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Abstract 

DNA associates with proteins to form chromatin which is essential for the 

compaction of the DNA into the cell nucleus and is highly dynamic in order to allow 

the different biological processes of the DNA to occur. Chromatin compaction is 

achieved at different hierarchical levels: the 10nm fibre (DNA associates to 

nucleosomes formed by different histones), the Higher Order Chromatin fibre and the 

300 nm chromosome structures. This study has shown that both H1 and H4 histones 

play a crucial role in preserving meiotic as well as mitotic chromosome structure and 

functional genome integrity in Arabidopsis. The role of the different linker histone H1 

isoforms as well as the core histone H4 in Arabidopsis thaliana was investigated 

using T-DNA and RNAi mutant lines which showed different meiotic defects. 

Chromosomal breaks as well as non-homologous connections in the h4RNAi were 

linked to 45S/5S rDNA disorganisation, suggesting that H4 preserves chromosome 

integrity at these rDNA regions. Ath1.1 mutant presented univalents and reduced 

chiasma frequency at metaphase I, linked to a severe defect in ASY1 localisation on 

the meiotic chromosome axes. Thus, indicating that histone H1.1 is vital for proper 

chromatin axis organization that permit normal loading of recombination machinery 

proteins in Arabidopsis.  
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1.1. Biological Significance of the Chromatin  

The genetic inheritance inter species is preserved along an individual life span, due 

to the genetic material packed into every cell in the form of DNA (Deoxyribonucleic 

Acid). The DNA itself is responsible for the organisation of the cellular mechanisms. 

Thus, DNA has to be accessible in order to be replicated, translated, repaired and 

transmitted to future generations. The fact that the length of the naked DNA is about 

ten thousand times the diameter of the nucleus, in human cells (Annunziato, 2008) 

shows that DNA has to be highly packed inside this nucleus. Proteins associate to 

the nuclear DNA to allow this packaging and thus forming the chromatin (Woodcock, 

2005). The organisation of DNA into chromatin is very important, to DNA spatial fit 

within the nucleus (Annunziato, 2008), besides to, the functional and metabolic 

activities of the DNA progress (Deal and Henikoff, 2010). 

 

1.2. Chromatin Structure 

Chromatin is formed by DNA and proteins; histones and non-histone proteins. Non-

histone proteins include a wide range of nuclear proteins, more than 1,000 non-

histone proteins types, including: transcription factors, polymerases, hormone 

receptors and other nuclear enzymes (Barrett, and Gould, 1973; Stein et al., 1974; 

Laemmli et al., 1987; Huang and Berger, 2008). Histones-DNA association forms the 

first level of DNA compaction in a structure termed nucleosome. The nucleosome, 

which “is the basic repeating structural and functional unit of the chromatin” 

(Sanchez-Moran, 2013), is composed of eight small positively charged histone 

proteins wrapped by around 146 base pairs (bp) of DNA (Kornberg, 1974; Van 

Holde, 1988). This histone octomer is composed of two copies of each of the four 
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conserved core histones (H2A, H2B, H3 and H4) binded tightly to around 146 bp of 

DNA (Kornberg and Thomas, 1974; Luger et al., 1997; Wolffe, 1999). This protein-

DNA association permits the DNA (about 2m in length in humans) to be packed in 

the nucleus (about 10 µm in diameter) as chromatin in a hierarchical manner 

(reviewed by Sanchez-Moran, 2013), by different compaction levels, from the linear 

10 nm nucleosome fibre structure (5 folds compaction) (Luger et al., 1997), to the 

higher order (30 nm) chromatin fibre (about 40 fold compaction) (Finch and Klug, 

1976; reviewed by Maeshima et al, 2014 ), up to chromatin loops (300 nm) (about 

200 folds compaction) attached at the base to the chromosome scaffold axes 

proteins (Paulson and Laemmli, 1977). During cell cycle it is believed that chromatin 

loops associates with scaffold axes at the interphase stage, which is copied during 

DNA replication. As a nucleus passes from prophase stage to metaphase, chromatin 

loops arrange in a helical way that permits extra chromatin folding, to produce a 

compaction of 700 nm per chromatid at metaphase chromosomes (10,000-20,000 

fold compaction) (Marsden and Laemmli, 1979; Nelson et al., 1986). Figure 1.1 

Represents the most advanced proposed model of chromatin compaction (reviewed 

by Sanchez-Moran, 2013).   

 

The DNA-protein interactions within the chromatin organization context within the 

chromosome remain a mystery (Belmont, 2006). Therefore, more research on 

chromatin should be done at basic level, by studying the chromatin components. 

Hence the analysis of the chromatin structural and functional units; the nucleosomes, 

is a key point to identify novel chromatin proteins and protein interactions responsible 

for the nucleosome fibre structure compaction into the higher order chromatin fibre.  
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Figure (1.1): The current chromatin compaction model. 
Chromatin is composed of nucleosomes monomers, each contains two copies for the core histones 
(H2A, H2B, H3 and H4), adjacent nucleosomes attach with the linker DNA to which the linker histone 
(H1) associate. The chromatin is a dynamic structure which is able to compact from the nucleosome 
fiber structure (10 nm, resemble an open or highly active chromatin), to higher order structures (30 
nm), allowing further organisation into loops (300 nm) and further chromosomal compaction into 1400 
nm structures (Figure based on Sanchez-Moran, 2013).   
 

 

1.2.1. The nucleosome fibre 

Chromatin has a repetitive nature (Hewish and Burgoyne, 1973; Phillip et al., 1977). 

Different experiments using a nuclease to digest chromatin have resulted in 180-200 

bp of DNA fragments that were protected from the nuclease activity (Williamson, 

1970; Hewish and Burgoyne, 1973; Rill and Nelson, 1978). It was proposed to be 

protected by a complex protein-DNA association (Axel et al., 1974; Sahasrabuddhe 

and van Holde, 1974). These complexes presented a “beads on a string“ structure 

under the electron microscopy (Woodcock, 1973; Olins and Olins, 1974; Olins and 

Olins, 2003; Annunziato, 2008). And, it was proposed that the DNA was wrapped 

around eight subunits of histone proteins forming the nucleosome structure 

(Kornberg, 1974). The nucleosome was proposed to be composed of a H3-H4 

tetramer and two dimers of H2A-H2B (Richmond et al., 1984; Arents et al., 1991; 

Arents and Moudrianakis, 1993; Luger et al., 1997). This chemical cross-linking of 
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histones “the subunit theory of chromatin” (reviewed by Woodcock, 2005) and its 

appearance under the electron microscope (EM) as a “string of beads” (Olins and 

Olins, 1974; Olins and Olins, 2003) suggested that a chromosome, which is about 

100 million bp, is packaged into hundreds of thousands of these functional 

nucleosomes (Luger, 2001) (Figure 1.2 A&B). Adjacent nucleosomes are linked 

together via a variable length of DNA (10-60 bp) called linker DNA, and so forming 

the 10 nm chromatin fibre structure “ beads on a string” (Peterson, 2004) (Figure 1.2 

C).  

 

Figure (1.2): Nucleosome structure  
(A&B) Crystallographic structure of the nucleosome. Nucleosome structure is formed of a histone 
octamer; 2X(H2A, H2B, H3, H4) associated to around 146 bp of naked DNA. (The DNA helices are 
reprented in grey, histone H3 in blue, histone H4 in green, histone H2A in yellow, histone H2B in red. 
(B) The disc-like shape of the nucleosome particle is formed by rotating the nucleosome structure in A 
by 90 around the Y-axis Adapted from Luger, (2001). (C&D) Adjacent nucleosomes are joined by 
linker DNA, hence chromatin appears as a string of beads under the electron microscope EM. 
Nucleosomes are indicated by a black arrow at D. (A&B) are adapted from Luger (2001). (C) is 

adapted from (http://sgi.bls.umkc.edu/waterborg/chromat/chroma09.html). (D) is adapted from 
(Olins and Olins, 2003).  

 

A B 

C D 
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1.2.1.1. Histones 

Research on histones has shown that histones are small proteins (MW=11-16 KDa), 

which has a positive charge due to the presence of high percentage of basic amino 

acids in their sequences, 20% of its sequence is mostly occupied by argenines and 

lysines (van Holde, 1988). Histones possess domains at both the N-terminus as well 

as the C-terminus (Figure 1.3) (reviewed by Downs et al., 2007). A “histone fold 

domain”, at their carboxyl terminal end (C-terminus), allows interactions intra histones 

as well as between histones and DNA within the nucleosome (reviewed by Downs et 

al., 2007). Such interactions permit the electrostatic forces balance required to 

stabilize the nucleosome unit (reviewed by Downs et al., 2007). And “flexible amino–

terminal domain” at the (N-terminus) (Downs et al., 2007).  The C-terminus is 

composed of three helices (α1, α2, α3) linked via two linkers (L1 & L2) (Figure 1.3). It 

was proposed that the C-terminus play a role in the intra-histones interactions as well 

as DNA-histones interactions (Ammelburg and Lupas, 2007). Luger et al. (1997) 

reported that the C-terminus α-2 helices resemble the sites where histones dimerize. 

The nucleosome structure integrity and stability depends on both the histone-histone 

interactions as well as DNA-histones interactions. Hydrophobic forces between 

histones H2B and H4 allow the H2A-H2B dimer binding to the H3-H4 tetramer (Luger 

et al., 1997). The electrostatic interactions between the positively charged argenine 

residues on the core histones and the negatively charged DNA backbone stabilizes 

the nucleosome structure (Wolffe et al.,1998). In addition to this, the N-terminus is 

suggested to have different interactions with other components of the chromatin 

(Zheng and Hayes, 2003). The core histone N-teminus has showed a potential for 

several posttranslational modifications (Strahl and Allis, 2000; Jenuwein and Allis, 
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2001). Over a hundred of histone-DNA interactions have been recorded, including 

both hydrophilic and hydrophobic reactions (Davey et al., 2002).  

 

 

Figure (1.3): Schematic representation of the C-terminus histone fold in the nucleosome core 
histones.  
(A &B) Histone folds in H3, H4, H2A and H2B are represented as helices and strands. (A) C-terminus 
of histone folds compose of three helices (α1& α2& α3) interlinked by two linkers (L1 & L2). (B) The 
antiparallel arrangement of histone folds in two histones (e.g H3 & H4) permits their histone folds to 
dimerize. (C) Histone folds arrangement of half of the core histones inside the nucleosome particle. 
Numbers on the DNA indicates sites of DNA-protein interactions.  Histone fold helices are shown as 
solid boxes, strands as solid lines, extensions as empty boxes, tail chains as dots. Histone H3 is 
represented in blue, histone H4 in green, histone H2A in yellow and histone H2B in red. Adapted from 
Luger (2001). 
 

 

Histone H4 is one out of the four histone proteins; H2A, H2B, H3 and H4; that build 

up the eukaryotic nucleosome core (Wolffe, 1998).  Its position and association within 

C 

N terminal tail 

N 
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the nucleosome in (H3-H4)2 tetramer and along with the two H2A-H2B dimers 

enables DNA-Histones into the nucleosome.  Histone H4 can be subjected to 

different posttranslational modifications (Figure 1.4); among others, biotinylation, 

acetylation and methylation. Previous reports showed that biotinylation of H4 K8 and 

K12 might enable nuclear response to DNA double strand breaks (DSBs) and proper 

chromosomal condensation during mitosis in human cells (Kothapalli et al., 2005; 

Kothapalli and Zempleni, 2005; Zempleni, 2005).  Acetylation of lysine 16 on H4 

allows gene transcription machinery to work by either changing the higher order 

chromatin structure organisation or altering interactions of proteins associated with 

chromatin (Shogren-Knaak and Peterson, 2006). Fraga et al. (2005) reported that H4 

K16 acetylation loss is mostly seen in some cancers. Moreover, a study by Corsini 

and Sattler (2007) showed that Histone H4 dimethylated lysine 20 (H4K20me2) plays 

a role in DNA damage repair by recruiting the DNA damage repair factor 53BPI to 

DNA DSBs sites. H42K20 plays a role as a transcriptional control (Corsini and 

Sattler, 2007).   

 

The fact that histone H4 core proteins are highly conserved during evolution, human 

histone H4 is nearly identical to the plant Arabidopsis. thaliana H4 (only 2 amino 

acids changes), shows the important basic role of histone H4 in chromatin 

compaction and functionality. 

 

Histones associated with chromosomes are one of the most highly conserved protein 

molecules in the eukaryotic cells (Cox et al., 2005), which are not only vital for the 

packaging of DNA into chromosomes, within the nucleus, but also are important for 
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the chromosome stabilization and gene expression. In addition to these highly 

conserved histone proteins, some reports showed that the presence of histone 

variants (with some variation in the amino acid sequence) play clear roles in 

chromatin remodelling, gene inactivation and DNA replication (Ahmad and Henikoff, 

2002; Jedrusik and Schulze, 2001; Meneghini et al., 2003; Talbert et al., 2002) 

 

Histones could be grouped into two categories according to their timing of deposition 

on the chromatin (Tagami et al., 2004) replication dependent (Singh et al., 2013) or 

replication independent (Ahmad and Henikoff, 2002). Replication dependent histones 

include all histone proteins which are deposited on the chromatin during DNA 

replication which includes the core histone proteins and their isoforms (H2A, H2B, H3 

and H4). Whereas the replication independent histones are deposited on the 

chromatin after DNA replication and during the cell cycle depending on the tissue 

specificity and/or the cell cycle stage, and it includes histone variants, which have 

differences in the amino acid sequence for its specific functional roles within the 

chromatin (reviewed by Sanchez-Moran, 2013). 

 

1.2.1.2. Histone variants 

The core histone proteins are encoded as multi-gene families, in which some are 

identical copies of the same gene; however others are similar but not identical genes 

(Walsh and Stephan, 2001; Eirn-Lopez., et al 2004). Zimmermann et al. (2004) 

showed that each histone protein is encoded by several genes in Arabidopsis 

genome. Histone H4 is encoded by eight different loci, histone H3 has five loci 

encoding for the core H3, and another five loci encoding for different H3 histone 
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variants. Furthermore, we identified thirteen loci encoding for H2A histones and 

eleven for H2B histones. The linker histone H1 is encoded by eleven different loci 

(reviewed by Sanchez-Moran, 2013). Okada et al. (2005) published the results of a 

BLASTX search against the Arabidopsis Information Resource (TAIR) database, 

fifteen histone H3 genes in the Arabidopsis genome were found; five histone H3.1 

genes, three histone H3.3 genes and five histone H3.3-like genes. The analysis of 

gene structure revealed that gene duplication might have caused redundancy of 

these histone H3s. 13 out of the 15 Arabidopsis H3 genes have a highly conserved 

sequence. Five of Arabidopsis histones H3 are major histone H3s (H3.1), and the 

rest three are histone H3 variants (H3.3) (Chaubet et al., 1992). In addition, Talbert et 

al. (2002) reported that HRT12/At1g01370 is a centromeric H3 variant which has a 

highly diverse sequence. Six novel H3 variant genes are present. Five of these H3 

proteins are clustered in H3.3 groups, showing the same amino acid substitution 

found in the variant H3.3, at positions 31, 87 and 90 (Malik and Henikoff, 2003). 

 

CENH3 is a centromere-specific histone H3 variant, which is utilised as a universal 

marker for centromeric chromatin (Henikoff et al., 2001) with an important role in the 

kinetochore stabilization (Irvine et al., 2004). Furthermore, some species specific 

euchromatic features or binding domains have been found for these variants (Cam et 

al., 2005; Lam et al., 2006).  

H2AX, a conserved H2A-variant, forms 2-25% of H2A amount depending on the 

organism and cell type (Redon et al., 2002; Rogakou et al., 1998). H2AX has a 

unique carboxyl tail with a serine residue which can be phosphorylated (ser 139) 

resulting in the phosphorylated H2AX form also known as gamma H2AX (ɣH2AX) 
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(Redon et al., 2002). H2AX plays a central role in the chromatin stability in two ways, 

the first by inducing the DNA DSB repair cascade involving several processes: The 

recruitment of DNA repair proteins onto the DSB (Fernandez-Capetillo et al., 2003; 

Fillingham et al., 2006; Paull et al., 2000), an ubiquitin ligase cascade, an 

accumulation of cohesins around the DSB (Unal et al., 2004), and chromatin 

remodelling complex recruitment (Ikura et al., 2007). Another role has been reported 

in enhancing programmed cell death in cases of DNA repair mechanism failure (Lu et 

al., 2006; Mukherjee et al., 2006). 

 

1.2.1.3. Histone exchange 

The nucleosome structure is very important since alterations in its structure can affect 

DNA accessibility for different biological functions. Different factors have been found 

to cause changes in the nucleosome structure, these are: histone posttranslational 

modifications, chromatin remodelling, and deposition of histone variants (reviewed by 

Jin et al., 2005). Jin et al. (2005) reported that nuclear processes which demand 

DNA-histones interactions dissociation, or events with either partial or full removal of 

core histones, results in an increases in the RNA polymerase II dependent 

transcription, DNA replication and DNA repair. Chromatin dynamics demands 

nucleosomes formation and dissociation in a way that permits DNA to carry on 

replication and transcription processes easily. Several reports related histones 

chaperones importance for nucleosome assembly and chromatin dynamics (Akey 

and Luger, 2003; Tagami et al., 2004). One of these histone chaperones is the 

Nucleosome Assembly Protein -1 (NAP-1), which play several roles during cellular 

transcription. NAP-1 binds H2A-H2B forming a complex capable to remove H2A-H2B 
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dimers during transcription (Walter et al., 1995; Levchenko and Jackson, 2004 Park 

et al., 2005) hence facilitates spacial binding of the transcriptional factors to 

nucleosomes. NAP-1 is also involved in histone exchange, through which the 

removed H2A-H2B dimers are replaced from adjacent nucleosomes, and so causing 

nucleosomes sliding along the DNA. NAP-1 was reported to act in the H2A.Z-H2B 

heterodimer exchange in yeast (Mizuguchi et al., 2004). NAP-1 mediated histone 

H2A-H2B exchange and nucleosome sliding are ATP-free processes which actually 

explains their slow kinetics. So the actual role for NAP-1 in chromatin remodelling is 

not fully understood. Suggestions were made that NAP-1 might play a role in 

activating ATP-dependent chromatin remodellers (Bruno et al., 2003). Moreover, it 

was reported that histones tails modifications, mainly acetylation, mediates 

nucleosome dissociation through NAP-1-H2A-H2B association (Ito et al., 2000; 

Mizuguchi et al., 2004).  Furthermore, several reports pointed out that nucleosome 

remodelling complexes could exchange or remove histones in an ATP dependent 

manner. SWI/SNF, RSC and ISWIb, are chromatin remodelling complexes which 

facilitate ATP-dependent H2A-H2B dimers exchange (Bruno et al., 2003), suggesting 

that these remodelling complexes change chromatin composition and or chromatin 

structure (Bruno et al., 2003).   

 

Chromatin remodelling, switching from open to compact state, is controlled via 

different components. The ATP-dependent nucleosome remodelling complexes (e.g 

the SWICH2 [SW12]/ SUCR+OSE NON-FERMINTING 2 [SNF2]) is one way to 

achieve these changes. Furthermore, histone modifications can control it too (e.g 

histone deacytalase complex [HDAC]). The open state has historically been 
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associated with the transcriptional machinery and the formation of euchromatin. 

Whereas, the heterochromatin has been associated with the compact state in which 

transcription is inactivated or reduced (Olins and Olins, 2003). The dynamic changes 

of chromatin compaction are a consequence for the responding genetic regions to 

different activators or repressors. The histone code hypothesis (Strahl and Allis, 

2000; Turner, 2000) explains the role of histone’s tail covalent modifications via 

acetylation, methylation, and phosphorylation (among others) in the induction of 

specific proteins to bind the chromatin forming a complex that either activate or 

repress these genomic DNA regions. 

 

1.2.1.4. Histone modification  

Histone H3 has the highest known number of post translational modifications (PTMs) 

among the core histones, including H3-acetylation, H3-methylation, and H3-

phosphorylation (Espino et al., 2005; reviewed by Perez-Cadahia et al., 2009).  

Reports showed that the N terminal tail of H3 is subjected to phosphorylation at four 

residues: Thr3, Ser10, Thr11, and Ser28 (Hendzel et al., 1997; Gernand et al., 2003; 

Preuss et al., 2003). Residues showed different phosphorylation roles during 

interphase, mitosis and meiosis. Research on different species showed that they 

have a similar distribution pattern during the cell cycle, with low or undetectable 

amount during interphase, and an increase during the prophase stage of mitosis and 

decrease at anaphase and telophase (Zhang et al., 2005). However the global H3 

phosphorylation is different in terms of distribution and timing, its consequences are 

not yet understood. Dai et al. (2005) suggested that mitotic histone H3 

phosphorylation might play one out of three roles that impact the chromosome: affect 
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the nucleosome packing, create a binding site for chromosome condensing proteins 

or could induce modifications of other histone proteins. 

 

Histone H4 as well as the other histone proteins is subjected to be modified to serve 

specific nuclear functions. Histone H4 methylation, acetylation and biotinylation are 

the most studied modifications. Two biotinylation sites were identified on histone H4; 

K8 and K12 (Camporeale et al., 2004). Both biotinylation sites have vital nuclear 

roles. An evidence has been recorded that biotinylation of K8 and K12 in histone H4 

could have an initial interference or response to the DNA DSB occurrence, as well as 

the condensation pattern of mitotic chromosomes in the human cell cycle (Kothapalli 

et al., 2005; Kothapalli and Zempleni, 2005; Zempleni, 2005). Recent reports have 

showed that K12-biotinylated histone H4 (K12 Bio H4) and might be K8-biotinylated 

histone H4 (K8 Bio H4) are pericentromeric heterochromatin markers and show a 

transcriptionally down regulated chromatin in human lymphoblastoma cells 

(Camporeale et al., 2007).  

 

Another modification is methylation of histone H4 at lysine or arginine residues. 

Histone methyl transferases (HTMs) can methylate lysine residues at different levels; 

monomethylated, dimethylated, or trimethylated (Peterson and Laniel, 2004). Histone 

H4-K20 is a site that shows different patterns of methylation levels during 

development (Karanchentsev et al., 2007). Two known enzymes can regulate lysine 

methylation status; the first PRSet7 (or Set 8) HMT which is responsible for H4-K20 

monomethylation (Nishioka et al., 2002; Fang et al., 2002; Couture et al., 2005; Xiao 

et al., 2005), and the other enzyme is Suv4-20 which trimethylates H4-K20 (Schotta 



15 

 

et al., 2004).  The importance of these two enzymes on chromatin is shown on their 

evolutionary conservation among species; from flies to human, except S. pombe 

which is methylated at H4-K20 by Set 9 HMT. Hela cells PR-Set 7 expression shows 

the least values of expression at G1/S while goes to maximum level in G2/M phase 

of the cell cycle and peaks at mitosis (Rice et al., 2002). Moreover, mono- and 

trimethylation of H4-lysine 20 is associated with repressed chromatin (Karachentsev 

et al., 2006).  

 

Histone H4 acetylation has been also associated with it`s chromatin status. The 

reversible acetylation of amino terminus of H4 lysines 5, 8, 12, and 16 allows less 

compact chromatin and accessible nucleosomes (Loidl, 1988; Loidl, 1994; Garcia-

Ramirez et al., 1995), open chromatin with accessibility to transcription machinery via 

RNA polymerases II or III (Lee et al., 1993; Vettese-Dadey et al., 1996). Acetylation 

of mammalian H4 is found in euchromatin that bypasses early replication and 

transcription (Sadoni et al., 1999). Heterochromatin has lower acetylation 

comparable to euchromatin (open chromatin) in endosperm nuclei of Gagea lutea 

(Buzek et al., 1998).        
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Figure (1.4): The Histone Modification Map. 
Modifications of core histones (H2A, H2B, H3 and H4); acetylation, phosphorylation, methylation and 
ubiquitination, mediates chromosome dynamics during the various nuclear functions, allowing 
chromatin shift between open and compact phases in both directions. Ac stands for acetylation, Me for 
methylation, Ph for  phosphorylation, and Ub for ubiquitination  (Cota et al., 2013). 
            

1.2.2. The Higher Order Chromatin Fibre 

1.2.2.1. The 30 nm fibre could be polymorphic 

The utilization of the transmission electron microscope (EM) in 1976 enabled Finch 

and Klug to see that nucleosome fibres, which are 10 nm in diameter, were able to 

fold into chromatin fibres of 30 nm in diameter, by either the addition of histone H1 or 

Mg+2  ions. Different models were proposed for the 30-nm chromatin fibres structures 

(Figure 1.5); the “Solenoid”, in which adjacent nucleosomes bind to each other in a 

helical way known as “one start helix” (Finch and Klug, 1976). The second model is 

called “Zigzag”, where nucleosomes attach to each other in a “Two start helix” 

manner forming a zigzag like structure, suggesting that each nucleosome is attached 

to a second nucleosome (Woodcock et al., 1984; Bassett et al., 2009). Another 

model is the crossed linker model, in which the fibre axis is perpendicular with the 

inker DNA orientation (Williams et al., 1986; Smith et al., 1990). Later on, several 
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other models were proposed to clarify the 30-nm fibre structure (van Holde and 

Zaltanova, 2007). The usage of different techniques to analyse the 30-nm fibre 

structure; biochemistry, biophysically, using X-ray crystallography, conventional EM, 

Cryo-EM, small angle X-ray crystallography and X-ray scattering (SAXS),  have 

showed that no definite structure could be observed, suggesting that the 30 nm 

structure is variable (reviewed by Maeshima et al., 2014). So, the Zigzag or the 

solenoid 30-nm structure was found to be affected by the nucleosomal linker DNA 

length in different species (Routh et al., 2008). The impact of linker DNA length on 

the nucleosome fibre folding was confirmed. The length of 1bp was thought to result 

in 36o rotation of one nucleosome comparable to the adjacent nucleosomes binding 

to it (van Holde and Zlatanova, 2007).  

 

The linker DNA was proposed to play a role in the zigzag model by binding to 

nucleosomes backwards and forwards to allow the binding of two nucleosome rows 

(Bendar et al., 1998; Schalch et al., 2005). It was suggested that chromatin at higher 

order is compacted at different levels, suggesting the co-presence of the different 

higher order chromatin structures in vivo (Robinson and Rhodes, 2006). The impact 

of linker histone H1 on the higher order is not clear yet, since it was found that H2A 

and H4 histones interactions might play a role in the higher order chromatin 

formation, regardless of the histone H1 (Schalch et al., 2005). However, several 

reports confirmed a role for linker histones in the higher order chromatin in 

eukaryotes (Maresca et al., 2005; Freedman and Heald, 2010) besides to the Mg+2 

and nucleosome interactions (Grigoryeva et al., 2009). Up to now research on the 

higher order chromatin structure is not confirmed in vivo, due to the limited 
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capabilities of the techniques to visualize the higher order chromatin structures in 

vivo (Tremethick, 2007).  

 

 

Figure (1.5): Different structural models proposed for the higher order chromatin fibre. 
The way nucleosomes bind together along the nucleosome fibre controls the expected higher order 
chromatin structure formed. (A)  If adjacent nucleosomes are joined together with one start helix then 
a solenoid-30 nm will be formed. (B) However if nucleosomes starts with two start helix where 
nucleosomes attach by allowing the binding of nucleosome from each helix per a time forming a 
Zigzag model. (C) And the Crossed linker forms when the linker DNA is at angel (0

o
-50

o 
with the fibre 

axis) (Wu et al., 2007). (D) The higher order chromatin fibre structure under the EM. Adapted from 
http://sgi.bls.umkc.edu/waterborg/chromat/chroma09.html) (Olins and Olins, 2003). 
 
 

http://sgi.bls.umkc.edu/waterborg/chromat/chroma09.html
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Figure (1.6): A model for the linker histone H1 role in the higher order chromatin fibre 
formation. 
The linker histone H1 binds the linker DNA at the entry-exit position of the nucleosome. Histone H1 
interaction with other chromatin proteins allows the nucleosome fibre (10 nm fibre) folding into the 
higher order chromatin fibre (about 30 nm in some species) (Model created by Sanchez-Moran, 2010) 

 

1.2.2.2. Linker histones have a putative role in the higher order chromatin fibre 

stucture 

Linker histone H1 has been denominated as the chromatin architectural protein 

(McBryant et al., 2006). It has a tripartite amino acid structure in higher eukaryotes: 

with an “amino-terminal domain” (NTD), a “central globular domain” (GD), and a 

“carboxyl terminal domain” (CTD) (Allan et al., 1980). The NTD is a short domain; 

compose of 13-40 amino acids in length. However, the CTD is composed mainly of 

100 amino acids with a high lysine, serine and proline composition, whereas, the 

globular domain is about 80 amino acids in composition (Allan et al., 1980). This 

central globular domain has two DNA-binding sites (Clore et al., 1987; Graziano et 

al., 1990; Ramakrishnan et al., 1993). The classical winged-helix motif and the basic 
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residues cluster, which permits the linker histones to bind different DNA molecules, 

resulting in tram-trak like structures (Thomas et al., 1992), binding DNA crossovers 

(Krylov et al., 1993), tour-way junctions (Varga-Weisz et al., 1993), asymmetrical 

binding of the linker histones to the DNA entry and exit sites of the nucleosomes 

(Hayes and Wolffe, 1993; An et al., 1998;  Hayes et al., 1999 ), and the nucleosome 

protection against micrococcal nuclease (Noll and Komberg, 1977). Several reports 

showed that the amino terminus domains (NTD) are not required for linker histones –

chromatin association (reviewed by Happel and Doenecke, 2009). However, 

although the C-terminus is not conserved among linker histones isoforms, but it might 

be playing a vital role in chromatin condensation (reviewed by Happel and Doenecke,  

2009).  

 

Linker histones besides having a role in chromosome architecture, might influence 

chromatin dynamics in two different ways: The first is by stabilizing the 30-nm 

diameter fibre. And the second is by communicating with many different nuclear non-

histone proteins.  H1 is one of the linker histones which play a dual stabilization role 

for both assembled nucleosome as well as the higher order chromatin structure 

(McBryant et al., 2010). 

 

Linker histones H1 are considered to be a family of related proteins with 

specifications in terms of: tissue and development within the same species. The 

conservation of histone H1 N and C terminal tails among species gives a clue about 

a possibility of distinct function for each of H1 variants (reviewed by Izzo et al., 2008). 

Several reports gave attention to the role of the H1 C-terminal domain interaction 
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with chromatin, showing that it allows H1s high binding ability (Patterton et al., 1998). 

Furthermore, the C terminal domain impact on the higher order chromatin structure 

formation and stabilization has been studied extensively (Shen et al., 1995)   

 

The locus family of linker H1 histones is highly divergent in sequence compared to 

that of the core histones. The human genome shows eleven different H1 loci of 

which: seven are somatic (H1.1-H1.5, H1° and H1x) (Parseghian et al., 1994; Albig et 

al., 1997; Ausio and Abbott, 2004; Happel et al., 2005) three are spermatogenic 

variants: H1t (Seyedin and Kistler, 1980), H1T2 (Martianov et al., 2005) and HILS1 

(Iguchi et al., 2003; Yan et al., 2003) and one is oocyte-specific H1foo (Tanaka et al., 

2003). These isoforms could be grouped in two categories according to the 

expression and timing-patterns: Somatic cells versus germ cells, suggesting that 

linker histones isoforms are expressed differentially depending on cell type and 

function (reviewed by Happel and Doenecke, 2009). Moreover, replication-dependent 

linker histones are expressed prior to the other histone H1 variants (reviewed by 

Happel and Doenecke, 2009). Although histone H1 is evolutionary conserved 

(Kasinsky et al., 2001; Jerzmanowski, 2004), and has a discriminative DNA-binding 

location associated to the linker DNA at the entry exit site of the nucleosome (Zhuo et 

al., 2000) its biological function is not well understood.  Barra and collaborators 

(2000) observed that the deletion of H1 in the fungus Ascoblus immerses, reduced its 

life span and the global DNA hypermethylation. The in vivo examination of globular 

linker histone in plants and animals is difficult as their genomes encode for several 

redundant H1 isoforms which can compensate each other. Wierzbicki and 

Jerzmanoski (2005) found out that more than 90% reduction in H1 expression in 
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Arabidopsis thaliana resulted in great defects in the developmental stages of the 

plant. In this research we will investigate the role of each one of the linker H1 variants 

in Arabidopsis thaliana on the global chromosome dynamics and chromatin 

compaction. 

 

The old view that H1 is a static chromatin component is now completely invalid. H1-

GFP expression in living cells and photobleaching experiments brought to light that 

H1s are transient molecules and that its binding to nucleosomes is not static but 

highly dynamic (Lever et al., 2000; Misteli et al., 2000). The fluorescence recovery 

after photobleaching (FRAP) technique revealed that H1 has two phases in the 

context of chromatin: a “stop” stage and a “go” stage. In the “stop” stage, H1 

associates to the binding site of the chromatin for a limited time, and its dissociation 

resembles the “go” stage. H1 residence on the nucleosome is longer than its 

dissociation, recording 220 seconds for its “stop” stage.  The switch from one phase 

to the other shows continuous exchange of the H1 molecules to different 

nucleosomes. These findings show that there is not one H1 molecule which is 

statically bound to a specific nucleosome. Furthermore, in higher eukaryotes there is 

a complex community of histone H1 isoforms and variants that can replace one 

another after each “go” stage (reviewed by Bustin et al., 2005). In addition, 

posttranslational modifications of H1 can control the time needed for H1-association 

at the chromatin (Lever et al., 2000) and also by nuclear proteins competing with H1 

for nucleosomal binding sites (Catez et al., 2004).   

The specificity of linker histone H1 position on the linker DNA and its capability to 

lock the nucleosomal unit (Figure 1.7) has brought attention to the real impact of 



23 

 

histone H1 on the nucleosomal repeat length (NRL). The NRL is affected by the 

H1/nucleosome ratio, in which, NRL increase when H1 level raise up and the NRL 

decrease if H1 content per nucleosome is reduced (Woodcock et al., 2006; Fan et 

al., 2005; Hashimoto et al., 2010). The NRL is an indicator for chromatin status, 

“active chromatin” (eg. In ES cells) has shorter NRL however, “compact chromatin”, 

(such as in mature cells) has longer NRL (Berkowitz and Riggs, 1981; Perisic et al., 

2010).   

 

               

Figure (1.7): Histone H1 role in the polymorphic chromatin dynamics 
Histone H1 linking between different nucleosomes was suggested to have a role in the formation of 
higher order structures. Different models for the higher order structures could apply depending on the 
intra nucleosomal links created via the linker histone (H1). The models above are showing a putative 
role for H1 as an “adjustable clip” which mediates intra nucleosomal associations during chromatin 
shift from 10 nm structure to the more compact (30 nm) fiber. Red arrows in resemble association 
(link) between different nucleosomes. Squares are marking the histone H1. (A) Adapted from (Lavelle 
et al., 2010). (B) Adapted from (Wong et al., 2007).    

A 

B

V 
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A recent study by Oberg et al. (2012) shed some light on the relation between 

histone variants and chromatin formation and organization showed that linker histone 

H1 subtypes of higher eukaryotes has a different impact on the nucleosomal spacing 

in vivo. The recorded NRL value after reconstitution of different eukaryotic histone 

linkers: chicken differentiation-specific histone H5 (chH5), Xenopus differentiation-

specific (xH1), Xenopus somatic variant (xH1A), and human somatic subtypes (hH1.2 

& hH1.3 & hH1.4 & hH1.5) in the  Xenopus oocyte showed that there was an 

increase in the NRL when these histones were added except for the hH1.5. A NRL 

increase of 13-20 was found in hH1.4, xH1 and xH1A. chH5 showed around similar 

effect. However, both hH1.2 and hH1.3 showed less effect with just a 4.5-7 increase 

in the NRL. This subtype variation in NRL within the same species suggests that H1-

chromatin modulation is isoform/variant dependent. A study by Fan et al. (2005) 

showed that knocking out three of histone H1 genes in mouse embryonic stem cells 

with a 50% decrease in the H1 level caused a reduction in both the nucleosome 

spacing and chromatin compaction status.  

 

It has been reported that linker histones PTM are vital for nuclear functions. H1-

phosphorylation during cell cycle G1-S-G2 shift the chromatin to its open phase, 

making it exposed to the different functional cellular factors; transcriptional proteins 

and repair proteins (reviewed by Izzo et al., 2008). However, linker histone 

methylation is linked with the closed-phase of chromatin, which shows disabled 

accessibility (reviewed by Izzo et al., 2008).  
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Several studies suggested that Histone H1 can regulate gene expression. H1 

depletion affected the transcription machinery in the context of chromatin by either 

enhancing or repressing the expression process of distinct genes. H1 modulates the 

transcription process at two levels: the first is at the level of the higher order 

chromatin status in which H1 stabilizes the compact structure and prevent chromatin 

regulators to access the nucleosome. The second is at the level of the nucleosomal 

status, with the binding of both transcriptional regulators (activators and repressors) 

to their target (gene) site on the nucleosome and how H1 can affect by its association 

with the nucleosome.     

 

Epigenome code studies including histone proteins dynamics within covalent 

modifications and replacement of linker histones, linking epigenetic silencing and 

gene expression have enabled a better understanding of the cell fate. The linker 

histones interactions through the nucleosomal fibers leading to the higher order 

structures seems to be essential for proper gene regulation (Wolffe, 2000). The linker 

histone is replaced by other variants during early embryogenesis in higher organisms 

like: flies, sea urchins, frogs and mice (Wolffe et al., 1997; Tanaka et al., 2001). In 

Xenopus, B4 which is an embryonic linker histone that exist in eggs is replaced by 

somatic H1 variants, initially H1A after midblastula stage synchronizing zygotic gene 

activation (Smith et al., 1988; Ohsumi and Katagiri, 1991). Functional differences 

between the embryonic linker B4 and the somatic linker H1A in affecting chromatin  

structure and dynamics is revealed by the usage of linker histone chaperone, 

nucleosome assembly protein-1(NAP-1) showed that histone B4 influences the ATP-

dependent chromatin remodeling factor pathway however the somatic linker histone 
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impeded this remodeling. Suggesting that the linker histone subtypes are changing 

developmentally to preserve the significance of the cell stage.      

 

The linker histone H1 was considered as an essential factor that direct the assembly 

of mitotic chromosomes. This belief is based on two points of view: The first, is its 

role in the chromatin compaction status, hence, the formation of the higher order 

chromatin structure (30 nm fiber) (Thoma and Koller, 1977). The second finding is 

that the human master mitotic kinase cdc2/cyclin B does hyperphosphorylate histone 

H1 (Boggs et al., 2000). Later on Maresca et al. (2005) showed that H1 depleted 

extracts of Xenopus eggs resulted in severe structural defects, showing more than 

50% increase in chromosome length compared with control chromosomes. 

Furthermore, the H1 depleted chromosomes lack the normal alignment of mitotic 

chromosomes on the equatorial line, nor have the proper segregation at anaphase 

stage. These findings together with the fact that H1 depleted chromosomes defects 

could be rescued by the addition of purified Xenopus or bovine Histone H1 supported 

the idea that H1 directs the compaction of chromosome arms in Xenopus egg 

extracts and that it is needed to achieve proper (normal) mitosis.      

 

A study by Prymakowska-Bosak et al. (1999) showed that the production of cDNA 

transgenic tobacco plants with around one quarter the normal amount of the somatic 

histone variants: H1A and H1B resulted in a noticeable increase in the minor 

variants: H1C, H1D, H1E and H1F. Although the plants growth was within the normal 

level, their flowers were 20% to 30% smaller than the controls, with smaller petals 

and stamens, with defects in fruit production and seed development. Defects in male 
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gametogenesis were confirmed by cytological analysis, in which signs of improper 

pairing and or segregation of homologous chromosomes were found. These results 

emphasize that the linker histone H1 variants might have a role in gametogenesis, 

and that might be crucial for normal levels of plant fertility. 

 

The linker Histone H1 is thought to play a role in the Backup pathway of Non-

Homologous End Joining (B-NHEJ) process (Figure 1.8). An in vitro End Joining 

analysis of Hela cells treated with Ionizing Radiation (IR) and using recombinant 

human histone H1.2 suggested that H1 not only acts as an alignment factor for the B- 

NHEJ process, but also enhances the DNA end ligation, by activating PARP1 and 

ligase III components of B-NHEJ. Although, it seems that it stimulates ligase IV to a 

lesser degree (Rosidi et al., 2008). Moreover, Downs et al. (2003) demonstrated that 

Hho1p, a yeast H1 homolog, deletion inhibits DNA-repair through the homologous 

recombination (HR) pathway. 

 

Histone H1 protein structure in lower eukaryotes is different from higher eukaryotes.  

For example, the linker histone globular domain is missing in lower eukaryotes like 

Tetrahymena. However, S. cerevisiae linker histone, Hho1p, has an extra globular 

domain (reviewed by Izzo et al., 2008). Several studies have showed that histone H1 

is not vital for the cell cycle progression in unicellular eukaryotes (Patterton et al., 

1998; Ramon et al., 2000; Shen et al., 1995; Ushinsky et al., 1997).  

 

 

 



28 

 

 

Figure (1.8): Diagram of the two pathways of non-homologous end joining:  the canonical KU 
Dependent NHEJ (D-NHEJ) and the Backup NHEJ (B-NHEJ) patways. 
The D-NHEJ is dependent of the Ku protein complex and DNA-PKs for alignment and runs ligation by 
the usage of the Ligase IV / XRCC4 complex. However, alignment in B-NHEJ is carried out by histone 
H1 and the end ligation is dependent of Ligase III / XRCCI complex through PARP-1 activation. These 
results were obtained in Human Hela cells exposed to ionizing radiation (IR) to produce DSBs. 
Adapted from (Rosidi et al., 2008).  

 

1.2.3. The 300 nm Chromatin Fibre and the chromosome axes 

The nucleosome fibre formed by the association of the histone octamer with the DNA 

(Goll and Bestor, 2002) can be further compacted into a higher order chromatin fibre 

(about 30 nm). This higher order chromatin fibre is arranged into loops attached to a 

proteinaceous structure named the chromosome axis. This further compaction 

manages to pack the DNA into a higher order 300 nm chromatin fibre structure 

(Luger et al., 1997). 

 

The chromatin organization in the interphase nuclei is not well understood yet, 

however several reports have tried to model the possible organization of the 
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chromatin at metaphase chromosomes (Marsden and Laemmi 1979; Paulson and 

Laemmli, 1977). Different models have been proposed for the organization of 

metaphase chromosomes. These models were; random fibre folding (Dupraw, 1966), 

a scaffold and loop arrangement (Laemmli et al., 1978) and helical coiling (Sedat and 

Manuelides 1977). The coiled nature of metaphase chromosomes were proofed 

through cytological preparations of meiotic chromosome spreads in plants as well as 

in animals (reviewed in White, 1973; Ronne, 1977; Geradia and David, 1977). 

Attention was directed to the zigzag or spiral nature of chromatid after results 

obtained from research on human by Onnuki (1968). Meanwhile, the “radial loop” 

model of metaphase chromosomes was accepted (Adolph et al., 1977; Laemmli et al, 

1987). The “radial loop” proposes that DNA loops are arranged in a way that 

interferes with the proteinaceous scaffold formed at the chromatid central axis. The 

loop and scaffold structure were observed in histone-depleted chromosomes 

micrographs showing that the scaffold length is equal to the length of the condensed 

metaphase chromatid. The paradox between the zigzag nature of chromatid 

observed by Onnuki (1968) and the radial loop model were resolved by Rattner and 

Lin (1985) who suggested that the metaphase chromosome is packaged via coiling 

of 200-300 nm fibre in a helical manner and in a way that forms radial loops, a thing 

which permits formation of an organized scaffold elements and loop association.     

    

The electron micrographs of histone-depleted Hela cells at metaphase showed loops 

of 30 to 90 Kb of DNA associated to a proteinaceous scaffold in each chromatid 

(Paulson and Laemmli, 1977). Chromatin loops are composed of 180-300 

nucleosomes arranged in a 30 nm coiled fibre structure (Marsden and Laemmli, 
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1979). The DNA present on the loop is packaged into 700 folds relative to the 

chromosome axis length. Loops arrange along the chromosome axis of metaphase 

scaffold in a spiral helix (Marsden and Laemmli, 1979), which forms 15-18 chromatin 

loops per turn and that is about 1.2 million bp of DNA (Nelson et al., 1986). Hence, it 

was predicted that a cylinder of chromatin loops forms at metaphase showing a 

thickness of about 800-1000 nm, was perfectly in accordance to the metaphase 

chromosome thickness (Marsden and Laemmli, 1979; Nelson et al., 1986). Hence, 

allows the DNA helices to compact 10,000 folds in length and 400-500 folds in 

thickness to form the metaphase chromosomes.  
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Figure (1.9): 300 nm Higher Order Chromatin structure and chromosome scaffold. 
The 30 nm chromatin fibre undergo further compaction to allow DNA to fit in the nucleus. (A) The 30 
nm chromatin fibre coiling into loops attached to the chromosome scaffold permit the 300 nm higher 
order chromatin formation. (A) Chromatin loops and scaffold formation. (B) Closer view of (A). (C) 
Chromatin loops coiling along the chromosome scaffold in a spiral helix pattern allow metaphase 
chromosome to be compacted as 10,000 times of the original DNA molecule and be as 400-500 times    
thicker. (D) Radial loops formation in the metaphase chromosome via chromatin coiling. (A&B) 
Adapted from (Griffiths et al., 1996). http://www.pha.jhu.edu/~ghzheng/old/webct/note6_3.htm (C) 
Adapted from http://is.muni.cz/do/sci/UEBBiol/DNA-FTBcz/pics/29/16638_nohistone_dna.jpg (D) 
Adapted from (Rattner and Lin, 1985). 
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1.3. Chromatin Role in DNA associated Biological Processes 

The genetic DNA material controls different vital cellular activities: replication, 

transcription, repair, recombination and segregation. Thus a highly dynamic change 

in the chromosomal compaction level controls the occurrence of the cellular division 

during meiosis and mitosis (Deal and Henikoff, 2010). The molecular mechanisms of 

chromatin condensation are highly conserved among eukaryotic species. So, 

although there are great differences in the eukaryotic chromosome size and 

organization, there are similar key proteins and structures involved in the chromatin 

compaction.  

 

1.3.1. Replication 

DNA replication is a highly conserved process through which genetic information 

transmits accurately through different divisions, which demands chromatin 

disassembly and reassembly to ensure that the genetic material fits inside the 

nucleus (Budhavarapu et al., 2013). For each round of the cell cycle, it is necessary 

the production of core histones enough to form about 20 million new nucleosomes 

needed in the packaging of the newly formed DNA strand. For that, canonical core 

histones are synthesized during the cell cycle (Marzluff and Duronio, 2002; Gunjan et 

al, 2005). Histone levels were found to play a role in the progress of the cell cycle. In 

S. cerevisiae, cell cycle arrest was recorded as a consequence of reduced histone 

levels (Han et al., 1987; Kim et al., 1988), although, the S-phase was just constrained 

in mammalian cells (Nelson et al., 2002). In addition to that, an increase in histone 

levels resulted in DNA defects and genome instability (Gunjan and Verreault, 2003).  



33 

 

Chromatin assembly and disassembly is regulated by histone chaperons and ATP-

dependent chromatin remodelling complexes (Macapline and Almouzni, 2013). 

Histone variants assembly on the chromatin allow diversity on the chromatin structure 

and function (Ahmad and Henikoff 2002a; Kamakaka and Biggins 2005; Probst et al., 

2009). These variants deposit on the chromatin either in a replication dependent or 

replication independent manner (Macapline and Almouzni, 2013). 

 

During DNA replication half of the histones are gained from the parental chromatin 

(like a semiconservative manner) whereas the rest is newly formed. How the 

epigenetic code gets transmitted from the parental chromatin to the newly 

synthesized histones is still a mystery. Recently, it was reported that parental histone 

modifying enzymes associates with parental chromatin during replication, and so re-

establish the parental pattern of histone epigenetic modification style on the newly 

formed chromatin (Budhavarapu  et al., 2013).  

 

1.3.2. Transcription 

A study by Dion et al. (2005) in budding yeast showed that the acetylation code of 

histone H4 tail lysines: K16, K5, K8, K12 can affect gene expression differently. 

Merely, lysine 16 (k16) mutation affect transcription of ~ 100 genes specifically. 

However lysines 5, 8 and 12 showed a cumulative effect on transcription in which its 

consequence depends on the total number of mutations. K16 acetylation status can 

control chromatin silencing, in which Sas2- acetylated- K16 to Sir2-deacytelated- K16 

ratio direct the degree of telomere silencing (Kimura et al., 2002; Suka et al., 2002). 

That is partly due to the affinity of Sir3 to H4-deacetylated K16 (Carmen et al., 2002). 
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Moreover, the bromodomain factor Bdf1 bind to H4-deacetylated K16 (Kurdistani et 

al., 2004). However, the other lysine residues role is still to be clarified.  Histone H4 

di-acetylated at lysines 5 and 12 are noticed in many organisms (Sobel et al., 1995). 

In addition, Bdf2; the bromodomain factor, binds to H4-acetylated-K12 in human cells 

(Kanno et al., 2004). However, H4 acetylated K8 recruits hSwi/snf of IFN-β (Agalioti 

et al., 2002). It was recorded that yeast mutants with the histone H4 tails lacking 

lysine residues showed abnormal G2/M cell cycle. Nevertheless, the addition of a 

single lysine could correct this defect (Megee et al., 1995). 

 

1.3.3. Repair 

Several endogenous and exogenous factors have been found to produce DNA 

damages (Finkel and Holbrook, 2000; Marnett and Plastaras, 2001). The genome 

integrity is maintained by the proper responding to genetic lesions before each cell 

division (Kastan and Bartek, 2004). Usually DNA damage directs the cell to activate 

cell cycle arrest and the DNA repair pathways, whereas severe lesions result in cell 

apoptosis (Lownders and Murguia, 2000). Reports have showed that chromatin 

structure components and its organization is intrinsically linked to the DNA damage 

response (DDR) (reviewed by Costelloe et al., 2006). Posttranslational modifications 

to both core histone proteins as well as histone variants, besides to ATP-dependent 

chromatin remodelling complexes are important in DNA damage signalling and repair 

specially at DNA DSBs (Berger, 2002; Lydall and Whitehall, 2005; Saha et al., 2006; 

and reviewed by Costelloea et al., 2006).  γH2A(X) role is essential in the DDR 

(Fernandez-Capetillo et al., 2004; Foster and Downs, 2005; Lownders and Toh, 

2005; Thiriet and Hayes, 2005; Stucki and Jackson, 2006; Wurtele and Verreault, 
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2006). As a response of DNA DSBs H2AX phosphorylates (γH2AX) at the C-terminus 

serine 139 in higher eukaryotes or serine residue 129 in yeast (Turner, 2005), its 

phosphorylation extends to about 60 kb in yeast and 1 kb in higher eukaryotes 

(Lownders and Toh, 2005), and since DSBs induce this H2AX phosphorylation, 

γH2AX is a well-known DSB marker (Foster and Downs, 2006; Stucki and Jackson, 

2006).  

 

Furthermore, methylation of histone H3 at lysine 79 (H3K79me) was found also to be 

linked to DDR (Huyen et al., 2004; Giannattasio, et al., 2005; Wysocki et al., 2005). 

The H3K79me is present constitutively on euchromatin in human cells (reviewed by 

Costelloe et al., 2006). Whereas, 90% of S. cervevisiae chromatin is methylated at 

K79 of histone H3 (Van et al., 2002). H3K79me was found to peak at G1/S stage, 

possibly due to DOT1, the conserved methyltransferase enzyme which methylate 

histone 3 at lysine 79 (reviewed by Costelloe et al., 2006). The H3K79me was found 

to play a role in DNA DSBs induced recruitment of 53BP1 in human and Rad9, 

homologue of 53BP1 in budding yeast through the K79me binding to their Tudor 

domain hydrophobic site (Maurer-Stroh et al., 2003). A model was proposed showing 

that chromatin induced DSB site causes the higher order chromatin relaxation next to 

the break site, a thing which permits the 53BP1 in human, Rad9 in budding yeast, to 

bind to the methylated 79 lysine on histone H3, and hence act as an early marker for 

DDR, which induce recruitment of other proteins needed for the checkpoint response 

(Huyen et al., 2004; Giannattasio, et al., 2005; Wysocki et al., 2005).  Since H3 is 

constitutively methylated at K79, it acts as a “ready-made mark” for the DDR 

(reviewed by Costelloe et al., 2006). Moreover, it was reported that at G2 both 
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γH2AX and H3K79me recruit Rad9, which enhance the homologous recombination 

pathway of DSB (Wysocki et al., 2005; Toh et al., 2006).  

 

Histone acetylation has also been linked to chromatin transition from highly 

compacted structures to more relaxed structures at the DSBs sites (Tamburini and 

Tyler, 2005). Several histone acetylase (HATs) enzymes were found to be recruited 

to 5 Kb region around the DSB site (Bird et al., 2002; Teng et al., 2002; Down et al., 

2004; Tamburini and Tyler, 2005; Qin and Parthun, 2006). Hence, acetylation 

increase was reported at the histone H3 lysine residues; K9, K14, K18, K23 and K27, 

as well as histone H4 residues; K5, K8, K12, and K16 (Tamburini and Tyler, 2005). 

Suggesting that histones H3 and H4 residues acetylation permit proteins involved in 

the DSB repair to access the DNA break site via moving the compact higher order 

chromatin into a relaxed and open chromatin (Downey and Durocher, 2006). 

Moreover, histone H4 acetylation levels at N-terminus were found to direct alternative 

repair pathways, so acetylation of one lysine residue in the H4-N-terminus in yeast 

result in the activation of the replication coupled repair pathway, but NHEJ is the 

choice if more than one lysine residue is acetylated (Bird et al., 2002). Furthermore, 

the highest acetylation levels have been reported during HR (Tamburini and Tyler, 

2005).  

 

Several reports have indicated that ATP-dependent chromatin remodelling 

complexes play also a role in the DNA damage response (reviewed by Costello et al., 

2006), through nucleosome modulation either by dissolution, sliding or histone 

exchange (Cairns et al., 1996; Owen-Hughes et al., 1996; Shen et al., 2000; 
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Mizuguchi et al., 2004; Saha et al., 2006). The chromatin remodelling complexes; 

INO80, RSC, SWI/SNF and SWR-C complexes, were found to be recruited to the 

DSBs induced by HO endonuclease in S. cerevisiae (Downs, et al., 2004; Chai et al., 

2005; Nakamura et al., 2005; Shim et al., 2005). INO80 and SWR-C complex are 

recruited to the DSB via γH2AX dependent manner (Downs et al., 2004; Marrison et 

al., 2004; van Attikum et al., 2004). INO80 mediates nucleosome displacement at 

DSB (Tsukuda et al., 2005), and so allow single strand DNA (ssDNA) formation (van 

Attikum et al., 2004), suggesting that it has a role in the homologous recombination 

single strand invasion. The SWI/SNF complex as well was found to be needed in the 

strand invasion by mediating homology search (Chai et al., 2005). Moreover, RSC 

complex is recruited by Mre11 and Ku70 (Shim et al., 2005) indicating that RSC 

complex play a role in the donor strand dissociation prior to strands ligation during 

HR pathway of DNA repair (Chai et al., 2005). The RSC complex induced by H2AX –

Mre11 interaction allows cohesion loading at the break site (Chai et al., 2005 Shim et 

al., 2005).  

 

 1.3.4. Mitosis  

Mitosis is the nuclear process where two newly formed cells arise from a single 

parent cell with identical genetic information (Figure 1.10) (Zickler and Kleckner, 

1998; Cnudde and Greats, 2005). Prior to mitosis, the DNA is replicated at the 

Synthesis (S) phase producing two copies for each chromosome also known as 

sister chromatids. Cohesion protein complexes load between the sister chromatids 

as the DNA is replicated and keep them as a unit (chromosome) during prophase, 

pro-metaphase and metaphase stages (Nasmyth, 2001). At metaphase, the 



38 

 

chromosomes align on the equatorial plate with their centromeric kinetochores 

attached to the microtubule spindle fibres. At anaphase, sister chromatid cohesion 

gets dissociated allowing each sister chromatid to segregate and move to opposite 

poles of the cell. After telophase the nuclear division is completed, and after 

cytokinesis two cells have been formed with identical genetic information (Figure 

1.10).    
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Figuer (1.10): Schematic diagram representing the mitotic nuclear division. 
Parental cell with diploid number of chromosomes pass one round of DNA replication and separates 
the equally the sister chromatids formed to produce two identical daughter cells. Paternal 
chromosome is represented in green and maternal homologue is represented in red. 
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1.3.4.1. Sister chromatid Cohesion   

After DNA replication the sister chromatids stay together by protein complexes 

denominated cohesion complexes or cohesins (Guacci et al., 1994) (Figure 1.3 

A&B). Cohesion establishment between sister chromatids had been implied in 

several reports using both genetic and biochemical analysis (Dej and Orr-Weaver, 

2000; Hirano, T., 2000; Jones and Sgouros, 2001; Koshland and Guacci, 2000; 

Nasmyth et al., 2000; Losada and Hirano, 2001; Van Heemst and Heyting, 2000). 

The early loading of cohesins at G2 stage implies a vital role for this sister chromatid 

organisation. Cohesins are involved in protecteing yeast DNA from damage 

stimulated by irradiation (Birkenbihi and subramani, 1995), and it mediates DNA DSB 

repair via sister chromatid recombination (Sjogren and Nasmyth, 2001). Moreover, 

cohesion is involved in sister chromatids attachment to the mitotic spindle allowing 

balanced segregation of chromosomes to opposite poles of the nucleus at anaphase 

(Tanaka et al., 2000) and during the meiotic anaphase II (Uhlmann and 

Nasmyth,1998). The cohesin complex is evolutionary conserved, it is composed of 

two Structural Maintenance (SMC) proteins; SMC1&3, and two Sister Chromatid 

Cohesion (SCC) proteins; SCC 1&3 (Nasmyth and Haerring, 2009). The SMC1 and 

SMC3 as well as the SMC protein family members are composed of five domain 

structures, N and C terminal ATP binding motifs; Walker A motif and Walker B motif 

(Losada and Hirano, 2005). The SMC protein folds backwards forming antiparallel 

coiled coils in a way distinguishing hinge domain as the head and Walker A and 

Walker B motifs heads at ends. When the SMC1/ SMC3 hinge domains dimerize a 

stable v-shaped heterodimer forms (Hearing et al., 2004). The V-shaped  structure 

shifts to a 40 nm ring like-structure capable to hold the sister chromatid as a unit 



41 

 

when the SMC1 head interact with the carboxy terminal regions of 

SCC1/Mcd1/Rad21 (Haering et al., 2002) and the SMC3 head interact with the amino 

terminal regions of the SCC1/Mcd1/Rad21 (Gruber et al., 2003). The Cohesin 

complexes have two phases; mitotic and meiotic, both are characterised with 

SMC1/SMC3 heterodimer V-shaped, which shifts to the ring shape when SCC3 

interacts with SCC1 in mitosis, and Rec8 interact with SCC3 in meiosis (Figure 1.11 

A). The SCC1 cleavage during metaphase shift to anaphase directs sister chromatid 

dissociation to the opposite poles (Uhlmann et al., 1999). Showing that SCC1 plays a 

dual role; structural and functional, in the vicinity of mitotic cohesions. Rec8 cohesin 

releases during meiosis I at metaphase I from between the arms and distal to 

chiasmata, while keeping centromeric sister chromatid cohesions, allow homologous 

chromosomes segregation. At meiosis II the cleavage of the remaining centromeric 

Rec8 cohesin during metaphase II results in an equal segregation of sister 

chromatids to each gamete (Figure 1.11 B). Cohesin protein sequences are 

evolutionary conserved from yeast to humans. Immunolocalization studies showed 

that cohesins loading on the chromosome occur as early as S phase. Foci signal in 

yeast REC8 was observed at leptotene and zygotene while pachytene stage showed 

signal at chromosomes arms and centromere (Klein et al., 1999; Watanabe and 

Nurse, 1999).  The meiotic mammalian REC8 appears as foci at S phase, which 

localize entirely along the chromosomes at pachytene (Prieto et al., 2004). Klein et 

al. (1999) reported that the SMC3 colacalize with  REC8 at early prophase showing 

SMC3-REC8 dual signal appearance along chromosomes arms at pachytene, which 

dissociate partially at metaphase I, whereas the remaining signal colocalize on the 

metaphase II centromeric region indicating its role in preserving sister chromatid 
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cohesion. Similar results were seen in the dual immunolocalization experiments of 

the mammalian meiotic cohesins SMC1β and SMC3 (Eijpe et al., 2003).  The meiotic 

SMC3 normal loading in rec8 mutants suggests that SMC3 loads on the 

chromosomes prior to REC8 loading (Xu et al., 2005). Lam (2005) reported that 

SMC3 signal observed at the microtubule of spindles after metaphase I and until 

telophase I indicates a SMC3 suggested role in the microtubules assembly as well as  

glue sister chromatids as a unit. Studies on AtSYN1, the Arabidopsis meiotic 

homologue of REC8 in yeast (Bai et al., 1999), showed that syn1 mutants have 

normal somatic growth, however, reproduction was abnormal, cytological analysis 

showed chromosome fragments were visualised at metaphase I, and  bridges at 

anaphase II leading to polyads formation (Bai et al., 1999; Bhatt et al., 1999). Similar 

results were observed in mutants of other Rec8 homologoues; maize afd1 (Yu and 

Dawe, 2000), Sordaria sm-rec8 (Pasierbek et al., 2001), mouse rec8 (Xu et al., 

2005), worm rec8 (Storlazzi et al., 2008) and rice Osrad21-4 mutant line (Zhang et 

al., 2006). SYN1 localization in Arabidosis meiocytes indicated its presence on 

chromosome arms but not centromeres during interphse-anaphase I (Cai et al., 

2003) On another hand, a strong evidence for AtSSC3`s role as one of the sister 

chromatid cohesins came from immunolocalization studies indicated that, it persist on 

chromosomes from leptotene to metaphase I, similar to other cohesion complex 

proteins. The Atssc3 mutant cytological characteristics showed chromosome 

fragments and bridges at metaphase I suggesting that AtSSC3 role in the normal 

meiotic chromosomes phenotype (Chelysheva, 2005).        
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Figure (1.11): Schematic diagram of mitotic and meiotic cohesion complexex. 
(A) Cohesin complex is a ring-like structure composed of two subunits of each SMC and SCC 
proteins. Meiotic cohesion differs from the mitotic one in that the Rec8 replaces the mitotic SCC1 
function. (B) Cohesin complex loading between sister chromatids in mitotic as well as meiotic cells 
glue chromosomes sister chromatids, and hence, keeping them preserved until the proper timing of 
chromosomes spacial organisation at anaphase, where their disassembly as well as kinetochores 
mechanical forces aid their separation to the opposite poles. (A) Adapted from (Wood, 2010). (B) 
Modified from (Uhlmann, 2001).    

 

1.3.5. Meiosis 

Eukaryotic sexual cell division cycles are called meiosis. Each meiotic process 

passes two rounds of nuclear divisions termed as meiosis I and meiosis II 

respectively. Meiosis I and meiosis II are subdivided into four stages each, 

depending on the chromosomal organization and status, these are: prophase, 

metaphase, anaphase and telophase. Meiosis is a highly conserved process among 

eukaryotes. Its necessity comes from the role it plays in species preservation through 

ages, by conserving chromosomal set number.  After one round of DNA replication 

during interphase, two rounds of nuclear meiotic divisions follow. In meiosis I 

homologous chromosomes separation allows chromosomal reduction by half; 

however through meiosis II sister chromatid separates to end up with haploid 

B A A 
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gametes. The conjugation of the two haploid gametes through fertilization allows 

retaining the diploid individual. And so, meiosis phases are the key for understanding 

sexual reproduction.  

 

Meiosis is a dynamic process. Genetic variation seen within gametes and hence in 

the progeny is introduced by the recombination scenario, in which reciprocal genetic 

material exchange between parental homologous chromosomes during  meiosis I 

opens the gate widely for recombination machinery proteins loading on the chromatin 

axis, mediating the parental physical genetic exchange and so enhancing new allelic 

combinations to appear.         

  

1.3.5.1. Meiosis I and II: 

DNA replication during Interphase-S stage is a prerequisite to meiosis machinery to 

proceed normally. Studies on meiosis in Arabidopsis showed that it takes 33 hrs to 

be completed (Armstrong et al., 2003). Meiosis I has four distinct substages; 

prophase I, metaphase I, anaphase I and telophase I, respectively. Prophase I is the 

longest stage during meiosis, it takes about 30 hours to be completed in Arabidopsis 

(Armstrong et al., 2003). Cytological analysis showed five discriminate phases for the 

prophase I chromosomes: leptotene stage, zygotene stage, pachytene stage, 

diplotene stage, and diakinesis stage.  (Figure 1.12) is a schematic diagram that 

represents chromosomal phases within the context of meiosis process including 

meiosis I and II stages. Leptotene, chromosomes condense, hence thin thread-like 

structures termed as chromatids appear. Early cohesion loading between sister 

chromatids keep them stuck tightly together as a unit (Sjorgren and Nasmyth, 2001). 
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Leptotene stage is so vital and complicated stage, as chromosome axis proteins start 

loading on the axis, recombination initiates at distinct chromosomal sites, allowing 

chromosomes to search for their homologue. Homologous chromosomes initial 

pairing permits the synaptonemal complex (SC) structure formation. During zygotene 

stage, homologous chromosomes pairing and synapsis proceed along the entire 

chromosome axis. At pachytene stage, thick-fully synapsed homologous 

chromosomes are visible at this stage, marked as thicker linear structures. Diplotene 

stage comes afterwards, leading to synaptonemal complex disassemble. Then 

diakinesis stage continues with a discriminate homologous chromosomes shapes, 

known as bivalents, in which homologues are held only at crossover (COs) sites, the 

points where reciprocal parental genetic segments exchange occur and known as 

chiasmata. Bivalents condensation followed by kinetochore formation at centromeric 

region of the chromosomes, which later aid in the proper positioning of the bivalents 

at the equatorial site of the meiotic cell at metaphase I stage. Through anaphase I 

stage, separated homologous chromosomes moves to the opposite poles of the cell. 

Bivalents disjunction is initiated by the mechanical forces created by kinetochore 

spindles on the centromeres. After that, telophase I stage takes place, resulting in 

dyads, at which two de-condensed chromosome nuclei are seen. By that, the first 

meiotic nuclear division is completed, two nuclei with half chromosomal set number 

are distinguished.  The second round of nuclear division during meiosis is highly 

similar to mitotic division. In Prophase II stage, re-condensation of chromosomes 

occur forming thread like structures. Each of the two nuclear poles is occupied by 

either one of the parental homologous chromosomes. At metaphase II stage, sister 

chromatids move to the equatorial region. Spindle fibre attachment at the centromeric 
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region creates physical and mechanical power which helps sister chromatid 

separation and migration to the poles during anaphase II stage. Thus, at telophase II 

stage, after nuclear envelope regeneration, followed with cytoplasmic division, four 

cells form, each containing haploid chromosomal set number. 
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Figure (1.12): Schematic diagram represents meiosis nuclear division stages.  
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Prior to meiosis initiation DNA duplicates at the interphase S-phase. Meiosis follow that, with two 
rounds of nuclear divisions ending up with four genetically different haploid gametes. Meiosis I is the 
key phase through which chromosomes number per cell halves and so named “reductional division”, 
whereas meiosis II is similar to the mitotic division hence is known as “equatoinal division”. Meiosis I 
importance is due to the highly active prophase I stage, where homologous chromosomes 
organization, pairing, synapsis and recombination context exceeds the creation of newly formed allelic 
combinations, to the preservation of their chromosomal integrity needed through their alignment at 
metaphase I and separation at anaphase I. Hence, dyads, the products of meiosis I could continue 
meiosis II normally, and allowing proper alignment of chromosomes at metaphase II and sister 

chromatids separation at anaphase II, else, gamete production is affected.       

 

1.3.5.2. Chromosome axis establishment 

Chromosomes are highly organised structures. Sister chromatid chromatin arranges 

during prophase I into loops series, which associates with the chromosome axis 

proteins at their base (Figure 1.10 A) (Kleckner, 2006). These loops density are 

conserved among organisms, showing 20 loops per micron of chromosome axis 

length (Zickler and Kleckner, 1999). Several reports indicated that loop density is 

constant via the adjustment of loop size depending on the chromosome axis length 

(Revenkova et al., 2004; Tease and Hulten, 2004; Novak et al., 2008). Although of 

the high advances made in chromosome study, however, up to now the chromosome 

context is mysterious, further research is still needed to carry on to show a deeper 

view of protein-protein, as well as, protein-DNA networking during chromosome axis 

organization context, a thing which led Andrew Belmont to write describing 

chromosomes “A riddle, wrapped in a mystery, inside an enigma” (Belmont, 2006). 

Cohesins role in holding sister chromatids during meiosis and mitosis suggested a 

role for them in the organisation of chromatin loop (Novak et al., 2008). The loading 

of cohesins to the meiotic axis (Cai et al., 2003; Severson et al., 2009), besides to 

the defects observed in chromosome axis formation in the mutants of cohesins 

subunits (Bhatt et al., 1999; Klein et al., 1999; Bannister et al., 2004; Xu et al., 2005; 

Novak et al., 2008), suggested a role for cohesins in the development of 
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chromosome axes. The importance of chromatin organisation into loops is that 

chromosome axis starts to form. Several proteins are needed for the chromosome 

axis formation. Loading of Topoisomerase II (Topo II) leads to mitotic chromosome 

axes development (Saitoh and Laemmli, 1994; Novak et al., 2008). Also, it has been 

reported that loading of SYCP3 in mammals, Red1/Hop1 in budding Yeast and 

ASY3/ASY1 in Arabidopsis play a role in their meiotic chromosome axis formation 

(Saitoh and Laemmli, 1994; Kleckner, 2006; Novak et al., 2008, Ferdous et al., 

2012).  

 

1.3.5.3. Homologous chromosomes pairing and synapsis 

Homologous chromososmes starts pairing at early prophase I. The telomeres had 

been reported that it mediates homologue recognition and pairing. It was found that 

chromosomes transfer from “Rabl” orientation (Zickler and Kleckner, 1998) to 

“bouquet” formation (Bass et al., 2000; Scherthan, 2001) mediates homologues 

recognition and pairing in some species (Bass et al., 2000; Golubovskaya et al., 

2002; Harper et al., 2004). Bouquet formation in wheat had a confirmed role in sub-

telomeric pairing, which continues along homologous chromosomes (Lukaszewski, 

1997). A recent study on barley (Hordeum vulgare L) suggested that telomeres 

pairing in a bouquet at G2 (Higgins et al., 2012). Moreover, the axis protein ASY1 

showed continuous signal at subtelomeric region while interstitial regions showed 

foci. Interestingly, the SC initiated at the subtelomeric region polymerize along 

homologues during zygotene where telomeres where found to be clustered. From 

this, it was proposed that telomeres clustering in Barley aid pairing and synapsis at 

the subtelomeric region (Higgins et al., 2012). This is not the case in all species, 

bouquet had no role in homologue pairing in Sordaria macrospora (Storlazzi et al., 
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2003) since pairing was observed prior to homologue pairing. For that, further 

research on bouquets role is still required. In Arabidopsis, the usual bouquet was not 

seen; meiotic telomeres were found to cluster while associated to the nucleolus 

rather than the nuclear envelope at G2-leptotene (Armstrong et al., 2001). In the 

same study, FISH analysis using probes for subtelomeric region showed that 

telomeres of homologous chromosomes pair while they associated to the nucleolus. 

From these results, Armstrong et al. (2001) suggested that telomeres cluster while 

they still associated to the nucleolus, somehow, facilitates homologue pairing similar 

to bouquet formation in some species. Some recent studies suggest that the 

telomere-led rapid prophase movement (RPMs) enhance meiotic chromosomes 

pairing (Lee et al., 2012; Sheehan and Pawlowski, 2009), suggesting that these 

telomere-led movements aid in homologues pairing by bringing them in a close 

proximity, and so mediate homologues search and recognition. Moreover, the RPMs 

were suggested to aid in resolving chromosomal interlocks (Koszul and Klechner, 

2009). The HORMA-domain axis associated proteins; Hho1p in yeast (Borner et al., 

2008) and HORMAD 1 and 2 in mammals (Wojtasz et al., 2009; Daniel et al., 2011) 

are part of so called axial elements (AE) in meiosis. As synapsis initiates, 

homologous chromosomes start to interconnect via the polymerization of the 

synaptonemal complex (SC) transverse filament (TF) along the axial elements (AE) 

that pass to be called lateral elements (LE), as reviewed by (Zickler and Kleckner, 

1999). (Figure 1.13 B). As SC polymerization occurs along the chromosomes, the 

fully polymerized LE proteins (Hop1, Hormad1/2) removal occurs. It has been 

reported that AAA+ ATPase Trip 13 has a role in the removal of HORMAD1 and 2 

from the synapsed mammalian chromosomes (Wojtasz et al., 2009). Moreover, it has 

been suggested that the mammalian chromosome axis protein HORMAD1 and the 

SC transverse filament protein SYPC1 affects meiotic progression differently, so 
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HORMAD1 enhance homologous chromosomes alignment and synapsis, whereas 

the SYPC1 cause HORMAD1 depletion on the axis (Daniel et al., 2011). The meiotic 

chromosome axis proteins; ASY1, ASY3, HORMAD1 and Red1/Hop1, importance 

exceeds the temporal axis structure formation during early prophase I, to achieve 

successful meiotic recombination event. Several reports suggested that chromosome 

axis establishment mediates recombination, as was reviewed by (Kleckner, 2006), 

which was confirmed by several studies showing that the recombination protein 

complexes are axis associated (Carpenter, 1975; Blat et al., 2002; Tesse et al., 2003; 

Moens et al., 2007). Although recombination occurs at the chromosome axis 

(Kleckner, 2006), it was suggested that the introductory DSB events occur in the 

chromatin (yet to be determined if initially is axis associated or chromatin loops 

associated) to appear later on the axis (Blat et al., 2002; Storlazzi et al., 2003; Kim et 

al., 2010).  
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Figure (1.13): (A) Chromosome organisation during prophase I. (B) Synaptonemal complex 
structure. 
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(A) During early leptotene stage chromatin is arranged into loops. Cohesion loading between the sister 
chromatids loops allow their pairing. Meanwhile prophase I progress, loops in each of the homologous 
chromosomes associates to the protenaceous chromosome axes structure, knowing that by the end of 
leptotene chromosome axis is linearized. Synapsis initiates by the end of leptotene stage via loading 
of the transverse elements along homologues axis. Through chromosomes transition from zygotene 
stage to pachytene stage; the transverse element associates to the lateral element (LE) from one side 
and to the central element (CE) from the other side.  And by the end of pachytene stage the 
synaptonemal complex (SC) is fully polymerized, forming SC structure of 100 nm in diameter.  
Modified from (Sanchez-Moran, 2008) 

 

1.3.5.4. Meiotic recombination 

Meiosis significance relies on the production of new genetic composition. Genetic 

variation results from successful parental homologues crossovers. Meiotic 

recombination events are conserved inter species. Recombination initiates when the 

double strand breaks (DSBs) form as early as G2, followed with the 5` strand 

resection step, afterwards, recombinases-mediated single strand invasion allow 

intermediate structures formation, which if resolved properly, mature crossovers form 

(Figure 1.14).   
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Figure (1.14): Schematic representation of the DNA DSB repair pathway in meiosis 
Meiotic recombination initiates after DSB induced formation by SPO11 protein, after that the MRN 
complex allow the 5` DNA DSB end resection, forming 3` ssDNA molecules. After that, D-loops form 
as a result of recombinases mediated 3`ssDNA invasion to its homologue. D-loops could be repaired 
either by synthesis-dependent strand annealing pathway (SDSA) where non crossovers (NCOs) is 
their fate, or it continues homologous recombination pathway, where D-loops stabilization allow 
second end capture proceeding to the stable double holliday junction (dHj) structures. The mature 
dHjs are resolved as COs, whereas the non-mature dissolute and generate NCOs. Adapted from  
Osman et al.( 2011)  

 

1.3.5.4.1. DNA double strand breaks (DSBs) formation 

DSBs formation at early leptotene results in recombination initiation (Sun et al., 

1989). SPO11, a topoisomerase type VI, allow DSBs since its tyrosine residue which 

ligates and dissociates with DNA to promote break formation (Keeney et al., 1997). 

The DNA-SPO11 association lead to the enhancement of the recombination via 
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recruiting ɣH2AX to the DSBs sites. Several studies showed that SPO11 protein is 

intra-species conserved. Arabidopsis possess three paralogues of SPO11; SPO11-1, 

SPO11-2 and SPO11-3 (Hartung and Puchta, 2000; Grelon et al., 2001; Stacey et 

al., 2006). Studies on spo11-1 mutants as well as spo11-2 mutants showed that both 

had fertility defects, neither pairing, synapsis or homologous recombination take 

place in these mutants (Stacey et al., 2006; Sanchez-Moran et al., 2007). From these 

findings, it was proposed that both AtSPO11-1 and AtSPO11-2 are needed for DSBs 

formation, and that they work synergistically as a heterodimer (Sanchez-Moran et al., 

2007; Stacey et al., 2006). On the other hand, reports indicated that the AtSPO11-3 

plays a role in DNA repair during DNA replication (Stacey et al., 2006) 

 

Several other proteins were found to show a similar phenotype to Atspo11 mutants. 

Recombination blockage in the Atprd-1, Atprd-2 and Atprd-3 mutants confirmed the 

role of AtPRD1, AtPRD2 and AtPRD3 in DSB formation (De Muyt et al., 2009). 

Moreover, research on yeast showed that DSBs formation requires nine more 

proteins besides to SPO11. These proteins were; Mre11, Rad50, Xrs2, Mer2, Mei4, 

Ski8, Rec102, Rec104, and Rec 114 (Grelon et al., 2001; Keeney, 2001). These 

results as well as the presence of other proteins which mutants mimic Atspo11 

phenotype suggest that, likely, other proteins are involved in DSBs formation in 

Arabidopsis, yet to be confirmed; hence extra work should be done to emphasize 

this.    

 

1.3.5.4.2. DNA DSBs processing  

Once DSBs are formed, the phosphorylated form of H2AX (ɣH2AX) at serine 139 is 

recruited to the DSB site (Shroff et al., 2004). By that time, SPO11 association to the 
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5`end of the break, allows resection of the 5` end, and so results in 3` ends single 

stranded DNA (ssDNA) formation. The 5` DNA resection is done by MRX/N complex; 

MRE11, RAD50, and XRS2/NBS1, in budding and fission yeast (Puizina et al., 2004; 

Bleuyard et al., 2004; Waterworth et al., 2007). The yeast MRN/X complex role in 

DSBs 5`end resection was confirmed in several reports (Nairz and Klein, 1997; Usui 

et al., 1998; Hartsuiker et al., 2009a; Nicolette et al., 2010). Arabidopsis homologues 

of the MRX/N complex were referred to as MRN complex (Bundock and Hooykaas, 

2002; Gallego and White, 2005; Uanschou et al., 2007). The fact that Arabidopsis 

MRN complex is not needed for DSBs formation (Puizina et al., 2004) was confirmed 

by the fragments observed at early prophase I in the Atmre11 and Atrad50 mutants 

in Arabidopsis, showing defects in DSB repair rather than formation (Bleuyard et al., 

2004; Puizina et al., 2004; Unaschou et al., 2007). Moreover, analysis of 

Atmre11/Atspo11-1 double mutant showed a phenotype which lacks fragmentation, 

thus indicating that AtMRE11 allow DSB processing and do not play a role in its 

formation (Puizina, 2004). 

 

1.3.5.4.3. Single strand invasion 

The product of DSBs processing is 3`ssDNA end at both sides of the DSBs. Once 

the 3`ssDNA are formed, RecA-related recombinases; RAD51 and DMC1, 

attachment lead to the nucleoprotein filament formation, which allow strand invasion 

(Bishop and Zickler, 2004). Research on Arabidopsis recombinases showed the 

presence of six paralogues for RAD51, these are: AtRAD51, AtRAD51B, AtRAD51C, 

AtRAD51D, AtXRCC2 and AtXRCC3, however, one homologue is present for DMC1; 

AtDMC1 (Klimyuk and Jones,1997; Doutriaux et al., 1998; Osakabe et al., 2002; 

Bleuyard et al., 2005). RAD51 in budding yeast showed a mitotic role, DNA repair 



57 

 

using the sister chromatid as a template (Bishop et al., 1992; Shinohara et al., 1992), 

whereas in Arabidopsis two AtRAD51 paralogues; AtRAD51C and AtXRCC3, 

showed a role during meiotic homologous recombination (Bleuyard and White, 2004; 

Li, 2005). However, AtDMC1 is needed for meiotic single strand invasion (Neale and 

Keeney, 2006). rad51 mutants in Arabidopsis showed synapsis defects, besides of 

chromosome fragmentation, suggesting that the SPO11 induced DSBs were not 

repaired (Li et al., 2004), however, although mutants of dmc1 in Arabidopsis showed 

similarly asynaptic phenotype, leading to univalent at metaphase I, but cells did not 

show chromosomes fragmentation (Couteau et al., 1999), suggesting that DNA 

repair at the DSBs using sister chromatid as template (Siaud et al., 2004). These 

results show the importance of both recombinases, RAD51 and DMC1, for meiotic 

recombination in Arabidopsis. Recent studies on budding yeast showed a role for 

another protein; RPA, in meiotic recombination. RPA protein allows RAD51 loading 

at the ssDNA site suggesting that it might deal with secondary structures at the 

ssDNA (Alani et al., 1992). A study by Osman et al. (2009) reported that Arabidopsis 

possess five homologues for RPA, and that one of these proteins, RPA1a, plays a 

role in meiotic recombination. 

 

1.3.5.4.4. NCOS vs COs 

Once a D-loop structure is formed its fate to proceed to homologous recombination 

pathway depends on the presence of some protein complexes, which stabilize the D-

loop structure and allow the second end capture, proceeding to double holiday 

junction (dHj) structures, which could be resolved to COs or to NCOs. D-loops, the 

products of single end intermediates (SEI), are not stabilized, then it will be removed 

and synthesis strand annealing (SDSA) pathway of DNA repair will progress (Figure 
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1.14) ending up with NCOs. The high number of DSBs compared to COs emphasize 

that most of DSBs are resolved as NCOS. A round 10% of these 140 DSBs per 

meiocyte develop to COs (Sanchez-Moran et al., 2002), hence the rest (90%) are 

resolved as NCOs. Some reports indicated that CO to NCO pathway is decided at 

two steps; the first is at the SEI (Borner et al., 2004), where ZMM could play a role in 

SEI stabilization, since ZMM mutants in budding yeast show normal DSBs whereas 

abnormal SEI, and the second is after dHj formation, where AtMRI1/BLAP75 and 

AtTOP3a (Hartung et al., 2008) could act as a backup for the unsuccessful dHjs, 

leading to form NCOs. Moreover, Osman et al. (2011) reported that the 

recombination proteins foci at zygotene are three times more than COs. Suggesting 

that the excess foci have other functions rather than COs formation. 

 

1.3.5.4.5. CO interference and Class I &II COs 

COs distribution on chromosomes is nonrandom (Jones and Franklin, 2006), since 

bivalents which are CO free, are unlikely to be seen in the normal meiosis (CO 

obligation) (Jones and Franklin, 2006). Hence, the CO interference concept was set, 

when the CO is formed, it is unlikely to have other COs adjacent to it, however, the 

chance to have other COs increase at sites away from the original site (Jones and 

Franklin, 2006). Different interpretations were put to explain the CO interference 

context. Three models have been proposed the mechanical stress model (Kleckner, 

2004), the counting model (Stahl et al., 2004), and recently the chromosome 

oscillatory movement (COM) model (Hulten, 2011). Studies on yeast showed that CO 

interference is not seen in all COs (de los Santos et al., 2003). Moreover, a previous 

study by Copenhaver et al. (1998) on Arabidopsis suggests that 85% of COs show 

interference. From these results, COs distribution is thought to be two types; CO 



59 

 

class I and CO class II. And that Class I COs resemble COs sensitive to interference 

(de los Santos et al., 2003), which is the majority of COs in Arabidopsis (Higgins et 

al., 2004), whereas Clas II COs resembles COs which are interference insensitive 

(de Los Santos et al., 2003).The ZMM proteins; Zip1, Zip2, Zip3, Zip4, Mer3, Msh4 

and Msh5, are thought to play a role in class I COs (Borner et al., 2004). A study by 

Snowden et al. (2004) on the ZMM homologues in Arabidopsis AtMSH4/5 complex 

showed that AtMSH4/MSH5 stabilizes SEI and allows it to form mature dHj structure. 

Moreover, an Immunolocalization analysis for the AtMSH4/MSH5 localization during 

prophase I showed that it forms 30 foci at leptotene, which is reduced to 8 foci at 

pachytene (about the CO frequency estimated per cell) and that these foci are DSB 

dependent (Higgins et al., 2004; Higgins et al. 2008a), and their mutants (msh4, 

msh5) have complete synapsis (Higgins et al., 2004; Higgins et al. 2008a). Besides 

that, other proteins were proposed to have a role during class I of CO pathway; these 

are the bacteria MutL homologues; MLH3 and MLH1.  Dion et al. (2007) reported that 

MLH3 has a meiotic role, however MLH1 is involved in mitotic DNA repair besides to 

its meiotic role. A study by Jackson et al. (2006) showed that pachytene cells have 9-

10 foci for the AtMLH1 and AtMLH3, working as COs markers. Moreover Franklin et 

al. (2006) reported that mutants of Atmlh1 and Atmlh3 have normal SC, besides that 

the AtMSH5 localization show a normal phenotype, hence, proposed that MLH3 and 

MLH1 is important in the final stages of meiotic recombination. Since the MutL 

complexs were thought to play a role in dHjs conversion to COs. The class II COs 

were thought to involve MUS 81, and MMS4/EME1 proteins (de Los Santos et al., 

2003; Berchowitz et al., 2007; Higgins et al., 2008b). Although Atmus81 mutants 

have normal phenotype, however analysis of the Atmsh4/Atmus81 double mutant 

showed that ~1.25 COs were observed in the single Atmsh4 mutant whereas ~ 0.8 in 

the double mutant, suggesting that the extra reduction is due to AtMUS81 in Class II 
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CO pathway (Berchowitz and Copenhaver, 2008; Higgins et al., 2008b). Moreover, 

Oh et al. (2008) reported that MUS81 in budding yeast works as a back-up for 

unsuccessful Class I CO pathway. 

 

 1.3.5.4.6. dHj structure processing 

The progress of homologous chromosomes to COs depends on the resolvases which 

process the dHj structures. It was reported that GEN1 and YEN1 act as dHj 

resolvases in mammals and buddying yeast (Ip et al., 2008). Moreover, GEN1 has a 

role in CO formation, since it was found that it is able to rescue mus81 phenotype 

(Lorenz et al., 2010). The ability of RuvC, a bacterial resolvase, to rescue the mus81 

phenotype suggests that MUS81 has a relovase role (Ip et al., 2008).    

 

1.3.5.5. Meiotic recombination in the context of chromosome axes  

As recombination complexes proceed from early prophase I to pachytene, its 

association with the axis keeps SC association, leading to CO development, and 

allowing the NCO factors to dissociates from the SC (Moens et al., 2007; Terasawa 

et al ., 2007). In Arabidopsis, after the SPO11 initiates DBSs, H2AX phosphorylation 

is triggered, acting as a marker for DSBs (Shroff et al., 2004) on the axes (Sanchez-

Moran et al., 2007). Mutants of the axis associated components; Red1, Hop1, 

besides to cohesion Rec8, showed abnormal DBSs localization on the axis, 

suggesting a role for the chromosome axis proteins in DSBs distribution and 

positioning (Blat et al., 2002; Glynn et al., 2004). The AEs were not seen in the yeast 

red1 mutants (Rockmill and Roeder, 1990), besides to that, recombination defects 

were linked to the loss of 75% of the normal DSBs (Xu et al., 1997). The Arabidopsis 

chromosome axis protein, ASY1, (a HORMA domain containing protein) has a 
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confirmed localization on the AEs through both the immunolocalization as well as the 

immunogold electron microscopy (EM) (Armstrong et al., 2002). Studies on the asy1 

mutants showed that chromosome axis is disrupted. Besides that homologous 

recombination is severely affected, as AtDMC1 foci on the chromosomes were highly 

decreased in comparison to wild-type as well as chiamata (Ross et al., 1997; 

Sanchez-Moran et al., 2001), suggesting a role for AtASY1 in enhancing biased inter-

homologue recombination (Sanchez-Moran et al., 2007). Similarly, the ASY3 protein 

in Arabidopsis was found to load on the chromosome axis (Ferdous et al., 2012). The 

same study showed that the asy3 mutans lack polymerization of ASY1 on the axis, 

however, asy1 mutants showed normal ASY3 localization on the chromosome axis, 

suggesting that in Arabidopsis ASY1 Is needed for normal ASY3 localization but not 

vice versa. (Ferdous et al., 2012). Moreover, asy3 mutants similarly to asy1 mutants 

showed defects in the chiasma frequency, as well as confirmed defects in the 

recombination proteins loading on the axis in the asy3 mutants comparable to wild-

type (Ferdous et al., 2012).  

 

The Arabidopsis transverse filament protein AtZYP1 has been reported that it is 

involved in recombination. Since, the corresponding mutants in Arabidopsis with 

confirmed AtZYP1 depletion showed asynaptic phenotype besides to ~80% decline 

in CO in comparison to wild-type. Mutants analysis revealed COs presence between 

non-homologous chromosomes suggesting that AtZYP1 has a role in blocking the 

non-homologous recombination (Higgins et al., 2005). ZEP1, the rice TF homologue, 

has a confirmed meiotic role (Wang et al., 2010). Although ZEP1 mutants showed 

synapsis defects but their COs frequency was increased suggesting that ZEP1 has a 

role in interference (Wang et al., 2010). Previously, results on budding yeast SC 
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showed that zip mutants were interference free (Sym and Roeder, 1994) suggesting 

that the SC plays a role in preserving interference. Although other studies showed 

that interference apply prior to SC polymerisation (Borner et al., 2004). In addition to 

that the AtZYP1RNAi mutants had shown meiotic interference phenotype (Higgiins et 

al., 2005). From all of that the SC has showed that it does not mediate interference, 

else, further work is still needed to clarify the antagonistic SC roles seen in different 

species.  

 

The recombination initiates as early as chromosome axes starts to polymerize. As 

the recombination starts it allows pairing of homologous chromosomes and hence 

synapsis. At 400 nm distance in between homologous chromosomes synapsis starts. 

Several reports indicated that homologous chromosomes pairing is linked with DSB 

formation in Arabidopsis (Grelon et al., 2001) as well as in budding yeast (Rockmill et 

al., 1995; Peoples et al., 2002; Henderson and Keeney, 2004) and in Sordaria 

(Tesse et al., 2003). DSBs formation is required for helping the homologous 

chromosomes alignment in Sordaria. Rad51foci mediates bridge formation between 

aligned homologues. RAD51 play a role in chromosome homology search required 

for homologues pairing (Rockmill et al., 1995; Franklin et al., 1999; Moens et al., 

2002; Tesse et al., 2003; Clavente et al., 2005). Chromosomes search to find its 

homologue aid in their DSBs association in the chromosomes loops (Tesse et al., 

2003). Several proteins play a role in homologues pairing besides to RAD51. Mer3, 

Msh4 and Mlh1, had shown a role in homologues pairing in Sordaria (Storlazz et al., 

2010).  
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The importance of meiotic recombination for homologous synapsis was proposed as 

synapsis initiates at eventual CO sites (Zickler et al., 1992; Lichten, 2001; 

Mahadevaiah et al., 2001; Fung et al., 2004; Henderson and Keeney, 2004). A study 

on spo11 mutants of budding and fission yeast showed that the SC is not properly 

formed (Keeney et al., 1997). Later on, a study on yeast had revealed that DSBs 

rather than SPO11 are needed for synapsis, since defects seen in the spo11 mutants 

were repaired after DSBs creation via radiation exposure (Celerin et al., 2000). 

Moreover, experiments had been applied on Arabidopsis Atspo11 mutants showed 

similar results (Grelon et al., 2001; Sanchez-Moran et al., 2007). Recombination 

progress is still affecting synapsis even though after its initiation, since recombination 

proteins are still needed to complete synapsis. The Atmsh4 mutants showed reduced 

chiasma per meiocyte as well as synapsis delay (Higgens et al., 2004). However, 

studies on some species showed that DSBs are not a synapsis prerequisite, as was 

seen in Drosophilla females as well as C. elegans (Dernburg et al., 1998; Mckim et 

al., 1998). A study showed that the quantification of Rad51 foci comparable to the 

eventual COs exist during prophase I revealed an excess in foci (Moens et al., 2002). 

Suggesting that the extra Rad51 foci are needed to achieve pre-synaptic 

homologous chromosomes alignment, since the not needed foci dissociate from 

homologues as NCOs (Moens et al., 2002). These results on mouse within synapsis 

context, were also observed in plant genomes, and because both are members of 

higher eukaryotes, which possess large genome, so, the Rad51 is needed not only to 

mediate sequence homology search between homologous chromosomes, but also to 

permit full synapsis within larger chromosomes, however, the extra Rad51 foci fate is 

NCOs (Anderson et al., 2011).   
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1.3.5.6. COs link to chromatin  

The genome sites that are most likely to have COs are known as hotspots (Jeffreys 

et al., 2001; Myers et al., 2008; McVean and Myers, 2010). It was reported that 

chromatin status in budding yeast is related to CO distribution, and that COs are 

mostly exist in the open chromatin regions (Ohta et al., 1994; Wu and Lichten, 1994; 

Berchowitz et al., 2009). Moreover, the epigenetic code of the histones on chromatin 

plays a role on DSBs distribution and formation. The H3K4me3 (histone H3 lysine 4 

trimethylated) increase was reported around DSBs in budding yeast (Borde et al., 

2009), and that DSBs number decrease in the mutants of H3K4methyl transferase 

(Borde et al., 2009). Besides that, Wanger et al. (2010) reported that H2AK5Ac (H2A 

lysine 5 acetylation) mark DSB distribution in C.elegans. In addition to this, chromatin 

modifying proteins play a role in DSBs formation. HIM-17, a modifier for meiotic 

H3K9me2 in C.elegans is needed for normal DSBs formation (Reddy and Villeneuve, 

2004). Besides to all of that, the chromosomal structural proteins; cohesins and 

condensins, were found to affect DSBs distribution. Mutants of Rec8, the meiotic 

cohesion in budding yeast, affect DSB by blocking SPO11 (Kugou et al., 2009), 

whereas the condensing subunit CAP-D2 affects DSB distribution in C.elegans by 

affecting the length of chromatin axis (Tsai et al., 2008; Mets and Meyer, 2009).  

 

The genetic DNA material controls different vital cellular activities: replication, 

transcription, repair, recombination, and segregation. Thus a dynamic change in the 

chromosomal compaction level controls the occurrence of the cellular division during 

meiosis and mitosis (Deal and Henikoff, 2010). The molecular mechanisms of 

chromatin condensation are highly conserved among eukaryotic species. So, 
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although there are great differences in the eukaryotic chromosome size and 

organization, there are similar key proteins and structures involved in the chromatin 

compaction. 

 

 1.4. Arabidopsis as a Model Species 

Arabidopsis thaliana is a plant that has several traits making it a useful model for 

genetic, cellular and molecular biology. Arabidopsis is a model organism because of 

different key characteristics: it has only a six weeks-life cycle, it has a small size 

genome with about 157 million base pairs (Bennett et al., 2003) and five 

chromosomes. Furthermore, the entire genome is sequenced completely in 2000 by 

the Arabidopsis Genome Initiative (The Arabidopsis Genome Initiative, 2000).  In 

addition, the functions of its 27,000 genes and the 35,000 proteins they encode were 

studied extensively (Integr8–A. thaliana Genome Statistics). Moreover, the 

transformation protocol termed “floral dip” is carried routinely using Agrobacterium 

tumefaciens (Clough and Bent, 1998; Zhang et al., 2006) without the need for tissue 

culture or regeneration. Recently, Sanchez-Moran et al. (2007) developed cytological 

and ultrastructural techniques based on molecular cytogenetic protocols for studying 

chromosome dynamics in Arabidopsis.  For that all, Arabidopsis thaliana will be used 

in this research as a model to shed light on the role of histone proteins on the 

chromosome dynamics.    

 

1.5. Project Aims 

The chromatin histones play an essential role in preserving the meiotic and 

chromosome axis and organisation needed for meiotic recombination as well as 
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mitotic cell cycle. This project will focus on the analysis of two histone proteins 

isoforms in Arabidopsis during meiotic and mitotic phases. This is the first-in depth 

analysis of histones in this system. Although a few articles shed some light on 

histones role in mitotic chromosome structure in some organisms, but this is the first 

time to study histones role within cell cycle and meiosis of Arabidopsis. Moreover, 

these analyses are to fill the gap in the literature concerning histones role on 

chromatin dynamics within plants and higher eukaryotes. 

The aims of this project are: 

 To run an in silico analysis of both the linker histones isoforms as well as the 

core histone H4 copies in Arabidopsis. 

 To analyse Histone H1s isoforms role within meiosis and mitosis in 

Arabidopsis by analysing their corresponding knock-out and knock-down 

mutants. 

 To skip gene redundancy effect seen in the single H1 mutants via producing 

double histone H1 mutants and H4 identical forms in Arabidopsis. 

 To study the Histone AtH1.1 role within meiotic context by running genetic, 

molecular, and cytological techniques. 

 To investigate H4 role in carrying out the analysis of h4RNAi mutant lines, and 

H4 chaperon mutants.  
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1. Plant Material 

Seeds of Arabidopsis thaliana ecotype Columbia-0 (Col-0) as wild-type control as 

well as for T-DNA and RNAi mutant lines of histones H1, and H4 as shown in the 

table (2.1) were obtained from the European Arabidopsis Stock Centre (NASC)  

http://arabidopsis.info. See Table (2.1) for the list of all mutant lines seeds used.  

 

2.1.1 Growth conditions of plant material 

Seeds were sown in soil compost with one seed per pot. Plants were sown in the 

glasshouse at 18-25° C under 16 to 8 hours of light to darkness cycle, and irrigated 

two times a day. The growing plants were checked on a weekly basis, in which their 

phenotypic observations were recorded and compared to that of the control plants. 

 

 

 

 

 

 

 

 

http://arabidopsis.info/
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Table (2.1): Data of Seeds analysed for Histones H1, H4 and related mutants: Gene locus and 

mutants lines studied.  

 

 

 

Protein Gene Locus Mutant 

Type 

Line 

Histone H1 At5g08780 T-DNA N659488- Salk_090072 

Histone H1 At1g54260 T-DNA N877696- Sail_883~_F09 

Histone HON4 At3g18035 T-DNA N599887- Salk_099887 

Histone H1.3 At2g18050 T-DNA N665594- Salk_025209 

Histone H1 At1g48620 T-DNA N656137- Salk_007422 

Histone H1.2 At2g30620 T-DNA N321948- GK-116E08 

Histone H1.1-1 At1g06760 T-DNA N521410- Salk_021410 

HistoneH1.1-2 At1g06760 T-DNA N654890- Salk_128430 

Histone H1 At1g48610 T-DNA N586260- Salk_086260 

Histone H1 At1g72740 T-DNA N657654- Salk_065267 

Histone H1.1  At1g06760 RNAi N23980- CS23980 

Histone H4 

(HF01) 

At3g46320 RNAi N31351- CS31351 

FAS1 At1g65470 T-DNA FAS 1-3 N9930 

FAS 2 At5g64630 T-DNA FAS 2-3 N9929 

Drm1 

Drm2 

 Met  

Drm1 At1g28330 

Drm2 At2g33830 

Met1 At5g49160 

Triple T-

DNA 

 

N16387 

HDA6-7  T-DNA N66154 CRS+S 1-1 

FE1-0  T-DNA N9995 
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2.1.2. Seeds sterilization for growing on MS media 

Seeds were put to sterilize by immersing in 5% sodium hypochloride for 25 minutes, 

then were washed with 75% ethanol for 10 minutes. After that seeds were washed 

three times, 5 minutes each with sterile distilled water (SDW). A rotating shaker was 

used through sterilisation and washing steps to keep homogeneous seeds 

sterilization and washing. Sterilized seeds were placed on MS media. This day was 

recorded as day (0). The plates were left in fridge at 4° C for 3 days to vernalize. At 

day (3) plates were moved to 16° C room temperature and were checked on a 

weekly basis.     

 

2.1.3. Cisplatin treatment  

MS Plates previously prepared with 30 µM cisplatin were used to check DNA repair 

in Histone H1s selected mutant lines and Histone h4RNAi line besides to related 

mutant lines as well as Columbia-0 (Col-0) as control. At the beginning seeds were 

sterilized and vernalized as in part 2.1.2. 50 seeds were put to germinate on each 

single plate. Afterwards vernalized seeds were checked on days 11, 14 and 17, and 

then number of viable seeds and number of leaves per seed were recorded. Besides 

that plant growth rate was assessed in time scale manner depending on mutant time 

delay needed to get a similar leaves count to (Col-0) wild type.  

 

2.2. Molecular Genetics Techniques 

2.2.1. DNA extraction from plant  
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Leaf discs were collected from histone h1 and h4 mutant plants as well as wild type 

plants by closing sterile 1.5 ml microtubes over leaves, the resulting circular sections 

of the leaves were kept on ice. Then, 40 µl of freshly made extraction buffer (1 M Tris 

HCl pH 7.5, 1 M NaCl, 0.5 M EDTA, 10% SDS) was added to the tubes. Samples 

were macerated using autoclaved plastic grinders. After that, another 400 µl of 

extraction buffer was added, vortexed for 5 seconds and then were centrifuged at 

13,000 rpm for 5 minutes, forming a pellet of cellular debris and leaving the DNA in 

the supernatant. A total of 400 µl of the supernatant was transferred to a new sterile 

microtube, and 400 µl of cold isopropanol was added to precipitate the DNA. Tubes 

were shaken gently and left at room temperature for 2 minutes and then centrifuged 

at 13,000 rpm for 10 minutes to pellet the precipitated DNA. Supernatant was 

discarded, and 400 µl of 70% ethanol was added to the DNA pellet to wash and 

remove the salt. Samples were centrifuged at 13,000 rpm for 5 minutes and 

supernatant was discarded. The tubes were left open and inverted on a tissue paper 

to dry for about one hour, and then 50 µl of sterile deionized water (SDW) was added 

to each sample to dissolve the DNA. Samples were heated at 65° C for 10 minutes 

and centrifuged at 13,000 rpm for 5 seconds. Prepared samples were then stored at -

20° C, in order to be used later for further analysis. 

 

2.2.2. RNA extraction from plant tissues 

This experiment was carried in RNAse free environment in which all the needed stuff 

(tubes, pipette tips, SDW and pestles were exposed to diethyl pyrocarbonate 

(DEPEC) treatment to get away of any RNAses effect in them. DEPEC prepared 

solution in SDW (0.1:100) was used to immerse the desired equipments for at least 
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two hours and then autoclaved to inactivate DEPEC, afterwards were left to dry 

before use. Total RNA was extracted form chosen histones mutants lines plants as 

well as the wild type Columbia-0 using RNAse Miniprep kit (Qiagon) 

(http://www.qiagen.com) and following manufacturer`s instructions. Plant material of 

weight less than 100 mg immediately were placed in RNAse-free, 2 ml 

microcentrifuge tube and immersed in liquid nitrogen, grind thoroughly with a pestle 

until powder was formed. Liquid nitrogen was allowed to evaporate without allowing 

tissue to thaw. The “RLT buffer” (Qiagen) was added to the sample, then vortexed to 

remove broken and open cells. The sample was then transferred to “QIAshredder 

spin column” (Qiagen) to separate cellular debris. Then passed through an “RNeasy 

mini column” (Qiagen), which has silica membrane with RNA binding affinity, which 

was then washed with “RW1 buffer” (Qiagen) containing ethanol and finally eluted by 

RNase free (DEPEC treated) water. Prepared RNA samples were stored at -80° C.   

 

2.2.3. cDNA synthesis 

cDNA was synthesised from RNA using cDNA synthesis (Eugenio protocol) following 

the manufacturer`s guideline. 2 µI of RNA sample was placed in RNase free 

eppindroff, to which 1 µI of Oligo (dt) primer and 1µI of dNTP mix (10 mM of each; 

dATP, dTTP, dCTP, dGTP) was added. RNase free water was added up to 12 µI. 

The samples were heated at 65° C for 5 minutes and immediately placed on ice.   

 

2.2.4. DNA agarose gel electrophoresis 

http://www.qiagen.com/


73 

 

Agarose gels were prepared for the identification of DNA material in each of the 

mutants and wild type samples.  1%, 1.2%, and 0.8% agarose gels were used for 

DNA, CDNA and plasmid samples respectively.  Agarose (Sigma) was dissolved in 

0.5X TBE via heating in a microwave. Gels were cooled, and Red Safe was added to 

them allowing DNA detection later, and then put to set for 20 minutes. Ready gels 

were immersed with loading buffer (0.5XTBE) and DNA samples were loaded to the 

gel wells besides to 1 Kb Ladder which permits molecular weight determination of 

DNA bands. DNA PCR products were ready to be added immediately to gels, 

however cDNA and plasmid were mixed with 5X DNA loading buffer. Gels were run 

in Biorad electrophoresis set kits at 90 V for 45 minutes. Gel images were read by 

Gel-Doc XR imager using QuantityOne software.      

  

2.2.5. Primer design 

Primers were designed referring to the genomic DNA sequences and the TDNA 

insertion site of each specific mutant line. 18 - 21 nucleotide sequences were 

identified and selected to be used to match sites flanking TDNA sites. All primers in 

this study were supplied by Eurofins Genomics (Table 2.2) and (Table 2.3)  
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Line Locus Primers Primer sequence 

N659488 Salk_090072 At5g08780 Salk_090072_LP CTTCGAGTTCACATCCTGGAG 

  Salk_090072_RP CGGGTGAGAAGAAGACTGTTG 

N877696 Sail_883_F09 At1g54260 Sail_883_F09_LP GGTATGATGCGATGGTTTTTG 

  Sail_883_F09_RP TGCCAACTCATTCATTCCTTC 

N599887 Salk_099887 At3g18035 HON4 Salk_099887_LP TTTGGACTGCAATTTCGATTC 

  Salk_099887_RP TGTGTTAATCCGGCTTAATGG 

N665594 Salk_025209 At2g18050 H1.3 Salk_025209_LP CAAAGCCTCTCGGTAAATGTG 

  Salk_025209_RP TATTCTTCTTGTCCTGCTGCC 

N656137 Salk_007422 At1g48620 Salk_007422 LP AGATGGGAAGCATGAACAATG 

  Salk_007422 RP ATTGTCTCTTTCGAGCGTGTG 

N321948 At2g30620 H1.2 GK_116E08 GACCTCTTCATAGGTAGGGTGAGA 

  GK_116E08_Rv TCTTTGGTCGGATTCAACAAC 

N521410  Salk_021410 At1g06760 H1.1-1 Salk_021410_LP TCGGATGACCTTGTACATGTG 

  Salk_021410_RP AATTCCAAAATCAGAATCCGG 

N654890 Salk_128430 At1g06760 H1.1-2 Salk_128430_LP TTGAAATCCCACGTTTATTGG 

  Salk_128430_RP GGGAGTTTAAACGAGGCTTTG 

N586260 Salk_086260 At1g48610 Salk_08260_LP CCAGATTTGAGACCACCAGAG 

  Salk_08260_RP CGGCGTCTCAGCTACTGATAC 

N657654 Salk_065267 At1g72740 Salk_065267_LP ACCGATCCTTTACGAATCAGC 

  Salk_065267_RP TGGTCCATATCTGTCTGAGCC 

 

Table (2.2): Specific primer sequences for histone mutant lines genotyping   
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Line Locus Primer  sequence  

Salk-LBbi-3 

 T-DNA-BP 

T-DNA Salk-LBbi-
3 

ATTTTGCCGATTTCGGAA 

Sail-LB1 

 T-DNA-BP 

T-DNA Sail-LB1 GCCTTTTCAGAAATGGATAAATAGCCTTG
CTTC 

Gk08409 T-DNA GK08409 ATATTGACCATCATACTCATTGC 

 

Table (2.3): Primer sequences used to amplify T-DNA insertions, (LB: left border of T-DNA 
insertion). 

 

2.2.6. DNA amplification by Polymerase Chain Reaction (PCR) 

Amplification of genomic DNA, cDNA, and plasmid DNA was carried out through 

PCR.  Taq DNA polymerase ReddyMix (Invitrogen) following the manufacturer`s 

instructions was used with the designed primers for identification of plants genotype. 

Accurate amplification of definite nucleotide sequence was done by using proof 

reading Pfu DNA polymerase (Promega) following the manufacturer`s guidelines. 

Primers were prepared in 0.2 µM final concentration. PCR samples prepared by 

mixing 10 µl of TaqDNA polymerase ReddyMix  with 7 µl SDW to which added 1 µl of 

each primer in the primer combination; LP and RP or RP and BP, and 1 µl of desired 

DNA sample. Samples were spun in a mini centrifuge for few seconds. Then were 

transferred to a PCR machine The PCR thermo cycler program started with an initial 

DNA denaturation at 94° C for 1 minute, followed with up to 35 cycles of DNA 

Denaturation, annealing and elongation respectively. And ended up with a final 

elongation for 10 minutes as is shown in Table (2.4). Although DNA amplification via 

PfU DNA polymerase was done following the same PCR program but PCR solution 

mix needed a hot start step at 94° C before the addition of the PFU DNA polymerase.  
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   PCR cycles Temperature (°C) Time (minutes) Number of cycles 

Initial Denaturation  94 2 1 

Denaturation 94 1  

35 Annealing 5° C below Tm of 

primers 

1 

Elongation 72 1 minute per Kb 

Final Elongation 72 10 1 

 

Table (2.4): Standard PCR reaction (Tm=melting temperature)  

 

2.2.7. DNA band extraction from gel 

DNA bands within agarose gel were identified using UV light illuminator. The desired 

DNA bands were cut with a clean sharp scalpel. DNA bands were extracted from the 

gel following QIAquick Gel Extraction Kit (QIAGEN) manufacturer`s protocol. The cut 

DNA gel bands were dissolved in QG buffer by heating at 50° C for 10 minutes with 

vortexing intermittently. Isopropanol was added to the sample and then the sample 

was loaded to the QIAquick column and centrifuged at 13,000 rpm for 1 minute, a 

step which allows DNA binding to the QIAquick column. Then QIAquick column was 

washed with buffer PE and centrifuged at 13,000 rpm for 1 minute. DNA was eluted 

by applying buffer EB, centrifuged at 13,000 rpm for 1 minute then heated to 65° C 

for 10 minutes to remove any nucleases, spun and stored at -20° C.  

 

2.2.8. DNA sequencing 
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DNA samples extracted from agarose gels for each of (Ath1.1-1, Ath1.1-2, and 

Ath1.1-2 x Ath1.1-1) were prepared for sequencing. 10 µl DNA sequencing reaction 

was prepared as shown in the Table (2.5). Samples were sequenced by the 

Functional Genomics Laboratory in the University of Birmingham.  

DNA Sequencing Reaction Concentration 

DNA template 2 µl 

Primer LP or RP 3.2 µl  (1pmol/µl) 

Sigma water (nuclease free) 4.8 µl 

 Total Volume 10 µl 

 

Table (2.5): DNA sequencing reaction. 

 

2.2.9. DNA sequence analysis 

The obtained DNA sequencing results were analysed with Chromas software. DNA 

sequences were checked for homology via TAIR search for the wild type bands, and 

TDNA express search for the mutant bands, and National Centre for Biotechnology 

Information (NCBI) (www.ncbi.nlm.nih.gov) used to search both genomic DNA and 

TDNA sequences. 

 

2.2.10. Cloning 

DNA was cloned into pDrive vector (Qiagen) (Figure 2.1) prior to sequencing. The 

Cloning mixture was prepared as in Table (2.6), and then was left overnight at 15° C. 

http://www.ncbi.nlm.nih.gov/
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5µl of this cloning mixture was transformed into DH5α competent cells as in Table 

(2.7). Afterwards, 100 µl of the transformation mixture prepared in Table (2.7) was 

spread on LBA agar plates treated with (40 μg/ml) 5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside (Xgal), (100μg/ml) ampicillin and (0.1 mM) isopropyl beta-D-

thiogalactopyranoside (IPTG). Plates were incubated overnight at 37° C. Next day 

the plates were checked for any growth. The DH5α cells with ampicillin resistance 

are the ones with successful pDRIVE transformation, hence the pDRIVE contains 

ampicillin resistance gene. The presence of white colonies on the plates is an 

indicative of successful transformation, since the DNA insertion in the lac Z gene (in 

the pDRIVE) will inactivate it, and so the Xgal substrate in the plates will not be 

changed. However, if the DNA insertion failed in the pDRIVE lac Z gene, so β-

galactosidase will be expressed, which metabolise Xgal (with IPTG presence) 

producing a blue coloured product. The plasmid DNA isolation from the successfully 

transformed DH5α cells (white colonies) was carried out using the QIAprep Spin 

Miniprep Kit (Qiagen; http://www.qiagen.com). DNA sequencing and analysis was 

applied as in 2.2.8 and 2.2.9. 

 

Cloning mixture Volume (µl) 

cDNA template 4 

pDRIVE (Qiagen) 1 

2X ligation buffer 5 

Total volume 10 

 Table (2.6): Cloning mixture preparation. 

 

http://www.qiagen.com/
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DNA transformation to DH5α competent cells Volume  Duration Treatment 

Cloning mixture (Table 2.6) 5 µl   

DH5α competent cells 1 ml 30 

min(s) 

ice 

Heat shock  30 

sec(s) 

42° C 

Allow heat shock proteins reactivation  2 min(s) ice 

Add LBB to allow cell recovery 250 µl 1 hour Agitate at 37° 

C 

100 µl The prepared mixture was spread onto agar plates treated with selective antibiotics. 

Ampicillin resistant colonies will grow on the plates.   

 

Table (2.7): DNA transformation to DH5α competent cells 

 

 

Figure (2.1): pDRIVE Cloning Vector.  
3.5 Kb pDRIVE Vector contains multiple selection gene sites. Two dual antibiotic resistant genes for 
kanamycin and ampicillin antibiotics as selective markers. Besides to that, lacZ gene show blue/white 
colony selection. So, if the desired DNA was successfully ligated to the vector, inactive lacZ gene 
results in the appearance of white colonies. However, the blue colonies arise when the lacZ is 
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expressed, as the β-galactosidase conerts the Xgal (under the induction of IPTG) into blue-coloured 
product. 

 

2.2.11. Preparation of competent E. coli cells 

Competent E. coli DH5α from glycerol stocks was streaked on a Lysogeny Broth (LB) 

agar plates, then incubated overnight at 37° C. Single colonies were inoculated 

separately in 5 ml of LB media, and left to grow overnight at 37. 2 litre flask was 

inoculated with 100 ml of LB media, to which then 200 µl of the formed culture 

solution was added and put to grow at 37° C with shaking at 250 rpm until optical 

density (OD550) recorded was between 0.3-0.4. DH5α cells was placed immediately 

on ice for 10 minutes and transferred to pre-cooled 50 ml centrifuge buckets. Cells 

were centrifuged for 5 minutes at 3000 rpm in 4° C Beckman Centrifuge. Supernatant 

was discarded however pellet with cells were re-suspended gently by swirling in 20 

ml of ice-cold TFB1 and incubated on ice for 2 hours, then centrifuged for 5 minutes 

at 2000 rpm in 4° C Beckman centrifuge. After which supernatant removed, cells 

were re-suspended by swirling in 4 ml of ice-cold TFB2. 50 µl aliquot of prepared E. 

coli DH5α cells were transferred into 1.5 ml sterile microtubes gently. Tubes then 

were frozen rapidly in liquid nitrogen and stored at -80° C. 

 

2.2.12. Restriction Enzyme digestions 

The following table (Table 2.8) shows the restriction enzymes used in the 

experiments with their typical working conditions 
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Enzyme Company Requirements Digestion 

temperature 

Inactivation treatment 

Buffer BSA Heating Time 

XhoI Biolabs 4 BSA 37° C 65° C 15 minutes 

KpnI-HF Biolabs 4 No 

BSA 

37° C 65° C 15 minutes 

 

 Table (2.8): Restriction enzymes: Requirements and conditions. 

 

2.3. Cytology 

2.3.1. Meiotic Cytology Preparations 

Arabidopsis buds fixation and chromosome preparation was done referring to 

Armstrong et al. (2009). Immature Arabidopsis flower buds for both histones mutant 

lines and the control (Col-0) were removed from the plant and fixed in 3:1 fixative (3 

ethanol: 1 glacial acetic acid). The inflorescences were fixed at room temperature. 

The fixative was replaced after 24 hours with freshly made fixative. Flower buds were 

washed in 0.01 M citrate buffer (pH 4.5) three times, five minutes each. Then the 

buds were separated from the inflorescences and digested (to break the cell wall) in 

1% enzyme mix of 0.3% (w/v) pectolyase, 0.3% (w/v) cytohelicase, and 0.3% (w/v) 

cellulose dissolved in citrate buffer for 90 minutes at 37° C (Incubation in a moist 

chamber). Then, the enzymatic digestion was stopped by adding ice-cold water. 

Buds were transferred individually to clean slides with a small amount of buffer (using 

a glass Pasteur pipette) and then macerated with a needle. The cells were kept wet 

by adding buffer if needed.  10 µl of (60%) acetic acid was added to the slide, and it 
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was heated on a 45° C hotplate for 30/60 seconds. The slide was removed from the 

hotplate and an extra 10 µl of 60% acetic acid was added. Afterwards, 100 µl of 

freshly made cold fixative 3:1 was added to the slide, around and on top of the 

material area. The slide was washed with again with 100 µl of 3:1 fixative and dried 

with a hair drier. The cells were stained with 4`-6`-Diamidino-2-phenylindole (DAPI) in 

Vectashield at 1µg/1µl; 7 µl of DAPI Vectashield solution was added on the top of the 

slide and covered with a coverslip. Prepared slides were kept in darkness, and 

checked using fluorescence microscope (Nikon90i) with a DAPI filter and NIS-

Elements AR software. 

 

2.3.2. Fluorescence in situ Hybridization (FISH) 45S/5S probes preparation 

The meiotic chromosomal rDNA segments were labelled using labelled 45S/5S rDNA 

probes during FISH. Plasimds used in the production of the rDNA probes are 

described in Table (2.9). rDNA labelling mixtures were prepared for each of the 45S 

and the 5S rDNAs as is shown in Table (2.10). Prepared mixtures were then passed 

through the labelling procedure shown in Table (2.11). Through this research the 45 

S is labelled with DIG (appear as green signal under the epifluorescent microscope) 

and the 5S with BIO (appear as red signal under the epifluorescent microscope). 
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Probe Plasmid (Ref) Plasmid source/description  

5S rDNA  pCT4.2 (Campell et al., 

1992) 

500 bp of A.thaliana cloned in PBlu 

45S rDNA pTa71 (Gerlach and 

Bedbrook, 1979) 

9 Kb of EcoR1 fragment of Triticum 

aestivum compose of the rDNA genes; 

18S-5.8S-25S and spacer regions) 

 Table (2.9):  Plasmid description for the 45S/5S rDNA probes production 

 

 
Material  Quantity (μl) 

Plasmid Table (2.7) 3 

Biotin (BIO) or Digoxygenin (DIG) Nick translation mix (Roche) 
(Biotin illuminate as red colour, and Digoxygenin as green) 
 

4 

SDW 13 

Final volume 20 
Table (2.10): rDNA probe labelling mixture.  

 
 

 

rDNA labelling reaction Temperature Duration 
(min) 

Incubation 15º C 90  

To stop the reaction add 1μl of 0.5M EDTA (pH8.0), 
then heating 

 
65º C (water bath) 

 
10  

 

Table (2.11): rDNA probe labelling procedure 

 

2.3.3. Fluorescence in situ hybridization (FISH) 

FISH was carried out according to protocols previously published (Fransz et al. 

1998; Sanchez-Moran et al., 2001; Armstrong and Jones 2003). 
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Meiotic metaphase I slides were washed in 100% ethanol for about five minutes, then 

washed in 4T (4XSSC-0.05 % Tween 20©) for one hour to remove antifading. 

Another washing with 2XSSC (0.3 M NaCl, 0.03 M Sodium Citrate, pH 7.0) at room 

tepreature for ten minutes. After that digested with Pepsin (Sigma) (0.01 % in 0.01 % 

M HCl) at 37° C for 1.5 minutes. Then slides were washed in 2XSSC at room 

temperature for ten minutes, fixed in paraformaldehyde 4% pH 8 for ten minutes, 

washed in sterile deionized water for some seconds. Dehydrated through ethanol 

series, 70, 90, 100 %, respectively, for two minutes each, then slides were drained. 

20 µl of 45S and 5S probes were added on each of the slides and sealed with a 

coverslip (22x22mm). Coverslip edges were glued and then slides were heated on a 

hotplate at 70° C for 4 minutes. The slides were incubated in a moist chamber at 37° 

C overnight allowing probes to hybridize. Then slides were washed three times, five 

minutes each in 50 % formamide-2XSSC at 45° C. After that washed once in 2XSSC 

at 45° C for five minutes, washed once in 4T (4XSSC-0.05 % Tween 20©) at 45° C 

for five minutes. Finally washed once in 4T at room temperature for five minutes. 20 

µl per slide of decided antibodies was added to each slide; anti-DIG-FITC, 

Streptavidin-rhodamine- antibiotine texas red (5ng/µl). Slides were covered with 

parafilm and incubated in a moist chamber at 37° C for 30 minutes. Slides were 

washed in 4T, three times, five minutes each. One wash with SDW followed that. 

Slides were dehydrated by passing them in 70%, 85%, and 100% ethanol 

respectively, each for two minutes. FISH prepared slides were viewed with 

fluorescence microscope (Nikon E90i) having filters for DAPI, FITC and TRITC and 

equipped with an image capture and analysis system. 
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2.3.4. Immunolocalization 

2.3.4.1 Squash Immunolocalization Method in Arabidopsis  

Inflorescences of proper size at different meiotic stages were removed from both wild 

type and mutant plants and fixed in 4% paraformaldehyde (ice cold) pH7.3 for 10 - 20 

minutes, then washed three times with PBS (0.1% Triton X-100) in total for ten 

minutes, followed by one wash with citrate buffer for few seconds, then were put for 

enzyme digestion using 1% cytohelicase at 37° C  for 90 – 120  minutes , then 

washed three times with PBS (0.1% Triton X-100) in total for 10 minutes, five buds 

per slide were dissected to release anthers and after that slides with dissected 

anthers were put to digest with 1% cytohelicase at 37° C for ten minutes, 10 µl 1% 

lipsol was added on the slide with anthers, cover slip was put and squashed onto the 

slide and immersed in liquid nitrogen, then cover slips were removed from the slide 

with a razor blade very quickly and put to dry on the bench, slides were washed three 

times in PBS (0.1% Triton X-100) for ten minutes, next 50 µl for each slide of primary 

antibody prepared in the 1% BSA PBS Blocking solution was added, slides with 

primary antibody were incubated at  4° C (in the fridge) up to two days. Then slides 

were washed three times with PBS (0.1% Triton X-100) in total for ten minutes (on 

the shaker), next 50 µl for each slide of secondary antibody prepared in the 1% BSA 

PBS Blocking solution was added, slides with secondary antibody were incubated at 

room temperature for forty five minutes in a dark place, washed three times with PBS 

(0.1% Triton X-100) in total for ten minutes (on the shaker), and finally prepared 

slides were counterstained with DAPI, 7 µl of DAPI dissolved in Vectashield solution 

was added on the top of the slide  and covered with a coverslip. Prepared slides 



86 

 

were kept in the fridge and checked using an epifluorescence microscope (Nikon90i) 

with a DAPI, FITC and TRITC filters and NIS-Elements AR software. 

 

2.3.4.2 Spreading immunolocalization method in Arabidopsis  

Buds of proper size for the meiotic stages to study were selected and dissected. The 

cut buds were put on a wet petri dish. 5 buds were left on each pre-washed slide 

(acetone, SDW, 70% ethanol respectively, 10 minutes each wash). Anthers were 

extracted from the buds in a drop 10 µl of Citrate Buffer. Exposed anthers were 

digested with 10 µl 1% cytohelicase mix in a moist chamber at 37° C hot plate for 10 

min. Anthers were macerated with brass rod, then 10 µl of cytohelicase mix was 

added. Slides were put at 33C° hot plate for 4/5 minutes. Digested anthers were 

exposed to 10 µl of 1% lipsol. Meiocytes area was marked with diamond pen then 

slides were put on a hot plate at 37° C for 4-6 minutes to allow meiocytes spreading 

on the slides. Meiocytes were fixed on the slides with 10 µl ice-cold 4% 

paraformaldehyde PH 8 and after that were left to dry for 2 hours. Slides were 

washed three times with PBS (0.1 % Triton X-100) five minutes each. Slides were 

immersed in 1 % BSA PBS solution at room temperature for 10-20 minutes as a 

blocking step. 50 µl (1/500) primary antibody blocking solution mix was put on a 

parafilm piece.  Slides were sealed with parafilm and incubated at 4° C overnight in a 

moist chamber. Next day parafilm was peeled off and slides were washed three times 

with PBS (0.1 % Triton-X100), five minutes each. 50 µl of secondary antibody-

Blocking solution mix was dropped on parafilm. Slides were incubated in dark at 

room temperature for 45 minutes. Slides were washed three times in PBS (0.1 % 
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Triton X-100). Slides were counterstained with DAPI. Slides were stored at 4C in 

fridge and later were checked with epifluorescence microscope (Nikon90i) with a 

FITC, DAPI and TRITC filters and NIS-Elements AR software.         

 

2.3.5. Pollen viability Assessment by using Alexander Stain (Alexander, 1969) 

Mature inflorescences were selected and removed from wild type and mutant plants. 

About six anthers from each inflorescence were put on each slide to which two drops 

of water were added before releasing anthers and then stained using 10µl of 

Alexander stain. Alexander stain is composed of 10ml Ethanol (95%), 1 ml Malachite 

Green (1% in 95% ethanol), 5ml Fuchsin Acid  (1% in water), 0.5ml Orange G (1% in 

water), 5g Phenol, 5g Chloral Hydrate, 2 ml Glacial acetic acid, 25 ml Glycerol, 50 ml 

distilled water. Coverslips were used to release pollen grains from anthers via  

squash method. Then slides were stored at room temperature for at least 12 hours to 

permit enough time for the stain to penetrate into pollen grains and studied under 

light microscope. 

 

2.3.6 Fluorescence microscopy and image analysis 

Epifluorescent microscope was used in fluorescent cytological preparations study 

analysis, and Nikon digital camera for image capture. ELS Software Imaging System 

was applied in captured images analysis.  

 

2.4. Genetic Crossing Of Plants  
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Knock-Out mutant lines with homozygous T-DNA insertions were crossed as shown 

in the table below. Crosses were done in reciprocal manner in which each line act as 

donor once and as recipient another time. In recipient plants, 3-4 inflorescences with 

proper size, nor small or mature, were selected and the ones that did not match were 

removed. Buds of the right size were emasculated using forceps under a light 

microscope, and all unwanted tissues and immature anthers surrounding the 

stigmata were taken out under sterile conditions. Donor plants containing mature 

flowers were used to pollinate the exposed stigmata under a binocular. Pollinated 

plants were labelled and allowed to grow under wet conditions for 2 days. 20 days 

later pollinated stigmata developed to mature siliques. Seeds were harvested and 

stored at 4° C in the cold room and were ready for sowing. 

 

2.5. Data Statistical Analysis 

Statistical calculations; means, standard deviations and standard error of the wild 

type and mutant plants were calculated and analysed using Microsoft Office Excel 

2010. T-test was used to calculate the P-value, which indicates the significance of 

the difference of the means between the mutants and the wild type.  T-test was used 

to compare the difference between the means of the silique size and the seed 

number of the mutant lines and the wild type plants using EXCEL software. 

 

2.6. List of Websites 
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Source Website 

ChromDB http://www.chromdb.org/org_specific.html?o=ARATH 

Genevestigator for Protein 

expression: Microarray 

https://www.genevestigator.com/gv/ 

 

Gene description  http://www.arabidopsis.org/cgi-bin/bulk/genes/gene_descriptions 

 

RNAse Miniprep kit (Qiagon)  http://www.qiagen.com 

NASC: http://arabidopsis.info/ 

 

NCBI http://www.ncbi.nlm.nih.gov/guide/ 

 

NCBI, BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

Sequence alignment: http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

 

T-DNA express http://signal.salk.edu/cgi-bin/tdnaexpress 

 

Tm calculator: http://www6.appliedbiosystems.com/support/techtools/calc/ 

 

Table (2.12): Data sources web links. 

 

 

 

http://www.chromdb.org/org_specific.html?o=ARATH
https://www.genevestigator.com/gv/
http://www.arabidopsis.org/cgi-bin/bulk/genes/gene_descriptions
http://www.qiagen.com/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www6.appliedbiosystems.com/support/techtools/calc/
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Chapter 3 

 Knocking Down Histone H4 in Arabidopsis 
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3.1. Introduction 

Histone H4 is one of the four core histone proteins (H2A, H2B, H3 and H4) that build 

up the eukaryotic nucleosome (Wolffe, 1998).   DNA-Histone association permits the 

chromatin organization into the nucleosome fibre, which appearance is known as 

“beads on a string”. Chromatin dynamics permits its shifting between different 

chromatin compaction structures; 10 nm fibre, 30 nm fibre and 300 nm fibre. Thus 

DNA could carry on its vital processes in a flexible way; DNA replication, repair and 

transcription, as well as mitotic and meiotic divisions.  

 

Histone H4 can be subjected to different modifications; biotinylation, acetylation and 

methylation. These different modifications have shown different histone H4 roles. 

Previous reports showed that biotinylation of H4 at residues K8 and K12 might 

enable cellular responses to DNA double strand breaks and proper chromosomal 

condensation during mitosis in human cells (Kkothapalli et al., 2005; Kothapalli and 

Zempleni, 2005; Zempleni, 2005). Furthermore, acetylation of lysine 16 on H4 seems 

to allow gene transcription machinery to be activated either by changing the higher 

order chromatin structure organisation or altering interaction of nuclear proteins-

chromatin association (Shogren-Knaak and Peterson, 2006). Moreover, Fraga et al. 

(2005) reported that the loss of H4 K16 acetylation is mostly seen in some cancers. 

In addition, a study by Corsini and Sattler (2007) showed that Histone H4 

dimethylated lysine 20 (H42K20) plays a role in DNA damage repair by recruiting the 

DNA damage repair factor 53BPI to DNA double-strand break sites. Furthermore, 

H42K20 seems to be able to control transcription (Corsini and Sattler, 2007).   
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Histone H4 protein sequence is highly conserved during eukaryotic evolution, to the 

point that in Arabidopsis there are eight loci encoding for histone H4 with nearly 

identical nucleotide sequences but with some differences, although these genes 

encode for a H4 protein that is identical for all. Furthermore, the Blast alignment of 

histone H4 protein sequences in human (HS) and Arabidopsis (AT) showed that their 

match reaches 98% identity only differing in two amino acids but keeping 100 % 

similar characteristics (Figure 3.1). Thus, in order to carry out a genetic analysis of 

H4 we analysed a histone H4 RNAi knock down mutant to investigate the role of H4 

in Arabidopsis. 

 

Score Expect Identities Positives Gaps 

198 bits(504) 2e-71() 101/103(98%) 103/103(100%) 0/103(0%) 

 

 

 
Hs (H4)1  MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK  60 

          MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK 

AT (H4)1  MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLK  60 

 

Hs (H4)61 VFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQGRTLYGFGG  103 

          +FLENVIRDAVTYTEHA+RKTVTAMDVVYALKRQGRTLYGFGG 

AT (H4)61 IFLENVIRDAVTYTEHARRKTVTAMDVVYALKRQGRTLYGFGG  103 

 

 

Figure (3.1): BlastP alignment (NCBI) of Histone H4 protein sequence in human (Hs) and 
Arabidopsis (AT). 
Although H4 protein sequence Blast in Hs and AT showed that they differ in two amino acids (98% 
identity), but still their H4 amino acids share 100% similar characteristics (100% positives). Amino 
acids shaded with greenish background are non-identical. The positive sign (+) resembles different 
amino acids but still sharing the positive charge.  
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3.2. In silico analysis  

3.2.1. Arabidopsis histone H4 isoforms have identical sequence.  

The in silico analysis of Arabidopsis genome showed the presence of eight genes 

coding for histone H4: At1g07660, At1g07820, At2g28740, At3g45930, At3g46320, 

At3g53730, At5g59690, and At5g59970 (Figure 3.2). The protein sequence analysis 

showed that all of H4 isoforms were identical (Table 3.1),  (Figures 3.3 & 3.4 A&B). 

The identical amino acid sequence and the constitutive expression of all the H4 

isoforms in Arabidopsis suggest a redundancy of these genes. Thus, a T-DNA 

insertion h4 mutation for one of these isoforms will not show a visible phenotype in 

Arabidopsis as other isoforms would be perfectly functional (redundant). The 

possibility to obtain a plant with the eight H4 isoforms mutated is very low. The 

expression of histone H4 proteins using Genevestigator  has showed that histone H4 

is expressed constitutively during all of the Arabidopsis developmental stages; from 

seeds to siliques, as is shown by Figure (3.5). 
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Figure (3.2):  Arabidopsis Histone H4 genes map.  
Arabidopsis thaliana has eight genes encode for the Histone H4 protein, localized on four 
chromosomes out of the five Arabidopsis chromosomes, two genes on chromosome one (At1g07660, 
At1g07820), one gene on chromosome two (At2g28740), three genes on chromosome three 
(At3g45930, At3g46320, At3g53730) and two genes on chromosome five (At5g59690, At5g59970).  
http://www.arabidopsis.org/servlets/ViewChromosomes 
 

 

ocus Identifier 
Representative 

Gene Model 
Name 

Gene Conserved Domains  Gene Model Type 
 

Other names 

AT5G59690 AT5G59690.1 
DOMAIN/s: Histone H4  conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951) 

protein_coding 
 
 

AT1G07820 AT1G07820.1 
DOMAIN/s: Histone H4  conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951) 

protein_coding 
 

F24B9.8 

AT3G45930 AT3G45930.1 
DOMAIN/s: Histone H4 conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125)  Histone H4 (InterPro:IPR001951  

protein_coding 
 

F16L2.140 

AT3G53730 AT3G53730.1 
DOMAIN/s: Histone H conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951)  

protein_coding 
 

F5K20.30 

AT3G46320 AT3G46320.1 
DOMAIN/s: Histone H4 conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951)  

protein_coding 
 

F18L15.40 

AT5G59970 AT5G59970.1 
DOMAIN/s: Histone H4 conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951) 

protein_coding 
 

MMN10.3 
 

AT1G07660 AT1G07660.1 
DOMAIN/s: Histone H conserved site (InterPro:IPR019809), Histone-fold 
(InterPro:IPR009072), Histone core (InterPro:IPR007125), Histone H4 (InterPro:IPR001951) 

protein_coding 
 

F24B9.25 

AT2G28740 AT2G28740.1 histone 4  protein_coding 

F8N16.2 
F8N16_2 

HIS4 
HISTONE H4 

 

Table (3.1): Conserved domains of Arabidopsis histone H4 genes.  
All of Arabidopsis histone H4 genes have identical domains:  “conserved site (InterPro:IPR019809)”, 
“histone fold (InterPro:IPR009072)”, “histone core (InterPro:IPR007125)” and “histone H4 
(InterPro:IPR001951)”, TAIR, http://www.arabidopsis.org/cgi-bin/bulk/genes/gene_descriptions 

http://www.arabidopsis.org/servlets/ViewChromosomes
http://www.arabidopsis.org/servlets/TairObject?name=AT5G59690&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT1G07820&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT3G45930&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT3G53730&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT3G46320&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT5G59970&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT1G07660&type=locus
http://www.arabidopsis.org/servlets/TairObject?name=AT2G28740&type=locus
http://www.arabidopsis.org/cgi-bin/bulk/genes/gene_descriptions
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Figure (3.3): Clustalw2 alignment of Arabidopsis Histone H4 CDs.  

The eight H4 gene sequences are similar. “*” marks identical residues along the aligned sequences. 

http://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalw2-E20120621-104132-0454-

84544598-pg&tool=clustalw2&analysis=alignments.  

 

http://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalw2-E20120621-104132-0454-84544598-pg&tool=clustalw2&analysis=alignments
http://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalw2-E20120621-104132-0454-84544598-pg&tool=clustalw2&analysis=alignments
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Figure (3.4 A): Wu Blastp alignment of Arabidopsis histones H4 protein sequences.  

The eight  histone H4 proteins sequences show 100 % amino acid similarity or match. Wu-BLAST 

(TAIR). 

 

 

 

 

Figure (3.4 B): WU-Blast (TAIR) alignment of Arabidopsis Histone H4 proteins. 
 The eight H4 proteins are identical in terms of protein sequence.  
http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi)  
 

 

http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi


97 

 

 

 

Figure (3.5): Arabidopsis thaliana Histone H4 genes microarray profile. 

Genevestigator assessment of histone H4 expression through Arabidopsis developmental stages 

showed constitutive H4 proteins production through all stages following seed germination, passing 

seedling, rosette, flower and silique stages and up to seed senescence stage. Histone H4 expression 

intensity indicated high level of expression among all stages depending on the expression mean value 

calculation using the shown sample numbers  studied for each gene at a certain developmental stage. 

The Arabidopsis  H4 microarray profile shows five genes out of eight because some genes shows 

identical expression pattern as is shown in the following H4 pairs: (At1g07820 & At1g07660), 

(At3g45930 & At3g46320), (At5g59970 & At5g59690). Vertical dotted line represents the presence of 

other genes with identical expression (Hruz et al., 2008). 

 

3.2.2. Characterization of an h4RNAi mutant line 

The in silico analysis of Arabidopsis histone H4 protein showed that the eight H4 

proteins are identical and expressed through all the plant development stages. 

Hence, the best strategy to analyse H4 role within the nucleus would be by obtaining 

a knock-down mutant affected in all these isoforms. Therefore, a ChromDB h4RNAi 

line (CS31351-N3135) was analysed. The RNAi line was produced using the cDNA 

of the At3g46320 H4 gene (Figure 3.6). The constructs of h4RNAi were prepared by 



98 

 

using the pFGC5941d vector for the build-up an HF01 (Histone Four 1) double 

stranded RNA construct as shown in Figure 3.7.   

 

 

 

 

 

Figure: 3.6 ChromDB H4 genomic model.  

 
 
 
 
 

 

Figure (3.7): HF01 ds RNA construct (T-DNA region).  
The schematic diagram represents h4

RNAi
; Ath13-CS31351, construct.   

 

3.2.3. h4RNAi mutant phenotype 

The investigation of histone h4RNAi mutant line showed differences from the wild-type 

phenotype. The h4RNAi developmental rate was faster than that observed in the wild-

type plants (Figure 3.8 A). So that, the h4RNAi showed flower appearance, apical 

shoot growth and silique formation before that observed in the Wild-type plants. Later 

on when the seed pods mature, gaps were observed in some h4RNAi plants (Figure 

3.8 C). The plants which showed these gaps were assessed later for their fertility 

level comparable to WT (Figure 3.8 B).    

                                                                     HF01       CHSA intron         HF01         
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Figure (3.8): Phenotype of h4
RNAi

 mutant in comparison to wild-type plants. 
The h4

RNAi
 plant showed (A) delayed faster flowering and growth than wild-type. (C) h4

RNAi
 plants 

showed reduced siliques with little seed-set content (C) compared to WT. (B) WT silique. (C) h4
RNAi 

silique. The h4
RNAi

 line showed 47.3 % reduction in seed-set of the WT. Black arrows show gaps in 
between seeds.  

 

3.2.4. Fertility analysis of Arabidopsis thaliana h4 knock-down mutant lines 

Fertility level was assessed in different h4RNAi lines depending on seed sets and 

silique length in both mutant lines and the wild-type plants grown in parallel. The 

results showed that as these mutant lines presented different knocked down levels, 

and so plant phenotypes varied. Some plants showed a phenotype similar to the WT, 

whereas, others were a little affected and others severely affected. The results 

showed that h4RNAi mutant displayed 47.3 % seed set loss compared to wild type 

(p=1.99135E-28, T-test). Siliques of h4RNAi mutants showed about 23.56 % reduction 

C B 

WT 

h4RNAi A 
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in length referring to wild-type (p=1.654E-15, T-test). Figures (3.9 A) and (3.9 B) 

shows siliques length mean and seed sets mean respectively for the Arabidopsis 

wild-type and h4RNAi line.    

    

Figure (3.9): Fertility of Arabidopsis histone h4
RNAi

 mutant line in comparison to wild-type 

plants.  

(A) Silique length (N=50). (B) Seed set (N=50).  ***=P<0.005, T-test. Error bars = standard error of the  
mean.  

 

3.2.5. Meiotic cytological analysis of histone h4RNAi mutant line  

The confirmed h4RNAi mutants reduced fertility phenotype indicated a possible role for 

H4 protein on Arabidopsis chromosomes behaviour through meiosis. To check this, 

cytological preparations were made from h4RNAi mutant lines and the corresponding 

wild-type plants. Several abnormalities were identified in histone h4RNAi line within 

meiosis compared to the wild type (Figure 3.10) (Table 3.2). Although at leptotene 

(Figure 3.10 G) appeared very similar to the wild type (Figure3.10 A), however at 

zygotene (Figure 3.10 H) some chromatin fragmentation was observed comparable 

to the non-fragmented chromatin in the wild-type (Figure 3.10 B). Moreover, at 

pachytene more chromatin fragmentation was observed (Figure 3.10 I&J). 

Furthermore, homologous chromosomes discontinuous synapsis was also observed 

(Figure 3.10 K). Some pachytene meiocytes in h4RNAi mutants (Figure 3.10 L&M) 

*** 

B 

*** 

A 
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showed that the nucleolar organizing regions (NORs) located on chromosomes 2 and 

4 were affected. The NORs appeared not as just one region like in wild-type but 

severely separated in different regions and showing a remarkable different 

condensation compared to wild-type (Figure 3.10 C). At diakinesis (Figure 3.10 O) 

abnormal non-homologous connections could be observed specially involving 

chromosomes 2 and 4 and their NORs compared to the wild-type (Figure 3.10 D). 

The abnormalities seen in h4RNAi mutants at prophase I proceeded on to the rest of 

the meiotic stages. Non-homologous inter-connections were visualised at anaphase 

II (Figure 3.10 P&Q) in comparison to the wild-type (Figure 3.10 E). At telophase II 

(Figure 3.10 R) the correct chromosome segregation in the four haploid meiotic 

products was often inadequate, whereas four haploid tetrads were formed in the wild-

type (Figure 3.10 F). 

 

Meiotic stage Defects Percentage ells 

Zygotene-Pachytene Chromatin breaks 60% 

Pachytene Chromosome clustering in 

more than one nuclei 

2% 

Diakinesis Bivalent connections 30% 

Table (3.2): Summary of meiotic defects in the h4
RNAi

 mutant. 
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Figure (3.10): Meiotic cytology of h4

RNAi
 PMCs vs wild-type.  

(A-F) Dapi stained meiocytes of  wild-type. (G-R) Dapi stained meiocytes of h4 kd mutants h4
RNAi

. (A) 
Leptotene (B) Zygotene (C) Pachytene (D)  Diakinesis (E) Anaphase II (F) Tetrad . (G) Normal-like 
leptotene. (H) Zygotene with fragmented chromatin. (I-N) Abnormal Pachytene. (I) Abnormal regions 
of broken chromatin. (J) One pachytene cell containing two micronuclei. (K) Incomplete or partial 
synapsis between homologous chromosomes. (L) A clear chromatin breakage of unsynapsed 
chromatin. (M) Nucleolar organizing region is abnormal. (N) Abnormal chromosomal clustering in two 
nuclei format. (O) Diakinesis showing abnormal chromosome joining. (P&Q) Anaphase II. (P) 

A 

E F 

B C 

G 

J K 

H 

L 

D 

I 

M N O P 
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Abnormal chromosome joining at anaphase II. (Q) A closer view of (P) showing anaphase II 
chromosomes joining together. (R) Telophase II shows aneuploidy. The four newly formed nuclei are 
imbalanced in terms of chromosomal numbers and set, hence the four nuclei lack the normal viable 
haploid gamete chromosomal style. White arrow indicates chromatin breakage. Green arrows indicate 
abnormal micronuclei. Red arrows indicate unsynapsed chromatin. Pink arrows indicate tangled 
nucleolus. Yellow arrows indicate connections between non-homologous chromosomes. 

 

 
3.2.6. Fluorescence in situ hybridization (FISH) analysis of Arabidopsis histone 
h4RNAi line 
 

Meiotic FISH analysis using 45S and 5S rDNA probes in the h4RNAi mutants showed 

a distinctive abnormality in the rDNA regions or NORs.  Chromosomes 2 and 4 are 

easily discriminated as they bear the 45S rDNA gene repeats. A single NOR 

associated to the 45S signal appears usually during prophase I at 

zygotene/pachytene stages in the wild-type meiocytes (Figure 3.11 A), indicating 

that chromosomes 2 and 4 pairs are converging at the same position. However, 

h4RNAi mutants showed more than one NOR (45S rDNA signals) during prophase I 

(Figure 3.11 B&C). The appearance of fragmented 45S rDNA regions at diakinesis 

was also observed in the mutants (Figure 3.11 E). Moreover, the wild-type 5S rDNA 

signal at pachytene obviously shows two separate sites resembling the homologous 

pairs of chromosomes 3 and 5 separately (Figure 3.11 A). This two 5S rDNA signals 

continue until diakinesis (Figure 3.11 D). Whereas, h4RNAi pachytene meiocytes 

showed a fragmented 5S rDNA signal (Figure 3.11 B&C&E). In addition to this, the 

presence of chromosomal connections involving always 45S and/or 5S rDNA signals 

was frequently observed at diakinesis suggesting putative recombination events 

among rDNA sequences present between non-homologous chromosomes (Figure 

3.11 E). 
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Figure (3.11) FISH analysis of NORs of the h4

RNAi
 and wild-type Arabidopsis plants. 

(A&D) wild-type. (B&C&E) h4
RNAi

. (A&B&C) Pachytene. (D&E) Diakinesis The nucleolus organizing 
region (NOR) is disrupted in the h4

RNAi
 mutant.  The 45S signal of chromosomes 2 and 4 is separate 

(B&C), whereas, in wild-type one signal is present (A). The 5S rDNA is fragmented in the h4
RNAi

 
mutant (B) while, no fragmentation is seen in the wild-type (A). Moreover, chromosome 5 connections 
with chromosomes 2&4 in the h4

RNAi
 line indicate non-homologous recombination occurrence (E), 

whereas, that is not present in the wild-type (D).   

 

 
3.2.7. Mitotic cytological analysis of Arabidopsis histone h4RNAi mutant 

The vegetative h4RNAi mutants phenotype differed from that observed in the wild-type, 

h4RNAi mutants showed a consistent pattern of faster developmental rate compared to 

that of the wild-type as described in 3.2.3 (Figure 3.8), the fast growth of plant 

WT WT h4RNAi h4RNAi h4RNAi 

A B C D E 

45S 

5S 

DAPI 
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organs (stem, inflorescence, and leaves), compared to wild-type, might suggest a 

putative mitotic role for Arabidopsis H4. Mitotic Arabidopsis chromosomes 

irregularities were visualised in h4RNAi mutant line, where some asynchronous sister 

chromatid separation was noticed (Figure 3.12 A). Defects in sister chromatid 

separation were also observed up to late anaphase-telophase stages (Figure 3.12 

B) with some chromosomes lagging in the middle of the bi-oriented spindle poles.    

 

 
 
Figure (3.12):  Mitosis in A. thaliana h4

RNAi
 mutant plants. 

Dapi stained cells of h4
RNAi

 line shows mitotic defects. (A&B) Anaphase.  (A) chromosomes are out of 
synchrony. (B) Anaphase-Telophase bridge. Scale Bars are 5µm. 
 
 

 
3.2.8. h4RNAi seeds are cisplatin sensitive.  

 
The vegetative defects observed in the h4RNAi phenotype might suggest mitotic 

defects. This was confirmed in the chromosomal spreads prepared for the h4RNAi 

mutants comparable to wild-type. Anaphase bridges were observed in the mutant but 

not present on the wild-type. This suggested that histones H4 might play a role in the 

mitotic DNA lesions repair. And so, to verify this histone H4 role in DNA repair we 

characterised the sensitivity of the plants to cisplatin a DNA cross-linking drug which 

produces DNA breaks.  

 

B A 
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Cisplatin sensitivity was assessed by the quantification of the number of leaves per 

plant, as well as to the percentage of viable seeds on days 11, 14 and 17 by 

analysing the seed germination on Murashige and Skoog (MS) agar medium with 

and without 30 μM of cisplatin. A hundred seeds from h4RNAi as well as the wild-type 

were placed on two MS agar plate (50 seeds each), and then incubated at 22o C 

growth room. The results showed that the h4RNAi mutant seeds are highly sensitive 

for the cisplatin. The h4RNAi mutant showed 12% viable seeds compared to 94% in 

the wild-type on day 11 of seed germination (Figure 3.14 B). The h4RNAi mutant 

formed 0.58 leaves per plant compared to 3.52 in the wild-type (Figures 3.13 & 3.14 

A). Statistical analysis showed that this difference is significant (P=4.300E-23, T-

test). Moreover, the h4RNAi seeds germination was also decrease on day 14 showing 

only 22% viable seeds compared to 96% in the wild-type (Figure 3.14 C). The h4RNAi 

mutant showed an average of 0.86 leaves per plant compared to 3.84 in the wild-type 

(Figures 3.13 & 3.14 A). Statistical analysis showed that these differences were 

significant (3.78E-18, T-test). And on day 17 the h4RNAi showed up to 24% viable 

seeds compared to 96% in the wild-type (Figure 3.14 D). The h4RNAi mutant showed 

significant reduction in leaves appearance showing 1.16 leaves average compared to 

5.72 in wild-type (4.152E-21, T-test) (Figures 3.13 & 3.14 A). 
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Figure (3.13): Cisplatin sensitivity phenotype of wild-type and h4
RNAi

 seeds. 
Seeds of wild-type and h4

RNAi
 plants were grown on MS plates containing 30 μM cisplatin. Seeds were 

assessed on days 11, 14 and 17 after seed germination.  
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 Figure (3.14): Cisplatin sensitivity analysis of wild-type and h4
RNAi

.  

(A -D) Seeds of wild-type and h4
RNAi

 plants were grown on 30 μM cisplatin treated MS medium. (A) 

Number of rosette/ leaves per plant was assessed in the wild-type and h4
RNAi

 mutants on days; 11, 14, 

and 17 after seed germination. Statistical analysis showed that the number of leaves of the h4
RNAi 

mutants was significantly decreased comparable to wild-type on days 11 (4.30E-23), 14 (3.787E-18) 

and 17 (4.152E-21). (B-D)  Seed viability in percentage was assessed in the wild-type and h4
RNAi

 

mutants. The h4
RNAi

 showed 12%, 22% and 24% compared to 94%, 96%, 96% in the wild-type on 

days 11, 14 and 17 after seed germination  N=50. (***=P<0.005, T.test)    

 

 

3.3. Analysis of Arabidopsis histone H3-H4 chaperone complex 
 

In order to further understand these defects observed in the histone h4 knock-down 

mutant line, and to confirm the histone H4 role within chromatin, more analysis was 

carried out for Arabidopsis histone H4-related mutants. The Chromatin Assembly 

Factor – 1 (CAF1) complex is a tripartite chaperon complex that loads the budding 

yeast H3-H4 heterodimers onto DNA and nucleosomes (Haushalter and Kadonaga, 

2003; Polo and Almouzni, 2006).  The p150, p60 and p48 are human homologues of 

*** *** 
*** 

B 

D C 

A 
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CAF-1 complex subunits (Smith and Stillman, 1989; Kaufman et al., 1995; Verreault 

et al., 1996). In Arabidopsis these subunits are known as FAS1, FAS2 and MSCI1 

(Leyser and Furner, 1992; Kaya et al., 2001; Hennig et al., 2003; Ramirez-Parra and 

Gutierrez, 2007). The analysis of mutants for this histone H4 chaperone could add 

further details on the H4 depletion phenotype observed.  

 

In silico analysis of FAS expression showed that it is constitutively expressed through 

the different plant developmental stages (Figure 3.15). Giving a clue how important it 

is for the proper cellular functions. This suggestion was further clarified through the 

defects observed in the fas mutants. 

 

 

Figure (3.15): Genevestigator diagram showing FAS proteins expression. 
The microarray analysis of Fas genes expression. FAS 1-3 (AT1G65470), and FAS 2-3 (AT5G64630) 
(Hruz et al., 2008).  
 

 

3.3.1 fas mutants Phenotype 

The external physical features of Arabidopsis fas mutants were analysed and 

compared to the wild-type plants. The characterization of two T-DNA insertion 

mutants showed that both fas 1-3 (Figure 3.16 A) and fas 2-3 (Figure 3.16 B) 

mutants presented a delayed flowering phenotype compared to the wild-type. This 
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defect in fas mutants growth continued to later stages of development.  fas mutants 

presented twisted stems with highly reduced number of leaves and siliques with 

reduced size compared to that of the wild-type (Figure 3.16 C & D). fas mutants 

phenotypic defects were also reported previously by Leyser et al. (1992), who 

showed plants with fused stems termed fasciated (thus, the name fasciata mutants or 

fas).  Other plant defects observed include stems lacking apical meristem dominancy, 

narrow leave shape, disturbed root and floral growth changes Leyser et al. (1992). 

  

   

Figure (3.16): Phenotype of fas mutants; fas 1-3 and fas 2-3, in comparison to wild-type plants. 
(A&C) fas 1-3 vs WT. (B&D) fas 2-3 vs WT. Delayed flowering and development in fas mutants (A) fas 
1-3 (B) fas 2-3. Twisted stems in fas 1-3 (C). Reduced siliques in fas 1-3 (C) and fas 2-3 (D). 
 

 

3.3.2. Fertility analysis of fas mutants  

The fertility level was assessed in these mutant lines in Arabidopsis. These analysis 

showed a significant defect on the plant fruit product size (silique/ seed pod) (Figure 

fas 2-3 

fas 1-3 

WT WT 

fas 2-3 

fas 1-3 WT 

A B 

C D 



111 

 

3.17). Silique measurements analysis in both fas mutant lines showed that fas1-3 

and fas 2-3 plants exhibited 42.32% and 50.2% decrease in the average silique 

length, respectively (Figure 3.17 A). Moreover, the quantification of the seed set per 

pod (mean number of seeds per silique) in fas 1-3 and fas 2-3 recorded 79.3 % and 

78.6% reduction from the WT, respectively (Figure 3.17 B). The significance of these 

results was confirmed by using a T-test statistical analysis showing P-values of 

2.97791E-25 and 3.56241E-53 for fas 1-3, fas 2-3 mean silique length respectively, 

and P-values of 4.37476E-49, 6.24001E-58 for fas 1-3 and fas 2-3 seed set mean 

respectively. Thus, Fas1 and Fas2 seem to have a role in maintaining the normal 

fertility levels in Arabidopsis plants.  

   

Figure (3.17): Fertility of fas mutants; fas 1-3 & fas 2-3, and the corresponding wild-type (WT). 

(A) Silique length (n=50). (B) Seed set (n=50). (***=P<0.005, T.test). Error bars = Standard error of the 

mean.  

    

 

3.3.3. Cytological analysis of fas mutants 

The high reduction of fertility in fas1/2 mutants demanded further cytological 

investigation to analyse these defects in more detail. Hence DAPI stained PMCs from 

fas 1-3 and fas 2-3 mutants and wild-type plants were characterised using an 

epifluorescence microscope. 

 

*** *** 
*** 

*** 
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3.3.3.1. Meiosis of fas 1-3 mutant 

Cytological preparations of fas 1-3 PMCs showed differences from the wild-type 

meiocytes. Tangled nucleolus was observed at pachytene (Figure 3.18 E). 

Moreover, chromatin fragments were observed at different stages of meiosis; 

pachytene (Figure 3.18 C&D), diplotene (Figure 3.18 F) (Figure 3.18 G), prophase 

II (Figure 3.18 J) and metaphase II (Figure 3.18 K). Furthermore, fas 1-3 diakinesis 

chromosomes showed unusual condensation, and also univalents were observed at 

this stage (Figure 3.18 H), allowing inappropriate chromosome orientation during 

homologues separation at anaphase I (Figure 3.18 I), and causing chromosome mis-

segregation at metaphase II (Figure 3.18 K) leading to the formation of incorrect 

haploid gametes (Figure 3.18 L).      
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Figure (3.18): Meiosis of  fas 1-3 PMCs.   
Defects were seen in the fas 1-3 meiocytes. Fragmentation (C&D&F&G&J&K), tangled nucleolus (E), 
univalents (H), chromosome missegregation (I), and abnormal tetrad (L). Leptotene stage (A), 
Zygotene stage (B), Pachytene stage (C-E), Diplotene stage (F), diffuse stage (G), diakinesis stage 
(H), anaphase I stage (I), Prophase II stage (J), metaphase II stage (K), Telophase II stage (L). Red 
arrows indicate chromatin breakage. White arrow indicates unsynapsed chromatin. Bar= 5 µm. 
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3.3.3.2. Meiosis of fas 2-3 mutant 

The meiotic preparations for fas 2-3 were very difficult as the mutant inflorescences 

where not fully developed. Only a few meiotic cells have been able to be analysed. 

We were able to analyse some meiocytes at pachytene (Figure 3.19 A&B), 

metaphase I (Figure 3.19 C) and anaphase I (Figure 3.19 D) stages. Clearly, at 

pachytene, chromatin fragmentation was observed. At metaphase I, chromosomes 

showed a reduction in chiasma frequency losing the obligate chiasma in some cases 

showing univalents.  

 

  

  

Figure (3.19): Meiotic atlas of fas 2-3 PMCs.  
The mutant showed fragmentation at pachytene stage (A). Chromatin fragments at diplotene stage 
(B). Reduction in the chiasmata per meiocytes were seen at metaphase I (univalents, low bivalents 
and rod shaped bivalents). Chromosomes were unable to creat balanced haploid chromosomal set at 
anaphase I stage due to mis-segregation (C). un balanced homologues disjunction at anaphase I 
stage (D). Red arrows represent chromatin fragments. Yellow arrows represent univalents. Scale bar= 
5 µm. 
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3.3.3.3. fas 1-3 mitotic defects 

The observed phenotypic abnormalities in fas mutants have showed that mitotic 

disturbances could be predicted. So, mitotic stages were investigated in these 

mutants to clarify if their vegetative phenotype defects have derived from errors 

during mitotic divisions. The analysed mitotic fas 1-3 cells showed genetic instability 

appearing as chromosomal fragmentation (Figure 3.20 A),  lagged chromosomes 

(Figure 3.20 B), and anaphase bridges from anaphase up to telophase stages 

(Figure 3.20 B&C). These abnormal mitotic divisions fits very well with the mutant 

defective characters like; reduced organ parts (leaves) and silique size. Moreover, 

fas 1-3 growth rate defects were also noticed in some plants.        

 

   

Figure (3.20): Mitotic defects of fas 1-3 mutant line at anaphase. 
(A&B) Anaphase. (C) Telophase.  Chromosome fragments (A). Anaphase –bridge (B). (C) Delayed 
chromosome separation and condensation. 
 

 

3.3.3.4. fas 2-3 mitotic defects 

The mitotic cells of fas 2-3 mutants recorded some aberrant stages. The visible 

chromosomal defects showed chromosome interconnections at prophase (Figure 

3.21 A) and chromosome missegregation at metaphase-anaphase (Figure 3.21 B). 

Furthermore, some anaphase bridges could be observed at late anaphase/early 

telophase stages (Figure 3.21 C).   
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Figure (3.21): Mitotic defects of fas 2-3 mutant line. 
(A) Prophase: chromosomes interconnections are visible, besides some chromosomes do not position 
properly. (B) Metaphase: the mitotic chromosomal package does not align fully at cell equator. (C) 
Anaphase: The delayed chromosomes separation resulted in anaphase-bridge formation.     
 

 

3.3.4.. fas mutants sensitivity to cisplatin  

3.3.4.1. fas 1-3 seeds are cisplatin sensitive.  

The developmental defects observed in the fas 1-3 phenotype suggested having a 

mitotic origin. This was confirmed in the mitotic chromosomal spreads prepared for 

the fas 1-3 mutants comparable to wild-type. Anaphase bridges were present in the 

mutant. FAS 1 might play a role in the mitotic DNA lesions repair. Hence, FAS 1 role 

in the mitotic DNA repair was studied by using cisplatin-induced DNA cross-linking 

defects.  

 

Cisplatin sensitivity was assessed by the quantification of the leaves number per 

plant, and the percentage of viable seeds on days 11, 14 and 17 by seeds 

germination on MS agar medium with 30 μM cisplatin. A hundred seeds from fas 1-3 

as well as from the wild-type were placed on two MS agar plates (50 seeds on each 

plate), and then incubated at 22o C growth room. The results showed that the fas 1-3 

mutant seeds were highly sensitive for the cisplatin. The fas 1-3 mutant showed 66% 

viable seeds compared to 94% in the wild-type on day 11 of seed germination 
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(Figure 3.23 B). The fas 1-3 mutant formed 1.288 leaves per plant compared to 3.52 

in the wild-type (Figures 3.22 & 3.23 A). Statistical analysis showed that this 

differences were significant (2.573E-18, T-test). Moreover, the fas 1-3 seeds 

germination on day 14 showed 70% of viable seeds compared to 96% in the wild-

type (Figure 23 C). The fas 1-3 mutant showed significant reduction in leaves 

formation showing 1.288 average leaves per plant compared to 3.84 in the wild-type 

(1.141E-25, T-test) (Figures 3.22&3.23 A). And on day 17 the fas 1-3 showed 70% 

viable seeds compared to 96% in the wild-type (Figure 3.23 D). The fas 1-3 mutant 

showed significant decline in leaves formation showing 1.40 leaves average 

compared to 5.72 in wild-type (1.012E-31, T-test) (Figures 3.22 & 3.23 A). 
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Figure (3.22): Cisplatin sensitivity phenotype of wild-type and fas 1-3 seeds. 
Seeds of wild-type and fas 1-3 plants were grown on MS plates containing 30 μM cisplatin. The wild-
type and fas1-3 mutant seeds were assessed on days 11, 14 and 17 after seed germination.  
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  Figure (3.23): Cisplatin sensitivity analysis of wild-type and fas 1-3 seeds.  

(A -D) Seeds of wild-type and fas 1-3 seeds were grown on 30 μM cisplatin treated MS medium. (A) 

Number of rosette/ leaves per plant was assessed in the wild-type and fas 1-3 mutants on days; 11, 

14, and 17 after seed germination. Statistical analysis showed that the number of leaves of the fas 1-3 

mutants was significantly affected comparable to wild-type on days 11 (2.573E-18), 14 (1.141E-25) 

and 17 (1.012E-31). (B-D)  Seed viability in percentage was assessed in the wild-type and fas 1-3 

mutants. The fas 1-3 showed 66%, 70% and 70% compared to 94%, 96%, 96% in the wild-type on 

days 11, 14 and 17 after seed germination  N=50. (***=P<0.005, T.test)   

 

 

3.3.4.2 fas 2-3 seeds are cisplatin sensitive.  

The characterisation of fas 2-3 phenotype also suggested mitotic defects. This was 

verified in the mitotic atlas prepared to the fas 2-3 mutants comparable to wild-type. 

Anaphase bridge formation was shown in fas 2-3 mutant. This suggested that the 

FAS 2 protein also might play a role in the DNA repair during mitosis.  

 

*** *** *** 

C 

B A

Q 

D 



120 

 

To further verify this, fas 2-3 sensitivity to cisplatin was assessed by; the quantification 

of the number of leaves per plant and the percentage of viable seeds. Counts were 

taking on days 11, 14 and 17 of seeds germination on MS agar medium with 30 μM 

cisplatin. A hundred seeds from fas 2-3 as well as the wild-type were placed on two 

MS agar plate (50 seeds each), and then incubated at 22o C. The results showed that 

the fas 2-3 mutant seeds were highly sensitive to the cisplatin. The fas 2-3 mutant 

showed 48% viable seeds compared to 94% in the wild-type on day 11 of seed 

germination (Figure 3.25 B). The fas 2-3 mutant formed 0.84 leaves per plant 

compared to 3.52 in the wild-type (Figures 3.24 & 3.25 A). Statistical analysis 

showed that these differences were significant (1.347E-22, T-test). Moreover, the fas 

2-3 seeds germination was highly reduced on day 14 showing 48% viable seeds 

compared to 96% in the wild-type (Figure 3.25 C). The fas 2-3 mutant showed 0.96 

average leaves per plant compared to 3.84 in the wild-type (Figures 3.24 & 3.25 A). 

Statistically these differences were also significant (3.482E-28, T-test). And on day 

17 the fas 2-3 showed 48% viable seeds compared to 96% in the wild-type (Figure 

3.25 D). The fas 2-3 mutant showed 0.96 leaves average compared to 5.72 in wild-

type (Figures 3.24 & 3.25 A), indicating that fas 2-3 are significantly different from 

the wild-type (3.619E-35, T-test).  
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Figure (3.24): Cisplatin sensitivity phenotype of wild-type and fas 2-3 seeds. 
Seeds of wild-type and fas 2-3 plants were grown on MS plates containing 30 μM cisplatin. Seeds 
were assessed on days 11, 14 and 17 after seed germination.  
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Figure (3.25): Cisplatin sensitivity analysis of wild-type and fas 2-3 seeds.  
(A - B) Seeds of wild-type and fas 2-3 seeds were grown on 30 μM cisplatin treated MS medium. (A) 

Number of rosette/ leaves per plant was assessed in the wild-type and fas 2-3 mutants on days; 11, 

14, and 17 after seed germination. Statistical analysis showed that the number of leaves of the fas 2-3 

mutants was significantly affected comparable to wild-type on days 11 (1.34723E-22), 14 (3.48239E-

28) and 17 (3.61969E-35). (B-D)  Seed viability in percentage was assessed in the wild-type and fas 2-

3 mutants. The fas 2-3 showed consistant percentage of viable seeds of 48%  compared to 94%, 

96%, 96% in the wild-type on days 11, 14 and 17 after seed germination  N=50. (***=P<0.005, T.test).  

 

 

3.4. Discussion  

3.4.1. Arabidopsis genome encodes for  eight isoforms of  histone H4 

The eight Arabidopsis histone H4 proteins are identical, with the same amino acid 

sequence, suggesting similar protein functionality within the nucleus for all of these 

copies or isoforms. The fact that Arabidopsis possess eight identical copies for 

histone H4, invites us to ask ourselves some key questions about the importance of 

this protein. What functions it might play inside the nucleus? What is the need for 

multi-copies of this protein? 
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As Arabidopsis possesses eight identical copies of the H4 genes. And since, reports 

addressed gene redundancy effect in Arabidopsis (Nowak et al., 1997). Hence, H4 

single gene knock-Out strategy would not show us any phenotypic effect. The 

presence of another seven wild-type H4 genes is expected to compensate for the 

loss of single H4 locus.  Moreover, the other scenario of knocking out seven out of 

the eight Arabidoposis H4 genes is un-applicable; due to the gene inter chromosomal 

linkage distance. For all of that, H4 knock-Down mutants, h4RNAi, is the best choice to 

see a possible phenotypic defect as a result of reduced histone H4 protein level in 

the nucleus. 

 

3.4.2. Histone h4RNAi mutant show abnormal meiosis  

Analysis of h4RNAi line and their progeny clearly indicated that histone h4 mutants 

have reduced fertility in Arabidopsis. To understand the basis of these fertility defects 

seen in the h4RNAi line cytological preparations were studied in the mutant and their 

reference wild-type plants. The h4RNAi meiotic cells were investigated and compared 

to their corresponding wild-type phenotype. The semi sterile h4RNAi line phenotype 

meiotic origin was confirmed observing h4 meiocytes abnormalities. Chromatin 

fragmentation was clearly visible through early meiotic stages at zygotene–

pachytene- diplotene in h4RNAi line, but never seen in the wild-type.  Moreover, non-

homologous chromosomes connections were observed at diakinesis in h4RNAi 

mutant.  The h4RNAi meiotic chromosomal abnormalities cause chromosome mis-

segregation and hence, lead to nonviable aneuploid telophase II cells comparable to 

haploid viable tetrads in the wild-type. Nevertheless, the h4RNAi line also formed 

viable gametes with potential to develop seeds. As a result, the seed number per 
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silique was significantly reduced in the h4RNAi mutant with some gaps comparable to 

the wild-type. Analysis of large number of histone h4RNAi line for three generations 

showed that the seed production capability ranges between semi-sterile up to wild-

type like plants (data not shown), which implied that the level of histone H4 reduction 

varied inter generation and intra generations suggesting that the h4 knock down 

RNAi level differ in-between some of the individual plants.  

 

Defects in several Arabidopsis genes coding for the recombination proteins (AtDMC1 

and AtSPO11-1) and DNA damage repair proteins (AtATM, ATXRCC3 and MEI1) 

had showed elevated non-viable gametophyte and abnormal fertility potential 

(Bleuyard and White, 2004; Couteau et al, 1999; Grelon et al, 2001, 2003; Garcia et 

al, 2003). In these mutants the semi-sterile phenotype observed was correlated with 

meiosis defects. Furthermore, chromosome fragmentation has also been shown to 

be responsible for meiotic defects in some mutants like atxrcc3 (Bleuyard and White, 

2004).   

 

Moreover, some reports have addressed that histone H4 modification might play an 

important role in the signalling of DNA double strand break repair response 

(Kothapalli et al., 2005; Corsini and Sattler, 2007). A study on human histone H4 

showed that decrease in K12 biotinylation occurred temporally as a response to 

DSBs but it was not observed in DNA single strand breaks, hence it could act as an 

early DSB response signalling (Kothapalli et al., 2005). Biotinylation of K12 was 

found to play a role in the reassembly of nucleosomes as a response to DNA repair 

(Kosmoski et al., 2001). Cells response to DSBs demand alteration in the chromatin 
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structure (Bakkenist and Kastan, 2003). Chromatin structures relaxation mediated by 

histone modifications allows DNA repair factors access to DNA breaks sites 

(Fernandez-Capetillo et al., 2004; Kothapalli et al., 2005). Suggesting that histone H4 

rapid K12 biotinylation was declined in response to DSBs mediates chromatin shift to 

open and relaxed phase, which permits DNA repair proteins access to the DSBs 

sites (Kothapalli et al., 2005). Histone H4 biotinylated at K12 is known in the 

condensed chromatin (e.g. pericentromeric heterochromatin) (Hassan and Zempleni, 

2006). This role is not yet addressed in Arabidopsis. Hence further research is 

needed to understand if the chromatin breakage visualised in the h4RNAi meiocytes is 

due to failure in DNA DSBs processing during meiosis as a result of chromatin 

structure accessibility defects or it is a result of structural defects in the meiotic 

chromosome. 

 

3.4.3. Histone h4RNAi mutants show NORs organization defects 

 
By comparing the h4RNAi meiotic stages to that of the wild-type an abnormal structure 

and location of the nucleolus organising region (NOR) was identified. Usually the 

NOR in the wild-type pachytene is compacted in a way that permits the 45S rDNA 

regions at chromosomes 2 and 4 to be associated in a unique transcription factory. 

This was proofed by 45S rDNA FISH analysis. The wild-type pachytene cell show 

one green 45S signal indicating chromosomes 2 and 4 joining at the NOR region. 

Whereas, the tangled NORs region in the h4RNAi line suggests that the improper 

compaction imbed NORs of chromosomes 2 and 4 association. This suggestion was 

approved as 45 S rDNA FISH showed two discrete signals at pachytene. A possible 
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role for H4 modifications might direct NOR compaction status and hence affecting 

intra chromosomes 2 and 4 association. Some reports showed that the normal 

mitotic histone H4 acetylation at lysines 5 and 12 in barely (Hordeum vulgare) shifts 

to less compact NOR and so easing its association (Wako et al., 2005). Moreover, in 

vitro experiments showed that H4K16Ac is linked with chromatin decondensation 

(Shogren-Knaak et al., 2006). The suggested impact of histone H4 on NOR 

compaction status and association was clear at pachytene and diakinesis stages, 

where histone H4 reduction resulted in two separate 45S rDNA signals.  Besides to 

this, NOR fragmentation of chromosome 4 at pachytene suggests chromosomal 

translocation events to happen, a thing which is still seen at diakinesis, in which 

abnormal physical distance in-between the 45S and 5S signals of chromosome 4 

indicates that the 5S region possibly could be involved in ectopic recombination 

events during meiosis.   

 

A study by Prado and Aguilera (2005) showed that partial depletion of histone H4 in 

Saccharomyces cerevisiae resulted in 20 fold increase in the homologous 

recombination between ectopic DNA sequences compared to wild-type level. The 

increase in recombination in the H4 depleted cells was accompanied with Rad52-

YFP foci accumulation. The Rad52-YFP foci are known as an indicator for the link 

between DNA replication and homologous recombination in response to S and G2/M 

DNA DSBs (Lisby et al., 2001, 2003). The Saccharomyces cerevisiae depleted h4 

cells showed delayed S and G2/M phases as well, suggesting that chromatin 

assembly was impaired due to H4 deposition depletion, leading to DNA synthesis 

http://www.sciencedirect.com/science/article/pii/S0092867407001845#bib71
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defects appeared as recombinogenic DNA structures, hence, consequently genomic 

instability increased (Prado and Aguilera, 2005).   

 

The eukaryotic genomes contain hundreds of repetitive sequences arranged in 45S 

ribosomal RNA (rRNA) genes (45S rDNAs) which when transcribed by RNA 

polymerase I three rRNA structures; 18S, 5.8S and 28S are formed.  Several reports 

proposed a role for the 45S rDNA in eukaryotic genome instability. In Neurospora, 

the nucleolus organized region (NOR) (crack) removal resulted in big terminal loss 

knowing that the exposed 45s rDNA terminus is capped with a telomeric repeats that 

imbed their termini union (Butler, 1992). Furthermore, 45S rDNA breaks in Lolium 

rigidum caused changes in 45S rDNA number and location sites showing 

chromosome rearrangement (Thomas et al,. 1996). Moreover, 45S rDNA sites in 

Arabidopsis with abnormal telomerase showed gene rearrangement, fusion and 

chromosome bridges (Siroky, 2003).   

 

3.4.4. fas mutants displayed developmental defects 

fas mutant plants phenotype was unusual compared to the wild-type Arabidopsis 

plants. Its stem appearance as flat and broad, reflecting the term fasciata, and it 

shows clearly that fas mutants are unable to grow normally. fas mutants 

developmental defects were stated previously by Leyser and Furner (1992). 

Histological analysis of fas mutants indicated that fas1 and fas2 mutants have 

showed abnormal shoot apical meristem (SAM) and root apical meristem (RAM) 

postembryonic organisation. And that the SAM and RAM mis-function seen in these 
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mutants were referred to mis-expression in WUSHEL (WUS) and SCARECREW 

(SCR) genes respectively (kaya et al., 2001).  

 

The fas mutant phenotypic defects suggested a role for mitotic genome behaviour.  

Instable mitotic chromosomes phenotype was noticed at anaphase-telophase. 

Defects were represented as anaphase bridges formation, anaphase chromosomes 

lagging and chromatin fragmentation. For this, we can say that mitosis instability is 

mostly the causative of this abnormal phenotype. FAS might be able to preserve 

genome integrity by allowing fast nucleosomes reconstitution to facilitate chromatin 

reformation after passing the replication fork. This prediction depends on results 

obtained by Ridgeway and Almouzni (2000) and Verreault (2000) where in vivo 

experiment on human proliferating cells showed CAF-1 association with newly 

formed H3.H4 histones and positioned on the replication foci meanwhile DNA 

replication indicating chromatin assembly activity and DNA repair. Smith and Stilman 

(1989) also showed that CAF-1 plays an role in nucleosomes assembly at the 

replicating DNA in vitro.      

 

3.4.5. fAS mutants show semi-sterile phenotype 

Quantification of seed set per silique in the fas 1-3 and fas 2-3 showed massive 

reduction comparable to the wild-type (Table 3.2). This phenotypic defect was 

expected as their siliques were highly reduced. Each time fas 1-3, fas 2-3 and the 

wild-type plants were germinated a similar phenotype was observed, and even re-

quantifications of the seed sets in a single silique showed similar average values. 
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These results confirmed a role for both fas 1-3 and fas 2-3 importance in Arabidopsis 

fertility. Moreover, running statistical analysis between fas 1-3 and fas2-3 in terms of 

either seed set average or silique length showed no significant difference in the seed 

set per pod, with p value of (0.928), however siliques length were significantly 

different with P-value of (0.003). And so, it seems that fas 1-3 and fas 2-3 have 

similar impact on seed formation in Arabidopsis. The significant silique length 

difference recorded between fas 1-3 and fas 2-3 mutants did not reflect significant 

difference on seed sets formation. Besides that, although fas 1-3 showed longer 

siliques in reference to fas 2-3 but, it contains lower seed sets mean. At the moment 

we cannot draw any conclusion from this.  More analysis is needed to understand fas 

1-3 and fas 2-3 individual roles on Arabidopsis development.     

Plant Line Seed no.  per silique 

mean (A) 

N=50 

 

P.value (A) 

Silique length mean 

(B) 

N=50 

 

P.value (B) 

fas 1-3 11.22 ± 8.013 (A) 

79.3 % (C) 

4.37476E-49 8.42 ± 2.425 (B) 

42.32% (D) 

2.97791E-25 

fas 2-3 11.62 ± 6.256 (A) 

78.6% (C) 

6.24001E-58 7.27 ± 1.225 (B) 

50.2% (D) 

3.56241E-53 

WT 54.28 ± 5.503 (A)  14.6 ± 1.030 (B)  

   

Table (3.3): comparison of sterility level intra fas mutants in reference to wild-type plants.  
(C) Percentage of reduction in seed sets per silique. (D) Percentage of reduction in silique length.  
 

 

3.4.6. fas 1-3 and fas 2-3 semi-sterile phenotype has meiotic origin 
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The defects seen in the seed set number per pod gave a clue about FAS impact on 

meiosis. And by analysing meiocytes in both fas 1-3 and fas 2-3 mutants we found 

that this was true. Several defects were observed in the meiotic sub stages during MI 

and MII which finally produced gametes lacking the normal chromosomal number. 

Meiotic cells derived from fas 1-3 mutants showed chromatin breakage and 

fragments through all the studied prophase I and at later stages at metaphase II, and 

also univalents were observed at metaphase I and chromosome mis-segregation at 

metaphase II. Hence, some of the final gamete products could not be viable. These 

chromosomal aberrations during meiosis are most likely the cause of the semi-fertility 

phenotype in fas mutants. As previous reports related fertility defects with meiosis 

progress (reviewed by Osman et al, 2011). 

     

The meiotic errors seen in fas 2-3 were not away from the ones observed in fas 1-3. 

Although meiotic preparations from fas 2-3 were not successful as fas 1-3, but still 

the few fas 2-3 meiocytes observed showed chromatin fragmentation at pachytene 

similar to that seen in fas 1-3 pachytene. The meiotic aberrations similarity between 

fas 1-3 and fas 2-3 besides to the fact that statistically seed sterility level similarity 

might indicate that both FAS 1-3 and FAS 2-3 are needed for proper chromosomal 

behaviour through meiosis. And that each of FAS proteins has its specific meiotic 

role that cannot be replaced by one of the other. Moreover, FAS 1-3 and FAS 2-3 are 

predicted to be working in the same complex as independent subunits of each other, 

nevertheless, neither of the two mutations caused completely sterile plants, which 

suggest the presence of another factor that permits ascertain level of meiosis. 
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Hence, the third CAF-1 subunit (MSCI1) might play this role. More investigation using 

double mutants would be needed to clarify this prediction.  

 

The Arabidopsis chromosomal breakage observed in the studied fas mutants showed 

a suggested role for FAS in DSB maintenance. This prediction agrees with results 

reported previously showing elevated DNA repair proteins transcriptions in fas 

mutants. Endo et al. (2006) reported that fas mutants showed elevated DSBs in fas 

1-2 and fas 2-2 mutants 40 times fold the number observed in wild-type Arabidopsis. 

Furthermore, chromatin fragmentation and breakage phenotype were consistent in 

several Arabidopsis mutants related to mal-function of one of the DSB repair 

mechanism proteins. All mutants of mre11, rad51 and xrcc3 showed meiotic 

chromatin fragments (Couteau et al, 1999; Grelon et al, 2001, Garcia et al, 2003; 

Grelon et al., 2003; Bleuyard and White, 2004; reviewed by Osman et al., 2011). 

Although their fragmentation severity varied, all shared the fact that they are proteins 

involved in meiotic DNA repair machinery.  

 

Moreover, the analysis of Arabidopsis fas 1-4 mutant were found to show dramatic 

increase in the intrachromosomal homologous recombination by 96 fold even when 

expression of DNA repair genes like RAD50, MRE11 and RAD51 was not 

upregulated. These results together with the finding that fas 1-4 showed reduced 

heterochromatin content allowed Kirik et al. (2006) to suggest that the DNase 1 

hypersensitivity in the open chromatin structure could be responsible for the 

observed genome instability phenotype.    
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3.4.7. fas mutants have similar defects to h4RNAi mutants  

The phenotypic partial similarity between h4RNAi mutant plants and fas mutants in 

terms of showing broad twisted stems in some cases was not strange, as both 

mutants share histone H4 deposition problems. Although, both mutants shared 

genomic stability failure as mitotic chromosomal errors were consistent in both 

mutants represented as anaphase bridge formation, but the fragmentation shown in 

fas mutants showed more severe mitotic defects. The more affected fas mutants 

phenotypic changes still need an extra analysis to confirm if the results obtained are 

due to histone H4 lack only, or other factors are involved since fas free cells retard 

the chromatin assembly complex formation and function.   

 

Fertility reduction recorded in h4RNAi and fas null mutants indicated that they are 

significantly different (Figure 3.26). T-test analysis of seed set per silique resulted in 

P- values of (7.8917E-17) and (7.81771E-18) for the difference between h4RNA iand 

fas1-3, h4RNAi and fas 2-3 respectively. fas 1-3 and fas 2-3 were found to have 32% 

and 31.3% extra reduction in mutant ability to produce seeds. Suggesting that FAS 

might retain normal fertility levels by affecting or communicating with other proteins 

besides to H4. Since the further reduction in fertility in fas null mutants was not joined 

with a different meiotic defect from h4RNAi mutant in the studied PMCs, as both fas 

and h4RNAi mutants showed clearly meiotic chromatin fragmentation and breakage, 

we cannot draw more conclusion about FAS role in preserving meiotic structural 

chromosomes without analysing more mutant cells and analysing other related 

mutants, besides to carrying further proteomic analysis. We also have to keep in 

mind that the h4RNAi mutant line that we studied has a depleted H4 protein which 
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means that nucleosomes build up is not fully retarded and hence normal nuclear 

structural components are still there to carry on the desired functions to some level.     

 

 

Figure (3.26): Comparison of seed set per silique mean in h4
RNAi 

and fas mutants vs wild-type.  
Percentages show sterility frequency per plant line. (N=50). Error bars = standard error of the mean. 
 

 

3.4.8. Histone H4 is needed for mitotic chromosome architecture 

A defect seen in the mitotic cells of the h4RNAi mutants suggests a role for histone H4 

in preserving the structural chromosomes integrity. Anaphase bridges were 

consistent in the h4RNAi as well as in the fas mutants showing a possibility of 

chromosome fragmentation or defects in the inter sister chromatid homologous 

recombination. Few reports suggested a link between histone H4 and the cell cycle 

(Megee et al., 1995). In Saccharomyces cerevisiae the amino-terminal domain of 

histone H4 loss prevents nuclear division progress. Moreover, genome integrity in 

Saccharomyces is maintained in a lysine-dependent manner of histone H4. And that 

mutation in Saccharomyces lysines activates G2/M checkpoint RAD9-dependent 
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pathway (Megee et al., 1995). Furthermore, Shogren-Knaak and Peterson (2006) 

proposed that histone H4 acetylation either has a role  on the higher order chromatin 

organisation by shifting to transcriptionally active chromatin or cause alteration in the 

chromatin-proteins binding potential (yet to be studied). Loss of acetylation of the H4 

K16 is known in several cancers, indicating that failure of the normal chromatin 

structure regulation imbed proper cell growth and division, hence resulting in the 

normal cells shift to cancer (Shogren-Knaak and Peterson, 2006). Interestingly, the 

histone epigenetic code changes were found to have a role in the chromatin structure 

shift from compact phase (highly organised) to loose phase of organisation and vice 

versa (Cimini et al., 2003). Moreover, the deacetylated core histones H3 and H4 (H3-

Deac and H4-Deac) were detected at the highly compact heterochromatin (reviewed 

by Cimini et al., 2003).  Hyperacetylation of H3 in the human primary fibroblasts was 

found to cause abnormal chromosome condensation and constrain mitotic 

progression in vivo as a result of an expected cell checkpoint activation. FISH 

analysis revealed the presence of anaphase chromatin bridges, suggesting that 

cohesion persistence along the sister chromatids arms beyond centromere 

separation constrain the normal sisters separation. On another hand, chromosome 

condensation defect resulted from hyperacetylated chromatin were suggested to 

cause improper sister chromatid resolution, and showing lagging chromosomes 

formation associated with depletion in the heterochromatin protein 1 and resulting in 

kinetochore-microtubules mis-attached in a reciprocal manner (Cimini et al., 2003).   

 

Several reports indicated that chromatin structure has a dynamic status. Chromatin 

dynamic is the result of its ability to be influenced by several factors; “chromatin-
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modifying enzymatic complexes and by the action of several other enzymatic 

activities such as condensins and cohesins, topoisomerase II, and the 

securin/separin pathway” (reviewd by Cimini et al., 2003). Further analysis is needed 

to understand the role of chromatin structure in the sister chromatid condensation 

and chromosome segregation to allow better understanding of chromatin role in the 

genomic instability. 

 

It was reported that mutants of the CAF1 components, fas1 and fas2, in Arabidopsis 

results in telomere shortening. Telomere shortening was associated with 45S rDNA 

loss, however, the other repetitive sequences; 5S rDNA, centromeric 180-bp repeat, 

CACTA, and Athila, were unchanged. Interestingly, the cytological phenotype of the 

fas mutants showed accumulation of anaphase bridges, suggesting that FAS is 

needed for the stability and maintenance of chromosomal telomeres and 45S rDNA 

sites (Mozgova et al., 2010). Since reports indicated that CAF1 malfunction in plants 

has been associated to increase in the: DNA DSBs numbers, HR level, and 

upregulation of genes involved in HR (Endo et al., 2006; Kirik et al., 2006; Schonrock 

et al., 2006; Ramirez-Parra and Gutierrez, 2007), hence it is suggested that 45S 

rDNA loss is the result of unbalanced level of the normal recombination events. 

 

3.4.9. Mutants of h4RNAi and fas1&2 are sensitive to cisplatin 

Moreover, the h4RNAi mutants growth on 30 µM cisplatin plates was abnormal. The 

h4RNAi mutants showed delayed vegetative growth as well as reduction in the number 

of viable seeds comparable to wild-type, suggesting that DNA repair induced in the 
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h4RNAi mutants was out of function. Cisplatin (cis-Diamminedichloroplatinum II) is a 

chemotherapy which is used as a powerful treatment of a variety of human cancers 

(Loehrer, 1948; Muggia, 1991; Einhorn, 1994; Muggia and Muderspach, 1994). 

Cisplatin forms covalent platinum- DNA crosslinks that cause DNA damage (Wang 

and Lippard, 2004). Cisplatin application enhance various cellular responses; DNA 

repair, transcription inhibition, cell cycle arrest, and apoptosis, all processes that 

demands chromatin structural remodeling and dynamics (Nilsson et al., 2010). 

Further analysis is needed to understand if the somatic viability defects observed in 

the h4RNAi mutants are caused by H4 depletion or it is due to epigenetic deregulation 

caused by H4 depletion. 

 

The significant decrease in seed viability besides to growth defects observed in fas 1-

2 and fas 2-3 mutants suggests that the DNA repair is inefficient. A study by 

Nabatiyan et al. (2006) showed that caf-1RNAi quiescent cells treated with bleocin in 

vivo showed significant reduction in cell viability associated with increase in DSBs. 

This allowed Nabatiyan et al. (2006) to suggest that CAF-1 play a role in the human 

quiescent cells response to DSBs via permitting chromatin reassembly afterwards 

DNA breaks repair. Several factors are causing eukaryotic DNA damage; ionizing 

radiation, mutagenic chemicals, and reactive oxygen species, which demands 

genome integrity maintenance by efficient DNA repair mechanisms (Lindahl and 

Wood. 1999; Caldecott, 2003; Friedberg, 2003). Besides to this, several reports 

indicated that besides to the DNA damage response, the chromatin accessibility and 

remodelling play a key role in the successful DNA damage response (Gontijo et al., 

2003; Peterson and Cote; 2003; Nabatiyan et al., 2006), via allowing proper 
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responding to DNA damage; recognition and repair, in addition to restoring chromatin 

structure and information (Nabatiyan et al., 2006) 
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CHAPTER 4 

Genetic Analysis of Histone H1 Isoforms in 

Arabidopsis 
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4.1 INTRODUCTION 

Histone H1 is one of the most abundant nuclear proteins which is physically 

associated to the linker DNA between nucleosomes (Smith et al., 1980). Histone H1 

might act as an “adjustable clip” at this position and so H1 might have a role in the 

formation of higher order chromatin structures (Figure 4.1) by allowing the packaging 

of the dynamic nucleosome fiber (Rutledge et al., 1981; Robinson and Rhodes, 

2006). Histone H1 protein sequence is evolutionary conserved among higher 

eukaryotes. Nevertheless, several variant isoforms have been identified (Millan-Arino 

et al., 2014), as well as different post-translational modifications (Wisniewski et al., 

2006). It has been postulated that H1 proteins have a general role in preserving the 

typical functionality of the nucleus, playing crucial roles in: DNA repair, DNA 

replication, transcription and cell division. Previous reports showed that H1 loss 

presented a significant impact to the vital nuclear processes that control the normal 

cellular and chromosomal integrity, ranging from homologous recombination 

blockage in yeast (Downs et al., 2003), the reduction of fungal life span (Ascobolus 

immerses) (Barra et al., 2000), aberrations in Tobacco male gametogenesis due to 

abnormality in homologues pairing and or segregation (Prymakowska-Bosak et al., 

1999) and  presenting mitotic chromosomal structure defects (Maresca et al., 2005).  

Moreover, the presence of several isoforms and copies for H1 gene in plants and 

animals (Fan et al., 2001) presents a challenge, since the loss of one H1 isoform 

could be compensated by other H1 copy or isoform making difficult the analysis of 

each H1 isoform separately. Some publications have shed the light on the impact of 

individual histone H1s genes on the nuclear and chromatin organisation in different 

species. Nevertheless, there are very limited studies of H1s in Arabidopsis and plants 
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in general (Wierzbicki and Jerzmanowski, 2005; Rea et al., 2012). In this chapter we 

are presenting a comprehensive genetic, phenotypic and molecular analysis of the 

different histone H1 isoforms present in Arabidopsis. The ability to study single 

knock-out mutants for each of the ten Arabidopsis H1s genes will help us to 

understand the role and importance of each H1 gene isoform in nuclear functionality.  

The presences of this number of histone H1 genes produce an increased complexity 

and a challenge to analyse each histone H1 specificity as it could be some functional 

redundancy among the different isoforms. The main aim of this study is to investigate 

the role of each H1 protein in Arabidopsis. Since the H1 protein sequence is, in an 

extent, evolutionary conserved, our findings could help in the understanding of 

histone H1s role in chromatin structure dynamic within the nucleus in other species 

including other plants, animals and, of course, human.   

 

Figure (4.1): Histone H1 structural role in higher order chromatin structures formation. 
Histone H1 associates to the linker DNA between adjacent nucleosome. It acts as “adjustable clip” 
which controls nucleosomes formation of the primary nucleosome fiber (10 nm), allowing it to 
proceed to higher compact chromatin structures (30 nm)  
http://www.cbs.dtu.dk/courses/genomics_course/roanoke/genetics980218.html  
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4.2 RESULTS  

4.2.1 In Silico Analysis of histone H1 isoforms in Arabidopsis   

4.2.1.1 Identification of histone h1 isoforms in Arabidopsis 

Ten non identical copies for histone H1 proteins were identified in Arabidopsis using 

WU-BLASTp in TAIR by their sequence similarity to histone H1 proteins from yeast 

and mammalian species: At1g06760, AT1G17520, AT1G48610, AT1g48620, 

AT1G54260, AT1G72740, AT2G18050 and AT2G30620, AT3G18035 and 

AT5G08780. The genes coding for these proteins were localised along the genome 

of Arabidopsis thaliana; 6 genes in chromosome 1, 2 genes in chromosome 2, 1 

gene in chromosome 3 and 1 gene in chromosome 5 (Figure 4.2). A reverse genetic 

approach was followed to analyse the role of these genes by using T-DNA 

transformed mutant lines and RNAi technology. Our study focus on characterising 

any phenotypic changes observed on the different mutant plants. In order to simplify, 

throughout this chapter, AT1G06760, AT2G30620 and AT2G18050 will be referred to 

as H1.1, H1.2 and H1.3 respectively as previously described by Jerzmanowski and 

Wierzbicki, (2005). AT1G48620 and AT3G18035 will be referred to as HON5 and 

HON4 respectively according to The Arabidopsis Information Resource-TAIR 

(http://www.arabidopsis.org). And finally the genes AT1G54260, AT5G08780, 

AT1G48610, AT1G72740 and AT1G17520 we will be addressing them as H1A, H1B, 

H1C, H1D and H1E respectively (Table 4.1). 

 

Linker Histone H1 proteins can be grouped into three categories in Arabidopsis 

according to their amino acid sequence of the conserved domains. These categories 
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are: HMG-LIKE, H1-LIKE and MYB-LIKE as it is shown in (Figure 4.3) (Eugenio 

Sanchez-Moran). The HMG-like group of linker histone H1 are proteins which share 

the high mobility group A (HMG A) characteristic domain, with the presence of an AT-

hook, and AT-hook-like DNA binding motifs. The AT-hook motif is present in a wide 

range of nuclear proteins including; high mobility group (HMG) proteins (Reeves and 

Beckerbauer, 2001), DNA binding proteins (Meijer et al., 1996) and the chromatin 

remodelling (SWI/SNF) complex (Singh et al., 2006). The AT-hook domain consists 

of a conserved core sequence; proline-arginine-glycine-arginine-proline, flanked with 

different number of positively charged lysine and arginine residues (Reeves, 2001). 

The AT-hook name derived from its binding to the adenine-thymine (AT) rich DNA-

minor groove in a way that forms crescent or hook (Reeves and Nissen, 1990).   

 

The MYB-like domain group is the linker histone proteins which have MYB-like DNA 

binding domain. The name is derived from the retroviral oncogene v-myb, and its 

cellular counterpart c-myb. The plant MYB is an ortholog of the human MYB 

“Myloblastosis”, an old name of a type of leukemia,  of transcription factors. The 

human myb-proto-oncogene contains three domains; an N-terminal DNA binding 

domain, a central domain, and a C-terminal domain. MYB proteins contain 51 to 53 

amino acid repeats termed R1, R2 and R3. Although all of the MYB motifs are DNA 

binding regions, the R2 R3 motifs have superior ability to bind to the DNA major 

groove directly. R2R3-type MYB domain has been characterized in the plant MYP 

protein family (Stracke et al., 2001). Several reports on plants emphasized that the 

R2R3-type MYP proteins could act as gene regulator (Boddu et al., 2006), or a 

suppressor (Lee and Harper, 2002).  
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Figure (4.2):  Localisation of histone H1 genes at the Arabidopsis chromosomes.  
Arabidopsis thaliana possesses ten different genes coding for the Histone H1 protein isoforms. The 
chromosomal distribution for these genes is shown: six genes on chromosome one: AT1G06760 
(H1.1), AT1G17520 (H1E), AT1G48610 (H1C), AT1g48620 (HON5), AT1G54260 (H1A) and 
AT1G72740 (H1D). Two genes on chromosome two: AT2G18050 (H1.3) and AT2G30620 (H1.2). One 
gene on chromosome three: AT3G18035 (HON4). And one gene on chromosome five: AT5G08780 
(H1B). TAIR, Chromosome map tool, http://www.arabidopsis.org/servlets/ViewChromosomes 
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Histone H1 
protein 

Gene locus T-DNA line 

H1A At1g54260  N877696-Sail_883_F09 

H1B At5g08780  N659488- salk_090072 

H1C At1g48610  N586260-Salk_086260 

H1D At1g72740 N65754-Salk_065267 

H1.1-1 At1g06760  N521410-salk_021410 

H1.1-2 At1g06760   N-654890-salk_128430 

H1.2 At2g30620 N321948- GK-116E08 

H1.3 At2g18050  N665594-Salk_025209 

HON4 At3g18035  N599887-Salk_099887 

HON5 At1g48620   N656137-salk_007422 
 

Table (4.1): Histone H1s T-DNA mutant lines vs their given names through the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3): Homology protein sequence alignment of Arabidopsis histone H1 proteins. 
Linker Histone H1 proteins can be grouped into three categories according to their amino acid 
conserved domain sequences present. The categories are: HMG-LIKE: At1g48620.1 (HON5), 
At3g18035.1 (HON4) and At5g08780.1 (H1B). H1- LIKE: At1g06760.1 (H1.1), At2g30620.1 (H1.2) 
and At2g18050.1 (H1.3). MYP-LIKE: At1g17520.1 (H1E), At1g72740.1 (H1D), At1g48610.1 (H1C) 
and At1g54260.1 (H1A). (Eugenio Sanchez-Moran) 
 
 

HMG-Like 

H1-like 

MYB-like 
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4.2.1.2 Expression Pattern of the linker histone H1 genes  

An expression analysis was carried out using Genevestigator, which enables 

information about specific Arabidopsis gene expression patterns referring to reported 

microarray data (Hruz et al., 2008). This analysis showed that linker histone H1 

genes; H1A, H1B, H1C, H1D, H1.1, H1.2, HON4 and HON5, are expressed in 

germinated seed, seedling, young rosette, developed rosette, buds, young flower, 

developed flower, flowers, siliques, and mature siliques (Figure 4.4). Thus, these 

findings confirm that these genes are expressed in both vegetative and reproductive 

tissues. However, H1.3 (At2g18050) seems to be expressed at the silique stage, 

indicating that it might play a specific role in the silique and or seed maturity (Figure 

4.4).  And H1C (At1g48610) expression seems to be increased at floral development 

(Figure 4.4). 

 

 

Figure (4.4): Expression profile of Arabidopsis histone H1 genes during plant developmental 
stages.  
Eight of the histone H1 genes; At1g48620, At3g18035, At1g06760, At2g30620, At1g17520, 
At1g72740, At1g48610, At1g54260, expression is seen throughout the whole plant growth stages: 
seeds, seedling, rosette, buds, flowers and siliques, while one gene; At2g18050, is expressed at 
silique maturation only. https://www.genevestigator.com/gv/index.jsp. (Hruz et al., 2008) 

 

https://www.genevestigator.com/gv/index.jsp
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4.2.2. Characterisation of the Arabidopsis AtH1A isoform 

H1A role within the nuclei was analysed using the N877696-Sail_883_F09 T-DNA 

insertion mutant brought from the NASC. The T-DNA express (Salk Institute) search 

showed that the Ath1a has a T-DNA insertion in the third intron at nucleotide 1170 

of the AtH1A gene (Figure 4.5). Plants of the wild type and Ath1a mutants were 

genotyped via PCR using specific primers. LP-RP (Table 2.2) primers reaction 

showed the wild type band of about 1.133kb length on agarose gel however, RP-BP 

(Table 2.3) primers reaction showed the mutant band of about 0.485 kb on agarose 

gel. The double homozygote Ath1aT-DNA insertion mutant plants were analysed in 

parallel with the wild type plants in terms of phenotypic alterations and fertility 

quantification.  

 

 

 

 

Figure (4.5): Schematic diagram of At1g54260 locus showing T-DNA insertion localisation. 
2.482 kb of AtH1A sequence organisation into UTRs, exons and introns. Exons are represented with 
blue blocks, introns are shown as triangles and UTRs are diagrammed as orange blocks. N877696-
Sail_883_F09 T-DNA insertion position is diagrammed as inverted red triangle. Diagram based on 
gene structure available on TAIR (www.arabidopsis.org).  

 

 

4.2.2.1 Phenotypic observation of Ath1a mutant plants 

The investigation of Ath1a N877696-Sail_883_F09 T-DNA homozygote mutant plants 

showed a normal growth in comparison to the wild-type plants. The Ath1a plants 

2kb 1kb 

Ath1a 

5 3 

http://www.arabidopsis.org/
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were able to achieve normal development, as well as normal flowering time 

compared to wild type plants.  

 

 

Figure (4.6): Phenotypic characterisation of Ath1a mutant plants 
Ath1a mutant plants showed normal flowering similar to wild-type plants. 
 

 

4.2.2.2 Fertility of Ath1a mutant plants  

The assessment of fertility parameters in Ath1a N877696-Sail_883_F09 T-DNA and 

wild-type plants indicated that the Ath1a mutants had a normal level of fertility. 

Although  the mean for the silique length in the Ath1a mutant in comparison to the 

wild type (Figure 4.7 A) were 13.27 mm and 14.14 mm respectively with a P-value of 

0.0015 (T-test). But the average seed count for the Ath1a mutant compared to wild 

type (Figure 4.7 B) was 48.69 and 51.06 respectively with a P-value of 0.145 (T-

test), suggesting that AtH1A does not affect seed production. 
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Figure (4.7): Fertility of Ath1a in comparison to Wild-type plants.  
(A) Silique length Average (N=50). (B) Seed set mean (N=50). ***= P<0.005.  Error bars = 
Standard error of the mean.  
 

 

 4.2.3 Characterisation of the Arabidopsis AtH1B isoform 

To investigate the role of AtH1B protein a T-DNA insertion mutant line was 

purchased from NASC.  Ath1b N659488- salk_090072 T-DNA mutant line contains 

T-DNA insertion in the third exon of AtH1B gene (Figure 4.8) at 1.230 kb from the 

start position of the gene. Seeds of this line as well as the wild type were grown at 
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the same time and under similar conditions. T-DNA insertions were identified using 

PCR. Genomic DNA was extracted from leaves of Ath1b salk_090072 T-DNA 

mutant line and wild type. PCR was carried out using specific primers for both sides 

of the wild type gene and the T-DNA. Primers for both the left and right sides of the 

insertion position (LP-RP) (Table 2.2) of the AtH1B gene were used as well as 

primers for the T-DNA left border (LBb1.3) (Table 2.3) were used to genotype the 

plants. Four out of ten plants showed homozygous T-DNA insertions presenting 

PCR bands of 0.359 kb in length on an agarose gel and did not presented the 

genomic 0.997 kb band. Plants which are Ath1b homozygote for the T-DNA were 

chosen and studied extensively at different phenotypic levels; somatic appearance, 

fertility and growth development. Always comparing them to wild-type plants. 

 

 

 
 
 

Figure (4.8): Schematic diagram of At5g08780 locus showing the T-DNA insertion 
localisation.  
The structure of AtH1B gene (2.267 kb length) is represented showing the localisation of UTRs, 
exons and introns. Blue rectangles represents exons, orange rectangles represents UTRs, 
triangles represents introns, and Ath1b salk_090072 T-DNA insert is  represented with an 
inverted red triangle. 
 

 

4.2.3.1. Phenotypic characterization of Ath1b mutant plants   

The Ath1b salk_090072 T-DNA mutant line presented a 75% of the mutant plants 

with a delay in their flowering time (Figure 4.9). However, 25% of the mutant plants 

showed a normal flowering time comparable to the wild-type. The delay observed in 
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Ath1b 

5 3 



150 

 

the affected mutants continued for two to three weeks when the plants seemed to 

have dwarf phenotype comparable to the wild type. Nevertheless, after this time 

Ath1b mutant plants succeeded in progressing up to their mature life cycle stage and 

the normal growth.  

   

Figure (4.9): Phenotypic characterisation of Ath1b mutant plants 
75% of Ath1b showed delay in flowering time whereas the rest had normal flowering. 
 

 

4.2.3.2 Fertility of Ath1b mutant plants 

The fertility level of the plants was assessed by measuring the silique length and 

counting the seed number in both the Ath1b mutant line and the wild-type. The 

results showed that Ath1b salk_090072 T-DNA homozygous mutant plants were not 

far from normal fertility levels observed in the wild-type with a mean silique length of 

16.42 mm and 14.14mm for Ath1b and wild-type respectively. And with a mean 

seed count per silique of 53.17 and 51.06 in the mutant and wild type respectively. 

P values (T-test) were 0.082 and 0.285 for both silique length and seed number 
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respectively, which indicates that both siliques and seed set are not significantly 

affected in Ath1b mutants. Figure (4.10 A) shows the average silique length of the 

wild type and Ath1b T-DNA mutant.  And Figure (4.10 B) shows the average seed 

set for wild-type and Ath1b salk_090072 T-DNA null mutant  

 

                

Figure (4.10): Fertility of Ath1b in comparison to Wild-type plants.  
(A) silique length Average (N=50). (B) Seed set mean (N=50). *= P<0.05.  Error bars= 
Standard error of the mean.  
 

 

4.2.4 Characterisation of the Arabidopsis AtH1C isoform 
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Analysis of the AtH1C gene in Arabidopsis was investigated by studying the T-DNA 

insertion line; N586260-Salk_086260 (NASC). The Ath1c mutant line has a T-DNA 

insert in the second intron of the AtH1C gene (Figure 4.11) at nucleotide position 

1035 from the start position of the gene. The plants genotype was checked using 

PCR and a specific combination of primers, which reflects either the wild type locus 

gene of 1.159 kb in size (LP-RP primers reaction) (Table 2.2), or the mutant T-DNA 

insertion band (RP and BP  primers reaction) (Table 2.3),  which PCR product size is 

0.429 kb. Plants with confirmed homozygous T-DNA insertion for the locus Ath1c 

were selected for further studies and compared to the wild-type plants. 

 

 

 

 

Figure (4.11): Schematic diagram of At1g48610 locus showing T-DNA insertion localisation.  
2.626 kb of AtH1C organisation; UTRs, exons, introns.  Orange boxes represent UTRs, blue boxes 
indicate exons and triangles represent introns. The position of Ath1c T-DNA insertion (N586260-
Salk_086260) is represented on the diagram as an inverted red triangle.     
 

 

4.2.4.1. Phenotypic characterisation of Ath1c mutant plants 

The Ath1c N586260-Salk_086260 T-DNA mutant plants appearance showed 

variation in growth rate from that of the wild-type plants. About 43% of homozygous 

mutant plants presented a delay in initial flowering time comparable to wild-type 

plants (Figure 4.12). 
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Figure (4.12): Phenotypic characterisation of Ath1c mutant plants. 
43% of Ath1c mutants showed a delay in their flowers appearance as well as developmental changes 
comparable to WT.     
 

 

4.2.4.2. Fertility of Ath1c mutant plants   

Fertility quantification of the Ath1c mutant plants compared to that of the WT plants 

indicated that the mutant had a similar level of fertility than the WT. The mean silique 

length was 13.80 mm for the Ath1c mutant compared to 14.14mm for WT (Figure 

4.13 A). Whereas, the mean number of seeds per pod was 50.4 in Ath1c T-DNA 

mutant compared to 51.06 in the WT (Figure 4.13 B). The P-values (T-test) for the 

mean size of the siliques was 0.183 and for the mean number of seeds per pod was 

0.768.  
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Figure (4. 13): Fertility of Ath1c in comparison to Wild-type plants.  
 
(A) Silique length Average (N=50). (B) Seed set mean (N=50). ***= P<0.05.  Error bars = Standard 
error of the mean.  

 

 

4.2.5. Characterisation of the Arabidopsis AtH1D isoform 

To study the role of Arabidopsis AtH1D gene, we analysed an Ath1d T-DNA insert 

line; N65754-Salk_065267, which seeds were brought form NASC. Ath1d seeds 

were assessed at the same time as wild-type plants as control. The plants first were 

checked for having the Ath1d T-DNA insert within the fifth intron of AtH1D gene 

(Figure 4.14) at nucleotide positioned 2.369kb by running a PCR with primers 
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designed specifically to the AtH1D gene. Two primer combinations were used (LP-

RP) (Table 2.2), (RP and BP) (Table 2.3); the first to show specifically the wild-type 

AtH1D gene with 1.194 kb band length on agarose gel, and the second indicates the 

Ath1d T-DNA with 0.488 kb band size on agarose gel. The plants which had 

confirmed homozygotes for the wild-type and Ath1d T-DNA insertion for the mutant 

were chosen to be studied phenotypically. And at later stages fertility potential was 

assessed in the mutant and wild-type plants. 

 

 

 

Figure (4.14): Schematic diagram of At1g72740 locus showing T-DNA insertion localisation .  
Diagrammatic representation of 2.631 kb of AtH1D organisation; UTRs, exons, introns.  Orange boxes 
represent UTRs, blue boxes indicate exons and triangles represent introns. Ath1d salk-065267 T-DNA 
insert position is drawn as inverted red triangle. 
      

 

4.2.5.1 Phenotypic observation of Ath1d mutant plants 

The investigation of Ath1d null mutants in comparison to their control showed that the 

style of plant growth and development of the Ath1d and the wild-type plants were 

very similar. Leaf, shoot and flower development of Ath1d plants were alike to that 

seen in the wild-type. And so, suggesting that AtH1D loss has most likely no impact 

on Arabidopsis development.   

 

4.2.5.2 Fertility analysis of Ath1d mutant plants 
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Assessment of mature pods and their contents in the Ath1d and their reference WT 

plants indicated that Ath1d plants retain the normal level of fertility. The mean of 

silique length of the Ath1d to wild-type was 14.94 mm and 14.14 mm respectively 

(Figure 4.15 A). Statistically, siliques length showed significant difference in 

comparison to WT (P value=0.016, T-test). However, the average seed sets per pod 

in Ath1d and wild type recorded were 51.96 and 51.06 respectively (Figure 4.15 B). 

And the P value calculated via T-test indicated that seeds counts are not far from that 

of the wild-type (P=0.629). 

 

 

Figure (4.15): Fertility of Ath1d in comparison to Wild-type plants. 
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(A) Silique length Average (N=50). (B) Seed set mean (N=50). *= P<0.05. Error bars= Standard 
error of the mean.  
 

 

4.2.6. Characterisation of the Arabidopsis AtH1.1 isoform 

To investigate the role of AtH1.1 two TDNA insertion mutant lines were purchased 

from NASC (European Arabidopsis Stock Centre).  Database showed that N521410-

salk_021410 and N-654890-salk_128430 T-DNA  mutant lines contain T-DNA 

insertions at nucleotide positions 40 up the ́5 UTR and at nucleotide 160 at the end of 

the first exon of the H1.1 gene (Figure 4.16) respectively, which will be referred to in 

this study as h1.1-1 for the first and h1.1-2 for the second. Seeds of both mutant lines 

as well as the wild type were grown at the same time. Plants then were screened for 

having the T-DNA insertion using PCR. Genomic DNA extracted from the leaves of 

Ath1.1-1 and Ath1.1-2 T-DNA mutant lines and WT were screened using specific 

primers for both sides (LP: left border, RP; right border) as shown in Table (2.2). (LP- 

RP) primer pair was used to check the wild type gene. However, RP and LBb1.3 

(Table 2.3) primer pair was used to check the T-DNA insertion sites. The WT 

genomic band size on agarose gel for AtH1.1-1 and AtH1.1-2 were 1.134 kb and 

1.105 kb respectively, and for the Ath1.1-1 T-DNA and Ath1.1-2 T-DNA insert bands 

were 0.388 kb and 0.413 kb respectively on agarose gel.  

 

The plants with confirmed null Ath1.1-1 and Ath1.1-2 genotypes, besides to the WT 

ones as control were chosen and studied extensively. Plants were checked at 

different levels; phenotypic, fertility and growth development.  
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Moreover, a search via ChromDB for the presence of a knock-down mutant line for 

histone AtH1.1 showed the existence of three Ath1.1 RNAi lines; T-FGC993A-

CS23979, T-FGC993B-CS23980 and T-FGC993Cm-CS23981. These lines were 

constructed via ChromDB in a pFGC5941 vector (Figure 4.17). The genomic DNA of 

the three lines was analysed using blot analysis using probes for both BASTA 

resistant gene (BAR) and OSC 3 (Figure 4.18). The analysis of T-FGC993B-

CS23980 line showed the presence of one copy for each of the BAR and OSC3 

probes and, therefore, it was chosen for analysing histone Ath1.1 knock-down 

phenotype in Arabidopsis.       

 

 

 

Figure (4.16): Schematic diagram of At1g06760 locus showing two different T-DNA insertion 
localisations.  
1.95kb long AtH1.1 gene organisation into UTRs, exons and introns. Exons are represented with 
blue blocks, introns are shown as triangles and UTRs are diagrammed as orange blocks. T-DNA 
insertion positions; N521410-salk_021410 (Ath1.1-1) and N-654890-salk_128430 (Ath1.1-2) are 
diagrammed as inverted red triangles. Upstream sequence is represented as a yellow block.  

 

 
 

 

 
Figure (4.17): ChromDB model of HON1 ds RNA construct (T-DNA region).  
The schematic diagram represents h1.1

RNAi
; Ath1.1-CS23980, construct.  MAS 3 and OCS 3 are 

polyadenylated signal sequences (Agarobacterium  tumefaciens). MAS 2 is a plant promoter. CHSA 
intron (Petunia hybrid). BAR codes for BASTA herbicide resistence. The Omega fragment is a leader 
sequence (TMV).  

 

 

   MAS 3    BAR        MAS 2   CAMV 35S-Omega      HON1               CHSA intron               HON1          OCS 3  
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Figure (4.18): ChromDB blot analysis of h1.1
RNAi 

mutant
 
lines. 

Genomic DNA of T-FGC993A-CS23979, T-
FGC993B-CS23980 and T-FGC993Cm-CS23981 
was treated with the EcoRI (restriction digestion 
enzyme) and then blotted using BAR fragment 
(BASTA resistant gene) as in the left border probe 
and  the OCS 3’ fragment as in the right border 
probe. DNA ladder (MW= 1Kb). 
http://www.chromdb.org/org_specific.html?o=ARAT
H 
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4.2.6.1. Phenotypic characterisation of Ath1.1 mutant plants 

4.2.6.1.1. Phenotypic characterisation of Ath1.1-1 mutant plants 

The vegetative growth of Ath1.1-1 mutants showed plants that lacked the normal 

growth style. The Ath1.1-1 plants showed differences in their developmental potential 

comparable to WT (Figure 4.19 A). 95% flowering to 5% non-flowering phenotype 

was recorded in Ath1.1-1 individual plants.  Some mutants showed an initial 

developmental blockage. Where flowering stage was undistinguishable.  Plants 

appeared as frozen at the rosette stage, lacking the ability to grow further and so 

flowers were not seen. Hence, plants appeared as few small leaves (Figure 4.19 B). 

Suggesting an error occur during cell cycle and vegetative development. However 

the flowering Ath1.1-1 mutants showed plants with reduced size of both stems and 

leaves. Furthermore, low number of siliques per stem and small siliques were also 

observed (Figure 4.19 D) comparable to WT (Figure 4.19 E). Hence, a semi-sterile 

phenotype (Figure 4.19 C) was suggested and, therefore, a meiotic role could be 

predicted. The cytological analysis of this mutant confirmed some meiotic defects. 
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Figure (4.19): Phenotypic characterisation of Arabidopsis Ath1.1-1 mutant plants in 
comparison to WT.  
(A) Dwarf Ath1.1-1 phenotype comparable to WT plants. (B) Closer view of Ath1.1-1 T-DNA mutant. 
(C) Reduced Siliques in length of Ath1.1-1 in comparison to WT siliques. (D&E) Seed pods phenotype 
of (D) Ath1.1-1 T-DNA line and (E) WT. 
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4.2.6.1.2. Phenotypic characterisation of Ath1.1-2 mutant plants 

The investigation of Ath1.1-2 null mutant phenotype showed that it was not far away 

from the wild type.  The homozygous Ath1.1-2 mutant plants showed normal growth 

rate comparable to wild type plants (Figure 4.20 B), their development pattern; 

leaves, flowers, stems were alike to that seen in the WT (Figure 4.20 A). Moreover, 

the Ath1.1-2 and WT had 100% matches in their flowering time. At later stages the 

Ath1.1-2 showed seed pods that have tiny reduction in siliques length comparable to 

the WT (Figure 4.20 C&D).    

  

Figure (4.20): Phenotypic characterisation of Arabidopsis Ath1.1-2 mutant plants in 
comparison to WT. 
(A) WT phenotype. (B) Ath1.1-2 phenotype. (C) Seed pods of Ath1.1-2 and WT. (D) Comparison of 
silique length between Ath1.1-2 and WT.  
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WT h1.1-2 

WT 
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4.2.6.1.3. Phenotypic characterisation of Ath1.1RNAi mutant plants 

The observations of the Ath1.1RNAi line mutant revealed distinct abnormality 

comparable to the WT plants. A total of 20% of Ath1.1RNAi plants showed delay in 

flowering time comparable to wild type (Figure 4.21 A). Moreover, a noticed 

reduction in silique length was recorded (Figure 4.21 D) comparable to WT (Figure 

4.21 C). Furthermore, gap appearance among the seeds within siliques was 

consistent in this mutant line (Figure 4.21 F) comparable to WT plants (Figure 4.21 

E). Thus, suggesting a reduction in their seed content. Later on, Ath1.1RNAi seed 

pods quantification confirmed their semi-sterile phenotype.  In addition to this, two 

plants out of about a hundred analysed showed a fasciated (fused stem) phenotype 

(Figure 4.21 B), suggesting some kind of mitotic abnormalities. Defects in mitotic 

chromosomal segregation were confirmed later in this mutant line.  
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Figure (4.21): Phenotypic characterisation of Arabidopsis Ath1.1
RNAi

 mutant plants in 
comparison to WT. 
(A) Flowering delay in Ath1.1

RNAi
 comparable to WT after five weeks of plant growth. (B) Fasciata-like 

phenotype of Ath1.1
RNAi

. (C&D&E&F) Silique phenotype. (C&E) WT silique. (E) Showing fully seed 
pod. (D&F) Ath1.1

RNA 
silique, Seed pod lacking the complete seed set as gaps appear in between 

seeds (F). Gaps are represented by black arrow. Seeds are represented with yellow arrow.  E&F
 

pictures are photographed under a light dissecting microscope (Nikon SMZ800). 
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4.2.6.2. Fertility of Ath1.1 mutant plants 

4.2.6.2.1 Fertility of Ath1.1-1 mutant plants 

Fertility level analysis in this mutant line and the wild-type was done via assessing 

seed sets and silique measurement. Data collected from fully dry siliques implied 

about 51% reduction in silique length compared to wild-type. (p = 6.983E-46, T-test). 

Figure (4.22 A) shows the average silique length for wild-type and Ath1.1-1 plants. 

Moreover, Ath1.1-1 T-DNA recorded 90% decline in seed number per silique 

referring to WT (p = 1.672E-44, T-test). Figure (4.22 B) shows the mean of seed set 

per silique in wild-type and Ath1.1-1 T-DNA mutant plants. Analysis of pollen viability 

by using Alexander staining, revealed that a large number of pollen grains were 

lacking normal phenotype, showing several defects; incomplete cytoplasm, smaller 

size, variable sizes, and irregularly shaped pollen. Pollen viability was highly reduced 

in Ath1.1-1 comparable to wild-type. The Alexander staining in the Ath1.1-1 mutant 

showed that only 21.28% (n=531) of the total pollen was viable compared to 95.4 % 

(n=500) in the wild-type. These results come with the seed-sets and siliques defects 

seen in Ath1.1-1 mutant, showing that AtH1.1-1 is needed to retain normal fertility 

levels in Arabidopsis. These results also indicate a proposed potential meiotic defect 

in the Ath1.1-1 mutant lines.  
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Figure (4.22): Fertility of Ath1.1-1 mutant plants in comparison to Wild-type 
plants. 

(A) Silique length Average (N=50). (B) Seed set mean (N=50). *** = P<0.005. Error 
bars = Standard error of the mean.  
 

 

4.2.6.2.2 Fertility of Ath1.1-2 mutant plants 

Analysis of Ath1.1-2 T-DNA mutant line showed a reduction in the fertility levels 

compared to the wild-type. The mean silique length of the mutant and the wild-type 

were 13.14mm (n=50) and 14.21mm (n=50) respectively. Statistical analysis 
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indicated that the decrease was significant (P=0.0002, T-test). In addition to this the 

seed-set per silique mean was reduced too significantly, recording 42.06 (n=50) and 

51.06 (n=50) for Ath1.1-2 T-DNA and WT respectively (p = 2.202E-08, T-test). 

Figure (4.23 A) shows the mean silique length in Ath1.1-1 T-DNA and WT plants. 

Figure (4.23 B) represents mean of seed sets in Ath1.1-2 T-DNA mutant and WT 

plants. 

 

 

Figure (4.23): Fertility of Ath1.1-2 mutant plants in comparison to Wild-type plants. 
(A) Silique length Average (N=50). (B) Seed set mean (N=50). *** = P<0.005. Error bars = Standard 
error of the mean.  

 

0

2

4

6

8

10

12

14

16

WT  h1.1-2 T-DNA

M
ea

n
 s

ili
q

u
e 

le
n

gt
h

 (m
m

) 

Plant line 

0

10

20

30

40

50

60

WT  h1.1-2 T-DNA

M
ea

n
 s

e
ed

 s
e

t 

Plant line 

*** 

*** 

A 

B 

 



168 

 

4.2.6.2.3 Fertility of Ath1.1RNAi mutant plants 

To assess fertility level in Ath1.1RNAi line, seed sets and siliques lengths were taken 

for both the mutant line as well as the wild type plants fully dry seed pods. Since the 

RNAi mutation strategy show phenotypic variation within mutant plants ranging from 

highly affected plants with short siliques up to about normal ones, so plants which 

showed defected phenotype of siliques that are short or with gaps were chosen for 

fertility assessment. The results showed that siliques of Ath1.1RNAi showed about 

44% reduction in length referring to WT (p=4.776E-42, T-test). Moreover, Ath1.1RNAi 

had about 41% reduction in seed set compared to wild type (p=1.542E-27, T-test). 

Figure (4.24 A) shows silique length average for wild type and Ath1.1RNAi. Figure 

(4.24 B) shows seed mean for the Ath1.1RNAi and the WT.     
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Figure (4.24): Fertility of Ath1.1
RNAi

 mutant plants in comparison to Wild-type plants.  
(A) Silique length Average (N=50). (B) Seed set mean (N=50). *** = P<0.005. Error bars = Standard 
error of the mean.  
 

 

4.2.7. Characterisation of the Arabidopsis AtH1.2 isoform 

The role of AtH1.2 gene was studied by analysing a T-DNA mutant line (N321948-

GK-116E08) (NASC) and comparing it with wild-type plants. The T-DNA insertion is 

localised in the first exon of the gene at nucleotide position 544 (Figure 4.25). 
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PCR with primers which were specific for the AtH1.2 gene and the TDNA. (LP-RP) 

(Table 2.2) and (RP-BP (Table 2.3)) primer pairs were used for identifying wild-type 

and mutant genome bands respectively, and showing bands of 876 kb and 776 kb 

respectively. Plants with confirmed homozygosity for the T-DNA insertion selected for 

further studies. Parameters of fertility and phenotypic changes were assessed to give 

a clear view about the role of AtH1.2 locus.  

 

 

 

Figure (4.25): Schematic diagram of AT2G30620 locus showing T-DNA insertion localisation.  
1.581 kb of AtH1.2 gene sequence organisation into exons, introns and UTRs. Exons are represented 
with blue blocks, introns are shown as triangles and UTRs are diagrammed as orange blocks. The T-
DNA insertion position; N321948-GK-116E08 (Ath1.2), is diagrammed as inverted red triangle. 
 

 

4.2.7.1. Phenotypic characterisation of Ath1.2 mutant plants 

By studying the vegetative growth appearance of the Ath1.2 and wild-type plants a 

noticeable phenotypic difference was observed. 100% of Ath1.2 mutants (n=6) have 

a noticeable delayed flowering referring to the parallel sown wild-type plants. This 

delay continued to be seen up to the later mature stage. The Ath1.2 plants needed 

about three more weeks to reach the mature stage seen in the WT plants.     
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Fertility was slightly affected in Ath1.2 mutant plants in comparison to wild-type 

plants. A reduction in the Ath1.2 mean of silique length (Figure 4.26 A) was recorded 

showing 13.31 mm and 14.14 mm values for Ath1.2 and wild-type plants siliques 

respectively. Statistically, P-value (T-test) of 0.003 indicated that the reduction in 

silique length is significant. Moreover, the mean seed count per silique of Ath1.2 

comparable to the wild-type was 47.56 and 51.06 respectively (Figure 4.26 B). 

Although P-value of 0.048 (T-test) indicates a significant reduction in seed count, but 

the P-value is not so far from 0.05 (the significance level), suggesting that AtH1.2 

loss is most likely not necessary in Arabidopsis seed production.   

 

 

 

 

 

 

 

 

 

 

 



172 

 

 

 

Figure (4.26: Fertility of Ath1.2 mutant plants in comparison to Wild-type plants.  
(A) Silique length Average (N=50). (B) Seed set mean (N=50). *=P<0.05, *** = P<0.005. Error 
bars = Standard error of the mean.  
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4.27). The genotype of the plants analysed by PCR using specific AtH1.3 primers at 

both sides of the predicted T-DNA insertion (LP-RP, Table 2.2). Whereas, the Ath1.3 

T-DNA insertion was genotyped using the RP and BP (Table 2.3) primers pair. The 

Ath1.3 homozygous T-DNA genotype showed 0.436 kb band size on an agarose gel. 

The confirmed Ath1.3 homozygous insertion mutant plants were used to study their 

appearance, growth rate and fertility, compared to the wild-type plants.      

 

 

 

 

 

Figure (4.27): Schematic diagram of At2g18050 locus showing T-DNA insertion localisation.  
0.835 kb of AtH1.3 organisation into UTRs, exons and introns. Exons are represented with blue boxes. 
Introns are shown as triangles and UTRs are diagrammed as orange blocks. The UTR upstream 
sequence is represented with yellow block. And Ath1.3 N665594-Salk_025209 T-DNA insert with 
inverted red triangle. 
 

 

4.2.8.1. Phenotypic characterisation of Ath1.3 mutant plants 

The study of Ath1.3 plants development in parallel with wild-type plants indicated 

differences. A clear delay in the inflorescences appearance was observed in Ath1.3 

mutant plants in comparison to WT plants (Figure 4.28). The Ath1.3 showed 75% 

delay in their flowering timing if compared to the wild-type plants sawn next to it at 

same time and under the same conditions. 
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Figure (4.28): Phenotypic characterisation of Ath1.3 mutant plants 
75% delay in flower appearance was recorded comparable to wild-type plants. 

 

4.2.8.2. Fertility of Ath1.3 mutant plants 

The analysis of Ath1.3 mutants fertility was assessed by the length of the siliques 

(seed pods) and the number of seeds per silique. It was found that fertility is affected 

in Ath1.3 mutant plants in comparison to wild-type plants. A reduction in the Ath1.3 

silique length (Figure 4.29 A) was recorded showing 12.3mm comparable 

to14.14mm in WT plant silique.  Statistically, P-value (T-test) of 3.44639E-11 

indicated that Ath1.3 reduction in silique length is significant. Moreover, seed count 

per silique of Ath1.3 comparable to the wild-type was 39.62 and 51.06 respectively 

(Figure 4.29 B). The statistical analysis of the seeds average per pod in the mutant 

and the WT indicated a significant decline in Ath1.3 seed production (P-value= 

4.19519E-10) (T-test), suggesting that AtH1.3 is needed for normal level of seed 

production in Arabidopsis.   
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Figure (4.29): Fertility of Ath1.3 mutant plants in comparison to WT plants.  
(A) Silique length average (N=50). (B) Seed set mean (N=50). ***= P<0.005.  Error bars = 
Standard error of the mean. 
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AtHON4 gene at nucleotide positioned 2.094 from gene start (Figure 4.30). PCR 

products corresponding to the wild type were 1.145 kb in size whereas the T-DNA 

insertion product was 0.390 kb long in size on an agarose gel. The homozygous 

plants for the insertion were used to analyse their phenotype; plant growth, 

development and fertility progress. 

 

 

 

 

Figure (4.30): Schematic diagram of At3g18035 locus showing T-DNA insertion localisation.  
2.635 kb of AtHON4 organisation into UTRs, exons and introns. Exons are represented with blue 
boxes. Introns are shown as triangles and UTRs are diagrammed as orange blocks. And Athon4; 
N599887-Salk_099887 T-DNA insert as inverted red triangle. 
  

 

4.2.9.1. Phenotypic characterisation of Athon4 mutant plants 

The confirmed homozygous Athon4 mutants were screened during their life cycle for 

any unusual phenotype. The homozygous Athon4 mutant showed a 50% delay in 

their flowering time to that showed by the wild-type plants (Figure 4.31). The delay 

persists up to three weeks. Later the mutant plants were able to flower in a similar 

way to that observed on the wild-type plants. 
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Figure (4.31): Phenotypic characterisation of Athon4 mutant plants. 
50% delay in Athon4 mutants development and flowering was recorded. 
 

4.2.9.2. Fertility of Athon4 mutant plants 

The Athon4 mutants were studied to see if AtHON4 gene has a role on the plant 

ability to produce healthy gametes with potential to develop to zygotes. To do this 

seed pods (silliques) were assessed in the Athon4 mutants and compared to wild-

type plants. Quantification of seeds per pod in both Athon4 and the wild-type plants 

showed that the Athon4 presented a normal level of fertility with average seed sets 

per pod of 50.80 compared to 51.06 in the wild-type (Figure 4.32 B) with P value of 

0.870 (T-test). However, the length of silique pods was decreased significantly in the 

Athon4 in reference to their wild-type. The Athon4 had an average silique length of 

13.22 mm compared to 14.14 mm in wild-type (Figure 4.32 A) (P-value=0.000867).  
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Figure (4.32): Fertility of Athon4 in comparison to WT plants.  
(A) Average silique length (N=50). (B) Seed set mean (N=50). ). ***= P<0.005.  Error bars = 
Standard error of the mean. 
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gene at nucleotide position 1824 (Figure 4.33). The plants genotype was checked by 

PCR using specific primers for AtHON5 (1.019 kb band) and for the T-DNA insertion 

(0.383 kb band). Homozygous Athon5 mutants were obtained and watched on a 

weekly basis for any phenotypic difference with that of the wild-type.  

 

 

 

 

Figure (4.33): Schematic diagram of At1g48620 locus showing T-DNA insertion localisation .  
2.693 kb of AtHON5 organisation into UTRs, exons and introns. Exons are represented with blue 
boxes. Introns are shown as triangles and UTRs are diagrammed as orange blocks. And the Athon5; 
N656137-salk_007422, T-DNA insert, as inverted red triangle. 
  

 

 

4.2.10.1. Phenotypic characterisation of Athon5 mutant plants  

The phenotypic characterisation of Athon5 mutant plants showed that 55.5% of the 

homozygous T-DNA plants were delayed in the flowering time (Figure 4.34). Athon5 

mutant plants which were delayed in their flowering development managed to 

complete normal flowering after two to three weeks delay compared to that of the 

wild-type plants.  

 

Figure (4.34): Phenotypic characterisation of Athon5 mutant plants. 
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55.5 % of Athon5 mutants showed flowering delay and slow plant development phenotype at the 
beginning of development. 
 

4.2.10.2. Fertility of Athon5 mutant plants 

Athon5 mutant fertility was analysed by assessing their seed sets and silique lengths 

in comparison with the wild-type plants. The Average silique length of Athon5 and 

wild type were 13.07mm and 14.14mm respectively (Figure 4.35 A). P value of 

0.000181 (T-test) confirmed that the difference seen in the silique length between 

Athon5 and wild-type was significant. However, the seed set average of Athon5 and 

wild-type were 54.04 and 51.06 respectively (Figure 4.35 B). The calculated P-value 

was 0.074 (T-test), indicating that seed production in Athon5 is not different from the 

WT.  
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Figure (4.35): Fertility of Athon5 mutant plants in comparison to WT plants.  
(A) Silique length (N=50).  (B) Mean of seed set (N=50). *= P<0.05. Error bars= Standard 
error of the mean. 
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4.3 Discussion 

4.3.1 Arabidopsis Linker histone H1 isoforms affect the flowering time of the 

plant 

Our investigation has showed that seven out of ten histone linker H1 mutant lines 

have significant delay in flowering time; Ath1.1-1, Ath1.2, Ath1.3, Ath1b, Ath1c, 

Athon4, and Athon5. From these lines just three of them presented a significantly 

reduced fertility (Ath1.1-1, Ath1.2 and Ath1.3). Our observations of the flowering time 

delay might be due to the impact of H1 deletion on transcription, which could be one 

of the major causes for the developmental switch from vegetative to reproductive 

growth. Flowering time delay has been reported as a consequence of reduction in 

transcription (Zhang and Nocker, 2002; Zhang et al., 2003; He et al., 2004; Oh et al., 

2004). Additionally, a number of histone modifications or remodelling activities 

regulated by H1 at the 3` position of genes can have consequences in transcription 

(Selth et al., 2010). Several studies have showed that, Flowering locus C (FLC) 

protein, which possess a MADS box domain, can regulate the vegetative phase to 

converge to the reproductive phase in plants (Creville`n and Dean, 2011). The 

flowering process is a consequence of two pathways: environmental cues and 

developmental cues, which regulate the floral pathway integrator. Paflc is a specific 

site at FLC locus with high importance. It was found that mutations at this locus both 

in yeast and mammalian cells causes dramatic changes  on the  process of 

transcription either by affecting histone modifications or chromatin-remodelling, 

transcriptional elongation, in addition to its impact on the recruitment of processing 

factor at the 3` end (Selth et al., 2010).  Some reports showed that, mutations of 

Paflc at the FLC locus reduce transcription. A reduction in both H3K4me3 at 5` end 
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and H3K36me2/3 was recorded together with an increase in the H3K27me3 (Oh et 

al., 2008). These findings emphasize that the delay in flowering time in different Ath1 

mutant lines might be due to an interference with the transcription machinery 

affecting flower development, and probably the FLC transcription. 

 

4.3.2 Histones play a role in proper timing of plant development 

The presence of multi copies for linker histone proteins in eukaryotes makes it highly 

difficult to study each single gene even with the different advanced technologies in 

producing mutants with different gene expression. Gene redundancy could deal with 

any single gene loss and produce the wild-type like phenotype. Cutting down the H1s 

community into groups sharing characteristics, and studying each in more detail 

eases their study, and so, this is what we have done in this project.   

The single gene knock-out technology used for analysing each of the ten Arabidopsis 

histone H1s have showed us developmental timing defects in reference to their wild-

type. The delayed pattern in flower formation existed in Ath1s mutants; Ath1b, Ath1c, 

Ath1.1-1, Ath1.2, Ath1.3, Athon4, and Athon5 at earlier stages did reduce the plant 

development to their fully mature organ phenotype with a delayed period ranges 

between two to three weeks in reference to their parallel grown wild-type plants. The 

Ath1s mutant plants can be divided into two categories according to their flowering 

phenotype; delayed and non-delayed. Data indicated that all of the Ath1s mutants 

belonging to HMG-like protein domain were found to show a delayed flowering 

phenotype, whereas the ones belonging to H1-like and MYB-like protein domains 

showed both delayed and non-delayed phenotypes as shown in Figure (4.36).    
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These observations together with the data obtained from genevestigator where all 

H1s are expressed constitutively during plant organogenesis give us a hint that these 

proteins are needed for the normal plant development. Moreover, each of the single 

H1s mutants showed a kind of abnormality either at developmental timing level or at 

fertility level suggesting the necessity of each single H1 protein in the Arabidopsis 

nuclei in controlling the vital processes of the plants. 

 

Additionally, the ability of plants to skip delay in flowering, and proceed to the normal 

like mature stage reflects somehow that H1s proteins could be redundant 

functionally. This belief is further acceptable since H1s protein alignment showed a 

pair like homology relying on their amino acid sequence. A proteomic screening for 

single H1 proteins within each single null H1 mutant line will add more data to the 

real relation between Arabidopsis H1s isoforms. Furthermore, cytological analysis of 

their corresponding single mutants as well as the development of higher level 

mutants where two or more of H1s proteins are null will enhance drawing a clear 

conclusion for their supposed redundancy and or specificity within nucleus context. 
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Figure (4.36): Comparison between Arabidopsis Ath1s single T-DNA mutants 
and wild-type plants in flowering time delay.  
 

 

4.3.3. Histone H1 gene duplication allows H1 compensation in the single Ath1 

null mutants 

Our study of the Ath1s single mutants (Ath1b, Athon4, Athon5, and Ath1d) showed 

that although each of them got delayed flowering at the beginning, their phenotype 

would mature to that of the wild-type after some days, suggesting a putative 

redundancy effect for the different H1 variants in Arabidopsis. An error in one gene 

can be substituted by activating other variants. Our in silico analysis of histone H1 

proteins which showed that it has a pair wise order according to their protein 

sequences homology might support this conclusion. Moreover, previous findings by 

Wierzbicki and Jerzmanoski (2005) reported that the in vivo examination of globular 

linker histone in plants is difficult due to the presence of several isoforms. In addition 

to Fan et al. (2001) results that H1 has several compensating variants. Moreover, 
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Hanada et al. (2009) reported that A. thaliana is known in having duplicated genes 

that are functionally equivalent. And so knocking out one of the gene copies do not 

cause plant death, since gene loss is rescued by its duplicates. 

 

4.3.4 Loss of H1-like proteins prevents normal fertility 

Our analysis to the ten histone Ath1s mutant lines showed variation in its loss impact 

on the plant fertility level. Seven Ath1s mutant lines: Ath1.1-1, Ath1.1-2, Ath1.2, 

Ath1.3, Ath1a, Ath1c and Athon4, showed reduction in fertility parameters 

assessment in comparison to the WT plants. Of these, four Ath1 T-DNA lines; Ath1.1-

1, Ath1.1-2, Ath1.2 and Ath1.3, and one RNAi line; h1.1, showed significant fertility 

reductions (Figure 4.37). Our findings come together with previous studies by 

(Prymakowska-Bosak et al., 2002; Slusarczyk et al., 2003) on Nicotiana tabacum L 

(Tobacco), who found that inactivation of histone H1 variant caused abnormalities in 

the flower development and male gametophyte formation leading to male sterile 

plants.  

 

Fertility level reduction in the Ath1.1-1, Ath1.1-2, Ath1.2 and Ath1.3 could be as a 

consequence of defects during meiotic chromosomes segregation. Meiosis errors are 

mostly the direct cause of fertility loss (Osman et al., 2011). Moreover, several reports 

indicated that defects in homologous chromosomes alignment (Shen et al., 2008), 

pairing and synapsis (Dernburg et al., 1998; Higgins et al., 2005; Sanchez-Moran et 

al., 2007), might cause defects in chromosome segregation. Hence, lead to sterile 

plant phenotype. The meiotic stages in Ath1.1-1 (Figure 5.4), Ath1.1-2 (Figure 5.6) 
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and h1.1RNAi (Figure 5.7) were analysed for these mutant lines in comparison to the 

WT (Figure 5.3) as will be discussed later in chapter five.   

 

From another point of view, an epigenetic switch might have arised due to a certain 

H1 protein loss. And so, this could have been the cause for the developmental 

defects, and even the silique length and seed numbers.  Still all of these are 

possibilities and further cytological, immunocytological, and proteomics analysis are 

necessary to be able to get a clear view on defects observed in these mutants. 

 

Figure (4.37): Fertility change in percentage for Arabidopsis histone Ath1s single mutant lines.  
Red block resembles changes in silique length. The blue block represents changes in seed set count 
per silique. Horizontal axis line resembles fertility change in percentage. Positive values shows 
increase in fertility. Negative value resembles reduction in fertility.   
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Table (4.2): Summary of Arabidopsis histone Ath1s mutant lines phenotypic changes.  
A= Seed data. B= Silique data. Arrows represents change in fertility parameter, upper arrows 
represents increase and lower arrows represents decrease.  Black arrows represent non-significant 
change and red arrow represents significant change.  Purple shade represents MYP-like H1s. Blue 
shades represents HMG-like H1s, and Grey shades represents H1-like H1s.  

H1  Gene Locus T-DNA Line Locus T-DNA 

Position 

Flowering 

delay 

Fertility 

Changes 

Ath1a At1g54260 N877696- 

Sail_883_F09 

3rd intron 0 %      (A) 4.65 % 

     (B) 6.20 %     

Ath1b At5g08780 N659488-  

salk_090072 

3rd exon 75% (A) 4.13 %  

 (B) 16.12 %  

Ath1c At1g48610 N586260- 

Salk_086260 

2nd Intron 43 % - 

57%  

     (A) 1.29 % 

(B) 2.40 % 

Ath1d At1g72740 N65754- 

Salk_065267 

5th intron 0 %  (A) 1.76 %  

 (B) 5.65 %  

Ath1.1-1 At1g06760 N521410-salk_021410 Upstream 

UTR 

5% (A) 90 %  

(B) 51 %  

Ath1.1-2 At1g06760 N-654890- 

salk_128430 

1st exon 0 % (A) 17.6 % 

(B)7.50 % 

Ath1.2 AT2G30620 N321948-  

GK-116E08 

1st exon 100% (A) 6.9 %*  

(B)5.9%  

Ath1.3 At2g18050 N665594- 

Salk_025209 

300-UTR 75% (A) 22.4 %  

(B) 14.2%  

Athon4 At3g18035 N599887- 

Salk_099887 

Exon 4 50% (A) 0.51 % 

(B) 6.5% 

Athon5 At1g48620 N656137- 

Salk_007422 

2nd intron 55.5% (A) 5.51 % 

 (B) 7.57 % 
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4.4. Future work 
4.4.1 H1s Redundancy effect 

The normal plants phenotype in the single Ath1s mutants in the studied T-DNA lines 

implied that Arabidopsis H1s seem to be functionally redundant. This result was 

supported with the H1s proteomics homology amino acid sequence similarity (Figure 

4.3).  Since in silico H1s protein sequence analysis suggested that H1s are grouped 

into pair-like manor, so this might imply that these pairs are functionally similar, 

hence, in order to understand their cellular role demands creating double, triple or 

higher Ath1s T-DNA mutants. For that, Table 4.3 was created showing the possible 

Ath1s T-DNA double mutants that could be created, from single Ath1 T-DNA mutants 

crosses, depending on the H1 protein sequence similarity. This prediction needs 

more investigation.  

T-DNA line Locus Crosses 

   

N659488-Salk_090072 At5g08780 H1B  

N877696-Sail_883_F09 At1g54260 H1A  

N599887-Salk_099887 At3g18035 HON4  

N665594-Salk_025209 At2g18050 H1.3  

N656137-Salk_007422 At1g48620 HON5  

N521410-Salk_021410 At1g06760 H1.1-1  

N654890-Salk_128430 At1g06760 H1.1-2  

N321948-GK-116E08 At2g30620 H1.2  

N586260-Salk_086260 At1g48610 H1C  

N657654-Salk_065267 At1g72740 H1D  

       

Table (4.3): Suggested double Histone Ath1 mutant lines crosses based on protein sequence 
homology. 
 Lines with the same colour (show high sequence homology) are crossed together. 
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CHAPTER 5 

H1.1 ROLE IN MITOTIC AND MEIOTIC 

CHROMOSOME AXIS ORGANIZATION 

 

 

 

 

 

 

 



191 

 

5.1. Introduction   

The linker histone (H1) role in the chromatin organisation have been addressed in 

several reports. Thoma et al. (1979) reported that the in vitro addition of histone H1 

to the 10 nm nucleosome fibre leads to the formation of the 30 higher order 

chromatin fibre structure. But on another hand other studies showed that the zigzag   

two start helix model of the higher order chromatin fibre structure could be formed by 

interactions form between the H2A acidic amino acids and the amino terminal 

residues on H4 (Schalch et al., 2005).  Thus, H1 role is not yet confirmed in the 

higher order chromatin structure and in the chromatin organisation, and more studies 

and analysis are still required to reveal that.  Several defects were observed and 

recorded in the mutants lacking the normal active histone H1 gene products from 

yeast (Downs et al., 2003), to Ascobolus immerses (Barra et al., 2000), Tobacco 

(Prymakowska-Bosak et al., 1999) and Xenopous (Maresca et al., 2005). But the 

presence of different isoforms for the linker histone H1 (Fan et al., 2001) makes it 

difficult to study each isoform individually. Since gene redundancy could interfere 

with the phenotype appearance in the single mutants. Interestingly, the link between 

linker histone H1 and the chromatin organisation in vivo came from a study on 

Xenopus. Maresca et al. (2005) showed that in vivo depletion of histone H1 in 

Xenopus resulted in two times longer mitotic chromosomes. Furthermore,  when the 

H1 was overexpressed, the interphase chromatin was highly compacted (Freeman 

and Heald, 2010).    
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In this chapter we will analyse two T-DNA insertion mutants, Ath1.1-1 and Ath1.1-2, 

and h1.1RNAi using cytological, FISH and immunocytological techniques to assess 

H1.1 role during mitotic and meiotic chromosome organization. We will provide clear 

evidences for the H1.1 importance for preserving normal homologous recombination 

levels by allowing the correct formation of the homologous chromosomes axes and 

thus the proper synapsis and crossover maturation.   

  

5.2. Cytological analysis of mitosis in Ath1.1 mutants 

DAPI stained mitotic cells of Ath1.1-1 T-DNA plants showed that mitotic metaphase 

chromosomes  appeared to condense differently in 50% metaphase nuclei (n=100) 

(Figure 5.1 B&D). This defect was also recorded in 30% h1.1RNAi mutant nuclei 

(Figure 5.1 I). The mitotic metaphase chromosomes appeared to be longer in these 

mutants than in the wild-type (Figure 5.1 A). This abnormality was followed by 

defects in chromosome segregation at anaphase, in which sister chromatid 

separation was affected producing lagging chromosomes. Anaphase bridges were 

observed in Ath1.1-1 (Figure 5.1 E). Anaphase bridges were observed in 3% of cells 

in Ath1.1-1 (n=100) (Figure 5.1 F)  

 

Mitosis was also checked in the double heterozygote mutant Ath1.1-2-/+/Ath1.1-1-/+. 

DAPI-stained mitotic cells showed abnormal sister chromatid separation in 2% 

anaphase nuclei (n=50) (Figure 5.1 J). Leading to an abnormal chromosome 

orientation (Figure 5.1 K) and anaphase bridges (Figure 5.1 L). Furthermore, 2% of 

the nuclei showed anaphase bridges present at telophase (n=50) (Figure 5.1 M).  
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This finding was consistent in all Ath1.1 mutants. As anaphase bridges were 

observed in Ath1.1-1, Ath1.1-2 and h1.1RNAi. 

 

         

             

           

Figure (5.1): Mitotic defect analysis in Ath1.1 mutants; Ath1.1-1, Ath1.1-2 and h1.1RNAi, in 
comparison to WT.  
(A) WT. (B-F) Ath1.1-1. (I) h1.1

RNAi
. (J-M) Ath1.1-2

+/-
/Ath1.1-1

+/-
. (D&I) Metaphase: Long chromosomes 

indicating that chromosomes condensation is abnormal comparable to WT metaphase (A). (E&J) 

J 

K M L 

I 

F E D 

A B 
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Anaphase: sister chromatid separates but unable to orient in a way that give two equal nuclei. One 
nuclei with normal ten chromosomes whereas the other with seven, however, three chromosomes are 
lagging comparable to the balanced sister chromatids separation in WT (B). (F&L&M) Anaphase-
telophase: anaphase-bridge is obvious between the two nuclei indicating that lagging chromosomes 
are still stuck in between the newly formed daughter nuclei in comparison to the balanced daughter 
nuclei at telophase in WT (C).  

 

 

Mitotic defects 

Plant line 

Ath1.1-1 Ath1.1-2 h1.1RNAi Ath1.1-2
+/-

/Ath1.1-1
+/- 

Chromosome 

compaction defect 

(Metaphase) 

 

√ 

50% 

  

√ 

30% 

 

Mis-oriented 

chromosomes  

(Anaphase) 

 

√ 

10% 

   

√ 

10% 

Anaphase-bridge 

(Telophase) 

 

√ 

10% 

 

√ 

10% 

  

√ 

20% 

 

Table (5.1): Summary of defects seen in the mitosis of Ath1.1 mutants  

 

5.3. AtH1.1 expression is not specific to meiosis 

AtH1.1 microarray data has showed that its expression is carried out in all types of 

Arabidopsis tissues (Figure 5.2). AtH1.1 is expressed in cotyledon, seedling, rosette, 

seeds, leaf, root, stamen, shoot, inflorescence, flower bud, ovary and silique. Hence, 

AtH1.1 is expressed in both vegetative and reproductive tissues.  
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Figure (5.2): Genevestigator expression profile of Arabidopsis AtH1.1 gene.  
Microarray data showed that AtH1.1 is expressed in both vegetative and reproductive tissues. 
Results show rate of expression in each tissue in reference to the number of samples used for 
calculating expression mean value. (Hruz et al., 2008).  
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5.4. Cytological analysis of meiosis in Arabidopsis wild-type and Ath1.1 

mutants 

To confirm that the fertility defect observed in Ath1.1 mutant lines (Figures; 4.19, 

4.20, 4.21) was due to meiotic errors, cytological studies were carried out in pollen 

mother cells (PMCs) in parallel with the wild-type. 

 

5.4.1. Meiotic cytology of Arabidopsis wild-type 

The wild-type Arabidopsis (Col-0) was analysed for the different meiotic stages using 

DAPI stained PMCs. The process of meiosis undergoes two divisions, meiosis I and 

meiosis II. Each can be divided into four stages (prophase, metaphase, anaphase 

and telophase). Meosis I initiates at prophase I with discriminative five substages: 

leptotene, zygotene, pachytene, diplotene and diakinesis. Before meiosis takes place 

a premeiotic stage termed interphase occur, in which chromosomes initiates to 

condense, and the sister chromatids are held together after the DNA is replicated 

prior to enter meiosis. Meiosis I start with leptotene (Figure 5.3 A), in which 

condensed chromosomes become clearly visible. It is followed with zygotene (Figure 

5.3 B), when the pairing of homologous chromosomes starts, with synapsis and 

recombination at certain regions of the chromosomes. The chromosomes in this 

stage have often a discriminative dense knot configuration at one side of the nucleus. 

Chromosomes then enter pachytene (Figure 5.3 C) stage, in which homologous 

chromosomes are fully synapsed. Hence, homologous chromosomes appear as thick 

strands with densely stained centromeres. In Diplotene (Figure 5.3 D), the 

chromosomes continue to condense and de-synapsis occur leading to the 

appearance of extended (sometimes diffused) long chromosomes. Diakinesis 
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(Figure 5.3 E) proceeds later when five bivalents of homologous chromosomes are 

visually clear. Each bivalent is hold by a chiasma at each crossover site. At 

metaphase I (Figure 5.3 F), the five bivalents are aligned at the equatorial region of 

the cell. And at anaphase I (Figure 5.3 G) homologous chromosomes separate, and 

move towards the opposite poles of the cell. At telophase I (Dyad stage) (Figure 5.3 

H) the haploid set of chromosomes is present at each pole of the cell separated by a 

distinguishable wall of granules (cell’s organelles, mitochondria and chloroplasts). 

The chromosomes start re-condensing at prophase II. And at metaphase II (Figure 

5.3 K), fully condensed chromosomes align at the meiotic spindle equator and at 

anaphase II (Figure 5.3 L), sister chromatids separate and the two sets of 

chromatids divide to opposite poles.  Finally, at telophase II (tetrad stage) (Figure 5.3 

M) four nuclei are formed, each with a haploid set of the whole genome. 
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Figure (5.3): Meiotic atlas of wild-type PMCs. 
(A-H) Represents meiosis I. (I-M) Represents meiosis II.  Meiosis I initiates with prophase I (A-E). (A) 
Leptotene: chromosomes condense, then homologous chromosomes pairing initiates. (B) Zygotene: 
pairing between homologous chromosomes continues. (C) Pachytene: full synapsis forms between 
homologous chromosomes. (D) Diplotene: homologous chromosomes DE synapse. (E) Diakinesis: 
Homologous chromosomes cross over, with an obvious 9-10 COs. (F) Metaphase I: Five bivalents are 
observed. (G) Anaphase I: homologous chromosomes separate and move towards the opposite poles 
of the cell. (H) Dyad stag: The haploid set of chromosomes is present at each pole of the cell 
separated by a distinguishable wall of granules. (K) Metaphase II: fully condensed chromosomes align 
at the cell equatorial region. (L) Anaphase II: sister chromatids separate and the two sets of 
chromatids divide and move to opposite poles. (M) Telophase II: four balanced haploid tetrad nuclei 
are formed. Cells are DAPI stained. Bar 5µm 
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5.4.2. Meiotic cytology of Ath1.1-1 

The 90% reduction in fertility within Ath1.1-1 mutants could be due to meiotic errors.  

DAPI-stained chromosome spreads were prepared from Ath1.1-1 PMCs. The 

cytological analysis of the Ath1.1-1 line showed severe chromosomal abnormalities 

during different meiotic stages. Although the initial meiotic stages of leptotene 

(Figure 5.4 A) and zygotene (Figure 5.4 B) showed no differences with the wild-

type, however, chromosome abnormalities start to appear after those stages. At 

pachytene (Figure 5.4 C) homologous chromosomes did not synapse completely 

along the full length of the homologues, in contrast to the fully synapsed homologues 

in the wild-type. Defects are more obvious at diakinesis (Figure 5.4 E). Chiasma 

frequency between homologous chromosomes was highly reduced, leading to early 

appearance of univalents, comparable to five bivalents in the wild-type meiocytes. 

The number of chiasma per cell observed in the Ath1.1-1 ranged from 0 (Figure 5.4 

F) to 5, in contrast to the 8 to 12 range in the wild-type. In addition, we observed 

some meiocytes showing early sister chromatid separation at metaphase I (Figure 

5.4 F). Around 6% of Ath1.1-1 metaphase I (n=100 cells) showed early sister 

chromatid separation (Figure 5.5 A), showing a mean value of 0.06 (Figure 5.5 B), 

which resembles significant increase comparable to WT. Moreover, 9% of Ath1.1-1 

metaphase I nuclei (n=100) showed some chomosome fragments (Figure 5.5 C), 

with 0.12 fragment per nuclei (Figure 5.5 D), indicating significant differences from 

WT. Moreover, 100% of cells showed univalents (Figure 5.5 E), with a mean value of 

7.98 univalents per nuclei (Figure 5.5 F), showing a significant increase comparable 

to WT. The consequences of chiasmata deficiency were obvious at anaphase I 

(Figure 5.4 G), where a clear lagging of the chromosomes movement towards the 
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opposite poles of the cell were visualised, which resulted in the incorrect number and 

or set of chromosomes be settled at opposite poles. Chromosome mis-segregation 

defects continued to second meiotic division (Figure 5.4 H), where two big nuclei 

missing the complete set of chromosomes, and small nuclei with few chromosomes 

appeared. As meiosis I outcome was abnormal, hence, meiosis II follows on initiating 

with abnormal prophase II (Figure 5.4 I), unbalanced nuclei were formed due to 

chromosomes mis-segregation. At metaphase II (Figure 5.4 J) condensed 

chromosomes aligned at the nucleus equator with some defects; in which the number 

of chromosomes is unequal on the two poles due to chromosome lagging or 

chromosome loss. And at anaphase II (Figure 5.4) and telophase II (Figure 5.4 L) 

unbalanced  chromosome segregation was clearly observed.  

 It is interesting to notice that the Ath1.1-1 meiotic chromosomes showed defects at 

the level of chromosome compaction. Some of the mutant chromosomes were not 

fully condensed at diakinesis (Figure 5.4 E). Also, we observed asynchronous 

chromosomes re-condensation pattern at prophase II (Figure 5.4 I). This is very 

different in the wild-type which presented a very synchronous pattern of 

chromosomes condensation and re-condensation during the meiotic process. 

Moreover, an early sister chromatid separation at metaphase I proceeding to 

metaphase II stages, might suggest a role for AtH1.1 in preserving the chromosome 

structure organisation and chromatid cohesion. To further characterise these meiotic 

defects observed we carried out immunolocalisation studies in the Ath1.1-1 mutant 

as well as the WT. 
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Figure (5.4): Meiotic atlas of Ath1.1-1 PMCs. 
(A) Leptotene and (B) zygotene stages show the wild-type phenotype, whereas, at pachytene (C) the 
homologous chromosomes are partially synapsed. Diplotene: (D) desynapsed homologous 
chromosomes. Hence, at (E) diakinesis significant reduction in COs is obvious, with early univalents 
appearance. (F) At metaphase I COs significant decline was confirmed. Chiasmata range per 
meiocyte in the Ath1.1-1 was 0-5 with mean value of 1.06 chiasmata. In contrast, the wild-type 
showed 8-10 COs, with mean of 9.46 chiasmata. As a result of this, chromosomes missegregation 
were clear at (G) anaphase I, (H) dyad stage as well as meiosis II stages; (I) prophase II, (J) 
metaphase II, (K) anaphase II, and ending up with aneuploidy at (L) tetrad stage. Moreover, early 
sister chromatid separation was obvious in meiosis at different meiotic stages, and here at (F) 
metaphase I and at (J) metaphase II. Cells are DAPI stained. White arrows indicates early sister 
chromatid separation. Bar 5µm 
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Figure (5.5): Metaphase I Defects observed in Ath1.1-1 in comparison to WT. 
(A) 6% Ath1.1-1 showed sister chromatid separation while WT is null. (B) Ath1.1-1 has significantly 
different phenotype comparable to WT. (C) 9% of Ath1.1-1 nuclei showed fragments, however WT 
nuclei were fragments-free. (D)  Fragments presence in Ath1.1-1 showed a mean of (0.12) indicating 
significant difference from WT. (E) 100% Ath1.1-1 nuclei showed univalents presence. So, (F) Ath1.1-
1 showed 7.98 univalents per nuclei, indicating significant increase comparable to WT. Triple red 
asters represent significant difference (P<0.05). 
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5.4.3. Meiotic cytology of Ath1.1-2 

The two TDNA mutant lines for AtH1.1 gene; Ath1.1-1 and Ath1.1-2, showed 

significant reduction in fertility parameters compared to the WT. Nevertheless, both 

mutant lines showed different levels of fertility (the parameter that was used is seed 

count per pod (n=50)) Ath1.1-1 restored 10% of the WT fertility whereas the Ath1.1-2 

restored 82%. This difference in seed production potential was statistically significant 

(P-value=1.404E-41, T-test). Fertility changes usually arise due to errors incidence 

during meiosis. And this seems to be the case for Ath1.1-1 mutant.  To further 

characterise Ath1.1-2 mutant, a meiotic atlas of PMCs was prepared. 

 

The results showed that Ath1.1-2 early prophase I stages; leptotene (Figure 5.6 A) 

and zygotene (Figure 5.6 B), were similar to those appeared in Ath1.1-1 and wild-

type. However, meiosis defects were recorded thereafter in comparison to that 

observed in the wild-type. At pachytene (Figure 5.6 C-G) different abnormalities were 

observed; defects appeared during the chromosome search for their homologue, 

causing interlocking-like structures to appear (Figure 5.6 C&D). Nevertheless, we 

never observed these structures in Ath1.1-1 mutants. Partial synapsis between 

homologous chromosomes (Figure 5.6 E) was observed, similar to that seen in 

Ath1.1-1.  Moreover, some chromatin breaks (Figure 5.6 F) were visible in this 

mutant line, whereas they were not observed in Ath1.1-1 pachytenes. Besides that it 

seemed that pairing between nonhomologues was seen in some cells (Figure 5.6 

G). Later on at diakinesis (Figure 5.6 H) chiasmata between homologous 

chromosomes were observed but different homologues were interlocked together in 
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an abnormal manner. Synapsis defects resulted in univalent appearance at 

metaphase I (Figure 5.6 I) causing significant reduction in chiasma frequency with a 

mean of 8.39 chiasmata per cell. However, the Ath1.1-1 mutant showed 1.06 

chiasma frequency. At anaphase I and second meiotic divisions, chromosome mis-

segregation was observed (Figure 5.6 J&K&L&M). Meiotic anaphase bridges were 

observed in 1% cells (Figure 5.6 K), however such a defect was not viewed in the 

Ath1.1-1 meiosis. Moreover, defects in chromosome compaction was visualised also 

at diakinesis (Figure 5.6), similarly to that observed in the Ath1.1-1 mutant line. 
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Figure (5.6): Meiotic atlas of Ath1.1-2 PMCs. 
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(A) Leptotene and (B) zygotene were similar to wild-type. (C-G) pachytene showed several defects; 

(C&D) interlocking structure, (E) asynaptic phenotype, (F) chromatin breakage, (G) pairing between 

nonhomologous chromosomes. (H) diakinesis interlocking structure is still observed. C&D&F&H 

phenotypes were not seen in Ath1.1-1.  Synapsis defects resulted in significantly reduced COs at (I) 

metaphase I. Ath1.1-2 showed 6-10 COs per meiocyte with an estimated chiasmata mean of 8.39 

comparable to 8-10 COs in wild-type with chiasmata mean of 9.46. Although, both Ath1.1-1 and 

Ath1.1-2 showed significant reduction in chiasmata, but Ath1.1-1 showed 88.79% whereas, Ath1.1-2 

showed 11.3%. Hence, Ath1.1-2 has 87.4% more COs than Ath1.1-1. Chromosome missegregation 

were consistent at later stages; (J) anaphaseI-telophase I, (K) dyad, (L) anaphase II, and ending up 

with aneuploidy at (M) tetrad. Cells are DAPI stained. White arrows indicate chromatin breakage. Red 

arrows indicate interlocking structures. Yellow arrow indicates unsynapsed chromatin. Scale Bar= 

5µm. 

 

 

5.4.4. Meiotic cytology of h1.1RNAi mutant lines 

To confirm the meiotic defect seen in the Ath1.1 TDNA mutant lines; Ath1.1-1 and 

Ath1.1-2, a knockdown mutant line for histone H1.1 was obtained (N23980- 

CS23980). The plants were assessed for their fertility. Our results showed a 

reduction of 41% in seed production in the h1.1RNAi comparable to the 90% observed 

in Ath1.1-1 and the 17.6% in Ath1.1-2. Hence, meiosis analysis was carried out in the 

h1.1RNAi lines using PMCs, to verify for similar defects observed in the meiocytes of 

Ath1.1 TDNA mutant lines. 

 

The early prophase stages, leptotene (Figure 5.7 A) showed no differences to the 

wild-type. However, at pachytene (Figure 5.7) several defects were recorded. 

Homologous chromosomes fail to synapse completely similarly to Ath1.1-1 and 

Ath1.1-2 mutants (Figures B&C). Interlocking structures were visualised (Figure5.7 

D) mimicking that observed in the Ath1.1-2 mutant. At Diakinesis, early univalents 

appearance was observed (Figure 5.7 F&G) as well as chromosome compaction 

defects (Figure 5.7 F&G), similarly to that observed in both Ath1.1-1 and Ath1.1-2 

mutants. Chromosome fragmentation (Figure 5.7 H) was also recorded. At 
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metaphase I (Figure 5.7 I) a significant reduction in the number of chiasma was 

observed. Chiasma reduction resulted in the failure of proper homologues disjunction 

at anaphase I, so chromosomes failed to segregate equally to the opposite poles at 

anaphase I. Thereafter, chromosome mis-segregation continued to be present at 

second meiotic divisions (Figure 5.7 J-O). The random chromosome segregation at 

anaphase I and meiosis II observed in the h1.1RNAi were similar to the defects shown 

in the Ath1.1 TDNA lines. 
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Figure (5.7): Meiotic atlas of Ath1.1
RNAi

 PMCs. 
(A) Leptotene stage was normal in phenotype, however defects were clearly observed at (B-D) 
pachytene stage, (F&G&H) diakinesis stage, (I) metaphase I stage, (J) anaphase I stage, (K) dyad 
stage, (L) prophase II stage, (M) metaphase II stage and (N) anaphase II stage, (O) tetrad stage. 
(C&D) Interlocking structures. (B&H) Chromosome breakage. (B&C) Asynaptic phenotype.(F&G) 
defect in chromosome compaction.(I) Chiasmata frequency was reduced, recoding chiasmata mean of 
7.84 in h1.1

RNAi
 comparable to 9.46 in wild-type. (J-N) Chromosome mis-segregation. (O) Tetrad 

aneuploidy. Cells are DAPI stained. White arrows indicate chromatin breakage. Red arrows indicate 
interlocking structures. Yellow arrows indicate asynaptic chromatin. Copmpaction defect is 
represented by orange arrow. Univalents are represented by green arrows. Bar= 5µm. 
 

 

5.5. Verification of Ath1.1 mutants phenotype 

5.5.1. Fluorescence in situ hybridization (FISH) analysis of the T-DNA insertion 

in Ath1.1 mutants 

The phenotypic and cytological analysis of Ath1.1 mutants; Ath1.1-1 and Ath1.1-2, 

showed that their fertility deficiency arise from similar meiosis defect. Moreover, the 

h1.1RNAi line cytology confirms these Ath1.1 mutant phenotypes and that are most 

likely due to mutation in the AtH1.1 gene. And to confirm that the phenotype 

observed in these mutant lines were due to the T-DNA insertion in the AtH1.1 gene, 

FISH analysis using a T-DNA- labelled probe was used. Signals observed at 

zygotene and pachytene chromosome spreads from both Ath1.1-1 and Ath1.1-2 

TDNA mutants showed the presence of only one insertion in both mutants. The FISH 

results of Ath1.1-1 showed the presence of two red foci (dot signals) at zygotene 

(Figure 5.8 A) and one red focus (dot signal) at pachytene (Figure 5.8 B). Hence, 

this confirms the presence of one TDNA insert in homozygosis, one in each of the 

homologous chromosomes, as homologues completely synapsed at pachytene, so 

the T-DNA signal is reduced to only one focus. Moreover, The FISH analysis of 

Ath1.1-2 (Figure 5.8) showed similar results to that seen in Ath1.1-1. A pair of TDNA 
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probe signals appeared at zygotene (Figure 5.8), however, at pachytene (Figure 

5.8) the signal was reduced to only one focus. 

 

 

   

   

Figure (5.8): FISH verification of Ath1.1 TDNA insert. 
FISH analysis of DAPI stained meiocytes of Ath1.1 TDNA 
mutants; (A&B) Ath1.1-1 and (C&D) Ath1.1-2, showed the 
presence of two pairing signals at (A&C) zygotene, showing one 
TDNA insert in each of the homologoues chromosomes which 
pair at this stage, and one signal at (B&D) pachytene, as 
homologues synapse. Red signal indicate Ath1.1 TDNA- Biotin 
labelled probe. Bar= 5µm. 
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5.5.2. Allelism test 

To verify that Ath1.1-1 and Ath1.1-2 mutant phenotypes are due to a mutation in 

AtH1.1 gene, an allelism test was carried out by crossing both mutant alleles with 

each other. More than six time trials to pollinate Ath1.1-1 T-DNA stigma with Ath1.1-2 

anthers ended unsuccessfully, producing just empty siliques. However, a reciprocal 

cross; using Ath1.1-2 mutant as the female plant and Ath1.1-1 mutant as the 

pollinator allowed us to obtain three seeds. These seeds were put to grow, and one 

plant developed successfully. Its genotype was checked, using the Ath1.1-1 and 

Ath1.1-2 primers, for both the wild-type and the TDNA insert. As expected, the plant 

genotype was a double heterozygote for Ath1.1-2/Ath1.1-1  

 

5.5.2.1 Phenotypic observation of Ath1.1-2 +/-/ Ath1.1-1 +/- double heterozygote 

plant 

Development and growth of the Ath1.1-2/Ath1.1-1 double heterozygote T-DNA plants 

was comparable to that observed in the wild-type. Nevertheless, the double 

heterozygote plant showed a delay in flowering time, about a week delay compared 

to WT (Figure 5.9 A-B). Furthermore, Ath1.1-2/Ath1.1-1 double heterocygote mature 

silique pods showed variation in length that ranged between short siliques (7mm) up 

to about normal ones (15 mm) (Figure 5.9 B). Moreover, some siliques lacked 

entirely seed sets and others showed a reduction in the number of seed sets with 

spaces in between them (Figure 5.9 D). These results show that Ath1.1-2/Ath1.1-1 

double heterozygote plants showed an intermediate phenotype between the null 

Ath1.1-1 and Ath1.1-2 TDNA mutants. 
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Figure (5.9): Phenotypic observation of Ath1.1-2 
+/-

/ Ath1.1-1 
+/-

. 
(A&B&D) Double homozygote Ath1.1-2/Ath1.1-1. (C) WT. (A) Flowering time at five weeks. (B) Mature 
stage. (C&D) Mature silique. (E)  Comparison between; WT, null Ath1.1-2 and null Ath1.1-1, in silique 
length. White arrows show reduced siliques. Red arrow show normal-like siliques 
 

 

5.5.2.2. Fertility analysis of Ath1.1-2 +/-/ Ath1.1-1 +/- 

Fertility was assessed in the double heterozygote Ath1.1-2/Ath1.1-1 plants, by 

measuring their siliques lengths, and quantifying their seeds in parallel to wild-type 

plant. The Ath1.1-2+/-/ Ath1.1-1+/- plants had a mean of 12.99 mm (n=50) silique 

length compared to a mean of 14.28 mm (n=50) observed in the wild-type under 

identical conditions of growth. T-Test analysis showed that this difference was 

significant (P= 0.0002). These results coincide with a significant reduction in the 

number of seeds per silique in Ath1.1-2 +/-/ Ath1.1-1 +/- compared to the wild-type, 

with a mean of 32.56 (n=50) and 51.88 (n=50) seeds per silique respectively (P= 

9.048E-24, T-test)(Figures (5.10 A and B)  
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The double heterozygote Ath1.1-2 +/-/ Ath1.1-1 +/- presented a 37.24% reduction in 

fertility, which is in between the two single mutant alleles; 90% reduction in Ath1.1-1-/- 

and 17.6% in Ath1.1-2 -/-. Moreover, the differences between the two single mutants 

Ath1.1-1-/- and Ath1.1-2-/- were significant, showing 88% difference in seed set 

(P=1.40415E-41, T-test), and 47.1% difference in silique length (P=1.28496E-40, T-

test). These results suggest that the AtH1.1-1 and AtH1.1-2 are different mutant 

alleles, affected at different levels. The allelism test showed us that both phenotypes 

observed were due to mutations on AtH1.1 gene, since the loss of one copy of each 

allele could not be compensated by the other allele in the Ath1.1-2/Ath1.1-1 double 

heterozygote plants.   

Furthermore, a knock-down h1.1RNAi mutant line showed a 41% fertility reduction, 

which is very similar to that observed in the double heterozygote mutant Ath1.1-2 +/-/ 

Ath1.1-1 +/- (P=0.05) (P=0.0489, T-test). This result might indicate that the single 

mutant Ath1.1-2 allele is not a null mutant but a knock-down mutant.  
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Figure (5.10): Fertility of Ath1.1-2 
+/-

/ Ath1.1-1 
+/- 

in comparison to Wild-type plants. 
(A) Silique length Average (N=50). (B) Seed set mean (N=50). ***= P<0.05. Error bars= Standard error 
of the mean. 

 

 

5.5.2.3. Meiotic cytology of Ath1.1-2 +/-/ Ath1.1-1 +/- 

 The cytological analysis of DAPI stained meiocytes for the double heterozygote Ath1.1-

1/Ath1.1-2 plants revealed different defects during meiosis (Figure 5.11). Fully synapsis was 

not completed at pachytene (Figure 5.11 A&B). Moreover, chiasma frequency was reduced 
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at metaphase I (Figure 5.11 C), which later provided abnormal homologous chromosome 

segregation at anaphase I (Figure 5.9 11), and unbalanced tetrads (Figure 5.11 E&F). The 

meiotic scenario seen in the double heterozygote mutant Ath1.1-1/Ath1.1-2 plants is very 

similar to that observed in the single null Ath1.1 mutants. Thus, meiotic chromosomes 

behaviour in the Ath1.1-1-/-/ Ath1.1-2-/- is alike to the original parental lines. From all of these 

results, we can conclude that the phenotypes observed in these mutants are due to the 

functional disruption of AtH1.1 gene.  
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Figure (5.11): Meiotic defects of Ath1.1-2 
+/-

/ Ath1.1-1 
+/- 

(A&B) Pachytene. (C) Metaphase I. (D) Anaphase I. (E&F) Tetrad. Asynaptic phenotype was observed 
at pachytene. Reduced COs lead to low chiasmata, so univalents present at metaphase I. Hence, 
defects in homologues disjunction and segregation appear at anaphase I. As a result of that, 
aneuploidy phenotype appear at tetrad stage. DAPI stained meiocytes. Scale Bar= 5µm. 
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5.6 Analysis of meiotic chromosome axis and SC proteins localisation in wild-

type and Ath1.1-1 mutant 

In order to study chromosome axis organisation on the wild-type meiocytes we 

carried out immunolocalization of the chromatin axis proteins using antibodies for the 

axes proteins; anti-ASY1, anti-ASY3 and the synaptonemal complex transverse 

filament; anti-ZYP1. Prepared chromosome spreads were investigated by 

epifluorescence microscopy. These meiotic specific chromatin axis proteins start to 

load as early as late G2. ASY1 starts loading onto the chromatin as numerous foci at 

G2 which will polymerase at leptotene (Figure 5.12 A) and proceed with a linear 

signal at zygotene (Figure 5.12 B). At pachytene, a thick continuous linear signal is 

observed (Figure 5.12 C). Localization of ZYP1 on chromatin starts at early zygotene 

showing a foci pattern. As zygotene advances and so synapsis, ZYP1 signals are 

elongated as ZYP1 polymerizes from short stretches to longer ones. These streches 

indicate that pairing and synapsis between homologous chromosomes is taking 

place. At pachytene, ZYP1 signal is fully polymerized along the homologous 

chromosomes and confirms the successful completed synaptonemal complex 

formation (Figure 5.12 D). 

The immunolocalization of chromosome axis and SC proteins in the Ath1.1-1 mutant 

revealed different changes from that observed in the wild-type. The ASY1 loading on 

the chromatin axis was abnormal, instead of ASY1 polymerisation along the 

chromosome axis at leptotene-zygotene, in the mutant, ASY1 signal was irregularly 

localized and diffused on the chromatin (Figure 5.13).  At pachytene, ASY1 signal 

appeared diffused and fragmented persisting on the axes longer than in the wild-

type.  The ZYP1 foci appeared at early zygotene like in the wild-type, and cells 
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showing stretches at late zygotene could be found. Most of the meiocytes had partial 

polymerization of ZYP1 and very limited number showed fully synapsed 

chromosomes at pachytene (2 cells in 100). Moreover, the ASY1/ZYP1 colocalisation 

was observed at zygotene-pachytene in the mutant (Figure 5.13). Figure (5.14) 

shows larger view for the ASY1 on the axes compared to wild-type. 

On another hand, analysis of ASY3 localization on the wild-type meiocytes showed 

that it is axes associated at zygotene. And that, the ASY3 colocalization with ASY1 

during zygotene (Figure 5.15).  In the Ath1.1-1 mutants ASY3 were found to 

colocalize with ASY1 at zygotene also, but the pattern of ASY3 localization on the 

axes was not as regular and as well-defined site as that observed in the WT. 

Although ASY3 seems to show a more linear polymerization on the axes, but it still 

showing a wider signal on the axes compared to the well organised and defined axes 

in the wild-type  (Figure 5.15).  

 

 

 

 

        



219 

 

     

     

     

     

     

ZYP1 

DAPI 

ASY1/ZYP1 

ASY1 WT 
Le

p
to

te
n

e
 

Zy
go

te
n

e 
Ea

rl
y 

P
ac

h
yt

e
n

e
 

La
te

 P
ac

h
yt

e
n

e 

A 

B 

C 

D 

ASY1/DAP

! 



220 

 

Figure (5.12): Dual Immunolocalization of ASY1, ZYP1 in WT meiocytes. 
(A) Leptotene: ASY1 present as numerous foci. (B) Zygotene:  ASY1 present as a linear signal. (C)   
Pachytene: ASY1 is present as thick linear signal. (D)  Pachytene: As ZYP1 linearize ASY1 signal 
diffuse. ASY1 signal is in green.  DAPI is in blue. ZYP1 signal is in red. Scale bar= 5μm. 
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Figure (5.13 ): Dual Immunolocalization of ASY1 and ZYP1 on Ath1.1-1 meiocytes. 
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(A) Leptotene: ASY1 foci is abnormal. (B&F&G) Zygotene:  ASY1 appear as diffuse signal. (C&D&E)   
Pachytene: ASY1 signal is fragmented and discontinuous, and never appear as continpresent. (D)  
Pachytene: As ZYP1 linearize, ASY1 signal colocalize with ZYP1 on the chromosome axis. ASY1 
signal is in green. DAPI is in blue.  ZYP1 signal is in red. Scale bar= 5μm. 
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Figure (5.14 ): Immunolocalization of ASY1 (green) at zygotene on Ath1.1-1 compared to WT  
cell. 
The results show that ASY1 (green) signal in the Ath1.1-1 is abnormal, showing diffuse signal at some 
sites, and strong distinct signal in others, whereas in WT ASY1 polymerize along the axes in a full 
linear pattern. White boxes defines region selected for larger view (below). Scale bar= 5μm.  
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 Figure (5.15): Dual Immunolocalization of ASY3 and ASY1in WT and Ath1.1-1 meiocytes. 
(A) Leptotene: ASY1 present as numerous foci. (B) Zygotene:  ASY1 present as a linear signal. (C)   
Pachytene: ASY1 is present as thick linear signal. (D)  Pachytene: As ZYP1 linearize ASY1 signal 
diffuse. ASY1 signal is in green.  DAPI is in blue. ZYP1 signal is in red. Scale bar= 5μm. 

 

 

5.7. Meiotic cohesion components ATSYN1, AtSMC1 and ATSMC3 are normally 

localized in Ath1.1-1 
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proteins; AtSMC1, AtSMC3 and SYN1 in wild-type meiocytes showed similar patterns 

in which these proteins appear initially as foci at early G2, which extends to form  

linear stretches through leptotene-zygotene.  At zygotene-pachytene, cohesion 

proteins co-localized showing a continuous linear polymerization and co-localization 

along the chromosome length. The meiotic Ath1.1-1 chromosome spreads showed 

that all cohesins; AtSMC1, AtSMC3 and AtSYN1 localization was not altered from 

that observed in the wild-type. Both cohesins showed fully linearized chromosome 

axis signal (Figure5.15). 

 

                    

       

       

Figure (5.15 A): Immunolocalization of cohesion proteins SMC3 in the Ath1.1-1 comparable to 
WT. 
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Figure (5.15 B): Immunolocalization of cohesion proteins SMC1 in the Ath1.1-1 comparable to 
WT. 

 

 

       

       

Figure (5.15 C): Immunolocalization of cohesion proteins SYN1 in the Ath1.1-1 comparable to 
WT. 
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 5.8. Chiasma frequency analysis in wild-type and Ath1.1 mutants 

The cytological defects observed at pachytene show that Ath1.1 mutants could be 

categorized as asynaptic mutants, where full synapsis is not completed. This 

asynaptic phenotype obviously leads to the presence of univalents at diakinesis and 

metaphase I stages in the Ath1.1 mutants. Thus, AtH1.1 might have a role in 

synapsis and in COs formation. To verify this, chiasma frequency was analyzed using 

FISH (Figure 5.17) in the Ath1.1 mutants as well as the wild-type, using DAPI 

stained metaphase I stage meiocytes.  
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Figure (5.17):  FISH analysis of chiasmata in Arabidopsis WT and Ath1.1 mutants at metaphase 
I. 
(A) Chiasma frequency analysis at metaphase I meiocytes for WT showed 9.25 (n=50) chiasmata per 
meiocyte, however, although all the Ath1.1 mutants showed significant reduction in chiasmata 
formation, but at different levels. (B) Ath1.1-1 showed ~88.8% decline in COs, with 1.06 (n=100) 
chiasma per meiocyte. Whereas, (C) Ath1.1-2 showed 11.3% reduction in COs with 8.39 (n=61) 
chiasma mean. Besides that, (D) the h1.1

RNAi
 recorded 17.12% decline in COs with chiasma frequency 

mean of 7.84 (n=50). Scale Bar= 5µm. 
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5.8.1. Chiasma frequency analysis in Arabidopsis wild-type metaphase I 

meiocytes 

The wild-type metaphase I meiocytes showed around 8-10 chiasmata per cell 

(Figure 5.16 A), with a chiasma frequency mean of 9.46 (n=50). These results come 

along with (9.24) chiasma frequency per meiocyte obtained by (Sanchez-Moran et 

al., 2001). 

 

5.8.2. Chiasma frequency analysis in Ath1.1-1 metaphase I meiocytes 

The cytological analysis of Ath1.1-1 meiocytes revealed persistent occurrence of 

univalents as early as diakinesis, and persisting at metaphase I (Figure 5.18 B). To 

analyse if AtH1.1 might affect meiotic recombination, chiasma frequency and its 

distribution was characterised in the mutants (Table 5.2). Chiasma frequency 

evaluation in a hundred metaphase I male DAPI-stained meiocytes confirmed a 

defect, showing univalents in 100% Ath1.1-1 nuclei, however this phenotype was not 

seen in the wild-type nuclei (n=50) (Figure 5.18 A). Univalents mean in Ath1.1-1 was 

7.98 (n=100) showing a significant increase compared to wild-type (Figure 5.18 B). 

The range of  total chiasmata recorded in Ath1.1-1 varied from 0 up to 5 per nuclei, 

resulting in a chiasma frequency mean of 1.06 (n=100)  (Table5.1). This reduction in 

the chiasma frequency was significant with a P value of 1.57E-84 (T-test). The 

Ath1.1-1 T-DNA meiocytes retained 11.21 % of the normal chiasma frequency 

observed in the wild-type (Figure 5.18 C).  

 

Moreover, analysis of chiasmata distribution at metaphase I showed a significant 

reduction in the number of ring bivalent configurations, showing (0.05) in Ath1.1-1 
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comparable to (4.46) in WT (P=1.529E-39, T-test). However, rod bivalents were 

significantly increased in Ath1.1-1, with (0.96) rods comparable to (0.52) in WT 

(P=0.0036, T-test) (Figure 5.18 D). Chiasmata distribution in the Ath1.1-1 mutant 

showed a significant increase in the distal chiasmata localised on telomeric positions 

with a mean of 0.47 (P=4.036E-06, T-test). However, sub-telomeric, interstitial and 

proximal localised chiasmata were not significantly increase or decrease  with P 

values of (0.350, 0.372, 0.319, T-test) respectively (Figure 5.18 E).   The wild-type 

showed a significant tendency towards ring bivalents with chiasmata localised at 

subtelomeric (P=2.47E-17, T-test), telomeric (P= 6.15E-16, T-test, T-test) and 

interstial (0.0036, T-test) positions comparable to Ath1.1-1 (Figure 5.18 F). 
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WT 

(n=50) 

0 4.46 0.52 9.46 

(8-10) 

3.82 0.1 4.62 0.28 0.48 0.16 0.0 0.0 

Ath1.1-1 

(n=100) 

7.98 0.05 0.96 1.06 

(0-5) 

0.08 0.47 0.0 0.38 0.0 0.1 0.02 0.01 

P-value 

(T-test) 

 1.5E-39 
 

*** 

0.003 

*** 

1.5E-84 

*** 

6.1E-16 

*** 

4.03E-

06 *** 

2.47E-

17 *** 

0.35 0.003  

*** 

0.37 0.31 0.31 

 
Table (5.2):  Chiasma distribution in wild-type and Ath1.1-1 
The chiasma distribution was evaluated at metaphase I using DAPI stained meiocytes. ***<0.005 
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Figure (5.18): Chiasma analysis in Ath1.1-1 in comparison to WT  
(A) 100% nuclei showed univalent in Ath1.1-1, whereas WT nuclei were univalent-free. (B)  Ath1.1-1 
showed significant appearance of univalent with 7.98 univalents per nuclei comparable to non-
univalents phenotype in WT (P=6.35E-66). Hence, (C) Ath1.1-1 showed 88.19% reduction in chiasma 
comparable to WT. And (D) Ath1.1-1 scored 1.06 (n=100) chiasma per nuclei comparable to 9.46 
(n=50) in WT showing significant difference (P=1.5E-84). Chiasma configuration in Ath1.1-1 showed 
significantly reduced ring bivalent (P=1.5E-39) in comparison to WT, however, rod bivalents increased 
significantly (P=0.003) comparable to WT. (E) Single chiasma distribution per bivalent showed 
significant increase in Ath1.1-1 telomeric chiasma in comparison to WT (P=4.03E-06), whereas, non-
significant difference observed at subtelomeric, interstial and proximal chiasma. However, (F) double 
chiasma distribution per bivalent (ring bivalent) in Ath1.1-1 was significantly reduced at telomeric 
(P=6.1E-16), Subtelomeric (P=2.47E-17), and interstitial (P=0.003) chiasma comparable to WT. 
Significance level P<0.05.  ***= P<0.005. Statistical analysis was done by T-test.                    
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5.8.3. Chiasma frequency analysis in Ath1.1-2 metaphase I meiocytes 

Chiasma frequency in Ath1.1-2 T-DNA mutant line (Table 5.3) was also assessed 

(Figure 5.17 C). The analysis of metaphase I chromosomal spreads of Ath1.1-2 

meiocytes showed that 4.9% of nuclei contain some univalents (Figure 5.19 A). The 

observed PMCs showed 6-10 chiasmata per nuclei in Ath1.1-2 with a mean chiasma 

frequency of 8.39 (n=61) (Figure 5.19 C). Statistical analysis indicated that this 

decline in chiasma frequency was significant (P=1.26E-07, T-test). Analysis of the 

different bivalent configurations in Ath1.1-2 showed a significant decrease in the 

frequency of ring bivalents, showing 3.475 in Ath1.1-2 comparable to 4.46 in WT 

(P=1.223E-07, T-test). However, the number of rod bivalents was significantly 

increased showing 1.475 in Ath1.1-2 comparable to 0.52 in WT (P=1.670E-07, T-

test) (Figure 5.19 D). Chiasma distribution per rod bivalent showed a significant 

increase in telomeric chiasmata (P=0.0042, T-test) and interstial chiasmata 

(P=5.980E-05, T-test). Whereas, non-significant difference was observed at 

subtelomeric (P=0.05, T-test) and proximal (P=0.321, T-test) chiasmata (Figure 5.19 

E). Chiasma distribution in ring bivalents showed a significant decrease in the 

subtelomeric chiasmata (P=0.0003, T-test). However, non-significant changes were 

observed in the telomeric (P=0.555, T-test), interstitial (P=0.349, T-test), and 

proximal (P=0.321, T-test) chiasmata (Figure 5.19 F). 

 

Moreover, the configuration of chiasma distribution in Ath1.1-1 and Ath1.1-2 null 

mutants showed that they differ significantly (Table 5.4).  The Ath1.1-1 showed 81.42 

times increase in the number of univalents compared to Ath1.1-2 (P=1.24E-70). 

Ath1.1-2 showed a significant increase in bivalents configuration, showing 1.536 
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times increase in rod bivalent (P=0.00091) and 69.5 times increase in ring bivalents 

(P=1.807E-36). Hence, overall Ath1.1-2 showed an increase of 7.9 times in the 

chiasma frequency (P= 6.557E-48). And so, chiasmata distribution in ring bivalents 

showed a significant increase in Ath1.1-2 compared to Ath1.1-1 at telomeric 

(P=1.524E-23), subtelomeric (P= 5.464E-20) and interstitial (P=0.000605) positions. 

Whereas, proximal chiasmata numbers were non-significant (P=0.889).  Chiasmata 

distribution in rod bivalents showed that Ath1.1-2 had a significant increase in 

interstitial rod frequency (P=6.901E-07). Whereas, non-significant differences were 

observed in telomeric (P=0.122), subtelomeric (P=0.189) and proximal (P=0.739) 

chiasma distribution. 
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WT 

(n=50) 

0 4.46 0.52 9.46 

(8-10) 

3.82 0.1 4.62 0.28 0.48 0.16 0.0 0.0 

Ath1.1-2 

(n=61) 

0.098 3.475 1.475 8.39 

(6-10) 

3.590 0.327

8 

3.03 0.52 0.311 0.606 0.016 0.016 

P-value 

(T-test) 

 1.22E-07 
  

*** 

1.67E-

07 *** 

1.266E-07 

*** 

0.5559 0.0042  

*** 

0.00031 

*** 

0.05 0.349 5.98E-

05 

*** 

0.321 0.321 

 
Table (5.3):  Chiasma distribution in wild-type and Ath1.1-1 
The chiasma distribution was evaluated at metaphase I using DAPI stained meiocytes. ***<0.005 
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Figure (5.19): Chiasma analysis in Ath1.1-2 in comparison to WT  
(A) 4.91% was the Ath1.1-2 frequency of nuclei with univalents in comparison to WT nuclei free-
univalents. (B)  Ath1.1-2 showed non-significant appearance of univalents with 0.098 univalents mean. 
(C) Ath1.1-2 showed 11.31% reduction in chiasma comparable to WT. And (D) Ath1.1-2 scored 8.39 
(n=61) chiasma per nuclei comparable to 9.46 (n=50) in WT showing significant difference (P=1.266E-
07). Chiasma configuration in Ath1.1-2 showed significantly reduced ring bivalent (P=1.22E-07) in 
comparison to WT, however, rod bivalents increased significantly (P=1.67E-07) comparable to WT. (E) 
Single chiasma distribution per bivalent showed significant increase in Ath1.1-2 telomeric (P=0.0042), 
and interstitial (P=5.98E-05) chiasma in comparison to WT, whereas, non-significant difference 
observed at subtelomeric and proximal chiasma. However, (F) double chiasma distribution per bivalent 
in Ath1.1-2 was significantly reduced at subtelomeric (P=0.00031), whereas non-significant difference 
was estimated at telomeric, interstitial and proximal chiasma comparable to WT. Significance level 
P<0.05.  ***= P<0.005.  Statistical analysis was done by T-test.          
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Ath1.1-1 

(n=100) 

7.98 0.05 0.96 1.06 

(0-5) 

0.08 0.47 0.0 0.38 0.0 0.1 0.02 0.01 

Ath1.1-2 

(n=61) 

0.098 3.475 1.475 8.39 

(6-10) 

3.590 0.327

8 

3.03 0.52 0.311 0.606 0.016 0.016 
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1.24E-70 
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1.80E-36 
 

*** 

0.0009 
 

*** 

6.55E-48 
 

*** 

1.52E-
23 

 
*** 

0.122 
 

5.46E-
20 

 
*** 

0.189 
 

0.0006 
 

*** 

6.90E-
07 

 
*** 

0.889 
 

0.735 
 

Table (5.4): Comparison of chiasma frequency and distribution in Ath1.1-1 and Ath1.1-2 null 
mutants.  
The chiasma distribution was evaluated at metaphase I using DAPI stained meiocytes.  ***<0.005 
 

 

5.8.4. Chiasma frequency analysis in h1.1RNAi metaphase I meiocytes 

Cytological analysis of metaphase I of a h1.1RNAi mutant line showed some 

meiocytes with affected homologous chromosomes recombination, showing reduced 

number of chiasmata (Figure 5.17 D). Hence, chiasma frequency and distribution 

were quantified in DAPI stained meiocytes at metaphase I in the h1.1RNAi mutant 

(n=50) (Table 5.5) and compared to wild-type (n=50). Univalents appeared in 4% of 

h1.1RNAi nuclei (Figure 5.20 A), with a mean value of 0.08 (Figure 5.20 B). The result 

revealed variation in the chiasma frequency in h1.1RNAi line with a chiasmata range 

varying from  6 up to 10, with a mean chiasma frequency of 7.84 (n=50). This implied 

a 17.12% reduction in chiasma frequency compared to wild-type meiocytes (Figure 

5.20 C). This chiasma frequency reduction observed in h1.1RNAi is statiscally 

significant (P=8.321E-13, T-test) (Figure 5.20 D). Bivalent configuration analysis in 

the h1.1RNAi (Figure 5.18 D) showed a significant decrease in ring bivalents, 

showinga a mean of 2.88 in h1.1RNAi comparable to 4.46 in WT (P=9.81E-13, T-
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test). However, the number of rod bivalents showed a significant increase, showing a 

mean of 2.08 in h1.1RNAi comparable to 0.52 in the wild-type (P=1.80E-12, T-test). 

Chiasmata distribution in h1.1RNAi rod bivalents (Figure 5.20 E) showed a significant 

increase in both telomeric (P=7.11E-06, T-test) and subtelomeric (P=8.51E-07, T-

test) chiasmata. Whereas, non-significant differences were observed in the interstial 

(P=0.122, T-test) and proximal rod chiasma frequency.  Chiasma distribution in 

h1.1RNAi ring bivalents (Figure 5.20 F) showed a significant decrease in subtelomeric 

chiasmata per nuclei comparable to WT (P=1.38E-08, T-test), whereas, non-

significant changes were observed in the telomeric (P=0.329, T-test), interstitial 

(P=0.508, T-test) and proximal ring chiasma frequency.  

 

 
 

 
Genotype 

 
Configurations 

 
 

Chiasm
a mean 
(COs) 

 

Chiasmata distribution 

Univalen
ts 

Bivalents 

 

Rings 
total 

 

Rods 
total 

Telomeric 

 

Subtelomeric 

 

Interstitial 

 

Proximal 

 

Ring Rod Ring Rod Ring Rod Ring Rod 

WT 

(n=50) 

0 4.46 0.52 9.46 
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6 

0 0 

P-value 

(T-test) 

 9.81E-13 
 

*** 
 

1.80E-

12 *** 

8.321E-13 

*** 

0.329 7.11E-

06 *** 

1.38E-

08 *** 

8.51E-07 

*** 

0.508 0.122   

Table (5.5):  Chiasma distribution in wild-type and Ath1.1
RNAi

 
The chiasma distribution was evaluated at metaphase I using DAPI stained meiocytes. ***<0.005 
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Figure (5.20): Chiasma analysis in h1.1
RNAi

 in comparison to WT  
(A) 4% of h1.1

RNAi
 nuclei showed univalents in comparison to WT nuclei free-univalents. (B) h1.1

RNAi
 

showed non-significant appearance of univalents with 0.08 univalents mean. (C) h1.1
RNAi

 showed 

17.12% reduction in chiasma comparable to WT. And (D) h1.1
RNAi

 scored 7.84 (n=50) chiasma per 

nuclei comparable to 9.46 (n=50) in WT showing significant decrease (P=8.321E-13). Chiasma 

configuration in h1.1
RNAi

 showed significantly reduced ring bivalent (P=9.81E-13) in comparison to WT, 

however, rod bivalents increased significantly (P=1.80E-12) comparable to WT. (E) Single chiasma 

distribution per bivalent showed significant increase in h1.1
RNAi

 telomeric (P=7.11E-06), and 

subtelomeric (P=8.51E-07) chiasma in comparison to WT, whereas, non-significant difference 

observed at interstitial and proximal chiasma. However, (F) double chiasma distribution per bivalent in 

h1.1
RNAi

 was significantly reduced at subtelomeric (P=1.38E-08), whereas non-significant difference 

was estimated at telomeric, interstitial and proximal chiasma comparable to WT. Significance level 

P<0.05.  ***= P<0.005. Statistical analysis was done by T-test. 

 

 

D 

*** 

A 

C 

E F 

*** 

*** 

*** 
*** 

*** 

B 



239 

 

5.9 ANALYSIS OF RECOMBINATION PROTEINS IN Ath1.1-1 

Investigation of the recombinases proteins; RAD51 and DMC1, localization during 

early prophase I showed multi-foci pattern along the  chromosome axes  during 

leptotene.The Ath1.1-1 showed normal-like pattern of AtRAD51 localization similar to 

that observed in the wild-type (Figure 3.21 A), however, the AtDMC1 signal was 

altered.  Ath1.1-1 pachytenes show more reduced AtDMC1 foci than that observed in 

the wild-type (Figure 3.21 B). About 6 foci (n=3) were observed at pachytene in 

Ath1.1-1 mutants.   

The Arabidopsis MSH4 (AtMSH4) protein, homologoue of yeast MutS, is required for 

preserving interference sensitive COs normal level. It was reported that AtMSH4 

show multi foci at leptotene, which decrease gradually to 9-10 foci per meiocyte at 

pachytene (Higgins et al., 2008b). And that the mature AtMSH4 foci colocalize with 

AtZYP1 on the synapsed homologous chromosomes (Higgins et al., 2008b). The 

immunolocalization of MSH4 on Ath1.1-1 showed a strange pattern of foci (Figure 

5.22). The many foci observed at leptotene were decreased at pachytene, but 

showing foci in different sizes; 4-12 big foci with a mean of 6.8 foci (n=5), 0-12 small 

with a mean of 5.6 foci (n=5) besides to 1-4 foci with a mean of 1 foci (n=5), 

compared to 12 equally-sized foci in the wild-type, which all localize on the axis. 

From these results arose the question; Does the AtH1.1-1 affect the dHj fate to 

develop to CO. Previous studies reported that MLH1/MLH3 heterodimers play a role 

in meiotic crossovers in yeast (Wang et al., 1999). The Arabidopsis recombination 

protein AtMLH1, which is the homologue of E. coli MutL (Jean et al., 1999) was also 

analysed in our study as CO marker. Immunocytology was applied using two 

antibodies; anti-MLH1 and anti ZYP1, in both the Ath1.1-1 null mutant and in their 
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corresponding wild-type plants. The localization of MLH1 in the wild-type showed 8-

11 foci in the wild-type at pachytene (Jackson et al., 2006). However, the foci pattern 

in the Ath1.1-1 mutant was severely reduced showing a range of 1-5 foci with a mean 

number of ~2.4 foci (n=5) compared to 8 foci (n=5) in the wild-type (Figure 5.23). 

This number confirms the reduction of chiasmata frequency observed previously.  

 

 

    

              

                                  

Figure (5.21 A): Dual immunolocalization of RAD51 and ASY1 in the Ath1.1-1 
and WT 
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Figure (5.21 B): Dual immunolocalization of DMC1 and ASY1 in the Ath1.1-1 
and WT 

 

    

   

    

Figure (5.22): Dual immunolocalization of MSH4 and ASY1 in the Ath1.1-1 and 
WT 
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Figure (5.23): Dual immunolocalization of MLH1 and ZYP1 in the Ath1.1-1 and 
WT 
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5.10. Discussion 

5.10.1. Developmental defects in Ath1.1 mutants could be a consequence of 

epigenetic changes 

Altered Ath1.1 mutant phenotype reflects different developmental defects. Several 

phenotypic changes were recorded in the Ath1.1 mutants; delayed development, 

reduced plant size and reduced leaves. Furthermore, fasciated stems were observed 

in the h1.1RNAi mutant line. These defects showed different severity levels among 

different mutant lines for this gene, suggesting that H1 loss or depletion might cause 

a different epigenetic switch in different lines. Linker histone role in development was 

addressed before (Fan et al., 2003; Wierzbicki and Jerzmanowski, 2005). Reduction 

in more than 90% of H1 expression in Arabidopsis by using dsRNA resulted in 

several developmental defects; altered stems, leaves, flowers and siliques 

(Wierzbicki and Jerzmanowski, 2005). These defects were also recorded in mutants 

for DNA hypomethylation mutants (Finnegan et al., 1996; Kakutani et al.,1996) 

besides to the ATP-dependent chromatin remodeler snf2 mutant (Brzeski and 

Jerzmanowski, 2003). Interestingly, H1 down regulation in Arabidopsis was found to 

cause DNA hypermethylation at DNA repetitive and single-copy sequences 

(Wierzbicki and Jerzmanowski, 2005). Moreover, Barra et al., (2000) reported that H1 

loss in Ascobolus resulted in DNA hypermethylation of pre-methylated DNA. These 

results, besides to the “pleiotropic character” of the H1-dsRNA mutants, and H1 

dsRNA mutant defects non-Mendelian pattern of inheritance, allowed Wierzbicki and 

Jerzmanowski (2005) to suggest that H1 down regulation could cause epigenetic 

effects. Moreover, (Fan et al., 2003) reported that loss of three somatic H1 isoforms 

in mice caused embryonic lethality on day 10, which was coupled with H1/ 
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nucleosome ratio decrease by 47% compared to wild-type. From all of that, and in 

reference to H1 role in preserving H1/nucleosomal ratio in mice Wierzbicki and 

Jerzmanowski, (2005) proposed that H1 might stabilize the chromatin internal folding  

by affecting certain chromatin structures (Jerzmanowski, 2004). Moreover Horn et al., 

(2002) study that H1 phosphorylation mediates higher order chromatin remodelling 

by triggering SWI/SNF chromatin remodelers. And that chromatin fibre compacts 

merely when linker histone associates to chromatin fibre (Karymov et al., 2001). 

Thus, suggesting that H1 stabilizes the overall chromatin higher order chromatin 

structures in a way permitting the proper DNA and core histones modification 

(Wierzbicki and Jerzmanowski, 2005). Further analysis is required to clarify if the 

Ath1.1 mutants observed phenotypic defects are linked to change in either H1.1 

epigenetic code or related chromatin remodelling complexes functionality. 

 

5.10.2. Chromosome axis architecture is aberrant in the Ath1.1 mutants; 

Ath1.1-1, Ath1.1-2, h1.1RNAi      

Interestingly, the developmental defects observed in the Ath1.1 mutants phenotypes 

were linked to alteration in mitosis. The delayed development reduced whole plant 

size and reduced leaves observed in the Ath1.1-1, as well as fasciated stems in the 

h1.1RNAi plants, were coupled with abnormal mitosis. Some mitotic chromosomes 

were unable to condense properly at metaphase, showing longer chromosomes, 

leading to un-proper chromosome segregation and anaphase bridges formation. 

These defects were known in mutants in one or more of the linker histone H1 

isoforms (Hohmann, 1983; Maresca et al., 2005). H1 link to chromosome compaction 
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was addressed in Tetrahymena thermophila (Shen et al., 1995) and in Xenopous 

(Maresca et al., 2005. A study on Xenopus leavis egg extract showed that H1 

immuno-depletion resulted in about 50% longer chromosomes, which were unable to 

align properly at metaphase, and hence showed abnormal chromosome segregation 

at anaphase (Maresca et al., 2005). Defects in Xenopus-depleted H1 chromosomes 

were coupled with normal condensins and chromokinesins normal structural and 

localization phenotype, besides to that, H1 addition to the H1-depleted chromosomes 

consequently rescued chromosomes compaction and alignment at metaphase, 

suggesting that H1 depletion in Xenopous affects the mitotic chromosome 

architecture directly and not the kinetochore (Maresca et al., 2005). These results 

allowed Maresca et al. (2005) to propose that aberrant alignment of the elongated 

chromosomes resulted from alteration in the chromosomes connection to 

microtubules. In addition to that, segregation defect observed arise from the inter-

elongated chromosomes twisting and folding. Imposing that H1 has a possible role in 

chromosomes plasticity and rigidity. The link between mitotic chromosome 

components and structure yet to be addressed (Maresca et al., 2005).  Several 

reports clarified H1 role in the chromatin structure at interphase (Thoma et al., 1979; 

Boggs et al., 2000; Woodcock and Dimitrov, 2001; Hansen, 2002). Hence, Maresca 

et al. (2005) proposed that H1 depletion in Xenopous interfere with higher order 

chromatin fibre (30 nm) stability, leading to aberrant longer chromatin template at 

interphase, which condense to longer metaphase chromosomes. Condensin I and 

topoisomerase II normal loading pattern in the H1-depleted chromosomes suggest 

that factors influence chromosome compaction (condensins) are loaded during 

interphase in a DNA-interval (kilobases) dependant manner rather than chromatin-
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interval dependant manner (Maresca et al., 2005). Previous reports showed that 

condensins and cohesins loads on the chromatin based on DNA intervals (Earnshaw 

et al., 1985; Kimura and Hirano, 1997; Laloraya et al., 2000; Poirier and Marko, 2002; 

Hudson et al., 2003; Glynn et al., 2004). Further analysis is required to clarify at 

which mitotic stage H1 mediates chromosome compaction, through H1-rescue 

experiments in a time-scale manner (Maresca et al., 2005).   

 

5.10.3. Homologous chromosome pairing and synapsis is aberrant in Ath1.1 

mutants 

In order to understand the fertility deficiency observed in Ath1.1 mutants a 

comprehensive atlas for the mutant and the wild-type meiotic stages was prepared. 

Ath1.1 mutants presented clear defects which cause abnormal gamete formation, 

thus, fertility problems. During the wild-type meiosis pairing and synapsis of 

homologous chromosomes initiated at early prophase I is completed by pachytene 

stage, then homologous chromosomes de-synapse along the chromosomes except 

for some regions where they are linked by the chiasmata at diplotene. At diakinesis, 

an increase in chromosome condensation allows the observation of the five 

bivalents. Then at metaphase I bivalents align in the nucleus equator in a way that 

would allow the homologous chromosomes to segregate to opposite poles during 

anaphase I. Afterwards chromosomes alignment at metaphase II allows the proper 

orientation of chromosomes and the sister chromatids segregation  at anaphase II to 

form balanced haploid gametes. These results were confirmed by the Arabidopsis 

wild-type meiotic atlas produced by Armstrong and Jones (2003).  
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In Ath1.1-1 mutant, synapsis defect appeared clearly at pachytene.  Incomplete 

homologous chromosome synapsis is indicated by visible regions of thin chromatin 

threads. This lack of synapsis is also accompanied by a lack of chiasmata in these 

regions producing univalents at diakinesis, and hence lacking the normal bivalent 

orientation at metaphase I, causing problems in chromosome segregation at 

anaphase I, and ending up with unbalanced dyads and gametes later on.  These 

defects in gametes formation was confirmed by the severe reduction recorded in the 

percentage of viable pollen in the Ath1.1-1 mutant (21.28%) comparable to the wild-

type (78.71%).  Similar meiotic defects observed in Ath1.1-1 T-DNA line were also 

observed in the Ath1.1-2 T-DNA and h1.1RNAi mutant lines but to less severe defect 

phenotype. Moreover results obtained from the allelism test using the double 

heterozygote line Ath1.1-1 / Ath1.1-2 showed similar synapsis defects at pachytene, 

leading to univalents at metaphase I. In all these mutants the meiotic products 

appeared to have an imbalanced chromosome number due to chromosome 

missegregation at anaphase I and II. Thus, these meiotic errors produced 

imbalanced gametes, reducing the correct fertility yield in the plant (seed count per 

silique).  In conclusion, these facts indicate that these defects observed during 

meiosis are due to the mutations at the AtH1.1 gene.  

 

Synapsis defects were observed in maize mutants with defects in: homologous 

chromosomes pairing (e.g. phs1), homologous recombination (e.g. rad51) axial 

elements (e.g. afd1) and bouquet (e.g. pam1) (Golubovskaya et al., 2002, 2006; 

Pawlowski et al., 2004; Li et al., 2007). Abnormal synapsis had been recorded in 

several mutants in Maize presented as early univalents appearance at diakinesis; 
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asynaptic 1 (as1) (Beadle, 1930), two desynaptic 1 (dsy1) alleles dsy1-1 and dsy1-

9101 (Golubovskaya and Mashnenkov, 1976; Timofejeva and Golubovskaya, 1991; 

Bass et al., 2003), desynaptic2 (dsy2) (Golubovskaya, 1989; Franklin et al., 2003), 

mei*N2415 Golubovskaya et al. (2010) , mtm99-14b, mtm99-25, mtm00-10, mtm99-

30 and mtm00-09 (Golubovskaya et al., 2003), and desynapticCS (Staiger and 

Cande, 1990; Golubovskaya et al., 2003). Interestingly, a study by Golubovskaya et 

al. (2010) using transmission electron microscopy TEM of silver stained chromosome 

spreads, FISH with telomere probes and immunostaining techniques using 

antibodies that recognize proteins needed for proper synapsis (ASY1, ZYP1 and 

AFD1) showed that the maize mutants could be grouped into two categories 

according to their synapsis defect; improper synapsis and non-homologous 

chromosomes synapsis. The first group contained all mutants that showed 

synaptonemal complex maintenance defects, SC kinetics delayed and SC-free cells 

(e.g. the asynaptic (as1) mutants and the desynaptic (dsy1-1, dsy1-9101, dsy2) 

mutants (Golubovskaya et al., 2010).  These mutants showed several ZYP1 signal 

pattern ranging from complete SC loss (dsy2) to slowed down synapsis (mei*N2415). 

However the other mutants group (mtm99-25 and mtm00-10) showed false ZYP1 

loading arise from either individual chromosomes folding back upon themselves or 

homologous chromosomes switch to non-homologues partners during the 

synaptonemal complex progress (Golubovskaya et al., 2010).  Suggesting that non-

homologous chromosomes synapsis arise from altered chromosome morphology; 

elongated zygotene chromosome axes (mtm00-10) and less compact 

heterochromatin (mtm99-25) (Golubovskaya et al., 2010). Interestingly, previously 

published papers showed that the central element (CE) can form between two lateral 
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elements (LEs), even though if not on homologues (Ting, 1971; Jenkins, 1985; 

Pawlowski and Cande, 2005). Thus, these results besides to Golubovskaya et al. 

(2010) results on Maize mutants suggested that the mechanism of homologues 

pairing and synapsis during meiosis are uncoupled Golubovskaya et al. (2010).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



251 

 

 

Meiotic 

stage 

 

Defects 

Plant line 

Ath1.1-1 Ath1.1-2 h1.1
RNAi

 Ath1.1-2
+/-

/Ath1.1-1
+/-

 

 

Zygotene 

Chromatin breakage  

 

√ 

 

 

 

 

 

 

 

Pachytene 

Chromatin breakage  √ √  

Interlocking-structure   √ √  

Asynaptic phenotype √ √ √ √ 

 

Diplotene 

Chromatin breakage  √   

Univalents √    

 

 

Diakinesis 

Chromosome compaction 

defect 

 √ √  

Chromatin breakage   √  

Interlocking-structure  √ √  

Univalents (low COs) √  √  

 

Metaphase 

I 

Univalents (low chiasma) √ √ √ √ 

Early sister chromatid 

separation 

√    

Fragments √    

 

Meiosis II 

Chromosome mis-

segregation 

√ √ √ √ 

Aneuploidy  (Tetrad) √ √ √ √ 

Table (5.6):  Summary of meiotic defects seen in the Ath1.1 mutants. 
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Metaphase I 

Plant line 

WT 

(N=50) 

Ath1.1-1 

(N=100) 

Ath1.1-2 

(N=61) 

h1.1
RNAi

 

(N=50) 

Early sister chromatid 

separation 

X √ 

F= 6% 

R= (0-1) 

M= 0.06 

*** 

X X 

Chromatin fragments X √ 

F= 9% 

R= (0-3) 

M= 0.12 

*** 

X X 

Univalents X √ 

F=100% 

R=(4-10) 

M= 7.98 

*** 

√ 

F= 4.9 % 

R= (0-2) 

M= 0.098 

*** 

√ 

F= 4% 

R=(0-2) 

M= 0.08 

*** 

Table (5.7): Metaphase I defects seen in Ath1.1 mutants comparable to WT.  
N= number of cells. F=frequency of nuclei. R= range.  M= the mean.   
 

 

5.10.4. Ath1.1-1 differ significantly in chiasma frequency and their distribution 

from Ath1.1-2 and h1.1RNAi 

The overall chiasma frequency and distribution in the Ath1.1 T-DNA null mutants 

showed significant differences with the wild-type. Ath1.1-1 and Ath1.1-2, showed a 

significant difference in their chiasma frequency, whereas, the null Ath1.1-2 and 

h1.1RNAi, had similar chiasma frecuencies. The null Ath1.1-1 showed univalents in 
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100% metaphase I nuclei, whereas only a 4.91% of metaphase I cells in Ath1.1-2 

and 4% in h1.1RNAi (Figure 5.24 A). This big difference in the frequency of nuclei with 

univalents between null Ath1.1-1 and Ath1.1-2 mutants reflected significant 

difference in their univalent mean (P=1.24E-70, T-test), similarly Ath1.1-1 has 

significant increase in the univalent mean comparable to h1.1RNAi (P=1.25E-70, T-

test), whereas, non-significant difference was observed between Ath1.1-2 and 

h1.1RNAi (P=0.816, T-test) (Figure 5.24 B). So, chiasma frequency analysis revealed 

88.79% decrease in Ath1.1-1, whereas 11.31% in Ath1.1-2 and 17.12% in h1.1RNAi 

(Figure 5.24 C).  This indicated significant difference between the different mutant 

alleles Ath1.1-1 and Ath1.1-2 (P=6.557E-48, T-test), similarly to Ath1.1-1 and 

h1.1RNAi (P=6.545E-57, T-test). Furthermore, the configuration of ring bivalents 

(Figure 5.24 D) of Ath1.1-1 showed a significant decrease comparable to Ath1.1-2 

(P=1.807E-36, T-test) and h1.1RNAi (P=1.368E-24, T-test). Also, the configuration of 

rod bivalents of Ath1.1-1 showed significant decrease in comparison to Ath1.1-2 

(P=0.00091, T-test), and h1.1RNAi (P=8.359E-09, T-test). Moreover, chiasma 

configuration in Ath1.1-2 in comparison to h1.1RNAi showed significant difference in 

both ring bivalents (P=0.0031, T-test) and rod bivalents (P=0.0024, T-test). 

 

 

The difference in chiasma frequency between the Ath1.1 mutants might be a 

reflection of their difference in their meiotic phenotype defect. So, the Ath1.1-1 

pachytenes showed asynaptic phenotype along the entire chromosome, resulted 

from abnormal chromosome axes formation, which was observed as abnormal ASY1 

polymerization along the axis compared to wild-type, similarly, the Arabidopsis 
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chromosome axes ASY1 mutant, asy1, showed very close chiasma frequency of 

1.39 (Sanchez Moran et al., 2001), hence a suggestion could be made that AtH1.1-1 

in Arabidopsis is required to preserve normal chromosome axes stability/ and or 

related recombination proteins stability/loading during cell CO phase or process 

(recombination). For that, further analysis has been carried out on the CO-associated 

proteins loading on the axes (MSH4 and MLH) besides to the recombinase (DMC1) 

and all were abnormal similarly to that seen in the asy1 mutant as discussed in 

5.10.6. On the other hand the Ath1.1-2 early prophase I cells showed persistant 

abnormal interlocking chromosomes presented at zygotene, pachytene and 

diakinesis, besides to asynaptic bubbles and chromosomes cutting. Chromosomes 

interlock is also known as “relational coiling/twisting” arise from chromosomes axes 

coiling (Moens, 1972; 1974; Zickler and Kleckner 1999). Gelei (1921) reported that 

homologues coiling during synapsis in zygotene chromosomes lead to be entangled 

within other synapsing pairs, thus forming interlocks. Two types of chromosomes 

coiling were observed: type I interlock forms from a bivalent being entangled between 

un-synapsed AEs whereas type II interlock results from one un-synapsed 

chromosome being stuck between un-synapsed AEs. In maize “complex interlocks” 

originated from Interlock I and II coupled in one cell. Intelock I and II are trapped by 

the SC progress on both sides of the loop (Gillies 1981). Several scenarios had been 

set for interlocks-removal in meiotic nuclei, of these: by coordinated chromosomes 

breakage and re-ligation (Holm et al., 1982; Rasmussen, 1986; Moens, 1990). 

Another strategy is by chromosome movement meanwhile SC disassembly during 

zygotene and pachytene (Conrad et al., 2008; Koszul et al., 2008), possibly by 

interlocking chromosomes separation at telomeres (Rasmussen and Holm, 1980).   
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Analysis of the mei*N2415 mutant in maize showed a delayed synapsis phenotype 

resembled as some chromosemes with desynaptic bubbles (intermediate stages in 

homologous synapsis) were observed, whereas the rest of chromosomes showed 

normal synapsis (Golubovskaya et al., 2010). The desynaptic chromosomes precede 

into chiasmta-free chromosomes (univalents) at metaphase I however the other 

chromosomes showed normal phenotype. Suggesting that the mei*N2415 phenotype 

arise from defects either in the CE kinetics or regulation (Golubovskaya et al., 2010). 

The phenotype of improper meiosis phenotype coupled with synapsis delay or full 

blockage results from abnormal recombination events as is observed in the yeast 

zmm mutants (Borner et al., 2004). Showing delay in chiasma resolution at 

metaphase I as well longer prophase I. 

 

Homologue recombination demands the proper localization of DNA replication 

(“recombinosomes”) complexes on chromatin axes (Borner et al., 2004; Anderson 

and Stack, 2005; Henderson and Keeney, 2005; Franklin et al., 2006; Moens et al., 

2007; Oliver-Bonet et al., 2007; Wang et al., 2009). Recombination initiates as early 

as programmed double-strand breaks (DSBs) occurrence (Blat et al., 2002; Tesse et 

al., 2003). Afterwards, DNA recombination plays a role in homologues axes pairing 

and juxtaposition in a way which permits proper synapsis.  

 

A study by Storlazzi et al. (2010) on the chromosome organization and pairing during 

recombination in the filamentous fungus Sordaria macrospora by analysing mutants 

for axes associated recombination proteins, mer3, msh4 and mlh1, showed that 

MLH1 is a demand for chromosomes entanglements “Interlocks” resolution at 
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zygotene. Mutants for Mer3, Msh4 and Mlh1 showed reduced COs (Borner et al., 

2004). Foci of MLH1 are observed when synapsis is completed, however foci of 

MER3 and MSH4/5 are observed during SC progress (Higgins et al., 2004; de Boer 

et al., 2006; Franklin et al., 2006; Jackson et al., 2006; Oliver-Bonet et al., 2007; 

Moens et al., 2007; Wang et al., 2009). MLH1 role in the recombinational interactions 

resolution as COs during pachytene was implicated in several reports (Franklin et al., 

2006; Hunter, 2006). As MLH1 mediates removal of MSH4/5 from dHJ intermediates 

(Snowden et al., 2004), hence, Storlazzi et al. (2010) reported that the presence of  

“DNA interlocks” in mlh1 mutants in Sordaria macrospora suggestes that MLH1 could 

similarly play a role in interlocks disassembly. A role for MLH1 in meiotic basepair 

mismatches recombination intermediates resolution was implicated in some reports 

(Hunter and Kleckner, 2001; Argueso et al., 2003) 

 

 

Moreover, the Ath1.1 mutants showed anaphase defects. Anaphase bridges were 

observed in both Ath1.1-2 mutants. Several reports showed that anaphase bridges 

were observed in condensin mutants (Yu and Koshland, 2003; Chan et al., 2004; 

Resnick et al., 2008), suggesting that connections arise between chromosomes at 

anaphase due to defects in chromosomes concatenation removal (Chen et al., 2004). 

Moreover, defects in cohesion removal at COs could also be another possibility for 

anaphase bridge formation (Yu and Koshland, 2005). 
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Figure (5.24): Comparison of chiasma frequency and distribution between Ath1.1 mutants. 
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5.10.5. AtH1.1-1 and chromosome axes morphogenesis 

The immunolocalization analysis for cohesins; SMC3, SMC1 and SYN1, loading on 

the chromosome axes is similarl to that in the wild-type, suggesting that chromosome 

axes morphology is detectable in the Ath1.1-1 even though ASY1 localization is 

aberrant, showing diffuse signal in some cells and discontinuous polymerization in 

other cells. Interestingly, asy1 mutants showed normal AtSCC3 and AtSMC3 

localization on the axis (Sanchez-Moran et al., 2007), hence chromosome axis was 

observed (Pradillo et al., 2007).  Besides to this, previously published report by 

Armstrong et al. (2002) indicated that ASY1 loading on the chromatin is biased to 

chromatin sites, which are defined by the axial element (AE). From all of that, 

Sanchez-Moran et al. (2008) proposed that ASY1 has vital role in the chromosome 

axes maturity, rather than defining chromosome axes morphology. On the other 

hand, the ASY1 localization on Ath1.1-1 meiocytes showed linear stretches which 

are evenly spaced. Since H1 has a confirmed role in higher order chromatin 

formation, whereas its depletion  mediates lower order chromatin, we could propose 

that the observed evenly spaced ASY1 stretches at eraly pachytene cells in the 

Ath1.1-1 mutant could be due to longer axes arise from less compact chromatin, 

consequently to H1.1-1 loss. Further analysis for chromosome axes length via 

deconvolution software is needed to allow new insights if the observed ASY1 

localization change is dependent on AtH1.1-1-mediated higher order chromatin 

structure change. At the moment we could propose that H1.1-1 might be needed to 

mediate spacial ASY1 localization on the AE-associated axes defined by chromatin 

loops. More analysis, for ASY1 domains in the mutant in comparison to that in wild-
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type might give a clue if the defects resulted from ASY1-axes defined sites change or 

its spacial shift.   

 

5.10.6. AtH1.1 is required for normal ASY1 localization on the axes to allow 

normal meiotic recombination progression 

The cytological and immunolocalization analysis revealed that the Ath1.1-1 mutants 

lack proper ASY1 loading on the axes during early prophase I.  Ath1.1 mutants were 

never showed full ASY1 polymerization along the chromosome axes. These defects 

were coupled with severe reduction (~90%) in COs, resulted from aberrant CO type-I 

mediated-recombination, presented as reduced DMC1, MSH4 and MLH1  foci 

numbers, however, the DSB dependent protein ɣH2AX and the RAD51 were 

indistinguishable from the wild-type. Interestingly, ~15% residual chiasmata were 

recorded in the asy1 mutant in Arabidopsis (Sanchez-Moran et al., 2007). 

Recombination progression defects observed in the Ath1.1-1 mutants were similar to 

some degree to recombination defects reported in the asy1 mutant (Sanchez-Moran 

et al., 2007). Time coarse labelling experiment showed that reduced COs observed 

in the asy1 mutants were linked to aberrant meiosis specific recombinase AtDMC1 

stability beyond loading, suggesting that ASY1 is vital for meiotic interhomolog 

recombination by stabilizing AtDMC1-chromosome axes intermediate structures 

(Sanchez-Moran et al., 2007, 2008). The ~10% residual chiasmata observed in the 

Ath1.1-1 indicates that the interhomolog recombination is not fully constrained. 

Moreover, the detected AtDMC1 and AtMLH1 foci numbers reduction was 

corresponding to the residual chiasmata observed. The residual chiasmata number 
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observed in the asy1 mutant were linked to residual AtDMC1 foci numbers presence 

corresponding to AtMLH3 (Sanchez-Moran et al., 2007). Interestingly, Atdmc1/asy1 

double mutant lacking residual chiasmata indicated that chiasmata observed in asy1 

are AtDMC1-dependent (Sanchez-Moran et al., 2007). On another hand, the residual 

chiasmata observed in the Ath1.1-1 mutants were biased to telomeric position, 

however asy1 residual chiasmata were subtelomeric mostly (Sanchez-Moran et al., 

2007). Since ASY1 is not a prerequisite for telomeres of homologous chromosomes 

pairing in Arabidopsis at G2, and nor prior to synapsis or meanwhile synapsis 

(Armstrong et al., 2001) Sanchez-Moran et al. (2007) suggested that, in asy1 

telomere pairing mediates spatial subtelomeric regions on the homologs to come 

closer, and hence leading to interhomolog recombination mediated by At-DMC1 even 

though ASY1 absence (Sanchez-Moran et al., 2008). Hence, it is wrathful to analyse 

chiasmata frequency and distribution in the double Atdmc1/Ath1.1-1 mutants to 

understand if the residual chiasmata observed in the Ath1.1-1 are AtDMC1-

dependent similarly to that in asy1. The presence of 15% residual chiasmata in asy1 

and 10% in Ath1.1-1 although that ASY1 is absent in asy1, whereas discontinuous 

(fragmented signal) in the Ath1.1-1, suggests that the extra 5% reduction in 

chiasmata in Ath1.1-1 is due to AtH1.1 extra role in mediating the interhomologue 

recombination. The Ath1.1-1 recombination defects observed were similar to that in 

asy1, suggesting that AtH1.1 is most likely to allow biased interhomolog 

recombination by directing ASY1-mediated chromosome axes organization during 

early prophase I. Future analysis of histone AtH1.1 loading as well as ASY1 and 

AtDMC1 in the Ath1.1-1 compared to wild-type through a time course labelling in 

conjugation with EdU labelling, besides to confocal microscopy analysis of the 



261 

 

mutant meiocytes, will help to address how could AtH1.1 loss affects chromatin 

structure spatially.       

 

A study by Ferdous et al. (2012) showed that in Arabidopsis the meiotic chromosome 

axes proteins, AtASY3 and ASY1, have a vital role in allowing biased-interhomolog 

recombination, in a functionally similar way to that in buddying yeast homologs, 

RED1 and HOP1, (Ferdous et al., 2012). AtASY1 localize on the axes in an AtASY3-

dependent manner, mimicking HOP1 in relation with RED1 (Ferdous et al., 2012). 

The interplay between chromosome axes proteins and recombination progress 

indicated that ASY3 and ASY1 behave differently (Ferdous et al., 201). Interestingly, 

asy3 mutants showed 3.2 COs, whereas, 1.39 COs in asy1. This reduction in COs in 

the asy3 mutants was found to be due to 33% reduction in DSBs. Time course 

labelling of the AtDMC1 protein in the asy3 compared to asy1, showed normal-like 

AtDMC1 loading pattern per time in asy3, however, in asy1, AtDMC1 normal loading 

observed at the beginning do not persist, and declines severely. Suggesting that 

asy3 bias towards inter sister recombination is due to reduced DSBs, whereas, 

reduced COs in asy1 are linked with AtDMC1 stability on the axis (Ferdous et al., 

201). Moreover, asy3 showed residual ASY1 localisation, suggesting that, AtDMC1 

foci are stabilized by the residual AtASY1 domains detected (Ferdous et al., 201). 

ASY3 localization on the axes in Ath1.1-1 seems normal-like in terms of foci 

linearization, but still well defined axes signal is not observed, showing thicker axes 

identity compared to well defined and organized linear ASY3 signal in wild-type. 

From all of that, analysis of ASY3 localization in the Ath1.1-1 prophase I will rule out 



262 

 

the interplay between AtH1.1-1 and chromosome axes progress if it is mediated by 

ASY3 localization. 

 

5.10.7. H1.1 and meiotic chromosome axes organization within the homologous 

recombination context 

 Interphase chromatin switch to a compact organized chromosome in meiosis cannot 

be understood without discussing recombination-associated chromosome axis 

context. Several reports confirmed that recombination proteins associate with 

chromosome axes (Tarsounas et al., 1999; Moens et al., 2002). Kleckner (2006) 

proposed a model for meiotic chromosome organization which represents the “Dual 

loop model”. In this model sister chromatids of homologous chromosomes arrange 

into dense loops of 20 loops per μm, oriented in a way that permits homolog 

chromosomes joining at the axis. Loops base binding along the chromatin permit the 

formation of arrays of linear and equally distributed spaces. Chromosome axes 

protein ASY1 as well as cohesins SMC3, and SMC1 are used as a marker for 

chromosome axis morphogenesis (Sanchez-Moran et al., 2007). Besides to ASY3 

which colocalize with ASY1 (Ferdous et al., 2012). Both asy1 and asy3 T-DNA 

mutants showed that SMC3 localization during prophase 1 is normal, suggesting that 

chromosome axes morphogenesis is normal. In these mutants normal chromosome 

axes is compromised, leading to asynaptic homologous chromosemes phenotype, 

since the residual transverse AtZYP1 observed fail to progress, and hence reduced 

CO frequency was recorded, 1.39 in asy1 (Sanchez-Moran et al., 2007) and 3.2 in 

asy3 (Ferdous et al., 2012), suggesting that chromosome axes proteins; ASY1 and 
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ASY3, establish structural axes which mediates recombination to occur. Interestingly, 

analysis of Ath1.1-1 T-DNA mutant showed that chiasmata were reduced severely 

showing 1.06 COs per cell. Immunolocalization analysis of chromosome axes 

morphogenesis using cohesion proteins; SMC3, SMC1 and SYN1 indicated that is 

normal. However, although ASY1 and ASY3 could be still occurring on the axes, 

ASY1 localization pattern was altered from the WT, whereas ASY3-were more 

normal, but still both ASY1 and ASY3 are showing disorganized chromosome axes 

identity. ASY1/SMC3 colocalization showed that, the diffuse and discontinuous 

ASY1-axis polymerisation defines thicker disorganised chromosome axes compared 

to that observed in the ASY1/SMC3 localization in wild-type. Besides that, ASY1 

signal during zygotene-early pachytene appear as two aligned and interspaced 

stretches along the chromosomes axes, rather than one thick signal. Moreover, 

chiasmata decline observed in the Ath1.1-1 mutant resulted from decline in the 

AtDMC1 foci number, whereas RAD 51 seems to be normal, leading to a bias 

towards inter sister chromatid recombination rather than inter homologous 

recombination. These, results indicate that, AtH1.1-1 play a role in the meiotic 

chromosome axes organization as well as maturity to allow recombination machinery 

to progress normally. And that, H1.1-1 might allow higher order chromatin 

organization of the chromatin loops and in the chromatin connecting chromatin loops 

base sites (ASY1-AE associated axis). Thus resulting in an increase in the spaces 

forms between AE along chromosome axes. Hence, ASY1 appears discontinuous.  

Besides, there is a possibility of a delayed axes formation in the Ath1.1-1 mutants, 

represented as ASY1 signal staying to late pachytene, showing colocalization with 

AtZYP1 signal. Furthermore, Although ZYP1 polymerization is more normal than 
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ASY1 signal, but it seems that ZYP1 polymerization does not indicate efficient 

recombination, with a possibility that delayed and improper chromosome axes 

organization is a consequence for ASY1 local delayed shift to chromosome axes, 

leading to synapsis starting from non-mature AE structure, lacking recombinases, 

hence synapsis precede, but not  recombination. All of these scenarios are still 

suggestion, and more analysis is still needed.  

 

Figure (5.25): Comparison of ASY1 and ZYP1 localisation on the Ath1.1-1 and WT meiocytes. 
Chromosome axes defects were observed in the Ath1.1-1 mutants represented as diffuse and 
discontinuous ASY1 signal showing improper chromatin-axes organisation, which is also accompanied 
with delayed abnormal synaptonemal complex TF protein loading on the axes, and ending in ASY1-
ZYP1 colocalization at late pachytene, whereas in wild-type ZYP1 signal replaces ASY1 signal at late 
pachytene.  

 

 

 

 

 

 

 

 

 

 



265 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

GENERAL DISCUSSION 

 

 

 

 

 

 

 



266 

 

6.1. Introduction 

The aim of International Food Security Programs is to provide enough food for the 

planet’s inhabitants. The great increase in the population annually imposes 

challenges on researchers worldwide to develop techniques which could increase 

crop production and provide the desired traits and quality. Scientists have achieved 

several different strategies for crop breeding like; heterosis (Hochholdinger, 2007; 

Springer and Stupar, 2007; Stupar et al., 2008; Fernandez-Silva et al., 2009; Wei et 

al., 2009), backcross breeding (Vogel, 2009) and reverse breeding (Dirks et al., 

2003; Wijnker et al., 2012), which vary in their outcome prediction. Reverse breeding 

is the most modern breeding strategy (Dirks et al., 2009). This technique stands on 

two steps; the first is suppression of cross over recombination in the plant of interest, 

and the second is the reproduction of double haploid plants from spores with 

achiasmatic chromosomes (Dirks et al., 2009). Hence, genes that affect meiotic 

recombination are of interest for this technique like SPO11 and DMC1 whose mutant 

alleles show achiasmatic chromosomes at metaphase I (Ross et al., 1997; Couteau 

et al., 1999; Caryl et al., 2000; Nonomura et al., 2004; Stacey et al., 2006). These 

genes could be suppressed through several strategies; RNA interference (RNAi), 

posttranscriptional gene silencing like (siRNAs) or virus induced gene silencing, or 

even by the action of specific chemicals to suppress meiotic COs (e.g. mirin, an 

inhihitor for Mre11-Rad50-Nbs1 complex) (Dupre et al., 2008). Therefore, studies on 

meiotic genes which control the CO-recombination pathway are of a great value as a 

tool to manipulate genome recombination (Dirks et al., 2009). There have been very 

few reports on higher eukaryotes showed that linker histones might play a role in 

DNA repair and recombination up to date (Rosidi et al., 2008). Our research might 
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shed some light on a linker histone which seems to have a role in preserving meiotic 

recombination at normal levels in Arabidopsis. Hence, the combination of our results 

besides to other achiasmatic mutants could provide some basic genetic tools for 

plant breeders to manipulate recombination. The use of histone h1 mutants in 

different crops like the mutant studied in this thesis could be a source of haploids due 

to the missegregation of chromosomes, and thus, these mutants could be used to 

obtain desirable double haploid crop plants. Furthermore, we have observed that h1 

mutants have a considerable delay in flowering time opposite to h4 mutants which 

possess an early flowering time. By themselves, these two characteristics have been 

exploded in different occasions by plant breeders. 

The main aim of this research was to study different histones role in chromosome 

organisation during meiosis and mitosis in Arabidopsis. Thus, my project focused in 

studying two types of histones; the linker histone (H1) and the core histone H4 and 

their role on the global chromosome organisation during cell division and gamete 

production in Arabidopsis. Arabidopsis has ten variants for the linker histone H1 and 

eight identical copies for histone H4 (for more details see the homology search 

studies done via in silico analysis in previous chapters). We carried out a screening 

study for different histone h1 T-DNA insertion mutants corresponding to the different 

isoforms of H1 coded by the Arabidopsis genome. Furthermore, a single available 

RNAi mutant line for a specific locus H1.1 was also analysed. On the other hand, 

Arabidopsis genome contains 8 loci for histone H4 which encode for eight identical 

histone H4s. These copies and their nearly identical expression profiles show their 

redundant effect, so a knockdown RNAi mutant line was used for the genetic analysis 

of all these histone H4s.  
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6.2. Core histone H4 

6.2.1. Meiosis is affected in H4 mutants 

The analysis of a histone Ath4RNAi line in Arabidopsis showed a significant semi-

sterile phenotype in these plants. This semi-sterile phenotype is derived from meiotic 

errors (Table 6.1), since the meiocytes clearly showed defects as early as prophase 

I. Different chromatin breakage sites were obvious at zygotene-pachytene stages, 

followed with defects in chromosome segregation, which in total ended with 

unbalanced and non-viable gametes. Nevertheless, due to time constrains no further 

analysis could be carried out. More research is still needed to have a clear view on 

the histone H4 role during meiosis and DNA repair and recombination. The extra 

work on H4 should take in consideration different issues: The first, at the epigenetic 

code level (histone H4 modifications and interactions). The second, at the 

nucleosome structural level, as H4 is one of the core histones which build up the 

nucleosome. The errors observed in the Arabidopsis Ath4RNAi kd mutant line might be 

the consequence of disturbing the whole nucleosome particle, due to the loss of its 

main constituents, as histone H4 binds to H3 and forms (H4-H3)2 hetero-tetramers, 

rather than the specific H4 loss merely. To analyse this theory, two different histones 

chaperons were preliminary analysed; CAF1 and NAP1.  

 

Nucleosome assembly demands that histone chaperons deposit histones onto DNA. 

Chromatin Assembly Factor 1 (CAF1) deposits histones H3/H4 on the DNA either in 

a replication dependent manner (Smith and Stillman, 1989, 1991; Shibahara and 

Stillman, 1999; Tagami et al, 2004) and or beyond nucleotide excision repair (NER) 
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(Ridgeway and Almouzni, 2000). Several studies indicated that CAF1 is evolutionary 

conserved among species (Smith and Stillman, 1989; Verreault et al., 1996; Kaufman 

et al., 1997; Kaya et al., 2001). Plants have three subunits for CAF1: Fasciata 1 and 

2 (FAS1 & FAS2) and Multicopy Suppressor of IRA1 (MSI1) (Kaya et al., 2001).  The 

tripartite CAF1 in plants were found to correspond to Chromatin Assembly Complex 

proteins (CAC1& CAC2 & CAC3) in budding yeast (Saccharomyces cerevisiae) 

(Kaufman et al., 1997), and to p155, p60, and p48 in humans (Smith and Stillman, 

1989; Verreault et al., 1996). CAF1 structural conservation in plants, yeast, and 

animals had showed also that it is functionally similar (Kaufman et al., 1997; Tyler et 

al., 1999; Kaya et al., 2001; Tyler et al., 2001).  

 

The CAF1 in Arabidopsis was studied by analysing the two FAS subunits; FAS 1-2 

and FAS 2-3. We analysed T-DNA insertion mutant alleles for both subunits; fas1-3 

and fas 2-3 respectively. Both fas1-3 and fas 2-3 mutant lines showed similar defects 

to that observed in the h4 kd mutant line (Table 6.1). The mutants showed that  the 

massive reduction in fertility arose from cytological chromosome fragmentation at 

pachytene followed by chromosome missegregation. The third CAF1 subunit, MSI1, 

was not successfully studied as the mutants did not survive very well. Moreover, 

another histone chaperones like the Nucleosome Assembly Protein 1 (NAP1), the 

H2A-H2B replication dependent major chaperon should be analysed through my 

future work. NAP1 is evolutionary conserved from yeast to human (Ishimi et al., 1984; 

Dong et al., 2003; Ohkuni et al., 2003; Park and Luger, 2006a). NAP1 in yeast 

(yNAP1) has the best studied NAP1 protein. The yNAP1 (48 KDa protein) allow 

nucleosome assembly in vitro by binding to the H2A-H2B and to H3-H4 (Ishimi et al., 
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1983; Ishimi and Kikuchi, 1991; Ito et al., 1996; McBryant et al., 2003; Steer et al., 

2003). It has been reported that amino acid residues 74-365 are responsible in 

maintaining nucleosomes original structure and function during its assembly (Fujii-

Nakata et al., 1992; McBryant et al., 2003). Studies on Hela cells reported that NAP1 

binds to newly formed H2A-H2B to allow chromatin assembly (Chang et al., 1997). 

Furthermore, the NAP1 role exceeds H2A-H2B association/disassociation from the 

nucleosome to its substitution by H2A-H2B variants (Park et al., 2005), suggesting 

that NAP1 is vital for both replication-dependent and replication-independent 

chromatin assembly as well as for nucleosome sliding resulting from H2A-H2B dimer 

exchange (Park et al., 2005).  

 

The importance of both fas and nap mutants analysis is that it will clarify if the 

hypothesis that Ath4RNAi meiotic defects, as were shown previously, are due to H4 

level decline merely or it is the whole nucleosome blockage. Hence, cytological and 

proteomics analysis for histone H4 protein within meiotic context of nap and fas 

mutants as well as cytological analysis for nap mutants and their core histones 

content in relation to histone H4 will shed more light on the real role of H4 within 

Arabidopsis nucleus in meiosis. 
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Plant line h4RNAi fas 1-3 fas 2-3 
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Table (6.1): Summary of meiotic defects in Arabidopsis Ath4 and fas mutants; fas1-3 and fas 2-

3. 

  

6.2.2. Histone H4 is needed for proper meiotic chromosome organisation 

The chromosome phenotype observed in the Ath4RNAi line showed consistent 

chromatin fragmentation at pachytene stage. Suggesting that histone H4 is needed 

for proper chromosome organization and maintenance in meiosis. Since the Ath4RNAi 

showed tangled and abnormal nucleolus, FISH analysis was done to see the impact 

on the 45S rDNA and 5SrDNA regions. The Ath4RNAi mutants showed that most of 
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the chromatin fragmentation occurred at the 45S/5S rDNA regions at pachytene. 

Furthermore, chromosome interactions between non-homologous chromosomes 

were clear at diakinesis and metaphase I also involving chromatin from the rDNA 

regions, suggesting that histone H4 is important to preserve the rDNA region during 

Arabidopsis meiotic recombination. This fragmentation observed in the rDNA regions 

in h4RNAi mutants might be the result of ectopic recombination; abnormal 

recombination results from cross over between nonhomologous chromosomes at loci 

with sequence homology at least as 2.2Kb DNA (Licthen et al., 1986; Montogmery et 

al., 1987) among these regions. Thus, H4 in Arabidopsis could play a role to prevent 

ectopic recombination normally. The 45S rDNA role in genome instability was 

addressed in different reports (Butler, 1992; Thomas et al,. 1996). Histone H4 has 

been suggested to have a role in DNA double strand break repair (Kothapalli et al., 

2005; Corsini and Sattler, 2007). Hence further research is needed to understand if 

the chromatin breakage in the Ath4RNAi mutant is due to defect in DSB processing 

during meiosis or it is a result to structural defects in the meiotic chromosome. 

Moreover, defects observed in the fas mutants in Arabidopsis at the cytological level 

suggest a role for FAS in DSB either directly or as a consequence of histone H4 

indirect loss. FAS suggested role in DSB was addressed previously by Endo et al 

(2006).  

 

Arabidopsis and human histone H4 proteins are 98% identical so we could predict 

that the studies done here in Arabidopsis could add more value for understanding the 

histone H4 role in chromatin organization and its functional status within the different 

processes like DNA repair, meiosis and mitosis in other eukaryotes including 
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humans. As several studies showed that histone H4 proteins are subjected to several 

posttranslational modifications. And since the H4 epigenetic code previously showed 

an impact on the functional progress of the nucleus (Loidl, 1988; Loidl, 1994; Garcia-

Ramirez et al., 1995). Hence, we ran screening of two histone modifiers mutants; a 

histone deacetylase mutant Athda6-7 and a histone methylase triple mutant 

Atdrm1xdrm2xmet (data not shown), and both have showed a preliminary semi-

sterile phenotype compared to the normal fertility level seen in WT. The further 

analysis of these mutants at both meiotic and mitotic levels, through the usage of 

both cytological and proteomics will help understanding H4 posttranslational 

modifications specificity, if any, during cell nucleus. Besides that, histones H4 

immuno-precipitations will add more value on the nucleus H4 networking.    

 

6.2.3. Histone H4 is needed for mitotic chromosome architecture 

A defect seen in the mitotic cells of the Ath4RNAi mutants suggests a role for histone 

H4 in preserving the structural chromosomes integrity. Anaphase bridges were 

consistent in the Ath4RNAi as well as in the Atfas mutants showing a possibility of 

chromosome fragmentation or defects in the inter sister chromatid homologous 

recombination. Few reports suggested a link between histone H4 and cell cycle 

(Megee et al., 1995). Furthermore, Shogren-Knaak and Peterson (2006) proposed 

that histone H4 acetylation either has a role on the higher order chromatin 

organisation or cause alteration in the chromatin proteins interactions. Moreover, the 

Ath4RNAi mutant’s growth on 30µM cisplatin plates was abnormal. The Ath4RNAi 

mutants showed delayed vegetative growth as well as reduction in the number of 
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viable seeds comparable to wild-type, suggesting that some DSBs induced in the 

Ath4RNAi mutants were unable to repair.  

 

6.3. Linker histones H1 

6.3.1. Linker histones are involved in plant development 

The screening of ten isoforms for histone H1 in Arabidopsis showed that histone H1s 

are needed for proper plant development. The presence of several isoforms for 

histone H1 in higher eukaryotes suggests that the different variants are needed for 

the different cell types formation as well as the different developmental stages 

(Newrock et al., 1977). The delayed pattern in flower formation existed in H1s 

mutants; Ath1b, Ath1c, Ath1.1-1, Ath1.2, Ath1.3, Athon4, and Athon5, suggested that 

histone H1 loss might affect the flower regulatory genes. The tobacco deficient 

histones H1A and H1B showed sterile phenotype, which showed aberrations in plant 

development; in which stamens and collars were abnormal, defects in flower 

development were linked with temporal change in the stimulation of the regulatory 

genes; Nap3 and Ta29, through flower bud development (Prymakowska-Bosaka et 

al., 1999). Nap3, the homologue of Arabidopsis APETALA3 (AP3) gene were found 

to have a major role in flower development through its mere expression in the 

stamens and petals (Hill et al., 1998), whereas Ta29 encodes tapetum-specific 

glycerine rich protein (Golberg et al., 1993). Although Nap3 and Ta29 expression 

phenotype in the mature flowers of H1A and H1B deficient tobacco plants were 

normal, but their expression at earlier stages were abnormal, showing early 

termination of Nap3 transcription at stage 3 and 4 which is not the case in the control 

http://www.plantcell.org/content/11/12/2317.full#aff-1
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plants, however, Ta29 was induced at stage 1 rather than the normal induction at 

stage 3. So, H1A and H1B deficiency in tobacco was thought to impede normal 

flower bud development and functional pollen grain formation by affecting Nap3 and 

Ta29 genes temporally rather than spatially (Prymakowska-Bosaka et al., 1999).   

 

6.3.2. Chromosome axis architecture is disturbed in Ath1.1 mutants; Ath1.1-1, 

Ath1.1-2, Ath1.1RNAi      

The cytological analysis of mitotic cells in the Ath1.1 mutants showed abnormal 

mitotic metaphase chromosome condensation compared to wild-type chromosomes 

(Table 6.2). Ath1.1 mutants were unable to show full chromosome compaction at 

metaphase I. The link between linker histones and mitosis was addressed in several 

reports (Hohmann, 1983; Maresca et al., 2005). It was reported that Cdk1 and Cdk2 

phosphorylates histone H1 in a cell-cycle dependent manner in protozoa and 

mammals (Bhattacharjee et al., 2001; Langan et al., 1989; Roth et al., 1991; Gurley 

et al., 1995), whereas the mitotic Cdk homologues, Cdc2+/CDC28 in yeast and frog 

(Langan et al., 1989). In mammals H1 phosphorylation starts at G2 prior to mitosis, 

and peaks at mitosis (Hohmann, 1983). Eukaryotic histone H1 phosphorylation was 

found to permit chromatin condensation (Maresca et al., 2005). Besides to this, a 

study on Xenopus showed that H1 depletion resulted in longer chromosomes, which 

were unable to align properly at metaphase, and hence showed abnormal 

chromosome segregation at anaphase (Maresca et al., 2005). These defects in 

Xenopus-depleted H1 chromosomes showed that mitotic condensins and 

chromokinesins have normal structural and functional phenotype, suggesting that H1 

http://www.plantcell.org/content/11/12/2317.full#aff-1
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depletion in Xenopous affects the mitotic chromosome architecture directly (Maresca 

et al., 2005).  
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Table (6.2): Summary of mitotic defects in Ath1.1 mutants 
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 6.3.3. AtH1.1 is needed for proper meiosis 

Analysis of Ath1.1 mutants; Ath1.1-1, Ath1.1-2 and h1.1RNAi showed that seed 

production is constrained. Analysis of PMCs showed that fertility defects arise due to 

defects in meiosis (Figure 6.1). Cytological and immunolocalization spreads of the 

Ath1.1 mutants indicated synapsis defects at early prophase I. Also, univalents were 

present as early as diakinesis, chiasma frequency was significantly reduced 

compared to wild-type plants. And so, chromosome missegregation was consistent at 

anaphase I and afterwards resulting in unbalanced tetrads forming nonviable 

gametes. Several reports showed that histone H1 variants play a role in preserving 

normal meiosis. A study by Prymakowska-Bosaka et al. (1999) showed that 

chromosomal defects were related to deficiency in the linker histones H1A and H1B 

in Tobacco. Tobacco plants showed defects at metaphase and onwards, showing 

micronuclei at later stages, suggesting that chromosomes were unable to separate to 

the poles or chromosomes were broken (Prymakowska-Bosaka et al., 1999). These 

results were thought to be as a result of defect in synaptonemal complex formation or 

in sister chromatid cohesion (Peirson et al., 1997).   

 

Moreover, other studies showed that fertility defects are linked to abnormal behavior 

of meiotic chromosomes due to defect in one of the proteins involved in  DNA repair 

(reviewed by Osman et al., 2011), suggesting a possible link between the linker 

histone H1 role and the DSB processing within meiosis in Arabidopsis. This 

possibility was confirmed through the immunolocalization analysis using antibodies 

http://www.plantcell.org/content/11/12/2317.full#aff-1
http://www.plantcell.org/content/11/12/2317.full#aff-1
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that recognize some proteins involved in homologous recombination. It showed that 

loading of some of these proteins was highly reduced in the Ath1.1 mutant.   

On the other hand, several studies implied a role for heterochromatin regions in 

maintaining homologous chromosomes alignment during meiosis (Derenburg et al., 

1996; Karpen et al., 1996; Renauld and Gasser, 1997).  A link between histone H1 

and heterochromatin regions establishment was addressed previously by 

Prymakowska-Bosaka et al. (1999). Overexpression of somatic H1 in tobacco caused 

increase in the heterochromatin within the nuclei (Prymakowska-Bosak et al., 1996). 

Moreover, histone H1 had been addressed to permit the chromatin transition from 10 

nm nucleosome fibre to 30 nm fibre structute, hence H1s are associated with higher 

order structuture formation (Thoma et al., 1979).  

 

Moreover, the Ath1.1-2 mutants showed anaphase defects (Table 6.3). Anaphase 

bridges were observed in Ath1.1-2 mutants. Several reports showed that anaphase 

bridges were observed in condensin mutants (Yu and Koshland, 2003; Chan et al., 

2004; Resnick et al., 2009), suggesting that connections arise between 

chromosomes at anaphase due to defects in chromosomes concatenation removal 

(Chen et al., 2004). Moreover, defects in cohesion removal at COs could also be 

another possibility for anaphase bridge formation (Yu and Koshland, 2005). 

 

 

 

 

 

http://www.plantcell.org/content/11/12/2317.full#aff-1
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Table (6.3): Summary of meiosis defects in the Ath1.1 mutants 

 

6.3.4. Ath1.1-1 mutants show disturbed meiotic chromosome axes 

Analysis of DAPI stained chromosomal spreads of the Ath1.1 mutants showed 

defects during early prophase I. Synapsis defects were confirmed at pachytene in the 

Ath1.1 mutants. In order to understand the basis of this defect an immunolocalization 

analysis was done for the Ath1.1-1 mutant line using antibodies that recognize the 

chromosome axes proteins; ASY1, ASY3 besides to the Synaptonemal complex 

component TF, AtZYP1. The results showed that the chromosome axes proteins 

ASY1 and ASY3 showed abnormal signal on the chromosome axes.  Defects were 

seen in the ASY1 polymerization as early as leptotene were consistent, showing 

diffuse signal at zygotene in some cases, and abnormal stretches in others, which 

continues to show unequal fragmented linear ASY1 signal at pachytene. Besides to 

this ASY3/ASY1 colocalization showed that the ASY3 signal were more diffuse than 

ASY1 at zygotene, suggesting that AtH1.1-1 loss imbed ASY1 and ASY3 proper 

polymerization, suggesting a role for histone AtH1.1-1 in preserving the meiotic 

chromosome axes through directing ASY1 and ASY3 proper loading on the axes and 

or affecting chromosome organization required to permit ASY1 and or ASY3 to 

polymerize. On the other hand AtZYP1 signal showed that cells were able to show 

more normal linear polymerisation at pachytene comparable to ASY1 signal, but cells 

showed that AtZYP1 signal do not polymerize fully along the axes as some regions 

were AtZYP1 signal-free. Moreover, some pachytene cells showed ASY1/ZYP1 full 

co-locolization, a thing which never seen in the wild-type pachytenes. The link 

between linker histones and meiotic chromosome axes proteins were never 
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addressed before in other species, which makes this research unique in its results 

from one side, and it opens the gate wide for similar analysis to be carried out on 

plants as well as animals to be able to understand the role of histone H1 variants on 

the organisation of meiotic chromosome. A recent study on the Arabidopsis 

pachytene checkpoint AtPCH2 showed a link between chromomosome axes 

remodelling and CO formation. Atpch2 mutants showed reduction in COs resulted 

from synapsis defects at early prophase I.  Interestingly, Atpch2 mutants showed 

ASY1-ZYP1 proteins colocalization at pachytene stage, suggesting that, may be, 

delayed ASY1 loading on the meiotic chromosome axis, imbed the proper spacial 

homologues axis organization required for the programmed recombination machinery 

to progress normally  (Personal communication with C.FK).   

 

Moreover, previously it was reported that lack of ASY1 in Arabidopsis affected the 

maintenance of DMC1 association with the chromosome axes during prophase I, 

which reduces the ability of homologous chromosomes recombination (Sanchez-

Moran et al., 2007). Similarly, it was observed that Ath1.1-1 mutant showed reduction 

in the DMC1 foci in the early prophase I comparable to the wild-type. The reduced 

DMC1 foci and the diffuse ASY1 signal at zygotene-pachytene suggest that AtH1.1-1 

is needed for proper ASY1 polymerization and DMC1 stabilization. A time course 

labelling BrdU analysis of the DMC1 foci in the Ath1.1-1 mutant could show if the 

AtH1.1-1 loss affects temporal DMC1 stabilization on the axes or not (Sanchez-

Moran et al., 2007).  

 

6.3.5. AtH1.1 is needed for proper COs 
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The asynaptic phenotype observed in the Ath1.1 mutants; Ath1.1-1, Ath1.1-2, and 

h1.1RNAi, indicated a possible inter-homologue recombination defect. This was 

confirmed as meiocytes showed reduction in COs as early as diakinesis, expressed 

as early univalents. Chiasmata frequency quantification at metaphase I in all of the 

Ath1.1 mutants showed significant reduction. Moreover, immunolocalization analysis 

of the recombination proteins in the Ath1.1-1 mutants revealed defects in their foci 

numbers comparable to wild-type. Significant reduction was recorded in the foci of 

Arabidopsis recombination proteins; AtDMC1, AtMSH4 and AtMLH3, comparable to 

wild-type, a thing which confirms AtH1.1 role in preserving normal COs.  Interestingly, 

the Ath1.1-1 showed ~10% COs per nuclei, which is somehow so close to the 1.39 

COs per meiocyte recorded in the Arabidopsis asy1 mutant (Sanchez-Moran et al., 

2001), suggesting a link between the linker histone AtH1.1-1 protein presence and 

ASY1 proper loading and or polymerization on the chromosome axes. Furthermore, 

Ath1.1-1 mutant show diffuse ASY1 localization. Moreover, it was reported that asy1 

mutants have unstable DMC1 foci (Sanchez-Moran et al., 2007 ). DMC1 is vital for 

COs formation since dmc1 mutants showed chiasma-free chromosomes (univalent) 

at metaphase I (Couteau et al., 1999).  

  

6.4. Overview of chromatin associated-histones and chromatin 

Analysis of histone mutants; Ath1.1 and Ath4RNAi showed that both AtH1.1-1 and 

AtH4 have a vital role in preserving the vegetative as well as the reproductive phases 

of the cell. Developmental defects, represented as changed growth rate, altered plant 

size and change in flower bud appearance rate, were linked with aberrant mitosis. 

However, lower seed production resulted from abnormal meiosis.  
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Cytological assessment of the chromosomes phenotype within Arabidopsis linker 

histone mutants (Ath1.1) showed chromosome compaction defects, resembled as 

longer and less compact mitotic chromosomes, similarly, to H1-depleted mitotic 

chromosomes in Xenopus leavis (Maresca et al., 2005) Interestingly, it was reported 

that “linker histone binding to nucleosomal arrays in vitro causes linker DNA to form 

an apposed stem motif, which stabilizes extensively folded secondary chromatin 

structures, and promotes self-association of individual nucleosomal arrays into 

oligomeric tertiary chromatin structures” (Lu and Hansen, 2004). Moreover, analysis 

of condensation ability of linker histones with mutation in the recombinant mouse 

linker H C-terminus indicated that its function is due to specific amino acids 

subdomains (Lu and Hansen, 2004). And that these domains show “intrinsic 

disorder” pattern of spreading like that reported previously (Wright and Dyson; 1999; 

Dunker et al., 2001, 2002). Indicating that proteins with such character show “molten 

globule-like” characteristics at their original phase (reviewd by Lu and Hansen, 2004) 

and switch to its structural phase upon their association with cellular macromolecules 

(reviewd by Lu and Hansen, 2004) and that one domain is able to play a role in 

different functions by interacting with different cellular components. 

  

Moreover, the aberrant segregation of meiotic chromosomes in the Ath1.1 mutants 

were linked with immature chromosome axes-recombination stage, leading to severe 

consequences on efficient COs formation. It is yet not well understood how could H1 

preserve/stabilize the chromosome axis further cytological and biochemical analysis 

(as discussed in 4.5.2) will help in resolving its mysterious role in chromatin 

compaction associated with axes formation dynamics.  
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On the other hand, the Ath4RNAi mutants fragmented chromatin at the rDNA sites 

clarified H4 role in protecting the nucleolus rDNA content integrity.  

 

6.5. Future work  

6.5.1. Core histone H4 

Analysis of the Ath4RNAi mutants suggests a role for histone H4 in maintaining the 

organization of the rDNA region during meiosis in Arabidopsis. Moreover, the 

possibility that the defect observed in Ath4RNAi mutants arise from constrains in the 

nucleosome structure, due to loss in its constituents rather than histone H4 mere 

loss, hence, analysis of NAP (histone chaperone) should be done to analyse if the 

loss of nucleosomes on the nuclei by other means could produce the same 

phenotype. Thus, analysing corresponding nap mutants will broaden our view about 

nucleosome specific role within the meiotic chromatin landscape.   

 

The chromosome fragmentation phenotype observed in the Ath4RNAi mutants 

address a very important question, this fragmentation is originated by the wrong 

repair of DSBs during meiosis. These DSBs could be Spo11-dependent, and to 

reiterate this, we would need to cross the Ath4RNAi line with a null Atspo11 mutant 

(spo11.1 or spo11.2). Then if the Atspo11xAth4RNAi double mutant is still showing 

fragmentation, then these breaks would be SPO11 independent probably originated 

by DNA replication errors. DNA replication errors can be repair by producing DSBs 

and problems on the repair of these could lead to the chromatin fragmentation 

observed during meiosis. In order to check if H4 depletion interfere with the proper 
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DSBs DNA repair pathways like for example the homologous recombination pathway 

we could analysed Atdmc1xAth4RNAi  and Atrad51xAth4RNAi double mutants.   

 

Furthermore, immunolocalization analysis using Anti-H4 antibodies to study H4 

behaviour in the wild-type plants will help to understand its role within chromatin 

context. Since H4 acetylation and methylation was addressed to play a role in 

chromosome organization and recombination in other species, so the usage of 

antibodies to recognised acetylated and methylated forms of histone H4 to 

investigate further the defects observed in the Ath4RNAi mutants as well as caf1 

mutants.      

 

6.5.2. Linker histone H1 

On the other hand, the chromosome axes and architecture defects linked to the 

Ath1.1 mutation should be further analysed. Homologues pairing and synaptonemal 

complex (SC) formation is highly important for proper meiotic recombination, 

chromosome segregation and the formation of viable gametes. Our analysis of 

Ath1.1 mutants have showed defects in the chromatin localization of ASY1 (meiotic 

chromosome axis/SC lateral element component) and ZYP1 (SC central element 

component). Thus there are some further questions that come to our mind; 1) Does 

histone AtH1.1 affect proper axes formation spatially or on a time-point bases during 

meiosis? 2) Is histone AtH1.1 needed to stabilize ASY1 localization directly or 

indirectly (e.g through ASY3)? Are the defects observed in the Ath1.1 mutants arise 

from H1 loss/absence, or it happened because of the changes in the global amount 
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of H1 posttranslational modifications? Furthermore, the ~90% COs reduction in the 

Ath1.1-1 mutants coupled with severe reduction of DMC1, MSH4 and MLH1 foci 

localization on the chromosome axes, whereas RAD51 and ɣH2AX signals are 

similar to the WT, suggests that AtH1.1 might be needed to stabilize homologues 

recognition intermediates by either preserving the homologues sequences in a 

structural physical pattern to allow their 2nd end invasion mediated by DMC1 

continuation or by affecting DMC1-axes stability (Sanchez-Moran et al., 2007). 

Hence, it would be very important to develop specific antibodies to recognise the 

histone AtH1.1, and/or produced recombinant proteins tagged with a fluorescent 

protein like GFP (AtH1.1-GFP) and analysed the exact localisation of AtH1.1 in vivo 

and its relation with the chromosome axes as well as with the meiotic recombination 

machinery. Moreover,  the conjugation of immunolocalization for the chromosome 

axes (ASY1, ASY3, ZYP1) and meiotic recombinases (DMC1) with BrdU or EdU 

labelling experiments in both Ath1.1-1 mutant and WT would show if the 

discontinuous axes defects observed in the Ath1.1-1 is caused by either delayed 

axis-proteins spatial loading, or as a result of destabilised axes formation which could 

cause unstable chromatin structures with lower efficiency in responding to the 

meiotic-programmed recombination machinery. Furthermore, AtH1.1 protein 

extraction from plant tissues, particularly meiocytes, would allow us to carry out 

immune-precipitation (IPs) experiments which could add further insights on the 

associations of AtH1.1 with other proteins, and would allow us a better understanding 

of the AtH1.1 role in the nuclear chromatin context. Moreover, analysis of the AtH1.1 

epigenetic modifications could help us to understand the dynamics of AtH1.1 during 

different nuclear stages and its multiprotein associations. 
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6.6. Conclusions 

 This research has led new insights into the roles of H1 linker histones and H4 

nucleosome core histone in preserving chromosome structure and functional 

genome integrity in Arabidopsis.  

 The Arabidopsis genome possesses eight histone H4 loci expressing equally 

and ubiquitously at all different stages of the plant development. These eight 

loci encode for histone H4 proteins with identical amino acid sequence that is 

only 2 amino acids different from that in the human H4 histone. 

 The use of RNAi technology has allowed us to analyse an Ath4RNAi knock-

down mutant line which showed different phenotypes: 

o Mutant plants presented an early flowering time development with 

respect to the wildtype. 

o Mutant plants were semi-sterile, with a significant reduction in the 

number of seeds per silique (fruit/seed pod) due to meiotic errors. 

o Mutant plants presented chromosome fragmentation on early prophase 

I meiotic stages (Zygotene/Pachytene) and chromosome connections 

between non-homologous chromosomes. These connections produced 

chromosome missegregation after anaphase I. 

o The fragmented and non-homologous connected regions were mostly 

affecting the repeated sequences of the 45S and 5S rDNA and 

therefore the Nucleolus Organising Regions (NORs) on the 
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chromosomes suggesting a defect in the repair of DSBs on these highly 

repeated sequences among the Arabidopsis genome.   

 The characterisation of Arabidopsis mutants for CAF1 chaperon subunits 

AtFAS1 and AtFAS2 has shown that the rDNA regions in Arabidopsis are also 

affected suggesting that H4 presence and dynamics on the nucleosomes are 

highly important for maintaining the integrity of these regions in Arabidopsis.  

 We have also carried out a characterization of all the different histone linker 

H1 proteins presented in Arabidopsis.  Some of these H1 isoform mutants 

(Ath1b, Ath1c, Ath1.1-1, Ath1.2, Ath1.3, Athon4, and Athon5) presented a 

delayed patterning in the flowering time, suggesting that these histone H1 

isoforms might have important effects on the regulation of flower development. 

 The cytological analysis of mitotic cells in the Ath1.1 mutants showed us 

abnormal mitotic metaphase chromosome condensation compared to wild-

type chromosomes presenting longer chromosomes than the WT which in 

some cases delayed the mitotic divisions and translated on some mitotic 

aberrations like anaphase bridges. Some plants presented a dwarf vegetative 

growth probably as a consequence of this mitotic errors. 

 Ath1.1 mutants presented different levels of plant semi-sterility. A cytological 

analysis of meiotic stages showed different errors: 

o Chiasma frequency was highly reduced on null mutant Ath1.1-1. 
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o A significant reduction on the number of loci for meiotic recombinase 

AtDMC1 and later recombination machinery AtMSH4 and AtMLH1 was 

observed in the null mutant Ath1.1-1. 

o Fully synapsis was not properly completed on Ath1.1-1 mutant. ZYP1 

polymerization showed abnormal pattern, ASY1 signal is diffused on 

the chromatin and does not seem to localise to the meiotic 

chromosome axis suggesting that the meiotic axis are not properly 

assemble on the mutant. 

 Histone linker isoform AtH1.1 seems to be highly important for the assembling 

of the meiotic chromosome axis and thus for the proper pairing, synapsis and 

crossover formation during meiotic prophase I. 

 Our results could be further analysed in order to obtain different tools to allow 

plant breeders to manipulate meiotic recombination to generate new 

combination of agronomically interesting genes in different plant crops. 
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