
 

 

 

DEVELOPMENT OF AN FPGA SYSTEM FOR 

PARALLEL PROCESSING OF RAILWAY 

NON-DESTRUCTIVE TESTING DATA 

by 

Zhenhe Zhang 

 

 

 

A thesis submitted to 

The University of Birmingham 

for the degree of 

MASTER OF RESEARCH 

 

 

 

 
 School of Electronic, Electrical and Computer Engineering  

College of Engineering and Physical Sciences  

University of Birmingham  

September 2014 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 

  

 

3 

 

Abstract 

Cracks in rails are bad news; they cause accidents and cost money due to delays, as well as 

incurring repair costs. Inspection of tracks is required in order to find small cracks before 

they become dangerous. Early detection could also allow repair work which needs 

maintenance possession on railways to be planned. Non-destructive testing (NDT) is 

commonly used in rail crack inspection. Alternating Current Field Measurement (ACFM) is 

one of the latest NDT techniques to be used in crack measurement. This technique is able to 

detect surface breaking cracks in metals and measure them with proper processing of the non-

destructive testing data. In the first part of this dissertation, the current limitations of 

inspection using ACFM techniques will be laid out. The content that follows describes a 

high-speed data processing chain for non-destructive testing data, as implemented using an 

FPGA development board. Multiple ACFM probes are used in practice to cover the surface 

of the track. Meanwhile, the data collected are parallel processed within the FPGA device. 

Here, the latest progress and the achievements of this project will be shown using proposed 

structure diagrams and initial results. 

 

Keywords: non-destructive inspection, NDT, ACFM, high-speed inspection, maintenance, 

FPGA, railway, crack detection 

 

 

 

 



 

  

 

4 

 

Acknowledgement 

The provision of facilities and funding by the Centre for Rail Research and Education and the 

School of Engineering at the University of Birmingham is gratefully acknowledged. The 

author also wishes to express his gratitude to TSC Inspections Systems Ltd for the provision 

of the ACFM example data and equipment. Finally, the author also wishes to thank his 

supervisors, Dr. Edward Stewart and Prof. Clive Roberts, for their patient supervision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

5 

 

Table of Contents 

Abstract ................................................................................................................................. 3 

Acknowledgement ................................................................................................................ 4 

Table of Contents ................................................................................................................. 5 

List of Figures ....................................................................................................................... 7 

List of Tables ...................................................................................................................... 11 

List of Equations ................................................................................................................ 12 

1 Introduction ................................................................................................................. 13 

2 System overview .......................................................................................................... 17 

2.1 System requirements ........................................................................................... 17 

2.2 High speed processing specialty .......................................................................... 19 

2.3 System description .............................................................................................. 19 

2.4 The system with 8 parallel processing chains ..................................................... 20 

2.5 Dissertation structure ........................................................................................... 21 

3 Literature Review ....................................................................................................... 22 

3.1 Overview ............................................................................................................. 22 

3.2 Non-destructive testing (NDT) ............................................................................ 23 

3.3 ACFM principle .................................................................................................. 26 

3.4 FPGA in digital signal processing application .................................................... 29 

3.5 FPGA for ACFM ................................................................................................. 32 

4 Methodology ................................................................................................................ 33 

4.1 Design tools ......................................................................................................... 33 

4.1.1 Software tools ............................................................................................. 33 

4.1.2 Hardware - ATLYS .................................................................................... 35 

4.2 System parameter setting requirements ............................................................... 37 

4.3 Desired system design ......................................................................................... 39 

4.4 Serial communication performance test .............................................................. 45 

4.5 ACFM algorithm ................................................................................................. 47 

4.6 The one-single ACFM path system ..................................................................... 48 

4.7 Unpacking the one-single ACFM path system .................................................... 49 

4.8 The eight paths system structure ......................................................................... 53 

4.9 The low-level entity implementation in the master path ..................................... 56 

4.10 The low-level entity implementation in the slave paths ...................................... 58 



 

  

 

6 

 

4.10.1 Algorithm module in the slave paths processing chain .............................. 58 

4.10.2 Input data manipulation module in the slave paths .................................... 62 

4.10.3 Recursive adder module in the slave paths processing chain ..................... 66 

4.11 Synchronisation part ............................................................................................ 69 

4.11.1 Synchronise buffer ..................................................................................... 69 

4.11.2 Timing synchronisation design .................................................................. 70 

4.12 Serial Peripheral Interface (SPI) slave module ................................................... 74 

4.13 Serial Communication Interface (SCI) ................................................................ 76 

5 Simulation Results (Testing and Verification) ......................................................... 76 

5.1 Simulated data generator ..................................................................................... 77 

5.2 Components simulation ....................................................................................... 78 

5.2.1 The master path simulation ........................................................................ 79 

5.2.2 Matlab verification and TSC expected result ............................................. 83 

5.2.3 The slave paths simulation ......................................................................... 84 

5.2.4 Recursive Adder Module ............................................................................ 99 

5.2.5 Synchronize Buffer ................................................................................... 101 

5.2.6 Serial Peripheral Interface (SPI) slave module ........................................ 103 

5.2.7 Serial Communication Interface (SCI) ..................................................... 105 

5.3 System testing (Top Level Entity) ..................................................................... 107 

6 Synthesis results ........................................................................................................ 112 

6.1 Synthesis performance ...................................................................................... 112 

6.2 Efficiency in use of FPGA ................................................................................ 113 

6.3 Hardware implementation ................................................................................. 116 

6.4 Verification of ATLYS ..................................................................................... 117 

7 Visualisation on PC ................................................................................................... 123 

7.1 FPGA & Visual display ..................................................................................... 126 

8 DSP for ACFM use ................................................................................................... 128 

8.1 DSP & FPGA .................................................................................................... 130 

8.2 DSP & FPGA & Visual display ........................................................................ 132 

9 Conclusion ................................................................................................................. 134 

10 References .................................................................................................................. 137 

 



 

  

 

7 

 

List of Figures 

Figure 1 –Typical RCF cracking found in rails (photograph is courtesy of Dr Garnham) .... 14 

Figure 2(a) -The ACFM Probe and the AMIGO box 2 ........................................................... 16 

Figure 3 –The general FPGA based ACFM system structure for 8-ACFM array probes ...... 20 

Figure 4 – Definition of field directions and co-ordinate system used in ACFM (Taken from 

reference(Nicholson and Davis, 2012)) ................................................................................... 27 

Figure 5 –Standard waveform of the Proportion of ACFM results on a rail section with spark-

eroded slots(Papaelias et al., 2010) .......................................................................................... 28 

Figure 6 –The general ACFM system structure with single probe .......................................... 32 

Figure 7 – Basic Simulation Flow ........................................................................................... 35 

Figure 8 –Picture of ATLYS FPGA Board .............................................................................. 35 

Figure 9 –Desired system flow chart ....................................................................................... 43 

Figure 10 –The serial communications performance testing curve ........................................ 46 

Figure 11 –Block diagram of one-single path system(Ma, 2010-2011) .................................. 48 

Figure 12 – Block diagram of the master path ........................................................................ 50 

Figure 13 – Block diagram of the slave paths ......................................................................... 52 

Figure 14 – System diagram of the eight paths ....................................................................... 54 

Figure 15 – Block diagram of algorithm module in the master path ...................................... 57 

Figure 16 –Block diagram of algorithm module in the slave paths ........................................ 58 

Figure 17 –Block diagram of PQ_phase Buffer ...................................................................... 59 

Figure 18 –IP Core generator user interface and the core black box ..................................... 60 

Figure 19 –Block diagram of algorithm cycle count module .................................................. 61 

Figure 20 –Shifter latency chain in algorithm cycle count module ......................................... 61 

Figure 21 –SPI communication data format between DSP and FPGA device ........................ 62 

Figure 22 –Block diagram of Input data manipulation module .............................................. 63 

Figure 23 –Block diagram of An manipulation module .......................................................... 63 

Figure 24 –An manipulation secondary module state machine diagram ................................ 64 

Figure 25 –Block diagram of algorithm start control module ................................................ 65 



 

  

 

8 

 

Figure 26 –Algorithm start control secondary module state machine diagram ...................... 65 

Figure 27 –Block diagram of recursive adder ......................................................................... 66 

Figure 28 –Recursive adder module state machine diagram .................................................. 67 

Figure 29 –Flow chart of recursive adder module .................................................................. 68 

Figure 30 –Block diagram of synchronise buffer .................................................................... 69 

Figure 31 –Block diagram of SPI ............................................................................................ 74 

Figure 32 –Design flow chart of SPI Slave module ................................................................. 75 

Figure 33 –Block diagram of SCI ............................................................................................ 76 

Figure 34 –Block diagram of simulated data generator ......................................................... 78 

Figure 35 –Master path Simulation Module RTL Schematic .................................................. 80 

Figure 36 –RTL Schematic of the master path simulation structure ....................................... 81 

Figure 37 –Waveform of the input data in the master path simulation ................................... 82 

Figure 38 –Waveform of the output result in the master path simulation ............................... 82 

Figure 39 –ACFM algorithm realisation in Matlab ................................................................ 83 

Figure 40 –The slave path Simulation Module RTL Schematic .............................................. 85 

Figure 41 –Input Data Manipulation Secondary Module RTL Schematic .............................. 86 

Figure 42 –An manipulation secondary module RTL Schematic ............................................ 87 

Figure 43 –Waveform of the input data in An manipulation module ...................................... 88 

Figure 44 –Waveform of output A0 and A1in An manipulation module ................................. 88 

Figure 45 –Algorithm start control secondary module RTL Schematic .................................. 89 

Figure 46 –Waveform of algorithm start signal in algorithm start control module ................ 89 

Figure 47 –Waveform of Input Data Manipulation Secondary Module simulation (1) .......... 91 

Figure 48 –Waveform of Input Data Manipulation Secondary Module simulation (2) .......... 91 

Figure 49 –Waveform of Input Data Manipulation Secondary Module simulation (3) .......... 92 

Figure 50 –Algorithm secondary module internal RTL Schematic ......................................... 93 

Figure 51 –PQ_phase Buffer RTL Schematic .......................................................................... 94 

Figure 52 –Waveform of PQ_phase Buffer simulation (1) ...................................................... 95 

Figure 53 –Waveform of PQ_phase Buffer simulation (2) ...................................................... 95 

Figure 54 –Waveform of PQ_phase Buffer simulation (3) ...................................................... 96 



 

  

 

9 

 

Figure 55 –Algorithm cycle count secondary RTL Schematic................................................. 96 

Figure 56 –Waveform of algorithm cycle count secondary module ........................................ 97 

Figure 57 –Algorithm secondary module RTL Schematic ....................................................... 97 

Figure 58 –Waveform of Algorithm Secondary Module (1) .................................................... 98 

Figure 59 –Waveform of Algorithm Secondary Module (2) .................................................... 98 

Figure 60 –Waveform of Algorithm Secondary Module (3) .................................................... 99 

Figure 61 –Recursive adder module RTL Schematic .............................................................. 99 

Figure 62 –Waveform of recursive adder module ................................................................. 100 

Figure 63 –Synchronize Buffer RTL Schematic ..................................................................... 101 

Figure 64 –Waveform of Synchronize Buffer......................................................................... 102 

Figure 65 –SPI Slave module RTL Schematic ....................................................................... 103 

Figure 66 –Waveform of Serial Peripheral Interface (SPI) (1) ............................................. 104 

Figure 67 –Waveform of Serial Peripheral Interface (SPI) (2) ............................................. 104 

Figure 68 –SCI module RTL Schematic................................................................................. 105 

Figure 69 –Waveform of Serial Communication Interface (SCI) (1) .................................... 106 

Figure 70 –Waveform of Serial Communication Interface (SCI) (2) .................................... 107 

Figure 71 –Multiple ACFM model RTL Schematic ............................................................... 108 

Figure 72 –Eight paths system RTL Schematic ..................................................................... 109 

Figure 73 –RTL Schematic of the master path simulation structure ..................................... 110 

Figure 74 –Waveform of system testing (1) ........................................................................... 110 

Figure 75 –Waveform of system testing (2) ........................................................................... 111 

Figure 76 –Device Utilisation Summary ............................................................................... 113 

Figure 77 –DUS of one-single path system(Ma, 2010-2011) ................................................ 114 

Figure 78 –User Interface of Adept Software ........................................................................ 117 

Figure 79 –Serial communication realisation in Matlab ...................................................... 118 

Figure 80 –Bit stream from “COM2” captured in Matlab ................................................... 120 

Figure 81 –Bit stream from “COM5” captured in Matlab ................................................... 121 

Figure 82 –Format of the package in the visualisation software .......................................... 123 

Figure 83 –Design flow chart of visual display programme ................................................. 124 



 

  

 

10 

 

Figure 84 –User interface of visual display programme ....................................................... 125 

Figure 85 –Format of 11-bit frame ........................................................................................ 125 

Figure 86 –Visual display of the eight paths' ACFM results ................................................. 126 

Figure 87 –Visual display of the eight paths' ACFM results with crack ............................... 127 

Figure 88 –Design flow chart of DSP programme ................................................................ 129 

Figure 89 –Waveform of ADC sync. with DAC working principle........................................ 130 

Figure 90 –The Pmod connector service condition ............................................................... 131 

Figure 91 –Bit stream from “TxD_Com1”&” TxD_Com2” captured in Matlab ............... 132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

11 

 

List of Tables 

Table 1 –Two frames of the real data from TSC Company ..................................................... 40 

Table 2 – The ACFM results in the three methods .................................................................. 84 

Table 3 – Simulated input data ................................................................................................ 87 

Table 4 – Simulated data and expected results in Algorithm Secondary Module simulation . 98 

Table 5 – Simulated data and expected results in recursive adder simulation....................... 100 

Table 6 – Simulated data in SCI module simulation ............................................................. 106 

Table 7 – Comparison between simple eight paths and master & slave paths system .......... 115 

Table 8 – Simulated two frames from DSP ........................................................................... 119 

Table 9 – The expected ACFM results in Frame 3 and Frame 4 ........................................... 120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

12 

 

List of Equations 

Equation 1:  Time consumption of eight ADCs sampling one frame ...................................... 44 

Equation 2: Time consumption of SPI transmitting one frame in eight paths ......................... 44 

Equation 3: Time consumption of SCI transmission................................................................ 44 

Equation 4: Allowed time consumption of ACFM algorithm realisation in FPGA ................. 44 

Equation 5: ACFM Algorithm ................................................................................................. 47 

Equation 6:’P’ parameter representation ............................................................................... 51 

Equation 7:’Q’ parameter representation ............................................................................... 51 

Equation 8:’  ’ parameter representation ............................................................................... 51 

Equation 9:          representation .................................................................................... 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

13 

 

1 Introduction 

Rail tracks are subjected to intense bending and shear stresses, plastic deformation and wear, 

leading to degradation of their structural integrity with time (Ferreira and Murray, 1997). At 

the same time, tracks suffer rail failures, which have been a significant problem for more than 

150 years. Maintenance procedures have been developed over the years, but broken rails are 

still found in the rail network from time to time (Papaelias, Robert and Davis, 2008). In 

October 2000, the derailment at Hatfield highlighted the importance of the early detection of 

cracks in rails, which could help find potential safety hazards in order to prevent the accidents 

happening. In the final report relating to this accident, the Investigation Board claimed that 

the derailment began with a transverse fatigue crack and was followed with more failures 

which occurred as a reaction to the stresses induced in the unsupported rail(Office of rail 

regulation;, 2006).  Early detection of cracks in rails is of significant importance, since a 

single crack can potentially lead to fatigue failure of a rail and, as a result, the derailment of a 

train. The stresses sustained by the rails have increased in the last few years due to the use of 

higher train speeds and heavier axle loads (Papaelias et al., 2009). To combine with the 

substantial increase in axle loads and travel speeds, new harder steel grades, which show 

significantly higher wear resistance than steel grades used in the past are introduced in rails 

(Papaelias et al., 2010). For this reason, surface and near-surface defects due to rolling 

contact fatigue (RCF) have become one of the most common fatigue defects in rails. RCF is a 

rail head and near-surface defect caused by wheel and rail interaction. Figure 1 shows a rail 

section containing typical rolling contact fatigue (RCF) cracking. 



 

  

 

14 

 

 

Figure 1 –Typical RCF cracking found in rails (photograph is courtesy of Dr Garnham) 

The detection and quantification of RCF defects at the earliest possible stage is important, if 

maintenance costs are to be reduced followed by an improvement in existing safety standards. 

In order to reduce the extent of disturbance to railway system operations, non-destructive 

testing (NDT) is necessary. NDT is commonly used in infrastructure management by railway 

operators, such as Network Rail in Great Britain. Research on the application of NDT 

methods has been ongoing since 1877(Herring, 1877). 

 In the 1900s, Dr Sperry developed the first rail inspection vehicle using magnetic inducing 

sensors (Kube, 2005)(Bray, 2000). Since ultrasonic transducers were added to the Sperry test 

vehicles for the first time (Bray, 2000), the NDT concept for the high speed inspection of 

rails has been widely known. The rail industry commonly employs ultrasonic probes mounted 

on special test trains in order to inspect rails rapidly. But the inadequate detection on small 

(<4mm) surface defects of these ultrasonic systems these has been criticised for several years, 

and the potential application of other NDT technologies, including Alternating Current Field 

Measurement (ACFM) sensors(Lugg and Topp, 2006)(Topp and Smith, 2005)(Howitt, 2002), 

has been under investigation. 

The NDT technique used in the project is the ACFM technique. The ACFM technique is 

based on the principle that an alternating current (AC) can be induced to flow in a thin skin 



 

  

 

15 

 

near the surface of any conductor carried by high frequency ultrasonic carrier wave 

(Papaelias et al., 2010). If there are no defects present, the introduced remote uniform current 

will be undisturbed, otherwise, the uniform current is disturbed and the current flow around 

the ends and down the faces of the crack. TSC Inspection Systems (UK), who is the patent 

holder of ACFM, invented this concept in the 1970s. The ACFM probe integrated the 

transmitting and receiving of the high frequency ultrasonic carrier wave, which is normally 

50kHz. Then all the information of the rail surface is contained on the wave.  Then the signal 

on the reflected wave is needed to be processed by using appropriate signal data processing 

technique. In 2000, with the support of Bombardier Transportation, TSC began the 

development of ACFM applications in the rail industry. The objectives were to develop an 

ACFM system with a friendly user interface, capable of automatically detecting, sizing and 

thresholding train wheelsets. In the initial tests on previously rejected train axles, the 

developed ACFM system achieved an 84% Probability of Detection (PoD) in comparison to 

44% PoD for magnetic particle inspection (MPI)(Howitt, 2002), either due to failure on MPI 

or because of excessive surface corrosion, since the ACFM sensor requires no contact with 

component and can therefore be applied without the removal of surface coatings or grime. 

Following the experimental work on the train axles, it became distinct that an ACFM system 

could be applied to both detect and size RCF cracking on rails. This led to a new era of 

ACFM system. 

Figure 2(a) shows an ACFM Probe, AMIGO interface electronics and custom software 

running on a supporting laptop. The ACFM probes scan the rail, then data is sent for 

processing in the yellow box called the AMIGO box. After the ACFM algorithm calculation, 

the ACFM results are then sent to be visualised on a PC. Figure 2(b) shows the ACFM 

walking stick. The incorporated 8-ACFM sensor array installed at the bottom of the stick, has 

been shaped to conform to the shape of the rail head surface, which allows the ACFM system 



 

  

 

16 

 

applying in both new and worn rails. The technician can perform inspections in real time by 

reading the curves on the screen. 

 

 

 

 

 

(a)                                                                (b) 

Figure 2(a) -The ACFM Probe and the AMIGO box 2 

Figure 2(b) -The ACFM walking stick 

One of the limitations of current ACFM applications is the processing speed. Taking the 

AMIGO box and the ACFM walking stick as an example, they are electronics based system 

in which the analogue circuits are using to process data. 

In order to allow higher speed operation, the system could be realized in digital circuits, 

which is a more efficient and economic method. 

Digital signal processors (DSP) and field programmable gate arrays (FPGA) are the most 

popular conventional microprocessors that are used to implement digital signal processing 

operations. A DSP performs very efficiently compared to other off-the-shelf processors, 

especially for DSP-oriented tasks, such as complicated mathematical calculations due its 

internal structure. However, it may not be adequate for demanding tasks in some 

cases(Berkeley Design Technology, October 2002).  

TSC Inspection Systems (UK) successfully implemented the one single ACFM processing 

chain on a DSP platform. It achieved a significant increase in the processing speed. However, 

an 8-ACFM sensor array is needed to cover the rail head surface. Also the efficiency of 8-

ACFM parallel processing design is much higher than the serial processing design. In this 



 

  

 

17 

 

case, an FPGA is ideal for the 8-ACFM parallel processing chain expansion, since FPGA has 

the potential for very high parallelism(Berkeley Design Technology, October 2002).  The 

internal structure of an FPGA is an amorphous "sea" of reconfigurable logic with 

reconfigurable interconnect, giving FPGA higher internal bandwidth and capacity for highly 

demanding tasks. An FPGA, however, will not necessarily be optimised for specific 

mathematical functions in the way that a DSP would. Therefore, TSC Inspection Systems 

(UK) began to consider building up an 8-ACFM sensor array and parallel processing system 

using an FPGA. FPGA is capable for parallel, but the bottlenecks needs to be addressed, 

which are speeds of external interfaces. 

This project is conjunction with TSC Inspection Systems (UK) to develop an FPGA system 

for parallel processing of ACFM data from 8-ACFM sensor array.  

The latest progress before this project is that one single ACFM processing chain has been 

built and verified using an FPGA. The author is carrying on the development and undertaking 

the research in expanding the single ACFM processing chain to an eight parallel ACFM 

processing chains system. 

2 System overview 

2.1 System requirements 

This project aims at building the ACFM processing chain on the FPGA platform. The ACFM 

algorithm is the cumulative sum of the calculation results of a series of data acquired through 

ACFM sensor. The calculation of each data is a complex procedure, which includes division 

at carrier wave frequency and sampling frequency; trigonometry operations on the sampling 

starting phase; multiply operations on the polynomials etc.  The intermediate variables are not 

all integer but decimals also. Therefore, to realise the ACFM algorithm on an FPGA, the 

challenge is the data format that should be used to represent non-integer values in FPGA. 



 

  

 

18 

 

Ideally fully floating point representation would be used, but that is computationally 

expensive. Therefore, fixed point representation is considered. Fixed point is a data type 

between integer and floating point. Fixed-point arithmetic is based on integer mathematics, so 

it can operate efficiently and fast. 

In this design, the fixed point data format that is defined in VHDL package is used to perform 

the fixed-point arithmetic. The package defines two new data types: "ufixed" is the unsigned 

fixed point and "sfixed" is the signed fixed point. 

In order to make the ACFM processing chain on the FPGA capable of verification and 

simulation, the system on the FPGA should be able to perform external communication. 

The target system is generally divided into three parts. The first part is realised with a DSP 

Digilent board to perform real-time data acquisition.The second part is the main algorithm 

part, which is realised by using an FPGA development board to carry out mathematical 

calculations of the ACFM algorithm and get the data for visualisation. The third part is the 

terminal end - PC, receiving the data through a serial communication port from FPGA 

outputs and displaying the data on the screen. The system description will be laid out in 

Section 2.3. 

The design has been integrated into an Xilinx Spartan-6 (XC6SLX45) FPGA chip (Figure 8). 

The internal programmable logic components, known as “logic blocks”, perform the function 

realisation and link components. The architecture guarantees a fast internal processing speed 

in the FPGA. Moreover, using a re-configurable device makes the system very flexible. An 

upgrade of functions or new configurations can be made easily (Brizuela, Ibanez and Fritsch, 

2010). Considering the three steps of the target system design, the third part is the bottleneck 

of the speed issue since the serial communication speed is much lower than the FPGA 

internal processing speed. 

app:ds:real-time
app:ds:data
app:ds:acquisition


 

  

 

19 

 

2.2 High speed processing specialty 

Inspection speeds of up to 121.5 km/h were carried out using a turning lathe test rig for 

ACFM experiments. Results from the experiments carried out on the rail rig at the 

Birmingham Rail Research Centre at up to 48 km/h have also been reported (M Ph Papaelias, 

2009)(Papaelias et al., 2009)(Papaelias et al., 2008). This project aims to achieve high speed 

parallel data processing in order to realise high-speed inspection on rail tracks. Initially, the 

project is set as doing experiment on the rail track surface using ACFM probes. However, 

due to the complicated connection work of the 8-ACFM probe as well as the shortage of the 

probe during the research, the real data provided by TSC company is used as the input.    

Regardless of the frequency of the ultrasonic carrier wave, FPGA should guarantee the 

processing speed, which should be fast enough to finish the calculation and transmission 

work during the gap between the adjacent two data points. 

As mentioned the bottleneck of the speed issue in the system is the serial communication 

part.   

The internal oscillator offers a 100 MHz global clock. The FPGA can adapt to a number of 

different configurations. The system parameter settings are discussed in detail in the 

methodology section (Section 4.3). 

2.3 System description 

The target system of this project is a totally new research field which has never been realized 

before. The ACFM probes are still playing the role of real-time data acquisition. And, the 

FPGA takes the responsibility of processing the data of the eight paths. Unlike a single probe, 

the digital data will be transferred to an FPGA board through multiple paths. In order to offer 

a high data processing speed, the input signals of FPGA from the multi-channel acquisition 

will be parallel processed. In the meantime, FPGA communicates with the output interface 



 

  

 

20 

 

and the data transmission rate (baud rate) needs increase to ensure sufficient speed for the 

eight paths processing chain. 

2.4 The system with 8 parallel processing chains 

The digital system of eight parallel processing chains consists of eight ACFM probes, a 

digital signal processor (DSP), an FPGA device and a PC (shown in Figure 3). The DSP is 

used as an analogue to digital converter (ADC) to import the raw probe signals and takes the 

responsibility of sending the ultrasonic carrier wave to the probes and delivering the digital 

data to the FPGA inputs through its serial peripheral interface (SPI). The FPGA is used to 

process the data of the eight paths in order to realise ACFM algorithm. The PC is used to 

display the curve of the ACFM results.  

Sensor

FPGA Development Board PCDSP RS232

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

Analog data

Carrier wave

SPI Comm

  

 

 

Figure 3 –The general FPGA based ACFM system structure for 8-ACFM array probes 

The digital data converted in the DSP is sent to the FPGA through the SPI. So, the external 

communication between the DSP and the FPGA is serial data transmission. In order to 

guarantee the high speed specialty of the system, the communication speed of the SPI is one 

of the key parameters. To allow the communication speed of the SPI setting to be high, the 

Acquisition         Processing        

Visualization       



 

  

 

21 

 

FPGA parallel processing structure is beneficial, since the data sent through the SPI do not 

need to be latched until the whole FPGA processing chain finishes working on the last round. 

Furthermore, the FPGA parallel processing structure is not simply eight copies of one single 

ACFM processing chain, but aims at achieving short time consuming of the processing with 

the least usage of FPGA internal components.  

As mentioned above, the FPGA operates in a more sophisticated way than a DSP when 

facing DSP-oriented architecture features tasks, such as complicated mathematic calculations. 

So during the unpacking work of the single ACFM processing chain, the mathematical 

modules should be avoided to repeating in eight chains. 

The serial communication through the RS-232 between the FPGA and PC is another key 

point for the realisation of high speed specialty. The baud rate setting should be considered, 

in order to meet the requirement of both high precision and fast bit flow. 

2.5 Dissertation structure 

In the dissertation, the development history of the NDT technique for rails, the development 

of digital signal processing and FPGA applications now in use are introduced in Section 3, 

the literature review. The tools used in the project, including software and hardware, and the 

system design are described in detail in Section 4, the methodology section. Simulation 

results and synthesis results of the eight ACFM channels parallel processing system are 

demonstrated in Section 5 and 6. The visualization on a PC is discussed in Section 7 and the 

DSP programme is included in Section 8. The conclusion of this project and the future work 

are discussed in Section 9 and references are in Section 10. 



 

  

 

22 

 

3 Literature Review 

3.1 Overview 

Railway services play an important role in transport networks in the UK and Europe. With 

the existing rail network, passengers can easily travel cross-border and intercity between the 

UK and Europe. Total passenger kilometres in 2007-08 were 49 billion, an increase of 

6.0 percent in the United Kingdom on 2006-07 (Board, 2007-2008). This compares with an 

increase of 7.0 percent between 2005-06 and 2006-07. From these increasing figures in 

national railway development, it can be seen that the rail service is becoming a more popular 

transportation option. 

Railway tracks are expected to withstand bending and shear stresses, plastic deformation and 

wear, but these still result in slow degradation of their structural integrity over time.  

Under normal circumstances, rail failures can be divided into three types (Cannon, 2003): 

I. Manufacturing defects;  

II.  Improper usage, handling or installation;  

III. Structural degradation due to fatigue or corrosion of the rail. 

Rolling Contact Fatigue (RCF) is considered to be the third type of failure mentioned above.  

RCF is the rail head and near-surface defect caused by wheel and rail interaction. Defects in 

in-service rails can be present in the rail head, web or foot. This project concentrates on high-

speed detection of rail head defects, so the ACFM technique which is capable to detect the 

rail head surface cracking could meet this requirement. Ideally the system used for 

identifying such defects should be a high speed train based automatic inspection. The 

equipment integrating all these features is still under research, the progress of which is good. 

Inspection speeds up to 121.5 km/h were carried out using a turning lathe test rig in ACFM 



 

  

 

23 

 

experiments. Results from the experiments carried out on the rail rig at the Birmingham Rail 

Research Centre up to 48 km/h have also been reported (M Ph Papaelias, 2009)(Papaelias et 

al., 2009)(Papaelias et al., 2008). Currently, in general, the ACFM technique is limited by 

various factors in addition to the speed of the data processing systems. Researchers are 

therefore currently seeking a more comprehensive and accurate way to enhance ACFM 

performance in order to meet the requirements of high speed detection. So far, some progress 

has been achieved. Researchers have verified the feasibility of using a digital processing 

system to detect cracks. However, the inspection “walking stick” (Figure 2(b)) is manually 

operated so far. The limitations mainly concern the coverage and the digital data processing 

system. These problems will be focused on in this project by developing a parallel processing 

system using an FPGA device connecting with an eight ACFM probes array. 

3.2 Non-destructive testing (NDT)  

To provide a good and reliable service, the railway companies check and maintain the rails on 

a regular basis. Railway safety has been a core issue in need of attention. Therefore, various 

Non-destructive Testing (NDT) technologies have been used to find cracks on rails. As 

discussed above, research on the application of NDT methods has been ongoing since 1877 

(Herring, 1877), and the first rail inspection vehicle using magnetic inducing sensors was 

developed after 50 years (Kube, 2005)(Bray, 2000). Magnetic induction was the only 

technique available for the high speed inspection of rails until 1953, when ultrasonic 

transducers were added to the test vehicles for the first time (Bray, 2000). Since then, the 

NDE concept for the high speed inspection of rails has remained largely unaltered (Papaelias, 

Robert and Davis, 2008).  

Ultrasonic inspection is the most common technology for checking rails and put into rail 

industry, the inspection speed of which can reach 75 km/h(Thomas, Heckel and Hanspach, 

2006). In ultrasound, normally the ultrasonic energy generated by a piezoelectric element 



 

  

 

24 

 

beam is propagated to the rail, and a detection sensor collects the energy of the reflected 

transmission beam and the scattered transmission beam. This inspection is carried out by a 

variety of different instruments ranging from manual hand-held devices, through automatic 

dual-purpose road/track vehicles, to test fixtures that are towed or carried by dedicated rail 

cars. More recently, considering the ability to propagate around curved surfaces with little 

energy loss of Shear horizontal ultrasound, Steve Dixon in University of Warwick has used 

Shear horizontal (SH) ultrasound guided waves in measuring a 0.83 mm thick aluminium 

sheet with a shallow bend introduced and got good experimental agreement with an analysis 

model elucidates the reflection process. (Fan, 2007) 

 However, the performance of existing conventional ultrasonic probes in detecting small 

(<4 mm) surface defects such as head checks and gauge corner cracking is inadequate during 

high speed inspection (Papaelias, Robert and Davis, 2008). In addition, the presence of larger 

and more critical internal defects can be shadowed by smaller surface cracks during 

inspection. Because of these problems, the current international practice is to combine non-

destructive evaluation of the rail network with preventative maintenance procedures, such as 

rail head grinding, in order to optimise the trade-off between maintenance cost and structural 

reliability (Schöch, 2004)(Anami, 2004)(Grassie, 2005)(Schöch and Heyder, 2003)(Schöch, 

Heyder and Grohmann, 2006)(Grassie, 2005)(Pohl, Krull and Meierhofer, 2006). 

In order to overcome the problems with ultrasound inspection, conventional ultrasound 

transducers and Magnetic Flux Leakage (MFL) sensors are combined. In MFL, permanent 

magnets or direct current (DC) electromagnets are deployed to generate a magnetic field in 

order to magnetize the ferromagnetic specimen under inspection to saturation. The magnetic 

flux lines are coupled into the specimen using metal 'brushes' or air coupling. Once there are 

any anomalies or inclusions, the magnetic flux lines will leak outside the specimen in 

proximity of the anomalies and then the sensor or sensor array will detect the leakage 



 

  

 

25 

 

magnetic field, which corresponds to anomalies or inclusions such as corrosions, cracks, 

groovings, etc(Burd, April 2005)(Drury and Pearson, April 2005). The search coil, which is 

placed a fixed distance from the rail, is used to detect the changes in the magnetic field near 

the rail head generated by the DC solenoids (Clark, 2004). The method can detect smaller 

surface defects (cracks in the head and corner cracking) than normal ultrasonic. However, as 

the speed of inspection increases, the magnetic flux leakage sensor performance quickly 

deteriorates due to the decrease in magnetic flux density (Ireland and Torres, 2005) 

(Mandayam et al., 1996) (Li, Tian and Ward, 2006). 

More recently, Pulsed Eddy Current (PEC) probes have been added on certain ultrasonic test 

trains to offer increased sensitivity in the detection of surface defects at high inspection speed 

(Clark, 2004)(Thomas et al., 2000)(Junger et al., 2004)(Thomas, Heckel and Hanspach, 2006) 

The eddy current test method for rails was adopted by industry in 1999 by the German Rail 

plc. It is sinusoidal alternating electrical current of a particular frequency used to excite the 

probe, which is especially for checking the rail surfaces for RCF. The PEC technique 

improves from the eddy current method by using a step function voltage to excite the probe, 

the advantage of which is that it contains a continuum of frequencies, then the 

electromagnetic response to several different frequencies can be measured with a single step. 

On the other hand, the ultrasound technique aims at measurement in the rail bulk volume, 

which is not feasible using the PEC technique. However, experience gained from application 

has shown that clear improvement on rail inspection can be achieved. The defects that have 

been classified using ultrasound test can be further labelled as 'distinguished positions' using 

the PEC technique(Thomas, Heckel and Hanspach, 2006). The ultrasound technique 

combined with the PEC probes perform far better than MFL sensors at higher inspection 

speeds but are affected more by lift-off variation. The signal strength for a given defect 

decreases as lift-off increases with a cubic index (Papaelias, Robert and Davis, 2008). 



 

  

 

26 

 

Alternating Current Field Measurement (ACFM) probes ultrasonic test system is another 

system for the detection of orbital cracks. It has a high ability to detect the smaller near-

surface and surface ruptures of the rail head. When lift-off is constant and while increasing 

speed, the ACFM signal is largely unaffected. Moreover, the signal strength for a given 

defect decreases as lift-off increases with a square index, which is an improvement compared 

with PEC probes (Papaelias et al., 2009). 

The following sections describe, in more detail, how the ACFM technique works. 

3.3 ACFM principle 

Alternating Current Field Measurement (ACFM) is an electromagnetic detection method; it is 

able to detect surface breaking cracks in metal and measure the size (length and depth) of 

them(Howitt, 2002). The ACFM method is selected because it has high reliability for small 

near-surface and rail head surface cracks.  

In contrast with PEC sensors, that requires to be placed at a close (<2mm) and constant 

distance from the inspected surface, when using ACFM probes the maximum lift-off can 

reach 5 mm. For larger threshold defects, several millimetres deep, a higher operation lift-off 

(>5mm) is possible(Howitt, 2002). In the ACFM method, a locally uniform, unidirectional 

current is induced into the rail, resulting in a magnetic field above the rail that can be 

measured. The constant current source and a constant magnetic field sensor-driven incident 

field are used to monitor changes in the surface magnetic field (Lewis et al., 1988). If the 

direction or strength of the current changes, the effect of the incident field on the flowing 

anion in the current would result in the magnetic field change based on the theory of 

electromagnetic effects. Based on these changes, it is possible to estimate the size of the 

cracks. All of these results can be obtained just through appropriate monitoring and analysis 

of the changes in the magnetic field. Current is undisturbed if there is no crack, however, if 



 

  

 

27 

 

there are cracks, the uniform current is interrupted. The presence of cracks disrupts the 

electric field distribution. Through appropriate monitoring of the magnetic field, the crack 

can easily be detected. 

The magnetic field described above is a complex three-dimensional field. However, the 

magnetic field parameters can be measured by selecting the appropriate orthogonal axes 

(Dover et al., 1981).  

 

Figure 4 – Definition of field directions and co-ordinate system used in ACFM (Taken from 

reference(Nicholson and Davis, 2012)) 

Figure 4 shows the definitions of field direction and coordinate systems used in the ACFM. 

The rail section is lying in the x-y plane. The current flows in the y-direction which induces a 

uniform magnetic field above the rail section. The presence of a defect leads to changes to the 

current density around the crack since some of the current flows along the crack faces and 

around the crack ends. Hence the x-component of the associated magnetic field,   , is 

reduced over the majority of the crack length, but is increased at the crack ends. The severity 

of the defect can be assessed by measuring the maximum reduction in the x-component of the 

magnetic field from the background level. So the    component corresponds to the reduction 

in current surface density as the current flows down the crack and is indicative of the depth of 



 

  

 

28 

 

the defects (Papaelias et al., 2009). The    component is used in the analysis to give the 

length of the crack. The crack length can be obtained based on the distance between the 

trough and peak in the z-component of the magnetic field (Nicholson and Davis, 2012). The 

author is working on inspecting the depth of cracking. A standard depth indication figure is 

shown in Figure 5. 

 

Figure 5 –Standard waveform of the Proportion of ACFM results on a rail section with 

spark-eroded slots(Papaelias et al., 2010) 

The experiment is the ACFM inspection on rail surface breaking crack using a high-speed 

single-channel micro-pencil probe manufactured by TSC Inspection Systems with the lift off 

at 2mm. The ACFM response shown in Figure 5 is the depth indication of rail cracks, which 

is    waveform. For a healthy rail section, the waveform should be a steady line always 

staying on the top. Also, the trough in the ACFM response increases with increasing defect 

depth. So there is more than one depth of cracks in the figure. 



 

  

 

29 

 

The author is working on inspecting the variation of the waveform, where is the indication 

the crack. And the working on getting from the proportion to measurement is undertaking by 

Dr Nicholson (Nicholson et al., 2013). 

Therefore, by proper analysis, the approximation of the size of the cracks could be estimated. 

ACFM probes can be used as standard pencil probes and array probes. These probes can be 

customised in order to optimise the inspection of particular structural component under 

certain situations. To make best use of an array probes, it is necessary to switch the sensors as 

quickly as possible in order to allow rapid inspection, and needs to balance the limitations, 

which includes switching settling times, data transfer rates and limitations in the signal 

sampling. With conventional analogue electronics, these factors limit the speed of scan for 

array probes to around 0.15m/s for a single field 16-channel array(Papaelias et al., 2009). In 

order to improve the performance of the ACFM array probes a high-speed instrument, digital 

construction device, has been developed which allows scanning speeds 4-5 times faster than 

the conventional ACFM instrument, which is achieved by increasing the energising 

frequency from 5 kHz to 50 kHz together with modifications to the signal processing 

electronics(Lugg and Topp, 2006)(Topp and Smith, 2005). 

The ACFM experiments were carried out at inspection speeds up to around 100km/h using a 

turning lathe-based test rig. A high-speed single-channel micro-pencil probe manufactured by 

TSC Inspection Systems was utilised during testing. The pencil probe operates at a frequency 

of 50 kHz, which in digital processing point of view is 50 kHz carrier wave frequency. The 

data acquisition rate during tests is 2 MHz. 

3.4 FPGA in digital signal processing application  

Digital signal processing can be defined as representing a signal by a sequence of numbers or 

symbols and processes which are performed on the signals to enhance the desired energy 



 

  

 

30 

 

components and discriminate against noise and interference corrupting the signal (Grant, 

1993). Digital signal processing has become increasingly common in our daily lives. It is 

used in a wide range of applications such as data communications, voice, audio, and 

biomedical signal processing (Jones and Watson, 1990). People can use conventional 

microprocessors, DSPs or FPGA boards to implement digital signal processing operations. 

DSP processors are specially designed for high computational performance and signal 

calculation. 

In recent years, FPGAs have become increasingly attractive signal processing engines due to 

their large internal broadband and economical efficiency. FPGAs have now been used in 

various applications, which were generally previously implemented using DSPs. Currently 

FPGAs are used in various applications such as aerospace, designed with radiation tolerant 

FPGA (Gao and Teng, 2008); the education system, where implementation of a DSP trainer 

served as an educational tool to effectively teach the fundamental principles of digital signal 

processing (Rosula et al., 2008); and medical applications, serving in video and image 

processing systems for surgical and video recording and image enhancement for patient 

monitoring and diagnostic applications (Nair, 2008).  

The Digital Signal Processor (DSP) was used for signal analysis in the previous work of TSC 

Inspection Systems (UK). However, as mentioned above, Field Programmable Gate Array 

(FPGA) technology is gradually replacing DSPs to do signal processing because of its 

advantage in flexible internal structure and the potential for very high parallelism(Berkeley 

Design Technology, October 2002). The speed requirements of non-destructive inspection on 

the railway system are very exacting. FPGA processing speed could meet these requirements, 

especially in the case of parallel data processing. In this project, an FPGA development board 

is used to perform the signal processing. 



 

  

 

31 

 

In the FPGA, each design can be summarised as a module. These ready-made modules can be 

easily ported to any other design, and perform the same function. Such a module can be 

applied in any design; this is called modularity. 

In the past, ACFM systems were purely based on using the analogue circuits to do signal 

processing. The AMIGO box is the instrument developed by TSC to realise the ACFM 

inspection in an analogue circuit. The limits were that they could not process data at high 

speeds.  

The project in conjunction with TSC Inspection System (UK) is to develop an FPGA system 

for parallel processing of ACFM data. The latest progress before this project is the real-time 

acquisition data processing chain of one single probe have been realised on FPGA. The 

results are encouraging and a good starting point for this work. However, the one single 

ACFM probe system cannot meet the requirements of automatic crack inspection. When the 

ACFM probes are fixed in position on a measurement train, the requirements should include 

covering the whole rail head because cracks can appear in different locations on the surface 

of the rail head. To meet this requirement, the multiple ACFM probes should be oriented in 

an array configuration across the rail head; in this way more information of the rail head 

surface could be collected. The information from multiple probes could also help with crack 

sizing.  

The author undertakes the further research to expand the single ACFM system to eight 

parallel ACFM system. The objective of the project is to develop a digital system on one 

FPGA board to process the ACFM data acquired by the multiple ACFM probes array which 

connects with the DSP board (analogue to digital conversion). In order to ensure the data 

processing speed, the input signals to the FPGA from the multi-channel acquisition are 

chosen to parallel processed. At the same time, the FPGA output data transmission rate (baud 

rate) has to increase to ensure high-speed data flow.  



 

  

 

32 

 

3.5 FPGA for ACFM 

The digital intelligent device chosen to implement the NDT method, the ACFM technique, is 

the FPGA development board in this project. 

The economical efficiency and high speed processing specialties of FPGA have brought it 

into researchers’ field of vision. FPGAs have been applied in detecting railway wheelflats. 

The system realised on FPGA operates with the train moving at low speed over a measuring 

rail. Ultrasonic surface wave pulses are sent at regular intervals and echoes are acquired and 

processed by the system (Brizuela, Ibanez and Fritsch, 2010). Applying FPGAs to rail 

inspection, the digital method has been validated and realized by researchers with real-time 

acquisition at low speed in manual inspection. 

The progress having achieved in this project is that the ACFM system has been connected 

with one single ACFM probe, which has been realised on the FPGA(Ma, 2010-2011). 

 

Figure 6 –The general ACFM system structure with single probe 

Figure 6 shown above is the general ACFM system structure with one single ACFM probe. 

The real-time acquisition is realised by the ACFM probe. The conversion of analogue signal 

to digital signal is implemented by the DSP chip. After the FPGA board finishes the data 

processing, the processed data is passed to the computer via the RS-232 protocol.  



 

  

 

33 

 

4 Methodology 

From Figure 3, the general system structure diagram of the multiple paths ACFM system, it 

can be seen that the system is comprised of a DSP development board, an FPGA device and a 

PC. In this section, each of these three parts will be discussed. 

Before moving to the description of each part in the system, the working environment and 

tools will be introduced first. 

4.1 Design tools 

4.1.1 Software tools 

1) ISE Design Suite 13.2 

The integrated system environment (ISE) design suite is developed by Xilinx Company. It is 

a tool used to provide users with a programming design, synthesis and simulation 

environment, and it is compatible with third-party simulation software. This design tool 

achieves a perfect combination of design and productivity. In this project, the designer has 

chosen the FPGA chip from Xilinx Company. Xilinx ISE Suite13.2 is used to program the 

FPGA development board. 

Specifically, with Xilinx ISE Suite13.2, users can program in HDL language, compile code 

and synthesis. A simulation tool is also integrated. The compiled program with the design of 

the user can be downloaded into the hardware through the JTAG (Joint Test Action Group) 

cable, which was initially devised by electronic engineers for testing printed circuit boards 

using boundary scan and is still widely used for this application. 

2) Xilinx Core Generator System (IP Core Generator) 



 

  

 

34 

 

The Xilinx Core generator system is a tool used to deliver the parameterised functional 

modules which have already been pre-designed and optimised. The aim of this system is to 

accelerate the FPGA designing procedure and avoid re-inventing the existing modules which 

are frequently used by designers. Xilinx Intellectual Property (IP) is the key building block of 

Xilinx Targeted Design Platforms. It helps in maximising design flexibility and reducing risk, 

also reducing project duration. The cores are delivered through the Xilinx CORE Generator 

System and integrate seamlessly with the Xilinx design flow. 

In this project, the Xilinx CORDIC v4.0 is used to perform the calculation on the sine and 

cosine functions of the input phase angle. The inputs and outputs are represented using fixed 

point numbers in order to interface with the other cores. Floating point elements are used 

within this core. 

Having introduced the software tools used in the project, an introduction to the hardware will 

follow. 

3) ModelSim 10.0 (Simulation) 

In this project, ModelSim is used to perform the simulation on each module from low level 

entity to top-level entity. The simulation is considered as an important part of the design 

verification process. Considering the compatibility with Xilinx ISE Suite 13.2, ModelSim 

10.0 is the suitable version to use. 

Figure 7 shows the simulation flow that used in this project. 

app:ds:compatibility


 

  

 

35 

 

 

Figure 7 – Basic Simulation Flow 

In this simulator, there are many debugging methods. The most common method is to view 

the waveform of each signal with time, in which way the behaviour of each signal can be 

easily inspected. Once the behaviour of the module is not what is expected, ModelSim, using 

its robust debugging environment, could help to track down the cause of the problem. 

4.1.2 Hardware - ATLYS 

In this project, the Atlys FPGA board is used to perform prototyping. The picture is shown 

below in Figure 8. 

 

Figure 8 –Picture of ATLYS FPGA Board 



 

  

 

36 

 

The Atlys board combines a high-capacity Spartan-6 FPGA with the circuits and devices 

needed to create the comprehensive design platform. The board has On-board USB-based 

FPGA configuration circuitry, which makes downloading the project file (.bit file) to the chip 

much more convenient than download through the JTAG cable. Moreover, On-board, real-

time power supply monitors provide the board a safe power environment and also provide the 

users with a safe working environment. The board also has advanced clocking circuits and 

the crystal oscillator on-board is 100 MHz.  

The Atlys board has a 68-pin VHDC connector for high-speed/parallel I/O and an 8-pin 

Pmod connector for lower speed and lower pin-count I/O. Two pins from the 8-pin Pmod 

connector are used to send data to PC. In this project, the other 6 IO are used to perform the 

SPI communication with the DSP board. 

In FPGA development, it is common practice for people to start their prototyping on an 

FPGA development board before moving on to produce the final product. The same practice 

is applied in this project. The important thing is that the chosen development board must 

utilise an FPGA chip that consists of large enough number of logic gates, cores, multipliers, 

etc. to support the implementation. At the beginning of the project, the Xilinx Spartan-3AN 

FPGA Starter Kit Board, which consists of Spartan 3AN (XA3S700A) was used. It is 

sufficient to be used in a one-single path system, but not enough for expanding into eight. 

The Atlys FPGA board which comes with Spartan-6 (XC6SLX45) is suitable for this project. 

The development board helps to shorten the development time and also the time to market the 

product.  

The FPGA development board is used to verify the processing algorithm in FPGA. The 

FPGA development board helps in speeding up the development process by eliminating the 

need to construct the hardware connection with an FPGA silicon device. The FPGA 

development board also provides existing various interfaces which can be used to 



 

  

 

37 

 

communicate with other devices, such as the 68-pin VHDC connector and 8-pin Pmod 

connector in the ATLYs board. 

Having introduced the working tools and devices, the desired system designs are now 

considered. 

4.2 System parameter setting requirements 

The project is defined in conjunction with TSC Inspections Systems Ltd. The requirements 

they expect are described below as mandatory features and preferred features. 

Mandatory features 

1) Process NDT data from 8 channels  

2) The analogue to digital convertor (ADC) in each channel runs at 1 MSPS (Mega  

Samples Per Second) 

3) 12-bit quantisation for the ADC and 16-bit data processing in FPGA 

4) An eight channel parallel ACFM algorithm implementation in FPGA 

5) The baud rate can reach 1 Mbps 

6) The input interface of FPGA could fit into an eight DSP chip output interface 

7) Synchronization of 8 probe data processing chain 

8) Visualisation of 8 channels’ results  

Preferred features 

1) The ADC in each channel runs at 2 MSPS. 

2) The structure of the DSP system could be simplified from 8 DSPs to 1 DSP. 

3) The system could accommodate other parameter configurations, such as carrier 

frequencies, sample frequency and sampling starting phase, etc. 



 

  

 

38 

 

The first mandatory feature (MF1), fourth mandatory feature (MF4) and seventh mandatory 

feature (MF7) refer to the capability of the processing chain on FPGA, which should be able 

to operate synchronized parallel ACFM algorithm and perform external communication with 

ACFM data from 8 channels. 

The second mandatory feature (MF2) and first preferred feature (PF1) are two corresponding 

requirements, and PF1 is the enhancement of MF2. By increasing the sampling rate of the 

ADC, a higher resolution could be achieved and then higher speed detection could be 

performed. 

MF3 decides the quantisation resolution of ADC and data width of ACFM data. Assume the 

normalized analogue voltage is 0 to 5V, the resolution of 12-bit quantisation is 1 mV. 

MF5 decides the baud rate of SCI communication between FPGA and PC terminal. As 

mentioned before, the SCI communication is the bottleneck of high speed realization. The 

front of the system design is based on 1 Mbps baud rate. The details are discussed in Section 

4.3. 

MF6 and PF2 are two corresponding requirements and PF2 is the enhancement of MF6. The 

first part of system is real-time data acquisition, which could be realized by using eight DSPs 

or one DSP connecting to eight ACFM probes. The eight DSPs connection saves work on 

DSP programming, but the structure of which is complicated. In contrast, the one DSP 

connection demands complicated programming, but the structure is simple and neat. 

MF8 is the third part of system requirement, and the visualization tool is optional. 

PF3 is the requirement of the scalability of system, which allows different parameter settings 

into the system for the future possible extension. 

The system design is strictly based on the principles listed. The detailed system design is 

discussed in the methodology section (Section 4). 



 

  

 

39 

 

4.3 Desired system design 

The system level design will be discussed in this section. 

In the system level design, the most important issue is how to transmit the bit flow acquired 

from the top to the end. The transmission inside each part and between each part both need to 

be taken into consideration. 

Table 1 shows the input combination that is used in the simulation. These example data are 

provided by TSC Company, which are collected using an ACFM probe of the designed 

settings (discussed in Section 4.2). 

 

 



 

  

 

40 

 

Table 1 –Two frames of the real data from TSC Company 

 

Frame 1 Frame 2 

Element Clip 1 Clip 2 

N 40 40 

β 260 260 

Fc, LSB 50000 50000 

Fc,MSB 0 0 

Fs,LSB 33950 33950 

Fs,MSB 30 30 

a[0] 834 832 

a[1] 770 763 

a[2] 736 714 

a[3] 758 761 

a[4] 788 754 

a[5] 888 867 

a[6] 998 974 

a[7] 1162 1129 

a[8] 1361 1325 

a[9] 1540 1510 

a[10] 1765 1726 

a[11] 1988 1969 

a[12] 2234 2167 

a[13] 2495 2457 

a[14] 2692 2659 

a[15] 2939 2935 

a[16] 3163 3132 

 

 

Frame 1 Frame 2 

Element Clip 1 Clip 2 

a[17] 3343 3294 

a[18] 3522 3492 

a[19] 3612 3598 

a[20] 3745 3741 

a[21] 3777 3794 

a[22] 3832 3801 

a[23] 3824 3864 

a[24] 3750 3760 

a[25] 3697 3704 

a[26] 3547 3578 

a[27] 3415 3417 

a[28] 3235 3290 

a[29] 3021 3036 

a[30] 2813 2841 

a[31] 2556 2601 

a[32] 2332 2346 

a[33] 2092 2092 

a[34] 1824 1916 

a[35] 1628 1632 

a[36] 1430 1443 

a[37] 1208 1245 

a[38] 1071 1104 

a[39] 942 920 

 

 

 



 

  

 

41 

 

From the table it can be seen that two sets of data are provided, and each of them is one frame 

of converted digital ACFM data and has 46 elements. The frame consists of 6 header data (   

= 6) and 40 samples (N = 40). 

In the frame, Fs (ADC sampling frequency) is represented as a combination of MSB (Most 

Significant Bit) and LSB (Least Significant Bit), since the data width is 16-bit, the maximum 

value of which is          . So the Fs value in the frame is                  

     . 

The parameters in the table are the carrier wave frequency “Fc”, sampling frequency “Fs”, 

number of sampling points in each clip “N” and sampling starting phase “β” (between zero 

to two pi). These parameter settings are in the header of each frame (“clip”). Only a[n] 

changes according to the condition on the rail tracks. 

The front part, the DSP, sends a 50 kHz carrier wave to the ACFM probes. The probes send 

the wave to the inspected track surface and get the reflected wave back. At the same time, the 

2 MHz sampling rate ADCs in the DSP, which are working all the time, now sample the 

carrier wave to get 40 points to store in a[n]. The whole process repeats eight times, and then 

it goes back to the beginning. The data will be stored in the DSP memories before it is sent to 

the FPGA through a SPI by a 6.25 MHz communication clock. 

In order to guarantee the high speed bit stream, the communication speed is set at 6.25 Mbps, 

since with this speed, the time gap between each time sampling is less than 0.1 milliseconds. 

And even if the train is running at 400 km/h, the distance between the two adjacent sampling 

times is shorter than 0.6 mm, which quite satisfies the cracking size of ACFM equipments 

detection. 

A summary of the system settings is set out below: 

1) Number of paths    = 8 



 

  

 

42 

 

2) Carrier wave frequency Fc = 50 KHz 

3) ADC sampling frequency Fs = 2 MHz 

4) ADC sampling data bit width    = 16 bits 

5) Sampling points in each period N = 40 

6) Header length in each frame    = 6 (detail discussed in Sections 3.3 & 5.2) 

7) SPI communication clock      = 6.25 MHz 

8) SCI transmission speed baud rate = 460800 bps 

9) Number of serial ports used = 2 

In Figure 9 is the desired system flow chart with settings. 

 



 

  

 

43 

 

Figure 9 –Desired system flow chart 



 

  

 

44 

 

With these system parameter settings, the approximate time consumption of each part of the 

system can be viewed. They are listed below: 

1) The time consumption of eight ADCs sampling one frame is the time spent on sampling 

40 samples in eight channels; the ADC sampling frequency is 2 MHz. 

       
  

    
         

Equation 1:  Time consumption of eight ADCs sampling one frame 

2) The time consumption of the SPI transmitting one frame in eight paths is the time spent 

on the 46 16-bit elements (6 elements in the header and 40 samples) in one frame in eight 

channels; the SPI communication bandwidth is 6.25 MHz. 

       
         

       
          

Equation 2: Time consumption of SPI transmitting one frame in eight paths 

3) Two serial ports are used for SCI transmission, and each port transmits the final results 

of 4 channels. As stated in RS-232 protocol, the 16-bit data needs to be divided into 8-bit 

MSB and 8-bit LSB to transmit, and 1 bit staring bit and 1 bit stop bit need to add into 

the 8-bit data.  

       
        

      
         

Equation 3: Time consumption of SCI transmission 

4) So the time consumption allowance of the ACFM algorithm in FPGA: 

                            

=>               

Equation 4: Allowed time consumption of ACFM algorithm realisation in FPGA 

The settings are aimed at meeting the system requirements of TSC Inspection Systems (UK). 

From the timing issue analysed above, it can be seen that the time consumption inside the 

(1) 

(2) 

(3) 

(4) 



 

  

 

45 

 

FPGA processing is small compared with the data transmission speed between each device. 

Hence, it indicates that the FPGA device is suitable for this system, but the bottle neck is still 

in the non-internal data transmission between each part. More specific is the SCI transmission 

speed between FPGA and PC, and the transmission speed between DSP and FPGA. 

For the SCI transmission part, the baud rate which could be achieved is the speed indicator. 

In the following section, the speed that the baud rate could reach will be tested. 

4.4 Serial communication performance test 

As the speed issue is important in this project, and the internal high speed data processing 

specialty of FPGA is admitted, before building the multiple paths system, the transmission 

speed should be the first factor taken into consideration. The standard baud rate of serial 

transmission is from 9600 bps (bit per second), and including 19200 bps, high value 

115200 bps, no specific maximum value. The previous digital processing chain suffered from 

low SCI bandwidth (19200). The performance needs to be enhanced. Testing is executed by 

using Matlab to catch the programmed bit stream and calculate the bit error rates, then draw 

the transfer precision curve in the graph. The serial transfer performance testing results are 

shown in Figure 10 below.  



 

  

 

46 

 

 

Figure 10 –The serial communications performance testing curve 

It illustrates that a baud rate higher than 0.5 Mbits could be achieved. It can also be seen that 

the transfer precision does not vary much. However, the transfer precision tolerance should 

be set as high for the high speed processing and transmission. Considering this factor, two 

SCIs are used in this system. The structure of two SCIs is more complex in the 

implementation of FPGA, but higher transfer precision could be achieved in comparison with 

the one SCI structure. Therefore the higher transfer precision and more complex structure 

method is chosen in this project. 

The baud rate is set at 460800 bps for the two SCIs. Each of them is in charge of four paths' 

data transmission. Therefore the baud rate of the eight paths bit stream is approximately 

1 Mbps. There is already a very high speed transmission in RS-232. However, further speed 

tests will be carried out after the top system work.  

We have now considered and selected the system design. The ACFM algorithm which needs 

to be implemented in the system next needs to be considered. 

2 SCIs 

1 SCI 



 

  

 

47 

 

4.5 ACFM algorithm 

The processing algorithm that needs to be implemented in the FPGA device is shown in 

Equation 5. 

                                    
     

Equation 5: ACFM Algorithm 

A in this equation is the ACFM result. From the equation, it can be seen that the ACFM result 

is summation of a series from n equals to 1 to N, in which N is the number of sampling points 

in one “clip”. The P, Q, R parameters are constants in this formula, which are only related to 

the carrier wave frequency “Fc”, sampling frequency “Fs”, number of sampling points in 

each clip “N” and sampling starting phase “β” (between zero to two pi). These constant 

settings are in the header of each frame (“clip”). Only a[n] are changing according to the 

condition on the rail tracks. The equation has been realised in Matlab. The Matlab 

implementation is the preparation for the following simulation and verification of FPGA 

behaviour. The results calculated in Matlab could be used as the criterion. 

Based on the specialty of the ACFM algorithm, it is possible to make a master path to 

calculate the constants in the formula, such as P, Q, R parameters, only once, and deliver 

them to the other seven paths, which are named the slave paths in this project, in every “clip”. 

Using this method could avoid wasting plenty of spaces in the FPGA chip, making the system 

more productive and efficient. 

Having understood the ACFM algorithm, the following task is to see how the algorithm could 

be realised in the FPGA device. The progress of one-single ACFM path system has been 

achieved. The following section is to briefly describe the working principle of the system. 

(5) 



 

  

 

48 

 

4.6 The one-single ACFM path system 

The one path calculation chain has debugged through at the beginning of this project. How 

this system works needs to be clear, since the processing chain in the master path is quite 

similar. Furthermore, the bits which are necessary in both the master path and the slave paths 

need to be built eight times, whereas the bits which are only needed in the master path or 

which are needed to modify the slave paths, are only going to be built once.  

The block diagram of a one-single path system is shown below in Figure 11, where “θ” 

represents R[n-1], "An" represents a[n] in Equation 5. 

 

Figure 11 –Block diagram of one-single path system(Ma, 2010-2011) 

The functions of each module are listed below: 

1) SPI Module: Receive the data stream and control signals from the SPI module 

functioning in SPI mater mode in DSP, performing in SPI slave mode itself. 

2) Input Data Manipulation: Manipulate the data contained in each frame. Separate the 

parameters N, β(sampling starting phase), Fc (carrier wave frequency), Fs (sampling 



 

  

 

49 

 

frequency) and a[n] (data sampled from the reflex carrier wave), then send them to the 

following algorithm module. 

3) 
 

  
 Calculation: Receive the data from the SPI module in front and calculate 

 

  
  for 

preparation. The calculation is in sfixed format, the process is complex. 

4) Algorithm Module: Receive the separated data from the front modules, realise ACFM 

formula, and calculate the ACFM value for each a[n]. When finished, the result and 

control signal are sent to the following recursive adder module. 

5) Recursive Adder: Receive the ACFM value of each a[n] in one frame, and repeatedly add 

them to get the final ACFM result for one frame. When finished, the final result and 

control signal are sent to the SCI module. 

6) SCI Module: Get the 16-bit final ACFM result parallel from the front module, and then 

transmit it to the PCI through a serial port by RS-232 protocol. 

As mentioned above, it is important to understand how this system works. The first step of 

extending the one-single path to the eight paths is unpacking the former system to find out the 

bits which need to be built eight times in all the eight paths and the ones which need not 

extend but are just built in the master path.  

The following section explains how the unpacking work is executed. 

4.7 Unpacking the one-single ACFM path system 

The unpacking work is not only unpacking the structure, but finding out the useful bits and 

repacking them in the master path and the slave paths.  

 Unpacking work in the top-level entity implementation of the master path 

In the view of the master path, all four modules in the top-level entity of the algorithm in the 

one-single path system are needed. The structure is also the same. 



 

  

 

50 

 

The top-level block diagram of the master path is shown below in Figure 12, where “θ”  

represents R[n-1], "An" represents a[n] in Equation 5. 

 

Figure 12 – Block diagram of the master path 

From the diagram above, it can be observed that the master path top-level module consists of 

an input data manipulation module, 
 

  
 calculation module, algorithm module, and recursive 

adder module.  

1) Input Data Manipulation: Manipulate the data contained in each frame for the master 

path. Firstly, separate the parameters N, β, Fc (carries wave frequency), Fs (sampling 

frequency) and a[n] (data sampled from the reflex carrier wave), then calculate   

       
      

  
 . After the calculation is done, N, β and   are sent to the following 

algorithm module. 

2) 
 

  
 Calculation: Receive the data from the SPI module in front and calculate 

 

  
  for 

preparation.  The calculation is in sfixed format, the process is complex. 

3) Algorithm Module: Receive the separated data from the front modules, realise ACFM 

formula. Firstly, calculate 

Top-level entity of 

the master path 



 

  

 

51 

 

        
 

  
  

Equation 6:’P’ parameter representation 

And 

        
 

  
  

Equation 7:’Q’ parameter representation 

Then, with P, Q, and 

          

Equation 8:’  ’ parameter representation 

the ACFM value for each a[n] could be calculated. When finished, the result and control 

signal are sent to the following recursive adder module. 

4) Recursive Adder: Receive the ACFM value of each a[n] in one frame, and repeatedly add 

them to get the final ACFM result for one frame. When finished, the final result and 

control signal are sent to the SCI module. 

After the input data manipulation, the constant parameters and changing a[n] have been 

separated and delivered to the algorithm module. The “θ” here still represents        in 

the ACFM formula mentioned above. What needs to be declared is the “PQ_phase”, the 

output of the master path. It is the combination of all the constants, which is  

                                  

Equation 9:    ℎ     representation 

 Unpacking work in the top-level entity implementation of the slave paths 

The design of the slave paths is based on the specialty of the ACFM algorithm, it is possible 

to make the master path to calculate the constants in the formula, such as P, Q, R parameters 

(6) 

(7) 

(8) 

(9) 



 

  

 

52 

 

only once, and deliver them to the other seven paths. So the signal “PQ_phase”, the interim 

signal inside the master path, is led out to the seven slave paths. “PQ_phase” is the 

combination of all the constants, which is demonstrated in Equation 9. With it, most 

mathematic modules could be removed. 

In this project, all the other seven paths except the master path are the slave paths. The main 

reason for the slave paths depending on the master path is the constant parameter 

combination, “PQ_phase” as discussed above. The constant parameter combination has been 

calculated by the master path, and the signal “PQ_phase” contains the value of it. With the 

“PQ_phase” value, in the slave paths, 
 

  
 calculation module is not needed, and θ, β need 

not be separated from input data. Moreover, the internal structure in the algorithm module is 

much simpler. Figure 13 below shows the top-level block diagram of the slave paths. 

 

Figure 13 – Block diagram of the slave paths 

From the diagram above, it can be observed that the slave path top-level module consists of 

input data manipulation module, algorithm module, and recursive adder module.  

Top-level entity of 

the slave paths 



 

  

 

53 

 

The top-level entity of the system still consists of input data manipulation module, algorithm 

module, recursive adder module, but no 
 

  
 calculation module. The function of each module 

is the same as the master path. The simplification is much greater than reducing the one 

module. The lower-level structure is simpler and less time consuming. This can be seen in the 

following lower level module description. 

Having decided the top-level structure of the master path and the seven slave paths, the top-

level structure of the eight paths system should be considered. The following section is to 

describe the eight paths system structure. 

4.8 The eight paths system structure 

The eight paths system consists of the master path and the seven slave paths. The structure of 

each path has been discussed in the previous section. In order to put them together, a higher 

level entity is needed, which is the eight paths system. The example input system diagram of 

the eight paths is shown below in Figure 14. 

 



 

  

 

54 

 

 

Figure 14 – System diagram of the eight paths 

T
o

p
-l

ev
el

 e
n

ti
ty

 o
f 

a
lg

o
ri

th
m

 



 

  

 

55 

 

It can be seen from the diagram that the data processing chain in the system is generally 

divided into four parts: SPI slave, algorithm realisation in the eight paths, synchronisation 

and two SCI modules. 

The top-level entity of the algorithm realisation part in the system is the data processing chain 

in the eight paths, which has already been discussed in the previous section. Let us then focus 

on the four parts in the system. 

1) SPI Module: Receive the eight-path data stream and communication clock (SCK), chip 

select signal (SSEL) and three path address signals (Address2, Address1, Address0) from 

DSP SPI Master. The SPI Module will generate eight paths to enable the signal to tell 

which of them should get the output 16-bit data. To ensure high-speed communication, 

the communication clock is set at 6.25 MHz 

2) 8-paths algorithm module: This is the top level entity of the eight paths algorithm 

structure. This top level entity is divided into the master path processing chain and the 

seven slave paths processing chain. The structure of each of them is discussed in the 

previous section. 

3) Synchronize buffer: This module buffers the ACFM results for all eight paths, and 

guarantees the results can arrive at the SCI module at the same time. 

4) SCI Modules: These two SCI modules are not in the diagram as well, but are very 

important. They provide the data transmission between the FPGA board and the PC 

through a serial port by RS-232 protocol. Two SCI modules are used, each of which 

transmits the data from four paths. The SCI module gets the 16-bit final ACFM result 

parallel from the front module and then transmits it to the PCI through a serial port by 

RS-232 protocol. The baud rate is set at 460800 bps. 

The SPI slave part is to receive the bit stream and control signals from the front DSP SPI 

master module. The data transmission speed between DSP and FPGA should be high in order 



 

  

 

56 

 

to achieve high-speed testing on rail tracks. The communication clock between is therefore 

set at 6.25 MHz in this project. The bottleneck also occurs in this part, as well as the SCI part 

in the baud rate issue.  

Having discussed the top-level structure of the eight paths system, the lower level structure 

implementation should be considered. Considering the algorithm part of the system is the 

core part to realise the ACFM technique in the FPGA device, the lower-level structure of the 

algorithm path will be described in the following section. The master path and the slave paths 

will be discussed separately. 

4.9 The low-level entity implementation in the master path 

The master path top-level module consists of input data manipulation module, 
 

  
 calculation 

module, algorithm module and recursive adder module. Among the four modules, the 

algorithm module can be considered as the core. Most of the calculation is done within this 

module. Then, let us focus on the low-level structure of the algorithm module. Figure 15 

shows the block diagram of the algorithm module in the master path, where “θ” represents 

R[n-1], "An" represents a[n] in Equation 5.  



 

  

 

57 

 

 

Figure 15 – Block diagram of algorithm module in the master path 

From the diagram, it can be observed that the algorithm module consists of trigonometric 

module, PQ module, shifter, algorithm cycle count module, multiplier module and adder 

module. The master path only modules are highlighted by a thick red border. This module 

takes input of θ, β, An and rdy_input signal and produces a single ACFM value for each of 

these input combinations and also a control signal (rdy_algo). The control signal, rdy_algo is 

used to trigger the recursive adder module and indicate that the ACFM value is ready at the 

output port of the algorithm module. 

The algorithm cycle count module is used to count the clock cycle and generate the control 

signal rdy_algo. This module outputs a high on rdy_algo signal when the ACFM value is 

ready.  

The algorithm module in the master path calculation section consists of a fixed-point 

multiplier module, fixed-point adder module, shifter and a trigonometric calculation module. 

The fixed-point adder and multiplier are used because the implementation of these two 

modules is straightforward and faster if compared to a floating-point adder and multiplier.   

An 



 

  

 

58 

 

Considering the structure of the master path is quite similar to the structure of the algorithm 

realisation part in the one-single path system, the other three modules in the top-level entity 

will not be discussed in this dissertation. All the of details could reference the paper of Ma 

Kwang Yew, a masters student who graduated from the University of Birmingham in 2011. 

(Ma, 2010-2011) 

4.10 The low-level entity implementation in the slave paths 

The slave paths’ top-level module consists of three modules, which are the input data 

manipulation module, algorithm module and recursive adder module. As mentioned above, 

the algorithm module is the core, because most of the calculation is done within this module. 

Let us focus on the low-level structure of the algorithm module in the slave paths system. 

4.10.1 Algorithm module in the slave paths processing chain 

 Figure 16 shows the block diagram of the algorithm module in the slave paths, where "An" 

represents a[n] in Equation 5.   

 

Figure 16 –Block diagram of algorithm module in the slave paths 

An 



 

  

 

59 

 

In the algorithm module in the slave paths, only An Conversion Module, which is due to 

convert the format of An into sfixed format to do the fixed calculation, is kept. The algorithm 

cycle count and Shift Module, which are designed to solve synchronisation problems, are 

modified to fit into the slave paths processing chain. The Multiplier Module, which is due to 

multiply An and “PQ_phase”, is kept to produce the ACFM value of each An in one frame 

(“clip”). 

The newly built module, which is highlighted by the thick red border, is a PQ_phase Buffer. 

It is a FIFO (First In First Out) here, functioning to store a series of PQ_phase calculated 

from the master path before the slave paths calculation starts. Because the data for the eight 

paths arrives in a serial way, the slave paths have to wait for the master path work to finish, 

and moreover, the seven slave paths internal is in ascending order. 

In the following section, the newly built module, PQ_phase Buffer, and the modified modules, 

algorithm cycle count and Shift Module, will be described, beginning with the PQ_phase 

Buffer. 

4.10.1.1 PQ_phase Buffer 

 

 

 

 

 

 

Figure 17 –Block diagram of PQ_phase Buffer 

Figure 17 shows the block diagram of the PQ_phase Buffer in the slave paths. The PQ_phase 

Buffer is a FIFO (First In First Out), functioning to store a series of PQ_phase calculated 

from the master path and then output them in the right order for the slave paths' calculation. 

Data _in    

PQ_phase Buffer    Data _out   

Clk    

RD_en    

WR_en    



 

  

 

60 

 

The FIFO is generated by using a Xilinx IP Core generator. It is realised by using memory 

functional IP Core, generating a 128 depth FIFO (First In First Out). 

 

Figure 18 –IP Core generator user interface and the core black box 

On the left side in Figure 18, it shows the user interface where to get access to the IP Core 

generator. The setting of the core needs to be modified frequently, and once the pins changes, 

the core needs to be regenerated. The most used options are therefore manage cores and 

regenerate core. On the right hand side is the core black box of the PQ_phase buffer. The 

internal structure cannot be seen, but all details are explained in the system provided user 

guide. 

 

 

 

 

 



 

  

 

61 

 

4.10.1.2 Algorithm cycle count module 

 

 

 

 

 

Figure 19 –Block diagram of algorithm cycle count module 

Figure 19 shows the block diagram of the algorithm cycle count module in the slave paths. 

This module is to generate the synchronised algorithm finish signal and output it to the 

following recursive adder. 

Shift registers are used in the module to implement the latency. Figure 20 shows how the 

registers are chained up to implement this operation. 

 

Figure 20 –Shifter latency chain in algorithm cycle count module 

It can be observed that four registers are chained up to act as a shifter. When the sample An is 

available at the input of the algorithm module, a “data ready” signal is toggled high. This 

signal is used to propagate through four registers which correspond to the latency that is 

needed to perform the algorithm on one sample in the slave paths. When the output is ready, 

the control signal “algorithm done” is also ready and set high at the output port.  

Having finished the description of the algorithm module in the slave paths, then the other two 

parts will be described in turn. The following sections begin with the input data manipulation 

module. 

Algorithm cycle 

count  
Data ready    

Clk    

Algorithm done    



 

  

 

62 

 

4.10.2 Input data manipulation module in the slave paths 

The input data manipulation module is used to organise the data that it receives. It receives 

the input from the SPI module and assigns the received input to the total number of data in 

each frame “N” and various values sampled from the track stored in "An". Then, it transmits 

the data to the algorithm module to perform the signal processing.  

Figure 21 shows the data format between the DSP and the FPGA device, where “θ” 

represents R[n-1], "An" represents a[n] in Equation 5. 

 

Figure 21 –SPI communication data format between DSP and FPGA device 

Each element is a 16-bit data. The first data (element 0) represent the number of samples (N) 

in one “clip”. The second data (element 1) is the corresponding β value for that particular 

“clip”. The third and fourth data (element 2 and 3) represent the carrier frequency (Fc). The 

fifth and sixth (element 4 and 5) represent the sampling frequency (Fs). The lower 16 bits 

(LSB) sends first, followed by the upper 16 bits (MSB). Then following is the N number of 

the ADC value sampled from the track stored in "An". 

The block diagram of this module is shown below in Figure 22. 

 

 

 

 

 

 



 

  

 

63 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 –Block diagram of Input data manipulation module 

It can be seen from the diagram that the input data manipulation module in the slave paths 

can be further divided into two lower-level modules, An manipulation module and algorithm 

start control module, two of which are in charge of extracting An from input data and 

generating the algorithm start enable signal. These two modules will be discussed in the 

following sections. 

4.10.2.1 An manipulation module 

 

 

 

 

 

 

Figure 23 –Block diagram of An manipulation module 

Figure 23 shows the block diagram of the An manipulation module in the slave paths. This 

module is used to extract An from input data, and also total sample number N, then send 

them to the following modules. A state machine, which is a mathematical model of 

An manipulation  

Data ready    

Input data   

An     

Algorithm start 

control  

Clk    

Algorithm start      

An manipulation  Data ready    

Clk        

An    

Input data       

Total sample number N     Path enable        



 

  

 

64 

 

computation and normally used to design both computer programs and sequential logic 

circuits, is used to model the process of this module.  

The state machine diagram is shown below in Figure 24. 

 

Figure 24 –An manipulation secondary module state machine diagram 

It can be observed that the module starts at a “wait data” state. It waits until the “Path enable” 

signal changes to ‘1’, which means that the path is selected by the SPI module. If the 16-bit 

data is also ready, the “Data ready” signal is set to ‘1’. In the meantime, if the data counter, 

which is the internal counter, equals zero, it means that the incoming data is N value (total 

number of data in one frame) and the state machine moves to the “add sample count” state. In 

this state, the N value is stored in the register and used for the judgement of whether all the 

data in one frame has been received or not. Having finished the work, the state then changes 

back to the “wait data” state. 

In the “wait data” state, if a “Data ready” signal received is ‘1’ and the data counter is greater 

than integer five, the state transits to a “send data” state. In this state, the extracted An is sent 



 

  

 

65 

 

to the following algorithm module and algorithm start enable signal is sent to the algorithm 

start control module to do the synchronization.  

4.10.2.2 Algorithm start control module 

 

 

 

 

 

 

Figure 25 –Block diagram of algorithm start control module 

Figure 25 shows the block diagram of the algorithm start control secondary module in the 

slave paths. This module is used generate the synchronised algorithm start enable signal and 

then send it to the following modules. A state machine is also used to model the process of 

this module.  

The state machine diagram is shown below in Figure 26. 

 

Figure 26 –Algorithm start control secondary module state machine diagram 

It can be observed that the module starts at the “wait data” state. It waits until the “Path 

enable” signal changes to ‘1’, which means the path is selected to be the SPI module. If the 

16-bit data is ready as well, the “data ready” signal is set to ‘1’. In the meantime, if the data 

Algorithm start 

control  
Data ready    

Clk    

Algorithm start      

Path enable        



 

  

 

66 

 

counter, which is the internal counter, is greater than integer five, it means that the following 

incoming data are An, and the state machine moves to the “compare” state. In this state, the 

algorithm start enable signal is set to ‘1’, which means enable. The data counter is compared 

with the total number of data in one frame “N”. When “N” data have been received, the data 

counter is clear, the algorithm start enable signal is to set ‘0’, and the state returns to the “wait 

data” state. 

Having finished the description of the input data manipulation secondary module in the slave 

paths, the last part, recursive adder, will be described in the following module.  

4.10.3 Recursive adder module in the slave paths processing chain 

 

 

 

 

 

 

Figure 27 –Block diagram of recursive adder 

The recursive adder is used to perform the addition on every single ACFM value that is 

produced by the algorithm module in each path. It waits to read the input and performs the 

calculation until the ready signal from the algorithm module (algorithm done) is received, 

which is due to make sure the input data is valid before the module start performs the 

calculation. After the adder is done with the addition for the total number of samples (N), it 

will then output the       value and the       ready signal. A state machine is used to 

model the behaviour of this module.  

Figure 28 shows the state machine. 

Recursive adder 

Algorithm done       

Clk        

      value                      

      ready     



 

  

 

67 

 

 

Figure 28 –Recursive adder module state machine diagram 

The module starts at the “add1” state and it stays at this state until the input signal 

“Algorithm done” is set to ‘1’. It performs the addition once when the input “Algorithm done” 

is high and the state transits to the “add2” state. In the “add2” state, it moves the current value 

to the internal variable so that it can be used in the following calculation. Then, the state 

moves to the “conversion” state. In this state, the data counter is compared with the total 

sample number (N). If the data counter does equal the total sample number (N), then it will 

transit to the “send data” state. Otherwise it will transit back to the “add1” state and wait for 

the next “Algorithm done” signal to go high. In the “send data” state, the “      ready” 

signal is toggled high to indicate that the summation of the series ACFM value is ready at the 

output port of the recursive adder.  

Figure 29 shows the flow chart of this module. 



 

  

 

68 

 

 

Figure 29 –Flow chart of recursive adder module 

This module will sum all the ACFM output. When the data counter equals the total sample 

number (N), the ACFM result will be sent to the next module. 

Having finished describing the last part in the slave paths data processing chain, the structure 

and the working principle of the eight paths data processing chain should be clear at this stage. 

However, not only these modules are included in the eight paths system. As demonstrated in 

the system diagram of the eight paths in Figure 14, the data processing chain in the top-level 

system is divided into four parts, which are SPI slave, algorithm realisation in the eight paths, 

synchronisation and two SCI modules. 

In the sections above the algorithm realisation part in the eight paths has been discussed. The 

other three parts will be discussed in turn. The following sections begin with the input 

synchronisation part. 



 

  

 

69 

 

4.11 Synchronisation part 

Synchronisation is always a difficult problem, but it is the most important part in the system 

design, especially in the fast signal parallel processing system. The synchronisation work in 

this system is generally divided into two parts. One is the synchronisation between the eight 

paths data flow. This work is sorted by the synchronise buffer. The other part is the 

synchronisation within the data flow of each 16-bit element in one“clip”. This work is 

more complex because pipeline design concepts are introduced into this system. The work 

involves many synchronisation modules in the eight paths processing chain. In the following 

sections, these two synchronisation works will be discussed. Firstly, the synchronise buffer 

will be introduced. 

4.11.1 Synchronise buffer 

 

 

 

 

 

 

 

 

 

 

Figure 30 –Block diagram of synchronise buffer 

Figure 30 shows the block diagram of the synchronize buffer. The eight paths data just pass 

the module, but the SCI starting signal is changed with the eight paths ready signals. 

Synchronise 

Buffer           

No1. Path data        

Clk           

SCI start      

No8. Path data        

No8. Path ready      

No1. Path ready      

.      

.       

.          

.              

.              

.                

No1. Path data        

No8. Path data        

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                



 

  

 

70 

 

The synchronize buffer works to buffer the ACFM results for all the eight paths and 

guarantees the results can arrive at the SCI module at the same time. The internal registers 

toggle the algorithm finish signal of each path. It waits until the calculation work for all the 

eight paths is finished, then generates a SCI start working signal and sends the result of the 

eight paths to the following two SCIs. Once the disturbing impulse occurs at one of the path 

ready inputs, the module still needs to wait for the other seven paths' ready signals. This 

method could effectively prevent noise disturbance hazards. The design details will be 

discussed in the simulation section. 

Having set out the working principle of the synchronise buffer, then the other part of the 

synchronisation work should be introduced. In the following section, the synchronisation 

within the data flow in one frame (“clip”) will be discussed. 

4.11.2 Timing synchronisation design 

Pipeline design concepts are introduced and implemented in the ACFM algorithm design. 

This provides a high quality performance (in terms of speed) for the design. Latency and 

throughput are the two most fundamental measures of the efficiency performance. They are 

closely related, but whereas latency measures the amount of time between the start of an 

action and its completion, throughput is the total number of such actions that occur in a given 

amount of time. The pipelining could allow the system to receive and process the data every 

clock cycle in order to achieve less latency and more efficient throughput. 

Based on this idea of design, the timing synchronisation is an important issue to guarantee the 

fast pipeline data process will not meet data hazards, in which case the confliction would 

occur among the intermediate variables resulting in unexpected results. Synchronisation 

control modules are introduced and implemented into the system: 



 

  

 

71 

 

1) algorithm_start_control_Primary: This module is built in the Input Data Manipulation 

Primary module. The input data manipulation process takes seven clock cycles to finish, 

so when the module receives input data, the algorithm start signal is delayed for seven 

cycles and then generated. 

2) npi_control_module: This module is built in 
 

  
 calculation module. Its work is to 

synchronise the calculation process internal. It generates three enable signals CE0, CE1, 

CE2 for fixed_to_float, floating_Div, and floating_to_fixed module separately. Firstly, 

the received N, total number of data per frame, should be converted to sfixed format to 

multiply with π which is also represented in sfixed format. However, the Division Ip 

Core is represented in floating format, so CE0 signal is sent to fixed_to_float module 

when the sfixed format converting to floating format process could begin. Then, the 

floating_Div module receives CE1, starting division. Finally, the floating_to_fixed 

module receives a CE2 signal to convert the result 
 

  
 back to sfixed format and transmits 

it to the following algorithm module. 

3) Shifter_Primary: This module is built in primary algorithm module. The aim of this 

module is to insert delay for An, because it has to wait for the Sine function and Cosine 

function which are in the calculation of P, Q parameters. The trigonometric function 

related process takes twenty-four clock cycles to finish, so this module inserts twenty-

four cycles of delay for a[n] in order synchronise it with P, Q combination phase, 

                          in the formula. 

4) algorithm_cycle_count_Primary: This module is built in primary algorithm module, and 

its work is to synchronise the algorithm finish signal, which is sent to the recursive adder 

module to tell it start working, with the internal algorithm calculation process. From 

simulation, it can be seen that the algorithm process takes twenty-nine clock cycles to 

app:ds:function


 

  

 

72 

 

finish. The signal will therefore be generated in twenty-nine cycles after it receives the 

input data. 

5) algorithm_start_control_Secondary: This module is built in Input Data Manipulation 

Secondary module. The time consumption is the same as in the master path, because the 

work load in data manipulation is the same. The algorithm start signal is therefore 

generated in seven cycles after it receives the input data. 

6) Shifter_Secondary: This module is built in secondary algorithm module. The aim of this 

module is to insert delay for the PQ_phase, because it arrives one clock cycle earlier than 

An. Moreover, there is no trigonometric function related process, so this module inserts 

one cycle delay for the PQ_phase. 

7) algorithm_cycle_count_Secondary: This module is built in secondary algorithm module, 

and it does the same work as the module in the master path. However, from simulation, 

the algorithm process in the slave paths takes four cycles to finish, so the signal could be 

generated in four cycles after it receives the input data. 

8) Sync_Buffer: This module is built in the top-level of the system. The front work of the 

eight paths is not finished at the same time, but in ascending order. The aim of 

Sync_Buffer module is to buffer the ACFM results for all eight paths and guarantee the 

results can arrive at the SCI module at the same time. This module is important and it 

also helps to prevents the noise disturbance hazards. 

These modules are built in the eight paths data processing chain, which is in the algorithm 

part of the system. With them, high speed processing is guaranteed. In another way, the 

synchronisation control signal modules are independent of the calculation modules rather 

than integrated in them. The reason is still to achieve a high speed processing chain. 

The performance is slowed down if a counter is used to count the number of latency for each 

sample stored in An. This is because the counter needs to hold the count value for each 



 

  

 

73 

 

sample. The counter could not hold the count for the next arriving input if the previous 

sample is still under processing.  

In order to solve this problem, the parallel processing method is introduced in this system and 

demonstrated above. The parallel processing method is implemented by propagating the 

control signal stage by stage. This is because the control signal is independent of the input 

signal. The input that connects to the first shift register will only toggle high when the “Data 

ready” signal is high and this particular control signal is propagated along with the data while 

it is processed in another module. When the control signal shifts out from the last shift 

register, the expected output data is ready at the output port. While a sample is being 

processed within the module, another sample can be taken in at any time because the control 

signal does not hold by the previous sample. Taking the algorithm module in the master path 

as an example, by using this method, the latency cycles that are needed to process one sample 

are decreased from 30 cycles to 5 cycles, which saves about 70% of the processing time. 

Having discussed the synchronisation part in the eight paths system, the two communication 

parts will be considered, which are the SPI slave module, and two SCI modules. 

The following sections begin with the SPI slave module. 

 

 

 

 

 

 



 

  

 

74 

 

4.12 Serial Peripheral Interface (SPI) slave module 

 

 

 

 

 

 

 

 

 

 

Figure 31 –Block diagram of SPI 

The SPI module acts as a slave mode and is used to receive data from the DSP processor. It 

consists of seven input signals and ten output signals. The inputs are eight-path data stream 

(MOSI), SPI communication clock (SCK), chip select signal (SSEL), system clock (Clk) and 

three path address lines (Address2, Address1, Address0). The outputs are control signal (Data 

ready), 16-bit output data (output data) and eight paths enable signals (from No1. Path enable 

signal to No8. Path enable signal). 

Normally, the SPI bus is operated much slower than the FPGA operating clock. Hence, the 

SPI bus is over-sampled by using the FPGA clock. It is always good practice to have SPI 

logic run in the FPGA clock domain. In this module, the SPI signals (SCK, CS, and MOSI) 

are synchronised by using the FPGA clock and shift registers.  

Figure 32 shows the flow chart that is used to design the receipt of the data from the SPI 

master (DSP). 

SPI Slave      

Address 0        

Clk         

Output data       

SCK        

SSEL      

MOSI     
No1. Path enable     

No8. Path enable        

Address 1        

Address 2        Data ready        

.      

.       

.          

.              

.              

.                

.      

.       

.          

.              

.              

.                



 

  

 

75 

 

 

Figure 32 –Design flow chart of SPI Slave module 

The module waits until the chip select signal (SSEL_active) goes active then starts to work. It 

starts to read data from the MOSI port at the falling edge of the SCK. A counter “bitcnt” is 

used to count the number of bit that are already read from the MOSI port. This module is 

design to read 16 bit data as a data packet from the MOSI port. When 16-bit data have been 

read from the MOSI port, the received 16-bit data is sent to the next module. 

 

 

 



 

  

 

76 

 

4.13 Serial Communication Interface (SCI) 

 

 

 

 

 

 

Figure 33 –Block diagram of SCI 

Figure 33 shows the block diagram of one of the two SCI modules. 

As discussed above, two SCIs are used in this project to ensure communication accuracy. 

They take responsibility for each four paths respectively. The SCI module is used to send the 

final ACFM value of the four paths from the FPGA device to the PC for further offline visual 

display. It consists of 6 input ports, system clock (Clk), four       value (16-bit data) from 

the four paths and a control signal (SCI start). Two outputs are TxD (serial bit stream) and 

SCI transmission finish signal (SCI done). The module starts to read data from the four input 

data ports when the “SCI start” signal equals to ‘1’ which indicates starting the 

communication.  

In this module, the baud rate that is used in the SCI communication is done by using the 

FPGA high-speed clock and dividing it down to generate a “tick” to generate the baud rate 

that is chosen in the SCI communication. In this application, it is assumed that the serial 

interface can tolerate a few percentages of error in the baud frequency generator. 

5 Simulation Results (Testing and Verification) 

Based on the modularity specialty of VHDL design in FPGA, simulation could be executed 

in each module. Sufficient simulation could effectively avoid system failure when the system 

SCI      

No1. /No5.              

Clk    

TxD       

SCI done     

No2. /No6.              

No3. /No7.            

No4. /No8.          

SCI start        



 

  

 

77 

 

is put into industrial use. By changing variables in the simulation, predictions may be made 

about the behaviour of the system. Using the simulator could virtually investigate the 

behaviour of the system under study. As mentioned above, the simulator ModelSim is used to 

execute the simulation. Before the simulation begins, the required simulation libraries need to 

be compiled. Having set up the stable simulation environment, the simulation work can begin. 

Considering the input data from the DSP, a simulated data generator is needed to imitate the 

behaviour of the DSP.  

The ACFM algorithm is also realised in Matlab. Having put the simulated input data into 

Matlab, the calculated results can be used as criterion in the verification. 

In the next section, the simulated data generator will be introduced.   

5.1 Simulated data generator 

The work implemented on the FPGA is the core part for the ACFM system realisation, but 

not the only part. So before the whole system is built up, FPGA needs to verify itself. The 

simulated data generator is necessary. It works to imitate the output data from the front part, 

the DSP interface. The block diagram of it is shown below in Figure 34. 

http://en.wikipedia.org/wiki/Prediction


 

  

 

78 

 

 

Figure 34 –Block diagram of simulated data generator 

As described above, the inputs of the SPI Slave module in the top-level of the FPGA system 

are all provided in the diagram, the eight-path data stream (MOSI) and communication clock 

(SCLK), chip select signal (SSEL), and three path address signals (Address2, Address1, 

Address0) . With the data generator, the simulation could work exactly as the real situation. 

Having built up the simulated data generator, the simulation input data has sorted out. The 

simulation work is generally divided into components simulation and system simulation. For 

the components simulation, the low-level modules which are discussed in the methodology 

section will be simulated. The simulation process that is involved in each model is from low-

level to top-level entity. Let us begin with the components simulation. 

5.2 Components simulation 

In the following sections, the master path simulation and slave paths simulation will be 

executed separately, beginning with the master path simulation. 



 

  

 

79 

 

5.2.1 The master path simulation 

Having implanted the top-level design, Xilinx ISE can generate the RTL schematic as the 

designer expects. The RTL schematic of the master path top-level entity is shown in Figure 

35 below. 



 

  

 

80 

 

 

Figure 35 –Master path Simulation Module RTL Schematic 



 

  

 

81 

 

From the diagram above, it can be observed that the top-level entity consists of input data 

manipulation primary module, 
 

  
 calculation module, algorithm module, and recursive adder 

module. 

As discussed in the methodology section, the master path consists of a combination of all the 

modules in the one-single path system. This simulation is intended to verify the behaviour of 

the top-level entity rather than low level entities. A simulated data generator is used to mimic 

the data transmitted from the DSP and simulate the behaviour of the DSP. The connection 

between is shown in Figure 36 below. 

 

Figure 36 –RTL Schematic of the master path simulation structure 

Table 1 shows the input combination that is used in the simulation. These example data are 

provided by TSC Company, which are collected using ACFM probe of the designed settings. 

From the table it can be seen that two sets of data are used for simulation. Each of them is 

one frame of converted digital ACFM data and has 46 elements. The frame consists of 6 

header data (   = 6) and 40 samples (N = 40). 

The simulation waveform is shown below in Figure 37 and Figure 38. 

            Frame1 

 

 Element1 (N)= 40 Element3 (Fc,LSB)= 50000 



 

  

 

82 

 

            Frame2 

 

 Element1 (N)= 40 Element3 (Fc,LSB)= 50000 

 

Figure 37 –Waveform of the input data in the master path simulation  

            Frame1 

 Element46 (A39)= 942 

 

                                                               ACFM= 0X03CA= 970 

            Frame2 

 Element46 (A39)= 942 

 

                                                               ACFM= 0X03CA= 970 

 

Figure 38 –Waveform of the output result in the master path simulation 

In Figure 37, the first three elements in Frame 1 and Frame 2 are shown in the signal 

“output_data” column. It can be seen that in Frame 1, the first element (N) is 40 and the third 

element (Fc, LSB) is 50000, exactly the same as the value in the table. Frame 2 is the same. 

In Figure 38, the output result waveforms of Frame 1 and Frame 2 are shown in the 

“TxD_data_Primary” column. The simulated ACFM result of Frame 1 is 970 and 970 for 

Frame 2. 



 

  

 

83 

 

5.2.2 Matlab verification and TSC expected result 

In order to verify if the simulated ACFM result is correct, the results provided by TSC 

company and MATLAB are used as criteria.  

The ACFM algorithm is described in Equation 5. The important part of the codes in Matlab is 

shown below in Figure 39. 

 

Figure 39 –ACFM algorithm realisation in Matlab 

As shown in the figure, the parameters are set to the value listed in the desired system design 

section (Section 4.3). The ACFM results are stored in the array “A”. 

The table below is the summary of the ACFM results of the two frames in the three different 

methods. 

 

 

 



 

  

 

84 

 

Table 2 – The ACFM results in the three methods 

 Frame 1 Frame 2 

ACFM result in FPGA simulation 970 970 

ACFM result from TSC 968 968 

ACFM result from Matlab 968.04 968.45 

 

From the figures in the table, it can be observed that there is a slight difference between the 

ACFM result in the FPGA simulation and the criteria. This is due to the number of bit that 

are used to represent the data operation and also the limitation of the trigonometric module 

that only accepts data input with 16-bit representation. The input radian value could not be 

represented more accurately than the fractions in 16-bit input format. Hence, this causes some 

variation in the final solution. However, the variation of the cracking trough appearing in the 

curve is the focusing point in this design, and the accuracy is still high when it is compared 

with the criteria (result from TSC and Matlab simulation). Therefore it can be concluded that 

the behaviour of the master path top-level entity is performed accurately. 

5.2.3 The slave paths simulation 

The RTL schematic of the slave path, No.2 path, top-level entity is shown in Figure 40 below. 

 

 

 

 

 

 

 



 

  

 

85 

 

 

Figure 40 –The slave path Simulation Module RTL Schematic 



 

  

 

86 

 

From the diagram above, it can be observed that the slave path top-level module consists of 

three low-level modules, which are input data manipulation secondary module, algorithm 

module, and recursive adder module. The function of each module is the same as the master 

path. The lower-level structure is simpler and time consumption is shorter, because the design 

thought of the slave paths is to simplify the complexity in order to save the space in the 

FPGA and make the processing more efficient and productive.  

The following simulation is used to simulate the three low-level modules. The simulation 

process that is involved in each model is from low-level to top-level entity. Let us start with 

the simulation of input data manipulation secondary module. 

5.2.3.1 Input Data Manipulation Secondary Module 

 

Figure 41 –Input Data Manipulation Secondary Module RTL Schematic 

Figure 41 shows the RTL schematic of the input data manipulation secondary module in the 

slave paths. The working principle of this module has been discussed in the methodology 

section. The top-level entity of Input Data Manipulation Secondary Module consists of two 

main modules, which are An manipulation module, and Algorithm start control module. The 

following simulation starts with An manipulation module. 



 

  

 

87 

 

5.2.3.1.1 An manipulation module 

 

Figure 42 –An manipulation secondary module RTL Schematic 

Figure 42 shows the RTL schematic of the input data manipulation secondary module in the 

slave paths. The working principle of this module has been discussed in the methodology 

section.  

This simulation is to verify the behaviour of the An manipulation module by observing the 

input and output signals. The simulated input data is shown below in Table 3. 

Table 3 – Simulated input data 

Element0 N 40 

Element1 β 260 

Element2 Fc, LSB 50000 

Element3 Fc,MSB 0 

Element4 Fs,LSB 33950 

Element5 Fs,MSB 30 

Element6 A0 832 

Element7 A1 763 

Element8 A2 714 

 

The simulated input data is the part of one frame, but contains the 6 byte header and three 

samples, which are A0, A1 and A2. 

Header       

The first three 

samples                    



 

  

 

88 

 

The simulation waveform is shown below in Figure 43 and Figure 44. 

 

 The 7
th

 data ready signal 

 

 

 

A0 and A1 are extracted from input data 

 

Figure 43 –Waveform of the input data in An manipulation module 

From Figure 43 it can be observed that the output “An_Data” waits until the 7
th

 data ready 

arrives then extracts the input data and sends it to the followings. Referring to the data format 

in this project, the header length is six, and the forty samples start from the 7
th

 element. So 

the behaviour of this module performs well. The data extracted in “An_Data” output signal is 

shown in Figure 44. 

 

  

A0= 832                     A1= 763      

Figure 44 –Waveform of output A0 and A1in An manipulation module 

From the waveform it can be seen that the first value of “An_Data” is 832, the same value as 

A0 in Table 3. The second value is 763, the same as the value of A1 in Table 3, therefore it 

could be concluded that this module could correctly extract the samples (An) from the input 

data. 



 

  

 

89 

 

5.2.3.1.2 Algorithm start control module 

 

Figure 45 –Algorithm start control secondary module RTL Schematic 

Figure 45 shows the RTL schematic of the algorithm start control module in the slave paths. 

The working principle of this module has been discussed in the methodology section.  

This simulation is to verify the behaviour of the algorithm start control module by observing 

the input and output signals. 

The Frame 1 listed in Table 1 is chosen to be the simulated input data in the simulation. The 

simulation waveform is shown below in Figure 46. 

 

Algorithm starts from the 7
th

 element 

 

 

Algorithm start signal cleared when 

 total number of data is received 

 

Figure 46 –Waveform of algorithm start signal in algorithm start control module 



 

  

 

90 

 

From the graph, it can be seen that the “algo_start” signal starts to change from the 7
th

 

element, and it changes to active when each sample arrives. When the total number of data 

has been received, the “algo_start” signal stays inactive. It can therefore be concluded that the 

behaviour of the algorithm start control module is correct. 

5.2.3.1.3 Input Data Manipulation Secondary Module (Top-level) 

Previous simulations are done on each module separately. The top-level entity, the Input Data 

Manipulation Secondary Module, performs the signal processing involved in the combination 

of all these modules. As mentioned above, the simulation is executed from the low-level 

entity to the top-level entity. Doing the simulation in this way can ensure that the modules 

involved still perform the correct behaviour after they combine together. 

This module is used to organise the data that it receives. It receives the input from the SPI 

module and assigns the received input to the total number of data in each frame “N” and 

various values sampled from the track “An”. 

This simulation is to verify the behaviour of the Input Data Manipulation Secondary Module 

by observing the input and output signals. 

The Frame 2 listed in Table 1 is used as the simulated input data in the simulation. The 

waveform is shown in the graph below in Figure 47, Figure 48, Figure 49. 

 

 

 

 

 

 



 

  

 

91 

 

 

 Element1 (N)= 40      

 

 EN changes to ‘1’  Total number of data in   

 the path is active    the frame (N)= 40 

 

Figure 47 –Waveform of Input Data Manipulation Secondary Module simulation (1) 

When the “EN” signal changes to ‘1’, the path is active and the module starts to work. The 

first input data is the elment1 in Frame 2, which is 40, exactly the same as the value in the 

table. The total sample number is extracted and transmitted to the output 

“Total_Sample_count”. 

 

 A0= 832     A1= 763 

 

Figure 48 –Waveform of Input Data Manipulation Secondary Module simulation (2) 

After the header of the frame has transmitted, the samples (An) start to be extracted and 

transmitted to the output “An_Data”, as well as the algorithm start signal. From the waveform 

it can be seen that the value of A0 and A1 are exactly the same as the value listed in Table 1. 

 

 

 



 

  

 

92 

 

 

                                                                                  

 

 A38= 1104            A39= 920        

Figure 49 –Waveform of Input Data Manipulation Secondary Module simulation (3) 

When the “EN” signal changes to ‘0’, the path is inactive. All the samples in Frame 2 are 

received. The value of     and     , the last two samples in Frame 2, is exactly the same as 

the value listed in Table 1. Therefore, it can be concluded that the behaviour of the top-level 

entity of Input Data Manipulation Secondary Module is correct. 

5.2.3.2 Algorithm Secondary Module 

This module is the core in the path. It is used to calculate the parameters received to get the 

interim ACFM value of each sample An.  

EN changes to ‘0’.  

The path is inactive 



 

  

 

93 

 

 

Figure 50 –Algorithm secondary module internal RTL Schematic 



 

  

 

94 

 

Figure 50 shows the internal RTL schematic of the algorithm module in the slave paths. It 

can evidently be seen that the complexity is greatly simplified compared with the algorithm 

module in the master path. 

The algorithm module in the slave paths consists of five modules. They are all shown in the 

diagram. The relevant modules are the PQ_phase Buffer and algorithm cycle count secondary 

module. These two lower-level modules both play important roles. The former stores a series 

of PQ_phase calculated from the master path, which arrives earlier than the data for the slave 

paths. The latter does the synchronisation work. The following simulations are on these two 

modules. Let us begin with the PQ_phase Buffer simulation. 

5.2.3.2.1 PQ_phase Buffer 

 

Figure 51 –PQ_phase Buffer RTL Schematic 

Figure 51 shows the RTL schematic of the PQ_phase buffer in the slave paths. The 

PQ_phase Buffer is a FIFO (First In First Out) and the working principle has already been 

discussed in the methodology section. The FIFO is generated by using Xilinx IP Core 

generator. The internal structure cannot seen, but the simulation on the ports can be executed 

as normal. 

This simulation is to verify the behaviour of the PQ_phase Buffer by observing the input and 

output signals. 



 

  

 

95 

 

With the correct simulation of the input manipulation module above, the simulation on the 

PQ_phase Buffer still uses the Frame 2 listed in Table 1 as the simulated input data in the 

simulation. The waveform is shown in the graph below in Figure 52, Figure 53, and Figure 

54. 

 

 

 

 

Figure 52 –Waveform of PQ_phase Buffer simulation (1) 

The waveform above demonstrates the working principle of the module. When the master 

path is working, the PQ_phase Buffer stores the 40 “PQ_phase” calculated from the master 

path, the process of which is indicated by “wr_en” signal. When the slave path (No.2 path in 

this case) starts working, the 40 “PQ_phase” are taken to be used in the following calculation. 

After all the 40 “PQ_phase” are read out, the “empty” signal changes to ‘1’, which indicates 

that no data are stored in the FIFO. Having verified the working principle, the order of the 

stored data needs to be verified. 

 

 

 

Figure 53 –Waveform of PQ_phase Buffer simulation (2) 

The data stored in the “din” vector is sfixed format data, which has 3-bit integer and 32-bit 

fractions.  

                                                                  

40 “PQ_phase” calculated 

from the master path 40 “PQ_phase” used in 

the slave paths 

40 “PQ_phase” are read, 

“empty” signal changes to ‘1’ 

             = -0.031347                                   = -0.031826                      



 

  

 

96 

 

                                                                  

 

Figure 54 –Waveform of PQ_phase Buffer simulation (3) 

The order of the output data from the “dout” vector is exactly the same as the data stored in 

the “din” vector. Therefore it can be concluded that the behaviour of the PQ_phase Buffer is 

performing correctly. 

5.2.3.2.2 Algorithm cycle count secondary module 

 

Figure 55 –Algorithm cycle count secondary RTL Schematic 

Figure 55 shows the RTL schematic of the algorithm cycle count module in the slave paths. 

This module is to generate the synchronised algorithm finish signal. The working principle of 

this module has been discussed in the methodology section. 

This simulation is to verify the behaviour of the algorithm cycle count secondary module by 

observing the input and output signals. 

In order to verify the working principle shown in Figure 20 in the methodology section, the 

simulation is done on this module. 

 



 

  

 

97 

 

 

                                                                                         5 clock cycles 

Figure 56 –Waveform of algorithm cycle count secondary module 

It can be observed that when the “Rdy_nd” signal changes to ‘1’, the shifting process starts. 

After 5 clock cycles, the output “Rdy_algo” responds. It indicates that the algorithm process 

in the slave paths takes a short time period, which is 5 clock cycles. To summarise, the 

behavior of the algorithm cycle count secondary module is correct. 

5.2.3.2.3 Algorithm Secondary Module (Top-level) 

 

Figure 57 –Algorithm secondary module RTL Schematic 

Figure 57 shows the RTL schematic of the algorithm module in the slave paths. This module 

is used to calculate the parameters received to get the interim ACFM value of each sample 

An and then send them in order to the following recursive adder module to get the final 

ACFM result for every frame. The lower-level of the algorithm module has been done. This 

simulation is to verify the behaviour of the top-level Algorithm Secondary Module by 

observing the input and output signals. 



 

  

 

98 

 

The Frame 2 listed in Table 1 is used as the simulated input data in the simulation. The input 

data and the expected results are shown below in Table 4. 

Table 4 – Simulated data and expected results in Algorithm Secondary Module simulation 

                      
 

i=0 832 -0.031347 5.2664 

i=1 763 -0.031826 7.5428 

… … … … 

i=39 920 -0.030097 2.4077 

 

The expected             and         
value are listed in the table. The following step is to 

verify if the simulation results are the same as the expected results. The simulation 

waveforms are shown below in Figure 58, Figure 59, and Figure 60. 

 

 

Figure 58 –Waveform of Algorithm Secondary Module (1) 

The PQ_phase arrives first, because the data process starts from the master path. The 

PQ_phase is calculated from it.  The value of               and                have been 

verified in the PQ_phase Buffer simulation. The “PQ_phase_in” input is correctly responding.  

 

 

 

 

Figure 59 –Waveform of Algorithm Secondary Module (2) 

             = -0.031347                                   = -0.031826                      

                                                             

                                                                          



 

  

 

99 

 

The output “ACFM” is sfixed format data, which has 21-bit integer and 32-bit fractions.  

      
                                                     

      
                                                    

 

 

 

 

Figure 60 –Waveform of Algorithm Secondary Module (3) 

The last sample a[39] and the ACFM value of it are shown in the waveform. It can be seen 

that the value are exactly the same as the expected results. All the other samples and the 

ACFM values of them have been verified, and they are all correct. To sum up, the behaviour 

of the Algorithm Secondary Module is correct. 

5.2.4 Recursive Adder Module 

 

Figure 61 –Recursive adder module RTL Schematic 

       
                             

                             



 

  

 

100 

 

Recursive adder is used to perform the addition on every single ACFM value that is produced 

by the algorithm module in each path. The working principle of this module has been 

discussed in the methodology section.  

This simulation is to verify the behaviour of recursive adder by observing the input and 

output signals. 

The Frame 2 listed in Table 1 is used as the simulated input data in the simulation. The input 

data and the expected results are shown below in Table 5. 

Table 5 – Simulated data and expected results in recursive adder simulation 

                      
 

i=0 832 -0.031347 5.2664 

i=1 763 -0.031826 7.5428 

… … … … 

i=39 920 -0.030097 2.4077 

       
 

968.45 

 

The expected             and       
 value are listed in the table. The following step is to 

verify if the simulation results are the same as the expected results. The simulation 

waveforms are shown below in Figure 62. 

 

 

 

 

Figure 62 –Waveform of recursive adder module 

       
                             

       
                          



 

  

 

101 

 

The output signal “TxD_data” is the signed 16-bit ACFM result. It can be seen from the 

waveform that the value is 970, which is in the accuracy tolerance compared with the 

expected result. All the other samples and the ACFM values of them have been verified and 

they are all correct. When the ACFM result is ready, the transmission start signal “TxD_start” 

changes to ‘1’. To sum up, the behaviour of the recursive adder module is correct. 

5.2.5 Synchronize Buffer 

 

Figure 63 –Synchronize Buffer RTL Schematic 

Synchronize Buffer works to buffer the ACFM results for all the eight paths, and guarantee 

the results can arrive at the SCI module at the same time. The working principle of this 

module has been discussed in the methodology section. 



 

  

 

102 

 

This simulation is to verify the behaviour of Synchronize Buffer by observing the input and 

output signals. The previous simulations are all done. This simulation is to put all the eight 

paths together to view the inputs and outputs.  

The simulation waveform is shown below in Figure 64. 

 

Figure 64 –Waveform of Synchronize Buffer 

From the waveform, it can be seen that the SCI starting transmission signal “SCI_start_out” 

changes to ‘1’ when “No8_start_in” changes to ‘1’, which indicates the data process in the 

No8 path has finished. The internal signals, which are to latch the control signals from the 

eight paths, have all changed to ‘1’, which means the data processes in all the 8 paths have 

finished, therefore the “SCI_start_out” should change to ‘1’. To sum up, the behaviour of 

Synchronize Buffer is correct.  

 



 

  

 

103 

 

5.2.6 Serial Peripheral Interface (SPI) slave module 

 

Figure 65 –SPI Slave module RTL Schematic 

The SPI module acts as slave mode and is used to receive data from DSP processor. It 

consists of seven input signals and ten output signals. The inputs are eight-path data stream 

(MOSI), SPI communication clock (SCK), chip select signal (SSEL), system clock (Clk) and 

three path address lines (Address2, Address1, Address0). The outputs are control signal 

(Data_rdy), 16-bit output data (output_data) and eight paths enable signals (from No1_EN to 

No8_EN). The working principle of this module has been discussed in the methodology 

section.  

This simulation is to verify the behaviour of the SPI module by observing the input and 

output signals. 

The Frame 2 listed in Table 1 is used as the simulated input data in the simulation. The 

working principle is shown in the waveform below. 

 



 

  

 

104 

 

 

Figure 66 –Waveform of Serial Peripheral Interface (SPI) (1) 

The waveform above shows the how the SPI module assigns the input data to the eight paths. 

The 3-bit address line indicates the address the data belongs to. When the address equals 

“000”, the No1 path (the master path) enable signal “No1_En” changes to ‘1’ (active). Once 

all the data in one frame have been received, the signal “No1_En” changes back to ‘0’. The 

situation is the same in the other seven paths. In the view of the transmission of each data, the 

waveform is shown below in Figure 67. 

 

Figure 67 –Waveform of Serial Peripheral Interface (SPI) (2) 

From the simulation waveform above, it can be seen that the chip select signal (SSEL) stays 

low along the data transfer across the SPI bus. The first output data is element1 in Frame 2, 

which is the total number of data in one frame. The “data_rdy” control signal is toggled to 

high when the data is ready at the output port. To sum up, the behavior of the SPI module is 

correct. 

001 010 011 100 000 101

 
 001 

110 111 

Element0 (N)= 40                      



 

  

 

105 

 

5.2.7 Serial Communication Interface (SCI) 

 

Figure 68 –SCI module RTL Schematic 

Two SCIs are used in this project. Each of them performs the same behaviour. They take 

responsibility for each of the four paths respectively. The SCI module is used to send the 

final ACFM value of the four paths from the FPGA device to the PC for further offline visual 

display. It consists of 6 input ports, system clock (Clk), four TxD_data (16-bit data) from the 

four paths and a control signal (TxD_start), and 2 outputs are TxD (serial bit stream) and SCI 

transmission finish signal. The module starts to read data from the four input data ports when 

the TxD_start signal equals ‘1’, which indicates starting the communication.  

This simulation is to verify the behaviour of the SCI module by observing the input and 

output signals. 

The simulated data for the four paths inputs are set the same, which is “0000000100000000”, 

in order to view the transmission protocol in the simulation waveform. The result is shown 

below in Figure 69. 



 

  

 

106 

 

 

 

 

Figure 69 –Waveform of Serial Communication Interface (SCI) (1) 

It can be observed from the waveform that the start bits used in the transmission are “10” and 

the stop bit used is “1”. That means the header of each 16-bit ACFM result is “10” and the 

footer is ‘0’. The real data is the 16 bits between the header and footer. Also, it can be seen 

that the upper byte is transferred first, followed by the lower byte. From the output signal 

“TxD” in the waveform, it can be seen that the upper byte “00000001” is transferred first, 

followed by the lower byte “00000000”. Having made clear the transmission rules, the order 

of the data from the four paths transmission needs to be verified.  

The simulated input data is listed in Table 6 below. 

Table 6 – Simulated data in SCI module simulation 

TxD_data from the master path 0000000000000001 

TxD_data from the No2 path 0000000000000010 

TxD_data from the No3 path 0000000000000011 

TxD_data from the No4 path 0000000000000100 

 

And the simulation waveform is shown in Figure 70 below. 

 

 

 

Start-bit “10”                      Stop bit ‘1’                      Start-bit “10”                      



 

  

 

107 

 

 

 

 

Figure 70 –Waveform of Serial Communication Interface (SCI) (2) 

From the waveform, it can be concluded that the “TxD_data” of the four paths are transferred 

in order. For the master path, the upper byte “00000000” is transferred first followed by the 

lower byte “00000001”. Then for the No2 path, the upper byte “00000000” is transferred first 

followed by the lower byte “00000010”. To sum up, the behaviour of the SCI module is 

performing correctly. 

5.3 System testing (Top Level Entity) 

The master path and the slave paths have been simulated above, as well as their behaviour 

individually verified. The top-level structure of the eight paths system should then be 

considered.  

Having implanted the top-level structure of the eight paths system, Xilinx ISE could generate 

the RTL schematic as the designer expects. The RTL schematic of the eight paths top-level 

entity is shown in Figure 71 below. 

Start-bit “10”                      “00000001”                      

“00000010”                      

“00000011”                      



 

  

 

108 

 

 

Figure 71 –Multiple ACFM model RTL Schematic 

As already discussed, the inputs from the DSP are the chip select signal (SSEL), the serial 

data signal (MOSI) and SPI communication clock signal (SCLK), as well as three address 

wire signals (Address0, Address1, Address2). The working principle has been discussed in 

the methodology section. The internal structure of the eight paths system is shown below in 

Figure 72. 



 

  

 

109 

 

 

Figure 72 –Eight paths system RTL Schematic 

The structure is too complex to display. Although the details cannot be clearly viewed from 

the diagram above, it can still be observed that the top-level entity consists of four parts: SPI 

slave, algorithm realisation in the eight paths, synchronisation and two SCI modules. 

SPI slave module 

Algorithm module in Master path 

Algorithm module in the 7
th

 Slave path 

Algorithm module in the 6
th

 Slave path 

Algorithm module in the 5
th

 Slave path 

Algorithm module in the 4
th

 Slave path 

Algorithm module in the 3
rd

 Slave path 

Algorithm module in the 2
nd

 Slave path 

Algorithm module in the 1
st
 Slave path 

Synchronisation module 

1
st 

SCI module 

2
nd 

SCI module 



 

  

 

110 

 

In order to simulate the behaviour of receiving data from the DSP, a simulated data generator 

is used to mimic the data transmitted from the DSP and simulate the behaviour of the DSP. 

The connection between is shown in Figure 73 below.  

 

Figure 73 –RTL Schematic of the master path simulation structure 

The Frame 1 and Frame 2 listed in Table 1 are used as the simulated input data in the 

simulation. In order to verify if the simulated ACFM result is correct, the results provided by 

TSC company and MATLAB are used as criteria. The criteria and the expected results are 

shown in Table 2 and the simulation waveform is shown below in Figure 74. 

 

Figure 74 –Waveform of system testing (1) 

The       results shown in Figure 74 are the calculation results of the Frame 1 and Frame 

2. The Frame 1 is used as the input sent to the master path, while the Frame 2 is used as the 

Bit stream in two SCIs. 

Zoom in to view in the 

next waveform.                   

                                
                                        

                                        



 

  

 

111 

 

inputs sent to the seven slave paths. From the waveform it can be seen that the results are the 

same between the eight paths. The results are: 

                                             

                                             

Comparing the results with the criteria in Table 2, it can be concluded that the results are 

correct. The SCI bit stream will then be zoomed in to view the behaviour, shown in the 

waveform below in Figure 75. 

 

 

 

 

 

Figure 75 –Waveform of system testing (2) 

As discussed in the SCI simulation part, the start bits used in the transmission are “10” and 

the stop bit used is “1”. The real data is the 16 bits between the header and footer. Also, the 

upper byte is transferred first, followed by the lower byte. From the output signal 

“TxD_Com1” and “TxD_Com2” in the waveform, it can be seen that the upper byte (MSB) 

“00000011” is transferred first, followed by the lower byte (LSB) “11001010”. Combining 

the two bytes together, it makes the 16-bit       result. To sum up, the behaviour of the 

eight paths top-level system is performing correctly. 

From the        results of all eight paths, it can be observed that there is still a slight 

difference between the ACFM result in the FPGA simulation and the criteria. As discussed 

above in the master path simulation part, the reason is mainly due to the fixed input data 

format of the trigonometric module. It only accepts data input with 16-bit representation and 

3-bit integer following with 13-bit fraction. It causes some variation in the final solution of 

MBS=“00000011”                      

Start-bit “10”                      Stop bit ‘1’                      

Start-bit “10”                      

Stop bit ‘1’                      

LSB=“11001010”                      



 

  

 

112 

 

the master path. Although the trigonometric module is not used in the slave paths, the 

“PQ_phase”, which involves the trigonometric module, is calculated from the master path. 

Hence, all eight paths have the same variation and the 16- bit representation can produce a 

high accuracy answer for all eight paths. 

Having verified the behaviour of the top-level system in FPGA, the synthesise process and 

the realisation of the hardware should then be considered. In the following section, the 

synthesis performance and the hardware process will be discussed. 

6 Synthesis results 

The following section is to discuss the synthesis performance of the eight paths system in 

FPGA and the hardware implementation on FPGA Spartan-6 chip. Then the verification of 

the behaviour of ATLYS FPGA Board will be executed last. 

6.1 Synthesis performance 

The synthesis performance can be observed from the synthesis report. Next, let us discuss it. 

Figure 76 below shows the device utilisation summary. 



 

  

 

113 

 

 

Figure 76 –Device Utilisation Summary 

From Figure 76 it can be observed that this design uses about 11,600 registers out of 54,500 

that are available in the Spartan-6 (XC6SLX45) FPGA chip. The utilisation is about 21%. 

Besides that, the design uses about 9,500 look up tables (LUTs) out of 27,200 that are 

available in the chip. The utilisation is about 35%. In FPGA, most of the operations are 

implemented using LUTs. Lastly, but most importantly, the design uses 40 DSP48 modules 

out of the 58 that are available in the chip. The utilisation is about 68%. This percentage is 

taken up by the complicated mathematical calculations mainly in the master path, such as 

division and trigonometric calculation. Considering the utilisation of these indexes, the FPGA 

chip is around half used, which is appropriate for routing as well as further expanding in the 

future. 

6.2 Efficiency in use of FPGA 

In this section, a comparison is made between methods to explain how efficiently the FPGA 

works. In this project, the eight paths system is implemented by dividing the paths into one 

master path and seven slave paths, in which way much space can be saved, as expected. 



 

  

 

114 

 

Meanwhile, a simple way to implement this system is to copy the one-single path system 

eight times, which could theoretically work. Therefore, the comparison is between the master  

and slave paths system and the simple eight paths system.  

Firstly, let us view the device utilisation summary (DUS) of the one-single path system. The 

summary is shown below in Figure 77. 

 

Figure 77 –DUS of one-single path system(Ma, 2010-2011) 

The FPGA chip used in the one-single path system is Spartan-3A XC3S700AN. From Figure 

77, it can be observed that this design used about 8,000 registers out of 10,000 that are 

available in the Spartan-3A XC3S700AN FPGA chip. The utilisation is about 74%. In 

addition, the design also used about 8,000 look up tables (LUTs) out of 10,000 that are 

available in this device. The utilisation is about 66%. Based on the utilisation in the one-

single path system, the expected simple eight paths system utility should be eight times 

greater, which is 64,000 registers and 64,000 LUTs. Therefore it is evident that the Spartan-

3A XC3S700AN chip is not enough for the eight paths system. Comparing the expected 

utilisation of the simple eight paths system and the master and slave paths system, the space 

saved is listed below in Table 7. 

 



 

  

 

115 

 

Table 7 – Comparison between simple eight paths and master & slave paths system 

Simple eight paths system Mater &slave paths system 

Spartan-3A 

XC3S700AN 

Registers usage 64,000/10,000 (640%) 11,600/10,000 (116%) 

LUTs usage 64,000/10,000 (640%) 9,500/10,000 (95%) 

MULT18X18SIOs 

(trigonometric function) 

usage 

160/20 (800%) 40/20 (200%) 

Spartan-6 

XC6SLX45 

Registers usage 64,000/54,500 (117%) 11,600/54,500 (21%) 

LUTs usage 64,000/27,200 (235%) 9,500/27,200 (35%) 

DSP48A1s 

(trigonometric function) 

usage 

160/58 (285%) 40/58 (68%) 

 

The table above summarises the utilisation comparison between the simple eight paths system 

and the master and slave paths system. It can be observed that much space is saved in the 

latter system. The registers and LUTs used in the simple eight paths system are six times as 

large as the utilisation in the master and slave paths system. Because of this, even the 

Spartan-6 (XC6SLX45) is not big enough for the simple sight paths system but can cope with 

the smarter master and slave paths system. Meanwhile, the registers available in the Spartan-

3A XC3S700AN FPGA chip are not enough for the master and slave paths system, so the 

FPGA chip is changed into Spartan-6 (XC6SLX45) in this project. The most important factor 

taken into consideration for this choice is the advanced DSP cells internal, of which the 

trigonometric function needs and consumes a great deal. 

Having made clear the synthesis performance of the system, the hardware implementation 

can be executed in order to get the real data out from the FPGA board- ATLYS. 



 

  

 

116 

 

6.3 Hardware implementation 

In this section, the hardware implementation will be discussed. In order to ensure the specific 

FPGA device can perform the designed operations, the implementation constrain file (“.ucf” 

file) is needed to specify in the FPGA project. This is because the synthesis tool, place and 

route tools need to take care of the timing issue during the synthesis process. The main 

function of the “.ucf” file is to tell the synthesis tool about which pins of the FPGA chip 

correspond to the output signals defined in the programme. In this project, 6 IO pins are used 

to perform the SPI communication with the DSP; the communication clock (SCK), chip 

select signal (SSEL), and three path address signals (Address2, Address1, Address0) from the 

DSP SPI Master. In addition, 2 IO pins are used to perform the SCI communication with the 

PC; the bit stream from SCI1 (TxD_Com1) and the bit stream from SCI2 (TxD_Com2).  

To download the program file into the Spartan-6 (XC6SLX45) FPGA chip on the ATLYS 

board, we used Adept, the software developed by Digilent Inc., the supplier of ATLYS board. 

The user interface of this software is shown below in Figure 78. 



 

  

 

117 

 

 

Figure 78 –User Interface of Adept Software 

Once the designer plugs the ATLS board in, the software will recognise and display it. After 

initialising the chain, the designer is able to import the program file and then program it into 

the FPGA chip on the board. The Adept software also integrates the self testing, power 

adjustment, I/O expanding, etc. 

6.4 Verification of ATLYS 

To verify the behaviour of the ATLYS board, the output ports TxD_Com1 and TxD_Com2 

should be inspected. The serial communication function in Matlab is used to capture the bit 

stream transferred from the ATLYS board.  

The important part of the codes in Matlab is shown below in Figure 79. 

 



 

  

 

118 

 

 

Figure 79 –Serial communication realisation in Matlab 

As shown in the figure, the output “TxD_Com1” is assigned as “Com2” in the device 

manager in Windows7 OS. The output “TxD_Com2” is assigned as “Com5”. Therefore, 

when testing “TxD_Com2”, the code modification is to change “COM2” to “COM5”. 

In the simulated data generator, two frames of healthy rail section are used, which are named 

Frame 3 and Frame 4. They are shown in Table 8 below, and are used as the inputs and the 

frames are sent cyclically.  

‘COM5’        



 

  

 

119 

 

Table 8 – Simulated two frames from DSP 

 

Frame 3 Frame 4 

Element Clip 3 Clip 4 

N 40 40 

β 260 260 

Fc, LSB 50000 50000 

Fc,MSB 0 0 

Fs,LSB 33950 33950 

Fs,MSB 30 30 

A0 841 857 

A1 766 773 

A2 725 769 

A3 738 783 

A4 807 771 

A5 891 893 

A6 998 986 

A7 1141 1162 

A8 1333 1339 

A9 1544 1478 

A10 1773 1746 

A11 1995 1952 

A12 2213 2212 

A13 2462 2473 

A14 2726 2640 

A15 2950 2872 

A16 3141 3119 

 

 

Frame 3 Frame 4 

Element Clip 3 Clip 4 

A17 3317 3277 

A18 3494 3501 

A19 3638 3592 

A20 3739 3687 

A21 3782 3760 

A22 3816 3807 

A23 3818 3829 

A24 3761 3794 

A25 3693 3680 

A26 3558 3559 

A27 3384 3418 

A28 3218 3290 

A29 3039 3071 

A30 2816 2821 

A31 2568 2581 

A32 2329 2377 

A33 2072 2143 

A34 1865 1911 

A35 1630 1632 

A36 1407 1448 

A37 1214 1258 

A38 1061 1119 

A39 939 988 

 

 

 



 

  

 

120 

 

In order to verify whether the simulated ACFM results are correct, the results provided by 

TSC company and MATLAB are used as criteria. The ACFM results of the two frames in 

these two methods are shown in Table 9 below. 

Table 9 – The expected ACFM results in Frame 3 and Frame 4 

 Frame 3 Frame 4 

ACFM result from TSC 968 954 

ACFM result from Matlab 967.57 954.25 

 

In this testing, Frame 3 is provided to the master path and Frame 4 is provided to the other 

seven slave paths. In this way, different conditions on the whole track surface are simulated. 

The data received from “TxD_Com1” is shown in the Matlab workspace in Figure 80 and 

data received from “TxD_Com2” is shown in Figure 81. 

 

Figure 80 –Bit stream from “COM2” captured in Matlab 



 

  

 

121 

 

 

Figure 81 –Bit stream from “COM5” captured in Matlab 

As previously discussed, the output signal “TxD_Com1” transfers the bit stream from the 

first four paths (the master path and No.2 to No.4 slave paths), while the output signal 

“TxD_Com2” transfers the bit stream from the following four paths (No.5 to No.8 slave 

paths). The received 16-bit data from the master path, which is the 2 bytes shown in the 

figure, is “3” and “202”. Transforming the two bytes into binary representation: 

                  

                    

So the 16-bit data is: 

                            

Referring to the received 16-bit data from the seven slave paths, the 2 bytes are: 

                  

                    

So the 16-bit data is: 



 

  

 

122 

 

                            

From the figures in Table 9, it can be observed that there is slight difference between the 

ACFM result in the FPGA simulation and the criteria. As discussed before, this is due to the 

number of bit that are used to represent the data operation and also the limitations of the 

trigonometric module that only accepts data input with 16-bit representation. The input radian 

value could not be represented more accurately than the fractions in the 16-bit input format. 

However, the accuracy is still high when it is compared with the criteria. Therefore it can be 

concluded that the FPGA board, the ATLYS board, is working accurately.  

Having synthesised and verified the behaviour of the FPGA board, the parallel processing 

chain for the eight ACFM paths has been built and the mandatory requirements (discussed in 

Section 4.2) of the FPGA part that the system has implemented is listed below: 

Mandatory features 

1) Process NDT data from 8 channels.  

2) 12-bit quantisation for the ADC, and 16-bit data processing in FPGA. 

3) An eight channel parallel ACFM algorithm implementation in FPGA. 

4) The baud rate could reach 1 Mbps. 

5) The input interface of FPGA could fit into an eight DSP chip output interface. 

6) Synchronisation of 8 probes’ data processing chain. 

As discussed in the system description, the eight ACFM paths system is comprised of eight 

ACFM probes, a DSP development board, an FPGA device and a PC. The DSP takes the 

responsibility for real time data acquisition, while the PC is used to display the results of the 

eight paths. Considering when cracks occur on the track surface, the change in the ACFM 

results is significant and quite obvious to see from the changing curve. It can hardly be seen 

from the static figures captured in Matlab, but can be detected in the changing curve. Also, 



 

  

 

123 

 

given the high speed transferring data flow, the capture work realized by displaying the 

numeric figures is not easy for the user to view the change. In order to enhance the 

performance of the PC display, visualisation software is developed to present the curve of the 

eight paths results in real time. In the next section the changing curves will be displayed on 

the PC screen. The visualisation software will be discussed in detail. 

7 Visualisation on PC  

Visualisation software is developed to present the curve of the eight paths results in real time. 

The software used in the visual display on the PC is the NI LabWindows CVI 2009 free 

30 days trial version. The aim of the programme is to receive the bit stream from two serial 

ports and display them on the screen in order. 

Specifically, data from “TxD_Com1” (Window7 OS assigned it “COM2”) are the ACFM 

results of the master path and the No.2 to No.4 slave paths, whilst data from “TxD_Com2” 

(Window7 OS assigned it “COM5”) are the ACFM values of No.5 to No.8 slave paths. For 

each Com, ten bytes make up one package in the programme. The format of the package is 

shown below in Figure 82.  

 

(0H）（0L）（1H）（1L）（2H）（2L）（3H）（3L）0x00  0XA5 

 Figure 82 –Format of the package in the visualisation software 

The high byte of each path is sent first and the low byte follows. The stop byte of the package 

is “0XA5”. It is the identifier of the interrupt function in the COM callback function. The 

software is told that one package has been received when “0XA5” arrives. The working 

principle is shown below in the design flow chart in Figure 83. 



 

  

 

124 

 

 

 

Figure 83 –Design flow chart of visual display programme 

As shown in the flow chart, the programme keeps scanning the buttons. The user interface is 

shown below in Figure 84. 



 

  

 

125 

 

 

Figure 84 –User interface of visual display programme 

In the com port configuration step, the serial communication protocol is set. Because the 

output signal “TxD_Com1” is assigned as COM2 and “TxD_Com2” is assigned as COM5, 

the configuration here is as shown above. 2-bit starting bits and a 1-bit stop bit are combined 

with 8-bit data. The format is shown below. Therefore, each byte actually consists of 10 bits' 

data. 

 

                           Start bit 8-bit data                               Stop bit            

Figure 85 –Format of 11-bit frame 

It can be seen in the chart that a display thread is called every 100 packages. As demonstrated 

in Figure 85, one package contains 10 bytes, so SCI transmitting one package needs: 

       
 

      
       

However, to perform a display one time requires 20 ms. Therefore the display unit is chosen 

every 100 packages, which meets the requirement of being greater than the display time. And 



 

  

 

126 

 

based on the 50 kHz input frames, and eight channels, the resolution is 500 Hz. The defects 

information can be inspected in the slow speed inspection train and particularly manual 

operation. If this was deployed on a high speed, the visualisation would change 

correspondingly.  

Having described the visualisation software, the software can be connected to the FPGA 

board to view the curve of the eight paths' ACFM results. 

7.1 FPGA & Visual display 

In this test, the inputs are still generated by the simulated data generator and the input data is 

the same as the frames listed in Table 8. The frames are sent cyclically. Frame 3 is provided 

to the master path and Frame 4 is provided to the other seven slave paths. It is done in this 

way to simulate the different conditions on the whole track surface. 

 The curves of the eight paths are shown below in Figure 86. 

 

Figure 86 –Visual display of the eight paths' ACFM results 

970            

956            

956            

956            

956            

956            

956            

956            



 

  

 

127 

 

The ACFM results of the eight paths are shown above in Figure 86. The result of the master 

path is “970” and the results from the seven slave paths are “956”, as expected. If the value 

changes, it can be easily seen from the curves. 

In the following test, the simulated crack inputs are set in the simulated data generator to 

imitate the crack condition on the track. The changing wave is shown below in Figure 87. 

 

Figure 87 –Visual display of the eight paths' ACFM results with crack 

As the curves show in the graph, the simulated crack occurs in the position of the probe 

which connects to the master processing path. Therefore there is a sharp impulse in the curve. 

Because the simulated data is sent cyclically, the impulse will be generated periodically as 

well. 

Having developed and tested the visualisation software, the processing chain for the eight 

ACFM paths as well as the visualisation work on the PC have been realised. The system has 

implemented the mandatory requirements of the visualisation part which is: 

Crack     

956            

956            

956            

956            

956            

956            

956            



 

  

 

128 

 

Mandatory features 

1) 8 channels’ results visualisation. 

However, the FPGA cannot communicate with the ACFM probes directly. It needs the DSP 

to play the role of real data acquisition. In order to expand the system a little further to verify 

the behaviour of it, the following task is to program the DSP to realise the eight paths data 

acquisition. 

8 DSP for ACFM use 

As an example simulated input method, only one DSP board is used in this test. The 

advantage of using this method is the simple structure compared with the eight DSP boards 

structure. The working principle of the one DSP board system will then be discussed. 

The DSP board used is a DSP X28335 Kit Board, and the program environment is CCStudio 

version3.3. The function can generally be divided into ADC part and DAC part. The former 

part is used to sample analogue data collected from the track and send them to the FPGA, 

while the latter part is used to generate a carrier wave and send it to the ACFM probes. The 

detailed design is shown in the flow chart below in Figure 88. 



 

  

 

129 

 

 

Figure 88 –Design flow chart of DSP programme 

All the designs are in the main function, and the most important part in this design is in the 

dashed block. It is the synchronisation of the sampling and carrier wave in order to guarantee 

the sampling always begins at the initial phase in each period. The working principle is 

shown below in Figure 89. 

 

 



 

  

 

130 

 

DAC_EN 

 

 

 

DAC 

Carrier wave 

 

ADC 

 

Initial phaseβ 40    40 40 

Figure 89 –Waveform of ADC sync. with DAC working principle 

When the signal DAC_EN changes to zero, at the falling edge, the carrier wave is reset to the 

initial phase, which is set as zero ensuring the phase of carrier wave is the same at the 

beginning of each element sampling. In the meantime, the ADC waits until the sampling 

initial phase is reached then starts to sample. And after having sampled 40 points, the ADC 

stops working until the next DAC_EN signal falling edge arrives. 

Having made clear the working principle of the DSP system, the test and verification should 

be considered. 

8.1 DSP & FPGA 

Before putting the data from the DSP into the processing chain in the FPGA, the output data 

of the DSP should be tested and verified.  

The test is to build a straight path in the FPGA from the front SPI module to the last SCI 

module. The display method uses the visualisation software in LabWindows CVI and the 

serial communication programme in Matlab. 

The 8-pin Pmod connector is used to perform the communication between the DSP, FPGA 

and PC. Two pins out from the 8-pin Pmod connector are used to send serial data to the PC. 



 

  

 

131 

 

Besides that, the other 6 IOs are used to perform the SPI communication between the DSP 

board and the FPGA.  

 

Figure 90 –The Pmod connector service condition 

Figure 90 above demonstrates the service condition of the Pmod connector. The assignment 

of each pin is listed below: 

 Pin1: TxD_Com1 

 Pin2: TxD_Com2 

 Pin3: MOSI (bit stream through SPI) 

 Pin4: SCLK (SPI communication clock 6.25MHz) 

 Pin5: SSEL (Chip select signal, falling edge enable) 

 Pin6: Address0  

 Pin7: Address1 

 Pin8: Address2 

Having done the connection work, the simulation of the DSP behaviour can start. The mimic 

16-bit input data is “55AA” in hexadecimal representation and is sent cyclically. 

The data through the straight path is captured by Matlab in the PC. The result is shown below 

in Figure 91. 



 

  

 

132 

 

 

Figure 91 –Bit stream from “TxD_Com1”&” TxD_Com2” captured in Matlab 

The received 16-bit, which is 2 bytes shown in the figure, is “85” and “170”. Transforming 

the two bytes into binary representation: 

                         

                          

So the 16-bit data is: 

                             

The data captured by Matlab is exactly the same as the mimic data in the DSP. Therefore it 

can be concluded that the FPGA board, the ATLYS board, is working correctly.  

8.2 DSP & FPGA & Visual display 

Having tested and verified the behaviour of the DSP is correct, the output of the DSP can be 

put into the processing chain in the FPGA to verify the working condition of the whole 

system. 



 

  

 

133 

 

In this test, the inputs are still generated by the simulated data generator. The input data is the 

same as the frames listed in Table 8. The frames are sent cyclically. The simulated crack 

input, which mimics the crack condition on the track, is provided to the master path and 

Frame 4 is provided to the other seven slave paths. This is to simulate the different conditions 

on the whole track surface. 

In the following test, the simulated crack inputs are set in the simulated data generator to 

imitate the crack condition on the track. The changing wave exactly the same shown in 

Figure 87. 

The programme in the DSP could accommodate all the other parameter configurations. 

However, parameter modification will result in setting changes for the whole system, such as 

the carrier frequency, sample frequency, etc. So if modification is needed in a future project, 

the system could easily accommodate a new system design. 

The requirements of the system realised in this part is: 

Mandatory features 

1) The ADC in each channel runs at 1 MSPS. 

Preferred features 

1) The ADC in each channel runs at 2 MSPS. 

2) The structure of the DSP system could be simplified from 8 DSPs to 1 DSP. 

3) The system could be able to accommodate other parameter configurations, such as carrier 

frequencies, sample frequency, sampling starting phase, etc. 

The system has therefore implemented both the mandatory requirements and the preferred 

requirements of the DSP part listed at the beginning of the dissertation. 

 



 

  

 

134 

 

9 Conclusion 

In this project, the system is divided into three parts regarding the equipment: DSP device, 

FPGA device and PC equipment. Based on their functions, the whole system also can be 

divided into three parts: data acquisition, data processing and data visualisation. In this 

project, all these three parts are implemented. The mandatory and preferred requirements of 

the system have been realised.  

The eight paths parallel processing chain of the ACFM data has been developed on an FPGA 

device. The ACFM data in the eight paths are collected from eight parallel positioned ACFM 

probes. In order to make the system more efficient and productive, one of the eight paths is 

set as the master path to calculate the constants in the parameters configuration; the master 

path delivers the constants to the other seven slave paths through the bus. Designing the 

system in this way can save a great deal of components in the FPGA chip, and thus achieve 

cost benefits. Based on this structure, synchronisation work is necessary in the system design. 

After the data processing in the FPGA device, the final ACFM results can be achieved.  

The single DSP structure has also been realised. The ADC sample rate is set at 2 MSPS. 40 

samples (12-bit) are acquired from the carrier wave, the frequency of which is 50kHz. Based 

on Nyquist theory, this number of samples could well characterise the reflected carrier wave 

which indicates the real condition on the track surface. Putting the header which contains the 

parameter configuration in the front, the 46 elements frame is formed. The communication 

between the DSP and the FPGA device is through an SPI interface, and the communication 

speed is set at 6.25 Mbps. As discussed in Section 2.4, the communication speed of SPI is 

one of the key parameters to achieve high speed specialty of the system. If the data from the 

eight paths which connects to eight ACFM probes are parallel transferred, with this speed, the 

time gap between each time sampling is on a millisecond level. Assuming the inspection train 



 

  

 

135 

 

is running at 100 km/h, the distance between the two adjacent sampling times is shorter than 

1 mm, which more than satisfies real industry requirements. Even if the eight paths would 

expand, this part of the system is competent.  

Another feature implemented to achieve high speed specialty of the system is serial 

communication through the RS-232 between the FPGA and PC.  The visualisation software 

has been developed on the PC. The software is designed to provide a visual way for users to 

view the change of output results from the FPGA device, and find out where the cracks are 

located. The baud rate of the SCI communication between the FPGA and the PC is set at 

1 Mbit/s, and realised by using two serial ports transmitting bit flow at speed of 460800 bps. 

In this project, one DSP with one SPI interface transferring at 6.25 Mbps is used to achieve a 

1 Mbit/s baud rate, because the SPI communication for each path is one eighth of 6.25 Mbps. 

RS-232 communication is a widely used serial communication protocol, and most developing 

environments have the RS-232 function integrated. The normal baud rate used is from 300 

bps to 115200 bps, but no specific maximum. In this project, the highest baud rate that could 

be called in the visualisation software is 460800 bps. And by assigning the SCI transmission 

work to two serial ports, the 1 Mbps baud rate could be achieved. If the transmission speed 

needs further enhancement, the RS-485 could be considered, which could achieve up to 35 

Mbps. But as not many developing environments have RS-485 integrated, the developer may 

need to build a function in the terminal to receive the bit flow accordingly. 

At this stage, experiments for this system are still in the lab. Once it is applied on the 

inspection trains, the system could allow a high speed automatic track inspection with an 

ACFM probes array located at a constant lift-off (distance between probe and track). Related 

researches in other major areas, such as mechanical and civil engineering, are also being 

carried out. Some of them are trying to solve how to weaken the lift-off vibration effect 



 

  

 

136 

 

during high speed inspection using ACFM probes. The final realisation of this goal still needs 

further work, but initial results are promising. 

During the development of the system, many problems occurred, such as code debugging, 

timing issues, synchronisation work between the master and slave paths, etc. One problem 

worthy of mention concerns the SPI design. The SPI slave module is designed to capture data 

in the rising edge of the SCLK. However, it could not capture the data correctly as the signal 

on the MOSI does not settle down at the rising edge of the SCLK. In order to solve this 

problem, the SPI slave module was modified to capture the data on the falling edge of the 

SCLK. This is because the signal at the MOSI pin is much more stable during the falling edge 

of the SCLK. 

A great deal of knowledge has been gained and techniques learned from this project, 

including familiarity with VHDL language, Xilinx FPGA chip programming, DSP 

programming and debugging techniques, in particular the scientific method of dividing a 

complex system into small parts to debug separately. A future improvement of the system 

would be to integrate the function realised in the DSP part into the FPGA. The structure 

could then be simpler and the internal processing speed of the FPGA much faster. Also, the 

performance of the visualisation on the PC could be enhanced by integrating the curves of the 

eight probes into one curve using an appropriate operator. Identification of the cracks would 

then be more accurate and much more user friendly. If all this work were to be implemented, 

high speed automatic rail inspection could be put into industrial use in the near future. 

 

 

 

 



 

  

 

137 

 

10 References 

Anami, T. (2004). 'Preventive rail grinding strategy adopted on Shinkansen lines of JR East'. 

Rail Eng. Int. vol. 2. pp. 10-12. 

Berkeley Design Technology, I. (October 2002). 'Comparing FPGAs and DSPs for 

Embedded Signal Processing'. Stanford University. Berkeley, California. 

Board, T.i.I. (2007-2008). 'National Rail Trends'. Office of Rail Regulation. July. p. 245. 

Bray, D.E. (2000). 'Historical review of technology development in NDE'. In Proceedings of 

the 15thWorldConference on. Roma. 

Brizuela, J., Ibanez, A. and Fritsch, C. (2010). 'NDE system for railway wheel inspection in a 

standard FPGA'. Journal of Systems Architecture. August. pp. 616-622. 

Brizuela, J., Ibanez, A. and Fritsch, C. (2010). 'NDE system for railway wheel inspection in a 

standard FPGA'. Journal of Systems Architecture. pp. 616-622. 

Burd, J. (April 2005). 'Magnetic flux leakage old and new, magnetics in non-destructive 

testing'. One day seminar proceedings of magnetics in non-destructive testing. 8-13. 

Cannon, D.F. (2003). 'An international cross reference of rail defects, 2nd edition'. UIC Rail 

Defect Management Report. June. 

Clark, R. (2004). 'Rail flaw detection: overview and needs for future developments'. NDT&E 

International. vol. 37. pp. 111-118. 

Clark, R. (2004). 'Rail flaw detection: overview and needs for future developments'. NDT&E 

Int. no. 37. pp. 111-118. 

Dover, W.D., Charlesworth, F.D.W., Taylor, K.A., Collins, R. and Michael, D.H. (1981). The 

use of A-C Field Measurement to Determine the Shape and Size of a Crack in a Metal. 1
st
 

edition. George Birnbaum and George Free: Eddy-Current Characterization of Materials and 

Structures. 

Drury, J. and Pearson, N. (April 2005). 'Corrosion detection in ferrite steels using magnetic 

flux leakage'. One day seminar proceedings of magnetics in non-destructive testing. 14-19. 

Ferreira, L. and Murray, M. (1997). Modelling rail track deterioration and maintenance: 

current practices and future needs. 173
rd

 edition. Not known: Transp. Rev. 

Gao, L.-n. and Teng, L. (2008). 'Spaceborne digital signal processing system design based on 

FPGA'. IEEE. 

Grant, P.M. (1993). 'Digital signal processing part1: digital filter and the DFT'. Electronics 

and communication engineering journal. February. 



 

  

 

138 

 

Grassie, S.L. (2005). 'Rail corrugation: advances in measurement, understanding and 

treatment'. Wear. no. 258. pp. 1224-1324. 

Grassie, S.L. (2005). 'Rolling Contact Fatigue on the British railway system: treatment'. 

Wear. no. 258. pp. 1310-1318. 

Herring, A. (1877). Mode of detecting defects in railroad. 

Howitt, M. (2002). 'Bombardier brings ACFM into the rail industry'. Insight. vol. 44. no. 6. 

June. 

Ireland, R.C. and Torres, C.R. (2005). 'Limitations of the Circumference MFL technique in 

the NDE of pipelines'. Magnetics in Non-destructive Testing Seminar. London, UK. 

Jones, N.B. and Watson, J.D.M. (1990). 'Digital signal processing: principles, devices and 

applications'. IET. 

Junger, M., Thomas, H.M., Krull, R. and Rühe, S. (2004). 'The potential of eddy current 

technology regarding railroad inspection and its implementation'. the 16thWorld Conference 

onNon-DestructiveTesting. Montreal. 

Kube, K. (2005). 'Sperry trucks track troubles deep inside rails'. TrainsMag. February. pp. 

20-21. 

Lewis, A., Micheal, D., Lugg, M. and Collins, R. (1988). 'Thin-skin electromagnetic fields 

around surface-breaking'. J Appl Phys. vol. 64. no. 8. pp. 3777-3784. 

Li, Y., Tian, G.Y. and Ward, S. (2006). 'Numerical simulation on magnetic flux leakage 

evaluation at high speed'. NDT&E International. vol. 39. pp. 367-373. 

Lugg, M. and Topp, D. (2006). 'Recent developments and applications of the ACFM 

insoection method and ACSM stress measurement method'. In the Proceedings of ECNDT 

2006. Berlin, Germany. 

M Ph Papaelias, C.R.C.L.D.B.B.M.L. (2009). 'High-speed inspection of rolling contact 

fatigue in rails using ACFM sensors'. The British Institute of Non-Destructive Testing 

(Insight). no. 7. July. 

Ma, K. (2010-2011). 'DEVELOPMENT OF AN FPGA (FIELD PROGRAMMABLE GATE 

ARRAY) PROCESSING CHAIN FOR HIGH-SPEED NDT (NON-DESRUCTIVE 

TESTING) SYSTEMS'. Msc final project report (intenal EECE/University of Birmingham, 

available upon request). 

Mandayam, S., Udpa, L., Udpa, S.S. and Lord, W. (1996). 'Invariance transformations for 

magnetic flux leakage signal'. IEEE Trans. Magn. vol. 32. pp. 1577-1589. 

Nair, P.P. (2008). 'Image and video processing using FPGA technology for medical 

application'. IET. pp. 1-7. 



 

  

 

139 

 

Nicholson, G.L. and Davis, C.L. (2012). 'Modelling of the response of an ACFM sensor to 

rail and railwheel RCF cracks'. NDT&E International. no. 46. December. pp. 107-114. 

Nicholson, G.L., Rowshandel, H., Hao, X.J. and Davis, C.L. (2013). 'Measurement and 

modelling of ACFM response to multiple RCF cracks in rail and wheels'. Ironmaking & 

Steelmaking. vol. 40. no. 2. pp. 87-91. 

Office of rail regulation; (2006). 'Train Derailment at Hatfield: A final Report by the 

Independent Investigation Board'. July. p. 245. 

Papaelias, M., Márquez, G.F.P., Muñoz, C.J.M. and Roberts, C. (2008). 'A B-Spline approach 

to alternating current field measurement for railroad inspection'. The International 

Conference of Industrial Engineering and Engineering Management. Singapore. 3. 

Papaelias, M., Robert, C. and Davis, C.L. (2008). 'A review on non-destructive evaluation of 

rails'. state-of-the- art and future development. May. 

Papaelias, M., Robert, C., Davis, C.L. and Lugg, M.C. (2009). 'High-speed inspection of rail 

using ACFM techniques'. NDT&E International. pp. 328-335. 

Papaelias, M., Roberts, C., Davis, C.L., Blakeley, B. and Lugg, M. (2009). 'High-speed 

inspection of rolling contact fatigue in rails using ACFM sensors'. Insight-Non-Destructive 

Testing and Condition Monitoring. vol. 51. no. 7. pp. 366-369. 

Papaelias, M.P., Roberts, C., Davis, C.L., Blakeley, B. and Lugg, M. (2010). 'Further 

developments in high-speed detection of rail rolling contact fatigue using ACFM techniques'. 

Insight-Non-Destructive Testing and Condition Monitoring. vol. 52. no. 7. July. pp. 358-360. 

Petcher, P.A., Burrows, S.E. and Dixon, S. (2013). 'Shear horizontal (SH) ultrasound wave 

propagation around smooth corners'. Ultrasonics. pp. 997-1004. 

Pohl, R., Krull, R. and Meierhofer, R. (2006). 'A new eddy current instrument in a grinding 

train'. ECNDT 2006. Berlin, Germany. 

Rosula, S.R., Carlos, M.O., Jose, C.N.M., Noel, S.P., Raphael, A.G. and Jovilyn Therese, 

B.F. (2008). 'FPGA-based digital signal processing trainer'. IEEE. 

Schöch, W. (2004). 'Combating rail surface fatigue in Europe by head check grinding'. Rail 

Eng. Int. vol. 1. pp. 6-8. 

Schöch, W. and Heyder, R. (2003). 'Rail surface fatigue and grinding: exploring the 

interaction'. the 6th International Conference on contact mechanics and wear of rail/wheel 

systems. Gothenburg. 

Schöch, W., Heyder, R. and Grohmann, H.D. (2006). 'Contact geometry and surface fatigue 

guidelines for appropriate rail maintenance'. the 7th International Conference on contact 

mechanics and wear of rail/wheel systems. Brisbane. 



 

  

 

140 

 

Thomas, H.-M., Heckel, T. and Hanspach, G. (2006). 'Advantage of a combined ultrasonic 

and eddy current examination for railway inspection trains'. In: the Proceedings of ECNDT 

2006. Berlin, Germany. 

Thomas, H.-M., Junger, M., Hintze, H., Krull, R. and Rühe, S. (2000). 'Pioneering inspection 

of railroad rails with eddy currents'. the 15th World Conference on Non-Destructive Testing. 

Rome. 

Topp, D. and Smith, M. (2005). 'Application of the ACFM inspection method to rail and rail 

vehicles'. In the proceedings of ECNDT 2005. Barcelona, Spain. 

 

 


