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Abstract 

The dual specificity Cdc25 phosphatases regulate mitosis and are expressed in eukaryotes. The 
active site motif of the Cdc25 phosphatases is in common with other protein tyrosine 
phosphatases. However, unlike the classical tyrosine phosphatases, Cdc25 proteins can 
dephosphorylate phospho-threonine in addition to phospho-tyrosine and have a much 
shallower active site.  

Increased expression of Cdc25 is correlated with poor prognosis in a range of cancers. In 
particular, increased expression of Cdc25C has been associated with prostate cancer making 
this protein an attractive target for drug discovery.  

However, drug discovery for these proteins has been hampered due to the shallow nature of 
the active site, difficulty in identifying specific inhibitors and toxicity. The thesis aim was to 
structurally and biochemically characterize the Cdc25C protein in order to aid future drug 
design. 

The regulatory domain was found to be flexible with limited secondary structure by nuclear 
magnetic resonance, circular dichroism spectroscopy, and small-angle X-ray scattering.  

The catalytic domain had poor solubility at high concentrations therefore extensive construct 
and solution optimisations were carried out in order to improve the solubility of this domain. 
Different construct lengths of the catalytic domain were tested in different solution conditions. 
An optimal catalytic domain construct (Cdc25C270-443) was identified and it was found cleavage 
of the N-terminal His tag further improved protein solubility. The additives 200 mM L-arginine 
and 200 mM sucrose were also shown to improve the long term solubility of this domain 
without affecting protein conformation. The 1H, 15N- HSQC spectrum revealed a folded protein 
with well dispersed peaks and it was also shown to be monomeric by AUC. Although, a Cdc25C-
inhibitor complex structure could not be obtained a number of Cdc25C inhibitor compounds 
were identified by WaterLOGSY and 1H, 15N-HSQC.   
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Chapter 1.0 - Introduction 

1.1 Cdc25 Biology  

1.1.1 Phosphorylation  

The phosphorylation of proteins is a key post translational event involved in cell signalling 

(Hunter, 2000; Pawson and Nash, 2003; Schlessinger, 2000; Hunter, 2009). This reversible 

process is regulated by the balancing actions between protein kinases and phosphatases.  

Phosphorylation mainly occurs on serine, tyrosine, and threonine residues. In the cell, serine 

(86 %) and threonine (12 %) phosphorylation is more common compared to tyrosine 

phosphorylation (2 %) (Olsen et al., 2006). However, this does not mean tyrosine 

phosphorylation is not important. Tyrosine phosphorylation is increased upon cell stimulation 

and has important signalling roles in cell communication, movement, and transport (Pao et al., 

2007; Paul and Lombroso, 2003; Meng et al., 2000). The importance of tyrosine 

phosphorylation in human physiology is clear especially in cancer when the regulation of 

tyrosine phosphorylation becomes abnormal (Tonks, 2006; Rudolph et al., 2004).  

1.1.2 Protein Tyrosine Phosphatase (PTP) Superfamily 

Historically, it was thought that protein tyrosine phosphatases (PTPs) were “housekeeping” 

enzymes with no real specificities. Therefore, most of the research in the past in the protein 

phosphorylation field has been dedicated to protein tyrosine kinases (PTKs) (Hubbard and Till, 

2000; Hunter, 2000; Robertson et al., 2000; Robinson et al., 2000) . It is now apparent that this 

is not the case and in hindsight protein phosphorylation is much more complicated than what 

was perceived. In fact, PTPs have a much more important and bigger role to play then was 
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previously thought. Similar to protein tyrosine kinases, PTPs are also tightly regulated. They are 

not indiscriminate and are considered to be highly selective and have specific substrates.   

There are a total of 107 human genes which encode for all the phosphatases in the PTP 

superfamily (Alonso et al., 2004). In general, members of the PTP superfamily share common 

features in that they have a multi-domain architecture, conserved active site motif and a 

similar catalytic mechanism (Alonso et al., 2004; Tonks, 2006; Andersen et al., 2001). This PTP 

superfamily has been classified based on substrate specificity into four groups (Figure 1.1.2). 

The Class I group is the largest and consists of the classical PTPs and the VH1-like dual 

specificity phosphatases. The classical PTPs, which are tyrosine specific, can be further 

subdivided into the receptor-like PTPs (RPTPs) and the nonreceptor PTPs (NRPTPs). The VH1-

like dual specificity phosphatases can also be further subdivided but into seven different 

families which includes the PRLs, atypical Dual Specificity Phosphatases (DSPs) and 

myotubularins; making this group very diverse in substrate specificity. The other three groups 

are the class II, III, and the aspartate based PTPs. Class II has only one member, the low 

molecular weight PTP (LMPTP) and class III is composed of the cell division cycle 25 (Cdc25) 

dual specificity phosphatases.   
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Figure 1.1.2 PTP Classification  

Protein tyrosine phosphatases can be classified into four main groups. The first group known as 
Class I can be further divided into two groups, Vaccinia virus gene H1 protein (VH1) - like dual 
specificity phosphatases and the classical tyrosine phosphatases. Class II has one member, the 
low molecular weight protein tyrosine phosphatase (LMPTP). Class III contains the cell division 
cycle 25 (Cdc25) proteins and the last group is known as the aspartate-based protein tyrosine 
phosphatases group which has the Eya proteins. This Figure is adapted from (Alonso et al., 
2004).   
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1.1.3 Cdc25 Phosphatases 

The Cdc25 DSPs were some of the first dual specificity phosphatases to be discovered (Russell 

and Nurse, 1986; Galaktionov and Beach, 1991). Cdc25C was first discovered in yeast and it 

was not long before it was found that the Cdc25 gene is well conserved in all eukaryotic 

organisms (Sadhu et al., 1990; Draetta and Eckstein, 1997; Khadaroo et al., 2004). In humans 

the Cdc25 DSP family consists of three genes located on chromosomes 3, 20, and 5 which 

express the homologues Cdc25A, B, and C respectively (Alonso et al., 2004). 

1.1.4 Role in the Cell Cycle 

The three Cdc25 homologues A, B, and C regulate cell cycle checkpoints by activating 

Cdk/cyclin complexes which are inactive due to the kinases WEE1 and MYT1 (Figure 1.1.4). 

Cdc25A is thought to promote entry into the S phase of the cell cycle by activating Cdk2  

(Hoffmann et al., 1994; Blomberg and Hoffmann, 1999). Cdc25B accumulates in late S phase 

and is present during mitosis while Cdc25C is expressed in the late G2 phase. Cdc25B and C 

regulate mitosis and therefore have roles in late G2 and mitosis (Karlsson et al., 1999; De Souza 

et al., 2000). Both Cdc25B and Cdc25C dephosphorylate Cdk1 activating the Cdk1/CycB 

complex. Interestingly, Cdc25A has also been shown to activate Cdk1/CycB and the Cdc25 

homologues B and C have been shown to be involved in promoting entry into S phase 

(Lindqvist et al., 2005; Boutros et al., 2006). Therefore, it has been suggested that the three 

Cdc25 phosphatases A, B, and C may work together in regulating the cell cycle and their role is 

not necessarily fixed to parts of the cell cycle. The fact that the Cdc25 genes can undergo 

alternative splicing resulting in a number of splice variants for Cdc25 A, B, and C creates an 
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extra layer of complexity in defining their roles (Baldin et al., 1997; Wegener et al., 2000; 

Forrest et al., 1999). 

1.1.5 Regulation 

It is not surprising that the Cdc25 protein phosphatases are tightly regulated both spatially and 

temporally considering their integral role in the cell cycle. Their rate of production, localisation, 

and activity are all regulated.  

A tight balance is kept between Cdc25 production and break down. The degradation of Cdc25A 

is mediated through ubiquitin proteolysis (Donzelli et al., 2002; Jin et al., 2003). This takes 

place when mitosis is complete. Another degradation process involving the Skp1/Cul1/F-box 

(SCF) complex is employed for the degradation of Cdc25A during the G2 and S stages of the cell 

cycle (Busino et al., 2003). Cdc25B and C are also degraded via the ubiquitin degradation 

pathway.  

The subcellular localisation of the Cdc25 phosphatases is regulated partly by interactions with 

the 14-3-3 proteins. 14-3-3 proteins are multifunctional regulatory proteins which are thought 

to be evolved from the TPR (Tetratrico Peptide Repeat) family (Fu et al., 2000; Sluchanko and 

Gusev, 2010). Phosphorylation by CHK1 and/or C-TAK1 kinases of a serine on the Cdc25 

phosphatases enables binding to 14-3-3 proteins by exposing a 14-3-3 binding site (Conklin et 

al., 1995; Peng et al., 1998; Chen et al., 2003). Specifically, for Cdc25C, the phosphorylation of 

its serine residue 216 causes the protein to be sequestered in the cytoplasm (Peng et al., 

1998). Cdc25C is then activated upon mitosis following the dissociation of 14-3-3. Cdc25 

localisation is also regulated by nuclear localisation sequences (NLS) and nuclear export signals 

(NES) which are located in the N-terminal regulatory domain of the Cdc25 phosphatases (Dalal 



6 

 

et al., 1999; Kumagai and Dunphy, 1999; Uchida et al., 2004). These signals allow shuttling of 

the Cdc25 proteins from the cytoplasm to the nucleus and vice versa.  

The N-terminal regulatory domains of the Cdc25 phosphatases possess a number of 

phosphorylation sites that are phosphorylated by kinases which regulate the catalytic activity 

of the Cdc25 proteins. Table 1.1.5 lists the kinases that phosphorylate known phosphorylation 

sites on Cdc25C. Cdc25C is hyperphosphorylated before the induction of mitosis increasing its 

activity for its substrate, the CDK1/CycB complex (Trunnell et al., 2011; Goulev and Charvin, 

2011). Following activation this complex further activates Cdc25C via a positive feedback loop. 

When phosphorylated the Cdc25B phosphatase exhibits an increase in activity during cell cycle 

progression from the G2 to M phase.  

1.1.6 The G2/M checkpoint and DNA damage 

The ATM (ataxia-telangiectasia mutated) and ATR (ATM-related) signalling pathways regulate 

the G2/M checkpoint response to DNA damage (Bulavin et al., 2001; Xiao et al., 2003; Liu et al., 

2000). In response to DNA damage, for example UV damage, CHK1 and CHK2 kinases are 

activated. These kinases result in the phosphorylation and hence inactivation of the Cdc25 

phosphatases. For example, phosphorylation by CHK1 can lead to the binding of 14-3-3 to 

Cdc25 and ultimately Cdc25 becomes inaccessible to CDK1/CycB. This allows the cell adequate 

time to repair the damage before the cell progresses into mitosis. In addition to the ATM and 

ATR pathways the p38 MAPK (mitogen activated protein kinase) pathway has also been 

described in mediating the G2/M checkpoint response to DNA damage.   
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Figure 1.1.4 Activation of the cell cycle by the Cdc25 phosphatases  

The CDK/cyclin complexes are regulated by phosphorylation. They are inactivated by WEE1 and 
MYT1 kinases and activated by the Cdc25 phosphatases (a). The cell cycle can be split into four 
phases (b). The cell prepares for S phase during the G1 phase and prepares for mitosis during 
the G2 phase. DNA is replicated in S phase and the cell divides during mitosis. Cells in G1 can 
enter G0 which is the resting state. CDK/cyclins promote the transition from one phase to the 
next of the cell cycle following activation by Cdc25 proteins. Cdc25A promotes entry into S 
phase while Cdc25B and C promote mitosis. However, evidence suggests that all three Cdc25 
phosphatases co-operate together throughout the cell cycle in regulating cell cycle transitions.  
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Kinase Phosphorylation site 

CDK1/cyclin B T48, T67, S122, T130, S168, S214 

Plk1 S198 

Plk3 S191, S198 

Chk1  S216, S247, S263 

Chk2 S216 

C-TAK1  S216 

MEK/ERK S216 

 

 

 

 

 

Table 1.1.5 Cdc25C phosphorylation sites 

A list of some of the kinases which phosphorylate known phosphorylation sites on Cdc25C. 
Adapted from (Young, 2012).  
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1.2 Cdc25 Structure, catalytic mechanism, and interaction with 
substrate 

1.2.1 Cdc25 structure 

The Cdc25 proteins are 30 - 70 kDa in size. They can be split into two domains: the regulatory 

and catalytic (Figure 1.2.1.1). Between the homologues, the N- terminal regulatory domain is 

highly variable in comparison to the C- terminal catalytic domain which has a much more 

conserved amino acid sequence with a pairwise identity of ~ 60 % (Rudolph, 2007). The N-

terminal domain is important for not only regulation but also protein localisation while the 

catalytic domain is important for the enzymatic function of the protein. Each Cdc25 homologue 

has splice variants because the N-terminal domain is subjected to alternative splicing; Cdc25C 

which was the first human homologue to be discovered has five splice variants. Little is known 

about the role of Cdc25 splice variants.  

The crystal structures of the Cdc25 phosphatases A (PDB: 1C25), B (PDB: 1QB0), and C (PDB: 

3OP3) have been solved (Fauman et al., 1998; Reynolds et al., 1999a). However, these crystal 

structures are only of the catalytic domains alone and not the full-length proteins. Also, none 

of these phosphatases have been solved with a ligand or an inhibitor. Overall, the Cdc25 

catalytic domains have a similar structure which is basically a central layer of β-sheets 

surrounded by α-helices. The crystal structure of Cdc25B is shown in Figure 1.2.1.2a.  

Interestingly, the catalytic domain of Cdc25A cannot bind to oxyanions while the catalytic 

domain of Cdc25B can easily bind to sulfate and tungstate (Reynolds et al., 1999). Another key 

difference between the crystal structures is in the C-terminal region. The C-terminal region of 

Cdc25A and C is undefined due to a lack of electron density. However, the C-terminal region 

(Cdc25B531-547) of Cdc25B contains a well-defined α-helix.  
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The Cdc25 dual specificity phosphatases (DSPs) share the conserved active-site signature motif 

with the PTP superfamily and have a similar catalytic mechanism. However, they differ in that 

they can dephosphorylate two phosphorylated residues (in the case of Cdc25, p-Thr and p-Tyr) 

rather than one. They also have a much shallower active site which most likely accounts for the 

divergent specificity. 

The phosphate binding loop of Cdc25, which contains the PTP signature motif, can be 

superimposed onto other PTPs (Figure 1.2.1.2b). The overall fold adopted by the catalytic 

domain remains unique to this protein phosphatase when compared to other phosphatases. 

Interestingly, it is very similar to the one adopted by the rhodanese enzyme. A structural 

alignment between a rhodanese protein (GlpE) and Cdc25A revealed an rmsd of 1.80 Å (> 96 

Cα pairs) (Spallarossa et al., 2001). However, rhodanese shares weak sequence similarity with 

the Cdc25 DSPs and has a completely different function; rhodanese is engaged during cyanide 

detoxification (Hofmann et al., 1998).  
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Figure 1.2.1.1 Cdc25 Proteins 

The Cdc25 dual specificity phosphatases can be split into two domains. The regulatory domain 
is involved in the regulation of the protein and the catalytic domain is important for enzymatic 
activity. Each Cdc25 homologue has a different size; Cdc25C is the smallest among the 
homologues. This figure illustrates the conserved motifs in the catalytic domain. The highly 
conserved active site motif is in green and the other two motifs are in blue. For each 
homologue the catalytic cysteine residue in the active site motif is highlighted in yellow.  
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Figure 1.2.1.2 Crystal structure of the Cdc25B catalytic domain 

The crystal structure of the Cdc25B (PDB: 1QB0) homologue is shown as a ribbon diagram (a). 
The protein is in blue and the active site residues (HCX5R) are highlighted in green. The C-
terminal α-helix is indicated by an arrow. The active site region (black circle) is shown in more 
detail (b). The active site region of Cdc25B is overlaid with other protein tyrosine phosphatases 
(PDBs: 1D5R, 1FPZ, 1PHR, 1I9S, 1OHC, 1I57, 1YTS, 1VHR, 1GWZ, and 2SHP). This Figure is 
adapted from (Rudolph, 2007) 
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1.2.2 Catalytic mechanism   

The Cdc25 proteins share an active site signature motif (HCX5R) with other PTPs. The cysteine 

which is critical for catalysis is followed by five amino acids and an arginine. The amide 

backbone of this arginine and the five amino acids collectively form the active site loop 

(Rudolph et al., 2004).  

Essentially, the proposed catalytic mechanism (Figure 1.2.2) of Cdc25 is similar to that of the 

PTPs which requires the catalytic cysteine to have a low pKa in order to enhance its role as a 

nucleophile; Cdc25 has a pKa of 5.9 (Rudolph, 2002). This cysteine nucleophile attacks the 

phosphate of the substrate resulting in the break-down of the phosphorus-oxygen bond.  

For PTPs (D181 in PTP1B), the aspartic acid located in the WPD loop is the general acid which 

provides a proton to the tyrosyl leaving group (Tonks, 2006). In the case of Cdc25 DSPs that do 

not have a WPD loop, the identity of the catalytic acid is unknown. There is speculation in the 

Cdc25 field that this elusive residue may be located on the target substrate rather than the 

protein itself (Chen et al., 2000). This could provide an explanation of Cdc25 specificity for its 

substrate taking into account the shallow and featureless nature of the active site (Fauman et 

al., 1998; Reynolds et al., 1999a). 

Completion of the first step of catalysis results in the release of a substrate which has now 

been dephosphorylated and the formation of a thiophosphate intermediate. This intermediate 

is subsequently hydrolysed in the second step of the catalytic mechanism to release free 

phosphate. The Q-loop in the classical PTPs helps coordinate the water molecule involved in 

this process. The Cdc25 DSPs do not have a Q-loop. In fact the only structural feature they have 

in common to the classical PTPs is the active site loop (P-loop).    
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The invariant arginine in the active site loop helps in coordinating the phosphate group when 

the substrate binds and importantly stabilizes the thiophosphate intermediate. For PTPs, the 

second step is aided by the same aspartic acid mentioned above now taking the role of a 

general base.  

1.2.3 Catalytic acid 

Crystal structure studies of Cdc25A and B revealed the possibility of Glu431 or Glu435 for 

Cdc25A and Glu474 or Glu478 for Cdc25B of acting as the general acid due to their likely 

proximity to the leaving group (Fauman et al., 1998; Reynolds et al., 1999a). However, later 

studies either ruled these residues out or were not able to confidently confirm this (McCain et 

al., 2002; Chen et al., 2000). Despite many studies the identity of the catalytic acid which 

promotes the catalytic reaction by acting as both a general acid and a base during catalysis is 

still not known.    
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Figure 1.2.2 The Catalytic Mechanism 

This catalytic mechanism is shared by all PTPs. Figure taken from (Tautz et al., 2013). 
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1.2.4 Substrate Recognition and the Cdc25: CDK/Cyclin Interface 

Sohn et al. have completed a detailed study to describe the interaction of Cdc25B during 

catalysis with its substrate Cdk2-pTpY/Cyc A (Gottlin et al., 1996; Sohn and Rudolph, 2007; 

Sohn et al., 2004, 2005; Sohn and Rudolph, 2006). They have combined structural information 

with site directed mutagenesis and kinetic studies to not only shed light into this kinetic 

mechanism but they have also produced an experimentally validated docked model for this 

protein-protein interaction. It can be assumed that the other two Cdc25 phosphatases will 

recognize and interact with their biological substrates during enzyme catalysis in a similar 

manner even though no detailed studies on these phosphatases have yet been conducted.    

The first step of the three step kinetic model described by Sohn et al. involves the formation of 

the enzyme-substrate complex. The rates of both association and dissociation dictate the 

formation of this complex. This association between Cdc25B and its substrate is key in 

providing substrate specificity. The flat nature of the active site suggests it contributes very 

little to the recognition of Cdc25 with its protein substrate.  

Cdc25B makes use of a site 20-30 Å away from the active site (Sohn et al., 2004). Evolutionarily 

conserved arginine residues 488, 492, and the tyrosine residue 497 located at this “remote 

docking site” on Cdc25B play an important role in the specific recognition of this protein with 

its native substrate Cdk2-pTpY/CycA (Sohn et al., 2004, 2005). These amino acids are 

collectively known as the “remote hot-spot residues”. These remote residues do not affect the 

activity of this Cdc25 towards non-native small molecule substrates. They interact with Asp206 

and Asp210 on Cdk2, affecting the activity of Cdc25B towards its native substrate (Sohn et al., 

2004, 2005). Arg492 of Cdc25B was shown to be central in this interaction (Sohn et al., 2005; 

Sohn and Rudolph, 2006). Sohn et al. believe that the remote docking site is important for 



17 

 

substrate association while the active site contributes to product dissociation hence both sites 

are engaged in substrate recognition. All the hot-spot residues when mutated had reduced 

rates of association (Sohn et al., 2007). Mutating the active site Cys473 to an aspartic acid 

resulted in a greater rate of dissociation. Interestingly, the crystal structure of this mutant 

showed that it had a different conformation of the active site loop. This conformation is not 

suited to phosphate binding. This weak phosphate binding is most likely due to the loss of 

interactions with the active site. The authors claim this reflects the dissociation of the product 

during enzyme catalysis. Dephosphorylation of the substrate will result in the loss of 

productive interactions with the active site and the substrate will therefore dissociate. The 

partially phosphorylated (Cdk2-TpY/CycA) substrate will then need to re-associate to complete 

the dephosphorylation reaction.  

 

 

Figure 1.2.4 Recognition interface between Cdc25B and Cdk2-pTpY/CycA 

This Figure which has been taken from (Sohn and Rudolph, 2006) illustrates the remote docking 
site (see text for details). Cdc25B is in purple, Cdk2 is in blue, and CycA is in gray. The catalytic 
site (broken circle) and remote hotspot (dotted circle) are circled.   
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1.2.5 Substrate Specificity  

Cdc25 proteins exhibit poor specificity and activity with phospho-peptide substrates in 

comparison with their native substrate (Rudolph et al., 2001). This is probably not surprising 

considering the broad active site interface and the importance of engaging the alternate site 

discussed above for substrate recognition. For native substrates, pThr is preferred over pTyr. 

This preference is reversed with phosphopeptides as substrates.  

P-nitrophenyl phosphate is a poor Cdc25 substrate with a kcat/Km of 15-25 M-1 s-1 for Cdc25A 

compared to 3-O-methylfluorescein phosphate (OMFP) which is a better artificial substrate 

with a kcat/Km of 1.1-1.3 x 104 M-1 s-1 (Rudolph et al., 2001).  

1.3 Cdc25 and Disease  

1.3.1 Cdc25 expression is up-regulated in Cancer  

In the past, difficulties in detecting Cdc25 protein levels in tissues have resulted in different 

techniques and approaches being employed (Rudolph et al., 2004). This has resulted in 

controversy and confusion in the literature; mainly due to the difficulty in comparing studies 

employing different techniques. One of the approaches taken has been to look at RNA instead 

of protein levels. However, it was later concluded there was limited correlation between these 

two variables. Despite these challenges trends have emerged.     

Overexpression of the Cdc25 phosphatases has been noted in a number of cancers. Some of 

the human cancers where Cdc25 overexpression has been reported are head and neck cancer, 

breast, ovarian, pancreatic, colorectal, prostate, and non-Hodgkin lymphoma (Gasparotto et 

al., 1997; Ito et al., 2004; Guo et al., 2004). A relationship between the expression level of 
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Cdc25 and clinical outcome has been observed where overexpression generally leads to poorer 

clinical outcomes. 

Overexpression of Cdc25B has been linked with poor disease prognosis. It has been commonly 

correlated with advanced stages of tumours. In oesophageal cancer it was found cells              

over-expressing Cdc25B were more sensitive to radiotherapy (Kishi et al., 2002). 

It does not only seem that one Cdc25 isoform may have a greater role in a cancer subtype 

compared to another. To complicate matters it has been noted that overexpression of Cdc25 

may not only be isoform-specific but also splice variant specific. Increased expression of the 

splice variant Cdc25B2 has been associated with a poor disease prognosis in non-Hodgkin 

lymphoma (Hernández et al., 2000). The expression of the splice variant Cdc25B3 is up-

regulated in many pancreatic cancers (Guo et al., 2004). In prostate cancer Cdc25C5 mRNA 

levels were found to be overexpressed (Ozen and Ittmann, 2005).     

1.3.2 How is Cdc25 up-regulated in cancer? 

How Cdc25 is up-regulated in cancer is still unclear and yet to be fully described. The 

overexpression of Cdc25 can potentially be as a result of a defect occurring anywhere from the 

genetic to the protein level.  

A significant relationship has been identified between the proto-oncogene MYC and Cdc25 

expression. Positive correlations have been noted in breast cancer, lung carcinoma as well as in 

non-Hodgkin lymphoma (Ben-Yosef et al., 1998; Sasaki et al., 2001; Hernández et al., 1998). 

Cdc25A and B genes have been reported to contain MYC/MAX binding sites (Galaktionov et al., 

1996). The levels of mRNA were increased in response to the activation of MYC. This was 

associated with overexpression.  
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In breast cancer cell lines, where Cdc25A is overexpressed, it was shown that the half-life of 

this protein was increased (Löffler et al., 2003). This study indicates that rather than greater 

expression, greater stability of the Cdc25 proteins could account for the high-levels of Cdc25 

protein seen in some cancer cell lines. 

Mutations in the Cdc25 regulators, the ATR kinase and the CHK kinases have been noted. They 

have been shown to lead to low level expressions of βTRCP in many cancers which include 

prostate, lung and gastric cancer (Gerstein et al., 2002; He et al., 2005). The CHK kinases are 

either mutated or expressed at lower levels or both in several cancers including colon and 

breast cancer as well as many carcinomas including carcinomas of the colon, ovary, lung and 

breast (Bartek and Lukas, 2003). 

1.3.3 Targeting the Cdc25 phosphatases   

Given the role of the Cdc25 proteins in the cell cycle it is not surprising that these 

phosphatases are involved in a diverse range of cancers. One of the ways Cdc25 could 

therefore contribute to tumorigenesis is through the inappropriate activation of the cell cycle.  

Transfecting cells with active site mutants of Cdc25 affects cell cycle progress; G1 arrest 

resulted because of the inactive Cdc25A mutant (Hoffmann et al., 1994; Jinno et al., 1994). G2 

arrest was the result of inactive Cdc25B or Cdc25C mutants (Millar et al., 1991; Lammer et al., 

1998; Gabrielli et al., 1996). Increased expression of Cdc25A has been shown to affect S phase 

and a speedy entry into the S phase was noted (Blomberg and Hoffmann, 1999; Sexl et al., 

1999; Falck et al., 2001). Cdc25B has been shown to be important for the continuation of the 

cell cycle after repair to damage such as DNA damage occurs and overexpression of this 

protein results in cells entering mitosis without the necessary time for repair (Van Vugt et al., 

2004; Albert et al., 2012; Karlsson et al., 1999). 
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As mentioned, increased expression and activity of the Cdc25 phosphatases has been noted in 

many cancers. The presence of high-levels of Cdc25 phosphatases will make it difficult for the 

cell’s regulatory machinery to remove them resulting in sustained high-levels of these proteins 

in the nucleus. This could result in the bypass of essential cell cycle checkpoints, disregarding 

threats to the cell such as DNA damage and forcing the cell past check points without allowing 

time for any of the essential repairs to occur. Thus, the inappropriate activation of the 

CDK/cyclin complex could lead to the increased proliferation of cells that are damaged. 

The direct interaction of the Cdc25 phosphatases with the CDK/cyclin complexes provides a 

unique approach in anti-cancer therapy. Targeting the Cdc25 phosphatases is an indirect way 

of targeting the CDK/cyclin complexes which activate the cell cycle. The inhibition of the Cdc25 

phosphatases will inhibit these complexes and prevent the damaged cell from progressing into 

the next phase of the cell cycle which can ultimately lead to cell death by apoptosis.   

1.4 Cdc25 Inhibitors 

Over the years there has been a huge amount of interest in the development of inhibitors for 

the Cdc25 phosphatases. There has been a number of inhibitor scaffolds which have been 

identified from which derivative compounds have been developed. However, to date no 

compound has entered the clinic. Inhibitors of Cdc25 (Figure 1.4) can be split into two classes, 

inhibitors from natural sources and synthetic inhibitors. 

1.4.1 Natural inhibitors  

The dnacins (1) were one of the earliest inhibitors shown to inhibit Cdc25. Although, the 

antibiotics dnacin A and B were shown to have antitumor properties they were weak inhibitors 

of Cdc25 (Horiguchi et al., 1994). Among the natural inhibitors the most popular were the 



22 

 

dysidiolides. These compounds provided a base for the following generation of natural and 

synthetic compounds. The dysidiolide (2) compound which is extracted from marine sponge 

can inhibit Cdc25A selectively with an IC50 of 9.4 µM (Gunasekera et al., 1996). This compound 

can result in arrest of the cell cycle. It has been shown to prevent the proliferation of lung 

cancer and leukemia cell lines.  

Cholestane derivatives can be traced back to the dysidiolide scaffold. These were shown to 

inhibit Cdc25 with IC50 values of < 10 µM. The seco-cholestane based compounds negatively 

affected the growth of the colon cancer cell line HT-29 (Zalkow et al., 2000).   

Another cholestane derivative sulfircin (3) which can be isolated from deep water sponge was 

also shown to inhibit Cdc25 however not specifically (Cebula et al., 1997). It was initially shown 

to have antifungal properties before its inhibition effect on Cdc25 was known. It can inhibit 

Cdc25A with an IC50 of 7.8 µM. The aliphatic chain length was identified to be an important 

aspect in its inhibition ability.  

1.4.2 Synthetic inhibitors  

Synthetic inhibitors were developed in an effort to identify compounds with greater inhibition 

activities and specificities. Rhodanine based derivatives (4) were shown to have effective 

inhibition activity against all Cdc25 homologues (Ahn et al., 2007). Interestingly, a few of the 

compounds in this series selectively inhibited Cdc25B with IC50 up to 2.7 µM.  

The compound TPY-835 (5) which is derived from cinnamic acid inhibits Cdc25A with an IC50 of 

5.1 µM and Cdc25B with an IC50 of 5.7 µM (Aoyagi et al., 2005). It did not inhibit Cdc25C nor did 

it inhibit the serine/threonine phosphatases PP1 and PP2A. It also displayed some anticancer 

activity against lung cancer in mice. 
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Maleimide derivatives have also been identified having inhibition activity against Cdc25. The 

compound PM-20 (6) (Kar et al., 2006) was considered to be one of the best among this series. 

It can inhibit all the three homologues of Cdc25 with IC50 of 5, 10, and 40 µM for Cdc25 A, B, 

and C respectively.  

Benzothiazole and benzoxazole-4-7-diones which were described by the Prevost group 

(Galcera Contour et al., 2007 & 2009) can inhibit Cdc25C with IC50 of 10 µM or less. Compounds 

in this series were effective against human pancreatic and prostate cancer cell lines. They also 

found that these compounds exhibited low levels of toxicity in non-cancerous cells. These 

compounds were based on a quinone derivative BN82685 (7). BN82685 has an IC50 of 0.250 µM 

for Cdc25A, 0.250 µM for Cdc25B, and 0.171 µM for Cdc25C making it a very potent 

compound. BN82685 was described as working irreversibly. Application of this compound 

resulted in a delay in the assembly of mitotic spindles as well as a negative effect on the 

dynamics of microtubules. Importantly, it was also shown to be active after administering 

orally (Brezak et al., 2005). 

The invention of the benzothiazole and benzooxazole-4-7-diones led to the discovery of a 

novel potent inhibitor IRC-083864 (currently known as Debio 0931) with inhibition activity in 

the nanomolar range. IRC-083864 (8) was shown not only to irreversibly inhibit the three 

human Cdc25 homologues but also splice variants of Cdc25B (Brezak et al., 2009). This 

compound affected cell proliferation and cell cycle transition. It prevented mitotic entry and 

was effective against a range of tumour cell lines as well as human xenografts of prostate and 

pancreatic cancer in mice. Toxicity was not observed at low concentrations and at high 

concentrations a reduction in body weight was noted. IRC-083864 is currently the only 

inhibitor of Cdc25 which has progressed to clinical trial phase II.           
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Inhibitor Name Structure Cdc25 Target 
and IC50 

 
1. Dnacins 

 

 
Cdc25B (dnacin A1, 
141 µM and dnacin 
B1, 64.4 µM) 

 
2. Dysidiolide 

 

 
Cdc25A (9.4 µM) 
 

 
3. Sulfircin 

 

 
Cdc25A (7.8 µM) 
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4. Rhodanine based 

derivatives 

 

 
Cdc25B (2.7 µM) 

 
5. TPY-835 

 

 
Cdc25A (5.1 µM) 
Cdc25B (5.7 µM) 
 

 
6. PM-20 

 

 

 
Cdc25A (5 µM) 
Cdc25B (10 µM) 
Cdc25C (40 µM) 

 
7. BN82685 

 

 
Cdc25A (0.250 µM) 
Cdc25B (0.250 µM) 
Cdc25C (0.171 µM) 

 
8. IRC-083864 

 

 
Cdc25A (1.7 nM) 
Cdc25B (B2, 4.4 nM 
and B3, 9.4 nM) 
Cdc25C (0.4 nM) 

 

Figure 1.4 Cdc25 Inhibitors 

Name, chemical structures, Cdc25 target and IC50 are tabulated. This Figure was adapted from 
(Lavecchia et al., 2010).  
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1.5 Summary 

The Cdc25 proteins have been reported to be overexpressed in a variety of cancers. The role of 

the Cdc25 proteins is in the cell cycle where they function by activating their only known 

biological substrate: the cdk/cyclin complex. Their intimate relationship with Cdk makes them 

interesting targets for cancer therapy.  

Research into the development of inhibitors for Cdc25 has made great strides over the past 13 

years. One of the main difficulties in developing inhibitor compounds has been translating 

positive in vitro effects to in vivo.  Although, the inhibitor compounds extracted from natural 

sources initially showed great potential they generally lack in specificity and their inhibition 

activity is limited to the micromolar range. Therefore, due to the limitations of these natural 

compounds more focus has been directed towards the development of synthetic inhibitors. 

Obtaining an NMR or X-ray crystal structure of the Cdc25 protein-inhibitor complex will lead to 

greater understanding of the Cdc25 structure and development of potent inhibitor 

compounds.  
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1.6 Studying Proteins 

1.6.1 Protein Stability  

A proteins thermodynamic stability is defined as the Gibbs free energy change between the 

two protein states: native (folded) and the denatured (unfolded) state (see eq. below). The size 

of the Gibbs free energy change of folding (∆Gf) reflects the stability of the protein (Pace, 

1990). The smaller this value of ∆Gf the less stable the protein is and it is less resistant to 

unfolding.  

∆Gf  =  Gf - Gu  

(∆Gf = Gibbs free energy change for folding, Gf = Gibbs free energy of the folded state, and Gu = Gibbs free energy of the unfolded state).  

Generally, there is a negative correlation with temperature and protein stability where an 

increase in temperature will result in a decrease in protein stability. This is of course not true 

for all proteins especially proteins that are heat resistant such as enolase and α-glucosidase of 

Pyrococcus furiousus which work best at temperatures over 90 °C (Costantino et al., 1990; Peak 

et al., 1994).  

When ∆Gu is zero, the proportion of protein in the unfolded state is equal to the proportion of 

protein in the folded state. The temperature at which this occurs is known as the melting 

temperature (Tm). The melting temperature of a protein can indicate the stability of the 

protein.  A change in Tm from one condition to another can be measured and this can help 

evaluate the effect of each condition on the thermal stability of the protein. A positive ∆Tm 

indicates greater stability and a more ordered structure while a negative ∆Tm is linked to 

destabilization probably due to the protein adopting a less structured conformation (Cho et al., 

2011). 
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1.6.2 Thermal Shift Assay (ThermoFluor®) 

1.6.2.1 Introduction  

ThermoFluor® is a technique that is used to identify buffer conditions which improve the 

thermal stability of a protein. It can also be used to identify ligands which can stabilize the 

protein. It is an advantageous assay because it is relatively quick and inexpensive. Essentially, 

any globular protein can be tested and only small amounts of protein are required. It is a useful 

technique to use before any biophysical or structural analysis takes place because buffers in 

which the protein is stable in can be identified before any other experiments are performed, 

which can save time and energy.  

1.6.2.2 The ThermoFluor® technique  

The type of dye used for ThermoFluor® is one which has a high fluorescence in hydrophobic 

environments (Niesen et al., 2007). In polar environments, there is little or no fluorescence 

since it is quenched. These dyes include SYPRO orange, Nile red, and Dapoxyl sulfonic acid. 

SYPRO orange is a popular choice because it has a high signal to noise ratio.    

An RT-PCR machine is used to perform the ThermoFluor® experiment. During the experiment 

fluorescence is measured at each temperature ranging from 25 °C to 90 °C. As the temperature 

increases the protein will become unstable and will unfold. This exposes the protein’s 

hydrophobic core to solution. The fluorescence dye has an affinity for these hydrophobic 

regions and will bind to them resulting in an increase in the fluorescence signal (Niesen et al., 

2007). The results can be plotted with fluorescence against temperature and the result is a 

sigmoidal curve which displays a two state transition representing the unfolded and folded 

states of the protein.  
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Tm can be taken from the point of inflection of the melting curve. In this thesis the 

ThermoFluor® technique was used to assess the effect of different buffers and/or additive 

conditions on thermal stability by measuring changes in Tm in order to identify buffers that 

improved the stability of the Cdc25C catalytic domain.  

1.6.3 Protein Solubility  

There are many factors that influence protein solubility. These can include environmental 

factors such as changes in temperature, pressure, and the addition of chemical reagents.   

Poor or inadequate protein solubility is one of the bottle-necks in structural biology. It is also a 

concern in the pharmaceutical industry because it can limit the shelf-life of drugs. Finding ways 

to improve protein solubility and hence increase the life-span of protein drugs is of great value 

in the pharmaceutical industry (Wang, 1999). For example, a lot of effort has been directed 

towards improving the longevity of protein pharmaceuticals such as insulin, calcitonin, and 

leptin (Bakaysa et al., 1996; Fowler et al., 2005; Eui et al., 2005). 

The solubility of a protein is affected by the interactions the protein forms whether those are 

with its self, other proteins in the solution, and the interactions it forms with its aqueous 

environment.   

The surface of a protein determines the type of interaction it makes with its surrounding buffer 

or molecules. Surfaces of water soluble proteins tend to have amino acids with charged or 

polar side chains. These hydrophilic amino acids allow the protein to have favourable 

relationships with the aqueous buffers.  

A hydration layer surrounds proteins in aqueous solution. This hydration layer has special 

properties which makes it distinct from bulk water. It is much more ordered with a density of 
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more than 10 % and heat capacity greater than 15 % compared to bulk water (Creighton, 

1992).  

The solubility of a protein tends to be related to the interactions of its side chains with water. 

Proteins tend to precipitate out of solution to reduce unfavourable interactions between the 

proteins exposed hydrophobic amino acids and the surrounding water (Fields et al., 1992). 

Protein solubility can also be affected by disordered loops which extend from a proteins 

surface. These can be vulnerable in forming non-specific interactions which could result in the 

protein precipitating out of the solution.   

It is difficult to predict what the best method is to improve the solubility of a protein. The tried 

and tested methods may not necessarily be applicable for a particular protein. There are a 

diverse range of methods that can be applied and therefore one should consider carefully 

which methods are suitable for the protein of interest.    

1.6.4 Solubility Screening Methods 

There are two methods available to use during screening of solution conditions when 

optimizing protein solubility. Generally, one of the two methods is used although both can be 

used. They are known as the microdialysis button test and the microdrop screen (named as the 

hanging-drop solubility assay in this thesis) (Bagby et al., 2001). These methods have been 

adapted from the protein crystallization field. The microdrop screen will only be discussed in 

detail here.   

The protein first needs to be highly concentrated in a minimally complex buffer. The protein 

concentration is usually the highest concentration you will need for your experiment or 

alternatively if this is not possible it should be concentrated to the maximum concentration 

that can be obtained. For each buffer condition a small amount of protein which can range 
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from 100 nl to a few µl volumes is mixed with equal volume of the buffer being tested. 

Following the set-up of either technique, the protein is then visualized for precipitation after a 

certain time period whether it is hours or a few days.     

1.6.4.1 Hanging-Drop Solubility Assay 

The hanging-drop solubility assay (Figure 1.6.4.1) is based on vapour diffusion. This method 

was initially developed for crystallography where the protein drop is combined with a buffer 

drop from the well (the well buffer contains the precipitating reagent) on a coverslip which is 

then inverted and secured onto the well. Over time, the protein drop becomes concentrated 

because the solvent diffuses into the well buffer. This results in equilibrium between the buffer 

that the protein is in and the well buffer. Over time, the precipitating reagent will promote 

protein precipitation which can also lead to crystal formation. This method was adapted by 

Lepre and Moore (Lepre and Moore, 1998) to promote protein solubility rather than 

precipitation. Essentially the method is the same here. The only difference is that the buffers 

tested do not contain reagents which promote precipitation but stabilizers instead which 

promote protein solubility.  

There are two main advantages of this assay. Firstly, many buffer conditions can be tested and 

secondly only a small amount of the precious protein sample is required for each condition. In 

this thesis, 96-well plates were used to do the initial screens followed by 24-well plates. Once 

the starting buffer and pH have been determined it is convenient to first screen as many 

conditions as possible. Using a robot such as a Mosquito liquid handler makes this task less 

demanding. This is one of the drawbacks of the microdialysis button test because the dialysis 

buttons have to be assembled manually which is labour intensive and due to the large volumes 

of buffer required for each condition the number of conditions that can be tested is limited.   
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Figure 1.6.4.1 Hanging-drop solubility assay 

Hanging-drop solubility assay set-up (a). For small scale screens a 96 well plate is used. An 
automated machine can be used to pipette equal volumes of the buffer and the protein drop. 
The standard drop volume is 100 nl but this can vary during optimisation screens. Following set-
up of the plate, the plate is incubated at the desired temperature for a few days. The drop is 
then visualised for precipitation and the Lepre and Moore scoring system is used to analyse the 
results where maximum precipitation is assigned a score of four (Lepre and Moore, 1998).    

 

When optimizing the protein of interest it is important to follow a logical order. Initially, it is 

best optimizing the pH and buffer. Once a suitable pH and buffer has been confirmed then one 

can move onto detailed screens. These screens can initially start with common additives from 

the wealth of additives available which can then be followed by using less common additives 

(Bagby et al., 2001). Common additives include: salts such as sodium and potassium chloride, 

reducing agents like TCEP and DTT, glycerol, and mild detergents like CHAPS. 
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The addition of a reducing agent in a protein’s buffer is good practice especially when there are 

exposed cysteines in a protein. The cysteines can be oxidised and form disulphide bridges 

which can result in protein aggregation. Adding a reducing agent such as TCEP can avoid this 

problem.  

1.6.5 Improving Protein Solubility 

There are many options to consider when optimising protein solubility (Figure 1.6.5). It is 

important to ensure that the protein is folded before any detailed solubility optimization 

commences. This can be done by acquiring a 1H - 15N HSQC or Circular Dichroism spectrum.  

 

 

Figure 1.6.5 Improving protein solubility 

There are many approaches one can try when optimising protein solubility. Each of these 
approaches can be followed or be preceded by the other as shown in the flow diagram. These 
approaches range from extensive buffer optimisations to improving construct design. The 
protein can be probed by CD or NMR (1D or 2D) to ensure the protein is folded before and after 
any optimisation.  
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One route of improving protein solubility is to mutate residues on the protein (Dale et al., 

1994; Mosavi and Peng, 2003; Trevino et al., 2007). The drawback to this approach is that it is 

often difficult to decide which residue to mutate and the impact of such a mutation on the 

protein is not known until the protein is tested. 

A common approach is to selectively mutate exposed hydrophobic amino acids to hydrophilic 

ones. This is easier when one has access to the 3D structure of the protein. It is better to 

mutate one or two residues and assess protein solubility because one generally does not want 

to make unnecessary changes to the native protein sequence. Not all hydrophilic residues have 

the same effect on protein solubility. A study which looked into the impact of all the amino 

acids on the RNase Sa protein solubility found that some hydrophilic amino acids favour 

protein solubility compared to others (Trevino et al., 2007). For example, they found that 

serine, aspartic acid, and glutamic acid were better at promoting protein solubility.  

There are a number of technicalities which need to be addressed in order to have an optimized 

target ready for NMR study, in particular, if assignments and detailed structural studies are 

required. The target protein needs to be pure, stable at a pH of 7 or below, have a good 

expression level, and be stable at high concentrations for the duration of the experiment which 

could last for weeks. It is also very important for the target protein to be homogeneous 

meaning that in solution it should be “monodisperse”, containing a single species of protein.    

When deciding on the buffer of choice there are many factors which need to be taken into 

account which will allow the protein of interest to be stable. The buffer type, pH, salt, and 

additional additives will need to be optimised to make up the final buffer. 
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1.6.6 Optimization of Buffer and pH  

When deciding on the type of buffer to use one must take into account several factors. Firstly, 

the chosen buffer needs to have the right buffering capacity. Meaning, it should be capable to 

buffer the chosen pH. This is an important factor which affects protein solubility (Green A, 

1931). 

When a protein is closer to its isoelectric point (pI) it will have the least solubility. The 

isoelectric point of a protein is the pH at which the protein has no net charge. Protein solubility 

is increased when the pH is away from the isoelectric pH in either direction. The concentration 

of the buffer should be enough to be able to allow adequate buffering. In order to maintain the 

pH, this is usually 50 – 100 mM, although in some cases 20 mM can also be used.  

One also needs to be aware of the limitations of their chosen buffer as well as its strengths. For 

example, phosphate can inhibit some enzymes such as dehydrogenases and kinases. The Tris 

buffer is temperature sensitive.    

Generally, it is preferred for experiments to be performed with conditions that are similar to 

physiological conditions. A pH of 7.4 is ideal for most cytosolic proteins like Cdc25C.  

1.6.7 Optimization of Salt 

Salts can affect protein stability through electrostatic shielding and by forming complexes with 

the protein. Electrostatic shielding can have a negative or positive impact on protein stability 

and the impact it has is protein dependent. 

Based on the Hoffmeister series, the most stabilizing ions include ammonium, potassium, 

sodium, sulphate, and acetate ions. Salts stabilize proteins by preferentially hydrating them 

which results in the build-up of water surrounding the protein.  
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Sodium chloride is the most common salt present in most buffers. Varying the concentration of 

sodium chloride and hence the ionic strength of the buffer solution is known to affect protein 

solubility. For example, factor VIII SQ requires sodium chloride in order to stabilize it and 

increase its solubility in solution (Fatouros and Thomas, 1997). 

Increasing the salt concentration further will reach a stage where the salt will start competing 

for water with the protein resulting in the exclusion of water molecules surrounding the 

protein. The protein will then no longer be soluble and precipitate out of solution. This is called 

“salting out”.    

1.6.8 Optimization of Additives 

1.6.8.1 Osmolytes 

Osmolytes include polysaccharides, sugars, and amino acids. Osmolytes are produced naturally 

when organisms experience denaturing conditions or an increase in osmotic pressure. 

Osmolytes can indirectly stabilize proteins by changing the buffer environment. The advantage 

of using an osmoltye as a stabilizer is that they in general do not affect the structure or 

function of the protein.    

1.6.8.2 TMAO (osmolyte) 

Trimethylamine N-oxide (TMAO) is an osmolyte that stabilizes proteins (Cho et al., 2011; Zou et 

al., 2002; Auton and Bolen, 2005). It is naturally found in sharks as well as saltwater fish where 

it counteracts the toxic effect of high concentrations of urea. It stabilizes the native state of 

proteins by increasing their thermodynamic stability.     

1.6.8.3 Sucrose (osmolyte) 

Sucrose was shown to limit aggregation and stabilize the recombinant human interferon-γ 

protein by making it favour a more compact form (Kendrick et al., 1998). The Timasheff 
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mechanism provides an insight into how this occurred (Lee and Timasheff, 1981). Lee and 

Timasheff observed that there is a preferential exclusion of sucrose on protein surfaces. This 

preferential exclusion of sucrose can result in a compact conformation of a protein species 

being favoured which is the case for the recombinant human interferon- γ protein.  

1.6.8.4 Metal Ions 

Metal ions can also stabilize proteins. They do this by making the protein less flexible and more 
compact.  

1.6.8.5 Arginine  

The use of arginine in buffers has been associated with a number of benefits for proteins. It is 

commonly used in protein refolding experiments to prevent aggregation and aid correct 

folding (De Bernardez Clark, 1998). Other benefits of arginine include greater thermal stability, 

inhibition in the build-up of partially folded protein intermediates as well as the prevention of 

non-specific interactions (Ghosh et al., 2009). Higher concentrations of arginine alone can 

greatly improve heat induced aggregation (Shiraki et al., 2002; Arakawa et al., 2007a). 

Concentrations of up to 0.5  M arginine have been shown to have little or no effect on protein 

secondary structure (Ghosh et al., 2009).  

Arginine in combination with equimolar glutamic acid is also effective in improving protein 

solubility (Golovanov et al., 2004; Vedadi et al., 2006; Blobel et al., 2011). A 50 mM mixture of 

Glu/Arg has been shown to prevent proteolytic degradation as well as inhibit protein 

aggregation, ultimately increasing the longevity of the protein sample (Golovanov et al., 2004). 

Vedadi et al. showed that 16 % of all the proteins tested were stabilized against heat induced 

aggregation by the addition of 50 mM Glu/Arg and more than 4 oС increases in Tm were noted 

(Vedadi et al., 2006).   
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1.6.9 Solubility Fusion Tags 

In structural biology it is common to attach a tag onto a protein whether that is a solubility tag, 

a tag which aids protein purification or a tag that does both. There is a wide range of fusion 

tags available and the type of fusion tag used depends on the requirements.   

Fusion tags come in all shapes and sizes. They can range from short stretches of amino acids to 

large tags such as the MBP (maltose binding protein) fusion tag (Table 1.6.9).  

The MBP system is a well-known and well-studied system. The MBP protein has been shown to 

be a better solubilising agent then both the GST (Glutathione S- Transferase) and TRX 

(thioredoxin) systems. Kapust et al. (Kapust and Waugh, 1999) suggest the deep hydrophobic 

cleft in the MBP fusion protein aids protein solubility. They also claim the MBP fusion protein 

of having a chaperone role. Despite these advantages, the main limitation of using this tag for 

NMR is its size. Large tags such as the GST or MBP tags will need to be removed before any 

NMR studies take place. If the tag is being used as a solubility enhancing tag, removal of the 

tag can result in the loss of the solubilising effect hence poor solubility of the target protein. If 

these large fusion tags are not removed, signals from the fusion tags will also appear in the 

HSQC spectrum along with the desired protein resonances. This will result in complications in 

the data being collected. Therefore, the use of fusing such large tags to proteins for NMR 

studies is limited.   
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Table 1.6.9 Solubility tags 

A Table to summarise the pros and cons of the tags    

1.6.9.1 Poly-Lys and Poly-Arg tags 
  
Fusing short poly-Lys or poly-Arg tags to the N- or C- termini of the target protein has been 

shown to significantly improve protein solubility (Kato et al., 2007). This study showed a 

positive relationship with protein solubility and increasing the number of lysine or arginine 

residues for the bovine trypsin inhibitor, BPTI-22. There was no change seen in the structure or 

activity of the BPTI-22 protein upon fusion of these tags. Adding five or six consecutive Arg or 

Lys amino acids were shown to be optimal in improving protein long-term solubility. The 

solubility enhancing effect was greater when these tags were fused to the C- termini. There 
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was also an improvement seen in the 1H-15N HSQC spectra. Generally, for these types of tags, 

cleavage is not desired and can be problematic (Terpe, 2003).  

1.6.9.2 His Tag 

The most popular fusion tag used in structural studies is the His tag which is a stretch of at 

least six histidines (Hammarström et al., 2002). It is quite useful in that it allows proteins to be 

purified efficiently. This polyhistidine tag has an affinity for bivalent Nickel or Cobalt metal ions 

which are immobilized onto a resin. The advantages of a His tag is that it is not sensitive to 

changes in the purification buffers. Another advantage is that the His tag can be used to purify 

proteins under denaturing conditions making it a popular tag during such studies. Since the tag 

will not become denatured like other tags such as MBP it does not need a folded protein to 

work. It can easily be used to purify peptides. Its small size also provides an advantage in that 

the tag does not need to be removed for NMR studies. However, it is a poor solubility 

enhancement tag and in some cases can cause problems and needs to be removed 

(Woestenenk et al., 2004; Hammarström et al., 2002). 

1.6.9.3 Other Solubility Tags 

Another option is fusing smaller domains such as the thioredoxin (Trx) tag or the GB1 tag to 

the target protein (Yasukawa et al., 1995; Zhou and Wagner, 2010). Both tags have been 

shown to enhance protein solubility and long term stability. The GB1 tag has successfully been 

shown to improve protein solubility and the NMR HSQC spectrum of the target protein (Zhou 

and Wagner, 2010). It is a small domain ~ 6.2 kDa in size fused to the protein of interest. There 

is also flexibility in the type of GB1 tag used in that it can complement the charged state of the 

protein. The difficulty of using this type of tag is in the complication that results in the HSQC 

NMR spectrum. Since this tag is not cleaved signals of the GB1 protein and the target protein 
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will be present in the spectrum. However, this tag is useful if the protein has poor solubility, 

and a poor NMR spectrum; it can help resolve the signals of the target protein. 
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1.7 Small angle X-ray Scattering (SAXS) 

1.7.1 Background 

Small angle X-ray scattering (SAXS) was initially developed in the late 1930s by a French 

physicist named Andre Guinier (Guinier, 1955). It is a technique which provides useful insights 

into the size, shape and flexibility of a system (Putnam et al., 2007). It is particularly useful in 

structural biology where macromolecules can be investigated in solution.  

With a resolution up to 1-2 nm, SAXS is a relatively low resolution protein 3D structure 

determination technique compared to NMR and X-ray crystallography. However, the ease of 

sample preparation and data analysis as well as the potential to complement NMR and X-ray 

crystallography makes it a useful and robust method particularly for flexible or multidomain 

systems (Mertens and Svergun, 2010). 

From the SAXS scattering curve a low resolution 3D protein model can be generated using ab-

initio techniques (Grant et al., 2011; Franke and Svergun, 2009). 3D protein atomic structures 

determined by NMR or X-ray crystallography can be fitted into the SAXS model; these can be 

either of the same protein or smaller domains of the full-length protein. This can help to obtain 

an overall model of a macromolecule complex. One of the key advantages of this technique 

over NMR is that SAXS is not restricted to protein size and large complexes can be studied.  

If the macromolecule being investigated possesses high flexibility and disorder it becomes 

difficult to work with especially when trying to generate diffraction quality crystals since they 

need to be well-ordered and have minimum flexibility. However, this is not a problem for SAXS 

because protein crystals are not required and systems possessing high flexibility can be 

studied. Therefore, SAXS is useful in studying difficult protein targets. If X-ray crystallography 
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data is available this can be compared to the SAXS data which allows comparison of the protein 

in both solid and solution state. SAXS can therefore help to validate the crystal structure.  

1.7.2 Technique  

SAXS data is usually collected at synchrotron facilities. This is because proteins weakly scatter 

X-rays, therefore high intensity X-ray photon beams are required. The final scattering pattern 

of the protein which is generated is commonly collected at angles ≤ 3 Å which provides 

important information on the size, shape, and conformation of the protein (Svergun and Koch, 

2002). 

Figure 1.7.2 is a schematic of the SAXS experiment. The SAXS instrument is composed of an X-

ray source, a component where the sample is held, a collimation system, beam stop and a 

detection component.  

The collimation system is useful in that it narrows the X-ray beam. The beam stop is an 

important barrier which stops the resulting beam that has not been scattered by the sample 

from striking the detector. This would not only damage the detector but would also overlap 

the signal from the protein sample.    

The data collected is in 2D form which is then transformed to a 1D format. Two scattering plots 

are obtained. One is from the protein sample and the other from the buffer. This allows the 

buffer subtraction to take place which then results in a scattering plot of just the protein alone. 

This is plotted as logarithmic intensity against q where q is the momentum transfer and is 

defined as: q = 4πsinθ/λ (angle between incident and scattered beam is 2θ). 
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Figure 1.7.2 Small Angle X-ray Scattering (SAXS) 

The sample is exposed to a highly focused X-ray. The sample will then scatter these X-rays 
which are then detected by the detector. The beamstop prevents the detector from being 
damaged by the primary beam.  

1.7.3 Data Analysis  

1.7.3.1 Data Quality 

In order to obtain good quality SAXS data and make reliable conclusions it is important that the 

sample is of good quality with minimal aggregation. The sample needs to have high purity and 

this can be checked using an SDS-PAGE prior to the SAXS experiments. As well as high purity 

the sample should be monodisperse; AUC can be used to assess if the sample is monodisperse.   

Another important quality check of the SAXS data is looking at the lower q (Guinier) region of 

the scattering plot (Jacques and Trewhella, 2010). This is useful in detecting any concentration 

dependent effects when comparing different concentrations and also allows you to see if there 

are any undesired interactions. When an increase in intensity is seen at the Guinier region 

which is called a “smiling” Guinier this means that there are attractive forces most likely due to 

aggregation (Figure 1.7.3a). If there is a decrease in intensity and a “frowning” Guinier is seen 

at lower q this means there are repulsive forces. This occurs because of interparticle 
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interference. However, it is normal to see a sudden drop in intensity at very low q. This is due 

to the effect of the beam stop.  

1.7.3.2 Radius of Gyration 

The radius of gyration (Rg) provides information which is essential when computing the 

dimensions of a particle (Svergun and Koch, 2003). The Rg can be extrapolated from the Guinier 

plot by fitting a straight line in the Guinier region (Figure 1.7.3a). An Rg can only be determined 

using the Guinier approximation approach if a straight line can be fitted in the Guinier region. If 

a straight line cannot be fitted this implies interfering forces and one cannot obtain the Rg from 

this analysis.  

1.7.3.3 P(R) graph 

The P(R) function which is also known as the “pair distance distribution function” can be 

computed using the GNOM program from the ATSAS software suite (Jacques and Trewhella, 

2010). Rg can also be calculated here. The Rg parameter taken from this analysis is more precise 

compared to the Rg value which is extrapolated from the Guinier region. This is because this 

analysis takes into account all the scattering data rather than being restricted to the Guinier 

region. However, it is good practice to compare the Rg derived from the Guinier approximation 

to the Rg obtained here for consistency.  

The P(R) profile gives information on the shape of the protein. It can therefore be useful in 

discerning conformational changes.  

The way the P(R) curve approaches zero gives insights into the nature of the protein. It allows 

one to obtain the Dmax, also known as the “maximum particle dimension” which is a measure of 

the size of the protein (Svergun and Koch, 2003). Tailing of the P(R) peak can indicate two 

things; there is aggregation or there is flexibility in the sample. If adequate quality checks have 
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been carried out and aggregation is ruled out then this tailing can be attributed to the 

flexibility in the protein. The limitation of the P(R) analysis is that although it can tell you if 

there is flexibility in the protein it cannot tell you where this flexibility lies within the protein. 

The ensemble optimization method (EOM) can give you a better idea (Bernadó et al., 2007).  

1.7.3.4 Kratky Plot 

The Kratky plot is a good qualitative measure of the folded state of the protein (Putnam et al., 

2007; Receveur-Brechot and Durand, 2012). It is plotted as logarithmic intensity multiplied by 

q2 against q (Figure 1.7.3 b). A folded protein is represented by a bell-shaped peak which is 

then followed by constant values converging around zero intensity with increasing q. A 

completely unfolded protein does not have the characteristic bell-shaped curve which defines 

a folded protein and instead plateaus at high q. A partially disordered protein has a bell-shaped 

curve for the folded component and an increase at high q which is due to the disordered 

component.  
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Figure 1.7.3 Data Analysis 

The Guinier plot is used to assess data quality (a). If a straight line cannot be plotted in the 

Guinier region this indicates interparticle interference. The Kratky plot can be used to assess 

the folded state of the protein (b).    

 

1.8 NMR and Crystallography theory   

1.8.1 NMR: The Basics  

Atomic nuclei such as 1H, 15N, and 13C possess an overall nuclear spin. This is because they 

experience a magnetic moment. The spin quantum number (I) reflects the magnitude of the 

nuclear spin. The nuclei with a spin number of ½ are commonly used in the protein NMR field. 

These nuclei are 1H, 15N and 13C. Nuclei which have a nuclear spin of zero are NMR silent, 

meaning they do not provide a magnetic signal because they do not have an inherent magnetic 

moment.  

Because the NMR active nuclei possess nuclear spin when they are exposed to a magnetic field 

they will adopt a number of states. The nuclei that have a quantum number of ½ adopt two 

states known as α and β states (Figure 1.8.1). These states are either aligned with the magnetic 

field or against it. The lower energy state which is known as the α-state tends to align with the 

magnetic field and at equilibrium there will be more nuclei in this state compared to the high 

energy β-state. The difference in energy between the α- and β-state is very small. This energy 

difference is characterized by the Boltzmann distribution and correlates to the magnetic field 

strength and the gyromagnetic ratio (γ) (the gyromagnetic ratio is the ratio of the magnetic 

moment to the angular momentum) of the nuclei (Levitt, 2008).     
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Nuclear spins can be visualised as precessing around an axis. When a radio-frequency (RF) 

pulse is applied the equilibrium between α- and β- states is shifted and the α-spins will flip to 

the high energy β-state. The frequency of the RF pulse should be at the same frequency as the 

precessing frequency which is also known as the Larmor frequency. The Larmor frequency is 

defined by the gyromagnetic ratio and the magnetic field experienced by the nuclei. The 

resulting energy difference following the application of the RF pulse forms the basis of NMR 

spectroscopy.  

 

Figure 1.8.1 Transition from α to β state  

The α-state is the low energy state. Following excitation by a radio-frequency (RF) pulse the α-
state is shifted to the excited high energy β-state. The difference in energy is defined as ∆E = hv 
where h is the plank’s constant and v is the frequency.  

1.8.2 FID 

The signal is recorded as an FID which known as the free-induction decay. The signal decays 

over time because of transverse relaxation (Levitt, 2008). The FID signal is plotted as RF 

intensity versus time and is Fourier transformed to RF intensity against frequency. The final 1D 

NMR spectrum is generally made up from a large number of FIDs to obtain the optimal signal 

to noise ratio.  

1.8.3 Chemical Shifts 

Chemical shifts are expressed in parts per million (ppm) rather than Hz. The resonance 

frequency of an internal standard such as tetramethylsilane (TMS) or deuterium oxide (D2O) is 
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used for this conversion. The internal standard is used to determine the reference (zero) point. 

Converting chemical shifts to ppm means experiments can be collected at different 

spectrometers and easily compared. For example, the same experiment collected at a 600 or 

800 MHz spectrometer will result in the same chemical shifts (ppm) values recorded. This is 

because the chemical shift (ppm) is independent of the strength of the magnetic field. 

The proton chemical environment determines the position of the proton signal on the proton 

spectrum. The proton nuclei which are surrounded by high electron density will experience 

high shielding and result in a proton signal at the lower end of the chemical shift scale 

(upfield). The protons which are surrounded by low electron density will experience low 

shielding and therefore will result in a proton signal at the higher end of the chemical shift 

scale (downfield).         

1.8.4 Spin-Spin coupling 

Nuclear spins can also interact with each other and this phenomenon is known as spin-spin 

coupling.  Spin-spin coupling results in the splitting of the nuclei signals at a frequency which is 

specific to the nuclei and the distance between peaks is defined by the coupling constant J (1). 

The resulting splitting pattern and intensities can be predicted by Pascal’s triangle.  

1.8.5 NMR spectroscopy and compound screening   

1.8.5.1 1D NMR  

Protein ligand screening using NMR commonly involves two approaches. The first approach 

looks at the ligand using 1D NMR techniques such as WaterLOGSY (Water-ligand observed via 

gradient spectroscopy) (Ludwig and Guenther, 2009; Stockman and Dalvit, 2002). The second 

approach looks directly at the protein using 2D NMR techniques such as the HSQC.  
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Screening techniques involving 1D NMR ligand screening are popular because they require 

small amounts of protein at low concentrations which does not need to be labelled with 

expensive isotopes. These techniques can be used for initial screening as well as for the 

optimisation of lead compounds.  

1D NMR ligand screening is based on the principle that proteins have a bigger size compared to 

the small molecule compounds. This size difference can be associated with relaxation 

properties which arise from the effects of tumbling (Ludwig and Guenther, 2009). Relaxation 

properties can be transferred from the protein to the small molecule compound changing the 

relaxation properties of the compound. This occurs when the compound binds to the protein. 

Provided that this interaction is transient and the small molecule compound comes off the 

protein within the time scale of the experiment this compound will have a different relaxation 

property compared to the compounds in solution which have not bound the protein and 

therefore will be detected. This is essentially the basis of the WaterLOGSY experiments.    

NMR (1D) ligand screening is advantageous in picking up hits for ligands with low affinity and 

can enable characterization of the ligand binding epitope (Ludwig et al., 2008; Bhunia et al., 

2012). The main limitation of 1D NMR ligand screening is that tight-binding ligands can result in 

false negatives. Therefore, protein-based NMR techniques, commonly HSQC experiments, are 

used to identify tight binders. These data can complement the 1D data.  HSQCs can be used to 

map the binding onto the protein surface if assignments of the amide groups of the protein are 

available.  

 1.8.5.2 2D NMR  

During the 1H, 15N-HSQC experiment magnetization is transferred by J-coupling from the amide 

proton to the attached labelled nitrogen. The chemical shift evolves on the nitrogen which is 
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then followed by a transfer of magnetization back to the original amide proton before the data 

is acquired.   

The HSQC spectrum of a protein is essentially a finger print of the protein where each peak on 

the HSQC represents an amide group of a single amino acid. An exception is proline. Proline 

has an imino instead of an amino group. This means it does not possess a free proton that it 

can couple with nitrogen and hence will not produce a signal in the HSQC spectrum. Also, there 

are extra peaks from asparagine, glutamine, and tryptophan side chain amides.  

A protein HSQC allows one to conclude if a protein is folded or not. If the peaks are well 

dispersed this indicates a folded protein. On the other hand if the peaks are not well dispersed 

and are all localised in the middle of the spectrum this indicates the protein is unfolded. If the 

protein is partially folded and contains a significant amount of disorder there will be a 

combination of dispersed peaks accounting for the folded component and a significant 

proportion of peaks clustered together in the middle of the spectrum which will account for 

the disordered component.  

A protein HSQC can also be used to identify compounds or ligands which interact with the 

protein. These can be added and changes in the HSQC can then be monitored. If there is a 

binding event occurring this will be reflected by the chemical shift perturbations which will 

occur which can be in fast, slow, and/or intermediate exchange (Williamson, 2013). These 

chemical shifts changes can be mapped onto the protein structure.    

The main limitation of protein NMR is the upper size limit which can range from 40-60 kDa. 

This is because the bigger the protein is the slower it will tumble. This slow tumbling results in 

broader line width in the NMR spectrum. The HSQC spectrum will have overlapping signals 

with poor resolution. Deuterating the large protein can help resolve these signals.  
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1.8.6 X-ray Crystallography  

1.8.6.1 Introduction  

X-ray crystallography is an alternative technique to NMR which is used to solve protein atomic 

structures. One of the advantages of using X-ray crystallography over NMR is that this 

technique is not restricted to the size of the protein.  

The three-dimensional structures of proteins can be determined with their interacting partner 

such as a co-factor, ligand or inhibitor. Determining the atomic protein structure with the 

protein ligand/inhibitor allows greater understanding into the function of the protein.  Also, 

this structural information can provide important insights in the development of drug 

compounds (Appelt et al., 1991; Sharff and Jhoti, 2003) allowing for the design of improved 

and more potent drugs.  

1.8.6.2 The X-ray crystallography technique 

Individual protein molecules in solution diffract X-rays weakly and therefore their resulting 

diffraction data cannot be detected. However, this can be overcome by using a protein crystal 

which is made up of a large number of protein molecules that are arranged in the same 

orientation in three dimensions. Hence, the crystal serves to amplify the signal and the 

resulting diffracted X-rays can be detected by the X-ray detector.  

The protein crystal is placed between an X-ray beam and the detector. The crystal is then 

exposed to the X-ray beam. The direct X-ray beam is diffracted by the electrons which 

surround the atoms within the protein crystal. The diffracted X-rays are described as 

‘‘reflections’’ which are detected as spots on the X-ray detector (Rhodes, 2000). Each of these 

spots represent a diffracted X-ray which is a simple wave defined by three parameters: 

frequency, amplitude, and phase. It is important to define these parameters for each diffracted 
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spot in order to successfully determine the three dimensional structure of a protein using X-ray 

crystallography.  

1.8.6.3 Growing crystals 

It is important that the protein has high purity and is freshly prepared before any crystallization 

trials commence (Dessau and Modis, 2011). This is because contaminants can interfere with 

the crystallisation process or generate crystals that diffract X-rays weakly leading to low 

resolution structures.   

The crystallization process involves three steps (Durbin and Feher, 1996). The first step is 

nucleation in which the protein molecules associate together providing a foundation for the 

growth of a crystal. The next step is the growth of the crystal. The final step is when the crystal 

ceases to grow usually as a result of lack of free protein molecules within the solution or the 

presence of contaminants poisoning the growing faces of the crystal.   

Crystals are grown under conditions which promote protein precipitation. It is essential that 

this precipitation process is tightly regulated and occurs very slowly to ensure maximum 

success for crystallising the target protein. Also, the precipitating condition should not induce 

the protein to denature or rapidly aggregate. Therefore, specialised crystallisation reagents are 

employed to promote precipitation. These crystallisation promoting reagents can range from 

salts, additives, and large polymers such as polyethylene glycol (PEG).  

Commercial crystallisation screens are especially designed to help identify initial crystallisation 

conditions for the target protein (Wooh et al., 2003). The most popular method utilised to 

crystalize proteins is the ‘hanging-drop’ vapour diffusion technique. A subtle variation in this 

technique is the sitting drop method which can also be used. In either case equal volumes of 

purified protein is mixed with a crystallisation reagent condition (usually 100 + 100 nl drops) 
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with the Mosquito nano-litre crystallisation robot. Following set-up, the plate is incubated at 

the required temperature and later analysed for crystals using a light microscope.  

Many variables such as the concentration of the protein, incubation temperature, pH and ionic 

strength of the solution as well as the type of precipitant can determine the success of a 

crystallisation experiment. Usually, crystallisation conditions for the target protein are 

screened using multiple commercial crystallisation screens. Hence, the identification of 

conditions suitable for crystal growth takes place using a trial and error approach and 

represents one of the biggest obstacles in X-ray crystallography. Once, the initial hits for the 

target protein have been identified the subsequent stage involves optimisation of the 

conditions to generate larger diffraction-grade crystals. Optimisation of the crystals can involve 

varying the drop volume of protein and buffer, slightly altering promising buffer conditions, 

and changing the incubation temperature. Once optimised conditions have been identified the 

screens will then be up-scaled so a large crystal can be generated which is then subjected to X-

ray diffraction studies using an X-ray beam. 
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1.9 Thesis Aims 

The main aim of this study was to structurally and biochemically characterise the Cdc25C full-

length protein in order to aid future drug design. This aim was split into three aims: 

1. Assessing the suitability of the Cdc25C full-length protein for small angle X-ray 

scattering (SAXS) experiments  

2. Characterisation of the regulatory domain by determining if this domain is folded, 

determining the secondary structure content, and flexibility   

3. Improving the solubility of the Cdc25C catalytic domain by optimising construct and 

solution conditions and assessing the potential for backbone assignments   

4. Biophysical characterisation of the Cdc25C catalytic domain and testing inhibitor 

compounds in order to identify interaction sites on the protein 
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Chapter 2.0 - Materials and Methods  

2.1 Construct Design  

The Cdc25C constructs used in this thesis are listed in Tables 2.1.1, 2.1.2 and 2.1.3. These 

constructs were either His or GST tagged (Appendix (A) 1). The Cdc25C constructs were 

provided by our collaborator Professor Knapp (SGC, Oxford), purchased from the company 

ShineGene (Shanghai, China) or created using the QuikChange Lightning kit (Agilent 

Technologies, Cheshire, UK). The latter constructs (Tables 2.1.2 & 2.1.3) were designed using 

information gained from the disorder predictions’ of Cdc25C using the ‘DisMeta server’ and 

insights gained from the literature regarding the addition of charged residues to improve 

protein stability (Huang et al., 2014; Kato et al., 2007) 

Construct Name  Vector Cell Line  

His-Cdc25C270-443   

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-462 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-473 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C280-443 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C280-462 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

 
Table 2.1.1 
A list of constructs provided by SGC  



57 

 

Construct Name Vector Cell Line  

GST-Cdc25C1-473 

(Full-length) 

pGex6p-1 BL21 (DE3) 

GST-Cdc25C1-280 

(N-terminal domain) 

pGex6p-1 BL21 (DE3) 

His-Cdc25C1-280 

(N-terminal domain)  

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C36-280 pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C36-443 pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C73-441 pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C83-441 pNIC28-Bsa4 BL21 (DE3) 

 
Table 2.1.2 
A list of constructs purchased from ShineGene (Shanghai, China) 

 

 

 

 

 

 

 



58 

 

Construct Name Vector Cell Line  

His-Cdc25C270-429 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-432 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-436 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-449 

(C-terminal domain) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-449 - 5Arg  

(C-terminal domain + Arg tag) 

pNIC28-Bsa4  BL21 (DE3) 

His-Cdc25C270-449 - 5Lys 

(C-terminal domain + Lys tag) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-449-5Pro 

(C-terminal domain + Pro tag)  

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-449 -4Glu 

(C-terminal domain + Glu tag) 

pNIC28-Bsa4 BL21 (DE3) 

His-Cdc25C270-449-GSSGS 

(C-terminal domain + GSSGS tag) 

pNIC28-Bsa4 BL21 (DE3) 

 
Table 2.1.3 
A list of constructs synthesized using the Quikchange Lightning kit (Agilent Technologies) 
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2.2 Site Directed Mutagenesis  

Agilent Technologies primer design program (www.agilent.com/genomics/qcpd) was used to 

design primers (Table 2.2.1) to be used in the mutagenesis reactions. The primers were then 

purchased from Invitrogen and the Agilent QuikChange lightning protocol was followed.   

To synthesize constructs for the different C-terminal lengths of Cdc25C the relevant amino acid 

was mutated from the template vector to a stop codon. 

Amino acids were mutated either in the N-terminal TEV cleavage site, the C- termini or both to 

generate constructs fused with short poly-amino acid solubility tag(s) (Table 2.2.1).   

Construct  Template Vector Primers (5’- 3’) 
 

His-270-429  
 

His-270-443 + tatggaactgtgtgaaccatagagctactgcccta 
-  tagggcagtagctctatggttcacacagttccata 
 

His-270-432 His-270-443 + ctgtgtgaaccacagagctactaacctatgcatcatcagga 
-  tcctgatgatgcataggttagtagctctgtggttcacacag 
 

His-270-436 His-270-443 + aaccacagagctactgccctatgcattgacaggaccacaagac 
- gtcttgtggtcctgtcaatgcatagggcagtagctctgtggtt 
 

His-270-449 His-270-462 + ctgaggtgtcgaagctagagcaaagtgcagg 
- cctgcactttgctctagcttcgacacctcag 
 

His-270-449-5Arg His-270-462 + ttgctgaggtgtcgaagccggcgcagaaggcggtaaggggagcggcagctgcg 
- cgcagctgccgctccccttaccgccttctgcgccggcttcgacacctcagcaa 
 

His-270-449-5Lys His-270-462 + gagttgctgaggtgtcgaagcaagaagaaaaagaagtaaggggagcggcagctgcggg 
- cccgcagctgccgctccccttacttctttttcttcttgcttcgacacctcagcaactc 
 

His-270-449-5Pro His-270-462 
His-270-449-4Pro 

+ gagttgctgaggtgtcgaagcccgcccccaccgtaggaaggggagcggcagctgcg 
- cgcagctgccgctccccttcctacggtgggggcgggcttcgacacctcagcaactc 
+ cccgcccccaccgccgtaaggggagcggca 
- tgccgctccccttacggcggtgggggcggg 

His-270-449-4Glu His-270-462 
 

+ tgagttgctgaggtgtcgaagcgaggaggaggagtaggaaggggagcggcagctgcg 
- cgcagctgccgctccccttcctactcctcctcctcgcttcgacacctcagcaactca 
+ cgaggaggaggaggagtaaggggagcggca 
- tgccgctccccttactcctcctcctcctcg 
 

His-270-449-GSSGS 
 
 
 

His-270-462 
 

+ agttgctgaggtgtcgaagcgggagcagcgggtcgtaaggggagcggcagctgcgg 
- ccgcagctgccgctccccttacgacccgctgctcccgcttcgacacctcagcaact 
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Table 2.2.1 
A list of Cdc25C template vectors and primers used to synthesize Cdc25C constructs using the 
QuikChange Lightning Site Directed Mutagenesis Kit (Agilent Technologies, Cheshire, UK)  

2.3 Small scale protein expression 

2.3.1 Transformation 

DH5α (Invitrogen, Paisley, UK) or BL21 (DE3) (Merck Chemicals, Nottingham, UK) cells and the 

desired vector were thawed on ice for 20 minutes. 1 µl of DNA (6-12 ng) was added to either 

25 µl of DH5α cells or 50 µl of BL21 (DE3) cells. The cells were incubated on ice for a further 20 

minutes. The cells were then subjected to heat-shock by incubating on a heating block for 30 

seconds at 42 °C. This was followed by 2 minute incubation on ice. 80 µl or 200 µl of SOC media 

(Invitrogen, Paisley, UK) was added near the flame to the transformed DH5α and BL21 (DE3) 

cells respectively. The transformed cells were then incubated at 37 °C, 220 rpm for 1 hr before 

they were plated on LB or M9 Agar plates (A2) which contained the relevant antibiotic. The 

plates were incubated at 37 °C overnight.  

2.3.2 DNA Extraction  

A single colony of DH5α cells transformed with the desired vector was inoculated into 5 ml LB 

containing either ampicillin or kanamycin antibiotic. This culture was then incubated at 37 °C, 

220 rpm for 16 hours. The cells were then pelleted at 4000 rpm. The QIAPREP Spin Miniprep 

Kit (Qiagen, Manchester, UK) was used to extract and purify the DNA. The DNA concentration 

His-GSSGS-270-449 His-270-449 +cttctggtgtagatctgggtaccgagaacctgggcagctcaggcagcactcagatgctggagg
aagattctaaccaggg 
-
ccctggttagaatcttcctccagcatctgagtgctgcctgagctgcccaggttctcggtacccaga
tctacaccagaag 

His-GSSGS-270-
449-GSSGS 

His-270-449-GSSGS +cttctggtgtagatctgggtaccgagaacctgggcagctcaggcagcactcagatgctggagg
aagattctaaccaggg 
-
ccctggttagaatcttcctccagcatctgagtgctgcctgagctgcccaggttctcggtacccaga
tctacaccagaag 
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was determined using a Shimadzu UV-1700 Pharmaspec spectrophotometer with the DNA 

concentration (µg/ml) calculated to be equal to OD260 x Dilution factor x 50 µg/ml.  

The A260/280 ratio was used to check the purity of the DNA. The vector DNA was then sequenced 

by providing 300-400 ng DNA and 3.2 pmol sequencing primer in a final reaction volume of 10 

µl to the Functional Genomics, Proteomics and Metabolomics Facility (University of 

Birmingham).  

2.3.3 Glycerol Stocks (BL21 (DE3))  

A BL21 (DE3) colony transformed with the Cdc25C expression vector of choice was inoculated 

into 3 ml LB containing the appropriate antibiotic. The culture was then incubated at 37 °C, 220 

rpm in a shaking incubator for a few hours until the OD600 was ~ 1.0. 2 ml of this culture was 

inoculated into fresh 10 ml L.B containing the relevant antibiotic and this was then further 

incubated (as before) for a few hours. Sterile glycerol was then added to the 12 ml culture at a 

final concentration of 20 %. The culture containing glycerol was then mixed and aliquoted into 

sterile cryogenic tubes followed by flash-freezing in liquid nitrogen. The cryogenic tubes were 

then stored at -70 °C. 

 2.3.4 Small scale growth and protein expression trials  

A 2 µl volume of the desired glycerol stock was inoculated into 2 ml of fresh LB media selecting 

for the appropriate antibiotic resistance. This overnight culture was incubated at 37 °C, 220 

rpm.  

The next day 300 µl of the overnight culture was inoculated into 15 ml LB or Terrific media 

(Sigma-Aldrich, Dorset, UK), selecting for antibiotic resistance and grown until the OD600 was ~ 

0.9. The temperature was then reduced to 18 °C. After 20 minutes a 1 ml pre-induction sample 

was taken and then IPTG was added to a final concentration of 1 mM. The pre-induction 
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sample was centrifuged at 10 000 x g for 1 minute and the supernatant was discarded. The 

pellet was stored at -20 °C.  

The next morning a 1 ml sample of the induced cells was taken. This sample was also 

centrifuged and the supernatant was discarded.  

The pellets were resuspended in 100 µl of PBS (Phosphate Buffered Saline) and 100 µl 2x 

Laemmli buffer (Sigma-Aldrich, Dorset, UK) was added. The samples were then subjected to 

sonication using a Soniprep 150 (MSE) sonicator. Each sample was sonicated at 5 microns for 

30 seconds followed by 1 minute incubation on ice. This was repeated three times for each 

sample. After sonication the samples were heated at 95 °C for 3 minutes. Following this, 10 µl 

of each sample was loaded and an SDS-PAGE was performed.  

2.3.5 Separating soluble and insoluble fractions 

From the induced cultures 1 ml samples were taken and spun down at 10 000 x g for 1 minute. 

The drained pellet was resuspended in 200 µl PBS and the samples were kept on ice for 15-20 

minutes. The samples were then sonicated and from this the cell lysate was obtained. The 

remaining sonicated sample was then centrifuged at 24 000 x g, 4 °C, for 3 minutes. The 

soluble fraction (supernatant) was then isolated. Laemmli sample buffer (2x) was added to the 

cell lysate, soluble and insoluble fractions which were then heated at 95 °C for 3-5 minutes. 

The samples were then checked using SDS-PAGE.    

2.3.6 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The precision plus protein TM standard marker (Bio-Rad, Hertfordshire, UK) was loaded into the 

first well of a 4-12 % Bis-Tris criterion XT precast gel (Bio-Rad, Hertfordshire, UK). The samples 

were then loaded into the consecutive wells. The SDS-PAGE gel was run in MES buffer (Bio-
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Rad, Hertfordshire, UK) at 180V for 35 minutes. The gel was then stained for 1 hour with 

InstantBlue (Expedeon, Cambridge, UK). 

 

2.4 LB and Terrific media Large scale protein expression 

A volume of 10 µl from the appropriate glycerol stock was inoculated into 25 ml LB or Terrific 

media (Sigma-Aldrich, Dorset, UK), selecting for the relevant antibiotic and incubated overnight 

at 37 °C, 220 rpm. 

The next day 25 ml of the LB or Terrific media overnight culture was inoculated into 1L of LB or 

Terrific media, respectively. Depending on the construct between 1 - 5 L of large scale cultures 

were grown. These were grown for at least 5 hours at 37 °C, 200 rpm until the OD600 was ~ 1.0. 

The temperature was then lowered to 18 or 25 °C for at least 20 minutes before IPTG was 

added to a final concentration of 1 mM. The cultures were then incubated at this temperature 

overnight.   

2.5 M9 small scale protein expression trials 

2.5.1 M9 minimal media optimization  

A single colony of BL21 (DE3) transformed cells was picked from an M9 plate and inoculated 

into 2 ml M9 minimal media containing 15N and 13C labeled nutrient mix (A3). Kanamycin was 

added at a 30 µg/ml final concentration. This culture was incubated overnight at 37 °C, 220 

rpm. The following day two sets (A and B) of 3x15 ml cultures were used. Each set contained 15 

ml cultures of M9 media alone, M9 media supplemented with 13C, 15N labeled 10 % w/v 

ISOGRO® (Sigma-Aldrich, Dorset, UK) and M9 media supplemented with 1 % v/v 13C, 15N labeled 

BioExpress®-1000 (Cambridge Isotope Laboratories, Massachusetts, USA). All the cultures were 

inoculated with 300 µl of the overnight culture. Nutrient mix (A3) and Kanamycin were added 
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to all the 15 ml cultures. The cultures were then grown at 37 °C in a shaking incubator (220 

rpm) until they had an OD600 of 0.9.  

Readings at OD600 were taken from each culture. Starting from time 0, readings were taken 

every hour for 13 hours, to plot bacterial growth curves. When the set B 15 ml cultures 

reached an OD600 of 0.9 the temperature was lowered to 18 °C and the cells were induced 

overnight with 1 mM IPTG. The next day, 1 ml samples taken from the set B cultures were 

centrifuged and sonicated. Following this, 10 µl samples were loaded and subjected to SDS-

PAGE.  

2.5.2 Temperature Optimization 

Three 15 ml cultures were grown as described in section 2.5.1. Once the OD600 reached 

approximately 0.9, the temperature was lowered and each 15 ml culture was incubated either 

at 18, 25 or 37 °C. Once the pre-induction sample was extracted, the cultures were induced 

overnight with 1 mM IPTG. The next day 1 ml samples were extracted, centrifuged, sonicated, 

and prepared for SDS-PAGE analysis. The total cell lysate was centrifuged to separate the 

soluble and insoluble fractions which were also analysed by SDS-PAGE. The gel was stained 

using the coomassie based stain InstantBlue (Expedeon, Cambridge, UK) and then analyzed to 

identify the optimum temperature to provide the best yield of soluble protein.   

2.6 M9 large scale protein expression  

A BL21 (DE3) colony from an M9 plate was inoculated into 2 ml M9 minimal media containing 

15N labeled nutrient mix and kanamycin (30 µg/ml). This culture was grown for 8 hours. 50 µl of 

the culture was inoculated into 25 ml fresh M9 minimal media containing 15N labeled nutrient 

mix and kanamycin. This culture was incubated overnight at 37 °C, 220 rpm.  
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Each 1L M9 culture grown was inoculated with 25 ml of overnight culture and incubated at 

37 °C until an OD600 of 0.9 was obtained. Depending on the construct the temperature was 

then lowered to either 18 or 25 °C. IPTG was then added at a final concentration of 1 mM and 

the cultures were incubated at the desired temperature, shaking overnight at 180 rpm.  

2.7 Purification 

1-5 L cultures of LB or M9 were centrifuged at 6000 rpm in a Beckman Coulter centrifuge 

(Avanti J-20XP, JLA 8.1 rotor) for 15 minutes. The supernatant was then discarded and the 

pellet resuspended in His or GST lysis buffer (A4) with EDTA-free protease inhibitor cocktail 

Tablets (Roche Applied Science, West Sussex, UK). The cells were then lysed by passing them 

three times through a C-3 EmulsiFlex cell homogenizer (Avestin, Mannheim, Germany). The 

lysed cells were centrifuged at high speed (25 000 x g, 45 min, and 4 °C) to separate the soluble 

and insoluble fractions. The soluble fraction (supernatant) was then filtered with a 0.45 µm 

filter (Sartorius, Surrey, UK) and kept on ice. The protein was purified via His or GSTrap 

purification dependent on whether the protein had a His6 or GST purification tag.  

2.7.1 His purification  

The 5 ml His Trap HP (GE Healthcare, Buckinghamshire, UK) column was first equilibrated at a 

flow rate of 1 ml/min with equilibration buffer (A4). The flow rate was kept constant through-

out the purification. The filtered supernatant was then passed onto the column, followed by 50 

ml of wash buffer (A4). The protein was then eluted with elution buffer (A4) and 1 ml fractions 

of the protein were collected. 20 µl samples of the supernatant, flow-through, collected wash 

and eluted fractions were analysed by SDS-PAGE. Eluted fractions which contained the protein 

of interest were pooled for down-stream purification. Size exclusion chromatography was the 

next step of purification unless cleavage of the His6 tag was required.  
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2.7.2 Cleavage by TEV (Tobacco Etch Virus) protease 

TEV protease (0.4 mg), which was expressed and purified in-house, was added to the purified 

protein. SnakeSkin (Thermo Scientific, Massachusetts, USA) tubing with a molecular weight 

cutoff of 3.5 kDa and 35 mm diameter was used to dialyze the eluted protein into TEV cleavage 

buffer (A4). This was left at 4 °C for 48 hours; recommended by the SGC protocol (Savitsky et 

al., 2010). The His6 tag was cleaved while the protein was being dialyzed into the cleavage 

buffer. Following cleavage the protein is passed again onto the His Trap column to separate the 

cleaved protein from the uncleaved protein. 

2.7.3 GST purification 

GST tagged proteins were purified in a similar manner as the His tagged proteins. The 

differences being that a GSTrap column (GE Healthcare, Buckinghamshire, UK) was used 

instead with GST purification buffers (A4). The flow rate was kept at 1 ml/min. The protein was 

eluted with 10 mM reduced glutathione.  

2.7.4 Size exclusion chromatography 

Size exclusion chromatography was the final purification step. Superdex 200 or 75 (GE 

Healthcare, Buckinghamshire, UK) size exclusion columns were used. The type of column used 

was dependent on the molecular weight of the protein being purified. The columns were 

equilibrated with 1.2 to 2 column volumes of buffer. The flow rate was kept at 2.5 ml/min and 

3 or 4 ml fractions were collected.  

2.8 N-terminal sequencing 

N-terminal sequencing was used to confirm the identity and cleavage of Cdc25C proteins. 

Coomassie stained SDS-PAGE gel slices of the required proteins were submitted to 

AltaBioscience (Birmingham) for N-terminal sequencing.  
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2.9 X-ray crystallography 

2.9.1 Reductive Methylation   

Reductive methylation was performed to methylate solvent exposed lysine residues to 

promote protein crystallization. To methylate Cdc25C the protocol published by Shaw et al. 

was followed. Briefly, the protein was purified in 50 mM sodium phosphate (pH 7.0), 150 mM 

sodium chloride, and 1 mM TCEP and for each reaction 10 mg of purified protein in 1 ml 

volume was used. For each methylation reaction, 20 µl of 1M DMAB (dimethylamine borane 

complex) and 40 µl of 1M formaldehyde were added followed by incubation in the dark at 4 oС. 

Following this 2 hour incubation, the whole procedure was repeated two times. Finally, 10 µl of 

1M DMAB was added to the solution and incubated overnight while shaking at 100 rpm. The 

next day, the reaction was quenched by eluting in 20 mM Tris pH 8.0, 150mM NaCl, and 1 mM 

TCEP following size exclusion chromatography. 

2.9.2  Protein Crystallisation 

Around 800 different crystallization conditions were tested from a wide range of commercial 

screens including PACT (Molecular Dimensions, Suffolk, UK), JCSG+ (Molecular Dimensions, 

Suffolk, UK), Structure screen I and II (Molecular Dimensions, Suffolk, UK), Index (Hampton 

Research, Aliso Viejo, California), PEG/Ion I and II (Hampton Research, Aliso Viejo, California), 

PEGRx I and II (Hampton Research, Aliso Viejo, California), and the Wizard I, II, III, and IV 

(Emerald Biosystems, Washington, USA). The Mosquito liquid handler (TTP labtech, 

Hertfordshire, UK) was used to set-up the 96 well plates. The same experimental set-up was 

used as described in section 2.16. Following, incubation the plates were assessed for crystals 

after at least 72 hours. 
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2.10 Protein Concentration 

The proteins were concentrated down using Vivaspin (GE Healthcare, Buckinghamshire, UK) 

and Amicon (Merck Millipore, Nottingham, UK) concentrators with a molecular weight cut-off 

of 5 or 10 kDa.  

The standard UV assay measuring absorbance at 280 nM was used to measure protein 

concentration using a BioMate UV spectrophotometer (Thermo Scientific, Massachusetts, 

USA). Although Cdc25C has no tryptophan amino acids in the protein sequence it has other 

residues: tyrosine, phenylalanine and cysteine, which absorb weakly at 280 nM. The Bradford 

assay was not used because of the high arginine content in Cdc25C which resulted in significant 

errors when measuring protein concentration. The ProtParam tool (Gasteiger et al., 2005) was 

used to obtain the theoretical extinction coefficients of the proteins. The extinction coefficient 

when all cysteine residues are assumed to be reduced was taken and the equation below was 

used to calculate the protein concentration:  

Concentration (M) = (absorbance at 280 nm x dilution factor) / (extinction coefficient when all 

cysteines are reduced x path length) 

2.11 Analytical gel filtration 

The Superdex 200 5/150 3 ml GL column (GE Healthcare, Buckinghamshire, UK) was used with 

the flow rate at 0.5 ml/min kept constant throughout. The column was initially equilibrated 

with three column volumes with the buffer 50 mM sodium Phosphate (pH 7.0), 200 mM L-

arginine, 200 mM sucrose and 1 mM TCEP. 60 µl of a 100 µM stock of the Cdc25C catalytic 

domain in this buffer was first injected and passed through the column. The standards from 

the Gel Filtration Low Molecular Weight Calibration Kit (GE Healthcare, Buckinghamshire, UK) 

were made up in the same buffer as the Cdc25C protein. A volume of 60 µl of 100 µg of each 
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standard from the kit was injected into the column. The injection loop (50 µl) and syringe were 

washed thoroughly between each run. Following collection of the data the 280 nM UV traces 

were compared and elution volumes (Ve) for the protein and standards were noted. A graph of 

log MW against V/V0 (elution volume/void volume) was plotted and the molecular weight for 

the protein was then calculated using the linear equation y = mx + c.    

2.12 Mass Spectrometry 

The purified proteins were dialyzed into 50 mM Ammonium Acetate, pH 6.8. 50 µg of protein 

was then provided to Dr Cleidiane Zampronio (School of Biosciences, University of 

Birmingham) for mass spectrometry (ESI-MS) analysis.     

2.13 Analytical Ultracentrifugation (AUC) 

Protein samples of 30 µM in sodium phosphate buffer were given to Mrs Rosemary Parslow 

(School of Biosciences, University of Birmingham) for AUC data collection. Samples were 

centrifuged using a Beckman Coulter ultracentrifuge (Beckman XL-1). They were centrifuged at 

30 000 or 40 000 rpm depending on the protein being analyzed. The experiment was 

conducted at 20 °C and recorded at the wavelength of 280 nm. The SEDFIT program (Brown 

and Schuck, 2006) was then used to analyze the data.       

2.14 Circular Dichroism (CD) 

The Cdc25C proteins were dialyzed into 50 mM sodium phosphate (pH 7.5), and 0.5 mM TCEP. 

Samples with a final concentration of 1.6 mg/ml were loaded onto a 0.1 mm path length 

cuvette which was placed into a JASCO J-715 spectropolarimeter. The experiments were 

conducted in collaboration with Dr. Raul Pacheco-Gomez (School of Biosciences, University of 

Birmingham). Data were recorded between 260 and 190 nm wavelengths. For each protein the 
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buffer CD spectrum was subtracted from the protein CD spectrum to obtain the final CD 

spectrum. The CDSSTR analysis program from the DichroWeb server (Whitmore and Wallace, 

2004) was then used to deconvolute this data and obtain the protein predicted secondary 

structure.   

2.15 Thermal Shift Assay 

The thermal shift assay was used to assess Cdc25C protein stability and identify optimum 

buffers to improve thermal stability. Following purification, the proteins were dialyzed into 50 

mM sodium phosphate/Hepes (pH 7/7.5), 50 mM sodium chloride and 0.5 mM TCEP. The pH 

was either 7 or 7.5 depending on the pI of the protein to be studied.  

The protein was diluted to 40 µM in the same buffer as the stock protein and the SYPRO® 

Orange fluorophore dye (Invitrogen, Paisley, UK)) was added. The protein/dye solution was 

then mixed and 2 µL of the protein/dye was pipetted into each well followed by 18 µL of the 

buffer condition to be tested. The final concentration of the protein was 4 µM with 5x SYPRO® 

Orange dye. The Absolute QPCR seal (Thermo Scientific, Massachusetts, USA) was then used to 

seal the 96 well plates (Thermo Scientific, Massachusetts, USA). The plates were centrifuged at 

1000 x g to allow mixing of the protein and buffer. The 96 well plates were heated in a RT-PCR 

machine (Mx3005P QPCR, Stratagene, La Jolla, California).  

Initially, the Cdc25C proteins were screened against an in-house 96 well plate ThermoFluor® 

buffer screen to identify solution conditions. These were then further optimised and run during 

subsequent screens. They were tested either on their own or with the addition of a small 

selection of salts and additives. 

Fluorescence was measured for the temperatures ranging from 25 °C to 90 °C while the 

excitation and emission wavelengths were 492 nm and 568 nm respectively. The melting 
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temperatures (Tm) were determined using the MxPro software (Stratagene, La Jolla, California). 

Tm was taken from the point of inflection of the melting curve. The melting temperature was 

recorded for each buffer condition tested and the conditions which resulted in the maximum 

Tm were then selected and further optimised.  

2.16 Solubility Screen Assay 

The solubility screen was used to build on the thermal shift assay in order to identify buffer 

and additive conditions in which the Cdc25C catalytic domain was the most stable by exhibiting 

little to no precipitation. The best conditions identified from the ThermoFluor® screens were 

used in the solubility screen. These conditions were used alone or combined with an expanded 

range of additives. Different pHs were also tested. In addition to additives and solubility 

polymers, metal compounds were also tested as well as in-house developed solubility 

peptides.  

The Cdc25C protein was concentrated down to 500 µM. The relevant buffer or buffer/additive 

was pipetted at 100 µL volume into a 96 well plate (Iwaki). Concentrated protein drops (100 nl) 

along with 100 nl drops of the reservoir buffer were pipetted onto the viewdrop2 plate cover 

using the Mosquito liquid handler (TTP labtech Hertfordshire, UK). The plate cover was then 

inverted and the plate was sealed. The plates were then incubated for at least 48 hours at 

23 °C. A light microscope was used to visualise the protein drops for precipitation. A scoring 

sheet was used to classify the extent of precipitation; 0 being no precipitation and 4 being 

maximum precipitation.  
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2.17 Small-angle X-ray Scattering (SAXS) 

2.17.1 Data Collection 

The SAXS data was collected from EMBL (DESY, Hamburg, Germany) and ESRF (Grenoble, 

France) using the X33 and BM29 BioSAXS beamlines respectively. 

Depending on the Cdc25C protein analysed, it was either in 50 mM sodium phosphate (pH 7.5), 

150 mM sodium chloride, and 1 mM TCEP or 50 mM sodium phosphate (pH 7.0), 200 mM L-

arginine, 200 mM sucrose, and 1 mM TCEP. Data were collected for three different 

concentrations for each protein.  The concentrations of the Cdc25C proteins were between 1 – 

10 mg/ml. The facilities allowed automatic buffer subtraction from the scattering plots and 

hence this was conducted on site. 

2.17.2 Data Analysis 

The ATSAS 2.5.1 suite of programs which was downloaded from the EMBL Hamburg website 

was used to process and analyse the collected SAXS data.   

The auto-subtracted scattering plots were initially checked for data quality by assessing 

radiation damage and signs of aggregation. In the case of the Cdc25C catalytic domain no 

aggregation was seen so the highest concentration was taken as the best scattering curve. For 

the His-Cdc25C73-441 construct slight aggregation was noted at low scattering angles for the 

highest concentration. Therefore, the PRIMUS (Konarev et al., 2003) programme was used to 

create a merged data set using the scattering plots for the lower protein concentrations.   

PRIMUS was used to obtain the value for the radius of gyration (Rg) using the Guinier 

approximation approach. GNOM was also used to obtain the Rg value which was compared for 

consistency to the Rg value obtained from PRIMUS. The pair-distance distribution function 

(P(R)) graph created using GNOM was used to ascertain the particle maximum dimension 
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(Dmax). Where the pair-distance distribution function returned to zero was taken as the Dmax. In 

cases where this was not obvious different Dmax values were evaluated by manually inputting 

increasing Dmax values and observing changes in the P(R) graph.  

The envelope for the Cdc25C catalytic domain was created using programs from the ATSAS 

suite. Default parameters were used for all the programs used. The DAMMIF (Franke and 

Svergun, 2009) program was used to generate the initial ab initio models which were then 

evaluated, filtered and averaged using the program suite DAMAVER (Volkov and Svergun, 

2003) to obtain a final envelope which best fitted the protein scattering plot.  

The crystal structure of the Cdc25C catalytic domain (PDB: 3OP3) was then fitted into the 

envelope using the SUPCOMB program (Kozin and Svergun, 2001). This program provides a 

normalized spatial discrepancy (NSD) value for the fit where an NSD value < 1 is indicative of 

similarity between the two models and a value > 1 is due to differences.  

The CRYSOL program (Svergun et al., 1995)  was also used to compare the atomic resolution X-

ray model to the low resolution SAXS solution model. This was done by using CRYSOL to 

generate a theoretical SAXS scattering curve for the Cdc25C catalytic domain (PDB: 3OP3) and 

fitting this to the experimental SAXS scattering curve. CRYSOL provided an χ2 value for the fit. 

The smaller the value the better the fit and a value approaching zero indicates similarity 

between the two structures. 

2.17.3 Determining flexibility  

The Ensemble Optimisation Method (EOM) online program suite (Bernadó et al., 2007) was 

used to evaluate the flexibility of the proteins. This program suite requires at least two input 

files. These consist of the sequence file, SAXS experimental data file, and a PDB model of the 

folded domain. Since there is only one PDB model available of the Cdc25C catalytic domain 
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(PDB: 3OP3), ITASSER was used to generate additional models when required. The EOM suite 

was used using the default parameters. EOM initially generates 10, 000 models. A genetic 

algorithm is then used to select a sub-set of 20 models which most represent the experimental 

data. An averaged SAXS curve from the sub-set is obtained which is then fitted to the 

experimental SAXS curve. Flexibility was determined quantitatively with the calculated chi-

squared value for the fit and qualitatively by observation.   

2.18 Nuclear Magnetic Resonance (NMR) Spectroscopy  

2.18.1 Sample preparation and Optimization of experimental parameters 

Proteins to be studied by NMR were dialyzed into 50 mM sodium phosphate buffer. The pH, 

salt and additive concentrations as well as the type of additive varied depending on the protein 

sample. The sample volume was 600 µl which included 10 % v/v deuterium oxide (D2O). Once 

the sample was prepared it was then positioned in the magnet. Following this, the lock signal 

was located and then centered, effectively locking the sample against the D2O signal.  

Automated gradient shimming was performed on the magnet in the z dimension to make the 

magnetic field homogeneous. Shimming was followed by tuning and matching of the 

spectrometer. Other parameters such as the transmitter offset (tof) and 90o pulse width (pw) 

were then optimized.  

NMR experiments were run at the Biomolecular NMR facility (University of Birmingham) using 

the Agilent 600, 800 and 900 MHz spectrometers all equipped with triple resonance 

cryogenically cooled probes. Standard pulse sequences were taken from the Varian biopack. A 

Bruker 600 MHz BACS60 autosampler was used to collect waterLOGSY data with help from Dr 

Christian Ludwig (NMR Scientific Officer, University of Birmingham). All experiments were 

performed at 25 °C.  
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2.18.2 Protein 1D NMR 

1D NMR spectra of the protein were initially collected to determine if the protein was folded 

before a HSQC/SOFAST-HMQC experiment commenced.   

2.18.3 1H, 15N – HSQC  

The 15N-labelled proteins were studied by Heteronuclear Single Quantum Coherence (HSQC) 

spectroscopy where 1670 points were collected in the direct dimension and 128 increments in 

the indirect dimension. The spectral widths were 13 ppm and 34 ppm in the direct and indirect 

dimensions respectively. The 1H-15N-HSQC pulse sequences from the Agilent biopack were 

used to conduct the experiments (Bodenhausen and Ruben, 1980; Kay et al., 1992).  

2.18.4 1H, 15N SOFAST- HMQC 

Band-Selective Optimized Flip Angle Short Transient (SOFAST) - Heteronuclear Multiple 

Quantum Coherence (HMQC) spectroscopy is an alternative method used to acquire 2D 

spectra (Schanda et al., 2005). It provides the advantage of reducing the acquisition time while 

maintaining a good signal to noise ratio. The Agilent 600 or 800 MHz spectrometers were used 

for data collection with 768 points collected in the direct dimension and 128 increments in the 

indirect dimension. The spectral widths were 11.9 ppm in the 1H dimension and 34 ppm in the 

15N dimension. 

2.18.5 Compounds 

Promising inhibitor compounds were identified for Cdc25C following an extensive research of 

the literature. These compounds were bought from Sigma-Aldrich (Dorset, UK), Atlantic 

Research Chemicals (Cornwall, UK) and ChemDiv (San Diego, USA). Where compounds were 

not available, similar compounds were purchased instead. The compounds which were tested 



76 

 

using the NMR techniques described in this section (2.19) are listed in a table in the appendix 

(A5).   

2.18.6 WaterLOGSY  

Compound stock solutions were made up in 100 % DMSO-d6. Each compound at 0.5 mM 

concentration was tested via WaterLOGSY in the buffer 50 mM sodium phosphate (pH 7.0), 

150 mM sodium chloride, and 1 mM TCEP. The Cdc25C catalytic domain protein was added at 

a final concentration of 5 µM. The WaterLOGSY  (Dalvit et al., 2001) experiment was run for 15 

minutes with a mixing time of 3 seconds using the Bruker 600 MHz BACS60 autosampler. The 

spectral width was set at 13 ppm and 256 scans were collected. The same phase correction 

was applied to the WaterLOGSY spectra +/- protein.  

2.18.7 Data Processing  

The NMRPipe (Delaglio et al., 1995) software was used to process the data. Data processing 

involved Fourier transformation followed by phase and base line correction of the spectra. The 

spectra were analyzed using the CcpNmr analysis software (Vranken et al., 2005).   

 

 

 

 

 

 

 

 

 

 



77 

 

Chapter 3.0 - Characterisation of the Cdc25C protein 

In this chapter the Cdc25C full-length protein was analysed. Prediction tools were used to 

assess the secondary structure content and to aid design of constructs. The suitability of the 

Cdc25C full-length protein was assessed for SAXS. As mentioned earlier there are no 3D atomic 

structures of the Cdc25C full-length protein and therefore this was an attractive goal. 

Unfortunately, a SAXS envelope of the full-length protein could not obtained due to the lack of 

secondary structure in the N-terminal domain. The main focus in this chapter is the Cdc25C N-

terminal (regulatory) domain while later chapters will focus on the Cdc25C catalytic domain.     

3.1 Cdc25C Secondary Structure Prediction 

In order to design expression constructs for the regulatory domain and full-length, secondary 

structure predictions of full-length Cdc25C were generated using DisMeta, a disorder 

prediction metaserver (Huang et al., 2014). DisMeta generated predictions from PROFsec and 

PSIPred predictors and also provided a consensus prediction as shown in Figure 3.1 (Rost and 

Sander, 1994; McGuffin et al., 2000). The N-terminal regulatory domain is predicted to have 

limited structure which is mainly helical content while the C-terminal catalytic domain is 

predicted to be much more structured.   
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Figure 3.1 Secondary Structure Prediction 

DisMeta secondary structure prediction output for the full-length Cdc25C protein (a). The 
scoring system is illustrated below where higher the score the stronger the prediction (b). 
Overall, the Cdc25C catalytic domain is likely to be more structured compared to the regulatory 
domain, which is predicted to be largely disordered.  
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3.2 Cdc25C Disorder Prediction 

Disorder predictions for the Cdc25C full-length protein (Figure 3.2) were generated from the 

Regional Order Neural Network (RONN) predictor (Yang et al., 2005) for further analysis of 

likely domain boundaries and unstructured regions. The RONN predictor provides a probability 

value for the disorder for each amino acid residue.  

The regions which were predicted to be disordered by RONN are amino acid residues 1 - 27, 77 

- 110, 129 - 164, 171 - 233, and 436 – 468. 

 

 

 

Figure 3.2 Disorder Prediction  

Cdc25C disorder prediction by RONN (Yang et al., 2005). The black horizontal line signifies the 
threshold with a 0.5 probability cut-off. Amino acid residues with a probability over this 
threshold are predicted to be disordered. 
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3.3 Cdc25C constructs 

Using information from a combination of the literature, secondary structure, and disorder 

predictions, full-length and N-terminal domain Cdc25C constructs were designed (Figure 3.3a). 

The expression level of these proteins were assessed using the SDS-PAGE gel from small scale 

expression and purification trials. Figure 3.3b summarizes the expression levels of each of the 

proteins. His-Cdc25C1-280, GST-Cdc25C1-280, and His-Cdc25C36-443 expressed poorly while His-

Cdc25C73-441 and His-Cdc25C83-441 had the best expression levels.  
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Figure 3.3 Cdc25C constructs  

A schematic diagram illustrating the Cdc25C constructs (a). The proteins were constructed with 
either an N-terminal GST or His  tag. The Table (b) provides a qualitative assessment of the 
expression level of each protein based on the SDS-PAGE gel from expression and small scale 
purification trials. The poor to high end of the scale corresponds to an expression level of 
around 30 µg up to 1 mg of purified protein per litre culture.   
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3.4 Characterisation of the N-terminal domain 
  
3.4.1 Purification of His-Cdc25C36-280 

 
The His-Cdc25C36-280 construct was chosen for the characterisation of the N-terminal domain 

because it had the best expression level compared to the other Cdc25C N-terminal domain 

constructs tested which were His-Cdc25C1-280 and GST-Cdc25C1-280 (Figure 3.3). Changing the 

His tag for a GST tag did not improve expression. However, removal of the first 35 amino acids 

from the Cdc25C amino acid sequence improved the level of expression.  

Following, Histrap purification and cleavage of the N-terminal His tag a gel sample was 

subjected to N-terminal sequencing. N-terminal sequencing confirmed identity and cleavage of 

this protein. Cdc25C36-280 was then subjected to further purification via size exclusion 

chromatography (Figure 3.4.1). Three peaks can be seen in the size exclusion profile (Figure 

3.4.1a). Fractions 1-2 are from the first peak, fractions 3-5 are from the second peak, and 

fractions 6-13 are from the last peak (Figure 3.4.1b). The majority of the Cdc25C36-280 protein 

was present in the third peak having a molecular weight below 37 kDa.  
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Figure 3.4.1 Purification of Cdc25C36-280 by size exclusion chromatography  
 
The Superdex 75 26/600 column was used to further purify Cdc25C36-280 following Histrap 
purification. The protein was eluted in 50 mM sodium phosphate (pH 7.5), 150 mM sodium 
chloride, and 1 mM TCEP. The UV A280 size exclusion profile is shown (a). This profile has three 
peaks and Cdc25C36-280 elutes in the third peak (140 – 175 ml). An SDS-PAGE was run with a  4-
12  % Bis-Tris criterion XT precast gel (b). The first lane is the marker (M), followed by the 
fractions 1-2 which are from the first peak, fractions 3-5 are from the 2nd peak and fractions 6-
13 are from the 3rd peak. Cdc25C36-280 is depicted by a black arrow.  
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3.4.2 Proton NMR spectroscopy of Cdc25C36-280 

 
The folded state of Cdc25C36-280 was assessed using 1D NMR experiments (Figure 3.4.2). The 

peaks in the 1D spectrum are not well dispersed which is generally indicative of disordered 

proteins (Page et al., 2005). Well-folded proteins usually have resolved peaks in the spectral 

regions between 11 to 1 ppm. The peaks for Cdc25C36-280 range from 8.7 – 0.6 ppm and there 

are no peaks with negative ppm values. This indicates that Cdc25C36-280 contains a significant 

amount of disorder.  

The spread of peaks in the amide region (7-10 ppm) also provides a good indication on the 

folded state of a protein. The amide region for Cdc25C36-280 is narrow ranging from 8.7 to 6.7 

ppm and the peaks in this region are also not sharp which suggests that Cdc25C36-280 may be 

unfolded.  
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Figure 3.4.2 1D NMR of Cdc25C36-280 
 
A 50 µM sample of Cdc25C36-280 in 50 mM sodium phosphate (pH 7.5), and 0.5 mM TCEP was 
subjected to 1D NMR. The Agilent 800 MHz spectrometer was used to perform the experiment. 
The poorly dispersed 1D NMR signals suggest that Cdc25C36-280 is not well-folded.  
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3.4.3 Circular Dichroism 

Circular Dichroism (CD) is a technique based upon the principle of how circularly polarised light 

is affected when passing through an “optically active” medium (Kelly et al., 2005). Molecules 

which are “optically active” are also known as being chiral. Biomolecules such as proteins 

possess chirality.  

Only chiral molecules will have an effect on circularly polarised light because they absorb the 

two components of circularly polarised light in different proportions. The resulting difference 

in absorbance (∆A) (see eq. below) is measured in a CD experiment and commonly expressed 

as ellipticity in degrees (Kelly and Price, 2000). Ellipticity in degrees is plotted as a function of 

wavelength.    

∆A = AL - AR   

(∆A = change in absorbance, AL = absorbance of the left component of circularly polarised light, and AR = absorbance of the right 

component of circularly polarised light)  

The Far-UV region (240-180 nm) of the CD spectrum is a good measure of the secondary 

structure of a protein (Kelly and Price, 2000). Each secondary structure type has its own 

characteristic CD signature. For example, the α-helix has two negative minima at 222 nm and 

208 nm as well as a positive peak at 190 nm. The β-sheet CD spectrum shows a negative peak 

at 218 nm and a positive one at a wavelength of 196 nm. The random coil structure has a 

positive peak at 212 nm and a negative one around 195 nm. The main limitation of the CD 

technique is that it does not define which amino acids of the protein possess a particular 

secondary structure. 

3.4.3.1 CD of Cdc25C36-280 

A CD spectrum was collected for Cdc25C36-280 (Figure 3.4.3.1). The CD profile (experimental 

data) is negative at 190 nm which indicates the protein is unfolded. The CD spectrum shows 
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three negative bands at 196, 200 and around 203 nm respectively. The peak between 195 and 

200 nm indicates the presence of the β-sheet component. The first negative band at 196 nm is 

typical of a random coil structure. The steep descent from -1 mdeg and negative bands at 200 

nm and around 203 nm indicate some α-helix composition. The negative contributions of the 

α-helix and β-sheet components result in the CD profile not becoming positive which suggests 

that the N-terminal domain is not completely random coil and does contain some regular 

structural elements.  

The CDSSTR program from DichroWeb was used to deconvolute the acquired CD data 

(Sreerama and Woody, 2000). It can be seen that the experimental data fits well with the 

reconstructed data (Figure 3.4.3.1). The CDSSTR program provided quantitative values for the 

different secondary structure elements. These values represent an average of the whole 

protein. Overall, 63 % of Cdc25C36-380 appears to be disordered while 24 % is composed of α-

helix and β-sheet. 
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Figure 3.4.3.1 Far UV CD spectrum of Cdc25C36-280  

Cdc25C36-280 was subjected to circular dichroism analysis in 50 mM sodium phosphate (pH 7.5), 
and 0.5 mM TCEP. The Dichroweb server was used for the CD data analysis. The data is shown 
graphically (a) and the Table (b) shows the secondary structure (%) content calculated by the 
CDSSTR program. The majority of the protein is unordered with only 36 % possessing secondary 
structure.   
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PROFsec and PSIPred (Rost and Sander, 1994; McGuffin et al., 2000) are tools which provide 

predictions of secondary structure (%). These predictors use a system of neural networks and 

predictions are based on the amino acid sequence. Both have been shown to have good levels 

of accuracy; PROFsec has an accuracy of 72 % and PSIPred has an accuracy of 76 %. 

The regular secondary structure composition (%) derived from CD and from two secondary 

structure predictors were compared (Table 3.4.3.1). Based on the CD data Cdc25C36-280 

possesses 24 % regular secondary structure. In comparison, PROFsec predicted Cdc25C36-280 to 

have 8.1 % of regular secondary structure and PSIPred predicted it to have 15.8 % regular 

secondary structure. Overall, CD indicates that Cdc25C36-280 is unfolded but has more regular 

secondary structure than predicted. 

  

 CD PROFsec PSIPred 

% Regular secondary 
structure (α-helix + β-
sheet) 

24 8.1 15.8 

 

Table 3.4.3.1 Regular secondary structure composition of Cdc25C36-280  

A comparison of the experimental secondary structure composition (%) derived from CD and 
the predicted secondary structure composition (%) using two popular prediction tools, PROFsec 
and PSIPred (Rost and Sander, 1994; McGuffin et al., 2000).     
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3.5 Characterisation of full-length Cdc25C 

3.5.1 Purification of GST-Cdc25C1-473 

In order to resolve the molecular envelope of full-length Cdc25C, the protein was expressed 

and purified for small angle X-ray scattering (SAXS) experiments. The His6 tagged Cdc25C full-

length has already been shown to be poorly soluble and the GST-tagged full-length is soluble 

(Fan et al., 2012). My aim therefore was to assess the suitability of this construct for SAXS. 

The GST-tagged full-length Cdc25C protein was purified via GSTrap purification. The protein 

was ~ 83 kDa in size (Figure 3.5.1.1). The protein band around 25 kDa is likely to be the GST 

protein which has a molecular weight of 26 kDa.  

GST-Cdc25C1-473 was further purified by size exclusion chromatography using the Superdex 200 

column (Figure 3.5.1.2a). The size exclusion profile shows two peaks. The first peak is a sharp 

narrow peak and the second peak is a small broad peak. The protein was eluted in the first 

peak which was straight after the 40 ml void volume. The gel fractions 1-6 were from this peak 

(Figure 3.5.1.2b). The second peak in the size exclusion profile is the GST peak with the gel 

fractions 7-10. Three different bands can be seen in these fractions. These are likely to be 

variants of the GST protein.  

The majority of the GST-tagged full-length Cdc25C protein was present in fractions 2 and 3 

(Figure 3.5.1.2b). The protein is not very pure since there are lower molecular weight bands 

present. This suggested that the protein contained low molecular weight contaminants or 

break-down products.   
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Figure 3.5.1.1 GSTrap purification of GST-Cdc25C1-473   

GST-tagged Cdc25C full-length (GST-Cdc25C1-473) was purifed via GSTrap purification. The 
protein was eluted in 50 mM sodium phosphate (pH 7.5), 250 mM sodium chloride, 1 mM 
EDTA, 20 mM Glutathione, and 1 mM TCEP. Following this an SDS-PAGE was run with a 4-12 % 
Bis-Tris criterion XT precast gel. The last lane is the marker (M) which is preceded by the eight 
eluted fractions   (F1-8). The position of GST-Cdc25C1-473 is shown by the black arrow.  
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Figure 3.5.1.2 Size exclusion chromatography purification of GST-Cdc25C1-473  

UV A280 size exclusion profile of GST-Cdc25C1-473 following purification using the Superdex 200 
16/600 column (a). The size exclusion profile shows two peaks. An SDS-PAGE was run with a 4-
12 % Bis-Tris criterion XT precast gel. The first lane is the marker followed by fractions 1-6 
which are from the first peak and fractions 7-10 are from the second peak (b). The first peak 
contains the ~ 83 kDa eluted protein which is depicted by the black arrow (b). The second peak 
contains the GST protein which is shown by protein bands above 25 kDa (b). The protein was 
eluted in 50 mM sodium phosphate (pH 7.5), 150 mM sodium chloride, 1 mM EDTA, and 1 mM 
TCEP.    
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3.5.2 Analytical ultracentrifugation (AUC) analysis of GST-Cdc25C1-473  

Analytical ultracentrifugation (AUC) has many uses depending on the type of experiment being 

conducted, whether it is a sedimentation velocity or an equilibrium experiment (Cole et al., 

2008). The sedimentation velocity experiment can be used to assess the oligomeric state of 

proteins. It can also provide a very good estimate of the size of the protein.  

Here the sedimentation velocity experiment was used because the aim was to assess the 

oligomeric state and hence the quality of the GST-tagged full-length protein for SAXS 

experiments. The sedimentation velocity experiment measures the rate of movement of 

molecule boundaries after the application of the centrifugal force. When high centrifugal force 

is applied on the sample in the ultracentrifuge, the sample is exposed to a high gravitational 

field which results in the macromolecules sedimenting. This sedimentation is based upon the 

protein’s hydrodynamic radius and accounts for the separation of the macromolecules in the 

sample.  

A monodisperse species is represented by a single peak in the AUC profile. Here, there are two 

peaks followed by increasing c(s) distribution (Figure 3.5.2). The first peak is a sharp peak 

followed by a broader peak. This indicated the presence of a mixture of proteins with 

molecular weights ranging from 20 kDa onwards. The large increase in the c(s) distribution at 

the end suggested the presence of a large species indicating that the sample contained 

aggregated species.  
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Figure 3.5.2 AUC profile of GST-Cdc25C1-473   
 
GST-Cdc25C1-473 was subjected to AUC analysis in 50 mM sodium phosphate (pH 7.5), 150 mM 
sodium chloride, 1 mM EDTA, and 1 mM TCEP. The SEDFIT (Brown and Schuck, 2006) program 
was used to perform the c(s) analysis.  
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3.5.3 Purification of His-Cdc25C73-441 

 
Purified GST-Cdc25C1-473 protein was not monodisperse, presumably due to the lengthy 

disordered regions, and hence could not be used for SAXS experiments. Therefore, an 

alternative Cdc25C full-length construct was required. From the alternative Cdc25C constructs 

tested His-Cdc25C73-441 was selected because it was the longest construct which also had the 

best expression level (Table 3.3, Figure 3.3).  

The identity and cleavage of Cdc25C73-441 was confirmed by N-terminal sequencing following 

Histrap purification and cleavage of the His6 tag. The Cdc25C73-441 protein was then further 

purified via size exclusion chromatography (Figure 3.5.3).  

There are two peaks seen in the size exclusion profile. The first small peak is a higher order 

species and the second large peak contains the protein of interest (Figure 3.5.3a). Fractions 1-

12 are from this peak (Figure 3.5.3b). It can be seen that Cdc25C73-441 can be purified to 

homogeneity. The purest fractions were pooled and used for further experiments.     
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Figure 3.5.3 Purification of Cdc25C73-441  

Size exclusion profile of Cdc25C73-441 with milli absorbance (mAU) measured at 280 nm against 
volume (ml) (a). The protein was eluted in 50 mM sodium phosphate (pH 7.5), 150 mM sodium 
chloride, and 1 mM TCEP. An SDS-PAGE was run with a 4-12 % Bis-Tris criterion XT precast gel. 
Fractions 1-12 are from peak 2 (b).      
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3.5.4 CD of Cdc25C73-441 

The CD spectrum of Cdc25C73-441 is positive at 190 nm suggesting a structured protein (Figure 

3.5.4). The positive band around 190 nm indicates the presence of some α-helical and β-sheet 

content. The positive band is followed by a negative band at 206 nm which is probably due to 

the α-helix component in the protein. The shallow peak around 220 nm is most likely due to 

random coil influence. Based on the calculated secondary structure (%) by the CDSSTR program 

Cdc25C73-441 has 45 % secondary structure and 56 % is unordered.  

The regular secondary structure composition (%) of Cdc25C73-441 derived by CD was also 

compared to the two popular predictors (Table 3). Based on the CD data Cdc25C73-441 has 29 % 

of regular structure. According to PROFsec 23.5 % of Cdc25C73-441 possesses regular secondary 

structure and 22.1 % according to PSIPred. These results are consistent. The CD data 

complements the predicted data.  

 

 CD PROFsec PSIPred 

% Regular secondary 
structure (α-helix + β-
sheet) 

29 23.5 22.1 

 

 

Table 3.5.4 Regular secondary structure composition of Cdc25C73-441  

A comparison of the experimental secondary structure composition (%) derived from CD and 
the predicted secondary structure composition (%) using two popular prediction tools, PROFsec 
and PSIPred (Rost and Sander, 1994; McGuffin et al., 2000). 
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Figure 3.5.4 Far UV CD spectrum of Cdc25C73-441  

The Cdc25C73-441 protein was subjected to circular dichroism analysis in 50 mM sodium 
phosphate  (pH 7.5), and 0.5 mM TCEP. The Dichroweb server was used for the CD data 
analysis. The data is shown graphically (a) and Table (b) shows the calculated secondary 
structure (%) by the CDSSTR program (Sreerama and Woody, 2000). Overall, Cdc25C73-441 
contains 45 % secondary structure while 56 % is predicted to be unordered.     
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3.5.5 1H, 15N-HSQC spectra of Cdc25C73-441 

A 2D-HSQC spectrum was acquired to assess the potential of Cdc25C73-441 for its backbone 

amide resonance assignments (Figure 3.5.5). The 2D-HSQC spectrum which was collected for 2 

hours showed few dispersed peaks. The majority of the peaks were overlapped in the middle 

of the spectrum (Figure 3.5.5a). The peaks which were dispersed were of low signal intensity. 

This was because of the low concentration of the protein and the presence of intense peaks 

from the random coil region (8.8 - 7.8 ppm) dominating the surrounding peaks. Therefore, the 

2D-HSQC was run overnight to discern whether there were weaker dispersed resonances 

(Figure 3.5.5b). It can be seen that more peaks have appeared with moderate intensities and 

are better dispersed, indicating a folded domain.   

The 2D-HSQC data complements the CD data suggesting that Cdc25C73-441 is folded but 

contains a significant proportion of random coil structure. Cdc25C73-441  was not suitable for 

backbone assignments because of the strong random coil peaks and lack of sufficiently intense 

resolved peaks.    
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Figure 3.5.5 1H, 15N-HSQC spectra of Cdc25C73-441 
Spectra were collected of 50 µM Cdc25C73-441 using an Agilent 600 MHz spectrometer after 2 
hours (a) and overnight (b) in 50 mM sodium phosphate (pH 7.5), 150 mM sodium chloride, and 
1 mM TCEP.  
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3.5.6 SAXS of His-Cdc25C73-441 

3.5.6.1 AUC of His-Cdc25C73-441 

It is very important to have a monodisperse sample in order to reliably interpret the SAXS data. 

This is because the final SAXS scattering plot is an average of the protein in solution. Having 

different species of a protein will disrupt this average and will result in poor quality SAXS data. 

Here, AUC was used to assess the oligomeric state of His-Cdc25C73-441. 

A single peak in the AUC spectrum confirmed that His-Cdc25C73-441 is monodisperse (Figure 

3.5.6.1). The sedimentation coefficient obtained from the AUC analysis was 1.95 S which 

corresponded to a molecular weight of 41 kDa. Therefore, His-Cdc25C73-441 was monomeric.  

The predicted molecular weight based on the protein amino acid sequence is 44.7 kDa. The 

lower molecular weight calculated by AUC could be because the sedimentation velocity 

experiment does not give an exact molecular weight but provides an estimate that is 

influenced by molecular shape.     

3.5.6.2 SAXS Parameters for His-Cdc25C73-441 

Data were collected at the protein concentrations of 2.8, 2.0, and 1.3 mg/ml (Figure 

3.5.6.2.1a). Slight aggregation was noted in the Guinier regions of the higher concentrations. 

Therefore, a merged SAXS plot was created where the low concentration data (1.3 mg/ml) was 

used for the low angles and the 2.0 mg/ml data was used for the higher angles (Figure 

3.5.6.2.1b). Also, the noise near the beam stop was removed to ensure the final SAXS plot used 

for the analysis was of optimal quality. 

A straight line was fitted in the Guinier region of the merged SAXS plot and the Rg was 

calculated using the primus program to be 4.19 nm (Figure 3.5.6.2.1c). This complements the 

Rg calculated from the P(R) distribution which was 4.17 nm (Table 3.5.6.2).  
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The Kratky plot has a bell-shaped curve which corresponds to the folded component of the 

protein (catalytic domain) (Figure 3.5.6.2.2a). The broad nature of this bell-shaped curve 

followed by an increase in the intensity accounts for the disordered component in the protein.     

It was difficult to obtain a reliable Dmax value from the P(R) distribution due to tailing of the 

P(R) curve. Without any adjustments the Dmax was calculated to be 12.5 nm (Figure 3.5.6.2.2b) 

However, this is not necessarily accurate because the P(R) distribution is cut-off too early. 

Different Dmax values were computed to obtain a P(R) distribution which smoothly approached 

zero. Following this process, Dmax was estimated to be between 29 and 34 nm (Table 3.5.6.2).  

The P(R) distribution with a Dmax of 29 nm is bumpy rather than smooth and is forced to end 

early which is seen by the way it curves towards higher R values (Figure 3.5.6.2.2c). The P(R) 

distribution with a Dmax of 34 nm is also bumpy. However, it does not curve when it approaches 

zero (Figure 3.5.6.2.2d). Therefore, the Dmax is likely to be closer to 34 nm than 29 nm.   

 

 
Parameter (nm) 

 
His-Cdc25C73-441 

Rg (Guinier) 4.19 +/- 0.066 (qRg < 1.3) 

Rg (P(R)) 4.17 
Dmax  29 – 34 

 

Table 3.5.6.2 SAXS parameters for His-Cdc25C73-441 

The SAXS parameters for His-Cdc25C73-441 obtained from the SAXS analysis are tabulated (see 
text).  
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Figure 3.5.6.1 AUC of His-Cdc25C73-441  

His-Cdc25C73-441 was subjected to AUC analysis in 50 mM sodium phosphate (pH 7.5), 150 mM 
sodium chloride, and 1 mM TCEP. The SEDFIT (Brown and Schuck, 2006) program was used to 
perform the c(s) analysis. Based on the AUC analysis His-Cdc25C73-441 was determined to be 
monodisperse.    
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Figure 3.5.6.2.1 SAXS graphs of His-Cdc25C73-441   

SAXS data were collected at ESRF (Grenoble, France) using the BM29 beamline. Data were 
collected for three concentrations in the buffer 50 mM sodium phosphate (pH 7.5), 150 mM 
sodium chloride, and 1 mM TCEP. The three concentrations are overlaid and plotted with the 
logarithmic intensity against q (momentum transfer) where q is expressed in nm-1 (a). The 
merged plot is shown (b) and the Guinier plot which was determined from the merged plot is 
shown in (c).  
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Figure 3.5.6.2.2 Kratky plot and P(R) graphs of His-Cdc25C73-441   

The merged plot was used to obtain the Kratky plot and the P(R) distributions. The Kratky plot 
plotted with intensity multiplied by q2 (I*q2) against q. The P(R) distributions are plotted P(R) 
against R where R is expressed in nm (Dmax (nm) = 12.5 (b), 29 (c), and 34 (d)).     
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3.5.6.3 Selecting the best I-TASSER model 

The tailing of the P(R) distribution suggested flexibility in the protein. Since earlier data 

described in this chapter (Figures 3.4.2 & 3.4.3.1) have shown the N-terminal domain to be 

predominantly unfolded it was thought the flexibility could be attributed to this region.  

In order to assess flexibility a 3D protein model of His-Cdc25C73-441 was generated. Since there 

is no PDB structure of the full-length protein, I-TASSER (Zhang, 2008) was used to generate a 

model. The I-TASSER online server uses the protein amino acid sequence input and creates 3D 

protein models based on a combination of ab initio modelling and information from the PDB 

database.   

CRYSOL (Svergun et al., 1995) was then used to generate theoretical SAXS scattering plots of 

the 3D protein models that gave the best I-TASSER scores. The theoretical SAXS scattering plot 

for each model was then fitted to the SAXS data to select a model which best fit the data 

(Figure 3.5.6.3). Model 3 fitted the SAXS data best with an χ2 value of 2.35 compared to the 

other two models which had χ2 values of 6.88 (model 1) and 2.48 (model 2).  

3.5.6.4 Assessing flexibility   

The ensemble optimisation method (EOM) and CRYSOL were used to characterize this 

flexibility. 

CRYSOL calculates a theoretical SAXS scattering plot for a 3D atomic model, fits this to the SAXS 

data, and provides a χ2 value for the quality of the fit.  

EOM is useful for proteins that have disordered flexible regions (Bernadó et al., 2007). EOM 

produces a number of models to account for the flexibility from which an ensemble is selected 

that is most representative of the data and an averaged SAXS scattering plot is produced. This 
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scattering plot is then fitted to the SAXS data and a quantitative value for the quality of the fit 

is given.  

When the N-terminal domain (Cdc25C73-279) was made rigid the theoretical SAXS scattering 

curve did not fit very well to the SAXS data compared to when this region was made flexible 

(Figure 3.5.6.4.1). Making this region flexible significantly improved the fit throughout with an 

χ2 of 0.87 compared to 2.35. The 20 models generated by EOM from which an averaged 

scattering plot was produced were overlaid using Chimera (Figure 3.5.6.4.2). It can be seen 

that the flexible region has many possible orientations. Overall, this suggests that at least part 

of Cdc25C73-279 is very flexible.  
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Figure 3.5.6.3 I-TASSER models 

CRYSOL was used to generate theoretical SAXS scattering plots of the I-TASSER models which 
were fitted to the SAXS data (a). CRYSOL also calculated χ2 values for the fits which are 
tabulated in (b).     
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Figure 3.5.6.4.1 His-Cdc25C73-279 is very flexible 

I-TASSER model 3 was used to model His-Cdc25C73-279 as a rigid or flexible protein. CRYSOL was 
used to obtain the fitted SAXS curve when this region was rigid and EOM was used to obtain the 
fitted SAXS curve when this region was flexible (a). The χ2 values for the fits are tabulated in (b). 
The data are plotted with intensity (Log10) against the momentum transfer (q). The scattering 
curve fits better to the data when His-Cdc25C73-279 is flexible.  
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Figure 3.5.6.4.2 Overlay of the EOM ensemble  

Chimera (Pettersen et al., 2004) was used to overlay the 20 models (ensemble) produced by 
EOM when Cdc25C73-279 is flexible. The His-Cdc25C73-279 region is shown in dark red and the 
Cdc25C catalytic domain (Cdc25C280-441) is in green.  
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3.5.7 The 198 amino acids of the N-terminal domain affect the thermal stability of the full-
length protein 

Having established that the N-terminal domain was disordered and highly flexible its effect on 

the thermal stability of the full-length protein was investigated. Therefore, both the catalytic 

domain (Cdc25C270-443) and Cdc25C73-441, which represents 78 % of the full-length protein, were 

tested. These proteins were prepared in 50 mM sodium phosphate (pH 7.5), 0.5 mM TCEP and 

were subjected to ThermoFluor® analysis. Each of the buffers tested had 150 mM sodium 

chloride.    

The melting temperature range for Cdc25C73-441 was 42.5 to 47.4 oС. Tris pH 8 (Tm = 47.4 oС) and 

Hepes pH 7.5 (Tm = 46.3 oС) gave the highest Tm values compared to the other buffers tested. 

Bis-Tris pH 6.0 gave the lowest thermal stability (Tm = 42.5 oС). 

When the Tm of Cdc25C73-441 in the tested buffers was compared to that of the catalytic domain 

it was noted that overall the catalytic domain was 3 oС more thermally stable. The 198 amino 

acids of the N-terminal domain (Cdc25C73-269) resulted in a consistent thermal destabilization of 

Cdc25C73-441 suggesting the presence of the N-terminal domain reduces the stability of the full-

length protein.  
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3.5.7 Comparing thermal stability of Cdc25C73-441 and Cdc25C270-443  

The protein stability was tested 3x in each buffer and an average Tm was obtained. The Tm of 
Cdc25C73-441 and Cdc25C270-443 for each buffer condition and ∆Tm (*∆Tm = Tm of Cdc25C73-441 – Tm 
of Cdc25C270-443) are tabulated (a). ∆Tm is also plotted as a bar graph (b). The addition of 198 
amino acids (from the N-terminal domain) of Cdc25C results in a consistent destabilization of 
Cdc25C73-441.  
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3.6 Discussion of Chapter 3.0    

The data in this chapter indicates the N-terminal domain (regulatory) of the Cdc25C protein is 

significantly disordered and possesses limited regular secondary structure.  

It was difficult to purify pure full-length Cdc25C. The AUC data suggested the purified GST-

tagged Cdc25C full-length protein sample was not monodisperse. As well as containing a range 

of low molecular weight species it also had a larger species present. This indicates break down 

products and/or low molecular weight contaminants. A larger molecular weight species 

indicates the presence of an aggregate. Interestingly, a recent paper has also highlighted the 

difficulties of purifying full-length Cdc25C (Franckhauser et al., 2013). The untagged full-length 

protein purified from E. coli is insoluble. Purification from other systems such as yeast or insect 

cells is difficult because of the tight interaction of Cdc25C with 14.3.3 resulting in the co-

purification with 14.3.3 and other proteins. Therefore, Cdc25C full-length is generally purified 

in E. coli tagged with GST. However, the data here and the recently published study indicate 

the GST-tagged Cdc25C full-length protein may not be appropriate for activity and cell based 

assays. 

Here, a folded, monodisperse, His6 tagged Cdc25C protein was purified successfully which 

represents ~ 78 % of the full-length. AUC also indicated it was monomeric. The same study 

described above also suggests the Cdc25C full-length is a tetramer. It may be that the 

oligomerization motif lies in the other 22 % of the Cdc25C full-length.  

Although, a SAXS envelope of the full-length protein described in this chapter could not be 

resolved since a majority of the N-terminal domain is disordered, SAXS provided insight into 

the flexibility of Cdc25C.  
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The EOM data suggested the N-terminal domain is very flexible. This flexibility may be 

important for its function. It would be interesting to investigate the effect of phosphorylating 

known phosphorylation sites on the N-terminal domain and assessing the effect on flexibility 

and structure.  

Many proteins involved in cell signalling and cancer have been described possessing a 

significant amount of intrinsic disorder. It has been suggested intrinsic disorder is important for 

the functional role of the protein. For example, histone tails are disordered (Jenuwein and Allis, 

2001; Berger, 2002). These tails can be readily modified by post translational processes such as 

phosphorylation, acetylation, and methylation affecting the accessibility of DNA. The N-

terminal domain of Cdc25C possesses a number of phosphorylation sites and is involved in 

many regulatory processes such as affecting catalytic activity, localisation and degradation. 

Intrinsic disorder in this region may allow the Cdc25C protein flexibility in associating with 

many partners and efficiently responding to the changing dynamics of the cell.  

Some proteins can become structured upon binding to their partner in a process termed 

“coupled folding and binding”. When purified with the catalytic domain the N-terminal domain 

did not become structured. This could be because the first 72 residues of the N-terminal 

domain and/or the last 32 residues of the catalytic domain are required for the N-terminal 

domain to become structured. It could also be that the N-terminal is not structured in the full-

length protein and becomes structured upon binding with a small molecule ligand or a protein 

partner. For example the N-terminal domain of the protein DFF45 (DNA fragmentation factor 

45) becomes structured when forming a dimer with the protein DFF40 (Zhou et al., 2001). 

Another example is the interaction of Cdk2 with its intrinsically disordered inhibitor p21 

resulting in an ordered conformation of p21 (Kriwacki et al., 1996).  
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Chapter 4.0 - Purification, solubility optimization, and structural 
characterisation of the Cdc25C catalytic domain 

4.1 Purification of His-Cdc25C270-462  

The constructs in this chapter have been cloned into the pNic28-Bsa4 vector. Each construct 

has a His tag, TEV cleavage site followed by the Cdc25C amino acid sequence.  

Unlabeled His-Cdc25C270-462 was expressed in BL21 (DE3) cells and purified by Ni-NTA affinity 

chromatography (Figure 4.1.1) followed by size exclusion chromatography using a Superdex 75 

column (Figure 4.1.2). The third peak from the size exclusion column, which is the most 

prominent peak eluting between 155-185 ml, contained the protein of interest (Figure 4.1.2a). 

The two other smaller peaks are the protein aggregate and high order oligomer peaks 

respectively.  

A high level of purity (> 95 %) was achieved for His-Cdc25C270-462 (Figure 4.1.2b). The purest 

fractions eluted in the third peak (Figure 4.1.2a) were then concentrated. During concentration 

it was noted that the protein was exhibiting signs of precipitation. At this point concentration 

was halted. The protein concentration was ~ 500 µM. The protein sample was centrifuged and 

the precipitate was discarded. The soluble protein supernatant was stored at 4 °C prior to 

ThermoFluor® experiments.  

His-Cdc25C270-462 was dialyzed into 50 mM Hepes, pH 7.4, 50 mM NaCl, and 0.5 mM TCEP. The 

NaCl concentration was lowered to 50 mM because having a high salt concentration in the 

protein stock could influence the results. His-Cdc25C270-462 was subjected to an in-house NMR 

buffer screen (Overduin lab) to identify the optimal buffer and additive conditions.      
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Figure 4.1.1 Histrap purification of His-Cdc25C270-462 

The first lane is the precision plus protein TM standard marker (Bio-Rad). This is followed by the 1 
ml eluted fractions 1-14. The eluted fractions were first tested for the presence of protein using 
Bradford reagent (Bio-Rad). Fractions containing protein were then subjected to SDS-PAGE 
which was run with a 4-12 % Bis-Tris criterion XT precast gel. 
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Figure 4.1.2 Purification of His-Cdc25C270-462 using Superdex 75 column 

Size exclusion profiles at UV A280 of His-Cdc25C270-462 where three peaks can be seen (a). The 
protein was eluted in 50 mM Hepes pH 7.4, 300 mM NaCl, and 0.5 mM TCEP. The first two 
peaks are the aggregate and high-order structures respectively. The third peak is the largest 
peak which contains the pure protein. (b) An InstantBlue stained SDS-PAGE which shows 
marker (M) and eluted fractions (F1-F14) from the third peak.  

 
 
 
 



118 

 

4.2 Buffer Optimization of His-Cdc25C270-462 
 
His-Cdc25C270-462 gave melting temperatures ranging from 45.0 to 49.2 °C in the ThermoFluor® 

assay of buffers (Figure 4.2). Each 50 mM buffer condition tested also contained 150 mM NaCl. 

The average Tm values for each buffer condition were compared with the Tm of 150 mM NaCl 

alone to obtain the ∆Tm for each buffer condition.  

Looking at the ∆Tm values it can be seen that Hepes (pH 7.5) does not have any effect on the 

thermal stability of His-Cdc25C270-462. Sodium Cacodylate (pH 6.5), MES (pH 6.5), Bis-Tris (pH 

6.0), and MOPS (pH 7.0) all had negative ∆Tm where apart from MOPS (pH 7.0), ∆Tm was large > 

-3 °C. This large negative ∆Tm indicates destabilization of the protein in those conditions which 

is likely due to the buffer pH being close to the theoretical pI of the protein which is 6.10 as 

estimated by the Protparam program (Expasy). The buffers which had positive ∆Tm with respect 

to 150 mM NaCl were Tris (pH 8) (∆Tm = + 0.1 °C) and Sodium phosphate (pH 7.0) (∆Tm = + 0.5 

°C). Sodium phosphate (pH 7.0) was taken to be the optimal buffer.          
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Figure 4.2 Thermofluor buffer profile for His-Cdc25C270-462  

Base-line corrected fluorescence (dR) plot which shows the fluorescence intensities at each 
thermal cycle (a). The inverse of the first derivative of the fluorescence as a function of 
temperature (-R’ (T)) is plotted in (b) from which the Tm (melting temperature) is derived. Tm is 
the point of inflection of the first curve which corresponds to a minimum in the negative first 
derivative plot. The melting temperatures for each 50 mM buffer condition are tabulated along 
with ∆Tm (c). 50 mM sodium phosphate (pH 7.0), 150 mM NaCl buffer gave the maximum Tm.         
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4.3 NaCl optimization of His-Cdc25C270-462 

Following, the identification of the optimal buffer and additive conditions, sodium chloride 

optimization was carried out. The reason for this was to see if a change in the salt 

concentration had an effect on the thermal stability of His-Cdc25C270-462.  

When conducting NMR experiments it is desirable to have as little salt as possible since having 

a high concentration of salt can remove the benefit of using a cryoprobe. However, having too 

little salt can result in the destabilization of a protein and lowered solubility. Therefore, it is 

necessary to optimize the salt concentration of a chosen buffer.   

The NaCl concentration was tested up to 0.5 M in 50 mM sodium phosphate (pH 7.0) and 0.5 

mM TCEP (Figure 4.3). The average Tm values obtained from three independent experiments 

were compared with the control containing no NaCl.  

The NaCl concentrations from 0 – 75 mM did not result in any change in ∆Tm compared to 0 

mM NaCl. There was an increase in ∆Tm of 1 °C when the NaCl concentration was increased to 

100 mM. There was no further increase in ∆Tm from 100 – 250 mM NaCl. Further increases in 

∆Tm were noted with higher NaCl concentrations where the maximum concentration tested, 

500 mM NaCl gave the maximum ∆Tm of +3.1 °C. Therefore, increasing NaCl concentrations 

improved the thermal stability of His-Cdc25C270-462.  

The concentration of 100 mM was chosen as optimum because there was no change in ∆Tm 

from 100 – 250 mM NaCl. Although, 300 mM NaCl did provide a further 0.5°C increase in Tm 

compared to 100 mM NaCl it was not chosen as the ideal concentration because this 

concentration was deemed to be high for NMR experiments, especially if backbone 

assignments were to be attempted. The next step was to acquire a 1H, 15N – HSQC spectrum to 

see if the protein was assignable.      
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Figure 4.3 NaCl optimization of His-Cdc25C270-462 

 Sodium chloride concentrations from 0 – 500 mM were tested in 50 mM sodium phosphate (pH 
7.0) and 0.5 mM TCEP.    
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4.4 1H, 15N – HSQC spectra of His-Cdc25C270-462 

Protein samples which were 15N-labeled were prepared for HSQC experiments. During protein 

concentration, precipitation was again noted which confirmed that the protein had limited 

solubility. Despite this, protein samples ~ 500 µM were obtained.  

A 1H, 15N – HSQC spectrum of His-Cdc25C270-462 was acquired in 50 mM sodium phosphate (pH 

7.0), 100 mM NaCl, and 0.5 mM TCEP (Figure 4.4.1). The peaks are well dispersed and the 

protein is folded.  

The expected peaks formula (see below) was used to calculate the number of expected peaks. 

From a total of 245 expected peaks, 213 peaks were observed ~ 87 % of expected peaks seen 

(total number of amino acids = 216, Pro (P) = 11, Asn (N) = 6, Trp (W) = 0, and Gln (Q) = 14). 

 

Expected peaks formula = (total number of amino acids in the protein sequence – proline(s) + 
tryptophan(s)) + 2(Asparagine(s) + Glutamine(s))  

 

1H, 15N-HSQC spectra of His-Cdc25C270-462 in two different pH conditions, pH 7.0 and pH 6.5 

were collected (Figure 4.4.2). This was done to see if lowering the pH improves the peak count.  

For NMR experiments, it is desirable to use a low pH, this is because at a higher pH the amide 

deprotonates more quickly. This means it will only be in the protonated state for a short time 

meaning that the peak from those resonances will be of low intensity. A compromise is needed 

between having a pH that gives good NMR peak intensity and one that is physiologically 

relevant and at which the protein is stable and soluble.  

Lowering the pH by 0.5 unit resulted in only three extra peaks being seen (216 peaks observed) 

~ 88 % of the expected peaks (Figure 4.4.2).   
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It was noted that subsequently after the 1H, 15N-HSQC experiments a white precipitate was 

visible in the NMR tubes. The majority of the protein had precipitated. Therefore, it was 

decided to stay at pH 7.0 rather than pH 6.5. This was done because the theoretical pI of the 

protein is 6.10. Having a buffer pH very close to the pI would increase the chances of 

precipitation.  

     

 

Figure 4.4.1: 1H, 15N – HSQC of His-Cdc25C270-462 

1H, 15N-HSQC spectrum of 500 µM His-Cdc25C270-462 in 50 mM sodium phosphate (pH 7.0), 100 
mM NaCl, and 0.5 mM TCEP collected at 25 oС using a 600 MHz Agilent Direct Drive 
spectrometer.  
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Figure 4.4.2: 1H, 15N – HSQC spectra of His-Cdc25C270-462 in pH 7.0 and pH 6.5 

1H, 15N-HSQC spectra of 500 µM His-Cdc25C270-462 in 50 mM sodium phosphate (pH 7.0), 100 
mM NaCl, 0.5 mM TCEP (a) and 50 mM sodium phosphate (pH 6.5), 100 mM NaCl, 0.5 mM 
TCEP (b). Both spectra were collected at 25 oС using a 600 MHz Agilent Direct Drive 
spectrometer.  
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4.5 Additive optimisation  
 
4.5.1 Additive Optimization (ThermoFluor®) of His-Cdc25C270-462 
 
The next step was to improve the solubility of His-Cdc25C270-462. Additives were tested by 

ThermoFluor®. The idea being that an improvement in thermal stability may improve the 

solubility of the protein.  

Additives were tested to identify those which would help improve the thermal stability of the 

protein and may also improve the 1H-15N-HSQC spectrum (Figure 4.5.1).   

The addition of 0.5 M TMAO or 50 mM Glu/Arg in the ThermoFluor® optimised buffer, 50 mM 

sodium phosphate (pH 7.0), and 150 mM NaCl, improved thermal stability by 1 °C. The addition 

of 2 mM CHAPS resulted in ∆Tm of -3.9 °C (Figure 4.5.1b). This can be clearly seen by the shift 

of the melting curve to the left (Figure 4.5.1a). This considerable decrease in thermal stability 

suggests that CHAPS destabilizes the protein.  
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Figure 4.5.1 Thermofluor additive profile for His-Cdc25C270-462  

The sigmoidal melting curves for His-Cdc25C270-462 with the different additives (a). The average 
melting temperature (Tm) and the change in Tm (∆Tm) with respect to the control are listed in 
(b). The additives were tested in 50 mM sodium phosphate (pH 7.0), and 150 mM NaCl. The 
addition of 0.5 M TMAO or 50 mM Glu/Arg resulted in a 1 °C increase in melting temperature.  
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4.5.2 Solubility optimisation of His-Cdc25C270-462  

Fresh 15N-labeled His-Cdc25C270-462 was buffer exchanged into 50 mM sodium phosphate (pH 

7.0), 100 mM sodium chloride, 0.5 M TMAO, 1 mM TCEP and 50 mM sodium phosphate (pH 

7.0), 100 mM sodium chloride, 50 mM Glu/Arg, 1 mM TCEP. Following this, the protein in each 

additive condition was concentrated down to ~ 500 µM and kept at 4 oС for 1 day. Precipitation 

was noted in both samples. After centrifugation to remove the precipitate 1H, 15N – HSQC 

spectra were then collected.    

With 0.5 M TMAO, the peaks in the HSQC are a lot less intense with some peaks being lost 

below the noise level. There was a greater amount of precipitation seen with this additive 

compared to 50 mM Glu/Arg. The intensity of peaks with 50 mM Glu/Arg was similar to the 

intensity of peaks seen in the HSQC spectrum with 50 mM sodium phosphate (pH 7.0), 100 mM 

NaCl, and 0.5 mM TCEP (Figure 4.5.2). Therefore, His-Cdc25C270-462 is more soluble in 50 mM 

Glu/Arg compared to 0.5 M TMAO.  

From a total of 245 expected peaks, 196 peaks were observed with 0.5 M TMAO, and 218 

peaks were observed with 50 mM Glu/Arg which is equivalent to 80 % and 89 % of the 

expected peaks observed respectively. 50 mM Glu/Arg improved the peak count of His-

Cdc25C270-462 by 9 %.  

Although, 50 mM Glu/Arg improved the thermal stability, short-term solubility, and peak count 

for Cdc25C270-462 it was not able to improve the long-term solubility of this protein. After the 

1H, 15N-HSQC experiment which was run for 2 hrs, the majority of the protein precipitated.  
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Figure 4.5.2: 1H, 15N – HSQC spectra of His-Cdc25C270-462 in 0.5 M TMAO and 50 
mM Glu/Arg  

His-Cdc25C270-462 was buffer exchanged into each additive buffer condition and concentrated to 
~ 500 µM. The concentrated protein was kept at 4 °C for 1 day before HSQC spectra were 
collected. The 1H, 15N – HSQC spectra of His-Cdc25C270-462 in 50 mM sodium phosphate (pH 7.0), 
100 mM sodium chloride, 0.5 M TMAO, 1 mM TCEP (a) and in 50 mM sodium phosphate (pH 
7.0), 100 mM Sodium Chloride, 50 mM Glu/Arg, 1 mM TCEP (b) were collected at 25 °C using 
the 600 MHz Agilent spectrometer. 50 mM Glu/Arg improved the solubility and peak count of  
His-Cdc25C270-462.  
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4.6 Construct optimisation to improve protein solubility  

It was critical to improve the long-term solubility of the protein in order to obtain NMR 

backbone assignment data. Therefore, the buffers with and without the additives listed in 

Table 4.6 were screened using the hanging-drop assay. In addition to this different Glu/Arg 

concentrations were tested. However, the 96 well plates which were observed after 48 hours 

at 23 oC showed extensive precipitation. Therefore, alternative constructs were tested with the 

aim to improve protein solubility and stability (the choice of constructs was based on personal 

communication: Professor Michael Overduin and Dr Mark Jeeves). The constructs generated 

(Tables 4.6.1 & 4.6.2) were tested using the hanging-drop solubility assay with the buffers and 

additives listed in Table 4.6. All the  conditions were assessed after 48 hours and each protein 

was given an overall precipitaion score. The precipitation score was based on the Lepre and 

Moore system (Lepre and Moore, 1998) where a score of 0 was given for no precipitation and a 

score of 4 was given for extensive precipitation (see Figure 1.6.4.1).   

 

Buffer Screen (+ 150 mM NaCl) 
 

Additive Screen 

Sodium Cacodylate, pH 6.5 2 mM CHAPS 
MES, pH 6.5 0.5 M TMAO 
Sodium phosphate, pH 7.0 50 mM Glu/Arg 
Bis-Tris, pH 6.0 10 % Glycerol 
HEPES, pH 7.5 200 mM Sucrose 
MOPS, pH 7.0 
Tris, pH 8.0 
 

Table 4.6 Buffer and Additive list 

All the buffers contained 150 mM NaCl and each of the buffers tested was also tested with the 
additives listed in the Table.  
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4.6.1 Different length constructs  

The different length constructs tested are listed in Table 4.6.1. The constructs had molecular 

weights ranging from 22 to 26 kDa and a pI range from 5.8 to 6.6. This was because we wanted 

the chosen construct to be suitable for NMR study. The constructs which gave the best overall 

precipitation score were His-Cdc25C270-449 and His-Cdc25C270-443.  Both of these constructs gave 

a precipitation score of 2.0. Shortening the C-terminal of His-Cdc25C270-443 further from residue 

443 resulted in a greater extent of precipitation observed. Removing ten amino acids from the 

N-terminal of His-Cdc25C270-462 showed a slight improvement in the solubility. However, when 

these ten amino acids were removed from the N-terminal of His-Cdc25C270-443 instead of a 

further improvement there was a decrease in protein solubility with an overall precipitation 

score of 4.0. 
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Construct MW 
(kDa) 

Number of 
amino acids 

pI Score 

His6-270-462 25 192 6.1 3 

His6-270-473 26 203 6.1 3/2 

His6-270-449 24 204 6.2 2 

His6-270-443  23 173 5.9 2 

His6-270-436 22 166 5.9 4 

His6-270-432 22 162 5.8 4 

His6-270-429  22 159 5.8 4 

His6-280-443 22 163 6.3 4 

His6-280-462 24 182 6.6 3/2 

 

Table 4.6.1 Different length constructs 

The proteins were purified from a 1L growth in sodium phosphate pH 7/7.5 (pH depended on 
the pI of the protein), 150 mM sodium chloride, 1 mM TCEP buffer, and concentrated to 400 
µM. These proteins were then screened via the solubility screen assay using the buffer and 
additives listed in Table 4.6. Each protein was given an overall precipitation score after 48 hours 
incubation at 23 oС. The Table contains information on the molecular weight, number of amino 
acids, pI and overall precipitation score, for each protein.  
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4.6.2 Tagged constructs  

Both His-Cdc25C270-449 and His-Cdc25C270-443 proteins had improved protein solubility compared 

to the other Cdc25C lengths tested. His-Cdc25C270-449 was optimised further because it was the 

longer construct. It has been shown in the literature that adding a short stretch of amino acids 

to a protein terminal can significantly improve protein solubility. Therefore, a short stretch of 4 

or 5 amino acids was added to the C-terminal of His-Cdc25C270-449 (Table 4.6.2). The molecular 

weight range of these tagged proteins was from 23.7 to 24.7 kDa and the pI range was 5.8 - 

7.0. The 4Glu tag was the best compared to the other tags. Overall, these tagged proteins did 

not further improve the protein solubility of His-Cdc25C270-449 but resulted in a greater extent 

of precipitation seen with an overall precipitation score of 3.0.  
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Construct MW (kDa) Number of 
amino 
acids 

Pi score 

His6-270-449-5Arg 24.7 209 7.0 3 

His6-270-449-4Glu 24.5 208 5.8 3/2 

His6-270-449-5Lys 24.6 209 7.0 3 

His6-270-449-5Pro 24.4 209 6.2 3 

His6-270-449-
GSSGS 

24.3 209 6.2 3 

 

 

Table 4.6.2 Tagged constructs  

The proteins were purified from a 1L growth in Tris (pH 8)/Sodium phosphate (pH 7.5) (buffer 
was dependent on the pI of the protein), 150 mM sodium chloride, 1 mM TCEP buffer, and 
concentrated to 400 µM. These proteins were then screened via the solubility screen assay 
using the buffer and additives listed in Table 4.6. Each protein was given an overall 
precipitation score after 48 hours incubation at 23 oС. The Table contains information on the 
molecular weight, number of amino acids, pI, and overall precipitation score for each protein.  
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4.6.3 Cleavage of the His6 tag  

The N-terminal His tag was cleaved to assess its effect on Cdc25C protein solubility. The His tag 

was cleaved from both proteins, His-Cdc25C270-449 and His-Cdc25C270-443. These cleaved proteins 

were also tested with the solubility assay using the buffers and additives listed in Table 4.6. 

Cleaving the His tag resulted in a 48 hour precipitation score of 1.5 for Cdc25C270-449 and a score 

of 1.0 for Cdc25C270-443. Therefore, cleaving the His tag significantly improved protein solubility 

of both proteins and for Cdc25C270-443 there was a greater improvement in protein solubility. 

The conditions which showed the most improvement contained 50 mM Glu/Arg.  

1H, 15N-HSQC spectra of the untagged and His tagged Cdc25C270-443 were performed (Figure 

4.6.3). It can be seen that the two proteins overlay very well. This indicates that although the 

His tag negatively effects the solubility of Cdc25C it does not effect its conformation.   
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Figure 4.6.3 Cleavage of the His6 tag  

An overlay of 1H, 15N-HSQC spectra of 500 µM His-Cdc25C270-443 (red) and Cdc25C270-443 (black) in 
50 mM sodium phosphate (pH 7.0), 150 mM NaCl, and 1 mM TCEP collected at 25 oС using a 
600 MHz Agilent Direct Drive spectrometer.  
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4.7 Solution Optimisation of Cdc25C270-443  

The solubility screen was expanded in order to further improve the solubility of Cdc25C270-443. 

Additional additives were tested using 50 mM sodium phosphate (pH 7.0) buffer. From this 

screen, it was concluded that 200 mM L-arginine and 200 mM sucrose further improved the 

solubility of the protein.   

When the 1H, 15N-HSQC spectra of Cdc25C270-443 are overlaid there is no significant change in 

protein conformation (Figure 4.7a). This indicated that these additives improved solubility of 

the protein without changing the protein structure and the protein also retained activity in this 

buffer.  

To see if these additives affected the thermal stability of Cdc25C270-443 they were tested by 

ThermoFluor® (Figure 4.7b). The addition of 200 mM L-arginine alone results in only a 0.1 oС 

increase in thermal stability while the addition of 200 mM sucrose resulted in a 1 oС increase in 

thermal stability. The addition of both L-arginine and sucrose did not further improve thermal 

stability. This suggests that sucrose could be improving protein solubility by enhancing the 

thermal stability of Cdc25C270-443. 

Using a combination of construct and solution condition optimisation improved the solubility 

of the Cdc25C catalytic domain (at 1 mM concentration) to 4 days at 23 oС and one month at 4 

oС.  
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Figure 4.7 Solution Optimisation 

An 1H,15N-HSQC overlay of Cdc25C270-443 in 50 mM sodium phosphate (pH 7.0), 150 mM NaCl, 
and 1 mM TCEP (black), and 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine, 200 mM 
sucrose, and 1 mM TCEP (green) (a). The Table (b) shows the effect of the additives on the Tm of 
Cdc25C270-443.  
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Following solubility optimisation of the Cdc25C catalytic domain it was concluded that the 

Cdc25C270-443 protein provided the optimal solubility. From now on this protein will be referred 

to as the Cdc25C catalytic domain.    

 

4.8 Protein expression optimisation of the 13C, 15N labeled Cdc25C catalytic 
domain 

4.8.1 M9 minimal media optimisation  

The next stage was to optimise the expression of the Cdc25C catalytic domain. Since a primary 

aim was to obtain backbone assignment, for which experiments can generally take up to two 

weeks, it was desirable to maximise the amount of protein produced. There are many different 

ways one can improve the expression and hence yield of a protein. One of the strategies 

employed here was to optimise the M9 minimal media.  

A bacterial growth curve is useful when deciding on the optimal induction OD600. Ideally, 

induction should take place when the bacteria are still actively growing. This is to allow 

maximum growth of the culture and hence provide high protein yield. Therefore, usually, the 

culture is induced during middle of the exponential growth phase. However, it was noted that 

after induction of the E. coli expressing the Cdc25C catalytic domain there was very little 

growth of the bacterial biomass (data not shown). Therefore, it was decided to induce when 

the culture reached maximal biomass, before stationary phase is started which is ~ O.D600 0.9 

(Figure 4.8.1a). This complements the SGC (Oxford) protocol for the growth of the Cdc25C 

catalytic domain, which includes induction at an OD600 of 1.0.  

The effect of adding supplements to the M9 minimal media on protein expression was 

investigated. The two media supplements used were ISOGRO and BioExpress. Both of these 
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supplements have been designed to enhance the M9 minimal medium and improve protein 

expression. There was also the benefit of potentially reducing the lag phase and therefore the 

total time taken to reach the high induction OD600. 

BioExpress® is provided as a 10x concentrated solution by CIL (Cambridge Isotope Laboratories, 

Inc) to be made up as a complete medium with pure water. However CIL have also shown that 

using 1 % of BioExpress in addition to the standard M9 minimal media can help improve E. coli 

growth rate and yield (Rhima et al., 2011). This is ideal because it is cheaper to supplement 

with BioExpress then use it to make a complete medium.  

ISOGRO® is another supplement that can be added to M9 minimal media. This was used at a 

final concentration of 10 %, which was also according to the manufacturer’s (Sigma) 

recommendations. Sigma state on their website that this concentration is optimal in improving 

E. coli growth rate and protein expression.  

Compared to the cultures in M9 minimal media alone which had a lag phase of 3 hours, the lag 

phase was shortened by 2 hours with the addition of either supplement (Figure 4.8.1a).  

The addition of either BioExpress or ISOGRO also reduced the total time taken to reach the 

induction OD600 (Figure 4.8.1a). With M9 minimal media alone, 7.5 hours were taken to reach 

an OD600 of 0.9. Supplemented with BioExpress it took 5.5 hours and supplemented with 10 % 

ISOGRO it took 5 hours to reach this OD600. Therefore, the time taken to reach an induction 

OD600 of 0.9 was reduced with the supplements. With 1 % BioExpress, the induction OD600 was 

reduced by 2 hours and with 10 % ISOGRO the induction OD600 was reduced by 2.5 hours when 

compared to the M9 minimal media alone. The M9 culture reached the required OD600 the 

fastest when supplemented with 10 % ISOGRO.  
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Although, there was a significant improvement in the induction time, the protein expression 

levels did not change when compared to the M9 minimal media alone. Therefore, the addition 

of the supplements did not improve the expression and hence yield of the His-Cdc25C270-443 

protein (Figure 4.8.1b).    
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Figure 4.8.1 M9 minimal media optimisation  

Bacterial growth curves (a) of uninduced, 13C, 15N labeled M9 minimal media alone (red), 13C, 
15N labeled M9 minimal media supplemented with 13C, 15N 10 % w/v ISOGRO (green), and 13C, 
15N M9 minimal media supplemented with 13C, 15N 1 % v/v BioExpress (purple). An SDS-PAGE of 
the induced cultures is shown (b). The media cultures were induced at the OD600 of 0.9 and 
incubated overnight at 18 oС (for methodology details, see section 2.5.1). The first lane contains 
the molecular weight marker (M), followed by total cell lysates, 13C, 15N labeled M9 minimal 
media (1), 13C, 15N labeled M9 minimal media supplemented with 13C, 15N 10 % w/v ISOGRO (2), 
and 13C, 15N labeled M9 minimal media supplemented with 13C, 15N 1 % v/v BioExpress (3). 
These experiments were repeated three times.  
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4.8.2 Temperature Optimisation 

The aim here was to see if changing the temperature would improve the expression of Cdc25C. 

Generally, increasing the temperature means that protein will be produced at a faster rate. 

However, if the induction temperature is too high it can result in the protein not being folded 

correctly and hence present in inclusion bodies.  

Three different temperatures were tested for an overnight induction. An induction 

temperature of 18 oС resulted in the least amount of protein being expressed (Figure 4.8.2). An 

induction temperature of 37 oС showed a greater increase in protein expression levels 

compared to 18, and 25 oС. However, none of this protein was present in the soluble fraction. 

This was further tested for a shorter induction time of 3 hours to determine if there was any 

expression in the soluble fraction; there was little expression in the soluble fraction (data not 

shown). Therefore, 37 oС is not a good induction temperature for Cdc25C. 

An induction temperature of 25 oС had a greater level of Cdc25C expression compared to 18 oС 

and majority of the protein was expressed in the soluble fraction. This temperature was taken 

as the best temperature for overnight induction.  
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Figure 4.8.2 Temperature Optimisation 

Cultures of Cdc25C expressing E. coli were grown in M9 minimal media. The cultures were 
induced at an OD600 of 0.9 with 1 mM IPTG and incubated overnight at 18, 25, and 37 oС (for 
methodology details, see section 2.5.2). The gel shows the marker in the first lane, total cell 
lysate (TCL), soluble (S), and insoluble (I) fractions. His-Cdc25C270-443 has a molecular weight of ~ 
23 kDa and therefore appears as protein bands between 20-25 kDa on the gel. An induction 
temperature of 25 oС was taken to be the optimal temperature for expression.      
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4.9 Biophysical and structural characterisation of the Cdc25C catalytic domain   

The molecular weight and oligomeric state of the protein was investigated prior to preparing 

the protein sample for backbone assignment experiments. This was to ensure quality of the 

purified protein before structural analysis commenced.  

4.9.1 Analytical size exclusion chromatography  

The solution state of the Cdc25C catalytic domain was determined using analytical size 

exclusion chromatography (Figure 4.9.1). The profiles of all the standards which were run 

independently are overlaid with the elution profile of the Cdc25C catalytic domain. Following 

plotting of the calibration curve the calculated molecular weight was 24 kDa. The predicted 

molecular weight of the cleaved protein based on its amino acid sequence using the ProtParam 

tool (Gasteiger et al., 2005) was 20.6 kDa. This difference of 3.4 kDa is likely due to the 

assumption made when obtaining the molecular weight from the size exclusion chromatogram 

that the protein has a fully spherical shape. The Cdc25C catalytic domain may have a slightly 

bigger hydrodynamic radius which will affect the time taken to elute down the column.    

4.9.2 Analytical ultracentrifugation (AUC) 

The AUC analysis revealed a single peak indicating the presence of a single monomeric species. 

The sedimentation coefficient obtained from the AUC analysis was 1.3 S which corresponds to 

a molecular weight ~ 20 kDa (Figure 4.9.2). This corresponds to the results obtained from 

ProtParam and the analytical size exclusion chromatography analysis.  
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Figure 4.9.1 Molecular weight determination of the Cdc25C catalytic domain   

The cleaved Cdc25C catalytic domain in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine, 
200 mM sucrose, and 1 mM TCEP was injected onto the Superdex 200 5/150 column to 
determine its molecular weight (for methodology details, see section 2.11). The milli 
absorbance (mAU) was measured at 280 nm. The protein standards, Ribonuclease A (13.7 kDa), 
Chymotrypsinogen A (25 kDa), Albumin (66 kDa), and Ovalbumin (43 kDa) were used for the 
calibration. The box at the top right-hand corner shows a graph where the log molecular weight 
(MW) of these standards (squares) and the Cdc25C protein is plotted against their respective 
elution volume/void volume (V/V0) ratios. The Cdc25C catalytic domain is depicted as a black 
triangle.  
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Figure 4.9.2 Determination of the oligomeric state of the Cdc25C catalytic 
domain  

A 30 µM sample of the cleaved Cdc25C catalytic domain in 50 mM sodium phosphate (pH 7.0), 
200 mM L-arginine, 200 mM sucrose, and 1 mM TCEP was subjected to AUC analysis. The 
program SEDFIT (Brown and Schuck, 2006) was used to perform the c(s) analysis from which it 
was determined that the Cdc25C catalytic domain is a monomer.  
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4.9.3 Backbone assignment 

3D NMR experiments were attempted in order to obtain the backbone assignment of the 

Cdc25C catalytic domain (data not shown). However, this was not successful due to insufficient 

peaks in the carbon resolved experiments which precluded sequential assignment. There was 

precipitation which could account for the loss of the peaks. The peaks that were present had 

differential peak intensities suggesting the Cdc25C catalytic domain has a dynamic backbone.   
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4.10 Small angle X-ray scattering (SAXS) 

4.10.1 SAXS Parameters  

SAXS data for three different concentrations 1, 5, and 10 mg/ml were collected. Following the 

examination of the Guinier regions and comparing the different concentrations there was no 

aggregation noted in any of the SAXS plots. Therefore, the highest concentration, 10 mg/ml 

was taken forward for the analysis (Figure 4.10.1.1a). This was because the highest 

concentration provided the best signal to noise ratio. A few points at lower values of q were 

removed from this plot. This is noise due to the beam stop.  

The radius of gyration (Rg) obtained from the Guinier plot was 1.9 nm which agrees with the Rg 

obtained from the P(R) analysis which was 1.96 nm (Figure 4.10.1.1b). 

The bell-shaped curve in the Kratky plot is typical of a folded protein (Figure 4.10.1.1c). It can 

clearly be seen that although the initial tailing is constant there is an increase at higher q. This 

suggests there is a disordered element in the protein.  

The P(R) graph shows tailing at high R which suggests that the protein is elongated (Figure 

4.10.1.1d). This elongation could be because of the fact that the Cdc25C catalytic domain is not 

fully globular or because there is flexibility in the protein.   

Visually inspecting how the curve ends while inputting different Dmax values with the aim of 

obtaining a smooth P(R) graph placed the Dmax between 7.2 – 8.0 nm where 7.7 nm was a good 

estimate. Dmax is usually around three times the Rg value. This is not the case here which 

indicates Cdc25C is elongated or there is flexibility within the protein. The SAXS parameters for 

the catalytic domain of Cdc25C are summarised in Table 4.10.1. 

The SAXS envelope of the Cdc25C catalytic domain was generated using the DAMMIF and 

DAMAVER programs from the ATSAS suite (Figure 4.10.1.2). The crystal structure of the Cdc25C 
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catalytic domain was then fitted into this envelope using SUPCOMB. The normalized spatial 

discrepancy (NSD) value for the fit which was provided by SUPCOMB was 1.5 suggesting a 

possible difference between the SAXS envelope and the crystal structure.     

 
Parameter (nm) 

 
Cdc25C catalytic domain 

Rg (Guinier) 1.90 +/- 0.017 (qRg < 1.3) 

Rg (P(R)) 1.96  
Dmax  7.7 (7.2 – 8.0) 

 

Table 4.10.1 SAXS parameters for the Cdc25C catalytic domain 
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Figure 4.10.1.1 SAXS graphs of the Cdc25C catalytic domain  

SAXS data were collected at EMBL (DESY, Germany). The ATSAS software suite was used to 
analyse the data. SAXS scattering plot of 10 mg/ml Cdc25C catalytic domain in the buffer 50 
mM sodium phosphate (pH 7.0), 200 mM L-arginine, 200 mM sucrose, and 1 mM TCEP (a). The 
logarithmic intensity is plotted against q (momentum transfer) which is expressed as nm-1. The 
Guinier plot which is plotted as ln (I) against q2 shows a straight line can be fitted in the Guinier 
region (b). The Kratky plot is plotted as intensity multiplied by q2 against q. The profile of the 
Kratky plot suggests a folded protein with disordered regions. The P(R) graph which is plotted 
as P(R) against R shows tailing at high R. R is expressed in nm.     
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Figure 4.10.1.2 SAXS envelope of the Cdc25C catalytic domain 

The crystal structure of the Cdc25C catalytic domain (PDB: 3OP3) was fitted to the SAXS 
envelope using SUPCOMB. The NSD value was 1.5 suggesting a difference between the low 
resolution SAXS envelope and the atomic 3D models.   

 

 

 

4.10.2 Comparing solution data to the crystal data 

CRYSOL was used to create a theoretical SAXS scattering curve for the crystal structure of the 

Cdc25C catalytic domain which was fitted to the solution SAXS data. Although, the fit is 

reasonable with an χ2 value of 1.57 the SAXS scattering curve does not fully fit the data (Figure 

5.10.2). This could be because the construct used for SAXS is different to the construct used for 

the crystal structure. The differences between the constructs are in the N-terminal region, the 
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catalytic region, and the C-terminal. The crystal structure has no electron density for the N-

terminal residues 269-279 and electron density for two serine residues are missing in the 

catalytic site. Also, there are a few extra residues in the C-terminal where there is electron 

density until residue 448 while the SAXS construct ends at residue 443. Therefore, I-TASSER 

was used to generate a model which would be more representative of the construct used to 

collect the SAXS data.   

CRYSOL was used to generate a scattering curve for the I-TASSER model and this was fitted to 

the solution SAXS data giving a χ2 value of 1.65. This scattering curve also does not completely 

fit the SAXS data (Figure 4.10.2). However, it overlaid very well to the simulated SAXS 

scattering curve of the crystal structure. Overall, both SAXS scattering plots generated for the 

crystal structure and the I-TASSER model do not fully fit the SAXS solution data. Therefore, 

even after accounting for the differences between the solution and crystal constructs there is 

still a difference between the solution and crystal models of the Cdc25C catalytic domain.     
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Figure 4.10.2 A comparison of the solution data to the crystal data 

The rigid model obtained from I-TASSER and the crystal structure (PDB: 3OP3) were fitted to the 
SAXS data using CRYSOL. Both models do not fully fit the SAXS solution scattering curve.  

 

 

 

 

 

4.10.3 Ensemble Optimisation method (EOM) 

A combination of the results such as the shape of the Kratky plot, the tailing of the P(R) graph 

and the large Dmax indicated flexibility within the Cdc25C catalytic domain which could explain 
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the difference seen between the solution and crystal models. These methods cannot identify 

the regions in which the flexibility lies. Therefore, EOM was used to characterise this flexibility 

(for details on the EOM method, see methodology, section 2.17.3).  

The 3D NMR experiments (data not shown) suggested that the backbone of the Cdc25C 

catalytic domain is dynamic. This could be because the catalytic domain of Cdc25C contains 

mobile loops or flexible termini.  

4.10.3.1 Assessing flexibility of the termini 

Since there is no X-ray electron density for the N-terminal residues 269 – 279 I-TASSER was 

used to generate a more complete model of the Cdc25C catalytic domain. I-TASSER (Zhang, 

2008) uses the protein amino acid sequence and information from the PDB database to 

generate 3D atomic models. Where no data are available either because there is no matching 

PDB or there is no electron density in certain regions I-TASSER utilizes ab initio modelling to 

generate the final 3D model. The model which had the best I-TASSER score was chosen for the 

EOM analysis. The scattering curve when both termini are made rigid was determined from the 

CRYSOL program. The sequences which were assessed for flexibility are shown in Table 

4.10.3.1.  

Region Amino acid sequence  
N-termini269-279 SMTQMLEEDSNQ 
C-termini431-443              SYCPMHHQDHKTE 

 

Table 4.10.3.1 Termini sequences assessed by EOM for flexibility 

With both termini flexible the EOM generated scattering plot fits very well to the SAXS data 

compared to when both termini are rigid (Figure 4.10.3.1.1). The fit has a χ2 value of 1.32 when 
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both termini are flexible compared to when both termini are rigid which has an χ2 value of 

1.65. Chimera was used to overlay the final 20 models generated by EOM (Figure 4.10.3.1.2).  

The termini were then assessed independently to try and identify a terminal which could 

account for the flexibility (Figure 4.10.3.1.3). The χ2 values for the fits show no significant 

difference when the N-terminal is flexible (χ2= 1.77) or when the C-terminal is flexible (χ2= 

1.77).  

Overall, the EOM analysis suggests there is flexibility in the catalytic domain and both termini 

contribute to this flexibility. However, the total flexibility is not accounted for by the termini. 

This is because when both termini are flexible the χ2 value is 1.32 (the closer the χ2 value is to 

zero the better the fit). This suggests there is some inherent flexibility in the Cdc25C catalytic 

domain which cannot be fully accounted for by the termini.  
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Figure 4.10.3.1.1 Assessing flexibility of both termini  

Models with flexible or rigid termini were generated using the I-TASSER model. EOM was used 
to obtain the fitted SAXS scattering curve when both termini were flexible (χ2 = 1.32) and 
CRYSOL was used to do this when both termini were rigid (χ2 = 1.65). The data is plotted with 
intensity (Log10) against the momentum transfer (q). The scattering curve fits better to the data 
when both termini are flexible.      
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Figure 4.10.3.1.2 Overlay of the EOM ensemble when both termini are flexible 

An overlay of the 20 models (ensemble) produced by EOM when both termini are defined as 
being flexible. This Figure shows there is a moderate degree of flexibility predicted in the 
termini. The program Chimera (Pettersen et al., 2004) was used to overlay the models. In blue is 
the model used for the catalytic domain and in red and green are the N and C termini 
respectively.  
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Figure 4.10.3.1.3 Assessing flexibility of individual termini 

The programme EOM was used to obtain the fitted SAXS scattering curves when either the N-
terminal or C-terminal was made flexible. EOM generates a pool of 10 000 models from which it 
selects 20 best models. It generates an averaged scattering curve of the best models which is 
then fitted to the SAXS data. With either the N- or C- terminal flexible the χ2 was 1.77.  The data 
are plotted with intensity (Log10) against the momentum transfer (q).  

 

 

 

4.11 Cdc25C B-factor analysis 
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B-factors are obtained from X-ray crystal structures. They can indicate the extent of mobility of 

the atoms in the crystal structure (Radivojac et al., 2004). Regions with high B-factors tend to 

experience high mobility compared to regions with low B-factors. The B-factors associated with 

the crystal structure of the Cdc25C catalytic domain (3OP3) were examined to identify 

potentially dynamic regions.   

It can be seen that apart from the termini three other regions (a, b, and c) have high B-factors 

(Figure 4.11). These correspond to residues 299-301 (a), 365-369 (b), and 319-321 (c).  These 

regions could therefore also contribute to the flexibility.  
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Figure 4.11 Cdc25C B-factor analysis  

The Cdc25C crystal structure in conjunction with PyMOL was used to generate the Figure. The 
B-factors are expressed in Å2 with a scale ranging from 10 to 50 Å2. The N- and C-termini are 
annotated. Additional regions indicated by the B-factors to experience high mobility are 
labelled a, b, and c. The catalytic site is marked *  

 

 

 

4.12 Discussion of Chapter 4.0 
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The main aim of this chapter was to identify an optimal Cdc25C catalytic domain construct and 

solution conditions in order to obtain backbone assignments. Sodium phosphate and 

increasing NaCl concentrations improved the thermal stability of the protein. Initially, 50 mM 

sodium phosphate (pH 7.0), 100 mM NaCl, and 0.5 mM TCEP was identified as a good starting 

buffer condition. The 1H 15N-HSQC collected in this condition showed the protein was folded 

with well dispersed peaks. Around 87 % of peaks were observed in the protein HSQC spectrum 

making assignments possible. However, significant precipitation was noted during these initial 

experiments. Therefore, different additives were screened in order to identify conditions that 

would improve the solubility of the protein and may also improve the HSQC peak count.  

The addition of 50 mM Glu/Arg improved the short term solubility of the protein (His-

Cdc25C270-462) and modestly improved the HSQC spectrum. It has been previously reported that 

50 mM Glu/Arg can significantly improve protein stability and solubility. For example, a study 

reported an increase in Tm by 1.4 K for chymotrypsinogen A (Blobel et al., 2011). It was 

considered that the effect of 50 mM Glu/Arg in improving protein stability was reserved to the 

disordered protein loop regions. It was thought that these loops may collapse onto the protein 

core resulting in a compact structure with significantly reduced non-specific interactions of the 

disordered loops. This could also provide an explanation of why the addition of 50 mM Glu/Arg 

improved the short term solubility of His-Cdc25C270-462.  

Despite the short term improvement in solubility by 50 mM Glu/Arg there was still a significant 

amount of precipitation. Increasing the concentration of Glu/Arg did not further improve 

protein solubility. 

Alternative Cdc25C catalytic domain constructs were generated and their solubility was tested. 

The shorter constructs His-Cdc25C270-443 and His-Cdc25C270-449 had the highest 48-hour 
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solubility score. His-Cdc25C270-449 was further optimised by the addition of short solubility 

peptide tags. Unfortunately, there was no improvement in solubility noted.  

Cleaving the N-terminal His tag resulted in an improvement in protein solubility. Interestingly, 

in support of this finding a study showed some proteins with a His tag have lower solubilities in 

comparison with no tag (Woestenenk et al., 2004).  Although, the His tag had a negative effect 

on the solubility of the Cdc25C catalytic domain it did not affect its conformation since there 

was no significant difference in the 1H, 15N-HSQC overlay of the untagged and His tagged 

protein.  

The findings in this study suggest the termini of the Cdc25C catalytic domain had a negative 

effect on protein solubility since shortening the termini improved solubility. There is no 

electron density in the crystal structure for these termini suggesting they are disordered. These 

disordered termini may be very flexible and vulnerable to forming non-specific interactions 

with each other and ultimately resulting in the protein to precipitate out of solution.  

The protein solubility of the cleaved protein (Cdc25C270-443) was further optimised by screening 

with an expanded range of additives. The additives 200 mM sucrose and 200 mM L-arginine 

further improved protein solubility. The solubility was improved to 4 days at 23 oС and 1 month 

at 4 oС. Therefore, a combination of shortening the termini and addition of these additives 

improved the long term solubility of the Cdc25C catalytic domain. The optimised buffer 

condition 50 mM sodium phosphate (pH 7.0), 200 mM sucrose, 200 mM L-arginine, and 1 mM 

TCEP did not affect the protein conformation and the protein retained activity in this condition. 

Sucrose has been described in the literature as a protein stabilising additive (see chapter 1.0). 

Sucrose is preferentially excluded from protein surfaces. Due to this preferential exclusion 

proteins become compact. The benefits of arginine are also well documented (see chapter 
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1.0). These include an increase in thermal stability, reduction of partially folded protein 

intermediates and a reduction of non-specific interactions. Although for Cdc25C an increase in 

thermal stability was not noted with L-arginine an increase in protein solubility was noted. It 

would be interesting to obtain SAXS data without the additives sucrose and L-arginine to see if 

there is indeed protein compaction. However, the solubility of the Cdc25C catalytic domain will 

need to be considered. On site purification at the synchotron facility may allow the collection 

of good quality data.  

Although the solubility of the Cdc25C catalytic domain was significantly improved this was not 

sufficient to obtain backbone assignments. Additionally, it was noted that the Cdc25C catalytic 

domain backbone may be dynamic which could also have played a role in the lack of success in 

assigning the backbone. Interestingly, a recent study published last month has assigned the 

backbone of the Cdc25B catalytic domain (Lund and Cierpicki, 2014). The authors also found it 

difficult to obtain assignments of the native protein Cdc25B and used a mutation approach to 

stabilize the protein. They were able to stabilize the protein by mutating the active site 

cysteine. A similar approach could be tested for the Cdc25C catalytic domain. 

 

 

 

 

Chapter 5.0 – Identifying inhibitors for Cdc25C 

5.1 Introduction 
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The twenty compounds which were tested by NMR are listed in Table A6 (Appendix A6) which 

also contains their structure, molecular formula, molecular weight, and predicted LogP values. 

The LogP values were obtained from the molinspiration cheminformatics website 

(http://www.molinspiration.com/cgi-bin/properties). LogP is a partition co-efficient of 

octanol/water and measures hydrophobicity of molecules. The predicted LogP was used to 

short list the compounds where the compounds which had a LogP higher than 2.0 were not 

selected.   

A few of the compounds included in the Table A6 (Appendix) have already been shown to 

interact with Cdc25C or are general phosphatase inhibitors. Sodium orthovanadate and 

BVT.948 are general protein tyrosine phosphatase inhibitors which have been shown to inhibit 

phosphatases competitively or noncompetitively respectively (Gordon, 1991; Liljebris et al., 

2004). NSC 663284 and NSC 95397 have previously been shown to inhibit Cdc25C via 

phosphatase activity assays (Lazo et al., 2001). The rest of the compounds were selected based 

on insights gained from the literature. This study assessed the potential for NMR spectroscopy 

in identifying compound hits for the catalytic domain of Cdc25C.    

5.2 Effect of DMSO on the Cdc25C catalytic domain 

DMSO was used here to solubilise the compounds so that high concentration stock solutions 

could be prepared and also to ensure the compounds remained in solution during the 

experiment. Although DMSO is a popular solvent which is generally used to prepare stock 

solutions of compounds it has been shown for some proteins to negatively affect protein 

structure and solubility (Arakawa et al., 2007b; Tjernberg et al., 2006). Since the compounds 

tested here were prepared in DMSO it was important to investigate the effect of increasing 

http://www.molinspiration.com/cgi-bin/properties
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DMSO concentrations on the Cdc25C catalytic domain before NMR interaction studies 

commenced.  

It can be seen from the 1H, 15N-HSQC spectra overlay of the Cdc25C catalytic domain with 0 % 

DMSO compared with the DMSO concentrations 5, 10, and 15 % v/v that the protein is folded 

in all these concentrations (Figure 5.2a). In these DMSO concentrations the peaks are well 

dispersed and can be mapped to the peaks with 0 % DMSO. A significant number of peaks 

show chemical shift perturbations suggesting the catalytic domain of Cdc25C interacts with 

DMSO. These chemical shift changes are in fast exchange indicating a weak interaction (see 

arrows on spectrum). Since DMSO has been shown to form favourable interactions with 

hydrophobic amino acids it is likely that the peaks which show chemical shift perturbations are 

hydrophobic residues (Arakawa et al., 2007b).  

The ThermoFluor® assay was used to test the thermal stability of the Cdc25C catalytic domain 

with DMSO concentrations up to 20 % (Figure 5.2b). The thermal stability did not significantly 

change until 8 % of DMSO was added which resulted in a decrease in thermal stability by 1 oС. 

There was no further significant decrease in thermal stability. In addition, the solubility of the 

Cdc25C catalytic domain was tested with DMSO concentrations up to 20 % and it was noted 

that there was no negative effect on protein solubility (the Cdc25C catalytic domain also 

retained activity in the presence of DMSO). Therefore, the small decrease in thermal stability 

did not affect the solubility of the Cdc25C catalytic domain and it is hence stable in high 

concentrations of DMSO.  
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Figure 5.2 Effect of DMSO on the Cdc25C catalytic domain 

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 0, 5, 10, and 15 % v/v 
DMSO concentrations in the buffer 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP (a). The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС 
using a 800 MHz Agilent spectrometer. The Table (b) shows the effect of increasing DMSO 
concentrations on the thermal stability of the Cdc25C catalytic domain. The Tm and ∆Tm are 
tabulated for each DMSO concentration.  

 

 

5.3 WaterLOGSY results 
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All the compounds except for sodium orthovanadate were first tested by WaterLOGSY to 

identify compounds which interact with the Cdc25C catalytic domain (Appendix A6). Sodium 

orthovanadate was not tested because this inhibitor compound has no protons and therefore 

is not applicable for this assay. The compounds which showed any changes via WaterLOGSY 

were compounds 2, 3, 4, 14, 15, 16, and 19. The compounds 4, 14, 15, and 16 gave the best 

WaterLOGSY results and are described here. 

A positive phase change upon addition of the Cdc25C catalytic domain protein indicated bound 

protons suggesting an interaction. Although for some of the peaks in the WaterLOGSY spectra 

there was not a clear change in phase changes in peak intensities were observed upon the 

addition of protein.  

For compound 4 (BVT.948) there were changes in peak intensities observed when the Cdc25C 

catalytic domain was added. One resonance displayed a clear phase change (Figure 5.3.1). This 

proton resonance had a chemical shift value of 7.81 ppm. Three resonances, 6.87, 7.27, and 

7.30 ppm showed a positive phase change for compound 14 (Figure 5.3.2). For compound 15 

eight out of nine proton resonances displayed a clear phase change (Figure 5.3.3). These 

proton resonances had the chemical shifts of 7.71, 7.73, 7.79, 7.8, 7.81, 7.99, 8.01, and 8.03 

ppm. Finally, all the proton resonances of compound 16 had a phase change after addition of 

the protein (Figure 5.3.4). The chemical shifts of these resonances were 6.35, 7.3, 7.4, 7.5, 

7.75, 8.53, and 8.80 ppm.        
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Figure 5.3.1 Compound 4: BVT.948  

The proton 1D of the compound is shown (a), followed by the WaterLOGSY with no protein (b), 
and the acquired WaterLOGSY after the addition of 5 µM protein (c). The resonances which 
showed phase changes are marked by an asterisk. The Bruker 600 MHz BACS60 autosampler 
was used to collect the data.  
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Figure 5.3.2 Compound 14  

The proton 1D of the compound is shown (a), followed by the WaterLOGSY with no protein (b), 
and the acquired WaterLOGSY after the addition of 5 µM protein (c). The resonances which 
showed phase changes are marked by an asterisk. The Bruker 600 MHz BACS60 autosampler 
was used to collect the data.  
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Figure 5.3.3 Compound 15 

The proton 1D of the compound is shown (a), followed by the WaterLOGSY with no protein (b), 
and the acquired WaterLOGSY after the addition of 5 µM protein (c). The resonances which 
showed phase changes are marked by an asterisk. The Bruker 600 MHz BACS60 autosampler 
was used to collect the data.  
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Figure 5.3.4 Compound 16 

The proton 1D of the compound is shown (a), followed by the WaterLOGSY with no protein (b), 
and the acquired WaterLOGSY after the addition of 5 µM protein (c). The resonances which 
showed phase changes are marked by an asterisk. The Bruker 600 MHz BACS60 autosampler 
was used to collect the data.  

 

 

 

5.4 2D results (1H, 15N SOFAST-HMQCs) 
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All the compounds which showed changes via WaterLOGSY were also tested by 1H, 15N 

SOFAST-HMQC experiments (compounds 2, 3, 4, 14, 15, 16, and 19 from Table A6). The 

chemical shift changes were compared to the general phosphatase inhibitors, BVT.948 (C4), 

and sodium orthovanadate (C1). The compounds were added in excess with minimum 

concentrations of 0.4 or 0.5 mM. An exception was the compound NSC 95397 (C3). This 

compound had poor solubility so it was only tested at 0.3 mM concentration. 

5.4.1 Compound 4: BVT.948 

There was a widespread loss of peaks observed. A number of peaks also showed weakening 

signal intensities. Therefore, these chemical shift perturbations are in intermediate exchange. 

This explains the weakening and loss of peaks upon the addition of the non-competitive 

phosphatase inhibitor BVT.948. The peaks which do not change are from regions which are not 

affected by the compound.  

5.4.2 Compounds 2, 3, and 14 

The compounds 2 (NSC 663284, Figure 5.4.2.1), 3 (NSC 95397, Figure 5.4.2.2), and 14 (Figure 

5.4.2.3) resulted in a similar change in the 2D HMQC spectrum as BVT.948. These compounds 

resulted in a significant loss of peaks in the 2D HMQC spectrum. In addition to the significant 

loss of peaks there was a weakening of peaks. This suggested the peaks were in intermediate 

exchange indicating a strong interaction. A change in a significantly large number of chemical 

shifts implied a global conformational change of the protein upon binding of these compounds. 

The peaks which did not change are likely to be peaks which do not interact with the 

compounds or are not affected by them. 
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Figure 5.4.1 Compound 4:BVT.948 

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 10 % DMSO-d6  (black) 
and 0.4 mM BVT.948 (purple) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP. The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС using 
an 800 MHz Agilent spectrometer.  
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Figure 5.4.2.1 Compound 2: NSC 663284   

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 10 % DMSO-d6  (black) 
and 0.4 mM NSC 663284 (green) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP. The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС using 
an 800 MHz Agilent spectrometer.  
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Figure 5.4.2.2 Compound 3: NSC 95397  

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 10 % DMSO-d6  (black) 
and 0.3 mM NSC 95397 (orange) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP. The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС using 
an 800 MHz Agilent spectrometer. 
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Figure 5.4.2.3 Compound 14  

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 10 % DMSO-d6  (black) 
and 0.5 mM compound 14 (purple) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 
200 mM sucrose, and 1 mM TCEP. The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС 
using an 800 MHz Agilent spectrometer. 

 

 

 

 

5.4.3 Compound 1: Sodium Orthovanadate 
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Sodium Orthovanadate is a general phosphatase inhibitor. It has a structure which mimics a 

phosphate group and therefore can bind competitively in the active site of phosphatases. The 

addition of sodium orthovanadate resulted in stronger peak intensities compared with no 

inhibitor. There were small chemical shift perturbations seen that displayed fast exchange 

characteristics which suggested a weak interaction with the catalytic domain of Cdc25C. 

Compounds 15, 16, and 19 showed a similar effect as sodium orthovanadate.  

5.4.4 Compound 15 

Peaks showing chemical shift perturbations were seen which were localised to two regions on 

the 2D HMQC spectrum. These chemical shift perturbations followed the fast exchange 

dynamic suggesting a weak interaction. New peaks, weak in intensity, also appeared. These 

peaks may be from residues at the interaction site.     

5.4.5 Compound 16 

Weak chemical shift perturbations were seen that followed a fast exchange phenomenon. 

They were localised to two regions on the NMR spectrum. Interestingly, one of these regions 

was the same region noted for compound 15.   

5.4.6 Compound 19 

This compound also displayed weak chemical shift perturbations. A few of these were also 

localised to the same region which was observed for the compounds 15 and 16. There were 

also additional chemical shift perturbations as well as new peaks observed (arrows). The new 

peaks could be from the binding site. The peak intensities overall were stronger with the 

compound compared to without.  
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Figure 5.4.3 Compound 1: Sodium Orthovanadate   

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain (black) and 0.5 mM 
sodium orthovanadate (red) in 50 mM sodium phosphate (pH 7.0), 150 mM sodium chloride, 
and 1 mM TCEP. The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС using a 600 MHz 
Agilent spectrometer. Overall, weak chemical shift perturbations were observed and some of 
these are marked by black arrows.   
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Figure 5.4.4 Compound 15   

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 15 % DMSO-d6  (black) 
and 1 mM compound 15 (blue) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP (a). The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС 
using an 800 MHz Agilent spectrometer. The chemical shift perturbations were localised to two 
regions (b + c). Also new weak peaks appeared which are shown by black arrows.    
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Figure 5.4.5 Compound 16   

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 15 % DMSO-d6  (black) 
and 1 mM compound 16 (pink) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 200 
mM sucrose, and 1 mM TCEP (a). The 1H, 15N SOFAST-HMQC spectra were collected at 25 oС 
using an 800 MHz Agilent spectrometer. The chemical shift perturbations were localised to two 
regions (b + c).     
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Figure 5.4.6 Compound 19   

A 1H, 15N SOFAST-HMQC overlay of 200 µM Cdc25C catalytic domain in 10 % DMSO-d6  (black) 
and 0.5 mM compound 19 (brown) in 50 mM sodium phosphate (pH 7.0), 200 mM L-arginine 
200 mM sucrose, and 1 mM TCEP (a). The 1H, 15N SOFAST-HMQC spectra were collected at 25 
oС using an 800 MHz Agilent spectrometer. The chemical shift perturbations localised to the 
region observed for compounds 15 and 16 (b). Additional chemical shift perturbations and new 
peaks were observed which are shown by black arrows.      
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5.5 Crystallisation of the Cdc25C catalytic domain  

The Cdc25C catalytic domain proved to be refractory to backbone assignments therefore 

crystallography was tried as an alternative method for determining its structure. The aim was 

to crystallize the Cdc25C catalytic domain with the inhibitors which showed binding via NMR 

spectroscopy. Although, the structure of the catalytic domain of all the Cdc25 homologues has 

previously been determined, none has been crystallised in complex with an inhibitor or ligand. 

The aim was to first crystallise the Cdc25C catalytic domain and then soak in the inhibitor.  

The purified Cdc25C catalytic domain was dialyzed into 50 mM sodium phosphate (pH 7.0), 200 

mM L-arginine, 200 mM sucrose, and 1 mM TCEP. The Hepes buffer was selected in place of 

sodium phosphate because the phosphate exhibits a greater propensity to cross-react with 

metal ions present in commercial crystallisation reagents and yield false positive hits in the 

form of salt crystals.  

Protein concentrations 5, 10, 20, and 24 mg/ml were tested with all the commercial 

crystallization screens listed in the methods. Initially, the hanging-drop screens were set up 

with the 24 mg/ml concentration at 23 oС. Inspection of the plates following several days of 

incubation revealed heavy precipitation in the majority of drops indicative of high protein 

concentrations. Hence, subsequent crystallisation experiments were performed at 23 oС   with 

reduced protein concentrations. In addition, all screens were repeated for the 20 mg/ml 

concentration at 4 oС. After several weeks, crystals appeared in a range of protein 

concentrations (10, 20, and 24 mg/ml) at 23 oС. No crystals appeared in the drops incubated at 

4 oС. However, all these crystals appeared in a single condition from the PEGRx II screen which 

comprised of 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate tribasic dehydrate, 

pH 5.0, 10 % w/v polyethylene glycol (PEG) 20, 000 (Figure 5.5.1a). These crystals were square 
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shaped with some depth. At this stage no crystals were visible in drops containing the buffer 

alone.   

An attempt was then made to optimise the conditions to obtain larger diffraction-grade 

crystals. This was carried out by increasing the protein:buffer drop volumes (400:400 nl and 1:1 

µl) and reducing the concentration of PEG in the buffer (10 – 1 %). However, this proved 

unsuccessful. Also, a few weeks after the crystals had been identified, the control drop with 

buffer alone contained crystals (Figure 5.5.1b). These crystals were of similar morphology to 

previously observed crystals suggesting that they comprised of salt rather than protein.  

Since the Cdc25C catalytic domain was methylated prior to crystallization to generate the 

crystal which is deposited in the protein database (PDB:3OP3) it was thought that methylating 

the protein could improve the number of crystal hits. Therefore, the Cdc25C catalytic domain 

was methylated (Figure 5.5.2).  

The reductive methylation chemical reaction results in the dimethylation of the amine group of 

lysines as well as the N-terminal amino acid. This results in an increase of 28 Da per residue 

methylated. Since the Cdc25C catalytic domain (Cdc25C270-443) contains ten lysines a 300 Da 

increase in size (includes the N-terminal amino acid) was expected. The mass spectrometry 

(Figure 5.4.2) data show that the unmethylated Cdc25C catalytic domain has a molecular 

weight of 20.6 kDa whereas the methylated protein had a molecular weight of 20.9 kDa. This 

indicated that the methylation reaction for the Cdc25C catalytic domain was successful.   

The methylated protein was then dialyzed into 20 mM HEPES pH 8.0, 250 mM sodium chloride, 

and 2 mM TCEP in readiness for crystallisation trials. This buffer was used for the previous 

crystallisation of the Cdc25C catalytic domain (SGC, Oxford). The Cdc25C catalytic domain (5, 

10, 20, and 24 mg/ml) was screened against commercial crystallisation screens and incubated 
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at 23 oС. Crystals again only appeared in the same single condition from the PEGRx II screen. 

These crystals appeared after two weeks and crystals were also present in the control drops 

suggesting that they comprised of salt.  

The condition in which Cdc25C has already been crystallized (0.1 M Bis Tris, pH 5.5, 0.2 M 

ammonium sulphate, 23 % PEG 3350) was also tested. The concentration of the crystallisation 

reagents was also varied. Unfortunately, despite extensive efforts, there were no 

crystallisation hits observed.  

 The final strategy consisted of co-crystallising Cdc25C protein with an inhibitor. Combining 

protein with ligand has been an attractive strategy for generating crystals as often the complex 

is more stable than protein alone and therefore increasingly amenable to crystallisation. With 

this in mind the inhibitor NSC 663284 (at 0.5 mM) was incubated with methylated Cdc25C 

protein (10 mg/ml) and screened against several commercial screens at 23 oС. This also 

resulted in no crystal hits.  

 

 

Figure 5.5.1 Crystallisation of the Cdc25C catalytic domain 

Crystals appeared (a) after two weeks incubation (10 mg/ml) at 23 oС in the condition 0.2 M 
magnesium chloride hexahydrate, 0.1 M sodium citrate tribasic dehydrate, pH 5.0, 10 % w/v 
polyethylene glycol (PEG) 20, 000 from the PEGRx II screen. Crystals appeared in the control 
condition which had no protein after 4 weeks (b). This indicated the crystals were salt crystals.    
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Figure 5.5.2 Reductive methylation of the Cdc25C catalytic domain    

Mass spectrometry analysis of unmethylated (a) and methylated (b) Cdc25C catalytic domain. 
There was a mass increase of 300 Da.   
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5.6 Chapter 5 Discussion  

The Cdc25C catalytic domain is soluble and stable in high concentrations of DMSO. From all the 

compounds tested, compounds 1, 2, 3, 4, 14, 15, 16, and 19 showed changes by NMR 

spectroscopy which suggested an interaction with the Cdc25C catalytic domain (Table A6). The 

compounds 4, 14, 15, and 16 gave the best WaterLOGSY results. Clear phase changes were 

observed in the WaterLOGSY spectra and where peaks did not show a definite change in phase 

changes in peak intensities were observed.  

Compounds 1, 2, 3, 4, 14, 15, 16, and 19 (Table A6) were tested by the 2D SOFAST-HMQC 

method. Compounds 2, 3, and 14 resulted in a significant loss of peaks suggesting an 

intermediate exchange dynamic and overall showed a similar effect as compound 4 (BVT.948). 

The compounds 15, 16, and 19 generally resulted in weak chemical shift perturbations 

suggesting a fast exchange dynamic. Interestingly, a few of the chemical shift perturbations 

were localised to a common region on the spectrum. These compounds affected the Cdc25C 

catalytic domain 2D spectra similarly to compound 1 (sodium orthovanadate). Since sodium 

orthovanadate is a phosphate analogue and is considered to bind to the active site of protein 

tyrosine phosphatases therefore the compounds 2, 3, and 14 may be binding to the active site 

of the Cdc25C catalytic domain. The compounds 15, 16, and 19 may be binding at an allosteric 

site. However, backbone assignments are needed to confirm this. 

Despite the large number of crystallization conditions tested there was only one promising 

condition identified with the native Cdc25C catalytic domain. Unfortunately, the crystals in this 

condition were later identified as salt crystals. Communication with the SGC in Oxford 

(Professor Knapp) who have solved the crystal structure of the Cdc25C catalytic domain (PDB: 

3OP3, His-Cdc25C270-462) in collaboration with the Midwest Centre for Structural Genomics 
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(MCSG) led us to understand that the native protein was a difficult target to crystallize. They 

used a ‘reductive methylation’ approach before crystallization to successfully crystallize the 

protein. This procedure has been shown to improve the crystallization success rate of stubborn 

proteins while retaining their native structure and function (Walter et al., 2006; Kim et al., 

2008). The reductive methylation procedure results in the methylation of solvent exposed 

lysine residues. It is well known in the crystallography field that flexible side chains can hinder 

crystallization. Therefore, methylation of these side chains and hence lowering the 

conformational entropy may have played a significant role in promoting the crystallization of 

the Cdc25C catalytic domain.  

The advantage of employing the reductive methylation procedure here was that the purified 

protein could be altered chemically without re-designing the construct. However, despite 

successfully methylating the Cdc25C catalytic domain (Cdc25C270-443) there was no significant 

improvement observed in the number of preliminary crystallisation hits. Crystals were found in 

the same crystallization condition initially identified for the native protein and these later 

proved to be salt crystals. It is interesting that the same precipitant condition resulted in 

crystals for both the unmethylated and methylated proteins. Initially, it was thought that the 

high concentrations of arginine and sucrose in the protein buffer could be cross-reacting with 

the precipitant condition and inducing the formation of salt crystals. However, the purification 

buffer of the methylated protein lacked arginine or sucrose. The common condition between 

the two protein buffers was Hepes. It could be possible that the Hepes cross-reacted with the 

precipitant and led to the formation of salt crystals. It could also be possible that the 

magnesium chloride in the precipitant condition was crystallising.              
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Crystallization may not have been successful despite following the SGC (Oxford) crystallization 

protocol because the construct used to crystallize the protein here (Cdc25C270-443) was different 

to the one used by the SGC (His-Cdc25C270-462). The construct used here lacked the N-terminal 

His tag and was shorter in length. One of the key findings in Chapter 4 was that the removal of 

the His tag improved the solubility of Cdc25C270-443. Therefore, retaining the His tag would 

reduce the solubility and may promote crystallization or it could exacerbate the precipitation 

that was already observed in the crystallization trials. Another possibility is that the residues 

444 – 462 are important in promoting crystallization of this protein. However, this is unlikely 

considering there is no electron density for these residues indicating that this region is highly 

disordered.  

Co-crystallization trials of the Cdc25C catalytic domain with an inhibitor identified from NMR 

titration experiments also yielded no crystals. It is possible that for future experiments, 

additional Cdc25C inhibitors could be used in the co-crystallisation trials.  

An alternative approach that could be employed to improve the number of initial 

crystallisation hits for the Cdc25C catalytic domain is ‘surface entropy reduction (SER)’ (Cooper 

et al., 2007). This strategy could be used as an addition to the reductive methylation 

procedure. This technique promotes crystallisation of difficult protein targets by reducing the 

flexibility of surface exposed flexible side chains. This technique differs from that of 

methylation as it is not limited to lysine residues and requires a complete re-design of the 

construct. A specific cluster of 2, 3, or more flexible amino acids such as lysine, glutamic acid, 

and glutamine are mutated to alanine amino acids which can promote crystal contacts hence 

providing support to the crystal lattice. However, care needs to be taken in deciding which 
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amino acids to mutate to ensure they do not inadvertently affect the stability or solubility of 

the protein. 

Another approach that could promote the crystallization of the Cdc25C catalytic domain is to 

fuse this domain with a protein tag (Derewenda, 2010). The protein tag is usually easy to 

crystallize. Indeed, large protein tags such as the MBP or GST tag have been shown to improve 

the crystallization success rate of difficult proteins (Kuge et al., 1997; Ullah et al., 2008). An 

additional benefit of these tags is that they are commonly used to purify and promote protein 

solubility therefore they may improve the solubility of the Cdc25C catalytic domain. It would 

be ideal to fuse these tags at the N-terminal of the Cdc25C catalytic domain replacing the N-

terminal His tag with either an MBP or GST tag. This could greatly improve the solubility of the 

protein, promote crystallization, and therefore increase the number of crystallisation hits 
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6.0 Concluding Remarks 

The findings from chapter 3 showed that the Cdc25C regulatory domain is intrinsically 

disordered. This provides insight into why crystallisation of the full-length protein has been 

difficult. Future studies need to focus on identifying a binding partner or a compound that may 

induce structure of this domain and the structure of this complex can potentially be solved. 

Also, the GST-tagged Cdc25C full-length protein which is generally used for activity assays may 

not be appropriate. It may be better to use the catalytic domain tagged to GST instead. 

In chapter 4 construct and solution conditions were optimised for the Cdc25C catalytic domain. 

However, despite these optimisations it was difficult to obtain backbone assignments. 

Therefore, in the future alternative strategies will need to be employed for example a 

mutagenesis approach may be used. This has been shown to work for the Cdc25B homologue.    

Chapter 5 has demonstrated that NMR spectroscopy can be used as an additional tool in 

identifying drug compounds. The first 1H, 15N HSQC of the Cdc25C homologue was obtained.   

The ability of Cdc25C to tolerate high concentrations of DMSO provides an advantage since 

many drug compounds have poor solubility.   
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Appendix (A)  

A1 - Vectors 

A1 (a) pNIC28-Bsa4 

                                                  (http://www.sgc.utoronto.ca/SGC-WebPages/Vector_PDF/pNIC28-Bsa4.pdf)                                     

 

pNIC28-Bsa4 vector (SGC, Oxford) contains a 22 N-terminal tag which includes a His6 tag 

and TEV cleavage site. It has a kanamycin resistance marker and a T7 promoter to promote 

high-level protein expression.  
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A1 (b) pGEX-6P-1 

 

 

 

                                                                          

(http://www.snapgene.com/resources/plasmid_files/pgex_vectors_(ge_healthcare)/pGEX-6P-1/)                                                                       

 

 

pGEX-6P-1 vector (GE Healthcare, Buckinghamshire, UK) contains a GST N-terminal tag 

followed by a PresScission enzyme cleavage site. It is resistant to Ampicillin and has a tac 

promoter for increased protein expression.  
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A2 - Agar Plate Recipes 

LB Agar Recipe (make up 500 ml with water) 

           12.5 g                         LB  

7 g                            Agar 

 

M9 Agar Recipe (make up 500 ml with M9) 

         

        500 ml                       M9 Salts 

         7 g                             Agar  

       25 ml                        Nutrient Mix 
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A3 - M9 Media Recipe 

M9 Salts pH 7.4 (make up 2 l with water)  

       12g                  Na2HPO4 

        6g                   KH2PO4 

        1g                    NaCl 

M9 Nutrient Mix (make up 2 l with water) 

      20 ul               1 M CaCl2 

      4 ml                       1 M  MgSO4 

      800 ul            1 mM  FeCl3   

      2 ml               20 mg/ml Thiamine 

       4 g                 D-glucose 

       2 g                 15NH4Cl      

      1 ml              Metal mix     

Metal Mix (make up 100 ml with water) 

        0.0169 g         MnSO4 

        0.0175 g         CuSO4  

        0.115 g           ZnSO4 

        0.029 g           H3BO3 
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A4 – Purification Buffers 

Hepes Buffers used in the purification of His-Cdc25C270--462  

Lysis/Equilibration Buffer: 50 mM Hepes, pH 7.4, 500 mM NaCl, 10 mM imidazole, and 0.5 mM 
TCEP 

Wash Buffer: 50 mM Hepes, pH 7.4, 500 mM NaCl, 50 mM imidazole, and 0.5 mM TCEP 

Elution Buffer: 50 mM Hepes, pH 7.4, 500 mM NaCl, 250 mM imidazole, and 0.5 mM TCEP     

Superdex S75 Buffer: 50 mM Hepes, pH 7.4, 300 mM NaCl, and 0.5 mM TCEP  

 

Histrap Purification Buffers 

Lysis and Equilibration: 50 mM sodium phosphate (pH 7.4), 500 mM NaCl, 10 mM Imidazole  
and 1 mM TCEP  
 
Wash Buffer: 50 mM sodium phosphate (pH 7.4), 500 mM NaCl, 70 mM Imidazole, and 1 mM 
TCEP  
 
Elution Buffer: 50 mM sodium phosphate (pH 7.4), 500 mM NaCl, 200 mM Imidazole, and 1 
mM TCEP 
 
TEV Cleavage Buffer: 50 mM Sodium phosphate (pH 7.4), 250 mM NaCl, and 1 mM TCEP 
 
 

GSTrap Purification Buffers 

Lysis/Equilibration/Wash Buffer: 50 mM sodium phosphate (pH 7.5), 250 mM NaCl, 1 mM 
EDTA, and 1 mM TCEP  

Elution Buffer: 50 mM sodium phosphate (pH 7.5), 250 mM NaCl, 1 mM EDTA, 20 mM 
Glutathione, and 1 mM TCEP  
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A5 – Table of Compounds (I) 

 Compound 
 

Source Product Code  

Sodium Orthovanadate 
 

Sigma-Aldrich S6508 

NSC 663284 (Lazo et al., 2001)  
  
[6-Chloro-7-(2-morpholin-4-
ylethylamino)quinoline-5,8-dione]  
 

Sigma-Aldrich N7537 

NSC 95397 (Lazo et al., 2001) 
 
[2,3-Bis[(2-hydroxyethyl)thio]-1,4-
naphthoquinone] 

Sigma-Aldrich N1786 

BVT.948 (Liljebris et al., 2004)  
  
[4-Hydroxy-3,3-dimethyl-2H-
benzo[g]indole-2,5(3H)-dione] 

Sigma-Aldrich B6060 

5-Methoxy-2-methyl-1,3-
benzothiazole-4,7-dione 
 

Atlantic Research 
Chemicals 

XS02005 

Thiazole-5-carboxamide 
 
 

Sigma-Aldrich CDS020516 

4-Oxazolecarboxaldehyde 
 
 

SIGMA 697915 

cis-Aconitic anhydride 
 
[cis-Propene-1,2,3-tricarboxylic 
anhydride] 

Sigma-Aldrich 217808 

Maleic anhydride 
 
[2,5-Furandione] 
 

Sigma-Aldrich M625 

Ellagic acid  
 
[4,4′,5,5′,6,6′-Hexahydroxydiphenic 
acid 2,6,2′,6′-dilactone] 

Sigma-Aldrich E2250 

6-Hydroxycoumarin 
 

Sigma-Aldrich 642665 

6-Amino-chromen-2-one 
 

Sigma-Aldrich CDS019990 
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1,4-Naphthoquinone 
 

Sigma-Aldrich 152757 

Plumbagin  
 
[5-Hydroxy-2-methyl-1,4-
naphthoquinone] 

Sigma-Aldrich P7262 

Quinoclamine 
 
[2-Amino-3-chloro-1,4-
naphthoquinone] 

Sigma-Aldrich 32719 

6-Anilinoquinoline-5,8-quinone  
 

Sigma-Aldrich A6563 

4-(2-Aminoethyl)morpholine 
 

Sigma-Aldrich A55004 

7,8-dihydro-5(6H)-quinolinone 
 

Sigma-Aldrich PH009807 

(2E)-2-(aminomethylidene)indene-
1,3-dione 
 

ChemDiv 4533-0056 

3-(1,3-dioxo-3a,4,7,7a-
tetrahydroisoindol-2-yl)propanoic 
acid 

ChemDiv 4554-6814 

 

 

 

 

 

 

 

 

 



213 

 

A6 – Table of Compounds (II)  
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A6 – Table of Compounds (II) 

Compound 
No. 

Compound 
 

Structure Formula MW LogP Interaction 
by NMR 

1 Sodium Orthovanadate  

 

Na3VO4 183.91 -4.64 Yes 

2 NSC 663284 (Lazo et al., 
2001) 
  
[6-Chloro-7-(2-morpholin-4-
ylethylamino)quinoline-5,8-
dione]  
  

C15H16ClN3O3 321.76 
 

0.19 Yes 

3 NSC 95397 (Lazo et al., 
2001) 
 
[2,3-Bis[(2-
hydroxyethyl)thio]-1,4-
naphthoquinone] 

 

C14H14O4S2 310.29 1.13 Yes 
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4 BVT.948 (Liljebris et al., 
2004)  
  
[4-Hydroxy-3,3-dimethyl-
2H-benzo[g]indole-2,5(3H)-
dione] 

 

C14H11NO3  

 

241.24 
 

1.71 Yes 

5 5-Methoxy-2-methyl-1,3-
benzothiazole-4,7-dione 
 

 

C9H7NO3S 209.22 
 

0.59 No 

6 Thiazole-5-carboxamide 
 

 

C4H4N2OS 128.15 
 

-0.074 
 

No 

7 4-Oxazolecarboxaldehyde 
 

 

C4H3NO2 97.07 
 

0.30 No 

http://www.sigmaaldrich.com/catalog/product/sigma/b6060?lang=en&region=GB
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8 cis-Aconitic anhydride 
 
[cis-Propene-1,2,3-
tricarboxylic anhydride] 

 

C6H4O5 156.09 
 

-0.83 No 

9 Maleic anhydride 
 
[2,5-Furandione] 

 

C4H2O3 98.06 
 

-0.18 No 

10 Ellagic acid  
 
[4,4′,5,5′,6,6′-
Hexahydroxydiphenic acid 
2,6,2′,6′-dilactone] 

 

C14H6O8 302.19 
 

0.94 No 

11 6-Hydroxycoumarin 
 

 

C9H6O3 162.14 
 

1.51 No 
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12 6-Amino-chromen-2-one 
 

 

C9H7NO2 161.16 
 

1.07 No 

13 1,4-Naphthoquinone 
 

 

C10H6O2 158.15 
 

1.67 No 

14 Plumbagin (Hafeez et al., 
2012) 
 
[5-Hydroxy-2-methyl-1,4-
naphthoquinone] 

 

C11H8O3 188.18 
 

1.78  Yes 

15 Quinoclamine 
 
[2-Amino-3-chloro-1,4-
naphthoquinone] 

 

C10H6ClNO2 207.61 
 

1.69 Yes 



218 
 

16 6-Anilinoquinoline-5,8-
quinone  
 

 

C15H10N2O2 250.25 
 

1.84 Yes 

17 4-(2-
Aminoethyl)morpholine 
 

 

C6H14N2O 130.19 
 

-1.00 No 

18 7,8-dihydro-5(6H)-
quinolinone 
 

 

C9H9NO 147.2 
 

1.21 No 

19 (2E)-2-
(aminomethylidene)indene-
1,3-dione 
 

 

C10H7NO2 
 

173.05 0.69 Yes 
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Table A6: A list of compounds tested by NMR spectroscopy  

The table includes the structures of the compounds, their molecular formula, molecular weight, and predicted LogP values. 
The structures of the compounds were obtained from the suppliers’ websites and the Molinspiration, cheminformatics 
website was used to predict the LogP values for the compounds.  

20 3-(1,3-dioxo-3a,4,7,7a-
tetrahydroisoindol-2-
yl)propanoic acid 
 

 

C11H13NO4 
 

223.08 0.025 No 
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A7 – Table listing the Software used 

Program/Database Use Reference Web Source 
 
ATSAS 2.5.1 Suite of 
programs (programs 
used: PRIMUS, GNOM, 
DAMMIF, DAMAVER, 
SUPCOMB, and 
CRYSOL) 
 
 

 
Analysis of SAXS 
data 

 
(Konarev et al., 
2003; Franke and 
Svergun, 2009; 
Volkov and 
Svergun, 2003; 
Kozin and Svergun, 
2001; Svergun et 
al., 1995) 

 
http://www.embl-
hamburg.de/biosaxs/soft
ware.html 
 

Agilent Technologies 
Primer Design tool 

Primer Design - http://www.genomics.ag
ilent.com/primerDesignP
rogram.jsp 
 

CDSSTR Analysis of CD data (Sreerama and 
Woody, 2000; 
Whitmore and 
Wallace, 2004) 

http://dichroweb.cryst.b
bk.ac.uk/html/home.sht
ml 
 
 

Chimera Visualisation of SAXS 
ensembles 

(Pettersen et al., 
2004) 

https://www.cgl.ucsf.ed
u/chimera/ 
  

DisMeta server Protein secondary 
structure predictions 

(Huang et al., 
2014) 

http://www-
nmr.cabm.rutgers.edu/bi
oinformatics/disorder/ 
 

EOM Analysis of SAXS 
data 

(Bernadó et al., 
2007) 

http://www.embl-
hamburg.de/biosaxs/eo
m.html 
 

PDB Database of protein 
3D structures 

- http://www.rcsb.org/pd
b/home/home.do 
 

ProParam Prediction of protein 
properties 

Gasteiger et al., 
2005)  

http://web.expasy.org/p
rotparam/ 
 

SEDFIT Analysis of AUC data (Brown and 
Schuck, 2006) 

- 

I-TASSER Generation of 
Cdc25C 3D structure 
models 

(Zhang, 2008) http://zhanglab.ccmb.m
ed.umich.edu/I-TASSER/ 
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