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Abstract

Classification involves assigning an observation to one of the known groups, on the basis

of a vector of measurements on each of the observations. In this study, we propose clas-

sification method based on multivariate rank. We show that this classifier is Bayes rule

under suitable conditions. Multivariate ranks are not invariant under affine transforma-

tion of the data and so, the effect of deviation from property of spherical symmetry is

investigated. Based on this, we construct affine invariant version of this classifier. When

the distributions of competing populations have different covariance matrices, minimum

rank classifier performs poorly irrespective of affine invariance. To overcome this limita-

tion, we propose a classifier based on multivariate rank region. The asymptotic properties

of this method and its associated probability of misclassification are studied. Also, we

propose classifiers based on the distribution of the spatial rank and establish some theo-

retical results for this classification method. For affine invariant version of this method,

two invariants are proposed. Many multivariate techniques fail to perform well when

data are curves or functions. We propose classification method based on L2 distance to

spatial median and later generalise it to Lp distance to Lp median. The optimal choice of

p is determined by cross validation of misclassification errors. The performances of our

propose methods are examined by using simulation and real data set and the results are

compared with the results from existing methods.
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Chapter 1

Introduction

Classification is aimed at getting maximum information about separability or distinction

among classes or populations and then assigns each observation to one of these popula-

tions on the basis of a vector of measurements or features, denoted by x, on each of the

observations. It has many important applications in different fields, such as disease diag-

nosis in medical sciences, risk identification in finance, admission of prospective students

into university based on a battery of tests, among others. An example is to classify iris

flower (Fisher, 1936) from unknown group or species to any of the three known species on

the basis of their attributes (See Figure 1.1). The known groups or species of iris flowers

are Iris Setosa (red), Iris Versicolour (green) and Iris Virginica (black). The attributes

are sepal length in cm, sepal width in cm, petal length in cm and petal width in cm.

Anderson (1984) described classification problem as the problem of statistical deci-

sion making. A good classification procedure is the one that classifies observations from

unknown populations correctly. Suppose each population has a well defined distribution

function, which is characterised by some location and scale parameters. Classification of

observations to populations can be viewed from this characterisation in terms of shift in

location and scale of each of the population distributions. In a classification problem,

competing populations may have either location shift, scale shift or both (location-scale

1
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Figure 1.1: Iris data: petal width vs petal length

shift). Consider populations πj, j = 1, 2, . . . , J from multivariate distributions, Fj having

probability density functions fj with prior probabilities pj. Bayes rule, proposed in Welch

(1939), is to classify each observation to the population πj, whose posterior probability

P (πj|x) is the highest. It assigns x to population πk if

P (πk|x) = max
16j6J

P (πj|x) = max
16j6J

fj(x)pj∑J
j=1 fj(x)pj

.

This is equivalent to assigning x to population π1, in a two class problem, if

f1(x)p1
f2(x)p2

> 1,

and to π2 otherwise. Suppose R1 and R2 are regions for classifying observations to popu-

lations π1 and π2, having probability density functions f1 and f2, and prior probabilities

p1 and p2 respectively. Classification procedure involves assigning x to π1 if x ∈ R1 (i.e.

x is in region R1) or to π2 if x ∈ R2 (i.e. x is in region R2). Anderson (1984) described

2



R1 and R2 as the region for which

f1(x)

f2(x)
≷
p2
p1

respectively if

P

(
f1(x)

f2(x)
=
p2
p1

∣∣∣∣ πi

)
= 0, i = 1, 2.

Then the procedure is unique except for sets of probability zero. If x is on the boundary,

then it belongs to either of R1 and R2. We assign such observation to R1.

Wald (1944) argued that if each population has a cost, C(i|j) associated with mis-

classifying x whose true population is πj into πi, then assign observations to the class or

population that has the highest expected cost of misclassification (that is, C(i|j)P (πj|x)

is highest). In a two class problem, define c(2|1) as cost of misclassifying observation x

whose true population is π1 into population π2 and c(1|2) as cost of misclassifying obser-

vation x whose true population is π2 into population π1. Expected cost of misclassifying

x whose true population is π1 is c(2|1)P (π1|x). Expected cost of misclassifying x whose

true population is π2 is c(1|2)P (π2|x). Mathematically, Wald’s proposal is to assign x to

π1 if

c(2|1)P (π1|x)

c(1|2)P (π2|x)
=
c(2|1)f1(x)p1
c(1|2)f2(x)p2

> 1,

and to π2 otherwise. The regions of classification are defined as

R1 :
f1(x)

f2(x)
>
c(1|2)p2
c(2|1)p1

and R2 :
f1(x)

f2(x)
<
c(1|2)p2
c(2|1)p1

.

Welch (1939) showed that for any two normally distributed populations, the ratio of log

likelihood functions of the two populations is the theoretical basis for building discriminant

function that best classify new individuals to any of the two populations given that the

prior probabilities of the populations are known. Since f(x) and loge f(x) attain their

3



maximum values at the same value of x, then the regions R1 and R2 are equivalent to

R1 : loge
f1(x)

f2(x)
> loge

c(1|2)p2
c(2|1)p1

R2 : loge
f1(x)

f2(x)
< loge

c(1|2)p2
c(2|1)p1

. (1.0.1)

1.1 Misclassification Errors

In classifying an observation into either π1 or π2 with prior probabilities p1 and p2 respec-

tively, either of these two errors can be made; error of misclassifying an observation x that

is actually from π1 into π2 with probability p1P (x ∈ R2|π1) = p1P (2|1) or misclassifying x

that is actually from π2 into π1 with probability p2P (x ∈ R1|π2) = p2P (1|2). Total prob-

ability of misclassifying an observation is the sum of probabilities that the observation

comes from population πi but does not eventually fall in the region of classification into

population πi, where i = 1, 2. Mathematically, the total probability of misclassification,

denoted by ∆, is

∆ = p1P (x ∈ R2|π1) + p2P (x ∈ R1|π2) = p1P (2|1) + p2P (1|2).

Suppose there are J(> 2) classes, the total probability of misclassification is

∆ =
J∑
j=1

pjP (x /∈ Rj|πj).

1.2 Linear and Quadratic Classification Rules

Suppose there are two populations with equal covariance matrix (this case is referred to

as location shift or homogenous scale), Fisher (1936) described the separation between

these two populations to be ratio of variance between the populations to variance within

4



the populations. This postulation leads to discriminant analysis, called Fisher’s discrim-

inant analysis. Suppose there are two populations from the same family of multivariate

distributions to which observations can be classified. If these populations are normally

distributed and have the same covariance matrix, the disriminant analysis is referred to

as linear discriminant analysis (LDA). Similarly, if these populations are normally dis-

tributed but have different covariance matrices, the optimal rule is nonlinear and referred

to as quadratic discriminant analysis (QDA). QDA can be seen as the problem of scale

shift or location-scale shift, depending on whether the populations have the same location

vector or not. Based on Fisher (1936), Welch (1939) and Wald (1944) showed that linear

discriminant function has optimal properties for two group classification if the populations

are multivariate normally distributed.

Suppose competing populations are normally distributed, it follows from equation

(1.0.1) that the classification procedure is to assign x into π1 if

− 1

2
loge |Σ1|+

1

2
loge |Σ2| −

1

2
xT (Σ−11 −Σ−12 )x + xT (Σ−11 µ1 −Σ−12 µ2)

− 1

2
(µT1 Σ−11 µ1 − µT2 Σ−12 µ2) > loge

(
c(1|2)p2
c(2|1)p1

)
. (1.2.1)

Assign x into π2 otherwise, where (µ1,Σ1) and (µ2,Σ2) are pairs of mean vector and

covariance matrix corresponding to the distributions of π1 and π2 respectively. When

population covariance matrices are the same (i.e. Σ1 = Σ2 = Σ), the LHS of equation

(1.2.1) becomes

U = xTΣ−1(µ1 − µ2)−
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2). (1.2.2)

U is a linear function of vector of measurements on individual observation containing

maximum information about class separability, called linear discriminant function (LDF).

5



Theorem 1.2.1 (Anderson, 1984) If p1 = p2, c(2|1) = c(1|2) and Σ1 = Σ2 = Σ, the

best regions of classification corresponding to Bayes’ rule are

R1 : xTΣ−1(µ1 − µ2) >
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)

R2 : xTΣ−1(µ1 − µ2) <
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2). (1.2.3)

Suppose x is distributed as N(µ1,Σ), E(U) = 1
2
(µ1 − µ2)

TΣ−1(µ1 − µ2), var(U) =

(µ1 − µ2)
TΣ−1(µ1 − µ2) and U ∼ N(1

2
c20, c

2
0), where c20 = (µ1 − µ2)

TΣ−1(µ1 − µ2).

Similarly, if x is distributed as N(µ2,Σ), then E(U) = −1
2

(µ1 − µ2)
TΣ−1(µ1 − µ2),

var(U) = (µ1−µ2)
TΣ−1(µ1−µ2) and U ∼ N(−1

2
c20, c

2
0). See pages 205 - 206 of Anderson

(1984) for detail.

Define p1P (2|1) as probability that x comes from population π1 but eventually falls

in the region of classification into population π2 and p2P (1|2) as probability that x comes

from population π2 but eventually falls in the region of classification into population π1, as

discussed in Section 1.1. Suppose x is distributed as N(µ1,Σ), then E[xTΣ−1(µ1−µ2)] =

µT1 Σ−1(µ1 − µ2), var
(
xTΣ−1(µ1 − µ2)

)
= c20 and

P (2|1) = P

[
xTΣ−1(µ1 − µ2) <

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)
∣∣π1] = Φ

(
−c0

2

)
,

where Φ is the cumulative distribution function of the standard normal distribution.

Similarly, suppose x is distributed as N(µ2,Σ), then E[xTΣ−1(µ1−µ2)] = µT2 Σ−1(µ1−

µ2), var
(
xTΣ−1(µ1 − µ2)

)
= c20 and

P (1|2) = P

[
xTΣ−1(µ1 − µ2) >

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)
∣∣π2] = Φ

(
−c0

2

)
.

6



The total probability of misclassification of x into either π1 or π2 is

∆ = p2P (1|2) + p1P (2|1) = p1Φ

(
−c0

2

)
+ p2Φ

(
−c0

2

)
= Φ

(
−c0

2

)
(1.2.4)

since p1 + p2 = 1. A good classification method is the one that minimises ∆.

Now consider Σ1 6= Σ2, the regions R1 and R2 corresponding to Bayes’ rule are

R1 : −1

2
xT (Σ−11 −Σ−12 )x + xT (Σ−11 µ1 −Σ−12 µ2) > k∗

R2 : −1

2
xT (Σ−11 −Σ−12 )x + xT (Σ−11 µ1 −Σ−12 µ2) < k∗, (1.2.5)

where k∗ = 1
2
(µT1 Σ−11 µ1 − µT2 Σ−12 µ2) + 1

2
loge

( |Σ1|
|Σ2|

)
+ loge

( c(1|2)p2
c(2|1)p1

)
. Equation (1.2.5) is

quadratic in x when Σ1 6= Σ2. It becomes linear when Σ1 = Σ2.

Theorem 1.2.2 (Gilbert, 1969) Suppose π1 and π2 are two populations from N(µ1,Σ1)

and N(µ2,Σ2) with prior probabilities p1 and p2 respectively, where Σ1 6= Σ2. Then the

Bayes’ regions of classification into π1 and π2 are as given in equation (1.2.5). Further-

more if Σ2 = σ2Σ1 and σ 6= 1, then

∆ =

 p1P (χ2
f1
> k

c1
) + p2P (χ2

f2
< k

c2
), for σ2 > 1

p1P (χ2
f1
< − k

c1
) + p2P (χ2

f2
> − k

c2
), for σ2 < 1

(1.2.6)

where

k = loge

(
p1
p2

)
+
d

2
loge(σ

2) +
[p1 + p2σ

2]U2

2(σ2 − 1)
, U2 = υTΣυ,

υ = ATΣ−
1
2 (µ1 − µ2), Σ = p1Σ1 + p2Σ2, ci =

σ2
i

µi
, fi =

µ2
i

ci
, i = 1, 2,

µ1 =
1

2σ2

{ [p1 + p2σ
2]U2

|σ2 − 1|
+ d|σ2 − 1|

}
, µ2 =

1

2

{σ2[p1 + p2σ
2]U2

|σ2 − 1|
+ d|σ2 − 1|

}
,

σ2
1 =

1

σ2

{
[p1 + p2σ

2]U2 +
d(σ2 − 1)2

2

}
, σ2

2 = σ2[p1 + p2σ
2]U2 +

d(σ2 − 1)2

2
,

7



where A is the orthogonal matrix such that ATΣ
− 1

2
1 Σ2(Σ

− 1
2

1 )
′
A is a diagonal matrix.

Many researchers have worked on the estimation of probability of misclassification given

that observations are from multivariate normally distributed random samples or popu-

lations, which include studies of Anderson and Bahadur (1962), Dunn (1971), Anderson

(1972), Das Gupta (1972), Chang and Afifi (1974).

In practice, population quantities are unknown. So, Wald (1944) and Anderson (1984)

suggested replacing the population parameters with their sample estimates for a large

sample size. Suppose X11,X12, . . . ,X1n1 ∼ N(µ1,Σ) and X21,X22, . . . ,X2n2 ∼ N(µ2,Σ).

Let

X1 =
1

n1

n1∑
i=1

X1i, X2 =
1

n2

n2∑
i=1

X2i and S =

∑2
k=1(nk − 1)Sk∑2
k=1(nk − 1)

, k = 1, 2

be estimators of µ1, µ2 and Σ respectively, where Sk is the estimate of covariance matrix

of kth sample with size nk. The empirical version of U in equation (1.2.2) is

T = xTS−1(X1 −X2)−
1

2
(X1 + X2)

TS−1(X1 −X2). (1.2.7)

Theorem 1.2.3 (Anderson, 1984) The limiting distribution of T as n1 → ∞ and

n2 → ∞ is N(1
2
c20, c

2
0) if x is distributed according to N(µ1,Σ) and N(−1

2
c20, c

2
0) if x

is distributed according to N(µ2,Σ), where c0 =
√

(µ1 − µ2)
TΣ−1(µ1 − µ2).

Krzanowski (1977) and Johnson and Wichern (2007) called this sample version of LDF,

an Anderson statistic. Fisher’s linear discriminant function and Anderson statistic are

popular techniques in multivariate statistics. Hills (1967) pointed out that Fisher’s LDF

provides a useful tool for discriminating between populations under wide distributional

conditions though it has a limitation that its performance may be suboptimal when popu-

lations are not multivariate normally distributed. Krzanowski (1977) reviewed the perfor-

mance of Fisher’s linear discriminant function when underlying assumptions are violated.
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Sitgreaves (1961), Memon and Okamoto (1971) worked on the distribution of the classi-

fication statistics.

1.2.1 Numerical Example

Example 1 : Normal populations with location shift

In this example, we want to compare known theoretical result with simulation result. Let

π1 and π2 be two d-variate normal populations with mean vector and covariance matrix,

(µ1,Σ1) and (µ2,Σ2) respectively. Assume that the prior probabilities, p1 and p2 and

costs of misclassifcation, c(2|1) and c(1|2) of π1 and π2 respectively, are equal. Consider

µ1 =

0

0

 ,µ2 =

δ
0

 and Σ1 = Σ2 = I2,

where I2 is a 2 × 2 identity matrix. The total probability of misclassification associated

with LDA is a function of non-centrality parameter δ and is Φ
(−δ

2

)
.

Figure 1.2 present the comparison between theoretical probability of misclassification

and empirical error rate based on simulation study. It is clearly shown in Figure 1.2(a)

that the sample estimate of probability of misclassification associated with LDA is a good

approximation for its population version. Figure 1.3 presents a comparison of misclassifi-

cation rates among three bivariate spherically symmetric distributions for various values

of δ. The distributions are bivariate normal distribution, bivariate Laplace distribution

and bivariate t distribution with 3 degrees of freedom. The chance of misclassifying

observations varies from one distribution to another. The chance of misclassifying obser-

vations is least in bivariate normally distributed samples and highest in bivariate Laplace

distributed samples.
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Figure 1.2: Misclassification Error: Theoretical versus Simulation
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Figure 1.3: Misclassification error rates associated with LDA for spherical distributions
with Σ1 = Σ2 = I2 and µ1 6= µ2.
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Example 2 : Normal populations with scale shift

Consider the set up as in Example 1 above, but take µ1 = µ2 =

0

0

 and Σ1 = I2,Σ2 =

σ2I2 for σ 6= 1. For x ∈ Rd, if x ∼ N(µ1,Σ1), xTx ∼ χ2
d and if x ∼ N(µ2,Σ2), xTx ∼

σ2χ2
d. f1(x)/f2(x) > 1 implies e−

1
2
(x−µ1)

T Σ−1
1 (x−µ1)+

1
2
(x−µ2)

T Σ−1
2 (x−µ2) > (|Σ1|/|Σ2|)1/2,

which can be written as

(x− µ1)
TΣ−11 (x− µ1)− (x− µ2)

TΣ−12 (x− µ2) 6 loge |Σ2| − loge |Σ1|.

This gives

xTx− 1

σ2
xTx 6 2 loge(σ

2)− loge(1)(
1− 1

σ2

)
xTx 6 2 loge(σ

2)(
σ2 − 1

σ2

)
xTx 6 2 loge(σ

2).

For σ2 > 0, we consider two cases. These are σ2 > 1 and σ2 < 1.

1. When σ2 > 1, the region of classification is

R1 : xTx 6
2σ2

σ2 − 1
loge σ

2 and R2 : xTx >
2σ2

σ2 − 1
loge σ

2.

Then

P (2|1) = P

(
xTx >

2σ2

σ2 − 1
loge σ

2
∣∣∣ xTx ∼ χ2

2

)
= 1− F2

(
2σ2

σ2 − 1
loge σ

2

)
,

P (1|2) = P

(
xTx 6

2σ2

σ2 − 1
loge σ

2
∣∣∣ xTx ∼ σ2χ2

2

)
= F2

(
2

σ2 − 1
loge σ

2

)

11



and ∆, probability of misclassification is

∆ =
1

2

[
1− F2

(
2σ2

σ2 − 1
loge σ

2

)
+ F2

(
2

σ2 − 1
loge σ

2

)]

since p1 = p2 = 0.5. Here F2(.) denotes distribution function of central Chi-square

distribution with 2 degrees of freedom.

2. When σ2 < 1, the region of classification is

R1 : xTx >
2σ2

σ2 − 1
loge σ

2 and R2 : xTx <
2σ2

σ2 − 1
loge σ

2.

P (2|1) = P

(
xTx <

2σ2

σ2 − 1
loge σ

2
∣∣∣ xTx ∼ χ2

2

)
= F2

(
2σ2

σ2 − 1
loge σ

2

)
P (1|2) = P

(
xTx >

2σ2

σ2 − 1
loge σ

2
∣∣∣ xTx ∼ σ2χ2

2

)
= 1− F2

(
2

σ2 − 1
loge σ

2

)

where F2(.) is the distribution function of central Chi-square distribution with 2

degrees of freedom. The probability of misclassification is

∆ =
1

2

[
1 + F2

(
2σ2

σ2 − 1
loge σ

2

)
− F2

(
2

σ2 − 1
loge σ

2

)]

since p1 = p2 = 0.5. These results are compared with empirical results based on

simulation. The numerical results are presented in Figure 1.2(b).
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Example 3 : Normal populations with location-scale shift

Now consider µ1 =

0

0

 ,µ2 =

δ
0

 and Σ1 = I2,Σ2 = σ2I2, we use Theorem 1.2.2 and

obtain

∆ =

 p1P (χ2
f1
> k

c1
) + p2P (χ2

f2
< k

c2
), for σ2 > 1

p1P (χ2
f1
< − k

c1
) + p2P (χ2

f2
> − k

c2
), for σ2 < 1

where

k = loge σ
2 +

1

4

δ2(σ2 + 1)

σ2 − 1
, ci =

σ2
i

µi
, fi =

µ2
i

ci
, i = 1, 2,

Σ = I2 + σ2I2, A = I2, υ = Σ−
1
2 (µ1 − µ2), U2 = υTΣυ = (µ1 − µ2)

T (µ1 − µ2) = δ2,

µ1 =
1

2σ2

{ 1
2
[1 + σ2]δ2

|σ2 − 1|
+ 2|σ2 − 1|

}
, µ2 =

1

2

{ 1
2
σ2[1 + σ2]δ2

|σ2 − 1|
+ 2|σ2 − 1|

}
,

σ2
1 =

1

σ2

{1

2
[1 + σ2]δ2 + (σ2 − 1)2

}
, σ2

2 =
1

2
σ2[1 + σ2]δ2 + (σ2 − 1)2.

LDA and QDA have some inadequacies for non-normal distributions. LDA and QDA

are Bayes rules under normality for location shift and location-scale shift respectively.

This means that they are optimal when normality is assumed. These classifiers are not

optimal when some or all the competing distributions are non-normal. To illustrate this,

suppose F and G are both not multivariate normal distributions but are from the same

family of distributions. We compare their misclassification rates with when F and G are

both multivariate normal. The results are shown in Figure 1.3. It is clearly shown from

this figure that misclassification rates for non-normal distributions is higher than that of

normal distributions. Similarly, suppose F ≡ t(3,µ1,Σ1) is a multivariate t distribution

with mean µ1, variance Σ1 and 3 degrees of freedom, and G ≡ N(µ2,Σ2), where µ1, Σ1,

µ2, and Σ2 are as defined in examples 1 and 3 for location shift and location-scale shift

respectively and σ = 2. LDA and QDA have higher misclassification rates also in this

13
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Figure 1.4: Effect of normality on optimality of LDA and QDA.

case than when F and G are both multivariate normal, as shown in Figure 1.4 (a)-(b).

These results confirm the optimality of LDA and QDA if all competing distributions are

normally distributed.

Also, some moments of some non-normal distributions do not exist, for example mul-

tivariate Cauchy distribution. This may limit the use of LDA and QDA. Furthermore,

Hubert and Van Driessen (2004) has shown that outlying training sample points affect

the performance of LDA and QDA. Hence, both linear and quadratic classifiers are not

robust against outliers.

1.2.2 Robust Version of Linear and Quadratic Classification Rules

Hubert and Van Driessen (2004) proposed a robust versions of LDA and QDA called

robust linear discriminant analysis (RLDA) and robust quadratic discriminant analysis

(RQDA) respectively. Both involve replacing the estimates of µ1, µ2, Σ1 and Σ2 in

14



equation (1.2.1) by reweighted MCD estimator of multivariate location and scatter based

on FAST-MCD algorithm of Rousseeuw and Van Driessen (1999).

1.2.3 Derivation of Theoretical Bayes Risk - Location Shift

We want to derive Bayes risk (misclassification probability associated with Bayes rule) for

some competing distributions with location shift in a two-class problem. The distributions

are multivariate normal distribution, multivariate t distribution with k degree of freedom

and multivariate Laplace distribution.

Multivariate normal distribution

Suppose π1 has distribution N(µ1,Σ) with prior probability p1 and π2 has distribution

N(µ2,Σ) with prior probability p2. The probability of misclassification associated with

Bayes rule, denoted by ∆B is ∆B = Φ(− c0
2

), where c0 =
√

(µ1 − µ2)
TΣ−1(µ1 − µ2) and

Φ is the distribution function of standard normal distribution. See equation (1.2.4).

Multivariate t distribution

Let Z ∼ Nd(0,Σ) and U ∼ χ2
k be independent, where k is the degree of freedom of

Chi-squared distribution. Define

X =

(
Z

√
k

U

)
+ µ (1.2.8)

The distribution of X is multivariate t distribution with k degree of freedom, denoted by

t(k,µ,Σ). The probability density function of x is

f(x) = (kπ)−
d
2
Γ (k+d

2
)

Γ (k
2
)
|Σ|−

1
2{1 +

1

k
(x− µ)TΣ−1(x− µ)}−(

k+d
2

). (1.2.9)

Suppose π1 has distribution t(k,µ1,Σ) with probability density function f1(x) and π2 has

distribution t(k,µ2,Σ) with probability density function f2(x). Let π1 and π2 have equal

15



prior probabilities (that is, p1 = p2 = 0.5). Bayes rule is to assign x to π1 if

f1(x) > f2(x),

which is equivalent to

(x− µ1)
TΣ−1(x− µ1) < (x− µ2)

TΣ−1(x− µ2). (1.2.10)

This holds if the competing distributions have the same degree of freedom. Equation

(1.2.11) reduces to

−2xTΣ−1(µ1 − µ2) + (µ1 + µ2)
TΣ−1(µ1 − µ2) < 0

and can be written as

T (z) =

(
z

√
k

u
+ µ

)T

Σ−1(µ1 − µ2)−
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) > 0,

where x = z
√

k
u

+µ and z is distributed as Nd(0,Σ). If x is from π1, µ = µ1. Similarly, if

x is from π2, µ = µ2. Define p1P (2|1) as probability that x comes from population π1 but

eventually falls in the region of classification into population π2 and p2P (1|2) as probability

that x comes from population π2 but eventually falls in the region of classification into

16



population π1.

P (2|1) = P

[√
k

u
zTΣ−1(µ1 − µ2)−

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) + µT1 Σ−1(µ1 − µ2) < 0

]
= P

[
zTΣ−1(µ1 − µ2)−

1

2

√
u

k
(µ1 + µ2)

TΣ−1(µ1 − µ2) +

√
u

k
µT1 Σ−1(µ1 − µ2) < 0

]
= P

[
zTΣ−1(µ1 − µ2) <

1

2

√
u

k
(µ1 + µ2)

TΣ−1(µ1 − µ2)−
√
u

k
µT1 Σ−1(µ1 − µ2)

]
= P

[
zTΣ−1(µ1 − µ2) <

−1

2

√
u

k
(µ1 − µ2)

TΣ−1(µ1 − µ2)

]

This holds because u takes values in [0,∞). For either of the population, E
(
zTΣ−1(µ1−

µ2)
)

= 0 and var
(
zTΣ−1(µ1 − µ2)

)
= (µ1 − µ2)

TΣ−1(µ1 − µ2), then

P (2|1) = P

[
R <

−1
2

√
u
k
(µ1 − µ2)

TΣ−1(µ1 − µ2)(
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)1/2 ]

= P

[
R <

−1

2

√
u

k
c0

]
=

∫
Φ(c1)fu(u)du

where Φ is the distribution function of the standard normal distribution, fu is probability

density function of χ2
k and R is a standard normal random variable. Similarly,

P (1|2) = P

[√
k

u
zTΣ−1(µ1 − µ2)−

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) + µT2 Σ−1(µ1 − µ2) > 0

]
= P

[
zTΣ−1(µ1 − µ2)−

1

2

√
u

k
(µ1 + µ2)

TΣ−1(µ1 − µ2) +

√
u

k
µT2 Σ−1(µ1 − µ2) > 0

]
= P

[
zTΣ−1(µ1 − µ2) >

1

2

√
u

k
(µ1 + µ2)

TΣ−1(µ1 − µ2)−
√
u

k
µT2 Σ−1(µ1 − µ2)

]
= P

[
R >

1
2

√
u
k
(µ1 + µ2)

TΣ−1(µ1 − µ2)−
√

u
k
µT2 Σ−1(µ1 − µ2)(

(µ1 − µ2)
TΣ−1(µ1 − µ2)

)1/2 ]

= 1− P
[
R <

1
2

√
u
k
(µ1 − µ2)

TΣ−1(µ1 − µ2)(
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)1/2 ]

= 1− P
[
R <

1

2

√
u

k
c0

]
= 1−

∫
Φ(c2)fu(u)du
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where

R =
zTΣ−1(µ1 − µ2)− E[zTΣ−1(µ1 − µ2)](

var(zTΣ−1(µ1 − µ2))
)1/2 ,

c1 =
−1

2

√
u

k
c0, c2 =

1

2

√
u

k
c0,

c0 =
(
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)1/2

The probability of misclassification associated with Bayes rule, denoted by ∆B, is

∆B = p1P (2|1) + p2P (1|2) = p1

∫
Φ(c1)fu(u)du+ p2

(
1−

∫
Φ(c2)fu(u)du

)
(1.2.11)

where p1 + p2 = 1.

Multivariate Laplace distribution

Suppose the distribution of X ∈ Rd is multivariate Laplace distribution L(µ,Σ), where µ

and Σ are mean and covariance of the distribution respectively. The probability density

function of x is of the form

f(x) ∝ e−
√

(x−µ)T Σ−1(x−µ). (1.2.12)

Without loss of generality, let d = 2, r ∼ Gamma(d), θ ∼ Uniform(0, 2π), µ = (µ1, µ2)
T .

Define

Z1 = r cos θ, Z2 = r sin θ, Z =

(
Z1

Z2

)
.

Then, X = Σ
1
2 Z + µ has bivariate Laplace distribution BL(µ,Σ), where µ and Σ are

mean and covariance of the distribution respectively. It follows that X − µ = Σ
1
2 Z.

Suppose populations π1 and π2 have distribution functions BL(µ1,Σ) and BL(µ2,Σ)
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respectively. If x ∈ π1, then Z = Σ−
1
2 (X− µ1),

√
(x− µ1)

TΣ−1(x− µ1) =
√

zTz = r ∼ Gamma(d)

and (x− µ2)
TΣ−1(x− µ2) 6= r2 except µ1 = µ2, where d = 2. Similarly, if x ∈ π2, then

Z = Σ−
1
2 (X− µ2),

√
(x− µ2)

TΣ−1(x− µ2) =
√

zTz = r ∼ Gamma(d)

and (x− µ1)
TΣ−1(x− µ1) 6= r2 except µ1 = µ2. It follows that

log

(
f1(x)

f2(x)

)
= −

√
(x− µ1)

TΣ−1(x− µ1) +
√

(x− µ2)
TΣ−1(x− µ2).

For x, µ1, µ2 ∈ Rd and d > 2, the separating hyperplane between π1 and π2 can be

written as

(x− µ1)
TΣ−1(x− µ1) = (x− µ2)

TΣ−1(x− µ2).

This is equivalent to

xTΣ−1(µ1 − µ2) =
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2).

It follows that if x is distributed as population π1,

xTΣ−1(µ1 − µ2) =
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2) implies

xTΣ−1(µ1 − µ2)− µT1 Σ−1(µ1 − µ2) =
1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)− µT1 Σ−1(µ1 − µ2)

which gives

(x− µ1)
TΣ−1(µ1 − µ2) = −1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2).
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This can be written as

zTΣ−1/2(µ1 − µ2) = −1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

which is the same as

zTa = −1

2
aTa

where a = Σ−1/2(µ1 − µ2) and z is a standard multivariate Laplace distributed random

variable. Kotz, Kozubowski and Podgorski (2001) has shown that linear combination

of standard multivariate Laplace random variables has a univariate symmetric Laplace

distribution L(0, σl) (See Proposition 5.1.1 in pp. 232). That is, w = aTz has a univariate

Laplace distribution with mean 0 and variance σl, where σl =
√

var(aTz) and a is a

vector of constant real numbers. Similarly, xTΣ−1(µ1 − µ2) − µT2 Σ−1(µ1 − µ2) gives

zTa = 1
2
(µ1 − µ2)

TΣ−1(µ1 − µ2) if x is distributed as population π2.

Suppose f1(x) > f2(x), then (x − µ1)
TΣ−1(x − µ1) < (x − µ2)

TΣ−1(x − µ2) and

xTΣ−1(µ1−µ2) >
1
2
(µ1 +µ2)

TΣ−1(µ1−µ2). The probability of misclassifying x, whose

true population is π1, into π2 is

P (2|1) = P
(
xTΣ−1(µ1 − µ2) <

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)|x ∈ π1
)

= P
(
xTΣ−1(µ1 − µ2)− µT1 Σ−1(µ1 − µ2) <

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)− µT1 Σ−1(µ1 − µ2)
)

= P
(
zTa < −1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)

= P
(
w < −1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)

= F

(
− 1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)
,

where F is the distribution function of 1-dimensional symmetric Laplace distribution

L
(
0,
√

(µ1 − µ2)
TΣ−1(µ1 − µ2)

)
with (µ1−µ2)

TΣ−1(µ1−µ2) > 0. Similarly, the prob-

20



ability of misclassifying x, whose true population is π2, into π1 is

P (1|2) = P
(
xTΣ−1(µ1 − µ2) >

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)|x ∈ π2
)

= P
(
x
′
Σ−1(µ1 − µ2)− µT2 Σ−1(µ1 − µ2) >

1

2
(µ1 + µ2)

TΣ−1(µ1 − µ2)− µT2 Σ−1(µ1 − µ2)
)

= P
(
zTa >

1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)

= P
(
w >

1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)

= 1− F
(

1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)

where F is the distribution function of 1-dimensional symmetric Laplace distribution

L
(
0,
√

(µ1 − µ2)
TΣ−1(µ1 − µ2)

)
, with (µ1 − µ2)

TΣ−1(µ1 − µ2) > 0. The Bayes proba-

bility of misclassifying of x into either π1 or π2, denoted by ∆B, is

∆B = p1P (2|1) + p2P (1|2)

= p1F

(
− 1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)
+ p2

[
1− F

(
1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)]

where p1+p2 = 1. Suppose G is a Laplace distribution function which is symmetric about

c, then G(−c) = 1−G(c) for all c ∈ R. Hence

∆B = p1F

(
− 1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)
+ p2

[
F

(
− 1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)]
= F

(
− 1

2
(µ1 − µ2)

TΣ−1(µ1 − µ2)

)

1.3 Nonparametric Classification Rules for Multivari-

ate Data

Use of nonparametric approach for classifying observations has gained significant atten-

tion in the last two decades as it does not depend heavily on the underlying distributions.

Nonparametric classification methods do not involve estimating moments of population
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distributions. One of their intuitive features is their robustness against outliers and ex-

treme values. Various nonparametric classification approaches can be seen in the work of

Cover and Hart (1967), Cover (1968), Vapnik (1982, 1998), Liu (1990), Cortes and Vapnik

(1995), Liu, Parelius and Singh (1999), Jörnsten (2004), Ghosh and Chaudhuri (2005a,

2005b), Cui, Lin and Yang (2008), Li, Cuesta-Albertos and Liu (2012), Dutta and Ghosh

(2012a, 2012b), among others.

1.3.1 Support Vector Machine for Multivariate Data

Support vector machine (SVM) is a popular method for classifying multivariate data. The

foundation of Support Vector Machines (SVM) was developed by Vapnik (1982). Cortes

and Vapnik (1995) upgraded this method from maximum margin idea to soft margin

approach which enables the SVM to choose a boundary that splits data points as cleanly

as possible, while still maximizing the distance to the nearest cleanly split data points.

Suppose (X, y) is a pair of random variable in which y, class membership takes values

in {−1, 1} and X ∈ ℵ, where ℵ is a sample of training data points in Rd, SVM aims at

predicting the value of y given observed value x. SVMs separate different classes of data

by a hyperplane

wTx + b = 0 (1.3.1)

and the corresponding decision rule is

y(x) = sign(wTx + b), (1.3.2)

where w is a finite dimensional vector to be estimated and b is a constant scalar. In order

to obtain a best hyperplane, ‖w‖ is minimised subject to the decision rule.
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1.3.2 Nearest neighbour rule

The k-nearest neighbour rule (k-NN) is another nonparametric method for classifying

multivariate observations based on closest training observations in the data cloud. It is

proposed in Cover and Hart (1967). This involves assigning an unclassified sample point

to the class that is commonest amongst its k nearest neighbours, where k is a positive

integer. Suppose X(i), i = 1, 2, . . . , k are k nearest neighbours to x, this classification rule

is to assign x to the class that is commonest amongst its k nearest neighbours. k nearest

neighbours are the k observations in the training sample with minimum distance from x.

1.3.3 Depth Based Classifiers for Multivariate Data

Liu, Parelius and Singh (1999) defined data depth as a measure of the depth or centrality

of d-dimensional observation x with respect to a multivariate data cloud or underlying

multivariate distribution, F . It is denoted by D(F,x). Data depth has some appealing

characteristics. It helps to build systematic and nonparametric approach for generalis-

ing features and properties of univariate distributions to multivariate distributions. It

characterises the centrality of a distribution and motivates nonparametric robust statis-

tical methodologies. Depth functions include Mahalanobis depth (Mahalanobis, 1936),

half-space depth or Tukey depth (Tukey, 1975), simplicial depth (Liu, 1990), projection

depth (Donoho, 1982), Oja depth (Oja, 1983), simplicial volume depth (Zuo and Serfling,

2000a, 2000b), spatial depth (Vardi and Zhang, 2000), regression depth (Rousseeuw and

Hubert, 1999). The possibility of using of data depth for classification was first raised in

Liu (1990). Ghosh and Chaudhuri (2005a, 2005b) developed it into full-fledged nonpara-

metric classification method called maximum depth classifier.

Ghosh and Chaudhuri (2005a) used half-space depth and regression depth to construct

linear and nonlinear separating curves or surfaces. In those depth based methods, a finite

dimensional parametric form for the separating surface is often assumed. Also, Ghosh and
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Chaudhuri (2005b) proposed a nonparametric method called maximum depth classifier.

Maximum depth classifier assigns observations to the population or sample for which the

classifier attains its highest depth value. In a two class problem, suppose D(F,x) and

D(G,x) are depths of x with respect to distributions F and G respectively. Maximum

depth classifier is to assign x to F if

D(F,x) > D(G,x),

and to G otherwise. This method is fully nonparametric and readily lends itself to mul-

ticlass extension. They have shown that this classifier is the Bayes rule for the location

shift problem. However, the performance of the classifier is affected by deviations from

the location shift model or violation of monotonic nature of density functions. This lim-

itation is overcome by modifying maximum depth classifier. The modified classifier is to

assign x to population, πj with

max
16j6J

pjθj{D(Fj,x)},

where θj{D(Fj,x)} is a function of D(Fj,x), which is a depth of x with respect to j-

th population distribution, Fj and pj is the prior probability of j-th population. The

function θj(.) varies from one type of depth to another. The modified method performs

well when the populations differ in both location and scale in the case of elliptically

symmetric distributions when the half-space depth is used. The modified method suffers

computational difficulty of half-space depth when d > 2. Also, the method requires

estimating several unknown parameters, some of which involve complicated estimation

techniques (Li, Cuesta-Albertos and Liu, 2012). Similarly, on maximum depth classifier,

Cui, Lin and Yang (2008) proposed maximum depth classifier based on modified projection

depth as the depth function. Its result is appealing and works well only when samples
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are multivariate normally distributed. Dutta and Ghosh (2012a) suggested use of robust

version of Mahalanobis depth and projection depth as depth functions for the purpose of

maximum depth classification. Dutta and Ghosh (2012b) proposed a Lp depth classifier for

lp symmetric distributions, which assigns observations to the class for which the classifier

possesses maximum Lp depth, where p is adaptively chosen using training data.

Possibility of using DD-plot, a two-dimensional representation of multivariate objects

by their data depths with respect to two known classes, was raised in Liu, Parelius and

Singh (1999). Li, Cuesta-Albertos and Liu (2012) proposed use of DD plot for classifica-

tion. DD-classifier assigns observations to the population or sample with highest depth

value. DD-classifier depends on the optimal choice of coefficient vector of polynomial

function of Mahalanobis depth that minimises overall misclassification rate. The method

is data driven, simple to visualise and easy to implement if the degree of polynomial

is known. In practice, the degree of polynomial is unknown and its estimation involves

complex optimisation, which may lead to trade off between prediction bias and prediction

variance. According to Lange, Mosler and Mozharovskyi (2014), Mahalanobis depth does

not reflect asymmetries of the data. Lange, Mosler and Mozharovskyi (2014) proposed

DDα-procedure based on zonoid depth and α-procedure algorithms. This method is an

extension of DD-classifiers proposed in Li, Cuesta-Albertos and Liu (2012). The choice of

α depends on minimiser of the average misclassification rate. The method is completely

nonparametric. It uses q-dimensional depth plot to discriminate between classes in the

depth space [0, 1]q. In case of more than two classes, several binary classifications are

performed and a majority rule is applied.

1.4 Functional Classification Procedures

Functional data refer to data which consist of observed functions or curves evaluated at a

finite subset of some interval. The word functional refers to the infinite dimensionality of
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the data. A random function denotes a random variable valued in an infinite dimension

space (Ferraty and Vieu 2003, pp. 162). Functional data may be function of time or

function of quantities. Definition 1.4.1 below is given in Ferraty and Vieu (2006) for

functional random variable.

Definition 1.4.1 A random variable X is called functional random variable if it takes

values in an infinite dimensional space or functional space.

That is, X = {X (t); t ∈ I}, where I ⊂ R.

Definition 1.4.2 A functional dataset {X1, X2, . . . , Xn} is a dataset generated by n iden-

tically distributed functional variables X1,X2, . . . ,Xn.

SupposeX(ti) is the value ofX at ti. For i ∈ {1, 2, . . . , d}, X(ti) = {X(t1), X(t2), . . . , X(td)}

is a finitely observed functional datum if X is a functional data generated by a real func-

tional random variable X .

Definition 1.4.3 Suppose Xi(tij) is the value of Xi at tij. For i ∈ {1, 2, . . . , n} and

j ∈ {1, 2, . . . , di},

Xi(tij) =
{
{X1(t11), X1(t12), . . . , X1(t1d1)}, . . . , {Xn(tn1), Xn(tn2), . . . , Xn(tndn)}

}
is a finitely observed functional dataset if {X1(t), X2(t), . . . , Xn(t)} is a functional dataset

generated by a real functional random variables {X1(t),X2(t), . . . ,Xn(t)}.

An example of functional data is a population P0 consisting of trajectories of the process

X(t) = m0(t) + e(t), where m0(t) = 2.5| sin(10πt)| and e(t) is a Gaussian process with

mean 0 and cov(X(s), X(t)) = exp(−|s− t|). Figure 1.5 gives the plot of mean function

of the population P0.

Functional data are always highly correlated (for example, micro-array data and clin-

ical outcomes), which results in singularity of the covariance estimates of such data. In
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Figure 1.5: Mean function of a population of trajectories.

Rd, the density functions allow us to easily characterize distributions, calculate proba-

bilities and moments and define likelihood functions but for functional data, there is no

simple natural way to define and calculate density functions in infinite-dimensional spaces

(Cuevas, 2014). The applications of functional data are very useful in medicine, crime

analysis, signal processing, chemometrics, among others. Examples of real functional

data include growth data, tumors identification and differentiation data, LSVT voice re-

habilitation data, among others. Functional data can exist as univariate or multivariate.

We refer readers to Claeskens et al. (2014), Ferraty and Vieu (2006) and Ramsay and

Silverman (2005) for detail.

In classifying functional data, different classification procedures have emerged since

last two decades for functional data. These include different forms of linear discriminant

analysis for functional data (Dudoit, Fridlyand and Speed, 2002; James and Hastie, 2001

and Preda, Saporta and leveder, 2007), classifiers based on kernel estimators of poste-

rior probabilities (Hall, Poskitt and Presnell, 2001; Ferraty and Vieu, 2003), classifier
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based on a distance measure(Vilar and Pertega, 2004), model-based classifiers (Leng and

Müller, 2006), nearest neighbour classification rule for functional data (Biau, Bunea and

Wegkamp, 2005; Cover and Hart, 1967), weighted distance approach (Alonso, Casado

and Romo, 2012), Support Vector Machines (Vapnik, 1998; Cortes and Vapnik, 1995;

Rossi and Villa, 2006; Li and Yu, 2008), classifiers based on shape descriptors (Epi-

fanio, 2008), classification method based on distance to class centroid or its trimmed

version(Delaigle and Hall, 2012a; López-Pintado and Romo, 2006; Cuesta-Albertos and

Nieto-Reyes, 2010), classifiers based on functional mixed model (Zhu, Brown and Mor-

ris, 2012) and maximum depth classifiers (Cuevas, Febrero and Fraiman, 2007), among

others.

1.5 Current Work

In this thesis, we propose some classification methods based on multivariate ranks and

distance based rules for multivariate and functional data respectively, and study proper-

ties of each of the classifiers. In chapter two, we propose a nonparametric classification

method based on multivariate rank and refer to it as minimal rank classifier. We show

that it is Bayes procedure under suitable conditions. The variations in total probability

of misclassification of d-dimensional observations from two classes of populations with

different location vectors are considered separately as well as cases of homogenous and

heterogeneous scales. It is well known that multivariate rank is not invariant under arbi-

trary affine transformations, so it may be affected by deviation of population distribution

from spherical symmetry. Also, we investigate the performance of minimal rank classifier

under location shift, accounting for the effect of deviation from spherical symmetry, scale

shift and location-scale shift. Based on the effect of deviation from spherical symmetry on

minimal rank classifier, we introduce a way of constructing affine invariant multivariate

rank. Using the affine invariant multivariate rank, we transform the classification method
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to affine invariant version and study its statistical properties for location shift problem. In

chapter three, we propose a classifier based on volume of rank region for location-scale shift

problem and study its properties. The improved version of this method is also proposed

in the chapter. Chapter four consists of nonparametric classification methods based on

distribution function of outlyingness of multivariate rank and its invariants. When data

are functions, many multivariate techniques fail to perform well. Classification method

based on L2 distance to functional medians are proposed and generalised into Lp distance

in chapter five. Conclusion and areas of further research are presented in chapter six.
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Chapter 2

Rank Classifiers for Multivariate

Data

2.1 Multivariate Rank

Signs and ranks are commonly used in statistical methodology to develop methods or

procedures that are independent of distribution assumptions. Use of rank for computing

statistical quantities gives robust estimators (e.g. estimator for location) as they are not

affected by the presence of outlying values in the data. For the univariate data, sign of

x ∈ R can be defined as

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0,

or equivalently,

sign(x) =


x
|x| , if x 6= 0

0, if x = 0.
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Univariate centred rank of x with respect to data points X1, X2, . . . , Xn from distribution

F can be defined as

rank(x) =
1

n

n∑
i=1

sign(x−Xi).

Following are some of the basic properties of rank(x).

1. |rank(x)| 6 1.

2. rank(x) = 0 implies x is the median.

3. |rank(x)| = 1 implies x is an extreme point.

4. E[rank(x)] = 2F (x)− 1.

These properties suggest that rank(x) is not only a useful descriptive statistics, it also

characterises the distribution.

Now, we want to define sign and rank functions in a multivariate set up following

Chakraborty (2001). Suppose x ∈ Rd, then the lp sign of x is

signp(x) =


∂
∂x
||x||p = v(x)

||x||p−1
p
, if x 6= 0

0, if x = 0

where ||x||p =
{
xp1 + xp2 + . . .+ xpd

} 1
p and

v(x) =
(
sign(x1)|x1|p−1, sign(x2)|x2|p−1, . . . , sign(xd)|xd|p−1

)T
.

The lp rank of x ∈ Rd with respect to data points X1,X2, . . . ,Xn ∈ Rd is defined as

rankp(x) =
1

n

n∑
i=1

signp(x−Xi).
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When p = 1, sign1(x) =
(
sign(x1), sign(x2), . . . , sign(xd)

)T
, the vector of coordinatewise

signs and for p = 2,

sign2(x) =
x

||x||2

where ||.||2 is the Euclidean norm, ||y||2 =
{
y21 + y22 + . . . + y2d

} 1
2 . sign2(x) is called the

spatial sign vector.

Definition 2.1.1 Suppose X ∈ Rd has a d-dimensional distribution F . The multivariate

rank function of any point x ∈ Rd with respect to F is defined as

rankF (x) = EF (sign2(x−X)) = EF

[
x−X

||x−X||2

]
. (2.1.1)

This is also known as spatial rank vector (Möttönen and Oja, 1995). In a similar way, we

can define sample version of the spatial rank vector.

Definition 2.1.2 Suppose X1,X2, . . . ,Xn ∈ Rd is a random sample from a distribution

function, F on Rd. The spatial rank of x ∈ Rd with respect to X1,X2, . . . ,Xn is defined

as

rankFn(x) =
1

n

n∑
i=1

sign2(x−Xi) =
1

n

n∑
i=1

x−Xi

||x−Xi||2
(2.1.2)

where ||x−Xi||2 6= 0, for all i = 1, 2, ..., n.

If rankF (x) = 0, then x is the spatial median. From now on, we will use ||.|| to denote the

Euclidean norm ||.||2, whenever there is no scope of confusion. Let ||rankF (x)|| denotes

the measure of outlyingness of rankF (x). ||rankF (x)|| is invariant under location shift or

translation (that is, ||rankF (x + θ)|| = ||rankF (x)|| for a constant vector θ) and under

orthogonal scale transformation (that is, ||rankF (Ax)|| = ||rankF (x)|| for an orthogonal

matrix A). Spatial rank helps determine the geometric position of points in Rd with

respect to the data cloud, and hence can be viewed as a descriptive statistic (Guha and

Chakraborty, 2013).
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Suppose F is spherically symmetric and characterised by location parameter θ ∈ Rd,

‖rankF (x)‖ increases as ‖x− θ‖ increases. This is stated formally by the theorem below.

Theorem 2.1.1 (Guha and Chakraborty, 2013) If F is a spherically symmetric dis-

tribution in Rd with θ as the centre of symmetry, then for any x ∈ Rd,

rankF (x) = q(||x− θ||) x− θ
||x− θ||

(2.1.3)

for some increasing, non-negative function q.

Following Theorem 2.1.1, we observe that ||rankF (x)|| = q(||x − θ||) and ‖rankF (x)‖

increases as ‖x−θ‖ increases. The implication of this is that smaller rank indicates more

central observation and larger rank indicates extreme observation.

Chaudhuri (1996) defined spatial quantiles as vectors in Rd that are indexed by a

vector u in d-dimensional unit ball. Define an open ball B(d) = {u|u ∈ Rd, ||u|| < 1}.

For any u ∈ B(d) and t ∈ Rd, define Φ(u, t) = ||t||+ < u, t >, where < ., . > denotes

the usual Euclidean inner product. Spatial quantile corresponding to u and based on

X1,X2, . . . ,Xn ∈ Rd is defined as

Q̂n(u) = arg min
Q∈Rd

n∑
i=1

Φ(u,Xi −Q).

It follows from Theorem 1.1.2 of Chaudhuri (1996) that

n∑
i=1

Xi − Q̂n(u)

||Xi − Q̂n(u)||
+ nu = 0,

if Q̂n(u) 6= Xi for all 1 6 i 6 n. This implies

u =
1

n

n∑
i=1

Q̂n(u)−Xi

||Q̂n(u)−Xi||
. (2.1.4)
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Serfling (2004) defined rankFn(x) as the inverse function of the spatial quantile function,

Q̂n(u). Mathematically, we can write equation (2.1.4) as

u = rankFn

(
Q̂n(u)

)
= rankFn(x)

and so

Q̂n(u) = x implies rankFn(x) = u.

2.2 Minimal Rank Classifier

In this study, we propose a nonparametric classification method based on spatial ranks of

the d-dimensional observations with respect to multivariate data clouds. In a two class

problem, let π1 and π2 denote two populations with distributions F and G respectively

with equal prior probabilities, where F and G are absolutely continuous with respect

to Lebesgue measure in Rd. The classification rule is to assign an observation x, into

population π1 if

||rankF (x)|| 6 ||rankG(x)|| (2.2.1)

otherwise, assign x to population π2. If there are J(> 2) populations, then assign x to

population πk, 1 6 k 6 J if

||rankFk
(x)|| = min

j
||rankFj

(x)|| (2.2.2)

where F1, F2, . . . , FJ are absolutely continuous distributions corresponding to J popula-

tions.

Note that P (||rankF (x)|| > ||rankG(x)|| | x ∈ π1) is the probability of assigning x into

population π2 when true population of x is π1 and P (||rankF (x)|| 6 ||rankG(x)|| | x ∈ π2)

is the probability of assigning x into population π1 when true population of x is π2. Then

34



the total probability of misclassification corresponding to two populations, π1 and π2,

denoted by ∆, is

∆ = p1P (||rankF (x)|| > ||rankG(x)|| | x ∈ π1)+p2P (||rankF (x)|| 6 ||rankG(x)|| | x ∈ π2)

with prior probabilities p1 and p2 for π1 and π2 respectively. For the case of J populations

with prior probabilities p1, p2, . . . , pJ , the total probability of misclassification is

∆ =
J∑
j=1

pjP (‖rankFj
(x)‖ is not the minimum | x ∈ jth population).

2.2.1 Properties of Minimal Rank Classifier

In this section, we shall show some properties of minimal rank classifier under suitable

conditions. Theorem 2.2.1 shows that minimal rank classifier is equivalent to Bayes rule

under some conditions.

Theorem 2.2.1 Let f1 and f2 be the probability density functions of populations, π1 and

π2 having spherically symmetric distributions F and G in Rd about θF and θG respectively

with equal prior probabilities p1 = p2 = 1
2
, then the Bayes rule is

assign x to population π1 if ||rankF (x)|| 6 h
(
||rankG(x)||

)
and

assign x to population π2 if ||rankF (x)|| > h
(
||rankG(x)||

)
where h is a non-negative function.
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Proof : For an absolutely continuous spherically symmetric distribution F about θF ∈

Rd, the probability density function can be written as

f1(x) = g1 (‖x− θF‖)

for some non-negative real-valued decreasing function g1 and similarly, the probability

density function of G can be written as

f2(x) = g2 (‖x− θG‖)

for some non-negative real-valued decreasing function g2. Then f1(x) = g1 (‖x− θF‖)

and f2(x) = g2 (‖x− θG‖).

Now by Theorem 2.1.1, we know that

rankF (x) = h1(||x− θF ||)
x− θF
||x− θF ||

and

rankG(x) = h2(||x− θG||)
x− θG
||x− θG||

for some increasing functions h1 and h2. This implies ‖rankF (x)‖ = h1(‖x − θF‖) and

‖rankG(x)‖ = h2(‖x − θG‖). Therefore, we can write f1(x) = g1
(
h−11 (‖rankF (x)‖)

)
and

f2(x) = g2
(
h−12 (‖rankG(x)‖)

)
. Now,

f1(x) > f2(x)⇔ g1
(
h−11 (‖rankF (x)‖)

)
> g2

(
h−12 (‖rankG(x)‖)

)
.

Since h1 and h2 are increasing functions and g1 and g2 are decreasing functions, g1 ◦ h−11

and g2 ◦ h−12 are decreasing functions. The proof is complete. �
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Suppose the two populations π1 and π2 are separated by location only, that is, G(x) =

F (x − θ), then we will have g1 = g2 and h1 = h2 and as a result, we get ||rankF (x)|| 6

||rankG(x)|| when f1(x) > f2(x). This result is formally stated in Corollary 2.2.1 below.

Corollary 2.2.1 Let the populations π1 and π2 have spherically symmetric distributions

F and G in Rd respectively with equal prior probabilities p1 = p2 = 1
2

such that G(x) =

F (x− θ), where θ ∈ Rd, then the Bayes rule is

assign x to π1 if ||rankF (x)|| 6 ||rankG(x)||

and assign x to π2 otherwise.

If training samples X1,X2, . . . ,Xm from π1 and Y1,Y2, . . . ,Yn from π2 are available,

then we replace the population version of the rank functions rankF and rankG by their

empirical versions rankFm and rankGn respectively to construct the empirical classifica-

tion rule, assign x to π1 if ||rankFm(x)|| 6 ||rankGn(x)|| and assign x to population π2

otherwise.

Theorem 2.2.2 Suppose F is a d-variate distribution function, which is absolutely con-

tinuous, then for sufficiently large n

sup
x

∣∣ ||rankFn(x)|| − ||rankF (x)||
∣∣ a.s.→ 0.

Proof : Suppose X1,X2, . . . ,Xn is random sample with empirical distribution function

Fn, then for j = 1, . . . , n, sign(x −Xj) are independent and identically distributed and
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bounded. We know that ||a−b|| 6 ||a||+ ||b|| and ||a||− ||b|| 6 ||a−b||. For any ε > 0,

∣∣ ||rankFn(x)|| − ||rankF (x)||
∣∣ > ε

⇒ ||rankFn(x)− rankF (x)||2 >
∣∣ ||rankFn(x)|| − ||rankF (x)||

∣∣2 > ε2

⇒
d∑
i=1

∣∣rankFn(x)i − rankF (x)i
∣∣2 > ε2

⇒ at least one of
∣∣rankFn(x)i − rankF (x)i

∣∣2 > ε2

d

where rankFn(x)i is the ith feature of rankFn(x). Therefore

P
(∣∣ ||rankFn(x)|| − ||rankF (x)||

∣∣ > ε
)
6

d∑
i=1

P

(∣∣rankFn(x)i − rankF (x)i
∣∣2 > ε2

d

)

P
(∣∣ ||rankFn(x)|| − ||rankF (x)||

∣∣ > ε
)
6

d∑
i=1

P

(∣∣rankFn(x)i − rankF (x)i
∣∣ > ε√

d

)

By Hoeffding lemma, P
(∣∣rankFn(x)i − rankF (x)i

∣∣ > ε√
d

)
6 e−nε

2/d. So,

P
(∣∣ ||rankFn(x)|| − ||rankF (x)||

∣∣ > ε
)
6 de−nε

2/d

Distribution F is defined on Rd for d > 2, then using Kiefer theorem (see Kiefer, 1961)

for any δ > 0,

P

(
sup
x

∣∣ ||rankFn(x)|| − ||rankF (x)||
∣∣ > ε

)
6 ce−(2−δ)nε

2

where c is a positive constant depending on δ and d only and not on F , then as n→∞,

P

(
sup
x

∣∣ ||rankFn(x)|| − ||rankF (x)||
∣∣ > ε

)
→ 0.
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This implies

sup
x

∣∣ ||rankFn(x)|| − ||rankF (x)||
∣∣ a.s.→ 0 as n→∞.

The proof is complete. �

Remark : Theorem 2.2.2. shows that ||rankFn(x)|| converges to its population version

almost surely.

Theorem 2.2.3 Suppose f1 and f2 are the probability density functions of populations, π1

and π2 having spherically symmetric distributions F and G in Rd about θF and θG respec-

tively with equal prior probabilities p1 = p2 = 1
2
, rankF (x) and rankG(x) are continuous

and satisfies

||rankFn1
(x)|| a.s.→ ||rankF (x)||, ||rankGn2

(x)|| a.s.→ ||rankG(x)||

as min(n1, n2) → ∞, then the total probability of misclassification for the classification

rule based on the training sample,

∆n =
1

2
P
(
||rankFn1

(x)|| > ||rankGn2
(x)||

∣∣ x ∈ F
)

+
1

2
P
(
||rankFn1

(x)|| 6 ||rankGn2
(x)||

∣∣ x ∈ G
)

converges to optimal Bayes risk for sufficiently large n1 and n2 such that min(n1, n2)→∞

and n1

n1+n2
→ 1

2
.

Proof : For p1 = p2 = 1
2
, the total probability of misclassification for the Bayes rule is

∆ =
1

2
P
(
||rankF (x)|| > ||rankG(x)||

∣∣x ∈ F)+
1

2
P
(
||rankF (x)|| 6 ||rankG(x)||

∣∣x ∈ G) .
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Now,

|∆n −∆|

=
1

2

∣∣∣∣ ∫ [I
{||rankFn1

(y)||>||rankGn2
(y)||

∣∣y∈F} − I{||RankF (x)||6||RankG(x)||
∣∣y∈F}]f1(y)d(y)

+

∫
[I
{||rankFn1

(y)||6||rankGn2
(y)||

∣∣y∈G} − I{||rankF (y)||6||rankG(y)||
∣∣y∈G}]f2(y)d(y)

∣∣∣∣
6

1

2

∫ ∣∣I
{||rankFn1

(y)||>||rankGn2
(y)||
∣∣y∈F} − I{||rankF (y)||6||rankG(y)||

∣∣y∈F}∣∣f1(y)d(y)

+
1

2

∫ ∣∣I
{||rankFn1

(y)||6||rankGn2
(y)||
∣∣y∈G} − I{||rankF (y)||6||rankG(y)||

∣∣y∈G}∣∣f2(y)d(y).

By Theorem 2.2.2 and Lebesgue dominated convergence theorem, each of the above inte-

grals converges to zero and hence we have

lim
min(n1,n2)→∞

|∆n −∆| → 0.

�

2.3 Numerical Examples

In this section, we shall simulate data for three spherically symmetric distributions and

study the finite sample performance of our proposed classifier. Let π1 and π2 be two

d-variate normal populations with mean vectors µ1, µ2 and covariance matrix Σ1, Σ2,

respectively. Assume that the prior probabilities of the populations are equal (p1 = p2 =

0.5) and costs of misclassifcations are also equal (c(1|2) = c(2|1), as defined in Chapter

one). Consider the following simulation study:

1. Generate X1, . . ., Xn from π1 and Y1, . . ., Yn from π2.

2. Generate Z1, . . ., Zm from π1 and Zm+1, . . ., Z2m from π2.

3. Using the proposed classification rule, classify the observations Z1, . . ., Z2m and
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Figure 2.1: Misclassification rates associated with minimal rank classifier for 3 different
families of distributions for (a) location shift only (Σ1 = Σ2 = I2,µ1 6= µ2) and (b) scale
shift only (Σ1 = I2,Σ2 = σ2I2,µ1 = µ2, τ = loge σ).

count the number of misclassified observations (say, l) and then estimate the prob-

ability of misclassification as l/2m.

4. Repeat the process N = 1000 times and compute the average of N number of

estimates of misclassification probability obtained, determine the estimated total

probability of misclassification.

2.3.1 Example 1: Location shift

Consider

µ1 =

0

0

 , µ2 =

δ
0

 , n = m = 100, Σ1 = Σ2 = I2,

where I2 is a 2 × 2 identity matrix. Suppose π1 has a distribution N(µ1,Σ1) and π2

has a distribution N(µ2,Σ2). Also, we compare the cases when π1 and π2 are from

bivariate Laplace(µ1,Σ1) and bivariate Laplace(µ2,Σ2) respectively and also when they
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have bivariate Student’s t distribution with 3 degrees of freedom and location and scale

parameters as described above.

1. For the location shift only, Figure 2.1(a) shows the plot of empirical misclassification

rates against the non-centrality parameter δ =
√

(µ1 − µ2)
T (µ1 − µ2) for three

bivariate spherically symmetric distributions using minimal rank classifier (RC).

Under this setting, Σ1 = Σ2 = I2 and µ1 6= µ2. It is shown that the probability dis-

tribution of samples has implication on the misclassification rate. Misclassification

probability is least in bivariate normally distributed samples and highest in bivariate

Laplace distributed samples among the three distributions given that the competing

classes have equal scale, as seen in Figure 2.1(a). When δ = 0, the distributions of

X and Y are the same, and have equal chance of being correctly classified. Hence

probability of misclassification at this value of δ is half. As δ goes away from 0,

the distinction between the two classes becomes clearer and misclassification error

decreases as |δ| increases for each of the three distributions.

2. In literature, LDA and QDA are the optimal traditional classification procedures for

distributions with location shift and scale shift respectively, provided normality is

assumed. Comparing the performance of minimal rank classifier with some existing

methods (Fisher’s LDA, support vector machine (SVM), maximum depth classifier

based on Oja depth (O-D) and projection depth (P-D)), Figure 2.2 shows that

minimal rank classifier competes favourably with other classifiers. In Figure 2.2(a),

it is shown that minimal rank classifier compares favorably with LDA and other

classifiers for bivariate normal samples when there is location shift problem. The

misclassification probabilities of these classifiers are almost equivalent for each value

of δ. This is similar for bivariate Laplace samples and for bivariate t samples as

shown in Figure 2.2(b)-(c) respectively. It is shown in Ghosh and Chaudhuri (2005b)

that classifiers based on maximum depth, for some depth functions, are Bayes rule
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Figure 2.2: Comparison of minimal rank classifier with some other classifiers based on
misclassification rates for distributions with Σ1 = Σ2 = I2 and µ1 6= µ2.

43



0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

σ2

P
ro

ba
bi

lit
y 

of
  m

is
cl

as
si

fic
at

io
n

QDA
RC

(a) Bivariate normal

0 1 2 3 4 5

0.
30

0.
35

0.
40

0.
45

0.
50

σ2

P
ro

ba
bi

lit
y 

of
   

m
is

cl
as

si
fic

at
io

n

QDA
RC

(b) Bivariate Laplace

0 1 2 3 4 5

0.
30

0.
35

0.
40

0.
45

0.
50

σ2

P
ro

ba
bi

lit
y 

of
   

m
is

cl
as

si
fic

at
io

n

QDA
RC

(c) Bivariate t

Figure 2.3: Comparison of minimal rank classifier with some other classifiers based on
misclassification rates for distributions with Σ1 6= Σ2 and µ1 = µ2.
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for location shift problem. Hence, all these competing classifiers are Bayes rule,

except LDA which is optimal under normality.

2.3.2 Example 2: Scale shift

Suppose X and Y are bivariate normally distributed samples with X ∼ Nd(µ,Σ1) and

Y ∼ Nd(µ,Σ2), with sizes n1 and n2 respectively. We construct a separating curve using

minimal rank classifier, classify m observations from each of the distributions and com-

pute the probability of misclassification associated with it. n1 = n2 = m = 100, d = 2,

Σ1 = I2 and Σ2 = σ2I2, and make plots of estimates of associated misclassification rate

for homogenous scale and heterogenous scale cases. The results are thereafter compared

with the result from existing methods. We repeat the simulation process for bivariate t

distributed samples with 3 degrees of freedom and bivariate Laplace distributed samples.

Both bivariate t distribution with 3 degree of freedom and bivariate Laplace distribu-

tion have mean vectors and covariance matrices, (µ,Σ1) and (µ,Σ2) for two competing

samples, where µ,Σ1 and Σ2 are as defined above.

1. Figure 2.1(b) plots misclassification rate against 2 loge σ for scale shift only. Under

this setting, Σ1 = I2, Σ2 = σ2I2, µ1 = µ2 =

0

0

. When σ = 1, τ = 0, the

distributions of X and Y are the same, and hence have equal chance of being

correctly classified and hence probability of misclassification is half as shown in

Figure 2.1(b). As 2 log σ goes away from 0, distinction between the two classes

becomes clearer and misclassification error decreases as |2 log σ| increases for each

of the three distributions for σ > 0. Also, error rate is highest when classes are

bivariate t distributed among the three distributions. This is due to the fact that

bivariate t distribution and bivariate Laplace distribution have heavier tails.

2. Figure 2.3 is a plot of misclassification probability with different values of σ in order
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Figure 2.4: The plot of misclassification rates associated with minimal rank classifier for
distributions with Σ1 6= Σ2 and µ1 6= µ2.
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to account for the performance of RC when there is scale shift only. Comparing

RC with QDA for each of the families of distributions discussed above, it can be

seen in Figure 2.3(a - c) that QDA outperforms RC when the difference between

the competing populations is only in their scale.

2.3.3 Example 3: Location-scale shift

Finally, consider µ1 =

0

0

, µ2 =

δ
0

 and Σ1 = I2,Σ2 = σ2I2. Figure 2.4 gives the

plot of miscassification rates against δ for different values of σ. It can be ascertained from

Figure 2.4 that the misclassification rate for σ2 and σ−2 at the median of any symmetric

distribution are the same and increases as σ increases. Figure 2.5 gives the comparison

between misclassifcation rates based on RC and QDA when the value of σ = 2 for families

of three bivariate distributions. It shows that QDA outperform RC when competing

populations differ in both location and scale. It can be inferred, based on these results,

that RC performs poorly like LDA when the samples are from distributions with different

covariance structures ( i.e. Σ1 6= Σ2) irrespective of whether µ1 = µ2 or not.

2.4 Affine Invariant Version of Minimal Rank Clas-

sifier

2.4.1 Transformation and Re-transformation Technique

Affine invariance and symmetry

Suppose X1,X2, . . . ,Xn ∈ Rd are random variables from the same distribution. Let

Y1,Y2, . . . ,Yn ∈ Rd be defined as Y1 = AX1 + b,Y2 = AX2 + b, . . . ,Yn = AXn + b.
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Figure 2.5: Comparison of misclassification rates of minimal rank classifier and QDA for
distributions with Σ1 = I2, Σ2 = 4I2 and µ1 6= µ2.
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Define a statistic T : Rd → Rd, then statistic T is affine invariant if

T (AX1 + b, . . . ,AXn + b) = T (X1, . . . ,Xn)

where A is any d× d non-singular matrix and b is a d-dimensional constant vector. Non-

invariance of spatial rank under arbitrary affine transformation is well known (Chakraborty

and Chaudhuri, 1996; Chakraborty and Chaudhuri, 1998; Chakraborty, Chaudhuri and

Oja, 1998; Serfling, 2002) and may affect the performance of any classifier based on it

if the distribution of the data cloud deviates from spherical symmetry property. The

distribution of a random variable X is said to be spherically symmetric about θ if, for

any orthogonal matrix A,

X− θ d
= A(X− θ).

The density function of any spherically symmetric distribution of a random variable X, if

it exists, is of the form f(x) ∝ g
(
(x− θ)T (x− θ)

)
for some nonnegative scalar function

g(.). The distribution of a random variable X is said to be elliptically symmetric about

θ if there exists a d × d nonsingular matrix A such that AT (X − θ) has a spherically

symmetric distribution about 0. See Liu(1990), Liu and Singh (1993), Liu, Parelius and

Singh (1999) and Serfling (2006a) for further reading on multivariate symmetry.

Need for affine invariant classifier

To demonstrate robustness of minimal rank classifier against deviation from the property

of spherical symmetry (i.e. correlation among variables in the population from which

the sample is drawn) using a numerical example, we use the set-up in simulation study

in Section 2.3 for location shift and assume Σ1 = Σ2 = Σ =

 1 ρ

ρ 1

. Suppose the

difference between competing population means is (µ1 − µ2)
T =

(
δ ρδ

)
, it is easy to
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show LDA is independent of correlation ρ existing within the populations. We know that

(µ1−µ2)
TΣ−1(µ1−µ2) =

1

1− ρ2

(
δ ρδ

) 1 −ρ

−ρ 1


 δ

ρδ

 =
1

1− ρ2
(δ2−ρ2δ2) = δ2.

The probability of misclassification associated with LDA for normal populations with

equal covariance matrices is Φ
(
−
√

(µ1 − µ2)
TΣ−1(µ1 − µ2)

)
= Φ(−δ). As a result of

this, misclassification rate remains constant for different values of ρ ∈ [0.0, 1.0) as shown

in Figure 2.6.

Define y = Ax + b and Yi = AXi + b for nonsingular matrix A and constant vector

b, then

∥∥∥∥∥ 1

n

n∑
i=1

y −Yi

||y −Yi||

∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

A(x−Xi)

||A(x−Xi)||

∥∥∥∥∥ 6=
∥∥∥∥∥ 1

n

n∑
i=1

x−Xi

||x−Xi||

∥∥∥∥∥.
Table 2.1 presents the performance of minimal rank classifier for various values of ρ.

The misclassification probability behaves anomalously for different values of ρ ∈ [0, 1)

irrespective class distribution. The misclassification rates are not in any specific order of

ρ. The reason is that though F and G are taking more ellipsoid form as ρ increases, the

classifier is being computed with respect to sphere as minimal rank classifier is based on

non-invariant spatial rank under affine transformation. To overcome the problem of affine

non-invariance property of spatial rank, we use transformation and re-transformation

technique developed in Chakraborty (2001).

Transformation and re-transformation technique (TR)

Transformation and re-transformation methodology is a procedure involving conversion of

non-equivariant and non-invariant measures under affine transformation to affine equiv-

ariant and affine invariant versions respectively, using data driven coordinate system. TR

technique was developed in Chakraborty and Chaudhuri (1996) and then used to con-
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Figure 2.6: Robustness of LDA against deviation in spherical symmetry.

Table 2.1: Misclassification rates of minimal rank classifier when Σ1 = Σ2 = Σ,Σ 6= λI2,
λ ∈ R.

Minimal rank classifier
Distribution δ LDA ρ = 0.00 ρ = 0.50 ρ = 0.75 ρ = 0.90

Bivariate normal
0.5 0.4059 0.4132 0.4121 0.4108 0.4091
1 0.3117 0.3137 0.3158 0.3148 0.3127
1.5 0.2290 0.2306 0.2371 0.2362 0.2325
2 0.1602 0.1607 0.1699 0.1691 0.1643

Bivariate Laplace
0.5 0.4361 0.4459 0.4455 0.4433 0.4415
1 0.3577 0.3691 0.3688 0.3664 0.3645
1.5 0.2960 0.3022 0.3027 0.3014 0.2993
2 0.2434 0.2472 0.2503 0.2495 0.2466

Bivariate t
0.5 0.4216 0.4326 0.4310 0.4287 0.4271
1 0.3347 0.3419 0.3420 0.3404 0.3379
1.5 0.2618 0.2652 0.2675 0.2663 0.2636
2 0.2018 0.2054 0.2099 0.2091 0.2066
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struct an affine equivariant median. This technique was also used in Chakraborty and

Chaudhuri (1998) to construct robust estimate of location; in Chakraborty, Chaudhuri

and Oja (1998) to construct an affine equivariant median and angle test; in Chakraborty

(2001) to construct an affine equivariant quantile; and also in Dutta and Ghosh (2012b).

Consider the d-dimensional data points X1,X2, ...,Xn in Rd, for any d × d nonsingular

matrix A and any b ∈ Rd, Chakraborty, Chaudhuri and Oja (1998) has shown that the

transformation that maps Xi into AXi + b, where 1 6 i 6 n, essentially expresses the

original data in terms of a new coordinate system determined by A and b with origin

at −A−1b. The concept is to form an appropriate data driven coordinate system and

express all the data points in terms of the new coordinate system. Then compute the

spatial rank of the transformed data. Define

Sn = {α|α ⊂ {1, 2, . . . , n} and |α| = d+ 1} (2.4.1)

as the collection of all d+ 1 subset of {1, 2, ..., n}. For a fixed α = {i0, i1, ..., id} ⊂ Sn, we

define X(α) to be a d×dmatrix whose columns are Xi1−Xi0 , Xi2−Xi0 , ..., Xid−Xi0 . That

is, one of the d+1 data points determines the origin and the lines joining that origin to the

remaining d data point will form the coordinate system. Assuming that elements of α are

naturally ordered and that Xi’s are independent and identically distributed observations

with common probability distribution, which is absolutely continuous with respect to the

Lebesgue measure in Rd, X(α) is invertible with probability one (Chakraborty, 2001). So,

X(α) is the transformation matrix and for each i /∈ α, we transform the data set Xi into

a new coordinate system, Yi = {X(α)}−1Xi and compute the rank of y = {X(α)}−1x.

2.4.2 Adaptive choice of α

We choose X(α) in such a way that the columns of Σ−
1
2 X(α) are as orthogonal as possible.

That is, we want to choose X(α) in a way that {X(α)}TΣ−1X(α) becomes as close as
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possible to a scalar multiple of identity matrix (i.e. λId, where Id is a d×d identity matrix

and λ is any positive constant). Since Σ is unknown in practice, we compute its estimate

from the data. The choice of α depends on the value of α that minimises

υ(α) =
trace

(
{X(α)}T Σ̂

−1
X(α)

)
/d[

det
(
{X(α)}T Σ̂

−1
X(α)

)] 1
d

(2.4.2)

so that υ(α) becomes very close to 1. Obviously, once α is selected, the computation of

affine invariant spatial rank is straightforward in any dimension.

2.4.3 Affine Invariant Multivariate Rank

The affine invariant spatial rank is defined as

rankF (x) = EF

(
{X(α)}−1[x−X]

||{X(α)}−1[x−X]||

)
. (2.4.3)

The sample version is defined as

rankFn(x) =
1

n

n∑
i=1

(
{X(α)}−1[x−Xi]

||{X(α)}−1[x−Xi]||

)
(2.4.4)

Steps involved in computing the affine invariant spatial rank after determining the

transformation matrix are:

1. Transform every observation Xi, i = 1, ..., n into a new coordinate system, Yi =

{X(α)}−1Xi.

2. Transform observation x into a new coordinate system, y = {X(α)}−1x.

3. Compute rank of y with respect to data cloud, Yi, i = 1, ..., n.

Now, we want to show the affine invariance property of the transformed multivariate rank

defined in equation (2.4.4) by the lemma below.
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Lemma 2.4.1 Suppose Xi, 1 6 i 6 n is a sample on Rd having a distribution F . For

any α ∈ Sn, rankFn(x) defined in equation (2.4.4) is affine invariant.

Proof : For any d× d nonsingular matrix A, let Yi = AXi + b. Since

X(α) = [Xi1 −Xi0 , ...,Xid −Xi0 ]

we have

Y(α) = [Yi1 −Yi0 ,Yi2 −Yi0 , . . . ,Yid −Yi0 ]

= [AXi1 + b− (AXi0 + b),AXi2 + b− (AXi0 + b), . . . ,AXid + b− (AXi0 + b)]

= [AXi1 −AXi0 ,AXi2 −AXi0 , . . . ,AXid −AXi0 ]

= A[Xi1 −Xi0 ,Xi2 −Xi0 , . . . ,Xid −Xi0 ] = AX(α) (2.4.5)

The transformed multivariate rank of a data point y = Ax + b, where x ∈ Rd is

rankGn(Ax + b) = rankGn(y) =
1

n

n∑
i=1

{Y(α)}−1[y −Yi]

||{Y(α)}−1[y −Yi]||

=
1

n

n∑
i=1

{AX(α)}−1[(Ax + b)− (AXi + b)]

||{AX(α)}−1[(Ax + b)− (AXi + b)]||

=
1

n

n∑
i=1

{X(α)}−1A−1A[x−Xi]

||{X(α)}−1A−1A[x−Xi]||

=
1

n

n∑
i=1

{X(α)}−1[x−Xi]

||{X(α)}−1[x−Xi]||
= rankFn(x) (2.4.6)

that is, rankGn(Ax + b) = rankFn(x). �

Hence, the transformed multivariate rank is invariant under affine transformation.

Classifier based on this transformed rank is affine invariant and can handle the problem

associated with deviation from spherical symmetry.
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2.4.4 Affine Invariant version of Minimum Rank Classifier

Given any two populations π1, with X1,X2, . . . ,Xn1 ∈ π1 and π2, with Y1,Y2, . . . ,Yn2 ∈

π2. For the training sample in the population π1, let Xi0 , . . . ,Xid be d + 1 observations

and α = {i0, i1, . . . , id} denotes the set of d+ 1 indices.

rankF (x) =
1

n

n∑
i=1

{X(α)}−1(x−Xi)

‖{X(α)}−1(xXi)‖
.

Similarly, we can define the affine invariant spatial rank function with respect to the

training sample Y1, . . . ,Ym ∈ π2 as

rankG(x) =
1

m

m∑
i=1

{Y(β)}−1(x−Yi)

‖{Y(β)}−1(x−Yi)‖

where β is a set of d + 1 indices {j0, j1, . . . , jd} and Y(β) is the d × d matrix formed

with the columns Yj1 − Yj0 , . . . ,Yjd − Yj0 . The optimal transformation matrix Y(β)

is obtained by minimising a similar criterion for the data Y1, . . . ,Ym. Then an affine

invariant version of the classification rule for any x ∈ Rd can be defined as

assign x to π1 if ‖rankF (x)‖ 6 ‖rankG(x)‖ (2.4.7)

assign x to π2 otherwise.

We call this classification method minimal affine invariant rank classifier (AIRC). If there

are J(> 2) populations, then assign x to population πk, 1 6 k 6 J if

||rankFk
(x)|| = min

j
||rankFj

(x)||; j = 1, 2, ..., J (2.4.8)

where F1, F2, . . . , FJ are distribution functions corresponding to J populations and rankFj
(x)

is as defined in equation (2.4.3). Now, we want to show that AIRC is a Bayes rule under

55



the conditions of Theorem 2.2.1 for elliptically symmetric distributions. This is given in

Theorem 2.4.1 below.

Theorem 2.4.1 Let f1 and f2 be the density functions of populations, π1 and π2 having

elliptically symmetric distributions F and G about θF and θG respectively with prior

probabilities p1 and p2 respectively from the same family of multivariate distributions such

that G(x) = F (x− θ), where θ is a location shift in Rd. If Σ1 = Σ2 = Σ, c(1|2) = c(2|1)

and p1 = p2, then the Bayes rule is

 ||rankF (x)|| 6 ||rankG(x)|| ⇒ assign x to population π1

||rankF (x)|| > ||rankG(x)|| ⇒ assign x to population π2,
(2.4.9)

rankF (x) and rankG(x) are as defined in equation (2.4.3).

Proof : Suppose the distribution F is absolutely continuous elliptically symmet-

ric about θF ∈ Rd, then its probability density function can be written as f1(x) =

g1

(
‖Σ−

1
2 (x− θF )‖

)
for some non-negative decreasing function g1 : R→ R and similarly,

f2(x) = g2

(
‖Σ−

1
2 (x− θG)‖

)
for some non-negative decreasing function g2 : R → R for

the distribution G, which is elliptically symmetric about θG ∈ Rd.

Now by Theorem 2.1.1 and Lemma 2.4.1,

rankF (x) = h1(||Σ−
1
2 (x− θF )||) Σ−

1
2 (x− θF )

||Σ−
1
2 (x− θF )||

and

rankG(x) = h1(||Σ−
1
2 (x− θG)||) Σ−

1
2 (x− θG)

||Σ−
1
2 (x− θG)||

for some increasing functions h1 and h2. This implies

‖rankF (x)‖ = h1(‖Σ−
1
2 (x− θF )‖)
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and

‖rankG(x)‖ = h2(‖Σ−
1
2 (x− θG)‖).

We can write f1(x) = g1
(
h−11 (‖rankF (x)‖)

)
and f2(x) = g2

(
h−12 (‖rankG(x)‖)

)
. Now,

f1(x) > f2(x) gives g1
(
h−11 (‖rankF (x)‖)

)
> g2

(
h−12 (‖rankG(x)‖)

)
.

For G(x) = F (x− θ), we have h1 = h2 = h (say) and g1 = g2 = g (say). So,

f1(x) > f2(x) implies g
(
h−1(‖rankF (x)‖)

)
> g
(
h−1(‖rankG(x)‖)

)
.

g ◦ h−1 is decreasing function since h is increasing function and g is monotone decreasing

function. Hence

||rankF (x)|| 6 ||rankG(x)||.

The proof is complete. �

Example: Location Shift

Consider

µ1 =

0

0

 , n = 100, Σ1 = Σ2 = Σ =

 1 ρ

ρ 1


and µ2 is chosen in such a way that (µ1−µ2)

TΣ−1(µ1−µ2) = δ2. Figure 2.7(a)-(c) present

plots of misclassification rates asociated with AIRC against non-centrality parameter δ

for some values of ρ for bivariate normally distributed, bivariate Laplace distributed and

bivariate t distributed (with 3 degrees of freedom) samples of size n each. These plots

show that, for each value of δ, misclassification probability is the same for all values of

ρ. The implication of this is that AIRC is independent of values of ρ, ∀ρ ∈ [0, 1). This is

because effect of ρ on the data has been removed when both x and Xi are premultiplied
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Figure 2.7: Robustness of AIRC against deviation in spherical symmetry.
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Table 2.2: Comparison of classifiers based on average misclassification errors for distribu-
tions with location shift.

Classifiers
Distribution δ Bayes LDA SVM O-D P-D RC AIRC
Bivariate normal 1 0.3085 0.3148 0.3157 0.3181 0.3213 0.3129 0.3168

2 0.1587 0.1612 0.1602 0.1649 0.1660 0.1615 0.1623
Bivariate Laplace 1 0.3576 0.3770 0.3814 0.3831 0.3729 0.3693 0.3727

2 0.2415 0.2464 0.2573 0.2503 0.2508 0.2475 0.2506
Bivariate t 1 0.3339 0.3746 0.3505 0.3707 0.3400 0.3418 0.3475

2 0.2019 0.2220 0.2137 0.2185 0.2053 0.2060 0.2113

by {X(α)}−1 for all i /∈ α. Unlike minimal rank classifier whose performance is enhanced

by spherical symmetry of the distribution of the training data, AIRC performs well for

elliptically symmetric distributions.

Comparing AIRC with some of other classifiers for location shift case with Σ = I2,

the result is presented in Table 2.2. These classifiers are support vector machine (SVM),

maximum depth classifier based on Oja depth(O-D) and projection depth(P-D), LDA and

RC. Table 2.2 shows that AIRC competes favourably with other classifiers for location

shift problem for the three multivariate distributions.

Example : Scale Shift

Now consider µ1 =

0

0

 ,µ2 =

δ
0

 and Σ1 = I2,Σ2 = σ2I2. Minimal affine invariant

rank classifier performs very poor like minimal rank classifier when there is scale shift

irrespective of whether there is location shift or not. The mislassification rates are higher

in AIRC than QDA when normality is assumed for different values of non-central pa-

rameter δ and Σ1 6= Σ2. This can be seen in Figure 2.8(a). Similarly for non-normal

distributions, AIRC has higher misclassification rates than QDA when σ = 2 as shown

in Figure 2.8(b)-(c). This poor performance of AIRC, as well as RC, when there is scale

shift can be attributed to the lack of scale parameter in the formulation of spatial rank
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Figure 2.8: Performance of AIRC for location-scale shift when σ = 2.0.
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function. To overcome this problem, we shall develop a classifier based on rank region in

the next chapter.
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Chapter 3

Classifier Based on Volume of

Central Rank Regions

3.1 Central Rank Regions and its Associated Volume

In this chapter, we propose a classification method based on volumes of central rank

regions. It is imperative to briefly discuss central rank region and its associated volume.

The Definition 3.1.1 below gives a mathematical expression for central rank region.

Definition 3.1.1 Suppose X ∈ Rd is a random vector with distribution function F . The

central rank region is defined as

CF (r) = {x : ‖rankF (x)‖ 6 r}, 0 < r < 1 (3.1.1)

where rankF (x) is the spatial rank of x with respect to F .

Central rank region, CF (r) is equivariant under location shift, orthogonal and homoge-

nous scale transformations (Liu, Parelius and Singh, 1999). It is equivariant under affine

transformation if and only if rankF (x) is invariant under affine transformation. Serfling

(2002, 2004), Guha (2012) and Guha and Chakraborty (2013) also defined central rank
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regions but with respect to probability mass. Now we can define volume of multivariate

central rank regions.

Definition 3.1.2 Suppose 0 < r < 1 and CF (r) is the central rank region of X ∈ Rd

having distribution function F . The volume of central rank region, denoted by VF (r), is

defined as

VF (r) = Volume of CF (r). (3.1.2)

Some authors called VF (r), the volume functional. It is well known that VF (r) charac-

terises the spread of the distribution F in terms of central rank region CF (r) as r increases.

VF (r) measures, for small r, the overall spread of the data around the spatial median while

it measures overall spread of the distribution as r increases (Guha and Chakraborty, 2013).

Volume of central rank region is equivariant under orthogonal rotation and its d-root is

equivariant under homogenous scale transformations. Central regions are ordered and

increase with respect to r that describes their boundaries. That is, if r1 < r2, then

CF (r1) ⊆ CF (r2) (Serfling, 2002 and 2004). Consequently, the central rank regions and

its associated volume functional can equivalently be indexed by the probability weight

of the central region. The notion of central region and its corresponding volume is well

discussed in Liu, Parelius and Singh (1999), Serfling (2002), Wang and Serfling (2004)

using data depth. Guha and Chakraborty (2013) studied central region and its volume

based on spatial rank.

3.2 Classifier Based on Volume of Rank Regions

The possibility of solving classification problem by computing volume of an observation

with respect to each of the competing populations is raised here. An observation is as-

signed to the class for which it attains minimum volume. Suppose an observation belongs

to a particular class of observations, the class will have the least rank outlyingness among

the competing classes and thereby has the least volume. Spatial rank in Definition 3.1.1
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may be as defined in Definition 2.1.1 or 2.4.3, depending on whether the distribution of

the data cloud is spherically symmetric or elliptically symmetric respectively. Since we

are interested in classification method that can handle both, we define rankF (x) in Defi-

nition 3.1.1 as in equation (2.4.3). It is shown in Lemma 2.4.1 that rankF (x) is invariant

under affine transformation, hence CF (r) and VF (r) are equivariant under general affine

transformations.

Obviously, ||rankF (x)|| ∈ [0, 1] and ||rankF (x)|| → 1 as ‖x‖ → ∞. Following Defini-

tion 3.1.1, set {x : ||rankF (x)|| = r} is nonempty for all 0 < r < 1. Following Definition

3.1.2, VF (r) is finite, a function of r and strictly increasing for r < 1.

Definition 3.2.1 Suppose F and G are absolutely continuous with respect to Lebesgue

measure in Rd, CF (r) and CG(r) are the central rank region of X ∈ Rd having distribution

functions F and G respectively. Define

VF (r) = Volume of CF (r) and VG(r) = Volume of CG(r).

Also define

rF (x) = ‖rankF (x)‖ and rG(x) = ‖rankG(x)‖,

where rankF (x) and rankG(x) are as defined in equation (2.4.3). Then the classification

rule based on volume of central rank region is to assign x to F if

VF
(
rF (x)

)
6 VG

(
rG(x)

)
and to G if

VF
(
rF (x)

)
> VG

(
rG(x)

)
.
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The probability of misclassification associated with this classification method is

∆ = p1P
(
VF
(
rF (x)

)
> VG

(
rG(x)

)
| x ∈ π1

)
+ p2P

(
VF
(
rF (x)

)
6 VG

(
rG(x)

)
| x ∈ π2

)
.

Suppose there are J(> 2) populations, then assign x to population πk with distribution

Fk, 1 6 k 6 J if

VFk

(
rFk

(x)
)

= min
j
VFj

(
rFj

(x)
)
,

where F1, F2, . . . , FJ are absolutely continuous distributions corresponding to J popula-

tions. The corresponding probability of misclassification is

∆ =
J∑
j=1

pjP{VFk

(
rFk

(x)
)
6 VFj

(
rFj

(x)
)
| x ∈ Fj},

where p1, p2, . . . , pJ are prior probability of populations π1, π2, . . . , πJ respectively. For

the rest of this thesis, we shall call the classification rule based on volume of central rank

region, rank region classifier (RRC) and investigate the properties of this classifier by

some theorems below.

When samples drawn from populations are only available, we compute the empirical

version of volume functional, VFn

(
rFn(x)

)
, carry out the classification and compute the

probability of misclassification based on the samples. Theorem 3.2.1 below shows that

VFn

(
rFn(x)

)
converges to its population version with probability one.

Theorem 3.2.1 Suppose Theorem 2.2.2 hold for elliptically symmetric distribution F,

then for sufficiently large n and rF (x) ∈ [0, 1],

∣∣VFn

(
rFn(x)

)
− VF

(
rF (x)

)∣∣ a.s.→ 0
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Proof : Define

VFn

(
rFn(x)

)
= volume{y : rFn(y) 6 rFn(x)}

VF
(
rFn(x)

)
= volume{y : rF (y) 6 rFn(x)}

VF
(
rF (x)

)
= volume{y : rF (y) 6 rF (x)}

We note from Theorem 2.1.1 that rF (x) is continuous and bounded. Also, VF
(
rF (x)

)
is

continuous on rF (x) ∈ (0, 1).

∣∣VFn

(
rFn(x)

)
− VF

(
rF (x)

)∣∣ 6∣∣VFn

(
rFn(x)

)
− VF

(
rFn(x)

)∣∣
+
∣∣VF (rFn(x)

)
− VF

(
rF (x)

)∣∣ = S1 + S2

By Theorem 2.2.2 and continuous mapping theorem,

S2 =
∣∣VF (rFn(x)

)
− VF

(
rF (x)

)∣∣→ 0

almost surely.

S1 =
∣∣VFn

(
rFn(x)

)
− VF

(
rFn(x)

)∣∣
=
∣∣volume{y : rFn(y) 6 rFn(x)} − volume{y : rF (y) 6 rFn(x)}

∣∣
= volume{y : min

(
rFn(y), rF (y)

)
6 rFn(x) 6 max

(
rFn(y), rF (y)

)
} (3.2.1)

Taking limit of equation (3.2.1) as n→∞,

lim
n→∞

∣∣VFn

(
rFn(x)

)
− VF

(
rFn(x)

)∣∣→ 0

almost surely. The proof is complete. �
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Now, we will like to show that RRC is a Bayes rule for location shift under the same

conditions as in Theorem 2.4.1. This is given formally in Theorem 3.2.2 below:

Theorem 3.2.2 Let f1 and f2 be the probability density functions of populations, π1 and

π2 having elliptically symmetric distributions F and G respectively from the same family

of multivariate distributions such that G(x) = F (x− θ), where θ ∈ Rd is a location shift.

Suppose Σ1 = Σ2 = Σ, p1 = p2 and Theorem 3.2.1 hold, then the Bayes rule is equivalent

to  VF
(
rF (x)

)
6 VG

(
rG(x)

)
⇒ assign x to population π1

VF
(
rF (x)

)
> VG

(
rG(x)

)
⇒ assign x to population π2

Proof : This proof follows from the proof of Theorem 2.4.1 for elliptically symmetric

F and G. So,

‖rankF (x)‖ = h1(‖Σ−
1
2 (x− θF )‖)

and

‖rankG(x)‖ = h2(‖Σ−
1
2 (x− θG)‖).

for some increasing functions h1 and h2. VF
(
rF (x)

)
and VG(rG(x)) depend only on

||rankF (x)|| and ||rankG(x)|| respectively. Write VF
(
rF (x)

)
= UF (||rankF (x)||), where

UF is an increasing function of ||rankF (x)||. Then

‖Σ−
1
2 (x− θF )‖ = ψ−1F (VF (rF (x)))

for some increasing function ψF = UF ◦ h1. Similarly,

‖Σ−
1
2 (x− θG)‖ = ψ−1G (VG(rG(x)))
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for some increasing function ψG = UG ◦ h2. Then we can write

f1(x) > f2(x) implies g1
(
ψ−1F (VF (rF (x)))

)
> g2

(
ψ−1G (VG(rG(x)))

)
where g1 and g2 are non-negative real-valued decreasing functions. For G(x) = F (x− θ),

ψF = ψG = ψ (say) and g1 = g2 = g (say). This implies f1(x) = g
(
ψ−1(VF (rF (x)))

)
and

f2(x) = g
(
ψ−1(VG(rG(x)))

)
. Also, g ◦ψ−1 is a decreasing function since ψ is an increasing

function and g is a decreasing function. Hence

VF
(
rF (x)

)
6 VG

(
rG(x)

)
whenever f1(x) > f2(x).

The proof is complete. �

3.3 Numerical Example: Simulation

Here, we carry out simulation study to investigate the performance of rank region classi-

fier (RRC) for location-scale shift problem using simulation information in Section 2.3.3.

Suppose

µ1 =

0

0

 ,µ2 =

δ
0

 ,Σ1 = I2,Σ2 = σ2I, n1 = n2 = m = 100.

For various values of σ and δ, the experiment is repeated 1000 times and average misclas-

sification errors associated with RRC are determined and compared with misclassification

errors associated with some other classifiers.

Table 3.1 presents the comparison of classifiers’ performance based on their average

misclassification errors. The simulation study is based on information in Section 2.3 for

location-scale shift. Suppose X and Y are bivariate normally distributed samples such

that X ∼ Nd(µ1,Σ1) and Y ∼ Nd(µ2,Σ2), with sizes n1 and n2 respectively, where
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Table 3.1: Misclassification rates of classifiers when Σ1 = I2, Σ2 = 4I2 and µ1 6= µ2.

Misclassification error
Distribution Classifier δ σ = 0.2 σ = 0.5 σ = 1.0 σ = 2.0 σ = 5.0

Bivariate normal

RRC 1 0.1577 0.2307 0.3086 0.3599 0.3832
QDA 0.0556 0.1889 0.3136 0.2448 0.0813
AIRC 0.2979 0.2927 0.3156 0.4222 0.4827
RC 0.3012 0.2929 0.3123 0.4222 0.4820
O-D 0.5000 0.4983 0.3181 0.5000 0.5000
P-D 0.2966 0.2962 0.3213 0.4206 0.4816
SVM 0.0609 0.1969 0.3255 0.2547 0.0854
RRC 2 0.0759 0.0863 0.1522 0.2300 0.2943
QDA 0.0184 0.0751 0.1614 0.1891 0.0784
AIRC 0.0765 0.1026 0.1630 0.2949 0.4553
RC 0.0773 0.1035 0.1616 0.2922 0.4532
O-D 0.5000 0.3442 0.1631 0.4984 0.5000
P-D 0.0812 0.1078 0.1660 0.2945 0.4512
SVM 0.0198 0.0792 0.1685 0.1954 0.0816

Bivariate Laplace

RRC 1 0.2153 0.3047 0.3667 0.4056 0.4165
QDA 0.1045 0.2714 0.3766 0.3109 0.1436
AIRC 0.3629 0.3554 0.3705 0.4417 0.4839
RC 0.3603 0.3541 0.3706 0.4001 0.4519
O-D 0.5000 0.4998 0.3831 0.5000 0.5000
P-D 0.3643 0.3572 0.3729 0.4418 0.4823
SVM 0.1077 0.2606 0.3806 0.3176 0.1475
RRC 2 0.1236 0.1703 0.2416 0.3049 0.3534
QDA 0.0564 0.1613 0.2471 0.2709 0.1379
AIRC 0.2082 0.2145 0.2487 0.3573 0.4629
RC 0.2111 0.2233 0.2458 0.2961 0.3773
O-D 0.5000 0.4800 0.2512 0.4999 0.5000
P-D 0.2055 0.2116 0.2508 0.3572 0.4634
SVM 0.0584 0.1587 0.2560 0.2617 0.1419

Bivariate t

RRC 1 0.1977 0.2732 0.3401 0.3782 0.3795
QDA 0.1123 0.2685 0.3716 0.3295 0.1611
AIRC 0.3092 0.3244 0.3677 0.4592 0.4858
RC 0.3231 0.3201 0.3431 0.4295 0.4827
P-D 0.3224 0.3182 0.3400 0.4257 0.4801
SVM 0.1048 0.2357 0.3508 0.3045 0.1479
RRC 2 0.1071 0.1366 0.2001 0.2655 0.3141
QDA 0.0510 0.1373 0.2225 0.2692 0.1547
AIRC 0.1906 0.2017 0.2296 0.3116 0.4680
RC 0.1469 0.1597 0.2067 0.3188 0.4548
P-D 0.1494 0.1609 0.2053 0.3215 0.4540
SVM 0.0514 0.1274 0.2142 0.2361 0.1420
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Σ1,Σ2, n1, n2,µ1 and µ2 are as defined above. It is seen that RRC competes favourably

with SVM and QDA for some values of δ and σ. For σ < 1, it is seen that RRC

competes favourably with other six classifiers, which are AIRC, RC, SVM, QDA, O-D

and P-D. When σ = 1, misclassification errors associated with the seven classifiers are

equivalent, as shown in Table 3.1 below. This means that at σ = 1, the distributions of

competing classes will have homogenous scale, for which all these classifiers are optimal if

class prior probabilities are equal. This is also the case for bivariate Laplace distributed

samples and bivariate t distributed samples with 3 degrees of freedom. When σ > 1, RRC

competes favourably with others as well. It is known that QDA is Bayes procedure under

normality, so it has the least misclassification rates, even when normality assumption is

violated because of its robustness to deviation from normality assumption. It is seen

that misclassification error associated with RRC increases with the increase in σ. O-D,

P-D, RC and AIRC have highest misclassification rates for σ < 1 and σ > 1. Also, their

associated misclassification errors increase with the increase in σ.

3.4 Improved Classifier Based on Volume of Central

Rank Regions

Balanda and MacGillivray (1990) introduced scale-scale plot for comparing univariate

distributions. Guha and Chakraborty (2013) used scale-scale plot as an efficient visual

tool to validate distributional assumptions for multivariate data. Suppose F = G in Rd,

the plot of VF
(
rF (x)

)
against VG

(
rG(x)

)
becomes concentrated along 45 degree through

the origin and exhibits a noticeable departure from 45 degree line if they differ. Based on

this, we can assign x to F if VF
(
rF (x)

)
6 VG

(
rG(x)

)
, and vice versa. This is analogous to

classification method based on DD plot. Alternatively, suppose F and G are elliptically

symmetric distributions and differ in location and scale, Guha and Chakraborty (2013)

have shown that VG(r) = kVF (r) for some k > 0, 0 6 r < 1 (See Theorem 3.1 of the
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paper) and the slope of VG(r) = kVF (r) is determined as ratio of the determinants of

the scale matrices associated with F and G. Then for a known and defined k > 0, the

scale-scale plot is a straight line.

Suppose X,Y ∈ Rd have distributions F and G respectively, which are elliptically

symmetric. If Y = AX + θ for some d × d non-singular matrix A and d-dimensional

vector θ, ΣG = AΣFAT , (Y − θG)TΣ−1G (Y − θG) = (X − θF )TΣ−1F (X − θF ) and by

Lemma 2.4.1, ||rankF (x)|| = ||rankG(Ax + θ)||. It then follows from Theorem 2.2 of

Guha and Chakraborty (2013),

VG
(
rG(Ax + θ)

)
=
πd/2|ΣG|1/2

(
rG(Ax + θ)

)d
Γ (d

2
+ 1)

=
|ΣG|1/2

|ΣF |1/2
πd/2|ΣF |1/2

(
rF (x)

)d
Γ (d

2
+ 1)

=
|ΣG|1/2

|ΣF |1/2
VF
(
rF (x)

)
(3.4.1)

where ΣX and ΣY are positive definite. From numerical example in Section 3.3 above,

|Σ2|1/2 = σ2, |Σ1|1/2 = 1 and so k = σ2. The separating hyperplane between F and G is

the line that passes through VG
(
rG(x)

)
= σ2VF

(
rF (x)

)
.

The regions of classification of x to F and to G denoted by RF and RG respectively,

are defined as

RF : VF
(
rF (x)

)
/VG

(
rG(x)

)
6 1/k

RG : VF
(
rF (x)

)
/VG

(
rG(x)

)
> 1/k. (3.4.2)

We denote this classifier by RRC-1. The Bayes equivalency of RRC-1 is examined by the

theorem below.

Theorem 3.4.1 Let f1 and f2 be the probability density functions of populations, π1 and

π2 having elliptically symmetric distributions F and G repectively from the same family

of multivariate distributions such that G(x) = F (x− θ), where θ ∈ Rd is a location shift.
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Suppose p1 = p2 and Theorem 3.2.1 hold, then the Bayes rule is equivalent to

 |ΣF |−1/2VF
(
rF (x)

)
6 |ΣG|−1/2VG

(
rG(x)

)
⇒ assign x to population π1

|ΣF |−1/2VF
(
rF (x)

)
> |ΣG|−1/2VG

(
rG(x)

)
⇒ assign x to population π2

Proof : It follows from the proof of Theorem 3.2.2 that

f1(x) > f2(x) implies g1
(
ψ−1F (VF (rF (x)))

)
> g2

(
ψ−1G (VG(rG(x)))

)
.

for some decreasing functions g1 and g2. By Lemma 2.4.1, rankF (x) = rankF0

(
Σ
− 1

2
F (x −

θF )
)

and by equation (3.4.1), VF (rF (x)) = |ΣF |−1/2VF0(rF (x)), where F0 is the distri-

bution of Σ
− 1

2
F (x − θF ), which is spherically symmetric about 0 if x ∈ π1. Similarly,

rankG(x) = rankG0

(
Σ
− 1

2
G (x− θG)

)
and VG(rG(x)) = |ΣG|−1/2VG0(rG(x)), where G0 is the

distribution of Σ
− 1

2
G (x− θG). Then

f1(x) > f2(x) implies g1
(
ψ−1F (|ΣF |−1/2VF0(rF (x)))

)
> g2

(
ψ−1G (|ΣG|−1/2VG0(rG(x)))

)
.

For G(x) = F (x− θ),

f1(x) = g
(
ψ−1(|ΣF |−1/2.VF0(rF (x)))

)
and

f2(x) = g
(
ψ−1(|ΣG|−1/2.VG0(rG(x)))

)
.

Also, g◦ψ−1 is a decreasing function since ψ is an increasing function and g is a decreasing

function. Then kVF0(rF (x)) 6 VG0(rG(x)). By Theorem 3.2.2 for G(x) = F (x − θ) and

ΣF = ΣG = Σ, f1(x) > f2(x) implies VF (rF (x))/VG(rG(x)) < 1, which is equivalent to
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VF0(rF (x))/VG0(rG(x)) < 1 under this setting. Hence

kVF (rF (x)) 6 VG(rG(x)),

where k = |ΣG|1/2/|ΣF |1/2. The proof is complete. �

Estimates of ΣF and ΣG based on the moment of F and G respectively can be used

but in order to get robust estimates from the training samples, minimum covariance

determinant (MCD) estimates of ΣF and ΣG are used (see, for example, Rousseeuw and

Leroy, 1987 for detail).

3.5 Numerical Example: Real data

We analyse seven benchmark data set to illustrate the performances of our methods (RC,

AIRC, RRC and RRC-1). These datasets include iris data, Pima Indians diabetes (PID)

data, banknote data, biomedical data, yeast data, cloud data and seed data. Iris data

set (Fisher, 1936) contains three classes of Iris plants data. The classes are Iris setosa,

Iris versicolor and Iris virginica. A training sample of size 30 and validation sample of

size 20 are chosen for each of the three groups with four features (sepal length, sepal

width, petal length and petal width, all measured in cm). Pima Indian diabetes (PID)

data set, owned by the National Institute of Diabetes and Digestive and Kidney Diseases,

consists of two groups (“tested negative” and “tested positive”). Training samples and

validation samples of sizes 100 are chosen for each of the two groups. Banknote authen-

tication dataset (Lohweg, 2013), denoted by banknote, consists of two classes which are

“genuine”(size = 762) and “forged”(size = 610) with four input features. The features are

variance of wavelet transformed image, skewness of wavelet transformed image, kurtosis

of wavelet transformed image and entropy of image. A training sample of size 100 and

a validation sample of size 100 from each of the two classes are chosen. Biomedical data
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(Cox, Johnson and Kafadar, 1982) consists of two classes with eight features. The classes

are “Carrier”(size = 67) and “Normal”(size = 127) after deleting the 15 observations with

missing values. Four features (ml, m2, m3 and m4), a training sample of size 50 and a

validation sample of size 17 from each of the two classes are chosen. Yeast data (Nakai,

1991) consist of ten categories, of which we choose four classes, which are CYT(size =

463), NUC(size = 329), MIT(size = 244) and Others(size = 348). Class “Others” consists

of ME3, ME2, ME1, EXC, VAC, POX and ERL, each of which has small sample size. A

training sample of size 100 and a validation sample of size 100 from each of the four classes

are chosen for four variables (mcg, gvh, alm and mit). Cloud data (Miller et al., 1979)

consist of period rainfalls in inches collected in a cloud-seeding experiment in Tasmania

between mid-1964 and January 1971. It consists of two classes, which are “seeded” and

“unseeded” with class size 54 each and seven features. Four features (TE, TW, NC and

SC), a training sample of size 40 and a validation sample of size 14 from each of the four

classes are chosen. Seed data (Charytanowicz et al., 2012) consists of 3 classes with 70

observations each. A training sample of size 50 and a validation sample of size 20 from

each of the two classes are used. We remove one of the two linearly dependent features

from the data and use the remaining six input features. Pima Indian diabetes data, ban-

knote data, yeast data and seed data are taken from UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/datasets.html) while biomedical data and Cloud data are

taken from StatLib Datasets Archive (http://lib.stat.cmu.edu/datasets/) except iris data,

which is inbuilt in R. The summary of the training and validation samples is presented

in Table 3.2, where d is the dimension of the data and k is number of groups considered.

We use MCD estimates of covariance via R package robustbase with α = 0.70. For

depth classifier, the experiment is repeated 100 times and average probability of correct

classification is computed. For each of the datasets, we assume equal prior probabilities

for competing classes. Table 3.2 presents the result of analysis of data. Iris data is known
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Table 3.2: Information about real data set.

Dataset training sample validation sample d k
iris n1 = n2 = n3 = 30 m1 = m2 = m3 = 20 4 3
Pima Indian dia-
betes (PID)

n1 = n2 = 100 m1 = m2 = 100 4 2

Banknote n1 = n2 = 100 m1 = m2 = 100 4 2
Biomedical n1 = n2 = 50 m1 = m2 = 17 4 2
Yeast n1 = n2 = n3 = n4 = 100 m1 = m2 = m3 = m4 = 100 4 4
Cloud n1 = n2 = 40 m1 = m2 = 14 4 2
Seed n1 = n2 = n3 = 50 m1 = m2 = m3 = 20 6 3

to be normally distributed for which QDA is the optimal. AIRC and RRC-1 have the same

misclassification error as QDA while RC has the same misclassification error as LDA. RRC

and maximum depth classifier based on Oja depth has highest misclassification error. For

biomedical data, QDA, AIRC and RRC-1 have least misclassification error while P-D, RC

and RRC perform like LDA with relatively high misclassification error (= 0.2059). For

Pima Indian diabetes data, LDA appears to perform best (with error = 0.26) while QDA

and RRC-1 (with error = 0.28) perform very close to LDA. For cloud data, AIRC, RRC

and RRC-1 outperform others though misclassification errors associated with each of the

competing classifiers are generally high. AIRC and RRC-1 compete favourably with all

other classifiers while RRC-1 outperforms other classifiers for banknote authentication

data, followed by LDA, QDA, AIRC and maximum depth classifier based on Oja depth,

then RRC and maximum depth classifier based on projection depth while RC has the

highest error. For seed data, both RRC-1 AIRC and LDA outperforms others while RRC-

1 has the lowest misclassification error. Misclassification error could not be computed for

maximum depth classifier based on Oja depth for seed data because of dimensionality.

From the analysis of these data sets, AIRC and RRC-1 seem to be better than RC

and RRC in terms of misclassification error. Performance of all these classifiers on the

simulation and benchmark data sets is fairly competitive, compare with some parametric

and nonparametric classifiers. In most of the data sets, RRC-1 generates smaller error
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Table 3.3: Performance of classifiers based on real data.

Comparison of classifiers based on misclassification errors
Dataset LDA QDA O-D P-D RC AIRC RRC RRC-1
iris 0.0333 0.0167 0.1667 0.0222 0.0333 0.0167 0.1667 0.0167
PID 0.2600 0.2800 0.5000 0.4410 0.3600 0.2850 0.4500 0.2800
Banknote 0.0200 0.0200 0.0200 0.0446 0.2050 0.0200 0.0350 0.0100
Biomedical 0.2059 0.1471 0.5000 0.2239 0.2059 0.1471 0.2059 0.1471
Yeast 0.4950 0.3600 0.6450 0.5272 0.5500 0.3875 0.3850 0.3775
Cloud 0.5714 0.4286 0.5000 0.4443 0.4643 0.3571 0.3571 0.3571
Seed 0.1167 0.1333 - 0.2387 0.2500 0.1167 0.3167 0.1000

rates than AIRC. In terms of computational simplicity, it has a clear edge over maximum

depth classifiers when dimension is greater than 2, especially when any of half space depth,

simplicial depth, simplicial volume depth and Oja depth is used.

3.6 Classification for More Than Two Classes

Another property of classifier based on volume of central rank region is that it readily

lends itself to multiclass extension. Suppose there are J(> 2) populations, then assign x

to population πk with distribution Fk, 1 6 k 6 J if

|Σk|−1/2VFk

(
rFk

(x)
)

= min
j
|Σj|−1/2VFj

(
rFj

(x)
)
,

where F1, F2, . . . , FJ are absolutely continuous distributions corresponding to J popu-

lations and Σj is covariance matrix of jth population and rFj
(x) = ‖rankFj

(x)‖. Its

associated total probability of misclassification is

∆ =
J∑
j=1

pjP{|Σk|−1/2VFk

(
rFk

(x)
)
6 |Σj|−1/2VFj

(
rFj

(x)
)
| x ∈ Fj},

where p1, p2, . . . , pJ are prior probability of populations π1, π2, . . . , πJ respectively.
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Chapter 4

Classifier Based on Distribution

of Multivariate Rank

In the previous chapter, we have defined spatial rank function and volume of central

rank region, and then proposed classification methods based on outlyingness of spatial

rank and volume of central rank region. Here in this chapter we will be proposing another

classification method based on distribution of outlyingness of spatial rank and its variants.

In the next section we will define the distribution of outlyingness of spatial rank and

propose the classification method for spherically symmetric family of distributions.

4.1 Definitions

Suppose π1 and π2 are two populations having distributions F and G respectively with

equal prior probabilities p1 and p2, where F and G are absolutely continuous with respect

to Lebesgue measure in Rd. For x ∈ Rd, define outlyingness of rankF (x) as

rF (x) = ||rankF (x)||
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and outlyingness of rankG(x) as

rG(x) = ||rankG(x)||.

The probability distribution of rF (X), denoted by FR(r), is defined as

FR(r) = P

(
rF (X) 6 r

)
(4.1.1)

and the probability distribution of rG(Y), denoted by GR(r), is defined as

GR(r) = P

(
rG(Y) 6 r

)
. (4.1.2)

Following equations (4.1.1) and (4.1.2), FR(r) and GR(r) depend solely on r. Also, FR(r)

and GR(r) are increasing functions of r.

The classification rule based on probability distribution of outlyingness of spatial rank

is to assign an observation x into population π1 if

FR
(
rF (x)

)
6 GR

(
rG(x)

)
(4.1.3)

otherwise, assign x to population π2. We shall call this classification method minimal rank

distribution classifier, denoted by RDC. The probability of misclassification corresponding

to two populations, π1 and π2, denoted by ∆, is

∆ = p1P
(
FR
(
rF (x)

)
> GR

(
rG(x)

)
| x ∈ π1

)
+ p2P

(
FR
(
rF (x)

)
6 GR

(
rG(x)

)
| x ∈ π2

)
.

This classification method is completely data driven, easy to compute and can be

extended to higher dimension. It easily lends itself to multiclass extension. Suppose there

are J(> 2) populations, then assign x to population πk with distribution Fk and prior
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probability pk, 1 6 k 6 J if

FR
(
rFk

(x)
)

= min
j
FR
(
rFj

(x)
)
,

where F1, F2, . . . , FJ are absolutely continuous distributions corresponding to J popula-

tions. The total probability of misclassification corresponding to J competing populations

is

∆ =
J∑

j=1

j 6=k

pjP{FR
(
rFk

(x)
)
6 FR

(
rFj

(x)
)
| x ∈ Fj},

where p1, p2, . . . , pJ are prior probabilities corresponding to populations π1, π2, . . . , πJ re-

spectively.

When only training samples X1,X2, . . . ,Xm from π1 and Y1,Y2, . . . ,Yn from π2 are

available, then we replace the population version of the rank functions rankF and rankG

by their empirical versions rankFm and rankGn respectively to construct the empirical

classification rule. Define the outlyingness of spatial rank of x based on Fm and Gn as

rFm(x) = ||rankFm(x)|| based on X1,X2, . . . ,Xm ∼ Fm,

rGn(x) = ||rankGn(x)|| based on Y1,Y2, . . . ,Yn ∼ Gn,

respectively. Then,

F̂R
(
rFm(x)

)
=

1

m

m∑
i=1

I{rFm(Xi) 6 rFm(x)}

ĜR

(
rGn(x)

)
=

1

n

n∑
i=1

I{rGn(Yi) 6 rGn(x)}

where I is the indicator function. It is shown in Theorem 2.2.2 that ||rankFm(x)|| and

||rankGn(x)|| converge to respective rank functions ||rankF (x)|| and ||rankG(x)|| almost
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surely. The classification rule based on empirical distribution functions of rFm(x) and

rGn(x) is to assign x to π1 if

F̂R
(
rFm(x)

)
< ĜR

(
rGn(x)

)
,

otherwise to π2. The misclassification error associated with classifier based on empirical

distribution functions, denoted by ∆̂N , is

∆̂N =
p1
m

m∑
i=1

I{F̂R
(
rFm(xi)

)
> ĜR

(
rGn(xi)

)
|xi ∈ π1}

+
p2
n

n∑
i=1

I{F̂R
(
rFm(yi)

)
6 ĜR

(
rGn(yi)

)
|yi ∈ π2}.

4.2 Properties of Minimal Rank Distribution Classi-

fier

Suppose the probability measure µ of the data in Rd has absolutely continuous distribu-

tion function, F possessing a probability density function f(x), which is positive for all x

in the support of distribution F and rF (x) ∈ [0, 1] is continuous in x. The classification

method based on minimal rank distribution classifier is Bayes rule for spherically sym-

metric families of distributions that differ in location. This is formally stated in Theorem

4.2.1 below.

Theorem 4.2.1 Let f1 and f2 be the probability density functions of populations, π1 and

π2 having spherically symmetric distributions F and G in Rd about θF and θG respectively

from the same family of multivariate distributions such that G(x) = F (x−θ), where θ is

a location shift in Rd. If Σ1 = Σ2 = Σ and p1 = p2 = 1
2
, then the Bayes rule is

assign x to population π1 if FR
(
rF (x)

)
6 GR

(
rG(x)

)
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and

assign x to population π2 if FR
(
rF (x)

)
> GR

(
rG(x)

)
.

Proof : It follows from the proof of Theorem 2.2.1 that for some increasing functions

h1 and h2, ‖rankF (x)‖ = h1(‖x − θF‖) and ‖rankG(x)‖ = h2(‖x − θG‖). It follows

from equation (4.1.1) that FR
(
rF (x)

)
depends only on rF (x). So, define FR

(
rF (x)

)
=

ψ1(‖rankF (x)‖) = ψ1(h1(‖x − θF‖)) and similarly, GR

(
rG(x)

)
= ψ2(‖rankG(x)‖) =

ψ2(h2(‖x− θG‖)) for some increasing functions ψ1 and ψ2, then

‖x− θF‖ = $−11

(
FR
(
rF (x)

))
and ‖x− θG‖ = $−12

(
GR

(
rG(x)

))
,

where $1 = ψ1 ◦ h1 and $2 = ψ2 ◦ h2 are increasing functions. Therefore, we can write

f1(x) = g1
(
$−11 (FR(rF (x))

)
and f2(x) = g2

(
$−12 (GR(rG(x))

)
. Now,

f1(x) > f2(x) implies g1
(
$−11 (FR(rF (x)))

)
> g2

(
$−12 (GR(rG(x)))

)
.

g1 ◦$−11 and g2 ◦$−12 are decreasing functions since $1 and $2 are increasing functions

and g1 and g2 are decreasing functions. Given that G(x) = F (x − θ), then g1 = g2 and

$1 = $2 and as a result, we get FR
(
rF (x)

)
6 GR

(
rG(x)

)
whenever f1(x) > f2(x). The

proof is complete. �

Theorem 4.2.2 Let rF (X1), rF (X2), . . . , rF (Xn) be independent and identically distributed

real valued random variables with probability distribution function FR(r) = P
(
rF (X1) 6

r
)
. Define the standard empirical distribution of rF (X) as

F̂R(r) =
1

n

n∑
i=1

I{rF (Xi) 6 r}.

81



Then

sup
r∈(0,1)

|FR(r)− F̂R(r)| = 0

with probability one as n −→∞.

Proof : This theorem is an extension of Glivenko-Cantelli theorem. In this theorem,

outlyingness of spatial rank of each observation in the training sample is treated as inde-

pendent and identically distributed real-valued random variable since X1,X2, . . . ,Xn are

independent and identically distributed real-valued random variables. Glivenko-Cantelli

theorem is proved in Durrett (2010) (See Theorem 2.4.7 and its proof in pp. 76). �

Theorem 4.2.3 Let F be a d-variate distribution function, which is absolutely continu-

ous. Suppose Theorem 2.2.2 hold, then for sufficiently large n

∣∣ F̂R(rFn(x)
)
− FR

(
rF (x)

) ∣∣ a.s.→ 0.

Proof :

∣∣F̂R(rFn(x)
)
− FR

(
rF (x)

)∣∣ 6 ∣∣F̂R(rFn(x)
)
− F̂R

(
rF (x)

)∣∣
+
∣∣F̂R(rF (x)

)
− FR

(
rF (x)

)∣∣ = S1 + S2

The almost sure convergence of the sequence S1 is proved in Guha (2012) (See Lemma

3.1.2 of Guha, 2012). This is equivalent to saying

F̂R
(
rFn(x)

)
− F̂R

(
rF (x)

)
= o(e−n) as n→∞ w.p. 1.

By Theorem 4.2.2,

S2 =
∣∣F̂R(rF (x)

)
− FR

(
rF (x)

)∣∣ −→ 0

with probability one as n→∞. The proof is complete. �
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Theorem 4.2.4 Suppose f1 and f2 are the probability density functions of populations,

π1 and π2 having spherically symmetric distributions F and G in Rd about θF and θG

respectively with equal prior probabilities p1 = p2 = 1
2
, FR

(
rF (x)

)
and GR

(
rG(x)

)
are

continuous and satisfy

F̂R
(
rFm(x)

) a.s.→ FR
(
rF (x)

)
and ĜR

(
rGn(x)

) a.s.→ GR

(
rG(x)

)
respectively, as min(m,n) → ∞, then the total probability of misclassification for the

classification rule based on the training sample,

∆̂N −→ ∆B a.s. for min(m,n) →∞

where ∆B is the Bayes risk.

Proof : Suppose xi ∈ π1 and yi ∈ π2. Define

∆̂ =
p1
m

m∑
i=1

I{FR
(
rF (xi)

)
> GR

(
rG(xi)

)
}

+
p2
n

n∑
i=1

I{FR
(
rF (yi)

)
6 GR

(
rG(yi)

)
}

It follows that

|∆̂N −∆| 6 |∆̂N − ∆̂|+ |∆̂−∆|.

Define

|∆̂N − ∆̂| 6 S10 + S20.

where

S10 =

∣∣∣∣p1m
[ m∑
i=1

I{F̂R
(
rFm(xi)

)
> ĜR

(
rGn(xi)

)
} −

m∑
i=1

I{FR
(
rF (xi)

)
> GR

(
rG(xi)

)
}
]∣∣∣∣
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and

S20 =

∣∣∣∣p2n
[ n∑
i=1

I{F̂R
(
rFm(yi)

)
6 ĜR

(
rGn(yi)

)
} −

n∑
i=1

I{FR
(
rF (yi)

)
6 GR

(
rG(yi)

)
}
]∣∣∣∣

By Theorem 2.2.2,

sup
z
|rFm(z)− rF (z)| a.s.→ 0 and sup

z
|rGn(z)− rG(z)| a.s.→ 0

are satisfied. Following this and applying Theorem 4.2.3, S10 → 0 as m→∞ and S20 → 0

as n→∞. Hence |∆̂N − ∆̂| → 0 almost surely.

Similarly, define

|∆̂−∆| 6 T10 + T20

where

T10 =

∣∣∣∣p1m
m∑
i=1

I{FR
(
rF (xi)

)
> FR

(
rG(xi)

)
} − p1P

(
FR
(
rF (x)

)
> GR

(
rG(x)

))∣∣∣∣
and

T20 =

∣∣∣∣p2n
n∑
i=1

I{FR
(
rF (yi)

)
6 GR

(
rG(yi)

)
} − p2P

(
FR
(
rF (y)

)
6 GR

(
rG(y)

))∣∣∣∣
By strong law of large number,

1

m

m∑
i=1

I{FR
(
rF (xi)

)
> FR

(
rG(xi)

)
} a.s.→ P

(
FR
(
rF (x)

)
> GR

(
rG(x)

))

for all continuous points of x in F and hence T1 → 0 as m→∞. Similarly,

1

n

n∑
i=1

I{FR
(
rF (yi)

)
6 GR

(
rG(yi)

)
} a.s.→ P

(
FR
(
rF (x)

)
6 GR

(
rG(x)

))
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Figure 4.1: Misclassification rates for 3 different families of distributions using RDC for
location shift only (Σ = I2,µ1 6= µ2).

for all continuous points of x in G and hence T2 → 0 as n → ∞. Hence |∆̂ − ∆| → 0

almost surely.

Following these arguments,

∆̂N −→ ∆ with probability one as min(m,n) →∞.

From Theorem 4.2.1, RDC is Bayes rule under the conditions of Theorem 4.2.4. Hence

∆̂N −→ ∆ = ∆B

with probability one. �
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4.2.1 Numerical Example: Simulation

We want to investigate the performance of RDC using numerical example in Section 2.3.

Suppose X and Y are bivariate normally distributed samples with X ∼ Nd(µ1,Σ) and

Y ∼ Nd(µ2,Σ), with sizes n1 and n2 respectively. We classify m observations from each

of the distributions and compute the probability of misclassification associated with RDC.

Suppose n1 = n2 = m = 100, µ1 =

0

0

 and µ2 is chosen such (µ1−µ2)
T (µ1−µ2) = δ2.

For δ ∈ [−2, 2] and Σ = I2, we make plots of estimates of associated misclassification

rates. The results are thereafter compared with the result from existing methods. We

repeat the simulation process for bivariate t distributed samples with 3 degree of freedom

and bivariate Laplace distributed samples.

Figure 4.1 shows the plot of empirical misclassification rates against the non-centrality

parameter δ =
√

(µ1 − µ2)
T (µ1 − µ2) for three bivariate spherically symmetric distribu-

tions using RDC. Misclassification rates are least in bivariate normally distributed samples

and highest in bivariate Laplace distributed samples among the three distributions given

that the competing classes have equal scale, as seen in Figure 4.1. This implies that the

probability distribution of the populations from which samples are taken have implication

on the misclassification rates, just as the case with RC (See Figure 2.1a). The misclassi-

fication rates at δ = 0 is half for the three families of distributions because distributions

of X and Y are the same at this value. As δ goes away from 0, the distinction between

the two classes become clearer and misclassification error decreases as |δ| increases for

each of the three distributions. Figure 4.2 compares RDC with some existing methods

(Fisher’s LDA, support vector machine(SVM), maximum depth classifier based on Oja

depth (O-D), maximum depth classifier based on Projection depth (P-D) and minimal

rank classifier (RC)). The figure shows that RDC performs well and competes favourably

with other classifiers. In Figure 4.2(a), it is shown that RDC compares favorably with
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(a) Bivariate normal
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Figure 4.2: Misclassification rates for spherically symmetric distributions with Σ = I2
and µ1 6= µ2.
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LDA, RC and other classifiers for bivariate normal samples. The misclassification rates

of these classifiers are almost equivalent for each value of δ. This is similar for bivariate

Laplace samples and for bivariate t samples as shown in Figure 4.2(b)-(c) respectively.

RDC appears to have least misclassification errors among the classifiers for the three

families of distributions.

To demonstrate robustness of minimal rank distribution classifier against deviation

from the property of spherical symmetry, we use the information in above numerical ex-

ample and assume Σ =

 1 ρ

ρ 1

. Table 4.1 shows that misclassification rates associated

with RDC are not in any specific order of ρ. This means that RDC, like minimal rank

classifier in Chapter 2, is not robust against the existence of correlation among variables

in the population from which the sample is drawn. This is as a result of non-invariance

property of spatial rank under affine transformation discussed in Section 2.4.1. In order

to overcome this limitation, we suggest replacing affine non-invariant spatial rank by its

affine invariant version.

4.3 Affine Invariant Version of Minimum Rank Dis-

tribution Based Classifier

Suppose X ∈ Rd has a d-dimensional distribution F and Y ∈ Rd has a d-dimensional

distribution G, where F and G are elliptically symmetric and absolutely continuous with

respect to Lebesgue measure in Rd. The affine invariant spatial rank of x ∈ Rd with

respect to F is

rank∗F (x) = EF

(
{X(α)}−1[x−X]

||{X(α)}−1[x−X]||

)
and the affine invariant spatial rank of x ∈ Rd with respect to G is

rank∗G(x) = EG

(
{Y(β)}−1[x−Y]

||{Y(β)}−1[x−Y]||

)
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Table 4.1: Performance of RDC when Σ 6= λI2, λ ∈ R.

Minimal rank distribution classifier(RDC)
Distribution δ LDA ρ = 0.00 ρ = 0.50 ρ = 0.75 ρ = 0.90

Bivariate normal

0.0 0.5000 0.4702 0.4696 0.4704 0.4704
0.5 0.4059 0.4031 0.4040 0.4031 0.4023
1.0 0.3117 0.3107 0.3153 0.3155 0.3131
1.5 0.2290 0.2283 0.2352 0.2345 0.2313
2.0 0.1602 0.1583 0.1677 0.1674 0.1626

Bivariate Laplace

0.0 0.5000 0.4703 0.4703 0.4698 0.4699
0.5 0.4361 0.4278 0.4265 0.4259 0.4259
1.0 0.3577 0.3589 0.3587 0.3584 0.3568
1.5 0.2960 0.2571 0.2602 0.2598 0.2570
2.0 0.2434 0.2004 0.2043 0.2038 0.2008

Bivariate t

0.0 0.5000 0.4699 0.4701 0.4703 0.4702
0.5 0.4216 0.4137 0.4121 0.4117 0.4111
1.0 0.3347 0.3320 0.3333 0.3332 0.3311
1.5 0.2618 0.2571 0.2602 0.2598 0.2570
2.0 0.2018 0.2004 0.2043 0.2038 0.2008

where X(α) is a transformation matrix, whose columns are Xi1−Xi0 , Xi2−Xi0 , . . . ,Xid−

Xi0 and Y(β) is a transformation matrix, whose columns are Yi1−Yi0 , Yi2−Yi0 , . . . ,Yid−

Yi0 . We refer readers to Section 2.4 of this thesis for detail.

Define outlyingness of rank∗F (X) and rank∗G(X) as

r∗F (x) = ||rank∗F (x)|| and r∗G(x) = ||rank∗G(x)||

and the distribution functions of r∗F (x) and r∗G(x) as

FR
(
r∗F (x)

)
= P

(
r∗F (X) 6 r∗F (x)

)
and GR

(
r∗G(x)

)
= P

(
r∗G(Y) 6 r∗G(x)

)
respectively. The classification rule based on distribution function of r∗F (x) and r∗G(x) is

to assign x to π1 if

FR
(
r∗F (x)

)
6 GR

(
r∗G(x)

)
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otherwise, assign x to π2. We shall call this classification method, minimal affine invariant

rank distribution classifier (AIRDC).

Given any two populations π1, with X1,X2, . . . ,Xn1 ∈ π1 and π2, with Y1,Y2, . . . ,Yn2 ∈

π2. For the training sample in the population π1, let Xi0 , . . . ,Xid be d + 1 observations

and α = {i0, i1, . . . , id} denotes the set of d+ 1 indices. The affine invariant spatial rank

function with respect to the training sample X1, . . . ,Xn ∈ π2 as

rank∗F (x) =
1

n

n∑
i=1

{X(α)}−1(x−Xi)

‖{X(α)}−1(xXi)‖

and the affine invariant spatial rank function with respect to the training sample Y1, . . . ,Ym ∈

π2 as

rank∗G(x) =
1

m

m∑
i=1

{Y(β)}−1(x−Yi)

‖{Y(β)}−1(x−Yi)‖

where β is a set of d + 1 indices {j0, j1, . . . , jd} and Y(β) is the d × d matrix formed

with the columns Yj1 − Yj0 , . . . ,Yjd − Yj0 . Define the outlyingness of rank∗Fm
(x) and

rank∗Gn
(x) as

r∗Fm
(x) = ||rank∗Fm

(x)|| based on X1,X2, . . . ,Xm and

r∗Gn
(x) = ||rank∗Gn

(x)|| based on Y1,Y2, . . . ,Yn

respectively, and the empirical distribution functions of r∗Fn
(X) and r∗Gm

(Y) as

F̂R
(
r∗Fm

(x)
)

=
1

m

m∑
i=1

I{r∗Fm
(Xi) 6 r∗Fm

(x)} and ĜR

(
r∗Gn

(x)
)

=
1

n

n∑
i=1

I{r∗Gn
(Yi) 6 r∗Gn

(x)}

respectively. The empirical classification rule based on empirical distribution functions of

r∗Fm
(x) and r∗Gn

(x) is to assign x to π1 if

F̂R
(
r∗Fm

(x)
)
6 ĜR

(
r∗Gn

(x)
)
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Table 4.2: Comparison of AIRDC with some other classifiers based on average misclassi-
fication errors when Σ1 = Σ2 = I2 and µ1 6= µ2.

Classifiers
Distribution δ LDA SVM O-D P-D RC AIRC RDC AIRDC
Bivariate 1 0.3148 0.3157 0.3181 0.3213 0.3129 0.3168 0.3104 0.3096
normal 2 0.1612 0.1602 0.1649 0.1660 0.1615 0.1623 0.1583 0.1582
Bivariate 1 0.3770 0.3814 0.3831 0.3729 0.3693 0.3727 0.3585 0.3598
Laplace 2 0.2464 0.2573 0.2503 0.2508 0.2475 0.2506 0.2411 0.2442
Bivariate t 1 0.3746 0.3505 0.3707 0.3400 0.3418 0.3475 0.3329 0.3320

2 0.2220 0.2137 0.2185 0.2053 0.2060 0.2113 0.1983 0.1970

otherwise, assign x to π2.

Theorem 4.3.1 Let f1 and f2 be the probability density functions of populations, π1 and

π2 having elliptically symmetric distributions F and G respectively from the same family

of multivariate distributions such that G(x) = F (x− θ), where θ is a location parameter

in Rd. Suppose Σ1 = Σ2, p1 = p2, then the Bayes rule is equivalent to

 FR
(
r∗F (x)

)
6 GR

(
r∗G(x)

)
⇒ assign x to population π1

FR
(
r∗F (x)

)
> GR

(
r∗G(x)

)
⇒ assign x to population π2

Proof : The proof is straight forward from the proofs of Theorem 2.4.1 and Theorem

4.2.1. �

4.3.1 Numerical Example : Simulation II

Here, we carry out simulation study on AIRDC for homogenous scale case and heteroge-

nous scale case using simulation information in Section 2.3. Suppose π1 has a distribution

N(µ1,Σ1) and π2 has a distribution N(µ2,Σ2), where µ1 =

0

0

. For homogenous scale

case, Σ1 = Σ2 =

 1 ρ

ρ 1

. µ2 is chosen in such a way that (µ1−µ2)
TΣ−1(µ1−µ2) = δ2.

The misclassifcation rates associated with AIRDC remain the same for various vales of ρ.
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Figure 4.3: Robustness of AIRDC against deviation from spherical symmetry.

92



Table 4.3: Comparison of classifiers with theoretical Bayes rule.

Average misclassification errors
Distribution δ Bayes Risk LDA RC AIRC RDC AIRDC

Bivariate normal

0.0 0.5000 0.5007 0.5014 0.5017 0.4718 0.4712
0.5 0.4013 0.4049 0.4110 0.4176 0.3997 0.4046
1.0 0.3085 0.3114 0.3148 0.3156 0.3104 0.3114
1.5 0.2266 0.2294 0.2299 0.2309 0.2283 0.2280
2.0 0.1587 0.1593 0.1612 0.1630 0.1583 0.1593

Bivariate Laplace

0.0 0.5000 0.4987 0.4987 0.5005 0.4704 0.4705
0.5 0.4347 0.4558 0.4444 0.4519 0.4269 0.4313
1.0 0.3576 0.3770 0.3693 0.3705 0.3585 0.3606
1.5 0.2947 0.3048 0.3012 0.3049 0.2945 0.2953
2.0 0.2415 0.2464 0.2475 0.2487 0.2411 0.2440

Bivariate t

0.0 0.5000 0.5009 0.4994 0.4980 0.4685 0.4721
0.5 0.4231 0.4565 0.4309 0.4385 0.4137 0.4209
1.0 0.3339 0.3746 0.3418 0.3484 0.3329 0.3350
1.5 0.2612 0.2901 0.2663 0.2721 0.2598 0.2634
2.0 0.2019 0.2220 0.2060 0.2106 0.1983 0.2047

This can be seen in Figure 4.3. We compare AIRDC with other classifiers, which include

LDA, SVM, Maximum depth classifiers based on projection depth (P-D) and Oja depth

(O-D), RC, RDC and AIRC. Consider ρ = 0.0, Table 4.2 gives the comparison of classi-

fiers for Σ1 = Σ2 = I2 and δ = 1, 2. It is seen that RDC and AIRDC compete favourably

with other classifiers. For non-normal samples, RDC and AIRDC have noticeable lower

misclassification errors.

We want to compare RC, AIRC, RDC and AIRDC with theoretical Bayes rule given

that the competing classes normally distributed, bivariate t distributed (with 3 degrees

of freedom) and bivariate Laplace distributed, based on the information in numerical

example in Subsection 1.2.3 in order to confirm numerically Theorem 2.2.1, Theorem

2.4.1, Theorem 4.2.1 and Theorem 4.3.1 for RC, AIRC, RDC and AIRDC respectively.

This is given in the Table 4.3. Numerical results confirm the theoretical results that RC,

AIRC, RDC and AIRDC are Bayes rule for location shift problem.

Suppose Σ1 = I2 and Σ2 = σ2I2, misclassification rates associated with AIRDC
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Table 4.4: Comparison of classifiers in terms of average misclassification errors when
Σ1 = I2,Σ2 = σ2I2 and µ1 6= µ2.

Average misclassification errors
Distribution Classifier δ σ = 0.2 σ = 0.5 σ = 1.0 σ = 2.0 σ = 5.0

Bivariate normal

AIRDC 1 0.2943 0.2892 0.3105 0.4179 0.4785
RDC 0.2892 0.2921 0.3101 0.3578 0.4345
QDA 0.0556 0.1889 0.3136 0.2448 0.0813
AIRDC 2 0.0695 0.0987 0.1589 0.2895 0.4496
RDC 0.0943 0.1258 0.1589 0.2102 0.3167
QDA 0.0184 0.0751 0.1614 0.1891 0.0784

Bivariate Laplace

AIRDC 1 0.3594 0.3522 0.3614 0.4362 0.4789
RDC 0.3616 0.3521 0.3569 0.4377 0.4793
QDA 0.1045 0.2714 0.3766 0.3109 0.1436
AIRDC 2 0.2019 0.2038 0.2425 0.3523 0.4586
RDC 0.2028 0.2073 0.2423 0.3537 0.4586
QDA 0.0564 0.1613 0.2471 0.2709 0.1379

Bivariate t

AIRDC 1 0.3187 0.3153 0.3376 0.4198 0.4782
RDC 0.3197 0.3152 0.3320 0.4236 0.4777
QDA 0.1123 0.2685 0.3716 0.3295 0.1611
AIRDC 2 0.1408 0.1577 0.2031 0.3144 0.4509
RDC 0.1449 0.1560 0.2010 0.3143 0.4514
QDA 0.0510 0.1373 0.2225 0.2692 0.1547

increase with increase in σ. Comparing AIRDC with QDA, performance of AIRC is poor

when there is scale shift, as shown in Table 4.4. This can be attributed to the lack of

scale parameter in the formulation of spatial rank function.

4.3.2 Alternative approach

While defining spatial depth, Ghosh and Chaudhuri (2005b) suggested that spatial rank

could be made affine invariant by simply premultiply x and X by inverse of covariance

matrix of X. That is, suppose X has a distribution F , which is elliptically symmetric

about location parameter θ and has covariance matrix Σ, define

rank∼F (x) = EF

(
Σ−1/2(x−X)

||Σ−1/2(x−X)||

)
.
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rank∼F (x) is invariant under general affine transformation and can be used to build a

classification rule that accommodates correlation among variables of the competing pop-

ulations by replacing rankF (x) and rankG(x) in Section 4.1 by rank∼F (x) and rank∼G(x)

respectively.

Suppose X ∈ π1 has a distribution function, F on Rd with prior probability p1 and

Y ∈ π2 has a distribution G on Rd with prior probability p2. Given x ∈ Rd, define

r∼F (x) = ||rank∼F (x)||, r∼F (x) = ||rank∼G(x)||,

r∼F (X) = ||rank∼F (X)|| and r∼G(Y) = ||rank∼G(Y)||.

Define FR
(
r∼F (x)

)
and GR

(
r∼G(x)

)
, the distribution functions of r∼F (X) and r∼G(Y) as

FR
(
r∼F (x)

)
= P

(
r∼F (X) 6 r∼F (x)

)
and

GR

(
r∼G(x)

)
= P

(
r∼G(Y) 6 r∼G(x)

)

respectively. The classification rule based on distribution function of outlyingness of the

transformed spatial ranks, r∼F (x) and r∼G(x) is to assign observation, x into population π1

if

FR
(
r∼F (x)

)
6 GR

(
r∼G(x)

)
otherwise, assign x to population π2. We denote this approach by RDA-A. We suggest

use of minimum covariance determinant (MCD) estimate of covariance matrix in order

to get robust estimates from the training sample. Here, it should be noted that RDA-A

is not fully nonparametric but it is robust against deviation of class distribution from

spherical symmetry.
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Table 4.5: Performance of classifiers based on real data.

Comparison of classifiers based on misclassification errors
Dataset LDA QDA RC RDC AIRC RDA-A RDA-A0 AIRDC
iris 0.0333 0.0167 0.0333 0.0333 0.0167 0.0167 0.0167 0.0167
Biomedical 0.2059 0.1471 0.2059 0.1766 0.1471 0.1471 0.1176 0.1471
PID 0.2600 0.2800 0.3600 0.3500 0.2850 0.2600 0.2650 0.2800
Cloud 0.5714 0.4286 0.4643 0.4643 0.3571 0.2857 0.3929 0.3571
Banknote 0.0200 0.0200 0.2050 0.1950 0.0200 0.1300 0.0150 0.0150
Seed 0.1167 0.1333 0.2500 0.2500 0.1167 0.1833 0.1167 0.1167
Haberman 0.3150 0.2583 0.4300 0.4000 0.3900 0.3483 0.3917 0.3917
Yeast 0.4950 0.3600 0.5500 0.5300 0.3875 0.4475 0.3750 0.3525

4.3.3 Numerical Example: Real data

Here, we analyse eight benchmark data set, seven of which are discussed in Section 3.5, to

illustrate the performances of our methods (RDC, AIRDC and RDA-A). These datasets

include iris data, Pima Indians diabetes (PID) data, banknote data, biomedical data,

yeast data, cloud data, seed data and Haberman data. Haberman’s survival data (see

Haberman, 1976) is an unbalanced data and consists of two classes. We choose training

samples of sizes (150 and 50) and validation samples of sizes (50 and 30) respectively.

For clarity in our data analysis, we denote RDA-A with MCD estimate of covariance by

RDA-A and RDA-A with moment estimate of covariance by RDA-A0. For computing

MCD estimate of covariance via R package robustbase, we set α = 0.90 for small training

sample sizes (iris data, seed data and biomedical data) and α = 0.70 for large training

sample sizes.

Table 4.5 presents the result of analysis of real data. For iris data, RDA-A, RDA-A0,

AIRDC and AIRC have the same misclassification error as QDA while RC and RDC

has the same misclassification error as LDA. For biomedical data, RDA-A0 has the least

misclassification error. RDA-A and AIRDC perform well like QDA. For Pima Indian

diabetes data, RDA-A, RDA-A0 and LDA appear to perform best while QDA and AIRDC
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perform well. For cloud data, RDA-A outperforms others while AIRC, AIRDC and RDA-

A0 outperform QDA and LDA. AIRC and RDA-A compete favourably with all other

classifiers for banknote authentication data, while misclassification error is least in RDA-

A0 but high in RDA-A, RC and RDC. For seed data, both AIRDC, AIRC and LDA

outperform others. For Haberman data, QDA has the least misclassification error while

RDA-A and LDA perform well. AIRDC, QDA, RDA-A0 and AIRC perform best among

other classifiers with yeast data. In general, AIRC, AIRDC, RDA-A and RDA-A0 perform

well and compete favourably with QDA while RC and RDC compete favourably with LDA.
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Chapter 5

Classification of Functional Data

Median is known to be a popular choice of centre of data cloud, irrespective of its dimen-

sion. Median can also be defined as the deepest point in the data cloud with respect to a

statistical depth function (Liu, Parelius and Singh, 1999). One of the main motivations

for considering the median is its robustness against outlying observations. According to

the traditional measures of robustness like breakdown point, median is more robust than

mean. For example, spatial median has 50% breakdown point (Kemperman, 1987 and

Lopuhaa and Rousseeuw, 1991). Several versions of median in finite dimensional space

have been extensively studied in the literature; for example, depth oriented medians (e.g.

half-space median, simplicial median, Oja median in Liu, Parelius and Singh, 1999; Zuo

and Serfling, 2000a, among others), spatial median (Chaudhuri, 1996; Vardi and Zhang,

2000), among others. These different versions of multivariate median has been extended

into infinite dimension. Many of these medians for finite dimensional probability mea-

sures do not extend in any natural and meaningful way into infinite dimensional spaces

(See Chakraborty and Chaudhuri, 2014 for detail). Also, many of these medians for func-

tional data are not computationally simple. These give attraction to the use of spatial

median. On the other hand, spatial median has been extended into Banach spaces, see

Kemperman (1987) for detail.
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In this chapter, we propose classification method for functional data based on distance

to some functional medians and study the properties of these classifiers. This method is

completely data driven and easy to compute. It is imperative to review some existing

centroid based classifiers for functional data. In Section 5.1, we review some existing

literature on classification methods for functional data. In Section 5.2, we propose clas-

sification procedure based on distance to spatial median for functional data and shall

establish some theoretical properties of this method. Section 5.3 contains generalisation

of classifier based on distance to spatial median into Lp distance based procedure for

various values of p. Numerical results based on simulation and real data, optimal choice

of p and other relevant discussions are contained in succeeding subsections.

5.1 Some Classification Methods For Functional Data

5.1.1 Different forms of discriminant analysis for functional Data

In a two-class problem with same covariance matrix, LDA in Section 1.2 is equivalent to

δ(x) = I{(x− µa)TΣ−1µb > 0}, (5.1.1)

where I is an indicator function, µa = 1
2
(µ1 +µ2) and µb = 1

2
(µ1−µ2). The classification

rule is to assign an observation x to population π1 if δF (x) = 1 and to population π2 if

δF (x) = 0 with the associated misclassification error

∆ = 1− Φ
(
(µTb Σ−1µb)

1
2

)
if normality is assumed, where Φ is the cumulative distribution function of normal distribu-

tion. Minimising misclassification error is equivalent to maximising µTb Σ−1µb. However,

LDA becomes a serious challenge to use when data are curves or functions. The reason
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is that the sample covariance matrix is singular and cannot be inverted. Hence it hinders

the applicability of LDA. There are two common solutions to this problem. The first one

is called regularisation method. This include regularising or penalising covariance matrix

Σ (see Di Pillo, 1976; Friedman, 1989; Hastie, Buja and Tibshirani, 1995; Guo, Hastie

and Tibshirani, 2007). The second solution is filtering method. This involves choosing a

finite dimensional basis and finding the best projection of each curve onto this basis. We

refer reader to James and Hastie (2001) for detail.

Hastie, Buja and Tibshirani (1995) proposed penalized discriminant analysis (PDA),

which involves replacing Σ in equation (5.1.1) by ΣW = Σ+λΩ, where Ω is a symmetric,

nonnegative definite, roughness-type penalty matrix and λ is a smoothing parameter,

which was later assumed to be absorbed in Ω. The LDA then follows as usual. The

performance of PDA degrades when many irrelevant variables exist in the data. Witten

and Tibshirani (2011) suggested recasting of Fisher’s discriminant problem as a biconvex

problem by applying convex penalties given that Ω is a diagonal matrix.

Dudoit, Fridlyand and Speed (2002) proposed independence rule. Independence rule

assumes no correlation among features. It is Bayes rule under normality given that input

features are not correlated (Bickel and Levina, 2004). It involves replacing Σ in equation

(5.1.1) by D, the diagonal of pooled covariance matrix of the competing classes. Then the

usual LDA is carried out on the test data. Fan, Fan and Wu (2011) gave an expression

for the probability of misclassification associated with independence rule as

∆I = Φ

(
1

2

(µ1 − µ2)
TD−1(µ1 − µ2)

[(µ1 − µ2)
TD−1ΣD−1(µ1 − µ2)]

1/2

)
.

Bickel and Levina (2004) argued that independence rule is not much lower in performance

compare to Bayes rule in terms of proportion of correct classification. Fan, Feng and Tong

(2012) argued that it may perform very poor when using all the features in the curves
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because of accumulation of noise in estimating population centroids in high dimensional

feature space and shown that optimal risk using independence rule increases as correlation

among features increases.

Fan, Feng and Tong (2012) proposed regularised optimal affine discriminant (ROAD)

and its variants. In their proposal, Σ−1µb in equation (5.1.1) is replaced with a vector

w ∈ Rd. The optimal choice of w, denoted by wc, is

wc = min‖w‖16c,wTµb=1w
TΣw

where c is a small positive number such that

c =
1

max16i6d |µb,i|
,

µb,i is the ith component of µb. The classification rule is to assign x to π1 if δwc(x) =

I{wT
c (x − µa) > 0} = 1 and to π2 if otherwise. ROAD is robust and performs well

when all variables are independent. It has two variants. The first variant of ROAD is

diagonal regularised optimal affine discriminant (DROAD). This involves setting wc as

wc = min‖w‖16c,wTµb=1w
Tdiag(Σ)w. The second variant is to perform pre-screening of all

features before carrying out ROAD. This is called S-ROAD.

James and Hastie (2001) proposed functional linear discriminant analysis (FLDA) for

irregularly sampled curves. The classification rule is to classify Y to class i if

‖α̂Y −αi‖ − logepi

is minimum, where

Yij = Sij(λ0 + Λαi + γij) + εij; εij ∼ N(0, σ2I), γij ∼ N(0, Γ ),
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α̂Y = (SYΛ)−1(Y − SYλ0), E(Y) = µY = STY(λ0 + Λαi)

pi is the prior probability of the class i, and ΣY = σ2I + SYΓSTY, SY is the spline basis

matrix for Y evaluated over a fine lattice of 1 6 j 6 n points. This technique performs

well only when fragments of the curves are observed.

Further discussions on functional discriminant analysis include study by Preda, Saporta

and Leveder (2007) and Shin (2008).

5.1.2 Maximum functional depth classifier

Data depth provides criterion for ordering sample of curves from centre-outward. It

helps to build nonparametric tools for functional data analysis and thereby motivates

nonparametric robust statistical methodologies. Data depths for functional data include

integrated depth or Fraiman-Munic depth (Fraiman and Munic, 2001), h-mode depth

(Fraiman and Meloche, 1999), band depth and modified band depth (López-Pintado and

Romo, 2006), random Tukey depth (Cuesta-Albertos and Nieto-Reyes, 2008), among

others. Cuevas, Febrero and Fraiman (2007) proposed maximum depth classifier for func-

tional data. It is an extension of maximum depth classifier in multivariate setting into

functional data. The classification rule based on maximum functional depth classifier is

to assign an observation to group with highest depth value. That is, for J(> 2) groups,

assign x to kth group if

Dk(x,Xk) = max
16j6J

Dj(x,Xj),

where Dk(x,Xk) is the depth value of x with respect to kth group, Xk. The functional

depths used in their proposal are h−modal depth, Fraiman-Muniz depth, random projec-

tion depth and double random projection depth. More recently, Claeskens et al. (2014)
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defined multivariate functional depth function as

MFD(x, F ) =

∫
I
D(x, F )w(t)dt,

where w is the weight function defined on I and integrates to 1, D is the statistical

depth function on Rd, F is the distribution of continuous stochastic process X on Rd that

generates continuous paths in C(I)d and x ∈ C(I)d. Examples of multivariate functional

depth are double random projection depth and derivatives proposed in Cuevas, Febrero

and Fraiman (2007) and multivariate functional halfspace depth in Claeskens et al. (2014).

Both random projection depth and derivatives and multivariate functional halfspace depth

suffer computational difficulty as the set of observed time points increase.

5.1.3 Bayesian approach

Naive Bayes rule

In high dimension, the curse of dimensionality and accumulation of noise limit the use

of Bayes rule (see Fan, Fan and Wu, 2011 for detail). Thanks to Naive Bayes classifier,

which helps to overcome this by making conditional independence assumption. Naive

Bayes rule, proposed in Bickel and Levina (2004), is Bayes rule under the assumption of

independence of features. Dudoit, Fridlyand and Speed (2002) argued that if correlation

between features in functional data, especially for genes in microarray data, is ignored,

independence rule may perform better. Bickel and Levina (2004) studied theoretical

properties of naive Bayes rule and Fisher’s LDA. Ackermann and Strimmer (2009) and

Fan, Feng and Tong (2012) have shown that correlation among features is an essential

characteristic and is not always negligible, especially in micro-array data and clinical

outcomes. So, use of naive Bayes rule for such data may lead to suboptimal procedure.

It may also lead to loss of critical information.
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Nonparametric method for curve discrimination (NPCD)

Devroye, Györfi and Lugosi (1996) proposed kernel rules. Hall, Poskitt and Presnell

(2001) and Ferraty and Vieu (2003) upgraded kernel rule into full fledged NPCD. NPCD

involves estimating posterior probability of each of the competing classes given an obser-

vation x using consistent kernel estimator, then assign a new observation to the class with

highest estimated posterior probability. Suppose (X1, Y1), . . . , (Xn, Yn) is a collection of

independently and identically distributed curve Xi and the class membership Yi. The

kernel estimator of posterior probability of jth class given x, as given in Ferraty and Vieu

(2003), is

P̂j,h(x) =

∑nj

i=1K(h−1d(Xi, x))I[Yi=j]∑n
i=1K(h−1d(Xi, x))

,

for j = 1, 2, . . . , J , where I is indicator function with value 1 if Yi = j and 0 if otherwise, K

is the kernel, h is the bandwidth, d is the semi-metric and n =
∑J

j=1 nj. The classification

rule based on NPCD is to assign x to the class with the highest P̂j,h(x). On the choice

of semi-metric d for NPCD, Hall, Poskitt and Presnell (2001) used functional principal

component analysis based on Karhunen-Loève expansion for dimension reduction while

Ferraty and Vieu (2003) suggested functional principal component analysis (FPCA) and

successive derivatives, and then estimated the L2 norm based on the resulting multivariate

data. Ferraty and Vieu (2003) have shown in their study through simulation and analysis

of real dataset that NPCD competes favourably with penalized discriminant analysis and

partial least square regression method. This comes from the possibility of various semi-

metric choices.

Other methods include classifiers based on functional mixed model (Zhu, Brown and

Morris, 2012), which involves fitting functional mixed model to the training data with

class as one of the fixed effect predictors and then perform classification of the test data

using posterior predictive probabilities of class membership.
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5.1.4 Classification based on Support Vector Machine

Support vector machine for functional data

Support vector machine (SVM) is a popular method for classifying both multivariate

and functional data. This is first proposed in Vapnik (1982) and upgraded in Cortes

and Vapnik (1995). Use of support vector machine for classifying functional data is an

extension of its multivariate set-up. Suppose (xi, yi) is a pair of random variable in which

yi, class membership takes values in {−1, 1} and xi ∈ X , where X is a set of training

data points in functional space, i = 1, 2, . . . , n. SVM aims at predicting the value of yi

given observed value for xi. SVM separates two different classes of data by a hyperplane

{x :< w, x > + b = 0}. The corresponding classification rule is

yi(x) = sign(< w, xi > + b)

where w is to be estimated and b is a constant scalar. In order to obtain the best separating

hyperplane, ‖w‖ is minimised subject to the decision rule. That is,

min
w,b,‖w‖=1

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(< w, xi > + b) > 1− ξi i = 1, 2, . . . , n

ξi > 0

Rossi and Villa (2006) proposed use of kernels with support vector machines in order to

provide consistent classification in both finite dimensional spaces and infinite dimensional

spaces. This involves replacing < w, xi > by kernel function K(w, xi). From the geomet-

ric perspective, SVM is a large margin classifier. Specifically, for separable data, SVM

separates two classes by maximising the margin between them. For non-separable data,
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the soft-margin SVM chooses a separating hyperplane that splits two classes as cleanly

as possible, while still maximising the distance to the support vectors, a subset of the

training samples on the separating hyperplane. A desirable property of SVM is that its

solution depends only on support vectors. However, since all the input variables are used

for constructing the classifier, SVM cannot select important variables and its performance

will degrade when many irrelevant variables exist (see Li and Yu, 2008; Hastie, Tibshirani

and Friedman, 2001). According to Li and Yu (2008), decision rule of SVM suffers from

presence of redundant variables.

Functional segment discriminant analysis (FSDA)

Li and Yu (2008) proposed FSDA. This method combines classical LDA as a data reduc-

tion tool with support vector machine as classifier. In their proposal, F−statistic is used

to select the first m features with largest F−statistic values and then apply LDA on the

selected curve segments. The resulting sequence of linear discriminant variables are then

used as the extracted features on which support vector machine is performed.

5.1.5 Nearest neighbour rule

The k-nearest neighbour rule (k-NN) is a nonparametric method for classifying finite and

infinite dimensional test observations based on closest training observations in the data

cloud. It is proposed in Cover and Hart (1967). This involves assigning an unclassified

sample point to the class that is commonest amongst its k nearest neighbours, where k is

a positive integer. Suppose x(i), i = 1, 2, . . . , k are k nearest neighbours to x, the distance

between x and x(i) is

d(i) = ‖x(i) − x‖

where ‖.‖ is Euclidean distance. This classification rule is to assign x to the class that is

commonest amongst its k nearest neighbours. If k = 1, then an observation is assigned to

the class of its nearest neighbour. This procedure is simply majority vote of neighbours.
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This rule is independent of the underlying joint distribution of the sample points. Kim

et al. (2011) suggested use of cosine method or correlation methods as an alternative for

calculating the distance between x and its k-nearest neighbour. Cover and Hart (1967)

showed that the single nearest neighbour rule (1-NN) is admissible and for any number

of categories, the total probability of misclassification using nearest neighbour rule is

bounded above by twice the total probability of misclassification using Bayes rule. The

best choice of k depends on the data. Generally, larger values of k reduce the effect

of noise on the classification but make boundaries between classes less distinct. One

major drawback of k-NN is that training sample points from more frequent class tend

to dominate the prediction of test sample points when the class distribution is skewed.

According to Coomans and Massart (1982), this is because they tend to be common

among the k nearest neighbours due to their large number. Similarly, the performance of

k-NN algorithm can be severely degraded by the presence of noisy or irrelevant features,

or if the feature scales are not consistent with their importance.

5.1.6 Classifier based on distance to centroids

Nearest centroid classifier

Hastie, Tibshirani and Friedman (2001) proposed nearest centroid classifier for classifying

gene expression, a very high dimensional data. This method computes a standardized

centroid for each class. Standaradized centroid is the class mean divided by the within

class standard deviation for each class component. Nearest centroid classifier assigns an

individual curve x to the class X of curves with shortest distance from its standardized

centroid (say µ) to the observation. That is, x ∈ X if

‖µ− x‖ is minimum.
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This method performs well if competing classes only differ in location and features are

uncorrelated. Centroid based classifiers are known for some intuitive features, such as

computational simplicity, convergence of sample mean to population mean, among others.

However, sample means are sensitive to the presence of outliers in the data cloud, since

outliers are difficult to detect in high dimension and they can affect the analysis in many

different ways (López-Pintado and Romo, 2006). Tibshirani et al. (2002) suggested

shrinking the class centroids towards the overall centroid after standardizing by within-

class standard deviation for each component, then assign x to the class of curves with

shortest distance from x to its shrunken centroid. This will effectively eliminate many non-

contributing genes and leave us with a small subset of genes for scientific interpretation

and further analysis. Note that the class centroids of each gene are shrunken individually.

This is based on the assumption that genes are independent of each other, which however,

for most of the time is not totally valid (Guo, Hastie and Tibshirani, 2007). Chan and Hall

(2009) presented a scale-adjusted version of centroid classifier for very high dimensional

data when the principal difference between competing classes are in location. Hall and

Pham (2010) argued that scale adjustment removes the tendency of scale to confound

difference in means and discussed its optimal properties. Alonso, Casado and Romo (2012)

proposed a weighted distance approach, which assigns weight to the distance between new

curve, functional data and their derivatives.

Near perfect classification method

Delaigle and Hall (2012a) proposed near perfect classification method for functional data.

It involves constructing truncated version of nearest centroid classifier for competing

classes with equal covariance. The classification rule is to classify an observation x to

class 1 if

D2(x,X1) < D2(x,X0)
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otherwise to class 0, where D(x, y) = | < x, ψ > − < y, ψ > |, Xk is the mean of the kth

class of curves, k = 0, 1, < a, b > is inner product of a and b. The authors proposed two

choices of ψ, which are

1.

ψ(r) =
r∑
j=1

θ−1j µjφj

where µj =
∫
µφj, the projection of µ on the respective eigenfunction. µ =

1
n1

∑n1

i=1X1i(t)− 1
n0

∑n0

i=1X0i(t), θj and φj are jth eigenvalue and its corresponding

eigenfunction of covariance kernel respectively, n0 and n1 are sizes of the competing

classes, and r is chosen by leave-one-out cross validation estimator of error rate.

2. The second is based on regression using asymptotic partial least square approach

of Preda, Saporta and Leveder (2007). The authors assume that covariance of

each competing class is both positive definite and uniformly bounded. In order to

achieve optimal classification, it is assumed that
∑

j61 θ
−2
j µ2

j = ∞. Similarly, to

achieve perfect classification, it is assumed that
∑

j61 θ
−1
j µ2

j =∞.

Classifiers based on distance to trimmed mean and its variants

López-Pintado and Romo (2006) extended the concept of α-trimmed mean in Rd to func-

tional set-up, which is the mean of 100(1−α)% deepest observations in the training sample

and proposed classification method based on distance to the trimmed mean, weighted av-

erage distance and trimmed weighted average distance.

1. α-trimmed mean is defined as the average of n − bnαc deepest curves from the

sample where bnαc is the integer part of nα. Let x(1), x(2), . . . , x(n) be the centre-

outward ordered sample, where x(1) is the deepest observation and x(n) is the least

109



deepest one, then α-trimmed mean is

mα =

∑n−bnαc
i=1 x(i)
n− bnαc

.

The associated classification rule is to assign new curves to the group with the

shortest distance between group trimmed mean and the curve. That is, for J(> 2),

assign x to kth group if

DTM(x,mα
k ) = min

16j6J
‖x−mα

j ‖,

where ‖.‖ is the Euclidean norm.

2. Weighted average distance is the weighted average of distances to each element in the

group. The weight of each observation is determined by its depth value within the

group. Suppose higher weight is allocated to deeper observation and for 1 6 j 6 J ,

Aj = {x1, x2, . . . , xnj
}. The weighted average distance of x to Aj is

WAD(x,Aj) =

∑nj

i=1 d(x, xi)S(xi)∑nj

i=1 S(xi)
,

where S(xi) is the weight of xi in Aj, d(x, xi) is metric between x and xi, and nj is

the size of the group Aj. The associated classification rule is to assign a new curve

to the group with the shortest weighted average distance.

3. Trimmed weighted average distance involves computing weighted average distance

based on fixed m deepest observations for each group, where m is less than or equal

to the minimum group size (m 6 n1 6 n2 6 . . . 6 nJ). Mathematically, trimmed
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weighted average distance is

WAD(x,Aj) =

∑m
i=1 d(x, x(i))S(x(i))∑m

i=1 S(x(i))
.

The associated classification rule is to assign a new curve to the group with the

minimum trimmed weighted average distance.

To determine 100(1−α)% deepest observations and weights for group observations, band

depth determined by three different curves, band depth determined by four different

curves and the generalized band depth are used. Cuesta-Albertos and Nieto-Reyes (2010)

suggested use of random Tukey depth while Sguera, Galeano and Lillo (2014) suggested

use of spatial depth and kernelized spatial depth in place of depths used in López-Pintado

and Romo (2006) for trimming of sample means.

In theory, if the distribution of the sample is sufficiently heavy-tailed, then the expected

value of the sample mean will not be well defined. This may limit the use of mean-based

classifiers (Hall, Titterington and Xue, 2009).

5.1.7 Median based classifier

Recently, Hall, Titterington and Xue (2009) proposed median based classifiers for high

dimensional data, which depends on distance between componentwise L1 median and

an observation. It is analogous to mean based classifiers. In a two class problem, the

classification rule is to assign a p-variate observation z to class X if

p∑
k=1

(
|medYk − zk| − |medXk − zk|

)
> 0, (5.1.2)

otherwise to Y , where medXk and medYk denote kth feature of the L1 median of X and

Y respectively. Also, the authors proposed a truncation-based classifier by defining a

uniformly bounded function ψ for which ψ(u) = −ψ(−u) for all u, and ψ(u) > 0 for
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u > 0. The associated rule is to assign z to X if

p∑
k=1

ψ

(
|medYk − zk| − |medXk − zk|

)
> 0,

and to Y if otherwise. The truncation-based classifier is relatively insensitive to gradations

in the sizes of the differences between medians. Hennig and Viroli (2013) proposed clas-

sification method based on distance to the within class θth componentwise L1 quantiles.

This is the modification of componentwise L1 median based classifier for high dimensional

data in Hall, Titterington and Xue (2009). In their proposal, L1 median is replaced by

θth componentwise L1 quantile, whose choice depends on the value of θ that minimises

misclassification error. When θ = 0.5, the resulting classifier is simply median based

classifier. The advantage of L1 distance based classifiers is in their performance when

data are skewed. That is, L1 distance based classifiers are asymptotically optimal when

data components are independent and double-exponential, and sample sizes of competing

classes diverge as the dimension increases (Hennig and Viroli, 2013 and Hall, Titterington

and Xue, 2009).

5.1.8 Feature selection

In literature, dimension reduction is performed by projecting functional data onto a finite

number of functions ψ1, ψ2, . . . , ψd. Then, standard multivariate classifiers are applied to

d dimensional projection (
∫
I
Xψ1,

∫
I
Xψ2, . . . ,

∫
I
Xψd), where ψi is chosen from the data

(e.g. principal component basis) or chosen arbitrarily (e.g. spline basis). Tian, James

and Wilcox (2010) proposed multivariate adaptive stochastic search method for dimension

reduction, which involves projecting a high dimensional data into a lower dimensional

space and then apply a conventional classification method on the resulting data.

Delaigle and Hall (2012b) proposed componentwise feature selection for classifica-

tion and clustering of functional data. This method adaptively selects set of d points
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that contribute most to classification and apply conventional finite dimensional classi-

fiers (LDA, QDA, a nonparametric Bayes rule, a nonparametric regression-based clas-

sifier and a classifier based on logistic regression) on resulting d-dimensional vectors

{X(t1), X(t2), . . . , X(td)}. To choose d points, let Ir denote the set of all r-vectors

t(r) = (t1, t2, . . . , tr)
T with t1 < t2 < . . . < tr and t1, t2, . . . , tr ∈ Ir. Define a cross

validation estimator of error rate as

êrrr(t(r)) =
1

n

n∑
i=1

I{J(Xi, D−i|t(r)) 6= Ii},

where D−i = D \ {(Xi, Ii)} denotes the dataset with ith data pair removed, Ii is class

label of each Xi, J(Xi, D−i) denotes population index, either 0 or 1, to which each x

is assigned after the dimension has been reduced to t(r) = (t1, t2, . . . , tr)
T . The most

important r dimensional points t(r) is set as one that minimises êrrr(t(r)). Define

Tr = inf
t(r)∈Ir

êrrr(t(r)),

Delaigle and Hall (2012b) suggested an estimate of d as d̂ = inf{r : (1 − ρ)Tr 6 Tr+1},

where ρ is chosen to be 0.1.

Componentwise two sample t-test are often used for selecting important feature in

classification problem (Tibshirani et al., 2002 and Fan and Fan, 2008). Fan and Fan

(2008) proposed feature annealed independence rule (FAIR), which selects the statisti-

cally most significant m features based on componentwise two sample t-test and apply

independence rule on the selected features. Biau, Bunea and Wegkamp (2005) selected

finite features from infinite dimension by considering only the first d coefficients of Fourier

series expansion of each element and then perform k-NN on the reduced data in Rd. The

choice of d and k are determined using simple data splitting device. In functional segment

discriminant analysis, F-statistic is used to select first m features with largest F-statistic
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values on which LDA is applied for data reduction.

5.2 Classifiers Based on Distance to Spatial Median

5.2.1 Spatial median

Suppose X ∈ C(I) is a random function observed at finite points t ∈ I, where C(I) is a

space of continuous functions defined on I and I is a closed interval of R. The spatial

median of X, denoted by M , is defined as

M = argf minE

{∫
I
|X(t)− f(t)|2dt

}1/2

.

Kemperman (1987) extended the notion of spatial median into Banach space and has

shown that the spatial median is unique for a strictly convex Hilbert space if the distri-

bution of X is nonatomic and not entirely supported on a line. Therefore it is the only

point in the Hilbert space which satisfies EF{(x−X)/‖x−X‖} = 0 (See Theorem 2.17

of Kemperman, 1987 and Fact 2.1 of Chakraborty and Chaudhuri, 2013), where ‖x−X‖

is the Euclidean distance of x from X, defined as ‖a‖ =

{∫
I |a(t)|2dt

}1/2

.

5.2.2 Minimal distance to spatial median classifier

Suppose we observe independent and identically distributed random functions defined

on a compact interval I. Let Xij(t), i = 1, 2, . . . , nj, j = 1, 2, . . . , J be the ith observed

functional observation from jth class, with prior probability pj, where j is the class label

and t ∈ I. We assume the functions are drawn from populations that differ only in mean

functions and their covariance kernels are both positive definite and uniformly bounded.

Define a L2 metric D as

D(z, a) =

{∫
I
|z(t)− a(t)|2dt

}1/2

,

114



for t ∈ I. It is obvious that D(z, a) > 0 if z 6= a and D(z, a) = 0 iff z = a.

Here, we propose a classification method based on L2 distance of individual observation

to the spatial median of each of the competing classes. The classification procedure

is to assign an observation, z into the class with the least L2 distance between z and

spatial median of each of the competing classes. In a two-class classification problem,

let X and Y be two classes of observations taken values from Hilbert space. Suppose

X1, X2, . . . , Xn1 ∈ X with size n1 and prior probability p1, and Y1, Y2, . . . , Yn2 ∈ Y with

size n2 and prior probability p2. Suppose p1 = p2, MX and MY are spatial medians of the

data cloud, X and Y respectively. The classification rule is to assign z into class X if

D(z,MX) 6 D(z,MY ), (5.2.1)

otherwise to class Y , where

D(z,MX) =

{∫
I
|z(t)−MX(t)|2dt

}1/2

and D(z,MY ) =

{∫
I
|z(t)−MY (t)|2dt

}1/2

.

Assuming P
(
D(z,MX) = D(z,MY ) | z

)
= 0, this classifier is unique except for the

set of points with probability zero and the separating hyperplane between X and Y is the

line that passes through D2(z,MX) = D2(z,MY ). That is, suppose X and Y are linearly

separable, it is easy to show that the separating hyperplane between X and Y is

∫
I
z(t)[MX(t)−MY (t)]dt =

1

2

∫
I
[M2

X(t)−M2
Y (t)]dt.

The classification rule in equation (5.2.1) is equivalent to assigning z to X if

∫
I
z(t)[MX(t)−MY (t)]dt >

1

2

∫
I
[M2

X(t)−M2
Y (t)]dt
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and z to Y if ∫
I
z(t)[MX(t)−MY (t)]dt <

1

2

∫
I
[M2

X(t)−M2
Y (t)]dt.

This can be viewed as setting a threshold for classification. That is, assign z to X if

< z,MX −MY > > 1
2
< MX +MY ,MX −MY >, where < a, b > denotes inner product

of a and b. We shall call this classification method minimal L2 distance to spatial median

classifier, denoted by DL2M. The probability of misclassification associated with DL2M

in a two class problem with equal prior probabilities is

∆ =
1

2
P (D(z,MX) > D(z,MY ) | z ∈ X ) +

1

2
P (D(z,MX) 6 D(z,MY ) | z ∈ Y).

It was mentioned in Hall, Titterington and Xue (2009) that the theoretical median

of the sample is not necessarily equal to the median of the population from which the

data were drawn, whereas the expected value of a sample mean always equals the pop-

ulation mean. This means that theoretical properties of median-based classifiers can be

quite different from those of their mean-based counterparts. The almost sure convergence

of empirical spatial median to its population version for observations that take values

in a strictly convex separable Hilbert space, given that the probability distribution of

the observations is nonatomic and not entirely supported on a line in X was proved in

Chakraborty and Chaudhuri (2013).

5.2.3 Theoretical Properties

Suppose X and Y are two competing populations of functional data from distributions

F and G respectively with equal prior probabilities and differ only in mean function.

Assuming the first moments, µX = E(X) and µY = E(Y ) of the distribution of X and Y

respectively, exist and uniformly bounded. Suppose MX and MY are spatial medians of X

and Y respectively. Define m =
∫
I

(
M2

X(t)−M2
Y (t)

)
dt and γ =

∫
I z(t)

(
MX(t)−MY (t)

)
dt,
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then

EX(γ) = EX

(∫
I
z(t)

(
MX(t)−MY (t)

)
dt

)
=

∫
I

(
MX(t)−MY (t)

)
EX
(
z(t)

)
dt and

EY (γ) =

∫
I

(
MX(t)−MY (t)

)
EY
(
z(t)

)
dt.

Suppose

var(γ) = σ2
γ.

By Mercer’s theorem (Mercer, 1909; Kac and Siegert, 1947),

cov(X(t), X(s)) =
∑
j

θjφj(t)φj(s),

where θj and φj are jth eigenvalue of cov(X(t), X(s)) and its corresponding eigenfunction

respectively. cov(X(t), X(s)) is positive definite if θj > 0 for all j and uniformly bounded

if
∑

j θj <∞. We want to show that γ is Gaussian if X is Gaussian but with restriction

to finite dimensional settings. This is given in the lemma below.

Lemma 5.2.1 Suppose X is finitely observed functional data, γ is Gaussian if X is

Gaussian.

Proof : Suppose X is Gaussian distributed with mean µ and covariance kernel K.

Define Z = X−µ, where Z is a zero-mean Gaussian with covariance kernel K. Karhunen-

Loève expansion of Z gives Z(t) =
∑∞

j=1 θ
1/2
j Zjφj(t) (Deheuvels and Martynov, 2008),

where Zj, j = 1, 2, . . . are independent normally distributed random variables, θj and

φj(t) are jth eigenvalue and its corresponding eigenfunction of K(t, s) and are continuous

in I, the convergence is in L2 sense and uniform in t. Then

γ =

∫
I
X(t)[MX(t)−MY (t)]dt =

∫
I
X(t)u(t)dt,
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which is the same as

γ − E(γ) =

∫
I
Z(t)[MX(t)−MY (t)]dt =

∫
I
Z(t)u(t)dt,

where u(t) = MX(t) −MY (t). Suppose X is observed at d finite points in I and d is

allowed to diverge, then

γ − E(γ) =

∫
I

[ d∑
j=1

θ
1/2
j Zjφj(t)

]
u(t)dt =

∫
I

d∑
j=1

Zj
[
θ
1/2
j φj(t)u(t)

]
dt

=
d∑
j=1

Zj

∫
I

[
θ
1/2
j φj(t)u(t)

]
dt =

d∑
j=1

Zjξj

where ξj =
∫
I

[
θ
1/2
j φj(t)u(t)

]
dt. Both u(t), θj and φj(t) are deterministic and φj(t) are

orthogonal functions in time domain. W =
∑d

j=1 Zjξj is a finite linear combination of

independent Gaussian distributed random variables Zj and thereby Gaussian. Hence,

γ = W +
∫
I µ(t)u(t)dt is Gaussian. �

Theorem 5.2.1 Let X and Y be any two classes of functional data having the same

covariance kernel K. Suppose the following assumptions hold:

1. X and Y take values in L2[a, b].

2. µX and µY , the means of X and Y respectively, exist and uniformly bounded in

strong sense.

3. K is strictly positive definite and uniformly bounded.

Assuming that prior probabilities P (x ∈ X ) = p1 and P (x ∈ Y) = p2,

1. If the distributions of classes X and Y are Gaussian, the probability of misclassifi-

cation is

∆ = p1Φ(−k1) + p2Φ(−k2),
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where Φ is the distribution function of the standard normal distribution, and k1 and

k2 are real valued.

2. If the distributions of classes X and Y are not Gaussian, the probability of misclas-

sification is

∆ = p1P (RX < −k1) + p2
[
1− P (RY < k2)

]
,

where RX =
(
γ − EX(γ)

)
/σγ and RY =

(
γ − EY (γ)

)
/σγ are zero mean and unit

variance random variables.

Proof :

D2(z,MX)−D2(z,MY ) =

∫
I
|z(t)−MX(t)|2dt−

∫
I
|z(t)−MY (t)|2dt

=

∫
I
[M2

X(t)−M2
Y (t)]dt− 2

∫
I
z(t)[MX(t)−MY (t)]dt = m− 2γ

where m =
∫
I [M

2
X(t) −M2

Y (t)]dt and γ =
∫
I z(t)[MX(t) −MY (t)]dt. Since MX and MY

do not depend on z, it follows that

EX(γ) = EX

{∫
I
z(t)[MX(t)−MY (t)]dt

}
=

∫
I
u(t)E[z(t)]dt

=

∫
I
u(t)µX(t)dt =< µX , u >,

where u(t) = MX(t)−MY (t). EX(γ) = < µX , u > is the expectation of γ given that z is

distributed as X . Similarly,

EY (γ) = EY

{∫
I
z(t)[MX(t)−MY (t)]dt

}
=

∫
I
u(t)µY (t)dt = < µY , u >
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is the expectation of γ given that z is distributed as Y . Since X and Y have the same

variance, var(z(t)) = K(s, t). It then follows that

var(γ) = var

(∫
I
u(t)z(t)dt

)
=

∫
I

∫
I
u(t)K(s, t)u(s)dsdt = σ2

γ.

If z ∈ X , D(z,MX) 6 D(z,MY ) and m− 2γ 6 0. Then

P (J (z,D) = 0 | z ∈ X ) = P (D(z,MX)−D(z,MY ) > 0 | z ∈ X )

= P (D2(z,MX)−D2(z,MY ) > 0 | z ∈ X )

= P (m− 2γ > 0 | z ∈ X ) = P (γ < m/2 | z ∈ X )

= P (RX < −k1)

where RX = γ−EX(γ)√
var(γ)

has univariate distribution with mean 0 and variance 1, and k1 =

−m/2+EX(γ)√
var(γ)

. Similarly, if z ∈ Y , D(z,MX) > D(z,MY ) and m− 2γ > 0. Then

P (J (z,D) = 1 | z ∈ Y) = P (D(z,MX)−D(z,MY ) 6 0 | z ∈ Y)

= P (D2(z,MX)−D2(z,MY ) 6 0 | z ∈ Y)

= P (m− 2γ 6 0 | z ∈ Y) = P (γ > m/2 | z ∈ Y)

= P (RY > k2) = 1− P (RY < k2)

where RY = γ−EY (γ)√
var(γ)

has univariate distribution with mean 0 and variance 1, and k2 =

m/2−EY (γ)√
var(γ)

. The probability of misclassification of z into either X or Y is

∆ = p1P (RX < −k1) + p2
[
1− P (RY < k2)

]
.
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If X and Y are Gaussian distributed, then P (RX < −k1) = Φ(−k1), 1 − P (RY <

k2) = Φ(−k2) and

p1Φ(−k1) + p2Φ(−k2).

The proof is complete. �

Suppose E(X) = 0, it follows from the above proof that k1 = −m/2σ2
γ and k2 =

m/2σ2
γ if E(Y ) = 0. Note that m can be viewed as the difference between D2(MX , 0)

and D2(MY , 0). The probability of misclassification goes to 0 as the difference between

D2(MX , 0) and D2(MY , 0) goes to infinity.

5.2.4 Numerical examples - Simulation

Three models have been simulated in order to generate the functional samples:

1. Model 1: The population P0 consists of trajectories of the process X(t) = m0(t) +

e(t), where m0(t) = 30(1 − t)t1.2 and e(t) is a Gaussian process with mean 0 and

cov(X(s), X(t)) = 0.2 exp(−|s − t|/0.3). The process corresponding to P1 differs

from X(t) only in the mean function and is given by Y (t) = m1(t) + e(t), where

m1(t) = 30(1− t)1.2t.

2. Model 2: The population P0 consists of trajectories of the process X(t) = m0(t) +

e(t), where m0(t) = 30(1− t)t2 + 0.5| sin(20πt)| and e(t) is a Gaussian process with

mean 0 and cov(X(s), X(t)) = 0.2 exp(−|s−t|/0.3). Population P1 is made of spline

approximations (with 8 knots) of trajectories from the previous process.

3. Model 3: Consider model 1 above with m0(t) = 30(1 − t)t1.2 and m1(t) = δm0(t),

where δ ∈ [0, 5].

The first two models above are adapted from Cuevas, Febrero and Fraiman (2007). We

choose 500 distinct points for t ∈ [0, 1]. We compare the performance of DL2M with
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(b) Model 2

Figure 5.1: Plot of means of competing samples of functional data.

some classifiers. Tables 5.1 and 5.2 present the performance of the classifiers for model

1 and model 2 respectively in term of average classification accuracy and quantiles of

pobabilities of correct classification for the simulation procedures above. Figure 5.1 give

the plot of class means, m0 and m1 of the competing populations, P0 and P1 respectively

for model 1 and model 2. Figure 5.1(a) shows that populations P0 and P1 in model 1

consist of smooth functions. In model 2, population P1 consists of smooth function of

members of population P0, as shown in Figure 5.1(b).

The possibility of using componentwise median as class centroid for median based

classification method was raised in Hall, Titterington and Xue (2009) in high dimension

setting. We shall extend this possibility for functional data and see its performance in

the simulation study for models above. In Chapter 2, we raise the possibility of classi-

fying an observation to the class for which it attains minimal rank in Rd and presented

some upgraded versions of the approach. Similarly in Chapter 4, we proposed classify-
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ing an observation based on the distribution of the outlyingness of its spatial rank in

Rd and its variants, and argued that both methods can be extended into infinite dimen-

sion. We apply this minimal rank classifier and minimal rank distribution classifier to

functional data and classify observations from the above models to the class for which

each achieve minimal rank and minimal rank distribution function respectively. DL2M is

compared with minimum rank classifier (RC), minimal rank distribution classifier (RDC),

classifier based on L1 distance to L1 median, independence rule of Dudoit, Fridlyand and

Speed (2002), centroid classifier (Hastie, Tibshirani and Friedman, 2001) and maximum

functional depth classifier (Cuevas, Febrero and Fraiman, 2007) using the above mod-

els. For the maximum functional depth classifier, four functional depths are considered.

The depth functions are h-mode depth (HMD), Fraiman-Munic depth (FMD), random

projection depth (RPD) and random Tukey depth(RTD). To compute these functional

depth, we use R package fda.usc with 10% trimming, and assign observations to class

with maximum depth value. Denote centroid classifier by C.C, independence rule by ind

and classifier based on minimum distance to L1 median by DL1M. We choose the sizes

of both training samples and validation samples of P0 and P1 to be 100 and repeat the

simulation 1000 times.

Classifiers based on L2 distance to spatial median and L1 distance to L1 median

compete favourably with other classifiers. Among the depth based classifiers, it is seen

that maximum depth classifier based on h-mode depth achieves highest average probability

of correct classification for models 1 and 2. All the classifiers perform well as shown in

Table 5.1 and Table 5.2 for model 1 and model 2 respectively. Generally, classification

procedures based on L2 distance to spatial median and L1 distance to the L1 median can be

seen as competitive with depth based methods, centroid classifier, 1NN and independence

rule for location problem. In the next section, we shall generalise the L1 median and L2

median to Lp median for various values of p and examine the performance of its associated
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classifiers.

5.3 Minimal Distance to Lp Median Classifier

Define a Lp metric Dp as

Dp(z, a) =

{∫
I
|z(t)− a(t)|pdt

}1/p

,

for t ∈ I and p ∈ R. It is obvious that D(z, a) > 0 if z 6= a and D(z, a) = 0 iff z = a.

In functional analysis, Lp space is know for its completeness property when p > 1. The

Lp metric above satisfies triangle inequality for p > 1 as shown in Rudin (1991). For

0 < p < 1, Lp space is complete if its associated Lp metric satisfies the triangle inequality.

For 0 < p < 1, Rudin (1991) suggested

Dp(z, a) =

{∫
I
|z(t)− a(t)|pdt

}
.

Suppose X1, X2, . . . , Xn ∈ X , the Lp median of X, denoted by Mp, is defined as

Mp = argf minE

{∫
|X(t)− f(t)|pdt

}1/p

.

When p = 1, M1 is called co-ordinatewise median while it is spatial median or L2 median

when p = 2. The applicability of this L1 median for functional data lies in assuming that

functions are sampled at common distinct points.

Suppose X and Y are two classes of observations, having prior probabilities P1 and P2

and sizes n1 and n2 respectively. Let X1, X2, . . . , Xn1 ∈ X and Y1, Y2, . . . , Yn2 ∈ Y take

values from Banach space. Suppose p1 = p2, MXp and MYp are Lp median of the data

cloud X and Y respectively. The classification rule is to assign observation z into class X
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if

Dp(z,MXp) 6 Dp(z,MYp), (5.3.1)

otherwise to class Y , where

Dp(z,MXp) =

{∫
I
|z(t)−MXp(t)|pdt

}1/p

and Dp(z,MYp) =

{∫
I
|z(t)−MYp(t)|pdt

}1/p

.

We use Lp median with corresponding Lp distance because it is Lp median that minimises

its corresponding Lp distance. The possibility of using L1 median lies in fixing t for each

class members. In this case, function space does not necessarily need to be a Hilbert

space. Then for p = 1, the difference between D1(z,MX1) and D1(z,MY1) can be viewed

as
∑d

k=1[|zk−MX1k
| − |zk−MY1k |] in Rd for d > 1, where d can be finite or infinite which

is the case of componentwise L1 median classifier in Hall, Titterington and Xue (2009).

Suppose p1 6= p2, the classification rule based on DL2M will be to assign an observation,

z into class X if

D2
2(z,MX)−D2

2(z,MY ) 6 loge

(
p2
p1

)
, (5.3.2)

otherwise to class Y . This is equivalent to assigning z into class X if

∫
I
z(t)[MX(t)−MY (t)]dt 6 C,

otherwise to Y , where C = 1
2

∫
I [MX(t)2 −MY (t)2]dt+ loge

(
p2
p1

)
.

It has been proved in Hall, Titterington and Xue (2009) that the probability of mis-

classification based on L1 distance to componentwise L1 median asymptotically goes to

zero as d→∞, competing class sizes diverge and suitable conditions for componentwise

L1 median hold. This result is stated formally in Theorem 5.3.1 below.

Theorem 5.3.1 (Hall, Titterington and Xue, 2009) Assume that the following as-
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sumptions hold for p = 1:

1. X and Y take values in L1[a, b] sampled at d distinct points

2. µX and µY , the means of X and Y respectively, exist and uniformly bounded in

strong sense

3. K is strictly positive definite and uniformly bounded

4. components of the difference between medians of X and Y is nonzero

5. standard α-mixing condition hold

6. sample sizes n1 and n2 of X and Y diverge as d→∞ ,

then with probability converging to 1 as d increases,

∆ = p1P
(
J (z,D) = 0 | z ∈ X ) + p2P (J (z,D) = 1 | z ∈ Y)→ 0.

Similar to intuitive features of RC, RRC and RDC and their variants in Chapter 2 -

4, classifier based on minimal Lp distance to Lp median enjoys easy lending to multiclass

extension. Suppose there are J classes, then assign z to class Xk, 1 6 k 6 J if

Dp(z,Mkp) = min
j
Dp(z,Mjp),

where Mjp is the Lp median of the jth class, j = 1, 2, ..., J . For J(> 2) populations with

prior probabilities p1, · · · , pJ , the associated probability of misclassification is

∆ =
J∑
j=1

pjP

(
Dp(z,Mjp) is not the minimum | z ∈ Xj

)
.
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Figure 5.2: Performance of classifiers for model 3.

Table 5.3: Performance of classifier based on Lp distance to Lp median for model 1.

Probability of correct classification for different values of p
p=0.5 p=1 p=1.2 p=1.5 p=2 p=2.5 p=10 p=100

Minimum 0.915 0.935 0.930 0.935 0.930 0.925 0.920 0.925
25% quantile 0.950 0.965 0.965 0.970 0.970 0.970 0.965 0.960
Mean 0.961 0.972 0.974 0.975 0.976 0.976 0.972 0.969
Median 0.960 0.975 0.975 0.975 0.975 0.975 0.975 0.970
75% quantile 0.970 0.980 0.985 0.985 0.985 0.985 0.980 0.980
Maximum 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S.E. 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0004 0.0004
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Table 5.4: Performance classifier based on Lp distance to Lp median for model 2.

Probability of correct classification for different values of p
p=0.5 p=1 p=1.2 p=1.5 p=2 p=2.5 p=10 p=100

Minimum 0.555 0.555 0.530 0.535 0.560 0.565 0.565 0.490
25% quantile 0.704 0.710 0.710 0.710 0.765 0.715 0.715 0.710
Mean 0.775 0.778 0.782 0.780 0.838 0.781 0.778 0.780
Median 0.775 0.775 0.775 0.780 0.840 0.783 0.775 0.780
75% quantile 0.841 0.845 0.845 0.845 0.925 0.850 0.845 0.845
Maximum 0.985 0.990 1.000 0.990 1.000 0.985 1.000 0.990
S.E. 0.0028 0.0029 0.0029 0.0029 0.0033 0.0028 0.0028 0.0029

5.4 Numerical Examples

In this section, we shall investigate the performance of classification method based on

minimal Lp distance to Lp median for various values of p based on simulation information

in Section 5.2.4 and analysis of real data. We shall denote this classifier by DLpM for

various values of p.

5.4.1 Numerical example - simulation

Consider models 1 and 2 in subsection 5.2.4. Tables 5.3 and 5.4 give the mean and

quantiles of proportion of correctly classified test data for model 1 and 2 respectively

for different values of p. For model 1, the average probability of correct classification

are equivalent and close to 1 for various values of p. This is similar for model 2, the

average probability of correct classification are equivalent except for p = 2, where there

is a noticeable higher value of average proportion of correctly classified test data. For

separable data in Lp space, the choice of p in the metric is of less importance because of

the equivalence of Lp norm for p > 1. This means that when observations from distinct

classes take values from Lp space, irrespective of Lp median used, classifier based on its

corresponding distance function will perform well for location problem. This is illustrated

in Table 5.3 for model 1 and Figure 5.2 for model 3.
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5.4.2 Example: real data

We applied our method to six real data examples. The real datasets are LSVT voice

rehabilitation data, Phoneme data, lung cancer data, internet advertisement data, mass-

spectrometry data and growth data. The LSVT voice rehabilitation data (Tsanas et

al., 2014) consists of two classes of observations, which are acceptable(size = 42) and

unacceptable(size = 84). A training sample of size 30 and a validation sample of size 12 are

selected from each of the two classes. Phoneme frequency data, denoted by phoneme data,

arose from a collaboration between Andreas Buja, Werner Stuetzle and Martin Maechler,

and was used as an illustration in Hastie, Buja and Tibshirani (1995). Phoneme data

was formed by selecting five phonemes based on discretized log-periodograms of digitized

speech. It consist of five classes of observations, which are aa(size = 695), ao(size = 1022),

dcl(size = 757), iy(size = 1163) and sh(size = 872). A training sample of size 200 and a

validation sample of size 100 for each of the classes are chosen. Lung cancer data (Hong

and Yang, 1991) is a sparse data with three classes of sizes 9, 13 and 10. For this data, we

select training samples of sizes 5, 7, 6 and validation samples of sizes 4, 6, 4 respectively.

Two out of 57 features have missing values and are removed. Internet advertisement

data (Kushmerick, 1998), denoted by internet ads, is a set of possible advertisements on

internet pages. It consists of two classes, ad and nonad with class sizes 459 and 2820

respectively, and 1558 features. A training sample of size 200 and a validation sample

of size 100 from each of the two classes are chosen, and 1554 features are used from this

dataset. Mass-spectrometry data (Mahé and Veyrieras, 2013), denoted by micromass

data, consists of two classes, pure spectra and mixed spectra with class sizes 571 and 360

respectively. We choose a training sample of size 200 and a validation sample of size 150

from each of the two classes. Growth data (Ramsay and Silverman, 2005) consists of the

heights (in centimeters) of 54 girls and 39 boys measured at a set of thirty one ages from

one to eighteen years old. We choose a training sample of size 25 and a validation sample
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of size 14 from each of the two classes. Summary of these data are given in Table 5.5

below. Phoneme data can be found in a R package fds while others are taken from UCI

Machine Learning Repository. For depth classifiers, the experiment is repeated 100 times

and average probability of correct classification is computed. For each of the datasets, we

assume equal prior probabilities for competing classes.

Table 5.6 presents the comparison of classifiers based on the probabilities of correct

classification. For growth data, all the classifiers perform well while maximum functional

depth classifier based on random projection depth perform best among others. DLpM

performs poorly as well as RC for micromass and internet ads data except for p = 2. DL2M

performs well in all cases and has highest proportion of correctly classified data except for

growth data. All the functional depth classifiers compete well with other classifiers except

for lung cancer data, internet advertisement data and mass-spectrometry data. Minimal

rank classifier competes favourably with depth based procedures.

5.4.3 Optimal choice of p

In this subsection, we want to estimate the value of p for which classification rule based on

minimal Lp distance of test data to its corresponding Lp median is optimal. In practice, p

is not always unique. In low finite dimensional setting, Dutta and Ghosh (2012b) proposed

classifier based on maximal Lp depth. In their proposal, p is estimated by maximising

the joint likelihood function of the sample or its natural logarithm. In functional and

infinite dimensional setting, estimation of p by minimising joint likelihood function of

the sample is possible using kernel estimator of probability density function but has high

computational time. We choose p by cross validation error.

Let us represent classification rule based on DLpM by J (z,Dp), where J is

J (z,Dp) =

 1, if Dp(z,MXp) 6 Dp(z,MYp)

0, if otherwise
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Figure 5.3: Phoneme data
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Define a cross validation estimator of error rate as

êrr(p) =
1

n

n∑
i=1

I{J(xi,Dp) 6= Ii},

where Dp denotes the Lp distance function of ith data from each of the competing classes,

Ii denotes the class label of ith observation xi. The optimal value of p, denoted by po, is

po = infpêrr(p). (5.4.1)

Using the real datasets discussed in Subsection 5.4.2, po is 1.9 with probability of

correct classification being 0.6633 for the micromass data. The optimal value of p for

internet advertisement data, po = 2.5 gives highest probability of correct classification

which is 0.915. For the lung cancer data, optimal value of p is 8.7 with probability of

correct classification being 0.8571429. For LSVT voice rehabilitation data, po = 0.2 with

the probability value 0.7917. The highest probability of correct classification obtained for

Phoneme data is 0.884 for p ∈ [4.5, 4.7], and so po = 4.5. Similarly for lung cancer data

and growth data, highest probability of correct classification obtained based on DLpM

are 0.8571 and 0.8929 for p ∈ [8.7, 22.6] and p ∈ [4.1,∞) respectively (see Figure 5.4)

and hence, po for respective data are 8.7 and 4.1. We summarise this numerical results

using some plots. Figure 5.4 present the plot of proportion of correctly classified test data

against various values of p. Table 5.7 presents the optimal value of p and its corresponding

proportion of correctly classified test data for the six datasets.

5.5 Samples with Different Scale

The performance of distance based methods are generally poor when competing classes

have different scale or the principal difference among the competing classes is in scale. In

order to overcome this, we thought of dividing each component by its standard deviation
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(a) Phoneme data
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(b) Mass-spectrometry data
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(c) Internet advertisement data
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(d) Lung cancer data
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(e) growth data
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(f) LSVT voice rehabilitation data

Figure 5.4: Plot of proportions of correctly classified data against various values of p.
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Table 5.7: Optimal value of p and corresponding probability of correct classification for
some real dataset.

Dataset optimal p Probability of correct classification
LSVT voice 0.2 0.7917
Phoneme 4.5 0.8840
Lung cancer 8.7 0.8571
Internet ads 2.5 0.9150
Micromass 1.9 0.6633
Growth 4.1 0.9643

and then apply DLpM. We denote this by DLpM-S. This approach may fail for some

functions where the mean difference is close to zero.

To illustrate this, consider model 3 in Subsection 5.2.4. Suppose populations P0 and

P1 consist of trajectories of the processes X(t) = m0(t) + e(t) and Y (t) = δm0(t) + e1(t)

respectively, where m0(t) = 30(1 − t)t1.2, e(t) is a Gaussian process with mean 0 and

cov(X(s), X(t)) = 0.2 exp(−|s − t|/0.3), e1(t) = 2e(t), t ∈ [0, 1] and δ ∈ [0, 2]. Figure

5.5 gives the performance of some classifiers. DL2M-S is compared with KSVM, support

vector machine using kernel trick (Rossi and Villa, 2006) and some other classifiers. It is

seen here that within the neighbourhood of δ = 1, the principal difference between the

competing classes is not in location and so, the probability of correct classification tends

to 0.5. The reason is that dividing each feature by its standard deviation for each class in

the neighbourhood of δ = 1 makes the resulting observations in each class become alike

with probability of correctly classifying an observation to either of the competing class

being 0.5. As δ moves away from 1, the difference between D2(z,MX2) and D2(z,MY2)

goes away from zero with probability tending to one. Hence pre-scaling of data does not

improve the chance of correctly classifying data in this case.

Furthermore, we suggest standardizing Lp median by dividing each component of the

Lp median by its corresponding median absolute deviation and then perform DL2M. Using

this approach on the example above, the performance of DL2M is not improved in the

136



0.0 0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

δ

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 c

la
ss

ifi
ca

tio
n

DL0.5M
DL1M
DL1.5M
DL2M
DL2M−S
RC
KSVM

Figure 5.5: Performance of classifiers for population distributions with different covariance
kernels.

neighbourhood of δ = 1.
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Chapter 6

Concluding Remarks and Future

Work

Classification aims at obtaining rules that describe the separation between groups of

observations and allocate each new observation to one of the known groups. A good

classification procedure is the one that classifies observations from unknown populations

correctly. Two major approaches to classification, identified in this study, are parametric

and nonparametric. Parametric approach requires making assumptions about the distri-

bution of the population while nonparametric approach does not. Parametric approaches

include linear and quadratic discriminant analysis, which assume multivariate normal dis-

tribution for the data. The limitations of parametric approaches include lack of robustness

against outliers. This thesis focuses on nonparametric approach. The motivation for non-

parametric classification methods includes robustness against outliers, distribution-free

property, easy lending to multiclass extension.

In Chapter one, we have reviewed parametric approach to discriminant analysis and

investigated the optimal performance of linear and quadratic discriminant functions un-

der normality condition based on simulation and provide solutions of some theoretical

examples. We derive expressions for Bayes error for multivariate normal distributions,
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multivariate Laplace distributions and multivariate t distributions with the same degree

of freedom, under location shift. The theoretical probabilities of misclassification were

compared with empirical error rates, based on simulation, when competing populations

differ in location and scale using LDA and QDA respectively. The sample estimates of

probability of misclassification associated with LDA and QDA are good approximation

for their respective population versions.

In Chapter two, we propose nonparametric methods for classifying d-dimensional ob-

servations based on multivariate rank. They are minimal rank classifier(RC) and affine

invariant version of minimal rank classifier(AIRC). We show that these classifiers are

optimal Bayes rule under suitable conditions. The performance of these methods are

examined by using simulation and their results are compared with the results from ex-

isting methods. The variations in total probability of misclassification of d-dimensional

observations associated with a pair of multivariate distributed random samples for the

cases where location vectors and dispersion matrices are homogenous and heterogeneous

are studied. Minimal rank classifier performs well when competing class distributions are

spherically symmetric with equal covariance matrices. When distributions of competing

classes are elliptically symmetric, the error rates associated with minimal rank classifier

are not in any specific order of the value of correlation existing among variables. This

is due to non-invariance of spatial rank under general affine transformation and because

of this, we construct AIRC using transformation and re-transformation technique. When

the competing distributions have different covariance matrices, RC and AIRC perform

poorly compared to QDA because scale term is not involved in their formulation. To

overcome this limitation, we construct a classifier based on volume of central rank region.

In chapter three, we propose rank region classifier (RRC) and its variant. This method

assigns observations to the class for which it attains minimum volume of rank region.

Affine invariant version of spatial rank is used to compute the volume of rank region to
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make the volume equivariant under general affine transformation of the data. RRC per-

forms well when the principal difference among the distributions of competing populations

is in location parameter. To improve this classifier, we set a threshold for assigning an

observation to a population based on the ratio of volumes of rank regions of the competing

populations. When the principal difference among the distributions of competing popu-

lations is in location parameter, the improved version of rank region classifier (RRC-1)

reduces to usual rank region classifier. When covariance matrices (Σj, j = 1, 2, . . . , J) of

J competing populations are the same (say Σ), rank region classifier reduces to minimal

affine invariant rank classifier. Also, when Σ is a scalar multiple of Id, the minimal affine

invariant rank classifier reduces to minimal rank classifier. .

The performance of these methods (RC, AIRC, RRC and RRC-1) are examined by

using simulation and real data set, and their results are compared with the results from

existing methods. The methods perform competitively under necessary conditions. These

classifiers can be practically implemented for large dimension, unlike depth based classi-

fier. It may worth mentioning here that our simulation work based on volume of central

rank regions, in Chapter three, was restricted by the heavy computation cost. The R

programs which we used for our computation are quite time consuming. For computing

misclassification errors associated with rank region classifier for two competing distribu-

tions with training samples of size 100 each and test sample of size 100 each based on

1000 iterations for five different covariance matrices took more than fifteen days in a

machine with a dual-core 3.00GHz CPU with 4GB RAM. Using C programming for the

same training sample size and test sample size based on 1000 iterations for five different

covariance matrices, it took almost four days in the same machine. For computing the

volume of central rank region in C programming, we use qhull of Barber, Dobkin and

Huhdanpaa (1996). For computing the volume of central rank region in r programming,

we use R-package geometry.
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We note that RRC has a high computational time compared to LDA, QDA, RC and

AIRC. Comparing the computational time of RRC with some depth based classifier like

simplicial depth and half-space depth, RRC is still much better because depth based clas-

sifiers can not just do it. The reason for high computational time is that affine invariant

rank is first computed before computing volume of central rank region, on which the

classifier is constructed. For high dimensional data, the estimated central rank region is

computationally unstable (Guha and Chakraborty, 2013) due to the curse of dimension-

ality. For computation of Oja depth and projection depth, we use R-packages depth and

fda.usc respectively with 25% trimming for projection depth when sample size is large.

For the SVM we use radial basis kernel as implemented in the R-Package kernlab and

employ 5-fold cross-validation.

In chapter four, we propose minimal rank distribution classifier (RDC) and its affine

invariant versions (AIRDC and RDA-A). Minimal rank distribution classifier assigns ob-

servations to class with least distribution function of outlyingness of spatial rank. Due to

the lack of robustness of minimal rank distribution classifier against deviation of distribu-

tions of competing populations from spherical symmetry, we propose two affine invariant

versions of minimal rank distribution classifier. One based on transformation and retrans-

formation technique of Chakraborty (2001) and one based on pre-multiplying the data

with the inverse of estimate of Σ
1
2 . Both RDC and its invariants are Bayes rule under

some certain conditions. Analysis of real data show that the choice of covariance esti-

mator has a standing implication on RDA-A. When using MCD estimator of covariance

matrix for data with small size, we suggest that value of α should be close to 1 to ensure

relatively low misclassification error. For competing class of data with large sample size,

the choice of α ∈ [0.5, 1) does not significantly affect the performance of RDA-A. When

Σ is a scalar multiple of Id, AIRDC reduces to RDC.

When data are functions, many multivariate techniques fail to perform well. In Chap-
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ter five, we propose classification method based on L2 distance to spatial median. The

L2 distance classifier assigns each observation to the population for which the observation

attains minimum L2 distance to the population’s spatial median. Robustness is one of the

interesting features of statistical methods based on functional outliers. This is because

functional outliers can affect statistical analysis in many different ways and are not always

easy to identify (López-Pintado and Romo, 2006). Spatial median is robust against out-

liers and easy to compute. The classifier based on distance to spatial median enjoys easy

lending to multiclass extension. When the distributions of the competing populations

are Gaussian, we derive an expression for the probability of misclassification for two-class

problem. This method is generalised into classification approach based on the Lp distance

to its corresponding Lp median for some values of p. Throughout this chapter, the same

value of p is assumed for all competing groups of functional data. The performance of this

generalised Lp distance classifier is examined through simulation and real data analysis.

To obtain optimal classifier, we define the optimal Lp distance classifier based on the po,

optimal value of p, where po is determined by cross validation.

6.1 Further Work and Possible Extensions

When dimension of observations is greater than sample size (d > n), estimate of covariance

matrix Σ degenerates and becomes singular. This makes estimating v(α), that leads to

the choice of X(α) that removes the effect of correlations among features in each of

the competing classes, practically impossible. As a result, it limits the applicability of

AIRC and AIRDC, as well as RRC for elliptically symmetric distributions. In future

we will like to work on overcoming challenges of high dimensionality in the use of affine

invariant spatial rank via transformation and re-transformation techniques. Also, the

execution of RDA-A becomes practically infeasible. Hastie, Buja and Tibshirani (1995)

suggested penalizing covariance functional. Dudoit, Fridlyand and Speed (2002) suggested
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assuming independence of components while Guo, Hastie and Tibshirani (2007) suggested

regularizing covariance functional. Our future work may focus on executing RDA-A when

dimension of observations is greater than sample size, without penalizing or regularizing

the degenerated covariance matrix.

For functional data, minimal L2 distance to L2 median classifiers perform well for

either univariate functional data or multivariate functional data when the principal dif-

ference among the competing classes of observations are not in covariance kernels. Sev-

eral methods have been proposed under this setting but these methods fail when the

principal difference are in covariance kernels. In future, we will like to work on how to

overcome this problem using nonparametric approach. The possibility of incorporating

different covariance kernels in functional classification problem and solving the problem

non-parametrically may be extended into Lp distance classifiers for some p.
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[95] Mahé, P. and Veyrieras, J. (2013). UCI Machine Learning Repository [http://mlr.cs.

umass.edu/ml/datasets/MicroMass]. Irvine, CA: University of California, School of

Information and Computer Science.

[96] Memon, A. Z. and Okamoto, M. (1971). Asymptotic expansion of distribution of Z-

statistic in discriminant analysis. Journal of Multivariate Analysis. Volume 1, Issue

3, pp. 294 - 307.

154



[97] Mercer, J. (1909). Functions of positive and negative type and their connection with

the theory of integral equations. Philosophical Transactions of the Royal Society A.

Volume 209, pp. 415 - 446.

[98] Miller, A.J., Shaw, D.E., Veitch, L.G. and Smith, E.J. (1979). Analyzing the results

of a cloud-seeding experiment in Tasmania. Communications in Statistics - Theory

& Methods. Volume 8, Issue 10, pp. 1017 - 1047.
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