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Abstract

This thesis looks at improving the generation of maps for intelligent virtual agents in large scale environ-
ments. Virtual environments are growing larger in size and becoming more complex. There is a major
challenge in providing agents that are able to autonomously generate their own map representations of
the environment for use in navigation. Currently, map generation for agents in large scale virtual envi-
ronments is performed either by hand or requires a lengthy pre-processing step where the map is built
offline. We are interested in environments where this process is not possible, such as those that encourage
user generated content.

We look at improving map generation in these environments by using trails. Trails are a set of
observations of how a user navigates an environment over time. By observing trails an agent is able to
identify free space in an environment and how to navigate between points without needing to perform
any collision checking. We found that trails in a virtual environments are a useful source of information
for an agent’s map building process. Trails can be used to improve rapidly exploring randomised tree
and probabilistic roadmap generation, as well as being used as a source of information for segmenting

maps in very large scale environments.
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CHAPTER 1

Introduction

The prevalence of virtual worlds presents an interesting challenge for intelligent mobile agents. Online,

large-scale, persistent virtual worlds such as Second Life (Linden Research Inc.,2012) and Massive Multi-

player Online (MMO) style games are becoming more popular (Pittman and GauthierDickeyl [2007). The

term wvirtual environment refers to a digital representation of a geometric or abstract space. A traditional
view of virtual environments is virtual reality, a digital representation of a three dimensional world. Users
are able to move around these worlds exploring and interacting with their environment. Virtual environ-

ments are used for a variety of applications, the largest being the computer game industry, attracting $21

billion in sales for 2012 (Entertainment Software Association) [2013). Other uses for virtual environments

include socialising, research, modelling, business and education.

Intelligent agents are a type of program that is able to perceive its environment and then act on

the observations made (Russell and Norvig), [2003). We are interested in intelligent embodied agents in

this thesis. An intelligent agent makes decisions based on observations of the environment they are in.
Embodied agents are those that have a presence in the environment they are interacting with. In the
real world agents observe the environment using sensors and act on it using motors. Examples of these
agents are robots that interact with the real world such as the mars rover , driverless
cars or the Roomba (firobot.com| 2014). Virtual embodied agents control game characters

and avatars in virtual environments. They are able to perceive their environment using the information



provided by the server that controls the virtual world. They then act on it the same way as a human
controlled avatar, by sending commands back to this server.

There is a challenge to provide intelligent agents for virtual environments that are able to plan routes
and navigate the world even when faced with large scale environments and user generated content.
Planning for agents involves linking a series of actions together to achieve a specific task. Mobile agents
are required to plan routes and navigate between specific points in an environment. To plan a route over
long distances the agent needs an internal representation, a map, of the environment used to identify
collision free paths between obstacles in the world. Maps of an environment can be given to the agent
or they can generate their own. Currently, game based virtual agents are given a pre-computed set of
routes for known environments. These are usually generated by hand, but some can be done automatically
(Nieuwenhuisen et al.,|2004). This is due to the time required to generate a map in a large scale, unknown
environment. The generation time for an agent to create a full map of the environment can be high, and
so it is often done in a pre-processing step and given to the agent before the environment is released for
use. When the agent needs to be provided with maps in advance there is little a user in the virtual world
can do to change their environment without causing the agent problems with navigation.

A couple of examples of environments that encourage user generated content are Second Life, and
first person shooter games such as Unreal Tournament (Epic Games Inc., |2012)). Second Life is a very
large, online, populated environment where users are encouraged to create their own spaces. This virtual
world is continually growing and changing as more users engage with the environment. There is a low
cost in terms of time and effort for virtual environments to change, so change tends to be vast and rapid.
It is not possible for an agent to pre-compute a map of the entire environment in an offline pre-processing
step. Second Life changes too rapidly for this to be feasible. First person shooters have a long history
of encouraging user generated content in terms of new levels to explore. One of the original first person
shooters widely available on the PC, Doom, still has a set of tutorials and a community of people building
new content for the game (vd Heiden| [2008). Most new games follow this example and provide toolkits
for adding new content. For example: Bethesda Softworks Inc.| (2008]) provide a toolkit for adding new
areas and content to their game worlds (Fallout 3 and New Vegas in this case) and the |Open Metaverse
Foundation| (2012)) provide libraries for creating Second Life clones and allowing agents to connect to these
environments. When an agent is expected to navigate a user created environment, it will have a limited
period of time to try and build a usable map of this environment before use. The current method used

is to place the map building burden on the level designer and ask them to generate the navigation maps



and route plans for an agent. Realistic behaviour of agents for these games is preferred. Nieuwenhuisen
et al.| (2004) note that automatically generating the navigation maps for an agent can lead to low quality
maps and repetitive behaviour which is noticeable to an end user.

This thesis looks at improving the generation of map representations used for navigation by intelligent
mobile agents in large scale, virtual environments. This problem is interesting as virtual worlds are very
large, continuous, ever changing environments. Intelligent mobile agents are embodied agents that inhabit
virtual environments and are able to interact with their world in the same way as any human user . It
is not trivial for an agent to create a map and be able to use it in a short period of time in large scale,
complex environments. In very large worlds like Second Life there is a market for autonomous agents,
able to create their own maps of the world and then to use these to navigate on demand. As we are
interested in online populated environments, the speed the agent can react to commands and changes in
the environment is important. Too long in delaying an action and the environment and situation may
have changed dramatically.

To plan navigation between points an agent needs some type of internal map representation of their
environment. We look at generating and using roadmaps for navigation in this thesis. Roadmaps are a
specific map representation that consist of a set of points in an environment and the paths that can be
taken to move between these points. We go into more detail in the literature review about mapping and
the specific roadmap representations we focus on (Sections and . Roadmaps are a popular
form of representation due to the ease at which they can be constructed in any environment. However,
the time required to generate a map in a large scale environment can be very long, especially if the
environment contains narrow passages.

To improve the map generation of intelligent mobile virtual agents in large scale online environments
we look at an available, if little used, method of gathering information about the world: trails. Trails
are a set of observations based on the movement of other agents in an environment. Trails in the real
world are the traces left by an agent (human, animal or artificial) as it navigates between places in
an environment. One example of trails can be seen where people have worn down long grass by their
passage (See Figure . Historically trails have been used to track food and water as well as finding
routes between settlements. Animal trails are used by both animal and human hunters when looking for
food and water. Trails have been used to follow the movement of people over entire continents throughout
history by looking at burial habits and the artefacts left behind (Bradley}, |2007). They are still a useful

tool in architecture, showing the path people use when crossing grass or scrub land areas rather than



the paths that have been built (Myhill, 2004). More recently, trails have been used as a starting point
for agent navigation in real environments and to aid human navigation in virtual environments (Ruddle,
2005; [Yuan et al.;2010). A digital trail is an observation of the location of a particular avatar over time.

The specific properties of trails that we are interested in are those that give the agent more information
about its environment. Every position an avatar has been observed at is in free space. This information is
important as the most costly part of map generation in unknown environments is collision checking. The
agent can make an assumption that if another agent has been observed in a location it is free without
needing to perform any calculations. Furthermore, if the time between consecutive observations from
a single agent is small, then the agent is able to conclude that a straight line path between the two
observations will also be possible to navigate. We use these pieces of information to improve roadmap
generation as a roadmap is, in the simplest form, a set of nodes and straight lines connecting them.
Trails give this information without the need for any calculations and can form a starting point for map
generation.

The limitations of using trails is that they only give information about where agents have been
observed. If an environment is not visited by other people then no trail information will be available.
Virtual environments also can have other forms of transport, such as teleportation and flying. We are
interested in an agent that exists at ground level and walks between points in the environment. So if the
primary mode of transport in a virtual world is flying, no useful trail information will be available. We

look at methods of combining trails with existing map generation methods to mitigate this.

1.1 Contributions of the Thesis

The contributions of this thesis are as follows:

1. Validation that trails are a useful source of information for an agent to build a map (Chapter 3 —

7)

2. A study into the effect of trails being used to generate probabilistic roadmaps in large scale envi-
ronments.
We find that trails have a positive effect on roadmap generation, reducing the time needed for map
generation, reducing the overall plan length and improving on the success rate of the agent being

able to plan routes around the environment. (Chapter 5)



3. A study into the effect of trails on roadmap generation as the environment grows larger. Validation

that trails become more important as the size of the environment increases (Chapter 6)

4. A study into the effect of trails on another type of roadmap representation, rapidly exploring
randomised trees. Trails also have a beneficial effect on the generation of RRTSs, improving their

performance (Chapter 4).

5. An investigation into segmentation strategies in large scale virtual environments and the effect that

trails can have if they are used as an information source. (Chapter 7)

6. A map trail corpus for intelligent agents in Second Life available at http://www.katsamperi.co.

uk/maps . php.

1.2 Overview of the Thesis

Chapter [2]looks at the related literature covering virtual environments, agent based map representation,
roadmaps and trails. We look at a number of different map representations that are available to agents
attempting to navigate virtual environments. Section then focuses on roadmap representations, these
are the map representations we look at improving the generation of in Chapters ] - [} Following that,
Section looks at how trails have been used in the real world for navigation and their application in
other domains.

We did not know initially if trails were a viable source of information for agent map building. Chapter
presents our evaluation domain and looks at trails in more detail. This chapter investigates patterns
in digital trails in an attempt to see if meaningful information can be extracted from the movement of
avatars in an environment. After first establishing that it is possible to observe the record the movement
of avatars, we studied a particular social norm that emerged from the observations. Not walking on the
grass is an established social norm in the United Kingdom. Social pressures ensure that in grass and park
areas people tend to keep on the paths when navigating between places. This pattern is also present in a
virtual park environment and that it holds over avatars of all ‘ages’ (calculated from their creation date).
This chapter validates the idea that it is possible to gather meaningful trails in virtual environments.

Chapter 4] then investigates using trail information to improve the generation of rapidly exploring
randomised trees (RRT). This chapter compares existing RRT generation and point selection methods

with those biased by trail points. Biasing the map generation using trails gives a tree that tends to
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grow towards more populated areas of the environment. The results show that this reduces the length of
planned routes between a given start and end point.

Chapter [5] follows on by exploring the effect trail points have on a different type of roadmap represen-
tation, the Probabilistic Roadmap (PRM). In this chapter we look at changing the point selection method
part of the PRM generation algorithm. Trails are used either to bias points selected for inclusion in the
roadmap, or in the roadmap directly. The results of the experiment were that in both small and large
scale environments trails have a positive effect on the generation time of the PRM. Trails also improve
the success rate of being able to plan a set of six routes using these maps and reduce the overall planned
path length. A combination of quasi-random Halton points and Trail points give the best performance
in the environments studied.

Chapter [6] expands on the work done previously. The disadvantage when looking at online virtual
environments is finding an area that matches the set of criteria we are interested in. The environment
must have unrestricted access, be large enough, mostly flat and highly populated. In this chapter we
designed a set of environments to look at the difference made by trails in a specific set of circumstances.
This gives us an idea of how trail based PRMs will perform in different situations. The results show that
as an environment becomes larger, trails are more important as in limited point scenarios there is no way
for a random PRM method to successfully plan routes.

As the size of the environment grows larger, the time required for the agent to generate a map also
increases. We want to keep this time as short as possible and so Chapter [7] looks at map segmentation,
a standard approach taken in large scale environments. Segmentation splits a map into distinct regions.
This chapter looks at whether trails can be used to improve the segmentation methods, speeding up map
generation and path planning. The results show that the due to the nature of trails, the spread of points
is generally not sufficient to generate a good segmentation over the environment. This then results in
trail based segmentation not out outperforming more simple methods of segmentation. However, trails
improve the route planning success rate in large scale environments.

Finally, Chapter [§reviews all our results and looks at future work which can be done to improve map

generation in intelligent mobile virtual agents.



CHAPTER 2

Literature Review

2.1 Introduction

This chapter looks at the current literature related to this thesis. The overarching problem we are
looking at is how to improve map generation for intelligent virtual agents in large scale, populated virtual
environments. We first look at what is meant by the term ‘virtual environment’. Section looks at how
virtual environments have evolved over time and their many uses in entertainment, research, education
and industry. This section gives us the background information for virtual environments and why we are
choosing to look at agents inhabiting online worlds.

Section then looks at current map representations for use in virtual and real world environments.
We look at the different classifications of maps, how they are used, and which type is considered most
suitable for which type of environment. Section then expands on the roadmap representations we
focus on in Chapters and[6] After this, in Section we look at how maps can be used to represent
very large scale environments. We focus on segmentation, the process of splitting a large map into small
individual parts.

Finally, Section [2.6]looks at trails. We define digital trails as a set of observations made of the location

of a specific avatar over time. This idea is based on trails in the real world, the evidence left as an agent has



navigated between places. We look at how trails have been used for research in the real world and some
of their uses in virtual environments. Trails are used throughout this thesis as a source of information
for an agent’s map building process. Chapter [3] looks at whether meaningful trails can be gathered in
our chosen evaluation domain, Chapter [ —[6] look at using trails as a source of information for roadmap
representations of space and Chapter [7] looks at how we can segment a map using the information in

trails.

2.2 Virtual Environments

The term virtual environment refers to any digital representation of an area. This area can be based
on the real world or entirely abstract. The original virtual environments were text based games. These
gave an impression of space through descriptions of the environment and the effect actions had. Virtual
environments and virtual reality have long been of interest to researchers and for information visualisation.
We primarily look at game based virtual environments for our research.

Game-based virtual environments can be split into two categories: single and multi-player envi-
ronments. Single player environments started experimenting with graphics moving from static images
through to the advanced visuals we have in today’s games. Multi-player games became popular first with
text based games such as Multi-User Dungeons (MUDs) (Bartlel [1990). MUDs then evolved over time,
incorporating graphics to achieve the large online game environments seen today. These come in two

flavours:

1. Game worlds, where the player has little control of their environment. e.g.

e Massively Multi-Player Online Roleplay Games (MMORPG) such as World of Warcraft (Bliz-

zard Entertainment| 2013)

e First person shooters such as Counterstrike (Valve Corporation, [2013)
2. Collaborative environments where the users can work together to build their environment. e.g.

e Second Life (Linden Research Inc.|2012)
e Minecraft (Notch Development AB, [2012))

e Metaplace (Metaplace Incj [2010])



In recent years the application of virtual environments has grown wider and not just limited to

gaming, they have social, business, education and research platforms as well (Chittaro et all [2006).

Offline virtual worlds are used in design and architecture. They give an opportunity to showcase the

appearance of a product from all angles without the expense of building a prototype. Online virtual

worlds, such as Second Life (Linden Research Inc., 2012) provide an ever growing large scale, persistent

virtual environment. Unlike many game-based virtual environments they encourage users to create and
own their own spaces and objects in the world. Many businesses have virtual buildings in Second Life.
These have been used to conduct meetings, interviews and recruitment events . Users
can find out information about the business and talk to potential customers in an informal setting. In
this way the virtual environment is being used as a cross between an instant messaging service, video
conferencing and a 3D website.

In education, virtual environments can be useful for distance learning. Universities also use Second

Life for teaching, prototyping and meetings. (Glasgow Caledonian University}, 2013}/ The Open University,

2013). The Open University also use Second Life as a method for delivering lectures and seminars to

distance learners (The Open University, [2013). Environments such as WhyVille are aimed at children

and used to explain concepts. By using a game world, Whyville was able to explore and explain to school

children how diseases spread based on the child’s own interest in the subject (Foley and La Torre, 2004).

From a research perspective, virtual environments offer a controlled setting which can be used to

consistently replicate experiments for direct comparison (Kaminka et al. 2002; |Guimaraes et al., 2003;

[Laird, 2002; Heylen et al., [2001). It is considered a simple matter to gather information about the

movement and behaviour of avatars in virtual environments (Chittaro et al., 2006).

Researchers have used virtual environments to investigate a number of ideas:

e The behaviour of people in virtual and real environments (Rakkolainen et al., [1998; Heylen et al.)

[2001} [Yee et al., 2007} [Friedman et al., 2007b} |[Samperi et all 2012; Loomis et al., [1999)

e Understanding human memory and applying this to agents (Brom et al., [2009; Brom and Lukavsky|

2009alb)

e How people visualise, represent, learn and navigate space (Sadeghian et al.l 2006} [Ruddle) |2005}
[Barbosa and Rodrigues|, [2006; [Ramloll and Mowat], [200T}; [Ruddle, 2008}, [Doyle et al., [1997; [Chittaro|
let al.| 2006} [Dixit and Youngblood), [2008)

e Testing map representation and use in robotics (Mekni and Moulin, [2010} [Jarvis, [2010; [Yuan et al.|




2010)

e Replicating human behaviour for intelligent systems (Malfaz and Salichs| 2010; Doyle et al., 1997}
Heylen et al., 2001)

Linden Research Inc. published a series of statistics about the Second Life environment after its
10th anniversary (Linden Research Inc.||2013)). Second Life is home to roughly 36 million accounts, with
more than one million of these visiting the virtual world on a monthly basis. In terms of size, the full
environment is roughly 700 square miles. Although this is not always continuous space. The environment
is ever changing as people are able to purchase land and change their environment with few rules applied.
Anecdotally, while undertaking the research for this PhD, the five region area of Second Life we have
chosen to use as the basis for our experiments has had significant changes on at least five occasions. This
has entirely changed the structure of the environment. Regions have been added to the environment
and then removed. Regions have also changed their position relative to those around them. Virtual
environments, unlike real world environments, are very flexible about change. The most common type of
changes in these environments are on a smaller scale. These are small objects and buildings created and
moved around by individual users. For an agent to be able to generate a map of an environment even
a fraction of the size of the full Second Life environment it must be able to do so online. We explore
how agents are able to connect to Second Life in Section |3.2] where we go into more detail about the
evaluation domain used in this thesis.

By looking at virtual agents we can side-step the problems faced by physical agents and focus on how
to represent and build maps of increasingly large, complex environments (Laird} 2002). By looking at
dynamic and populated environments a mobile agent is faced with a realistic setting, in which objects

move, the layout can change, and the agent is able to observe the movement of other avatars in the area.

2.3 Mapping

Mapping for intelligent mobile agents is an active research area with a lot of research still being done.
Agents need map representations for planning how to navigate through an environment. In virtual and
game environments intelligent agents use maps to orient themselves and make decisions about how to
navigate between places. For user controlled agents (such as avatars) maps are used for a similar purpose.
They orient the user in an environment showing them what is in the near area and how to navigate to

further away points. In games often the map is not given up front to a user as part of the game is
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to explore the environment. When looking at intelligent virtual agents we assume that they are not
interested in exploration of an environment for fun, merely as a tool to build a map which can then
be used to carry out tasks. In this section we briefly look at the different types of map representation
available to intelligent mobile virtual agents giving a background to our research. Section [2:4] then goes
into more detail about the specific map representations we are using in this thesis.

Map representations can be split into three broad categories: metric, topological and conceptual maps.
Combinations of different map representation types are called hybrid maps, these are a combination of
different types of information and the means for the agent to link representations together
[Dudekl, [1998]; [Poncela et all, [2002; [Kuipers et al. 2004} [Zender et al, 2008; [Mekni and Moulin|, 2010;

[Konolige et al., [2011). Hybrid representations are used in an attempt to reduce the limitations of any

one map representation. For example, Simmons and Koenig (1995) note that metric maps built from

sensors can be prone to inaccuracy, so they use topological maps to try and resolve any ambiguities in

the underlying representation.

2.3.1 Conceptual Maps

Conceptual maps attempt to attach semantic meaning to objects and locations in an environment. They
are used by an agent to understand how a world fits together and derive meaning from objects found.
Cognitive maps are a type of conceptual map. They are one theory as to how humans visualise space as

they attempt to navigate between places (Tolmanl 1948). Cognitive maps have been used as the basis for

agent map generation and representation (Kuipers, [1982; [Kuipers and Levitt}, |1988; Zender et al., [2008;

[Pronobis et al. [2009). This theory is that when people are using maps to navigate they do not use

just one mental representation, but instead use a hierarchical representation, storing information about

landmarks and paths between places in different levels (Tapus and Vasudevan, 2005; [Stoffel et al., 2008).

2.3.2 Metric Maps

Metric maps are geometric representations of an environment (Poncela et al., [2002)). These are considered

to be the simplest and most robust of mapping options giving the location of objects in relation to one

another (Kuipers and Levitt), (1988} [Filliatl 2003). Metric maps are built directly from sensor information

and so a major advantage in using these representations comes from the ease at which the map can

be understood by both human users and other agents. The purpose of a metric map is to provide a

geometric representation of free and blocked space in an environment (Filliat, |2003). These maps can
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be built incrementally in real-time, allowing an agent to detect changes in its environment through new

blocked and free areas (Saiki et al., 2009).

The most common metric map representation used is the occupancy grid (Elfes|, [1989). This represents
the environment as a grid with each cell containing the probability of that area in the environment being

blocked or free. Occupancy grids are popular due to their simple nature, they are fast to build and

maintain and can describe any environment in a number of dimensions (Poncela et al., 2002)). They have

been used in dynamic and unknown environments by updating the probability stored in each cell over

time. As a new observation is made by the agent the probability of the cell being blocked is calculated

and this is combined with any previously stored information in the map (Wolf and Sukhatmel 2005; [Yang

land Wang| 2011)). However, occupancy grids use a lot of memory to store and process (Kraetzschmar

let al.| [2004; |Waqar, 2011} [Park et al.,[2012)) and can be slow to use in path planning (Filliatl 2003) so they

are often abstracted into either topological maps or feature-based representations such as the appearance

or line map (Zender et al., 2008} |Ozkil et al.| [2011)).

Landmark and feature-based maps are a subset of metric representations. These maps use a metric

representation of the environment, with labels added to identify specific places (Thrun et al.l|[1998)). Other

metric representations include the barometric map which uses air pressure to determine which floor of a

building the agent is on in a three dimensional environment (Ozkil et al., [2011).

One type of map representation that lends itself well to virtual environments is the object map. When
using object maps in a real environment, sensor information is used to segment the world into a set of
distinct objects which is stored in relation to a coordinate framework . Virtual worlds
are presented to the agent in this format directly. Object maps are a more compact representation than
occupancy grids. This combined with the ease of building object maps in virtual environments mean that

they are considered a good type of representation to use in large-scale or complex virtual environments

(Biswas et al., [2002; Wurm et al., [2011). The disadvantage inherent in object maps is the same for all

metric representations: Metric maps are resource intensive, explicit localisation is needed at all times

and the computational and memory cost of generating, updating and using a metric map for planning is

high when compared to more abstract representations, such as the topological map (Poncela et al, [2002;

[Filliat|, [2003} |Shi et al. [2010; [Konolige et al [2011} |Augustine et al.| 2012).
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2.3.3 Topological Maps

Topological maps are abstract representations of an environment, built either from metric maps or directly

from sensor information (Choset and Nagatani, |2001). They represent the environment as a graph of

interconnecting points, only including information relevant to identifying a set of places and instructions

on how to move between them (Thrun and Biicken, 1996; Filliatl, | 2003} [Pronobis et al., [2009; |Shi et al.l

[2010}; [Konolige et all [2011)). Topological maps are usually built when the environment has been fully

explored and the metric representation stored (Filliat, |2003). There are two main advantages to using
a topological map. The first is that it allows for much faster path planning over an environment as the
search space for path planning is reduced to a smaller number of nodes. The second is that they are more

robust when sensor noise is a problem, as a topological map does not require explicit localisation at all

times (Shi et al., 2010} [Konolige et al| [2011). The main disadvantage of topological maps is that they

are harder to understand by a human user and harder to share between agents as there is no objective

description of the environment. Topological maps rely on the contextual information they were built with

(Kuipers and Levitt}, 1988 [Poncela et al., 2002).

One specific type of topological map we look at in this thesis is the roadmap. Roadmaps are a type
of map representation that describes the interconnectivity of free space in an environment
. They comprise a set of nodes in free space and arcs describing how to navigate between connected
nodes.

In game A, path planning is often fully scripted, or generated using grid based mapping approaches

(Nieuwenhuisen et al., 2004)). Fully scripted path planning does not use any type of map representation,

instead it relies on someone assigning a set of points that the agent will visit in order. This is time
consuming to do by hand and often leads to players being able to recognise repetitive behaviour. To avoid
this, roadmaps have been investigated as a potential alternative. In game AI, roadmaps are also known

as navigation graphs (Buckland} 2005) or waypoint graphs (Graham et al., 2003; Tozour, 2008; Wardhanal
2012). Waypoint graphs consist of points in free space and straight line segments that connect

the points (Wardhana et al. [2012)). They are not always ideal to use in large scale environments as the

number of nodes required in the graph can be very high. Waypoint graphs are usually generated by hand

by the level designer and so are computed offline, before the agent is able to use them (Wardhana et al.

2012). This process can take a long period of time (Nieuwenhuisen et al., 2004). Another disadvantage

to using waypoint graphs is that the path planned can be very unnatural looking, zig-zagging between

points rather than using a straight line (Nieuwenhuisen et al., 2004; Tozour} 2008). Rather than using
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Waypoint graph for Halaa, an area of World of Navigation mesh for the same area.
Warcraft.

Figure 2.1: Waypoint graph and Navigation mesh examples for an area of World of Warcraft (Blizzard

[Entertainment, |2013) created by .

waypoints, it is often better to use navigation meshes.

Navigation meshes represent the environment as a set of segments an agent can navigate over (See

Figure for an example of both waypoints and navigation meshes) (Graham et al. [2003)). Rather

than having single points an avatar can navigate to, the mesh gives an area that it can navigate to any

point within. Any path inside the mesh is considered valid (Borovikov} |2011)) Meshes are more compact

than navigation graphs (Buckland, |2005; Epic Games Inc., [2012) and by using them an agent is able to

plan a ‘more realistic’ route using any of the points contained within that segment 2008). The

disadvantage to using meshes is the time required to generate. Navigation meshes, like waypoint graphs

are generated offline and often by hand (Oliva and Pelechano, [2011)). Some research is being done into

automatic generation of meshes and making them more reliable (Oliva and Pelechano, 2011; Wardhanal

, but this does not take into account the time requirement for generating the maps as it is
assumed this will be done in a pre-processing step before the map is available to the agent.

We chose to look at roadmaps in this thesis, rather than using navigation meshes, as roadmaps are
a popular method of map representation and planning for agents inhabiting both the real and virtual
worlds. By using trails our aim is to deal with the speed problem inherent in roadmap and waypoint
graph generation. We also want the agent to be able to generate the map autonomously and quickly. An
ideal game based agent will be able to generate a map of its environment online, rather than requiring
several hours of processing time before before the map is able to be used. We go into more detail about

roadmaps and the specific types we look at in Section [2:4]
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2.4 Roadmaps

As previously mentioned, roadmaps are a type of topological map representation. They represent the

environment as a set of nodes in free space and arcs (or edges) describing collision free paths between

linked nodes (Nieuwenhuisen et al., 2004). The most time consuming part of roadmap generation is often

the collision checking for nodes and arcs against objects in the environment (Geraerts and Overmars,

[2002; |Gasparri et al |2009). When generating roadmaps it is usual for collision checking to happen as

each point and arc is included in the roadmap. However, ‘lazy’ versions of all algorithms exist where

collision checking is only performed when a point or arc is selected in the path planning process (Murphy

let al.;[1999; Marthi, [2010). Accessibility of both arcs and nodes in these maps is updated over time giving

a probabilistic confidence value to each path generated (Murphy et all|1999; [Bi et al., 2009).

In this section we look at some different roadmap representations. We look into two types of roadmap
in more detail: the probabilistic roadmap and the rapidly exploring randomised tree. These two roadmap

representations are used in Chapters [ [5] and [6]

The earliest type of roadmap used was the potential field map (Barraquand et al.l [1992)). This builds

a roadmap by selecting points for inclusion in the map which are closer to the end goal than the current

point. More recent variants of the potential field map include ant colony optimisation (Bi et al., 2009

20006)), hill-climbing (Schmidt and Azarm)||1992) and water-front approaches (Dakulovic et al.
2011).

Ant colony systems were first proposed by [Dorigo and Gambardellal (1997) and they mimic how ants

navigate an environment and apply this to agent navigation. As an ant moves around an environment it
leaves a trail of pheromones behind it. When it finds a source of food it takes some and returns to the
nest following its own trail. Other ants exploring the environment and trying to find food can sense these
pheromone trails and are more likely to chose to walk down a path where the trail is stronger. This leads
to a second ant following the first ant’s path to the source of food and returning. Pheromones fade over
time, but the constant back and forth of ants between a found source of food and their nest reinforces that
path causing more ants to switch to following the pheromones. If the route is unsuccessful and no food
is found then there will be less return journeys down the path, and so the trail will fade over time. Ant
colony approaches for intelligent agents use this idea that as an ant travels between places it leaves a trail
of pheromones . The strength of the pheromones is inversely proportional to the length
of the path. When an agent is trying to plan where to travel it takes into account these pheromones

and selects the path with the strongest concentration. Hill-climbing and waterfront algorithms use a
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similar concept. The goal point is placed at the ‘highest’ accessible point in an environment. The
value of each location in the environment is then calculated based on the distance to the goal point.
Waterfront simulates the way water would flow in an environment creating a weighted occupancy grid.
Path planning then occurs with each step going towards the ‘source’ of the water, or the highest point
in the environment, giving a path from start to goal (Schmidt and Azarm, [1992; |Dakulovic et al., 2011)).

All these approaches have local minima problem, where the points selected do not allow the roadmap
to escape blocked regions. Different point selection methods have been proposed to try and solve this
problem.

A different roadmap-like approach is the Visibility Graph (Huang and Chung, |2004). This calculates
bounding boxes for all known objects in the environment and assigns points at the corners of these. A
graph is then formed linking the points based on which are ‘visible’ to one another. This has the advantage
that a path should exist around all the objects present in the environment. The main disadvantage is
the time required to generate the map is high. As there is no maximum distance after which pairs of
points are not considered, in large scale environments the collision calculations for the arc can take a
long period of time. Another disadvantage is that as the number of objects in the environment increases,
the number of points to be included in the roadmap also increases. This then increases the number of

potential arcs that need checking for collisions with objects in the environment.

2.4.1 Rapidly Exploring Randomised Trees

One type of roadmap we want to look at in detail is the rapidly exploring randomised tree (RRT).
Chapter [4| explores methods for improving the generation of RRTs by using trails. In this section we look
at various RRT generation algorithms.

The RRT algorithm generates a roadmap by simulating the growth of a tree. The map starts from
a single root point and grows outwards, adding branches to the existing structure as time goes on. A
brief outline of the algorithm can be seen in Algorithm (1| (LaValle, |1998). A graphical version of the
algorithm can be seen in Figure 2.2l An advantage to the structure of an RRT is that as each branch is
grown from an existing part of the tree, the map is always connected. RRTs are considered better than
alternative roadmap representations for fast path planning especially in dynamic environments (Kumar
and Chakravorty|,|2012a)). However, the algorithm can still have issues when facing cluttered environments
(Park et al., [2010). A disadvantage of the RRT is that it is usually generated as a single use map. The

start point of the roadmap is required in advance. If a different start point is used for navigation then a
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second tree must be grown.

Algorithm 1 The basic RRT generation algorithm

1: Require: Start point (s), End point (e), listofpoints, listofbranches
2: Add (s) to list of points

3: while list of points does not contain a point close to (e) do

4:  Select a random point (p)

5. Find the nearest neighbouring point (n) in the tree to (p)

6:  Calculate the point (p’) a given distance from (n) towards (p).

7. if n is free AND there is a clear path between the points (n, p’) then
8: add (p’) to the list of points

9: add (n, p’) to the list of branches

10:  end if

11: end while

One method of addressing this issue has been proposed by [Ferguson et al.| (2006). When the environ-

ment changes and a branch is no longer accessible that area of the tree is pruned. The blocked branch
and any other branches attached to it are removed from the tree. Points are then selected to attempt to
regrow the tree with a bias towards the now disconnected regions of the environment. This has the effect
of focusing the tree regrowth towards a small section of the environment and allows the tree to recover
and identify a route around new obstacles.

The way that the points are selected for branch growth in RRTs can change the tree being grown.

Generally the ‘cost’ of growing a branch is taken into account when deciding how to select points to grow

towards (Tahirovic and Magnanil 2011). The standard method is to select points at random (LaValle

1998). We can also generate a Voronoi diagram from these randomly selected points and bias growth

towards the largest Voronoi region at any point (Lindemann and LaValle, |2006]). Rodriguez et al.| (2006))

look at three dimensional RRTs and methods for growing branches based on random selection of a
direction to grow in. Their choice of branch growth is based on obstacles in the environment.
look at biasing the tree growth towards ‘useful’ areas of the environment. However, this
requires some pre-processing of the environment and still does not effectively navigate through narrow

corridors. The RRT-Connect algorithm generates two RRTs at the same time, one from the start point

and one from the end (Kuffner Jr and LaValle, [2000). This allows the tree to be built faster, finding

a solution in a shorter time span. The end point being required in advance has a disadvantage when
generating speculative trees. These are trees created ahead of use before an end point is identified.
Algorithms such as the RRT-Connect would not be able to function in this way as there is no end point
to use as a root for the second tree.

Other variations on the RRT algorithm look at removing some of the randomisation of RRTs.
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Figure 2.2: The steps of the RRT generation process
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mann and LaValle| (2006) proposed the multi-source RRTs. The multi-source RRT selects a number of

random points in the environment. A branch is grown from the node in the tree with the largest number
of random points nearby. The disadvantage to this branch growth method is that the RRT takes longer
to generate. The authors overcome this by generating a set of uniformly distributed points and adding
to this list, rather than reselecting a list of random points each time.

Deciding which point on the existing tree is the ‘nearest neighbour’ to the selected point can also be

calculated differently. Generally this is based on the Euclidean distance between two points. However,

it can also be based on environmental factors, such as the roughness of terrain (Tahirovic and Magnanil

oT).

There are two main methods of deciding how to grow a branch from the tree. The standard method is

to use a set length for the branch. When the nearest point on the tree is found, a point a given distance
away is calculated. That point and the path the branch will take are checked for collisions, and if free
they are added to the tree. The other approach is the Greedy RRT, which grows each branch from a

neighbouring point until it reaches a maximum distance or an obstacle in the environment (Kuffner Jr|

land LaValle, 2000; Rodriguez et al., |2006). The Greedy RRT is usually found to be a quicker way of

generating a tree. The Greedy RRT algorithm is shown in Algorithm [2} The main difference is that in
the original RRT generation algorithm, line 6 calculated a single point a given distance away from the
current tree. In the Greedy RRT this is replaced by a loop that calculates all the points on a line between
the current tree and selected point, testing each of these in turn until either a point is not in free space,

the edge of the environment is reached. Then the final point and branch is added to the tree.

2.4.2 Probabilistic Roadmaps

The other type of roadmap representation we want to look at in more detail is the probabilistic roadmap

(PRM). This is the roadmap representation we use in Chapters [§] and [f} PRMs are one of the most

popular types of road map representations due to their flexibility (Rodriguez et al., 2006; McMahon|

2012). PRMs are abstract representations of the interconnectivity of free space in an environment

(Park et all [2012). They consist of nodes and arcs, linked together to form a graph. PRMs can be

generated in any type of environment in any number of dimensions and will eventually allow a route to

be planned between any two points in an environment provided that enough nodes are included in the

map and that it is possible to do so(Kavraki et all|1996]). While most PRMs are initially generated and

used by a single agent, some research has been done on building PRMs using multiple agents (Kumar
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Algorithm 2 The Greedy RRT generation algorithm

1: Require: Start point (s), End point (e), listofpoints, listofbranches
2: Add (s) to list of points
3: while list of points does not contain a point close to (¢) do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

p < Selected point
n < nearest neighbour in the existing tree

//Using the equation of a line, calculate m and ¢ for the line connecting the points n and p
if p.x != n.x then
m = (n.y - p.y)/(n.x - p.x)
else
m =0
end if
¢=py-(m*px)

addedSomething = false

//go along the line testing each point one at a time.
newzr < n.x
while not addedSomething do

newx  oldx + 1

newy < m * newx + ¢

if newy is not outside bounds of the environment then

if not isFree(newx,newy) then
//point was blocked, go to previous point and add this as the end point and branch
point + oldx, oldy
add (point) to the list of points
add (n, point) to the list of branches
addedSomething < true

else

//x,y coordinate is in free space

if x coordinate at edge of environment then
point <— newx, newy
add (point) to the list of points
add (n, point) to the list of branches
addedSomething + true

end if

end if

end if

oldx < newzx

oldy + newy
end while

46: end while
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and Chakravorty|, 2012bf). We focus on single agent systems in this thesis.

The application of a PRM consists of two phases, the construction (also known as the learning phase
(Bohlin and Kavraki, 2000)) and the query phase. In the construction phase, points are chosen and
connected where a straight line exists in free space between them forming a graph. Connections between
points have also been called the visibility set for a node(Sun et al., 2005). The query phase then uses
this graph to plan a set of routes between two given points. PRMs usually require an existing map of the
environment from which to identify free and blocked space. However, research into how to remove this
restriction in uncertain and dynamic environments has been done. These methods generate a basic PRM
and update it as new information becomes available (Jaillet and Simeonl 2004; Kneebone and Dearden),
2009; Marthil |2010). PRMs generated in environments where the agent does not have full knowledge
use a probability of the point selected being in free space or not (Missiuro and Roy, 2006). An outline
of the basic algorithm can be seen in Figure [3] we use this algorithm in Chapters [p| and [ A graphical

description of the PRM generation process is shown in Figure [2.3

Algorithm 3 The basic PRM generation algorithm. The connectToNeighbour method changes for each
variation on the algorithm. See Algorithm [4] for the basic PRM algorithm that allows loops in the graph,
Algorithm [§] for the variation we use in this thesis that does not include loops and Algorithm [6] for the
greedy PRM approach.

listO f Points < Empty
listO f Arcs < Empty
current Points < 0
while (currentPoints <maxPoints) do
p < generatePoint
if isFree(p) then
neighbouringPoints < list of points within a minimum distance of p sorted by distance from p
connectToNeighbour(p, neighbouringPoints)
listOfPoints.add(p)
currentPoints ++4
end if
end while

Algorithm 4 The connect to neighbour method for the standard PRM. This method allows for loops
to be created in the graph. The clear path algorithm method checks if the straight line distance between
the two points is free and able to be traversed.

connectToNeighbour(p, neighbouringPoints):
for each ¢ in neighbouringPoints do
if clearPath(p,q) then
arcs.add(p,q)
end if
end for
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Algorithm 5 The connect to neighbour method for the non looping PRM. This is the PRM generation
method we used in this thesis. As each arc is calculated the graph is checked to see if the new point is
connected to the root node. If this is the case then no other arcs are attempted. This leads to a simpler
graph and allows for faster path planning.

connectToNeighbour(p, neighbouringPoints) :
if listO f Points.isEmpty then
rootPoint < p
end if
for each ¢ in neighbouringPoints do
if clearPath(p,q) then
arcs.add(p,q)
if p is connected to rootPoint then
break out of for loop
end if
end if
end for

Algorithm 6 The Greedy PRM approach. Note in this case we do not necessarily need to add the point
initially generated, instead the last point in free space alone the calculated arc is included.

connectToNeighbour(p, neighbouringPoints)
for each ¢ in neighbouringPoints do
if (p.x != q.x) then
m <+ (¢.y —p.y)/(qg.x — p.x)
else
m 0
end if
//Calculate the equation of the line
¢ py— (mxp.x)
T4 px
while z<q.z do
Y m*x—+c
if NOT isFree(x,y) then
//go to previous point and add it
r—ax—1
Yy m*xx+c
points.add(x,y)
arcs.add(p, new Point(x,y))
end if
end while
//reached the point g
arcs.add(p,q)
end for
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Many different factors affect the PRM generated (LaValle| 2006).

Size of the environment

e Number of objects present

e Placement of these objects (clustered together or significant distances apart)
e Number of points

e Distance of arcs

e Method for selecting the points

e Method for determining if a point is free

e Whether the PRM allows for loops in the graph

A good roadmap will have good connectivity and coverage. Connectivity in a roadmap is a measure
of whether the various sub-graphs in the PRM are connected to one another. Unlike the RRT algorithm,
there is no requirement for each point to be connected to a single root node. This can lead to disconnected
regions of the PRM graph. Coverage is the measure of how much of the environment is represented by
the map. Good coverage means that the PRM covers all areas of the environment and so a route can be
planned between any two points in the environment.

As the size of the environment increases more nodes will be required, or the distance that arcs can cross
will need to increase to provide good coverage of the environment. This will increase the time required to
generate the roadmap as more collision checks are required, especially when calculating whether a path
is free between two nodes. The number of objects in the environment affects the PRM by increasing the
number of collision checks required to add each point to the map. As collision checking is one of the most
costly operations in roadmap generation (Geraerts and Overmars, [2002)), we want to keep this as low as
possible. The placement of objects affects the PRM through creating narrow confines the roadmap must
find a path between. The narrow passage problem is one addressed by a number of different sampling
strategies (Gaussian (Boor et al(1999), Bridge Obstacle(Hsu et al., 2003; |Sun et al.l [2005) and OBPRM
(Amato et al., |[1998) to name a few). Narrow passages are often the cause of connectivity problems in a
roadmap.

The method of selecting points changes how PRMs are generated. PRMs that use only point selection

methods that generate points near obstacles will have a different shape and connectivity properties than
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one that uses uniform sampling. The number of collision checks required for each point selection method is
different, for example, a Gaussian point requires at least two points to be checked for collisions compared
to a random point which requires only a single point. This leads to a difference in generation time.
Whether to allow loops in PRMs changes the route planning stage rather than the generation stage of
the roadmap. If loops are permitted in the representation, route planning can take longer.

The advantage to using PRMs is that they work in any environment and will, eventually, find a route

between two points if one is possible. A ‘complete’ PRM algorithm is one that will either always return

a path, or state that no path is possible, after a given number of iterations (Bohlin and Kavraki 2000)).

As PRMs are an abstraction of an environment they are very fast to use in path planning algorithms.

The disadvantage to this is that if the PRM is to be used for more than one query, it requires good

connectivity and coverage over all sections of the environment (Nieuwenhuisen et al. |2004; [Sun et al.

2005). If this is not the case the map will be unable to be used to plan routes successfully. To ensure

good connectivity the map can take a very long time to generate, especially in large scale environments

(Kumar and Chakravorty}, 2012a; [Bahar et al [2012). The points selected for inclusion in the road map

are important for ensuring connectivity and often the probability of selecting the correct set of points

to connect all regions is low (Yang and Brockl, [2004} [Park et al., 2012; [Wardhana et al., [2012). In some

cases the roadmap needs to be pre-computed offline before the agent is given use of it. This is usually

seen where there are a large number of agents using a single map (van den Berg et al.||2008), or when the

environment is very large (Nielsen and Kavraki, 2000; |[Nieuwenhuisen et al., [2004). Much of the existing

research focuses on offline processing of a map, rather than online, due to time constraints (van den Berg

let al [2008} [Bi et al.l [2009; Marthi, 2010).

While the standard PRM algorithm checks each point and arc are in free space before adding it to the
map, not all algorithms perform collision checking at this stage. The lazy PRM builds a map without any

initial collision checking and only checks if an arc is viable if it is being used by the path planner (Bohlin

land Kavrakil, |2000)). Variations on the Lazy PRM have been looked at for mapping dynamic environments

(Poncela et al., [2002). In a worst case scenario, all the nodes will be linked to their neighbours and in

the planning stage the entire road map will need to be checked for collisions. Normally however, only a

subset will need these collision checks (Branicky et all [2001} 2002; Jaillet and Simeonl 2004). The Fuzzy

PRM is a similar method of PRM generation, which assigns a probability that an edge is free and then

only checks this if the edge is then used by the path planner (Nielsen and Kavraki, [2000). Bahar et al|

(2012)) look at creating roadmaps using a grid based approach and do not include any arcs at the initial
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generation stage. They then use an artificial neural network to connect neighbouring points and learn
where not to attempt arc connections based on previous attempts. Other PRM algorithms do not add a
fixed number of points, rather they continue to add points until the start and end points both belong to
the same sub-graph (Bohlin and Kavrakil |2000)). Greedy PRMs are a type of roadmap that add selected
points in the environment and attempt to find an arc between that point the nearest point in the PRM,
regardless of the distance between them.

McMahon et al.| (2012]) look at a different adaptation of the PRM algorithm. Rather than connecting
each new point in the roadmap to its nearest neighbour they randomise this process. A set of the nearest
k points are selected from the roadmap (where k is within a certain distance of the new point or a set
number of neighbours). A single point is then selected from this set and an arc from the new point to
the selected point is attempted to be included in the map. This reduces the number of duplicate arcs
being checked for collisions during the generation phase allowing for a quicker PRM generation.

We consider one of the most important part of the construction phase to be how the points are selected
for inclusion in the roadmap. A PRM should have good coverage over the environment, connecting all
regions and allowing the agent to plan any path required. In environments where there are narrow
corridors or cluttered objects this can be a difficult task for PRMs (Bohlin and Kavrakil [2000)). As
collision checking is usually one of the most costly operations in a roadmap building process (Geraerts
and Overmars, [2002) we want to limit the number of points that are included in some way. Point selection
methods that generate a large number of superfluous points will spend more time collision checking than
may be necessary and will slow the map building process down. A higher number of points in the
roadmap will also slow down path planning, as many more paths need to be considered. Many different
point selection methods have been proposed. Each attempts to solve the narrow corridor and superfluous
point issues in its own way. [Kumar and Chakravorty| (2012a)) note that, in general, attempts to improve
the point selection method in PRMs leads to an increase in the time required to construct the roadmap,

but the savings come from needing fewer points overall to plan a single route.

2.4.3 Point Selection Methods

The most time consuming part of roadmap generation is the collision checking for each point and con-
necting arc against the objects in an environment (Geraerts and Overmars|, |2002)). This means that while
some point selection methods may generate more useful points in an environment, the checking required

to include a single point in the roadmap may be too high. Often point selection methods are reported to
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be fast, but are only evaluated on smaller environments, with few objects (For example: |Gasparri et al.
(2009) who look at only a 20m? environment).
Chapter [5| looks at how to mitigate this problem by using digital trails. We compare trails to some

existing point selection methods evaluated below.

Random

The simplest method of point selection is to use a random number generator. The advantage to this
method is that it is very easy to implement as it requires no environmental information. The disadvantage
is that the points selected often lead to bad coverage and disconnected regions in the roadmap
. No information about the environment is taken into consideration when using random point

selection, so in order to connect all regions a large number of points may be added to the road map not

all of which will add new connectivity information (Missiuro and Royl, [2006]).

Using only random sampling can lead to a low quality roadmap that plans ‘ugly’ paths that take

strange routes when navigating between points. This is a particular problem in game Al, where believ-

ability of non-player controlled characters is important (Nieuwenhuisen et al. [2004)).

Uniform Sampling / Regular Grid

Many methods of PRM generation use a form of uniform sampling (Missiuro and Roy, |2006; [Kumar and|

|Chakravortyl, 2012a}; Bahar et al.,2012). This generates points at constant intervals over the environment

forming a grid. Grid based, regular sampling strategies ensure that the coverage of the environment is

good (Geraerts and Overmars, 2002), but if the distance between points being selected is too low then

a lot of superfluous points can be included in the roadmap without adding new information
2006]). This will then slow down path planning algorithms as they have a lot more points

to consider. Uniform sampling is also sometimes used as a starting point for point selection in PRMs

(Kumar and Chakravortyl, [2012a)). Additional points are then included or points moved to better reflect

the environmental structure (Park and Chung] 2009).

Halton / Hammersley Set

To solve the potential coverage problem in random point selection we can instead use a point gen-

eration method based on the Halton and Hammersley set of numbers (Branicky et al., 2001} |Geraerts|

land Overmars|, [2002). These sequences use the division of primes to ensure that while the points are
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selected unpredictably, they cover the entire space of available numbers more evenly, usually giving a
better roadmap (Branicky et al., [2001, |2002)). However, this does not solve the issue of how to generate

points in narrow passages or around objects in highly cluttered environments.

Gaussian, Bridge Obstacle and Obstacle based point selection

These point selection methods all share a similar idea, they aim to generate points close to obstacles in the
environment. Gaussian point selection is based on Gaussian blurring methods used in image processing
(Boor et al., [1999)) . It selects points for inclusion in the roadmap only in areas of the environment near
blocked spaces. To do this two points are selected in the environment, one randomly and one a given
distance away. The points are checked to see if they are free or blocked. If both are free or blocked the
points are ignored. However, if only point one is free then this shows that this point is close to an object
in the map, and so the point is included in the PRM (Boor et al.| {1999).

A refinement of the Gaussian point selection method is the Bridge Obstacle method. This looks at
three points in a line (Hsu et al., |2003; [Sun et al., 2005). If the outer two points are blocked and the
mid-point between them is free then this point acts as a ‘bridge’ between the two restricted areas of the
environment and is included in the roadmap.

There are several other methods for point selection that have a bias towards narrow corridors. [Kur-
niawati and Hsu| (2004) segment the environment according to its geometric properties and bias point
generation to where the generated segments are very small. Yang and Brock| (2004) look at placing points
along the medial axis of an environment, the points equidistant between objects. Both map generation
methods have effect of biasing points to only areas with narrow passages. [Nieuwenhuisen et al.| (2004) look
at something similar for game agent planning. They generate points by finding the mid-point between
two obstacles and then attempting to connect this to the roadmap. The many collision checks required
for these methods slow map creation.

The Obstacle Based PRM (OBPRM) (Amato et all [1998) and Uniform OBPRM (Yeh et al. 2012)
algorithms generate points near to objects in three dimensions. The standard OBPRM algorithm selects
a single point in the environment and casts rays from this origin, adding points to the roadmap where the
ray intersects with object boundaries. The Uniform OBPRM takes a similar approach but generates at
random a number of origin points, ray directions and lengths, still adding points to the roadmap where
the ray intersects with an object. Random point selection was shown to generate PRMs in a shorter

period of time compared to Uniform OBPRM, but the authors are more interested in the position of
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points being selected, rather than the overall speed of the algorithm.

Other PRM generation methods make use of the points that are found to be blocked, such as the
Toggle PRM (Denny and Amato| |2011). This PRM algorithm aims to discover narrow confines by also
generating a graph of all the points that are in blocked space. An example of this is when a point
is selected for inclusion that is in a narrow corridor. Attempts to connect this point to others in the
environment will be unsuccessful as the space is blocked. The Toggle PRM uses this information to try
and find a midpoint between obstacles that is in free space, adding this to the roadmap. The Toggle
PRM has been used in conjunction with Lazy PRMs to generate maps in complex environments that
are able to quickly generate paths between two given points with a minimum of collision detector calls
(Gasparri et al., [2009).

A general disadvantage for these biased methods of point selection is that they need to be combined
with other methods of point selection to achieve a full coverage (Sun et al., 2005; Missiuro and Roy,
2006). Due to the numerous collision checks required before including a point in the roadmap, the cost of
adding each point is increased and the overall map generation can be slower than more quasi-randomised

methods.

Visibility PRM

The Visibility PRM generates points at random, but has a set of criteria for whether the point is added to
the map (Simeon et al., 2000; Branicky et al 2002)). Points are only added if they either in entirely new
areas of the environment, which have no neighbouring connections, or they connect two other points. This
ensures that each point added to the map adds new information about the environment. This solves the
problem of only adding useful and important points to the map. Only those which add new information
are included. The disadvantage to this method is the time required in very large scale environments to
find if there is a clear path between two points as all points are considered potential neighbours, not just

those within a small radius.

Combinations

Biasing point selection based on the environment can speed up generation of the road map. [Park and
Chung) (2009) use a combination of deterministic point generation methods which select points based
on obstacles in the environment. While this approach can be successful in some environments, the

deterministic nature of their algorithm may mean that the best solution and road maps may never be
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found in environments that do not match the underlying assumptions made.

Hsu et al.| (2005 examine an intelligent hybrid approach to PRM generation. Their approach uses
a number of different point selection methods and chooses which method to use based on two factors:
the average cost of selecting a point using that method and how much new information selected points
will add to the map. The ratio of the least cost and most new information is used to decide which
point selection method to run. This has a huge advantage in agents that need to adapt to new and
changing environments as the most information is gained at each point selection step. Other researchers
also combine point selection methods. [Sun et al.| (2005) combine bridge obstacle with regular point
selection methods to improve on the roadmap built over pure random or Gaussian approaches. [Thomas
et al.[ (2007) acknowledged the fact that there is no single point selection method that works well in all
situations and environments and so defined a set of metrics to evaluate points and deciding if a point
should be included in a roadmap. After each point is generated and added to the roadmap it is classified

as one of the following:
1. Create: New connected component
2. Merge: Point is a connection between two previously disconnected areas
3. Expand: The point increases the coverage of the roadmap by one sample
4. Oversample: The point adds no new information to the road map

Create and Merge point are considered to be the most useful as these add new information into the
roadmap. ‘Create’ed points are new areas that are not connected to the existing graph at all. ‘Merge’d
points are the connections between two or more sub-graphs that were not previously connected. ‘Expand’
points add some new information, they take an existing sub-graph and add a little more connectivity
information to it. These are points that connect with only one or two existing points in the roadmap.
‘Oversample’ points do not add any new information, they connect points which were already connected
in the map and so can be safely discarded.

Roadmaps are generated using a combination of different point selection methods. Each sampling
method is evaluated after a point is generated and added to the roadmap. The maps are evaluated by
looking at the type of points sampled, the coverage of the roadmap over the entire environment, the
ability of the road map to solve a previously defined query and the number of samples generated in
narrow confines. The results of these experiments show that a combination of point sampling strategies

generates better maps that are able to plan a route between specific points in an environment using a
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Table 2.1: Summary of point selection methods, their advantages and disadvantages

Point selection method

Advantage

Disadvantage

Random

Quick, simple

Bad point coverage

Halton / Hammersley Set

Quick, better point coverage than
random point selection

Still may not select correct points
to allow for complete coverage

Regular Grid

Simple, very good coverage

Can lead to many superfluous
points and so have a high roadmap
generation time

Gaussian / Bridge Obstacle

Generates points near and between
objects

Does not generate points in empty
space, requires more collision check-
ing per point than other methods

(U)/OBPRM

Generates points near objects in the
environment

Does not generate points anywhere
else, fine in a greedy PRM not as
useful for limited distances.

Visibility PRM

Only adds points where they add

Very long generation time due to

new information potential neighbours being any-

where in the world

smaller number of points in the roadmap. The combinations of each point selection method are fixed, in

contrast to (2005).

2.5 Segmentation of maps in large-scale environments

The term ‘large-scale’ has different meanings for different agents, environments and contexts. Most
research into map representation for intelligent mobile agents that exist in the real world currently takes
place in small-scale, structured office-like environments (Fox et al. |2005)). There are some exceptions to

this, notably the original DARPA grand challenge to cross the Mojave Desert (Thrun) 2006), self driving

cars on the road (Carnegie Mellon News, 2013) or underwater autonomous vehicles (Dearden et al., 2007).

(1982) defines the size of the environment in relation to the agent observing it. An envi-

ronment is considered to be large-scale if it requires more than one observation to gather all available

information about the space. Another example can be found in work done by |Sibley et al.| (2010)). The

authors use the term ‘vast-scale’ to refer to their environment, based in the real world. One of the sample
routes planned is 121km long, between London and Oxford. For this thesis, we consider a large-scale
environment to be a continuous ever-expanding space in a virtual environment. Second Life consists of
thousands of 256m? regions. In this thesis we look at regions 256m?, 512m?, 1024m? and 2048m? in size.

The scale of these environments can cause problems for conventional map representations. As the

size of the environment increases so do the memory and computational requirements to store and process
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the map (Tahirovic and Magnani|, 2011)). In this thesis one of our assumptions is that an agent will not

be given infinite memory and time to complete its map representation. Some map representations are
more compact than others (for example, object maps rather than occupancy grids), but in general a

single monolithic map is not feasible for very large-scale environments without giving an agent unlimited

resources (Wurm et al., 2011} [Tahirovic and Magnani, [2011). Many systems prefer to do initial planning

offline before the agent is in the environment, then adapt and refine this plan online as it travels from

one point to another (Wenjian et al., 2009)).

For these reasons large-scale environments are often split into individual segments, connected using a

topological representation (Thrun|[1998b;|[Ramloll and Mowat 2001} |Choset and Nagatanil, [2001; [Kuipers|

[and Levitt), [1988; [Stoffel et al., |2008} [Kuipers et all [2004). Segmentation is the process of splitting a

single map into several distinct sections (Ozkil et al., 2011). Segmentation divides an environment into

more manageable sections allowing an agent to focus on its local surroundings rather than the entire

environment reducing the time required to generate, update and use the map (Wurm et al., 2011 Wang]

2011). In general, segmentation is based on a set of landmarks in an environment used to identify

specific places. A standard example is to look at the placement of doors in an environment to segment

the map into specific rooms (Hawes et al., 2011). Other landmarks and cues have also been looked at

such as the difference in air pressure on different floors of a building, allowing a 3D map to be generated

(Ozkil et al.l [2011)). The disadvantage to using segmentation is that it can add complexity when switching

segments or propagating changes through the map. Segmentation can cause non-optimal routes to be
planned when the start and end point are in different segments.

This section looks at some of the various different segmentation methods used with maps of large-scale
environments. We look in particular detail at Voronoi and quadtree segmentation as these are two we

focus on improving in Chapter [7]

2.5.1 Grid Based / Regular Segmentation

Regular segmentation is one of the most simple segmentation methods. It splits the environment along
a specific grid without taking into account any factors in the environment 2010). The main
advantage to doing this is that the segmentation is fast, therefore cheap in terms of computing resources.
The disadvantages come from the lack of attention paid to the environment. The segmentation may place

the boundaries of a section in the middle of a room, meaning the agent needs to consider two segments

when navigating that room rather than just one (Marthi, |2010).
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Figure 2.4: Quadtree segmentation method. The length of the side was set to 32m.

2.5.2 Quadtree Segmentation

Quadtrees are a mathematical concept that divides a space recursively. An image of quadtree segmenta-
tion can be seen in Figure Initially the environment is one large square segment. If this segment is
found to have any part of it blocked then it is split into four quarters as child segments. This continues
recursively until either a minimum size for the segment is reached, or the entire map consists of segments
that are only free/blocked space. The three dimension version of these is called the octree (Wurm et al.,
2011). Due to the recursive tree like structure of this map, adding new segments is a trivial matter, as
it just requires splitting a parent node into four children. Similarly, nodes will only merge with their
immediate parent, making adaptations to the structure simple (Cocaud and Jnifene, [2010).

A variant of quadtree segmentation is the probabilistic quadtree (Kraetzschmar et all [2004). This
segments the map at varying resolutions, rather than always splitting a segment into four quarters each
time. The resulting map representation then comprises a large number of very small segments around
the boundaries of objects and larger free space segments in the middle. This helps the map scale to very
large-scale environments while using less memory than a regular grid approach (Wurm et al., [2011}; |Zhang

et al., |2012)). However, in the worst case scenario, probabilistic quadtrees will still require more memory
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Figure 2.5: Voronoi Diagram generated using 100 Halton seed points.

than a regular grid based approach due to the recursive tree structure.

A general disadvantage of both the standard and probabilistic quadtree methods is the time required
to generate the segments. This usually leads to it being used offline, in a pre-processing step before the
agent has access to the environment or needs to plan (Shojaeipour et al., 2010). We only look at using

the standard quadtree algorithm in Chapter [7]

2.5.3 Voronoi Segmentation

Voronoi segmentation is based on the Voronoi diagram. Voronoi diagrams are built from a set of seed
points used to segment the environment such that any point in a segment is closer to the seed point at the
centre of that segment than any other seed point in the map (Aurenhammer, 1991). How the seeds are
positioned changes the Voronoi segmentation created.As this approach is concerned with relative distance
to the center point of a segment as a method of segmentation, it does not matter if the seed point is in
free space or not. . Figure [2.5] shows a Voronoi diagram generated by our software using a set of Halton
seed points.

Generalised Voronoi Diagrams (GVD) are a map representation generated using a slightly different
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method. Paths are generated from points along the medial axis of the environment; the set of points
equidistant between two obstacles (Thrunl 1998a; [Lindemann and LaValle} |2006; |Choset and Nagatani,
2001). GVDs have then been combined with quadtree or octree representations to give hybrid map
representations. First the environment is segmented using quadtree segmentation, then within each
final segment a GVD is generated finding a path along the medial axis point between all obstacles. The
advantages to combining these approaches for map representation is that path planning from start to goal
point is very fast and the map can be used in both two and three dimensional environments. However,
due to the quadtree segmentation step, the segmentation cannot be generated online as it takes too much

time (Shojaeipour et al., 2010)).

2.6 Digital Trails

This thesis looks at improving an intelligent virtual agent’s map building process by including information
gathered by observing and recording trails. A trail is formed when an agent in the real world moves from
one place to another, leaving some evidence of their movement (Ruddlel |2005)). These can often be seen
by worn down paths left in grassy areas (for example Figure ). Trails have been used by people for
centuries to learn how to navigate new environments, find specific places and when hunting food. They
are used to track the movement of people in history (Bradley, |2007) and they are still used in urban
architecture to identify where people desire a path to be built in an environment, rather than where ones
are provided (Myhill, 2004).

Digital trails apply this idea to virtual environments. We can observe and record the movement and
activities of other agents, human or Al based, and from this identify a set of points in that environment
and the path an agent can take to navigate between them.

The idea of using biologically inspired systems to aid agent navigation is not a new one. |Li et al.
(2013) look at localisation and mapping in dynamic environments using artificial neural networks and
a model of short term memory in humans. Ant Colony Optimisation looks to ant pheromone trails for
inspiration (Bi et al., |2009; |Zhang et al., |2012). This section of the literature review looks at other
research performed using trails and gives a more formal definition of the type of trail we will be using in
later chapters.

We define a digital trail as a list of locations where an individual avatar has been observed over time.

Virtual environments suffer from an idea known as ‘extreme cleanness syndrome’ (Grammenos et al.,
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Figure 2.6: The worn down area in the long grass is known as a trail, photograph taken by the author in
Toronto, 2012

2002). This means that avatars do not leave marks in their environment as they navigate between places.
To identify a set of digital trails an agent needs to observe them in progress, rather than be trying to
construct them after the event. Each set of trails is only relevant to the environment they were generated

in.

Trails do not have to be generated using the movements of avatars. |Antonya et al.| (2011) use eye

movements and gaze analysis to evaluate where a user intends an avatar to go and build up a set of

trail-like paths based on this. The Game Trace Archive (Guo and Iosup| [2012) holds records of all

interactions users have with game environments, not just avatar movements. Trails have also been used

to try and add ‘interaction history’ to virtual artefacts and digital information (Wexelblat and Maes|

[1999; Ruddle} 2009; Dixit and Youngblood, [2008; Grammenos et al., [2002)). [Jiang et al.| (2010) look at

clustering trails together to find similarities between individuals in virtual environments. Their aim is
to find groups of people with similar interests, personalities and hobbies comparing trails based on the
Euclidean distance of one trail from another and the individual start and end points. Trails have also

been looked at in browsing histories (Ruddle, [2009), or when studying how people interact with learning

resources (Bouvier et al., 2013) to find out how people navigate and process information.

In research, trails have been used to observe and aid human navigation in virtual and real environments
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(Ruddlé), 2005} |Grammenos et al, 2006} [Jiang et al. [2010; Miller and Crowcroft] [2009; |Guo and Tosupl,

[2012} |Stoffel et al 2008). Trails have also been used as a starting point for a robots map building process

(Yuan et all [2010; [Alempijevic et all [2013). By observing the movement of avatars in an environment

researchers have been able to study where potential busy locations (Miller and Crowcroft} [2009) and

bottlenecks will be in an environment (Chittaro et alJ, [2006]). Research has also been done in an attempt

to understand the behaviour of people in virtual environments (Yee et al. 2007; |Guo and Iosup, [2012;

|Alempijevic et al., 2013).

Trails are sometimes called ‘player traces’, ‘human positional traces’ or ‘virtual footprints’

[menos et al.|, 2002} |2006} |Guo and Tosupl 2012 |Alempijevic et al.;2013). These have been used to identify

how human users move around maps. Visualising game traces and trails is considered important for game

and world designers (Joslin et al.,|2006]). Player traces have been studied to identify if an avatar is player

or agent controlled (Chen et al.) [2009} [Ketkar and Youngblood, [2010; [Chittaro et al.l [2006). Many game

environments do not allow agent controlled avatars to exist and so methods of detecting agent controlled

‘bots’ is important in these domains. [Chen et al.|(2009) show that there is a significant difference in how

an agent controlled avatar moves through an environment when compared to a human controlled avatar.
Humans have a defined set of behaviours that an intelligent mobile agent will rarely follow. Social norms
are carried by people from the real world into the virtual . We explore this idea more
in Chapter

A real world application of trails can be seen by looking at GPS traces (Bruntrup et al.l 2005)) or

large datasets such as OpenStreetMap (OpenStreetMapl [2013). These projects record the location of a

Global Positioning System (GPS) device over time to produce a list of connected points. The GPS traces

have been used to build incremental road maps of real environments and to infer where road sections

meet (Fathi and Krumm)| 2010). OpenStreetMap merges trails together to form a fully connected map

of large outdoor environments. These systems rely on agents, usually vehicles, travelling from one point
to another directly. The advantage of using vehicle based GPS trail points is that you will not get the
meandering nature of humans on foot, the disadvantage is that in a vehicle the trails are restricted to
roads rather than all routes through an environment. Human GPS trails have also been considered for
aiding agent navigation in virtual copies of real world locations 2013). This study compared an
agent using the human generation trails with an agent using a calculated navigation mesh. They found
that when the GPS data was very good then the agent was able to plan a good route, but when the data

was only partially available the agent was not able to plan routes as successfully.
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2.7 Summary

In summary, this chapter looked at various different research areas linked by the themes of virtual
environments, agents, trails and mapping. The open problems that we are looking at in this thesis is how
to improve the generation of maps in large scale virtual environments.

We looked into the background behind virtual worlds, giving a background for our research. We
then looked at map representation and generation for agents. The type of map representation we are
interested in for this thesis are used for navigation. There are many different types of map representation,
but there is no single ‘best’ map to use in all situations that will allow an agent to be able to quickly
plan a route in any environment. Some maps are not useful for navigation, such as the conceptual map,
which concerns itself more with labelling an environment and understanding the underlying concepts
of an area. Path planning in large scale or changing environments is an NP-Hard problem (Bi et al.
2009). Metric map representations are the simplest type of map, built directly from sensor data giving
a geometric representation of the environment. However, the problem with these type of maps is that
they can be slow to generate and take up a lot of space in memory. Topological maps are generated
from metric representations to overcome this problem. As topological maps are abstract representations
of the environment they are more compact representations. They are faster for planning navigation,
especially in the type of large scale environment we are concerned with. We focus in this thesis on a type
of topological map, roadmaps, including the PRM and the RRT.

Roadmap representations are fast to generate and use for route planning when compared with metric
representations of the environment. These are the key points we are interested in for our agent. A
roadmap representation will, if given unlimited time and resources, be able to be used to plan a route
between any two points in an environment if one it is possible to do so. However, having unlimited
resources is not a realistic proposition and so in this thesis we look at how to improve the generation of
roadmap representations using trails.

It is our hypothesis that we can use trails to overcome this problem, and in Chapters [4] and [5] we
look at improving both the RRT and PRM using trails. Trails give the agent a set of points in the
environment that are known to be in free space and paths between them that are possible to traverse.
By being able to use this information without the need for calculating collisions and accessibility of the
paths, our hypothesis is that trails will improve roadmap generation over a variety of metrics.

As the environments we are looking at are large scale, we also looked at some of the literature related

to segmenting maps. This is a standard approach used to reduce the map generation and path planning
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time in agents. We looked at regular, quadtree and Voronoi segmentation, the methods that we compare
and attempt to improve on in Chapter [7} Selecting a good segmentation method, or a good set of seed
points for use in a Voronoi segmentation is an open problem in large scale environments.

The next chapter looks in more detail at trails, with the initial aim of ensuring that trails were a

viable source of information for intelligent virtual agents.

39



CHAPTER 3

Trails and social norms in virtual environments

3.1 Introduction

The hypothesis driving this thesis is that trails can be used to help intelligent virtual agents build better
maps of large scale virtual environments. As previously stated in Chapter [2] a trail is formed when
an agent in the real world moves from one place to another, leaving some evidence of their movement

(Ruddle), |2005)) (see Figure as an example of a trail). Virtual environments do not usually record this

information, a so called ‘extreme cleanliness syndrome’ (Grammenos et al} [2002). Short term exceptions

to this rule exist in some game worlds. For example, in the large scale game environment World of

Warcraft Blizzard Entertainment| (2013 the corpses left from monsters killed by the players stay present

in the world for a set period of time allowing others to see the path an avatar has taken. After this
has expired the evidence is removed from the environment so to prevent clutter. For this reason trails
recording the movement of avatars in a virtual environment are usually only able to be observed while
the movement is in progress. It is harder to infer a trail after the fact. We define a digital trail as a set of
observations of the location of a particular avatar over time. This set of locations can then be collated to

form a trail. Digital trails have previously been used to aid human and agent navigation in both real and

virtual environments (Ruddle, 2005; Bruntrup et al., 2005; [Fathi and Krumm) 2010; Yuan et al.l |2010;
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Alempijevic et al.l [2013)).

We want to use trails to aid intelligent virtual agents build maps of their environments. One of the
most costly operations in map generation is collision detection. This is the act of deciding if a certain
point is available for an agent to move into to, or if the space is blocked by an obstical. By observing
another avatar navigating an environment we are able to infer points in the environment that are in
free space and the routes that can be used to navigate between them without the need for any collision
detection calculations. There is the added advantage that by using human controlled avatar generated
trails in map generation, the type of routes planned by the agent will be more human-like. This is
important in some applications, but not an effect we assess in this thesis.

To investigate whether trails could be useful for an agent, we first needed to establish there was a
pattern to people’s movements in virtual environments and that these patterns related to the structure
of the world. We can then use the trails observed to identify paths and potential routes through an
environment. We are only interested in ground level movements for our agent, if the prevalent mode of
transport used in virtual environments is flight then this will not generate useful trails for the agent.

This chapter looks at the evaluation domain for the rest of this thesis, based on Second Life. It goes
into detail about the regions used and how we gathered the object and trail information that made up
the environments. To establish whether trails are a useful source of information for an agent we look at

two movement based patterns from avatars:

1. Did the avatars walk when navigating from one point to another, or use alternative modes of

transport?

2. Are the movements the agent is able to observe meaningful?

The contribution of this chapter is a brief study into the movement of avatars in virtual environments
and validation that trails are a useful source of information for agent based navigation. This study does
not form the main focus of the thesis, but poses some interesting questions about social norms in virtual
environments that may be of interest to others. This chapter is based on our paper published in the

British Computing Society Human Computer Interaction conference in 2012.

Katrina Samperi, Russell Beale, Nick Hawes: Please keep off the grass: individual
norms in virtual worlds. BCS-HCI ’12 Proceedings of the 26th Annual BCS
Interaction Specialist Group Conference on People and Computers, BCS-HCI
2012, 12-14 September 2012, Birmingham, UK: 375-380 (Samperi et al., [2012)
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The remainder of this chapter is structured as follows: First we look at our evaluation domain in
Section [3:2] Then we discuss our preliminary study and the results of our observations of trails in virtual
environments. We then expand on these observations in Section [3.:4] Section [3.5 looks at the results of

our study, and finally, Section [3.6] looks at what these results mean in the wider context of this thesis.

3.2 Evaluation Domain

To evaluate our agent’s performance in large scale, populated virtual environments we elected to look at
one specific virtual world, Second Life (Linden Research Inc.,|2012)). Second Life is an established virtual
environment comprising of thousands of 256m?> areas, known as regions. Regions can be connected to
one another allowing free passage between them, or arranged individually as an island with a virtual sea
on all sides. Unlike some virtual environments, Second Life allows and encourages agent based avatars in
their world (known as bots). The LibOpenMetaverse library has been created and maintained, allowing
agents to interact with the environment, as if they were any other user (Open Metaverse Foundation)
2012]).

There are three primary modes of transport in Second Life: walking, flying and teleportation. We are
interested in ground level, walking movements for our agent, so we filter the trail and object information
made available by the environment to ground level. To filter out flying agents we applied a threshold to
the coordinates an avatar was observed at. If the z coordinate was outside a given threshold (20 < z < 25)
then this point was not recorded as part of the trail. To filter out teleportation we looked at the time
stamp and distance travelled between points. If the distance was greater than it should be possible to
move in that time period, then the trail was split. This led to a set of trails that described individual
routes taken by agents, removing any incorrect assumptions made disconnection or teleportation. Using
this route information gave us a more accurate picture of how an avatar was moving. Figure [3.1] shows
an example of a full trail before it was split into routes. The points are where observations were made
and the lines link all the points in the order they were seen. Note the long lines where the avatar has
teleported from one side of the environment to another. This is the type of information we removed by
filtering the trails.

When connecting to a Second Life region the agent is sent a list of objects that exist in the environment,
which can be used to calculate if a point is in free space or not. To collect trail information the agent

polls the server for the location of every avatar within the same region it is occupying every half a second.
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Figure 3.1: All the points where a single avatar was observed linked by the order in which they were
seen. This trail information does not take into account avatars disconnecting from the Second Life grid,
or the avatar teleporting.
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This information is freely available. It is usually used to update a map of the environment showing the
position of every avatar in the environment at any given time.

Each region uses its own coordinate frame, between (0,0,0) and (255,255,255). To give the agent
larger environments to work with we combine the object and trail maps together, shifting the x and y
coordinate of each object or trail point by the required amount to give a single, unified map.

We focus on one area of Second Life in the remainder of this thesis, the “London area”. This is an

area made up of five individual regions.
1. London Community
2. Hyde Park
3. Kensington
4. Knightsbridge
5. Mayfair

London Community is a sparsely populated, open environment. This region is available seasonally.
When we gathered trail information for the roadmap and segmentation experiments this environment
was set up as a ‘winter wonderland’ style area for winter 2012.

Hyde Park is the most populated region, known as a ‘new user hub’. When an avatar is created it
goes through a tutorial on a separate part of the Second Life grid. After this point the user gets to choose
a hub to go to. This area has a high traffic throughput of both brand new and older avatars. It has a
large number of objects available. The structure of the environment is an open park like area. There are
areas of grass with paths crossing between distinct locations in the environment.

Kensington and Knightsbridge are both a combination of open and more structured space. The
structured areas are roads lined with shops. The difference between these environments and Mayfair is
that the roads do not necessarily follow a grid structure. These environments contained more objects
than Hyde Park but they had fewer avatars active in the area.

The last region is Mayfair. This region is a highly structured environment with a high number of
objects available and a higher traffic throughput than Kensington and Knightsbridge. We do not use this
environment as part of our four-part Greater London Area. The other four regions make up a square and
so together are more directly comparable with a single region environment. The total number of objects

and trail points gathered in each region can be seen in table
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Table 3.1: The total number of objects and trails in each environment:

Environment Objects  Trail Information

Avatars Total Trail Points
London Community 1476 23 921
Hyde Park 7096 4274 402036
Kensington 11770 61 2730
Knightsbridge 10201 183 10486
Mayfair 11765 1583 84475

We chose to look at this environment as we needed a populated area of Second Life in order to gather
enough trails to be meaningful for our evaluation. An added benefit is that these regions are fairly flat,
with ground level always being between 20 and 25m, meaning it was easy to tell if an avatar was flying,
rather than walking at ground level.

The Greater London Area we specified as the four region area of London Community in the north-
west, Hyde Park in the north-east, Kensington in the south-west and Knightsbridge in the south-east.

An image of this can be seen in Figure [3.2

3.3 Preliminary study

The aim of our preliminary study was to look at whether meaningful trails could be gathered from virtual
environments. We did not know initially whether the information would be available to request from the
server or if we would need to have our agent follow others to learn their movements. We also wanted to
look at whether the trails observed had any patterns to them that we could generalise and use for our
future agent’s map building. We looked at the Hyde Park region of Second Life. We chose this region
as it is a high population environment with avatars of all ages. As a park, the environment has a lot of
open space as well as paths that cross between distinct locations.

The agent connected to the virtual environment and recorded the location of every avataIE within
a single region every half a second for thirty hours, starting on the 24th February 2010. We evaluated
the preliminary study by visual inspection of the trails. We mapped the trail points gathered onto the
overhead map to try and determine if there was any pattern to the movements made by avatars (see
Figure for a single trail and Figure for all the trails gathered).

From this set of images we concluded that we were able to gather trail information in Second Life.

1While it is likely that most or all of the avatars observed in Second Life were controlled by humans rather than by
agents, we have no way to being sure of this fact. The only indicator given for if an avatar is controlled by an agent is a
flag which can be set, however, there is no requirement to do so.
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London Community {Seasonal) Hyde Park Mayfair (Unused)

=

London Community Region.

Summer 2012: Olympic themed
Winter 2012: Winter Wonderland

Currently Offline (6/9/2013)

Kensington Knightsbridge

Figure 3.2: Four out of the five regions that make up the “London” area used in our experiments.
The Greater London Area used in Chapter and [7] is made up of London Community, Hyde Park,
Kensington and Knightsbridge (area in red). We do not have an image of London Community at this
time as the region is seasonal and it is not currently available.

As of the 6th September 2013 London Community is offline and Kensington has moved to the bottom
right hand position, all the regions have undergone several changes in layout.
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We were able to identify the route an avatar took when navigating between places, identify the popular
locations in the environment and where paths connected these. The Second Life server and libraries allow
an agent to observe and record the routes every avatar in a region takes at once and then use this to infer
free space and path information.

One pattern we observed in the preliminary study was that avatars had a habit of using paths to
navigate between points in the environment, rather than take a more direct, straight line route. This is
a known social convention in the real world. People tend to avoid walking on the grass for many reasons,

for example:
e A sign stating that the grass is not to be walked on
e A desire to avoid wet or muddy shoes
e Implied social pressure to follow the default behaviour of the crowd, and so stay on the paths
e To preserve a fragile grass environment for the shared enjoyment of others

These reasons do not hold in virtual environments. There is no sign saying to keep off, and there is
no cost associated with ‘wet or muddy’ shoes. This transference of social norms from the real world into
the virtual has been noted in other areas of research. Previous studies, for example [Schroeder| (2002),
Yee et al.| (2007) and [Friedman et al. (2007a)) have shown that social conventions and human norms are
carried over into virtual environments. Interpersonal distance between avatars and eye movements when
scanning a virtual environment are much the same as habits observed in real world interactions. In game
based virtual environments, such as World of Warcraft (Blizzard Entertainment|, 2013) analysis of trails
can identify where paths exist in a subsection of an environment (Miller and Crowcroft} [2009). This gives
us good reason to believe that the movements avatars take in a virtual world would mimic those taken
in a similar, real world environment.

We decided to investigate this occurrence further and repeated our trail observations a second time
looking at whether the experience in virtual environments, measured by avatar age, changed the proba-

bility of an avatar breaking social convention and walk on the grass.

3.4 Social Norms in Virtual Environments

This investigation was based on the following hypothesis: the more time users spent in virtual environ-

ments, the more experience they would have, the more likely the user would be to break with social norms.
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Figure 3.4: All the trails observed in the preliminary experiment.
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There is no explicit cost to walking over the grass in virtual worlds, there is no sign in the environment
we studied to tell avatars to keep off the grass. There is only the social convention that, unless invited
to, you should stay off the grass.

This time when observing the movement of avatars through the environment we also had our agent
record each avatar’s date of birth. The date of birth relates to when the avatar was created and so gives
some insight into how long that user has been interacting with Second Life. This is not an ideal metric,
but without the ability to question every avatar in detail about their experience, it has been considered

the best metric available (Friedman et al., [2007b).

3.4.1 Evaluation

As stated previously, our preliminary study observed the movements of avatars over a 30 hour period
starting the 24th February 2010. Our second study observed 775 avatars over a 60 hour period in the
same environment on the 31st May 2012, collating over 69,000 locations.

During both sets of observations the Second Life servers went offline to restart in the early hours
of the morning. Connection was re-established as soon as possible for continued observation. Avatars
were identified using their unique ID and their location was only recorded when it was different from the
previously recorded location. Avatars which chose to hide their date of birth have not been included in
this evaluation.

We used the overhead map to identify where paths existed in the environment. Our first inclination
was to automate the identification of paths in the environment based on the colours used (see Figure .
However, this did not work as well as expected due to the range of colours provided in the image. We
then elected to annotate the image by hand, drawing a block of a single colour over paths identified by
sight (see Figure . It was then possible to match the coordinate given by the avatar location to a
specific pixel in the image, and decide whether this location was on or off the path.

Our hypothesis was that as the age increases we should see a positive correlation with the percentage
of off-path movements. To investigate this our evaluation calculated the percentage of observed locations
on and off the path for each avatar and plotted this information against the age of the avatar.

We also looked at the percentage of locations for each avatar that were above ground level in com-
parison with the age of the avatar. As flying is a more challenging mode of transport than walking in the

environment our hypothesis was that we would see older avatars using flight more than newer avatars.
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Figure 3.5: Map of the current Hyde Park re- Figure 3.6: Annotated map of the current Hyde
gion of Second Life Park region of Second Life, areas blocked out in
gray are identified as paths

3.5 Results

Our results can be seen in Figure and . While observing the avatars movements through the
environment we confirmed our previous observation. Avatars tend to stay on the paths more often than
walk on the grass. An example of this can be seen in Figure This demonstrates the route taken by
an individual avatar in the space. The yellow lines mark the trail, and most of the movements shown are
superimposed on the lighter grey of the paths. The trails show a curved route following the path where a
straight line over the grass would clearly have been quicker and there is nothing in the way to prevent it.

Two notable exceptions to this exist. The first is the centre of the environment. This is where all new
avatars are teleported to on arrival. In the preliminary study this area was paved over but in this study it
has been converted to an area of grass surrounded by a path. This lead to more observed movements off
the path. The second is an interesting case, the bottom right corner of the map in Figure [3.5]shows an
open grassy area. Visualising the trails we can see a lot of movement on this patch of grass (Figure .
We can find the explanation for this behaviour by looking closely at the environment. Figure [3.11]is a
screenshot overlooking this area of the Second Life region. We can see that a stage has been built and
is used for Second Life based concerts and parties, inviting avatars onto this apparent grassy area to
celebrate and enjoy themselves.

We can see that there is a slight positive correlation between the age of the avatars and the percentage
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Number of days since avatar creation against
percentage of ground level movements off the path
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Figure 3.7: Results for the age of the avatar vs the percentage of their ground level movements that are
not on a path
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Figure 3.8: Results for the age of the avatar vs the percentage of observed flying points
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Figure 3.9: A single avatar’s movements in the Figure 3.10: The movements of all the avatars
environment in the 2012 observation

H Second L

LRl € LONDON HYDE PARK NEW USER HUB 12012 CLUB, London England UK - Hoderate ()

Figure 3.11: Second Life screenshot. Stage area on the grass in virtual Hyde Park. Note the overhead
map in the top right. The avatar in this case is a cat.
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of their movements off the path (see Figure . This is less apparent when the agents are grouped
together in the table. To determine the significance of this result we split the avatars into new avatars
(those 6 days old and younger) and old avatars (7 days and older). The average time spend on the
path by the new avatars was 60.40% and the average time spent on the path for the older group is
47.38%. The significance of this was assessed using the Wilcoxon rank sum test and was found to be
significant (p<0.04), suggesting that younger avatars spend more time on the paths than older ones, but
this should be treated with caution since the age in Second Life is suspect anyway, and the division used
here is somewhat arbitrary, and other choices may give non-significant results. Visual inspection of the
collated trail information in Figure [3.10] shows that we can identify free space and popular regions of the

environment. Flying was not a popular mode of transport, most movements were at ground level.

3.6 Discussion

This chapter looked at the evaluation domain used in the rest of this thesis. We also set out to look at

two patterns in agent movement:

1. Did the avatars walk when navigating from one point to another, or use alternative modes of

transport?

2. Are the movements the agent is able to observe meaningful?

Our results showed that the majority of agent movement was walking, at ground level. Flying was
found to be an unpopular mode of transport around the environment. The age of the avatar did not affect
the movement type used by the avatar. The trails we observed were meaningful and in fact followed known
social conventions from human movements in real environments. Our preliminary study established that
we could a) gather trails (though the action of doing so), b) that these trails could be used to identify free
space in the environment (as there is no way for an avatar to be observed in a location unless it is in free
space) and c) suggests that there was a high percentage of avatars staying to the paths when navigating
the park.

We discovered that there was a (slight) positive correlation between the age of the avatar and the
percentage of their movements off the path. The older an avatar was, the more likely it was to navigate
over the grass when travelling between places.

The results gathered by our second study highlight the limitations of our approach. The only measure

we had for experience with virtual worlds was the avatar’s ‘born on’ date. This does not give any indication
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as to how often the avatar has been used, whether the user behind the avatar has any experience with
other virtual worlds or if this is their only avatar. We also do not know the motivation behind the avatar
movements. Not stepping on the grass is a social norm for people in the United Kingdom. We had no
physical location information for any of the people controlling the avatars, so we have no idea if the
same social norms hold. Second Life is also used for role-playing games. So if a person is attempting to
mimic real behaviours they may be forcing themselves to stick to social convention. Trails observed are
not guaranteed to provide useful information about an environment. Some avatars move directly from
one point to another in the environment, giving useful information about the path between two distinct
locations. Other avatars may move around only small areas, giving cyclical paths in a corner of the
environment. Some avatars make very small movements, generating a large number of points without
adding any additional information

For this thesis we only wanted to investigate if trails were possible to gather and whether they would
give us any understanding of the structure of the virtual environment they were observed in. We have
shown this to be the case. Trails are a reliable way of inferring free space in an environment and even
where paths may exist in the world. We can therefore use trails to help guide an agent’s map building
process. Trail information continues to be meaningful across a variety of avatars of different ages and
experiences within the environment and so this allows us to consider maps built by an agent based on
trails to be a valid option.

The next chapter will look at map building for intelligent mobile agents and how we can use trails to

improve on the generation of roadmaps in large scale virtual environments.
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CHAPTER 4

Improving Rapidly Exploring Randomised Tree generation using trails

4.1 Introduction

As the size and complexity of virtual environments increase it becomes more of a challenge for an agent
to generate a map of a previously unknown environment in a short period of time. Path planning in
large scale environments is considered to be a difficult problem for intelligent agents (Yang and Brock,
2004). To solve this, topological representations such as roadmaps are used to represent the world and for
planning. The abstract nature of topological and road maps give an advantage over metric representations
for planning due to the simplification of the environment. An environment is reduced to a set of nodes
(places in an environment the agent can visit) and arcs (how to navigate from one node to another). This
reduces the path planning problem to a simple graph traversal, rather than needing to consider all the
objects in the environment as it plans.

In this chapter we look at improving the generation step (sometimes called the construction phase) of
Rapidly Exploring Randomised Trees (RRT). RRTs are a popular type of roadmap used when an agent
needs to generate a single plan from a known start configuration (LaValle, |1998). An RRT relies on the
fast and random growth of a search tree that spans the environment from a starting root node. Every

point in an RRT is connected to the root either directly or by traversing a set of branches, so a path
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between any two points in the tree is always possible. Section [2.4.1] goes through in detail the various
different algorithm and point selection methods for RRTs.

While the random growth of branches in the RRT allows the tree to explore a whole environment, in
time critical situations the length of time needed to generate the tree and use this to plan a path between
the root and the goal configuration may be too long to be useful. RRTs are generally used to plan a
single route before being discarded. If the environment changes a new tree is required to be regenerated,
though some research has been done to try and limit this effect (Ferguson et al., [20006).

We are interested in agents that exist in large scale online environments. Specifically, we look at
environments that are based in Second Life, a large scale, persistent and populated environment. It is
critical that the agent is able to plan a route quickly and accurately. A prolonged delay may cause the
agent to be disconnected from a virtual environment. In Second Life the time an avatar can spend idle
before disconnection is 30 minutes. However, we want the agent to be able to plan and navigate routes as
quickly as possible when faced with a new environment. The 30 minute time out should be considered a
hard maximum time limit, with times between under 2 minutes preferable.. The agent should be capable
of planning a route as required while still connected to the environment. The fast growth of an RRT
means that this type of map representation is a useful one for our agent. RRTs can also be used in
conjunction with other road map representations to connect start and end points to an existing road
map.

The hypotheses driving this chapter are:

1. Tails can be used to reduce the generation time needed to build an RRT which can then be used

to plan a route between two given points in an environment

2. The routes planned by the trail based RRTs will be shorter than those planned using other RRT

point selection methods

Trails provide contextual knowledge about the environment by giving a set of points in free space
and the paths taken by avatars between then. They show where avatars tend to congregate, giving
information about important or large empty spaces in the environment. We covered trails in more detail
in the previous chapter, Chapter It is possible to bias the growth of an RRT into populated areas
of the environment by looking at where avatars cluster together. This has the potential to produce an
RRT capable of planning a route between two points in a shorter time period and requiring fewer nodes
than purely random tree growth. The contribution of this chapter is to examine trails as a new source of

information for generating RRTs in both small and large scale virtual environments.
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The rest of this chapter is structured as follows: First in Section [£.2] we discuss our approach to using
trails in RRT generation, and the different RRT generation algorithms we will be looking at. Section [4.3]
looks at how we evaluate our experiment and the experimental setup used. Following that Section [4.4]
reports our results and finally, Section summarises our findings and future work we can do in this

area.

4.2 Approach

We cover the details of the RRT algorithm in Section Algorithm To improve on the RRT
generation phase we need to look at how the basic algorithm works. An initial starting point is required
for the tree, this is the root node. From this node branches are grown by selecting points in the environment
according to some criteria. The nearest point in the existing tree to this selected point is then found.
A branch is grown from the tree towards the selected point and if both the branch and the branch end
point are collision free they are added to the tree. This process continues until an end criteria is met,
usually a branch is grown within a given distance of an end point. The method we use to select points
in the environment can therefore affect the growth of the tree.

We look at three types of RRT. The first is the traditional RRT, which selects a point in the envi-
ronment and grows a branch towards this point from the original tree a predetermined distance. The
second type is the Greedy RRT (Kuffner Jr and LaValle, [2000). The branches in a Greedy RRT are not
constrained by distance. They continue to grow in a given direction until they either reach the point or
find an obstacle. This leads to slower growth, but in an empty environment a single branch is all that is
needed to connect any two points. The final type is the RRT-Connect (Kuffner Jr and LaVallel 2000).
This approach uses two trees, one growing from the start point and one from the end. At each step a
branch is added to both trees until they grow close enough to be connected. This is considered one of the
better RRT generation methods available by the authors. However, the RRT-Connect algorithm requires
that a single end point is known in advance for the second tree to use as its root, speculative tree growth
is not considered.

A good RRT is one that is able to plan on average a short path between a given start and end
point in the fastest time possible. A short path uses the minimum distance required to connect two
points. If there are no obstacles between points then this would be a straight line. However, in cluttered

environments the shortest path will be longer than this distance. We consider the most important of
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these factors to be the time taken for the algorithm to complete. The primary advantage of using RRT's
is that it is a quick algorithm for discovering a path between two points. It should add a minimum
number of nodes to the tree, as this will reduce the number of collision checks that are needed and the
time required for path planning. We want to compare the standard, randomised method of RRT growth
with a quasi-randomised and a biased approach, looking at trails to bias growth towards more populated
areas of the environment.

A standard randomised approach to point selection uses a random number generator to select points in
the environment. This has the advantage of being fast, but an even spread of points over the environment
is not guaranteed. In comparison we can use a quasi-randomised point selection method, based on the
Halton sequence (Geraerts and Overmars| [2002). Using the Halton Sequence ensures that the RRT
algorithm uses unpredictable point selection whilst also ensuring a good spread over the environment. If
the points generated are not spread over the entire environment, then the tree growth stagnates and the
RRT is unable to be used to find a solution to the path planning problem.

The third method of point selection we are looking at uses trails to bias the point selection method.
Any number of trail points can be used to bias the growth. A random point is still chosen, but whether
this point is used to grow a branch is based on the number of trail points that exist within a certain
radius. If the number of neighbouring trail points is higher than a given threshold then we use this
random point to grow a tree branch (See Algorithm . So the algorithm does not stagnate, there is
still a chance that a randomly selected point without any neighbouring trail points will be used. The
probability of keeping a point is 10% plus an additional 10% for each trail point within a 10m radius. If
a point is selected with no neighbours there is only a 10% chance it is kept, but if the point has nine trail
points nearby then the probability of keeping the point is 100%. We vary the number of trail points used
in the experiment as it is not clear if there will be a single ‘best’ number of trail points to include, or if
there is a saturation point, after which the inclusion of more trail points does not help the RRT growth.
A higher number of trail points may in fact be detrimental to the RRT growth due to algorithm needing
to check every trail point to see if it is a neighbour of the randomly selected point in question.

The type of environment we are interested in looking at is large scale, populated and online. The
agent should be given a set of objects that make up the environment and trails observed there. The
agent should be able to calculate free and blocked space from the objects and detect clusters from the
trail information in a variety of ways. Collision detection for points in the environment is needed for the

agent to identify if a location is in free space, and so is available for using when planning a route. The
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specifics of how free space is identified is an implementation requirement, rather than a scientific one.

We cover the environment and how trails are gathered and selected in Section [3.2]

Algorithm 7 Algorithm for biasing point selection in an environment near to trail points

Require: listoftrailpoints, iterations ¢
forx =1—ido
p = random point
neighboursList = list of trail points within 10m of (p)
n = neighboursList.size()
r = random number between 0 and 100
chanceToKeepPoint = 10 + (n * 10) # (10% Change of keeping point plus 10% for each neighbour)

if (r < chanceToK eepPoint) then
return p
end if
end for

4.3 Evaluation

We wanted to investigate the effect that different RRT generation methods have on environments of dif-
ferent sizes. To do this we looked at two environments discussed previously in Section[3.2] the small scale,
Hyde Park and a large scale environment, the Greater London Area. These are the two environments
described in the previous chapter. Hyde Park is a 256m? environment that contains both free open areas
of grass and some more structured space such as paths and buildings. The Greater London Area is an
environment twice as large at 512m?. It consists of Hyde Park and three other regions surrounding it.
Images for the two environments can be see in Figure more details can be found in Chapter [3| on
page [42]

We used three RRT algorithms: the standard RRT, the Greedy RRT and the RRT-Connect algo-
rithms. These algorithms were first described in Chapter on pages |17 and We have repeated the
algorothms here for clarity within this chapter. The standard algorithm had a maximum branch distance
of 10m, and can be seen in Algorithm

The Greedy RRT was allowed to continue growing branches until it reached the point selected or an
obstacle, the algorithm for this approach can be seen in Algorithm [9]

The third algorithm, the RRT connect, grows two trees at the same time. One from the start point
and one at the end, the algorithm ending when the trees meet. This also had a maximum branch distance

of 10m applied. This algorithm can be seen in Algorithm
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London Community (Seasonal) Hyde Park
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Winter 2012: Winter Wonderland
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Figure 4.1: The environments used for the experiments. The smaller, Hyde Park region only uses the top,
right hand corner of the environment. This is a 2562 environment. The Greater London Area includes
Hyde Park and three other regions. At the time of writing there is no image available for the London
Community Region. The image on the right hand side is the collision map for the environments. This
shows the free (white) and blocked (blue) space in the environment.

Algorithm 8 The basic RRT generation algorithm

1: Require: Start point (s), End point (e), listofpoints, listofbranches
2: Add (s) to list of points

3: while list of points does not contain a point close to (¢) do

4:  Select a random point (p)

5. Find the nearest neighbouring point (n) in the tree to (p)

6:  Calculate the point (p’) a given distance from (n) towards (p).

7. if n is free AND there is a clear path between the points (n, p’) then
8: add (p') to the list of points

9: add (n, p’) to the list of branches

10: end if

11: end while

60



Algorithm 9 The Greedy RRT generation algorithm

1: Require: Start point (s), End point (e), listofpoints, listofbranches
2: Add (s) to list of points
3: while list of points does not contain a point close to (¢) do

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

p < Selected point
n < nearest neighbour in the existing tree

//Using the equation of a line, calculate m and ¢ for the line connecting the points n and p
if p.x != n.x then
m = (n.y - p.y)/(n.x - p.x)
else
m =0
end if
¢c=p.y-(m*px)

addedSomething = false

//go along the line testing each point one at a time.
newzr < n.x
while not addedSomething do

newx  oldx + 1

newy <— m * newxr + ¢

if newy is not outside bounds of the environment then

if not isFree(newx,newy) then
//point was blocked, go to previous point and add this as the end point and branch
point + oldx, oldy
add (point) to the list of points
add (n, point) to the list of branches
addedSomething < true

else

//x,y coordinate is in free space

if x coordinate at edge of environment then
point <— newx, newy
add (point) to the list of points
add (n, point) to the list of branches
addedSomething + true

end if

end if

end if

oldx < newzx

oldy + newy
end while

46: end while
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Algorithm 10 The RRT Connect generation algorithm

1:
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= e

Require: Start point (s), End point (e), ListO f PointsInTreeOne, ListO f BranchesInTreeOne,
ListO f PointsInTreeTwo, ListO f BranchesInTreeTwo
Add (s) to ListO f PointsInTreeOne
Add (e) to ListO fPointsInTreeTwo
connected < false
while not connected do
Select a random point (p)

// Grow branch in Tree One

Find the nearest neighbouring point (n) in TreeOne to (p)

Calculate the point (p') a given distance from (n) towards (p).

if n is free AND there is a clear path between the points (n, p’) then
add (p') to the list of points for TreeOne
add (n, p’) to the list of branches for TreeOne

end if

// Grow branch in Tree Two
Find the nearest neighbouring point (n’) in TreeTwo to (p)
Calculate the point (p”) a given distance from (n’) towards (p).
if n’ is free AND there is a clear path between the points (n’, p”) then
add (p”) to the list of points for TreeTwo
add (n/, p”) to the list of branches for TreeTwo
end if
for each point in ListOfPointsInTreeOne do
if there is a point in TreeTwo within a given distance and there is a clear path between the two
then
connected < true
FinalListO f Points = ListO f PointsInTreeOne + ListO f PointsInTreeTwo
FinalListOfArcs =  ListOfBranchesInTreeOne + ListOfBranchesInTreeTwo +
ConnectingArc
end if
end for
end while
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The same approach for point selection was then applied to all three algorithms. The first point
selected for the tree to grow towards was the planning end point. Then points were selected according to
some method for use in the algorithm. After every 200 points the planning end point was again selected.
The choice of 200 points is arbitrary and any number could be used. By including the end point in the
selected points we ensured that there was at least some bias towards the planning end point, and so the
algorithm successfully being able to plan a route. After each point is used to grow a branch in the tree a
check is made as to whether there is a branch end point within a given radius of the planning end point.
If this is the case the generation phase of the algorithm is completed, and a path planned using the tree.
If not then further points are selected and more branches grown. After the generation phase has been
completed, the agent plans a path between the start and end point.

The start point for the RRT in the small scale environment was (0,0) and the end point (255,255). A
tree was then grown from one corner of the environment to the opposite corner. In the larger environment
we used (0,0) and (492, 453) as there was no available route between the two corners in this environment.
A* route planning Russell and Norvig] (2003)) is then used to determine the final route.

The biased RRTs were given a number of trail points with which to bias the growth of the tree. To
test whether there was a saturation point for the usefulness of trails we compared the difference 1000,
2500, 5000, 7500, 10,000, 12,500, 15,000, 17,500 and 20,000 trail points made to the tree growth.

The trail information was observed and gathered previously. How the trail information was gathered
and split into individual sets for use is covered in Section [3.2)

All the experiments are run on a single computer, under as close to the same circumstances as possible.
The machine was an Intel(R) Core(TM)2 Quad CPU (2.40GHz) running Scientific Linux version 2.6.32
with 2GB RAM.

4.4 Results

The full results tables can be seen in Appendix [A] We focus on the best result for each set of experiments

in this section, comparing the three different point section methods for each of the three algorithms.

4.4.1 Hyde Park

The results for these experiments can be seen in Tables and the graph in Figure

Trees built using the trail bias method planned the shortest path for all three RRT generation algo-
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Normal Total Std Std  Plan Std Std

Time Dev Points Dev Time Dev Length  Dev
Random 3234.50 429.88 74.60 7.72 1.75 141 388.10 14.21
Halton 3269.15  639.08 75.35 16.76 1.75 1.26  392.09 22.69
Trail Bias - 7500 Points 3303.50  420.92 75.65 10.01 1.60 1.16 389.87 26.22
Trail Bias - 10000 Points 3527.35 765.33 79.35 16.32 1.70 145 382.81 16.03
Greedy Total Std Std  Plan  Std Std

Time Dev Points Dev Time Dev Length  Dev
Random 3376.60 539.62 77.55 11.43 1.55 1.24  390.25 20.06
Halton 3549.15  723.07 80.85 12.82 1.60 1.74 389.44 20.04
Trail Bias - 10000 Points 3420.15  692.76 75.65 15.89 1.90 1.41 382.05 1591
Trail Bias - 15000 Points 338745  682.33 77.65 11.85 1.60 1.56 389.98 19.73
RRT-Connect Total Std Std  Plan  Std Std

Time Dev  Points Dev Time Dev Length  Dev
Random 3325.65  590.44  76.00 12.09 1.55 1.40 389.09 16.20
Halton 3244.55  558.87 75.20 1339 1.55 1.28 380.97 17.81
Trail Bias - 5000 Points 3374.70  724.22  75.70 1498 1.60 1.77  388.03 17.52
Trail Bias - 7500 Points 3490.06 104246  79.90 21.23 1.65 1.74 380.10 20.30

Table 4.1: Results of the RRT experiments in Hyde Park. We only report two trail bias methods, the
one with the shortest generation time and the one with the shortest planned path. Full results can be
found in Appendix [A] All times are in milliseconds, the length is in meters. Values in bold text are the
best for that metric.

Normal Total Std Std  Plan Std Std

Time Dev  Points Dev  Time Dev  Length Dev
Random 161761.45 38257.79  756.35 180.80 26.75 22.81  905.92  55.61
Halton 138370.25 16129.70  665.25  78.03 19.05 11.91 891.36  54.00
Trail Bias - 15000 81622.00 17986.10 345.80 82.61 745 4.73 883.84 65.51
Greedy Total Std Std  Plan Std Std

Time Dev  Points Dev  Time Dev  Length Dev
Random 93520.90 79735.06  240.15 195.31 6.30 6.24 1038.31 150.03
Halton 74502.80 53991.81 190.95 132.17 520 5.10 1109.75 239.86

Trail Bias - 15000 51103.80 27110.77  237.10  79.88 525 272  981.27 133.59
Trail Bias - 17500  62167.80 32290.47  310.95 187.36 540 5.07 957.42 105.97

RRT-Connect Total Std Std  Plan Std Std

Time Dev  Points Dev  Time Dev  Length Dev
Random 59404.90 22046.29  257.85  90.10 6.35 4.19 937.58  89.38
Halton 49410.05 11083.17 222.50 49.09 490 2.88 876.21  47.63

Trail Bias - 1000 69209.80 29290.38  294.10 112.13 7.05 4.68 873.97 75.84
Trail Bias - 10000 85835.40 40193.31 37290 176.33 740 5.67 870.65  73.93

Table 4.2: Results of the RRT experiments in the large scale Greater London Area. We only report two
trail bias methods, the one with the shortest generation time and the one with the shortest planned path.
Full results can be found in Appendix[A] All times are in milliseconds, the length is in meters. Values in
bold text are the best for that metric.
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Generation Time vs the Length of the planned route for the Single Region RRT
Experiments.
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Figure 4.2: Scatter plot of the length of the planned route v.s. the generation time required in the
single region (Hyde Park) experiments. The further towards the bottom a point is, the shorter the route
planned. The further towards the left hand side, the faster the generation time. Ideal results will be in
the bottom left hand corner of the graph.
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rithms. This is due to the human optimisation effect inherent in trails. However, these methods were not
always the fastest. Random point selection generated the tree in the shortest period of time for both the
normal and greedy RRT algorithms. These both planned longer routes than the trail biased RRT. When
using the RRT-Connect algorithm the fastest point generation method used Halton generated points.
The better spread of points enabled the two trees to grow together faster and generate reasonably short
route. Generally, the planning time correlated with the number of nodes in the tree. Where fewer points

were required linking the root and end goal, the planning time was short.

4.4.2 The Greater London Area

In a large scale environment it is important to select points with care, to ensure that the tree is able
to reach its maximum potential. Trail based point selection approaches worked better here than in the
single region environment. The results can be seen in Table and the graph in Figure

When using normal or greedy point selection the fastest tree generation method biased the growth
using 15,000 trail points. For the normal RRT algorithm, 15,000 trail points also required the least nodes
to be added to the tree and generated the shortest path. However, when using the greedy RRT algorithm,
the shortest route planned used 17,500 trail points. This shows that trail points are beneficial to tree
growth when using these two algorithms. The exact number of points required to get both the fastest
generation time and the shortest route can fluctuate, depending on the trails available.

When using the RRT connect method of tree generation the quasi-random Halton sequence performed
the best. A better spread of points over the environment ensured that the tree was able to be generated
in a short period of time, with a low planning cost. However, the shortest planned route was still achieved
by a trail biased tree using 10,000 points.

The success of the RRT-Connect algorithm comes from being able to grow two trees at once. When
doing this it is essential that the points selected are spread evenly around the environment. Using trails
to bias these points still caused the trees to stagnate rather than enabling them to grow towards common
areas from different directions. When using trail points there is always the chance that that concentration
of trails may not be in areas where the agent needs to plan a route between. In this case the agent will
need to select points carefully from the trail set available to grow a tree towards. Trails again planned

the shortest path in all three RRT generation algorithms.
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Generation Time vs the Length of the planned route for the Greater London
Area RRT Experiments.
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Figure 4.3: Scatter plot of the length of the planned route v.s. the generation time required in the large
scale (Greater London Area) experiments. The further towards the bottom a point is, the shorter the
route planned. The further towards the left hand side, the faster the generation time. Ideal results will
be in the bottom left hand corner of the graph.
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4.5 Discussion
The hypotheses behind this chapter were that:

1. Tails can be used to reduce the generation time needed to build an RRT which can then be used

to plan a route between two given points in an environment

2. The routes planned by the trail based RRTs will be shorter than those planned using other RRT

point selection methods

In general we found that trails did improve the generation of RRTs. We used trails to bias the growth
of the tree towards popular areas and paths in the environment. In small scale environments the shortest
generation time is achieved using random or Halton point selection. The better spread of points selected
over the environment gave an advantage to these point selection methods. A set of trail points nowhere
near the start or end point may detract from the tree growth process as it causes the RRT to expand in
an unnecessary direction. The goal of the RRT algorithm is to use randomness to grow the tree, enabling
branches to spread around obstacles in the environment. Trails guide growth towards the popular areas,
but not always towards the end point required. Despite this, the shortest planned path in all methods
used the trail bias method. The human optimisation effect in trails means that the trees generated
allowed for shorter paths to be planned using all three RRT generation methods.

In large scale environment trails outperform random methods when using normal or greedy RRT
generation. It is important that as the size of the environment increases that the correct set of points
are selected when growing the tree. When using the RRT-Connect algorithm the Halton point selection
method led to faster generation of the tree. Trails again planned the shortest path in all three RRT
generation algorithms.

The first hypothesis was partially correct. In some cases trails did reduce the time required to generate
an RRT capable of planning a route between two points in both environments. This holds more accurately
for large scale environments than small scale ones. Hypothesis two always held. The shortest routes were
planned by trail biased RRTs, this held for both small and large scale environments, and whichever RRT
generation algorithm was looked at. There is further work to do in this area. One option we want to
investigate is to look at ERRT waypoints (Bruce and Veloso, 2002). These bias tree growth towards a set
of points in an environment identified before the tree is grown. There is potential for the cluster points

in trails, the areas where many avatars have been observed, to be useful in selecting waypoints.
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We also only used the raw trail information during this experiment. One method of improving upon
this is to look again at clustering methods for the trail points. By merging or clustering trail points
together we keep only the useful information from the trails, reducing large groups of points down to a
single important location (we explore this idea more in Chapter [5| for Probabilistic Roadmap generation).
These locations may be better used to bias the tree growth towards the important areas in the environment
and so generate trees better in cluttered and restricted environments. Combining point selection methods
may also give better results, combining the better spread of random methods with the biasing of trails

towards known paths in the environment.
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CHAPTER b

Improving Probabilistic Roadmap generation using trails

5.1 Introduction

In Chapter [l we looked at improving RRTs using trails. This chapter looks at a different type of roadmap
representation, the Probabilistic Roadmap (PRM). The primary difference between the PRM algorithm
and the RRT is that the PRM generation phase does not need to take into consideration the start or
end point as the map is built. PRMs are designed with reuse in mind. They were first proposed as a
method of describing the interconnectivity of free space in an environment. An agent can then use this
connectivity information to plan a path between two points in an environment (Kavraki et al., [1996).
The application of a PRM consists of two phases, the construction phase and the query phase.

In the construction phase, points are chosen and connected to their neighbours if a path (typically a
straight line) through free space exists between them. A point is considered to be a neighbour to another
point in the roadmap if they are within a certain distance of one another. This produces a graph of
interlinked nodes. A PRM does not need to be fully connected, there is no requirement for every point
to connect to a single root point like in the RRT. The query phase then uses this graph to plan a path

between any two points in the environment. A brief outline of the construction phase can be seen in

Section Algorithm

70



One significant disadvantage to using PRMs in large scale or restricted environments is the time
required to generate a map capable of planning a route between a given set of start and end points. In
restricted environments, such as those with narrow passages, the correct selection of points is required
to ensure all parts of the environment are connected. This process can take a long period of time. Also,
large scale and complex environments contain many obstacles, increasing the number of collision checks
required to add a point. This again can take a long period of time. We require our agent to be able to
generate a map and plan routes using this as quickly as possible.

In this Chapter we examine the effect of using trails points on the generation of PRMs in different
virtual environments. Our goal is to determine the effects of using raw and processed trail information

on the point selection method of the road map. We formed the following hypotheses for investigation:

1. By using trails we can reduce the time required to generate a PRM more than other point selection

methods

2. By using trails we can increase the success rate of the agent at planning routes in an environment.
It will be able to plan more of a given set of routes when using trails compared with when using

standard PRM point selection methods.

3. By using trails when generating the PRM the agent will then be able to plan shorter routes than

if it was using a PRM generated using other point selection methods.

These hypotheses were formed based on the idea thatOne of the reasons we believe these hypotheses
will be true is that including a trail point in the roadmap and connections between two subsequent points
in a trail requires no collision checking, and this reduces one of the major sources of complexity in a
standard PRM.

This chapter is based on our paper published in 2013:

Katrina Samperi, Nick Hawes, Russell Beale: Improving Map Generation in
Large-Scale Environments for Intelligent Virtual Agents. The AAMAS-2013
Workshop on Cognitive Agents for Virtual Environments, Springer, May 2013
(Samperi et al., |2013al)

The contribution of this chapter is a new source of information for quickly building PRMs. We
looked at how the combination of a number of different point selection methods changed and improved
the overall map generation and discovered that, in both small and large scale environments, trail based

PRMs outperformed current methods over a variety of metrics.
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The rest of this chapter is structured as follows: Section describes our analysis and approach
to investigating generating PRMs using trails. We cover different methods of using trails in the PRM
generation algorithm and the results of our preliminary experiments. Section covers the experiment
details and how we evaluate our results. Following this Section looks at the results of our experiments
in small and large scale environments. Finally, Section discusses our findings and future work in this

area

5.2 Approach

A good PRM is one that is able to be generated in a short period of time and can successfully and quickly
plan short routes between a given set of points. It will be well connected, ensuring that all areas of the
environment are covered by the graph. The application of a PRM is a two stage process, the first stage
is the generation stage. The second is to use the map generated to plan routes. If the map size increases
then the generation time also increases, we want to limit the effect the size of the environment has on
the map by changing the point selection approach used. A short path in this situation is the minimum
distance that the agent will travel when navigating between two points. This is not the same as the
straight line distance between the points as obstacles will change the route the agent must use. We want
to minimise the distance and so compare the results against the shortest generated path in each case.

As we want to compare the difference made by the point selection step of the PRM, we chose to look
at the standard PRM generation algorithm. This is the algorithm first described in Section and
has been reproduced here as Algorithm While the lazy PRM can be faster to generate, it relies more
heavily on the planning algorithm used when selecting which points and arcs to test when planning a
path between two points (see Section for more details).

The agent is given an object map of the environment, a set of trail points and a set of points to plan
paths between. Using these, the agent is required to generate a PRM and use it to plan a set of routes.
The agent uses A* route planning Russell and Norvig (2003) over this entire chapter. We measure the
time taken to build the roadmap, the time taken to plan the path, the success the agent has at planning
and the length of the subsequent path. We want to compare a number of different point generation

methods, and combinations of trail and non-trail based methods.
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Algorithm 11 The basic PRM generation algorithm. The connectToNeighbour method changes for each
variation on the algorithm. See Algorithm [4] for the basic PRM algorithm that allows loops in the graph,
Algorithm [5] for the variation we use in this thesis that does not include loops and Algorithm [6] for the
greedy PRM approach.

listO f Points < Empty
listO f Arcs < Empty
current Points < 0
while (currentPoints <maxPoints) do
p < generatePoint
if isFree(p) then
neighbouringPoints < list of points within a minimum distance of p sorted by distance from p
connectToNeighbour(p, neighbouringPoints)
listOfPoints.add(p)
currentPoints ++
end if
end while

5.2.1 Using Trails in PRMs

Trails can be used to help generate PRMs in a number of ways. The simplest is to use trail points directly
for point selection in the PRM algorithm. The advantage of doing this is that during the generation phase
of the PRM no collision checking is required to ensure that points are in free space; the act of observing
an avatar at that location tells us it is free. It is also possible to connect contiguous trail points without
collision checking against known obstacles, thus including the full route an avatar was observed taking.
The disadvantage to using only trail points is that the map generated will only show the connectivity
of space where other agents have been observed, this can cause problems for the agent when planning
routes (Pouke, 2013). We solve this by combining PRM point selection methods to try and cover all
scenarios. This technique has been looked at by Hsu et al.| (2003)), the authors compare the combination
of numerous methods of point selection to find the best combination to use in any situation.

We combine different PRM point selection methods by choosing a certain percentage of points ac-
cording to each different selection method and then building the roadmap using these. The order in
which points were added to the map is the order given when describing the point selection methods used.
Trail or Merged Trail points were added to the roadmap first, followed by Gaussian then Halton points.
Combining several methods of point selection should, in theory, provide all the advantages of using trails,
but will still allow paths to be planned through sparsely visited areas of the environment.

Another method of using trail information is to use it to bias whether or not a randomly generated
point is added to the road map. This is similar to the tree growth bias we looked at for RRTs. First a

point is randomly selected, the probability of adding this point in the map is directly correlated with the
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number of known trail points nearby. All points have a small chance of being added to the map, but the
more trail points in the neighbouring region, the higher the probability that the selected point will be
included. This produces a map where points are biased towards popular regions of the environment, and
much more sparsely generated elsewhere. The disadvantage to this method is we lose any benefit gained

by not needing to perform collision checks when adding nodes and arcs to the roadmap.

5.2.2 Preliminary Experiments

We ran a set of preliminary experiments to look at which of the various factors in our experiment were
important. We looked at PRMs generated with a range of maximum number of points being selected
for inclusion in the roadmap. During these investigations we discovered that on occasion using the raw
trail information could lead to very high PRM generation times. This is due to the nature of trails.
Avatar movements are not always between two distinct points in space, generating many points in a
small area, while not adding any new information. It was clear that we needed to filter some of the trail
information, keeping the important points and arcs, but removing some of the clutter that slows down
the map generation.

To overcome this, we developed a method to merge trail points together, and thus only include points
that add new information. Our method for doing this is similar to that used by methods such as the
Visibility PRM (Simeon et al, |2000), the Hybrid PRM approaches (Hsu et all |2005) or path averaging
(Poukel 2013)). The trail information is processed before being included in the roadmap. This involves
iterating over the trail list and if two points are within a given small distance of one another, all references
to the points are merged together. This results in a single point in the graph with all the arcs still linking
it to neighbouring points giving a skeletonised version of the trail map with fewer points and links, but
these points all contain information about connectivity and free space in the environment. Figure [5.]]
shows a PRM generated using the raw trail information, while Figure [5.2] shows the same set of trails
post-merger. Algorithm [T2] shows the algorithm used to merge the trail points. In our results we include
this pre-processing time in the PRM generation time for a fair comparison.

There is a disadvantage to merging trail points. When reducing and the number of points and arcs
some information will be lost. Points selected for inclusion in the roadmap that do not use trails will
need collision checks performed. These points may have been original trail points, but removed in the

merging process. Likewise, some connectivity from the arcs is lost as points are merged together.
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Algorithm 12 The algorithm used to merge trail points

Input: List of routes comprising all the trail information
Input: Distance at which two points will be considered neighbours

for all routes in the trail information do
for all trail point (p) in the route do
listO f Neighbours < all points within a radius of r to p from the trail information

if listO f Neighbours > 1 then
nearest Neighbour < the closest neighbour to p
// Replace all references to the neighbouring point with p
for all route in trail information do
for all trail point (g) in the route do
if ¢ =nearestNeighbour then
q=7p
end if
end for
end for
end if

end for
end for
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Figure 5.1: PRM generated from 100% raw trail ~ Figure 5.2: PRM generated from the same trail

data. The raw data produced a map with 6991 set as Figure but merging the points to-

unique points and 15689 arcs. gether to include only the useful information
from the trails. This map retained 523 unique
points and 9262 arcs.
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London Community (Seasonal)  Hyde Park London Community (Seasonal)  Hyde Park
3 T T -

London Community Region.

Summer 2012: Olympic themed
Winter 2012: Winter Wonderland

Currently Offiine (6/9/2013)

|
Kensington Knightsbridge: Kensington Knightsbridge

Figure 5.3: The environments used for the experiments. The smaller, Hyde Park region only uses the top,
right hand corner of the environment. This is a 2562 environment. The Greater London Area includes
Hyde Park and three other regions. At the time of writing there is no image available for the London
Community Region. The image on the right hand side is the collision map for the environments. This
shows the free (white) and blocked (blue) space in the environment.

5.3 Evaluation

To test out hypothesis we looked looking at the two regions outlined in Section Hyde Park and the
Greater London Area. Hyde Park is a single region, 256m? in size. The Greater London Area consists of
four regions, 512m? in size. Both these regions have been described in detail in Section on Page
Images for the two regions can be seen in Figure [5.3]

To measure the effect that using trails has on generating PRMs, we compare our trail-based approach

to PRMs generated with the alternative point generation methods. Our comparison is performed using

the approach taken by |Geraerts and Overmars (2002)), Park and Chung| (2009) and |Gasparri et al.| (2009).

In these approaches, a fixed limit is applied to the number of points selected and added to the PRM. Once
this limit is reached the PRM is then used in the planning task. The planning task requires the agent to
plan a route between six given start and end points. The distance at which two points can be considered
neighbours is also fixed at 10m. When merging trail points together we reduced this distance to 5m, to
ensure that the merged trail points more accurately represented the cluster that existed previously. The
point selection methods are then compared on the percentage of routes they successfully find. A failure
means the map does not allow the agent to find a path between the start and end points.

A set of trail information is also given to the agent at the same time as the object map for the world.
These are both described in more detail in Section[3.2] Processing of the trails for the merged trail PRMs

is included in the generation time of the road map. Like previously, for RRTs, we were only interested
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in generating maps at ground level for a walking avatar. The trail information was filtered so the agent
only had access to ground level movements without flying or teleportation involved.
To compare the different PRM point selection methods, we generated twenty PRMs using each of the

following point generation methods. The details of how each point selection method works can be found

in Section 2.4.2
Standard Methods:

— Random point selection
— Halton point selection

— 25%, 50%, 75%, 100% Gaussian points Combined with Halton Points
New Methods:

— Raw Trail information
* Randomly selected points biased by Trail points (10% chance of keeping points, increasing
by 10% for each neighbouring trail point detected)
x 25%, 50%, 75%, 100% Trail points combined with Halton points
* 25%, 50%, 75% Trail points combined with Gaussian generated points
* 25%, 25%, 50% split for Trail, Gaussian and Halton points in all combinations

— Merged Trail information

x 25%, 50%, 75% 100% Merged trail points combined with Halton points
x 25%, 50%, 75% Merged Trail points combined with Gaussian generated points

* 25%, 25%, 50% split for Merged Trail, Gaussian and Halton points in all combinations

For each PRM the generation phase is limited to 1000, 5000 or 10,000 points. Not all the points
generated will be included in the map. Points may be rejected if they have already been included, or are
not in free space. Once a roadmap has been generated, the agent must complete a planning task using
this map. The agent must attempt to plan a set of routes between six different start and end points. The
paths are split into two groups. The first group connected popular locations in the environment, places
we had observed many avatars moving between. The second group were in locations less frequently or
never visited, so less trail information would be available for use.

For each approach we measure the following criteria:
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1. Success at the planning task

[\

. Length of the paths found between start and end points

3. Generation time for the PRM

=~

. Planning time averaged over all routes

The most important of these factors is the success rate. We judge a higher success rate finding longer
routes as better than a lower success rate finding shorter routes. A failed map is one that is unable to
plan a route between the given points. This may occur if the number of points included in the roadmap
is not high enough, or the placement of points doesn’t allow for paths to be found around obstacles.

We report the length of the planned routes as a single number. This was achieved by taking the ratio
of each individually planned route to the shortest route planned for that set of points. The closer this
number was to one, the shorter, on average, the planned route was. We then averaged this over the six
planned routes for each point selection type. This gives us a single comparable number for the length of
the planned routes.

Point selection methods can be assigned a r. This is the relative ‘effort’ it takes for a point to be
added to the roadmap and has been used by the hybrid PRM (Hsu et al., 2005) to calculate which point
selection method is best used when generating PRMs. We calculate the cost by looking at the number
of collision checks required to add each point to the PRM. We omit the collision checks required to find
a path between a point and its neighbour as every point added will have these checks. While trail points
have some connections added without collision checking, an attempt is still made to connect these points
to the main road map. The basic cost per point for methods can be seen in Table [5.1] Combinations
of point selection methods are weighted by how many of each type of point they use. For example,
a “25% trail, 25% Gaussian and 50% Halton” point selection method would have a combined cost of:
(0.25 % 0) 4+ (0.25 % 2) 4+ (0.5 1) = 1. The cost metric here is a useful comparison showing the relative
‘effort’ a PRM algorithm would have to go through to add a node to the road map. These statistics
are more useful for adaptive roadmap generation methods, as the algorithm can adapt its point selection
method over time. However, that is outside the scope of this thesis.

All the experiments are run on a single computer, under as close to the same circumstances as possible.
The machine was an Intel(R) Core(TM)2 Quad CPU (2.40GHz) running Scientific Linux version 2.6.32
with 2GB RAM.
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Cost  Point generation type Rational

0 Trail Points No collision checking required as we know this place to be
free. Another avatar cannot stand there if it is blocked

1 Random / Halton A single collision check is required to add this point
Trail Bias A single point is selected and checked, the bias happens
before the collision checking

2 Gaussian Gaussian checks the point in question and at least one
neighbouring point. Only if that neighbour is blocked is
the point added

3 Bridge Obsticle 3 points are required for checking if a point should be
included

Table 5.1: Cost (the number of collision checks required) per point for the standard point generation
methods

5.4 Results

The full results for the PRM experiments are presented in Appendix [B] We focus on a subsection of the
results here, where the success rate of each method was 100%. Results were averaged over 20 runs of
each point selection method or combination in each environment.

In general, we found that including trails improved the generation of probabilistic roadmaps. Trails

worked best when combined with other point generation methods.

Point Generation Method Gen Time Std.Dev. Length Plan Time Std.Dev.
(mins) (ms)
100% Halton 1.52 0.01 4.41 115.28 77.04
25% Trails 2.58 0.10 4.94 692.21 414.12
50% Gaus 50% Halton 3.63 0.07 8.67 153.33 89.33
75% Gaus 50% Halton 4.63 0.08 8.83 174.28 106.24
25% Trail 25% Gaus 50% Halton 1.76 0.06 5.79 196.73 113.37
25% Trail 50% Gaus 25% Halton 3.16 0.09 5.82 218.54 136.00
50% Trail 25% Gaus 25% Halton 1.94 0.07 5.28 267.24 171.98
25% Merge 50% Gaus 25% Halton 2.92 0.05 5.03 135.63 94.51

Table 5.2: PRM generation results for maps built using 5000 points in the Hyde Park environment. These
results only show methods that achieved a 100% success rate. The results in bold text are the best for
that metric.

5.4.1 Hyde Park

1000 points were not enough to generate a map with a high enough success rate to be included in our

results. The most successful method achieved only a 67% success rate when using 100% Halton points.
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Point Generation Method Gen Time Std.Dev. Length Plan Time Std.Dev.

(mins) (ms)
100% Halton 2.70 0.07 5.54 492.95 290.80
25% Trails 75% Halton 2.58 0.10 4.94 692.21 414.12
50% Trails 50% Halton 2.40 0.11 4.37 930.76 566.45
75% Trails 25% Halton 2.09 0.14 4.10 1313.70 881.76
25% Gaus 75% Halton 4.90 0.07 9.25 520.48 318.64
50% Gaus 50% Halton 7.03 0.08 9.16 576.88 346.49
75% Gaus 25% Halton 9.01 0.16 8.79 594.42 409.23
25% Trail 25% Gaus 50% Halton 3.36 0.10 4.90 745.30 502.30
25% Trail 50% Gaus 25% Halton 6.02 0.16 4.89 785.13 579.61
50% Trail 25% Gaus 25% Halton 3.83 0.17 4.44 1130.91 776.65
50% MergeTrails 50% Halton 1.66 0.01 3.58 291.23 192.81
75% MergeTrails 25% Halton 1.09 0.01 3.50 180.83 117.44
50% MergeTrails 25% Gaus 25% Halton 3.12 0.07 3.64 346.23 261.27

Table 5.3: PRM generation results for maps built using 10,000 points in the Hyde Park environment.
These results only show methods that achieved a 100% success rate. The results in bold text are the best
for that metric.

Point Generation Method Gen Time Std.Dev. Length Plan Time Std.Dev.
(mins) (ms)

100% Halton 10.29 0.18 2.30 101.96 60.79

Table 5.4: PRM generation results for maps in the Greater London Area built using 5,000 points. These
results only show methods that achieved a 100% success rate. The results in bold text are the best for
that metric.

Point Generation Method Gen Time Std.Dev. Length Plan Time Std.Dev.
(mins) (ms)
100% Halton 17.82 0.32 2.39 549.24 311.15
50% Trails 50% Halton 14.81 0.63 1.93 924.83 505.57
25% Gaus 75% Halton 28.48 0.77 2.67 647.91 300.66
50% Gaus 50% Halton 38.26 0.95 2.82 1236.54 617.57
25% MergeTrails 75% Halton 15.32 0.53 2.01 384.78 195.61
50% MergeTrails 50% Halton 11.89 0.31 1.55 278.47 169.34
25% MergeTrails 25% Gaus 50% Halton 26.18 0.54 2.00 707.70 372.12

Table 5.5: PRM generation results for maps in the Greater London Area built using 10,000 points. These
results only show methods that achieved a 100% success rate. The results in bold text are the best for
that metric.
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Generation time and Length of the planned routes for the fastest
selection methods with a success rate of 100% in the Hyde Park
Region

Value of Time or Length

5000 5000
Halton 25% Trail 25% Gaus 50% 50% MergeTrails 50% Halton|75% MergeTrails 25% Halton
Halton
Nuber of Points and Point Selection Type
M Time (minutes) M Length (As a ratio to the smallest planned length)

Figure 5.4: Graph showing the generation time and length of the subsequent planned route for the four
fastest point selection methods in the single region, Hyde Park, environment. The error bars here show
the standard deviation for the time.
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This map was able to plan the ‘easy’ set of routes, but had a much lower success rate for the harder
routes, due to a lack of information in the roadmap.

Maps generated using 5000 points had a higher success rate. Seven achieved a 100% success rate.
Table shows the results for these roadmaps. The shortest generation time, shortest path and shortest
planning time all used the 100% Halton point selection method.

When using 10,000 points a higher proportion of the point selection methods had a 100% success
rate. The table of results for 10,000 points can be seen in Table Of these, the best method used 75%
Merged trails and 25% Halton selected points. This had the lowest generation time, the shortest planned
path and the shortest planning time of all the methods. Figure [5.4] shows a graph of the generation time
and length of the planned route for the four fastest PRM generation methods. The generation time, at
1.09 minutes, was shorter than the PRMs using 5000 Halton points previously. The length of the route
was also shorter when using 10,000 points. The short routes resulted from the human optimisation effect
of trails; human controlled avatars tend to find shorter paths when travelling between points. Merged
trail points were much more successfully used than the raw trails. The clutter of raw trails detracted
from the map building process.

The planning time for some maps generated using trails is higher than the planning time when not
using trails. Trails are not collision checked as they are added to the roadmap. The Gaussian and random
points are checked for collisions and so may not be included in the map at all. This led to trail based maps
having a higher number of points included at the end of the generation phase, despite the same number
being selected. This had an effect on the planning time as more points in the map lead to more paths
needing consideration and so an increase in time. The overall generation time included the planning time
in these statistics, so this effect was taken into account when looking at the results. Planning time is an
interesting metric if we want to consider map re-use, as the generation phase only needs repeating when

the environment changes

5.4.2 Greater London Area

Merged trails were again very good for planning routes in a short period of time, but unless the trail
points existed then the roadmap was unable to plan in that area. The larger size of the environment
meant that a good spread of trail points is important.

The size of the environment meant that PRMs generated using 1000 points were not able to plan any

of the routes required. Every method had a 0% success rate.
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Generation time and Length of the planned routes for the fastest
selection methods with a success rate of 100% in the London Area
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Time in Minutes or Length in meters
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Halton 50% Trails 50% Halton  |25% MergeTrails 75% Halton|50% MergeTrails 50% Halton
Number of points and point selection method
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Figure 5.5: Graph showing the generation time and length of the subsequent planned route for the four
fastest point selection methods in the four part Greater London Area environment. The error bars here
show the standard deviation for the time.
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Figure 5.6: Number of included points in the 5000 point PRM vs the planning time in the subsequent
map.

When we used 5000 points only Halton point selection achieved a 100% success rate (seen table .
The generation time for this method was over ten minutes, which is excessive when compared to the
small scale environment.

Looking at 10,000 point roadmaps, a larger number achieved a 100% success rate. These results are
reported in Table [5.50 The best point selection method here is using 50% Merged Trail points and 50%
Halton points. This generated the roadmap in the shortest period of time, had the shortest planning
time and also planned the shortest routes. The generation time was slightly higher than the 5000 Halton
point roadmap, however, the route planned was shorter (see the graph in Figure . There is a positive
correlation between the planning time and the number of points in the roadmap (see Figure so in
general as the number of points included in the PRM increases, so does the planning time.

Initially we intended to generate maps with 20,000 points believing this to be necessary in large scale
environments, but our results showed that we did not need to increase the number of points included in
the roadmap beyond 10,000.

In both environments we discovered that some point selection methods were not successful. This is
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due to the number and the way the points are selected. If the number of points isn’t high enough, such
as the 1000 point maps, or the placement of the points is not sufficient to plan routes around obstacles,
then these maps are considered failures. Failure can be overcome in most cases by increasing the number
of points selected for inclusion in the roadmap, which is why we saw a larger number of point selection

methods included in the results for both Hyde Park and the Greater London Area.

5.5 Discussion and future work

The contribution of this section was to look at whether the generation of probabilistic roadmaps could

be improved by using trails as a source of information. The hypotheses we formed to test this were:

1. By using trails we can reduce the time required to generate a PRM more than other point selection

methods

2. By using trails we can increase the success rate of the agent at planning routes in an environment.
It will be able to plan more of a given set of routes when using trails compared with when using

standard PRM point selection methods.

3. By using trails when generating the PRM the agent will then be able to plan shorter routes than

if it was using a PRM generated using other point selection methods.

In small scale environments we showed that a combination of 75% merged trail points and 25% Halton
points were best for roadmap generation. These PRMs were generated in a short period of time, with a
high success rate and a short overall planned route. The cost of merging the points was included in the
generation time, so this result is comparable with non-trail based approaches.

In the large scale environment the best combination of points to use when generating the roadmap
was 50% Merged Trails and 50% Halton points. Of all the methods in the 10,000 point experiments that
achieved a 100% success rate this was the roadmap with the fastest generation and planning time as well
as the shortest planned routes.

We have shown our hypotheses to be true. The generation of PRMs can be improved by using trail
information. They are able to be generated in a shorter period of time and plan shorter routes. Using
trails helped improve the success rate over some more limited point selection methods, such as Gaussian.
The spread of points is very important in the roadmap and as the size of the map increases it becomes

more important. The Halton sequence was so successful when generating roadmaps and planning routes
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as a result of there being a good spread of points over the environment. This was more of a critical factor
in the large scale map where longer distances need to be covered. Trails only exist where the environment
is populated, so as we moved to a more sparsely visited map the number of Halton points required to ‘fill
in’ the roadmap needed to be increased.

In the future we aim to investigate this further by looking at how to generate these maps while the
agent is connected to the Second Life environment. A skeletonised PRM can be generated and trails are
added to this map as they are observed. As some randomisation is needed to improve the maps generated
only with trails, it will be interesting to see how these maps develop over time. This type of ‘on demand’
PRM would be comparable to the RRT algorithm as it would take into account the start point of the
agent and where it is trying to navigate towards. Some method of identifying useful trails and merging
them into currently known paths will be required. There are also other ways we could evaluate these
roadmaps. One option is to keep adding points to the roadmap until the paths can all be planned and
evaluate these based on the number of points required and the time taken to generate the map. These
would be useful in time limited situations or when successful path planning is necessary.

We also wanted to compare trail-based PRMs with the Visibility PRM algorithm outlined by |Simeon
et al. (2000). However, the time required to generate a Visibility PRM far outstripped any of the
other methods, owing to how the Visibility PRM is generated. Normally points are only connected
to neighbouring points. In our experiment the maximum distance two points could be apart and still
considered neighbours was 10m. However, the Visibility PRM does not have this limit, so connections are
attempted to every other point in the map, meaning that a lot of collision checking was required when
trying to connect two points in the road map. This increased the length of time needed to add a single
point into the roadmap, vastly outstripping other point selection methods. The Visibility PRM seems
better suited to smaller environments, where fewer collision checks are needed to build the map.

It is always possible to extend this work by adding more methods of point generation into the com-
parison. Some that are of particular interest are octree, or adaptive grid methods for generating the grid
points (LaValle), [2006). These would work well when combined with the segmentation of the environment

we look at in Chapter [7]

86



CHAPTER O

Roadmaps in larger environments

6.1 Introduction

Chapter [ and 5] have shown that trails can be used to improve the generation of roadmaps in small
and larger scale virtual environments. The environment we have been using for these experiments is an
existing virtual environment that uses one or four distinct regions from Second Life. To increase the size
of the environment further we would need to find a suitable sixteen or thirty two region in Second Life,
with a good avatar population that is flat and also covers a range of different environment types. This is
difficult to achieve.

In some cases it is also difficult to see whether the change in the effectiveness of trail based roadmaps
is due to the trails observed or other factors in the environment. This chapter is designed to look at trails
in a controlled environment which we can extend to be of a much larger size. We are able to control the
exact trails that the agent has access to and the layout, for instance, we can design environments with
narrow corridors to test trail inclusion in this situation. We can then see if trails have a positive effect
on an agents ability to plan routes between a given set of points.

The hypotheses we are looking at in this chapter are:

1. Trails can be used to improve the generation of PRMs in a set of test environments
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2. Trails which do not connect the start and end point in an environment can still be useful when

included in the roadmap

The contribution of this chapter is an investigation into the effect trails have on generating PRMs in
very large scale environments. The area of Second Life we have trail and object information for is small
compared to the overall size of the environment. By looking at generated environments we can extend
the environment size without needing to find a different area of the Second Life virtual environment to
use.

The rest of this chapter is structured as follows. Section looks at the problem in more detail and
at the environments we will be looking at. After that, Section describes our evaluation method for
these experiments. Section follows with the results of our experiments. Finally, Section discusses

our results and future work we can do in this area.

6.2 Analysis

We designed six environments based on different criteria. These environments are available in four
different sizes: 256m?, 512m?, 1024m?, and 2048m?2. This corresponds to one, four, sixteen and thirty-

two regions in Second Life.

1. Empty Environment
The empty environment has no objects. A route should be easy to plan for the agent as there are

no obstacles to consider.

2. Single Gap Environment
The single gap environment has a wall in the middle of it with a single gap allowing the roadmap to
connect one half of the room to the other. This environment shows an example of when a roadmap
algorithm may struggle to fully connect its graph when specific points are required in the map

building process. Sometimes the corridor is changed to have turns incorporated, for example:

3. Long Corridor Environment
The environment consists of two rooms with a narrow corridor between them. This is similar to the
single gap environment, but the length of the corridor makes this a more difficult problem as the
agent will need to select several points within the corridor to ensure a path can be planned from

one end to the other.
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4. Sparse Random Clutter
This environment is not structured and has objects placed around the environment. There is room

to move around all the objects.

5. Dense Random Clutter
A densely cluttered environment restricting the free space the agent can access. This is a typical

limitation test for roadmap building methods used by a number of previous studies, for example:

(Geraerts and Overmars, 2002) and (Thomas et al., |2007)

6. Zig Zag Maze
This is an environment with many narrow passages to navigate to get from start to end. This will
require selecting a correct set of points to ensure that the agent is able to navigate through all the

corridors one after another.

Some of the environments were inspired by environments used to assess other PRM algorithms and

point selection methods. [Boor et al| (1999)) use environments with narrow gaps and corridors for an

agent to plan a route over. |Geraerts and Overmars| (2002), [Yang and Brock (2004) and Thomas et al,

(2007) all evaluate the effectiveness of various PRM algorithms and point selection methods on a three

dimensional version of a single gap environment. These environments have a wall splitting the two sides

of the environment with a narrow hole the agent has to navigate through. Denny and Amato| (2011))

use a two dimensional version of the single gap environment to evaluate their PRM algorithm, and also
environments with long narrow corridors. Images of all the environments can be seen in Figure[6.1] These
images are generated from the 256m? environments. Sparse and dense clutter was generated randomly,
ensuring that the start and end point could be connected in the roadmap and a route planned between
all the start and end points.

The agent may have no trail information given to it, or a single trail that can be of the following type:
e A full trail from the start to end point
e Partial trails, made up from 25%, 50% or 75% of the full trail

e A ‘misleading’ trail, connecting two points in the environment which are not always near the start

or end point.

The trails were created by calculating the shortest path between two points, either the bottom left

and top right corner for the useful trail or two different points for the misleading trail. This was done by
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Figure 6.1: The six test environments created. Areas in white are free space, areas in blue were blocked
by objects. These environments are all 256m?, the placement of objects in the sparse and dense clutter
environments varies for each of the sizes.

creating a using the PRM generation algorithm as an implementation shortcut. A PRM was generated
that added points in a regular, grid like fashion, 10m apart. This meant that every point could connect
to the eight neighbouring points around it. Using this mesh of points and connections we were able to
determine the shortest path between any two points to use as the trail. We did not include a random
trail in the evaluation as this would be equivalent to running the standard PRM algorithm (selecting
points in space then connecting them based on distance). This would not add any useful information.

The misleading trail was included to assess whether trails would still be of use even when they do not

join the start or end point. Recently, |Alempijevic et al| (2013) have also investigated this approach for

agents acting in the real world.

We chose to look at Halton point selection in combination with trails. Halton point selection gives
a good spread of points over an entire environment. It gave a better performance than the randomly
generated points in Chapter [5| It was also the best point selection method when combined with trails for
both small and large environments. Given more time we would like to extend this work to look at more
point selection methods.

First the trail points will be included in the roadmap. After that Halton points will be generated and

added to the roadmap.
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6.3 Evaluation

The evaluation of PRMs in this chapter is different to the evaluation method used in Chapter[5] Previously
we had a large number of trails we could include in a roadmap, and so the percentage of points selected
from trails rather than other methods had an effect on the time required to generate the roadmap. In
this chapter, the agent only has access to one trail.

In all the environments the useful trails were planned between (0,0) and (maxsize, maxsize), where
maxsize is the maximum size of the environment (256, 512, 1024 or 2048).

In the 256 and 512m environments the misleading trail was different for the long corridor environment
compared to the other environments. This is because the trail provided information about how to traverse
the narrow corridor. in the 1024 and 2048m environments the change is in the zig zag maze environments.
This is due to the initial end point being blocked in those environments.

The start and end points for the misleading trails are as follows:

Table 6.1: Start and end points for the misleading trails in the environments. Only changes from the
general start or end point are shown. Each point is given as an X,Y coordinate pair.

Size of Environment 256 512 1024 2048
Start End Start End Start End Start End

General | 10,10 90,250 | 468,309 340,504 | 10,1000 300,256 | 10,1000 300,256
H Corridor 25,250 440,504
Zig Zag Maze 295,256 295,256

As the environments were scaled up the various size of features in each environment also changed.
In the single gap environment the gap the agent had to navigate between was set at 20m, placed in the
center of the wall. The gap had the same size no matter the size of the environment. This is also true
of the narrow corridor environment. The gap between the two walls was 20m no matter the size of the
overall environment. The length of the corridor was calculated as (size / 2.5)m, this gave a long corridor
that scaled with the size of the environment. In the sparse clutter environment the number of blocks
included in the map was (size / 10). For dense clutter this was simply (size). For the zig zag maze
the environment the number of walls going along horizontally was calculated by taking the size of the
environment and placing a wall every 50m. The top blocks were positioned first, then the bottom blocks
were positioned half way between each existing pair. The gap between the end of the block and the edge
of the environment was calculated as (maxsize * 0.1).

The PRMs are generated by including the trail (if necessary) before including other points in the

environment. We generate 10,000 Halton points for inclusion in the map. Unlike in previous chapters,
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the generation time for the maps is unimportant. As we are not concerned with the number of obstacles
in the environment, or varying the number of points being included in the PRM then the generation time
does not give us any new information. The same number of Halton points are always included in the
roadmap, the difference is whether the single generated trail was used, whether it allowed the agent to
plan a route between two points, and the length of the planned route .

As before, the distance two nodes can be from one another and still considered neighbours is 10m.
A straight line is used to connect points in the PRM. The full algorithm for how to generate a PRM
can be seen in Chapter [2| Algorithm [3| (page . The agent is given two points to plan between in the
environment. In all cases this is from the bottom left corner (0,0) to the top right corner (256,256 or
512,512 etc.).

To evaluate the roadmaps generated we will measure two factors: the success rate of the roadmap
and the length of the planned route. The success rate is whether the roadmap is able to be used to plan
a route between the bottom left and top right corner of the environment. A good roadmap will have
a high success rate and a low route length. As with all of our experiments the success rate of the map
being used to plan a route is the most important of the metrics. The exact specification for which type
of roadmap generation approach is better in which situation will change depending on the requirements
of the system. The hypotheses mentioned earlier are that trails will be beneficial to PRM generation, so
in the results we are looking for a high success rate and low route length when using full or partial trails
in combination with the Halton points.

Results for the experiments are averaged over twenty runs. The environment and trail used are the
same for each set of experiments.

All the experiments are run on a single computer, under as close to the same circumstances as possible.
The machine was an Intel(R) Core(TM)2 Quad CPU (2.40GHz) running Scientific Linux version 2.6.32
with 2GB RAM.

6.4 Results

The results can be seen in Tables[6.2]-[6.7 Results have been omitted where the roadmap achieved a 0%
success rate. When the environment size was smaller, specifically the 256m? and the 512m? environments,
all the point selection methods achieved a 100% success rate. In the empty and single gap environment

the inclusion of trails usually led to a reduction in the length of the planned route. This was true even
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Table 6.2: Empty Environment Results

Size Percentage of trail used Success Rate Length (m) Std. Dev.
256 None 100% 657.30 138.56
25% of Trail 100% 624.19 110.99

50% of Trail 100% 520.88 54.02

75% of Trail 100% 422.82 25.62

100% of Trail 100% 370.11 1.29
Misleading 100% 582.36 89.52

512 None 100% 1961.63 376.97
25% of Trail 100% 1698.70 282.27

50% of Trail 100% 1339.95 315.29

75% of Trail 100% 1457.67 312.33

100% of Trail 100% 736.58 0.95
Misleading 100% 1714.18 300.32

1024 None 70% 2753.89 1858.53
25% of Trail 100% 3936.24 573.91

50% of Trail 100% 3191.65 276.06

75% of Trail 100% 2148.31 473.45

100% of Trail 100% 1455.04 0.60
Misleading 70% 2185.44 1449.04

2048 100% 100% 2908.27 0.00

Table 6.3: Single Gap Environment Results

Size Percentage of trail used Success Rate Length (m) Std. Dev.
256 None 100% 618.15 76.99
25% of Trail 100% 552.83 76.00

50% of Trail 100% 458.00 69.88

75% of Trail 100% 364.74 1.46

100% of Trail 100% 364.09 1.18
Misleading 100% 585.75 108.01

512 None 100% 2035.16 378.47
25% of Trail 100% 1827.50 345.11

50% of Trail 100% 1322.82 207.68

75% of Trail 100% 978.23 129.95

100% of Trail 100% 725.59 0.44
Misleading 100% 2042.29 302.20

1024 None 55% 2273.51 2101.72
25% of Trail 100% 3835.26 408.40

50% of Trail 100% 2674.67 300.62

75% of Trail 100% 1742.21 156.78

100% of Trail 100% 1449.77 0.60
Misleading 65% 2708.60 2072.08

2048 100% of Trail 100% 2897.72 0.00
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Table 6.4: Narrow Corridor Environment Results

Size Percentage of trail used Success Rate Length (m) Std. Dev.
256 None 100% 615.78 54.65
25% of Trail 100% 639.69 67.24

50% of Trail 100% 439.26 13.97

75% of Trail 100% 423.67 5.63

100% of Trail 100% 416.52 0.83
Misleading 100% 576.01 61.30

512 None 100% 1907.48 219.65
25% of Trail 100% 1624.57 244.19

50% of Trail 100% 1445.92 249.60

75% of Trail 100% 1064.44 182.75

100% of Trail 100% 841.92 0.90
Misleading 100% 1660.53 217.61

1024 75% of Trail 100% 2022.43 140.39
100% of Trail 100% 1681.54 0.00

2048 100% of Trail 100% 3372.21 0.00

Table 6.5: Sparse Clutter Environment Results

Size Percentage of trail used Success Rate Length (m) Std. Dev.
256  None 100% 657.30 138.56
25% of Trail 100% 624.19 110.99

50% of Trail 100% 520.88 54.02

75% of Trail 100% 422.82 25.62

100% of Trail 100% 370.11 1.29
Misleading 100% 582.36 89.52

512 None 100% 1961.63 376.97
25% of Trail 100% 1698.70 282.27

50% of Trail 100% 1339.95 315.29

75% of Trail 100% 1457.67 312.33

100% of Trail 100% 736.58 0.95
Misleading 100% 1714.18 300.32

1024 None 70% 2753.89 1858.53
25% of Trail 100% 3936.24 573.91

50% of Trail 100% 3191.65 276.06

75% of Trail 100% 2148.31 473.45

100% of Trail 100% 1455.04 0.60
Misleading 70% 2185.44 1449.04

2048 100% of Trail 100% 2908.27 0.00
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Table 6.6: Dense Clutter Environment Results. Please note, the length for the 1028m and 2048m?
environments are correct. Due to the random nature by which the environments were generated, objects
may appear in configurations that make the free space more restricted and so the planned path longer.

Size Percentage of trail used Success Rate Length (m) Std. Dev.

256  None 100% 598.36 72.02
25% of Trail 100% 549.03 55.84

50% of Trail 100% 588.19 92.20

75% of Trail 100% 464.49 17.90

100% of Trail 100% 386.57 0.65
Misleading 100% 606.92 73.71

512  None 100% 1961.45 531.62
25% of Trail 100% 1319.35 240.23

50% of Trail 100% 1188.12 73.35

75% of Trail 100% 852.70 47.29

100% of Trail 100% 799.40 0.44
Misleading 100% 1560.31 120.01

1024 100% of Trail 100% 16459.87 0.00
2048 100% of Trail 100% 2945.17 0.00

Table 6.7: Zig Zag Maze Environment Results

Size Percentage of trail used Success Rate Length (m) Std. Dev.

256  None 100% 2006.48 55.31
25% of Trail 100% 1909.14 45.92

50% of Trail 100% 1756.54 44.44

75% of Trail 100% 1372.09 90.71

100% of Trail 100% 1239.04 1.38
Misleading 100% 1847.26 51.27

512 None 100% 6491.13 132.36
25% of Trail 100% 6235.67 111.99

50% of Trail 100% 5800.72 122.97

75% of Trail 100% 4884.56 75.65

100% of Trail 100% 4125.51 0.60
Misleading 100% 6089.63 74.24

1024 100% of Trail 100% 16459.87 0.00
2048 100% of Trail 100% 65790.36 0.00

95



when the trail was considered misleading. In the narrow corridor environment the shortest paths were
planned using 50% of the full trail, 75% of the full trail or the misleading trail. Using 25% of the trail
seemed to have little effect on the path planning process.

In the 1024m? environments we see different results. In the empty and single gap environments, trail
based PRMs had either the same or a higher success rate at planning the routes than using no trails at
all. The length of the planned route was again generally shorter when using trail points.

The narrow corridor environment was designed to be more of a challenge to build a PRM in that
was able to connect the two corners of the environment. There was a lower success rate for planning the
routes in the 1024m? environment. Only PRMs built using 75% or 100% of the full trail had any success
at all. The full trail allowed for the shorter route to be planned.

The 1024m? sparse clutter environment had success rates for trail based PRMs the same or higher
than PRMs built using no trails. The length of the planned route for the 75%, full trail and misleading
trail PRMs is shorter than when using no trail points.

The dense clutter environment had more objects and so free space was more limited, this shows in
the results. Again the success rate was 100% for the smaller two environments. The shortest routes
were planned using trail points. In the 256m? environment, the misleading trail increased the length of
the route planned by 0.1%. When using a number of points from the full trail the length was reduced.
This indicates that sometimes, in complex environments, a misleading trail can change the PRM being
generated and cause parts of a planned route to take a longer route around objects. In the 512m?
environment the misleading trail led to a reduction in the route planning length. In the 1024 environment
only the PRM that used 100% of the full trail was able to plan a route between the two corners in the
environment.

The Zig Zag environment showed a similar pattern to the dense clutter. In the 256 and 512m?
environments all the methods had a 100% success rate. The shortest routes were planned using trails.
In this case the misleading trail was still beneficial to the PRM, and allowed for a shorter route to be
planned than when using no trails. In the 1024 environment only the PRM generated using the full route
was able to plan a route between the start and end points.

The 2048m? environments all achieved the same result. The roadmap was only able to successfully
plan routes when using the full trail. The full trail roadmaps had a 100% success rate and the same route
length. There was a standard deviation of zero for these results as the planned path was the exact trail

returned connecting the start and end point. No Halton selected points had any effect on the planned
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path. Using only 10,000 points when generating the roadmap was not sufficient in an environment this
size. We attempted to increase the number of points included in the road map and preliminary tests

show that around 50,000 to 60,000 points may be required.

6.5 Discussion

We can see from these results that trails have a beneficial effect on PRMs generated in our six environments
in all sizes. In the smaller environments, 256 and 512m?, it was possible to generate roadmaps using
no trail points and have a 100% success rate for path planning. The length of the route was generally
reduced by including some trail points.

The one exception to this was the long corridor, 256m environment. Here using 25% of the full trail
points in the roadmap led to a slight increase in the planned route length. The graph in Figure shows
the length of the planned paths vs the number of arcs used that were originally from the trails. We can
see a definite trend that as the number of arcs used from the trail increases, the overall length of the
path decreases. The order in which points are added to the roadmap changes how the arcs connect to
one another. Trail points being added to the roadmap first can change how the roadmap is connected
as more Halton points are included. This changes the shape of paths planned, and can cause the overall
length to increase. Using 15 or more arcs from the trail has a beneficial effect.

In the 1024m? environments we saw a similar pattern. The success rate was either the same as, or
better when using trail based PRMs than when the PRM is generated using only Halton points. The
length of the planned path was generally shorter when using trails, even when the trail was considered
‘misleading’. There were three cases where using trails may lead to a slightly higher route length. This
was in the empty , single gap and sparse clutter environments. In larger environments the trails available
may bear no relationship to the routes being planned, and so inclusion of trails in PRM generation can
affect the performance of the resulting roadmapThis is why the inclusion of a random point selection
method is important. In the dense clutter and zig zag maze environments, PRMs built using the trail
information were the only ones to be successful at all. While in smaller versions of these environments
it is possible to avoid using trails to generate the roadmap, as the size of the environment increases, the
need for trails to allow the agent to plan a route also increases.

The 2048m? environments all had the same result. They all had a 100% success rate when using the

full route in the PRM and a 0% success rate when using any other PRM point selection method. While
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Figure 6.2: The length of the planned path against the number of arcs used in that plan that came
from trail points. These results were calculated in a separate set of experiments (on a different computer
setup) to collect new information. These results show the same pattern to the results reported in the
table previously.
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the roadmaps generated in the other sized environments were able to be used to plan routes with 10,000
point PRMs, more points are required in a 2048m? environment to generate a successful roadmap.

Our hypotheses were:

1. Trails can be used to improve the generation of PRMs in a set of test environments

2. Trails which do not connect the start and end point in an environment can still be useful when

included in the roadmap

We have shown both hypotheses to be true. Trails do improve the generation of PRMs in these
environments. They reduce the length of the planned route in all but a few cases. These cases could be
improved by using more trail points in the map. Trails either had the same, or improved on the success
rate of the roadmaps for planning routes in the environment. In many cases the ‘misleading trails’, trails
that did not connect the start or end point, also improved the generation of the roadmap by providing
more information in the roadmap. This is because even if a small part of the trail is useful to the route
being planned, it can add useful arcs to the roadmap for the planner to utilise, even when the trail as
a whole does not appear to be useful. It also shows that we cannot rely on arbitrary decisions as to
whether a trail will be useful in the roadmap.

There is still future work to be done in this area. We would like to investigate the 1024 and 2048m?
environments with a higher number of PRM points being allowed in the roadmap to see if the pattern
continues to hold. We can also change the evaluation criteria and generate a PRM until the route can be
successfully planned. In this case the number of points included in the roadmap could be recorded and
used as a measure of success for each point selection method. Finally, we want to investigate RRTs in

these large scale environments to see if a similar pattern emerges.
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CHAPTER [

Segmenting large scale environments using trails

7.1 Introduction

In the previous chapters we have been looking at generating roadmaps for navigation in large scale
virtual environments. Throughout this thesis we have been increasing the size of the environment and
we have found that as we do so, the time required to generate a roadmap in these environments has
also increased. Omne example of this can be seen in Chapter 5} To generate a PRM with 5000 points in
a 256m? environment using only Halton points took 1.52 minutes. In a 512m? environment, the same
number of points took 10.29 minutes to complete (See table and . As the size of the environment
increases a single map will also become too large to fit in the memory available to the agent. A standard
solution to this problem is to segment the map to improve performance.

Segmentation is the process of splitting a map into individual sections. This allows an agent to look
at a smaller section of the environment when generating, updating or using the map (Ozkil et al., [2011]).
There are many different methods of doing this, we go into more details about segmentation types and
approaches in Section 2.5] We look at three different types of segmentation methods in this chapter:
regular, quadtree and Voronoi segmentation.

By reducing the size of the environment being considered, segmentation should reduce the time
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required to generate a roadmap of an environment which is then used in path planning. The path
planning is performed at two different stages in the mapping process. The first path is planned using
the topological map, generated by segmenting the environment. This gives a list of segments the agent
will need to visit. The agent can then generate roadmaps only within the required segments, rather than
needing to cover the entire environment.

Our hypothesis is that we can improve the segmentation of the map by using trails. Trails have
been previously explained in Section they are a set of observations of how other avatars navigate
an environment. In our previous chapters we have shown that trails can provide information about the
structure of the environment (Chapter [3) and that trails can be used to improve roadmap generation
(Chapters 4] and . We can use trails to identify cluster points, the places where many avatars have
gathered. They represent popular and important locations in the environment according to the avatars
observed. Cluster points then can be used to guide segmentation. We go into more detail about the
specific hypotheses we are investigating in Section [7.2

The work presented in this chapter is based on our published short paper:

Katrina Samperi, Nick Hawes, Russell Beale. Towards mapping and segmenta-
tion of very large scale spaces with intelligent virtual agents. Thirteenth Inter-
national Conference on Intelligent Virtual Agents (IVA 2013). Springer-Verlag,
2013 (Samperi et al., [2013b)

The contributions for this chapter are: a new method of selecting seed points for Voronoi segmentation,
a study into various segmentation methods and an evaluation of the best method of segmentation available
for an intelligent virtual agent in a large scale environment.

The rest of this chapter is organised as follows. In Section and we define our problem in more
detail and explain how will evaluate our results. Following that, section [7.4] gives the results of our initial

investigations. Finally in section we discuss our findings and future work.

7.2 Analysis

The task the agent has been given is to plan a route between two points in a large scale environment.
The environment must first be segmented. This will create a topological map, with each node containing
the objects and trail points that are present in an individual segment. The arcs show the connectivity

between segments, that is, which segments are next to one another in the environment. The agent will
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Figure 7.1: Image showing an example of gateway points. The red line is the boundary between two
segments. Points in blue are in free space, and so would be added to the list of gateway points that can
be used to cross from one segment to another. Points in yellow lie in objects, and so are not able to be
used in this way.

then need to identify which segments the start and end point belong to and use this information to plan
a route in the topological level, giving a list of segments to visit in order.

Inside each of these segments a roadmap will be built, connecting a set of ‘gateway’ points. Gateway
points are points along the boundary between two segments that are not blocked by an object. These are
free points that the agent can use to move from one segment to another. Image shows a simplified
example of this in an environment. The black rectangles are objects and the white areas are free space.
The red line represents the boundaries between two segments. Along this line, every point is tested to
see if it is collision free or not. The blue points in the image would be added to the set of gateway points
for this boundary. The yellow points all fall inside an obstacle, so these would not be included as the
agent cannot use them for traversing between segments.

The roadmap within each segment is built with a high number of points being included so that the
chance of a route not being found across a segment is small. When this does happen, or if the agent
cannot find a route between the start and end points after generating all the roadmaps, the agent returns
to the topological level and re-plans. This continues until either a route has been found linking the
start and end point, or there is no viable route available. Algorithm shows the pseudo-code for the
experiments we have run.

The roadmap representation we have chosen to use is the PRM. This will be generated using 75% trail
and 25% Halton points. While in Chapter [5| we showed that in a larger environment a combination of
50% trail and Halton points was most effective, the segments the agent will be generating PRMs within
will be smaller than 512m?. We chose the PRM over the RRT as a PRM can have any number of start

and end points. This means it is able to link any number of the ‘gateway points’ that allow the agent to
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cross from one segment to another. By contrast, the RRT selects a single root node and creates a tree
from that point, stopping when it reaches one of the gateway points on the other side of the segment.
As there is only ever one root node in a RRT, the potential for the planning step to fail is a lot higher.
A PRM is more suited to this type of environment. The point selection method used by the PRM was
chosen based on the results of Chapter[5] This is the point selection method that had the highest success

rate in the shortest period of time in smaller environments.

Algorithm 13 Pseudo-code algorithm for the segmentation experiments

1: Initialise Start and End points for Route Planner

2: ObjectMap < loaded from file

3: Traillnformation < loaded from file

4: Topological Map < Segmented Object map and trail information

5: StartSegment < Segment the start point is inside

6: EndSegment < Segment the end point is inside

7: Success ful Route Planned < Plan Route in topological map from StartSegment to EndSegment
8: if Successful RoutePlanned then

9 for Every node in the topological map visited by planned route do

10: if If a PRM exists in the node then

11: Add the gateway points for the node and its neighbour to the existing PRM.
12: else

13: Generate a PRM in this node, store in topological map node

14: end if

15:  end for
16:  Attempt to plan the final route from start to end using topological map and local PRMs.
17:  if Successful route planned then

18: Report length and final plan; finish with a success

19: else

20: Replan route in Topological Map (line 7)

21:  end if

22: else

23:  No route possible in the topological map; finish with a failure
24: end if

We will be comparing the effect of using three different types of segmentation against the base case,
where a single map is used. The base case is useful to see whether segmentation is improving the map
generation by allowing for a faster generation and path planning time. Segmentation should improve
the generation time, by allowing the agent to generate PRMs and plan only in some segments of the
environment. This smaller section of space should reduce the time required to generate the PRM.
However, segmentation may cause the length of the planned route to increase.

We also want to look at a range of environments, both small and large scale. In small scale environ-
ments we will look at a relatively empty environment, a highly structured environment and one which

combines both structure and free space.
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The hypotheses we are working with for this experiment are:

1. That trail based segmentation will allow the agent to generate a map and plan a route between two

given points in a shorter time period than using no segmentation at all.

2. Trail based segmentation will also outperform other methods of segmentation. It will generate the

map and plan a route in a shorter time period than either using regular or quadtree segmentation.

3. Regular and quadtree segmentation will perform better in structured environments, compared to

Voronoi segmentation.

4. The length of the planned route in any environment using segmentation will be longer than a route

planned using a single map, but the time taken to finish planning this route will be shorter.

7.2.1 Segmentation Methods

The three types of segmentation we are comparing are: Quadtree, Voronoi and regular segmentation.
Images of the three types of segmentation when applied to the 256m? environment of Hyde Park can
be seen in Figure Objects were sorted into segment by testing the center point for the object and
assigning it to which segement it belonged within. Trails were similarly split. Each of the segmentation
approachs took the same form. First we generated the topological map for the environment, defining the
segment boundaries and calculating the arcs connecting neighbouring segments. Then the object and
trail information for the environment was segmented, assigning each object and trail point to the segment
it belongs to. Finally the gateway points were calculated between segments, this was stored in the arc

information.

Quadtree Segmentation

Quadtree segmentation is a recursive form of segmentation. The environment is split into quarters, then
within each quarter each point is tested to see if it is free or blocked. If the environment is a mix of
free and blocked space then it is segmented into quarters again. This process continues until either a
minimum size for the segment is reached, or all the segments contain only either free space, or blocked

space.
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Figure 7.2: Images for the different segmentation types generated in the Hyde Park region of Second Life.

Voronoi Segmentation

Voronoi segmentation is based on the concept of Voronoi Diagrams (Canny and Donald, [1988). These are

generated from a set of seed points. The boundaries of each segment are calculated as the set of points
equidistant between two seeds. Any point within a Voronoi segment is therefore closer to that seed point
than any other in the map. To implement this we adapted and used the Mesh processing library by Lee
Byron . This generates Voronoi diagrams based on the QuickHull3D library 2014)),
with an O(n log(n)) complexity. The Voronoi algorithm relies on a set of seed points being provided, the
number and placement of these will affect the segmentation generated. .

We look at four types of seed point selection, three using a single type of point selection method:
random, the Halton sequence and density clustering point selection using trail points. The fourth point
selection method combines density clustering and Halton seed points, selecting 50% of the points from
each method.. More details about the three segmentation methods can be found in Section [2.5| on page
We have used the Halton sequence previously to generate a more even spread of quasi-random points
over an environment. The details of how these are generated can be found in Section on page

Trail points show where avatars have been observed in the environment over time. We can use these
points to identify cluster points. These are popular locations where many avatars have been observed

standing in, or near, over time. Clustering is a method of grouping objects together based on how similar

they are (Andrienko et al. 2009). The density clustering algorithm we use is a variation of the k Nearest
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Neighbour (k-NN) algorithm (Russell and Norvig, [2003)) . This groups points according to their Euclidean
distance from one another. We use it to identify cluster points from the trail set which can then be used
seed points for Voronoi segmentation. K-NN iterates through each point in the dataset (in this case, the
set of trail points) and finds all the neighbouring points within a given distance of the initial point. If
the number of neighbours is over a threshold (%), then the centre of the cluster is calculated, added as a

point in the dataset, and the neighbouring points removed.

Regular segmentation

Regular segmentation splits the environment using a grid. The size of the segments can be altered by
changing the length of the sides in the grid. This is a simple form of segmentation that does not take
into account any factors about the environment. To generate a regular segmentation over the entire
environment we used the same algorithm as the Voronoi segmentation. The seed points used were set
a regular distance apart over the entire environment, generating segments in a grid formation over the

entire environment.

7.3 Evaluation

We evaluated segmentation in four environments. Three were single region environments, London Com-
munity, Hyde Park and Kensington. We chose these three as the number of objects, and therefore
obstacles, in each was different. London Community is the most empty region, Hyde Park is a mix
between open space and blocked areas and Kensington is a region with a lot of objects. The fourth en-
vironment we looked at was a four region environment, the ‘Greater London Area’. Details about these
environments can be found in Section 3.2l The agent is given a full object map for each environment and
a set of trails that correspond to that space.

Several variables in our experiment were set in advance. As before, in Chapter [5], the distance at which
two nodes in the PRM could be considered neighbours was set at 10m. We also set the k-threshold for
clustering at ten points. Voronoi seed points were taken from the clustered trail information at random.

In the regular and quadtree environments we varied the minimum length of the sides in a segment.
This started at half the size of the environment (128m in the 256m? environment) and was divided by two
for each subsequent set of experiments. In the Voronoi environment we changed both the number of seed

points (starting at ten and increasing to one thousand) and the method the seed points were selected by.
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In all the environments we also generated a roadmap using no segmentation. This was our ‘base case’ to
compare against.

The number of points generated for inclusion in the PRM was either 10,000 for the smaller environ-
ments or 20,000 in the larger environment. These numbers were selected to ensure that the PRM would
be able to find all available paths across a segment. The failure of a segmentation method should not be
due to the PRM not having enough points to cross between segments. In all the environments the agent
was required to plan a route from the bottom left corner (0,0) to the top right hand corner (256, 256 or
512, 512).

Our main criteria for evaluation are:

1. The overall time taken to generate a map and plan a route
2. The time taken to segment the map
3. The success rate at planning the route

4. The length of the successfully planned route

A good segmentation method will have an overall generation and planning time shorter than using no
segmentation at all. It should have a high success rate at planning paths between the two given points.
The routes planned should be as short as possible.

All the experiments are run on a single computer, under as close to the same circumstances as possible.
The machine was an Intel(R) Core(TM)2 Quad CPU (2.40GHz) running Scientific Linux version 2.6.32
with 2GB RAM.
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Table 7.1: Results for the London Community segmentation experiments. This is the sparsely cluttered environment. Values in bold text are

the best for that metric

Type Variation Total Std Dev  Segmentation Std Dev  Number of Std Dev  Length Std Dev  Success Rate

Time (ms) Time (ms) Top. Plans (m)
None 10441.55 247.18 2.60 11.11 1.00 0.00 494.12 54.81 100%
Regular 128 m 2243.05 260.16 754.40 191.79 1.00 0.00 710.52 50.62 100%
Quadtree 128 m 5160.50 247.14 2757.40 189.56 1.00 0.00 715.28 71.31 100%
Voronoi-Random 10 pts 2414.00 489.74 1101.00 186.72 1.05 0.22  775.38 103.84 100%
Voronoi-Halton 10 pts 2391.90 316.63 1123.35 182.09 1.00 0.00  755.43 90.45 100%
Voronoi-Density 10 pts 2505.05 438.30 1205.30 199.31 1.10 0.30  735.90 67.62 100%
Voronoi-Density 10 pts 2528.40 396.55 1202.10 236.96 1.00 0.00  735.63 88.52 100%
and Halton

Table 7.2: Results for the Hyde Park segmentation experiments. This environment is a mix of empty and structured

are the best for that metric

space. Values in bold text

Type Variation Total Std Dev  Segmentation Std Dev  Number of Std Dev  Length Std Dev  Success Rate
Time (ms) Time (ms) Top. Plans (m)
None 62793.30 438.78 5.45 23.30 1.00 0.00  490.20 47.02 100%
Regular 64 m 4598.05 267.15 3402.15 215.73 1.00 0.00 948.41 56.17 100%
Quadtree 32 m 16640.50 762.84 15104.05 706.56 1.00 0.00 613.44 29.01 100%
Voronoi-Random 10 pts 5658.75  1493.78 2379.00 244.67 1.30 0.78  823.49 441.41 95%
Voronoi-Halton 10 pts 5110.60  1784.00 2628.75  1458.28 1.15 0.36  904.58 741.99 100%
Voronoi-Density 10 pts 5562.05  1739.90 2573.60 575.00 1.35 0.79  773.10 335.78 90%
Voronoi-Density 10 pts 5963.45  1428.87 2513.95 357.11 1.05 0.22  976.50 766.50 100%

and Halton




60T

Table 7.3: Results for the Kensington segmentation experiments. This environment is highly structured compared to the other two small scale
environments we are looking at. Values in bold text are the best for that metric

Type Variation Total Std Dev  Segmentation Std Dev  Number of Std Dev  Length Std Dev  Success Rate
Time (ms) Time (ms) Top. Plans (m)
None 104728.95  1152.50 2.75 10.16 1.00 0.00  493.70 25.99 100%
Regular 64 m 5922.00 218.67 4703.50 148.96 1.00 0.00  809.05 33.98 100%
Quadtree 64 m 51453.80  1269.72 48886.75  1098.05 2.40 049 669.12 42.80 100%
Voronoi-Random 50 pts 12075.65 809.85 10036.50 226.87 2.50 1.40  736.32 73.08 100%
Voronoi-Halton 10 pts 8851.55  1450.83 4044.75 270.05 1.05 0.22  708.56 248.60 100%
Voronoi-Density 10 pts 10824.95  3177.81 4154.90 357.49 1.25 0.43 781.74 474.06 100%
Voronoi-Density 10 pts 11334.55  2385.00 4327.55 427.63 1.40 0.80  736.50 255.49 95%

and Halton

Table 7.4: Results for the Greater London Area environment. This is a four region, 512m? space. Values in bold text are the best for that

metric

Type Variation Total Std Dev  Segmentation Std Dev  Number of Std Dev Length Std Dev  Success Rate

Time (ms) Time (ms) Top. Plans (m)
None 660369.60  5219.01 2.35 9.79 1.00 0.00 1014.08 66.84 70%
Regular 64m 25722.70 1948.93 18970.70 282.49 3.90 0.99  1810.92 109.90 40%
Quadtree 128 m  100981.15 932.91 84734.30 881.07 2.90 0.70 1222.83 66.39 70%
Voronoi-Random 50 pts 30759.85  7986.82 19050.05 718.11 5.55 4.54  1487.25 330.06 45%
Voronoi-Halton 50 pts 27622.30  3433.34 18650.95 315.04 4.60 246  1330.61 55.16 50%
Voronoi-Density 50 pts 29794.70  4671.94 20066.50 495.99 4.70 2.93 187341 796.49 55%
Voronoi-Density 50 pts 29603.45  4923.59 19727.90 518.95 4.65 2.15  2613.60 2657.54 45%

and Halton




7.4 Results

The full tables for the results can be seen in Appendix [C} Below we look at the best of each type of

segmentation for comparison.

7.4.1 Small scale environments

We looked at three 256m? environments, London Community, Hyde Park and Kensington. London
community comprised mostly open empty space with very few obstacles. This region contained only
1477 objects, whereas Hyde Park contained 7097 objects and Kensington contained 11771 objects. In the
London Community environment, regular segmentation with a minimum segment side of 128m performed
the best of all the segmentation methods looked at. As there were not many objects in the environment,
larger segments were faster and allowed the agent to plan a route successfully in this environment. Table
shows the results for the London Community region.

Hyde Park had a mixture of open and structured space. There was no overall best segmentation
method for this environment. The fasted overall method was regular segmentation using a minimum
segment size of 64m. However, the fastest segmentation time used Voronoi segmentation with random
seed points. The segmentation method that planned the shortest route was different again, it used the
quadtree segmentation with a minimum segment size of 32m. Table [7.2] shows the results for the Hyde
Park region.

Kensington was the most structured of the three environments we looked at. The fastest overall
method of segmentation was again regular segmentation with a minimum segment size of 64m. The
fastest segmentation time used Voronoi segmentation and Halton seed points. However, the shortest
path was planned using quadtrees with a minimum segment size of 64m. Table [7.3] shows the results for
the Kensington region.

The graph in Figure [7.3]shows the length of the planned routes in all three small scale environments.
There is a lot of variation in the length of the route planned in the Hyde Park region. This will be due
to the mixture of open and structured space. In general, regular and quadtree segmentation had the
least variation in the length of the route planned. This is because of their deterministic nature. Voronoi
segmentation generates a different set of segments each time, based on which seed points were selected.
As the objects and the size of the environment stay the same, quadtree and regular segmentation will

always return the same set of segments and topological map. This can be detrimental in some cases,
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Figure 7.3: Average length of the planned routes in the small scale environments. The error bars show
the standard deviation for each average result.

In the Greater London Area environment, using quadtree segmentation and a minimum segment size of
64m, the resulted in a map which was unable to plan the route at all. The positioning of objects in the

environment and the segments created meant that there was never an available free path.

7.4.2 Greater London Area

There was no one clear best segmentation method in the larger, four region environment. The results can
be seen in Table [7.4] The fastest overall time was achieved by regular segmentation using a minimum
segment size of 64m. The fastest segmentation time was again Voronoi segmentation using Halton seed
points. The shortest route was planned using quadtree segmentation, with a minimum segment size of
128m. The success rate in large scale environments at planning the route was lower than in small scale
environments. Using no segmentation at all, the base case only had a success rate of 70%. Quadtree
segmentation matched this. After this the next highest success rate was Voronoi segmentation using trail

points as seeds.
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In the larger environment the number of seed points required to generate Voronoi segmentation in
the shortest time period increased to 50 seeds. This had the lowest generation time of all the variations
of seed points.

All the segmentation methods required more than one plan at the topological map level. This will be
due to how the segmentation has split the objects in the environment. We set the number of points for
including in segment based PRM to be high, at 20,000, so that the only point when a route would fail
to be planned was when objects in that segment were blocking it. This led to some methods requiring a
lot of plans in the topological level, the highest of which was an average of 13.05 plans (with a standard
deviation of 3.67) in the 16m Quadtree segmentation map. On average, quadtree required more re-
planning steps in the topological level than any other segmentation type (8.46 plans over all variations

of the quadtree algorithm).

7.5 Discussion

Our first and second hypotheses were that trail based segmentation would outperform other methods of
segmentation over a variety of metrics. This is not the case in either small or large scale environments we
looked at. Regular segmentation was the overall fastest in all four environments. Either using Voronoi
segmentation or regular had the shortest segmentation time. The shortest routes were planned using
Quadtrees or regular segmentation.

Trails were in fact detrimental to the map building and path planning process in some cases. In Hyde
Park using seed points generated from density clustering of trails decreased the success rate of the maps
at planning routes. Using trails in the large-scale environment had a higher success rate than the other
methods of segmentation, except for quadtree segmentation. Trail based Voronoi segmentation required a
shorter period of time overall then quadtree segmentation. One reason for this may be that trails are, by
their nature, not evenly spread over the environment. They represent where avatars have been observed
and so the points selected by clustering this information lead to uneven segments, some being very small
in popular areas and other segments very large. Figure [7.4] shows the difference made when generating a
Voronoi segmentation using 100 seed points. The seed points generated using the Halton points are more
evenly placed over the environment leading to segments of roughly the same size. In contrast to this the
seed points selected from trail points create segments of random shapes and sizes. This does not have a

positive impact on the map generated.
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In general, using either ten or fifty seed points was also better for Voronoi segmentation than any
other number. As the number of seed points increased, the overall time required to generate and use the
map increased. However, a higher number of segments can reduce the length of the planned route in the
regular and quadtree segmented environments.

Voronoi segmentation in all three environments often required more than one plan in the topological
map level. This results from the placement of objects in the environment. Sometimes it was not possible
to generate a path between two sides of a segment if there is a large obstacle in the way. Quadtree
segmentation also sometimes required the same re-planning in the topological map as it found segments
that were unable to be navigated.

The third hypothesis stated that regular and quadtree segmentation would perform better in struc-
tured environments, compared to Voronoi segmentation. We found this to be true. Voronoi had a shorter
segmentation time than other methods but the overall time, including map building and planning, was
longer than the regular and quadtree methods of segmentation.

Our final hypothesis was that routes planned using segmentation would be longer than those planned
using no segmentation at all. This we found to be true in all cases.

These results have focused on segmentation and planning time as the most important criteria for our
evaluation. In the large scale Greater London Area environment the success rate was low for all of our
methods. We can look instead at the methods of segmentation with the highest success rate at planning
the route. This was not looked at as part of the criteria for evaluation in the small environments as all
methods could achieve a 100% success rate with enough points. By looking at success rate in the large scale
environment we see a more positive picture for trail based segmentation. Four methods of segmentation
had a success rate of 95% or 100%. Table shows the results for these methods. The fastest overall
time used Voronoi segmentation with seed points based on trails. The shortest segmentation time used
a combination of seed points from trails and the Halton sequence. These methods both achieved a 95%
success rate, higher than using no segmentation, and a shorter overall planning time.

From these results we can see that there is potential for trails to be useful as the size of the map
increases. If success at planning the route is more important than simply speed at generating the map,
then trails and Voronoi segmentation are a better option than other segmentation methods.

There is a general limitation with trail based Voronoi seed points in that the density clustering
method returned a maximum number of points. This was sometimes less than the number of seed points

we required. An example of this can be seen in Table where the full results table for the London
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Table 7.5: Methods with the highest success rate at planning the route in the large scale, Greater London
Area environment

Type Variation Total Std Seg. Std Length Std  Success
Time Dev Time Dev Dev Rate

(s) (s) (m)
Quadtree 32 187.81 1.88 178.99 187.81 1224.09 294.36 95%
Voronoi-Random 1000  336.48 27.74  276.85 336.48 136299  78.43 100%
Voronoi-Density 500 167.63 20.17 136.64 167.63  1396.50 337.09 95%
Voronoi-Density 500  168.21 17.76 136.62 168.21 1379.71  329.50 95%

and Halton

Community region show that there is very little difference in the results for the Voronoi segmentation
performed with 250, 500, 750 or 1000 points from the trail density algorithm. In this environment there
was a maximum of 168 cluster points available. For maps where more points are required we would
need to use a second seed point selection method, such as the Halton sequence to generate the correct
number. These results do not impact on our findings for these chapters as the fastest method of Voronoi
segmentation in each case used less than the maximum number of trail based seed points available.
There is a lot of future work in this area we could do. We want to evaluate our segmentation methods
using the test environments we developed for Chapter [} This would give us a better idea about whether
segmentation becomes more necessary as the size of the environment increases. We also only look at
three methods of segmentation, there are many others that we could take a look at, such as image

skeletonisation which we can apply to the available overhead map for any Second Life environment.
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CHAPTER 8

Discussion

This thesis has looked at improving map representation and generation for intelligent virtual agents in
large scale environments using trails. Virtual environments are becoming larger and more complex over
time. A challenge exists to provide agents that are able to generate a map of these environments and use
it for path planning. We want the map generation process to be achievable online, in a short period of
time. To investigate this we looked a previously under-used source of information, trails. Digital trails
are the routes we observe other agents navigating in a virtual environment. These trails show free space
in the environment, popular locations where avatars cluster together and routes taken between specific
locations.
The contributions of this thesis were outlined originally in Chapter [[] They were:

The contributions of this thesis are as follows:

1. Validation that trails are a useful source of information for an agent to build a map (Chapter 3 —

7)

2. A study into the effect of trails being used to generate Probabilistic Roadmaps in large scale
environments. We find that trails have a positive effect on roadmap generation, reducing the time
needed for map generation, reducing the overall plan length and improving on the success rate of

the agent being able to plan routes around the environment. (Chapter 5)
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3. Following this, a study into the effect of trails as the environment grows larger. Validation that

trails become more important as the size of the environment increases (Chapter 6)

4. A study into the effect of trails on another type of roadmap representation, rapidly exploring
randomised trees. Trails also have a beneficial effect on the generation of RRTSs, improving their

performance (Chapter 4).

5. An investigation into segmentation strategies in large scale virtual environments and the effect that

trails can have if they are used as an information source. (Chapter 7)

6. A map trail corpus for intelligent agents in Second Life available at http://www.katsamperi.co.

uk/maps . php.

The rest of this chapter will summarise our investigations in this thesis, discuss our findings and look

at potential future research for each area.

8.1 Trails in virtual environments

We first looked at whether trails were a viable source of information for agents in virtual environments.
Chapter |3| described the environments we used in the rest of the thesis, how we gathered objects and
trails describing these environments and then looked at a side study, investigating two hypotheses: First,
did the avatars walk between places in the environment, and second, were the movements considered to
be meaningful.

If avatars chose to fly or teleport between locations (both modes of transport allowed in our evaluation
domain) then the trails gathered from their movements would be of no use to a ground level, walking
agent. Whether the trails were meaningful is harder to define. We looked at whether a particular social
habit carried from the real world into virtual environments; whether avatars chose to walk on the path
or if they chose a straight line route between places.

We found from our investigations that the majority of locations an avatar was observed at were at
ground level. We filtered out points where avatars teleported between places, or where the observed
location was above ground level. We were also able to conclude that the social convention of not walking
on the grass held for a variety of avatars with different levels of experience in the environment.

The limitations of our study were that we calculated experience based on the age of the avatar. Each

avatar reports its ‘born on’ date. This only tells us when the avatar was created, not any indication of
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how often the user has logged into the environment, or whether this is the only virtual world they visit.
We also do not know anything of the background of users behind avatars.

Despite these limitations we were still able to conclude that avatars behaved in a useful manner for
route planning. By observing the trails formed by avatars we were able to identify free space, popular
locations and routes between specific parts of the environment. We use trails for the remainder of the
thesis as a source of information for map generation in agents. This chapter is a cornerstone in showing
that trails are a viable approach.

To expand on this work we would interview the people behind the avatars, and find out more about
their background, experience, motivations and any social norms they believe to be holding to. This would

help us analyse avatar behaviour with more certainty.

8.2 Improving RRT generation using trails

Chapter [4] built on the idea that we could use trails as a source of information for a virtual agent that

must navigate its world. The hypotheses we investigated were:

1. Trails could be used to improve the generation step of RRTs in small and large-scale populated

virtual environments.

2. By using trails we can reduce the generation time needed to create a tree able to plan a route

between two given points, and

3. The routes planned by the trail based RRTs will be shorter than those planned using other RRT

point selection methods

RRTs are built from a single ‘root’ point. Branches are then added to the existing tree by selecting
a point in the environment and growing a branch from the tree towards it. Either the branches can be
limited in size (as per the standard algorithm) or continue until they reach an obstacle (using a greedy
approach). We varied how points were selected in the environment to see whether biasing them to areas
where trails had been observed improved the map generation.

We found that in the small scale environments the better spread of points selected either randomly
or using the Halton sequence allowed a tree to be generated that connected the start and end point in

the shortest period of time. In large scale environments, if we use the normal or greedy RRT algorithm
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this result changes so that trail biased RRTs are completed in the shortest period of time. In both small
and large scale environments the shortest paths were planned using trail biased trees.

It will depend on what the specific requirements of an RRT are as well as the size of the environment
to choose which method is the best. The better spread of points from random and the Halton sequence
helped the tree growth in small environments as this allowed the tree to expand in all areas, not just
popular areas identified using trails. Biasing the tree to where trail points have been observed may not
cover all parts of the environment.  As the environment grows larger, it is important to have some
guide for the tree towards the end point. In the large-scale Greater London Area environment there was
a higher concentration of trails near the end point selected this helped the tree expand in the correct
direction.

The limitations of this approach are that we only ever used raw trail points. In Chapter |5 we looked
at merging trail points together for use in PRMs to reduce the trails to a smaller set of points in the
environment. We did not have time to fully explore that with RRTs. We were also only able to use the
trails we observed. While we attempted to ensure that an even spread of trails was used over the four
regions making up the large scale environment, Hyde Park in the top right corner of the environment
had a higher number of users, so there was some bias towards this area.

As part of our future work we want to look at generating the roadmaps fully online. That is, as the
agent is connected to the virtual world, observing trails as they occur and generating a roadmap without
a full set of information. We also want to look at other methods of RRT generation for comparison, such
as the waypoints discussed by the ERRT (Bruce and Veloso, 2002)), as well as looking at whether using a
more even spread of trail points over the entire environment may help the RRT-Connect algorithm. This
algorithm grew a tree from both the start and end points given, so required a bias towards the middle of

the environment to be successful.

8.3 Improving PRM generation using trails

Following on, Chapter [5] looked at improving the generation of Probabilistic Roadmaps using trails.
PRMs are a different type of roadmap representation. Where an RRT needs a starting ‘root’ point for
the tree to grow from, a PRM does not need this information. PRMs are generated by selecting points in
an environment and then attempting to connect each new point to its nearest neighbour. Given enough

time, and enough points being included in the map, a PRM will be able to find a path between any two
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points in an environment if it is possible to do so. The drawback to PRMs is that in large environments
or those with a lot of obstacles and narrow passages the generation time can be high. This chapter looked
at improving the generation of limited point PRMs in large scale virtual environments.

We compared several point selection methods, generating PRMs with either 1000, 5000 or 10,000
points in 256m? or 512m? environments. We looked at three standard point selection methods: random,
the Halton sequence and Gaussian. We compared these with trail based point selection methods using
either the full trail information, or a merged set of trails where sets of points were grouped together until
a skeletonised version of the trail information was achieved. Trails were used either on their own or in
combination with other point selection methods.

We evaluated each PRM on the time needed to generate the roadmap, its success rate at planning
a set of routes and the length of each route. Our hypothesis was that we could improve the generation
of PRMs in large scale environments. Specifically, that trails would improve the success rate of maps,
while reducing the generation time and planned route length. We found that in the 256m? environment
a combination of using 75% merged trail points and 25% Halton points when generating the roadmap
performed best. The time needed to process and merge the trail points was included in the generation
time to give a fair comparison of point selection methods. In the 512m? environment the best combination
of point selection methods used 50% merged trail points and 50% Halton points.

Trails give the agent information about free space in the environment and free paths which can be
used to navigate between these points. By using this information less collision checking is required from
the agent when generating the map. These routes are known to be available as another avatar has
been observed using them. If the agent was to use only the raw trail information the roadmap became
cluttered. A high number of arcs and nodes were included in the roadmap, but these did not always
add new information for path planning. The merging process reduced the trails to just the useful nodes
and arcs, information that was new in the roadmap. The Halton sequence then added a good spread of
random points to the roadmap, which helped connect trails together, and add paths to any areas where
avatars had not been observed.

This spread of points is why in the larger environment the better PRM point selection methods
used less trail points. While we attempted to have an even spread of trails in all four quadrants that
made up the large scale environment, some parts were less frequently visited than others. The London
Community region had fewer trail points to use as reference, while Hyde Park had an abundance to

choose from. Even so, trails had a positive effect on the generation. The human optimisation effect of
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trails allowed for shorter path to be planned in both cases. This is also observed when looking at RRT's in
the previous chapter. If the goal of an agent is to find the shortest path, no matter the roadmap method,
it is better to use trails than ignore them.

These results form the contributions for this chapter, a study into how trails can be used to improve
the generation of roadmap representations in large scale environments and how different point selection
methods can be combined for greater effect. The limitations of our approach is similar in all the chapters
we have looked at so far. We gave the agent a set of objects and trails to build a map from in advance.
In a true online situation the agent would be receiving pieces of information as it generated the map,
rather than up front. Our future work in this area is to look at how we can resolve this issue. How can
PRMs and RRTs be generated online, and how can we include trail information as it is received? One
option we want to look at is generating a basic roadmap in the environment, similar to methods used for
the Lazy PRM (Bohlin and Kavraki, 2000). This can then be adapted and improved as more trail and
obstacle information becomes available, and as each arc is selected in the path planning algorithm.

We also want to look into developing some kind of heuristic that states which type of point selection
method is best for the environment we are looking at. This may be based on the available information at
the start of the map building process, the availability of trails as generation happens and also any method
we can use to determine how many narrow obstacles are present in the environment. When doing this

we can also look at the many other point selection methods available, such as the Visibility PRM.

8.4 Roadmaps in very large scale environments

A limitation of Chapter (4] and [5] is the environments being used. We chose to use the Greater London
Area of Second Life as it is a fairly flat, populated environment that we could easily gather information
in. It is much more difficult to find somewhere that matches the same criteria in Second Life that would
allow us to look at 1024m? or 2048m? environments. These areas would comprise 16 or 32 regions, would
need to be connected to one another and have unrestricted access. Without this our agent would not
be able to gather information about the objects and trails in these regions. The contribution from this
chapter is the validation that as the size of the environment increases there is a need for trails in order
to generate maps that are able to successfully plan routes.

To address this problem we designed a set of environments for this chapter. We created object maps

for six different types of environment, based on various characteristics of the environments we were
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looking at. These were presented to the agent in the same way as region based object maps were. Trails
were generated automatically and these were also presented to the agent in the same way the real trail
information was. We looked at the difference made by including different type of trail information in
PRM generation.

We generated the roadmap using 10,000 Halton points, sometimes in combination with different types
and amounts of trail information. The potential trails given were: a full trail connecting the start and
end point, 25, 50 or 75% of the full trail, with nodes and arcs selected at random, or a misleading trail
that connected points in the environment other than the start and end point.

We found that as the size of the environment increased, trails became essential for generating a
roadmap that was capable of planning a route from one corner to another. In smaller environments trails
improved the length of the planned route, but do not change the success rate. In larger environments
trails both improve the success rate and reduce the planned route length. These results also held when
we looked at the misleading trails. The presence of some trail points could improve the roadmap by
including additional information in the roadmap.

The limitation of our approach here was the 10,000 point maximum for PRM generation. In 2048m?
environments only the roadmaps that included the full trail information had any success at all when
planning the route. The way to address this is to increase the number of points included in the roadmap
as the size of the map increases. This will increase the generation time for the roadmaps, but we can
look at these large environments in conjunction with segmentation to attempt a time reduction again.
It will also be interesting to look at changing the evaluation of the roadmap from the inclusion of a set
number of points to a generation approach that continues until the path has been planned. We could
then compare the time taken or the number of points required to achieve this roadmap. It would also
give us a closer comparison when looking at RRT maps generated in the same space. Other future work
in this area includes looking at the various different point selection methods when using PRMs and also

looking at RRT generation in these environments.

8.5 Segmenting the map in very large scale environments

Chapters[d to[f]looked at generating a single roadmap in each environment, no matter the size. This leads
to the time required to generate the roadmap representation increasing as the size of the environment

does. One method for reducing this is to segment the environment, splitting it back into smaller sections.
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We do not want to assume that all environments will be aligned the same way Second Life is, with each
region being a set size. We want to consider continuous large scale environments.

Our hypothesis in this chapter was that we could improve segmentation of an environment by using
trails and also speed up map generation in general. As trails show the places where avatars have been
observed it is possible to identify cluster points, popular locations in the environment where many avatars
have gathered together. Specifically, our hypothesis was that we could use these cluster points to split
the environment, generating segments that focus on a single popular location and its surroundings.

We also looked at a second hypothesis. Two of the segmentation methods were deterministic segmen-
tation types: regular segmentation splits the environment according to a grid and quadtree generates
a recursive grid structure. Our hypothesis was that these methods of segmentation would outperform
Voronoi segmentation in highly structured environments.

Our final hypothesis was that the length of the planned route of any segmented map will be longer
than a route planned using a single map, but the time taken to complete the map and route plan will be
shorter. Segmentation forces the roadmaps to connect roadmap segments only along ‘boundary points’.
These are the points that are in free space on the boundary between two segments. This restricts the
roadmaps more than if a single map was used.

Our results for these experiments were mixed. Our first hypothesis was incorrect, trail based seg-
mentation was not faster than regular segmentation in any of the environments we looked at. Regular
segmentation allowed for the fastest map generation and route planning time in all the environments
we looked at. This is due to the simplicity of the segmentation. The shortest routes were found us-
ing quadtree segmentation. The second hypothesis was correct. Regular and quadtree methods did
outperform Voronoi segmentation in structured environments. Our third hypothesis was also correct.

This chapter shows some improvement on segmentation as a high success rate is important for map
generation. Unless the map created is able to be used to plan routes then it is of no use for the agent.
When trail based Voronoi segmentation was used the success rate increased for large scale environments
and the time taken to generate the map and plan the route was still shorter than using no segmentation
at all.

One of the limitations of our approach is that we had a static number of trail points used to identify
clusters, set at 10 points within a 10m radius. Changing this number could have an effect on the
segmentation performed as a different set of seed points would be available to the agent. We also did not

get the opportunity to look at the 1024 or 2048m? environments, segmentation in larger environments is
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something we hope to do in our future work. Finally, we want to look at other segmentation methods

available to split the map.

8.6 Comments and other future work

In general we can state that trails are a good source of information for an agent attempting to au-
tonomously generate a map in a previously unknown environment. Trails shortened the paths planned
and increased the success rate at finding routes, when the agent was using a single roadmap. Trails only
give information about populated parts of an environment, so to cover an environment that is sparsely
visited in places trails would need to be combined with other methods of point selection and segmentation.

There is still more work that can be done regarding trails and their use in map building for intelligent
agents. One thread that has been present in several chapters is that there is no single best way of selecting
points for use in generating maps or segmentation in all situations. We first need to formally define what
makes a good point for each roadmap algorithm, environment type and route type. Then based on this
develop a heuristic that can be used to identify which point selection and which map generation algorithm
works best for the situation the agent is in. The requirements of an agent that must successfully plan a
route are different to those that must plan a path in a specific period of time.

We also could look at obstacle density or the structure of the environment when identifying the best
combination of algorithm and point selection. Point selection methods such as Gaussian work well in
heavily restricted spaces, but need to be combined with other methods when there are areas of open
space.

A general limitation that applies to all the experiments we have done is that the agent has been given
a full set of object and trail information to build its map from. When connected to a virtual environment,
this information will not be initially available to the agent. The trail information was gathered over a
long time period to ensure that we had enough diverse trails to evaluate our methods. We are interested
in extending the system and looking at how the agent can build maps online, improving the current
representation as more information becomes available. One example using a PRM could be that the
agent generates a small map of its immediate environment and expands on this as trail information is
observed and as the agent moves to new areas.

Another direction is to look at machine learning. Our agent has no previous knowledge of maps

generated in any environment. If the agent could draw on its previous knowledge then it may be able
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to develop its own set of heuristics for generating maps in new environments. Looking at trails we can
already extract a set of popular places and the routes between them. This information can be transferred
to another environment, for example, identifying paths and including them as free space automatically
in a roadmap. This would allow an agent to focus on fully exploring areas that are less well known and
build more comprehensive representations of an environment.

In summary, this thesis has looked at improving the map generation for agents in large scale, populated
virtual environments. We found that trails are a valid, if underused, source of information about an
environment and they can be used to improve road map generation in small and large scale virtual
environments. Trails can also be used to improve the success rate of segmented maps when route planning

as the size of the environment increases.
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APPENDIX A

Full RRT Results

This appendix holds the full table of results for the experiments performed in Chapter [l The results for
the experiments performed in small scale environments can be seen in Tables and For large
scale environments see Tables [A-4] and
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Table A.1: Small scale environment, Normal RRT generation. All times are in ms. Bold text shows the best value for that metric.

Small Scale Non Greedy
Total Time (ms) Std Dev Points Std Dev  Plan Time Std Dev Length (m) Std Dev
Random 3234.50 429.88 74.60 7.72 1.75 1.41 388.10 14.21
Halton 3269.15 639.08  75.35 16.76 1.75 1.26 392.09 22.69
Trail Bias 1000 3609.55 772.67  83.35 18.49 1.85 1.31 391.96 16.00
2500 3691.00 684.18  83.90 15.43 1.80 1.44 393.10 23.04
5000 3884.60 989.86  91.15 23.61 1.85 1.42 387.95 30.49
7500 3303.50 420.92  75.65 10.01 1.60 1.16 389.87 26.22
10000 3527.35 765.33  79.35 16.32 1.70 1.45 382.81 16.03
12500 3456.15 711.64  79.45 13.37 1.65 1.56 394.92 19.47
15000 3926.95 683.57  89.90 17.32 1.90 1.30 396.08 21.94
17500 3339.50 812.32  75.70 13.16 1.65 1.74 386.14 17.93
20000 3663.60 628.97  83.10 15.30 1.70 1.23 390.48 17.07

Table A.2: Small scale environment, Greedy RRT generation. All times are in ms. Bold text shows the best value for that metric.

Small Scale Greedy
Total Time (ms) Std Dev  Points Std Dev  Plan Time Std Dev  Length (m) Std Dev
Random 3376.60 539.62 77.95 11.43 1.55 1.24 390.25 20.06
Halton 3549.15 723.07  80.85 12.82 1.60 1.74 389.44 20.04
Trail Bias 1000 3623.95 593.72  82.35 9.59 1.70 1.52 392.13 17.99
2500 3689.85 742.72  82.30 15.26 1.65 1.53 390.49 22.40
5000 3656.90 582.62  83.80 15.76 1.75 1.48 388.25 27.82
7500 3485.20 667.49  79.25 14.74 1.80 1.33 383.40 16.07
10000 3420.15 692.76 75.65 15.89 1.90 1.41 382.05 15.91
12500 3881.00 686.46  90.70 14.78 2.05 1.83 389.46 18.45
15000 3387.45 682.33  77.65 11.85 1.60 1.56 389.98 19.73
17500 3737.75 509.41  84.50 11.39 1.80 1.50 395.70 24.20

20000 3704.45 805.49  86.80 18.17 1.75 1.34 388.16 21.56
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Table A.3: Small scale environment, RRT-Connect generation. All times are in ms. Bold text shows the best value for that metric.

Small Scale RRT-Con
Total Time (ms) Std Dev Points Std Dev  Plan Time Std Dev Length (m) Std Dev
Random 3325.65 590.44  76.00 12.09 1.55 1.40 389.09 16.20
Halton 3244.55 558.87  75.20 13.39 1.55 1.28 380.97 17.81
Trail Bias 1000 3537.65 582.55  81.10 14.17 1.85 1.15 390.24 22.85
2500 3680.75 650.22  85.05 15.60 1.65 1.35 398.52 23.71
5000 3374.70 724.22  75.70 14.98 1.60 1.77 388.03 17.52
7500 3490.05 1042.46  79.90 21.23 1.65 1.74 380.10 20.30
10000 3752.50  1055.16  85.20 22.07 1.80 2.23 390.24 30.95
12500 3451.85 809.94  80.65 18.74 1.65 1.59 386.93 23.46
15000 3655.85 807.79  84.40 13.86 1.75 1.95 385.26 15.20
17500 3826.85 917.79  87.70 20.68 1.90 1.34 386.80 24.69
20000 3391.35 624.21  77.15 11.56 1.70 1.79 384.81 17.96

Table A.4: Large scale environment, Normal RRT generation. All times are in ms. Bold text shows the best value for that metric.

Large Scale Non Greedy
Total Time (ms) Std Dev  Points Std Dev  Plan Time Std Dev Length (m) Std Dev
Random 161761.45 38257.79  756.35 180.80 26.75 22.81 905.92 55.61
Halton 138370.25 16129.70  665.25 78.03 19.05 11.91 891.36 54.00
Trail Bias 1000 94978.65 24846.02  430.30 104.11 9.55 6.32 910.11 70.29
2500 102460.55 39433.91  446.60 167.11 10.85 7.44 899.24 96.53
5000 84574.80 20105.06  374.20 95.33 9.20 7.76 913.91 78.82
7500 91031.05 35205.71  389.30 160.59 8.75 8.43 918.03 81.85
10000 84344.10 18939.29  365.00 80.21 7.95 5.99 899.54 51.45
12500 81907.75 26016.98  352.45 100.05 7.95 7.16 886.22 63.60
15000 81622.00 17986.10 345.80 82.61 7.45 4.73 883.84 65.51
17500 88588.40 25550.19  358.95 81.12 7.75 6.02 908.55 76.40

20000 84900.55 19594.63  358.70 82.32 7.70 5.12 895.26 52.87
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Table A.5: Large Scale Environment, Greedy RRT Generation. All times are in ms. Bold text shows the best value for that metric.

Large Scale Greedy
Total Time (ms) Std Dev  Points Std Dev  Plan Time Std Dev Length (m) Std Dev
Random 93520.90 79735.06  240.15 195.31 6.30 6.24 1038.31 150.03
Halton 74502.80 53991.81 190.95 132.17 5.20 5.10 1109.75 239.86
Trail Bias 1000 53936.70  20706.10  208.00 99.64 5.25 4.18 1099.00 189.61
2500 58264.95 47362.78  224.40 184.74 5.45 7.32 1026.70 234.90
5000 59453.35 24974.10  222.70 102.03 5.45 4.63 1020.89 146.98
7500 55645.30 48067.60  226.15 149.90 4.55 4.97 1034.68 187.92
10000 57280.90 23882.60  224.55 136.05 5.65 4.38 1017.16 217.19
12500 59433.20 32658.77  222.30 154.40 4.55 5.57 1048.68 201.70
15000 51103.80 27110.77  237.10 79.88 5.25 2.72 981.27 133.59
17500 62167.80 3229047  310.95 187.36 5.40 5.07 957.42 105.97
20000 61889.30 29916.60  210.35 96.32 5.25 3.77 1008.05 158.08

Table A.6: Large Scale Environment, RRT-Connect Generation. All times are in ms. Bold text shows the best value for that metric.

Large Scale RRT Connect
Total Time (ms) Std Dev  Points Std Dev  Plan Time Std Dev Length (m) Std Dev
Random 59404.90 22046.29  257.85 90.10 6.35 4.19 937.58 89.38
Halton 49410.05 11083.17 222.50 49.09 4.90 2.88 876.21 47.63
Trail Bias 1000 69209.80 29290.38  294.10 112.13 7.05 4.68 873.97 75.84
2500 75379.10 31148.88  322.90 131.49 6.55 6.24 890.10 65.06
5000 104757.20 56445.05  453.20 245.03 9.70 10.76 902.21 68.55
7500 100948.70  40324.82  431.25 175.07 8.35 7.36 915.56 73.21
10000 85835.40 40193.31  372.90 176.33 7.40 5.67 870.65 73.93
12500 108432.00 56447.97  461.75 231.24 9.60 8.07 887.51 54.26
15000 103907.60 50304.12  443.00 212.58 9.65 10.96 913.43 59.97
17500 111487.70 73472.38  466.15 306.47 12.85 22.10 909.42 89.29

20000 83227.30  25971.52  356.90 111.31 7.75 10.23 900.61 58.76




APPENDIX B

Full PRM Results

The full results of our PRM experiments are presented here. This is the data collected for the experiments
run in Chapter
The results for the PRMs generated in small scale environments are presented in the tables below:

e Small scale environment

— 1000 Point tables: [B-I] and [B.2
— 5000 Point tables: [B.3] and [B-4]
— 10000 Point tables: [B.5 and [B.6]

e Larse scale environment

— 1000 Point tables: Table two is not present as there was a 0% success rate at planning
all routes for all methods.
— 5000 Point tables: and [B.9]

— 10000 Point tables: [B.10l and [B.11]
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Table B.1: 256m? environment, 1000 points PRM experiment full results (Table 1 of 2) (n=20)

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 0.37 0.01 | 841.30 12.23 811.30 13.00 | 1.00
Halton 0.44 0.01 | 847.55 1.32 812.75 1.51 1.00
25% Trails 75% Halton 0.37 0.01 | 889.60 3.40 | 1062.80 11.44 | 0.25
50% Trails 50% Halton 0.30 0.02 | 909.45 9.23 | 1263.75 22.34 | 0.50
75% Trails 25% Halton 0.22 0.02 | 931.60 11.16 | 1467.00 34.62 | 0.75
100% Trails 0.19 0.02 | 934.65 35.89 | 1746.35 47.45 | 0.00
Trail Bias 0.32 0.01 | 827.65 21.13 775.95 23.01 | 1.00
100% Gaussian 1.24 0.03 | 978.30 3.51 954.85 6.13 | 2.00
25% Gaus 75% Halton 0.64 0.02 | 892.95 3.49 | 868.60 449 | 1.25
50% Gaus 50% Halton 0.83 0.01 | 923.80 2.46 | 892.50 4.49 | 1.50
75% Gaus 25% Halton 1.02 0.03 | 953.35 3.13 | 886.60 15.17 | 1.75
25% Trail 75% Gaus 0.98 0.02 | 992.45 3.89 | 1546.55 12.73 | 1.50
50% Trail 50% Gaus 0.72 0.02 | 983.35 9.12 | 1355.00 22.33 | 1.00
75%Trail 256% Gaus 0.46 0.02 | 972.70 11.90 | 1546.55 27.72 | 1.50
25% Trail 25% Gaus 50% Halton 0.37 0.01 | 502.90 3.03 | 648.30 13.44 | 1.00
25% Trail 50% Gaus 25% Halton 0.68 0.02 | 748.55 4.15 916.60 12.40 | 1.25
50% Trail 25% Gaus 25% Halton 0.41 0.02 | 737.70 8.91 | 1091.75 23.69 | 0.75
MergeTrails 0.05 0.01 | 177.70 28.30 | 1002.90 35.59 | 0.00
25% MergeTrails 75% Halton 0.36 0.00 | 710.60 17.03 888.95 18.09 | 0.75
50% MergeTrails 50% Halton 0.25 0.01 | 530.05 12.59 | 893.70 16.16 | 0.50
75% MergeTrails 25% Halton 0.13 0.01 | 358.10 17.27 | 901.85 27.01 | 0.25
25% MergeTrails 75% Gaus 0.97 0.03 | 813.45 16.50 | 997.05 19.26 | 1.50
50% MergeTrails 50% Gaus 0.66 0.02 | 603.55 12.68 985.90 20.99 | 1.00
75% MergeTrails 25% Gaus 0.37 0.02 | 398.25 17.70 980.30 24.34 | 0.50
25% MergeTrails 25% Gaus 50% Halton 0.33 0.02 | 324.05 16.20 | 466.55 21.09 | 1.00
25% MergeTrails 50% Gaus 25% Halton 0.65 0.02 | 569.95 16.02 | 738.85 17.90 | 1.25
50% MergeTrails 25% Gaus 25% Halton 0.34 0.02 | 358.05 12.36 | 715.75 20.91 | 0.75




el

Table B.2: 256m? environment, 1000 points PRM experiment full results (Table 2 of 2) (n=20) (* Length is as a ratio to the shortest average
planned path)

Point Generation Type ‘ Overall Success Rate FEasy Route Hard Route ‘ Length* | Planning Time (ms) Std Dev
Random 36% 55% 17% 7.75 7.82 4.39
Halton 67% 100% 33% 5.83 4.78 3.64
25% Trails 75% Halton 29% 58% 0% 2.22 10.82 4.12
50% Trails 50% Halton 33% 60% 7% 6.78 9.04 5.55
75% Trails 25% Halton 17% 33% 0% 10.67 12.16 3.16
100% Trails 16% 32% 0% 7.73 17.24 5.82
Trail Bias 15% 28% 2% 8.47 4.77 1.96
100% Gaussian 0% 0% 0% N/A N/A N/A
25% Gaus 75% Halton 33% 65% 2% 2.01 9.87 3.78
50% Gaus 50% Halton 32% 62% 2% 2.23 11.08 6.24
75% Gaus 25% Halton 3% 5% 0% 1.09 0.67 0.00
25% Trail 75% Gaus 11% 22% 0% 2.43 13.29 3.91
50% Trail 50% Gaus 18% 35% 0% 1.58 12.39 2.21
75%Trail 256% Gaus 15% 30% 0% 1.14 11.18 3.18
25% Trail 25% Gaus 50% Halton 27% 53% 0% 2.03 10.22 3.32
25% Trail 50% Gaus 25% Halton 13% 27% 0% 1.99 9.45 4.05
50% Trail 25% Gaus 25% Halton 16% 30% 2% 1.41 8.75 5.01
MergeTrails 10% 20% 0% 9.69 4.55 0.55
25% MergeTrails 75% Halton 28% 57% 0% 2.01 10.08 4.63
50% MergeTrails 50% Halton 33% 60% 7% 5.94 4.28 2.65
75% MergeTrails 25% Halton 14% 28% 0% 9.67 2.81 0.81
25% MergeTrails 75% Gaus 6% 12% 0% 2.08 10.92 3.58
50% MergeTrails 50% Gaus 11% 22% 0% 1.33 6.85 2.15
75% MergeTrails 25% Gaus 14% 28% 0% 8.65 3.22 0.87
25% MergeTrails 25% Gaus 50% Halton 28% 55% 0% 1.87 8.59 4.21
25% MergeTrails 50% Gaus 25% Halton 8% 15% 0% 1.24 5.33 3.00
50% MergeTrails 25% Gaus 25% Halton 15% 30% 0% 1.19 4.63 1.88
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Table B.3: 256m? environment, 5000 points PRM experiment full results (Table 1 of 2) (n=20)

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 1.30 0.02 | 4076.40 17.25 4072.70 17.41 5.00
Halton 1.52 0.01 | 4241.70 1.27 4218.45 1.50 5.00
25% Trails 75% Halton 2.58 0.10 | 8567.75 40.20 | 10685.10 77.00 | 1.25
50% Trails 50% Halton 1.24 0.06 | 4337.25 40.36 | 6453.00 76.14 | 2.50
75% Trails 25% Halton 1.13 0.08 | 4242.55 70.77 | 7461.20 91.39 | 3.75
100% Trails 0.88 0.07 | 4033.45 103.89 | 8348.45 133.23 | 0.00
Trail Bias 1.32 0.02 | 3976.20 31.84 3965.55 32.21 5.00
100% Gaussian 5.57 0.09 | 4517.75 17.69 4503.80 17.61 | 10.00
25% Gaus 75% Halton 2.59 0.04 | 4405.45 4.55 4392.85 4.95 6.25
50% Gaus 50% Halton 3.63 0.07 | 4499.50 6.38 | 4491.20 6.06 | 7.50
75% Gaus 25% Halton 4.63 0.08 | 4526.70 12.65 | 4522.05 12.60 | 8.75
25% Trail 75% Gaus 4.48 0.11 | 4635.25 31.77 7593.30 44.31 7.50
50% Trail 50% Gaus 3.35 0.08 | 4583.85 43.98 6667.05 75.38 5.00
75%Trail 25% Gaus 2.18 0.11 | 4402.75 67.81 7593.30 89.15 7.50
25% Trail 25% Gaus 50% Halton 1.76 0.06 | 2385.45 25.77 | 3427.65 39.05 | 5.00
25% Trail 50% Gaus 25% Halton 3.16 0.09 | 3541.80 33.13 | 4583.95 43.14 | 6.25
50% Trail 25% Gaus 25% Halton 1.94 0.07 | 3431.55 39.30 5532.55 74.83 3.75
MergeTrails 0.21 0.01 440.55 32.19 4801.00 56.53 0.00
25% MergeTrails 75% Halton 1.24 0.02 | 3391.60 33.65 | 4470.70 40.17 | 3.75
50% MergeTrails 50% Halton 0.96 0.01 | 2449.60 31.37 | 4618.70 45.49 | 2.50
75% MergeTrails 25% Halton 0.63 0.01 | 1439.95 26.48 | 4706.90 35.92 | 1.25
25% MergeTrails 75% Gaus 4.25 0.07 | 3677.05 39.39 | 4755.50 45.40 | 7.50
50% MergeTrails 50% Gaus 3.05 0.05 | 2697.60 32.41 4863.30 47.42 5.00
75% MergeTrails 25% Gaus 1.66 0.03 | 1597.65 24.94 4858.55 34.64 2.50
25% MergeTrails 25% Gaus 50% Halton 1.56 0.03 | 1425.30 32.72 | 2500.40 39.65 | 5.00
25% MergeTrails 50% Gaus 25% Halton 2.92 0.05 | 2577.00 37.53 | 3656.30 42.70 | 6.25
50% MergeTrails 25% Gaus 25% Halton 1.61 0.02 | 1545.20 30.16 3708.65 48.68 3.75
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Table B.4: 256m? environment, 5000 points PRM experiment full results (Table 2 of 2) (n=20) (* Length is as a ratio to the shortest average
planned path)

Point Generation Type ‘ Overall Success Rate FEasy Route Hard Route ‘ Length* | Planning Time (ms) Std Dev
Random 87% 100% 73% 5.86 214.08 130.19
Halton 100% 100% 100% 4.41 115.28 77.04
25% Trails 75% Halton 100% 100% 100% 4.94 692.21 414.12
50% Trails 50% Halton 99% 100% 98% 4.98 239.27 138.47
75% Trails 25% Halton 93% 97% 88% 4.44 307.13 199.59
100% Trails 53% 73% 33% 4.51 410.36 230.12
Trail Bias 70% 95% 45% 6.13 158.27 114.25
100% Gaussian 23% 43% 2% 2.35 202.31 142.86
25% Gaus 75% Halton 98% 100% 97% 7.32 129.23 73.04
50% Gaus 50% Halton 100% 100% 100% 8.67 153.33 89.33
75% Gaus 25% Halton 100% 100% 100% 8.83 174.28 106.24
25% Trail 75% Gaus 54% 63% 40% 7.13 245.46 146.82
50% Trail 50% Gaus 62% 73% 50% 5.15 288.83 203.89
75%Trail 25% Gaus 67% 78% 55% 4.39 338.32 244.48
25% Trail 25% Gaus 50% Halton 100% 100% 100% 5.79 196.73 113.37
25% Trail 50% Gaus 25% Halton 100% 100% 100% 5.82 218.54 136.00
50% Trail 25% Gaus 25% Halton 100% 100% 100% 5.28 267.24 171.98
MergeTrails 41% 63% 18% 3.80 29.12 14.80
25% MergeTrails 75% Halton 91% 100% 82% 4.55 101.76 65.58
50% MergeTrails 50% Halton 97% 97% 97% 4.30 80.06 49.23
75% MergeTrails 25% Halton 87% 97% 7% 3.73 52.77 34.64
25% MergeTrails 75% Gaus 50% 63% 32% 6.81 166.96 106.56
50% MergeTrails 50% Gaus 57% 67% 47% 3.56 108.43 88.30
75% MergeTrails 25% Gaus 62% 7% 47% 3.88 68.63 49.05
25% MergeTrails 25% Gaus 50% Halton 99% 100% 98% 5.02 120.69 72.67
25% MergeTrails 50% Gaus 25% Halton 100% 100% 100% 5.03 135.63 94.51
50% MergeTrails 25% Gaus 25% Halton 83% 97% 68% 4.31 96.26 66.29




Table B.5: 256m? environment, 10000 points PRM experiment full results (Table 1 of 2) (n=20)

GeT

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 2.25 0.07 | 7837.95 38.48 7836.60 38.59 | 10.00
Halton 2.70 0.07 | 8477.65 1.80 8456.20 1.50 | 10.00
25% Trails 75% Halton 2.58 0.10 | 8567.75 40.20 | 10685.10 77.00 | 2.50
50% Trails 50% Halton 2.40 0.11 | 8282.30 103.96 | 12604.30 133.51 | 5.00
75% Trails 25% Halton 2.09 0.14 | 7766.45 123.69 | 14292.90 164.67 | 7.50
100% Trails 1.70 0.22 | 7056.95 150.11 | 15724.95 239.64 | 0.00
Trail Bias 2.35 0.07 | 7656.20 73.07 7653.65 73.12 | 10.00
100% Gaussian 10.58 0.19 | 8226.25 33.24 8211.10 32.40 | 20.00
25% Gaus 75% Halton 4.90 0.07 | 8728.55 8.67 | 8718.85 9.30 | 12.50
50% Gaus 50% Halton 7.03 0.08 | 8760.45 20.82 | 8753.55 20.98 | 15.00
75% Gaus 25% Halton 9.01 0.16 | 8582.30 23.59 | 8576.45 23.75 | 17.50
25% Trail 75% Gaus 8.90 0.25 | 8673.25 48.23 | 14431.25 94.28 | 15.00
50% Trail 50% Gaus 6.71 0.23 | 8547.95 102.78 | 12747.25 149.67 | 10.00
75%Trail 25% Gaus 4.31 0.14 | 8011.35 126.38 | 14431.25 155.65 | 15.00
25% Trail 25% Gaus 50% Halton 3.36 0.10 | 4586.20 44.33 | 6672.55 68.39 | 10.00
25% Trail 50% Gaus 25% Halton 6.02 0.16 | 6724.45 42.34 | 8787.20 96.06 | 12.50
50% Trail 25% Gaus 25% Halton 3.83 0.17 | 6413.55 101.83 | 10670.00 128.90 7.50
MergeTrails 0.41 0.02 542.00 27.92 9323.05 76.67 0.00
25% MergeTrails 75% Halton 2.26 0.04 | 6679.90 31.02 8853.10 44.95 7.50
50% MergeTrails 50% Halton 1.66 0.01 | 4690.05 32.21 | 9090.95 53.91 | 5.00
75% MergeTrails 25% Halton 1.09 0.01 | 2627.75 35.67 | 9222.90 78.56 | 2.50
25% MergeTrails 75% Gaus 8.33 0.14 | 6793.00 41.06 | 8956.75 54.50 | 15.00
50% MergeTrails 50% Gaus 5.85 0.09 | 4962.70 35.55 9349.85 55.61 | 10.00
75% MergeTrails 25% Gaus 3.11 0.05 | 2874.70 32.50 9459.95 78.05 5.00
25% MergeTrails 25% Gaus 50% Halton 2.99 0.04 | 2697.85 28.76 | 4863.45 46.10 | 10.00
25% MergeTrails 50% Gaus 25% Halton 5.65 0.05 | 4832.35 42.07 | 6995.50 56.05 | 12.50
50% MergeTrails 25% Gaus 25% Halton 3.12 0.07 | 2818.70 35.83 | 7211.35 55.83 | 7.50
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Table B.6: 256m? environment, 10000 points PRM experiment full results (Table 2 of 2) (n=20) (* Length is as a ratio to the shortest average
planned path)

Point Generation Type ‘ Overall Success Rate FEasy Route Hard Route ‘ Length* | Planning Time (ms) Std Dev
Random 98% 100% 97% 5.29 740.13 505.10
Halton 100% 100% 100% 5.54 492.95 290.80
25% Trails 75% Halton 100% 100% 100% 4.94 692.21 414.12
50% Trails 50% Halton 100% 100% 100% 4.37 930.76 566.45
75% Trails 25% Halton 100% 100% 100% 4.10 1,313.70 881.76
100% Trails 84% 92% 7% 3.91 1,752.47  1,224.32
Trail Bias 87% 100% 73% 5.60 681.29 420.39
100% Gaussian 27% 52% 2% 9.44 687.22 410.23
25% Gaus 75% Halton 100% 100% 100% 9.25 520.48 318.64
50% Gaus 50% Halton 100% 100% 100% 9.16 576.88 346.49
75% Gaus 25% Halton 100% 100% 100% 8.79 594.42 409.23
25% Trail 75% Gaus 65% 73% 5% 5.05 823.58 626.85
50% Trail 50% Gaus 80% 87% 73% 4.50 1,238.64 889.76
75%Trail 25% Gaus 87% 92% 2% 4.08 1,628.45 1,224.83
25% Trail 25% Gaus 50% Halton 100% 100% 100% 4.90 745.30 502.30
25% Trail 50% Gaus 25% Halton 100% 100% 100% 4.89 785.13 579.61
50% Trail 25% Gaus 25% Halton 100% 100% 100% 4.44 1,130.91 776.65
MergeTrails 70% 83% 57% 3.43 68.70 42.82
25% MergeTrails 75% Halton 98% 97% 100% 4.44 426.13 265.18
50% MergeTrails 50% Halton 100% 100% 100% 3.58 291.23 192.81
75% MergeTrails 25% Halton 100% 100% 100% 3.50 180.83 117.44
25% MergeTrails 75% Gaus 62% 63% 55% 4.06 481.09 416.32
50% MergeTrails 50% Gaus 78% 83% 2% 3.62 403.86 338.91
75% MergeTrails 25% Gaus 82% 88% 5% 3.53 259.76 203.68
25% MergeTrails 25% Gaus 50% Halton 98% 97% 100% 4.20 437.02 315.56
25% MergeTrails 50% Gaus 25% Halton 98% 97% 100% 4.06 467.90 377.01
50% MergeTrails 25% Gaus 25% Halton 100% 100% 100% 3.64 346.23 261.27




Table B.7: 512m? environment, 1000 points PRM experiment full results (Table 1 of 1) (n=20)

LET

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 1.44 0.05 802.40 11.46 432.75 14.78 | 1.00
Halton 1.23 0.08 810.25 7.25 290.70 26.65 | 1.00
25% Trails 75% Halton 1.14 0.07 854.70 6.78 591.45 27.52 | 0.25
50% Trails 50% Halton 1.05 0.06 | 882.80 12.92 | 926.60 28.45 | 0.50
75% Trails 25% Halton 1.00 0.09 896.25 24.86 | 1261.40 41.72 | 0.75
100% Trails 1.12 0.06 | 902.35 27.38 | 1625.00 48.32 | 0.00
Trail Bias 1.42 0.06 788.60 12.78 426.25 19.44 | 1.00
100% Gaussian 5.94 0.16 | 1005.10 2.32 728.15 10.69 | 2.00
25% Gaus 75% Halton 2.38 0.09 | 864.40 5.08 | 375.35 18.98 | 1.25
50% Gaus 50% Halton 3.49 0.11 912.70 4.26 476.70 12.00 | 1.50
75% Gaus 25% Halton 4.75 0.15 961.10 4.06 590.05 11.22 | 1.75
25% Trail 75% Gaus 2.26 0.11 944.40 22.82 | 1332.35 39.58 | 1.50
50% Trail 50% Gaus 3.51 0.12 980.45 12.60 | 1107.00 27.96 | 1.00
75%Trail 25% Gaus 2.26 0.11 944.40 22.82 | 1332.35 39.58 | 1.50
25% Trail 25% Gaus 50% Halton 2.32 0.09 | 904.00 7.43 | 685.10 22.05 | 1.00
25% Trail 50% Gaus 25% Halton 3.46 0.11 951.90 6.63 783.05 22.92 | 1.25
50% Trail 25% Gaus 25% Halton 2.29 0.11 932.95 14.03 995.10 32.83 | 0.75
MergeTrails 0.55 0.07 343.30 33.78 | 1081.60 38.13 | 0.00
25% MergeTrails 75% Halton 0.99 0.09 | 727.45 13.71 | 470.90 33.54 | 0.75
50% MergeTrails 50% Halton 0.81 0.08 | 618.35 23.54 | 669.05 33.72 | 0.50
75% MergeTrails 25% Halton 0.59 0.06 | 475.90 26.29 | 850.00 32.79 | 0.25
25% MergeTrails 75% Gaus 4.62 0.16 | 871.90 13.26 | 788.05 21.80 | 1.50
50% MergeTrails 50% Gaus 3.11 0.08 714.55 22.05 845.75 26.97 | 1.00
75% MergeTrails 25% Gaus 1.77 0.11 522.85 25.24 918.35 30.57 | 0.50
25% MergeTrails 25% Gaus 50% Halton 2.16 0.10 | 777.05 13.85 | 563.55 27.71 | 1.00
25% MergeTrails 50% Gaus 25% Halton 3.38 0.11 | 825.65 12.60 | 657.60 26.53 | 1.25
50% MergeTrails 25% Gaus 25% Halton 1.94 0.08 666.15 24.08 736.25 30.45 | 0.75
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Table B.8: 512m? environment, 5000 points PRM experiment full results (Table 1 of 2) (n=20)

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 9.29 0.21 | 3928.70 31.93 | 3865.90 35.00 5.00
Halton 10.29 0.18 | 3948.75 10.14 | 3871.20 10.79 5.00
25% Trails 75% Halton 9.65 0.21 | 4067.05 38.44 | 4974.35 48.97 | 1.25
50% Trails 50% Halton 8.53 0.20 | 4235.60 45.94 | 6100.75 67.93 | 2.50
75% Trails 25% Halton 6.47 0.24 | 4287.05 57.95 | 7015.70 85.57 | 3.75
100% Trails 5.24 0.30 | 4217.55 75.81 | 8209.55 90.93 | 0.00
Trail Bias 9.12 0.18 | 3896.30 29.28 | 3831.60 29.76 5.00
100% Gaussian 30.50 0.74 | 4893.20 12.71 | 4831.30 15.68 | 10.00
25% Gaus 75% Halton 15.72 0.46 | 4217.20 7.14 | 4151.85 8.28 6.25
50% Gaus 50% Halton 20.86 0.46 | 4464.95 10.17 | 4413.85 10.92 7.50
75% Gaus 25% Halton 25.45 0.58 | 4690.45 9.82 | 4538.15 17.73 | 8.75
25% Trail 75% Gaus 24.67 0.73 | 4784.55 41.75 | 7416.15 53.48 7.50
50% Trail 50% Gaus 19.10 0.46 | 4724.60 47.07 | 6604.15 70.11 5.00
75%Trail 256% Gaus 12.22 0.49 | 4531.40 58.24 | 7416.15 78.86 7.50
25% Trail 25% Gaus 50% Halton 14.84 0.46 | 4325.95 38.79 | 5237.30 50.13 | 5.00
25% Trail 50% Gaus 25% Halton 19.33 0.66 | 4568.15 38.57 | 5388.05 51.04 | 6.25
50% Trail 25% Gaus 25% Halton 13.47 0.30 | 4488.95 44.25 | 6258.35 66.13 3.75
MergeTrails 1.78 0.09 947.85 33.05 | 5007.75 51.30 0.00
25% MergeTrails 75% Halton 8.95 0.23 | 3366.80 44.89 | 4303.15 55.93 3.75
50% MergeTrails 50% Halton 6.87 0.17 | 2655.05 39.30 | 4591.90 47.39 | 2.50
75% MergeTrails 25% Halton 4.08 0.14 | 1849.75 44.76 | 4625.30 71.55 1.25
25% MergeTrails 75% Gaus 23.23 0.47 | 4082.50 43.83 | 5019.35 53.10 | 7.50
50% MergeTrails 50% Gaus 17.19 0.46 | 3142.00 37.69 | 5089.70 45.90 5.00
75% MergeTrails 25% Gaus 9.76 0.29 | 2099.05 46.28 | 5038.75 60.58 2.50
25% MergeTrails 25% Gaus 50% Halton 14.04 0.23 | 3623.35 47.51 | 4568.60 56.60 | 5.00
25% MergeTrails 50% Gaus 25% Halton 18.86 0.47 | 3866.60 48.00 | 4715.85 54.32 | 6.25
50% MergeTrails 25% Gaus 25% Halton 11.88 0.28 | 2909.75 37.35 | 4753.00 47.67 | 3.75
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Table B.9: 512m? environment, 5000 points PRM experiment full results (Table 2 of 2) (n=20) (* Length is as a ratio to the shortest average

planned path)

Point Generation Type ‘ Overall Success Rate FEasy Route Hard Route ‘ Length* | Planning Time (ms) Std Dev
Random 52% 20% 83% 1.89 122.85 104.22
Halton 100% 100% 100% 2.30 101.96 60.79
25% Trails 75% Halton 91% 83% 98% 2.58 130.72 69.42
50% Trails 50% Halton 42% 0% 83% 3.05 155.01 64.87
75% Trails 25% Halton 19% 0% 38% 1.37 112.05 47.42
100% Trails 18% 0% 3% 1.19 77.90 24.90
Trail Bias 63% 3% 83% 1.97 131.02 102.45
100% Gaussian 18% ™% 28% 1.98 127.81 26.69
25% Gaus 75% Halton 87% 73% 100% 2.40 106.62 65.24
50% Gaus 50% Halton 81% 62% 100% 2.87 193.29 92.71
75% Gaus 25% Halton 40% 28% 52% 3.13 233.31 105.51
25% Trail 75% Gaus 20% 2% 33% 2.74 170.81 110.99
50% Trail 50% Gaus 20% 0% 40% 2.24 162.18 39.43
75%Trail 256% Gaus 19% 0% 38% 1.68 132.22 27.74
25% Trail 25% Gaus 50% Halton 76% 53% 98% 2.82 165.59 83.48
25% Trail 50% Gaus 25% Halton 40% 15% 65% 2.74 171.24 88.01
50% Trail 25% Gaus 25% Halton 28% 10% 47% 2.06 209.23 136.00
MergeTrails 18% 0% 35% 1.12 12.50 4.50
25% MergeTrails 75% Halton 88% 7% 98% 2.28 85.77 44.63
50% MergeTrails 50% Halton 39% 0% 78% 2.89 53.99 17.75
75% MergeTrails 25% Halton 18% 2% 35% 1.12 26.12 12.49
25% MergeTrails 75% Gaus 21% 0% 42% 3.38 144.85 71.19
50% MergeTrails 50% Gaus 18% 0% 37% 1.30 33.78 11.21
75% MergeTrails 25% Gaus 19% 0% 38% 1.20 32.35 21.25
25% MergeTrails 25% Gaus 50% Halton 67% 38% 95% 2.26 108.20 60.56
25% MergeTrails 50% Gaus 25% Halton 38% 18% 58% 2.52 162.91 83.93
50% MergeTrails 25% Gaus 25% Halton 23% 3% 42% 1.88 61.30 15.55
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Table B.10: 512m? environment, 10000 points PRM experiment full results (Table 1 of 2) (n=20)

Point Generation Type ‘ Time (minutes) Std. Dev. ‘ Points  Std. Dev. ‘ Edges Std. Dev. ‘ Cost
Random 15.73 0.42 | 7763.70 44.27 7734.85 45.30 | 10.00
Halton 17.82 0.32 | 7885.70 5.62 7809.05 6.62 | 10.00
25% Trails 75% Halton 16.74 0.53 | 8157.50 45.21 | 10068.85 66.33 | 2.50
50% Trails 50% Halton 14.81 0.63 | 8160.10 80.68 | 12189.00 92.22 | 5.00
75% Trails 25% Halton 13.46 0.49 | 8555.40 54.44 | 14652.65 79.59 | 7.50
100% Trails 10.53 0.39 | 8449.85 102.32 | 16641.90 124.41 0.00
Trail Bias 15.97 0.34 | 7717.95 30.10 7688.50 30.66 | 10.00
100% Gaussian 60.13 1.54 | 9563.75 25.44 9519.40 24.70 | 20.00
25% Gaus 75% Halton 28.48 0.77 | 8384.75 8.23 | 8338.15 8.49 | 12.50
50% Gaus 50% Halton 38.26 0.95 | 8831.75 13.14 | 8797.40 12.75 | 15.00
75% Gaus 25% Halton 49.03 1.32 | 9232.10 15.61 9195.80 14.97 | 17.50
25% Trail 75% Gaus 24.06 0.62 | 9044.10 56.34 | 15149.55 90.31 | 15.00
50% Trail 50% Gaus 35.30 0.83 | 9103.65 70.74 | 13129.60 86.29 | 10.00
75%Trail 25% Gaus 24.06 0.62 | 9044.10 56.34 | 15149.55 90.31 | 15.00
25% Trail 25% Gaus 50% Halton 27.30 0.40 | 8661.95 49.89 | 10591.35 70.16 | 10.00
25% Trail 50% Gaus 25% Halton 37.70 0.64 | 9116.70 45.61 | 11046.35 69.31 | 12.50
50% Trail 25% Gaus 25% Halton 25.33 0.94 | 8672.30 73.50 | 12706.85 84.19 7.50
MergeTrails 2.65 0.14 | 1282.05 42.18 9626.90 62.82 0.00
25% MergeTrails 75% Halton 15.32 0.53 | 6576.05 37.96 8563.80 42.49 7.50
50% MergeTrails 50% Halton 11.89 0.31 | 4888.30 35.25 | 9034.60 47.22 | 5.00
75% MergeTrails 25% Halton 8.04 0.23 | 3166.75 55.97 | 9424.70 68.21 | 2.50
25% MergeTrails 75% Gaus 45.83 0.73 | 7907.70 41.30 | 9904.65 43.75 | 15.00
50% MergeTrails 50% Gaus 31.37 0.76 | 5831.80 30.74 9974.55 43.10 | 10.00
75% MergeTrails 25% Gaus 18.20 0.37 | 3654.40 52.27 9922.50 62.12 5.00
25% MergeTrails 25% Gaus 50% Halton 26.18 0.54 | 7079.90 34.58 | 9088.70 41.84 | 10.00
25% MergeTrails 50% Gaus 25% Halton 36.37 0.99 | 7536.60 39.54 | 9548.90 45.27 | 12.50
50% MergeTrails 25% Gaus 25% Halton 22.52 0.46 | 5399.95 35.22 | 9560.60 47.49 | 7.50
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Table B.11: 512m? environment, 10000 points PRM experiment full results (Table 2 of 2) (n=20) (* Length is as a ratio to the shortest average

planned path)

Point Generation Type ‘ Overall Success Rate FEasy Route Hard Route ‘ Length* | Planning Time (ms) Std Dev
Random 98% 95% 100% 2.23 881.41 675.16
Halton 100% 100% 100% 2.39 549.24 311.15
25% Trails 75% Halton 99% 100% 98% 2.40 669.02 349.53
50% Trails 50% Halton 100% 100% 100% 1.93 924.83 505.57
75% Trails 25% Halton 55% 10% 100% 1.86 1504.86 748.28
100% Trails 33% 18% 48% 1.97 2706.11  1332.66
Trail Bias 99% 98% 100% 1.96 701.75 594.83
100% Gaussian 25% 17% 33% 2.36 1277.35 418.45
25% Gaus 75% Halton 100% 100% 100% 2.67 647.91 300.66
50% Gaus 50% Halton 100% 100% 100% 2.82 1236.54 617.57
75% Gaus 25% Halton 83% 67% 100% 3.18 1773.47 967.98
25% Trail 75% Gaus 38% 7% 70% 1.78 2403.89  1310.74
50% Trail 50% Gaus 44% 28% 60% 1.93 2283.86  1573.43
75%Trail 25% Gaus 38% 7% 70% 1.78 2403.89  1310.74
25% Trail 25% Gaus 50% Halton 98% 98% 98% 2.48 1282.41 647.03
25% Trail 50% Gaus 25% Halton 83% 67% 100% 2.86 1441.38 895.00
50% Trail 25% Gaus 25% Halton 83% 67% 100% 2.26 1472.43 855.48
MergeTrails 27% 12% 42% 1.77 108.74 46.28
25% MergeTrails 75% Halton 100% 100% 100% 2.01 384.78 195.61
50% MergeTrails 50% Halton 100% 100% 100% 1.55 278.47 169.34
75% MergeTrails 25% Halton 56% 12% 100% 1.36 173.33 89.69
25% MergeTrails 75% Gaus 40% 28% 52% 2.36 1451.47 871.14
50% MergeTrails 50% Gaus 40% 20% 60% 1.96 775.12 448.73
75% MergeTrails 25% Gaus 36% 12% 60% 1.67 375.70 173.87
25% MergeTrails 25% Gaus 50% Halton 100% 100% 100% 2.00 707.70 372.12
25% MergeTrails 50% Gaus 25% Halton 83% 67% 100% 2.44 990.85 543.23
50% MergeTrails 25% Gaus 25% Halton 81% 62% 100% 1.96 593.80 335.14




APPENDIX C

Full Segementation Results

This appendix reports the full table of results for the experiments done in Chapter [7]
e 256m? London Community Region: and
e 256m? Hyde Park Region: and

e 256m? Kensington Region: and
e 512m?2 Greater London Area: [C.7] and [C.8]
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Table C.1: Full table of results for the 256m? London Community Environment (Table 1 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

None | 1044155 247.18 260 1111 | 1.00 0.00 | 49412 5481 | 100%
Regular 2 | 4537761.95 51633.58 3691404.55 18104.70 1.00 0.00 | 510.41 0.00 100%
4 | 608307.50  6851.07 500681.95  6820.59 1.00 0.00 | 510.00 0.00 100%

8 | 116698.35  1312.10 100896.25  1314.63 1.00 0.00 | 510.00 0.00 100%

16 28562.95 352.67 25477.80 340.04 1.00 0.00 | 722.59 25.86 100%

32 7796.80 252.97 6816.30 217.79 1.00 0.00 | 740.83 31.65 100%

64 2713.30 238.00 2033.05 193.15 1.00 0.00 | 818.22 49.39 100%

128 2243.05 260.16 754.40 191.79 1.00 0.00 | 710.52 50.62 100%

Quadtree 2 10445.15 274.34 10013.55 249.63 1.00 0.00 | 615.78 22.88 100%
4 9915.90 231.02 9494.85 199.87 1.00 0.00 | 612.93 29.64 100%

8 8939.15 248.05 8570.45 216.04 1.00 0.00 | 623.12 37.21 100%

16 7901.60 259.36 7540.30 214.32 1.00 0.00 | 630.24 43.62 100%

32 7131.70 243.11 6711.80 214.20 1.00 0.00 | 670.97 42.95 100%

64 5729.15 244.80 4849.40 201.65 1.00 0.00 | 750.89 66.44 100%

128 5160.50 247.14 2757.40 189.56 1.00 0.00 | 715.28 71.31 100%
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Table C.2: Full table of results for the 256m? London Community Environment (Table 2 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

Voronoi 10 2414.00 489.74 1101.00 186.72 1.05 0.22 | 775.38 103.84 100%
- Random 50 6909.95 323.46 6038.10 246.52 1.15 0.36 | 736.30 84.83 100%
100 13459.25 420.60 12295.15 318.33 1.25 0.43 | 742.96 87.29 100%

250 34843.45  1026.29 32233.75 609.45 1.45 1.02 | 679.08 54.21 100%

500 71989.05  2065.87 66296.50  1232.90 1.25 0.54 | 615.72 39.73 100%

750 | 111360.70  2539.55 102426.75  1907.98 1.30 0.56 | 564.10 36.06 100%

1000 | 152466.50  4467.72 138880.60  1542.21 1.45 0.97 | 551.42 27.89 100%

Voronoi 10 2391.90 316.63 1123.35 182.09 1.00 0.00 | 755.43 90.45 100%
- Halton 50 6693.00 267.84 5959.90 212.31 1.00 0.00 | 725.89 60.49 100%
100 13403.65 388.96 12374.90 249.74 1.20 0.60 | 736.48 61.04 100%

250 34469.85 738.02 32247.45 584.78 1.20 0.40 | 659.03 44.56 100%

500 71427.00 921.30 66555.60 827.20 1.05 0.22 | 582.62 29.46 100%

750 | 112719.00  3045.36 103447.45  1486.44 1.50 0.59 | 520.66 23.81 100%

1000 | 155394.65  3397.42 142942.55  1547.12 1.15 0.36 | 480.59 13.75 100%

Voronoi 10 2505.05 438.30 1205.30 199.31 1.10 0.30 | 735.90 67.62 100%
- Trail 50 6779.10 289.53 6004.70 254.06 1.10 0.44 | 761.59 86.89 100%
Density 100 13891.90 662.40 12711.75 410.58 1.35 0.79 | 742.53 84.07 100%
Clustering 250 23141.60 914.08 21546.45 759.77 1.05 0.22 | 678.80 63.96 100%
500 23476.10 881.08 21886.90 664.16 1.05 0.22 | 678.29 69.67 100%

750 23215.80 889.59 21628.10 701.08 1.05 0.22 | 677.88 66.92 100%

1000 23201.75 775.61 21614.55 639.81 1.05 0.22 | 681.91 58.41 100%

Voronoi 10 2528.40 396.55 1202.10 236.96 1.00 0.00 | 735.63 88.52 100%
- Trail 50 6854.00 316.54 5964.95 208.67 1.35 0.79 | 799.86 135.88 100%
Density 100 13108.20 681.43 12056.75 426.39 1.15 0.65 | 746.54 86.11 100%
Clustering 250 31279.05  1840.28 29179.55  1589.73 1.25 0.54 | 705.30 78.01 100%
And 500 60494.80  4835.11 56107.95  4764.71 1.25 0.54 | 629.00 36.84 100%
Halton 750 95892.50  8184.81 88708.55  7697.94 1.25 0.43 | 581.82 28.00 95%
1000 | 138060.60  9369.23 126326.00  7857.99 1.25 0.54 | 560.63 26.51 100%
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Table C.3: Full table of results for the 256m? Hyde Park Environment (Table 1 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

None 62793.30 438.78 5.45 23.30 1.00 0.00 | 490.20 47.02 100%
Regular 2 | 4785518.25 75214.82 3969151.10 73719.62 1.00 0.00 | 509.78 0.00 100%
4 | 666837.90  7623.57 558895.45  7579.01 1.00 0.00 | 511.24 0.39 100%

8 | 135103.90  1929.04 118949.05  1958.49 1.00 0.00 | 510.37 0.95 100%

16 34781.90 608.70 31522.45 603.93 1.00 0.00 | 768.52 34.35 100%

32 11825.05 885.49 9155.80 174.30 2.65 0.96 | 822.46 50.88 100%

64 4598.05 267.15 3402.15 215.73 1.00 0.00 | 948.41 56.17 100%

128 8957.20 305.98 2232.55 217.27 1.00 0.00 | 683.78 63.53 100%

Quadtree 2 74738.05 972.55 73694.70 989.62 1.00 0.00 | 603.43 25.78 100%
4 61466.75 832.42 60592.05 832.03 1.00 0.00 | 571.44 19.61 100%

8 43425.00 768.64 42520.55 759.79 1.00 0.00 | 559.68 30.01 100%

16 25512.40 453.79 24737.30 404.62 1.00 0.00 | 564.97 26.69 100%

32 16640.50 762.84 15104.05 706.56 1.00 0.00 | 613.44 29.01 100%

64 19786.60  1518.06 10496.10 350.48 1.55 0.50 | 621.75 144.02 100%

128 70777.40 987.89 7895.15 315.10 1.00 0.00 | 493.13 30.52 100%
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Table C.4: Full table of results for the 256m? Hyde Park (Table 2 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

Voronoi 10 5658.75  1493.78 2379.00 244.67 1.30 0.78 | 823.49 441.41 95%
- Random 50 9852.95 704.71 8392.15 558.54 1.60 0.86 | 748.55 78.89 100%
100 17773.35 720.01 15814.20 358.32 1.95 1.02 | 719.54 72.22 100%

250 42891.70  1734.49 39061.55 874.44 2.00 0.95 | 669.01 47.65 100%

500 84946.10  2116.65 78517.70  1124.01 1.40 0.66 | 599.74 43.46 100%

750 | 129927.85  4108.12 120590.60  1582.16 1.30 0.78 | 561.94 25.12 100%

1000 | 177294.90  4783.89 163495.55  2054.14 1.45 0.80 | 543.13 31.75 95%

Voronoi 10 5110.60  1784.00 2628.75  1458.28 1.15 0.36 | 904.58 741.99 100%
- Halton 50 9714.85  1332.75 8431.55  1316.48 1.75 0.89 | 644.60 44.21 80%
100 17908.80  1465.65 16043.95  1420.08 2.00 1.05 | 689.52 40.05 100%

250 42654.95  1788.28 39392.70  1722.05 1.75 0.89 | 651.08 41.68 100%

500 86078.40  2122.61 80394.50  1802.06 1.20 0.51 | 589.09 21.03 100%

750 | 132109.35  3511.77 122155.65  1810.26 1.40 0.73 | 520.16 20.86 100%

1000 | 178318.50  2105.12 166134.15  1921.07 1.10 0.30 | 492.75 13.31 100%

Voronoi 10 5562.05  1739.90 2573.60 575.00 1.35 0.79 | 773.10 335.78 90%
- Trail 50 9864.45 814.30 8272.15 548.82 1.85 1.06 | 745.22 83.52 85%
Density 100 17782.80  1064.06 16001.90 465.86 1.90 1.45 | 729.01 78.29 95%
Clustering 250 43704.95  1396.47 39572.45 991.03 2.25 0.94 | 702.81 63.61 100%
500 59884.60  5180.64 55372.85  4563.14 1.75 0.94 | 702.36 60.55 100%

750 59792.60  4954.78 55253.35  4474.57 1.75 0.94 | 704.10 57.88 100%

1000 59955.50  5137.18 55423.75  4710.44 1.75 0.99 | 701.33 63.04 100%

Voronoi 10 5963.45  1428.87 2513.95 357.11 1.05 0.22 | 976.50 766.50 100%
- Trail 50 10159.45 792.85 8367.00 251.18 2.35 1.35 | 734.67 90.31 95%
Density 100 18154.15  1478.19 15980.40 302.69 2.35 2.13 | 714.39 104.32 100%
Clustering 250 42358.05  1176.51 39444.10 932.32 1.35 0.79 | 692.38 49.06 100%
And 500 84499.05  1892.24 78853.20  1627.93 1.20 0.40 | 612.71 24.42 100%
Halton 750 | 128481.25  2098.21 119932.06  1789.41 1.10 0.30 | 571.24 21.91 100%
1000 | 177844.10  4786.90 162575.75  1671.25 1.50 0.67 | 539.74 24.90 100%
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Table C.5: Full table of results for the 256m? Kensington Environment (Table 1 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

None ‘ 104728.95  1152.50 ‘ 2.75 10.16 ‘ 1.00 0.00 | 493.70 25.99 ‘ 100%
Regular 2 | 4945896.75 76547.81 4129241.30 76061.41 1.00 0.00 | 509.78 0.00 100%
4 | 721583.85 10303.91 613313.80 10298.21 1.00 0.00 | 510.00 0.00 100%

8 | 154182.85  5475.01 137763.20  5494.76 1.00 0.00 | 509.53 0.59 100%

16 39973.50 765.06 36513.10 739.00 1.00 0.00 | 768.77 25.41 100%

32 13682.85 340.80 11158.40 235.29 2.75 0.43 | 834.73 53.33 100%

64 5922.00 218.67 4703.50 148.96 1.00 0.00 | 809.05 33.98 100%

128 22247.05 450.93 4915.50 220.47 1.00 0.00 | 630.60 31.36 100%

Quadtree 2 | 153215.90 977.73 152297.70  1003.94 1.00 0.00 | 588.99 23.90 100%
4 | 143775.60 864.25 142878.70 881.98 1.00 0.00 | 585.98 33.94 100%

8 122592.75 922.13 121755.00 927.60 1.00 0.00 | 586.98 20.88 100%

16 90808.05 736.07 90045.55 742.37 1.00 0.00 | 609.96 22.78 100%

32 63981.60  1319.32 62192.10  1243.40 3.00 0.00 | 617.57 27.61 100%

64 51453.80  1269.72 48886.75  1098.05 2.40 0.49 | 669.12 42.80 100%

128 62954.70 518.25 39452.35 448.89 2.00 0.00 | 544.43 37.34 100%
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Table C.6: Full table of results for the 256m? Kensington Environment (Table 2 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

Voronoi 10 13160.65  4687.24 4026.20 310.32 1.35 0.65 | 850.78 520.61 95%
- Random 50 12075.65 809.85 10036.50 226.87 2.50 1.40 | 736.32 73.08 100%
100 21063.70  1183.95 18626.30 376.25 2.45 1.43 | 734.75 107.72 100%

250 48614.30  1226.64 44888.45 768.81 1.95 0.86 | 684.50 38.93 100%

500 96450.25  3217.25 89181.80  1350.05 1.80 1.08 | 623.54 37.58 100%

750 | 147656.80  5173.51 135916.40  1742.69 1.85 0.96 | 580.17 32.64 100%

1000 | 202374.55  6106.04 186893.90  5738.59 1.55 0.67 | 545.40 21.80 100%

Voronoi 10 8851.55  1450.83 4044.75 270.05 1.05 0.22 | 708.56 248.60 100%
- Halton 50 11627.10 971.69 9968.95 239.64 2.20 1.81 | 725.80 65.26 90%
100 21202.45  2244.56 19191.85  1469.95 2.05 1.40 | 698.96 61.74 100%

250 48301.10  1729.61 44424.85 764.89 2.25 1.13 | 672.18 45.09 100%

500 96973.30  2021.49 90747.35  1079.45 1.55 0.80 | 596.80 25.37 100%

750 | 147797.75  4509.14 136949.95  2249.51 1.95 1.20 | 526.28 20.24 100%

1000 | 202419.25  4380.29 188308.35  3321.88 1.45 0.92 | 491.14 17.75 100%

Voronoi 10 10824.95  3177.81 4154.90 357.49 1.25 0.43 | 781.74 474.06 100%
- Trail 50 12045.75 891.80 10318.80 208.89 2.15 1.62 | 741.44 136.79 100%
Density 100 21752.35  1928.15 18823.00 500.87 3.20 2.56 | 700.66 53.68 90%
Clustering 250 51258.75  5995.23 46300.10  3489.55 2.85 2.29 | 656.49 49.38 100%
500 54274.55  3970.14 49366.55  3765.08 2.85 1.46 | 669.81 40.44 100%

750 54314.70  4418.48 49322.65  3996.57 2.90 1.48 | 667.74 42.24 100%

1000 54166.25  4044.86 49289.10  3806.44 2.85 1.46 | 665.02 48.50 100%

Voronoi 10 11334.55  2385.00 4327.55 427.63 1.40 0.80 | 736.50 255.49 95%
- Trail 50 12351.35  1577.18 10532.40 860.90 1.85 1.35 | 725.06 94.47 95%
Density 100 21168.40  1277.13 18440.90 434.76 3.00 1.76 | 803.91 283.10 95%
Clustering 250 47044.65  1722.26 43596.55  1106.69 1.75 1.44 | 681.16 46.67 100%
And 500 91758.10  3628.02 84459.75  1963.77 1.90 1.09 | 635.63 44.80 100%
Halton 750 | 141391.25  9346.81 129652.45  8146.16 2.20 1.17 | 591.80 33.56 100%
1000 | 189975.45  7850.17 175097.65  3443.45 1.75 1.37 | 557.86 30.76 100%
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Table C.7: Full table of results for the 512m? Greater London Area Environment (Table 1 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

None 660369.60 5219.01 ‘ 2.35 9.79 1.00 0.00 | 1014.08 66.84 70%
Regular 2 | 60655289.65 600875.50 45308203.70 170726.97 0.95 0.00 | 1021.24 222.57 95%
4 | 6585620.10 105193.05 4977931.60  92676.29 1.00 0.00 | 1024.70 0.87 100%

8 | 1065745.40 6855.61 851656.60 6850.19 1.00 0.00 | 1022.40 1.02 100%

16 263796.75  19496.45 201580.30 2825.82 4.05 1.47 | 1486.67 62.50 100%

32 82252.10 1587.13 55200.50 925.07 9.60 0.92 | 1615.56 43.64 15%

64 25722.70 1948.93 18970.70 282.49 3.90 0.99 | 1810.92 109.90 40%

128 46395.50  11995.11 13454.95 341.34 3.95 1.36 | 3476.85  3796.99 40%

Quadtree 2 532605.50 9237.38 512312.55 4215.27 9.80 3.93 | 1289.92 58.27 80%
4 486941.60 9350.92 468357.50 3209.93 9.05 5.15 | 1258.03 53.57 85%

8 408022.35 8548.34 388445.60 3672.20 10.55 4.54 | 1302.26 97.95 85%

16 294809.40 5866.41 276355.55 1702.81 13.05 3.67 | 1334.30 62.90 80%

32 187808.15 1879.78 178989.45 953.42 8.60 1.36 | 1288.57 89.76 95%

64 122678.20 1559.45 117424.95 1090.19 5.30 1.31 N/A N/A 0%

128 100981.15 932.91 84734.30 881.07 2.90 0.70 | 1222.83 66.39 70%
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Table C.8: Full table of results for the 512m? Greater London Area Environment (Table 2 of 2)

Type Variation Total Std Dev | Segmentation Std Dev | Number of Std Dev | Length Std Dev | Success
Time (ms) Time (ms) Top. Plans (m) Rate

Voronoi 10 75037.50  23734.96 12637.45  1242.08 2.45 1.69 | 2407.46  2282.56 65%
- Random 50 30759.85  7986.82 19050.05 718.11 5.55 4.54 | 1487.25 330.06 45%
100 40198.00  3788.54 31768.25 997.73 5.15 3.21 | 1601.64 288.43 50%

250 82701.35  8848.74 69046.10  1668.96 6.10 4.46 | 1492.60 131.26 60%

500 | 161592.70 11088.26 135709.45  2735.05 5.85 2.76 | 1469.40 99.54 85%

750 | 246425.45 14777.28 204845.00  3077.04 6.10 3.19 | 1449.78 76.31 85%

1000 | 336483.60 27744.45 276846.90  4230.98 6.75 4.12 | 1362.99 78.43 100%

Voronoi 10 69841.60 18332.45 12758.55  1036.05 2.60 1.56 | 2898.93  2945.83 60%
- Halton 50 27622.30  3433.34 18650.95 315.04 4.60 2.46 | 1330.61 55.16 50%
100 37607.30  4203.22 30323.35 468.14 5.15 3.24 | 1598.04 262.96 50%

250 82525.20 5222.22 69340.10 1574.11 6.05 3.06 | 1541.28 127.67 55%

500 | 166812.55 10880.97 136481.20  2152.71 8.40 4.00 | 1421.15 107.58 70%

750 | 250408.25 18397.01 206985.15  2982.17 8.00 4.55 | 1314.48 91.84 65%

1000 | 332737.85 26040.52 279714.95  6040.12 5.90 4.79 | 1317.43 62.65 85%

Voronoi 10 73203.45  24769.73 14227.50 949.24 2.75 1.48 | 1367.06 164.33 45%
- Trail 50 29794.70  4671.94 20066.50 495.99 4.70 2.93 | 1873.41 796.49 55%
Density 100 40565.65  3213.25 32288.75 681.93 5.45 2.64 | 1716.86 658.89 45%
Clustering 250 87962.95  7250.01 70277.95  1000.70 7.40 4.09 | 1523.45 110.79 5%
500 | 167625.60 20174.87 136643.60  3313.12 7.20 6.19 | 1470.06 106.81 95%

750 | 253224.80 17219.62 205145.70  3701.95 7.05 2.99 | 1424.51 100.43 85%

1000 | 349754.40 25155.86 281188.55  3252.38 6.50 3.31 | 1445.86 105.49 75%

Voronoi 10 77268.35  25562.06 13528.80  1423.66 2.70 1.82 | 3106.69 5159.75 70%
- Trail 50 29603.45  4923.59 19727.90 518.95 4.65 2.15 | 2613.60  2657.54 45%
Density 100 39718.60  2732.52 32144.15 847.64 4.75 2.09 | 1488.46 171.47 55%
Clustering 250 87097.60  8599.72 69832.00  1087.48 7.60 4.92 | 1446.60 110.18 65%
And 500 | 168212.60 17756.78 136619.25  1875.50 7.10 5.57 | 1452.38 93.12 95%
Halton 750 | 254512.85 18818.55 204957.85  3353.05 7.90 4.23 | 1404.60 69.55 85%
1000 | 339432.10 22149.45 274516.70  3654.43 6.65 3.37 | 1383.04 73.62 5%
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