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ABSTRACT 

 

Atmospheric corrosion of aluminium alloy AA2024 was investigated using in situ 

synchrotron micro-tomography, which allows visualisation in a non-destructive 

manner in real time. The effect of atmospheric variables such as salt type, humidity, 

exposure time and salt deposition density on the corrosion rate was investigated.  It 

was found that corrosion fissures grow along grain boundaries parallel to the rolling 

direction of the alloy, reaching a limiting depth, and then spread laterally. The volume 

of corrosion increases with salt density and relative humidity.  Salt type has a limited 

effect on the volume of corrosion in microtomography measurements where the 

droplet is constrained at the top of a pin, but in parallel lab-based experiments on 

plate surfaces, it was found that NaCl and simulated ocean water droplets spread 

laterally, leading to increased corrosion owing to an increase cathodic area, whereas 

pure MgCl2 and CaCl2 droplets do not spread.  Preliminary microtomography work on 

cycling the relative humidity showed transient increases in localised corrosion during 

wetting and drying phases, often associated with rapid growth of part of a localised 

corrosion site, or initiation of new sites. 
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1 INTRODUCTION 

 

Airframes are generally made from high strength aluminium alloys, which are 

susceptible to corrosion owing to the presence of copper-containing intermetallic 

phases in their microstructure. This necessitates the implementation of maintenance 

programs to combat the structural risks introduced by corrosion damage.  These 

often require the removal of an aircraft from active service for a period of several 

months, and are thus expensive.  It is therefore desirable to increase the 

maintenance intervals as much as possible while maintaining structural integrity.  In 

order to achieve this, models are under development to predict the extent of 

corrosion based on the environment to which the aircraft has been exposed [1, 2].  

This form of maintenance is referred to as Condition-Based Maintenance (CBM).    

Aluminium alloy AA2024 (AlCuMg) is commonly employed in the wings and fuselage 

of aircraft, owing to its excellent strength and fatigue resistance. Its corrosion 

behaviour has been extensively studied in full immersion conditions [3-5].  However, 

surprisingly little work has been performed under the atmospheric corrosion 

conditions to which aircraft are commonly exposed.   In this project, atmospheric 

corrosion of AA2024 was investigated using X-ray micro-tomography for in situ 

characterisation of corrosion damage.  This method allows time-dependent 

characterisation of corrosion sites with micron-scale resolution, including the effect of 

alloy microstructure on corrosion morphology.  This gives information both on the 

growth of corrosion sites under steady state conditions, and also allows investigation 

of the effect of fluctuations in relative humidity that are commonly encountered in 
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service.  The effect of different salt types was examined, including simulated ocean 

water, and the constituent salts NaCl, MgCl2 and CaCl2, as well as factors such as 

the salt density and relative humidity.  Tomographic measurements are made of 

corrosion under droplets at the tip of metal pins.  The results are compared with the 

findings from lab-based measurements on metal plates, where droplets can spread 

laterally across the metal surface.   
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2 LITERATURE REVIEW 

2.1 Aircraft Health Management 

 

Maintenance of aircraft is carried out throughout their service life on a pre-scheduled 

basis. This requires removal of aircraft from operational service for a prolonged 

period of time, for inspection and undertaking necessary maintenance programmes. 

This result is the loss of an aircraft from service with an associated financial cost, 

which is a particular problem since the current fleet of both commercial and military 

aircraft are ageing. Maintenance and inspection of aircraft is made necessary owing 

to the degradation of their material components. Typically this takes the form of 

fatigue cracks or corrosion damage which results in the formation of preferential sites 

for fatigue cracking [6-9]. 

  

Removal of aircraft for material inspection on a “find and fix” basis is referred to as 

condition-based maintenance (CBM), where damage is assessed and repaired at 

regular pre-determined intervals. Models have been developed to predict the 

optimum intervals to be employed in a traditional CBM strategy [8, 10, 11]. In a move 

to make this process more efficient, development of prognostic health management 

(PHM) is being carried out [1, 2, 12-14]. Whereby “live” data accumulation from 

sensors attached to aircraft in service is used to perform accelerated “ahead of life” 

testing, which helps to better predict optimum maintenance intervals.  

Sensors on aircraft and in the field provide information such as time of wetness 

(TOW) of a metal surface, temperature and accumulation of salts. Data is used to 
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design accelerated tests for fatigue, corrosion, fractures and failure of protective 

coatings. Combining this data it is possible to predict based on where aircraft have 

been operational, optimum intervals for maintenance [13, 14].   

PHM is desirable for aircraft management, however, in addition to the data from 

sensors, it requires detailed data relating to the propagation of corrosion fissures or 

fatigue cracks which promote premature failure. This is at present relatively limited, 

hence the aim of this project is to provide underpinning information on the 

mechanisms and rates of corrosion to aid the development of PHM models. 

2.2 Aluminium Alloy AA2024 

2.2.1 Introduction 

 

Aluminium is the most abundant metallic element on earth and is an essential 

material for use in a variety of applications [15, 16]. Specifically considering the 2xxx 

series alloys (wrought), the major alloying system is that of Al-Cu-Mg, used due to its 

ability to greatly improve the mechanical properties of the base metal. Initially this 

family of alloys was referred to as “duraluminium”. Over time, the major applications 

for 2xxx series alloys (especially 2024) shifted to become almost completely based in 

the aerospace industry [15, 17].  

Aluminium alloy 2024 (AA2024) is employed in the aerospace industry due to its 

excellent strength to weight ratio, which is comparable to that seen for steels [6, 9, 

16, 18]. Other benefits of aluminium alloys include their ability to perform at low 

temperatures, as well as their increased machinability. However, there are certain 

drawbacks to the use of aluminium alloys in the aerospace industry, such as their 

increased susceptibility to fatigue, a falloff in mechanical properties following 
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prolonged use at elevated temperatures, cost compared to other materials and their 

susceptibility to corrosion when exposed to the atmosphere [6, 9, 16, 18].   

The nominal composition of AA 2024 is given in Table 2.1. 

Table 2.1 - Nominal Composition AA2024 [19, 20] 

Element Wt % Element Wt% 

Al 90.7-94.7 Mn 0.3-0.9 

Cr Max 0.1 Si Max 0.5 

Cu 3.8-4.9 Ti 0.15 

Fe Max 0.5 Zn Max 0.25 

Mg 1.2-1.8 

  

 

Addition of alloying elements according to the specification in Table 2.1 leads to an 

improvement in mechanical properties of the parent material through 

thermomechanical processing [21]. Addition of alloying elements takes place 

following refinement of aluminium oxide into aluminium. Elements are added whilst 

metal is in its molten state, prior to being cast into billets and thermomechanically 

processed into plate form. Application of heat treatment at relatively high 

temperatures dissolves the alloying elements into a solid solution state, prior to 

application of rapid quenching to form a supersaturated solid solution. Typically for 

aerospace grade AA2024 tempers (T3 or T351), solution heat treatment of the alloy 

takes place at ~500 – 550 °C. Following quenching, the metal is allowed to age 
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naturally at room temperature; for T351 the addition of a cold working procedure 

(“stretching”) follows the quench [15, 16, 22] . 

2.2.2 Development of the Microstructure of AA2024 

 

The microstructure of AA2024 contains three types of intermetallic particles: 

constituent particles, dispersoid particles and strengthening precipitates [16, 23, 24]. 

The constituent particles form during solidification of the alloy, and the major types 

are S-phase (Al2CuMg) or based on the composition Al6(Fe,Mn,Cu). S-phase 

particles tend to be regular and spherical in shape, whilst Al6(Fe,Mn,Cu) particles 

tend to be larger in size with little regularity to their shape. θ-phase (Al2Cu) particles 

have also been observed.  These particles often fragment during the rolling process, 

forming “stringers” parallel to the rolling direction. Particles based on Al6(Fe,Mn,Cu) 

have a range of compositions [21, 24, 25].  

Dispersoid particles are typically submicron size particles generally reported as being 

in the region of 0.05-0.5µm, and often contain transition metals in their composition. 

Examples of transition metal compositions [26] are: Al20Mn3Cu2 and Al12Mg2Cr. 

Dispersoid particles play an important role during recrystallisation and grain growth, 

during the heat treatment phase of alloy production, by helping to maintain the 

position of original grain boundaries [16, 27-30]. They further play an important role in 

the development of microstructure, as they can lead to nucleation of dislocations 

within the matrix, which serve as sites for continued precipitation reactions [26, 27]. 

The nanometre-scale strengthening precipitates develop during ageing of 

supersaturated solid solution formed by solution treatment and quenching.  They are 

typically <0.1µm in size and result from the accumulation of Cu and Mg atoms into 



7 
 

localised concentrations within the grains. This helps to reduce susceptibility to 

plastic deformation, by blocking the movement of dislocations [16, 24, 31, 32]. 

It has been well established that precipitation hardening sequence resulting in the 

formation of the traditionally observed microstructure in AA2024 proceeds according 

to the following mechanism [15, 16, 25, 33-36]: 

                                           

                                                   

Where: SSSS (supersaturated solid state solution), GPB (Guinier-Preston-

Bagayatsky) and S-Phase (Secondary Phase) 

Localised concentrations of alloying elements along grain boundaries can lead to the 

formation of a precipitate-free-zone (PFZ) in the matrix adjacent to both the grain 

boundary and the particles which have precipitated from solution [4, 16, 37-39]. 

These regions are often depleted in copper compared to the grain boundaries and 

particles which results in the establishment of an electrochemical gradient discussed 

in Section 2.3.6. 

 

2.3 Corrosion of AA2024 

2.3.1 Introduction 

 

Aluminium is a thermodynamicaly “reactive” metal, but often has good corrosion 

resistance owing to the formation of a passive oxide film, typically Al2O3, which 

provides a barrier to the environment. The thickness of the film varies from ~1-5 nm 

when formed naturally [16, 40]; it is possible to artificially thicken the film through the 
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use of techniques such as anodising.  The film is formed in the presence of water 

according to Equation 2.3.1.   

                                       Equation 2.3.1 

The passive film is stable (resistant to dissolution) in neutral environments, but can 

dissolve in acidic or alkaline environments.  The effect of pH and interfacial potential 

on the stability of the oxide, leading to regions where aluminium  shows passivity, 

immunity and corrosion have been represented in diagrammatic form by Pourbaix 

[41] (Figure 2.1). 

 

 

Figure 2.1 - Pourbaix diagram showing theoretical conditions of 
corrosion, immunity and passivation of aluminium, at 25oC[41] 

 

Alumina is an insulator, so it inhibits the cathodic reaction at the aluminium surface, 

enhancing its resistance to corrosion [15, 32, 40, 42]. The range over which the film 
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is stable can vary depending on temperature, and other variables such as the 

presence of other chemical species.  

Unlike many other metals, which corrode only in the presence of highly acidic 

environments, breakdown of passivity in aluminium can also occur in the presence of 

alkaline environments. This typically results in a more general attack of the surface. 

This ability to undergo corrosion under both acidic and alkaline regimes is referred to 

as being amphoteric  [40, 43].  

Under acidic conditions, the electrochemical dissolution of aluminium proceeds 

according to the reaction below [16, 43-46]: 

                      Equation 2.3.2 

Hydrolysis of the aluminium ions, in the presence of water is the next process in a 

stepwise corrosion mechanism, leading to the formation of a more sustained 

localised acidic region[43]. Hydrolysis of aluminium ions proceeds according to the 

following reaction [32, 40, 47, 48]: 

                              Equation 2.3.3 

The most common cathodic reaction for corrosion of aluminium alloys is oxygen 

reduction, which leads to a local increase in pH [32, 40, 47, 48]: 

                         Equation 2.3.4 

The other common cathodic reaction for corrosion of aluminium is hydrogen evolution 

(Equation 2.3.6).  This sometimes takes place within localised corrosion sites, 

leading to the formation of hydrogen bubbles, which can be characteristic of the 

presence of localised corrosion processes [32, 40, 47, 48].  



10 
 

                      Equation 2.3.5 

Pure aluminium is very resistant to corrosion due to the presence of an insulating 

passive film that blocks the cathodic reaction (typically oxygen reduction). In alloys 

such as AA2024 the addition of alloying elements leads to the formation of 

intermetallic particles with thinner (Figure 2.2) more conductive oxide layers results in 

the formation of preferential cathodes at which localised corrosion can initiate [16, 40, 

47] [40, 49]. This effect was demonstrated by Missert [46], where copper islands 

equally spaced within an aluminium matrix were shown to be preferential locations 

for oxygen reduction.  

 

Figure 2.2 - Distribution of Cu rich inclusions within aluminium matrix 
and associated thinner oxide film at the surface 

 

2.3.2 Alkaline Trenching 

The localised increase in pH at intermetallic precipitates due to oxygen reduction, 

results in a localised region of alkalinity in their immediate vicinity [48, 50, 51]. This 

localised increase in pH leads to alkaline “grooving” or “trenching”, which is 

dissolution of the matrix around the cathodically active particles and is a rapidly 

occurring process. Furthermore, it has been shown that trenching attack occurred 

preferentially at S-Phase particles at low concentrations of Cl-. However, with 

increasing concentration, trenching was also observed in the vicinity of Al-Cu-Mn-Fe 
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particles as well [50]. An example of an Al-Cu phase exhibiting trenching/grooving 

behaviour can be seen in Figure 2.3. 

 

 

Figure 2.3- Example of grooving around the edge of a Al-Cu intermetallic 
phase in AA2024 matrix, image taken during this work 

2.3.3 Localised Corrosion of AA2024 

Pit initiation on AA2024 generally takes place in the vicinity of intermetallic particles 

[21, 28, 52-64], especially S-phase precipitates.  Preliminary stages of localised 

corrosion have been attributed to dissolution of aluminium and magnesium from 

within the S-phase precipitates [21, 58, 65] leaving behind a copper-rich phase which 

is increasingly noble to the surrounding aluminium matrix.  

In addition a number of studies consider the mechanism of passive film breakdown a 

key step in initiation of localised corrosion [66-74]. Whilst it is important to understand 

the mechanisms for anion transport through the passive film to the surface, when 

considering corrosion on AA2024, initiation takes place primarily at intermetallic 
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phases with thinner oxides, the role of oxide thickness and the role that the 

intermetallic particles plays is perhaps more important. 

A number of reviews on pitting mechanisms for aluminium and other metals have 

been written over the past few decades, the most comprehensive of which are those 

by Foley [75], McCafferty [70], Frankel [76] and Szklarska-Smialowska [61]. 

2.3.4 Metastable Pitting 

 

During the initial stages of pitting corrosion, metastable pitting (the formation of short 

lived shallow pits) is reported to take place [61, 65, 77]. Metastable pits initiate and 

repassivate rapidly during the early stages of localised corrosion on aluminium, 

providing none become sufficiently large or aggressive to allow for a transition to 

stable pitting to take place[61, 78]. Metastable pits are typically small and random in 

shape with diameters in the order of microns. Coupled with shallow depth they are 

often difficult to detect by means of surface inspection and are often referred to more 

often during electrochemical studies. 

Stable pitting will take place once the environment in one of the metastable pits 

becomes sufficiently aggressive to prevent repassivation taking place.  The criterion 

used for the transition from metastable to stable type pitting events is the critical 

pitting potential. Critical pitting potential (Epit) refers the most negative potential above 

which a stable pit can form and grow [79]. It is highly dependent on the 

environmental factors to which the metal is exposed, for example chloride ion 

concentration and temperature, as well as the surface roughness [78, 80-82]. For 

pure aluminium the suggested criterion for transition from metastable to stable pitting 
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is in the region of x.i ≤10-2 A/cm2, with x being pit depth, and i being pit current 

density [78, 83].  

2.3.5 Stable Pitting 

 

Following the establishment of a stable pit site, with the pit behaving as a net anode 

which draws current from available cathodic sites in its vicinity, sustained growth of 

this site takes place [16, 40, 51, 52, 61, 65, 70, 80, 84]. Within the pit, where 

conditions are aggressive, the acidity rises due to continued hydrolysis of aluminium, 

and migration of chloride ions in solution to the active front is observed in order to 

maintain charge balance [16, 40, 51, 52, 61, 65, 70, 80, 84]. The presence of chloride 

ions and an acidic environment both contribute to preventing the re-growth of the 

passive layer. This is a self-sustaining process whilst the pre-requisite conditions for 

localised corrosion are maintained, as such stable pitting is often referred to as being 

auto-catalytic in nature.  

Whilst dissolution of the metal is favoured over repassivation, and the rate of 

transport of metal ions away from the pit remains below the rate of their production. It 

is possible for the pit bottom to become supersaturated by metal ions resulting in the 

presence of a salt layer, which is indicative of stable pit growth in an acidic 

environment [61, 85, 86].  

At the surface of the metal around the pit site where a region of mild acidity is found, 

it has been observed that the metal remains entirely unattacked [87]. This indicates 

that the pH is at a value where the solubility of the passive film is low in these 

locations; this is shown in Figure 2.4, where the solubility of the passive film is 

reduced in the pH range 4-7. At the junction between this region and the net cathodic 
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region, the precipitation of corrosion product takes place [79, 88]. Precipitation of 

corrosion products takes place in this location due to migration of Al3+ towards the 

cathodic (alkaline) regions in order to maintain charge balance in the presence of 

OH- evolved during oxygen reduction. 

 

Figure 2.4 – Influence of pH on the solubility of Al2O3 and its hydrates, at 
25oC [41], p.174 

 

Growth of pits takes place along the most susceptible route, which in AA2024 is 

typically along grain boundaries into the interior of the metal (see below). Thus the 

transition from pitting to intergranular corrosion (IGC) in AA2024 often takes place 

rapidly and accounts for the complex geometry observed when considering localised 

corrosion of AA2024 [4, 5, 89-93]. 
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Measurement of the pit growth rate has been undertaken in several studies, using 

techniques such electrochemical measurements (potentiostatic [77, 78]) or thin film 

penetration [89]) or it has been suggested that growth rate can be estimated via 

mass loss [94]. It is difficult to measure pit growth rates with great accuracy due to 

their complex and irregular geometry, with extension down susceptible grain 

boundaries taking place [5, 77, 95-97].    

  

2.3.6 Intergranular Corrosion (IGC) 

 

As has been outlined, in AA2024 there is significant overlap between pitting corrosion 

and IGC growth, as pits will often develop along grain boundaries and transition into 

IGC fissures [5, 16, 47, 98]. 

Intergranular corrosion (IGC), sometimes referred to as inter-crystalline corrosion, is 

a form of localised attack in zones adjacent to grain boundaries in susceptible alloys 

[16, 40, 48, 63, 99, 100]. IGC at aluminium surfaces is often difficult to detect as 

fissures often initiate at pit bottoms. IGC fissures can also initiate at surface defects 

or on surface breaking susceptible grain boundaries, and in these cases fissures are 

also difficult to detect as they are very fine. 

2xxx series aluminium alloys are susceptible to IGC [63, 101] owing to the formation 

of copper-depleted zones adjacent to grain boundaries, during the ageing process 

[16, 40, 63]. Galvele[102] described formation of this copper-depleted region, which 

can be seen in Figure 2.5, as the most important pre-requisite for the occurrence of 

IGC in Al-Cu alloying systems.  Intergranular attack is particularly important as 
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fissures can penetrate several 100’s of microns up to several mm into the bulk of the 

alloy, leading to an increased susceptibility to the onset of Stress Corrosion Cracking 

(SCC).  

 

 

Figure 2.5 - Grain boundary region, with formation of Cu depleted zone 
towards grain exterior, Cu rich precipitates along boundary, modified 

schematic [47, 102] and potentials taken from Vargel[47] and 
Guillaumin[4] 

 

In AA2024, precipitation of copper-rich phases takes place along grain boundaries in 

the alloy, Figure 2.5, with associated diffusion of copper out of solid solution. As a 

result, a copper-depleted zone forms adjacent to the grain boundaries, which has an 
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increased susceptibility to dissolution. During IGC it is this copper-depleted zone 

which becomes the net anode due to a lowered electrochemical potential when 

compared with the copper-rich matrix [16, 40].  The grain boundary precipitates can 

act as localised cathodes, contributing to the overall cathodic reactions taking place.   

Both precipitation of copper-rich intermetallic phases along grain boundaries and the 

associated region of copper depletion result in the formation of zones which are more 

susceptible to localised corrosion. Diffusion of the copper out of solid solution 

increases aluminium’s tendency to dissolution, as it leaves behind a less noble 

phase. The copper-rich phases which precipitate become net cathodes[4, 47, 102] 

with respect to the copper-depleted zone, which results in the copper-depleted zone 

becoming the net anodic region, and undergoing dissolution. The copper-depleted 

zone tends to be very narrow, typically on the nanometre scale.  

IGC growth rates have been measured in AA2024 most commonly by using foil 

penetration [97] radiography [5, 91, 103-105], or more recently using X-ray 

microtomography (µCT) [92, 106-108]. Other techniques have also been employed to 

evaluate IGC, including FIB SEM [96, 109] and metallographic sectioning [93, 95] 

being the most relevant. Results indicated the IGC fissure propagation rates where 

highly dependent on metallographic orientation, and it was shown that the exposure 

in the ST (short transverse) orientation results in a slower growth rate than for either 

LT (long transverse)  or L (longitudinal) [5, 92, 106]. Increased growth rate was 

attributed to elongation of grains in the LT and L orientation due to mechanical 

processing. Differential growth rates were observed for foil penetration and 

radiography [91], with foil penetration resulting in a greater depth of attack, which 

were related to sample type and differences in resolution of the techniques. 
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Metallographic sectioning was deemed time consuming but effective in exposing the 

extent of grain boundary attack [93, 95], and µCT provided a non-destructive method 

of evaluating IGC development [92, 106-108]. 

2.4 Atmospheric Corrosion of AA2024 

2.4.1 Introduction 

 

Atmospheric corrosion involves the corrosion of metals under droplets or thin layer 

electrolytes.  Corrosion is often studied under conditions of full immersion, but 

atmospheric corrosion is less well studied despite its practical importance, particularly 

in corrosion of airframes.  With a confined electrolyte, there is easier access of 

oxygen compared with full immersion conditions, since oxygen can diffuse more 

rapidly through thin electrolyte layers, and there is particularly easy access of oxygen 

at the three phase boundary between the metal, electrolyte and air at the edge of 

droplets.  Furthermore, the concentration of the electrolyte is controlled by the 

relative humidity of the surrounding air.  This can lead to the formation of more 

corrosive salt solutions that are more concentrated and more aggressive than, for 

example, seawater.   

Atmospheric droplets form on a metal surface either through direct solution transfer, 

for example rain or sea spray from waves, or through deposition of solid salt 

particles, for example from marine aerosols. These are termed wet and dry 

deposition mechanisms. Often during dry deposition particulates are airborne and 

transported from locations quite remote from that where corrosion processes are 

observed. Gradients of the sphere of influence of aerosol sources on amount and 

type of salt have been extensively carried out [110-112].  Modelling of transportation 
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and deposition mechanisms involved in atmospheric corrosion processes has been 

carried out quite extensively, based on both predictive modelling, and through 

accumulation and analysis of sensor data [113-116]. 

Often particulate aerosols are considered as being primarily from marine sources. 

However, there are other sources of atmospheric aerosols from both industrial and 

agricultural sources such as industrial emissions, fertilisers, and spray from de-icing 

salts used on roads. These are generally categorised as rural, urban, industrial or 

marine [63, 117-120]. 

2.4.2 Solution Equilibrium with Environment 

 

During atmospheric exposure, solution present on a surface has a specific 

equilibrium concentration which varies as a function of RH (relative humidity) [121-

123]. The saturation concentration of solutions corresponds to a specific RH. The 

deliquescence relative humidity (DRH) corresponds to the point during wetting at 

which salt on a metal surface begins to take moisture up from water vapour in the 

environment to form a solution. During loss of moisture from a solution 

(efflorescence) there is a point at which solid salt starts to form is known as the 

efflorescence relative humidity (ERH).  

The deliquescence process is shown in Figure 2.6, and the reported equilibrium RH 

values for saturated salt solutions commonly found in atmospheric droplets, along 

with their reported DRH and ERH values are shown in Table 2.2. Further the 

predicted equilibrium RH values based on thermodynamic predictions made using 

OLI software[124, 125] are shown.  



20 
 

 

Figure 2.6 - Deliquescence of an aerosol particle on metal surface 

Table 2.2 DRH at 25oC of salts found under atmospheric corrosion 
conditions  

Salt Equilbrium RH of 
Saturated Solution 

DRH (%) 
Reported 

ERH (%) 
Reported 

Equilibrium RH at 
precipitation point 

calculated OLI 
software[124, 125] 

NaCl 75.5-76% [122, 126-129] 74-76 
%[130, 131]  

41-50% 
[132] 

75.7% 

MgCl2 33-35% [122, 126-129] 33-35 
%[131, 133]  

 38.2% 

CaCl2 29.5-30% [128, 129, 134] 29 %[135]   28% 

 

Tsutsumi [136] plotted the measured RH of water vapour phase in equilibrium with 

MgCl2 solutions of a range of concentrations; this is shown in Figure 2.7.  Wheeler 

[122] measured the equilibrium RH for some common salt solutions, and proposed 

that Equation 2.4.1 can be used to calculate the equilibrium RH for given salt 

solutions of  known concentration. Calculation of the equilibrium concentration as a 
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function of RH, initial amount of chloride present and salt type is plotted in Section 

Error! Reference source not found.. A comparison between the values measured 

y Tsutsumi [136] and the predicted equilibrium RH for different salt types used during 

this study are plotted in Section Error! Reference source not found.., in Figure 4.4.  

       
  

     
    

  
       

           Equation 2.4.1

  

Where M = molar concentration of salt, x = total number of ions in compound which 

dissociate into solution, and y can be calculated using the equation below: 

  
 
 

 
  

    
        Equation 2.4.2 

Where ρ  = Density and M = Molecular Weight. 
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Figure 2.7 - Equilibrium RH as a function of changing MgCl2 solution 
concentrations as plotted by Tsutsumi [136] 

 

The importance of knowing the concentration of salt solution in equilibrium with a 

given RH is such that salt will take moisture up from the environment until the 

equilibrium point is reached. This governs the volume of atmospheric solution 

droplets and the solution layer thickness. The importance of solution layer thickness 

is that it determines how atmospheric corrosion is proceeds as the solution layer 

thickness affects both oxygen transport and resistance to ionic mobility within the 

solution. 

 Tomashov [137] and Leygraf [117, 138] have indicated the typical layer thickness 

under different conditions as follows: dry atmospheric corrosion <10 nm, moist 

atmospheric corrosion 10 nm – 1 µm, wet atmospheric corrosion 1 µm – 1 mm 

thickness, and full immersion >1 mm thickness.  
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The approximate equilibrium volume of the atmospheric droplet can be calculated by 

rearranging the formula used by Li  [139], from the form seen in equation 2.4.3 to that 

of equation 2.4.4. From the volume, it is possible to predict the thickness of a solution 

layer for a fixed surface area, as the equilibrium concentration will be controlled by 

RH of the environment and as such the final solution volume will be the equilibrium 

volume. 

     
  

 
         Equation 2.4.3 

  
  

 
 

  
 
        Equation 2.4.4 

Where C is final solution concentration, Co is original solution concentration, Vo is 

original volume of solution and V is final solution volume. 

For a fixed amount of salt per unit area on a metal surface, the volume and height of 

a solution droplet or layer changes as a function of RH, in order to maintain its 

equilibrium concentration. A common measure of the amount of salt on a metal 

surface is the chloride deposition density (CDD), and considers the mass of chloride 

per unit area. Accordingly for a fixed RH changes in the initial CDD will alter the 

equilibrium volume/height of a droplet. 

Changes in droplet height are important as they influence the ionic transport 

processes in solution. An increase in the droplet height will result in a reduction in the 

resistance of the solution in the droplet which promotes net ionic movement. 

Importantly the resistance between the cathode and the anode is lowered which 

increases the flow of ions allowing for an increase in the reaction rate, and a 

corresponding increase in the rate of corrosion [79, 88].  
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Further an increase in droplet height results in an increase in length of the oxygen 

diffusion path to the cathode. As such for a droplet of greater height it is the rate of 

transport of oxygen through the droplet which becomes the important factor in 

cathodic processes, which is assisted by the lowered resistance in solution. 

Changes in droplet concentration due to changes in RH for a fixed CDD, are 

important as solution concentration affects the pH, viscosity and conductivity of a 

solution[121, 123, 140]. It has been suggested that typically the greater the 

concentration in solution the more conductive a solution becomes[121, 123], however 

this is not necessarily always the case, as a more concentrated solution is often more 

viscous.  Viscosity is influenced similarly to the effect that it will increase with 

concentration [121, 123, 140, 141]. A more viscous solution (with a lowered water 

activity) leads to increased resistance between the electrodes which slows the overall 

reaction rate. With an increase in concentration associated with a decrease in RH it 

is likely that ionic mobility will begin to be inhibited. increase in concentration of 

solution also results in a more acidic solution [140]. 

2.4.3 Secondary Spreading 

 

Secondary spreading refers to the formation of a thin layer of moisture or a 

concentrated zone of microdroplets, in the immediate periphery of an atmospheric 

droplet on a metallic surface. Formation of micro-droplets and a secondary spread 

region has been observed in a number of studies on steel [142-147], zinc [133, 147-

150], magnesium [151] and aluminium [145, 152].  

Formation of micro-droplets has been shown to be associated with establishment of 

a potential gradient from the centre of the main droplet towards its periphery [142-
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144].  Development of this potential gradient is likely due to the tendency for droplets 

to form a cathodic region at their periphery (there is easy access of oxygen at the 

edge of a droplet), with the anode forming within the droplet. The cathodic region has 

an associated increase in pH (from generation of OH-) as a result of oxygen 

reduction, which draws cations present in solution (e.g. Na+) in order to maintain 

charge balance. This effect has been demonstrated on stainless steel [143] and 

AA7050 [152]. 

A schematic showing the formation of micro-droplets on a carbon steel sample and 

the migration of cations into the spread zone is shown in  Figure 2.8 [142]. Over time, 

coalescence of individual droplets into an electrolyte layer tends to take place; this 

layer is referred to as a zone of secondary spreading. It has been shown by means of 

two connected steel electrodes that microdroplets would only form on the cathode 

[142]. 

 



26 
 

 

Figure 2.8 – Development of secondary spreading (Zhang et al.[142]): (a) 
formation of a thin electrolyte layer and water clusters, (b) oxygen 

reduction and water molecule adsorption, (c) movement of cations from 
main droplet into peripheral region resulting in the formation of micro-

droplets.  
 

Zhang [142], showed that NaCl and KCl exhibited secondary spreading behaviour on 

carbon steel, zinc and brass (but not on stainless steel), whilst MgCl2 and CaCl2 did 

not form spread zones on any metal. Cole [133] and King [96, 109] observed 

secondary spreading under saturated and unsaturated sea water on zinc and 

galvanised steel surfaces.  
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It has further been shown that rate of spreading is controlled in part by the exposure 

time [133, 142], with a more prolonged exposure leading to a larger secondary 

spreading zone. Cole[133] demonstrated that relative humidity played a role during 

exposure to ocean water solutions, with no spreading observed RH values of 53% or 

below, possibly this is due to a decrease in the amount of corrosion associated with 

lower RH. 

In the case of studies where the formation of microdroplets has been observed [133, 

142-144, 147], the time taken until the onset of micro-droplet growth is rapid, often 

within the first hour following deliquescence. 

2.4.4 Influence of Salt Type on during Atmospheric Corrosion 

 

Influence of salt type, both cation and anion, has been considered for some of the 

primary atmospheric constituent salts, such as NaCl, MgCl2, CaCl2, Na2SO4 and 

ocean water during droplet studies on AA2024[96, 109] and other metals [153-156]. 

However, some immersion studies [140, 157, 158] have made direct comparisons of 

the influence of cation type and findings are of interest to atmospheric study. 

King [96, 109] examined the corrosion behaviour of AA2024 under ocean water 

solutions, using FIB SEM to study the development of localised IGC fissures along 

grain boundaries. Cole[133] also used ocean water solutions on steel and zinc, and 

further indicated that there were many similarities between their behaviour and that 

under NaCl solutions.  

Prosek et al. [153] carried out atmospheric corrosion studies of carbon steel and zinc 

with chloride solutions containing Ca, Na and Mg as the cations. The accumulated 
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mass gain was used to assess the corrosion kinetics over time; the cations were 

rated according to their relative aggressiveness in the following order 

Mg2+<Ca2+<Na+.  

Beom [157], reported CaCl2 to have a lower pH than that observed for NaCl, during 

immersion at 35oC. This resulted in a lowered pitting potential on stainless steel 

surfaces. It was suggested that the lowered pH is due to the preferential tendency for 

hydrolysis of CaCl2 when compared with NaCl or MgCl2 [157, 158]. Similarly Ernst 

[140], reported a small reduction in critical pitting temperature on stainless steel 

during substitution of Ca for Na.  

Composition of the ASTM standard for simulated ocean water can be seen in Table 

2.3. The addition of the heavy metal constituents has been omitted. 

Table 2.3 - Composition of Substitute Ocean Water, ASTM Standard 
Practice for Preparation of Substitute Ocean Water[159] 

Salt Compound Concentration (g/L) 

NaCl 24.53 

MgCl2 5.20 

Na2SO4 4.09 

CaCl2 1.16 

NaHCO3 0.695 

KBr 0.201 

H3BO3 0.101 

SrCl2 0.025 

NaF 0.003 

 

2.4.5 Wet-Dry Cycling  

 

During exposure of in service components there is considerable fluctuation in the 

relative humidity. The fluctuating periods of high and low RH during wet-dry cycles 

means that when RH falls below the ERH of a salt drying of the surface will take 

place, but following a rise in RH surpassing the DRH, re-wetting of the metal surface 
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can take place. During dry periods when no solution is present on a surface, 

corrosion will not proceed. However, during wetting and drying, peaks in corrosion 

rate may be observed due to the presence of highly concentrated solutions. On pure 

Al surfaces under a thin electrolyte layer, the corrosion rate increased during early 

stages of surface wetting [160]. Similarly, on stainless steel surfaces, current was 

observed to abruptly increase during the early stages of drying before dropping to 

almost zero [157], during potentiostatic measurements under droplets. 

Larignon [95] used repeated immersion testing to simulate cyclic exposure of 

AA2024 under NaCl solutions.. Further it was observed that during cyclic testing 

there was no significant increase in the observed maximum depth of localised attack, 

but there was an increase in the number of grain boundaries attacked, when 

compared to samples left constantly immersed. 

 

2.4.6 Atmospheric Corrosion Studies on AA2024 

 

Mechanisms of localised corrosion under atmospheric corrosion of AA2024 follow 

many of the same principals as under full immersion conditions. However, there are 

some differences with regard to initiation and propagation which take place under the 

highly concentrated solutions found during atmospheric exposure of AA2024.  

Atmospheric corrosion work on AA2024 was initially focussed on analysis of exposed 

coupon samples: Sun [111] measured weight loss of clad AA2024 and bare AA2024 

samples. It was determined that coastal samples experienced greater weight loss, for 
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both materials than urban samples. In addition increased levels of chloride were 

found on coastal samples. 

Cheng [161] used EIS to measure the influence of electrolyte layer thickness on the 

oxygen reduction kinetics under thin electrolyte layers of 3% NaCl solution.  The 

measured corrosion rate was greatest under a layer of thickness ~100 µm during 

early stages of exposure; after prolonged exposure a shift in maximum rate was 

observed with an increase in layer thicknesses up to ~170 µm.  It suggested that for 

layers 100-200 µm in thickness, the rate determining step is the oxygen diffusion, but 

for layers 50-100 µm, the formation of a layer of aluminium hydroxide inhibits oxygen 

reduction sites at the metal surface.  

Atmospheric droplet studies on AA2024 have been carried out in more recent years 

by King [96, 109] and Knight [92, 106, 162].  Knight [92, 106, 162] used µCT to study 

growth of localised corrosion fissures during atmospheric exposure of AA2024 pin 

samples in three dimensions. Time-dependent measurements were made on 

localised growth kinetics, and it was determined that IGC was most rapid in the L 

direction of the alloy. RH was shown to influence the development of localised 

corrosion under NaCl solution droplets, such that high RH increased the amount of 

corrosion.   

King [96, 109] used FIB SEM to study corrosion of AA2024 under ocean water 

droplets.  Subsurface attack of S-phase particles at the matrix/particle interface was 

observed along the propagating corrosion front. Furthermore, precipitation of a layer 

of aluminium hydroxide was observed both at the metallic surface and along the 

attacked grain boundaries. 
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2.4.7 Experimental Testing Methods in Atmospheric Corrosion 

 

Atmospheric testing has been carried out using coupon exposure and lab-based 

experimental testing. A2024 coupons have been used to determine mechanisms 

operating during true atmospheric exposure conditions, in order to provide data to 

design accelerated lab based exposure tests [111, 163, 164]. 

Accelerated lab based exposure testing has been used to simulate atmospheric 

exposure. Several experimental methods have been employed to deposit droplets or 

thin electrolyte layers onto samples and to quantify localised corrosion. The most 

common method has been the placing of droplets onto a metallic surface by means 

of syringes or micro-pipettes [96, 136, 145, 151, 162, 165-167].  In these 

experiments, droplet volume, composition and concentration can be carefully 

controlled. Less accurate but also commonly employed has been salt spray testing 

[168], whereby large surfaces can be covered, however, less accuracy is possible in 

terms of controlling salt deposition densities and exact surface area coverage. More 

recently, modified inkjet printers have been used to control salt deposits on metal 

surfaces [169-171].  

Quantification of atmospheric corrosion has been undertaken using different methods 

over the past few decades, and can be broken down into two categories, either 

mechanical/optical inspection or electrochemical testing. Traditionally mass loss or 

gain measurements were suggested as a good means of quantifying severity of 

localised attack. Microscopy both optical and SEM [96, 109, 169] have been used to 

observe localised corrosion behaviour. In addition, recently, µCT has been used to 

observe the development of localised attack [92, 106, 172]. Electrochemical methods 
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that have been used include impedance under thin electrolyte layers [161, 173-176], 

scanning Kelvin probe[146, 149], multi electrode arrays[150] and micro-capillaries. 

  

2.5 Synchrotron Microtomography 

2.5.1 Introduction 

 

Tomography has its roots in medical applications but over the past couple of decades 

advances in technology have made it possible to make high resolution 

measurements in a variety of different application areas, including materials science. 

Measurements can be made using both lab-based and synchrotron X-ray sources.   

2.5.2 Principles of Synchrotron X-Ray Microtomography (µCT) 

 

Microtomography (µCT) requires a series of radiographs (x-ray images) to be taken 

of a sample at different rotation angles, which are reconstructed to create a 3-D 

model. Reconstruction of the radiographs is carried out using a mathematical 

algorithm. Data are obtained in a non-destructive manner which means that repeated 

measurements can be made on the same sample/object.  

µCT using synchrotron radiation provides a similar resolution to that seen for lab 

based sources, e.g. sub-micron, but with the added benefit of a greatly reduced time 

for data collection.  This is due to the extremely high flux of the X-ray beam which is 

generated, this means that the intensity of the X-rays produced are significantly 

greater than those possible from lab based sources[177]. A further advantage of 

synchrotron radiation is that either white or monochromatic beam can be generated, 

whereas lab based x-ray sources must use white beams.  
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The higher flux for synchrotron sources leads to a reduced acquisition time for a 

complete tomographic scan, so that it is possible to make time-dependent 

measurements at a rate which makes true in-situ experiments possible in an accurate 

manner [178]. In addition imaging at synchrotron facilities offers the possibility of 

enhanced phase contrast due to the improved tuneability of the x-rays[177, 178]. 

Radiation at third generation synchrotrons is typically generated in the following 

manner; electrons are injected into a linear accelerator (linac) via an electron gun. 

The linac accelerates the electrons through into a booster ring where they are further 

accelerated prior to insertion into the main storage ring of the synchrotron facility. 

Within the storage ring are a series of high powered bending magnets which help to 

focus the electron beam along its ideal orbit in order to achieve the ideal beam 

energy. However, there will naturally be fluctuations from both the ideal energy and 

orbit as they are focussed round the storage ring, it is these small fluctuation and the 

larger changes in direction of the beam around the ring which result in changes in the 

electro-magnetic field [179].   

It is this radiation which is the source of x-rays used to make experimental 

measurements by users at the beamline end-stations. As the x-ray radiation in the 

form of photons escapes tangentially to the ring, beamlines are placed in an 

according arrangement around the storage ring. X-rays are focussed along the 

beamline to the experimental hutch, where the sample is located. A typical layout for 

a third generation synchrotron facility can be seen in Figure 2.9, the path which the 

synchrotron light follows is outlined, from electron injection through to the 

experimental hutch on a beamline. 
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Figure 2.9 - Typical layout of third generation synchrotron facility, with 
path of electrons from source to sample shown 

 

As the X-ray beam passes through the sample a certain intensity of the x-rays is 

attenuated, the level of which is determined by the density of the sample, with each 

material being attributed a specific absorption coefficient. The specific absorption 

coefficient of a material as a function of its thickness can be calculated using the 

Beer-Lambert law of attenuation, Equation 2.5.1.  Where; Io is the initial X-ray 

intensity, I is the final X-ray intensity following attenuation, d is sample thickness, and 

µ is absorption coefficient of the material[180, 181]. 

 

  
                Equation 2.5.1 
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A scintillator placed behind the sample collects the x-rays which have not been fully 

attenuated by the sample, and converts them into visible light. The image is 

magnified by an objective lens, and captured with a high speed CCD camera.  The 

image is known as a radiograph, and example of is shown in Figure 2.10. In order to 

generate the 3-dimensional model of the sample, a series of radiographic projections 

are captured over rotation steps from 0o-180o. Radiographs are reconstructed via 

methods such as a filtered-back projection algorithm or a gridding reconstruction 

algorithm [182]. Figure 2.11 illustrates how measurements are made at a beamline. 

 

Figure 2.10 - Radiograph obtained during synchrotron µCT 
measurements, showing a droplet on the surface of an AA2024 pin 

during atmospheric corrosion measurements 
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Figure 2.11 – Schematic diagram illustrating data collection in 
synchrotron µCT 

 

 

2.5.3 Limitations of Synchrotron µCT 

 

As with most experimental techniques there are certain limitations or drawbacks 

which must be considered during interpretation of results. In the case of synchrotron 

µCT the most common limitations of the technique which must be considered are; 

sample size and resolution limits, beam-hardening, ring artefacts and hydrolysis of 

solutions. Sample size and resolution are a limitation for some applications, as there 

is a trade of in the quality of the resolution attainable and the sample size which can 

be used, generally this is to the effect that the smaller the sample the better the 

resolution. This is further dependent on the density of specific materials as higher 

density materials require smaller sample sizes in order to achieve the maximum 

resolution limits. 
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2.5.4 Application in Corrosion Science 

 

Owing to the possibilities offered for non-destructive evaluation of dynamic processes 

occurring internally in a sample in a real time (in-situ) manner, synchrotron µCT 

promotes itself as a very attractive technique in materials science. Generalised 

reviews of the applications of synchrotron µCT in the discipline of materials science 

research has been undertaken successively over the past couple of decades [183-

188],with applications including 3D elemental mapping, stress mapping and most 

relevant to this work in-situ monitoring of the development of corrosion. 

Micro-tomography has been used in corrosion studies for several different materials, 

and has proved successful in providing 3D information into the growth kinetics of 

corrosion attack for a number of materials. In-situ evolution of pitting on stainless 

steel (for alloys 304L and 316L) has been successfully observed[172, 189], as has 

the development of pitting corrosion and more generalised attack for magnesium 

alloy WE43[190]. In-situ work has also been carried out on aluminium alloys under 

immersion in NaCl solution [107, 108, 191], and using simulated atmospheric NaCl 

droplets [92]. 

Fox [108] employed µCT to study corrosion of FSW (friction stir welded) AA2024-

T351, under immersion in 0.6 M NaCl solutions. It was shown that penetration was 

greater in the L and T directions than for the S direction. It is also suggested that 

development of IGC fissures could be divided into two stages, a rapid initial vertical 
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penetration of the metal, followed a by a widening of the fissures over time. 

Ghosh[191] similarly employed µCT to quantify IGC growth rates under stressed 

conditions. Quantitative growth rates were determined for IGC, and a suggestion of a 

limiting maximum depth attack in the L direction within the alloy is made.   

2.5.5 In-Situ Atmospheric Corrosion Measurements 

 

To date there has been relatively little work using x-ray micro-tomography or 

synchrotron x-ray micro-tomography to monitor the evolution of corrosion during 

atmospheric exposure of aluminium. Knight and co-workers have used both in-situ 

and ex-situ tomography to study the development of IGC within AA2024 over a 

prolonged period of time. In-situ work showed that it was possible to make time 

dependent measurements during simulated atmospheric corrosion[92], whilst ex-situ 

work endeavoured to provide more quantifiable results[106].  It was suggested that 

for AA2024 there is an effect of RH on the rate of corrosion, and that IGC would grow 

fastest in the longitudinal direction (perpendicular to the direction of rolling). In 

addition it is suggested that despite reaching a maximum fissure depth IGC fissures 

may continue to propagate along grain boundaries [92, 106].  

Use of this technique in atmospheric corrosion research is of an added benefit as it is 

possible to monitor evolution of other relevant atmospheric interactions. For example 

changes in shape of droplets as a function of time, and the evolution of hydrogen 

during localised corrosion. Visualisation of droplets, hydrogen, metal and air 

simultaneously is possible due to the difference in x-ray attenuation associated with 

each material. 
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2.6 Summary 

 

Much work has previously been undertaken on the localised corrosion of AA2024 

under immersion conditions.  Owing to its complex microstructure, development of 

localised corrosion takes place rapidly. Recently a shift towards studies of the 

influence of atmospheric variables such as RH, exposure time, temperature and salt 

type have begun to be explored using droplet studies. However, relatively little work 

has been undertaken under these atmospheric conditions to date on AA2024. 

Atmospheric corrosion is dependent on environmental variables including; 

temperature, RH, salt type and exposure time. A gradual understanding of complex 

chemistry and processes involved is taking place on several metallic substrates.  

That which has been carried out indicates mechanisms operating are similar to those 

observed for full immersion testing, with regards to localised attack of metal. 

However, a further understanding needs to be developed on localised corrosion 

behaviour on AA2024 surfaces exposed to atmospheric droplets, and the influence of 

CDD, salt type and exposure to wet-dry cycles on the corrosion rate. Further little 

work has considered the behaviour of droplets on AA2024 surfaces, including 

processes such as secondary spreading and its influence on corrosion rate. As such 

the development of in-situ techniques such as micro-tomography have enabled 

continual non-destructive evaluation of samples to be carried out. 
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Through a combination of in-situ µCT and lab based droplet measurements the aim 

of this project was to develop a better understanding of the influence of atmospheric 

exposure on the development of localised corrosion in AA2024.  
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3 EXPERIMENTAL METHODS 

3.1 Material  

 

AA2024-T351 10 mm plate was supplied by Aero Metallic; the composition is given in 

Table 3.1. 

Table 3.1 – Composition of AA2024 plate as supplied by Aero Metallic 
 

Element Wt % Element Wt% 

Al 90.7-94.7 Mn 0.3-0.9 

Cr Max 0.1 Si Max 0.5 

Cu 3.8-4.9 Ti 0.15 

Fe Max 0.5 Zn Max 0.25 

Mg 1.2-1.8 

  

 

The nominal compositions of AA3004 and AA5083 are shown in Table 3.2. These 

metals were used as a control for the presence of magnesium during spreading 

experiments. 

Table 3.2 – Nominal composition of AA3004 and AA5083[16, 31, 192] 
AA3004 Al-97.8%, Mn-1.2%, Mg-1% 

AA5083 Mg 4-4.9%, Mn 0.4-1%, Si 0.4%, Fe 0.4%,Zn 
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0.25%, Ti 0.15%, Cu 0.1%, Cr 0.05-0.25%, 

Al-balance 

 

3.2 Sample Preparation 

3.2.1 Laboratory Samples 

Plate samples were cut to size for lab tests using a Buehler Isomet 4000, with silicon 

carbide cutting blades, to minimise the introduction of mechanical defects into the 

metal. Plates were cut into samples of dimensions length ~ 26 mm, width ~12 mm 

and height ~6.5 mm. For microstructural characterisation, samples were hot mounted 

in conductive Bakelite. Surface preparation was carried out by grinding using wet/dry 

discs, to a finish of 4000 grit, prior to a final polish down to 0.04 µm using a colloidal 

silica solution. Grinding was carried out using an oil based lubricant (DP-Brown, 

supplied by Struers), to avoid any potential influence of water on the sample surface. 

Following each stage of the grinding process surfaces were cleaned using methanol 

to remove any impurities and to degrease.  

Samples for atmospheric corrosion experiments were primarily left un-mounted, and 

were either ground/polished to 4000 grit or 1µm, depending on the test conditions. 

Prior to application of droplets samples were left to passivate in sealed desiccators 

for a period of 1 hour.  

3.2.2 µCT Samples 

 

µCT samples (1 mm diameter pins) were machined by from plate samples; 

orientation with respect to the plate is shown in Figure 3.1 such that exposure 

surface was aligned perpendicular to the direction of rolling, L direction. Pin sample 
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dimensions are shown in Figure 3.2. Prior to exposure, samples were immersed in 

nitric acid (~70%, Fisher Scientic) for 2 minutes to thicken the surface oxide layer in 

order to prevent unwanted crevicing on the pin side. The exposure surface was then 

ground on wet/dry paper to a finish of 4000 grit, degreased in ethanol and allowed to 

passivate for 1 hour. 

 

Figure 3.1 – Orientation of pin sample with respect to plate from which it 
was cut 
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Figure 3.2 - AA2024-T351 dimensions of pin samples for µCT 
experiments 

 

3.2.3 Preparation of Salt Solutions  

 

Laboratory-grade salts were stored in an environment of ~0% RH, in the presence of 

silica gel, for a minimum period of 24 hours before being mixed with de-ionised water 

to produce solutions for experiments to ensure accurate weighing.   

Substitute ocean water was prepared in accordance with ASTM standard D114-98, 

“Standard Practice for the Preparation of Substitute Ocean Water” [159]. The 

composition of substitute ocean water prepared according to this standard can be 

seen in Table 3.3. 
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Table 3.3 - Composition of Substitute Ocean Water, ASTM Standard 
Practice for Preparation of Substitute Ocean Water[159] 

Salt Compound Concentration (g/L) 

NaCl 24.53 

MgCl2 5.20 

Na2SO4 4.09 

CaCl2 1.16 

NaHCO3 0.695 

KBr 0.201 

H3BO3 0.101 

SrCl2 0.025 

 

 

3.2.4 Droplet Deposition 

 

Droplet deposition was carried out by means a Hamilton HPLC 7000 series micro-

syringe, capable of dispensing solution droplets down to an accuracy of ~0.1 µl. 

Solution droplets were aspirated and dispensed using a cheney adaptor (Hamilton 

Company) to allow a fixed volume to be maintained. A schematic of droplets 

deposited onto a plate surface is shown in Figure 3.3, and onto a pin surface Figure 

3.5.  
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Figure 3.3 - Schematic of droplets deposited onto an AA2024 plate 
sample 

 

3.2.5 Maintenance of Relative Humidity 

 

Maintenance of RH within simulated atmosphere was achieved by means of ASTM 

E104-02, “Standard Practice for Maintaining Constant Relative Humidity by Means of 

Aqueous Solution”[159]. Preparation was carried out by adding de-ionised water in 

small quantities to salt until a small quantity of free solution remained, quantities were 

dependent upon test chamber used. Saturated solutions used as part of this work are 

outlined in Table 3.4. 
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Table 3.4 - Salt type and associated fixed environmental RH for saturated 
salt solutions, ASTM E104-02 [127] 

RH (%) Salt Type Effective Temperature 

Range(o) 

12 Lithium Chloride (LiCl) 5 – 80 

23 Potassium Acetate (CH3COOK) 10 – 30 

33 Magnesium Chloride (MgCl2) 5 – 80 

43 Potassium Carbonate (K2CO3) 5 – 30 

59 Sodium Bromide (NaBr) 5 – 80 

70 Potassium Iodide (KI) 5 – 80 

75 Sodium Chloride (NaCl) 5 – 80 

85 Potassium Chloride (KCl) 5 – 80 

98 Potassium Sulfate (K2SO4) 5 – 50 

 

Saturated salt solutions in Table 3.4 were tested for their accuracy compared to the 

given ASTM values in a laboratory environment, using OMEGA-USB2 data loggers 

and ThermaData humidity-Temperature Loggers, and were found to correspond 

closely to the given values. Data logger plots for the salt types used during this 

experiment can be found in Appendix  10.1. 

3.2.6 Cell Design 

 

Experimental cells for lab based exposure were constructed from modified cell 

culture bottles, with a resin moulded in, to allow saturated salt solution to be placed in 

two wells either side of raised sample. Top of the cell was sealed with a glass cover, 

to allow in-situ imaging to be carried out on the droplet, an example of the cell used 

can be seen in Figure 3.4. For larger numbers of plate samples exposed 
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simultaneously, sealed desiccators were employed using saturated salt solutions to 

maintain the RH of the simulated atmosphere.  

 

Figure 3.4 - Atmospheric cell used during lab based exposures, with 
glass lid for in-situ imaging to be carried out 

 

Design of the experimental cell used for the micro-tomographic measurements, was 

based on a modified combination of those used by Connolly et al.[107], and Knight et 

al[92]. A schematic of the cell can be seen in Figure 3.5 and an image of the sealed 

cell is shown in Figure 3.6. A filter paper soaked in saturated salt, and containing 

solid crystallites was placed inside silicone tubing (versilic) with internal diameter of 

3 mm, which was then placed over the outer diameter of the metal pin, and an 

aluminium stopper was placed in the end. For a known chloride density on the tip of 

the pin, the height of the droplet was an indication of the relative humidity within the 
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cell.  Tests showed that the droplet height, and thus relative humidity could be 

maintained for up to a week.  

During wet-dry cycling, the tubing was replaced with one containing filter paper with a 

different saturated salt solution, or a tube containing dried silica gel spheres to 

achieve “0% RH” (probably ~3-5% RH as measured in larger cells into which 

humidity loggers could be placed. 

 

 

Figure 3.5 - Atmospheric cell for micro-tomography measurements 
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Figure 3.6 - Sealed tomography cell prior to in-situ measurements 
 

 

3.2.7 Removal of Corrosion Product 

 

Salt deposits were cleaned from sample surfaces by immersion in methanol in an 

ultrasonic bath, for a period of 2 minutes. Corrosion product was removed by means 

of immersion in nitric acid for ~2 minutes, according to ASTM Standard G46-96[193]. 

Any remaining products could be removed by fine polishing of 0.04 µm (procedure 

the same as for microstructural characterisation, using colloidal silica solution) for a 

period of 10 seconds.  
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3.3 Measurements 

3.3.1 µCT Measurements 

 

Synchrotron micro-tomography was carried out at the Swiss Light Source (SLS), on 

the dedicated tomography beamline TOMCAT [194].  An X-ray energy of 21.9 keV 

was selected by a double multi-layer monochromator. For image detection, the x-rays 

were converted to visible light by a 20 µm LuAg scintillator, and the corresponding 

image was magnified onto the detector by an optical system with 10x magnification. 

In combination with the physical pixel size of the employed detector (pco.2000, PCO 

AG, Kelheim, Germany) led to an effective pixel size of 0.74 µm for each projection 

or radiograph. 

In total 1200 projections were acquired over 180o rotation with an exposure time of 

150 ms for each radiograph. Raw projections (radiographs) were collected as .tif 

image files. Raw projections were reconstructed using a gridding method [182], 

developed at TOMCAT.  

 

3.3.2 Lab Based Measurements 

 

A Leica DFC 420 light microscope was used to take optical images of lab samples 

during lab base droplet exposures. Microscope was fitted with objective lenses over 

the range 25x to 500x, with additional capability for a 2x insert for a maximum 

magnification of 1000x.  

Scanning electron microscopy (SEM) was used to carry out visual inspection of 

samples and for elemental analysis by means of energy dispersive x-ray (EDX). SEM 

was carried out using a combination of four machines; imaging was carried out using 
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a Phillips XL-30, JOEL S4000, JOEL 6060 and JOEL 7000 machines. Elemental 

analysis was undertaken on Phillips XL-30, JOEL 6060 and JOEL 7000 machines 

fitted with Oxford Instruments EDX systems and INCA analysis software. Both 

imaging and EDX were undertaken using an accelerating voltage of 15.0 keV, using 

a working distance of 10 mm.  

3.4 Calculation of Equilibrium Concentrations, Heights and Volumes 

 

Calculation of the equilibrium concentration (Ceq) was made using an equation 

proposed by Wheeler[122]: 

       
  

     
    

  
       

         Equation 2.4.1 

Where M = molar concentration of salt, x = number of ions in solution, and y can be 

calculated using the equation below: 

  
 
 

 
  

    
       Equation 2.4.2 

Where ρ = Density and M = Molecular Weight. 

Following calculation of Ceq, theoretical predictions of the equilibrium volume (Veq) 

and equilibrium droplet height (DHeq) were made. Calculation of theoretical Veq was 

made using the equation proposed by Li et al[139] rearranged to the form in 

equation 3.3.3. Initial droplet volume was fixed at 0.2 µl, and initial concentration was 

controlled depending on desired CDD. 

        
   

  
       Equation 3.3.1 
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Where Veq is the calculated theoretical equilibrium volume, Vo is original volume, Ceq 

is equilibrium molar concentration (M) and Co is original solution molar concentration 

(M). This method of calculating Veq was used during work on stainless steel by Mi 

[172], and was shown to be quite accurate when making a comparison against 

measured droplet Veq. 

Calculation of the predicted height was made using a combination of equation 3.3.4 

and equation 3.3.5. The former used by Li et al[139] and the latter simply being the 

formula for an ellipse. During calculation of the maximum predicted height the 

following assumption were made, (1) droplet is modelled as a spherical cap or an 

ellipse, (2) for the pin samples used the surface area of the cap base is constant at 

0.0025cm2. 

   
 

 
       

     
    Equation 3.3.4 

   
 

 
        Equation 3.3.5 

Where: V is volume, h is height and ho is original height. 

Droplet volume and height were measured experimentally and compared to the 

predicted values. Droplet heights were measured from radiographs like those in 

Figure 4.6 for tomography samples, or from optical images of droplets taken in-situ. 

Height was measured using FIJI image analysis software[195]. Volume was 

measured by two means for tomography samples. (1) a cumulative sum of 

subsequent surface areas for the whole height of the droplet, (2) through application 

of thresholding to the reconstructed data set and use of a voxel (3-D pixel) counting 

algorithm. Agreement between the two methods was observed to be good, and as 



54 
 

such the former method was applied to the measurement of optical images, as 

segmentation in 3-dimensions was not possible. 

3.5 Data Analysis 

3.5.1 Tomography Data 

 

Analysis was carried out using a combination of software packages, primarily 

FIJI/ImageJ software[195] (freeware) and Avizo (VSG) were employed for data 

processing and measurement. Data were reconstructed in .DMP image format, 

specific to TOMCAT at SLS, as such conversion to .tif image format was carried out 

first, using the script written for FIJI, appendix 10.3. Script requires input of image file 

location, and desired brightness and contrast for the output reconstruction image file.  

Converted reconstruction images were then able to be opened using FIJI for initial 

visualisation and analysis. To reduce memory intensive processes associated with 

the large data set size, unwanted regions were cropped and combined image stack 

was outputted as an Avizo mesh file.  

Mesh files were loaded into Avizo and a box filter was applied to better separate 

greyscale values of individual pixel regions. Prior to quantification of data, 

segmentation or partitioning of image stacks was undertaken, to generate the 

quantifiable data groupings. During segmentation pixels are essentially “labelled” as 

wanted or unwanted according to their specific greyscale values. Greyscale values 

are dependent on the specific density of each material, higher density materials show 

up brighter, such as the copper rich intermetallic particles. Segmentation process of 

an IGC fissure in reconstructed dataset of AA2024 pin sample is shown in Figure 3.7. 
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Figure 3.7 - Segmentation of tomographic data set, (a) fissure is visible 
top left of the tomographic slice, (b) following "labelling" of the fissure 
as material interior, (c) labelled fissure section as it forms part of the 

completed segmentation of the fissure volume 
 

Following segmentation of datasets, the segmented regions were counted for the 

number of voxels (3-dimensional pixel) contained within the region. Effective pixel 

size for datasets was 0.74 µm, producing an effective voxel volume of 0.405 µm3. 
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Voxel counting algorithm was contained within the material statistics module of Avizo 

software. In addition voxels were counted using a FIJI plugin file, to establish a test 

for consistency of the Avizo method. For analysis using the FIJI method over and 

under thresholding of the datasets was performed for a further method of 

consistency. 

Fissure depth was measured using FIJI software vertically reconstructed sections 

were placed into a series of images. Point of maximum depth was initially determined 

by eye, then a line such as that shown in Figure 3.8, was marked on the dataset and 

comparisons of the vertical sections either side were made to ensure that the point of 

maximum depth had truly been obtained.  

 

Figure 3.8 – Example of depth measurement method used for analysis of 
tomography samples 
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3.5.2  Lab Based Analysis 

3.5.2.1 Droplet Imaging 

 

During lab based exposure sample surfaces were imaged immediately following 

application of droplets, and at the end of exposure period, or continually during in-situ 

time-lapse experiments. Surface area coverage of the droplet was measured using 

FIJI. Image of droplet on surface was thresholded, shown in Figure 3.9, prior to 

application of an area counting algorithm on FIJI software. Initial CDD was 

calculated, using image of droplet on deposition, and changes in droplet shape and 

surface area were measured. Simulated atmospheric exposure was carried out in 

one of the previously described cells. Initial CDD was calculated using the following 

equation: 

             
  

   
   

                          

                           
 

Where V is volume in litres and M is molarity in mols. 
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Figure 3.9 - Droplet on deposition onto AA2024 plate surface (a), and 
following thresholding for calculation of CDD (b) 

 

Following the end of exposure time, droplets were dried in a desiccator with RH set 

at ~0%RH. EDX analysis was carried out on some dried deposits, to determine 

elemental distribution. Sample surface was again imaged by OM and SEM following 

removal of corrosion product, prior to sectioning. No observed weight loss occurred 

as a result of immersion in nitric acid, nor was any surface attack observed. 

 

3.5.2.2 Measurement of Localised Corrosion Depth 

Two methods were used to measure maximum depth of localised corrosion in plate 

samples, firstly by cross sectional section of samples [193], and secondly by the 

method described here after, the latter was determined to be more accurate. Final 

depth measurements were made by measuring thickness of sample following 

removal of corrosion products by means of a micrometer (+/- 1 µm). A series of 

successive polishing steps were carried out on sample surface using a 1 µm 

polishing cloth, and a visual inspection and height measurements were made 
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following every ~10-15 seconds on the polishing wheel. This process was repeated 

until no further signs of localised corrosion were visible at the sample surface, giving 

the final measured depth for lab samples.  

3.5.2.3 Measurement of Secondary Spread Zones 

 

Measurements on secondary spread regions were made using FIJI/Image J image 

analysis software. Optical microscope images from the end of exposure were loaded 

into FIJI/Image J and radius was measured from the centre point of the droplet at 

increments round the circumference to the outer edge of the spread zone, and an 

average was taken for each droplet. An example is shown in Figure 3.10. 

 

Figure 3.10 – Measurements of spread region on AA2024 samples during 
atmospheric exposure 

 

3.5.2.4 Localised Corrosion Measurements on Sample Surfaces 
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Following removal of corrosion product from sample surfaces by means of immersion 

in nitric acid, and a light polish of 0.04 µm to reveal localised corrosion damages at 

the surface. An example of a surface following removal of corrosion product (left) and 

following thresholding (right) is shown in Figure 3.11. Following thresholding 

application of an area calculating script was used on FIJI/Image J in order to count 

the number of pixels making up the localised corrosion sites. Pixel number was then 

scaled to provide surface area coverage in mm2.  

 

Figure 3.11 – (left) shows a site of localised corrosion following removal 
of corrosion product and light polish of 0.04 µm, (right) shows site 

following image thresholding for surface area calculation 
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4 STEADY STATE ATMOSPHERIC EXPOSURE 

4.1 Introduction 

 

Little work has focussed on the localised corrosion behaviour of AA2024 under 

realistic atmospheric droplet conditions, so  the focus of this section is on developing 

an understanding of some of the key factors which play a role. Steady state exposure 

during this work refers to tests where one atmospheric variable (RH, CDD, salt type) 

or exposure time was altered, whilst fixing the other variable as a comparison. Core 

conditions against which comparisons were made was exposure to a droplet of NaCl 

solution of volume 0.2 µl, with a fixed initial CDD of ~500 µg/cm2, for a period of 24 

hours in an environment of ~85% RH. A combination of µCT and lab based methods 

have been used to quantify localised corrosion in AA2024 samples. 

4.2 Results 

4.2.1 Microstructure of AA2024 

 

Micro-structural characterisation of the alloy was carried out to confirm the presence 

of the commonly reported precipitate phases in AA2024. Figure 4.1shows an SEM 

image of precipitate phases detected in the alloy, which were of basic composition 

Al6(CuMnFeSi), Al2CuMg (S-Phase) or Al2Cu (θ-Phase), along with EDX traces 

identifying them. A magnified view of a θ-phase particle is shown in Figure 4.2, along 

with EDX maps showing elemental distribution. 
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Figure 4.1 - Typical intermetallic phases found in AA2024-T351 plate 
used during this work, with EDX traces showing their elemental 

composition, inset images show magnified trace of non Al peaks 
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Figure 4.2 – θ-Phase particle of composition Al2Cu, found in AA2024, 

with EDX maps showing elemental distribution  
 

Figure 4.3 shows reconstructed sections of an AA2024 pin sample used during µCT 

measurements. The intermetallic precipitates, are visible as bright white phases. In 

the vertical reconstructed section strings of particles can be seen aligned to the 

rolling direction of the alloy, indicated by the arrow. The broken line indicates the 

location of the horizontal section shown in the bottom image. The magnified inset 

shows that the resolution achieved with the µCT measurements was good enough to 

distinguish individual precipitate phase particles.  
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Figure 4.3 - Microstructure of AA2024 following reconstruction of µCT 
data: the top image is vertical section through pin (arrow indicates 

rolling direction of rolling), the broken line indicates location of 
horizontal section shown below.  A higher resolution image of the 

horizontal section is shown bottom right. 
 

 

 

 

 



65 
 

4.2.2 Influence of the Environment of Droplet Behaviour 

 

 

Figure 4.4 – Relative humidity in equilibrium with salt solutions as a 
function of concentration of chloride ion for NaCl, MgCl2 and CaCl2 

calculated using equation 5.3.1 proposed by Wheeler[122] and checked 
using OLI software, and data for MgCl2 from Tsutsumi[136] 

 

Figure 4.4 shows the RH in equilibrium with NaCl, MgCl2 and CaCl2 as a function of 

chloride concentration calculated using equation 2.4.1, outlined by Wheeler[122], and 

checked using OLI software.  As the [Cl-] increases, the RH decreases continually for 

all salt types. In addition plotted is the published equilibrium concentration for MgCl2 

solution as a function of RH, by Tsutsumi[136].  
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Figure 4.5 shows how an atmospheric droplet changes height and shape following 

deposition (initial concentration 0.5 M NaCl) when placed in a RH of 85% (equilibrium 

concentration ~3.9 M). After 12 hours, the droplet is considerably smaller, and is 

rough, probably owing to the formation of some corrosion products.  Corrosion sites 

are not visible in the figure, but hydrogen bubbles can be seen, which are likely to 

have formed at a localised corrosion site.   

 

Figure 4.5 - Radiographs ((a), (b), (c)) and vertical sections of tomograms 
((d), (e), (f)) as a function of time ((a), (d), 5 mins, (b), (e) 12 hours and (c), 
(f) 24 hours),  following deposition of a fresh droplet of NaCl solution (0.5 

M) on an AA2024 sample, which was then exposed to 85% RH at 22 °C. 
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Figure 4.6 shows radiographs of atmospheric droplets of NaCl solution initial volume 

of 0.2 µl, with three concentrations (different CDD’s), following equilibration at 

85% RH. It is evident that the higher the initial CDD the greater the droplet height and 

volume for the same solution concentration at equilibrium.  

 

Figure 4.6 - Effect of initial chloride deposition density on droplet height 
during simulated atmospheric exposure at 85% RH for NaCl solution 

droplets of initial volume 0.2 µl. Top to bottom ~4500 µg/cm2, 
~2250 µg/cm2 and ~500 µg/cm2 
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Figure 4.7-1.10 show a comparison of the theoretically predicted droplet heights and 

volumes with measured values from both tomography and lab based measurements, 

as a function of initial CDD and RH. Method of calculation and measurement are 

described in Section 3.4. 

It can be seen that as a function of initial CDD the predicted increase in droplet 

height (Figure 4.7) and volume  (Figure 4.8) are linear for a fixed RH of 85% RH, 

further the agreement between the predicted and the measured values was good. 

When considering the influence of RH for a fixed initial CDD the increase predicted in 

droplet height (Figure 4.9) and volume (Figure 4.10) is non-linear and increases 

exponentially above ~80% RH. Time to attain equilibrium was typically 1-3 hours, 

µCT measurements used for equilibrium heights were made from the 12 hour time 

point scans. Lab based measurements were made on droplets following ~14-

16 hours exposure. 

Figure 4.11 demonstrates how droplet height varies for solutions of the same initial 

CDD (~500 µg/cm2) when exposed to different RH environments, for CaCl2 solutions. 

It is evident that as RH decreases both height and volume of the droplet decrease, as 

has been plotted in Figures 4.7-4.10. There is some variability in droplet height which 

can be attributed to either small variations in RH of the environment, or to the 

presence of corrosion products and precipitated solid salt phases. These account for 

the rippled appearance seen in some of the atmospheric droplets.
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Figure 4.7 - Measured and theoretically predicted droplet equilibrium heights as a function of initial molar chloride 
concentration, for 0.2 µl droplets of NaCl, CaCl2 and MgCl2 solutions, at a fixed RH of 85% 
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Figure 4.8 - Measured and theoretically predicted droplet equilibrium volumes as a function of initial molar 
chloride concentration, for 0.2 µl droplets of NaCl, CaCl2 and MgCl2 solutions, at a fixed RH of 85% 
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Figure 4.9 - Predicted and measured droplet heights for 0.2 µl droplets of NaCl, MgCl2 and CaCl2 salt solutions as 
a function of RH, initial CDD fixed at 500 µg/cm2 
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Figure 4.10 - Predicted and measured droplet volumes for 0.2 µl droplets of NaCl, MgCl2 and CaCl2 salt solutions 
as a function of RH, initial CDD fixed at 500 µg/cm2
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Figure 4.11- Radiographs of varying droplet height as a function of 
exposure RH for CaCl2 solution droplets initial CDD fixed at ~500 µg/cm2, 

(a)85%, (b) 75%, (c) 59%, (d) 45% and (e) 33% RH 
 

4.2.3 Typical Morphology and Role of Microstructure in the Development 

of Localised Corrosion in AA2024 Samples During Atmospheric Exposure 

 

Figure 4.12,Figure 4.13 Figure 4.14 show the typical morphology of IGC fissures 

observed during the localised corrosion of AA2024. Figure 4.12 shows a cropped view 

of pin sample with an IGC fissure extending form the surface to a depth of ~200 µm on 

the left, with a reconstructed 3-D rendering of a fissure on the right hand side. It is 

evident that the fissures grow both vertically and laterally and are quite complex in 

shape. It is important to note that there is range in the width of the fissures observed 
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from several microns down to 100-200 nm, SEM images of pin samples following 

mechanical sectioning show this very well in Figure 4.13.   

The complex shape and an growth of fissures within the sample is shown on the left 

hand image in Figure 4.13 and in Figure 4.14. Both show how growth of fissures 

follows the grain boundary network both at the metal surface and within the interior.  

Figure 4.15 and Figure 4.16 further demonstrate how microstructure of the alloy 

influences the development of localised corrosion; fissures can be seen initiating at 

(Figure 4.15) and following (Figure 4.16) strings of intermetallic particles through the 

depth of the metal. Initiation in the vicinity of intermetallic precipitates was observed in 

the majority of the µCT atmospheric measurements, as well as during lab based 

exposures. These strings were aligned to the direction of rolling of the alloy, and were 

often seen to be associated with the development of fissures during atmospheric 

exposure. 
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Figure 4.12 – Left: portion of vertical section reconstruction showing 
typical development and morphology of IGC fissure through an AA2024 

pin sample, following 24 hours at 85% RH with CDD of 500 µg/cm2. Right: 
3-D reconstruction of typical morphology of corroded fissure volume 

within an AA2024 pin sample following 24 hours at 85% RH with CDD of 
500 µg/cm2. 

 

 

Figure 4.13 – Left: SEM image showing vertical cross-section of AA2024 
pin sample following mechanical sectioning, exposed to a NaCl droplet 
for 24 hours at 85% RH to droplet initial CDD 4500 µg/cm2. Right: SEM 

image of the cross section of a narrow fissure in AA2024 sample, 
exposed to a NaCl droplet for 24 hours at 85% RH to droplet initial CDD 

4500 µg/cm2. 
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Figure 4.14 - Grain boundary attack in AA2024 samples under 
atmospheric exposure to NaCl solutions (a) µCT horizontal reconstructed 
section, (b) SEM image of sample surface, both exposed to a NaCl droplet 

for 24 hours at 85% RH to droplet initial CDD 4500 µg/cm2. 
 

 

Figure 4.15 - Growth of IGC fissure below intermetallic phase, formation 
of corrosion product visible at the mouth of the fissure beside particle, 

following 12 hours exposure at 85% RH under NaCl solution droplet, with 
initial CDD of 4500 µg/cm2. 
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Figure 4.16 - Development of IGC fissure in the vicinity of  a string of 
intermetallic precipitates aligned to the direction of rolling through the 

bulk of AA2024 pin sample, during exposure to NaCl solution with initial 
CDD of ~500 µg/cm2 exposed at 85% RH for 24 hours. 

 

4.2.4 Influence of Initial CDD on Development of Localised Corrosion in 

AA2024 Samples during Atmospheric Exposure 

 

Figure 4.17 shows an example of the development of localised corrosion in an 

AA2024 pin exposed to the core condition for this work. Figure 4.17 (a) shows a near 

surface horizontal section with the fissure highlighted. The broken line indicates the 

location at which the vertical section (bottom left) is taken, which is the point of 

maximum fissure depth.  On the bottom right a 3-D reconstruction of the fissure 

volume is shown, it can be seen that the fissure has extended both vertically and 

laterally from the metal surface. 
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Figure 4.18 shows the effect of increasing the initial chloride deposition density on the 

development of localised corrosion in an AA2024 pin sample following 24 hours 

exposure in an environment of 85% RH. It can be seen that as the initial CDD is 

increased there is an increase in the amount of localised attack, both at the sample 

surface (top image in each group) and in terms of the volume (3-D reconstruction in 

each group), quantified in Figure 4.18.  The orientation of the fissure with respect to 

the sample surface is indicated by black square and circle markers. Vertical section 

reconstructions on the bottom left of each grouping shows the point of maximum depth 

for each of the fissures, the location is indicated on the surface section by a broken 

line.  

It can be seen that as CDD is increased the increase in maximum depth of fissure 

observed is limited, and that there is an increase in the number of interconnected 

fissures which run parallel to one another throughout the grain boundary network. 

Measured values for the maximum fissure depth as a function of changing initial CDD 

for exposure at 85% RH, is plotted in Figure 4.19. The plot shows data obtained 

during both tomography and lab based measurements (right hand plot shows and 

expanded view of CDD values <100 µg/cm2).  At lower levels of CDD (<1000 µg/cm2), 

the maximum depth increases with CDD.  However, above this value, the depth is 

approximately constant, ~230±30 µm.  The lab-based measurements (determined with 

successive polishing) appear to be broadly consistent with the tomography 

measurements.  However, the two tomography measurements made with CaCl2 

appear to show deeper attack.    

The measured volume of localised corrosion in AA2024 pin samples from µCT 

measurements following 24 hours exposure at 85% RH is plotted in Figure 4.20. Data 
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are shown for multiple X-ray measurements (during a time-dependent sequence), 

single X-ray measurements at 24 hours, and “ex situ” measurements where the 

samples have been corroded in the lab, and dried out before exposure to X-rays.  It 

generally appears that samples measured in situ for either single or multiple 

measurements show similar volumes, suggesting that there is no obvious effect of 

beam damage for multiple exposures.  Where both “ex situ” and “in situ” 

measurements have been made, the “ex situ” ones appear to show higher volumes, 

suggesting that the drying process may itself induce corrosion.  For the same 

conditions, NaCl, MgCl2, and ocean water appear to show similar volumes, but the 

measurements with CaCl2 showed higher volumes.   

Measurements at CDDs of ≥1000 µg/cm2 are substantially higher than those at 

500 µg/cm2, but above 1000 µg/cm2, the results are somewhat scattered. 
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Figure 4.17 - IGC fissure which developed within AA2024 pin sample 
following 24 hours exposure in simulated atmosphere of ~85% RH, with 
an initial CDD of ~500 µg/cm2 (core condition), site highlighted on near 
surface section (a), point of maximum depth taken along broken line is 

shown in (b), 3-D reconstruction of the corroded fissure volume is shown 
in (c). 
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Figure 4.18 - Effect of increasing initial CDD of NaCl solution droplets on 
observed growth of localised corrosion in AA2024 pin samples, for 24 

hours exposure to 85% RH, top left: 4500 µg/cm2, top right: 2250 µg/cm2, 
bottom left: 1000 µg/cm2, bottom right: 500 µg/cm2. Near surface section 

with localised corrosion sites highlighted, points of maximum depth 
position indicated by broken line and 3-D reconstructed volumes are 

shown for each condition. 
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Figure 4.19 - Maximum measured depth of corrosion as a function of initial CDD for µCT (pin sample) and lab based (plate 
sample) atmospheric exposures, exposure time fixed at 24 hours and RH 85% RH, right hand figure shows highlighted 

region for CDD values <100 µg/cm2 
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Figure 4.20 - Measured volume of corrosion as a function of initial CDD for µCT measurements (24 hours at 85% RH). In-
situ (solid bar), control (diagonal stripes) and ex-situ (solid outline) samples are plotted where appropriate. In-situ shows 
volume measurement at 24 hours, control shows volume based on single measurement at 24 hour time point and ex-situ 

shows volume for measurement of sample corroded for 24 hours in the lab and dried 1 hour at 0% RH.
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4.2.5 Determination of Threshold for Onset of Localised Corrosion 

inAA2024 Plate Samples during Atmospheric Exposure 

 

Figure 4.21 and Figure 4.22 show observed localised corrosion for CDD values of 

1 µg/cm2 and 500 µg/cm2 respectively, using SEM to observe surface damage 

following removal of corrosion product. Measurements were made in an effort to 

determine the threshold (for initial CDD) at which localised corrosion occurred in 

AA2024 plate samples under atmospheric droplets during 24 hour exposures at 

85% RH. No specific value was obtained for a threshold, but it is possible to say that 

during this study the threshold was <1 µg/cm2 for NaCl solution droplets with an initial 

volume of 0.2 µl. For samples with droplets of initial CDD 1 µg/cm2, 12/12 showed 

signs of localised attack following removal of corrosion product from the surface. 
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Figure 4.21 - Secondary electron SEM images of localised corrosion on 
AA2024 plate sample,  surface orientation in L direction. Following 

24 hours exposure at ~85% RH, under initial CDD ~1 µg/cm2, for NaCl 
solution droplets. Corrosion product removed by immersion in nitric 

acid for ~2 minutes, and 10 seconds polish at 0.04 µm.  
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Figure 4.22 - Secondary electron SEM images of localised corrosion on 
AA2024 plate sample,  surface orientation in L direction. Following 

24 hours exposure at ~85% RH, under initial CDD ~500 µg/cm2, for NaCl 
solution droplets. Corrosion product removed by immersion in nitric 

acid for ~2 minutes, and 10 seconds polish at 0.04 µm.  
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4.2.6 Time Dependent Measurements on the Development of Localised 

Corrosion in AA2024 Samples during Atmospheric Exposure as a 

Function of Initial CDD 

 

Figure 4.23 the volume of corrosion as a function of time under NaCl droplets 

determined from in-situ µCT measurements. It can be see that for sample of a lower 

initial CDD, the corrosion rate remains relatively constant throughout the 24 hour 

exposure. For higher initial CDD values the corrosion rate increased significantly 

between ~20 and ~24 hours.  

Visual examples of the time dependent development of localised corrosion in 

AA2024 pin samples can be found in Figure 4.24, Figure 4.25 and Figure 4.26. 

Figure 4.24 shows a vertical section of a samples exposed to NaCl solution with an 

initial CDD of ~500 µg/cm2 at ~85% RH at 1,12 and 24 hours of exposure for AA2024 

pin samples. The vertical sections are located at the point of maximum fissure depth 

at the end of exposure. No corrosion is visible after 1 hour.  After 12 hours, two 

fissures can be seen in the 3D segmented image at the bottom of the figure, but only 

one is visible in the vertical section. After 24 hours, the largest fissure has increased 

both in depth and width (3D image), and multiple fissures can be seen in the vertical 

section, and the 3D image.  Close inspection of the 3D image (not shown), indicates 

that the fissures are interconnected.     
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Figure 4.23 - Measured volume of corrosion as a function of time for 
AA2024 pin samples exposed to NaCl solution droplets, all samples 

exposed for 24 hours at 85% RH, to different initial CDD’s 
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Figure 4.24 - Vertical sections of tomograms of an AA2024 pin exposed 
to NaCl solution (CDD ~500 µg/cm2) at 85% RH for the times indicated.. 

The lower images show the segmented localised corrosion fissures at 0o 
(perpendicular to the fissures) and 90o (parallel to the fissures) for 12 

and 24 hours. 
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Figure 4.25 shows the development of fissures in another sample exposed to the 

same conditions as Figure 4.24. At 12 hours, fine fissures are shown, which appear 

to be intergranular.  At 24 hours, the fissures appear to be wide and deeper, and a 

new fissure can be seen to the right. Figure 4.26 shows overlaid 3D segmented 

images of the corrosion volume at 12 hours (blue) and 24 hours (red). It can be seen 

how fissure growth has taken place both vertically through the pin and laterally 

through the grain boundary network.  

Figure 1.27 plots the measured volume loss over time for MgCl2 samples exposed to 

different initial CDD values for a 24 hours exposure at 85% RH. As with NaCl 

samples an increase in the initial CDD resulted in an increase in the corrosion rate 

through the exposure period. In this case only the highest CDD used showed a large 

acceleration in corrosion rate during the latter stages of exposure. 
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Figure 4.25 - Vertical sections of tomograms of an AA2024 pin exposed 
to NaCl solution (CDD ~500 µg/cm2) at 85% RH for the times indicated. 

 

Figure 4.26 - Fissure volume growth during in-situ measurements, during 
atmospheric exposure to NaCl solution, initial CDD ~500 µg/cm2, (blue) 

12 hours exposure and (red) 24 hours exposure 
 

12 Hours 24 Hours 
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Figure 4.27 - Measured volume of corrosion as a function of time for 
AA2024 pin samples exposed to MgCl2 solution droplets, all samples 

exposed for 24 hours at 85% RH, to different initial CDD’s 
 

4.2.7 Effect of Salt Type on the Development of Localised Corrosion in 

AA2024 Samples during Atmospheric Exposure 

 

A direct comparison of the different salt types used for comparison is made in Figure 

4.28, for core conditions, initial CDD of ~500 µg/cm2 and exposure at 85% RH for 24 

hours. For each salt type, the near surface section indicates the location of the 

fissure, the broken line shows point from which the vertical section showing 

maximum depth was taken. Both vertical sections and 3-D renderings of the volumes 

show that the morphology of attack observed for the different salt types was similar. 
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This is further evidenced by the SEM images in Figure 4.29, for the same exposure 

conditions. For all salt types morphology of attack at the plate surface was 

comparable. 
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Figure 4.28 - µCT measurements on the effect of cation type during 
simulated atmospheric exposure at ~85% RH, for all salts initial CDD was 

fixed at ~500 µg/cm2. Near surface sections for each show highlighted 
fissure with broken line indicating where vertical section with maximum 
depth was located. Orientation of 3-D reconstructed volume is indicated 

by circle and dot markers. 
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Figure 4.29 - Secondary electron SEM images showing effect of cation 
type during simulated atmospheric exposure at ~85% RH, for all salts 

initial CDD was fixed at ~500 µg/cm2 

 

Figure 4.30 plots the measured volume of corrosion over time for different salt types 

exposed at the core condition of 500 µg/cm2 to an environment of 85% RH for a 

period of 24 hours. It can be seen that for typical development of fissures, the end 
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volume of damage was comparable for NaCl, MgCl2 and simulated ocean water, but 

CaCl2 experienced a greater corrosion rate and final amount of damage. It was 

observed that for CaCl2 corrosion rate remained relatively constant or indeed showed 

a slight increase during the second half of the exposure period, whilst for other salt 

types the rate appeared to decrease slightly during the second half of the exposure 

period. 

 

 

Figure 4.30 - Measured volume of corrosion as a function of time for 
AA2024 pin samples exposed to solution droplets of differing salt type, 
samples exposed for 24 hours at 85% RH, to initial CDD of ~500 µg/cm2 
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4.2.8 Influence of Relative Humidity on the Development of Localised 

Corrosion in AA2024 Samples During Atmospheric Exposure 

 

Influence of RH on the rate and development of localised corrosion in AA2024 

samples is shown in Figure 4.31-Figure 4.37. Figure 4.31 plots the maximum 

measured depth of localised corrosion in AA2024 pin samples as a function of RH for 

a fixed initial CDD. It can be seen that there is a marked influence on the maximum 

depth of fissure to the effect that as RH increases the maximum fissure depth 

increases accordingly. The indication is that CaCl2 results in a marginal increase in 

fissure depth as compared with the other salt types studied.  

Figure 4.32 and Figure 4.33 show SEM images of AA2024 plate samples with NaCl 

solution droplets exposed to 75% and 85% RH respectively. It can be seen that 

localised corrosion was observed in both cases, for 59% RH which was the next RH 

considered no evidence of localised corrosion was observed for NaCl solutions.  

Tomography measurements were made over a wider range of RH values for for 

CaCl2 solution droplets on AA2024 pins, examples of typical reconstructions for the 

range of 33-85% RH are shown in Figure 4.34. From top left (85% RH) it is evident 

that as RH is decreased  there is an associated decrease in the size both in terms of 

depth (vertical sections) and volume (3-D reconstruction) of the amount of localised 

attack. It is also interesting to note that as RH is reduced an increase in the number 

of sites is observed.  

Figure 4.35 shows the same behaviour for samples exposed to MgCl2 solution 

droplets over an RH range of 45-85% RH. Behaviour for MgCl2 samples was the 
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same as that observed for the CaCl2 ones, with higher RH’s resulting in greater depth 

of fissure and greater final volume of corrosion. Similarly to the CaCl2 samples as RH 

decreased there was an increase in the number of localised sites, although this effect 

was less pronounced than in the former.  

Figure 4.36 shows the same series of images over the RH range 33-85% RH for 

samples exposed to solutions of substitute ocean water. Again as the RH of the 

environment is reduced the depth of localised corrosion as well as the measured 

volume of corrosion are in turn reduced. As RH is reduced towards DRH of NaCl 

which is the major component of the substitute ocean water there is an increase in 

the number of sites, but below this RH the number of sites begins to drop once more. 

Measured volume of corrosion in AA2024 pin samples from µCT measurements 

made through a range of RH’s from 33-85%, is plotted in Figure 4.37.  From left to 

right as RH is increased the measured volume of corrosion increases for all salt 

types. For all RH values the greatest volume of measured material loss is observed 

for samples exposed to droplets of CaCl2 solution. For other salt types measured 

material loss is comparable with some outliers, at the core exposure RH of 85%, 

NaCl, MgCl2 and substitute ocean water exhibited a very similar volume loss.  

In addition as a control against artificial acceleration in quantities of corrosion due to 

radiation induced beam damage, control samples were run ex-situ and measured 

only once. These samples showed comparable volumes of material loss to those 

which were measured multiple times, indicating that the influence of beam damage 

on the development of localised corrosion is limited.  
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Figure 4.31 - Maximum measured depth of localised corrosion following 
24 hours exposure as a function of RH, for an initial CDD of ~500 µg/cm2, 

for different salt types during µCT and lab based measurements 
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Figure 4.32 - Secondary electron SEM images of localised corrosion on 
AA2024 surface following 24 hours exposure at ~75% RH, location of 

original droplet is shown by solid white circle, with rectangles indicating 
locations of insets 
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Figure 4.33 - Secondary electron SEM images of localised corrosion on 
AA2024 surface following 24 hours exposure at ~85% RH, location of 

original droplet is shown by solid white circle, with rectangles indicating 
locations of insets 
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Figure 4.34  - Tomographic sections from AA2024 pin samples, 
horizontal and vertical showing influence of exposure RH (33-85%) on 

development of localised corrosion under CaCl2 solution droplets, CDD 
fixed at ~500 µg/cm2 

 

 

Figure 4.35 - Tomographic sections from AA2024 pin samples, horizontal 
and vertical showing influence of exposure RH (45-85%) on development 

of localised corrosion under MgCl2 solution droplets, CDD fixed at 
~500 µg/cm2 
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Figure 4.36 - Tomographic sections from AA2024 pin samples, horizontal 
and vertical showing influence of exposure RH (33-85%) on development 

of localised corrosion under simulated ocean water solution droplets, 
CDD fixed at ~500 µg/cm2 
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Figure 4.37 - Measured volume of localised corrosion following 24 hours 
exposure as a function of RH, for an initial CDD of ~500 µg/cm2 

 

4.2.9 Time Dependent Measurements on the Development of Localised 

Corrosion in AA2024 Samples during Atmospheric Exposure as a 

Function of Relative Humidity 

 

Figure 4.38 plots the measured material loss in AA2024 pin samples during 

atmospheric exposure to CaCl2 solutions at a CDD of 500 µg/cm2 exposed to a range 

of RH’s. For higher RH values the corrosion rate was significantly increased when 

compared to that seen for samples exposed at lower RH environments. In addition 

for lower RH exposures the corrosion rate remains at a fairly constant level 
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throughout exposure, whilst for higher RH values there is an increase during the 

second half of the exposure period.  

Figure 4.39 shows the development of a fissure in during exposure to CaCl2 solution 

droplets, it can be seen that growth takes place vertically and laterally along the grain 

boundary network. 

 

Figure 4.38 - Measured volume of corrosion as a function of time for 
AA2024 pin samples exposed to CaCl2 solution droplets, all samples 

exposed for 24 hours over a range of RH environments 
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Figure 4.39 - 3-dimensional reconstruction of fissure formed at 85% RH 
under a CaCl2 solution of initial CDD ~500 µg/cm2, left: following 12 

hours exposure, right: following 24 hours. Sample is shown head on and 
through a 45o rotation. 

 

Figure 4.40 plots the measured material loss in AA2024 pin samples during 

atmospheric exposure to substitute ocean water solutions at a CDD of ~500 µg/cm2 

exposed to a range of RH’s. For higher RH values the corrosion rate was significantly 

increased when compared to that seen for samples exposed at lower RH 

environments. In addition for lower RH exposures the corrosion rate does not 

increase as significantly as for higher RH exposures during the latter stages of the 

exposure period.  
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Figure 4.40 - Measured volume of corrosion as a function of time for 
AA2024 pin samples exposed to simulated ocean water solution 
droplets, all samples exposed for 24 hours over a range of RH 

environments 
 

4.3 Discussion 

4.3.1 Microstructural Influence on the Development of Localised 

Corrosion under Atmospheric Conditions 

 

Microstructure of AA2024 is well known to be influential on the development of 

localised corrosion attack. As such basic characterisation of the important precipitate 

phases found in the alloy was carried out, the basic compositions identified were 

Al6(CuMnFeSi), Al2CuMg (S-phase) and Al2Cu (θ-phase). These are typically of the 
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agreed elemental composition from previous bodies of work [16, 23, 24, 196-201], in 

addition the size range of particles observed herein and the suggested shapes are 

similar to those suggested as being typical [16, 23, 24, 196-201]. Figure 4.1 and 

Figure 4.2 provide evidence of the primary particles identified during this work, 

showing the 3 main precipitate phases and maps of the elemental distribution in θ-

phase particles respectively. Further example of the microstructure typically observed 

in the pin samples used during this work is shown in Figure 4.3, alignment of the 

precipitate phases within the pin along the direction of rolling of the alloy. In addition 

the magnified inset image demonstrates that the resolution of the µCT 

measurements was sufficient to distinguish clearly the precipitate phases >1 µm in 

size. 

4.3.2 Environmental Influence on Droplet Behaviour 

 

Influence of the exposure environment on the behaviour of atmospheric salt deposits 

and droplets has been covered to some extent in previous bodies of work [63, 112, 

117, 130, 136, 138, 162, 202, 203]. However little work has focussed on the how the 

environment influences the behaviour of atmospheric droplets on metallic samples. 

Tsutsumi [136] measured the equilibrium concentration of MgCl2 solutions as a 

function of RH, and values calculated herein based on an equation proposed by 

Wheeler [122] produced a good agreement. Once droplets reached equilibrium with 

their environment (Figure 4.5) volume was maintained, both initial CDD (Figure 4.6) 

and environment RH (Figure 4.11) affected the droplet size and shape.  

It has been shown that it is possible to predict with some accuracy the equilibrium 

volume of solution, and as such the height of an atmospheric droplet at equilibrium, 
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by comparing calculated and measured values (Figure 4.7,Figure 4.8, Figure 

4.9,Figure 4.10), for a fixed sample surface area. Droplet height and volume are 

important as they influence the properties of the electrolyte solution, such as solution 

concentration and solution resistance[121, 204], this is discussed further in the 

coming paragraphs. Development of localised corrosion measured using µCT, was 

seen to follow the traditionally reported attack of grain boundaries typical of AA2024, 

in regions of copper depletion [40, 47, 100, 102], a typical example of attack at grain 

boundaries is highlighted in Figure 4.14. Visualisation of localised corrosion in 

AA2024 using µCT has previously been carried in a number of bodies of work[92, 

106-108], and both the reconstructed slices and volumes are comparable in 

morphology during this work (Figure 4.12). The limitations of the experimental 

technique are primarily related to the resolution achievable, and whilst sufficient to 

observe features to the order of 1 µm in size, some fissures observed in lab based 

samples were significantly smaller in scale to the order of 200 nm (Figure 4.13). 

Resolution limits account for some of the gaps which are seen in the 3-D 

reconstructions of fissures in this work; other gaps are the result of the presence of 

Cu rich phases around which localised attack has developed.  

Further influence of microstructure on the development of localised was observed 

with fissures initiating at precipitate intermetallic phases, this is a well-documented 

process in AA2024 [5, 28, 90, 101] under immersion conditions. It is important to 

know that the mechanics of initiation and propagation of localised corrosion under 

atmospheric exposure conditions is similar to those under fully immersed conditions.  
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4.3.3 Influence of Initial CDD 

 

As initial CDD was increased the measured volume of localised corrosion increased 

during atmospheric exposure of AA2024 samples. Up to a given CDD value the 

maximum depth of localised attack was observed to increase above this little 

increase in depth was observed. As has been shown growth of fissures within pin 

samples follows the pathway of the most susceptible grain boundary within the alloy. 

Growth takes place vertically down the pin samples along the direction of rolling 

initially, following this growth laterally along the grain boundary network takes place 

and fissures become more complex in nature Figure 4.18.  

Lateral growth of fissures begins to take place once the length of the ionic migration 

pathway to the active front deeper in the sample is increased. Beyond a certain depth 

growth of fissure vertically reaches a limiting depth , which is reached more rapidly 

for higher initial CDD’s, owing to the greater lateral growth which is observed. This 

suggestion of a limiting depth being attained in AA2024 has been reported previously 

[43, 92, 106, 108, 205], and Ghali has observed the lateral growth of fissures 

following attainment of limiting depth[43, 205], however it was not clear if lateral 

growth occurred prior to attainment of maximum depth.  From the evidence herein, it 

can be seen that lateral growth begins to occur prior to the attainment of a limiting 

(maximum) depth. With regards to limiting depth in this work there was some 

discrepancy observed between the samples used in the lab and for µCT 

measurements. A difference in the rate of development of localised corrosion in 

AA2024 using different techniques has previously been observed [91].  This is likely 

accounted for by the greater number of sites seen in the lab samples owing to their 
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not being limited in terms of size, the result being that the time required to obtain the 

maximum depth is increased, or indeed the limiting depth is reduced.  

Increased corrosion damage observed as a function of increasing initial CDD is 

linked to the behaviour of droplets on the sample surface. As has been discussed the 

higher the initial CDD for a fixed RH value the greater the droplet volume and height 

for the same concentration at equilibrium. Solution conductivity will remain 

unchanged whilst RH remains at a constant, as solution conductivity is typically 

proportional to concentration[121, 123, 204]. However, given a droplet of greater 

height and volume for a fixed concentration, the number of ions per unit area is 

reduced significantly, which results in a lowered solution resistance between the 

anode and the cathode, reducing the IR drop [63, 121, 204]. This also serves to 

facilitate and drive ionic migration within the droplet as a whole resulting in an overall 

increase in the rate of corrosion.  

Time dependent measurements made on the development of localised corrosion 

fissures in AA2024 pin samples using µCT indicated that fissure growth under a 

droplet which remains wet will proceed in a continual manner. With the growth rate 

being dependent on the initial CDD for both MgCl2 and NaCl solution droplets, to the 

effect that as initial CDD is increased the rate of corrosion measured increases. 

Growth of fissures took place both vertically and laterally as has been outlined 

previously, but over time existing fissures were also seen to widen.  Higher CDD’s 

tended to show acceleration in the measured corrosion rate whilst lower CDD’s 

tended to remain at a more steady state.  As has been outlined over the previous 

paragraphs, the lower CDD samples with smaller droplets on the surface experience 

a greater resistance in solution reducing the overall corrosion rate. Lowered solution 
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resistance allows for faster transport of ions through solution, which helps sustain the 

increase in corrosion rate observed in the higher CDD samples. 

4.3.4 Influence of Salt Type 

 

 

Influence of salt type was considered for NaCl, MgCl2, CaCl2 and substitute ocean 

water solution droplets. Evidence suggests that CaCl2 solutions result in a slight 

increase in the corrosion rate in AA2024 samples, as measured volume loss and 

maximum measured depth was increased slightly when compared to other salt types.   

It has previously been determined that CaCl2 solutions exhibit a lower pH [153, 157, 

206], due to its preferential tendency to undergo hydrolysis [158]. pH values were 

measured for the solutions used herein using a pH meter and universal indicator, and 

in order of ascending pH CaCl2 < MgCl2 < Ocean water < NaCl. Slight lowering of pH 

may result in a shortened induction time to stable pit formation and a more 

aggressive solution which helps sustain a slightly elevated corrosion rate when 

compared with the other solutions used. Further work on the corrosion behaviour of 

AA2024 under solutions of CaCl2 is required in order to provide a better 

understanding of the processes taking place, and provide confirmation of this 

hypothesis. 

With regards to the morphology of the localised attack, in all cases behaviour was 

observed to similar (Figure 4.28 and Figure 4.29), this is in good agreement with 

observations made on studies of AA2024 under simulated ocean water[96, 109], and 

under NaCl [28, 51, 92, 106] solutions. This indicates that morphology of localised 
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corrosion in AA2024 appears to be dominated primarily by the microstructure of the 

alloy rather than the solutions to which it may be exposed.  

4.3.5 Influence of Relative Humidity 

 

In addition to the influence of initial CDD and salt type on the development of 

localised corrosion in AA2024 samples the effect of exposure to different RH 

environments for a fixed initial CDD was considered. It has previously been 

suggested that RH influences the corrosion rate during atmospheric exposure [92], 

and in this work it has been shown that RH significantly affects the corrosion rate of 

AA2024. RH influenced both the maximum depth of localised corrosion and the 

measured volume of corrosion, to the effect that for all salt types corrosion rate 

increased as a function of increasing RH. 

This can be related again to the behaviour of the droplet on the surface of the 

sample, with samples showing the greatest amount of attack exposed to conditions 

where droplets are greater in volume and height. In this case however solution 

concentrations differ as a function of RH, with an increase in RH resulting in a 

lowering of the solution concentration. As such this might be the inverse of what is 

expected with whereby solutions of greater concentration result in more aggressive 

conditions.  

It is known that as solution concentration rises the viscosity of the solution increases 

alongside [121, 141, 207, 208], which serves to raise the resistance within the 

atmospheric droplet. As such ionic flow between the cathode and anode is reduced; 

this lowers the corrosion rate under these exposure conditions. In addition a more 
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viscous solution slows the diffusion rate of oxygen through the droplet to the cathode, 

further reducing the corrosion rate.  

It has been observed in this work that when RH is reduced the number of sites 

observed to initiate during µCT measurements was seen to increase (Figure 4.34, 

Figure 4.35 and Figure 4.36). It is reasonable to assume that the greater solution 

concentration will likely result in a shorter time to pit initiation, but will reduce the 

depth to which localised attack is able to penetrate as ionic migration is limited due to 

raised solution resistance. As such new pit sites will initiate at the surface in 

preference to continued growth of the existing site, resulting in sequential initiation 

and growth of new sites under these higher solution concentrations. Further 

investigation is being carried out into sequential pit initiation and growth at the 

University of Birmingham.  

For all of the RH conditions studied CaCl2 solution droplets resulted in a considerably 

increased rate of localised corrosion when compared with other salt types. For lower 

RH values this can be related to the fact that the DRH of CaCl2 is lower than the 

other salt types, at ~23% RH. As such, an increase in exposure time for these 

samples results in an increase in the measured amount of corrosion. For higher RH 

values as has been previously discussed the increase seen for CaCl2, is due to an 

increased depth and width of fissures possibly resulting from the lowered pH found 

for the CaCl2 solutions used.  
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4.3.6 Limitations 

 

Considering the possibilities for error with the measurements made during this work, 

beam damage was one of the primary concerns for which mitigation was required. To 

compensate control samples were used where a single measurement was made at 

the end point of exposure, these are plotted on summary plots Figure 4.20 and 

Figure 4.37. Little influence of artificial increase in the final volume of corrosion was 

observed, suggesting that for the short ~5 minute measurements made once every 

12 hours x-ray exposure had little negative effect on the experiments. However, as 

mentioned previously there are associated resolution issues with the µCT techniques 

used, which result in small discontinuities in fissures, these can account for small 

differences in measured volume and therefore must be considered. In addition there 

is a certain amount of sample to sample variation in the measured depths and 

volumes for the µCT samples, which due to the limited time periods available for 

making measurements cannot be turned into more statistically robust datasets. 

However, the trends which emerge are consistent across both lab and µCT 

measurements which gives confidence in the findings.  

 

4.4 Conclusions 

 

1. During atmospheric exposure to NaCl and MgCl2 solutions, an increase in the 

initial CDD results in an increase in the final measured amount of material 

loss. 

2. For 24 hour simulated atmospheric exposures there appears to be a limiting 

depth of localised attack in the L direction which is reached. After this point 
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corrosion will expand laterally along susceptible grain boundaries, aligned 

parallel to the direction of rolling of the alloy. 

3. No specific value for the threshold CDD for the occurrence of localised 

corrosion was determined, but corrosion was observed down to a CDD of 

~1 µg/cm2 

4. There is an associated increase in the measured material loss with an 

increase in environmental RH for all salt types 

5. Above ~59% RH there is a transition from pitting corrosion of limited depth and 

severity, to more sustained IGC like attack morphology for MgCl2, CaCl2 and 

simulated ocean water solutions. 

6. Microstructure of AA2024 is influential on the localised corrosion behaviour; 

(a) localised corrosion sites are aligned to the direction of rolling of the alloy, 

(b)intermetallic precipitate phases provide initiation sites and when aligned in 

strings through the bulk of the sample can provide preferential pathways for 

localised attack,(c) fissure development will follow the most susceptible grain 

boundary pathway 
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5  SECONDARY SPREADING EFFECTS DURING ATMOSPHERIC 

CORROSION OF AA2024 

 

5.1 Introduction 

 

Formation of micro-droplets at the periphery of atmospheric droplets, and a zone of 

secondary spreading beyond has been observed on several metals previously[142, 

143, 145, 147, 151, 209, 210]. Formation of microdroplets and secondary spread 

zones has been documented occur under natural atmospheric corrosion 

conditions[112]. Mechanisms of formation and spreading of micro-droplets have been 

outlined in Section 2.4.3. However, little consideration of spreading behaviour during 

the atmospheric corrosion of aluminium or AA2024 has been undertaken[145]. Micro-

droplets are a precursor to the formation of a secondary spreading zone, the 

influence of salt type, CDD, RH and exposure time on the development and growth of 

this secondary spread zone is outlined in this chapter. 

 

5.2 Results 

5.2.1  Formation of Microdroplets 

 

Figure 5.1 shows a droplet of NaCl on the surface of AA2024 plate over the course of 

12 hours.  Close examination of the droplet shows the appearance of corrosion sites 

in the lower part of the droplet, and at the edge, fine droplets start to appear. These 

can be seen at higher magnification in Figure 5.2, where initial formation was seen to 

take place within the first few hours of atmospheric exposure. Some microdroplets 

appear to be separate from the main droplet.  Over time the initial micro-droplets 
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were observed to coalesce into a thin electrolyte layer of secondary spreading 

around the original droplet.   

 

Figure 5.1 – Optical images showing the formation of micro-droplets at 
the periphery of main droplet on AA2024 surface as a function of time, 

for NaCl droplet at ~85% RH for initial CDD of 500 µg/cm2 
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Figure 5.2 – Magnified views of the periphery of the droplet shown in 
Figure 5.1 showing formation of micro-droplets on AA2024 at 1, 6 and 12 

hours exposure at ~85% RH, under NaCl droplet with initial CDD 
~500 µg/cm2 
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5.2.2 Influence of Salt Type on Spreading Behaviour 

 

 

Solution composition was observed to influence the secondary spreading behaviour 

of droplets during atmospheric exposure on AA2024 surfaces, Figure 5.3. It can be 

seen that for 24 hour exposure at a constant RH of 85% and initial CDD of 

500 µg/cm2, droplets of NaCl and ocean water, whilst no spreading was observed for 

MgCl2 and CaCl2 solutions. 
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Figure 5.3 – Optical images of salt droplets on AA2024 surfaces, 
showing the development of secondary spread zones during 

atmospheric exposure. Droplets exposed for 24 hours at 85% RH with an 
initial CDD of 500 µg/cm2. The white circles show the original perimeter 

of the droplet. 
 

Mapping of the distribution of the key elements in dried salt deposits is shown in 

Figure 5.4 - Figure 5.7. The secondary electron image in the top left of each figure 

shows the dried salt deposit and EDX maps are shown for chlorine, oxygen and the 

major cation present. It can be seen that in all cases chlorine was restrained to the 

bounds of the original droplet, the same is true for magnesium (Figure 5.5) and 

calcium (Figure 5.6). However, in solutions where sodium was present (Figure 5.4 
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and Figure 5.7) migration of Na+ to the periphery of the droplet and into the 

secondary spread region took place.  In addition it can be seen that for MgCl2 and 

CaCl2 solutions the highest concentration of oxygen at the end of sample exposure 

was located within the bounds of the primary droplet. Whilst in the case of solutions 

containing sodium some oxygen was detected in the spread zone. 

Figure 5.8 shows an EDX linscan across a dried NaCl salt deposit following 24 hours 

at 85% RH and drying in 0% RH. Linescan is indicated by the yellow line on the top 

image, from the sodium and chlorine lines below, it is further evident that migration of 

Na+ outside the periphery of the primary droplet took place, whilst Cl- remained within 

the primary droplet.  
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Figure 5.4 – SEM image and EDX maps of Na, Cl, and O of AA2024 that 
has corroded under a droplet of NaCl for 24 hours at 85% RH, with an 

initial CDD of 500 µg/cm2. and then been dried. 
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Figure 5.5 - SEM image and EDX maps of Mg, Cl, and O of AA2024 that 
has corroded under a droplet of MgCl2 for 24 hours at 85% RH, with an 

initial CDD of 500 µg/cm2. and then been dried. 
 



126 
 

 

Figure 5.6 - SEM image and EDX maps of Ca, Cl, and O of AA2024 that 
has corroded under a droplet of CaCl2 for 24 hours at 85% RH, with an 

initial CDD of 500 µg/cm2. and then been dried. 



127 
 

 

Figure 5.7 - SEM image and EDX maps of Na, Cl, and O of AA2024 that 
has corroded under a droplet of simulated ocean water for 24 hours at 

85% RH, with an initial CDD of 500 µg/cm2. and then been dried. 
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Figure 5.8 – EDX linescan across dried NaCl salt deposit, following 
24 hours at 85% RH, initial CDD 500 µg/cm2. Position of linescan is 

indicated by yellow line, with elemental linescans for Na+ and Cl- are 
shown below. 
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Figure 5.9 shows the effect of adding MgCl2 into a solution of NaCl to achieve at 

chloride ratio of 1:1. It can be seen that the addition of magnesium has reduced the 

size of the secondary spread zone which formed during a 48 hour exposure at 

85% RH, when compared with the droplet of MgCl2 shown in Figure 5.3. 

 

 

Figure 5.9 – Mixed salt droplet of NaCl and MgCl2 in chloride ratio of 1:1, 
with initial CDD of 500 µg/cm2, droplet shown on deposition and at time 

points of 24 and 48 hours exposure at 85% RH  
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5.2.3  Influence of Alloy on Spreading Behaviour 

 

 

Figure 5.10 shows the behaviour of atmospheric droplets on different metallic 

substrates from several different aluminium alloys. It can be seen that for the AA3004 

(Al-Mn-Mg) alloy the radius of secondary spreading is significantly reduced following 

24 hours exposure to NaCl solution droplets when compared to that on AA2024 

surfaces. There was little or no spreading around the droplets on AA5083 (Al-Mg) 

surfaces. 
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Figure 5.10 - Influence of metallic substrate on spreading behaviour of NaCl droplets (initial CDD 500 µg/cm2), 
exposed at 85% RH for 24 hours. Top: AA3004, middle: AA5083 and bottom: AA2024; original droplet is marked 

by white circle. 
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The total radius of secondary spreading was determined by measuring the radius 

from optical images according to the method outlined in Section 3.5.2.3.  The total 

measured radius for the different metal substrates is plotted in Figure 5.11, the radius 

of the spread zone on AA2024 was measured at roughly four times that on the other 

substrates. For AA3004 and AA5083 samples the measured radius of the secondary 

spread zone was seen to be more comparable through the droplets measured, with 

AA3004 samples showing a some spreading but none being observed for AA5083. 

 

 

Figure 5.11 - Measured radius of region of secondary spreading on 
different metallic substrates following 24 hours exposure at 85% RH, 

under NaCl solution droplets with initial CDD of 500 µg/cm2 
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5.2.4  Effect of Initial CDD and Exposure Relative Humidity on 

Secondary Spreading Behaviour on AA2024 under NaCl Solution 

Droplets 

 

For 24 hour exposures no spreading was observed for MgCl2 and CaCl2 droplets 

over the CDD range 1-500 µg/cm2. However, for NaCl solutions over 50 µg/cm2 

spreading of droplets was observed. Figure 5.12 shows spreading around NaCl 

droplets following 24 hours at 85% RH for initial CDD’s ranging from 100-500 µg/cm2. 

In the figure, the location of the original droplet following deposition is shown by a 

white circle.  For CDD values ≤2000 µg/cm2, the droplet spreading was in the form of 

discrete droplets, but at higher CDD values coalescence of micro-droplets occurred 

rapidly, leading to expansion of the primary droplet. The measured radius of the zone 

of secondary spreading or expanded droplet following 24 hours in an atmosphere of 

85% RH is plotted in Figure 5.13. It can be seen that as CDD increases at levels 

≤2000 µg/cm2, where the continuous droplets are formed, there is very little increase 

in the radius of the spread zone with CDD. 
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Figure 5.12 - Influence of CDD 100 - 5000 µg/cm2 on secondary spreading behaviour on AA2024 plate under 
NaCl solution droplets (0.2 µl), exposed to a simulated atmosphere of ~85% RH for 24 hours. Original droplet is 

shown by circle. 
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Figure 5.13 – Plot of radius of secondary spreading region as a function of initial chloride deposition density 
for 0.2 µl droplets of NaCl solution exposed at 85% RH for 24 hours 
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Figure 5.14 shows the effect of RH on the expansion of secondary spread zones on 

AA2024 under NaCl solutions of initial CDD 500 µg/cm2. For RH values below 75%, 

the droplets dried in the early stages of exposure so no spreading took place. At 75% 

RH, there is little spreading after 24 hours.  At 85% RH, there is extensive formation 

of microdroplets, and at 90% RH these undergo extensive coalescence.  The 

average measured radius of the secondary spread zone is plotted in Figure 5.15: the 

increase in radius with RH is clear.  
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Figure 5.14 – Secondary spread zones formed on AA2024 plate samples 
exposed over RH range 75-95% RH for 24 hours with initial CDD 

~500 µg/cm2, original droplet marked by broken white circle. 



140 
 

 

 

Figure 5.15 - Measured total radius of secondary spread zone as a 
function of exposure RH for NaCl droplets with initial CDD of 500 µg/cm2 

 

 

5.2.5 Influence of Exposure Time on the Secondary Spreading 

Behaviour on AA2024 Samples 

 

Figure 5.16 shows the effect of TOW on secondary spreading of atmospheric 

droplets on AA2024 surfaces, for NaCl solutions with initial CDD 500 µg/cm2 in an 

atmosphere of 85% RH. It can be seen that samples exposed for a greater period of 

time exhibited greater increases in both the size of the primary droplet and the size of 

the region of secondary spreading. It can be seen that the greatest growth in the 
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secondary spread region took place during the first week of exposure, following this 

the rate at which continued expansion took place was reduced. 

Figure 5.17 plots the effect of exposure time on the measured radius of the zone of 

secondary spreading on NaCl solutions on the surface of AA2024 samples. Over 

time the secondary spread zone increased for a fixed CDD of 500 µg/cm2 and RH of 

85%. Rate at which the spread zone grows appears to remain fairly constant over 

time for the exposure period of 5 weeks studied herein.  

 

Figure 5.16 – Spreading of atmospheric droplets on AA2024 samples as 
a function of TOW, under NaCl solution droplets with initial CDD of 

500 µg/cm2 in an atmosphere of 85% RH 
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Figure 5.17 - Measured total radius of secondary spread zone as a 
function of exposure time for 0.2 µl NaCl solution droplets, in an 

atmosphere of ~85%  RH, initial CDD ~500 µg/cm2 

 

 

5.2.6  Microstructural Observations 

 

Following removal of salt and corrosion product form the surface of samples the 

presence of shiny un-attacked regions in the surrounds of localised corrosion sites, 

shown in Figure 5.18. Areas which have undergone localised attack show up as dark 

regions following removal of corrosion product from the surface of samples. This is 

demonstrated in Figure 5.19, where magnified image of circled corrosion site from 

optical image is shown (bottom). It can be seen that the dark region indicated by the 
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dotted white circle in the optical image (top left) is a site of localised corrosion in the 

magnified SEM image. 

 It can be seen that the region exhibiting the greatest amount of localised attack is 

located towards the periphery of the original droplet.  

 

 

Figure 5.18 -  AA2024 plate surface following removal of corrosion 
product, via immersion in nitric acid and 10 second polish at 0.04 µm, 
shiny regions (indicated) form in the surround of localised corrosion 

sites (indicated), position of the primary droplet is indicated by dotted 
circle.  
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Figure 5.19- Demonstration of “dark” regions shown in optical images of 
cleaned AA2024 surfaces being localised corrosion sites. Circled site in 

the top images both OM and SEM is shown magnified in the bottom 
image. Site shows shallow pit with IGC fissures formed at the base 

extending below the surface. 
 

Presence of a mildly acidic region in which the passive film on AA2024 is stable, 

results in the formation of a smooth region which shows up as shiny under optical 

imaging (Figure 5.18). This region and deposition of corrosion product in the 
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surrounds of this area are shown in Figure 5.20, following drying of a salt solution 

droplet. In addition the presence of some precipitated salt crystals were found within 

the pit site. 

 

Figure 5.20 – SEM images showing formation of smooth unattacked 
mildly acidic region in the surrounds of localised pit site on AA2024 
surface following exposure for 24 hours at 85% RH to MgCl2 solution 

with initial CDD 500 µg/cm2 and drying in 0% RH. 
 

Figure 5.21 shows SEM images of precipitate intermetallic phases in the base 

AA2024 metal (left) and in the secondary spread zone on AA2024 (right) in un-

corroded and corroded samples. In the base metal it can be seen that the 

intermetallic particles show no dark regions at their peripheries, whilst in the spread 

zone dark area were seen to surround the intermetallics. A magnified SEM image of 
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intermetallic particle exhibiting dark areas in its surrounds can be seen in Figure 

5.22. Dark areas can be seen to be examples of trenching or grooving type 

behaviour which takes place on AA2024 under cathodic regimes. 

 

Figure 5.21 - Attack of intermetallic precipitate phases in the region of 
secondary spreading following atmospheric exposure of AA2024 

samples under NaCl solution droplets at 85% RH 
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Figure 5.22 – Trenching in the surrounds of an intermetallic precipitate 
phase particle in the zone of secondary spreading in AA2024 samples 

 

Figure 5.23 demonstrates how the surface area covered by localised corrosion sites, 

following removal of corrosion product, increases as a function of increasing 

exposure time. For 24 hour sample sites are relatively small, indicated on the far left 

image, whilst for 1 week and 3 week samples it is clear that the dark areas indicating 

localised attack have increased significantly. Location of the primary droplet is 

marked, it can be seen that for all exposure times the locations of the major sites is in 

or directly adjacent to the boundary between the primary droplet and the secondary 

spread zone.  
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Figure 5.23 – Influence of exposure time on the surface area coverage of 
localised corrosion sites following exposure to NaCl solution droplets 

with initial CDD of 500 µg/cm2 in an atmosphere of 85% RH,  
 

Measured surface area coverage of localised corrosion sites is plotted as a function 

of the radius of the secondary spread zone in Figure 5.24. As the total measured 

radius of secondary spread zones increase there was a related increase in the 

measured surface area covered by localised corrosion. Owing to the scatter in the 

results it is not possible to comment further on any trends emerging. 
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Figure 5.24 – Measured surface area coverage of localised corrosion 
sites as a function of total radius of spread zone of NaCl atmospheric 

droplets exposed for 24 hours at 85% RH 
 

5.3 Discussion 

5.3.1 Secondary Spreading of Droplets Containing Na+ 

 

The mechanism of micro droplet and secondary spread zone formation is outlined in 

Section 2.4.3.  Resulting from the formation of a potential gradient within the droplet 

leading to the formation of a cathodic region at the droplet periphery at which micro-

droplets form [142-144]. 

Formation of micro-droplets during the early stages of atmospheric corrosion ~1 hour 

was observed herein on AA2024, this agrees well with previous observations during 
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the initial stages of atmospheric corrosion on AA7050[152] magnesium, steel and 

copper[145, 209, 211]. Following formation of a sufficiently large number of micro-

droplets, in the near vicinity of each other, coalescence into more consolidated thin 

electrolyte layers. Coalescence of micro droplets takes place as growth of individual 

droplets results in their increasing proximity to one another leading to interaction 

between individual droplet boundaries. The morphology of individual micro-droplets 

and secondary droplets at the periphery of the primary droplet were similar to those 

reported to form on AA7050[152], magnesium alloys [151, 209], stainless steel [142, 

145, 146, 169], copper[146, 211], zinc[150] and pure Al[145], under NaCl solution 

droplets. 

It was determined that as with results from work on stainless steels, formation of 

micro-droplets occurs for NaCl droplets[142, 143, 146], but does not take place for 

either MgCl2[146] and CaCl2[143] during 24 hour exposures. However, in the case of 

artificial ocean water it can be seen that the occurrence of micro-droplets and zones 

of secondary spreading was observed, during exposure at ~85% RH for 24 hours.  

EDX carried out on droplets following drying in order to determine the elemental 

distribution within the primary droplet and the region of secondary spreading showed 

that elements migrated to specific regions within the droplet. Previously elemental 

mapping during spreading studies has been carried out on steel[142]  and zinc[149] 

to map NaCl deposits following occurrence of secondary spreading. The results from 

this work, where migration of sodium to the droplet periphery and into the zone of 

secondary spreading agree well with those seen on steel and zinc. Migration of Na+ 

to this region is likely in order to maintain charge balance at the cathode following its 

establishment in this area.  
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Presence of chloride within the original droplet area and in the vicinity of the main 

localised sites indicates that the primary anodic regions are located within the 

primary droplet and towards its periphery. Further during EDX mapping and point 

scans it was determined that increased levels of oxygen were present in these 

locations, indicating that these are the primary locations in which hydroxides are 

precipitated. This takes place due to migration of dissociated cations towards 

hydroxide ions formed due to oxygen reduction at the cathode.  

5.3.2 Influential Factors on Enhancement of Secondary Spreading 

 

Influence of initial CDD on the spreading behaviour of NaCl solutions was observed 

to be quite significant, with an increase in CDD leading to an increase in the size of 

the secondary spread zones. This expansion can primarily be attributed to changes 

in droplet volume during the equilibration phase, whereby a greater amount of 

moisture is taken up from the environment to attain equilibrium for a greater quantity 

of chloride [121, 123, 139]. Greater expansion of the droplet results in a greater 

surface coverage under solution layer, which in turn results in an increase in the size 

of the available cathodic area.  

Similar behaviour was observed as a function of RH, with higher RH values resulting 

in greater spreading, again this can be primarily attributed to droplet expansion 

during equilibration with the environment. The lack of micro-droplet formation for 

NaCl and ocean water droplets of ~60% RH and below is primarily due to this being 

below the DRH of NaCl which is primary component of both solution types.  

Exposure time influenced the spreading behaviour of atmospheric droplets on 

AA2024 surfaces, to the effect that as exposure time increased the radius of the 
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secondary spread zone increased, for NaCl solution droplets. Over time the rate of 

expansion of the secondary spread zone on NaCl and Ocean samples decreased, 

this is likely due to a slowing in the rate of corrosion that generally takes place for an 

increased exposure time. As anodic rate slows the required cathodic rate and hence 

the size at which new cathodic areas are required to be developed is reduced 

accordingly. 

5.3.3 Influence of Mg2+ and Ca2+ on Secondary Spreading 

 

Magnesium hydroxide has previously been reported to precipitate towards the 

periphery of atmospheric droplets, and inhibit migration of ions due to its insoluble 

nature [146, 149]. The solubility of calcium hydroxide (Ca(OH)2) and magnesium 

hydroxide (Mg(OH)2), are both considerably lower at 0.16020 and 

0.006920 g/100g H2O respectively[129], than that of sodium hydroxide (NaOH) at 

10025 g/100g H2O[129]. This ring of insoluble hydroxide formed at in the cathodic 

region towards the droplet edge helps to prevent the migration of ions which is 

required for the formation of a zone of secondary spreading. As such this explains 

why during a 24 hour exposure spreading is observed in solutions containing Na+, i.e 

NaCl and substitute ocean water, but not for solutions of CaCl2 or MgCl2. Formation 

of hydroxides takes place according to the following reactions: 

                                 

                                 

It is possible that in addition to the formation of hydroxides the formation of 

carbonates may also take place. Carbonates of magnesium (MgCO3) and calcium 
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(CaCO3), also show reduced solubility when compared with sodium carbonate 

(Na2CO3) or NaOH. Solubility’s of these carbonates are 0.1820, 0.0006620 and 

30.725 g/100 g H2O respectively[129], which compare to those for hydroxides. Which 

indicates that if carbonates were to be precipitated in place of or in addition to 

hydroxides, then both would likely inhibit the migration of ions outwards to create a 

zone of secondary spreading.  

A comparison of metallic substrate was made for several different aluminium alloys to 

determine changes in atmospheric droplet behaviour. The relative size of the spread 

zone following 24 hours exposure to NaCl solution droplets at 85% RH was to the 

effect that AA5083<AA3004≤AA2024. It is likely that the increased magnesium 

content in AA5083 inhibited the spreading processes through the formation of either 

magnesium hydroxides or carbonates at the droplet periphery. As has been 

discussed previously the reduced solubility of Mg(OH2) compared with NaOH inhibits 

the spreading of atmospheric droplets.  

Expansion of the primary droplet was also observed, this was associated primarily 

with the growth of localised sites at the periphery, as sites extended beyond the 

bounds of the original droplet, it is likely that the surface tension of the droplet is 

lowered as a result. As such the droplet expands to cover the site allowing growth of 

the site to continue. Similar behaviour is observed under solutions of MgCl2 and 

CaCl2 where outward expansion of the primary droplet took place over an active site 

at the periphery of the droplet. However, little or no formation of micro-droplets was 

observed for MgCl2 and CaCl2 for exposures of up to 5 weeks. 
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5.3.4 Microstructural Phenomenology 

 

Following removal of corrosion product form the sample surfaces, un-attacked shiny 

regions were observed around sites of localised corrosion on the sample surfaces. 

Presence of un-attacked areas have been observed previously on 5xxx series 

aluminium[87], during atmospheric testing at the University of Birmingham. It is likely 

that this shiny zone where no attack was observed presents as a region of mild 

acidity. As such two factors promote the protection of this region; the first is the 

solution pH which is in the more neutral range of 6-8 where the passive film on 

aluminium is stable Figure 2.4. The second is the precipitation of corrosion product 

which takes place at the junction between the cathode and the anode, the presence 

of corrosion product protects the passive film, which results in the shiny un-attacked 

surface observed herein. Precipitation of corrosion product around an active site of 

localised corrosion has also been observed during droplet studies on AA7050[152]. 

Trenching of intermetallic precipitate phases in AA2024 takes place primarily in 

alkaline regions [48, 50, 51], located towards the cathode. As such it is reasonable to 

surmise that the regions in which trenching was observed during this work are 

cathodic in nature. Trenching was primarily observed in the region of secondary 

spreading during atmospheric exposure to NaCl and ocean water samples, indicating 

that these zones are cathodic in nature. The importance of this being that as the 

region of secondary spreading grows the size of the potential cathodic region grows 

accordingly. Separated anodic and cathodic regions has previously been reported on 

zinc[212], and the reported presence of shiny regions in the surrounds of localised 

sites on 5xxx series aluminium[87] and the proposed mechanisms outlined  on 
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AA7050[152]. This coupled with the evidence provided herein suggest that electrode 

separation can take place on aluminium as well.  

A good correlation was observed between an increase in the radius of the spreading 

of atmospheric droplets and the associated amount of surface damage for NaCl 

droplets exposed at 85% RH. This is important as it provides support for the 

hypothesis that as the area of the surface covered by moisture increases the 

potential size of the cathodic area. As such the increase in the size of the available 

cathodic region allows for an increase in the corrosion rate to take place[94, 213], the 

result of which is a greater observed amount of localised attack, due to the enhanced 

anodic reaction rate associated with maintaining electrochemical neutrality.  

5.4 Conclusions 

 

1 Presence of Na+ in atmospheric droplets on AA2024 plate surface resulted in 

the formation of secondary spreading zones at the periphery of primary 

droplets. 

2 Secondary spreading effects observed for NaCl solution droplets are 

enhanced by increases in initial CDD, exposure time and RH. Due to 

increases in the solution acidity in the anodic region, an increase in cathode 

size is required in order generate the necessary alkalinity to maintain balance 

in the environment 

3 Addition of Mg/Ca based salts and Mg in the alloy helps inhibit the secondary 

spreading process due to the formation of insoluble hydroxide and or 

carbonates.  
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4 For NaCl samples with spread zones formation of largest localised site of 

corrosion was observed towards the edge of the primary droplet, and growth 

occurred outwards from the periphery of the droplet over longer exposure 

periods. 

5 As exposure time was increased the observed amount of localised corrosion 

at the surface of samples was seen to increase. 

6 Presence of shiny un-attacked regions between the primary anodic and 

cathodic regions, were observed as a result of the passive film remaining 

intact in this region. Passive film was preserved in this region due to the pH 

being raised into the range over which the solubility of the oxide film is 

significantly reduced. 
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6 CYCLIC WET/DRY ATMOSPHERIC EXPOSURE OF AA2024 

6.1 Introduction 

 

Airframe structures are exposed to periods of wet and dry conditions. It is therefore 

important to understand how cycling between the wet and dry phases during 

atmospheric exposure influences the development of localised sites in order to 

develop effective PHM models. A cyclic immersion test on AA2024 revealed that 

greater damage accumulation occurred for this type of exposure [95], however, very 

little work has been carried out under more realistic wet/dry cycles on AA2024 [162]. 

The aim of this chapter is therefore to provide a better understanding of the 

processes taking place during fluctuations in relative humidity.  

6.2 Results 

6.2.1 Effect of Drying Phase on Atmospheric Corrosion of AA2024 

 

Figure 6.1 provides a 3-D reconstruction of the corroded volume for an AA2024 pin 

sample exposed to an NaCl solution droplet of initial CDD ~4500 µg/cm2. After 

23 hours at ~85% RH (a,b), it can be seen that the droplet has become uneven in 

shape due to the presence of corrosion products at the metal surface and the 

presence of hydrogen bubbles in the droplet. Hydrogen bubbles can be seen to have 

formed at the mouth of the fissures, which grew during the wet phase of exposure. 

Following 2 hours drying at ~30% RH (c,d), the droplet has dried into solid crystalline 

salt phases and a gel-like layer. Salt crystals are likely to be NaCl and the gel-like 

layer is corrosion product. During the drying phase one of the fissures has grown 

significantly in both depth and width, whilst the other has grown primarily in width. 

The fissures appear discontinuous in nature primarily due to the resolution (pixel 
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size) associated with the measurements, as fissures narrower than 0.75 µm were 

undetectable using the µCT technique used. 

In (e), a reconstructed vertical section of the pin showing the point of maximum depth 

is shown, with solid salt phase precipitated above. The fissure on the left hand side 

can be seen to be much less clearly defined than that on the right, due to the pixel 

size of the measurements. 
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Figure 6.1– 3-D reconstruction of IGC corrosion fissures in AA2024-T351 
pin sample, NaCl droplet, CDD ~4500 µg/cm2; (a) 23 hours at 85% RH, (b) 

rotated 90o with H2 bubbles visible at surface of pin, and IGC fissures 
visible subsurface; (c) Following 1 hour drying at ~0% RH, (d) rotated 90o 

showing IGC fissure volume evolution under solid phase; (e) Vertical 
tomographic section of IGC under solid phase 

 

Figure 6.2 shows the development of fissures during drying of a droplet of simulated 

ocean water on an AA2024 pin sample. The top and middle image show a vertical 

section of the most active site, at the end of the wet phase and following drying for 1 

hour at ~0% RH respectively. In the top image a large number of small hydrogen 

bubbles can be seen, the slightly distorted shapes of these bubbles is probably due 

to the presence of large numbers of bubbles which interconnect. Further the 
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presence of corrosion product will also influence the shape of the droplet. Following 

drying (middle), the salt deposits and the gelatinous layer of corrosion product can be 

seen to be discontinuous in the section shown. In addition a large salt crystal 

appears to have precipitated in the vicinity of the largest corrosion site which was the 

most active during the drying phase. The bottom image shows 3-D reconstructions of 

the fissure volumes: yellow sites are those grown during the initial 24 hour exposure 

and red shows the development of corrosion during the drying phase. It can be seen 

that most sites show little growth but two sites have grown appreciably during the 

drying phase. 
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Figure 6.2 - AA2024 pin sample under droplet of simulated ocean water 
(initial CDD 500 µg/cm2), exposed for ~24 hours at ~85% RH and dried for 

2 hours at ~0% RH, bottom row shows reconstructed volume at end of 
wet phase (yellow) and following drying (red), most active site during 

drying is highlighted  
 

The measured material loss in samples exposed to an initial wet phase of 85% RH 

and then dried either to the DRH of the salt or “0% RH” is plotted in Figure 6.3. 

Overall the trend which emerges is that during the drying phase either at the end of a 

12 hour or a 24 hour initial exposure there was an increase in the measured rate of 

material loss. This relates to a rise in the rate of corrosion. For plots above the dotted 
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line with an initial CDD of 4500 µg/cm2 the overall rate of corrosion was greater than 

for those below the dotted line with CDD 500 µg/cm2. The rate of material loss was 

broadly comparable for all samples exposed at 4500 µg/cm2, until the onset of a 

drying phase. The same was observed for samples with CDD of 500 µg/cm2 where 

an increase in rate was observed during drying. 

There is also an indication that samples dried to close to their DRH values (marked 

on the plot) saw a greater increase in material dissolution during the initial phase of 

drying compared with samples that were dried to “0% RH”.  
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Figure 6.3 - Measured material loss in AA2024 pin samples during µCT 
measurements for wet phases (85% RH) followed by drying either to 

“0% RH” or to their respective DRH (75% RH for NaCl and 33% RH for 
MgCl2 and ocean water). Samples were exposed for 12 or 24 hours, at 

which point a tomogram was measured from which the corroded volume 
was measured, and the measurement was repeated following 1 hour at 

the changed RH. Salt types are indicated by colour, for cases where 
drying was not to “0% RH” the RH used is indicated. Traces above the 
dotted line had an initial CDD of 4500 µg/cm2 and samples below had 
initial CDD of 500 µg/cm2. Samples which remained continuously wet 

used as a corrosion rate comparison are shown by dotted lines. 

 

6.2.2 Influence of re-humidification of the environment on the 

development of localised corrosion 

 

Following maintenance of a dry period at “0%” RH it was observed that during re-

humidification of the environment to 85% RH, the formation and growth of new sites 
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of localised corrosion was observed (Figure 6.4). Top images show near surface 

sections of an AA2024 pin sample exposed to wet-dry cycling through 24 hours wet 

at 85% RH (left), and following 12 hours dry at “0%” RH and 20 hours re-wet at 

85% RH (right) under NaCl solution of 500 µg/cm2, with fissures highlighted in red. 

The original site grown during the initial exposure period is circled by a dotted white 

line, it can be seen that two new sites have formed and grown rapidly during the 

second wet phase. 3-D reconstructions of the fissures shown in the bottom image, 

highlight the original sites, it can be seen that no measurable growth has taken place, 

instead other IGC fissures have grown at a significantly increased rate. 

Figure 6.5 plots the measured volume loss over time for the sample shown in Figure 

6.4, along with a trace for a sample exposed in a constant wet state at 85% RH. It 

can be seen that the measured rate for both samples during the initial 24 hour 

exposure both rates were comparable. For the wet-dry sample it can be seen that 

during drying there was a small increase in rate which was followed by a drop to a 

phase of no localised growth during the dry phase at “0%” RH. Following re-

humidifcation a further burst in the rate of corrosion was measured which was 

sustained through the second wet phase. 
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Figure 6.4 - Development of localised corrosion in an AA2024 pin sample 
during a cyclic exposure to NaCl solution, initial CDD of ~500 µg/cm2, left 
hand side shows sample following 24 hours at ~85% RH, right hand side 
shows sample following the drying (to “0%” RH) and re-humidification 

process (to 85% RH). Bottom shows 3-D reconstructions of the corroded 
volume, following initial wet phase (left) and following drying and re-
humidification (right), the site formed during the initial wet phase is 

highlighted. 
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Figure 6.5 - Measured material loss in AA2024 pin sample through a 
single wet/dry/wet cycle of atmospheric exposure, under a droplet of 
NaCl solution with initial CDD ~500 µg/cm2.  The sample was initially 

exposed to 85% RH for 24 h when the first measurement was made.  The 
sample was immediately placed in a dry environment and measurement 

was made 1 hour later.  A measurement was made at the end of a 12 
hour dry phase, following 1 hour at 20 hours re-humidification to 

85% RH. In addition plotted is the measured material loss for a sample 
exposed to NaCl solution with initial CDD ~500 µg/cm2 for 24 hours 

continually as a comparison for rate of corrosion. Black dotted lines 
indicate time point at which RH was changed. 

 

Figure 6.6 plots a comparison of material loss for samples exposed to different initial 

CDD’s of ~500 and 4500 µg/cm2. Despite the different exposure times it can be seen 

that the behaviour with regards to trends in the corrosion rates are similar for the two 

conditions. With an increase during the initial phase; preceding a drop in rate to a 

level where growth of localised corrosion sites effectively stopped. During re-
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humidification of the environment from “0%” to 85% RH a further burst in the 

corrosion rate was observed, the increased rate of dissolution was maintained during 

the second wet phase. The higher initial CDD value resulted in a greater measured 

loss of material at the time point for which its final measurement was made, which is 

to be expected from the results shown in Section 4.2.4. 

 

Figure 6.6 - Measured material volume loss through single wet (85%RH)-
dry (“0%” RH) - wet (85%RH), cycle for NaCl solutions, with initial CDD's 

of ~500 µg/cm2 and of ~4500 µg/cm2, black dotted lines indicate time 
point at which RH was changed 
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6.2.3 Influence of Drying Regime on Development of Localised 

Corrosion during Wet-Dry Cycling 

 

Figure 6.7 demonstrates how the formation of new localised corrosion sites takes 

place under NaCl solution droplets with fixed initial CDD of 4500 µg/cm2, exposed to 

different wet-dry regimes. Top row shows sample exposed through cycle of 85-“0”-

85% RH and bottom row through 85-75-85% RH. In both cases the initial wet phase 

involved 12 hours exposure at 85% RH, the sites formed during this phase are 

shown for both samples in the left hand column. Near surface sections are shown 

with fissure sites highlighted. Right hand side column shows near surface sections 

following wet-dry exposure, in both cases original sites are highlighted by means of 

dotted black squares, and new sites by dotted red circle.  

It can be seen that for both regimes new sites were initiated during the second wet 

phase. This accounted for a significant burst in the rate of corrosion; this is shown in 

Figure 6.8 where measured material loss is plotted for both samples shown in Figure 

6.7. It is evident that the trend observed for changes in rate with increases during the 

initial dry phases and the second wet phase were consistent for both samples. But 

following the initial dry phase it can be seen that for the sample dried to “0%” RH rate 

dropped to no growth, whilst for the sample dried to 75% RH some growth continued 

during the dry phase.  

A comparison of samples measured once at the end of a single wet phase of 

~60 hours, both wet-dry samples showed an increased corrosion rate at the ~40 hour 

time point when the final measurement was made. During the initial wet phase the 

rate is broadly comparable for all of the samples shown. 
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Figure 6.7 - Development of new sites of localised corrosion in AA2024 
pin samples during cyclic exposure to NaCl solution droplets with an 

initial CDD of ~4500 µg/cm2, under different drying regimes. Top sample 
exposed to 85-0-85% RH, and bottom sample exposed to 85-75-85% RH, 

original sites black rectangles and new sites red circles 
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Figure 6.8 – Measured material volume loss through a wet-dry-wet cycle under 
NaCl droplets of initial CDD of ~4500 µg/cm2, for different drying regimes of 85-

75-85% RH (dotted line) and 85-0-85% RH (dashed line), and comparison for 
samples left at constant RH of 85% (solid lines). Black lines indicate time 

points at which RH was changed, and labels indicate drying condition and if 
atmosphere was wet or dry.  

 

Localised corrosion behaviour for MgCl2 samples under different wet-dry regimes is 

shown for a fixed CDD of 4500 µg/cm2, exposed to different wet-dry regimes in 

Figure 6.9. Top row shows sample exposed through cycle of 85-“0”-85% RH and 

bottom row through 85-33-85% RH. In both cases the initial wet phase involved 

12 hours exposure at 85% RH; the sites formed during this phase are shown for both 

samples in the left hand column. Near surface sections are shown with fissure sites 

highlighted. Right hand side column shows near surface sections following wet-dry 

exposure, in both cases original sites are highlighted by means of dotted black 

squares, and new sites by dotted red circle.  
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It can be seen that for both regimes new sites were initiated during the second wet 

phase. This accounted for a significant burst in the rate of corrosion; this is shown in 

Figure 6.10 where measured material loss is plotted for both samples shown in 

Figure 6.9. It is evident that the trend observed for changes in rate with increases 

during the initial dry phases and the second wet phase were consistent for both 

samples. But following the initial dry phase it can be seen that for the sample dried to 

“0%” RH rate dropped to no growth, whilst for the sample dried to 33% RH some 

growth continued during the dry phase.  

A comparison of samples measured once at the end of a single wet phase of 

~60 hours, both wet-dry samples showed an increased corrosion rate at the ~40 hour 

time point when the final measurement was made. During the initial wet phase the 

rate is broadly comparable for all of the samples shown. 

When compared to NaCl samples, the final difference in volume for the different wet-

dry regimes is reduced, this is due to the much reduced DRH value of MgCl2 

(33% RH). As such solution remains present at the metal surface for a prolonged 

period of time allowing a greater amount of dissolution to take place.  
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Figure 6.9 - Development of new sites of localised corrosion in AA2024 
pin samples during cyclic exposure to MgCl2 solution droplets with an 

initial CDD of ~4500 µg/cm2, under different drying regimes. Top sample 
exposed to 85-0-85% RH, and bottom sample exposed to 85-33-85% RH, 

original sites black rectangles and new sites red circles 
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Figure 6.10 - Measured material volume loss through a wet-dry-wet cycle 
under MgCl2 droplets of initial CDD of ~4500 µg/cm2, for different drying 
regimes of 85-33-85% RH (dotted line) and 85-0-85% RH (dashed line), 
and comparison for samples left at constant RH of 85% (solid lines). 

Black lines indicate time points at which RH was changed, and labels 
indicate drying condition and if atmosphere was wet or dry. 

 

Figure 6.11 shows a series of near surface sections for a sample exposed to 

simulated ocean water and subjected to a wet-dry cycle of 85-0-85% RH. Highlighted 

in each case (dotted black square) is the site formed during the original 24 hour 

exposure at 85% RH. It can be seen that during the initial drying phase a small new 

site initiated, this site formed during the initial 1 hour of drying. Following re-

humidification of the environment to 85% RH it can be seen that a large number of 

new sites formed, these are shown in the bottom row of reconstructed sections.  
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3-D reconstructions of the corroded volumes are shown in Figure 6.12, the original 

site grown during the initial 24 hour period at 85% RH is highlighted by a black dotted 

square. The new sites formed during re-wetting can be seen, which have developed 

rapidly within the first hour of re-humidification of the environment to 85% RH. In this 

sample some continued growth of the pre-existing site was seen in addition to the 

new sites. This was the case in a small number of the samples studied during this 

work. 
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Figure 6.11 - Near surface sections of AA2024 pin sample, µCT 
measurements made during wet/dry cycling, under substitute ocean 

water solution droplets. Under cycle of 85-0-85% RH, with initial CDD of 
~500 µg/cm2. Development of new localised sites of corrosion is shown, 

original site is highlighted by black dotted square, time points and 
humidities are labelled. 
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Figure 6.12 – 3-D reconstructed corrosion fissure volumes during 
wet/dry cycling of AA2024 pin sample exposed to substitute ocean water 

droplet, under cycle of 85-0-85% RH, with initial CDD of ~500 µg/cm2. 
Original site is highlighted by means of dotted black square, time points 

and humidities are labelled. 
 

Measured material loss is plotted for a single wet-dry cycle of 85-0-85% RH for 

simulated ocean water samples in Figure 6.13. It can be seen that whilst there was 

some scatter in the material loss for the samples, both followed the same trends with 

an acceleration in corrosion during the second wet phase. Plot showing the greatest 

volume loss corresponds to the images shown in Figure 6.11 and Figure 6.12. In 

addition a comparison with a sample which was left for 24 hours at 85% is shown as 

a comparison for the initial rate. There was a difference in the rates during the initial 

12 hour period but following 24 hours the volume loss was comparable. No 12 hour 

measurement was made for the cycling sample so it may be that the behaviour was 

similar. 
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Figure 6.13 - Measured material volume loss through a wet-dry-wet cycle 
under simulated ocean water droplets of initial CDD of ~500 µg/cm2, for 
different drying regime of 85-0-85% RH (solid lines), and comparison for 
sample left at constant RH of 85% (dotted line). Black lines indicate time 
points at which RH was changed, and labels indicate if atmosphere was 

wet or dry. 
 

Development of localised corrosion fissures in an AA2024 pin sample exposed to 

simulated ocean water with under a wet-dry cycle of 33-85-33% RH, is shown in 

Figure 6.14 and Figure 6.15. Figure 6.14 shows a series of near surface sections, for 

time point at the end of initial 33%RH where two small sites are visible, these are 

also shown in the top image in Figure 6.15. Following humidification of the 

environment a number of new sites initiated, this is shown in the middle row in each 

of the figures. Following reduction of the RH to 33% these sites continued to grow, 
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with the addition of a number of much smaller sites which are visible on the near 

surface section at the bottom of Figure 6.14.  
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Figure 6.14 - Surface sections of an AA2024 pin sample, µCT 
measurements made during the wet/dry cycling, under substitute ocean 
water solution droplets, under cycle of 33-85-33% RH, with initial CDD of 

~500 µg/cm2. Original site is highlighted by black dotted square, time 
points and humidities are labelled. 
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Figure 6.15 - Reconstructed corrosion fissure volumes during the  
wet/dry cycling of an AA2024 pin sample exposed to substitute ocean 

water droplet, under cycle of 33-85-33% RH, with initial CDD of 
~500 µg/cm2 

 

The measured material loss for ocean water samples exposed to different drying 

regimes is plotted over time in Figure 6.16. For samples exposed to the wet-dry 

regime of 85-0-85, total material loss was greater than for samples exposed to 33-85-

33% RH. For the latter an increase in the corrosion rate was seen following 

humidification of the atmosphere to 85% RH, before it slowed following drying back 

to 33% RH. Some scatter can be seen for each of the drying regimes, in terms of 

measured volume, but trends followed were the same. Also plotted are two steady 

state samples for a comparison of corrosion rate during the initial 24 hour period it 
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can be seen that they are in reasonably good agreement with the wet-dry cycling 

samples during this phase. 

 

Figure 6.16 - Measured material volume loss through different wet/dry 
cyclic exposures, under solution droplets of substitute ocean water, 

initial CDD ~500 µg/cm2. Solid lines shows wet-dry regime of 85-0-85% 
RH, dashed lines show wet-dry regime of 33-85-33% RH, and dotted lines 
show samples left in “wet” state at 33% and 85% RH. Dotted black lines 
indicate time points at which humidity was changed, labels indicate if 

atmosphere was wet or dry. 
 

6.2.4 Long Term Drying Effect 

 

Figure 6.17 demonstrates an AA2024 pin sample exposed under a droplet of MgCl2 

solution for 12 hours at ~85% RH, which was stored in 0% RH for 1 week before 

being placed back into an environment of ~85% RH.  It can be seen that as with 
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samples which were only dried for a shortened time period (12 hours) formation of 

new sites took place following re-humidification of the slat present on the sample 

surface. This demonstrates that the phenomenon of new site imitation will take place 

even over longer dry periods if the salt deposit is not removed from the metal 

surface. 
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Figure 6.17 - An AA2024-T351 pin sample exposed at 85% RH, under an 
MgCl2 solution droplet with CDD of ~ 4500 µg/cm2, (a) following the initial 

12 hours in simulated atmosphere of ~85% RH, and dry for 1 week 
~0% RH. (b) following 1 week dry ~0% RH and 3 hours re-humidification 

to 85% RH, multiple new sites are visible on the surface of the pin 
sample. The original corrosion sites are shown in the circles. (c) 3D 
rendering of the sites formed during the initial wet cycle (white), and 

during the second wet cycle (red) 
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6.2.1 Precipitation of corrosion product and Salt Crystals 

 

Figure 6.18  shows the precipitation of corrosion product at the mouth of a fissure 

during a wet phase of atmospheric corrosion. Precipitation of corrosion product in this 

area is important as it can act as a diffusion barrier to ions migrating in and out of the 

localised corrosion site, resulting in increasingly aggressive conditions. Presence of a 

hydrogen bubble can also be seen in solution, indicating that this is an active 

localised site.  

Figure 6.19 demonstrates how during drying salt deposits can dry above a 

precipitated layer of corrosion product. Precipitation of the salt crystal in the presence 

of an active site took place in several cases for exposure under solutions containing 

NaCl. The indication may be that this process occurs in the vicinity of the most active 

site during the drying phase. 
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Figure 6.18 - Precipitation of corrosion product at the mouth of active fissures 
during wet phase (85% RH) of atmospheric exposure to NaCl solution with 

initial CDD of 4500 µg/cm2, with evolution of H2 gas further indicating localised 
corrosion is proceeding 

 

Figure 6.19 - Dried salt deposit and precipitated layer of corrosion 
product at the mouth of fissure following drying (to 0% RH) after 24 

hours exposed at (85% RH) of atmospheric droplet on AA2024, cubic 
nature of the salt deposit is typical of NaCl deposits, initial CDD 

4500 µg/cm2 
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6.3 Discussion 

6.3.1  Influence of Drying Phase on the Atmospheric Corrosion of 

AA2024 

 

Following a wet phase of atmospheric exposure, drying of droplets occurs, the extent 

of which is dependent on the change in RH of an environment, and the salt type 

present on a surface.  Sharp drop in RH, well below the DRH of single salts results in 

a very rapid drying of the droplet and salting out of solid phases. When drying to 

close to the deliquescent point (DRH) a slower rate of drying was observed, and 

moisture remained on sample surfaces below the DRH. This is consistent with the 

efflorescence point (ERH) being below the DRH of single salt solutions, which has 

been previously reported [210, 214]. This allows aqueous corrosion processes to 

carry on at lower RH’s than the reported DRH[215]. 

Considering the influence of the drying phase on corrosion rate, there was an 

acceleration in the rate of material loss during the initial drying phase followed by a 

reduction in the measured rate to a point where little or no material loss continued, as 

the drying period was prolonged. The relative severity of the increase in rate during 

the initial drying phase was observed to be dependent on the quantity of salt present. 

In addition, sample dried to an RH close to their reported DRH, showed a greater 

increase in the rate of material loss than those dried to ~0% RH. Furthermore MgCl2 

solutions showed a greater rate of material loss than the comparable NaCl sample 

for the same initial CDD. This is likely due to the lower DRH of MgCl2, 33%, 

compared with that of NaCl, 75%. As such ions remain dissolved in solution for a 

more prolonged period, increasing the time during which corrosion processes could 

proceed. A more visual representation of this acceleration in drying is shown in 
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Figure 6.1, where rapid growth of corrosion fissures during drying can be seen in 3-

D. 

This acceleration in material loss during drying has been observed on zinc and pure 

aluminium surfaces, as the electrolyte layer thins[160, 216].  For iron a similar 

acceleration in corrosion rate has been observed during the initial stage of drying of a 

TEL[217, 218]. Vera-Cruz observed a similar effect during drying of TEL’s on steel, 

where the rate of corrosion increased during the initial and middle stages of drying, 

prior to a drop off in rate as more prolonged drying events took place[173, 219]. 

Morton [152] has recently shown that during evaporation of a droplet on AA7050 that 

a similar effect is observed. 

Acceleration in the rate of corrosion during the initial phase of drying has previously 

been attributed to two mechanisms; (a) reduction in the oxygen diffusion distance as 

moisture is lost, (b) increased solution concentration as moisture is lost [152, 160, 

173, 216]. Stratman [217] suggested that (a) may not hold true as he observed less 

of a shift in potential during a wetting phase when layer thickness is similar to that 

during drying, on iron surfaces. However, as is discussed later, acceleration in the 

rate of corrosion was observed both during re-wetting and  the early stages of drying 

in this work.  

Thus it seems reasonable to attribute the acceleration in the rate of corrosion during 

the drying phase measured during this work, to the same mechanisms. As during 

drying moisture is observed to be lost, the increased solution concentration creates a 

significantly more aggressive environment. This continues until solution saturation 

point is reached, at which time salting out occurs, but the whilst there is still moisture 
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present in the vicinity of these solid phases there will be highly concentrated 

solutions present. In addition during drying of the droplet the oxygen diffusion 

distance is reduced, this may increase the rate of corrosion during the drying phase 

as it promotes an increased oxygen diffusion rate to the cathode. However, it is likely 

that this will be a secondary influence, as the solution layer through which the oxygen 

diffusion is taking place is relatively small in the first place, and for the most part is 

below the 100 µm level reported as being influential during TEL studies[161]. 

In addition during drying, precipitation of solid crystalline salt phases was observed 

during the µCT measurements. It is the location at which precipitation occurs which is 

of interest as it appears that precipitation will occur in the vicinity of the most active 

fissure during the drying phase. This effect is demonstrated in Figure 6.1 and Figure 

6.2 for NaCl and simulated ocean water solutions respectively, where a solid phase 

is clearly seen at above the fissure which has shown the greatest development 

during the drying phase.  

To knowledge this effect has not been widely considered as it is an advantage of the 

particular technique employed herein. However, it seems plausible that presence of a 

solid phase at the mouth of the most active fissure during the drying phase of 

atmospheric exposure can likely be accounted for by ionic migration to maintain 

charge balance [40, 47, 61, 70]. To the effect that as corrosion rate increases in 

active sites, Cl- ions migrate to the vicinity to maintain the charge balance in the area, 

as solution concentration rises beyond saturation point, migration of cations is then 

observed in order for “salting out” of the solid phases to occur.  
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In addition to the precipitation of salt crystals in the presence of active sites, 

corrosion product forms at the surface of the metallic substrate at the mouth of active 

fissures. This is a well-documented process [61, 70, 72, 220], with precipitation of 

aluminium hydroxide corrosion shown in  

Figure 6.18. Presence of the same layer of corrosion product beneath a solid salt 

crystal is shown in Figure 6.19. This layer of corrosion product creates an elevated 

localised pH within the corrosion site, which becomes further concentrated during 

drying. This can further accelerate the corrosion rate suring drying. El-Mahdy[160], 

indicated that on pure aluminium surfaces drying events were related to an increased 

rate of corrosion product precipitation, which appears to be consistent with the 

observation on the AA2024 pin samples studied herein. The presence of this layer of 

corrosion product is further relevant to the processes occurring during the onset of a 

second wet phase, which is discussed further over the coming sections. 

 

6.3.2  Influence of Re-Humidification of the Atmosphere on the 

Localised Corrosion of AA2024 

 

 

During atmospheric exposures following a dry period a further wet cycle follows 

during which re-humidification of salt deposits retained on surfaces can take place. 

This has been shown to result in a large jump in the measured rate of material loss. 

This acceleration has been attributed herein to the formation of new localised 

corrosion sites, which develop rapidly and are separate from the original site.  

Formation of new sites is shown by means of near surface sections and 3-D 

reconstructions of corroded volumes. 
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Larignon[221] observed a similar effect whereby repeated immersion and drying of 

AA2024 plate samples resulted in an increase in the number of grain boundaries 

attacked when compared to samples left continually immersed. It has also been 

suggested that this phenomenon may take place in AA7xxx series [162], during ex-

situ tomography studies. However, neither body of work has proposed mechanisms 

for the development of increased number of localised corrosion sites during cyclic 

exposure.  

The following hypothesis is offered as to the preferential formation of new sites as 

opposed to continued growth of existing fissures. Precipitation of a layer of corrosion 

product at the pit mouth, during the initial wet cycle and during drying as shown in  

Figure 6.18 and Figure 6.19, results in a thickened barrier layer to oxygen diffusion. 

As such during re-humidification of salt deposits, preferential attack takes place at 

locations away from the precipitated layers of corrosion product, where the diffusion 

barrier to the metal surface is simply the passive film. In addition the original fissure 

formed in the vicinity of the most active sites at the outset of exposure, as such future 

initiation occurs preferentially at previously un-attacked sites as they are now the 

locations at which there is a greater potential difference between precipitate phases 

and the matrix.  

In addition during the dry or dryer phase of an atmospheric cycle re-passivation of 

the sides of the active site can take place, as the droplet dries out. At the mouth of 

the pit and along the fissure length re-passivation process increase the potential 

required for passive film breakdown[73, 222, 223]. As such the ionic diffusion length 

to the potential new initiation sites is much shortened in the case of surface sites, as 
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opposed to re-initiation occurring at the base of a pit or fissure. It is possible that over 

time continued growth may occur in pre-existing sites if conditions become 

sufficiently aggressive at the base of the localised site.  

It has been observed herein that during humidification multiple new sites may initiate, 

but quickly one became dominant and grew whilst others began to shut down. 

Preferential growth of this site takes place likely due to it being in the most 

susceptible location with regards to the micro-structure of the alloy. As such the 

majority of anodic current is drawn to this location resulting in re-passivation taking 

place at the less susceptible sites resulting in them shutting down.  

Further as with samples exposed during steady state exposure, it appears that there 

is a maximum limiting depth to which fissures grow, this effect has been observed in 

AA2024 plate samples during cycling by Larignon [221]. Limiting depth is associated 

as has been outlined in Section  4.2 with increased ionic migration pathway length for 

chloride to the fissure tip as the fissure grows, the result being that lateral growth of 

fissures takes place along susceptible grain boundaries along the length of the 

fissure. 

It is interesting to note that growth of fissures during the second wet phase takes 

place at a greatly increased rate when compared to that seen during the initial phase. 

Again little has been observed with regard to this behaviour, again a hypothesis is 

offered as to why this is taking place.  

During wetting, re-humidification of salt deposits results in time periods where 

extremely concentrated solutions are present on the sample surface during 

establishment of equilibrium with the environment. These solutions have an 
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increased conductivity during the wetting phase which enhances the ionic mobility 

promoting rapid onset and development of localised attack. 

In addition during hydration of the droplet the layer thickness is very thin, which 

promotes a more rapid diffusion of oxygen to the surface, leading to an enhanced 

cathodic oxygen reduction rate. This transitionary period does not take place when a 

droplet is present on a surface, and as such the solution concentration is more dilute 

and the oxygen diffusion distance is much greater. The possible outcome of this is 

that there will be a reduced induction time to the onset of pit formation in the samples 

which are undergoing re-humidification. Once pit formation occurs growth takes place 

rapidly regardless of the droplet size or concentration, thus it is reasonable to 

suggest that it is the shortened induction time to pit formation in the smaller droplets 

which is responsible for the increased rate. 

It is important to note that this hypothesis needs confirmation, but could be achieved 

by means of running samples simultaneously from a wet deposit and a dry deposit. In 

addition it is possible that the presence of aluminium-chloride complexes at the 

surface following an initial exposure period leads to a drop in the pH on dissolution of 

these complexes back into solution during a second wet phase which may also serve 

to enhance the corrosion rate seen during this time period. 

Further it is likely that this initially higher rate will begin to plateau over time, 

assuming that the deposit remains wet. However, if subsequent cycles take place it is 

possible that further jumps in corrosion rate are likely. Further investigation into this is 

required. 
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This formation of new sites has been shown to be independent of salt type, with both 

single salt (NaCl and MgCl2) and mixed salt (simulated ocean water) showing the 

same behaviour. Salt type was seen to influence corrosion rate during drying to a 

limited extent, with MgCl2 and substitute ocean water samples showing a slightly 

greater volume loss during this period. This is primarily accounted for by the lower 

DRH/ERH shown by these salts, Table 2.2 when compared with NaCl, as such a 

solution layer will remain present at the surface for a more prolonged period of time. 

The amount of salt present has also been considered, again behaviour during cyclic 

exposure appears to not be influenced by this with regards to formation of new sites, 

however, larger quantities of salt resulted in an increase in the measured corrosion 

rates which is consistent with the result obtained in Chapter 4. 

Further there was a considerable influence observed of the drying regime on the 

development of localised corrosion in AA2024 pin samples during cyclic wet-dry 

exposures. Samples dried close to their DRH experienced a greater corrosion rate 

than those dried to 0% RH, this is primarily due to the fact that drying takes place 

more slowly and to a less complete extent. Incomplete drying is due to the fact that 

the reported ERH’s of salts is often lower than their specific DRH values[132, 210, 

215, 224], as such corrosion processes can continue when salts are dried to their 

reported DRH. Samples initially exposed in lower RH environments were seen to 

form new sites following humidification of the atmosphere to a significantly higher 

RH, rather than continued development of existing sites. This further supports the 

idea that there is a critical phase during the transition from low to high RH during 

which the concentration of solution and oxygen diffusion distance provide optimum 

conditions for rapid initiation and growth of localised fissures.  
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In addition it has been shown that the effect of new site formation and growth can 

take place following a prolonged dry period provided that the salt deposit is retained 

on the metallic surface. It has been demonstrated that corrosion can be limited by the 

removal of salt from the surface [225], however, failure to do so can lead to the 

development of multiple sites within a concentrated area as is demonstrated in 

Figure 6.17.  

 

6.3.3  Limitations 

 

 

During any body of scientific work there are inevitably compromises which must be 

reached with regards to the techniques and samples which are used. In this case as 

previously discussed there are several possible issues which were considered and 

which provided concerns. Primarily the technique of µCT involves exposure to high 

energy x-rays which may result in artificially induced results, especially in samples 

where multiple measurements were made. In order to compensate for this control 

samples were run ex-situ under the exact same conditions, but only scanned once at 

the end of the exposure period, behaviour with regards to site numbers was similar 

and measured volume differences were comaprable. Further there are resolution 

limits associated with the measurements made which were in the region of ~800 nm, 

the initial development of fissures can take place on a smaller length scale than this, 

but the resolution is sufficient to capture most information required. Sample size is a 

related issue with a trade-off being made between being able to achieve good 

resolution and having a sample with a sufficiently large cathodic area to ensure the 

occurrence of localised attack.  
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6.4 Conclusions 

 

1. On drying to “0%” RH, there is an initial increase in the rate of corrosion, then 

rate will drop until corrosion stops, for both NaCl and MgCl2. However, for 

ocean water dried to “0%” RH corrosion may continue during the dry phase. 

2. On drying to the DRH for NaCl and MgCl2 there is a burst in corrosion rate 

during the initial drying phase, following this corrosion will continue at a 

reduced rate when compared with a sample left continually wet. 

3. During re-wetting there is rapid increase in the rate of dissolution, which is 

usually associated with the formation of new sites, but on occasion growth of 

old sites may continue. 

4. Drying to DRH followed by rewetting tends to result in an overall increase in 

the rate in the measured volume of corrosion compared with drying to “0%” 

RH. 

5. Precipitation of NaCl crystals often happens above the most active site during 

the drying phase. 
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7  SUMMARY DISSCUSSION AND CONTEXT OF WORK 

 

During this work, investigation has been carried out into the influence of atmospheric 

exposure on the localised corrosion behaviour of AA2024 with the aim of providing 

information which will underpin the development of health management models for 

ageing aircraft fleets. 

It has been determined that RH, initial CDD and salt type influence the corrosion 

behaviour of AA2024 samples under atmospheric exposure. Some previous work 

has begun to establish this [63, 112, 117, 130, 136, 138, 162, 202, 203], however, 

detailed study of the influence of these variables on the development of localised 

corrosion has not been undertaken. 

When considering behaviour of samples in a constantly wet condition, it has been 

possible to say that for NaCl and MgCl2 solutions, an increase in the density of salt 

present on a surface results in an increase in the rate of localised corrosion. It has 

also been observed that increasing either the salt density or the RH results in an 

increase in the amount of localised corrosion for NaCl, MgCl2, CaCl2 and simulated 

ocean water solutions. This is important during the development of health 

management systems as it helps understand that removal of salts from contaminated 

surfaces is essential to prevent the build-up of further concentrated salt deposits 

which result in an increase in the amount of localised corrosion. Similarly for 

structures exposed in environments where the RH is high it is important to be aware 

of the fact that when salt is present on the surface the rate of corrosion will be 

increased.  
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RH influences the way in which localised corrosion develops, with a decrease in the 

RH leading to a decrease in the size of sites, and a shift from pit-like morphology to 

more sustained IGC like attack. This is important when considering the management 

of structural integrity, as development of sharp elongated IGC fissures results in 

raised localised stress concentrations which promote themselves as locations for 

initiation of SCC or transition to fatigue crack sites. 

It is also important to be aware that on AA2024 surfaces, localised corrosion can take 

place with extremely low levels of salt present on a metal surface. Whilst no definite 

threshold has been determined small localised corrosion sites have been observed in 

samples exposed down to ~1 µg/cm2 of chloride, during exposure at elevated RH.  

Under service conditions, components will be exposed to conditions of cyclic wet and 

dry periods. This result in changes in the localised corrosion behaviour, due to 

exposure times when the solutions present on metal surfaces become highly 

concentrated. It has been shown using in-situ measurements at the start of and 

following a drying phase that there is a rapid increase in the measured corrosion rate 

during the early stages. Depending on the low point of RH during an atmospheric 

cycle, localised corrosion processes will either shut down completely, or proceed at a 

greatly reduced rate. Furthermore, localised corrosion which initiates during a dry 

phase will be accelerated during transition to a more prolonged wet phase, 

associated with higher RH. 

In addition to the increase in corrosion rate seen during drying, a significant increase 

in the rate of corrosion, compared to that during steady exposure, was seen during 

the wetting phase of a wet-dry cycle. This has been attributed to the rapid formation 
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and growth of new localised corrosion sites, which tend to form and grow 

preferentially to the pre-existing sites. However, it has been observed that in some 

cases in addition to the formation of new sites, some growth may continue to take 

place in the pre-existing sites. This is important during management of structures as 

it means that whilst it is likely that damage will usually take place at fresh sites, and 

therefore does not accumulate at one corrosion site, this can take place from time to 

time, which means that maintenance programs should be adjusted to account for this 

possibility.  

This work has confirmed that growth of IGC fissures will take place preferentially 

parallel to the direction of rolling, due to elongation of the grains in this orientation 

and the development of strings of intermetallic phases also aligned along the same 

direction.  The use of in-situ µCT has shown that the sites appear to attain a 

maximum (or limiting) depth (parallel to the rolling direction for the experiments 

shown here), and following this, growth of fissures takes place laterally (parallel to 

the surface) along susceptible grain boundaries. The attainment of a maximum depth 

has been seen previously [92, 205], however, it was unclear to as to whether lateral 

expansion of fissures occurred simultaneously or following attainment of this depth..  

In-situ measurements have enabled the precipitation of solid salt phases in droplets 

to be observed during atmospheric exposure and during drying. Preliminary evidence 

suggests that there is an association of the location at which salt crystals precipitate 

and the locations at which localised corrosion is occurring. This may help when 

considering methods of detecting localised corrosion.  
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Work on plate samples has shown that secondary spreading processes take place 

rapidly and extensively during atmospheric exposure of AA2024 under NaCl and 

ocean water droplets. This is of relevance to the development of prognostic models 

as the formation of secondary spread zones not only increases the metal surface 

area which is wetted, but as a result increases the size of the potential cathodic 

region. This has lead to an increase in the amount of damage observed in AA2024 

samples, which must be considered for structure maintenance. 

It has been demonstrated that the presence of sufficient Mg2+ and Ca2+ in 

atmospheric droplets inhibits the secondary spreading process. This has been 

attributed to the formation of insoluble hydroxides or carbonates which precipitate 

during the corrosion process. An exact understanding of the amounts of Mg2+ and 

Ca2+ required to be present to inhibit the spreading process has not been 

determined, however, an initial experiment indicated that in a 50:50 chloride ratio, 

Mg2+ almost completely inhibited the spreading process.  

Evidence that the primary cathodic region forms in the secondary spread region has 

been provided by both the migration of Na+ ions into this region in order to maintain 

charge neutrality, and by the observed occurrence of grooving around intermetallic 

particles which is associated with an increase in pH.  

The evidence of the influence of secondary spreading on the development of 

localised corrosion illustrates a limitation of the µCT experiments in the current 

project, in which the pin size was selected to maximise resolution, but did not allow 

droplet spreading.  Beam damage is a concern for synchrotron µCT, but in the 
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current work, the use of control samples that were not measured multiple times, 

confirmed that the extent of beam damage was not significant. 
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8  FUTURE WORK 

 

Further bodies of work considering the atmospheric corrosion of AA2024 have many 

avenues open to investigation. With improvements in the capabilities of synchrotron 

based measurements such as those used during this work, both resolution and 

temporal limits are significantly improved. As such work on visualising the processes 

taking place during the very early stages of atmospheric exposure, especially during 

the transitional phase from metastable to stable pitting could be undertaken. 

Indication from this work is that the time to stable pitting is greatly reduced at higher 

RH exposures; as such a smaller number of sites are established. At lower RH 

values a greater number of smaller sites are established, further clarification as to 

whether formation is simultaneous or sequential, the latter has been hypothesised 

herein. 

Measurements made during this work on calcium chloride indicate that acceleration 

in the corrosion rate appears to take place. Further investigation into the influence of 

CaCl2 during wet/dry cycling, would provide insight into whether it follows the same 

behaviour as other salt types, or if owing to its lowered DRH and ERH it behaves in a 

different manner. In addition more statistical studies on the influence of mixed salt 

solutions in different ratios would provide interesting information as to corrosion 

behaviour under more complex solutions. Further additions of nitrates, sulphates and 

phosphates should be considered as they will prove influential on corrosion 

behaviour under atmospheric conditions. 

In addition some preliminary measurements on polymer coating systems were made 

as part of this work as a proof of concept that in-situ measurements could be made 
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on coating systems during atmospheric exposure. Further investigation into different 

coating systems, both polymeric and paint based simulating realistic conditions for 

aircraft is required. This would allow for visualisation of the mechanisms involved 

during the failure of protective coating systems. 
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10 APPENDICES 

10.1  Appendix 1 – Data Logger Plots 

 

 

 

Figure 10.1 – RH and temperature example plot from ~85% RH exposure, 
as measured by Omega OM-EL-USB-2-LCD data logger 
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Figure 10.2 – RH and temperature example plot from ~75% RH exposure, 
as measured by Omega OM-EL-USB-2-LCD data logger 
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Figure 10.3 - RH and temperature example plot from ~70% RH exposure, 
as measured by ThermaData Humidity-Temperature Logger 

 

 

Figure 10.4 - RH and temperature example plot from ~59% RH exposure, 
as measured by ThermaData Humidity-Temperature Logger 

 

 



220 
 

10.2  Appendix 2 – Measurement of Accuracy of Droplet Volume  

 

 

 

Figure 10.5 – Measured droplet volume consistency for 0.1 µl and 0.2 µl 
droplets dispensed using Hamilton HPLC 7000 series micro-syringe 

 

 

10.3  Appendix 3 – FIJI Scripts 
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Figure 10.6 – Conversion script for .DMP image files allowing input of 
brightness and contrast values 
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10.7 – Area calculator script for pixel counting during surface damage 
assessment 

 


