APC/C holoenzyme (lane 2). The most logical explanation for this 

result is that p300 has directed the acetylation of a specific APC/C subunit, or an APC/C-interacting 

protein. It is also possible that an APC/C-interacting protein present in the immunopurified APC/C 

preparation could also have mediated this acetylation in response to p300. 

To determine whether the acetylated protein identified within Figure 3.1 was an APC/C subunit, an 

alternative approach was taken. Immunoprecipitated p300 was incubated with individual GST-APC/C 

subunits and [3H]-Ac-CoA, separated by SDS-PAGE and detected by autoradiography (Figure 3.2). As 

before, autoacetylated p300 was visible in all samples, indicating that the immunoprecipitated p300 

was active. Adenovirus E1A, a known substrate for p300-mediated acetylation, was also acetylated in 

the presence of p300 (Figure 3.2). Out of the APC/C subunits investigated, GST-APC3 was similarly 

acetylated under these in vitro conditions (Figure 3.2). Interestingly, the putative acetylated APC/C 
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protein visualised within Figure 3.1 migrated at approximately 100kDa, which correlates directly with 

the molecular weight of APC3. Taken together, these data suggest that p300 acetylates APC3 in vitro. 

Although it would have been possible to acetylate individual GST-APC/C subunits in vitro using His6-

p300, for this experiment p300 was purified by IP. This enabled a direct comparison in later 

experiments with the related acetyltransferase, CBP, for which a His6-tagged construct was not 

available (Figure 3.4) 

 

  

Figure 3.1 – Purified p300 acetylates a component of APC3 IPs in vitro 

His6-tagged p300 was expressed in Sf9 insect cells using a baculoviral vector and purified using a 
Nickel-affinity column. The APC/C holoenzyme was IP’d using α-APC3 AF3.1 antibodies and eluted 
using the AF3.1 peptide. 200ng of His6-p300 was incubated with 0.5µCi [3H]-Ac-CoA (Amersham) 
(lane 1) or with 0.5µCi [3H]-Ac-CoA and 200ng APC/C holoenzyme (lane 2) for 90 minutes at 37°C. The 
resulting mixture was separated by SDS-PAGE, sensitised for 30 min with Amersham Amplify (GE 
Healthcare), dried and detected for autoradiography with X-ray film. 
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Figure 3.2 – Immunopurified p300 acetylates GST-APC3 in vitro 

P300 was IP’d from asynchronous A549 lysates. GST and GST-fusion proteins were expressed in 
bacteria and purified using glutathione-agarose. P300 IPs were incubated with 10μg of the denoted 
GST-fusion and 0.5µCi [3H]-Ac-CoA (Amersham) for 90 minutes at 37°C. The reaction mixture was 
separated by SDS-PAGE and detected by autoradiography. 
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7.2. Mass spectrometric identification of APC3 acetylation sites in vivo 
 

Thus far, it has been determined that p300 acetylates APC3 in vitro (Figures 3.1, 3.2). Next, it was 

important to ascertain whether specific acetyl-lysine residues within APC3 could be determined in 

vivo. As such, APC3 IPs were performed from asynchronous A549 cells, and separated by SDS-PAGE. 

Gel slices were excised, and those corresponding to APC3 were processed and sent for mass 

spectrometric analysis in collaboration with Applied Biosystems. 

Using an Information Dependent Acquisition (IDA) workflow, a number of acetylation sites were 

identified upon APC3: K99, K336, K396 and K700, of which acetylated K336 appeared to be the most 

abundant acetylated species (Figure 3.3Ai). These were assigned with high confidence, and therefore 

are likely to correspond to lysines acetylated in vivo. 

However, further validation of acetyl-lysines can also be gained by analysing specific m/z peaks 

formed by precursor ions within the extracted ion chromatograms. Fragmentation of lysine moieties 

produces an immonium ion with an m/z peak of 84, whilst the immonium ion formed upon 

fragmentation of acetylated lysines has a higher m/z of 143.1, which can be reduced to 126.1 upon 

the loss of NH3 (Kim, Kim et al. 2002, Zhang, Yau et al. 2004). By scanning the chromatograms for 

these immonium precursors, further Ac-K residues upon APC3 were identified (Figure 3.3Aii). Further 

to those described in Figure 3.3Ai, K400, K401, K421 and K724 were also shown to be acetylated 

(Figure 3.3Aii). 

The precise LC-MS/MS system utilised for this experiment also provided a more targeted approach in 

the determination of acetylation residues. Using MIDAS (Multiple reaction monitoring-Initiated 

Detection And Sequencing; AB SCIEX) and focussing specifically upon the APC3 protein sequence, a 

further four acetyl-lysines were identified: K77, K418, K693 and K782 (Figure 3.3Aiii), as well as those 

previously described (Figure 3.3i, ii). 
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A 

APC3 Ac-K i) IDA 
ii) Precursor Ion 

Analysis 
iii) MIDAS 

K77 - - 18 

K99 93 39 32 

K336 89 85 92 

K396 67 101 107 

K396, K400 - 91 108 

K396, K400, K401 - 63 - 

K418, K421 - - 62 

K421 - 37 - 

K693 - - 31 and 75 

K700 28 51 75 

K724 - 41 53 

K782 - - 28 
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B 

APC3 Ac-K336:   Peptide GQTGTK*SVFSQSGNSR 

 

 

Figure 3.3 – Mass spectrometric identification of Ac-K sites within APC3 in vivo  

APC3 was obtained by IP from asynchronous A549 cells, followed by SDS-PAGE. The gel was stained 
with colloidal Coomassie and the bands corresponding to APC3 were excised and fragmented by LC-
MS/MS with a Tempo nano-LC and Q-TRAP System Mass Spectrometer and analysed by Analyst 
1.4.2, Bioanalyst 1.4 (all AB SCIEX) and Mascot (Matrix Science). Ac-K residues were validated by i) 
Information Dependent Acquisition (IDA), ii) Precursor Ion Analysis and iii) MIDAS (Multiple reaction 
monitoring-Initiated Detection And Sequencing) 

A) Mascot scores of Ac-K residues upon APC3 by i) IDA, ii) precursor ion analysis and iii) MIDAS. 
Should an acetyl-lysine residue not be identified by a particular analytical method, this is denoted by 
“-“. 
 
B) MS/MS spectrum showing identification of APC3 Ac-K336. The acetylated lysine is shown in red 
font, and the Immonium (-NH3) ion with m/z peak 126.1 is shown by a red arrow. 
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7.3. Mutation of K336 reduces the acetylation of APC3 in vitro by CBP 

and p300 
 

Following the identification of Ac-K336 within APC3 in vivo (Figure 3.3) it was deemed important to 

establish whether this specific lysine residue was a target for p300-mediated acetylation. Given that 

another HAT, CBP, is known to function cooperatively with p300, it was important to ascertain 

whether CBP could also acetylate APC3 K336 (Kalkhoven 2004, Wang, Marshall et al. 2013). 

Accordingly, K336 was mutated to an arginine residue (K336R) in order to ablate acetylation, and 

expressed as a GST-fusion protein (Figure 3.4Aii). A GST-APC3 fragment containing this K336 residue, 

Fr2 (APC3 residues 206-411), was also created. In vitro acetyltransferase assays using 

immunopurified CBP and p300 were duly performed upon both full-length (FL) and Fragment 2 (Fr2) 

GST-APC3 K336wt and K336R. 

Both full-length and fragment 2 of GST-APC3 K336wt were acetylated in vitro by p300 (Figure 3.4B) 

and CBP (Figure 3.4C). Intriguingly, mutation of K336 to K336R reduced the level of APC3 acetylation 

mediated by both p300 and CBP appreciably, relative to K336wt (Figure 3.4B, C). These data indicate 

that K336 in APC3 is a major site for both CBP- and p300- directed acetylation in vitro. However, as 

mutation of K336 to an arginine did not ablate acetylation completely, other acetylation sites are 

likely to exist within GST-APC3, particularly within Fragment 2. Consistent with these data K396, K400 

and K411 within APC3 were all shown to be acetylated in vivo (Figure 3.3A). 

Together, these data demonstrate that APC3 is acetylated in vivo, and that APC3 is an in vitro 

substrate for both CBP- and p300-directed acetylation. These suggest that CBP/p300 could play a role 

in the post-translational regulation of APC3, and therefore the APC/C, in vivo.  
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A 
 

i)             F  R  V  L  Q  S  V  A  R  I  G  Q  T  G  T  K  S  V F  S 

K336wt  961   tttcgtgttttacagtctgttgccagaatcggccaaactggaacaaagtctgtcttctca  1020 

              ||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| 

K336Q   961  tttcgtgttttacagtctgttgccagaatcggccaaactggaacacagtctgtcttctca  1020 

               F  R  V  L  Q  S  V  A  R  I  G  Q  T  G  T  Q  S  V F  S 

ii)            F  R  V  L  Q  S  V  A  R  I  G  Q  T  G  T  K  S  V  F  S   
K336wt  961   tttcgtgttttacagtctgttgccagaatcggccaaactggaacaaagtctgtcttctca  1020 
              |||||||||||||||||||||||||||||||||||||||||||||  ||||||||||||| 
K336R   961   tttcgtgttttacagtctgttgccagaatcggccaaactggaacacggtctgtcttctca  1020 
               F  R  V  L  Q  S  V  A  R  I  G  Q  T  G  T  R  S  V  F  S   

  

 

B 
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C 

 

Figure 3.4 – APC3 K336R mutants exhibit decreased acetylation by CBP and p300 in vitro 

APC3 K336 was mutated to a Q (i) or R (ii) by Quikchange Site-Directed Mutagenesis Kit (Agilent) (A). 
Both Full-length (FL) APC3 K336wt and K336R and a fragment of APC3 containing K336 (Fr2; Amino 
acids 206-411) were expressed in bacteria and 10μg used as a substrate for in vitro acetyltransferase 
assays by immunopurified p300 (B) or CBP (C) together with 0.5µCi [3H]-Ac-CoA (Amersham). 
Autoradiography exposures for full-length GST-APC3 are shown in (i), and for Fragment 2 in (ii). The 
GST-fusion peptides are displayed as a Coomassie-stained SDS-PAGE gel in (iii).  
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7.4. APC3 interacts with CBP directly through the HAT domain of CBP 
 

As CBP has been shown to acetylate APC3 in vitro (Figure 3.4C), we next wished to determine 

whether these two proteins can interact directly. As such GST-APC3 was tested for its ability to bind 

IVT-[35S]-CBP by GST pull-down (Figure 3.5A). Both GST-APC3 and the positive control, adenovirus 

E1A, were shown to bind [35S]-CBP (Figure 3.5A). These data indicate that APC3 and CBP interact 

directly. 

In order to map the sites of interaction upon CBP, a series of GST-CBP fragments were synthesised 

and incubated with IVT-[35S]-APC3 (Figure 3.5B). The only fragment in which autoradiography was 

detected upon incubation with [35S]-APC3 was Fragment 5 (1460-1891aa) (Figure 3.5Bi), which 

corresponds to the HAT domain and the cysteine/histidine-rich zinc finger domains C/H2 and C/H3 

(Figure 3.5Biii). Interestingly, APC5 and APC7 were also shown to interact with CBP through these 

domains (Turnell, Stewart et al. 2005). However, APC5 and APC7 also bound to the N-terminal region 

of CBP, containing the E4 and C/H1 domains, whereas APC3 did not (Figure 3.5Bi, iii) (Turnell, Stewart 

et al. 2005). It is therefore possible that the function of the CBP-APC3 interaction differs from that of 

the CBP-APC5/APC7 interaction. 
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Figure 3.5 – APC3 binds to CBP in vitro through its HAT activity domain 

10µg of bacterially-expressed GST-fusion proteins were incubated with 10µl IVT-[35S]-APC3 or -[35S]-
CBP on ice, followed by the addition of glutathione-agarose beads. These were washed, separated by 
SDS-PAGE, dried and detected by autoradiography. A) Interaction of GST-E1A and GST-APC3 with 
[35S]-CBP. Bi) Interaction of [35S]-APC3 with GST-CBP fragments. Bii) Coomassie-stained SDS-PAGE gel 
showing GST-CBP fragments, with the domains contained in each fragment shown in Biii). The amino 
acids corresponding to the CBP fragments are F1 (1-451), F2 (451-720), F3 (721-1100), F4 (1099-
1460), F5 (1460-1891) and F6 (1892-2441). 
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7.5. Depletion of CBP impairs the ability of APC3 and Acetyl-Lysine to 

co-IP each other reciprocally 
 

Given that APC3 can be acetylated in vitro by CBP and p300 (Figures 3.1, 3.2, 3.4), it was next 

investigated whether this correlated to acetylation of APC3 in vivo. As such, A549 cells were depleted 

of p300 or CBP by RNA interference and the ability for Ac-K and APC3 to co-IP each other reciprocally 

was tested (Figure 3.6).  

The ability of Ac-K antibodies to IP APC3 was unchanged following knockdown of p300 compared to 

the non-silencing control (Figure 3.6i). However, upon ablation of CBP expression, the ability of Ac-K 

to co-IP APC3 was severely compromised (Figure 3.6i). This was also reflected in the diminished Ac-K 

band within the APC3 IP from CBP-knockdown cells, denoted by an arrow, which due to its size and 

the result in Figure 3.6i, is believed to be APC3 (Figure 3.6ii). Although one possible conclusion is that 

the ability of Ac-K to co-IP APC3 is imparted by its physical interaction with CBP, the presence of 

other bands within the APC3 IP and Ac-K blot suggests this particular inference would be incorrect, as 

it implies other proteins co-IP’ing with APC3, such as other APC/C subunits, were also acetylated. 

Interestingly, this result correlates positively with previous results, in which knockdown of CBP, but 

not p300, reduced APC/C E3 ubiquitin ligase activity in vitro and stabilised known substrates (Turnell, 

Stewart et al. 2005). These data suggest that the ability of CBP to modulate APC/C activity is 

mediated by its acetylation of APC3.  

Although the knockdown of p300 did not prevent the reciprocal IP of Ac-K and APC3, this does not 

necessarily mean that p300 cannot acetylate APC3 in vivo. The decrease in APC3 acetylation 

exhibited following knockdown of CBP might suggest that most acetylation upon APC3 is mediated 

by CBP, though it is still possible that other HATs, such as p300, could also acetylate APC3. 
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Figure 3.6 – siRNA-mediated knockdown of CBP, but not p300, reduces APC3/Ac-K reciprocal co-IPs 

A549 cells were subjected to siRNA-mediated knockdown of either CBP or p300, or a non-silencing 
control (non-sil) for 72h before harvesting. Ac-K IPs and Western blots for APC3 (i) or APC3 IPs and 
Western blots for Ac-K (ii) were performed. Validation of CBP and p300 knockdown is shown in (iii) 
and (iv), respectively. The arrow in the Ac-K blot represents a distinct band of around 95kDa which is 
depleted following CBP knockdown and APC3 IP.  
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7.6. Investigating the biological consequences of APC3 Ac-K336 
 

In order to determine the biological consequences of APC3 acetylation in vivo, cell lines were created 

whereby an shRNA complementary to APC3 was cloned into U2OS cells under the control of a Tet-

responsive promoter. As such, treatment of these APC3 shRNA-expressing cells with doxycycline 

(Dox) permitted the expression of APC3 shRNA and the consequent reduction in APC3 expression 

(Figure 3.7A). In order to study the role of site-specific APC3 acetylation, it was anticipated that these 

APC3 shRNA-expressing cells would be transfected transiently with an shRNA-resistant APC3 plasmid 

containing the K336 mutations (Figure 3.7C). Knockdown and repletion of shRNA-resistant APC3 was 

considered the appropriate approach to investigate site-specific functions of APC3, as APC3 is 

incorporated into the APC/C as a homodimer (Zhang, Chang et al. 2013). As such, transient 

transfection of a mutant without knockdown of endogenous APC3 would not necessarily result in the 

exclusive incorporation of a mutant APC3 into the APC/C holoenzyme, and therefore any phenotype 

might be masked, unless the mutant is dominant-negative. 

To generate the inducible APC3 shRNA U2OS cells, two different shRNAs complementary to the 

mRNA sequence of APC3 were therefore incorporated into a viral vector and transfected into U2OS 

cells expressing the Tet Repressor protein (U2OS-TetR). As cells expressing shRNA1 exhibited better 

knockdown than shRNA2 and display slight elevation in Cyclin B1 levels (Figure 3.7A), these were 

selected to produce monoclonal populations. 

Although selected clones showed efficient knockdown (Figure 3.7B), this did not correlate with the 

typical APC/C inhibitory phenotype expected. As such, there was no increase in the protein levels of 

known substrates such as Cyclin B1 (Figure 3.7B) and there was no effect on cell cycle distribution 

(data not shown). Indeed, despite numerous repeats at varying dosage and incubation time of Dox 

and the testing of a large number of clones, a suitable cell line could not be established. 
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An alternative approach was therefore adopted; HeLa cells containing FRT recombination sites were 

acquired (HeLa-FRT), into which an siRNA-resistant APC3 was inserted under the control of a co-

transfected cDNA, from which exogenous Flp recombinase was expressed. These cells were made 

resistant to APC3 siRNA by changing the nucleotide sequence complementary to the siRNA without 

changing the amino acid sequence (Figure 3.7C). Endogenous APC3 was then knocked-down by 

siRNA, thereby ensuring expression of the siRNA-resistant form only. Accordingly, siRNA-resistant 

forms of APC3 were created (Figure 3.7C), expressing either K336wt, the acetylation-mimetic K336Q 

(Figure 3.4i) or the acetylation-null K336R (Figure 3.4Aii). These siRNA-resistant APC3 plasmids were 

then attempted to be incorporated into HeLa-FRT cells; however, this proved to be exceedingly toxic 

to the cells and resulted in considerable cell death, and those that survived soon died after antibiotic 

selection. This process was also attempted by others, both based within our group and those of 

collaborating groups, with identical results. 

Unfortunately therefore, despite considerable effort, we were not able to address the biological role 

of site-specific APC3 acetylation directly. Although not ideal, future studies will focus on investigating 

the effects of transient APC3 K336wt, K336Q and K336R transfection, using siRNA-resistant APC3 

coupled with siRNA-mediated knockdown of endogenous APC3. Although this technique would 

inevitably be more variable between experiments and be clouded by incomplete knockdown, as well 

as theoretically being more toxic, than either of the techniques described above, it appears to be the 

most logical approach remaining. 
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C  
                    Q  S  G  N  S  R  E  V  T  P  I  L  A  Q  T  Q  S  S  G 

APC3 wt        cagagtggaaatagccgagaggtaactccaattcttgcacaaacacaaagttctggt  1077 

                  |||||||||||   | | ||||||||||||||||||||||||||||||||||||||| 

APC3 siRNA resis  cagagtggaaactccagggaggtaactccaattcttgcacaaacacaaagttctggt  1077 

                    Q  S  G  N  S  R  E  V  T  P  I  L  A  Q  T  Q  S  S  G 

 
Figure 3.7 – Generation of Dox-inducible APC3 shRNA cell lines and siRNA-resistant APC3 cDNA 

Two oligo shRNA sequences complementary to APC3 (shRNA1 and shRNA2) were annealed and 
cloned into pSUPERIOR.retro.puro (Oligoengine), which was transfected into 293FT viral packaging 
cells. The viral progeny were harvested from the medium after 48h, filtered, and used to infect 
U2OS-TetR cells overnight. Stable transfections were selected with puromycin and established as 
polyclonal population, from which monoclonal cell lines were picked. 

A) Polyclonal APC3 shRNA1 and shRNA2 were treated with the denoted dosage of Dox for 48h prior 
to harvesting. Protein expression was detected by Western blotting with the antibodies described. 

B) Example of a monoclonal population established from U20S-TetR-APC3 shRNA1 cells. Cells were 
treated with Dox at the described dosages for either 48h or 72h. Protein expression was detected by 
Western blotting with the denoted primary antibodies. 

C) Sequence of siRNA-resistant APC3 cDNA, with mutations conferring resistance highlighted in red  
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7.7. The APC/C holoenzyme is pulled-down with Acetyl-Lysine IPs. 
 

Evidence presented within this chapter has established that APC3 is acetylated in vivo (Figures 3.3, 

3.6), and that it can be acetylated by CBP and p300 in vitro (Figure 3.1, 3.2, 3.4, 3.6). However, it is 

unknown whether this acetylated form of APC3, or indeed other APC/C subunits, are incorporated in 

the APC/C holoenyzme. 

To investigate this, the ability of antisera against an acetyl-lysine (Ac-K) epitope to co-IP APC/C 

subunits was examined. As such, Ac-K IPs from asynchronous A549 lysates were screened for APC/C 

subunits by SDS-PAGE and Western blotting (Figure 3.8). 

Interestingly, multiple APC/C subunits were detected within Ac-K IPs, including APC3, APC5, Cdc20 

and Cdh1 (Figure 3.8A). The ability of the Ac-K IPs to support the ubiquitylation of Cyclin B1 in vitro 

was also tested (Figure 3.8B). Although Ac-K IPs precipitate a number of APC/C subunits, and 

therefore potentially the APC/C holoenzyme (Figure 3.8A), they were unable to support the in vitro 

ubiquitylation of [35S]-Cyclin A and [35S]-Cyclin B1 when incubated with E1, E2s, ubiquitin and an ATP 

regeneration system (Figure 3.8B). 

The simplest interpretation of these data is that one or more APC/C subunits within the APC/C 

holoenzyme are modified by directly by acetylation. Alternatively, it could be that multiple APC/C 

subunits are acetylated regardless of their association with the APC/C, or the APC/C holoenzyme 

interacts with an acetylated binding protein. 
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A 

 

B 

 

Figure 3.8 – Acetyl-lysine IPs precipitate the APC/C holoenzyme, but cannot support in vitro APC/C E3 
ubiquitin ligase activity 

A) Asynchronous A549 cells were lysed in NETN and incubated with 5µg Acetyl-lysine (Ac-K) or 
normal IgG control antibodies overnight followed by the addition of 10µl packed Protein G-agarose 
beads for 3h. The IPs were washed, boiled, separated by SDS-PAGE and interacting proteins detecting 
by Western blotting with the designated antibodies. 

B) IPs were performed using Ac-K, APC3 or normal IgG antibodies upon asynchronous A549 cells. The 
IP was then incubated in the presence of rabbit E1, human UbcH4, UbcH5 and UbcH10, an ATP 
regeneration buffer, and 1μl IVT [35S]-Cyclin A or [35S]-Cyclin B1 for 1h at 37°C. The mixture was then 
separated by SDS-PAGE and polyubiquitylation detected by autoradiography as a progressive 
increase in size, visualised as a smear. 
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7.8. The APC/C is preferentially acetylated in interphase 
 

In Figure 3.8, it was determined that Ac-K IPs could pull-down the APC/C holoenzyme from 

asynchronous A549s. Given that phosphorylation of the APC/C is under cell cycle control, such that 

mitotic kinases phosphorylate the APC/C during G2/M, and mitotic phosphatases dephosphorylate 

the APC/C during late mitosis, it was next investigated whether acetylation of the APC/C is similarly 

regulated in a temporally-coordinated manner. 

Therefore, the ability of α-Ac-K antibodies to co-IP the APC/C holoenzyme was compared between 

asynchronous cells and cells arrested in prometaphase by overnight treatment with nocodazole. 

Interestingly, the αAc-K antibodies were able to co-IP APC3, APC5 and APC7 from both asynchronous 

and mitotic cells, however the co-IPs were more efficient from asynchronous cells than mitotic cells 

(Figure 3.9). These data suggest that the APC/C is either more acetylated during interphase than in 

mitosis, or associates with more acetylated proteins in interphase. Interestingly, the APC3 recognised 

by α-Ac-K antibodies during mitosis appears to be the non-phosphorylated form, as it did not exhibit 

the characteristic gel shift akin to mitotically phosphorylated APC3. 
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Figure 3.9 – Ac-K co-IPs more APC3, APC5 and APC7 from asynchronous lysates than mitotic lysates. 

A549 cells were either grown asynchronously, or arrested in prometaphase with 400ng/ml 
nocodazole for 20h. Proteins concentrations were normalised prior to IP overnight with antisera 
against Ac-K or a normal IgG control. Protein G-agarose was added for 2h, and the IPs washed, boiled 
and separated by SDS-PAGE. The amount of co-IP’ing protein was determined by Western blotting 
with the designated antibodies. 

 

 

 

7.9. The acetylation pattern upon APC/C subunits varies during 

mitotic progression 
 

During nocodazole-induced mitotic arrest, the SAC is active, and as such represses APC/C activity 

through the sequestration and degradation of Cdc20 (Pan and Chen 2004, Nilsson, Yekezare et al. 

2008, Ge, Skaar et al. 2009, Kulukian, Han et al. 2009, Primorac and Musacchio 2013). The APC/C is 

then activated upon SAC satisfaction, whereupon it degrades its target substrates in order to 

promote sister chromatid separation and mitotic exit (Peters 2006, Pines 2011, Primorac and 

Musacchio 2013). As the data presented in Figure 3.9 suggested that the APC/C is more acetylated in 

interphase than in mitosis, it was hypothesised that site-specific acetylation/deacetylation cycles 
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upon specific APC/C subunits, akin to phosphorylation/dephosphorylation, could regulate APC/C 

activity during SAC activation and upon SAC satisfaction. 

As such, the APC/C acetylome was investigated throughout mitosis and into the next cell cycle phase. 

Although previous mass spectrometric analyses utilised A549 cells, for this experiment HeLa cells 

were used. This was because the biological function of specific identified acetyl-lysine residues were 

to be investigated by mutation and incorporation into FRT cells (documented above); however, 

A549-FRT cells were not available, whereas HeLa-FRTs were. Accordingly, HeLa cells were either 

grown asynchronously, or arrested in prometaphase by nocodazole, then incubated in fresh medium, 

in the absence of nocodazole, and allowed to pass through mitosis and re-enter G1. APC3 IPs were 

then performed at appropriate time points post-release to pull-down the APC/C holoenzyme, which 

was then analysed for acetylation by LC-MS/MS (Figure 3.10). Rather than published mass 

spectrometric studies, which utilised Ac-K IPs to determine a cellular acetylome (Choudhary, Kumar 

et al. 2009, Chuang, Lin et al. 2010, Zhao, Xu et al. 2010), the decision was made to focus upon the 

APC/C. By IP’ing the APC/C the samples were considerably simplified, thereby greatly increasing the 

likelihood of identifying PTMs and low abundance peptides. 

Interestingly, this experiment determined that multiple APC/C subunits were acetylated in vivo, and 

that this acetylation pattern was dynamic, such that certain Ac-K residues were only seen at specific 

times within the cell cycle (Figure 3.10). Although the diminished ability of Ac-K IPs to co-IP APC/C 

subunits in mitosis suggests that the APC/C is more acetylated in interphase than nocodazole-

arrested cells (Figure 3.9), this might not necessarily be the case; the mass spectrometric analysis 

provided many putative acetylation sites which were detected in mitotic extracts only (Figure 1.10). 

However, it is important to note that synchronising cells would enrich for any PTMs present during 

that particular time. As such, the likelihood of identifying mitotic-specific acetylation is greater in 

synchronised cells than asynchronous, despite a small proportion of asynchronous cells being in 
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mitosis. Therefore, the absence of positive identification of Ac-K residues does not necessarily mean 

that these residues are not acetylated at some point in vivo. It is more likely that acetylation was 

below the level of detection required for this experiment. 

Moreover, the difference between Figures 3.9 and 3.10 might also be explained by the availability of 

Ac-K residues to be identified. In Figure 3.9, Ac-K IPs relied upon the Ac-K residue residing upon an 

external surface of the APC/C holoenzyme and being accessible to the antibody. Conversely, mass 

spectrometers fragment individual tryptic peptides, and, as such, have access to the entire length of 

each subunit. However, MS/MS requires a tryptic peptide to exist at a suitable size and m/z ratio for 

analysis, and therefore one does not get full sequence coverage over the APC/C subunits, which 

could result in Ac-K residues being present in peptides which are not fragmented by the mass 

spectrometer. 

One interesting observation following the in vivo mass spectrometry data is that many of the Ac-K 

residues reside upon TPR subunits of the APC/C: APC3, APC5, APC6, APC7 and APC8. This correlates 

with the in vivo phosphorylation data described by several independent studies (Kraft, Herzog et al. 

2003, Dephoure, Zhou et al. 2008, Steen, Steen et al. 2008, Malik, Lenobel et al. 2009, Olsen, 

Vermeulen et al. 2010, Hegemann, Hutchins et al. 2011, Kettenbach, Schweppe et al. 2011, 

Shiromizu, Adachi et al. 2013, Zhou, Di Palma et al. 2013). Interestingly, the APC8 Ac-K454 residue is 

homologous to the K481 residue upon Cut23 in S. pombe, which has previously shown to be 

acetylated in vivo (Kimata, Matsuyama et al. 2008). 

Although this particular experiment identified a number of acetylation sites upon a number of APC/C 

subunits, including APC3, it is intriguing that the APC3 acetylation sites identified in earlier 

experiments which used a different LC-MS/MS protocol and machine (Figure 3.3) were not identified 

within this screen (Figure 3.6A, 3.10). It could be that this was a cell-specific phenomenon, or as a 

result of the lower tolerance permitted by greater mass accuracy and resolution of the ESI-TOF over 
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the Q-TRAP. It is important to note, however, that the presence of immonium ions with m/z ratio of 

126.1 could not be detected by the ESI-TOF, as this value was below the lower limit for which the ESI-

TOF was calibrated, and therefore precursor ion analysis could not be performed. 

A 

 
Ac-K AS 0h 1h 2h 4h 8h 

APC1 

K429 - - - - - 27.8 

K463 - - - 37.6 24.2 - 

K640 - - 24.1 24.2 25.0 - 

K1709 55.3 - - - - - 

APC3 

K56 - - - - - 22.5 

K62 43.0 24.2 36.2 21.4 - 21.5 

K133 - - - 25.3 - - 

K415 - - - - 20.4 - 

K564 52.1 59.1 34.6 26.3 34.8 - 

K647 28.6 - - - - - 

K660 37.8 38.6 33.9 24.4 38.8 42.8 

APC5 

K167/K168^ 50.7 34.5 47.8 37.9 - - 

K289 38.4 31.6 32.9 31.3 31.9 36.7 

K562 20.4 - 27.4 - 25.5 - 

K669 - 21.7 - - - - 

APC6 

K101 - - 35.8* - - 27.0 

K129 - - 30.9 - - 25.6 

K138 55.5 20.2 28.0 25.5 21.5 35.6 

K154 26.1 25.9 28.9 - - 28.4 

K325 29.6 - - - - - 

APC7 
K230 - - - 54.0 - - 

K259 29.0 - - - 28.5 - 

APC8 

K97 - - - 28.3 - - 

K113 - 28.4 35.9** 22.7 - - 

K359 - 25.7 - - 35.3 25.0 

K396 - 29.1 26.7 36.5 32.4 - 

K454 - - - - - 50.4 

K475 - - - - 23.3 - 

APC10 K6 20.3 - 20.7 20.4 - 20.2 
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B 

i) APC8 Ac-K359  Peptide Sequence: ALK*LNPR 

 

 

ii) APC8 Ac-K396 Peptide Sequence : HAIEVNK*R 

 

 

Figure 3.10 – Mass spectrometric identification of Ac-K residues within APC/C subunits during mitosis 

HeLa cells were either grown asynchronously (AS) or arrested in 400ng/ml nocodazole for 20h. Cells 
arrested in mitosis were harvested by mechanical shake-off and released into fresh growth medium 
for the time indicated (0, 1, 2, 4, 8h) prior to harvesting and IP with α-APC3 antibodies. IPs were 
washed and separated by SDS-PAGE. The gel was stained with colloidal Coomassie, and subjected to 
in-gel tryptic digestion. Briefly, bands were washed, reduced, alkylated and dried prior to incubation 
with sequence-grade modified trypsin in 10% (v/v) AcN/40mM ABC for 16h at 37°C. Tryptic peptides 
were eluted in 3% FA and dried. Tryptic peptides were then resuspended in 1% (v/v) AcN/1% (v/v) FA 
and analysed by LC-MS/MS upon an Impact ESI-TOF mass spectrometer (Bruker) and searched using 
ProteinScape (Bruker) against a Mascot database (Matrix Science). Acetyl-lysine residues were 
identified and, where necessarily, validated manually. 

A) Mascot scores of all Ac-K residues identified within APC/C subunits. AS=asynchronous. 0-8h 
denotes the time following release from nocodazole-mediated arrest. (^ The Ac-K in APC5 K167/K168 
is present upon one of these two lysines, however it was impossible to differentiate between the 
two. * Another peptide containing Ac-K101 in APC6 was identified within the 1h sample with Mascot 
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score 21.8. ** Another peptide containing Ac-K113 in APC8 was identified within the 1h sample with 
Mascot score 28.7). Ac-K not identified within a specific time point are denoted by “-“. 

B) Extracted Ion Chromatograms for APC8 K359 (i) and K396 (ii). K* denotes the acetylated lysine. 

 

 

7.10. Mutational analysis of APC8 K359 and K396 

 

Two APC8 Ac-K residues which were assigned with particularly high confidence, K359 and K396, were 

found in mitotic, but not asynchronous cells (Figure 3.10B). As APC8 functional studies have been 

performed successfully previously using an siRNA-resistant APC8 species (Izawa and Pines 2011, 

Sedgwick, Hayward et al. 2013), we resolved to investigate the function of APC8 acetylation. As such, 

an siRNA-resistant 3xFlag-APC8 cDNA cloned into the Flp-in vector, pcDNA5-FRT, had its K359 or 

K396 residue mutated to a Q or R to mimic or ablate acetylation, accordingly (Figure 3.11). We have 

recently generated polyclonal cell lines that possess these specific APC8 mutations. Unfortunately 

however, time restraints meant that we were unable to investigate the biological consequences of 

APC8 acetylation during this study. However, we have generated an important resource that shall be 

used in the future to determine whether APC8 acetylation modulates APC/C ubiquitin ligase activity 

against known substrates, affects APC/C interaction with activators or MCC components, or affects 

cell cycle progression. 

A 

                  S  S  Y  I  V  S  Q  I  A  V  A  Y  H  N  I  R  D  I 

APC8 wt    784 agctcgtatattgtttcccaaattgcagttgcctatcacaatatcagagatatt  837 

                   |||||||||||||||||||||||||||||||| || || ||||||||||||||| 

APC8 siRNA resis2   784 agctcgtatattgtttcccaaattgcagttgcttaccataatatcagagatatt  837 

                   S  S  Y  I  V  S  Q  I  A  V  A  Y  H  N  I  R  D  I 

                     E  K  A  A  L  Y  F  Q  R  A  L  K  L  N  P  R  Y  

APC8 wt    1042 gagaaagcagccttatatttccagagagccctgaaattaaatcctcggtat  1092 

         |||||||||||||||||||||||||||||||||||| | || || |||||| 

APC8 siRNA resis1   1042 gagaaagcagccttatatttccagagagccctgaaactgaacccccggtat  1092 

                     E  K  A  A  L  Y  F  Q  R  A  L  K  L  N  P  R  Y 
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B 

              Y  S  L  R  S  Q  H  E  K  A  A  L  Y  F  Q  R  A  L  K  L 

K359wt  1021 tacagtttacgttctcagcatgagaaagcagccttatatttccagagagccctgaaactg  1080 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||| 

K359Q   1021 tacagtttacgttctcagcatgagaaagcagccttatatttccagagagccctgcaactg  1080 

              Y  S  L  R  S  Q  H  E  K  A  A  L  Y  F  Q  R  A  L  Q  L 

              Y  S  L  R  S  Q  H  E  K  A  A  L  Y  F  Q  R  A  L  K  L 

K359wt  1021 tacagtttacgttctcagcatgagaaagcagccttatatttccagagagccctgaaactg  1080 

             ||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||| 

K359R   1021 tacagtttacgttctcagcatgagaaagcagccttatatttccagagagccctgagactg  1080 

              Y  S  L  R  S  Q  H  E  K  A  A  L  Y  F  Q  R  A  L  R  L 

              T  S  A  A  I  Q  A  Y  R  H  A  I  E  V  N  K  R  D  Y R 

K396wt  1141 acgtctgctgctatccaggcttatagacatgccattgaggtcaacaaacgggactacaga  1200 

             ||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| 

K396Q   1141 acgtctgctgctatccaggcttatagacatgccattgaggtcaaccaacgggactacaga  1200 

              T  S  A  A  I  Q  A  Y  R  H  A  I  E  V  N  Q  R  D Y  R 

              T  S  A  A  I  Q  A  Y  R  H  A  I  E  V  N  K  R  D Y  R 

K396wt  1141 acgtctgctgctatccaggcttatagacatgccattgaggtcaacaaacgggactacaga  1200 

             |||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||| 

K396R   1141 acgtctgctgctatccaggcttatagacatgccattgaggtcaacagacgggactacaga  1200 

              T  S  A  A  I  Q  A  Y  R  H  A  I  E  V  N  R  R  D Y  R 

 

Figure 3.11 – Mutation of siRNA-resistant APC8 K359 and K396 to Q or R 

The siRNA-resistant 3xFlag-APC8-pcDNA5-FRT plasmid was provided by Jakob Nilsson, and the siRNA-
resistant sequences are shown in (A). The K359 and K396 residues within siRNA-resistant 3xFlag-
APC8-pcDNA5-FRT were both mutated to a Q or R using PCR site-directed mutagenesis using the 
QuikChange kit (Agilent) according to manufacturer’s recommendations (B). 4.5μg of the Flp 
recombinase plasmid pOG44 was co-transfected with 0.5μg of siRNA-resistant 3xFlag-APC8-pcDNA5-
FRT containing either K359/K396wt, K359Q, K359R, K396Q or K396R into HeLa-FRTs. DNA was mixed 
with OptiMEM (Life Technologies) to a total volume of 200μl and 10μl Lipofectamine 2000 (Life 
Technologies) mixed with 190μl OptiMEM for 5 min, then incubated together for 15 min before 
being added to cells incubated in 1.6ml OptiMEM. 48h later, cells were selected for positive clones 
with 1.5μg/ml Blasticidin (Source Bioscience) and 200μg/ml Hygromycin B (Life Technologies).  
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7.11. Discussion 
 

Previous work has suggested that the APC/C subunit, APC8, might be acetylated in S. pombe (Kimata, 

Matsuyama et al. 2008). In this chapter, substantial evidence is presented to indicate that the human 

APC/C is acetylated in vivo. Mass spectrometric analyses of APC3 IPs revealed that numerous APC/C 

subunits were acetylated in vivo, and that these modifications were predominantly upon APC/C 

subunits that contain TPR motifs (Figure 3.3A, 3.10). This acetylation of the APC/C was dynamic, such 

that the precise pattern of acetylation varied between cell cycle phases. As such, α-Ac-K antibodies 

were able to co-IP the APC/C holoenzyme (Figure 3.8), and this phenomenon was more pronounced 

in asynchronous cells than in mitotic cells (Figure 3.9). Mass spectrometric analysis of APC3 IPs 

following a nocodazole-release time course demonstrated that different APC/C subunit lysine 

residues were acetylated at different times during mitosis (Figure 3.10).  

Given that the APC/C has previously been identified to interact with CBP and p300 co-activators 

(Turnell, Stewart et al. 2005), it was postulated that these HATs could be responsible for the 

acetylation of the APC/C. To investigate this possibility, CBP and p300 in vitro acetyltransferase 

assays were performed in the presence of either the APC/C holoenzyme or GST-fusions of individual 

APC/C subunits (Figure 3.1, 3.2). These studies determined that APC3 was the most prominent target 

within the APC/C for CBP- and p300-mediated acetylation (Figure 3.2). However, the APC/C 

acetylation sites exhibited throughout mitosis were upon all TPR subunits and not just APC3, 

suggesting that further HATs act upon the APC/C in vivo, or that in vitro conditions are sub-optimal 

for acetyltransferase assays (Figure 3.10). 

We also determined that, akin to APC5 and APC7, APC3 could also interact with CBP in vitro (Figure 

3.5). Furthermore, CBP was shown to bind APC3 directly through its HAT domain (Figure 3.5). 

Interestingly, knockdown of CBP but not p300 repressed the ability of Ac-K to co-IP APC3 (Figure 3.6), 

suggesting that CBP is the main executor of APC3 acetylation in vivo. 
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The roles of site-specific APC/C lysine acetylations are currently being investigated. Initial attempts 

are focussing on APC3 K336, and APC8 K359 and K396, but over time it is anticipated that the role of 

other modifications will be investigated. Results presented herein have determined that CBP and 

p300 are less able to acetylate a GST-APC3 fusion protein where K336 has been mutated to R (Figure 

3.4B, C). Cell lines are currently being established which express a dox-inducible siRNA-resistant 

version of Flag-APC3 containing either K, Q or R residues at amino acid-336, or Flag-APC8 containing 

either wt, Q or R at positions 359 or 396. Once monoclonal populations have been selected, these 

cells shall be tested for the incorporation of the Flag-tagged subunit into APC/C holoenzymes and for 

cell cycle effects. Then, endogenous APC3 or APC8, accordingly, shall be depleted by siRNA, and the 

siRNA-resistant form expressed by treatment with dox. The establishment of these cell lines will 

allow the effect of APC/C acetylation upon APC/C activity to be explored in detail. As such it will be 

important to investigate the ability of mutant APC/C to ubiquitylate known substrates and effect cell 

cycle progression, particularly the timing of passage through mitosis from NEBD through anaphase to 

cytokinesis and mitotic exit. 

As discussed previously, PTMs such as phosphorylation can alter the tertiary structure of the APC/C, 

thereby altering its affinity for binding proteins, E2 enzymes and substrates. It is therefore possible 

that acetylation of the APC/C, mediated by CBP/p300, could impart similar structural changes within 

the APC/C and alter its affinity for interacting proteins or substrates; APC/C acetylation could 

therefore modulate APC/C function. Given that lysine residues are positively-charged, and that 

acetylation negates this charge, this could also assist in the promotion of the negative charge which 

facilitates E2 binding to the catalytic core of the APC/C. It would therefore be interesting to 

investigate the tertiary structure of the APC/C holoenzyme by X-ray crystallography and cryo-EM, as 

established by the Barford group (Chang, Zhang et al. 2014), following targeted acetylation and 

determine whether acetylation affects substrate, co-activator or E2 binding. In this regard it would 
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also be valuable to investigate the consequences of KQ and KR mutations upon APC/C structure, and 

how this also corresponds to substrate, co-activator and E2 binding. 

Currently, the biological function of the acetylation of core APC/C subunits is unknown. Whilst 

acetylation of the co-activators, Cdc20 and Cdh1, has been shown to repress their association with 

the APC/C (Kim, Vassilopoulos et al. 2011), it is unknown whether acetylation of APC/C subunits 

results in its activation or inhibition, or as might be expected, be dependent upon the precise 

acetylation pattern upon the whole APC/C holoenzyme. It is interesting to note that phosphorylation 

of the APC/C is important in its Cdc20-mediated activation, whilst phosphorylation of Cdc20 or Cdh1 

themselves is inhibitory (Zachariae, Schwab et al. 1998, Jaspersen, Charles et al. 1999, Kramer, 

Scheuringer et al. 2000, Rudner and Murray 2000, Kraft, Herzog et al. 2003, Steen, Steen et al. 2008, 

Labit, Fujimitsu et al. 2012, Primorac and Musacchio 2013). It is therefore attractive to draw a direct 

comparison between phosphorylation and acetylation, suggesting that the acetylation of APC/C 

subunits is an important event in its activation. Further evidence for this is the ability of Ac-K IPs to 

pull-down the APC/C holoenzyme, and that this is more prominent during interphase, in which more 

APC/C is active, than in prometaphase (Figure 3.8A). 

Conversely, Ac-K IPs cannot support ubiquitylation of APC/C substrates in vitro (Figure 3.8B), despite 

pulling-down the APC/C holoenzyme (Figure 3.8A), suggesting that acetylated APC/C is inactive. 

However, given that the precise pattern of acetylation appears to change during mitotic progression, 

as the APC/C goes from being inhibited to becoming activated first by Cdc20 then by Cdh1, it is 

therefore feasible that acetylation could both activate and inhibit the APC/C, dependent upon the 

Ac-K residue targeted.  Indeed, the ability of a single form of PTM to both activate and repress 

protein function is relatively commonplace, particularly with regard to regulating transcription; 

methylation of Histone H3K4 promotes gene transcription, whilst di- and tri-methylation upon H3K9 

is associated with heterochromatin formation and gene silencing (Bártová, Krejcí et al. 2008). It is 
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therefore imperative that we perform siRNA/siRNA-resistant rescue experiments for individual APC/C 

acetylation sites in order to determine the biological consequences of site-specific APC/C subunit 

acetylation. 

Given that a common set of APC/C subunits are subjected to both acetylation and phosphorylation it 

will be important to establish the precise functional relationship between these two modifications. In 

particular it will be important to determine the pattern of APC/C subunit PTMs during mitosis and 

other cell cycle phases, as it might be anticipated, that as for p53 (Gu and Zhu 2012, Taira and 

Yoshida 2012, Marouco, Garabadgiu et al. 2013), the PTM fingerprint of the APC/C will determine its 

biological function. 

Lysine residues can also be subjected to PTM by methyl groups, ubiquitin and ubiquitin-like proteins. 

In this regard it will also be important to establish whether those APC/C lysine residues that can be 

modified by acetylation can also be modified by other functional groups. As such, specific PTMs upon 

APC/C lysine residues might regulate the biological activity of the APC/C. 

7.12. Concluding Remarks 
 

In this chapter evidence is presented to indicate that the human APC/C holoenzyme is subject to 

acetylation in vivo. In this regard, the TPR-containing APC/C subunits are a major target for 

acetylation. The pattern of APC/C acetylation has been shown to be dynamic in mitosis, suggesting 

that acetylation might affect APC/C binding to E2s, substrates and/or co-activators. The HATs CBP 

and p300 have been identified as key regulators of APC3 acetylation, though their role in the 

modification of other APC/C subunits, awaits clarification. Given that CBP/p300 have previously been 

determined to regulate the biological activity of the APC/C through an unknown mechanism (Turnell, 

Stewart et al. 2005), the data presented in this chapter suggests that CBP/p300-targeted acetylation 

of the APC/C regulates APC/C function.  
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8. DISCUSSION 

 

The APC/C is currently believed to exist as a 1.2MDa complex containing 20 subunits (Chang, Zhang 

et al. 2014). However, whilst roles for many of the subunits have been described as part of the 

APC/C, only APC5 has been proposed to hold an APC/C-independent function, where it has been 

suggested to regulate IRES-dependent translation of mRNA (Koloteva-Levine, Pinchasi et al. 2004, 

Pines 2011, Primorac and Musacchio 2013, Chang, Zhang et al. 2014). 

In order to identify novel APC5-interacting proteins, a mass spectrometric screen was performed 

upon APC5 IPs (Figure 1.1). This resulted in the identification of several novel binding proteins for 

APC5, including three subunits of Pol I: RPA194, RPA135 and RPA40 (Figure 1.1). These interactions 

were subsequently verified by reciprocal co-IPs and Western blotting (Figure 1.2) and GST pull-downs 

(Figure 1.3), which confirmed that APC5 interacted specifically with RPA194, and that APC3 and APC7 

IPs were unable to co-precipitate RPA194 (Figure 1.2). Furthermore, the interaction between APC5 

and Pol I was shown to be specific to the nucleolus (Figure 1.5), where the APC/C and Pol I were 

shown to co-localise by co-IF staining (Figure 1.7) and co-elute within fractions of the same size by 

FPLC (Figure 1.6). 

In order to determine a functional relationship between the APC/C and Pol I, it was investigated 

whether the Pol I subunits identified within the mass spectrometric screen in Figure 1.1 were 

substrates for the APC/C. Interestingly, RPA194 and RPA135 both contain multiple canonical APC/C 

degrons akin to those of known APC/C substrates (Figure 1.8A) (Peters 2006, Pines 2011). RPA194 

also contains a TEK motif, which has been proposed to be the site for APC/C-directed ubiquitylation 

in some substrates (Figure 1.8A) (Jin, Williamson et al. 2008). Furthermore, the lysine within the TEK 

motif in RPA194 has also been shown to be ubiquitylated in vivo (Kim, Bennett et al. 2011). RPA194 
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also contains a C-terminal L-R dipeptide identical to the APC/C substrate, KIF18A, which was required 

for the interaction of KIF18A with the APC/C (Sedgwick, Hayward et al. 2013). 

Given these characteristics, the ability of the APC/C to regulate the abundance of Pol I subunits was 

investigated. Whilst ablation of APC/C activity resulted in the relative increase in RPA194 protein 

levels, there was very little change in the levels of RPA135 and RPA40 (Figures 1.9 and 1.10). 

However, immunopurified APC/C was unable to direct the polyubiquitylation of purified RPA194 

protein in vitro (Figure 1.8B). Without proof that APC/C directly ubiquitylates RPA194, there remains 

doubt over whether the protein stability of RPA194 is regulated by the APC/C via direct or indirect 

means. Further research is currently being performed to consolidate these data. Specifically, given 

that the human APC/C forms K11 ubiquitin chain linkages (Jin, Williamson et al. 2008, Garnett, 

Mansfeld et al. 2009, Wu, Merbl et al. 2010), it is currently being determined whether K11 ubiquitin 

chain linkages can be detected upon RPA194 in vivo, which would provide further evidence that 

RPA194 is a bona fide APC/C substrate. 

Following the suggestion that RPA194 is a novel substrate for APC/C-mediated proteolysis, it was 

examined whether APC/C activity could impact upon Pol I transcription. Accordingly, the abundance 

of Pol I rRNA transcripts and rate of nascent pre-rRNA synthesis were quantified following ablation of 

APC/C subunit expression relative to non-silencing controls (Figures 1.11 and 1.12). Inhibition of the 

APC/C increased the relative abundance of rRNA transcripts, as calculated by qRT-PCR (Figure 1.11), 

and also increased the relative incorporation of 5’-FUrd into nascent pre-rRNA, as calculated semi-

quantitatively by indirect immunofluorescence, thereby signifying an increased rate of Pol I 

transcription (Figure 1.12). From these data, the conclusion was drawn that the APC/C negatively 

regulates Pol I transcription, and that this is likely to be mediated by the directed proteolysis of 

RPA194. 
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Given that over 100 substrates have already been discovered for the APC/C (Table 2) (Meyer and 

Rape 2011, Liu, Yuan et al. 2012, Min, Mayor et al. 2013), it is unlikely that the nucleolar APC/C 

holoenzyme only targets RPA194. In order to identify additional putative nucleolar substrates, two 

independent experiments were performed. Firstly, proteins co-precipitating with APC3, APC5 and 

APC7 from nucleolar lysates were identified by mass spectrometry (Figure 2.1). Secondly, the relative 

abundance of proteins within the nucleolar proteome was quantified following siRNA-mediated 

knockdown of APC3 and APC5 expression relative to non-silencing controls (Figure 2.2). Although 

there was not extensive overlap between these experiments, IMP4 was identified in APC5 IPs and 

increased in nucleolar abundance following knockdown of APC3 (Figures 2.1B and 2.2B), whilst the 

ribosomal protein RLA0 was also identified in APC5 IPs, yet was elevated following knockdown APC3 

and APC5 (Figures 2.1B and 2.2A). Similarly, APC7 was shown to interact with CHD1 and RS27 within 

the nucleolus (Figure 2.1C), both of which were also elevated in the nucleolus following ablation of 

APC3 expression (Figure 2.2B). As such, these are the most likely alternative nucleolar substrates for 

the APC/C. 

Further validation of each of the proteins within Figures 2.1 and 2.2 ought to be carried out, starting 

with the aforementioned proteins identified in both experiments. Indeed, it could be that the APC/C-

directed proteolysis of these proteins could also affect the rate of Pol I transcription and the 

production of mature rRNAs. Should this be the case, it would be important to verify that the relative 

increase in Pol I transcription exhibited following inhibition of APC/C in Figures 1.11 and 1.12 is due 

to the alleviation of RPA194 proteolysis rather than that of any of the other proteins identified within 

the mass spectrometric screens (Figures 2.1 and 2.2). 

Although the mass spectrometry experiments in Figures 2.1 and 2.2 focus upon nucleolar roles for 

the APC/C, it was also important to identify novel APC/C substrates from within other subcellular 

compartments. As such, IPs were performed using antisera raised against the co-activators Cdc20 
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and Cdh1, or APC3 (Figure 2.3). Proteins involved in a wide range of biological processes were 

identified, including the cell cycle, DNA repair, ribosomal biogenesis, transcription, differentiation, 

apoptosis and metabolism (Figure 2.3). Further validation is currently underway to determine which 

of these proteins are novel APC/C substrates, with particular attention being drawn to the MCM 

proteins (Figure 2.3D) and those involved in the cell cycle (Figure 2.3C) and DNA repair (Figure 2.3E). 

Although the APC/C is known to have over 100 substrates, these are not all degraded at the same 

point within the cell cycle (Table 2) (Meyer and Rape 2011, Liu, Yuan et al. 2012, Min, Mayor et al. 

2013). Whilst this is in part due to the sequential binding of the co-activators Cdc20 and Cdh1 in 

mitosis, further mechanisms in the regulation of APC/C activity exist (Pines 2011, Primorac and 

Musacchio 2013). One key method by which APC/C activity is regulated is through PTMs such as 

phosphorylation. Indeed, several groups have identified numerous phosphorylated residues in a 

number of APC/C subunits, particularly during mitotic progression (Zachariae, Schwab et al. 1998, 

Jaspersen, Charles et al. 1999, Kramer, Scheuringer et al. 2000, Rudner and Murray 2000, Kraft, 

Herzog et al. 2003, Steen, Steen et al. 2008, Labit, Fujimitsu et al. 2012, Primorac and Musacchio 

2013). Data presented within Chapter 3 demonstrated that the human APC/C is modified by another 

type of PTM: acetylation. 

Prior work within our laboratory has demonstrated a functional link between the HATs, CBP and 

p300, and the APC/C; the APC/C potentiates transcriptional transactivation by CBP/p300 whilst 

CBP/p300 promotes APC/C-mediated ubiquitylation (Turnell, Stewart et al. 2005). Given that CBP and 

p300 are acetyltransferases, it was investigated whether CBP/p300 were capable of acetylating the 

APC/C complex. In this regard, CBP and p300 were shown to acetylate APC3 in vitro (Figures 3.1, 3.2 

and 3.4), whilst siRNA-mediated depletion of CBP decreased APC3 acetylation in vivo (Figure 3.6). 

Furthermore, both CBP and p300 were shown to acetylate the K336 residue within APC3 (Figure 3.4). 
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Although CBP and p300 were shown to acetylate APC3, mass spectrometric analysis of the APC/C 

holoenzyme identified a number of acetyl-lysine residues from many APC/C subunits, particularly 

those of the TPR subcomplex (Figures 3.3 and 3.10). Furthermore, the acetylation fingerprint was 

shown to be dynamic, such that various Ac-K residues were shown to be acetylated only during 

particular stages of the mitotic cell cycle (Figure 3.10). Given these data, it was proposed that the 

APC/C is regulated by acetylation in vivo, and that this is mediated by the HATs CBP and p300, 

although other HATs could also target the APC/C. 

In the discussion following Chapter 3, it was further postulated that acetylation of the APC/C could 

alter its affinity for binding proteins, such as E2s and substrates, and therefore could regulate the 

efficiency of APC/C-directed ubiquitylation. As such, it is important to consider that the putative 

substrates identified within Chapter 2 could be dependent upon PTMs upon the APC/C, including 

phosphorylation and acetylation. This theory is also applicable for the APC/C-dependent 

ubiquitylation of RPA194. Indeed, this could explain the inability for immunopurified APC/C to 

ubiquitylate RPA194 in vitro (Figure 1.8B), as this used APC/C purified from whole cell lysates rather 

than from nucleolar fractions. Although PTMs are not necessarily required for the interaction 

between RPA194 and APC5 (Figure 1.3), it could be that nucleolar-specific PTMs upon the APC/C are 

required for the ubiquitylation of RPA194. This will therefore be considered in future experiments 

regarding the relationship between the APC/C and RNA Polymerase I.  

The work presented within this thesis offers new insights into APC/C function, particularly with 

regard to novel roles within the nucleolus and in the regulation of transcription. Furthermore, a 

number of putative novel substrates for APC/C-mediated ubiquitylation have been identified and 

additional modes of APC/C regulation by acetylation have been described. In this regard it will be 

interesting to verify novel bona fide APC/C substrates and establish the functional consequences of 

APC/C acetylation.  
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APPENDIX – SUPPLEMENTARY MASS SPECTOMETRY 

DATA 

 

FIGURE S1.1 – SUPPLEMENTARY WHOLE CELL EXTRACT APC5 IP DATA 
 

 

A 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

AMPD2 AMP deaminase 2 100.6 1382.2 30 29.4 

HOOK2 Protein Hook homolog 2 83.1 361.5 8 12.2 

ROA1 Heterogeneous nuclear ribonucleoprotein A1 38.7 308.2 7 21.2 

RO52 52 kDa Ro protein 54.1 249.6 5 9.7 

MTNA Methylthioribose-1-phosphate isomerase 39.1 202.4 4 9.2 

PCBP1 Poly(rC)-binding protein 1 37.5 177.9 4 13.8 

ROA3 Heterogeneous nuclear ribonucleoprotein A3 39.6 164.4 4 10.6 

ATD3B ATPase family AAA domain-containing protein 3B 72.5 139.1 3 4.3 

AMPD3 AMP deaminase 3 88.8 126.9 3 4.2 

H2B1K Histone H2B type 1-K 13.9 126.6 3 19.0 

EEA1 Early endosome antigen 1 162.4 118.4 1 1.6 

KU86 ATP-dependent DNA helicase 2 subunit 2 82.7 109.3 2 3.0 

IF2A Eukaryotic translation initiation factor 2 subunit 1 36.1 107.0 1 6.3 

SYTC Threonyl-tRNA synthetase, cytoplasmic 83.4 98.5 2 3.0 

MIF Macrophage migration inhibitory factor 12.5 86.9 2 17.4 

COPG2 Coatomer subunit gamma-2 97.6 81.0 1 1.4 

PRDX6 Peroxiredoxin-6 25.0 80.9 2 11.6 

TPM3 Tropomyosin alpha-3 chain 32.8 80.1 2 8.5 

DIAP1 Protein diaphanous homolog 1 141.3 79.7 2 1.9 

LEG3 Galectin-3 26.1 78.2 2 8.8 

 
Figure S1.1A – Additional APC5-interacting proteins identified by Mass Spectrometry 
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B 

i) RPA194: 115AVIHLLLC*QLR125 

 

ii) RPA194: 373SFLSTLPGQSLIDK386 

 

iii) RPA194: 1288VCLGEVLQK1296 
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C 

RPA135: 299QVLNYLGEC*FR309 

 

 

D 

RPA40: 225FSPVATASYR234 

 

 

Figure S1.1B-D – Representative Extracted Ion Chromatograms for RPA194 (B), RPA135 (C) and 
RPA40 (D). 

APC5 and normal IgG IPs were separated by SDS-PAGE and digested by trypsin. Peptides were 
reduced, carboxymethylated and analysed by LC-MS/MS using a Bruker AmaZon ion trap mass 
spectrometer. Peptides were identified by ProteinScape (Bruker) through comparison to a Mascot 
database (Matrix Science). Both obvious contaminants and proteins identified within the IgG control 
were removed from the list, onto which a 1% False Discovery Rate and a cut-off Score of 30 were 
applied. MW stands for molecular weight, and S.C. for sequence coverage. 

Extracted Ion Chromatograms are shown for RPA194 (B), RPA135 (C) and RPA40 (D).  
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FIGURE S1.2 – SUPPLEMENTARY NUCLEOLAR IP DATA 

 
A) Nucleolar APC3 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1 216.4 403.8 8 4.1 

APC3 Cell division cycle protein 27 homolog 91.8 624.2 11 16 

APC4 Anaphase-promoting complex subunit 4 92.1 305.4 6 8.7 

APC5 Anaphase-promoting complex subunit 5 85 130 3 4.9 

APC6 Cell division cycle protein 16 homolog 71.6 182.7 3 5.5 

APC8 Cell division cycle protein 23 homolog 68.8 147.4 4 7.7 

APC10 Anaphase-promoting complex subunit 10 21.2 98.6 1 6.5 

 

Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

# D-
box 

# 
KEN 

# 
TEK 

GPS-
ARM 

ACTG Actin, cytoplasmic 2 41.8 403.1 8 23.7 3 - - 
 

DDX5 
Probable ATP-dependent RNA helicase 

DDX5 
69.1 94.6 2 4.1 1 1 - 

 

ERH Enhancer of rudimentary homolog 12.3 219.7 4 36.5 - - - 
 

GPTC4 G patch domain-containing protein 4 50.4 177.9 3 9.4 1 1 - ++ 

H2A1C Histone H2A type 1-C 14.1 317.9 7 40.8 1 - - 
 

H2AJ Histone H2A.J 14 363.6 8 41.1 1 - - 
 

H2AZ Histone H2A.Z 13.5 216 4 31.2 1 - - 
 

H2B1H Histone H2B type 1-H 13.9 671.8 12 61.1 1 - - 
 

H31 Histone H3.1 15.4 520.2 11 42.6 1 - - 
 

I20L2 
Interferon-stimulated 20 kDa 

exonuclease-like 2 
39.1 256.4 4 13.9 2 - - *** 

KU86 
ATP-dependent DNA helicase 2 subunit 

2 
82.7 125 3 4.9 1 - - *** 

MYH11 Myosin-11 227.2 59.9 2 1 17 2 - 
***/
+++ 

PP1B 
Serine/threonine-protein phosphatase 

PP1-beta catalytic subunit 
37.2 231 5 15.6 1 - - 

 

PRDX1 Peroxiredoxin-1 22.1 90.3 2 10.1 - - - - 

RL26L 60S ribosomal protein L26-like 1 17.2 380.7 10 49.7 1 - - 
 

XRCC1 DNA repair protein XRCC1 69.5 62.8 1 1.6 5 - - 
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B) Nucleolar APC5 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1 216.4 244.6 5 2.9 

APC3 Cell division cycle protein 27 homolog 91.8 150.8 3 5.9 

APC4 Anaphase-promoting complex subunit 4 92.1 151.9 3 4.5 

APC5 Anaphase-promoting complex subunit 5 85 231.6 5 7.5 

APC6 Cell division cycle protein 16 homolog 71.6 120.6 3 5.6 

APC7 Anaphase-promoting complex subunit 7 63.1 53.5 1 2.1 

APC8 Cell division cycle protein 23 homolog 68.8 193.5 5 10.6 

 

Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

# D-
box 

# 
KEN 

# 
TEK 

GPS-
ARM 

ACTG Actin, cytoplasmic 2 41.8 134.4 3 12 3 - - 
 

ADT3 ADP/ATP translocase 3 32.8 75.5 2 7.4 3 - - 
 

BMS1 
Ribosome biogenesis protein BMS1 

homolog 
145.7 91.1 3 2.7 9 - - * 

BOP1 Ribosome biogenesis protein BOP1 83.6 270.3 6 11.5 4 - - * 

CEBPZ CCAAT/enhancer-binding protein zeta 120.9 45.8 1 1.1 5 2 - +++ 

CIR1A Cirhin 76.8 174.1 3 6.4 3 - - 
 

DDX17 
Probable ATP-dependent RNA helicase 

DDX17 
72.3 90.7 2 3.5 2 1 - 

 

DDX18 ATP-dependent RNA helicase DDX18 75.4 457.5 10 19.4 4 - - 
 

DDX21 Nucleolar RNA helicase 2 87.3 576.5 14 18.6 1 - - *** 

DDX27 
Probable ATP-dependent RNA helicase 

DDX27 
89.8 324.4 8 12.2 3 - + *** 

DDX54 ATP-dependent RNA helicase DDX54 98.5 33.3 1 1.2 6 - - *** 

DDX56 
Probable ATP-dependent RNA helicase 

DDX56 
61.6 76.1 2 4.2 7 - - *** 

DHX15 
Putative pre-mRNA-splicing factor ATP-

dependent RNA helicase DHX15 
90.9 115.6 2 3.3 9 - + ** 

DHX9 ATP-dependent RNA helicase A 140.9 350.6 8 7.4 5 - - ** 

GNL3 
Guanine nucleotide-binding protein-

like 3 
62 262.2 5 14.2 3 1 - *** 

H2B3B Histone H2B type 3-B 13.9 216.6 4 27.8 1 - - 
 

H3L Histone H3-like 15.2 25.2 1 6.7 1 - - * 

HBB Hemoglobin subunit beta 16 67.7 1 6.8 - - - 
 

HDAC1 Histone deacetylase 1 55.1 25.6 1 2.5 - - - 
 

HEAT1 HEAT repeat-containing protein 1 242.2 63 1 0.7 9 1 - *** 

HNRPG 
Heterogeneous nuclear 

ribonucleoprotein G 
42.3 112.6 2 6.6 3 - - * 

HNRPL 
Heterogeneous nuclear 

ribonucleoprotein L 
64.1 75.4 2 3.2 3 - - ** 
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HNRPU 
Heterogeneous nuclear 

ribonucleoprotein U 
90.5 58.1 2 2.4 1 - + * 

HSPB1 Heat shock protein beta-1 22.8 28.6 1 4.4 2 - - 
 

IF4A1 Eukaryotic initiation factor 4A-I 46.1 56.8 1 3.9 2 - + 
 

IF6 
Eukaryotic translation initiation factor 

6 
26.6 41.4 1 5.7 3 - - 

 

IMA7 Importin subunit alpha-7 60 111.1 2 4.7 1 - - 
 

IMP4 
U3 small nucleolar ribonucleoprotein 

protein IMP4 
33.7 34.1 1 3.4 5 - - ** 

KHDR1 
KH domain-containing, RNA-binding, 

signal transduction-associated protein 
1 

48.2 33.9 1 3.2 3 - - 
 

KI67 Antigen KI-67 358.5 258.2 5 2 5 3 + 
*/ 

+++ 

MK67I 
MKI67 FHA domain-interacting 

nucleolar phosphoprotein 
34.2 232.6 4 21.5 2 - - * 

NGDN Neuroguidin 35.9 26 1 4.4 2 - + * 

NIP7 
60S ribosome subunit biogenesis 

protein NIP7 homolog 
20.4 26.7 1 5.6 - - - 

 

NKRF NF-kappa-B-repressing factor 77.6 125.9 3 5.2 2 - - 
 

NO66 Lysine-specific demethylase NO66 71 28.3 1 2.2 4 - - * 

NOC2L Nucleolar complex protein 2 homolog 84.9 26.4 1 1.3 3 - - *** 

NOG1 Nucleolar GTP-binding protein 1 73.9 498.3 10 20.3 6 - - * 

NOG2 Nucleolar GTP-binding protein 2 83.6 243.9 5 8.6 3 - - 
 

NOL11 Nucleolar protein 11 81.1 31.2 1 1.9 4 - + * 

NOL6 Nucleolar protein 6 127.5 323.6 6 7.4 12 - - * 

NONO 
Non-POU domain-containing octamer-

binding protein 
54.2 262.7 7 19.3 5 - - * 

NOP2 
Putative ribosomal RNA 
methyltransferase NOP2 

89.2 266.8 5 8.6 2 - - 
 

NOP58 Nucleolar protein 58 59.5 504.6 11 29.5 3 - + 
 

NPM Nucleophosmin 32.6 74.5 1 4.4 1 - - *** 

NUMA1 Nuclear mitotic apparatus protein 1 238.1 77.4 2 1.2 19 1 + 
***/
+++ 

PESC Pescadillo homolog 68 106.1 2 3.4 5 - + * 

PLEC1 Plectin-1 531.5 1357.7 31 8.8 57 1 - *** 

PP1B 
Serine/threonine-protein phosphatase 

PP1-beta catalytic subunit 
37.2 99.5 2 7.3 1 - - 

 

PRKDC 
DNA-dependent protein kinase 

catalytic subunit 
468.8 1560.5 34 10.9 25 - - *** 

PWP2 Periodic tryptophan protein 2 homolog 102.4 83 2 2.6 6 - - 
 

RBM28 RNA-binding protein 28 85.7 169.4 4 5.9 8 - + * 

RL1D1 
Ribosomal L1 domain-containing 

protein 1 
54.9 542.4 12 24.9 7 - + ** 

RL3 60S ribosomal protein L3 46.1 41.3 1 3 3 - - *** 

RL5 60S ribosomal protein L5 34.3 171.7 4 16.2 2 - - 
 

RLA0 60S acidic ribosomal protein P0 34.3 25.3 1 3.5 3 - - 
 

RRMJ3 Putative rRNA methyltransferase 3 96.5 253.5 5 8 9 - - *** 

RRP12 RRP12-like protein 143.6 216.7 6 6.7 13 - + *** 

RRP5 Protein RRP5 homolog 208.6 38 1 1 9 - + *** 
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RRP7A 
Ribosomal RNA-processing protein 7 

homolog A 
32.3 90.7 3 11.1 3 - + 

 

RRS1 
Ribosome biogenesis regulatory 

protein homolog 
41.2 75.4 2 5.8 - - - 

 

RS28 40S ribosomal protein S28 7.8 46.6 1 17.4 - - - 
 

SFPQ 
Splicing factor, proline- and glutamine-

rich 
76.1 103.9 2 3.7 3 - - 

 

SFRS1 Splicing factor, arginine/serine-rich 1 27.7 76.2 2 7.7 - - - 
 

SLTM SAFB-like transcription modulator 117.1 55.5 1 1 11 1 - 
**/ 
+++ 

TBL3 Transducin beta-like protein 3 89 132.2 3 5.3 6 - - *** 

TRAP1 
Heat shock protein 75 kDa, 

mitochondrial 
80.1 38.5 1 2 11 - - * 

UTP11 
Probable U3 small nucleolar RNA-

associated protein 11 
30.4 40.4 1 4.7 3 - - * 

UTP18 
U3 small nucleolar RNA-associated 

protein 18 homolog 
62 104.2 3 7.4 5 - - 

 

UTP6 
U3 small nucleolar RNA-associated 

protein 6 homolog 
70.1 87.1 2 3.7 5 - - 

 

VTNC Vitronectin 54.3 27.6 1 3.1 3 - - * 

WDR36 WD repeat-containing protein 36 105.3 95.7 2 2.4 2 - - * 

WDR46 WD repeat-containing protein 46 68 77.1 2 4.1 4 - - ** 

WDR74 WD repeat-containing protein 74 42.4 78.7 2 6.5 1 1 - 
 

 

Non-Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

# D-
box 

# 
KEN 

# 
TEK 

GPS-
ARM 

EMD Emerin 29 26.4 1 3.9 2 - - *** 

H1FOO Histone H1oo 35.8 27.7 1 1.4 3 - + 
 

K0020 
Pumilio domain-containing protein 

KIAA0020 
73.5 669.9 15 25.3 7 1 - 

***/
+++ 

SPT6H Transcription elongation factor SPT6 198.9 28.4 1 0.6 10 2 - 
***/
+++ 

TBA4B Putative tubulin-like protein alpha-4B 27.5 78.4 1 5.8 - - - 
 

UBIQ Ubiquitin 8.6 57.2 1 11.8 - - - 
 

ZN669 Zinc finger protein 669 52.6 31.1 1 2.2 4 - - *** 

 

C) Nucleolar APC7 IP 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1 216.4 263.8 7 3.9 

APC6 Cell division cycle protein 16 homolog 71.6 228.6 4 7.1 

APC7 Anaphase-promoting complex subunit 7 63.1 1144.1 20 30.8 
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Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

# D-
box 

# 
KEN 

# 
TEK 

GPS-
ARM 

ADT3 ADP/ATP translocase 3 32.8 48.6 1 3.4 3 - - 
 

CHD1 
Chromodomain-helicase-DNA-binding 

protein 1 
196.6 60.6 1 0.8 6 1 - 

**/ 
++ 

CI093 Uncharacterized protein C9orf93 152.7 57.6 0 0 8 - + *** 

CN021 
Pumilio domain-containing protein 

C14orf21 
69.4 51.1 1 2 5 - - *** 

CP088 Protein C16orf88 51.6 264.9 6 17.2 1 - + 
 

DDX5 
Probable ATP-dependent RNA helicase 

DDX5 
69.1 137.8 3 5.5 1 1 - 

 

DDX51 ATP-dependent RNA helicase DDX51 72.4 107.6 2 3.8 6 - - ** 

DHX37 
Probable ATP-dependent RNA helicase 

DHX37 
129.5 178.9 4 3.6 5 - - *** 

GPTC4 G patch domain-containing protein 4 50.4 368.8 8 21.3 1 1 - ++ 

H2A1C Histone H2A type 1-C 14.1 419.4 7 40.8 1 - - 
 

H2A1J Histone H2A type 1-J 13.9 479.8 8 41.4 1 - - 
 

H2B1O Histone H2B type 1-O 13.9 717.8 14 73 1 - - 
 

H2B2F Histone H2B type 2-F 13.9 780.8 15 73 1 - - 
 

HNRPD 
Heterogeneous nuclear 
ribonucleoprotein D0 

38.4 120.2 2 6.8 - - - 
 

HNRPF 
Heterogeneous nuclear 

ribonucleoprotein F 
45.6 73.8 1 4.6 - - - 

 

HNRPK 
Heterogeneous nuclear 

ribonucleoprotein K 
50.9 56.9 1 3.7 2 - - 

 

I20L2 
Interferon-stimulated 20 kDa 

exonuclease-like 2 
39.1 280.4 5 19.3 2 - - *** 

KRR1 
KRR1 small subunit processome 

component homolog 
43.6 108.6 2 5.8 2 - - ** 

KU86 
ATP-dependent DNA helicase 2 subunit 

2 
82.7 72.6 1 2 1 - - *** 

LARP7 La-related protein 7 66.9 97.8 2 4 1 1 + 
***/
+++ 

LMNB1 Lamin-B1 66.4 197.7 4 7.5 8 - - *** 

MATR3 Matrin-3 94.6 233.9 6 7.2 5 - - *** 

MGN Protein mago nashi homolog 17.2 37.5 1 7.5 1 - - 
 

MYH10 Myosin-10 228.9 171.8 4 2.1 17 - + ** 

MYH9 Myosin-9 226.4 208.7 5 3.1 16 1 + 
**/ 
+++ 

PTBP1 Polypyrimidine tract-binding protein 1 57.2 106.6 2 3.8 2 1 - +++ 

RBP56 
TATA-binding protein-associated factor 

2N 
61.8 217.1 4 10.1 - - - 

 

RS27A 40S ribosomal protein S27a 9.4 31.6 1 23.8 - - - 
 

SF3B2 Splicing factor 3B subunit 2 97.6 77.9 2 2.5 8 - - *** 

SFRS2 Splicing factor, arginine/serine-rich 2 25.5 45.1 1 3.6 - - - 
 

SFRS4 Splicing factor, arginine/serine-rich 4 56.6 192.7 4 7.9 - - - 
 

SMC3 
Structural maintenance of 
chromosomes protein 3 

141.5 174.7 3 2.5 17 - - *** 

SNW1 SNW domain-containing protein 1 61.5 42.5 1 2.4 2 - + * 
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TITIN Titin 
3813.

8 
41.7 0 0 70 8 + 

***/
+++ 

U5S1 
116 kDa U5 small nuclear 

ribonucleoprotein component# 
109.4 61.1 1 1.2 4 - - 

 

UBP36 
Ubiquitin carboxyl-terminal hydrolase 

36 
122.6 90 2 2.1 3 - - 

 

XRCC1 DNA repair protein XRCC1 69.5 36.4 1 2.1 5 - - 
 

YBOX1 
Nuclease-sensitive element-binding 

protein 1 
35.9 37.9 1 5.9 1 1 - 

***/
+++ 

ZCHC7 
Zinc finger CCHC domain-containing 

protein 7 
63 90.1 2 4.2 3 - - 

 

 

Non-Nucleolar Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

# D-
box 

# 
KEN 

# 
TEK 

GPS-
ARM 

CF150 Uncharacterized protein C6orf150 58.8 36.9 1 1.9 4 1 + 
***/
+++ 

CH033 UPF0488 protein C8orf33 25 34.6 1 2.6 2 - - ** 

FKTN Fukutin 53.7 33.8 1 1.5 1 - - 
 

GRP78 78 kDa glucose-regulated protein 72.3 79.6 2 3.1 1 - - 
 

LRC15 
Leucine-rich repeat-containing protein 

15 
64.4 64.3 2 3.6 3 - - 

 

LY9 T-lymphocyte surface antigen Ly-9 72.1 39.2 1 0.9 3 1 + +++ 

NFM Neurofilament medium polypeptide 102.4 114.7 3 3.4 5 - - *** 

PABP3 Polyadenylate-binding protein 3 70 36.5 1 2.2 - - - 
 

PININ Pinin 81.6 57.2 1 1.5 3 1 - ++ 

RRP7B 
Putative ribosomal RNA-processing 

protein 7 homolog B 
12.6 160.5 3 22.3 2 - - 

 

SF3B1 Splicing factor 3B subunit 1 145.7 51.1 2 1.5 4 - - ** 

SON Protein SON 263.7 54.3 1 0.6 4 - + 
 

SPS2L SPATS2-like protein 61.7 31.9 1 2.2 - - - 
 

SRRM2 
Serine/arginine repetitive matrix 

protein 2 
299.4 142.8 3 1.5 12 - - *** 

UACA 
Uveal autoantigen with coiled-coil 

domains and ankyrin repeats 
162.4 49.6 1 0.4 12 - + *** 

 

D) RPA194 IP 

Pol I subunits 

Protein Full Name 
MW 
[kDa] 

Mascot 
Score 

#Peptides 
SC 
[%] 

RPA194 DNA-directed RNA polymerase I subunit RPA1 194.7 2994.2 61 29.5 

RPA135 DNA-directed RNA polymerase I subunit RPA2 128.1 1348 28 19.1 

RPA34 DNA-directed RNA polymerase I subunit RPA34 55 289.1 5 15.3 

RPA49 DNA-directed RNA polymerase I subunit RPA49 53.9 90.4 2 4.6 

RPA40 DNA-directed RNA polymerases I and III subunit RPAC1 39.2 395.9 7 20.5 
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RPAB1 DNA-directed RNA polymerases I, II, and III subunit RPABC1 24.5 366.3 6 23.3 

RPAB3 DNA-directed RNA polymerases I, II, and III subunit RPABC3 17.1 207.8 3 26.7 

RPAC2 DNA-directed RNA polymerases I and III subunit RPAC2 15.2 316.6 5 32.3 

RPA12 DNA-directed RNA polymerase I subunit RPA12 13.9 141.7 2 19 

RPAB5 DNA-directed RNA polymerases I, II, and III subunit RPABC5 7.6 37.8 1 16.4 

 

Nucleolar Proteins 

Protein Full Name 
MW 
[kDa] 

Mscot 
Score 

#Peptides 
SC 
[%] 

H2B1J Histone H2B type 1-J 13.9 670.8 12 61.1 

H2A1J Histone H2A type 1-J 13.9 516.4 9 41.4 

H2A1C Histone H2A type 1-C 14.1 491.8 8 40.8 

MATR3 Matrin-3 94.6 373.4 7 8.7 

H33 Histone H3.3 15.3 370.9 8 33.1 

MYH9 Myosin-9 226.4 253.6 6 3.3 

ACTG Actin, cytoplasmic 2 41.8 239 5 14.9 

MYH10 Myosin-10 228.9 215 5 2.6 

SFRS4 Splicing factor, arginine/serine-rich 4 56.6 207 4 7.5 

HNRPR Heterogeneous nuclear ribonucleoprotein R 70.9 205.5 4 7.1 

I20L2 Interferon-stimulated 20 kDa exonuclease-like 2 39.1 202.9 4 13 

PP1B Serine/threonine-protein phosphatase PP1-beta catalytic subunit 37.2 202.7 5 15.6 

DDX51 ATP-dependent RNA helicase DDX51 72.4 187.7 3 5.3 

DDX5 Probable ATP-dependent RNA helicase DDX5 69.1 178.5 4 7 

CP088 Protein C16orf88 51.6 161.5 4 11.6 

EF1A3 Putative elongation factor 1-alpha-like 3 50.2 153.5 3 6.7 

RBP56 TATA-binding protein-associated factor 2N 61.8 145.9 3 6.8 

SF3B2 Splicing factor 3B subunit 2 97.6 137.7 3 3.7 

RBM39 RNA-binding protein 39 59.3 114.8 3 6.6 

DHX37 Probable ATP-dependent RNA helicase DHX37 129.5 112.3 2 2 

U5S1 116 kDa U5 small nuclear ribonucleoprotein component 109.4 111.4 2 2.6 

GPTC4 G patch domain-containing protein 4 50.4 108.1 2 5.2 

DHX30 Putative ATP-dependent RNA helicase DHX30 133.9 97.6 2 1.6 

DHX33 Putative ATP-dependent RNA helicase DHX33 78.7 83.9 2 3.3 

FLNA Filamin-A 280.6 72.6 2 0.9 

ADT3 ADP/ATP translocase 3 32.8 68.1 2 6 

CN021 Pumilio domain-containing protein C14orf21 69.4 60.4 1 2 

PTBP1 Polypyrimidine tract-binding protein 1 57.2 53.7 2 4.1 

SENP3 Sentrin-specific protease 3 65 48.1 1 3.1 

TITIN Titin 3813.8 45.6 0 0 

CHD1 Chromodomain-helicase-DNA-binding protein 1 196.6 44.5 1 0.8 

SMD1 Small nuclear ribonucleoprotein Sm D1 13.3 44.5 1 10.9 

LMNB1 Lamin-B1 66.4 44.3 1 1.4 
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APOA1 Apolipoprotein A-I 30.8 43.1 1 4.1 

NIPS1 Protein NipSnap homolog 1 33.3 42.1 1 3.2 

PHB2 Prohibitin-2 33.3 41.9 1 3.3 

HSPB1 Heat shock protein beta-1 22.8 39.2 1 4.9 

ERH Enhancer of rudimentary homolog 12.3 36.8 1 14.4 

HNRPK Heterogeneous nuclear ribonucleoprotein K 50.9 36 1 2.2 

RS29 40S ribosomal protein S29 6.7 33.2 1 19.6 

KRR1 KRR1 small subunit processome component homolog 43.6 33 1 2.4 

RS27A 40S ribosomal protein S27a 9.4 31.7 1 23.8 

RAN GTP-binding nuclear protein Ran 24.4 29.9 1 5.1 

HNRPL Heterogeneous nuclear ribonucleoprotein L 64.1 28.7 1 1.7 

 

 

Figure S1.2 – All interacting proteins from APC3 (A), APC5 (B), APC7 (C) and RPA194 (D) IPs from 
nucleolar lysates. 

IPs from nucleolar lysates: APC3 (A), APC5 (B), APC7 (C) and RPA194 (D). The IPs were separated by 
SDS-PAGE and digested with trypsin. Peptides were eluted and analysed by LC-MS/MS using a maXis 
Impact (Bruker). Samples were compared to a Mascot database (Matrix Science) and searched using 
ProteinScape (Bruker). Interacting protein lists were compiled and compared to a nucleolar protein 
database, NoPDb3, published by Prof. Lamond (Ahmad, Boisvert et al. 2009) and searched for 
function and protein sequence using Uniprot (UniProt-Consortium 2014). The protein sequence was 
then searched manually for TEK motifs and for extended D-boxes and KEN-boxes using GPS-ARM 1.0 
(Liu, Yuan et al. 2012). 

MW represents Molecular Weight. D-boxes and KEN boxes were analysed using GPS-ARM, with the 
highest threshold of motif denoted by * for D-boxes and + for KEN boxes. */+ represents a low 
threshold peptide, **/++ medium and ***/+++ high. 

 

FIGURE S1.3 – SUPPLEMENTARY NUCLEOLAR QUANTITATION DATA 

FOLLOWING APC3 AND APC5 KNOCKDOWN 

 

A) APC3i 

Protein Full Name 
MW 
[kDa] 

Mascot 
Score 

SC 
[%] 

% 
change 

AL4A1 Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial 61.7 48.3 1.1 138.00 

TIAR Nucleolysin TIAR 41.6 50.3 6.1 138.00 

IMB1 Importin subunit beta-1 97.1 52.7 1.7 9.86 

GLYR1 Putative oxidoreductase GLYR1 60.5 110 2.4 7.67 

UBC9 SUMO-conjugating enzyme UBC9 18.0 48.1 6.3 4.93 
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PPWD1 
Peptidylprolyl isomerase domain and WD repeat-containing 

protein 1 
73.5 48.4 1.9 4.76 

PPIL2 Peptidyl-prolyl cis-trans isomerase-like 2 58.8 48.7 2.7 4.45 

ERO1A ERO1-like protein alpha 54.4 49.4 3.0 3.63 

MFAP1 Microfibrillar-associated protein 1 51.9 97.3 3.2 3.63 

RIR1 Ribonucleoside-diphosphate reductase large subunit 90.0 53 2.3 3.54 

SNRPA U1 small nuclear ribonucleoprotein A 31.3 125.8 9.2 3.37 

HBB Hemoglobin subunit beta 16.0 67.8 6.8 3.14 

COPB Coatomer subunit beta 107.1 100.2 4.9 3.07 

SERPH Serpin H1 46.4 60 5.7 2.94 

K2C75 Keratin, type II cytoskeletal 75 59.5 424.6 8.3 2.76 

PCNA Proliferating cell nuclear antigen 28.8 88.2 14.9 2.76 

GLU2B Glucosidase 2 subunit beta 59.4 57.2 1.9 2.71 

CDYL1 Chromodomain Y-like protein 66.4 76.4 6.7 2.65 

CBX8 Chromobox protein homolog 8 43.4 76.9 8.2 2.60 

CCD55 Coiled-coil domain-containing protein 55 66.4 49.1 2.7 2.56 

DHCR7 7-dehydrocholesterol reductase 54.5 60.6 2.7 2.30 

RS10 40S ribosomal protein S10 18.9 61.1 9.7 2.30 

RBM9 RNA-binding protein 9 41.3 59 3.8 2.26 

VAT1 Synaptic vesicle membrane protein VAT-1 homolog 41.9 76.3 8.4 2.26 

YETS4 YEATS domain-containing protein 4 26.5 43.3 4.8 2.26 

ACON Aconitate hydratase, mitochondrial 85.4 86.4 3.6 2.23 

LDHA L-lactate dehydrogenase A chain 36.7 118 4.5 2.23 

NU107 Nuclear pore complex protein Nup107 106.3 128 4.1 2.23 

CCAR1 Cell division cycle and apoptosis regulator protein 1 132.7 465.5 7.1 2.16 

CLH1 Clathrin heavy chain 1 191.5 78.6 2.3 2.12 

RU2B U2 small nuclear ribonucleoprotein B'' 25.5 152.8 16.4 2.12 

APTX Aprataxin 40.7 111.3 7.3 2.09 

TITIN Titin 3813.8 122.5 0.1 2.09 

TRA2A Transformer-2 protein homolog alpha 32.7 92.6 5.0 2.09 

MED4 Mediator of RNA polymerase II transcription subunit 4 29.7 76.2 4.8 2.06 

RAB5C Ras-related protein Rab-5C 23.5 193.2 16.7 2.06 

XPO1 Exportin-1 123.3 188.6 3.5 2.06 

CSTF3 Cleavage stimulation factor subunit 3 82.9 72.2 3.2 2.03 

PDIA4 Protein disulfide-isomerase A4 72.9 76.5 4.7 2.03 

SPF45 Splicing factor 45 44.9 68 3.0 2.03 

GLYC Serine hydroxymethyltransferase, cytosolic 53.0 155.3 8.5 2.00 

RPRD2 Regulation of nuclear pre-mRNA domain-containing protein 2 155.9 98.4 2.0 2.00 

DHX36 Probable ATP-dependent RNA helicase DHX36 114.7 259 4.7 1.97 

NUP98 Nuclear pore complex protein Nup98-Nup96 187.7 228.4 3.0 1.97 

PR40A Pre-mRNA-processing factor 40 homolog A 108.7 100.6 3.8 1.97 

SYF1 Pre-mRNA-splicing factor SYF1 99.9 129 4.2 1.97 

HCFC1 Host cell factor 1 208.6 164.1 1.7 1.94 
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RBBP7 Histone-binding protein RBBP7 47.8 70.5 6.6 1.94 

RS3 40S ribosomal protein S3 26.7 359.1 19.3 1.94 

PLK1 Serine/threonine-protein kinase PLK1 68.2 148.7 4.5 1.92 

AT1A3 Sodium/potassium-transporting ATPase subunit alpha-3 111.7 150 4.6 1.89 

ECHA Trifunctional enzyme subunit alpha, mitochondrial 82.9 403.8 12.8 1.89 

KIN17 DNA/RNA-binding protein KIN17 45.3 57.4 4.6 1.89 

RBM5 RNA-binding protein 5 92.1 90.3 1.8 1.89 

SF04 Splicing factor 4 72.4 70.9 2.3 1.89 

GNA1 Glucosamine 6-phosphate N-acetyltransferase 20.7 133.1 12.0 1.86 

NEUA N-acylneuraminate cytidylyltransferase 48.3 100 12.2 1.86 

P66A Transcriptional repressor p66-alpha 68.0 354.7 8.4 1.84 

DYL2 Dynein light chain 2, cytoplasmic 10.3 68.7 24.7 1.82 

MBNL1 Muscleblind-like protein 1 41.8 56.1 7.0 1.82 

PININ Pinin 81.6 59.7 2.8 1.82 

ENPL Endoplasmin 92.4 487.8 9.0 1.79 

FUBP2 Far upstream element-binding protein 2 73.1 149 7.9 1.79 

NIPBL Nipped-B-like protein 315.9 293.8 1.9 1.79 

PSME3 Proteasome activator complex subunit 3 29.5 62 5.9 1.79 

RAGP1 Ran GTPase-activating protein 1 63.5 237.2 6.5 1.79 

TF2H1 General transcription factor IIH subunit 1 62.0 74.1 4.6 1.79 

ARP2 Actin-related protein 2 44.7 94.7 5.8 1.77 

CALR Calreticulin 48.1 76.6 2.9 1.77 

CH10 10 kDa heat shock protein, mitochondrial 10.9 97.5 25.5 1.77 

CSTF1 Cleavage stimulation factor subunit 1 48.3 135.8 3.7 1.77 

FIP1 Pre-mRNA 3'-end-processing factor FIP1 66.5 84.9 3.2 1.77 

SF3A1 Splicing factor 3A subunit 1 88.8 44.2 2.6 1.77 

TADBP TAR DNA-binding protein 43 44.7 228.2 12.3 1.77 

BRE1A E3 ubiquitin-protein ligase BRE1A 113.6 359.1 3.6 1.75 

EFGM Elongation factor G, mitochondrial 83.4 62.6 2.0 1.75 

GPTC8 G patch domain-containing protein 8 164.1 46 2.3 1.75 

GRSF1 G-rich sequence factor 1 53.1 78.3 5.6 1.75 

HNRPD Heterogeneous nuclear ribonucleoprotein D0 38.4 445.9 14.6 1.75 

P66B Transcriptional repressor p66-beta 65.2 172.2 9.6 1.75 

RSMB Small nuclear ribonucleoprotein-associated proteins B and B' 24.6 316.7 21.2 1.75 

JUND Transcription factor jun-D 35.2 94.9 4.3 1.73 

NUP93 Nuclear pore complex protein Nup93 93.4 193.1 3.3 1.73 

RPAB5 DNA-directed RNA polymerases I, II, and III subunit RPABC5 7.6 110 13.4 1.73 

LMAN1 Protein ERGIC-53 57.5 64.5 4.7 1.70 

NU155 Nuclear pore complex protein Nup155 155.1 388.6 6.5 1.70 

RBM25 RNA-binding protein 25 100.1 76.1 3.4 1.70 

RBP2 E3 SUMO-protein ligase RanBP2 358.0 245.9 2.1 1.70 

TOIP1 Torsin-1A-interacting protein 1 66.2 67.2 2.1 1.70 

TPR Nucleoprotein TPR 267.1 187.1 2.3 1.70 
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AIFM1 Apoptosis-inducing factor 1, mitochondrial 66.9 169.6 6.7 1.68 

PDIA1 Protein disulfide-isomerase 57.1 109 3.1 1.68 

SHCBP SHC SH2 domain-binding protein 1 75.6 48 5.2 1.68 

U2AF1 Splicing factor U2AF 35 kDa subunit 27.9 371.6 23.3 1.68 

HNRDL Heterogeneous nuclear ribonucleoprotein D-like 46.4 551.4 14.5 1.66 

MATR3 Matrin-3 94.6 700.3 18.5 1.66 

PNPT1 Polyribonucleotide nucleotidyltransferase 1, mitochondrial 85.9 68.9 1.7 1.66 

THOC5 THO complex subunit 5 homolog 78.5 95.9 2.9 1.66 

TOP2A DNA topoisomerase 2-alpha 174.3 998 16.3 1.66 

BCLF1 Bcl-2-associated transcription factor 1 106.1 147.5 3.9 1.64 

LRC59 Leucine-rich repeat-containing protein 59 34.9 55.8 3.9 1.64 

TRAP1 Heat shock protein 75 kDa, mitochondrial 80.1 157.8 5.4 1.64 

ATPA ATP synthase subunit alpha, mitochondrial 59.7 1124 28.8 1.62 

DDX23 Probable ATP-dependent RNA helicase DDX23 95.5 343.9 7.3 1.62 

LSM2 U6 snRNA-associated Sm-like protein LSm2 10.8 65.8 20.0 1.62 

SRRM2 Serine/arginine repetitive matrix protein 2 299.4 344.9 3.6 1.62 

KI20A Kinesin-like protein KIF20A 100.2 157.6 5.2 1.60 

RAB14 Ras-related protein Rab-14 23.9 77.3 6.5 1.60 

RS26 40S ribosomal protein S26 13.0 113 13.0 1.60 

SMC5 Structural maintenance of chromosomes protein 5 128.7 120.5 3.9 1.60 

EIF1 Eukaryotic translation initiation factor 1 12.7 342.5 47.8 1.59 

GDAP1 Ganglioside-induced differentiation-associated protein 1 41.3 77.4 4.2 1.59 

NU153 Nuclear pore complex protein Nup153 153.8 41 1.1 1.59 

RPB2 DNA-directed RNA polymerase II subunit RPB2 133.8 134.2 2.8 1.59 

SMRD3 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily D member 3 
55.0 42.8 2.7 1.59 

DESP Desmoplakin 331.6 232.2 1.9 1.57 

DHB4 Peroxisomal multifunctional enzyme type 2 79.6 457.5 15.6 1.57 

FUBP1 Far upstream element-binding protein 1 67.5 279.7 9.8 1.57 

HBS1L HBS1-like protein 75.4 61.7 1.9 1.57 

SF3B1 Splicing factor 3B subunit 1 145.7 480.7 8.1 1.57 

VIME Vimentin 53.6 1610.9 53.4 1.57 

WRN Werner syndrome ATP-dependent helicase 162.4 100 1.7 1.57 

ADAS Alkyldihydroxyacetonephosphate synthase, peroxisomal 72.9 57.7 2.0 1.55 

API5 Apoptosis inhibitor 5 57.5 177.5 5.3 1.55 

BAG2 BAG family molecular chaperone regulator 2 23.8 87.4 5.2 1.55 

CHCH3 
Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, 

mitochondrial 
26.1 79.8 11.5 1.55 

ECH1 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial 35.8 118.7 4.9 1.55 

PM14 Pre-mRNA branch site protein p14 14.6 123.5 22.4 1.55 

SFRS5 Splicing factor, arginine/serine-rich 5 31.2 174.4 12.9 1.55 

TRXR2 Thioredoxin reductase 2, mitochondrial 56.5 101.5 4.8 1.55 

NDUBA NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 20.8 87.4 7.0 1.53 

PRDX5 Peroxiredoxin-5, mitochondrial 22.0 68.8 8.4 1.53 
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ROA3 Heterogeneous nuclear ribonucleoprotein A3 39.6 962.8 31.5 1.53 

SF3B2 Splicing factor 3B subunit 2 97.6 477 10.8 1.53 

ACLY ATP-citrate synthase 120.8 54.4 1.4 1.52 

ERH Enhancer of rudimentary homolog 12.3 202.4 23.1 1.52 

LMNB1 Lamin-B1 66.4 1252.2 32.8 1.52 

NU133 Nuclear pore complex protein Nup133 128.9 201.8 3.2 1.52 

P5CR1 Pyrroline-5-carboxylate reductase 1, mitochondrial 33.3 122.8 4.1 1.52 

RM47 39S ribosomal protein L47, mitochondrial 29.4 48.5 4.0 1.52 

SCMC1 Calcium-binding mitochondrial carrier protein SCaMC-1 53.3 59 2.7 1.52 

SF01 Splicing factor 1 68.3 106.7 4.5 1.52 

SNF5 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily B member 1 
44.1 86.2 3.4 1.52 

THOC6 THO complex subunit 6 homolog 37.5 77.8 3.2 1.52 

TR150 Thyroid hormone receptor-associated protein 3 108.6 299.5 7.4 1.52 

ZC11A Zinc finger CCCH domain-containing protein 11A 89.1 155.1 3.3 1.52 

2AAA 
Serine/threonine-protein phosphatase 2A 65 kDa regulatory 

subunit A alpha isoform 
65.3 125.4 4.8 1.50 

ANLN Actin-binding protein anillin 124.1 61 1.3 1.50 

BLM Bloom syndrome protein 158.9 117.7 1.8 1.50 

CA077 Uncharacterized protein C1orf77 26.4 61.9 5.2 1.50 

FUBP3 Far upstream element-binding protein 3 61.6 81.2 3.8 1.50 

K2C5 Keratin, type II cytoskeletal 5 62.3 401.1 11.4 1.50 

PRP4 U4/U6 small nuclear ribonucleoprotein Prp4 58.4 487.6 19.3 1.50 

SF3A2 Splicing factor 3A subunit 2 49.2 48 6.2 1.50 

SFRS1 Splicing factor, arginine/serine-rich 1 27.7 715.4 32.7 1.50 

SMRD1 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily D member 1 
58.2 93.5 2.5 1.50 

U5S1 116 kDa U5 small nuclear ribonucleoprotein component 109.4 649.1 13.0 1.50 

ELAV1 ELAV-like protein 1 36.1 187.2 13.2 1.48 

LETM1 LETM1 and EF-hand domain-containing protein 1, mitochondrial 83.3 43.4 1.6 1.48 

MTCH2 Mitochondrial carrier homolog 2 33.3 81.4 3.0 1.48 

MYH9 Myosin-9 226.4 75.4 0.7 1.48 

NEST Nestin 177.3 284.1 5.4 1.48 

NU205 Nuclear pore complex protein Nup205 227.8 70.8 0.9 1.48 

SF3B3 Splicing factor 3B subunit 3 135.5 722.8 13.3 1.48 

TRI41 E3 ubiquitin-protein ligase TRIM41 71.6 48 3.2 1.48 

ACL6A Actin-like protein 6A 47.4 72.6 6.3 1.47 

C1TC C-1-tetrahydrofolate synthase, cytoplasmic 101.5 148.9 3.9 1.47 

HNRPC Heterogeneous nuclear ribonucleoproteins C1/C2 33.6 420.5 15.7 1.47 

HTSF1 HIV Tat-specific factor 1 85.8 231.3 4.8 1.47 

MBD3 Methyl-CpG-binding domain protein 3 32.8 94.5 8.6 1.47 

PLEC1 Plectin-1 531.5 554.8 2.9 1.47 

SEH1 Nucleoporin SEH1 39.6 100.1 8.1 1.47 

SON Protein SON 263.7 65.4 0.6 1.47 
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TERA Transitional endoplasmic reticulum ATPase 89.3 347.2 10.4 1.47 

TP53B Tumor suppressor p53-binding protein 1 213.4 178.6 2.1 1.47 

ESYT2 Extended synaptotagmin-2 102.3 124.5 1.1 1.45 

GTF2I General transcription factor II-I 112.3 562.8 13.3 1.45 

HCD2 3-hydroxyacyl-CoA dehydrogenase type-2 26.9 428.6 41.4 1.45 

K2C8 Keratin, type II cytoskeletal 8 53.7 2885.4 58.6 1.45 

ODO2 
Dihydrolipoyllysine-residue succinyltransferase component of 2-

oxoglutarate dehydrogenase complex, mitochondrial 
48.7 193.5 7.3 1.45 

RS21 40S ribosomal protein S21 9.1 65.8 12.0 1.45 

RSSA 40S ribosomal protein SA 32.8 96.2 8.8 1.45 

SF3A3 Splicing factor 3A subunit 3 58.8 197.1 6.0 1.45 

SMD3 Small nuclear ribonucleoprotein Sm D3 13.9 141.7 15.1 1.45 

ALDOA Fructose-bisphosphate aldolase A 39.4 949 42.6 1.44 

ODPAT 
Pyruvate dehydrogenase E1 component subunit alpha, testis-

specific form, mitochondrial 
42.9 79 2.8 1.44 

RUEL1 
Putative small nuclear ribonucleoprotein polypeptide E-like protein 

1 
10.7 54.1 12.0 1.44 

RUVB2 RuvB-like 2 51.1 521 12.3 1.44 

SFRS2 Splicing factor, arginine/serine-rich 2 25.5 59.4 3.6 1.44 

SPF27 Pre-mRNA-splicing factor SPF27 26.1 66.7 5.3 1.44 

SYMPK Symplekin 141.1 87.8 1.8 1.44 

TRA2B Transformer-2 protein homolog beta 33.6 148.2 10.4 1.44 

DECR 2,4-dienoyl-CoA reductase, mitochondrial 36.0 57.5 9.3 1.42 

DNJA3 DnaJ homolog subfamily A member 3, mitochondrial 52.5 113.5 4.8 1.42 

MOES Moesin 67.8 42.7 1.6 1.42 

PGK1 Phosphoglycerate kinase 1 44.6 83.4 4.3 1.42 

TIM44 Mitochondrial import inner membrane translocase subunit TIM44 51.3 128 7.7 1.42 

ACSL4 Long-chain-fatty-acid--CoA ligase 4 79.1 79.3 2.5 1.41 

BRE1B E3 ubiquitin-protein ligase BRE1B 113.6 81.2 2.1 1.41 

EZRI Ezrin 69.4 124.1 3.6 1.41 

HNRH2 Heterogeneous nuclear ribonucleoprotein H2 49.2 654 25.8 1.41 

IF2M Translation initiation factor IF-2, mitochondrial 81.3 61.1 3.0 1.41 

RS24 40S ribosomal protein S24 15.4 155.7 23.3 1.41 

RS27 40S ribosomal protein S27 9.5 102.2 25.0 1.41 

RUVB1 RuvB-like 1  GN=RUVBL1 PE=1 SV=1 50.2 135.5 10.7 1.41 

TFCP2 Alpha-globin transcription factor CP2 57.2 73.4 2.8 1.41 

ACADV Very long-chain specific acyl-CoA dehydrogenase, mitochondrial 70.3 236.9 12.8 1.39 

GBLP Guanine nucleotide-binding protein subunit beta-2-like 1 35.1 308.4 10.7 1.39 

HNRH1 Heterogeneous nuclear ribonucleoprotein H 49.2 974.7 32.7 1.39 

INCE Inner centromere protein 105.4 60.6 1.9 1.39 

ROA2 Heterogeneous nuclear ribonucleoproteins A2/B1 37.4 1691 58.1 1.39 

SC23A Protein transport protein Sec23A 86.1 177.1 4.7 1.39 

IMA2 Importin subunit alpha-2 57.8 445.7 15.9 1.38 

LMNB2 Lamin-B2 67.6 469.4 9.2 1.38 
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RPB1 DNA-directed RNA polymerase II subunit RPB1 217.0 149.1 1.6 1.38 

RU17 U1 small nuclear ribonucleoprotein 70 kDa 51.5 182.3 8.9 1.38 

CE033 UPF0465 protein C5orf33 49.4 138.5 6.1 1.37 

CH60 60 kDa heat shock protein, mitochondrial 61.0 1494.5 36.6 1.37 

DHX16 
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase 

DHX16 
119.2 153.6 4.3 1.37 

HNRPL Heterogeneous nuclear ribonucleoprotein L 64.1 611.9 25.8 1.37 

RM39 39S ribosomal protein L39, mitochondrial 38.7 43.2 3.6 1.37 

WDR33 WD repeat-containing protein 33 145.8 41.7 0.9 1.37 

WDR55 WD repeat-containing protein 55 42.1 97.6 10.2 1.37 

CPSM Carbamoyl-phosphate synthase [ammonia], mitochondrial 164.8 1965.3 23.9 1.35 

CUL4A Cullin-4A 87.6 45.6 1.6 1.35 

DDB1 DNA damage-binding protein 1 126.9 475.3 8.6 1.35 

GRP78 78 kDa glucose-regulated protein 72.3 647 22.3 1.35 

HSP7C Heat shock cognate 71 kDa protein 70.9 1266.2 28.3 1.35 

KIF23 Kinesin-like protein KIF23 110.0 184.4 3.0 1.35 

NNTM NAD(P) transhydrogenase, mitochondrial 113.8 107.5 3.2 1.35 

ROA0 Heterogeneous nuclear ribonucleoprotein A0 30.8 604.4 30.2 1.35 

SAFB2 Scaffold attachment factor B2 107.4 157 3.1 1.35 

SF13A Splicing factor, arginine/serine-rich 13A 31.3 222.6 13.0 1.35 

SFRS6 Splicing factor, arginine/serine-rich 6 39.6 245.5 11.9 1.35 

TF3C2 General transcription factor 3C polypeptide 2 100.6 69.2 1.2 1.35 

WDR82 WD repeat-containing protein 82 35.1 159.6 10.5 1.35 

ZN326 Zinc finger protein 326 65.6 234 4.8 1.35 

ZN828 Zinc finger protein 828 89.0 115.6 3.9 1.35 

C1TM Monofunctional C1-tetrahydrofolate synthase, mitochondrial 105.7 55.3 2.6 1.34 

CHD1 Chromodomain-helicase-DNA-binding protein 1 196.6 106.4 2.0 1.34 

HBA Hemoglobin subunit alpha 15.2 260.2 26.1 1.34 

HSP71 Heat shock 70 kDa protein 1A/1B 70.0 387 7.6 1.34 

IMMT Mitochondrial inner membrane protein 83.6 160.7 3.2 1.34 

SEC13 Protein SEC13 homolog 35.5 60.9 4.7 1.34 

SMD1 Small nuclear ribonucleoprotein Sm D1 13.3 112 10.9 1.34 

SYF2 Pre-mRNA-splicing factor SYF2 28.7 101.8 4.5 1.34 

THOC2 THO complex subunit 2 182.7 340.2 3.6 1.34 

ACINU Apoptotic chromatin condensation inducer in the nucleus 151.8 249 5.1 1.33 

ACOD Acyl-CoA desaturase 41.5 86.8 3.6 1.33 

AT2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 114.7 151.8 4.2 1.33 

EF1G Elongation factor 1-gamma 50.1 207 9.2 1.33 

FKBP8 Peptidyl-prolyl cis-trans isomerase FKBP8 44.5 61.7 3.9 1.33 

HNRH3 Heterogeneous nuclear ribonucleoprotein H3 36.9 386.2 14.5 1.33 

MLH1 DNA mismatch repair protein Mlh1 84.5 110 1.3 1.33 

PR38B Pre-mRNA-splicing factor 38B 64.4 82.8 2.6 1.33 

SFRS9 Splicing factor, arginine/serine-rich 9 25.5 200.7 20.8 1.33 
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USMG5 Up-regulated during skeletal muscle growth protein 5 6.5 51.8 25.9 1.33 

AMPM2 Methionine aminopeptidase 2 52.9 90.3 3.6 1.31 

CC063 Uncharacterized protein C3orf63 188.9 88.1 2.6 1.31 

HNRPF Heterogeneous nuclear ribonucleoprotein F 45.6 422.9 21.7 1.31 

RPN1 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 1 
68.5 113.9 1.8 1.31 

DHSA 
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 

mitochondrial 
72.6 371.2 13.0 1.30 

EF1D Elongation factor 1-delta 31.1 123.7 12.8 1.30 

FA98B Protein FAM98B 37.2 150.4 3.9 1.30 

GPDM Glycerol-3-phosphate dehydrogenase, mitochondrial 80.8 216.4 6.1 1.30 

PRC1 Protein regulator of cytokinesis 1 71.6 145.7 6.3 1.30 

PRDX1 Peroxiredoxin-1 22.1 296.6 20.1 1.30 

PRDX3 Thioredoxin-dependent peroxide reductase, mitochondrial 27.7 76.6 4.3 1.30 

U520 U5 small nuclear ribonucleoprotein 200 kDa helicase 244.4 816.2 5.9 1.30 

1433E 14-3-3 protein epsilon 29.2 209.4 12.9 1.29 

CDK2 Cell division protein kinase 2 33.9 59.4 4.7 1.29 

IF2P Eukaryotic translation initiation factor 5B 138.7 431.6 6.1 1.29 

LYRIC Protein LYRIC 63.8 117.4 4.5 1.29 

MTDC 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
37.9 67.7 3.1 1.29 

ROA1 Heterogeneous nuclear ribonucleoprotein A1 38.7 1600.4 46.8 1.29 

ARP6 Actin-related protein 6 45.8 43.4 3.0 1.28 

GRP75 Stress-70 protein, mitochondrial 73.6 1534.6 33.6 1.28 

K1C18 Keratin, type I cytoskeletal 18 48.0 1567.2 39.1 1.28 

KIF2C Kinesin-like protein KIF2C 81.3 205.7 7.4 1.28 

LONM Lon protease homolog, mitochondrial 106.4 129.1 4.3 1.28 

MED1 Mediator of RNA polymerase II transcription subunit 1 168.4 136.2 1.7 1.28 

P3C2A 
Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing 

subunit alpha 
190.6 109.1 1.5 1.28 

RLA0 60S acidic ribosomal protein P0 34.3 202.8 7.3 1.28 

SC22B Vesicle-trafficking protein SEC22b 24.7 108.2 8.8 1.28 

TOP2B DNA topoisomerase 2-beta 183.2 520.9 6.5 1.28 

1433T 14-3-3 protein theta 27.7 137.7 7.3 1.27 

ACADM Medium-chain specific acyl-CoA dehydrogenase, mitochondrial 46.6 66.9 2.9 1.27 

ACTC Actin, alpha cardiac muscle 1 42.0 753.1 26.8 1.27 

ALBU Serum albumin 69.3 146.6 5.1 1.27 

ATAD2 ATPase family AAA domain-containing protein 2 158.5 259.1 4.7 1.27 

ATP5J ATP synthase-coupling factor 6, mitochondrial 12.6 45.7 17.6 1.27 

ATP5L ATP synthase subunit g, mitochondrial 11.4 83.6 11.7 1.27 

CDK7 Cell division protein kinase 7 39.0 90.5 7.8 1.27 

CMC2 Calcium-binding mitochondrial carrier protein Aralar2 74.1 52 3.9 1.27 

DYHC1 Cytoplasmic dynein 1 heavy chain 1 532.1 71.3 0.5 1.27 

GLYM Serine hydroxymethyltransferase, mitochondrial 56.0 295.7 11.1 1.27 

LC7L3 Luc7-like protein 3 51.4 114.6 7.9 1.27 
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LMNA Lamin-A/C 74.1 2742.5 59.0 1.27 

LPPRC Leucine-rich PPR motif-containing protein, mitochondrial 157.8 584.4 11.1 1.27 

MPPA Mitochondrial-processing peptidase subunit alpha 58.2 51.4 4.4 1.27 

P80C Coilin 62.6 124.4 5.2 1.27 

RALY RNA-binding protein Raly 32.4 111.5 6.5 1.27 

ROAA Heterogeneous nuclear ribonucleoprotein A/B 36.2 351.8 17.5 1.27 

S10AD Protein S100-A13 11.5 71 11.2 1.27 

SMRD2 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily D member 2 
52.3 90.5 2.9 1.27 

STRAP Serine-threonine kinase receptor-associated protein 38.4 107.5 12.0 1.27 

TRI33 E3 ubiquitin-protein ligase TRIM33 122.4 115.6 3.8 1.27 

4F2 4F2 cell-surface antigen heavy chain 68.0 109.5 5.4 1.25 

ATPB ATP synthase subunit beta, mitochondrial 56.5 1661.8 43.3 1.25 

ATPG ATP synthase subunit gamma, mitochondrial 33.0 68 4.0 1.25 

CALX Calnexin 67.5 240 6.6 1.25 

COX41 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 19.6 70.4 7.1 1.25 

ECHB Trifunctional enzyme subunit beta, mitochondrial 51.3 54.3 2.3 1.25 

ELYS Protein ELYS 252.3 91.9 1.0 1.25 

RAN GTP-binding nuclear protein Ran 24.4 232.3 16.2 1.25 

RAP1B Ras-related protein Rap-1b 20.8 121.5 5.4 1.25 

THIL Acetyl-CoA acetyltransferase, mitochondrial 45.2 277.6 12.9 1.25 

 

B) APC5i 

Protein Full Name 
MW 
[kDa] 

Mascot 
Score 

SC 
[%] 

% 
change 

PIWL1 Piwi-like protein 1 98.5 30.1 1.0 106.00 

SYNE2 Nesprin-2 795.9 52.4 0.1 106.00 

NACA2 Nascent polypeptide-associated complex subunit alpha-2 23.2 39.1 7.0 13.25 

TITIN Titin 3813.8 105.3 0.1 7.07 

MAOM NAD-dependent malic enzyme, mitochondrial 65.4 30 2.6 5.89 

HCFC1 Host cell factor 1 208.6 65 1.3 4.61 

TCPQ T-complex protein 1 subunit theta 59.6 157.6 6.6 4.24 

MYH14 Myosin-14 227.9 49.9 0.8 3.66 

MUTA Methylmalonyl-CoA mutase, mitochondrial 83.1 54.2 1.5 3.53 

COX5B Cytochrome c oxidase subunit 5B, mitochondrial 13.7 30.2 9.3 3.31 

SRPRB Signal recognition particle receptor subunit beta 29.7 40.4 7.0 3.31 

YTDC1 YTH domain-containing protein 1 84.6 33.2 1.5 3.31 

AN32E Acidic leucine-rich nuclear phosphoprotein 32 family member E 30.7 40.2 4.5 3.21 

ESYT1 Extended synaptotagmin-1 122.8 169.8 2.6 3.21 

WAPL Wings apart-like protein homolog 132.9 121.1 2.1 3.21 

ENOA Alpha-enolase 47.1 423.1 16.8 3.12 

RGAP1 Rac GTPase-activating protein 1 71.0 53 1.7 3.12 
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PECI Peroxisomal 3,2-trans-enoyl-CoA isomerase 43.6 50.4 4.3 2.94 

CAND1 Cullin-associated NEDD8-dissociated protein 1 136.3 91.2 2.9 2.72 

DHB8 Estradiol 17-beta-dehydrogenase 8 27.0 84.1 10.3 2.72 

GSTK1 Glutathione S-transferase kappa 1 25.5 101.2 11.5 2.72 

K1C9 Keratin, type I cytoskeletal 9 62.0 69.2 6.9 2.72 

MYO1C Myosin-Ic 121.6 48 1.1 2.65 

CYB5B Cytochrome b5 type B 16.3 68.7 8.2 2.59 

RM22 39S ribosomal protein L22, mitochondrial 23.6 55 5.8 2.52 

RS30 40S ribosomal protein S30 6.6 57.3 16.9 2.52 

SERA D-3-phosphoglycerate dehydrogenase 56.6 183.6 7.3 2.52 

APTX Aprataxin 40.7 215.9 14.9 2.47 

IF4G2 Eukaryotic translation initiation factor 4 gamma 2 102.3 37.1 1.4 2.41 

KCRB Creatine kinase B-type 42.6 152.8 13.1 2.41 

ODP2 
Dihydrolipoyllysine-residue acetyltransferase component of 

pyruvate dehydrogenase complex, mitochondrial 
69.0 92.5 4.5 2.41 

ECT2 Protein ECT2 100.0 29.9 1.4 2.30 

ERO1A ERO1-like protein alpha 54.4 36.6 3.0 2.30 

HS90A Heat shock protein HSP 90-alpha 84.6 399.9 10.2 2.30 

PO210 Nuclear pore membrane glycoprotein 210 205.0 59.3 1.5 2.30 

CISD2 CDGSH iron sulfur domain-containing protein 2 15.3 31.6 10.4 2.26 

RTN4 Reticulon-4 129.9 42 1.2 2.26 

SPTC1 Serine palmitoyltransferase 1 52.7 60.9 3.0 2.26 

HS90B Heat shock protein HSP 90-beta 83.2 491.7 10.1 2.21 

CA131 Uncharacterized protein C1orf131 32.7 191.9 14.3 2.16 

FPPS Farnesyl pyrophosphate synthase 48.2 39.5 4.3 2.16 

TRM6 
tRNA (adenine-N(1)-)-methyltransferase non-catalytic subunit 

TRM6 
55.8 62.6 3.6 2.16 

UBP14 Ubiquitin carboxyl-terminal hydrolase 14 56.0 120.4 2.6 2.16 

RLA2 60S acidic ribosomal protein P2 11.7 82.6 10.4 2.12 

TKT Transketolase 67.8 245.2 10.8 2.12 

ALBU Serum albumin 69.3 67.1 2.5 2.08 

COPA Coatomer subunit alpha 138.3 136.6 2.9 2.08 

EF1D Elongation factor 1-delta 31.1 63.8 4.3 2.04 

KIF2C Kinesin-like protein KIF2C 81.3 257.2 7.0 2.04 

ACTN4 Alpha-actinin-4 104.8 185.4 6.5 2.00 

RT29 28S ribosomal protein S29, mitochondrial 45.5 126.3 6.8 2.00 

AIFM1 Apoptosis-inducing factor 1, mitochondrial 66.9 216 10.0 1.96 

IF2B1 Insulin-like growth factor 2 mRNA-binding protein 1 63.4 64.3 5.4 1.96 

TAGL2 Transgelin-2 22.4 66 6.0 1.96 

TM109 Transmembrane protein 109 26.2 30.2 4.9 1.96 

YH007 Uncharacterized protein FLJ40521 48.3 43.3 1.5 1.96 

3MG DNA-3-methyladenine glycosylase 32.8 96.2 11.1 1.93 

GANAB Neutral alpha-glucosidase AB 106.8 129.6 1.8 1.93 

KPYM Pyruvate kinase isozymes M1/M2 57.9 332.4 15.3 1.93 
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1433Z 14-3-3 protein zeta/delta 27.7 197.6 17.6 1.89 

AT1A3 Sodium/potassium-transporting ATPase subunit alpha-3 111.7 91.8 1.8 1.89 

CPSF3 Cleavage and polyadenylation specificity factor subunit 3 77.4 58.1 4.8 1.89 

HTAI2 Oxidoreductase HTATIP2 27.1 115.7 8.7 1.89 

PDIA1 Protein disulfide-isomerase 57.1 188.8 7.5 1.89 

PRP4B Serine/threonine-protein kinase PRP4 homolog 116.9 191.4 2.8 1.89 

REN3B Regulator of nonsense transcripts 3B 57.7 44.8 3.1 1.89 

SPTA2 Spectrin alpha chain, brain 284.4 45.1 0.9 1.89 

TFR1 Transferrin receptor protein 1 84.8 109.9 7.0 1.89 

ENPL Endoplasmin 92.4 398.5 11.1 1.86 

MCE1 mRNA-capping enzyme 68.5 90 3.9 1.86 

RL11 60S ribosomal protein L11 20.2 275.4 11.8 1.86 

SCMC1 Calcium-binding mitochondrial carrier protein SCaMC-1 53.3 35.8 2.7 1.86 

ANXA2 Annexin A2 38.6 616 35.4 1.83 

RM41 39S ribosomal protein L41, mitochondrial 15.4 44.8 7.3 1.83 

TPR Nucleoprotein TPR 267.1 509.8 6.0 1.83 

CLPP 
Putative ATP-dependent Clp protease proteolytic subunit, 

mitochondrial 
30.2 108.8 5.4 1.80 

CQ085 Uncharacterized protein C17orf85 70.5 85 2.1 1.80 

CY1 Cytochrome c1, heme protein, mitochondrial 35.4 116.5 7.7 1.80 

GBLP Guanine nucleotide-binding protein subunit beta-2-like 1 35.1 320 20.5 1.80 

HBB Hemoglobin subunit beta 16.0 42.6 6.8 1.80 

PTRF Polymerase I and transcript release factor 43.4 36.4 4.4 1.80 

ABCD3 ATP-binding cassette sub-family D member 3 75.4 81.6 2.1 1.77 

CG050 Uncharacterized protein C7orf50 22.1 275.3 38.7 1.77 

ITB1 Integrin beta-1 88.4 95.8 2.5 1.77 

MYH9 Myosin-9 226.4 48.4 1.7 1.77 

TCPA T-complex protein 1 subunit alpha 60.3 203.1 11.3 1.77 

LRC59 Leucine-rich repeat-containing protein 59 34.9 61.8 6.8 1.74 

RPN1 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 1 
68.5 117.5 4.4 1.74 

RPN2 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 2 
69.2 82.2 2.2 1.74 

SFXN1 Sideroflexin-1 35.6 258.6 11.8 1.74 

SRP54 Signal recognition particle 54 kDa protein 55.7 48.5 2.8 1.74 

ACSL3 Long-chain-fatty-acid--CoA ligase 3 80.4 117.6 4.6 1.71 

FANCI Fanconi anemia group I protein 149.2 123 2.1 1.71 

MPCP Phosphate carrier protein, mitochondrial 40.1 343.9 13.0 1.71 

SFR14 Putative splicing factor, arginine/serine-rich 14 120.2 91.6 3.3 1.71 

1433E 14-3-3 protein epsilon 29.2 114.6 8.2 1.68 

HSP71 Heat shock 70 kDa protein 1A/1B 70.0 227.4 8.4 1.68 

MED4 Mediator of RNA polymerase II transcription subunit 4 29.7 112.1 15.2 1.68 

NNTM NAD(P) transhydrogenase, mitochondrial 113.8 82 2.4 1.68 

RM27 39S ribosomal protein L27, mitochondrial 16.1 32.6 6.8 1.68 
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TOP2A DNA topoisomerase 2-alpha 174.3 1110.9 14.1 1.68 

ANM5 Protein arginine N-methyltransferase 5 72.6 34.9 2.0 1.66 

DHB4 Peroxisomal multifunctional enzyme type 2 79.6 363.8 12.5 1.66 

MED24 Mediator of RNA polymerase II transcription subunit 24 110.2 232.9 5.5 1.66 

RT25 28S ribosomal protein S25, mitochondrial 20.1 33 7.5 1.66 

ATD3B ATPase family AAA domain-containing protein 3B 72.5 78.8 1.9 1.63 

CALX Calnexin 67.5 94.2 4.9 1.63 

FLNA Filamin-A 280.6 105.6 2.0 1.63 

G3BP1 Ras GTPase-activating protein-binding protein 1 52.1 51.6 2.4 1.63 

GLU2B Glucosidase 2 subunit beta 59.4 74.9 2.5 1.63 

IDHP Isocitrate dehydrogenase [NADP], mitochondrial 50.9 41.8 2.4 1.63 

IPO5 Importin-5 123.5 34.3 1.1 1.63 

MDC1 Mediator of DNA damage checkpoint protein 1 226.5 71.8 1.1 1.63 

PDIA3 Protein disulfide-isomerase A3 56.7 481.1 19.8 1.63 

PON2 Serum paraoxonase/arylesterase 2 39.4 64.5 4.5 1.63 

QCR2 Cytochrome b-c1 complex subunit 2, mitochondrial 48.4 142.2 7.7 1.63 

RU2A U2 small nuclear ribonucleoprotein A' 28.4 319.8 20.4 1.63 

SPTB2 Spectrin beta chain, brain 1 274.4 73.3 0.8 1.63 

TBA1C Tubulin alpha-1C chain 49.9 436.7 28.3 1.63 

ABCF2 ATP-binding cassette sub-family F member 2 71.2 108.3 3.9 1.61 

APOO Apolipoprotein O 22.3 61.4 7.6 1.61 

CALR Calreticulin 48.1 170.2 8.6 1.61 

NC2A Dr1-associated corepressor 22.3 30.2 4.9 1.61 

NU214 Nuclear pore complex protein Nup214 213.5 86.2 2.2 1.61 

RCOR1 REST corepressor 1 53.0 135.4 2.5 1.61 

VRK1 Serine/threonine-protein kinase VRK1 45.4 134.6 8.1 1.61 

GRP78 78 kDa glucose-regulated protein 72.3 865.6 23.9 1.58 

PSD12 26S proteasome non-ATPase regulatory subunit 12 52.9 79.3 3.1 1.58 

SRBD1 S1 RNA-binding domain-containing protein 1 111.7 144.4 2.2 1.58 

TRAP1 Heat shock protein 75 kDa, mitochondrial 80.1 401 12.2 1.58 

ACADM Medium-chain specific acyl-CoA dehydrogenase, mitochondrial 46.6 138.6 8.8 1.56 

ECHA Trifunctional enzyme subunit alpha, mitochondrial 82.9 479.3 14.9 1.56 

HSDL2 Hydroxysteroid dehydrogenase-like protein 2 45.4 137.8 4.3 1.56 

IDH3B Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial 42.2 118.9 10.4 1.56 

IQGA1 Ras GTPase-activating-like protein IQGAP1 189.1 77.4 1.3 1.56 

MAT1 CDK-activating kinase assembly factor MAT1 35.8 283.5 16.8 1.56 

NDUA9 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, 

mitochondrial 
42.5 34.3 3.2 1.56 

NDUB1 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1 7.0 63.1 19.0 1.56 

NU188 Nucleoporin NUP188 homolog 195.9 97.4 2.1 1.56 

PDIA4 Protein disulfide-isomerase A4 72.9 72.6 4.7 1.56 

PDIA6 Protein disulfide-isomerase A6 48.1 152.4 8.9 1.56 

SC22B Vesicle-trafficking protein SEC22b 24.7 304.2 20.9 1.56 
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4F2 4F2 cell-surface antigen heavy chain 68.0 90.2 8.7 1.54 

CLH1 Clathrin heavy chain 1 191.5 185.5 3.0 1.54 

COPZ1 Coatomer subunit zeta-1 20.2 119.2 16.9 1.54 

G45IP 
Growth arrest and DNA damage-inducible proteins-interacting 

protein 1 
25.4 44.9 4.5 1.54 

H32 Histone H3.2 15.4 533.7 41.2 1.54 

IF4A1 Eukaryotic initiation factor 4A-I 46.1 622.4 30.0 1.54 

RADI Radixin 68.5 113 4.1 1.54 

RM11 39S ribosomal protein L11, mitochondrial 20.7 90.7 15.6 1.54 

RM12 39S ribosomal protein L12, mitochondrial 21.3 54 6.1 1.54 

SLU7 Pre-mRNA-splicing factor SLU7 68.3 46.8 2.4 1.54 

TOIP1 Torsin-1A-interacting protein 1 66.2 232.2 4.5 1.54 

AURKB Serine/threonine-protein kinase 12 39.3 108.4 7.8 1.51 

C1TM Monofunctional C1-tetrahydrofolate synthase, mitochondrial 105.7 91.8 1.1 1.51 

HNRCL Heterogeneous nuclear ribonucleoprotein C-like 1 32.1 445.8 17.1 1.51 

PRDX5 Peroxiredoxin-5, mitochondrial 22.0 81.3 15.9 1.51 

PRP6 Pre-mRNA-processing factor 6 106.9 155.9 4.4 1.51 

PSME3 Proteasome activator complex subunit 3 29.5 47.9 5.9 1.51 

RLA0 60S acidic ribosomal protein P0 34.3 127.5 6.6 1.51 

SEC63 Translocation protein SEC63 homolog 87.9 39.7 1.7 1.51 

SYDM Aspartyl-tRNA synthetase, mitochondrial 73.5 116 2.9 1.51 

TBA1B Tubulin alpha-1B chain 50.1 726.9 34.8 1.51 

TBB5 Tubulin beta chain 49.6 640.5 27.3 1.51 

THIL Acetyl-CoA acetyltransferase, mitochondrial 45.2 234 14.8 1.51 

VAPB Vesicle-associated membrane protein-associated protein B/C 27.2 51.3 4.9 1.51 

WAC WW domain-containing adapter protein with coiled-coil 70.7 66.3 5.4 1.51 

AAAS Aladin 59.5 80.4 6.6 1.49 

AL9A1 4-trimethylaminobutyraldehyde dehydrogenase 53.8 48.1 4.3 1.49 

ARF4 ADP-ribosylation factor 4 20.5 44.6 5.6 1.49 

G3P Glyceraldehyde-3-phosphate dehydrogenase 36.0 478.8 31.6 1.49 

IMP4 U3 small nucleolar ribonucleoprotein protein IMP4 33.7 530.3 29.2 1.49 

KIFC1 Kinesin-like protein KIFC1 73.7 233.4 8.5 1.49 

LAT1 Large neutral amino acids transporter small subunit 1 55.0 76.7 6.7 1.49 

RBM10 RNA-binding protein 10 103.5 144.4 2.7 1.49 

RRBP1 Ribosome-binding protein 1 152.4 32.8 1.2 1.49 

S10AD Protein S100-A13 11.5 87.7 31.6 1.49 

SMCA4 Transcription activator BRG1 184.5 231.1 2.8 1.49 

SPT5H Transcription elongation factor SPT5 120.9 54 2.1 1.49 

TRIPC Probable E3 ubiquitin-protein ligase TRIP12 220.3 192 2.9 1.49 

C19L1 CWF19-like protein 1 60.6 54.5 2.6 1.47 

COPG Coatomer subunit gamma 97.7 41.6 2.1 1.47 

DNJA3 DnaJ homolog subfamily A member 3, mitochondrial 52.5 90.8 8.1 1.47 

HS71L Heat shock 70 kDa protein 1-like 70.3 289 8.7 1.47 
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HSP74 Heat shock 70 kDa protein 4 94.3 68.3 3.0 1.47 

NDUS1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 79.4 263.1 10.0 1.47 

RSSA 40S ribosomal protein SA 32.8 209.6 14.6 1.47 

XPO1 Exportin-1 123.3 225.5 6.3 1.47 

CDC2 Cell division control protein 2 homolog 34.1 162.4 13.5 1.45 

ECH1 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial 35.8 244 17.4 1.45 

HXK1 Hexokinase-1 102.4 31.5 1.2 1.45 

TCPB T-complex protein 1 subunit beta 57.5 258.4 11.6 1.45 

ACTB Actin, cytoplasmic 1 41.7 1072.9 41.6 1.43 

PLEC1 Plectin-1 531.5 1407.1 6.2 1.43 

SF01 Splicing factor 1 68.3 40.6 2.5 1.43 

SUV91 Histone-lysine N-methyltransferase SUV39H1 47.9 70.9 6.1 1.43 

ZN326 Zinc finger protein 326 65.6 383.5 12.5 1.43 

1433T 14-3-3 protein theta 27.7 240.9 17.6 1.41 

COPB Coatomer subunit beta 107.1 53 2.4 1.41 

DDX6 Probable ATP-dependent RNA helicase DDX6 54.4 101.7 3.1 1.41 

EED Polycomb protein EED 50.2 56.9 4.3 1.41 

MORC2 MORC family CW-type zinc finger protein 2 117.7 51.1 2.6 1.41 

STT3A 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit STT3A 
80.5 52.4 1.7 1.41 

CE024 UPF0461 protein C5orf24 20.1 94 7.4 1.39 

ETHE1 Protein ETHE1, mitochondrial 27.9 95.7 12.2 1.39 

NU107 Nuclear pore complex protein Nup107 106.3 114.5 5.6 1.39 

P66B Transcriptional repressor p66-beta 65.2 114.5 5.6 1.39 

SSBP Single-stranded DNA-binding protein, mitochondrial 17.2 201.6 28.4 1.39 

SYPL1 Synaptophysin-like protein 1 28.5 45.4 4.2 1.39 

TCPD T-complex protein 1 subunit delta 57.9 524.1 17.1 1.39 

TMM70 Transmembrane protein 70, mitochondrial 29.0 40.5 4.6 1.39 

U5S1 116 kDa U5 small nuclear ribonucleoprotein component 109.4 566.9 12.6 1.39 

EHD4 EH domain-containing protein 4 61.1 60.3 2.4 1.38 

NEST Nestin 177.3 113.5 1.7 1.38 

NSF Vesicle-fusing ATPase 82.5 43.9 3.1 1.38 

P5CR1 Pyrroline-5-carboxylate reductase 1, mitochondrial 33.3 196.7 14.1 1.38 

PPIA Peptidyl-prolyl cis-trans isomerase A 18.0 157.1 18.8 1.38 

RPB2 DNA-directed RNA polymerase II subunit RPB2 133.8 47.4 1.4 1.38 

SSRD Translocon-associated protein subunit delta 19.0 115.5 13.9 1.38 

STML2 Stomatin-like protein 2 38.5 238.7 22.2 1.38 

TOM40 Mitochondrial import receptor subunit TOM40 homolog 37.9 144.6 10.2 1.38 

CISD1 CDGSH iron sulfur domain-containing protein 1 12.2 59.6 13.9 1.36 

DYL1 Dynein light chain 1, cytoplasmic 10.4 266.7 49.4 1.36 

KI20A Kinesin-like protein KIF20A 100.2 39.8 1.8 1.36 

LTV1 Protein LTV1 homolog 54.8 97.1 2.5 1.36 

PLOD3 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 84.7 114.1 3.3 1.36 
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RGPD4 RanBP2-like and GRIP domain-containing protein 4 198.1 166.9 2.2 1.36 

TOP2B DNA topoisomerase 2-beta 183.2 872.2 9.2 1.36 

ADT2 ADP/ATP translocase 2 32.9 643.7 30.5 1.34 

ATD3A ATPase family AAA domain-containing protein 3A 71.3 85.5 5.5 1.34 

EF1G Elongation factor 1-gamma 50.1 230.2 10.1 1.34 

EIF2A Eukaryotic translation initiation factor 2A 64.9 123.8 5.3 1.34 

NSL1 Kinetochore-associated protein NSL1 homolog 32.1 32.6 6.0 1.34 

NUP98 Nuclear pore complex protein Nup98-Nup96 187.7 284.2 4.3 1.34 

NXF1 Nuclear RNA export factor 1 70.1 236 4.0 1.34 

PRDX3 Thioredoxin-dependent peroxide reductase, mitochondrial 27.7 166.9 5.5 1.34 

RAB5C Ras-related protein Rab-5C 23.5 297.5 28.2 1.34 

RS2 40S ribosomal protein S2 31.3 123.5 15.7 1.34 

RS27A 40S ribosomal protein S27a 9.4 151.8 40.0 1.34 

SMD3 Small nuclear ribonucleoprotein Sm D3 13.9 447.9 47.6 1.34 

TCP4 Activated RNA polymerase II transcriptional coactivator p15 14.4 311.2 43.3 1.34 

UBQL1 Ubiquilin-1 62.5 31 2.7 1.34 

VAT1 Synaptic vesicle membrane protein VAT-1 homolog 41.9 163.1 11.5 1.34 

ZFR Zinc finger RNA-binding protein 116.9 251.2 11.3 1.34 

1433G 14-3-3 protein gamma 28.3 63.2 9.3 1.33 

ATPA ATP synthase subunit alpha, mitochondrial 59.7 920.1 29.5 1.33 

BUB3 Mitotic checkpoint protein BUB3 37.1 540.1 20.7 1.33 

EAF6 Chromatin modification-related protein MEAF6 21.6 39.8 11.5 1.33 

HNRPC Heterogeneous nuclear ribonucleoproteins C1/C2 33.6 762.4 26.5 1.33 

NDUA7 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7 12.5 37.8 15.9 1.33 

NU205 Nuclear pore complex protein Nup205 227.8 231.7 2.3 1.33 

PHB2 Prohibitin-2 33.3 459.4 32.8 1.33 

PIAS2 E3 SUMO-protein ligase PIAS2 68.2 88.2 2.4 1.33 

RAB1A Ras-related protein Rab-1A 22.7 224.5 26.8 1.33 

RB12B RNA-binding protein 12B 118.0 250.7 3.6 1.33 

SLN13 Schlafen family member 13 102.0 64.2 2.6 1.33 

SND1 Staphylococcal nuclease domain-containing protein 1 101.9 509.3 11.3 1.33 

TCPG T-complex protein 1 subunit gamma 60.5 239.1 12.5 1.33 

THOC4 THO complex subunit 4 26.9 80.6 11.3 1.33 

VPS35 Vacuolar protein sorting-associated protein 35 91.6 55.1 1.9 1.33 

WIZ Protein Wiz 178.6 53.7 0.7 1.33 

ZN800 Zinc finger protein 800 75.2 68.4 4.4 1.33 

ADT3 ADP/ATP translocase 3 32.8 683.4 34.2 1.31 

ARP5L Actin-related protein 2/3 complex subunit 5-like protein 16.9 47.9 7.8 1.31 

BLM Bloom syndrome protein 158.9 251.2 3.0 1.31 

INT8 Integrator complex subunit 8 113.0 31.8 1.3 1.31 

NELFE Negative elongation factor E 43.2 160.8 9.2 1.31 

NUP93 Nuclear pore complex protein Nup93 93.4 534.2 9.9 1.31 

PNPT1 Polyribonucleotide nucleotidyltransferase 1, mitochondrial 85.9 77.6 4.0 1.31 
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PR38A Pre-mRNA-splicing factor 38A 37.5 96.3 3.8 1.31 

RED Protein Red 65.6 78.4 4.1 1.31 

RM04 39S ribosomal protein L4, mitochondrial 34.9 41.5 6.1 1.31 

SF3A3 Splicing factor 3A subunit 3 58.8 105.3 8.4 1.31 

THIM 3-ketoacyl-CoA thiolase, mitochondrial 41.9 59.8 7.8 1.31 

TIM23 Mitochondrial import inner membrane translocase subunit Tim23 21.9 79.7 8.1 1.31 

HNRL2 Heterogeneous nuclear ribonucleoprotein U-like protein 2 85.1 42.4 1.7 1.29 

INT1 Integrator complex subunit 1 244.1 144.2 1.1 1.29 

MPPB Mitochondrial-processing peptidase subunit beta 54.3 66.5 5.3 1.29 

NELFB Negative elongation factor B 65.7 51 1.7 1.29 

NF1 Neurofibromin 319.2 73.2 1.1 1.29 

NIPBL Nipped-B-like protein 315.9 350.2 2.4 1.29 

NU160 Nuclear pore complex protein Nup160 162.0 252 2.9 1.29 

NUP85 Nuclear pore complex protein Nup85 75.0 161.9 5.6 1.29 

PRPS2 Ribose-phosphate pyrophosphokinase 2 34.7 31.3 3.8 1.29 

SYTM Threonyl-tRNA synthetase, mitochondrial 81.0 48.1 2.5 1.29 

TBB2C Tubulin beta-2C chain 49.8 617.2 31.0 1.29 

TCPH T-complex protein 1 subunit eta 59.3 185.7 9.2 1.29 

TCPZ T-complex protein 1 subunit zeta 58.0 118.1 5.8 1.29 

UNG Uracil-DNA glycosylase 34.6 38.5 3.8 1.29 

ZC3H8 Zinc finger CCCH domain-containing protein 8 33.6 76.8 7.6 1.29 

ATX10 Ataxin-10 53.5 39.6 3.2 1.28 

GUAA GMP synthase [glutamine-hydrolyzing] 76.7 181.2 5.1 1.28 

HNRH2 Heterogeneous nuclear ribonucleoprotein H2 49.2 652.5 25.2 1.28 

IMB1 Importin subunit beta-1 97.1 236.6 3.4 1.28 

ODO1 2-oxoglutarate dehydrogenase, mitochondrial 115.9 145 3.6 1.28 

RAE1L mRNA export factor 40.9 344.9 23.9 1.28 

RS16 40S ribosomal protein S16 16.4 305.2 25.3 1.28 

SNUT2 U4/U6.U5 tri-snRNP-associated protein 2 65.3 35.5 2.1 1.28 

ATP5H ATP synthase subunit d, mitochondrial 18.5 146.8 16.1 1.26 

ATPO ATP synthase subunit O, mitochondrial 23.3 262.2 25.8 1.26 

CENPL Centromere protein L 39.0 54.1 3.5 1.26 

CLPB Caseinolytic peptidase B protein homolog 78.7 67.4 1.8 1.26 

DHE3 Glutamate dehydrogenase 1, mitochondrial 61.4 121.6 6.8 1.26 

DJC11 DnaJ homolog subfamily C member 11 63.2 56.2 2.7 1.26 

MSH6 DNA mismatch repair protein Msh6 152.7 704.3 9.3 1.26 

MTA1 Metastasis-associated protein MTA1 80.7 204.3 6.0 1.26 

NCOA5 Nuclear receptor coactivator 5 65.5 124.7 3.3 1.26 

NDUS3 
NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, 

mitochondrial 
30.2 139 17.0 1.26 

QCR1 Cytochrome b-c1 complex subunit 1, mitochondrial 52.6 247.7 14.0 1.26 

SC23A Protein transport protein Sec23A 86.1 106.8 1.6 1.26 

SCC4 Cohesin loading complex subunit SCC4 homolog 69.0 90.7 3.9 1.26 
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TBRG4 Protein TBRG4 70.7 84.6 5.1 1.26 

AT5F1 ATP synthase subunit b, mitochondrial 28.9 212.5 18.4 1.25 

ATPG ATP synthase subunit gamma, mitochondrial 33.0 271.9 18.5 1.25 

EPIPL Epiplakin 552.8 209.4 0.6 1.25 

GHITM Growth hormone-inducible transmembrane protein 37.2 32.6 2.9 1.25 

GRP75 Stress-70 protein, mitochondrial 73.6 1980.9 43.7 1.25 

HNRPR Heterogeneous nuclear ribonucleoprotein R 70.9 614.6 16.7 1.25 

LAP2B Lamina-associated polypeptide 2, isoforms beta/gamma 50.6 193.1 15.6 1.25 

NDUB4 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4 15.2 81.4 14.0 1.25 

ORC1 Origin recognition complex subunit 1 97.3 88.4 2.0 1.25 

PTN1 Tyrosine-protein phosphatase non-receptor type 1 49.9 36 2.3 1.25 

PYC Pyruvate carboxylase, mitochondrial 129.6 71.7 1.2 1.25 

RT09 28S ribosomal protein S9, mitochondrial 45.8 80.2 4.0 1.25 

SLIRP SRA stem-loop-interacting RNA-binding protein, mitochondrial 12.3 249.3 43.1 1.25 

SMRD2 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily D member 2 
52.3 101.4 7.2 1.25 

TRI33 E3 ubiquitin-protein ligase TRIM33 122.4 209.9 5.3 1.25 

USMG5 Up-regulated during skeletal muscle growth protein 5 6.5 98.2 25.9 1.25 

VDAC3 Voltage-dependent anion-selective channel protein 3 30.6 304.1 17.0 1.25 

WDR76 WD repeat-containing protein 76 69.7 55.3 2.2 1.25 

Figure S1.3 – Change in nucleolar abundance of proteins following knockdown of APC3 (A) or APC5 
(B) as calculated by quantitative analysis of dimethyl-labelled nucleolar lysates by mass spectrometry 

HeLa cells were subjected to non-silencing, APC3 or APC5 siRNA-mediated knockdown. Nucleolar 
lysates were obtained and digested by trypsin using a FASP protocol. Non-silencing lysates were 
labelled with light dimethyl, whilst APC3i and APC5i lysates were labelled with heavy dimethyl. Heavy 
and light peptides were then mixed in an equimolar ratio and analysed by LC-MS/MS upon an Impact 
ESI-TOF Mass Spectrometer (Bruker). Proteins were searched by ProteinScape (Bruker) by comparing 
to a Mascot database (Matrix Science). Identified proteins were then quantified using WarpLC 
(Bruker) and are shown here as % change. SC = sequence coverage. MW = molecular weight. 

FIGURE S1.4 – SUPPLEMENTARY DATA FROM APC3, CDC20 AND CDH1 

IPS FROM WHOLE CELL EXTRACTS 

 

A) Proteins from Whole Cell Extract IPs mentioned in Chapter 2 

 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 

# Peptides 

APC3 IP Cdc20 IP Cdh1 IP 

APC1 Anaphase-promoting complex subunit 1 216.4 99 22 10 

APC2 Anaphase-promoting complex subunit 2 93.8 40 4 - 

APC3 Cell division cycle protein 27 homolog 91.8 63 17 4 
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APC4 Anaphase-promoting complex subunit 4 92.1 49 13 - 

APC5 Anaphase-promoting complex subunit 5 85 64 2 - 

APC6 Cell division cycle protein 16 homolog 71.6 41 12 2 

APC7 Anaphase-promoting complex subunit 7 63.1 48 6 - 

APC8 Cell division cycle protein 23 homolog 68.8 61 18 4 

APC10 Anaphase-promoting complex subunit 10 21.2 15 - - 

APC12 Anaphase-promoting complex subunit CDC26 9.8 7 3 - 

APC16 UPF0448 protein C10orf104 11.7 4 - - 

Cdc20 Cell division cycle protein 20 homolog 54.7 4 19 - 

Cdh1 Fizzy-related protein homolog 55.1 16 - 12 

 

Known Substrates and Interactors 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

BUB1 
Mitotic checkpoint 

serine/threonine-protein kinase 
BUB1 

122.3 
 

15 
 

3 2 - +++ 

BUB1B 
Mitotic checkpoint 

serine/threonine-protein kinase 
BUB1 beta 

119.5 31 64 
 

8 2 - 
***/ 
+++ 

BUB3 Mitotic checkpoint protein BUB3 37.1 9 17 1 1 1 - 
 

FBX5 F-box only protein 5 50.1 13 
  

4 1 - 
***/ 
+++ 

KIF4A 
Chromosome-associated kinesin 

KIF4A 
139.8 1 

  
7 1 1 

***/ 
+++ 

KIF22 Kinesin-like protein KIF22 73.2 1 
  

6 1 - 
**/ 
+++ 

MD2L1 
Mitotic spindle assembly checkpoint 

protein MAD2A 
23.5 6 8 

 
- - - 

 

NEK2 
Serine/threonine-protein kinase 

Nek2 
51.7 3 

  
5 1 - 

***/ 
+++ 

PAF PCNA-associated factor 12 2 
  

1 1 - 
***/ 
+++ 

RIR2 
Ribonucleoside-diphosphate 

reductase subunit M2 
44.8 13 

 
8 3 1 - 

***/ 
+++ 

 

Cell Cycle and Ubiquitin-Proteasomal Pathway 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

AKAP8 A-kinase anchor protein 8 76.1 
 

1 
 

3 - - * 

ARL2 
ADP-ribosylation factor-like protein 

2 
20.9 2 

  
1 - - 

 

CDK2 Cell division protein kinase 2 33.9 3 
  

3 - - 
 

CUL1 Cullin-1 89.6 15 
  

4 - - 
 

CUL5 Cullin-5 90.9 
 

9 
 

4 - 1 
 

FA96B Protein FAM96B 17.7 3 
  

- - - 
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KLHL9 Kelch-like protein 9 69.4 
  

2 2 - - 
 

MP2K2 
Dual specificity mitogen-activated 

protein kinase kinase 2 
44.4 2 1 

 
1 - - *** 

NEST Nestin 177.3 
  

1 11 5 1 
***/ 
+++ 

NSUN2 
tRNA (cytosine-5-)-

methyltransferase NSUN2 
86.4 

 
2 

 
5 1 - 

 

PRS7 26S protease regulatory subunit 7 48.6 1 
  

2 - 1 ** 

PSDE 
26S proteasome non-ATPase 

regulatory subunit 14 
34.6 1 1 

 
- - - 

 

PSMD2 
26S proteasome non-ATPase 

regulatory subunit 2 
100.1 

 
2 

 
7 - - ** 

RHOC 
Rho-related GTP-binding protein 

RhoC 
22 2 

  
3 - - ** 

RNF4 RING finger protein 4 21.3 3 
  

1 - - 
 

RO52 52 kDa Ro protein 54.1 
 

10 7 3 - - *** 

S10AB Protein S100-A11 11.7 
 

2 
 

- - - 
 

SKP1 S-phase kinase-associated protein 1 18.6 4 
  

- 1 - +++ 

SMC4 
Structural maintenance of 
chromosomes protein 4 

147.1 
  

3 4 1 3 **/++ 

TRP13 
Thyroid receptor-interacting protein 

13 
48.5 9 

  
4 - 1 

 

USP9X 
Probable ubiquitin carboxyl-

terminal hydrolase FAF-X 
289.4 4 

  
13 - - ** 

 

MCM proteins 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

MCM3 
DNA replication licensing factor 

MCM3 
90.9 4 1 

 
4 - - 

 

MCM4 
DNA replication licensing factor 

MCM4 
96.5 13 

  
5 1 - *** 

MCM5 
DNA replication licensing factor 

MCM5 
82.2 2 

  
5 - - * 

MCM7 
DNA replication licensing factor 

MCM7 
81.3 36 2 1 6 - - * 

 

Chaperones and Protein Folding 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

ENPL Endoplasmin 92.4 
  

9 8 - - 
 

HS105 Heat shock protein 105 kDa 96.8 1 5 
 

3 1 - 
 

HS74L Heat shock 70 kDa protein 4L 94.4 
  

1 3 1 - +++ 

HS90A Heat shock protein HSP 90-alpha 84.6 
 

8 
 

4 2 - 
**/ 
+++ 

HS90B Heat shock protein HSP 90-beta 83.2 11 15 10 3 1 - * 

HSP72 Heat shock-related 70 kDa protein 2 70 20 
 

17 1 1 - ++ 
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HSP74 Heat shock 70 kDa protein 4 94.3 
 

1 2 6 - - 
 

TCPB T-complex protein 1 subunit beta 57.5 
 

4 
 

4 - - 
 

TCPE T-complex protein 1 subunit epsilon 59.6 
 

12 
 

3 - - 
 

TCPG T-complex protein 1 subunit gamma 60.5 
 

17 5 5 - 2 *** 

TCPH T-complex protein 1 subunit eta 59.3 
 

6 2 2 - - 
 

TCPQ T-complex protein 1 subunit theta 59.6 
 

7 
 

1 - - 
 

TCPZ T-complex protein 1 subunit zeta 58 
 

2 
 

7 - - *** 

 

mRNA Splicing and Processing 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

DDX1 ATP-dependent RNA helicase DDX1 82.4 6 2 1 3 - 1 ** 

DDX17 
Probable ATP-dependent RNA 

helicase DDX17 
72.3 2 3 

 
1 1 - 

 

DDX3X ATP-dependent RNA helicase DDX3X 73.2 12 6 7 2 1 - 
 

DHX15 
Putative pre-mRNA-splicing factor 

ATP-dependent RNA helicase DHX15 
90.9 

 
7 1 9 - 1 ** 

ELAV1 ELAV-like protein 1 36.1 
 

4 
 

1 - - 
 

F118B Protein FAM118B 39.5 
 

9 
 

1 - - *** 

HNRL1 
Heterogeneous nuclear 

ribonucleoprotein U-like protein 1 
95.7 2 7 5 3 - - ** 

HNRPM 
Heterogeneous nuclear 

ribonucleoprotein M 
77.5 

  
9 5 - - * 

HNRPQ 
Heterogeneous nuclear 

ribonucleoprotein Q 
69.6 

 
1 

 
1 - - 

 

HNRPU 
Heterogeneous nuclear 

ribonucleoprotein U 
90.5 9 8 8 1 - 1 * 

NCBP1 
Nuclear cap-binding protein subunit 

1 
91.8 

 
1 

 
3 - - 

 

PABP1 Polyadenylate-binding protein 1 70.6 13 
 

17 1 - - 
 

PABP3 Polyadenylate-binding protein 3 70 
 

3 
 

- - - 
 

PABP4 Polyadenylate-binding protein 4 70.7 9 
 

11 2 - - * 

RINI Ribonuclease inhibitor 49.9 
 

19 
 

1 - - 
 

RSMB 
Small nuclear ribonucleoprotein-

associated proteins B and B' 
24.6 

 
2 

 
2 - - 

 

SF3B3 Splicing factor 3B subunit 3 135.5 
 

1 1 8 - 1 *** 

SMD2 
Small nuclear ribonucleoprotein Sm 

D2 
13.5 1 3 

 
1 - - 

 

UAP56 Spliceosome RNA helicase BAT1 49 
  

1 2 - - 
 

XRN2 5'-3' exoribonuclease 2 108.5 3 
  

5 - - * 

YTDC2 
Probable ATP-dependent RNA 

helicase YTHDC2 
160.1 

  
3 10 1 1 *** 
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Transcriptional Regulation 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

AAPK1 
5'-AMP-activated protein kinase 

catalytic subunit alpha-1 
64 1 

  
2 - - *** 

AGO2 Protein argonaute-2 97.1 
  

9 5 - - ** 

CN166 UPF0568 protein C14orf166 28.1 7 
  

2 - - *** 

DOT1L 
Histone-lysine N-methyltransferase, 

H3 lysine-79 specific 
184.7 1 

  
11 1 - 

***/ 
+++ 

EF1D Elongation factor 1-delta 31.1 1 4 
 

- - - 
 

ELOC 
Transcription elongation factor B 

polypeptide 1 
12.5 

  
2 - - - 

 

EWS RNA-binding protein EWS 68.4 2 4 3 2 - - 
 

FHL2 
Four and a half LIM domains protein 

2 
32.2 

 
1 

 
3 - - 

 

FLII Protein flightless-1 homolog 144.7 
 

1 
 

6 - 1 ** 

H14 Histone H1.4 21.9 
  

4 1 - - 
 

H2AV Histone H2A.V 13.5 2 2 
 

1 - - 
 

H3L Histone H3-like 15.2 
  

2 1 - - 
 

HELLS Lymphoid-specific helicase 97 
 

42 
 

4 1 - 
**/ 
+++ 

PURA 
Transcriptional activator protein 

Pur-alpha 
34.9 

 
1 1 5 1 - +++ 

RFX5 DNA-binding protein RFX5 65.3 
 

1 
 

5 - - 
 

SLIRP 
SRA stem-loop-interacting RNA-
binding protein, mitochondrial 

12.3 2 
  

3 - - *** 

SMRD1 
SWI/SNF-related matrix-associated 

actin-dependent regulator of 
chromatin subfamily D member 1 

58.2 
 

1 
 

3 - - 
 

STAT3 
Signal transducer and activator of 

transcription 3 
88 1 1 

 
3 1 1 ++ 

TCP4 
Activated RNA polymerase II 

transcriptional coactivator p15 
14.4 1 

  
- - - 

 

TRI29 
Tripartite motif-containing protein 

29 
65.8 

 
1 1 3 - - *** 

ZNF24 Zinc finger protein 24 42.1 
 

1 
 

3 - - 
 

 

Differentiation 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

DMBT1 
Deleted in malignant brain tumors 1 

protein 
260.6 

 
1 

 
3 - - 

 

DOCK7 Dedicator of cytokinesis protein 7 242.4 
 

32 
 

10 - 1 ** 

DREB Drebrin 71.4 
 

3 
 

2 - - 
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DNA repair 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

MAPK2 
MAP kinase-activated protein kinase 

2 
45.5 

 
1 

 
2 - - 

 

MMS19 
MMS19 nucleotide excision repair 

protein homolog 
113.2 2 

  
8 - - 

 

MSH2 DNA mismatch repair protein Msh2 104.7 8 2 1 3 1 - ++ 

MSH6 DNA mismatch repair protein Msh6 152.7 7 
 

4 5 - - *** 

RFC3 Replication factor C subunit 3 40.5 1 
  

4 - - 
 

RFC5 Replication factor C subunit 5 38.5 2 
  

3 - - *** 

TERA 
Transitional endoplasmic reticulum 

ATPase 
89.3 

 
1 2 5 - - *** 

UBR5 E3 ubiquitin-protein ligase UBR5 309.2 1 
  

21 - 
 

*** 

 

Translation and Ribosomal Proteins 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

BRX1 
Ribosome biogenesis protein BRX1 

homolog 
41.4 

 
1 1 2 - - 

 

DDX21 Nucleolar RNA helicase 2 87.3 4 21 14 1 - - *** 

EF1G Elongation factor 1-gamma 50.1 
 

1 
 

5 - - ** 

EF2 Elongation factor 2 95.3 
 

15 
 

7 - - 
 

LAR4B La-related protein 4B 80.5 
 

5 
 

2 - - 
 

NOP2 
Putative ribosomal RNA 
methyltransferase NOP2 

89.2 
 

1 6 2 - - 
 

NUCL Nucleolin 76.6 18 19 20 2 - - 
 

R13AX 
Putative 60S ribosomal protein 

L13a-like MGC87657 
12.1 1 

  
- - - 

 

RL27 60S ribosomal protein L27 15.8 5 
  

- - - 
 

RL36A 60S ribosomal protein L36a 12.4 1 
  

- - - 
 

RL36L 60S ribosomal protein L36a-like 12.5 
  

2 - - - 
 

RS10 40S ribosomal protein S10 18.9 3 1 1 1 - - 
 

RS15 40S ribosomal protein S15 17 
 

3 
 

1 - - 
 

RS26L 
Putative 40S ribosomal protein S26-

like 1 
13 2 1 

 
- - - 

 

RS27 40S ribosomal protein S27 9.5 3 
  

- - - 
 

RS27A 40S ribosomal protein S27a 9.4 
  

1 - - - 
 

RS7 40S ribosomal protein S7 22.1 2 
  

2 - - 
 

TNR6B 
Trinucleotide repeat-containing 

gene 6B protein 
193.9 

  
2 1 - - 
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Apoptosis 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

1433S 14-3-3 protein sigma 27.8 
 

6 
 

4 - - 
 

GGCT Gamma-glutamylcyclotransferase 21 
 

1 
 

2 1 - */+++ 

SPB3 Serpin B3 44.5 
 

8 
 

1 1 - +++ 

SPB4 Serpin B4 44.8 
 

7 
 

- 2 1 +++ 

TRAF2 TNF receptor-associated factor 2 55.8 
 

3 
 

4 - - 
 

 

Metabolism 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

ACACA Acetyl-CoA carboxylase 1 265.4 
  

3 13 1 - +++ 

APOA1 Apolipoprotein A-I 30.8 
  

1 6 1 - *** 

C1TC 
C-1-tetrahydrofolate synthase, 

cytoplasmic 
101.5 20 12 6 4 - 1 *** 

CCHL Cytochrome c-type heme lyase 30.6 
  

2 1 1 - *** 

K6PL 6-phosphofructokinase, liver type 85 
 

1 
 

1 - 1 
 

K6PP 6-phosphofructokinase type C 85.5 7 4 
 

2 - 1 
 

 

Transport 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

ESYT2 Extended synaptotagmin-2 102.3 
 

1 
 

8 1 - 
***/ 
+++ 

GNPTA 
N-acetylglucosamine-1-

phosphotransferase subunits 
alpha/beta 

143.5 16 
  

7 1 - 
***/ 
+++ 

 

Nuclear Pore Complex 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

NU205 
Nuclear pore complex protein 

Nup205 
227.8 

  
3 17 1 1 

***/ 
+++ 

NUP93 
Nuclear pore complex protein 

Nup93 
93.4 

 
2 1 8 - - *** 

XPO1 Exportin-1 123.3 1 
  

8 - 1 * 
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Cytoskeleton 

Protein Full Name 
MW 

[kDa] 

# Peptides 
# D-
box 

# KEN TEK 
GPS-
ARM 

APC3 
IP 

Cdc20 
IP 

Cdh1 
IP 

CKAP4 Cytoskeleton-associated protein 4 66 7   4 - 2 *** 

DOCK8 Dedicator of cytokinesis protein 8 238.4  49  7 2 - +++ 

 

B) APC3 IP from Whole Cell Extracts 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1 216.4 6012.6 99 39.2 

APC2 Anaphase-promoting complex subunit 2 93.8 1961.5 40 38.8 

APC3 Cell division cycle protein 27 homolog 91.8 4164.3 63 57.2 

APC4 Anaphase-promoting complex subunit 4 92.1 2830.5 49 43.2 

APC5 Anaphase-promoting complex subunit 5 85 4122.4 64 55.9 

APC6 Cell division cycle protein 16 homolog 71.6 2670.6 41 39.8 

APC7 Anaphase-promoting complex subunit 7 63.1 2902.4 48 48.1 

APC8 Cell division cycle protein 23 homolog 68.8 3552 61 59.3 

APC10 Anaphase-promoting complex subunit 10 21.2 988.2 15 61.6 

APC12 Anaphase-promoting complex subunit CDC26 9.8 455 7 67.1 

APC16 UPF0448 protein C10orf104 11.7 213.2 4 18.2 

Cdc20 Cell division cycle protein 20 homolog 54.7 134.1 4 10.4 

Cdh1 Fizzy-related protein homolog 55.1 692.2 16 34.7 

 

Unique Interacting Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

4F2 4F2 cell-surface antigen heavy chain 68 161.8 3 5.6 

8ODP 7,8-dihydro-8-oxoguanine triphosphatase 22.5 58.5 2 12.7 

AAAT Neutral amino acid transporter B(0) 56.6 73.9 1 2.2 

AAKG1 5'-AMP-activated protein kinase subunit gamma-1 37.6 181.9 3 10.9 

AAPK1 5'-AMP-activated protein kinase catalytic subunit alpha-1 64 39.5 1 1.8 

ABCF2 ATP-binding cassette sub-family F member 2 71.2 151.9 4 5.8 

ADT1 ADP/ATP translocase 1 33 249.8 6 21.5 

ARF3 ADP-ribosylation factor 3 20.6 547.9 10 49.2 

ARL1 ADP-ribosylation factor-like protein 1 20.4 63.1 1 6.1 

ARL2 ADP-ribosylation factor-like protein 2 20.9 92 2 12 

AT1A1 Sodium/potassium-transporting ATPase subunit alpha-1 112.8 317 5 6.9 

ATP5H ATP synthase subunit d, mitochondrial 18.5 98.7 3 18 

BA2L1 Protein BAT2-like 1 165.4 716.4 15 12 
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BUB1B Mitotic checkpoint serine/threonine-protein kinase BUB1 beta 119.5 1405.2 31 32.9 

BUB3 Mitotic checkpoint protein BUB3 37.1 450.7 9 29.9 

C109A Coiled-coil domain-containing protein 109A 39.8 53.3 1 2.8 

C1TC C-1-tetrahydrofolate synthase, cytoplasmic 101.5 898.2 20 21.6 

CAZA1 F-actin-capping protein subunit alpha-1 32.9 87.6 2 9.1 

CDK2 Cell division protein kinase 2 33.9 132.7 3 11.7 

CKAP4 Cytoskeleton-associated protein 4 66 423.9 7 15.9 

CN166 UPF0568 protein C14orf166 28.1 266.4 7 23.8 

COPB Coatomer subunit beta 107.1 47.6 2 1.5 

COX2 Cytochrome c oxidase subunit 2 25.5 41.5 1 4.4 

CTNA1 Catenin alpha-1 100 35.5 1 1.9 

CUL1 Cullin-1 89.6 573.2 15 18.7 

CV028 UPF0027 protein C22orf28 55.2 35.8 1 2.2 

CYBP Calcyclin-binding protein 26.2 57.4 2 14.9 

DDX1 ATP-dependent RNA helicase DDX1 82.4 255.2 6 9.1 

DDX17 Probable ATP-dependent RNA helicase DDX17 72.3 97.1 2 3.1 

DDX21 Nucleolar RNA helicase 2 87.3 176.8 4 5.9 

DDX3X ATP-dependent RNA helicase DDX3X 73.2 681.4 12 22.4 

DEF1 Neutrophil defensin 1 10.2 38.5 1 9.6 

DIC Mitochondrial dicarboxylate carrier 31.3 73.9 2 6.3 

DOT1L Histone-lysine N-methyltransferase, H3 lysine-79 specific 184.7 35.7 1 0.6 

DSRAD Double-stranded RNA-specific adenosine deaminase 135.9 120.5 3 3 

EF1D Elongation factor 1-delta 31.1 37.3 1 8.5 

ENPL Endoplasmin 92.4 130.9 3 4.6 

ERD22 ER lumen protein retaining receptor 2 24.4 60.6 1 5.2 

ERGI1 Endoplasmic reticulum-Golgi intermediate compartment protein 1 32.6 51.4 2 7.9 

EWS RNA-binding protein EWS 68.4 153.8 2 5.8 

FA96B Protein FAM96B 17.7 118 3 39.3 

FBX5 F-box only protein 5 50.1 629.6 13 32 

GBB2 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 37.3 91.1 2 6.2 

GNPTA N-acetylglucosamine-1-phosphotransferase subunits alpha/beta 143.5 862.9 16 13.3 

GNPTG N-acetylglucosamine-1-phosphotransferase subunit gamma 34 243.9 5 19.7 

H2AV Histone H2A.V 13.5 76.4 2 12.5 

HBA Hemoglobin subunit alpha 15.2 142.1 3 28.2 

HBB Hemoglobin subunit beta 16 298.1 7 61.2 

HNRL1 Heterogeneous nuclear ribonucleoprotein U-like protein 1 95.7 121.6 2 3.3 

HNRPU Heterogeneous nuclear ribonucleoprotein U 90.5 437 9 14.1 

HS105 Heat shock protein 105 kDa 96.8 73.7 1 1.7 

HS90B Heat shock protein HSP 90-beta 83.2 508.2 11 17.8 

HSP72 Heat shock-related 70 kDa protein 2 70 1096.9 20 29.7 

IF2A Eukaryotic translation initiation factor 2 subunit 1 36.1 72.8 1 3.8 

IMPA2 Inositol monophosphatase 2 31.3 67.2 1 4.2 

K1430 UPF0501 protein KIAA1430 59.4 459.1 9 17.7 
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K6PP 6-phosphofructokinase type C 85.5 295.6 7 10.2 

KIF22 Kinesin-like protein KIF22 73.2 64 1 1.7 

KIF4A Chromosome-associated kinesin KIF4A 139.8 56.3 1 0.7 

KITM Thymidine kinase 2, mitochondrial 31 118.3 4 12.1 

KT3K Ketosamine-3-kinase 34.4 32.8 1 1.9 

LEG1 Galectin-1 14.7 159.5 4 37.8 

LONM Lon protease homolog, mitochondrial 106.4 74.1 2 2.1 

LRC48 Leucine-rich repeat-containing protein 48 61 54.8 1 2.1 

M2OM Mitochondrial 2-oxoglutarate/malate carrier protein 34 33.6 1 5.1 

MAGD2 Melanoma-associated antigen D2 64.9 215.2 4 13.4 

MAP7 Ensconsin 84 45 1 1.7 

MCM3 DNA replication licensing factor MCM3 90.9 199.3 4 7.1 

MCM4 DNA replication licensing factor MCM4 96.5 527 13 16.8 

MCM5 DNA replication licensing factor MCM5 82.2 70.3 2 3.8 

MCM7 DNA replication licensing factor MCM7 81.3 1961.4 36 42 

MD2L1 Mitotic spindle assembly checkpoint protein MAD2A 23.5 296.2 6 28.3 

MMS19 MMS19 nucleotide excision repair protein homolog 113.2 94.4 2 2.6 

MP2K2 Dual specificity mitogen-activated protein kinase kinase 2 44.4 90.1 2 4.5 

MSH2 DNA mismatch repair protein Msh2 104.7 320 8 8.9 

MSH6 DNA mismatch repair protein Msh6 152.7 308.7 7 5.7 

MTDC 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
37.9 64.2 1 3.1 

MYL6 Myosin light polypeptide 6 16.9 42.4 1 8.6 

NDKA Nucleoside diphosphate kinase A 17.1 85.7 3 26.3 

NDUAA 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 

10, mitochondrial 
40.7 376.1 8 20.6 

NEK2 Serine/threonine-protein kinase Nek2 51.7 152.2 3 7 

NRDC Nardilysin 131.5 64.7 2 1.6 

OSBP1 Oxysterol-binding protein 1 89.4 33.1 1 0.7 

PAF PCNA-associated factor 12 131.6 2 16.2 

PDZ11 PDZ domain-containing protein 11 16.1 154.1 3 32.9 

PKHA5 Pleckstrin homology domain-containing family A member 5 127.4 149 4 5.2 

PKHA6 Pleckstrin homology domain-containing family A member 6 117.1 299.2 7 8.2 

PPAC Low molecular weight phosphotyrosine protein phosphatase 18 33.3 1 5.7 

PPBI Intestinal-type alkaline phosphatase 56.8 44.2 1 3 

PPIA Peptidyl-prolyl cis-trans isomerase A 18 66.3 2 10.9 

PRDX3 Thioredoxin-dependent peroxide reductase, mitochondrial 27.7 35.6 1 4.3 

PRDX4 Peroxiredoxin-4 30.5 111 3 9.6 

PRPS3 Ribose-phosphate pyrophosphokinase 3 34.8 100.2 3 13.2 

PRS7 26S protease regulatory subunit 7 48.6 32.4 1 1.8 

PSA Puromycin-sensitive aminopeptidase 103.2 314.6 8 9.2 

PSDE 26S proteasome non-ATPase regulatory subunit 14 34.6 43.3 1 4.2 

R13AX Putative 60S ribosomal protein L13a-like MGC87657 12.1 51.6 1 10.8 

RAE1L mRNA export factor 40.9 88.6 2 4.9 
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RAP2B Ras-related protein Rap-2b 20.5 55.4 1 6 

RFC3 Replication factor C subunit 3 40.5 65 1 3.9 

RFC5 Replication factor C subunit 5 38.5 74.3 2 7.1 

RHOC Rho-related GTP-binding protein RhoC 22 83.6 2 15 

RIR2 Ribonucleoside-diphosphate reductase subunit M2 44.8 671.5 13 37 

RL27 60S ribosomal protein L27 15.8 195.3 5 42.6 

RL36A 60S ribosomal protein L36a 12.4 44.1 1 8.5 

RNF4 RING finger protein 4 21.3 112.9 3 15.3 

RPAB3 DNA-directed RNA polymerases I, II, and III subunit RPABC3 17.1 100.5 1 8.7 

RS10 40S ribosomal protein S10 18.9 155.4 3 14.5 

RS26L Putative 40S ribosomal protein S26-like 1 13 88.7 2 18.3 

RS27 40S ribosomal protein S27 9.5 90.3 3 38.1 

RS7 40S ribosomal protein S7 22.1 75.7 2 8.2 

SLIRP SRA stem-loop-interacting RNA-binding protein, mitochondrial 12.3 77.9 2 22 

SMD2 Small nuclear ribonucleoprotein Sm D2 13.5 32.5 1 8.5 

SPAT7 Spermatogenesis-associated protein 7 67.7 43.1 1 1.2 

SRP14 Signal recognition particle 14 kDa protein 14.6 118.9 2 30.9 

STAT3 Signal transducer and activator of transcription 3 88 33.7 1 3.4 

SYMC Methionyl-tRNA synthetase, cytoplasmic 101.1 44.6 1 1.1 

TBL2 Transducin beta-like protein 2 49.8 46.3 1 2.9 

TCP4 Activated RNA polymerase II transcriptional coactivator p15 14.4 48.3 1 8.7 

TIM23 Mitochondrial import inner membrane translocase subunit Tim23 21.9 60.6 1 8.1 

TIM50 Mitochondrial import inner membrane translocase subunit TIM50 39.6 46.7 1 4.8 

TRIO Triple functional domain protein 346.7 71.3 2 0.9 

TXTP Tricarboxylate transport protein, mitochondrial 34 158.6 4 13.8 

UBR5 E3 ubiquitin-protein ligase UBR5 309.2 45 1 0.6 

UCK2 Uridine-cytidine kinase 2 29.3 110.8 2 8.8 

USP9X Probable ubiquitin carboxyl-terminal hydrolase FAF-X 289.4 118.2 4 1.8 

VAPA Vesicle-associated membrane protein-associated protein A 27.9 34.9 1 6.4 

VDAC2 Voltage-dependent anion-selective channel protein 2 31.5 47.2 2 8.5 

XP32 Skin-specific protein 32 26.2 33.4 1 3.2 

XPO1 Exportin-1 123.3 42.5 1 1.1 

XRN2 5'-3' exoribonuclease 2 108.5 119.5 3 3.7 

 

Proteins with a lot more peptides/higher score than IgG Control 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

EF2 Elongation factor 2  95.3 324.2 8 9.2 

NUCL Nucleolin  76.6 823.4 18 19.7 

PABP1 Polyadenylate-binding protein 1  70.6 601.6 13 22.8 

PABP4 Polyadenylate-binding protein 4  70.7 352.5 9 14 

SKP1 S-phase kinase-associated protein 1  18.6 229.6 4 20.9 

TRP13 Thyroid receptor-interacting protein 13  48.5 395.8 9 24.3 
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C) Cdc20 IP from Whole Cell Extracts 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1  216.4 984.5 22 14.4 

APC2 Anaphase-promoting complex subunit 2  93.8 205.6 4 6.2 

APC3 Cell division cycle protein 27 homolog  91.8 976.6 17 26.9 

APC4 Anaphase-promoting complex subunit 4  92.1 560.8 13 16.7 

APC5 Anaphase-promoting complex subunit 5  85 97.7 2 2.6 

APC6 Cell division cycle protein 16 homolog  71.6 526 12 20.8 

APC7 Anaphase-promoting complex subunit 7  63.1 270 6 12 

APC8 Cell division cycle protein 23 homolog  68.8 873.4 18 32.5 

APC12 Anaphase-promoting complex subunit CDC26  9.8 233.1 3 41.2 

CDC20 Cell division cycle protein 20 homolog  54.7 1259.9 19 45.7 

 

Unique Interacting Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

1433B 14-3-3 protein beta/alpha  28.1 97.1 3 11 

1433E 14-3-3 protein epsilon  29.2 96 2 7.8 

1433S 14-3-3 protein sigma  27.8 306.4 6 22.6 

4F2 4F2 cell-surface antigen heavy chain  68 512.9 10 18.9 

8ODP 7,8-dihydro-8-oxoguanine triphosphatase  22.5 61.6 1 6.1 

ACTS Actin, alpha skeletal muscle  42 884.4 17 30.2 

AKAP8 A-kinase anchor protein 8  76.1 61.6 1 1.7 

AL3A1 Aldehyde dehydrogenase, dimeric NADP-preferring  50.3 43 1 2 

ARF3 ADP-ribosylation factor 3  20.6 355.4 7 28.2 

AT1A1 Sodium/potassium-transporting ATPase subunit alpha-1  112.8 622.9 12 15.1 

AT2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2  114.7 101.6 3 3.6 

ATD3B ATPase family AAA domain-containing protein 3B  72.5 255.4 6 9.1 

BPA1 Bullous pemphigoid antigen 1, isoforms 1/2/3/4/5/8 (Fragment)  372 65.5 2 0.4 

BRX1 Ribosome biogenesis protein BRX1 homolog  41.4 53 1 3.4 

BUB1 Mitotic checkpoint serine/threonine-protein kinase BUB1  122.3 612.1 15 18.6 

BUB1B Mitotic checkpoint serine/threonine-protein kinase BUB1 beta  119.5 3875.6 64 52.2 

BUB3 Mitotic checkpoint protein BUB3  37.1 928.7 17 40.2 

C1TC C-1-tetrahydrofolate synthase, cytoplasmic  101.5 594.3 12 13.8 

CALL3 Calmodulin-like protein 3  16.9 99.3 3 30.2 

CALM Calmodulin  16.8 56 1 11.4 

CALU Calumenin  37.1 87.8 2 5.7 

CASPA Caspase-10  58.9 28.9 1 1 

CATD Cathepsin D  44.5 119.9 3 6.6 
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CAZA1 F-actin-capping protein subunit alpha-1  32.9 173.1 4 22 

CMC2 Calcium-binding mitochondrial carrier protein Aralar2  74.1 53.4 2 3 

CO3A1 Collagen alpha-1(III) chain  138.5 58.1 1 0.8 

CUL5 Cullin-5  90.9 331.6 9 11.8 

CYTA Cystatin-A  11 77.2 2 30.6 

DC1I2 Cytoplasmic dynein 1 intermediate chain 2  71.4 167 3 6.9 

DDX1 ATP-dependent RNA helicase DDX1  82.4 62.2 2 2.8 

DDX17 Probable ATP-dependent RNA helicase DDX17  72.3 165.1 3 5.7 

DDX21 Nucleolar RNA helicase 2  87.3 964.5 21 29.4 

DDX3X ATP-dependent RNA helicase DDX3X  73.2 261.2 6 9.7 

DHX15 
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase 

DHX15  
90.9 293.5 7 8.6 

DMBT1 Deleted in malignant brain tumors 1 protein  260.6 57.6 1 0.6 

DOCK7 Dedicator of cytokinesis protein 7  242.4 1316.6 32 16.5 

DOCK8 Dedicator of cytokinesis protein 8  238.4 2280 49 24.5 

DREB Drebrin  71.4 173.8 3 7.2 

DSC3 Desmocollin-3  99.9 27.8 1 0.9 

ECH1 Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial  35.8 647 12 33.8 

EF1D Elongation factor 1-delta  31.1 196.4 4 22.1 

EF1G Elongation factor 1-gamma  50.1 52.4 1 3 

ENPL Endoplasmin  92.4 360.1 7 10.3 

EPIPL Epiplakin  552.8 533 9 2.4 

ERD22 ER lumen protein retaining receptor 2  24.4 38 1 5.2 

ERGI1 Endoplasmic reticulum-Golgi intermediate compartment protein 1  32.6 64 2 6.6 

ESYT2 Extended synaptotagmin-2  102.3 31.3 1 1.6 

EWS RNA-binding protein EWS  68.4 170.9 4 8.1 

F118B Protein FAM118B  39.5 461.3 9 19.9 

FABP5 Fatty acid-binding protein, epidermal  15.2 251.5 5 47.4 

FHL2 Four and a half LIM domains protein 2  32.2 34.4 1 3.9 

FKB15 FK506-binding protein 15  133.5 209.4 3 4.1 

FLII Protein flightless-1 homolog  144.7 44.8 1 1.1 

GALK1 Galactokinase  42.2 281.4 6 18.4 

GGCT Gamma-glutamylcyclotransferase  21 30.3 1 5.3 

GLNA Glutamine synthetase  42 81.3 2 9.4 

GOGB1 Golgin subfamily B member 1  375.8 51.8 1 0.3 

H2AV Histone H2A.V  13.5 70 2 12.5 

HELLS Lymphoid-specific helicase  97 2031.4 42 42.4 

HNRL1 Heterogeneous nuclear ribonucleoprotein U-like protein 1  95.7 319.9 7 11 

HNRPQ Heterogeneous nuclear ribonucleoprotein Q  69.6 47.6 1 1.9 

HNRPU Heterogeneous nuclear ribonucleoprotein U  90.5 466.8 8 10.2 

HS105 Heat shock protein 105 kDa  96.8 257.5 5 6.6 

HS90A Heat shock protein HSP 90-alpha  84.6 407.1 8 13.9 

HS90B Heat shock protein HSP 90-beta  83.2 716.2 15 23.2 
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HSP74 Heat shock 70 kDa protein 4  94.3 29.4 1 1.5 

IDE Insulin-degrading enzyme  117.9 54.7 1 1.1 

IL1F5 Interleukin-1 family member 5  17 43.1 1 6.5 

IL1F9 Interleukin-1 family member 9  18.7 39.2 1 7.1 

IMB1 Importin subunit beta-1  97.1 28 1 1.4 

IMMT Mitochondrial inner membrane protein  83.6 47.7 2 3.2 

INVO Involucrin  68.4 432.6 10 21.7 

K6PL 6-phosphofructokinase, liver type  85 33.9 1 1.2 

K6PP 6-phosphofructokinase type C  85.5 195.1 4 5.5 

KCRU Creatine kinase U-type, mitochondrial  47 94.9 2 3.8 

LAR4B La-related protein 4B  80.5 254.8 5 7 

LMNB1 Lamin-B1  66.4 160.9 3 6.1 

LRCH1 
Leucine-rich repeat and calponin homology domain-containing 

protein 1  
80.8 66.2 2 3.8 

LRCH3 
Leucine-rich repeat and calponin homology domain-containing 

protein 3  
86 603.8 13 22.4 

LRCH4 
Leucine-rich repeat and calponin homology domain-containing 

protein 4  
73.4 345.3 8 17.7 

MAPK2 MAP kinase-activated protein kinase 2  45.5 27.7 1 2.8 

MCM3 DNA replication licensing factor MCM3  90.9 45.2 1 1.1 

MCM7 DNA replication licensing factor MCM7  81.3 67.2 2 3.5 

MD2L1 Mitotic spindle assembly checkpoint protein MAD2A  23.5 346.7 8 41 

MIF Macrophage migration inhibitory factor  12.5 43.1 1 7.8 

ML12B Myosin regulatory light chain 12B  19.8 162.4 4 23.8 

MP2K2 Dual specificity mitogen-activated protein kinase kinase 2  44.4 44.8 1 2.2 

MSH2 DNA mismatch repair protein Msh2  104.7 51.8 2 1.9 

MYL6 Myosin light polypeptide 6  16.9 223.9 5 29.8 

MYO1F Myosin-If  124.8 40 1 1.1 

NCBP1 Nuclear cap-binding protein subunit 1  91.8 29.6 1 1.5 

NOP2 Putative ribosomal RNA methyltransferase NOP2 89.2 29.9 1 1.7 

NSUN2 tRNA (cytosine-5-)-methyltransferase NSUN2  86.4 84.4 2 2.7 

NUP93 Nuclear pore complex protein Nup93  93.4 70.4 2 2.8 

PABP3 Polyadenylate-binding protein 3  70 121.8 3 5.4 

PCMD2 
Protein-L-isoaspartate O-methyltransferase domain-containing 

protein 2  
41 38.4 1 2.5 

PDE5A cGMP-specific 3',5'-cyclic phosphodiesterase  99.9 28.5 1 1.3 

PKP1 Plakophilin-1  82.8 86.7 2 3.5 

PROF2 Profilin-2  15 74.4 1 10 

PRPS2 Ribose-phosphate pyrophosphokinase 2  34.7 66.7 1 5.3 

PSA Puromycin-sensitive aminopeptidase  103.2 601.6 13 15.7 

PSDE 26S proteasome non-ATPase regulatory subunit 14  34.6 27.5 1 4.2 

PSMD2 26S proteasome non-ATPase regulatory subunit 2  100.1 58.8 2 4.2 

PURA Transcriptional activator protein Pur-alpha  34.9 33.5 1 2.8 

RAB1C Putative Ras-related protein Rab-1C  22 96.2 2 10.9 

RAIN Ras-interacting protein 1  103.4 29.2 1 2.4 
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RFX5 DNA-binding protein RFX5  65.3 54.4 1 2.4 

RINI Ribonuclease inhibitor  49.9 1181.2 19 41 

RNAS7 Ribonuclease 7  17.5 53.2 1 9 

RO52 52 kDa Ro protein  54.1 404.4 10 18.1 

RPN1 
Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 

subunit 1  
68.5 136.3 3 6.4 

RS10 40S ribosomal protein S10  18.9 85.5 1 8.5 

RS15 40S ribosomal protein S15  17 105.4 3 21.4 

RS26L Putative 40S ribosomal protein S26-like 1  13 38.7 1 7.8 

RSMB Small nuclear ribonucleoprotein-associated proteins B and B'  24.6 53.8 2 6.2 

S10AB Protein S100-A11  11.7 88.5 2 17.1 

SAMH1 SAM domain and HD domain-containing protein 1  72.2 54.4 1 1.9 

SBSN Suprabasin  25.3 233.7 5 25.5 

SF3B3 Splicing factor 3B subunit 3  135.5 43.3 1 1.2 

SH3B4 SH3 domain-binding protein 4  107.4 40.9 1 1.1 

SMD2 Small nuclear ribonucleoprotein Sm D2  13.5 134.5 3 25.4 

SMRD1 
SWI/SNF-related matrix-associated actin-dependent regulator of 

chromatin subfamily D member 1  
58.2 29.6 1 1.7 

SPAT7 Spermatogenesis-associated protein 7  67.7 39 1 1.2 

SPB12 Serpin B12  46.2 43.6 1 2.2 

SPB3 Serpin B3  44.5 342.7 8 22.8 

SPB4 Serpin B4  44.8 363.4 7 20.3 

SPB5 Serpin B5  42.1 176.7 5 13.6 

SPR1A Cornifin-A  9.9 29.4 1 9 

SSBP Single-stranded DNA-binding protein, mitochondrial  17.2 30.6 1 10.1 

STAT3 Signal transducer and activator of transcription 3  88 49.6 1 1.7 

SYQ Glutaminyl-tRNA synthetase  87.7 53.3 1 2.1 

TCPB T-complex protein 1 subunit beta  57.5 159.7 4 10.1 

TCPH T-complex protein 1 subunit eta  59.3 286.7 6 11.8 

TCPZ T-complex protein 1 subunit zeta  58 52.3 2 3.6 

TERA Transitional endoplasmic reticulum ATPase  89.3 27.9 1 1.5 

TFR1 Transferrin receptor protein 1  84.8 226.9 6 8.8 

TGM3 Protein-glutamine gamma-glutamyltransferase E  76.6 430.9 11 20.1 

TPM3 Tropomyosin alpha-3 chain  32.8 88.1 3 11.3 

TRAF2 TNF receptor-associated factor 2  55.8 144.7 3 6.4 

TRI29 Tripartite motif-containing protein 29  65.8 29.5 1 1.4 

UCK2 Uridine-cytidine kinase 2  29.3 33.8 1 3.8 

XP32 Skin-specific protein 32  26.2 35.2 1 3.2 

ZCCHV Zinc finger CCCH-type antiviral protein 1  101.4 81 1 2 

ZNF24 Zinc finger protein 24  42.1 29.3 1 2.4 
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Proteins with a lot more peptides/higher score than IgG Control 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

CH60 60 kDa heat shock protein, mitochondrial  61 1898.4 32 49.2 

EF2 Elongation factor 2  95.3 618 15 18.1 

ELAV1 ELAV-like protein 1  36.1 178.8 4 15 

FILA Filaggrin  434.9 528.1 11 3.9 

LEG7 Galectin-7  15.1 403.9 7 66.2 

MYH9 Myosin-9  226.4 1063.4 21 13.5 

NUCL Nucleolin  76.6 903.6 19 20.8 

POF1B Protein POF1B 68.7 145.8 4 7.1 

PYRG1 CTP synthase 1  66.6 427.5 10 19.3 

S10A8 Protein S100-A8  10.8 304 7 46.2 

TCPE T-complex protein 1 subunit epsilon  59.6 458.4 12 21.4 

TCPG T-complex protein 1 subunit gamma  60.5 846.8 17 30.1 

TCPQ T-complex protein 1 subunit theta  59.6 290.9 7 14.8 

 

D) Cdh1 IP from Whole Cell Extracts 

APC/C subunits 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

APC1 Anaphase-promoting complex subunit 1  216.4 364.4 10 7.2 

APC3 Cell division cycle protein 27 homolog  91.8 136.6 4 5.5 

APC6 Cell division cycle protein 16 homolog  71.6 71.4 2 3.1 

APC8 Cell division cycle protein 23 homolog  68.8 153.7 4 6.4 

Cdh1 Fizzy-related protein homolog  55.1 551.1 12 26.6 

 

Unique Interacting Proteins 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

4F2 4F2 cell-surface antigen heavy chain  68 219.2 4 8.7 

8ODP 7,8-dihydro-8-oxoguanine triphosphatase  22.5 42.6 1 6.1 

ACACA Acetyl-CoA carboxylase 1  265.4 90.1 3 1.7 

ACTG Actin, cytoplasmic 2  41.8 1305.9 24 60 

AGO2 Protein argonaute-2  97.1 384 9 12.6 

APOA1 Apolipoprotein A-I  30.8 34.1 1 4.9 

APOC3 Apolipoprotein C-III  10.8 86.7 1 16.2 

AT1A1 Sodium/potassium-transporting ATPase subunit alpha-1  112.8 294.1 6 7 

BRX1 Ribosome biogenesis protein BRX1 homolog  41.4 42.1 1 3.4 

BUB3 Mitotic checkpoint protein BUB3  37.1 34.8 1 4.3 
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C1TC C-1-tetrahydrofolate synthase, cytoplasmic  101.5 267.7 6 7.7 

CCHL Cytochrome c-type heme lyase  30.6 94.6 2 8.6 

DC1I2 Cytoplasmic dynein 1 intermediate chain 2  71.4 49.4 1 3.3 

DDX1 ATP-dependent RNA helicase DDX1  82.4 33.9 1 1.5 

DDX21 Nucleolar RNA helicase 2  87.3 539.1 14 22 

DDX3X ATP-dependent RNA helicase DDX3X  73.2 323.8 7 12.7 

DHX15 
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase 

DHX15  
90.9 54.6 1 1.4 

ELOC Transcription elongation factor B polypeptide 1  12.5 48.6 2 19.6 

ENPL Endoplasmin  92.4 345.1 9 15.1 

EWS RNA-binding protein EWS  68.4 193 3 8.1 

FAS Fatty acid synthase  273.3 37.6 1 0.4 

GBB3 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3  37.2 36.9 1 2.9 

GOGA3 Golgin subfamily A member 3  167.3 3241.4 58 41.6 

H14 Histone H1.4  21.9 227 4 15.5 

H3L Histone H3-like  15.2 48.2 2 11.1 

HBA Hemoglobin subunit alpha  15.2 226.7 5 35.9 

HBB Hemoglobin subunit beta  16 156.3 4 22.4 

HNRL1 Heterogeneous nuclear ribonucleoprotein U-like protein 1  95.7 215.7 5 7.1 

HNRPU Heterogeneous nuclear ribonucleoprotein U  90.5 463.7 8 13.9 

HS74L Heat shock 70 kDa protein 4L  94.4 38.1 1 1.7 

HS90B Heat shock protein HSP 90-beta  83.2 415 10 16.6 

HSP72 Heat shock-related 70 kDa protein 2  70 1022.1 17 19.2 

HSP74 Heat shock 70 kDa protein 4  94.3 55.2 2 3.2 

IDHC Isocitrate dehydrogenase [NADP] cytoplasmic  46.6 36.7 1 3.1 

KLHL9 Kelch-like protein 9  69.4 62.6 2 3.2 

LIPA1 Liprin-alpha-1  135.7 92.4 2 2.2 

MCM7 DNA replication licensing factor MCM7  81.3 39.6 1 1.8 

ML12B Myosin regulatory light chain 12B  19.8 139.9 3 17.4 

MSH2 DNA mismatch repair protein Msh2  104.7 40.6 1 1 

MSH6 DNA mismatch repair protein Msh6  152.7 144.7 4 3.5 

MTDC 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial  
37.9 37 1 3.1 

MYL6 Myosin light polypeptide 6  16.9 75.1 2 13.9 

NEST Nestin  177.3 87.7 1 0.7 

NOP2 Putative ribosomal RNA methyltransferase NOP2 89.2 214.8 6 9.6 

NU205 Nuclear pore complex protein Nup205  227.8 98.1 3 1.7 

NUP93 Nuclear pore complex protein Nup93  93.4 49.4 1 1.5 

PPIA Peptidyl-prolyl cis-trans isomerase A  18 41.8 1 5.5 

PSA Puromycin-sensitive aminopeptidase  103.2 456.3 12 13.6 

PURA Transcriptional activator protein Pur-alpha  34.9 50.2 1 2.8 

RAB1C Putative Ras-related protein Rab-1C  22 65 2 10.9 

RIR2 Ribonucleoside-diphosphate reductase subunit M2  44.8 361.8 8 25.7 

RL36L 60S ribosomal protein L36a-like  12.5 67.7 2 17.9 
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RO52 52 kDa Ro protein  54.1 260.3 7 14.7 

RPAB3 DNA-directed RNA polymerases I, II, and III subunit RPABC3  17.1 58.4 1 8.7 

RS10 40S ribosomal protein S10  18.9 68.6 1 8.5 

RS27A 40S ribosomal protein S27a  9.4 41.5 1 23.8 

SEMG1 Semenogelin-1  52.1 52.8 2 5.2 

SF3B3 Splicing factor 3B subunit 3  135.5 49.8 1 1.2 

SMC4 Structural maintenance of chromosomes protein 4  147.1 70.8 3 2.5 

SSBP Single-stranded DNA-binding protein, mitochondrial  17.2 49 1 10.1 

TBB1 Tubulin beta-1 chain  50.3 107.1 3 6 

TCPH T-complex protein 1 subunit eta  59.3 70.3 2 4.2 

TERA Transitional endoplasmic reticulum ATPase  89.3 84.3 2 3 

TNR6B Trinucleotide repeat-containing gene 6B protein  193.9 76.7 2 2 

TRI29 Tripartite motif-containing protein 29  65.8 35 1 2 

UAP56 Spliceosome RNA helicase BAT1  49 59.4 1 3.3 

VDAC2 Voltage-dependent anion-selective channel protein 2  31.5 38.8 1 4.4 

YTDC2 Probable ATP-dependent RNA helicase YTHDC2  160.1 94.4 3 2.3 

ZCCHV Zinc finger CCCH-type antiviral protein 1  101.4 121.2 2 3.7 

 

Proteins with a lot more peptides/higher score than IgG Control 

Protein Full Name 
MW 

[kDa] 
Mascot 
Score 

# 
Peptides 

SC 
[%] 

HNRPM Heterogeneous nuclear ribonucleoprotein M  77.5 511.7 9 16.6 

MYH10 Myosin-10  228.9 605.7 15 9.2 

MYH9 Myosin-9  226.4 2201.5 45 24.4 

NUCL Nucleolin  76.6 1130.6 20 20.7 

PABP1 Polyadenylate-binding protein 1  70.6 722.2 17 28.6 

PABP4 Polyadenylate-binding protein 4  70.7 495.7 11 16.9 

TCPG T-complex protein 1 subunit gamma  60.5 208.6 5 9.5 

 

Figure S1.4 – Mass Spectrometric identification of APC3-, Cdc20- and Cdh1-interacting proteins from 
whole cell extracts 

A) All proteins mentioned in Chapter 2 text. D-boxes (*) and KEN-boxes (+) were scored by GPS-ARM. 
High, Medium and Low thresholded peptides are denoted by ***/+++, **/++ and */+, respectively. 

B-D) List of interacting proteins for APC3 (B), Cdc20 (C) and Cdh1 (D). MW=Molecular Weight. SC = 
Sequence Coverage. 

Asynchronous HeLa cell lysates and IP’d with normal IgG, APC3, Cdc20 or Cdh1 antisera. IPs were 
washed, separated by SDS-PAGE and subjected to in-gel tryptic digestion. Tryptic peptides were 
analysed by LC-MS/MS upon an Impact ESI-TOF (Bruker), searched by ProteinScape (Bruker) by 
comparison to a Mascot Database (Matrix Science). A 1% FDR was applied to the results, and obvious 
contaminants and proteins found in the IgG control were removed from the lists. 
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