
SEMANTICS AND LOGICS FOR SIGNALS

by

MAXIM STRYGIN

A thesis submitted to the

University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

University of Birmingham

May 2014

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

In operating systems such as Unix, processes can interact via signals. Signal han-

dling resembles both exception handling and concurrent interleaving of processes. The

handlers can be installed dynamically by the main program, but signals arrive non-

deterministically; therefore, a handler may interrupt a program at any point. However,

the interleaving of actions is not symmetric, in that the handler interrupts the main pro-

gram, but not conversely. This thesis presents operational semantics and program logic

for an idealized form of signal handling. To make signal handling logically tractable, we

define handling to be block-structured. To reason about the interleaving of signal han-

dlers, we adopt the idea of binary relations on states from rely-guarantee logics, imposing

rely conditions on handlers. Given the one-way interleaving of signal handlers, the logic

is less symmetric than rely-guarantee. We combine signal and exception handlers in the

same language to investigate their interactions, specifically whether a handler can run

more than once or is linearly used. We prove soundness of the program logic relative to a

big-step operational semantics for signal handling. Then, we introduce and discuss reen-

trancy in various domains. Finally, we present our work towards logic with Reentrancy

Linear Type System.

Dedication

I dedicate this thesis work to My Family. A special feeling of gratitude to my loving

parents, Lyubov and Gennadiy, for their support and constant encouragement over the

years. The warmest thanks to my precious wife, Alyona, for her patience, understanding

and continuos support throughout my research and the whole life. I could not have done

this without you.

Acknowledgments

I wish to thank my thesis committee members for all of their guidance, expertise and

support through this process. Their discussion, ideas, and feedback have been invaluable.

A special thanks to my supervisor Hayo Thielecke. His advice has been indispensable in

many respects. I have been very much enjoying working with him and have always left

his office encouraged and in good spirit. I would also like to acknowledge the financial

support of the College of Engineering and Physical Sciences. Finally I would like to thank

the School of Computer Science for allowing me to conduct my research and providing

any assistance requested.

Contents

1 Introduction 1

1.1 Block Structure and Control . 3

1.2 One-side Interleaving and Concurrency 4

1.3 Rely-guarantee and Binary Relations . 4

1.4 Linear Use and Resources . 6

1.5 Big-step Semantics and Exceptions . 7

1.6 Motivation . 7

1.7 Outline of the Thesis . 9

2 Language Design and Signals 10

2.1 Base Language . 10

2.2 Validity and Soundness . 11

2.3 Adding Exceptions . 11

2.3.1 Exception Operations . 12

2.3.2 Exception Convention . 13

2.3.3 Exception Contexts . 14

2.4 Adding Block-structured Signals . 14

2.4.1 Operational Semantics . 17

2.4.2 Signal Handling Convention . 18

2.4.3 Program Logic with Specifications for Signal Handlers 18

3 Operational Semantics 20

3.1 Block Structured Signals and Exceptions 20

3.2 Evaluation of Expressions . 23

3.3 Big-step Rules in Detail . 27

3.3.1 Assignment . 27

3.3.2 Sequential Composition . 27

3.3.3 Repetitive Construct while . 28

3.3.4 Exception Handling . 28

3.3.5 Conditional Construct if . 29

3.3.6 Signal Binding . 29

3.3.7 Signal Handling . 30

3.3.8 Signal Blocking . 30

3.4 skip command . 31

3.5 Interaction between Signal and Exception Handling 31

3.5.1 Question of Priority - Design Choice 32

3.6 Examples for Operational Semantics . 34

3.6.1 Basic Examples . 34

3.6.2 Interruptible Signal Handlers . 35

3.6.3 One-Shot & Persistent Signals Bindings 36

3.6.4 Signals & Exceptions . 37

4 Abstract Machine 41

4.1 From Big-step to Abstract Machine . 41

4.2 Stack Machine for Signal Handlers . 44

4.3 Examples of the Machine Runs . 48

4.4 Towards Signal Machine Correctness . 48

4.5 Notes about Signals Implementation . 52

4.5.1 Core Idea . 52

4.5.2 Bit Vector . 52

4.5.3 Exceptions and Signals . 53

4.5.4 Implementation of Exception Handling 54

5 Logic Reasoning 55

5.1 Program Logic with Specifications for Signal Handlers 55

5.2 Exception Context . 57

5.3 Stability . 57

5.4 Program Logic for Signal and Exception Handling 60

5.5 Supporting Lemmas . 63

5.6 Logic Rules in Detail . 68

5.6.1 Atomic and Assignment . 68

5.6.2 Sequential Composition . 70

5.6.3 One-shot Signal Binding . 70

5.6.4 Persistent Signal Binding . 71

5.6.5 Persistent Versus One-shot Signal Binding 71

5.6.6 Signal Blocking . 73

5.6.7 Exception Throwing/Raising and Handling 73

5.6.8 Repetitive while Construct . 74

5.6.9 Conditional if Construct . 74

5.6.10 Rule of Consequence . 75

5.6.11 Rule of Conjunction . 75

5.7 Ghost Variables . 75

5.7.1 Quantification and Instantiation of the Ghost Variables 76

5.7.2 Example with Quantified Ghost Variables 77

5.8 Idioms of Signal Usage - Logic Examples 78

5.8.1 Invariant Preserving . 78

5.8.2 Signal Masks in Unix-like Systems 80

5.8.3 Double Free and Linear Use of Resources 84

6 Logic Soundness 87

6.1 Signal Binding and Signal Context . 88

6.2 Supporting Lemmas . 89

6.3 Proof of Soundness . 91

6.3.1 Persistent Signal Binding . 92

6.3.2 One-shot Signal Binding . 96

6.3.3 Signal Blocking . 99

6.3.4 Sequential Composition . 100

6.3.5 Atomic Commands . 104

6.3.6 Repetitive while Command . 105

6.3.7 Rule of Consequence . 108

6.3.8 Rule of Conjunction . 109

6.3.9 Conditional if-else Command 111

6.3.10 Exception throw Command . 113

6.3.11 Exception Handling . 114

7 Nested Bindings 119

7.1 Operational Semantics Example . 120

7.2 Logic Example . 122

8 Introduction to Reentrancy 123

8.1 Reentrancy in OOP . 124

8.1.1 Short Literature Observation . 124

8.1.2 Example Scenarios . 125

8.2 OOP and Multithreading . 125

8.3 Multithreading as Part of the OS . 126

8.3.1 Reentrant Kernels . 127

8.4 Event-Driven Programming . 127

8.5 Reentrant Locks . 128

8.6 Objective C . 128

8.7 Glossary of the Reentrancy Related Terms 128

8.8 Towards New Definition and Glossary . 133

8.9 Comparison of the Reentrancy in OOP and Procedural Paradigms 133

8.9.1 Invariants . 135

8.9.2 Reentrant Call From an Inconsistent State 135

8.10 Reentrant and Interrupted Handlers . 137

8.11 Reentrancy and Thread-Safety . 138

8.12 Relation Between Stability and Reentrancy 139

8.13 Locks, Reentrancy and Signal Handlers 140

8.14 Signal and Exception Handlers . 142

8.15 Summary and Discussion . 142

9 Reentrancy Linear Type System 144

9.1 Language with Functions and Local Variables 145

9.1.1 Big-Step Rules in Detail . 151

9.1.2 Argument Passing and Global Variables 160

9.2 Logic and Reentrancy Linear Type System 160

9.2.1 Reentrancy Judgement . 161

9.2.2 Reentrancy Judgement for Non-reentrant Function Call 165

9.2.3 Free Variables . 166

9.2.4 Function Context Ψ Splitting . 169

9.2.5 Logic Rules . 170

9.2.6 Implicit Versus Explicit Stability Assumptions 179

9.2.7 Reentrant (Φ) Versus Nonreentrant (Ψ) Functions 182

9.2.8 Examples and Tricky Questions 187

9.2.9 Level of Granularity . 190

9.2.10 Interaction Between Functions and Signals 192

9.2.11 Motivational Examples . 195

9.2.12 Non-linear Interference . 202

9.2.13 Non-linear Interference - Part 2 208

9.2.14 Commands Instead of Functions 213

9.2.15 Functions and RLTS . 217

9.2.16 Motivation of the Reentrancy Granularity 220

9.3 Experimental Material . 224

9.3.1 Signal Binding and Functions . 225

9.3.2 Variations of the Logic Rule Updates 225

9.4 Pros and Cons . 232

9.4.1 Limitations of the Logic with RLTS 232

10 Literature Review 233

10.1 Exception Handling . 233

10.2 Ghost Variables . 235

10.3 Understanding Reentrancy . 239

10.4 Abstract Machines . 241

10.5 Separation Logic and Stability . 242

10.6 Logic and Reasoning . 243

10.7 Soundness, Completeness and Verification 245

10.8 Signals and Technical Documentation . 246

10.9 Continuations . 249

11 Conclusions 252

11.1 Related Work . 254

11.2 Directions for Future Work . 256

11.2.1 Separation Logic for Resource and Ownership 256

11.2.2 Correctness of Signal Machine with Respect to Big-step Semantics 256

11.2.3 Implementation . 257

11.2.4 Signals in a Concurrent Setting 257

11.2.5 Reentrancy and Safety . 257

11.2.6 Application to Software Security 258

Bibliography 267

List of Figures

1.1 Concurrency vs signal handlers . 5

1.2 Big step trees . 7

3.1 The syntax of the language . 22

3.2 Big-step semantic rules for exceptions and signal handling Part1 24

3.3 Big-step semantic rules for exceptions and signal handling Part2 25

3.4 Big-step semantic rules for exceptions and signal handling Part3 26

3.5 A signal binding inside of the exception block 32

3.6 Derivation tree for the combined signals and exceptions 33

3.7 Signal handled after the throw . 34

3.8 One-shot signal handling . 34

3.9 Persistant signal handling . 35

3.10 Multiple persistant signal handling . 35

3.11 Interruptible signal handlers . 36

3.12 Interruptible signal handlers . 36

3.13 Splitting of the O binding in seq. composed commands 37

3.14 Multiple persistant signal handling in seq. composed commands 37

3.15 One-shot signal handling before the command 38

3.16 One-shot signal handling after the command 38

3.17 Persistent handler with an exception triggered before the command . . . 38

3.18 Persistent handler with an exception triggered after the command 38

3.19 Signal handled before and after the throw 40

4.1 Transition steps - Part 1 . 46

4.2 Transition steps - Part 2 . 47

4.3 Binding inside of the try block . 49

4.4 Exception handling inside of the binding 50

4.5 Signal binding and seq. composed commands 51

5.1 Hoare logic rules for exception and signal handling 61

5.2 Hoare logic rules for exception and signal handling 2 62

5.3 Persistent and one-shot binding derivations 72

5.4 Persistent and one-shot binding examples 72

5.5 Save and restore errno . 79

5.6 Invariant and recursive calls . 80

5.7 Invariant for concurrent processes . 80

5.8 Three sequentially composed commands 81

5.9 Three sequentially composed commands and blocking 81

5.10 Interaction of blocking and exceptions 82

5.11 Sequential composition without block construct 83

5.12 Sequential composition with block construct 83

5.13 Blocking construct and exceptions . 84

5.14 Binding is nested in exception handling 86

5.15 Binding is nested in exception handling 86

6.1 Splitting of the one-shot signal binding 89

7.1 Nested persistent signal binding . 120

7.2 Nested one-shot signal binding . 120

7.3 Persistent signal binding scope . 121

7.4 One-shot signal binding scope . 121

7.5 Nested signal binding . 122

7.6 Signal binding and blocking result in overriding 122

8.1 Method calls and returns . 134

8.2 Function reenters function . 134

9.1 The syntax of the language . 147

9.2 Big-step rules for operational semantics - Part 1 148

9.3 Big-step rules for operational semantics - Part 2 149

9.4 Big-step rules for operational semantics - Part 3 150

9.5 Signal binding and blocking . 153

9.6 Signal interruption . 154

9.7 Persistent and One-shot Signal handling 155

9.8 Non-rec function prevents the handlers from calling itself 156

9.9 Recursive function . 156

9.10 One-shot signal handling and non-recursive functions 156

9.11 One-shot signal handling and recursive functions 157

9.12 Imitation of the argument passing and return 160

9.13 RLTS logic rules - Part 1 . 162

9.14 RLTS logic rules - Part 2 . 163

9.15 Ψ splitting in signal binding . 171

9.16 No Ψ splitting in exception handling . 171

9.17 Hoare logic rules - Part 1 . 172

9.18 Hoare logic rules - Part 2 . 173

9.19 Hoare logic rules - Part 3 . 174

9.20 Signal Binding Rules . 177

9.21 Example 01 . 198

9.22 Example 02 . 198

9.23 Example 03 . 198

9.24 Example 04 . 199

9.25 Example 05 . 199

9.26 Example 06 . 199

9.27 Example 07 . 199

9.28 Example 08 . 200

9.29 Example 09 . 200

9.30 Example 10 . 201

9.31 Example 11 . 201

9.32 Example 12 . 202

9.33 Signal z never arrives . 210

9.34 Signal is handled before the function call 211

9.35 Signal is handled during the function call 212

9.36 Non-reentrant function bound to a signal 212

9.37 Non-reentrant function bound to a signal - simplified 213

9.38 In language with functions - Op. sem. 214

9.39 In language with functions - Logic . 214

9.40 In language with commands - Op.sem . 215

9.41 In language with commands - Logic . 215

9.42 Signal z never arrives . 215

9.43 Signal is handled before the first command 216

9.44 Signal is handled after the first command 216

9.45 Non-reentrant code bound to a signal . 218

9.46 Non-reentrant code bound to a signal. Weakened preconditions. 219

CHAPTER 1

INTRODUCTION

“Interference is the essence of concurrency and it is what makes reasoning

about concurrent programs difficult.” [47]

In operating systems, and specifically Unix and its descendants, signals provide a simple

and efficient, if rather low-level, means of interprocess communication [56, 87, 91, 88, 9,

50]. Put simply, a process can cause a branch of control in another process, causing it to

run a signal handler in response to external events. A well known example is the kill

signal telling a process to shut down (perhaps after first deallocating system resources,

such as releasing memory). Signals resemble exceptions in that control jumps to a handler

that can be installed by the program. Nonetheless, there are some significant differences.

Whereas exceptions typically abort from the context in which they were thrown, the

control flow returns to the interrupted code after a signal handler completes its execu-

tion. Whereas exceptions are triggered at specific points by the code itself, signals arrive

nondeterministically. In the literature on control constructs and their semantics, signals

have received less attention than exceptions, and far less than first-class continuations.

Exceptions have become amenable to semantic analysis by a focus on their key control

features, while abstracting away from implementation details and restrictions (such as the

entanglement of exceptions in C++ with the class hierarchy and memory management

by destructors). For instance, the exceptions monad [70] gives a highly idealized account

of exceptions as functions A → (B + E) that may either return normally with a B or

raise an exception of type E.

1

One of the thesis goals was to address signal handling at a level of generality and

abstraction comparable to that of other control constructs in the literature, idealizing

where necessary and focusing on some key semantic features.

The main contributions of the thesis are as follows:

• We define an operational semantics for a language with both exceptions and signal

handling with persistent and one-shot control flow semantics. A variant of this oper-

ational semantics has appeared in Workshop on Structured Operational Semantics

2012 [93]. The main difference between two versions is that we have weakened some

restrictions on signal handlers in terms of interrupts from not blocked signals. This

made our operational semantics closer to the real life implementations and gave a

boost towards studying reentrancy. The most interesting feature of the operational

semantics is the multiplicative way that one-shot signals are propagated, as the

signal binding is split into two disjoint bindings when a semantics rule has two

premises, for example in a sequential composition.

• We define an abstract stack machine for signal handlers to show the challenges

one may encounter if he decides to implement a language with block structured

exception and signal handling. We also compare how the idealized stack machine

models features of real signal implementations in Unix like systems.

• To reason about concurrency explicitly, we define a program logic with specifications

for signal handlers and exception context. In the logic, by contrast to signal binding

splitting in semantics, the signal context is used additively, in that it is shared rather

than split in the logic rules. We also adopt the notion of stability to address how

exception and signal handlers with commands influence each other. We consider

how the presented logic could be applied to address some of the idioms (such as

invariant preserving, signal masking, and etc.) of signal usage.

• One of the main contributions of this thesis is a soundness proof of the logic with

respect to the big-step operational semantics, because one may derive properties of

2

a program which do not hold if a logic is unsound. The proof proceeds by induction

over the derivation of a program logic judgement. Towards the soundness proof, we

impose the condition that all signal bindings respect the specification given by the

whole signal context. As our language combines signal and exception handling, we

introduce a form of stability condition between signal and exception contexts.

• We summarise the discussions about reentrancy from various domains and provide

a glossary of the reentrancy related terms. To show how diverse the definitions

of reentrancy could be, we compare the notion of reentrancy in Object Oriented

and Procedural paradigms. We discuss and raise some questions about relations

between reentrancy and notions like thread-safety, locks, stability, signal and ex-

ception handlers.

• We extend our language with local variables and functions to address reentrancy.

Thus, we register functions as signals instead of commands what makes our lan-

guage closer to the real life implementations. The argument passing in functions

is imitated by use of global variables, whereas functions are classified in reentrant

and non-reentrant ones.

We define an extended logic and Reentrancy Linear Type System with functions,

local variables, exception and signal handling. The designed Reentrancy Linear

Type System ensures that non-reentrant functions are used at most once or not used

at all in the environment with signals. We also raise some open-ended questions and

discuss the variations of the logic rules updates such as potential stability checks

elimination.

1.1 Block Structure and Control

Our most significant idealization of signal handlers is directly inspired by exceptions in

contrast to the unstructured longjmp that exceptions were designed to replace [56, 87].

3

We define an idealized block-structured form of signal handling in which a signal han-

dler is installed at the beginning of the block and uninstalled at the end. The idealized

signal handling relates to sigaction the way exceptions related to setjmp and atomic

synchronized blocks related to locking and unlocking. Furthermore, the big-step oper-

ational semantics perfectly suits for addressing signal handling with a block structured

nature.

One may say that the big-step semantics is out of fashion, but as a counterexample to

this statement year by year new papers are published [60, 58, 101, 15]. The last doubts

could be dispelled by reading a short analysis provided by Charguéraud in [15].

1.2 One-side Interleaving and Concurrency

One may think of addressing one-sided interleaving with the same approach as com-

plete interleaving. This is true to some extent, but there is important difference between

them. The interaction between fully concurrent processes is symmetric, but there is no

such symmetry between signals’ body and handler. Only signals’ handler may interrupt

the body but not vice versa. This allows to simplify the approach/mechanism for ad-

dressing the signals handling. On the other hand, the general approach used for the fully

concurrent interleaving might be not suitable, as interaction is nonsymmetric.

1.3 Rely-guarantee and Binary Relations

As signals are found in imperative languages, their interaction with shared state is of

critical importance. The problem is interference, and so we adapt techniques from the

theory of shared-variable concurrency. Figure 1.1 depicts the symmetric interleaving of

concurrent processes compared to the one-sided interleaving of a process by its signal

handlers. Dashed horizontal lines represent control flow; dotted vertical lines represent

switches in the control flow due to interleaving. In both cases, the state σi that a process

sees at some point could have been changed to some state σi+1 by interleaved actions.

4

Concurrent interleaving with a guarantee G and rely R:

Process 1

Process 2
R G

σ1 σ2

σ2 σ3

One-way interleaving of program with handlers for signals z1 and z2:

Program body

Signal handlers
Iz1 . Iz1 Pz2 . Qz2

σ1 σ2 σ3 σ4

Figure 1.1: Concurrency vs signal handlers

These state changes need to be limited in some way, as otherwise no assumptions could

be made by the process about the state, including resource invariants.

A key contribution of rely-guarantee logic [55, 17, 23] is to introduce binary relations

on states, in addition to the unary predicates on states known from Hoare logic. Using

such relations, we can express that a process relies on the interleaved state changes

being contained in the relation, that is, (σi, σi+1). In rely-guarantee logic, the interaction

between concurrent processes is symmetric, so that the rely of one process becomes (part

of) the guarantee of another.

For signal handlers, by contrast, there is no such symmetry, as the handlers interrupt

the body, but not conversely. In that sense, the situation is greatly simplified, and we

only need rely predicates. On the other hand, the set of installed signal handlers changes

over time. In Figure 1.1, a program body relies that the state change (σ1, σ2) will satisfy

(Iz1 . Iz1), and the state change (σ3, σ4) will satisfy (Pz2 . Qz2). That means if Iz1 holds

in σ1, then Iz1 holds in σ2. Analogously, if Pz2 holds in σ3, then Qz2 holds in σ4. Further

details of the program logic, including definition of the binary relation ., are covered in

Chapter 5.

5

1.4 Linear Use and Resources

Attacks on software security published by Zalewski using malicious signal handling [27, 21]

were the initial motivation for logic and semantics in this thesis. A critical ingredient in

Zalewski’s exploits is the idea to cause the same handler to run twice and thereby corrupt

a resource. In other words, some signal handlers may be safe only as long as they are

“linearly used”.

Signal handlers can have two different control flow semantics, which we call persistent

and one-shot. A persistent signal handler can be run any number of times as long as

it is installed. By contrast, a one-shot signal handler can be run at most once, as it

becomes automatically uninstalled after being run the first time. In Unix, a system call

for installing handlers takes a parameter that determines which of these behaviours is

chosen.

In our program logic, we use a context Σ to keep track of the two kinds of signal

bindings, and the difference between the two forms of signal handlers is reflected in the

specifications we give for them. For a persistent signal handler, we associate an invariant

I to the signal that should hold before and after the signal handler runs. This invariant

is similar to a loop invariant, where we also cannot statically determine how often the

loop runs. For a one-shot handler, we associate a precondition P and a postcondition Q

with the signal.

Due to the one-shot semantics, we can assume that the state, the one-shot signal

handler finds itself, satisfies P rather than Q, which would not hold if the handler could

run multiple times, as it can for a persistent binding. For example, in attacks [27, 21]

where a signal is maliciously sent twice to trigger a double free, the precondition P would

state that some memory is allocated, whereas Q would state that it has been freed. The

problem could be addressed by using a one-shot signal or by exiting at the end of a

persistent signal handler to prevent the handler from running again after its precondition

has been consumed.

6

s1, c1 ⇓ s2 s2, c2 ⇓ s3

s1, c1; c2 ⇓ s3

Figure 1.2: Big step trees

1.5 Big-step Semantics and Exceptions

For the operational semantics, we define a big-step semantics. This style of semantics

appears particularly apt for the signals and exceptions kind of constructs. Essentially,

the meaning of a block becomes a subtree of a larger derivation tree, which is convenient

for keeping track of pre- and post-states (Figure 1.2).

The big-step semantics is a perfect choice to address block structured exceptions.

With a notion of block, there is no need for a stack to keep track of installed exceptions.

Furthermore, exception deinstallation is also handled by free as scope is clearly limited

by block in the big-step semantics. Thus, the big-step semantics becomes a perfect plat-

form for studying signals, exceptions and their interaction. Also, the big-step semantics

could be perfectly related to a Hoare logic. A Hoare triple has a form {P} c {Q} with

pre-condition P and post-condition Q for a command c. In operational semantics, an

evaluation of the command c is described as s1, c ⇓ s2 with initial state s1 and final state

s2. Thus, to express that state s1 satisfies precondition P and s2 satisfies postcondition

Q, one may write s1 |= P and s2 |= Q.

1.6 Motivation

The domain of control structure has been extensively studied in sequential and mostly

functional languages. For instance, there are two workshops on continuations alone

7

(ACM-SIGPLAN Continuation Workshop, Theory and Practice of Delimited Continu-

ations Workshop). Concurrency is another actively developing direction. For example,

series of Concurrency Workshops since 2009 that is supported by the Cambridge, Dublin,

London and Newcastle research groups. In concurrency, very little control structure is

considered, typically just block structured control like if and while. One of the goals

of our work was to combine and generalize these research directions thereby overcoming

some of their limitations.

It is well known that the single threaded architecture and implementations are less

efficient than concurrent ones. On the other hand, creating and maintaining concurrent

programs is a complex task. The easiest way to handle concurrency is applying primitive

blocking using locks. Unfortunately, it would not allow revealing full potential of concur-

rency. Therefore, many complex approaches of handling concurrency has been developed

and currently supported by different research schools.

Notion of signals in concurrency is another approach that was not well addressed in

the past. The most closest ideas to this approach has been addressed by Zhong Shao

et al. in his works regarding interrupts [30, 31]. Specifically, in [30, 32] Zhong Shao

et al. presents program logic that allows reasoning about programs and dealing with

interrupts and concurrency simultaneously. Moreover, being inspired by works regarding

local-reasoning [75], Shao et al. also addressed a sharing of the state between threads and

handlers. In another work [31] authors studied the real application of early developed

methodology. It is mostly oriented to program verification domain, but reasoning is

based on logic from [30]. We can say that the notion of interrupts is more hardware

oriented and authors used a separation logic to reason about it. However, they have not

adopted the notion of rely-guarantee reasoning in their work. On the other hand, we are

addressing the notion of signals which is more software oriented, as they work on a level

of interprocess communication.

In the book [23], de Roever relates reactive sequences and Aczel traces. In one branch

of our work, we have worked on a hybrid of both approaches and defined Aczel(2) traces.

8

Afterwards, we have extended this model with rely-guarantee logic. One can note that

there is another approach to trace semantics (where traces are sequences of states) sup-

ported by Stephen Brooks [13]. The open question is how his approach could be related

to de Roever and Cliff Jones styles.

Histories and traces are rather similar concepts where traces are state oriented and

histories are event oriented. The signal control structures could be expressed in terms

of histories. So, the model for the signals could be based on traces and operational

semantics. As we address signals in concurrency, we have to define the rely-guarantee

logic for this model if we want to reason about interference explicitly.

1.7 Outline of the Thesis

We define an idealized language for signal handling and explain some design choices we

made in its semantics and program logic in Chapter 2. The meaning of our language is

defined via a big-step semantics in Chapter 3. An abstract machine for signal handling,

as an alternative operational semantics, is shown in Chapter 4. We present a program

logic in Chapter 5; it adapts the idea of binary rely predicates from concurrency to

signal handling. We show the proof for Logic Soundness in Chapter 6. The notion of a

nested binding and its support by the operational semantics and the logic are discussed in

Chapter 7. Introduction to reentrancy is given in Chapter 8. Work towards Reentrancy

Linear Type System is explained in Chapter 9. In Chapter 10, a literature review for

publications in the relevant research domains is given. Chapter 11 concludes with related

work and directions for future work.

9

CHAPTER 2

LANGUAGE DESIGN AND SIGNALS

Before giving the formal definition of our operational semantics and program logic, we

introduce the language constructs with their intended meaning, as well as design choices

and simplifying assumptions. In this chapter, we also present exception and signal han-

dling conventions that determine their interaction with other language constructs and

each other.

2.1 Base Language

As is usual for program logic, we start from a small imperative base language. It contains

sequential composition, while loops and assignment.

c ::= whileE do c (while construct)

| a (Atomic command)

| x := E (Assignment)

| c1; c2 (Sequential composition)

This language has a standard semantics in terms of how a command c changes the

state s1 into a new state s2. In a big-step operational semantics, the form of such

judgements is

s1, c ⇓ s2

10

2.2 Validity and Soundness

The standard correctness criterion for Hoare logic relates the pre- and postconditions of

the program logic to the states before and after a big-step evaluation.

A Hoare triple

{P} c {Q}

is called valid if the following implication holds. If s1 and s2 are states such that

s1 |= P and s1, c ⇓ s2

then

s2 |= Q

To prove soundness of a program logic, one needs to prove that each Hoare triple that

can be derived using the program logic rules is in fact valid according to the operational

semantics.

When we add additional structure, such as signals and exceptions, the notion of

validity of triples has to be extended accordingly, and the same goes for soundness.

Various styles of small-step and big-step semantics have been defined in the literature.

Big-step semantics, the style we will use, is particularly simple for structured control flow,

such as sequential composition.

2.3 Adding Exceptions

Exception throwing and handling is easy to add to a big-step operational semantics. A

classic example of such semantics is the Definition of Standard ML [69], whose style we

will follow.

11

2.3.1 Exception Operations

We add exceptions to the big-step semantics via a new form of judgement: given an old

state s1, the command c throws the exception e and produces a new state s2.

s1, c ⇑ e, s2

The base language is extended with two new constructs, for which we adopt a syntax

loosely based on Java. An exception e is thrown (or raised in ML terminology) by the

command throw e. An exception is handled (or caught) by an exception block of the

form try cB handle e by ch. Any e thrown inside cB will be handled by ch. The syntax

of our language is accordingly extended:

c ::= . . . | throw e | try cB handle e by ch

The idea behind the operation semantics is that throw e produces judgements of the

“exceptional” form using ⇑ e, whereas handling may turn a judgement of that form into

one that terminates normally by way of ⇓. More precisely, we have the usual rule for

exception raising:

s, throw e ⇑ e, s

For exception handling, there are the following rules:

s1, cB ⇑ e, s2 s2, ch ⇓ s3

s1, try cB handle e by ch ⇓ s3

s1, cB ⇓ s2

s1, try cB handle e by ch ⇓ s2

s1, cB ⇑ e, s2 s2, ch ⇑ e2, s3

s1, try cB handle e by ch ⇑ e2, s3

s1, cB ⇑ e2, s2 e2 6= e

s1, try cB handle e by ch ⇑ e2, s2

If the body cB of an exception block

try cB handle e by ch

12

raises the exception e, then the handler is run. Otherwise, the handler has no effect.

We use ⇑ to indicate an exceptional form of the judgement, and find it rather elegant.

There is another approach, where authors [15] use only ⇓ for both normal and exceptional

judgements. The trick is that expression (command in our notation) evaluates into the

behaviour b, which in turn denotes if it terminates normally or with a raised exception.

2.3.2 Exception Convention

In addition to the rules for the operations themselves, we also need to specify how the

propagation of exceptions interacts with the other constructs of the language: this prop-

agation will be done with the exception convention from the Definition of Standard ML.

If the j-th premise of a big-step rule raises an exception, and the premises to its left do

not, then the conclusion of the rule raises the same exception, and with the same state.

More precisely, suppose there is a big-step rule of the form

. . . c1 ⇓ s1 . . . cj ⇓ sj . . . cn ⇓ sn
. . . c ⇓ s

Then we implicitly extend this case to propagating exception by adding a rule

. . . c1 ⇓ s1 . . . cj ⇑ e, sj
. . . c ⇑ e, sj

To illustrate the exception convention, we consider how exceptions are propagated in a

sequential composition c1; c2.

s1, c1 ⇑ e, s2

s1, (c1; c2) ⇑ e, s2

s1, c1 ⇓ s2 s2, c2 ⇑ e, s3

s1, (c1; c2) ⇑ e, s3

Intuitively, the first command c1 may raise an exception, in which case the second com-

mand c2 is not run at all. Alternatively, c1 may terminate normally, and c2 may raise an

exception. In either case, the combined command raises the same exception.

13

2.3.3 Exception Contexts

For a language without control constructs, program logic judgements need only address

successful termination, without any thrown exceptions. If we add exceptions, the outcome

of evaluations of the form

s1, c ⇑ e, s2

also need to be addressed. Such cases require us to associate a postcondition Qe that

should hold after the corresponding exception e has been thrown.

We extend the Hoare logic with an exception context η of the form

η = e1 : Q1, e2 : Q2, . . . , en : Qn

The form of a program logic judgement with an exception context becomes:

{P} c {Q} throws e1 : Q1, e2 : Q2, . . . , en : Qn

One needs to ensure that the precondition η(ej) = Q′j for an exception ej holds immedi-

ately before the exception is thrown (throwing by itself does not change the state). That

way, it holds at the beginning of the handler.

The semantics of exceptions is fairly well understood, and it is greatly simplified by

the fact that exceptions are block structured. The more primitive non-local jumps in

C (given via the library functions setjmp() and longjmp()) would be much harder to

formalize, both operationally and logically. In fact, they would present many of the

challenges of self-modifying code pointers, such as recursion through the store.

2.4 Adding Block-structured Signals

The main construct we aim to address is signal handling. Signal handling is a form

of interprocess communication, so that for full generality we would have to address the

14

concurrent interaction between a signal sending and a signal handling process. To keep

the semantics and the program logic as simple as possible, we address only the handling

part of the signal mechanism, while the truly concurrent interaction between sender and

receiver is left for future work. Rather than modelling the signal sender explicitly, only

the point of view of the process receiving the signals will be assumed, so that signals arrive

nondeterministically, causing handlers to run unpredictably. In the authors’ view, this

focus on signal handling still presents sufficient programming and semantics challenges.

First, the nondeterministic interference by signal handlers leads to the need to preserve

resource invariants, much as interference between concurrent processes. Moreover, the

assumptions a programmer can make about the delivery of signals are very weak, even

if there is a specification of the sender’s behaviour (which there usually is not). In the

worst case, the signal sender may even be malicious, sending signals with the sole intent

of causing damage via the actions of the signal handlers. In that sense, a nondeterministic

sender is a worst-case but realistic assumption that the signal receiver has to be able to

cope with.

Signal implementation make it possible to specify that a handler should run at most

once, becoming uninstalled after running for the first (and only) time. Therefore, we will

make a distinction between one-shot signal handlers and persistent ones.

As implemented in Unix, a signal handler is (a pointer to) a function, which may be

associated to a signal name via a system call. The association between the signal and the

function pointer remains until it is overwritten by another such system call. Semantically,

it behaves like a pointer assignment rather than a block-structured binding. While it

would certainly be possible to construct an operational semantics for this behaviour,

pointer assignment makes the logic much more difficult to handle due to the recursion

through the store. Such recursion can be handled logically, but requires sophisticated

techniques, such as those developed by Reus and coauthors [83].

Moreover, this logical complexity is largely extraneous to the control flow presented

by signals. Hence we assume a simplified and structured form of signal handling, where

15

a signal handler is only ever installed at the beginning of a block and uninstalled at the

end of it, just as an exception handler is.

A few C examples of what may be addressed with block structured signals is given

below. Please note that in the current C implementation there is no implicit signal handler

uninstallation. Thus, the signal handler is not uninstalled but reset to the default value

for a particular signal when it is no longer needed.

Preparation: We add two signal handlers.

void signal_handler_1(int signal) {

printf("First handler received signal %d\n", signal);

}

void signal_handler_2(int signal) {

printf("Second handler received signal %d\n", signal);

}

Case 1: Two signals are installed and uninstalled one after another

signal(SIGTERM, signal_handler_1); // install signal_handler_1

// a block of code

signal(SIGTERM, SIG_DFL); // reset (uninstall) signal_handler_1

signal(SIGINT, signal_handler_2); // install signal_handler_2

// a block of code

signal(SIGINT, SIG_DFL); // reset (uninstall) signal_handler_2

Case 2: Two nested signals are installed and uninstalled

signal(SIGTERM, signal_handler_1); // install signal_handler_1

signal(SIGINT, signal_handler_2); // install signal_handler_2

// a block of code

signal(SIGINT, SIG_DFL); // reset (uninstall) signal_handler_2

signal(SIGTERM, SIG_DFL); // reset (uninstall) signal_handler_1

16

Code where signal installing and uninstalling do not match up (Case 3) cannot be

addressed with our idealization of signal handling.

Case 3: Two signal handlers are uninstalled in the same order they were installed.

signal(SIGTERM, signal_handler_1); // install signal_handler_1

signal(SIGINT, signal_handler_2); // install signal_handler_2

// a block of code

signal(SIGTERM, SIG_DFL); // reset (uninstall) signal_handler_1

signal(SIGINT, SIG_DFL); // reset (uninstall) signal_handler_2

2.4.1 Operational Semantics

In the operational semantics, the evaluation of a command c starting from a state s1 will

now take place relative to a signal binding. Moreover, the signal binding is subdivided

into two parts: persistent signals S, and one-shot signals O. Persistent handlers may run

any number of times during the evaluation of the command c, whereas one-shot handlers

may run at most once. The form of a big-step judgement with signal bindings is:

S;O s1, c ⇓ s2

Note that the signal binding behaves like an environment (for variables bound via let)

rather than a mutable state (for variables updated via :=). The judgement produces an

updated state s2, but it does not update S or O.

Analogous to binding an exception handler, we have two binding constructs for signals:

one for persistent and one for one-shot handlers, where z is a signal name, cB is a

command, and ch is a handler command.

bind z to ch in cB and bind/1 z to ch in cB

17

To support signal disabling in a scope, we introduce a blocking construct for signals:

block z in cB

Note that there is no need for an analogue of throw e (a command that throws an ex-

ception e), as we assume that signals arrive nondeterministically from other, unspecified

processes. The idea of using two contexts with a binder for each is loosely inspired by

Barber and Plotkin’s Dual Intuitionistic Linear Logic (DILL) [6].

2.4.2 Signal Handling Convention

Signals may arrive at any time. Thus, signal handler might be processed before

S(z) = ch S − z;O s1, ch ⇓ s2 S;O s2, cB ⇓ s3

S;O s1, cB ⇓ s3

or after the command cB

S;O s1, cB ⇓ s2 S(z) = ch S − z;O s2, ch ⇓ s3

S;O s1, cB ⇓ s3

2.4.3 Program Logic with Specifications for Signal Handlers

When we augment our language with signal handling, the program logic needs to be

extended with specifications of all the handlers that may interfere with the given com-

mand. These specifications limit how the handlers can interfere with the body of the

code, making them the analogue of a rely condition in rely-guarantee logic. The format

of a judgement becomes

Σ ` {P} c {Q}

Here Σ contains the specification of persistent signal handlers, which may run any number

of times, and specification for one-shot signal handlers, which may run at most once.

Further details for the program logic are given in Chapter 5.

18

A key difference between persistent and one-shot handler specifications is given by

transitivity. Whereas persistent signal handler specifications are automatically transitive,

one-shot handlers need not be transitive. As the one-shot handler can run at most once,

its action may invalidate its precondition, so that the relation between states is not

transitive. For example, a handler h changes the initial state in which P holds in to the

state in which Q holds. As the precondition P is invalidated, the handler h cannot run

anymore.

P
h→ Q

Transitivity is vital for the persistent signal handlers, because it implies that multiple

executions of a handler does not invalidate the associated invariant. For example, a

handler h changes the initial state in which I holds in to the state in which I still holds.

I
h→ I

Thus, multiple runs of the handler h could be presented as follows.

I
h∗→ I

19

CHAPTER 3

OPERATIONAL SEMANTICS

In this chapter, we define an operational semantics for our base language with both signal

and exception handling. We explain in detail auxiliary definitions for the operational

semantics, evaluation of expressions and big-step rules in particular. To show how the big-

step rules could be used and to represent capabilities of the defined operational semantics,

a set of examples with explanation is given. In this chapter we also discuss an interaction

between exception and signal handling in terms of their priority, which is technically a

design choice.

3.1 Block Structured Signals and Exceptions

The details of an operational semantics first appeared in [93], where we compare semantics

in a big-step style to an abstract machine, which is closer to implementations of signal and

exception handlers using stacks. It should be noted, that in previous work [93] all signal

handlers were uninterruptible. In the current version, a restriction has been weakened;

thus, only a signal linked to the running signal handler is blocked, where the rest could

interrupt the running handler. In terms of signal handlers, they are not reentrant, as

they cannot interrupt themselves. However, the reentrancy of code is not limited in any

way, as two signals could be bound to the same signal handler; a particular block of code

in the main program could be interrupted by a signal handler with the same block of

code.

20

Definition 3.1.1 The syntax of the language with signal and exception handling is given

in Figure 3.1, where e ranges over the primitive set of exceptions.

Some auxiliary definitions will be required for the operational semantics. For a partial

function f , we write f [x 7→ v] for the function that maps x to v and coincides with

f on all other arguments. In particular, we use this notation for updating states or

signal bindings. We write dom(f) for the domain of definition of a partial function.

For x ∈ dom(f), we write f − x for the restriction of f to (dom(f) \ {x}). A signal

binding is a finite partial function from signal names z to commands c. We will need a

partial operation on signal bindings. In fact, this definition is the same as the separating

conjunction from separation logic [86].

Please note, that the assignment is an instance of the atomic command. If one would

like to add a new atomic command to the language, that command should be lifted into

the signal context. Despite the general requirements for the atomic commands, they must

not manipulate with the signal context in any way.

s1, a ⇓ s2

S;O s1, a ⇓ s2

Definition 3.1.2 Given two signal bindings O1 and O2, we define a partial operation ∗

as follows:

• If dom(O1) ∩ dom(O2) = ∅, we write O1 ∗O2 for O1 ∪O2.

• If dom(O1) ∩ dom(O2) 6= ∅, then O1 ∗O2 is undefined.

It is this splitting of a signal binding, analogous to the heap-splitting of separation logic,

that gives one-shot behaviour to signals. Specifically, in a sequential composition (c1; c2),

the one-shot signals are split non-deterministically between the commands c1 and c2.

Moreover, every time a one-shot signal arrives and is handled, it is removed from the

one-shot binding O. Thus a one-shot signal may never be handled twice.

21

Commands

c ::= whileEB do c (while construct)

| ifEB then c1 else c2 (if else construct)

| a (Atomic command)

| x := E (Assignment)

| x+ + (Increment)

| x−− (Decrement)

| c1; c2 (Sequential composition)

| throw e (Exception throwing)

| try cB handle e by ch (Exception handling)

| block z in c (Blocking of the signals)

| bind z to cz in cB (Binding of the persistent

signal handler)

| bind/1 z to cz in cB (Binding of the one-shot

signal handler)

Expressions

E ::= x (Variables)

| EI | EB (Int and Bool expressions)

EI ::= n (Integers)

| EI + EI | EI − EI | . . . (Basic arithmetic operations)

EB ::= true | false (Booleans)

| EI ≤ EI | EI > EI | . . . (Basic arithmetic operations)

Figure 3.1: The syntax of the language

22

Definition 3.1.3 Given two signal bindings S and O, the form of a big-step judgement

is either

S;O s1, c ⇓ s2

for normal termination, or

S;O s1, c ⇑ e, s2

for exception throwing.

The full list of big-step rules is given in Figure 3.2, Figure 3.3 and Figure 3.4. The

exception convention could be assumed implicitly; therefore, the list of big-step rules

might be shortened.

Standard Hoare logic uses only a first order, but Turing complete, programming

language, with constructs like sequential composition and while. Functions could be

added, but are to some extent orthogonal to our aims. The problem of interleaving of a

handler and its body already arises even if the body is just a sequential composition of

assignments and the handler is a single assignment. For example:

bind z to (x := 0) in (x := 1 ; y := x)

3.2 Evaluation of Expressions

In our language, evaluation of expressions is fairly standard. Variables are evaluated via

the following rule:
s1(x) = v

s1 x ⇓ v

A corresponding value for the variable x is stored in a state s1. Rules for the arithmetic

operations are analogous to each other. The rule for addition is given below:

s1 EI ⇓ v1 s1 E
′
I ⇓ v2 v = v1 + v2

s1 EI + E ′I ⇓ v

23

(Throw)
S;O s, throw e ⇑ e, s

S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇓ s3
(Handl)

S;O1 ∗O2 s1, try cB handle ek by ch ⇓ s3

S [z 7→ ch];O s1, cB ⇓ s2
(PerSigBind)

S;O s1, bind z to ch in cB ⇓ s2

S [z 7→ ch];O s1, cB ⇑ e1, s2
(PSB2)

S;O s1, bind z to ch in cB ⇑ e1, s2

S;O [z 7→ ch] s1, cB ⇓ s2
(OneSigBind)

S;O s1, bind/1 z to ch in cB ⇓ s2

S;O [z 7→ ch] s1, cB ⇑ e1, s2
(OSB2)

S;O s1, bind/1 z to ch in cB ⇑ e1, s2

S − z;O − z s1, c ⇓ s2
(SignBlock)

S;O s1, block z in c ⇓ s2

S − z;O − z s1, c ⇑ e1, s2
(SB2)

S;O s1, block z in c ⇑ e1, s2

S;O1 s1, c1 ⇓ s2 S(z) = ch S − z;O2 s2, ch ⇓ s3
(PSH-v2)

S;O1 ∗O2 s1, c1 ⇓ s3

S(z) = ch S − z;O1 s1, ch ⇓ s2 S;O2 s2, c1 ⇓ s3
(PSH2-v2)

S;O1 ∗O2 s1, c1 ⇓ s3

S;O1 − z s1, c1 ⇓ s2 O1 ∗O2(z) = ch S;O2 − z s2, ch ⇓ s3
(OSH-v2)

S;O1 ∗O2 s1, c1 ⇓ s3

O1 ∗O2(z) = ch S;O1 − z s1, ch ⇓ s2 S;O2 − z s2, c1 ⇓ s3
(OSH22)

S;O1 ∗O2 s1, c1 ⇓ s3

Figure 3.2: Big-step semantic rules for exceptions and signal handling Part1

24

S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇓ s3
(SeqComp)

S;O1 ∗O2 s1, (c1 ; c2) ⇓ s3

S;O s1, c1 ⇑ e1, s2
(SC3)

S;O s1, (c1 ; c2) ⇑ e1, s2

S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇑ e1, s3
(SC2)

S;O1 ∗O2 s1, (c1 ; c2) ⇑ e1, s3

s1 E ⇓ v
(Assignment)

S;O s1, x :=E ⇓ s1 [x 7→ v]

s1, a ⇓ s2
(Atomic)

S;O s1, a ⇓ s2

s1 |= ¬EB
(WhileFalse)

S;O s1, whileEB do c ⇓ s1

s1 |= EB S;O s1, c ⇑ e, s2
(WhileTrue2)

S;O s1, whileEB do c ⇑ e, s2

s1 |= EB S;O1 s1, c ⇓ s2 S;O2 s2, whileEB do c ⇓ s3
(WTrue)

S;O1 ∗O2 s1, whileEB do c ⇓ s3

s1 |= EB S;O s1, c1 ⇓ s2
(IfTrue)

S;O s1, ifEB then c1 else c2 ⇓ s2

s1 |= ¬EB S;O s1, c2 ⇓ s3
(IfFalse)

S;O s1, ifEB then c1 else c2 ⇓ s3

s1 |= EB S;O s1, c1 ⇑ e1, s2
(IfT2)

S;O s1, ifEB then c1 else c2 ⇑ e1, s2

s1 |= ¬EB S;O s1, c2 ⇑ e1, s3
(IfF2)

S;O s1, ifEB then c1 else c2 ⇑ e1, s3

Figure 3.3: Big-step semantic rules for exceptions and signal handling Part2

25

S;O1 s1, c1 ⇓ s2 S(z) = ch S − z;O2 s2, ch ⇑ e1, s3
(PSH1b)

S;O1 ∗O2 s1, c1 ⇑ e1, s3

S(z) = ch S − z;O s1, ch ⇑ e1, s2
(PSH2a)

S;O s1, c1 ⇑ e1, s2

S(z) = ch S − z;O1 s1, ch ⇓ s2 S;O2 s2, c1 ⇑ e1, s3
(PSH2b)

S;O1 ∗O2 s1, c1 ⇑ e1, s3

S;O − z s1, c1 ⇑ e1, s2
(OSH1)

S;O s1, c1 ⇑ e1, s2

S;O1 − z s1, c1 ⇓ s2 O1 ∗O2(z) = ch S;O2 − z s2, ch ⇑ e1, s3
(OS2)

S;O1 ∗O2 s1, c1 ⇑ e1, s3

O(z) = ch S;O − z s1, ch ⇑ e1, s2
(OSH3)

S;O s1, c1 ⇑ e1, s2

O1 ∗O2(z) = ch S;O1 − z s1, ch ⇓ s2 S;O2 − z s2, c1 ⇑ e1, s3
(OS4)

S;O1 ∗O2 s1, c1 ⇑ e1, s3

Figure 3.4: Big-step semantic rules for exceptions and signal handling Part3

26

Addition or any other arithmetic operation of two expressions is straightforward. Both

expressions (EI and E ′I) are evaluated to the values (v1 and v2) one by one in a state

s1. Then, the arithmetic operation is performed on v1 and v2. The result value v is a

return value of the arithmetic operation of two expressions EI and E ′I . Please note that

evaluation of expressions does not change the state.

3.3 Big-step Rules in Detail

There are few semantic rules (WhileTrue,SeqComp, Exception handling, and Signal

handling) that require a one-shot signal binding splitting, which is described in the

Definition 3.1.2.

3.3.1 Assignment

s1 E ⇓ v

S;O s1, x :=E ⇓ s1 [x 7→ v]

An expression E evaluates to a value v in a state s1. The result of an assignment is an

update of the state s1, such that a variable x points to the value v.

3.3.2 Sequential Composition

S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇓ s3

S;O1 ∗O2 s1, (c1 ; c2) ⇓ s3

The one-shot signal binding is split (Definition 3.1.2) non-deterministically between com-

mands c1 and c2. It means that if the one-shot signal arrives during execution of c1, it

can’t be handled during c2, and vice versa. There are no such limitations for the persistent

signals. Therefore, a persistent signal binding S is copied for every branch.

27

3.3.3 Repetitive Construct while

s1 |= EB S;O1 s1, c ⇓ s2 S;O2 s2, whileEB do c ⇓ s3

S;O1 ∗O2 s1, whileEB do c ⇓ s3

s1 |= ¬EB
S;O s1, whileEB do c ⇓ s1

If EB evaluates to the value true in a state s1, then a body of the while c is executed.

Then, the same rule is applied recursively to the right branch. If EB evaluates to the

value false in a state s1, then a body of the while c never runs; thus, the sate s1

remains unchanged. Splitting of the signal binding is analogous to the one explained in

subsection 3.3.2.

3.3.4 Exception Handling

S;O s, throw e ⇑ e, s

S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇓ s3

S;O1 ∗O2 s1, try cB handle ek by ch ⇓ s3

In a first rule, a command throw e doesn’t change a state itself. It raises an exception, so

the exception propagation takes place. A signal could be handled before the command

throw e, or before the exception handler (just after exception propagation terminates).

Our language is capable of supporting signal handling during the exception propaga-

tion, but our design choice is to exclude this possibility. In the real-life implementations,

handling a signal after the raised exception leads to the unpredictable outcomes, because

a raised exception may indicate a memory corruption. In our language, programmer has

a control over when and what kind of exception to throw; however, we stick to the real-life

convention.

28

The second rule defines a block for an exception, where it could be handled. Any

ek thrown inside cB will be handled by ch. This rule requires a signal splitting (Defini-

tion 3.1.2).

3.3.5 Conditional Construct if

s1 |= EB S;O s1, c1 ⇓ s2

S;O s1, ifEB then c1 else c2 ⇓ s2

s1 |= ¬EB S;O s1, c2 ⇓ s3

S;O s1, ifEB then c1 else c2 ⇓ s3

There are two rules for two cases. If EB evaluates to the value true in a state s1, then

the first branch of the if-else structure is executed. If EB evaluates to the value false,

the second branch is executed. There is no splitting of the signal binding as only one

branch is executed.

3.3.6 Signal Binding

S [z 7→ ch];O s1, cB ⇓ s2

S;O s1, bind z to ch in cB ⇓ s2

S;O [z 7→ ch] s1, cB ⇓ s2

S;O s1, bind/1 z to ch in cB ⇓ s2

We have two rules for the signal binding: one for the persistent signals and one for the

one-shot signals. The rules are straightforward, binding commands add a new signal z

to the corresponding signal binding context (S for persistent and O for one-shot) with a

link to a signal handler ch. Then a command cB runs in a scope with an extended signal

binding S [z 7→ ch];O or S;O [z 7→ ch].

29

3.3.7 Signal Handling

S;O1 s1, c1 ⇓ s2 S(z) = ch S − z;O2 s2, ch ⇓ s3

S;O1 ∗O2 s1, c1 ⇓ s3

S(z) = ch S − z;O1 s1, ch ⇓ s2 S;O2 s2, c1 ⇓ s3

S;O1 ∗O2 s1, c1 ⇓ s3

S;O1 − z s1, c1 ⇓ s2 O1 ∗O2(z) = ch S;O2 − z s2, ch ⇓ s3

S;O1 ∗O2 s1, c1 ⇓ s3

O1 ∗O2(z) = ch S;O1 − z s1, ch ⇓ s2 S;O2 − z s2, c1 ⇓ s3

S;O1 ∗O2 s1, c1 ⇓ s3

During a signal execution, only the signal of a corresponding handler is blocked inside

the handler. Thus, the signal handler becomes interruptible by other signals, except by

itself.

One may ask, why do we require a binding splitting even for the persistent handling?

It should be noted, that whenever rule assumes a resource sharing (one-shot signals in

our case), the one-shot signal binding splitting is enforced by default.

In a particular case of the persistent signal handling, the one-shot binding is split

nondeterministically between the main command and the handler, as the one-shot handler

may arrive during the execution of each of them.

3.3.8 Signal Blocking

S − z;O − z s1, c ⇓ s2

S;O s1, block z in c ⇓ s2

There is only one signal blocking rule for both types of signals. A signal z belongs

to the only one domain, dom(S) or dom(O). Thus, if z ∈ dom(S), then z 6∈ dom(O);

thus, (dom(O) \ {z}) = dom(O). Therefore, excluding z from both domains results in a

required outcome. Analogously, it works when z 6∈ dom(S) and z ∈ dom(O).

30

3.4 skip command

In many languages (e.g.: used in [77]), one may observe a skip command that technically

does nothing. In our language, we do not have a separate command for such behaviour.

For example, there is no explicit rule such as

S;O s1, skip ⇓ s1

Instead, one may use a while command with a false boolean condition whileEB do c.

s1 |= ¬EB
S;O s1, whileEB do c ⇓ s1

Thus, if EB evaluates to the value false in a state s1, then a body of the while c never

runs and the sate s1 remains unchanged. That has an analogous effect to the command

skip defined in other languages.

3.5 Interaction between Signal and Exception Han-

dling

There is potentially a pitfall in combining signals and jumps (such as exceptions). Con-

sider the following pseudo-code:

install(handler);

goto L;

uninstall(handler);

L:

Here the signal handler would not be removed correctly if control jumps past the unin-

stalling command. In fact the problem is quite general, and arises whenever resource

management is combined with jumping.

31

In our language as defined in Definition 3.1.1, such a potential problem case is pre-

sented by the following code:

try (bind z toh in throw e) handle e by g

The intended meaning is that the signal z is bound locally inside the body of an exception

block. The signal handler may run immediately before the throw e command. However,

once the exception has propagated to the exception handler, it has left the scope of the

signal binding, so that the signal handler should not be able to run. To see that the

big-step semantics (Figure 3.2, Figure 3.3 and Figure 3.4) correctly handles this case,

consider the derivation tree in Figure 3.5.

In a big-step semantics, block structure is handled correctly “for free”. The extended

signal binding S [z 7→ h] is confined to the subtree of the body of the binding. When

the body is left, the evaluation is resumed with the old S, which is what used in the

evaluation of g. Even when control leaves the signal block abruptly via an exception,

there is no danger that a signal handler escapes from its scope. By contrast, if we use

a small-step semantics, and in particular an abstract machine, the uninstalling of signal

handlers needs to be performed explicitly [93].

S [z 7→ h](z) = h S − z;O s1, h ⇓ s S [z 7→ h];O s, throw e ⇑ e, s

S [z 7→ h];O s1, throw e ⇑ e, s

S;O s1, (bind z toh in throw e) ⇑ e, s

S;O s1, (bind z toh in throw e) ⇑ e, s S;O s, g ⇓ s3

S;O s1, try (bind z toh in throw e) handle e by g ⇓ s3

Figure 3.5: A signal binding inside of the exception block

3.5.1 Question of Priority - Design Choice

In any language, combination of different control structures with different features and

conventions leads to subtle questions. It is crucial to have a clear understanding of how

32

S [z 7→ h](z) = h S − z;O s, h ⇓ s3 S [z 7→ h];O s3, g ⇓ s4

S [z 7→ h];O s, g ⇓ s4

S [z 7→ h](z) = h S − z;O s1, h ⇓ s S [z 7→ h];O s, throw e ⇑ e, s

S [z 7→ h];O s1, throw e ⇑ e, s

S [z 7→ h];O s1, throw e ⇑ e, s S [z 7→ h];O s, g ⇓ s4

S [z 7→ h];O s1, try (throw e) handle e by g ⇓ s4

S;O s1, bind z toh in (try (throw e) handle e by g) ⇓ s4

Figure 3.6: Derivation tree for the combined signals and exceptions

two constructs interact or influence each other at any possible situation that is permitted

by the language. Sometimes there is no right answer and language designer should decide

which construct has higher priority, which constructs could be used as a part of another

construct, and etc. We design logic rules and semantics models for the language based on

a while-language that is extended with exception and signal handling constructs. Signals

and exceptions obey different conventions, and both constructs have privileges of other

code interruptions. Thus, we had to decide which construct has a right to interrupt, and

which should be blocked while other is running. Exception convention was explained in

Section 2.3, and signals were introduced in Section 2.4.

In our operational semantics, exception propagation has higher priority than exception

handling. Thus, signal might be handled only before exception has been thrown and after

it has been caught (Figure 3.6). The command throw does not change a state itself; thus,

the state remains unchanged until an exception is caught, then there are few options. If no

signal arrives then an exception handler runs. If any signal arrives then the corresponding

signal handler runs and only then the exception handler proceeds (Figure 3.6).

However, one can design implementation where signal handling has higher priority.

In this scenario, a signal handler should be processed even if exception propagation takes

place (Figure 3.7). In configuration with signal priority, the state could be changed by

the signal handler even during the exception propagation. Thus, while the exception

33

S [z 7→ h];O s, throw e ⇑ e, s S [z 7→ h](z) = h S − z;O s, h ⇓ s2

S [z 7→ h];O s, throw e ⇑ e, s2

S;O s, (bind z toh in throw e) ⇑ e, s2

S;O s1, (bind z toh in throw e) ⇑ e, s2 S;O s2, g ⇓ s3

S;O s1, try (bind z toh in throw e) handle e by g ⇓ s3

Figure 3.7: Signal handled after the throw

[z 7→ ch](z) = ch S; ∅ s1, ch ⇓ s2 S; ∅ s2, c1 ⇓ s3

S; [z 7→ ch] s1, cB ⇓ s3

S; ∅ s1, bind/1 z to ch in cB ⇓ s3

Figure 3.8: One-shot signal handling

propagates down in the tree, leaving block scopes one after another, different signal

handlers could be registered in every block. Therefore, the choice of handler will be

rather unpredictable and implementation dependant. This approach might be further

investigated from a security point of view.

3.6 Examples for Operational Semantics

To show how the big-step rules could be applied we present a set of examples.

3.6.1 Basic Examples

In Figure 3.8, the one-shot signal z arrives before the main command c1 even ran, thus

registered handler ch runs and only then command c1 proceeds. Please note that the one-

shot signal context no longer contains binding for the signal z while cB runs. Therefore,

if signal z arrives again, it will be ignored.

In Figure 3.9, the persistent signal z arrives after the main command cB ran, and then

registered handler ch runs. In contrast with one-shot signal handlers, persistent handler

bindings are not removed from the signal context for cB. However, it is excluded from

the signal context for the handler run.

34

S [z 7→ ch];O s1, cB ⇓ s2 S [z 7→ ch](z) = ch S;O s2, ch ⇓ s3

S [z 7→ ch];O s1, cB ⇓ s3

S;O s1, bind z to ch in cB ⇓ s3

Figure 3.9: Persistant signal handling

S [z 7→ ch](z) = ch S;O s2, ch ⇓ s3 S [z 7→ ch];O s3, cB ⇓ s4

S [z 7→ ch];O s2, cB ⇓ s4

S [z 7→ ch](z) = ch S;O s1, ch ⇓ s2 S [z 7→ ch];O s2, cB ⇓ s4

S [z 7→ ch];O s1, cB ⇓ s4

S;O s1, bind z to ch in cB ⇓ s4

Figure 3.10: Multiple persistant signal handling

Figure 3.10 extends the example given in Figure 3.9. As it was mentioned before,

calling the persistent handler does not remove a corresponding signal binding from the

context of cB. Therefore, the persistent handler will run again and again if corresponding

signal arrives. In Figure 3.10, two signals z arrive one after another before the main

command cB ran. In the current version of operational semantics, all signals are unblocked

while handler runs, except the signal that calls that handler. Example in Figure 3.10,

shows a case when the next signal triggers a handler after the previous handler finishes.

Please note that the signals may arrive after the command cB and multiple handlers will

be triggered then. This will end, when control flow leaves the scope of the signal binding.

3.6.2 Interruptible Signal Handlers

In Figure 3.11, a subtree for the signal handlers may grow up until all signals arrive; thus,

at the top of the tree a signal binding will be empty. If we compare this example to the

example in Figure 3.12 or Figure 3.8, we may observe that according to the nature of the

one-shot signals, a signal handler could be used only once. In Figure 3.12, when a signal

handler is called, the one-shot signal is excluded from the binding of a signal handler and

the binding of a body.

35

S − z(z′) = c′h (S − z)− z′;O s1, c
′
h ⇓ s2 S − z;O s2, ch ⇓ s3

S − z;O s1, ch ⇓ s3

S(z) = ch S − z;O s1, ch ⇓ s3 S;O s3, cB ⇓ s4

S;O s1, cB ⇓ s4

Figure 3.11: Interruptible signal handlers

O − z(z′) = c′h S;O′ s1, c
′
h ⇓ s2 S;O′ s2, ch ⇓ s3

S;O − z s1, ch ⇓ s3

O(z) = ch S;O − z s1, ch ⇓ s3 S;O′ s3, cB ⇓ s4

S;O s1, cB ⇓ s4

where O′ = (O − z)− z′

Figure 3.12: Interruptible signal handlers

3.6.3 One-Shot & Persistent Signals Bindings

Having O1 [z 7→ ch], is not enough to decide whether O1 and O1−z are equivalent or not.

If z ∈ dom(O1), then O1 and O1 − z are obviously not equivalent. Also, O1 [z 7→ ch]− z

and O1 are not equivalent if z ∈ dom(O1), as −z in first place excludes z completely. Its

value (original or updated) becomes unimportant. However, O1 [z 7→ ch]− z and O1− z

are equivalent, no matter if z ∈ dom(O1) or not, as −z was applied on both sides.

The aim of the Figure 3.13 and Figure 3.14 is to show how one-shot and persistent

signal bindings are ”shared” between sequentially composed commands, and highlight

the core difference between them (splitting & copying). According to the operational

semantics (rules are given in Figure 3.2, Figure 3.3 and Figure 3.4), the signal handlers

run uninterruptedly as signal bindings are kept empty (∅; ∅ ` . . .) during the execution.

In Figure 3.13, the one-shot signal binding O is split non-deterministically between

commands c1 and c2. Thus, we write O = O1 ∗ O2 (Definition 3.1.2). When the new

signal z is registered it becomes an element of the domain O. However, z ∈ dom(O1) or

z ∈ dom(O2) will be determined during the run time only. In this particular example, the

signal z arrives in ”scope” of the command c1 (z ∈ dom(O′1)) and bound handler runs.

36

O1 [z 7→ ch](z) = ch S;O1 − z s1, ch ⇓ s2 S;O1 − z s2, c1 ⇓ s3

S;O1 [z 7→ ch] s1, c1 ⇓ s3

S;O1 [z 7→ ch] s1, c1 ⇓ s3 S;O2 s3, c2 ⇓ s4

S; (O1 ∗O2) [z 7→ ch] s1, (c1 ; c2) ⇓ s4

S;O1 ∗O2 s1, bind/1 z to ch in (c1 ; c2) ⇓ s4

Figure 3.13: Splitting of the O binding in seq. composed commands

S [z 7→ ch](z) = ch S;O s4, ch ⇓ s5 S [z 7→ ch];O s5, c2 ⇓ s6

S [z 7→ ch];O s4, c2 ⇓ s6

S [z 7→ ch](z) = ch S;O s3, ch ⇓ s4 S [z 7→ ch];O s4, c2 ⇓ s6

S [z 7→ ch];O s3, c2 ⇓ s6

S [z 7→ ch](z) = ch S;O s1, ch ⇓ s2 S [z 7→ ch];O s2, c1 ⇓ s3

S [z 7→ ch];O s1, c1 ⇓ s3

S [z 7→ ch];O s1, c1 ⇓ s3 S [z 7→ ch];O s3, c2 ⇓ s6

S [z 7→ ch];O s1, (c1 ; c2) ⇓ s6

S;O s1, bind z to ch in (c1 ; c2) ⇓ s6

Figure 3.14: Multiple persistant signal handling in seq. composed commands

According to the one-shot signal binding nature, the binding for z is removed from the

O′1 and consequently from the O [z 7→ ch] as O′1 ⊆ O [z 7→ ch]. Therefore, z /∈ dom(O2)

and if signal z arrives during the execution of the command c2, it will be ignored.

In Figure 3.14, we focus on the persistent signal binding. The key difference with

the one-shot binding is that binding just copied to the every command without splitting

or modification. Thus, the same signal handler may run any number of times during

the execution of the commands c1 and c2. This behaviour is possible because triggering

persistent signal handler does not invalidate the corresponding binding.

3.6.4 Signals & Exceptions

Suppose that the signal handler relies on some resource (valid pointer, open socket, active

connection, and etc.) available in a particular scope. However, as a side effect of the

37

O [z 7→ ch](z) = ch S;O − z s1, ch ⇓ s2 S;O − z s2, cB ⇓ s3

S;O [z 7→ ch] s1, cB ⇓ s3

S;O s1, bind/1 z to ch in cB ⇓ s3

Figure 3.15: One-shot signal handling before the command

S;O − z s1, cB ⇓ s2 O [z 7→ ch](z) = ch S;O − z s2, ch ⇓ s3

S;O [z 7→ ch] s1, cB ⇓ s3

S;O s1, bind/1 z to ch in cB ⇓ s3

Figure 3.16: One-shot signal handling after the command

S1(z) = (h ; throw e)

S−z;O s1, h ⇓ s2 S−z;O s2, throw e ⇑ e, s2

S−z;O s1, (h ; throw e) ⇑ e, s2

S1;O s1, cB ⇑ e, s2

S;O s1, (bind z to (h ; throw e) in cB) ⇑ e, s2

S;O s1, (bind z to (h ; throw e) in cB) ⇑ e, s2 S;O s2, g ⇓ s3

S;O s1, try (bind z to (h ; throw e) in cB) handle e by g ⇓ s3

where S1 = S [z 7→ (h ; throw e)]

Figure 3.17: Persistent handler with an exception triggered before the command

S − z;O s2, h ⇓ s3 S − z;O s3, throw e ⇑ e, s3

S − z;O s2, (h ; throw e) ⇑ e, s3

= F

S1;O s1, cB ⇓ s2 S1(z) = (h ; throw e) F

S1;O s1, cB ⇑ e, s3

S;O s1, (bind z to (h ; throw e) in cB) ⇑ e, s3 S;O s3, g ⇓ s4

S;O s1, try (bind z to (h ; throw e) in cB) handle e by g ⇓ s4

where S1 = S [z 7→ (h ; throw e)]

Figure 3.18: Persistent handler with an exception triggered after the command

38

handler execution, resource becomes unavailable (freed pointer, closed socket, inactive

connection). In this situation, multiple handler execution will lead to the program failure.

Obviously, one-shot signal handlers are perfectly fit for purpose. In Figure 3.15, the one-

shot signal handler ch runs before the command cB. Thus, when control flow returns to

cB, the signal context no longer contains a binding for the handler ch. In Figure 3.16,

the one-shot signal handler ch runs after the command cB, so (as handler definitely runs)

signal binding does not contain a binding for ch.

One the other hand, a persistent handler combined with an exception imitates one-

shot signal handler to some extent. The key trick is in adding of a ”throw ” command to

the end of the persistent handler. As a result of a thrown exception, control leaves the

signal block, so the persistent signal handler will not run again.

In Figure 3.17, the persistent signal handler runs and throws an exception. As ex-

ception propagation takes place, the command cB does not run. In Figure 3.18, the

command cB runs before the persistent signal handler has been triggered. Thus, the rise

of an exception does not influence the command cB at that point.

Comparing derivation trees from Figure 3.16 and Figure 3.18, we may observe some

similarities. In both cases, the main command runs first and then signal handler runs

only once. The only difference is that handler’s singular run is achieved by two different

approaches.

Comparing derivation trees from Figure 3.15 and Figure 3.17, we observe the next

situation: in both cases the strict conditions for the signal handlers are satisfied, but as

a ”side effect” of an exception propagation, the command cB will be skipped.

More complex example (where signal handled before and after the throw) could be

found in Figure 3.19.

39

S ′;O s2, throw e ⇑ e, s2 S ′(z) = h S − z;O s2, h ⇓ s3

S ′;O s2, throw e ⇑ e, s3

S ′(z) = h S − z;O s1, h ⇓ s2 S ′;O s2, throw e ⇑ e, s3

S ′;O s1, throw e ⇑ e, s3

S;O s1, (bind z toh in throw e) ⇑ e, s3

S;O s1, (bind z toh in throw e) ⇑ e, s3 S;O s3, g ⇓ s4

S;O s1, try (bind z toh in throw e) handle e by g ⇓ s4

where S ′ = S [z 7→ h]

Figure 3.19: Signal handled before and after the throw

40

CHAPTER 4

ABSTRACT MACHINE

In this chapter, we review some basic design decisions for abstract machines and define

a stack machine for signal handlers. The form of a machine configuration includes two

stacks: one for the exception and signal bindings, and another for continuations. We

explain in detail why it is important to keep track of signal and exception handlers

on the same stack to achieve required interaction between them. Application of the

transition steps is shown in a set of examples. Finally, we discuss some issues that need

to be solved as part of the correctness proof of the signal machine with respect to the

big-step operational semantics.

4.1 From Big-step to Abstract Machine

Suppose we have a language with only atomic commands a and sequential composition

c1; c2. We define a machine with a command, a current state and a continuation:

〈c1; c2, s, k〉 〈c1, s, c2; k〉

〈a, s1, c; k〉 〈c, s2, k〉

For a command c, the initial state of the machine has some initial state s0. The initial

continuation is a special instruction return. When an atomic command runs, it may

modify the state s1 to a new state s2. At the same time, the next command c is popped

from the continuation. This last feature is similar to the way a real CPU increments the

41

instruction pointer to the next instruction after it executes an instruction.

The relation to big-step semantics is as follows:

s1, c ⇓ s2

if and only if for all c′ and k:

〈c, s1, c
′; k〉 ∗ 〈c′, s2, k〉

Proof By induction over the length of the run. We make a case analysis of the first step.

Then we apply the induction hypothesis to the middle of the run. Then we find a step

matching the first one that will get us back to the same k.

For the atomic command, assume the initial state s1, continuation c′; k, and a com-

mand a at the evaluation position

〈a, s1, c
′; k〉

According to the transition rules, we proceed to another configuration

〈a, s1, c
′; k〉 〈c′, s2, k〉

In the big-step, we have

s1, a ⇓ s2

as required.

For the sequential composition, assume sequentially composed commands (c1; c2),

initial state s1 and continuation c′; k

〈(c1; c2), s1, c
′; k〉

42

According to the transition rule we proceed as follows

〈(c1; c2), s1, c
′; k〉 〈c1, s1, c2; c′; k〉

∗
 〈c2, s2, c

′; k〉
∗
 〈c′, s3, k〉

We apply the induction hypothesis to the second transition sequence, which implies

s1, c1 ⇓ s2

Then we apply induction hypothesis again for the third transition sequence, which

implies

s2, c2 ⇓ s3

Finally, the last machine configuration matches with the first one in terms of contin-

uation component k. Thus,

s1, (c1; c2) ⇓ s3

�

One of the advantages of big-step semantics is that is has built-in support for block-

structure. Suppose we have some construct block c end. In a big-step semantics, we

can define rules that use the semantics of c. With a machine, it is more complex. The

machine needs to enter the block, run the command c, which may involve pushing and

popping the continuation, and then leave the block. We may have to define explicit

instructions for entering and leaving the block-structured contruct. Moreover, if we also

have exceptions, the possibility of remove part of the continuation further complicates

the machine, as we need to make sure that the block structure is handled correctly.

43

Definition 4.1.1 (Stuck machine configuration) For a machine configurationm, we

write

m 6

when there is no configuration m′ such that m m′.

4.2 Stack Machine for Signal Handlers

We define an abstract machine in order to highlight some of the issues that may arise

in possible implementations of block-structured signals, such as managing the stack.

The implementation of signal handlers in our abstract machine was inspired by the real

implementations of exceptions in contrast to the unstructured longjmp that exceptions

were designed to replace.

The defined block-structured form of signal handling requires a signal handler to be

installed at the beginning of the block and uninstalled at the end. Therefore, to keep

track of signal handlers in a particular scope, we use a signal stack. However, the addition

of exceptions complicates the scoping of signal handlers. When control leaves a signal

scope via a raised exception, the handler should be uninstalled. Thus, to implement the

desired interaction between signal and exception scope, we keep track of signal handlers

and exception handlers on the same stack. When an exception is raised, the stack is

popped until the nearest enclosing handler for the exception name is found. The same

popping of the common handler stack also removes any intervening signal handlers.

A machine configuration is of the form 〈c | s | β | J | K 〉, where c is the expression

that the machine is currently trying to evaluate, s is a state. The bit vector component

β is used for keeping track of installed (not blocked) signals. J is a stack, which holds

the signal and exception bindings. K is a continuation, which tells the machine what to

do when it is finished with the current command c. The initial continuation is a special

instruction return. The special symbol � is used to represent an empty stack in the

components J and K. When we get 〈return | s | β | � | �〉, program execution is

44

finished. The full list of transition steps is given in Figure 4.1 and Figure 4.2. To evaluate

expression E in a state s, we apply the function eval (Defintion 4.2.1), which returns a

value v.

β0 stands for a null bit vector (which means blocking or ignoring of all signals). The

system instruction pop-upd(β′) removes the top element from a stack J and updates

β to β′. The system instruction update(β′) updates β to β′. We define J as a data

structure that follows stack discipline except in the case of one-shot signal handling. The

J stack is manipulated by the system instructions that are pushed in and popped out

from the continuation stack K.

β is a function from signal names z to Booleans. For each signal name z, β(z) tells

us whether the signal is currently enabled. Then β+z is a shorthand for β[z 7→ true] and

β−z stands for β[z 7→ false].

For a throw e1 command, where e1 ∈ dom(J), we apply the unwind function (Def-

inition 4.2.2), which returns a quadruple that is used to construct the next machine

configuration. If e1 /∈ dom(J), then the machine gets stuck with an unhandled exception,

in the sense that there is no transition for this configuration, so that

〈throw e1 | s | β | J | K 〉 6

An exception binding tag has the form of (e, h), where e is an exception identifier,

and h is a handler. A persistent signal binding tag has the form of (z, h), where z is a

signal name, and h is a handler. A one-shot signal binding tag has the form of (z, h, u),

where z is a signal name, h is a handler, and u is a bit indicating that the handler has

been used once (u=1) or not (u=0). Handling of the one-shot signals requires update

of the J stack; to be more precise, the bit u in (z, h, u) is updated. Please note, the

pop-upd(β0)2 stands for pop-upd(β0); pop-upd(β0).

45

〈c1; c2 | s1 | β1 | J1 | K1 〉

 〈c1 | s1 | β1 | J1 | c2;K1 〉

〈x := E | s1 | β1 | J1 | c′;K1 〉

 〈c′ | s1 [x 7→ v] | β1 | J1 | K1 〉 (where eval(E, s1) = v)

〈bind z toh in c | s | β | J | K 〉

 〈c | s | β+z | (z, h), J | pop-upd(β);K 〉

〈bind/1 z toh in c | s | β | J | K 〉

 〈c | s | β+z | (z, h, 0), J | pop-upd(β);K 〉

〈pop-upd(β1) | s | β2 | (z, h), J | c;K 〉

 〈c | s | β1 | J | K 〉

〈c | s | β | J1, (z, h), J2 | K 〉

 〈h | s | β0 | J1, (z, h), J2 | update(β); c;K 〉

(handling of the persistent signal)

〈c | s | β | J1, (z, h, 0), J2 | K 〉

 〈h | s | β0 | J1, (z, h, 1), J2 | update(β−z); c;K 〉

(handling of the one-shot signal)

〈update(β1) | s | β2 | J | c;K 〉

 〈c | s | β1 | J | K 〉

Figure 4.1: Transition steps - Part 1

46

〈block z in c | s | β1 | J | K 〉

 〈c | s | β1−z | J | update(β1);K 〉

〈block/1 z in c | s | β1 | J | K 〉

 〈c | s | β1−z | J | update(β1);K 〉

〈try cb handle e by h | s | β | J | K 〉

 〈cb | s | β | (e, h), J | pop-upd(β);K 〉

〈throw e1 | s | β | J1, (e1, h), J2 | K1 〉

 〈h | s | β′ | J2 | K2 〉

(where unwind(e1, (J1, (e1, h), J2), K1) = (h, β′, J2, K2))

Figure 4.2: Transition steps - Part 2

Definition 4.2.1 (eval function)

eval(x, s) = s(x)

eval(E1 + E2, s) = eval(E1, s) + eval(E2, s)

Definition 4.2.2 (unwind function)

unwind(e1, J, c;K) = unwind(e1, J, K)

unwind(e1, J, update(β);K) = unwind(e1, J, K)

unwind(e1, ((z, h), J), pop-upd(β);K) = unwind(e1, J, K)

unwind(e1, ((e1, h), J), pop-upd(β);K) = (h, β, J,K)

Function unwind has three input parameters: name of the exception, J and K stacks.

1. If there is a non-system instruction on top of K, it is discarded.

2. If there is a system instruction update on top of K, it is discarded.

47

3. If there is a system instruction pop-upd on top of K, and if there is a signal binding

or an exception binding for another exception on top of J , both are discarded.

4. If there is a system instruction pop-upd on top of K and if there is an exception

binding for the required exception name on top of J , we get a corresponding signal

handler from the signal binding and β from the system instruction. Then we discard

exception binding from J and pop-upd from K to get required J and K stacks.

4.3 Examples of the Machine Runs

We have already seen in previous examples (e.g.: Figure 3.17 and Figure 3.6) that the

big-step semantics gives us block structure for free. This becomes very useful in studying

block structured constructs and their interactions. On the contrary, the machine needs to

manage block structure explicitly with a help of the stack. The examples of corresponding

machine runs are given in Figure 4.3 and Figure 4.4. Please note, the pop-upd(β0)2

stands for pop-upd(β0); pop-upd(β0).

The example in Figure 3.13 shows how the big-step syntax makes it easy to address

one-shot signals with splitting the bindings. By contrast, the machine needs to perform

extra administrative work with the binding tags and the stack to implement one-shot sig-

nal handling (Figure 4.5). One may observe that the abstract machine is more complex

than the big-step semantics, as machine needs to deal with many details explicitly. Over-

all, we see that the machine is closer to implementations, whereas the big-step semantics

is more convenient for abstract reasoning.

4.4 Towards Signal Machine Correctness

Before we can move towards correctness of the machine relative to the big-step semantics,

an issue with exception handling should be discussed. Exceptions give rise to non-local

control that violates the simple stack discipline. In order to reason about an exception

48

〈try (bind z to (h ; throw e) in c) handle e by g | s1 | β0 | � | return〉

 〈bind z to (h ; throw e) in c | s1 | β0 | (e, g) | pop-upd(β0)〉

 〈c | s1 | β0+z | (z, (h ; throw e)), (e, g) | pop-upd(β0)2 〉

 〈c | s1 | β0+z | (z, (h ; throw e)), (e, g) | pop-upd(β0)2 〉

 〈(h ; throw e) | s1 | β0 | (z, (h ; throw e)), (e, g) |

update(β0+z); c; pop-upd(β0)2 〉

 〈h | s1 | β0 | (z, (h ; throw e)), (e, g) |

throw e; update(β0+z); c; pop-upd(β0)2 〉

 〈throw e | s2 | β0 | (z, (h ; throw e)), (e, g) |

update(β0+z); c; pop-upd(β0)2 〉

 〈g | s2 | β0 | � | return〉

 〈return | s3 | β0 | � | �〉

Figure 4.3: Binding inside of the try block

49

〈bind z toh in (try (throw e) handle e by g) | s1 | β0 | � | return〉

 〈try (throw e) handle e by g | s1 | β0+z | (z, h) | pop-upd(β0)〉

 〈throw e | s1 | β0+z | (e, g), (z, h) | pop-upd(β0+z); pop-upd(β0)〉

 〈h | s1 | β0 | (e, g), (z, h) |

update(β0+z); throw e; pop-upd(β0+z); pop-upd(β0)〉

 〈update(β0+z) | s2 | β0 | (e, g), (z, h) |

throw e; pop-upd(β0+z); pop-upd(β0)〉

 〈throw e | s2 | β0+z | (e, g), (z, h) | pop-upd(β0+z); pop-upd(β0)〉

 〈g | s2 | β0+z | (z, h) | pop-upd(β0)〉

 〈h | s2 | β0 | (z, h) | update(β0+z); g; pop-upd(β0)〉

 〈update(β0+z) | s3 | β0 | (z, h) | g; pop-upd(β0)〉

 〈g | s3 | β0+z | (z, h) | pop-upd(β0)〉

 〈pop-upd(β0) | s4 | β0+z | (z, h) | return〉

 〈return | s4 | β0 | � | �〉

Figure 4.4: Exception handling inside of the binding

50

〈bind/1 z toh1 in (c1 ; c2) | s1 | β0 | � | return〉

 〈c1 ; c2 | s1 | β0+z | (z, h1, 0) | pop-upd(β0); return〉

 〈c1 | s1 | β0+z | (z, h1, 0) | c2; pop-upd(β0); return〉

 〈h1 | s1 | β0 | (z, h1, 1) | update(β0); c1; c2; pop-upd(β0); return〉

 〈update(β0) | s2 | β0 | (z, h1, 1) | c1; c2; pop-upd(β0); return〉

 〈c1 | s2 | β0 | (z, h1, 1) | c2; pop-upd(β0); return〉

 〈c2 | s3 | β0 | (z, h1, 1) | pop-upd(β0); return〉

 〈pop-upd(β0) | s4 | β0 | (z, h1, 1) | return〉

 〈return | s4 | β0 | � | �〉

Figure 4.5: Signal binding and seq. composed commands

raised somewhere deep inside its corresponding try block, we need to keep track of the

exception handlers on the stack in terms of an invariant.

Definition 4.4.1 (Handler relation) We define the relation ≫ as follows. The rela-

tion

{e}, {J}, {K}≫ {h}, {J ′}, {K ′}

holds if the exception e thrown inside stacks J and K goes in one step to a configuration

running the handler h, and the stacks J ′ and K ′. More formally, the relation holds if for

all s and β, there is a step

〈throw e | s | β | J | K 〉 〈h | s | β′ | J ′ | K ′ 〉

where a bit vector β′ is extracted from the stack component J .

All machine runs either return to the same stack or lead to a machine configuration

with raised exception. All steps other than exception handling and exception raising

preserve handler invariant. We need to show that for every machine run there is a

51

corresponding big-step derivation. A proof of the abstract machine correctness with

respect to the big-step operational semantics is left for further work.

4.5 Notes about Signals Implementation

We compare how our idealized stack machine models features of real signal implementa-

tions.

4.5.1 Core Idea

Real-life implementations of Unix signals differ from our idealized block-structured con-

struct. Our implementation of a block-structured signal handling is as follows. At the

beginning of a signal block, we update a bit vector of installed signals and store corre-

sponding handler binding into a stack structure called J . At the same time we remember

the previous bit vector and add special instruction to the continuation, which will restore

initial bit vector and J . At the end of a signal block, special instruction is pulled out of

continuation and executed, that reinstates previous bit vector. The addition of excep-

tions complicates the scoping of signal handlers. When control leaves a signal scope via

a raised exception, the handler should be uninstalled. To implement the desired interac-

tion between signal and exception scope, we keep track of signal handlers and exception

handlers on the same stack. When an exception is raised, the stack is popped until the

nearest enclosing handler for the exception name is found. The same popping of the

common handler stack also removes any intervening signal handlers.

4.5.2 Bit Vector

In our machine, β stands for the bit vector of installed not currently blocked signals; and

β0 stands for a null bit vector that may be interpreted as ”all signals are blocked” or ”no

signals are installed”. The use of this bit vector almost directly corresponds to the bit

maps used in real implementations. There are bit maps of installed and blocked signals.

52

To define which signals should run, two bit maps are xored. In real implementations,

every signal has a default pre-assigned handler. To imitate the same behaviour, in our

implementation it is possible to run a command inside of nested blocks in which all signals

are bound to their default handlers.

4.5.3 Exceptions and Signals

In real implementations (as explained in [22], ISO/IEC 14882 [51, 50]), exception throw-

ing inside of signal handlers is not recommended, due to implementation restrictions.

Moreover, the existing implementation of signals is not block structured. On the con-

trary, our abstract machine and big-step semantics deal with block structured signals and

allow signal handlers to throw exceptions.

Special Case

Consider (try . . . handle e by h) block nested into (bind/1 z toh in . . .) block. Assume

that no signals arrive before exception handling block. We know that at the very begin-

ning of exception handling block the current continuation and a bit vector will be stored,

which indicates that one-shot signal is installed. The special tag will be also added to

the J stack. That special tag keeps a note if one-shot signal handler, if it has run or not.

Then, inside of exception handling block, signal arrives and signal handler is called. The

bit vector and tag in J will be updated. Then exception inside of exception handling

block is thrown. When exception is handled, the previous bit vector is updated by a

stored one. Here is the problem, stored bit vector doesn’t have information that signal

already has run once. However, the tag in a J still keeps a note that signal has run.

Thus, it adds extra search for a tag, but it doesn’t result in a multiple run of one-shot

signals. Extra search results in an overhead, as if signal is not in a bit vector, search over

J even doesn’t start. To mitigate possible overhead, an extra rule could be added that

will fix bit vector if inconsistent situation is found.

53

4.5.4 Implementation of Exception Handling

In real implementations (e.g.: Itanium [28], and as described in [56, 22, 10]), exception

handling is implemented by use of stack unwinding. The process consists of two phases.

In first phase, the stack is searched for corresponding installed exception handler. If

nothing is found, the running application is terminated with risen unhandled exception.

If corresponding handler is found, the second phase begins. In the second phase, the

stack unwinding takes place. During unwinding, special instructions (they were added

at time of creation of the frame) are called from every stack frame. That ensures that

register will remain in consistent state when stack unwinding finishes and handler runs.

In our current implementation, the first phase of exception handling resembles the

first phase from real implementation. The stack J is searched until exception binding

with exception handler is found. If search fails, machine terminates with raised excep-

tion. If search succeeds, the second phase starts from opening exception binding. The

exception binding contains exception handler, bit vector and continuation. Thus machine

proceeds its execution with handler at a call position, new bit vector and new continua-

tion. This process implements exception handling using continuations, but continuation

that is stored in exception binding was added at the point of entering to the exception

block. Thus, such implementation could be related to stack unwinding. It is possible to

adjust the current implementation of an abstract machine, to make it work more close

to real implementation. The continuation and bit vector from exception binding will be

removed. Thus in a search phase, after the exception binding will be found in a stack

J at some particular position, the same number of system instructions will be popped

from a continuation K and executed. Those instruction will ensure the consistency of

bit vector and stack J . Exception handling in our implementation resembles handling in

real implementations, except the fact that the abstract machine uses the extra stack J

to keep track of block structures (including nesting), and the J is manipulated by special

instructions in the continuation K.

54

CHAPTER 5

LOGIC REASONING

In this chapter, we present a program logic for our base language with both signal and

exception handling. First of all, we define a binary relation . that is required for the signal

program logic. Then, we consequently define signal specification, signal and exception

contexts. The notion of stability is crucial for our logic. We define it formally and

informally, and then explain how it is used in the program logic. Supporting lemmas are

presented with corresponding proofs and most of the logic rules are explained in detail in

the dedicated sections. Then we introduce and discuss the notion of the ghost variables.

And finally, we consider real life situations that could be addressed with our logic.

5.1 Program Logic with Specifications for Signal Han-

dlers

The format of a program logic judgement with signal handling is as follows:

Σ ` {P} c {Q}

Here Σ contains a specification of persistent signal handlers (which may run any number

of times) and the specification of one-shot signal handlers (which may run at most once)

that may interfere with the command c. Thus, the specifications stored in Σ limit how

the handlers can interfere with the body of c. The rest of the judgement is a standard

55

Hoare triple {P} c {Q} with precondition P and postcondition Q for the command c.

Some auxiliary definitions will be required for the signal program logic. For two unary

relations P and Q, we write (P . Q) for a binary relation on a set of states relating pre-

states satisfying P to post-states satisfying Q. Thus, the binary relation . is a set of

pairs (s1, s2) where s1 |= P implies s2 |= Q.

Definition 5.1.1 (Binary relation .) The formal definition of the P . Q is of the

next form:

(s1, s2) |= P . Q iff s1 |= P implies s2 |= Q

Definition 5.1.2 (Signal specification) Signal specifications consist of a precondition

and a postcondition, with a possible quantification over ghost variables α. The syntax of

signal specifications R is as follows:

R ::= (P . Q) | ∀α.R

Examples of the signal specifications are as follows: ∀α.((x = α) . (x = α)),

∀α.β.((x = α ∧ y = β) . (x = β + 1 ∧ y = α)), (z = 1 ∧ x = 2) . (z > 1 ∧ x = 0).

We define ghost variables as variables that do not occur in the body of commands

but only occur in command’s specifications and assertions. For more details on ghost

variables, please see Section 5.7.

Definition 5.1.3 (Signal context) The signal context Σ has the next form:

z1 : R1, z2 : R2, . . . , zn : Rn

where z1, . . . , zn are signal names and R1, . . . , Rn are corresponding signal specifications.

Thus, assuming that R1 and Rn employ the optional quantification then z1 : R1, z2 :

R2, . . . , zn : Rn could be rewritten as:

z1 : ∀α.(P1 . Q1), z2 : (P2 . Q2), . . . , zn : ∀α.(Pn . Qn)

56

For persistent signals, we use a handler invariant Iz as both the precondition and the

postcondition of the specification Iz . Iz. This use of an invariant for the handler is

analogous to the invariant of a loop body in the standard Hoare logic rule for a while

loop. For one-shot signals, the specification of the handler consists of a precondition Pz

and a possibly different postcondition Qz.

5.2 Exception Context

For a language without control constructs, program logic judgements needs only address

successful termination, without any thrown exceptions. If we add exceptions, the out-

come of evaluation that results in a raised exception also needs to be addressed. Such

cases require us to associate a postcondition Q′j that should hold after the corresponding

exception ej has been thrown. We extend the Hoare logic with an exception context η of

the form η = e1 : Q′1, e2 : Q′2, . . . , en : Q′n. The form of a program logic judgement with

an exception context is as follows:

{P} c {Q} throws e1 : Q′1, e2 : Q′2, . . . , en : Q′n

The first part of the judgement is a standard Hoare triple {P} c {Q}. What follows is

a specification for all exceptions that may be raised by the command c. Our syntax for

these exception contexts is analogous to throws-clauses in Java methods. In the program

logic for exceptions, one needs to ensure that the precondition η(ej) = Q′j for an exception

ej holds immediately before the exception is thrown. That way, it holds at the beginning

of the handler.

5.3 Stability

We adopt a notion of stability to address how various handlers and commands influence

each other. For example, satisfied stability assumptions for a signal handler ensure that

57

the signal’s invariants would not be corrupted by the actions of the main command and

other signals. Simply, an action is stable under possible interference with another action,

if preconditions were satisfied by the initial state and possible interference took place,

but the final state nevertheless satisfies postcondition.

The general definition of stability [97, 17] in rely-guarantee logic is as follows. A

binary relation R1 is stable under a binary relation R2 if and only if (R2;R1) =⇒ R1

and (R1;R2) =⇒ R1. And by definition of the relational composition that could be

rewritten into the next form:

∃s′.(s1, s
′) |= R2 ∧ (s′, s2) |= R1 =⇒ (s1, s2) |= R1

∃s′.(s1, s
′) |= R1 ∧ (s′, s2) |= R2 =⇒ (s1, s2) |= R1

The above is also written as R1 stable R2. An unary predicate P is stable under a binary

relation R if for any program states s1 and s2:

s1 |= P and (s1, s2) |= R implies s2 |= P

The above is also written as P stable R.

We conjecture that the unary stability implies the binary stability, and we will need

some auxiliary definitions of various forms of stability for our program logic.

Definition 5.3.1 (Stability conditions)

1. For a signal context Σ we write P stable Σ if for all zj ∈ dom(Σ) with Σ(zj) =

(Pj . Qj), it is the case that P stable (Pj . Qj).

2. We write Σ stable (P . Q) if for all zj in dom(Σ) with Σ(zj) = (Pj . Qj), we have

Pj stable (P . Q) and Qj stable (P . Q).

3. We write Σ pairstable if the signal specifications in Σ are pairwise stable, in the

following sense: for any signals z1, z2 ∈ dom(Σ) such that z1 6= z2, Σ(z1) = (P1 . Q1)

58

and Σ(z2) = (P2 . Q2) it is the case that

P1 stable (P2 . Q2) and Q1 stable (P2 . Q2)

4. If P1 stable (P2 . P2), we may write P1 stable P2.

5. We write (P . Q) stable Σ,

if ∀z.Σ(z) = z : ∀α.Pz . Qz we have (P . Q) stable (∀α.Pz . Qz).

Our original definition of stability relates an unary predicate with a binary relation.

Therefore, the next form P stable I may look incomplete, because one may read it as

stability of the unary predicate P under the unary predicate I. However, this is just a

short form of a stability relation where the binary relation I . I takes the form of the

unary predicate I, solely for the purpose of space saving. Whenever one meet a form that

may look as an unary predicate is stable under another unary predicate (e.g.: P stable I,

P stable Σ, or even Σ stable I), that form can always be expanded (Definition 5.3.1)

into the standard form P1 stable P2 . Q2. It should be noted, that if stability holds for

a bigger Σ, then it always holds for a smaller Σ, as stability conditions remain satisfied.

For example, if P1 stable (Σ, z : P2 . Q2) holds, then P1 stable Σ trivially holds.

The stability of the pre- and postcondition under all signals is built into the meaning

of judgements by way of the big-step semantics. In a big-step rule, all signal handlers

could be run after the main command has terminated, or the signal handlers could be run

before the main command is even begun. Hence in sequential composition c1; c2, there

is no need for explicitly stating that the postcondition of the first command c1 could be

subject to interference by the signal handlers. The judgement for c1 already takes that

interference, and the need for stability, into account. The price one has to pay for the

stability of the implicit pre- and postconditions is that when an atomic command is lifted

into a signal context, all stability assumptions need to be established. The signals may

happen before or after the atomic command, thus we need to ensure stability of P and

Q under all handlers.

59

5.4 Program Logic for Signal and Exception Han-

dling

Combining the above, we now define a program logic for our language with both signal

and exception handling. For signal handling, the judgements contain a signal context,

written on the left of the Hoare triple as

Σ ` . . .

The exception context is written to the right of the Hoare triple as

. . . throws η

It specifies the precondition that needs to hold for each exception before it can be thrown.

Definition 5.4.1 Program logic judgements are of the form

Σ ` {P} c {Q} throws η

where

• c is a command

• P and Q are unary predicates on states

• Σ is a signal context of the form z1 : R1, . . . , zn : Rn or z1 : P1 . Q1, . . . , zn : Pn . Qn

• η is an exception context of the form e1 : Q′1, . . . , ek : Q′k

The rules of the program logic are listed in Figure 5.1 and Figure 5.2. They are explained

in detail in Section 5.6. It is assumed that there are some atomic commands a, together

with valid Hoare logic axioms for them {P} a {Q}.

60

Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η Σ ` ∀α.{Pz} ch {Qz} throws η

Σ stable ∀α.Pz . Qz

Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨Qz)} throws η

Σ, z : ∀α.Iz . Iz ` {P} cB {Q} throws η Σ ` ∀α.{Iz} ch {Iz} throws η

Σ stable ∀α.Iz . Iz
Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η

η stable Σ Q stable Σ
(Throw)

Σ ` {η(ej)} throw ej {Q} throws η

Σ ` {P} cB {Qb} throws η, ek : Qk Σ ` {Qk} ch {Qh} throws η
(EH)

Σ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

Σ ` {P} c {Q} throws η

P stable Pz . Qz Q stable Pz . Qz η stable Pz . Qz
(SB)

Σ, z : Pz . Qz ` {P} block z in c {Q} throws η

Σ ` {P1} c1 {P2} throws η Σ ` {P2} c2 {P3} throws η
(Seq)

Σ ` {P1} c1 ; c2 {P3} throws η

Figure 5.1: Hoare logic rules for exception and signal handling

61

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]
(Atomic)

Σ ` {P} a {Q} throws η

{P}x := E {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]
(Assignment)

Σ ` {P}x := E {Q} throws η

Σ ` {I ∧ EB} c {I} throws η ¬EB stable Σ
(WhileRule)

Σ ` {I} whileEB do c {I ∧ ¬EB} throws η

Σ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ
(Conseq)

Σ ` {P ′} c {Q′} throws η′

Σ ` {P1} c {Q1} throws η1 Σ ` {P2} c {Q2} throws η2
(Conj)

Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

Σ ` {EB ∧ P} c1 {Q} throws η Σ ` {¬EB ∧ P} c2 {Q} throws η
(IE)

Σ ` {P} ifEB then c1 else c2 {Q} throws η

Figure 5.2: Hoare logic rules for exception and signal handling 2

62

5.5 Supporting Lemmas

For the signal handling rule, we will need a lemma:

Lemma 5.5.1 If a judgement Σ ` {P} c {Q} throws η is derivable, then P stable Σ,

Q stable Σ, (P . Q) stable Σ and η stable Σ.

Proof By induction over the derivation of a program logic judgement

Σ ` {P} c {Q} throws η

We consider all the cases how the proof tree could be built up (Figure 5.1 and Figure 5.2).

One-shot signal binding We consider the program logic rule for the one-shot signal

binding:

Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η Σ ` ∀α.{Pz} ch {Qz} throws η

Σ stable ∀α.Pz . Qz

Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨Qz)} throws η

Suppose the following judgments are derivable: Σ ` ∀α.{Pz} ch {Qz} throws η and

Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η. Also suppose that Σ stable ∀α.Pz . Qz

holds. By the induction hypothesis for cB, we get P stable Σ, z : ∀α.Pz . Qz,

Q stable Σ, z : ∀α.Pz . Qz and η stable Σ, z : ∀α.Pz . Qz. Then, we infer

P stable Σ, Q stable Σ and η stable Σ. By the induction hypothesis for ch,

we get Pz stable Σ and Qz stable Σ. Suppose s1 |= Q. Either s1 |= Qz or

s1 |= Pz. So either s1 |= Q ∧ Qz or s1 |= Q ∧ Pz. Both are stable so either

s2 |= Q ∧Qz or s2 |= Q ∧ (Pz ∨Qz) due to signals’ nondeterminism. Thus, for the

judgment Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨ Qz)} throws η we have

P ∧ Pz stable Σ, Q ∧ (Pz ∨Qz) stable Σ and η stable Σ as required.

63

Persistent signal binding We consider the program logic rule for the persistent signal

binding:

Σ, z : ∀α.Iz . Iz ` {P} cB {Q} throws η Σ ` ∀α.{Iz} ch {Iz} throws η

Σ stable ∀α.Iz . Iz

Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η

Suppose the judgments Σ ` ∀α.{Iz} ch {Iz} throws η and Σ, z : ∀α.Iz . Iz `

{P} cB {Q}throwsη are derivable. Also suppose that Σ stable ∀α.Iz . Iz holds. By

the induction hypothesis for cB, we get P stable Σ, z : ∀α.Iz . Iz, Q stable Σ, z :

∀α.Iz . Iz and η stable Σ, z : ∀α.Iz . Iz. Then, we infer P stable Σ, Q stable Σ

and η stable Σ. By the induction hypothesis for ch, we get Iz stable Σ. Thus,

for the judgment Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η we have

P ∧ Iz stable Σ, Q ∧ Iz stable Σ and η stable Σ as required.

Atomic command We consider the program logic rule for the atomic command:

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

Σ ` {P} a {Q} throws η

Suppose the judgment {P} a {Q} is derivable. Also suppose that (P . Q) stable Σ

and η stable Σ hold. Thus, for the judgment Σ ` {P} a {Q} throws η we have

(P . Q) stable Σ and η stable Σ as required.

Sequential composition We consider the program logic rule for the sequential compo-

sition:
Σ ` {P1} c1 {P2} throws η Σ ` {P2} c2 {P3} throws η

Σ ` {P1} c1 ; c2 {P3} throws η

64

Suppose that the judgments Σ ` {P1} c1 {P2}throwsη and Σ ` {P2} c2 {P3}throws

η are derivable. By the induction hypothesis for c1 and c2, we get P1 stable Σ,

P2 stable Σ, P3 stable Σ, and η stable Σ.

Thus, for Σ ` {P1} c1 ; c2 {P3} throws η we have P1 stable Σ, P3 stable Σ and

η stable Σ as required.

Rule of consequence We consider the program logic rule:

Σ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ

Σ ` {P ′} c {Q′} throws η′

Suppose the judgment Σ ` {P} c {Q} throws η is derivable. Also suppose that

P ′ ⇒ P , Q⇒ Q′, η ⇒ η′, P ′ stable Σ, Q′ stable Σ and η′ stable Σ hold.

Thus, for the judgment Σ ` {P ′} c {Q′}throwsη′ we have P ′ stable Σ, Q′ stable Σ

and η′ stable Σ as they were assumed.

Rule of conjunction We consider the program logic rule:

Σ ` {P1} c {Q1} throws η1 Σ ` {P2} c {Q2} throws η2

Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

Suppose that the judgments Σ ` {P1} c {Q1}throwsη1 and Σ ` {P2} c {Q2}throws

η2 are derivable.

By the induction hypothesis for c, we get P1 stable Σ, Q1 stable Σ, η1 stable Σ.

Then we apply the induction hypothesis for c once again. We get P2 stable Σ,

Q2 stable Σ and η2 stable Σ. That is equivalent to P1 ∧ P2 stable Σ, Q1 ∧

Q2 stable Σ and η1 ∧ η2 stable Σ.

Thus, for the judgment Σ ` {P1 ∧ P2} c {Q1 ∧ Q2} throws η1 ∧ η2 we have P1 ∧

P2 stable Σ, Q1 ∧Q2 stable Σ and η1 ∧ η2 stable Σ as required.

65

Conditional if structure We consider the program logic rule:

Σ ` {E ∧ P} c1 {Q} throws η Σ ` {¬E ∧ P} c2 {Q} throws η

Σ ` {P} ifE then c1 else c2 {Q} throws η

Suppose the judgments Σ ` {E ∧ P} c1 {Q} throws η and

Σ ` {¬E ∧ P} c2 {Q} throws η are derivable.

By the induction hypothesis for c1, we get E ∧ P stable Σ, Q stable Σ and

η stable Σ. Then, by the induction hypothesis for c2, we get ¬E ∧ P stable Σ,

Q stable Σ and η stable Σ.

From E ∧ P stable Σ and ¬E ∧ P stable Σ we infer that P stable Σ.

Thus, for the judgment Σ ` {P} ifE then c1 else c2 {Q} throws η we have

P stable Σ, Q stable Σ and η stable Σ as required.

Repetitive while command We consider the program logic rule for the while:

Σ ` {I ∧ E} c {I} throws η ¬E stable Σ

Σ ` {I} whileE do c {I ∧ ¬E} throws η

Suppose the judgment Σ ` {I ∧ E} c {I} throws η is derivable and ¬E stable Σ

holds.

By the induction hypothesis for c, we get I ∧ E stable Σ, I stable Σ and

η stable Σ. It was assumed that ¬E stable Σ; together with I stable Σ it is

equivalent to I ∧ ¬E stable Σ.

Thus, for the judgment Σ ` {I} whileE do c {I∧¬E}throwsη we have I stable Σ,

I ∧ ¬E stable Σ and η stable Σ as required.

66

Signal blocking We consider the program logic rule for the signal blocking:

Σ ` {P} c {Q} throws η

P stable ∀α.Pz . Qz Q stable ∀α.Pz . Qz η stable ∀α.Pz . Qz

Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q} throws η

Suppose the judgment Σ ` {P} c {Q} throws η is derivable. Also suppose that

P stable ∀α.Pz . Qz, Q stable ∀α.Pz . Qz and η stable ∀α.Pz . Qz. By the

induction hypothesis for c, we get P stable Σ, Q stable Σ and η stable Σ. It was

assumed that P stable ∀α.Pz . Qz, Q stable ∀α.Pz . Qz and η stable ∀α.Pz . Qz.

Thus, for the judgment Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q} throws η we have

P stable Σ, z : ∀α.Pz . Qz, Q stable Σ, z : ∀α.Pz . Qz and η stable Σ, z : ∀α.Pz .

Qz as required.

Exception throw command We consider the program rule for the throw; we could

also use false as the postcondition of throw e, and false is automatically stable.

η stable Σ Q stable Σ

Σ ` {Q′j} throw ej {Q} throws η

where throws η = throws e1 : Q′1, . . . , en : Q′n. And η(ej) = Q′j in a precondition

position, means that Q′j holds immediately before the exception is thrown.

Suppose that Q stable Σ holds. Also suppose that η stable Σ holds, which trivially

implies that Q′j stable Σ.

Thus, for the judgment Σ ` {Q′j} throw ej {Q} throws η we have Q′j stable Σ,

Q stable Σ and η stable Σ as required.

Exception handling We consider the program rule for the exception handling:

Σ ` {P} cB {Qb} throws η, ek : Qk Σ ` {Qk} ch {Qh} throws η

Σ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

67

Suppose the judgments Σ ` {P} cB {Qb} throws η, ek : Qk and

Σ ` {Qk} ch {Qh} throws η are derivable.

By the induction hypothesis for cB, we get P stable Σ, Qb stable Σ and η, ek :

Qk stable Σ. By the induction hypothesis for ch, we get Qk stable Σ, Qh stable Σ

and η stable Σ.

For the judgment Σ ` {P} try cB handle ek by ch {Qb ∨ Qh} throws η we have

P stable Σ, Qb ∨Qh stable Σ and η stable Σ as required.

�

5.6 Logic Rules in Detail

In this section, we discuss the most interesting and important logic rules. The full list of

logic rules is given in Figure 5.1 and Figure 5.2.

5.6.1 Atomic and Assignment

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

Σ ` {P} a {Q} throws η

When an atomic command is lifted into a signal context, all stability assumptions need

to be established. The signals may happen before or after the atomic command, thus we

need to ensure stability of P and Q under all handlers. That is the price one has to pay

for the stability of the implicit pre- and postconditions.

We also need to ensure stability of all signals’ preconditions under the actions of the

atomic command a. Intuitively, ∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

68

means that the atomic command a is limited to change the state in a way that the

preconditions of the signals still hold.

Finally, we need to ensure stability of the exception context η under the signal context

Σ. Preconditions for every “registered” exception are stored in the exception context η.

Therefore, the exception context η should be stable under actions of the signal handlers.

Without that stability assumption we can’t guarantee that the required precondition for

some particular exception holds.

Stability of the signals’ postconditions is not explicitly covered in the atomic rule. The

importance of holding signal handlers’ postconditions after an execution of the atomic

command could be considered as a design choice. Still, in the rest of the logic we develop,

a particular attention has been paid to that bit. For example, in the Definition 5.3.1,

for pairstability we explicitly require some conditions to hold for the postconditions.

As it is rather important to maintain conditions on the signals’ postconditions in the

logic rules implicitly or explicitly, we tried to design the rest of the rules in such a way,

that all required limitations for the persistent signals’ invariant are in place via enforcing

them on the preconditions, and the postconditions become implicitly covered, as they are

identical to preconditions.

{P}x := E ′ {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

(Assignment)
Σ ` {P}x := E ′ {Q} throws η

An assignment command is an instance of the atomic command. Signals could be handled

before or after the assignment command, but not during it.

69

5.6.2 Sequential Composition

Σ ` {P1} c1 {P2} throws η Σ ` {P2} c2 {P3} throws η

Σ ` {P1} c1 ; c2 {P3} throws η

In sequential composition c1; c2, there is no need for explicitly stating that the postcondi-

tion of the first command c1 could be subject to interference by the signal handlers. The

judgement for c1 already takes that interference, and the need for stability, into account.

5.6.3 One-shot Signal Binding

Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η Σ ` ∀α.{Pz} ch {Qz} throws η

Σ stable ∀α.Pz . Qz

Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨Qz)} throws η

When a new handler is installed, stability needs to be checked for the new signal handler.

As we bind new signal to the command block, signal’s pre- post- conditions should be

stable under actions of already bound signals. This requirement is embedded into the

Σ ` ∀α.{Pz} ch {Qz} throws η premise, which is required to be derivable. From that

premise and the Lemma 5.5.1, we infer Pz stable Σ, Qz stable Σ, and η stable Σ. At

the same time, already bound signals should be stable under the action of a new handler.

That is the reason why program logic rules for the signal binding contain implicit and

explicit stability assumptions. One can notice when a new signal binding is added, body

of a command cB should be stable under the actions of a new signal handler. When we

prove a judgement for the command cB, all the atomic commands are checked against

the signal specification on the left of the `. The Σ is passed up in the tree all the way to

the atomic commands that make up the body.

70

5.6.4 Persistent Signal Binding

Σ, z : ∀α.Iz . Iz ` {P} cB {Q} throws η Σ ` ∀α.{Iz} ch {Iz} throws η

Σ stable ∀α.Iz . Iz

Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η

Analogously to the one-shot signal binding rule, when a new handler is installed, sta-

bility needs to be checked for the new signal handler. As we bind new signal to the

command block, signal’s pre- post- conditions should be stable under actions of al-

ready bound signals. One may say that the following stability assumptions are miss-

ing: Iz stable Σ and η stable Σ. They are implicitly covered by the fact that the

Σ ` ∀α.{Iz} ch {Iz} throws η is derivable. Thus, we infer all the above mentioned sta-

bility assumptions using Lemma 5.5.1. Satisfied stability assumptions ensure that the Iz

wouldn’t be corrupted by the actions of the main command cB and the other signals.

5.6.5 Persistent Versus One-shot Signal Binding

One may ask, why are there two separate rules for the persistent and the one-shot signal

bindings? Technically, a rule for the persistent signal binding could be constructed from

the one-shot rule, by taking P = Q. In logic, we could verify the same programs by re-

placing bind by bind/1. However, we would lose expressivity since the bind/1 programs

omit some behaviours of the bind. That becomes clear in Figure 5.3 and Figure 5.4,

where we compare bind and bind/1 in operational semantics. A signal handler for a

signal z bound with bind may appear in both subtrees for c1 and c2. On the other hand,

a signal handler bound with bind/1 may appear only in one of the subtrees for c1 or c2.

71

S [z 7→ ch];O1 s1, c1 ⇓ s2 S [z 7→ ch];O2 s2, c2 ⇓ s3

S [z 7→ ch];O1 ∗O2 s1, (c1 ; c2) ⇓ s3

S;O1 ∗O2 s1, bind z to ch in (c1 ; c2) ⇓ s3

S;O1 [z 7→ ch] s1, c1 ⇓ s2 S;O2 s2, c2 ⇓ s3

S;O1 ∗O2 [z 7→ ch] s1, (c1 ; c2) ⇓ s3

S;O1 ∗O2 s1, bind/1 z to ch in (c1 ; c2) ⇓ s3

S;O1 s1, c1 ⇓ s2 S;O2 [z 7→ ch] s2, c2 ⇓ s3

S;O1 ∗O2 [z 7→ ch] s1, (c1 ; c2) ⇓ s3

S;O1 ∗O2 s1, bind/1 z to ch in (c1 ; c2) ⇓ s3

Figure 5.3: Persistent and one-shot binding derivations

[z 7→ ch]; ∅ s1, c1 ⇓ s2 [z 7→ ch]; ∅ s2, c2 ⇓ s3

[z 7→ ch]; ∅ (c1 ; c2), s3 ⇓

∅; ∅ bind z to ch in (c1 ; c2), s3 ⇓

∅; [z 7→ ch] s1, c1 ⇓ s2 ∅; ∅ s2, c2 ⇓ s3

∅; [z 7→ ch] s1, (c1 ; c2) ⇓ s3

∅; ∅ s1, bind/1 z to ch in (c1 ; c2) ⇓ s3

∅; ∅ s1, c1 ⇓ s2 ∅; [z 7→ ch] s2, c2 ⇓ s3

∅; [z 7→ ch] s1, (c1 ; c2) ⇓ s3

∅; ∅ s1, bind/1 z to ch in (c1 ; c2) ⇓ s3

Figure 5.4: Persistent and one-shot binding examples

72

5.6.6 Signal Blocking

Σ ` {P} c {Q} throws η

P stable ∀α.Pz . Qz Q stable ∀α.Pz . Qz η stable ∀α.Pz . Qz

Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q} throws η

One may ask what the blocking has achieved if we still need the stability assumption

above the line. What blocking does is to relieve us from having to check all atomic

commands inside the body of the block against the blocked signal. Let consider an

example c1 ; block z in (c2 ; c3) ; c4. The signal cannot jump into the middle of the

command c2 ; c3 when it is blocked, but it could still be handled right at the beginning

or at the end. The point is that the condition P between c2 and c3 does not have to

be stable under the blocked signal. Without block z, we would have to check that it

is. The rule for blocking is intended for both types of signals. For the persistent signals,

the rule has a special form where P = Iz, Q = Iz, and z : Iz . Iz. A signal context Σ,

contains specifications of persistent and one-shot signal handlers. Thus, the same signal

name cannot be used for both types of signals simultaneously.

5.6.7 Exception Throwing/Raising and Handling

η stable Σ Q stable Σ

Σ ` {η(ej)} throw ej {Q} throws η

We could also use false as the postcondition of throw ej, and false is automatically

stable.

Preconditions for every “registered” exception are stored in the exception context η.

Therefore, the exception context η should be stable under actions of the signal handlers.

Without that stability assumption we can’t guarantee that the required precondition for

some particular exception holds.

73

Σ ` {P} cB {Qb} throws η, ek : Qk Σ ` {Qk} ch {Qh} throws η

Σ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

When a new exception is registered, stability needs to be checked for it. Stability is

embedded into the requirement of Σ ` {P} cB {Qb} throws η, ek : Qk to be derivable.

If cB doesn’t throw an exception ek, then the final state satisfies Qb. If cB actually

throws an exception, it is covered by the right branch of the rule. Firs of all, a corre-

sponding precondition Qk should hold before exception is raised. Then, the state after

execution of the exception handler should satisfy Qh. This rule of exception registering

and handling covers both outcomes. Therefore, there is the next postcondition Qb ∨Qh.

5.6.8 Repetitive while Construct

Σ ` {I ∧ EB} c {I} throws η ¬EB stable Σ

Σ ` {I} whileEB do c {I ∧ ¬EB} throws η

A while command is not atomic. Thus, boolean expressions EB and ¬EB could be

corrupted by the signals, after their values have been changed but before the next check

in loop. Therefore, our rule enforces stability assumptions for the control expressions.

The next stability assumption EB stable Σ is embedded into the premise Σ ` {I ∧

EB} c {I} throws η. And ¬EB stable Σ is added explicitly.

5.6.9 Conditional if Construct

Σ ` {EB ∧ P} c1 {Q} throws η Σ ` {¬EB ∧ P} c2 {Q} throws η

Σ ` {P} ifEB then c1 else c2 {Q} throws η

Stability of control booleans is embedded into the premises. Left branch covers the

case when a control boolean is true; and the right branch is for the case when the control

boolean is false.

74

5.6.10 Rule of Consequence

Σ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ

Σ ` {P ′} c {Q′} throws η′

If P ′ implies P , command c changes the state which satisfies P into the state satisfying

Q, and Q implies Q′, then we write {P ′} c {Q′}. Stability assumptions for P and Q are

embedded into the Σ ` {P} c {Q} throws η. Stability assumptions for P ′ and Q′ are

given explicitly, to ensure that they are not corrupted by the signals.

5.6.11 Rule of Conjunction

Σ ` {P1} c {Q1} throws η1 Σ ` {P2} c {Q2} throws η2

Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

A command c runs from an initial state to the final state and may terminate normally of

with an exception e. If we know that for the command run, the initial state satisfies P1,

and the final state satisfies Q1 or η1(e). If we also know that the initial state satisfies P2,

and the final state satisfies Q2 or η2(e). Then we conclude that the initial state satisfies

P1 ∧ P2 and the final state satisfies Q1 ∧Q2 or (η1 ∧ η2)(e).

5.7 Ghost Variables

P , Q and I are unary predicates; therefore, they can not describe the relationship between

different states on their own. We introduce ghost variables to explicitly relate pre- and

post- states. Ghost variables are also known as “logical variables”, but should not be

confused with “auxiliary variables” [97]. The main requirement is that they do not appear

in the program body; they are opposed to the program variables. In our notation, we

use Greek alphabet to represent ghost variables. Analogously to [85], we define ghost

75

variables as variables that occur in command’s specification but do not occur in the body

of the specified command. For example, α /∈ FV(c). One may note that there are two

ways of relating pre and post states:

• P . Q, where both P is interpreted in the pre and Q in the post state (Defini-

tion 5.1.1)

• a single predicate R with primed variables x′, where x is interpreted in the pre state

and x′ in the post state

Ghost variables can be used to translate between the two forms. For instance, x′ = x+ 1

could be translated to ∀α.((x = α) . (x = α + 1)).

5.7.1 Quantification and Instantiation of the Ghost Variables

In our logic, quantification of the ghost variables is both implicit and explicit. Thus,

for ∀α.({x = α} c {y = α}) we may write {x = α} c {y = α}. It should be noted that

quantification never appears inside of the Hoare triples.

For the ghost variable instantiation one may use one of the following rules.

P stable ∀α.R

P stable (R [α 7→ E])

P stable R α /∈ FV(P)

P stable (R [α 7→ E])

For the stability assumption P stable R, we can replace all occurrences of α in R with

an expression E. It is implicitly assumed that the ghost variable α is not free in P .

∀α.{P} c {Q}

{P [α 7→ E]} c {Q [α 7→ E]}

{P} c {Q} α /∈ FV(c)

{P [α 7→ E]} c {Q [α 7→ E]}

If the ghost variable α is not free in the command c, then we can replace all its occurrences

in precondition P and postcondition Q with a required expression.

76

5.7.2 Example with Quantified Ghost Variables

Let’s inspect the next example

z : R1 ` {(x = β)} cB {(x = β)}

where both cb and ch are equal to (x++; x−−;), and R1 stays for ∀α.(x = α) . (x = α).

∀α.(x = α) . (x = α) ` {(x = β)}x+ +; {(x = β + 1)}

∀α.(x = α) . (x = α) ` {(x = β + 1)}x−−; {(x = β)}

∀α.(x = α) . (x = α) ` {(x = β)}x+ +;x−−; {(x = β)}

We will consider every branch in a separate tree.

Left branch:

{(x = β)}x+ +; {(x = β + 1)}

((x = β) . (x = β + 1)) stable (∀α.(x = α) . (x = α))

∀z.Σ(z) = z : ∀α.(x = α) . (x = α) ∃E.(x = β + 1) =⇒ (x = α) [α 7→ E]

∀α.(x = α) . (x = α) ` {(x = β)}x+ +; {(x = β + 1)}

Right branch:

{(x = β + 1)}x−−; {(x = β)}

((x = β + 1) . (x = β)) stable (∀α.(x = α) . (x = α))

∀z.Σ(z) = z : ∀α.(x = α) . (x = α) ∃E.(x = β) =⇒ (x = α) [α 7→ E]

∀α.(x = α) . (x = α) ` {(x = β + 1)}x−−; {(x = β)}

77

5.8 Idioms of Signal Usage - Logic Examples

In this section, we discuss situations that could be addressed with our logic.

5.8.1 Invariant Preserving

The general practice in C programs is to implement error handling by setting the error

code using a special variable errno, which is global, and returning -1 [56, 87]. However,

the function call that reports an error can be interrupted by the signal handler just before

a return. Therefore, there is a possibility that errno may be overwritten inside the

signal handler. For example, a handler may call a function that results in another error.

As errno is overwritten, an incorrect error will be reported when interrupted function

returns. Therefore, the general advice is to use signal handlers in a safe way, such that

they do not interfere with error handling mechanism of the programs. However, this is

not always possible; therefore, the more practical advice would be saving and restoring

the errno value inside the handler if it has access to errno.

In our logic, we model this situation as part of the signal handling mechanism, where

an invariant that holds before the handler should also hold after it. Assume that h1 ; h2

are the components of a persistent signal handler. We know that the handler’s code is

not atomic in a way that it can be interrupted by other handlers except by itself. We also

know that it must satisfy an invariant (Definition 6.1.1), let’s call it I. However, there

is no limitation on invalidating invariant I inside the signal handler. The handler’s code

may consist of many nested or sequentially composed commands, including command

throw e.

∅ ` {I}h1 {P2} throws ∅ ∅ ` {P2}h2 {I} throws ∅

∅ ` {I}h1 ; h2 {I} throws ∅

An example above, represents a branch of a derivation tree for the sequentially composed

commands h1 ; h2 in the handler. To focus on the idea of invalidating and revalidating of

78

void phandler(int signo) {

int tmp = errno;

/* some code that potentially may invalidate errno */

errno = tmp;

}

Figure 5.5: Save and restore errno

the invariant I in the handler, exception context is kept empty.

An example in Figure 5.5, shows a signal handler (phandler) that saves the value of

errno on entry and restores it on return. This technique ensures that the correct error

reported when interrupted call returns after the handler.

The following example represents how to address the code from Figure 5.5 in our

logic. An invariant I for this handler could be an equality of values of the global variable

errno before and after the handler. Assume that gvar (ghost variable) stands for the

correct value of errno, then I stands for (gvar == errno). In our language, the code of

phandler will have the next form t := errno;h; errno := t;.

∅ ` {I} t := errno; {I} throws ∅ ∅ ` {I}h {P2} throws ∅

∅ ` {I} t := errno;h {P2} throws ∅

∅ ` {I} t := errno;h {P2} throws ∅ ∅ ` {P2} errno := t; {I} throws ∅

∅ ` {I} t := errno;h; errno := t; {I} throws ∅

More abstract version is given below.

Assume that phandler = h1;h2; ...;hn−1;hn and I stands for (gvar == errno).

∅ ` {I}h1; ...;hn−1 {Pn} throws ∅ ∅ ` {Pn}hn {I} throws ∅

∅ ` {I} phandler {I} throws ∅

Remark 5.8.1 It should be noted that even async-signal safe functions deal with errno

in non-reentrant way [56]. Thus, one can conclude that async-signal safe functions are

not completely safe if error handling mechanism is considered as part of that functions.

79

{x = a} {x = a− 1} {x = a− 1}{x = a} {x = a}

I I I I

Body

Handler

Recursive call

1

2

3

I = {x = a} c1 = x−− c2 = x+ +

R R

c1 c2

c1; c2 c1; c2

σ1 σ2 σ3 σ4

Figure 5.6: Invariant and recursive calls

Process 1

Process 2

R1 R2

I I Ic1

c1

c2

c2

G : {I . I}

G : {I . I}

I = {x ≥ 0} c1 = x+ + c2 = x+ +

Figure 5.7: Invariant for concurrent processes

Examples of invariants for handlers and concurrent processes are presented in Figure 5.6

and Figure 5.7.

5.8.2 Signal Masks in Unix-like Systems

In Unix-like systems, the set of blocked signals is stored in a signal mask. In some OS

(e.g.: Linux) the signal mask is not treated carefully when long jumps are performed [56].

Therefore, signals may remain blocked even in a scope where it is no longer required. We

define a special rule for the signal blocking (Figure 5.1 and Figure 5.2), which perfectly

fits the language and does not violate the signal bindings in the presence of exceptions.

Signals arrives nondeterministically, thus signal handler may run at any time. The

interaction between program and signals is the classic example of shared memory concur-

rency. The signal handler may corrupt some global variables or resources that program

code relies on and uses (in other words, interfere destructively). This may or not result

80

Σ ` {P1} c1 {P2} throws η Σ ` {P2} (c2a; c2b; c2c) {P3} throws η

Σ ` {P1} c1 ; (c2a; c2b; c2c) {P3} throws η

Σ ` {P1} c1 ; (c2a; c2b; c2c) {P3} throws η Σ ` {P3} c3 {P4} throws η

Σ ` {P1} c1 ; (c2a; c2b; c2c) ; c3 {P4} throws η

Figure 5.8: Three sequentially composed commands

∅ ` {P2} c2a {Ib} ∅ ` {Ib} c2b {Ib}

∅ ` {P2} c2a; c2b {Ib} ∅ ` {Ib} c2c {P3}

∅ ` {P2} (c2a; c2b; c2c) {P3}

Σ ` {P1} c1 {P2}

∅ ` {P2} (c2a; c2b; c2c) {P3}

Σ ` {P2} block z in (c2a; c2b; c2c) {P3}

Σ ` {P1} c1 ; block z in (c2a; c2b; c2c) {P3}

Σ ` {P1} c1 ; block z in (c2a; c2b; c2c) {P3} Σ ` {P3} c3 {P4}

Σ ` {P1} c1 ; block z in (c2a; c2b; c2c) ; c3 {P4}
where Σ = z : Pz . Qz

Figure 5.9: Three sequentially composed commands and blocking

in a program crash, but the result becomes unreliable. Thus, a potential interaction

between the signal handler and a program code that interact through shared resources

should be treated carefully. To prevent unwanted interaction (destructive interference)

with signal handlers, signals might be temporarily blocked while program operates with

data (data structures, variables, resources, etc.) that are sensible to interference.

Assume we have three sequentially composed commands c1 ; (c2a; c2b; c2c) ; c3 as given

in Figure 5.8. What if (c2a; c2b; c2c) has a stronger rely in comparison with the other

commands c1 and c3? For example, (c2a; c2b; c2c) has more strict conditions for signals,

such that interference with a signal z may lead to an incorrect outcome of the command

(c2a; c2b; c2c). Thus, we can satisfy stronger rely of (c2a; c2b; c2c) by blocking signal z

during its execution. Then, the derivation tree has the next form (throwsη is excluded

for clarity) as given in Figure 5.9. Assume that

• c1, c2, and c3 are of the next form x+ +;

81

∅ ` {P} c {Q′k} throws ek : Q′k ∅ ` {Q′k} throw ek {Q} throws ek : Q′k

∅ ` {P} (c ; throw ek) {Q} throws ek : Q′k

Σ ` {P} (block z in (c ; throw ek)) {Q} throws ek : Q′k

Σ ` {P} b {Q} throws ek : Q′k Σ ` {Q′k} ck {Qk} throws ∅

Σ ` {P} try b handle ek by ck {Q ∨Qk} throws ∅
where Σ = z : Pz . Qz

Figure 5.10: Interaction of blocking and exceptions

• signal’s z code is of the form x−−; y −−;

• Pz = {x = A} and Qz = {x = A− 1}

• P1 = {x > 2}

• P2, P3 and P4 are of the next form {x > 0}

• Ib is of the next form {y = B}

In the next derivation, in Figure 5.10, we show that the blocking rule and exceptions

interact in a clear way. When the scope of blocking is left via a raised exception, the

signal context is restored; thus, ck runs with nonempty signal context. Let b stand for

(block z in (c ; throw ek)). Placing a single atomic command inside of the scope with

blocked signals, does not look too useful, as when control flow leaves the scope with

blocked signals, atomic command’s postcondition still has to be stable under signals’

context. However, if we put at least two sequentially composed commands inside of the

scope with blocked signals, then the usefulness of the blocking rule becomes visible. One

can use the first command to set all prerequisites before a critical operation and perform

it in the second command. The trick is that predicate between these two commands

cannot be invalidated by harmful interference with the signal handlers, as they remain

blocked in that place. Let’s examine z : Pz . Qz ` {P2} block z in (ca ; cb) {P3} throws η

and z : Pz . Qz ` {P2} (ca ;cb) {P3}throwsη in detail. Assume that Pz is true, Qz equals

(y = 0), P2 equals (x = α), P3 equals (x = α), ca = (y := 1;) and cb = (x := x/y;). We

82

{(x = α)} y := 1; {(x = α) ∧ (y = 1)}

((x = α) . ((x = α) ∧ (y = 1))) stable (true . (y = 0))

∀z.Σ(z) = z : true . (y = 0) ∃E.((x = α) ∧ (y = 1)) =⇒ true

z : true . (y = 0) ` {(x = α)} y := 1; {(x = α) ∧ (y = 1)}

z : true . (y = 0) ` {(x = α) ∧ (y = 1)}x := x/y; {(x = α)}

z : true . (y = 0) ` ∀α.{(x = α)} (y := 1;x := x/y;) {(x = α)}

Figure 5.11: Sequential composition without block construct

∅ ` {x = α} y := 1; {(x = α) ∧ (y = 1)} ∅ ` {(x = α) ∧ (y = 1)}x := x/y; {x = α}

∅ ` {(x = α)} (y := 1;x := x/y;) {(x = α)}

(x = α) stable true . (y = 0) (x = α) stable true . (y = 0)

z : true . (y = 0) ` ∀α.{(x = α)} block z in (y := 1;x := x/y;) {(x = α)}

Figure 5.12: Sequential composition with block construct

omit throwsη in the following examples.

Sequential composition with and without block structure

To show that blocking is a powerful construct, let’s consider an example where the sig-

nal blocking has been excluded in Figure 5.11. We observe that without the block-

ing construct our program is no longer safe; that is indicated by stability assumption

((x = α) . ((x = α) ∧ (y = 1))) stable (true . (y = 0)), which is obviously false. On the

contrary, the program in Figure 5.12 is safe.

Blocking and exceptions

In the next derivation, in Figure 5.13, we show that the blocking rule and exceptions

interact in a clear way. Let b stand for (block z in (c ; throw ek)). When the scope of

blocking is left via a raised exception, the signal context is restored; thus, ck runs with

nonempty signal context.

83

∅ ` {P} c {Q′k} throws ek : Q′k ∅ ` {Q′k} throw ek {Q} throws ek : Q′k

∅ ` {P} (c ; throw ek) {Q} throws ek : Q′k

z : Pz . Qz ` {P} (block z in (c ; throw ek)) {Q} throws ek : Q′k

z : Pz . Qz ` {P} b {Q} throws ek : Q′k z : Pz . Qz ` {Q′k} ck {Qk} throws ∅

z : Pz . Qz ` {P} try b handle ek by ck {Q ∨Qk} throws ∅

Figure 5.13: Blocking construct and exceptions

5.8.3 Double Free and Linear Use of Resources

Assume that the signal handler has the next form:

/* signal handler*/

void sighandler(int sigid) {

// ...

free(pointer);

// ...

}

And the next code appears in the main program:

pointer = (int *)malloc(256);

/* signal handler binding*/

signal(SIGINT,sighandler);

Such scenario contains a security flaw, because if a signal arrives twice, it will result in

a double free error. A memory free command shouldn’t run more than once, and the

memory pointer is a resource that should be used linearly. In our language we have

one-shot signals, which might be used to ensure linear use of resources. Alternatively,

a combination of persistent signals and exception throwing mechanism could be used to

achieve linear use of resources.

84

Separation Logic

To describe this situation in detail (closer to the real-life implementations), one need to

combine a separation logic with our logic. Embedding with the separation logic is out

of scope of this thesis, and is left for the future work. What is important, is that we

generalise a memory allocation and deallocation as a resource that could be used in a

linear way only. Suppose we have a handler with precondition P and postcondition Q:

{P} c {Q}

Moreover, suppose Q does not imply P . For instance, it could be that some resource, say

a pointer, is available if P is satisfied, but not when Q is satisfied. In separation logic,

the triple could be

{p 7→ −} free(p) {empty}

We can still use c as a one-shot handler, provided the body of the signal block does

not rely on P . As the handler is one-shot, it can safely invalidate its own precondition.

However, we could not prove anything about the handler if it is used as a persistent

handler. A persistent handler must satisfy an invariant. One the other hand, a persistent

handler combined with an exception may be used. As when control flow leaves the scope

of bound signal via exception, the signal becomes automatically uninstalled; thus, the

handler will not run again. Let’s consider an example, in Figure 5.14 and Figure 5.15,

where b stands for bind z to (ch ; throw e) in c. Please note that the postcondition of ch

is not the invariant Iz. This is due to the possibility of the invariant invalidation in ch.

Moreover, the invariant Iz need not to be respected as the exception is caught in the

outer scope.

85

∅ ` {Iz} ch {Q′e} throws e : Q′e ∅ ` {Q′e} throw e {Iz} throws e : Q′e

∅ ` ∀α.{Iz} (ch ; throw e) {Iz} throws e : Q′e

z : ∀α.Iz . Iz ` {P} c {Q} throws e : Q′e

∅ ` ∀α.{Iz} (ch ; throw e) {Iz} throws e : Q′e

∅ ` ∀α.{P ∧ Iz} bind z to (ch ; throw e) in c {Q ∧ Iz} throws e : Q′e

∅ ` ∀α.{P ∧ Iz} b {Q ∧ Iz} throws e : Q′e ∅ ` {Q′e} ce {Qe} throws ∅

∅ ` ∀α.{P ∧ Iz} try b handle e by ce {(Q ∧ Iz) ∨Qe} throws ∅

Figure 5.14: Binding is nested in exception handling

S1(z) = (h ; throw e)

S−z;O s1, h ⇓ s2 S−z;O s2, throw e ⇑ e, s2

S−z;O s1, (h ; throw e) ⇑ e, s2

S1;O s1, c ⇑ e, s2

S;O s1, (bind z to (h ; throw e) in cB) ⇑ e, s2

S;O s1, (bind z to (h ; throw e) in cB) ⇑ e, s2 S;O s2, g ⇓ s3

S;O s1, try (bind z to (h ; throw e) in cB) handle e by g ⇓ s3

where S1 = S [z 7→ (h ; throw e)]

Figure 5.15: Binding is nested in exception handling

86

CHAPTER 6

LOGIC SOUNDNESS

In this chapter, we show a soundness proof of our logic with respect to the big-step

operational semantics defined in Chapter 3.

Perhaps the most interesting feature of the operational semantics is the multiplicative

way that one-shot signals are propagated, as the signal binding is split into two disjoint

bindings O1 ∗ O2 when a semantics rule has two premises, for example in a sequential

composition. In the logic, by contrast, the signal context Σ is used additively, in that

it is shared rather than split in the logic rules. Intuitively, that is due to the fact that

signals arrive non-deterministically, so that we cannot determine statically which way the

splitting will go at runtime, and Σ only specifies what signals may be handled.

In the big-step semantics, the evaluation of a command c is relative to some signal

binding S;O for persistent and one-shot signal handlers. These handlers can run at

any time during the evaluation of c. So to reason about the behaviour of c relative to

some Hoare logic specification {P} c {Q}, we need to impose a specification on the signal

contexts as well. If they could interfere in the evaluation of c with arbitrary behaviour,

there would be no way of proving the correctness of c. Moreover, the signal handlers

must also respect the specification of other handlers in the sense that they should not

invalidate the assumptions of handlers that may run after or before them, respectively.

For one-shot signals, the assumptions are a precondition P and postcondition Q, while

for persistent handlers, they are invariants I.

87

6.1 Signal Binding and Signal Context

We need to impose the condition that all signal bindings respect the specification given

by the whole signal context, in the following sense:

Definition 6.1.1 (Signal bindings respect signal contexts) Let S and O

be signal bindings, and let Σ be a signal context. We say that S;O |= Σ if the following

conditions hold:

1. If the one-shot binding c = O(z) is defined for some signal name z, then Σ(z) =

(Pz . Qz) is also defined for some precondition Pz and postcondition Qz. Moreover,

c behaves as specified by Pz and Qz, in the following sense: if there are states s1

and s2 such that

∅; ∅ s1, c ⇓ s2

and s1 |= Pz, then s2 |= Qz.

2. If the persistent signal c = S(z) is defined for some signal name z, then Σ(z) = Iz .

Iz is also defined for some invariant Iz. Moreover, c preserves the invariant in the

following sense: if there are states s1 and s2 such that

∅; ∅ s1, c ⇓ s2

and s1 |= Iz, then s2 |= Iz.

We also need a form of stability condition between signal and exception contexts.

Definition 6.1.2 For an exception context η such that η = e1 : Q′1, . . . , en : Q′n and

a signal context Σ, we write η stable Σ if and only if for all ej ∈ dom(η) such that

η(ej) = Q′j we have Q′j stable Σ.

88

O1 O2

Σ

O

Figure 6.1: Splitting of the one-shot signal binding

6.2 Supporting Lemmas

Lemma 6.2.1 (Splitting one-shot bindings) If S;O |= Σ and O can be split as O =

O1 ∗O2, then S;O1 |= Σ and S;O2 |= Σ.

One may visualize the splitting as in Figure 6.1.

Proof

If S;O |= Σ, then according to the Definition 6.1.1, for every signal z defined in the

signal bindings there is a corresponding definition in the signal contexts, and for every

signal z ∈ dom(O) all respect conditions are satisfied.

We know that O = O1 ∗O2. According to the Definition 3.1.2 for ” ∗ ”, we know that

O1 ∩ O2 = ∅, and that both O1 and O2 are subsets of O. Thus, for every signal z such

that originally z ∈ dom(O), after the splitting, the signal z will be either z ∈ dom(O1)

or z ∈ dom(O2).

S;O1 |= Σ and S;O2 |= Σ if and only if all respect conditions are satisfied for every

signal from both domains O1 and O2. Assume that z ∈ dom(O1), and as O1 ⊆ O then

z ∈ dom(O). We know that S;O |= Σ, therefore all respect conditions for the signal

z ∈ dom(O) are met. Thus, for every signal z ∈ dom(O1) all conditions are met because

for every signal z ∈ dom(O1) implies z ∈ dom(O). Analogously, for every z ∈ dom(O2)

implies z ∈ dom(O), therefore all respect conditions for the signal z ∈ dom(O2) are met.

Furthermore, a persistent signal bindings S is copied to the both split parts, and we

know that for all signals z ∈ dom(S) respect conditions are satisfied.

Therefore, S;O1 |= Σ and S;O2 |= Σ. �

89

Lemma 6.2.2 (Reducing signals’ bindings and context) Assume that

S;O |= Σ, z : Pz . Qz and Σ, z : Pz . Qz pairstable then

Σ pairstable and S − z;O − z |= Σ.

Proof

Assume S;O |= Σ, z : Pz . Qz and Σ, z : Pz . Qz pairstable hold. Thus, for any

z1, z2 such that z1 ∈ dom(O) or z1 ∈ dom(S), z2 ∈ dom(O) or z2 ∈ dom(S) we have

Σ(z1) = P1 . Q1, Σ(z2) = P2 . Q2, and P1 stable (P2 . Q2), Q1 stable (P2 . Q2),

P2 stable (P1 . Q1), Q2 stable (P1 . Q1). Please note that for z ∈ dom(S) we have

Σ(z) = Pz . Qz where Pz = Qz.

Then, we simultaneously remove signal z from the signal context and bindings. Thus,

S − z;O − z |= Σ, as for any z1, z2 such that z1 6= z, z2 6= z, z1 ∈ dom(O − z) or

z1 ∈ dom(S − z), z2 ∈ dom(O − z) or z2 ∈ dom(S − z) all stability assumptions are

satisfied. Furthermore, removing of z : Pz . Qz from the signal context is safe, as for any

z1 ∈ dom(O − z) or z1 ∈ dom(S − z), z1 6= z. Thus, consistency of the signal context

remains satisfied. Therefore, we conclude S − z;O − z |= Σ and Σ pairstable. �

Lemma 6.2.3 (Extending one-shot signals’ binding and context) If

Σ pairstable and S;O |= Σ. Also suppose that [z 7→ ch] and z : Pz . Qz. Furthermore,

assume that Pz stable Σ, Qz stable Σ and Σ stable (Pz . Qz) hold. Then S;O [z 7→

ch] |= Σ, z : Pz . Qz and Σ, z : Pz . Qz pairstable.

Proof

Assume that Σ pairstable and S;O |= Σ hold. To extend a signal context Σ and

a binding O with the new signal z, one should ensure that the respect and stability

conditions remain satisfied. Thus, pre- and post conditions of the signal z should be

stable under other signals, which already are elements of the signal context and binding.

Moreover, pre- and postconditions of all that one-shot signals and the invariants of all

that persistent signals should be preserved under the actions of z.

90

As all stability assumptions are assumed we can safely extend the signal binding and

the context. Thus, S;O [z 7→ ch] |= Σ, z : Pz . Qz and Σ, z : Pz . Qz pairstable. �

Lemma 6.2.4 (Extending persistent signals’ binding and context) If

Σ pairstable and S;O |= Σ. Also suppose that [z 7→ ch] and z : Iz . Iz. Furthermore,

assume that Iz stable Σ and Σ stable Iz . Iz.

Then S [z 7→ ch];O |= Σ, z : Iz . Iz and Σ, z : Iz . Iz pairstable.

Proof

Assume that Σ pairstable and S;O |= Σ holds. To extend a signal context Σ

and a binding S with the new signal z, one should ensure that respect and stability

conditions remain satisfied. Thus, an invariant of the signal z should be stable under

other signals, which already are elements of signal context and binding. Moreover, pre-

and postconditions of all that one-shot signals and the invariants of all that persistent

signals should be preserved under the actions of z.

As all stability assumptions are assumed we can safely extend the signal binding and

the context. Thus, S [z 7→ ch];O |= Σ, z : Iz . Iz and Σ, z : Iz . Iz pairstable. �

6.3 Proof of Soundness

For the signal handling rule, we will need supporting Lemma 5.5.1.

Definition 6.3.1 (Validity with signals and exceptions) A judgement

Σ ` {P} c {Q} throws e1 : Q′1, . . . , en : Q′n

is called valid if the following holds. Suppose Σ pairstable holds, and that S and O are

signal bindings such that S;O |= Σ. Let s1 and s2 be states. Then all evaluations (which

can be either a normal termination or a raised exception) satisfy:

1. If S;O s1, c ⇓ s2 then s1 |= P implies s2 |= Q

91

2. If S;O s1, c ⇑ ej, s2 then s1 |= P implies s2 |= Q′j

Moreover, in both of these cases, the states s1 and s2 in the evaluation satisfy the following

conditions regarding Σ:

• for any signal name z with Σ(z) = (Pz . Qz) and z ∈ dom(O), s1 |= Pz implies

s2 |= Pz ∨Qz

• for any signal name z with Σ(z) = (Pz . Qz) and z /∈ dom(O), s1 |= Pz implies

s2 |= Pz and s1 |= Qz implies s2 |= Qz

Theorem 6.3.2 (Soundness) Each Hoare triple that can be derived using the program

logic rules (Figure 5.1 and Figure 5.2) is valid in the sense of Definition 6.3.1.

Proof The proof proceeds by induction over the derivation of a program logic judgement

Σ ` {P} c {Q} throws η

We consider all the cases how the proof tree could be built up, and reason about the

possible big-step evaluations (Figure 3.2, Figure 3.3, Figure 3.4).

S;O s1, c ⇓ s2 and S;O s1, c ⇑ e, s2

�

6.3.1 Persistent Signal Binding

Lemma 6.3.3 (Soundness of the persistent signal binding) We consider the pro-

gram rule for the persistent signal binding:

Σ, z : ∀α.Iz . Iz ` {P} cB {Q} throws η Σ ` ∀α.{Iz} ch {Iz} throws η

Σ stable ∀α.Iz . Iz

Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η

92

where throws η = throws e1 : Q′1, . . . , en : Q′n

Suppose the judgments Σ, z : ∀α.Iz . Iz ` {P} cB {Q} throws η and

Σ ` ∀α.{Iz} ch {Iz} throws η are derivable. Also suppose that Σ stable ∀α.Iz . Iz holds.

We need to show that the judgment Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q∧ Iz} throws η

is valid (Definition 6.3.1).

Proof An evaluation of bind z to ch in cB can be of the following two forms:

S [z 7→ ch];O s1, cB ⇓ s2

S;O s1, bind z to ch in cB ⇓ s2

S [z 7→ ch];O s1, cB ⇑ e1, s2

S;O s1, bind z to ch in cB ⇑ e1, s2

Case 1
S [z 7→ ch];O s1, cB ⇓ s2

S;O s1, bind z to ch in cB ⇓ s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation trees for ch and cB.

First, let s1 |= Iz. Then, by the induction hypothesis (for ch), s2 |= Iz. It remains to

check the conditions on signals. We know that z is a signal such that z /∈ dom(Σ).

Let z′ be a signal name such that z′ 6= z and Σ(z′) = (Pz′ . Qz′). We make a case

distinction, based on whether z′ ∈ dom(O) or not.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . We need to prove that s2 |= Pz′ ∨Qz′ .

By the induction hypothesis (for ch), s2 |= Pz′ ∨Qz′ .

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′

Case s1 |= Pz′ By the induction hypothesis (for ch), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for ch), s2 |= Qz′ .

We know that S;O |= Σ. Thus, the signal handler ch in ∀α.{Iz} ch {Iz} could be

interrupted by any signal from the dom(Σ) during its execution, except by itself

93

(z /∈ dom(Σ)). That yields to [z 7→ ch] and z : ∀α.Iz . Iz.

It was assumed that Σ ` ∀α.{Iz} ch {Iz} is derivable; thus, using Lemma 5.5.1 we

infer Iz stable Σ. Let the following Hoare logic rule’s stability assumption for

(z : ∀α.Iz . Iz) holds: Σ stable ∀α.Iz . Iz. Then, using Lemma 6.2.4, we infer

S [z 7→ ch];O |= Σ, z : ∀α.Iz . Iz and Σ, z : ∀α.Iz . Iz pairstable.

Let s1 |= P . Then, by the induction hypothesis (for cB), s2 |= Q. That gives

us the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

We know that z is a signal name with Σ, z : ∀α.Iz . Iz(z) = ∀α.(Iz . Iz) such that

z /∈ dom(O). Let z′ be a signal name with Σ, z : ∀α.Iz . Iz(z′) = (Pz′ . Qz′) such

that z′ ∈ dom(O).

Case z /∈ dom(O) We assumed that s1 |= Iz. We need to prove that s2 |= Iz. By

the induction hypothesis (for cB), s2 |= Iz.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . By the induction hypothesis (for cB),

s2 |= Pz′ ∨Qz′ .

Case 2
S [z 7→ ch];O s1, cB ⇑ e1, s2

S;O s1, bind z to ch in cB ⇑ e1, s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation trees for ch and cB.

First, let s1 |= Iz. Then, by the induction hypothesis (for ch), s2 |= Iz. It remains to

check the conditions on signals. We know that z is a signal such that z /∈ dom(Σ).

Let z′ be a signal name such that z′ 6= z and Σ(z′) = (Pz′ . Qz′). We make a case

distinction, based on whether z′ ∈ dom(O) or not.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . We need to prove that s2 |= Pz′ ∨Qz′ .

By the induction hypothesis (for ch), s2 |= Pz′ ∨Qz′ .

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′

94

Case s1 |= Pz′ By the induction hypothesis (for ch), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for ch), s2 |= Qz′ .

We know that S;O |= Σ. Thus, the signal handler ch in ∀α.{Iz} ch {Iz} could be

interrupted by any signal from the dom(Σ) during its execution, except by itself

(z /∈ dom(Σ)). That yields to [z 7→ ch] and z : ∀α.Iz . Iz.

It was assumed that Σ ` ∀α.{Iz} ch {Iz} is derivable; thus, using Lemma 5.5.1 we

infer Iz stable Σ. Let the following Hoare logic rule’s stability assumption for

(z : ∀α.Iz . Iz) holds: Σ stable ∀α.Iz . Iz. Then, using Lemma 6.2.4, we infer

S [z 7→ ch];O |= Σ, z : ∀α.Iz . Iz and Σ, z : ∀α.Iz . Iz pairstable.

Let s1 |= P . Then, by the induction hypothesis (for cB), s2 |= Q′1. That gives

us the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

We know that z is a signal name with Σ, z : ∀α.Iz . Iz(z) = ∀α.(Iz . Iz) such that

z /∈ dom(O). Let z′ be a signal name with Σ, z : ∀α.Iz . Iz(z′) = (Pz′ . Qz′) such

that z′ ∈ dom(O).

Case z /∈ dom(O) We assumed that s1 |= Iz. We need to prove that s2 |= Iz. By

the induction hypothesis (for cB), s2 |= Iz.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . By the induction hypothesis (for cB),

s2 |= Pz′ ∨Qz′ .

Finally The judgment Σ ` ∀α.{P ∧ Iz} bind z to ch in cB {Q ∧ Iz} throws η is valid.

�

95

6.3.2 One-shot Signal Binding

Lemma 6.3.4 (Soundness of the one-shot sign bind. and exns) We consider the

program rule for the one-shot signal binding:

Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η Σ ` ∀α.{Pz} ch {Qz} throws η

Σ stable ∀α.Pz . Qz

Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨Qz)} throws η

where throws η = throws e1 : Q′1, . . . , en : Q′n

Suppose the judgments Σ, z : ∀α.Pz . Qz ` {P} cB {Q} throws η and

Σ ` ∀α.{Pz} ch {Qz} throws η are derivable. Also suppose that Σ stable ∀α.Pz . Qz

holds. We need to show that the judgment Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧

(Pz ∨Qz)} throws η is valid (Definition 6.3.1).

Proof An evaluation of bind/1 z to ch in cB can be of the following two forms:

S;O [z 7→ ch] s1, cB ⇓ s2

S;O s1, bind/1 z to ch in cB ⇓ s2

S;O [z 7→ ch] s1, cB ⇑ e1, s2

S;O s1, bind/1 z to ch in cB ⇑ e1, s2

Case 1
S;O [z 7→ ch] s1, cB ⇓ s2

S;O s1, bind/1 z to ch in cB ⇓ s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation trees for ch and cB.

First, let s1 |= Pz. Then, by the induction hypothesis (for ch), s2 |= Qz. It remains

to check the conditions on signals. We know that z is a signal such that z /∈ dom(Σ).

Let z′ be a signal name such that z′ 6= z and Σ(z′) = (Pz′ . Qz′). We make a case

96

distinction, based on whether z′ ∈ dom(O) or not.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . We need to prove that s2 |= Pz′ ∨Qz′ .

By the induction hypothesis (for ch), s2 |= Pz′ ∨Qz′ .

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′

Case s1 |= Pz′ By the induction hypothesis (for ch), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for ch), s2 |= Qz′ .

We know that S;O |= Σ. Thus, the signal handler ch in {Pz} ch {Qz} could be

interrupted by any signal from the dom(Σ) during its execution, except by itself.

That yields to [z 7→ ch] and z : Pz . Qz.

It was assumed that Σ ` ∀α.{Pz} ch {Qz} is derivable; thus, using Lemma 5.5.1 we

infer Pz stable Σ and Qz stable Σ. The Hoare logic rule assumes the following

stability assumption for (z : ∀α.Pz . Qz): Σ stable ∀α.Pz . Qz. Then, using

Lemma 6.2.3, we infer S;O [z 7→ ch] |= Σ, z : ∀α.Pz . Qz and Σ, z : ∀α.Pz .

Qz pairstable.

Let s1 |= P . Then, by the induction hypothesis (for cB), s2 |= Q. That gives

us the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

We know that z is a signal name with Σ, z : ∀α.Pz . Qz(z) = ∀α.(Pz . Qz) such

that z ∈ dom(O). Let z′ be a signal name with Σ, z : ∀α.Pz . Qz(z
′) = (Pz′ . Qz′)

such that z′ /∈ dom(O).

Case z ∈ dom(O) We assumed s1 |= Pz. We need to prove that s2 |= Pz ∨Qz. By

the induction hypothesis (for cB), s2 |= Pz ∨Qz.

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′ .

Case s1 |= Pz′ By the induction hypothesis (for cB), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for cB), s2 |= Qz′ .

97

Case 2
S;O [z 7→ ch] s1, cB ⇑ e1, s2

S;O s1, bind/1 z to ch in cB ⇑ e1, s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation trees for ch and cB.

First, let s1 |= Pz. Then, by the induction hypothesis (for ch), s2 |= Qz. It remains

to check the conditions on signals. We know that z is a signal such that z /∈ dom(Σ).

Let z′ be a signal name such that z′ 6= z and Σ(z′) = (Pz′ . Qz′). We make a case

distinction, based on whether z′ ∈ dom(O) or not.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . We need to prove that s2 |= Pz′ ∨Qz′ .

By the induction hypothesis (for ch), s2 |= Pz′ ∨Qz′ .

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′

Case s1 |= Pz′ By the induction hypothesis (for ch), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for ch), s2 |= Qz′ .

We know that S;O |= Σ. Thus, the signal handler ch in {Pz} ch {Qz} could be

interrupted by any signal from the dom(Σ) during its execution, except by itself.

That yields to [z 7→ ch] and z : Pz . Qz.

It was assumed that Σ ` ∀α.{Pz} ch {Qz} is derivable; thus, using Lemma 5.5.1 we

infer Pz stable Σ and Qz stable Σ. The Hoare logic rule assumes the following

stability assumption for (z : ∀α.Pz . Qz): Σ stable ∀α.Pz . Qz. Then, using

Lemma 6.2.3, we infer S;O [z 7→ ch] |= Σ, z : ∀α.Pz . Qz and Σ, z : ∀α.Pz .

Qz pairstable.

Let s1 |= P . Then, by the induction hypothesis (for cB), s2 |= Q′1. That gives

us the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

We know that z is a signal name with Σ, z : ∀α.Pz . Qz(z) = ∀α.(Pz . Qz) such

that z ∈ dom(O). Let z′ be a signal name with Σ, z : ∀α.Pz . Qz(z
′) = (Pz′ . Qz′)

98

such that z′ /∈ dom(O).

Case z ∈ dom(O) We assumed that s1 |= Pz. We need to prove that s2 |= Pz∨Qz.

By the induction hypothesis (for cB), s2 |= Pz ∨Qz.

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′ .

Case s1 |= Pz′ By the induction hypothesis (for cB), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for cB), s2 |= Qz′ .

Finally Σ ` ∀α.{P ∧ Pz} bind/1 z to ch in cB {Q ∧ (Pz ∨Qz)} throws η is valid.

�

6.3.3 Signal Blocking

Lemma 6.3.5 (Soundness of the signal blocking rule) Given the program logic

rule for the one-shot signal blocking:

Σ ` {P} c {Q} throws η

P stable ∀α.Pz . Qz Q stable ∀α.Pz . Qz η stable ∀α.Pz . Qz

Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q} throws η

where throws η = throws e1 : Q′1, . . . , en : Q′n.

Suppose the judgment Σ ` {P} c {Q}throwsη is derivable. and that P stable ∀α.Pz .

Qz, Q stable ∀α.Pz . Qz and η stable ∀α.Pz . Qz hold. We need to show that the

judgment Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q} throws η is valid (Definition 6.3.1).

Proof An evaluation of the block z in c can be of the following two forms:

S − z;O − z s1, c ⇓ s2

S;O s1, block z in c ⇓ s2

S − z;O − z s1, c ⇑ e1, s2

S;O s1, block z in c ⇑ e1, s2

99

Let Σ, z : ∀α.Pz . Qz pairstable, P stable ∀α.Pz . Qz, Q stable ∀α.Pz . Qz and

η stable ∀α.Pz . Qz. Let S;O |= Σ, z : ∀α.Pz . Qz where O(z) = ch or S(z) = ch, but

not simultaneously. Then, using Lemma 6.2.2, we infer S − z;O− z |= Σ. Hence we can

apply the induction hypothesis to the smaller derivation tree for

S − z;O − z s1, c ⇓ s2 or S − z;O − z s1, c ⇑ e1, s2

Case ⇓ Let s1 |= P . Then, by the induction hypothesis (for c), s2 |= Q.

Case ⇑ e1 Let s1 |= P . Then, by the induction hypothesis (for c), s2 |= Q′1.

That gives us the condition on the Hoare triple required for validity. It remains to check

the conditions on signals. The next part of the proof is similar for both cases.

Let z′ be a signal name such that z′ 6= z and Σ(z′) = (Pz′ . Qz′). We make a case

distinction, based on whether z′ ∈ dom(O) or not.

Case z′ ∈ dom(O) Suppose that s1 |= Pz′ . We need to prove that s2 |= Pz′ ∨ Qz′ . By

the induction hypothesis (for c), s2 |= Pz′ ∨Qz′ .

Case z′ /∈ dom(O) There are two subcases, where s1 |= Pz′ or s1 |= Qz′

Case s1 |= Pz′ By the induction hypothesis (for c), s2 |= Pz′ .

Case s1 |= Qz′ By the induction hypothesis (for c), s2 |= Qz′ .

Finally Thus, the judgment Σ, z : ∀α.Pz . Qz ` {P} block z in c {Q}throwsη is valid.�

6.3.4 Sequential Composition

Lemma 6.3.6 (Soundness of the seq comp with sign and exns) We

consider the program rule for the sequential composition:

Σ ` {P1} c1 {P2} throws η Σ ` {P2} c2 {P3} throws η

Σ ` {P1} c1 ; c2 {P3} throws η

100

where throws η = throws e1 : Q′1, . . . , en : Q′n.

Suppose the judgments Σ ` {P1} c1 {P2} throws η, Σ ` {P2} c2 {P3} throws η are

derivable. We need to show that the judgment Σ ` {P1} c1 ; c2 {P3} throws η is valid

(Definition 6.3.1).

Proof An evaluation of c1 ; c2 can be of the following three forms (due to exception

convention):

S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇓ s3

S;O1 ∗O2 s1, (c1 ; c2) ⇓ s3

S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇑ ej, s3

S;O1 ∗O2 s1, (c1; c2) ⇑ ej, s3

S;O s1, c1 ⇑ ej, s2

S;O s1, (c1; c2) ⇑ ej, s2

Case 1
S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇓ s3

S;O1 ∗O2 s1, (c1 ; c2) ⇓ s3

Let Σ pairstable, and S;O1 ∗O2 |= Σ. Then, using Lemma 6.2.1, we infer S;O1 |=

Σ and S;O2 |= Σ. Hence we can apply the induction hypothesis to the smaller

derivation trees for

S;O1 s1, c1 ⇓ s2 and S;O2 s2, c2 ⇓ s3

First, let s1 |= P1. Then by the induction hypothesis, s2 |= P2 and, again by the

induction hypothesis, s3 |= P3. That gives us the condition on the Hoare triple

required for validity. It remains to check the conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O1 ∗O2) or not.

Case z ∈ dom(O1 ∗O2) Suppose that s1 |= Pz. We need to prove that s3 |= Pz ∨

Qz. As O1 and O2 have disjoint domains, there are two subcases, where z is

101

in either dom(O1) or in dom(O2)

Case z ∈ dom(O1) and z /∈ dom(O2) By the induction hypothesis (for c1),

s2 |= Pz ∨Qz.

Case s2 |= Pz By the induction hypothesis (for c2), s3 |= Pz.

Case s2 |= Qz By the induction hypothesis (for c2), s3 |= Qz.

Case z /∈ dom(O1) and z ∈ dom(O2) By the induction hypothesis (for c1),

s2 |= Pz. Then, by the induction hypothesis (for c2), s3 |= Pz ∨Qz.

Case z /∈ dom(O1 ∗O2) in this case, z /∈ dom(O1) and z /∈ dom(O2).

Case s1 |= Pz By the induction hypothesis (for c1), s2 |= Pz. Then, by the

induction hypothesis (for c2), s3 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c1), s2 |= Qz.

Then, by the induction hypothesis (for c2), s3 |= Qz.

Case 2
S;O1 s1, c1 ⇓ s2 S;O2 s2, c2 ⇑ ej, s3

S;O1 ∗O2 s1, (c1; c2) ⇑ ej, s3

Let Σ pairstable, and S;O1 ∗O2 |= Σ. Then, using Lemma 6.2.1, we infer S;O1 |=

Σ and S;O2 |= Σ. Hence we can apply the induction hypothesis to the smaller

derivation trees for

S;O1 s1, c1 ⇓ s2 and S;O2 s2, c2 ⇑ ej, s3

First, let s1 |= P1. Then by the induction hypothesis, s2 |= P2 and, again by the

induction hypothesis, s3 |= Q′j. That gives us the condition on the Hoare triple

required for validity. It remains to check the conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O1 ∗O2) or not.

Case z ∈ dom(O1 ∗O2) Suppose that s1 |= Pz. We need to prove that s3 |= Pz ∨

102

Qz. As O1 and O2 have disjoint domains, there are two subcases, where z is

in either dom(O1) or in dom(O2)

Case z ∈ dom(O1) and z /∈ dom(O2) By the induction hypothesis (for c1),

s2 |= Pz ∨Qz.

Case s2 |= Pz By the induction hypothesis (for c2), s3 |= Pz.

Case s2 |= Qz By the induction hypothesis (for c2), s3 |= Qz.

Case z /∈ dom(O1) and z ∈ dom(O2) By the induction hypothesis (for c1),

s2 |= Pz. Then, by the induction hypothesis (for c2), s3 |= Pz ∨Qz.

Case z /∈ dom(O1 ∗O2) in this case, z /∈ dom(O1) and z /∈ dom(O2).

Case s1 |= Pz By the induction hypothesis (for c1), s2 |= Pz. Then, by the

induction hypothesis (for c2), s3 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c1), s2 |= Qz.

Then, by the induction hypothesis (for c2), s3 |= Qz.

Case 3
S;O s1, c1 ⇑ ej, s2

S;O s1, (c1; c2) ⇑ ej, s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation tree for

S;O s1, c1 ⇑ ej, s2

First, let s1 |= P1. Then by the induction hypothesis, s2 |= Q′j. That gives us

the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. By the induction hypothesis (for c1),

s2 |= Pz ∨Qz.

103

Case z /∈ dom(O) We make a case distinction, based on whether s1 |= Pz or s1 |=

Qz.

Case s1 |= Pz By the induction hypothesis (for c1), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c1), s2 |= Qz.

Finally Thus, the judgment Σ ` {P1} c1 ; c2 {P3} throws η is valid for every case.

�

6.3.5 Atomic Commands

Lemma 6.3.7 (Soundness of the atomic rule) We consider the program rule for the

atomic command:

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

Σ ` {P} a {Q} throws η

Suppose the judgment {P} a {Q} is derivable. Suppose that (P . Q) stable Σ and

η stable Σ. Assume that ∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E] is satisfied.

We need to show that the judgment Σ ` {P} a {Q} throws η is valid (Definition 6.3.1).

Proof We have an atomic command a. Assume the specification {P} a {Q} as given.

Assume that S;O s1, a ⇓ s2. Assume the Hoare logic rule’s stability assumptions: (P .

Q) stable Σ and η stable Σ holds. Assume that ∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒

Pz [α 7→ E] is satisfied. Finally, assume the soundness of atomic a as given. �

104

6.3.6 Repetitive while Command

Lemma 6.3.8 (Soundness of the while rule) We consider the program rule for the

while:
Σ ` {I ∧ E} c {I} throws η ¬E stable Σ

Σ ` {I} whileE do c {I ∧ ¬E} throws η

Suppose the judgment Σ ` {I ∧ E} c {I} throws η is derivable. Also suppose that

¬E stable Σ holds. We need to show that the judgment Σ ` {I} whileE do c {I ∧

¬E} throws η is valid (Definition 6.3.1).

Proof An evaluation of whileE do c can be of the following three forms (due to excep-

tion convention):

s1 |= ¬E

S;O s1, whileE do c ⇓ s1

s1 |= E S;O s1, c ⇑ e1, s2

S;O s1, whileE do c ⇑ e1, s2

s1 |= E S;O1 s1, c ⇓ s2 S;O2 s2, whileE do c ⇓ s3

S;O1 ∗O2 s1, whileE do c ⇓ s3

The proof is by induction over derivation of while logic and semantic rules.

Case while-false s1 |= ¬E.

Let Σ pairstable, S;O |= Σ, ¬E stable Σ and s1 |= I. As loop never runs, the

final state equals to the initial state. Thus, the final state s1 |= I. It was assumed

that E doesn’t hold. Therefore, s1 |= I ∧ ¬E.

It remains to check the conditions on signals. Let z be a signal name with Σ(z) =

(Pz . Qz). We make a case distinction, based on whether s1 |= Pz or s1 |= Qz.

Case s1 |= Pz then trivially s1 |= Pz.

Case s1 |= Qz then trivially s1 |= Qz.

105

Case while-true-exception s1 |= E and ⇑ e1.

Let Σ pairstable, S;O |= Σ, ¬E stable Σ and s1 |= I. Hence we can apply the

induction hypothesis to the smaller derivation trees for

S;O s1, c ⇑ e1, s2

Then by the induction hypothesis (for c), s2 |= I. That gives us the condition on

the Hoare triple required for validity. It remains to check the conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. By the induction hypothesis (for c),

s2 |= Pz ∨Qz.

Case z /∈ dom(O) We make a case distinction, based on whether s1 |= Pz or s1 |=

Qz.

Case s1 |= Pz By the induction hypothesis (for c), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c), s2 |= Qz.

Case while-true s1 |= E.

Let Σ pairstable, S;O1 ∗ O2 |= Σ, and ¬E stable Σ. Then, using Lemma 6.2.1,

we infer S;O1 |= Σ and S;O2 |= Σ.

A constructions of the derivation tree is done using WhileTrue operational se-

mantic rule. We can observer that there are two subtrees of the big-step derivation.

One subtree is for the body of the while, and the other for another iteration of

the while loop again. Hence we can apply the induction hypothesis to the smaller

derivation trees for

S;O1 s1, c ⇓ s2 and S;O2 s2, whileE do c ⇓ s3

106

First, let s1 |= I. Then by the induction hypothesis (for c), s2 |= I.

When it comes to the while above the inference, the size of the program logic tree

for inferring the judgement about it is the same; however, the size of the big-step

semantics tree is strictly smaller than the tree we are analyzing.

Again by the induction hypothesis (for whileE do c), s3 |= I ∧ ¬E. That gives

us the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O1 ∗O2) or not.

Case z ∈ dom(O1 ∗O2) Suppose that s1 |= Pz. We need to prove that s3 |= Pz ∨

Qz. As O1 and O2 have disjoint domains, there are two subcases, where z is

in either dom(O1) or in dom(O2)

Case z ∈ dom(O1) and z /∈ dom(O2) By the induction hypothesis (for c),

s2 |= Pz ∨Qz.

Case s2 |= Pz By the induction hypothesis (for whileE do c), s3 |= Pz.

Case s2 |= Qz By the induction hypothesis (for whileE do c), s3 |= Qz.

Case z /∈ dom(O1) and z ∈ dom(O2) By the induction hypothesis (for c),

s2 |= Pz. Then, by the induction hypothesis (for whileE do c), s3 |=

Pz ∨Qz.

Case z /∈ dom(O1 ∗O2) in this case, z /∈ dom(O1) and z /∈ dom(O2).

Case s1 |= Pz By the induction hypothesis (for c), s2 |= Pz. Then, by the

induction hypothesis (for whileE do c), s3 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c), s2 |= Qz. Then, by the

induction hypothesis (for whileE do c), s3 |= Qz.

Finally Thus, the judgment Σ ` {I} whileE do c {I ∧ ¬E} throws η is valid.

�

107

6.3.7 Rule of Consequence

Lemma 6.3.9 (Soundness of the rule of consequence) We consider

the program rule:

Σ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ

Σ ` {P ′} c {Q′} throws η′

where η = e1 : Q1, . . . , en : Qn and η′ = e1 : Q′1, . . . , en : Q′n

Suppose the judgment Σ ` {P} c {Q}throwsη is derivable. Also suppose that P ′ ⇒ P ,

Q⇒ Q′, η ⇒ η′, P ′ stable Σ, Q′ stable Σ and η′ stable Σ hold. We need to show that

the judgment Σ ` {P ′} c {Q′} throws η′ is valid (Definition 6.3.1).

Proof An evaluation of c can be of the following two forms:

S;O s1, c ⇓ s2 and S;O s1, c ⇑ ej, s2

Case ⇓ Let Σ pairstable, S;O |= Σ, P ′ ⇒ P , Q ⇒ Q′, η ⇒ η′, P ′ stable Σ,

Q′ stable Σ and Q′j stable Σ.

First, let s1 |= P ′. Then by implications P ′ ⇒ P , we get s1 |= P . Hence we can

apply the induction hypothesis to the derivation tree for c above the line.

Then by the induction hypothesis, s2 |= Q. Then by the implication Q ⇒ Q′,

s2 |= Q′.

Case ⇑ e1 Let Σ pairstable, S;O |= Σ, P ′ ⇒ P , Q⇒ Q′, η ⇒ η′,

P ′ stable Σ, Q′ stable Σ and Q′j stable Σ.

First, let s1 |= P ′. Then by implications P ′ ⇒ P , we get s1 |= P . Hence we can

apply the induction hypothesis to the derivation tree for c above the line.

108

Then by the induction hypothesis, s2 |= Qj. Then by the implication η ⇒ η′,

s2 |= Q′j.

That gives us the condition on the Hoare triple required for validity. It remains to

check the conditions on signals. Next part of the proof is analogous for both cases.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based on

whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. We need to prove that s2 |= Pz ∨Qz. By the

induction hypothesis (for c), s2 |= Pz ∨Qz.

Case z /∈ dom(O) There are two subcases, where s1 |= Pz or s1 |= Qz

Case s1 |= Pz By the induction hypothesis (for c), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c), s2 |= Qz.

Finally The judgment Σ ` {P ′} c {Q′} throws η′ is valid for all cases. �

6.3.8 Rule of Conjunction

Lemma 6.3.10 (Soundness of the rule of conjunction) We consider

the program rule:

Σ ` {P1} c {Q1} throws η1 Σ ` {P2} c {Q2} throws η2

Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

where η1 = e1 : Q′1, . . . , en : Q′n and η2 = e1 : Q”1, . . . , en : Q”n.

Suppose the judgments Σ ` {P1} c {Q1} throws η1 and

Σ ` {P2} c {Q2} throws η2 are derivable. We need to show that the

judgment Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2 is valid (Definition 6.3.1).

Proof An evaluation of c can be of the following two forms:

S;O s1, c ⇓ s2 and S;O s1, c ⇑ e1, s2

109

Case ⇓ Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis

to the derivation trees for c above the line.

First, let s1 |= P1∧P2. That is equivalent to s1 |= P1 and s1 |= P2. Let s1 |= P1, then

by the induction hypothesis (for the first c above the line), s2 |= Q1. Let s1 |= P2,

then by the induction hypothesis (for the second c above the line), s2 |= Q2. That

is equivalent to s2 |= Q1 ∧Q2.

Case ⇑ e1 Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypoth-

esis to the derivation trees for c above the line.

First, let s1 |= P1∧P2. That is equivalent to s1 |= P1 and s1 |= P2. Let s1 |= P1, then

by the induction hypothesis (for the first c above the line), s2 |= Q′1. Let s1 |= P2,

then by the induction hypothesis (for the second c above the line), s2 |= Q”1. That

is equivalent to s2 |= Q′1 ∧Q”1.

That gives us the condition on the Hoare triple required for validity. It remains to check

the conditions on signals. Next part of the proof is analogous for both cases.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based on

whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. We need to prove that s2 |= Pz ∨Qz. By the

induction hypothesis (for c), s2 |= Pz ∨Qz.

Case z /∈ dom(O) There are two subcases, where s1 |= Pz or s1 |= Qz

Case s1 |= Pz By the induction hypothesis (for c), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c), s2 |= Qz.

Finally Thus, the judgment Σ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2 is valid for every

case. �

110

6.3.9 Conditional if-else Command

Lemma 6.3.11 (Soundness of the if-else rule) We consider the

program rule:

Σ ` {E ∧ P} c1 {Q} throws η Σ ` {¬E ∧ P} c2 {Q} throws η

Σ ` {P} ifE then c1 else c2 {Q} throws η

where η = e1 : Q′1, . . . , en : Q′n.

Suppose the judgments Σ ` {E∧P} c1 {Q}throwsη and Σ ` {¬E∧P} c2 {Q}throwsη

are derivable. We need to show that the judgment

Σ ` {P} ifE then c1 else c2 {Q} throws η is valid (Definition 6.3.1).

Proof An evaluation of ifE then c1 else c2 can be of the following four forms (due to

exception convention):

s1 |= E S;O s1, c1 ⇓ s2

S;O s1, ifE then c1 else c2 ⇓ s2

s1 |= ¬E S;O s1, c2 ⇓ s3

S;O s1, ifE then c1 else c2 ⇓ s3

s1 |= E S;O s1, c1 ⇑ e1, s2

S;O s1, ifE then c1 else c2 ⇑ e1, s2

s1 |= ¬E S;O s1, c2 ⇑ e1, s3

S;O s1, ifE then c1 else c2 ⇑ e1, s3

Case s1 |= E Let Σ pairstable, and S;O |= Σ.

Case ⇓ Let s1 |= P1 ∧ E. Then by the induction hypothesis (for c1), s2 |= Q.

Case ⇑ e1 Let s1 |= P1 ∧ E. Then by the induction hypothesis (for c1), s2 |= Q′1.

That gives us the condition on the Hoare triple required for validity. It remains

to check the conditions on signals. Next part of the proof is analogous for both

111

subcases.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. We need to prove that s2 |= Pz ∨Qz. By

the induction hypothesis (for c1), s2 |= Pz ∨Qz.

Case z /∈ dom(O) There are two subcases, where s1 |= Pz or s1 |= Qz

Case s1 |= Pz By the induction hypothesis (for c1), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c1), s2 |= Qz.

Case s1 |= ¬E Let Σ pairstable, and S;O |= Σ.

Case ⇓ Let s1 |= P1 ∧ ¬E. Then by the induction hypothesis (for c2), s2 |= Q.

Case ⇑ e1 Let s1 |= P1 ∧¬E. Then by the induction hypothesis (for c2), s2 |= Q′1.

That gives us the condition on the Hoare triple required for validity. It remains

to check the conditions on signals. Next part of the proof is analogous for both

subcases.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. We need to prove that s2 |= Pz ∨Qz. By

the induction hypothesis (for c2), s2 |= Pz ∨Qz.

Case z /∈ dom(O) There are two subcases, where s1 |= Pz or s1 |= Qz

Case s1 |= Pz By the induction hypothesis (for c2), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for c2), s2 |= Qz.

Finally Thus, the judgment Σ ` {P} ifE then c1 else c2 {Q} throws η is valid.

�

112

6.3.10 Exception throw Command

Lemma 6.3.12 (Soundness of the throw rule) We consider the program rule for the

throw:
η stable Σ Q stable Σ

Σ ` {η(ej)} throw ej {Q} throws η

where throws η = throws e1 : Q′1, . . . , en : Q′n. And η(ej) = Q′j in a precondition posi-

tion, means that Q′j holds immediately before the exception is thrown. Suppose that

η stable Σ and Q stable Σ hold.

We need to show that the judgment Σ ` {η(ej)} throw ej {Q} throws η is valid (Def-

inition 6.3.1).

Proof An evaluation of throw e can only be inferred in the following way:

S;O s, throw ej ⇑ ej, s

Let Σ pairstable, S;O |= Σ, η stable Σ and Q stable Σ. Let s |= Q′j such that

η(ej) = Q′j.

The command throw does not change the initial state s, but raises an exception ej.

As there is no change of the state s, we infer s |= Q′j afterwards.

It remains to check the conditions on signals. Let z be a signal name with Σ(z) =

(Pz . Qz). We make a case distinction, based on whether s |= Pz or s |= Qz.

Case s |= Pz then trivially s |= Pz.

Case s |= Qz then trivially s |= Qz.

Thus, the judgment Σ ` {η(ej)} throw ej {Q} throws η is valid. �

113

6.3.11 Exception Handling

Lemma 6.3.13 (Soundness of the exception handling) We consider

the program rule for the exception handling:

Σ ` {P} cB {Qb} throws η, ek : Q′k Σ ` {Q′k} ch {Qh} throws η

Σ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

where throws η = throws e1 : Q′1, . . . , en : Q′n.

Suppose the judgments

Σ ` {P} cB {Qb}throwsη, ek : Q′k and Σ ` {Q′k} ch {Qh}throwsη are derivable. We need

to show that the judgment Σ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η is valid

(Definition 6.3.1).

Proof An evaluation of try cB handle ek by ch can be of the following four forms (due

to exception convention):

S;O s1, cB ⇓ s2

S;O s1, try cB handle ek by ch ⇓ s2

S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇓ s3

S;O1 ∗O2 s1, try cB handle ek by ch ⇓ s3

S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇑ e2, s3

S;O1 ∗O2 s1, try cB handle ek by ch ⇑ e2, s3

S;O s1, cB ⇑ e2, s2 e2 6= ek

S;O s1, try cB handle ek by ch ⇑ e2, s2

Case 1
S;O s1, cB ⇓ s2

S;O s1, try cB handle ek by ch ⇓ s2

114

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation tree for

S;O s1, cB ⇓ s2

First, let s1 |= P . Then by the induction hypothesis, s2 |= Qb. That gives us

the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. By the induction hypothesis (for cB),

s2 |= Pz ∨Qz.

Case z /∈ dom(O) We make a case distinction, based on whether s1 |= Pz or s1 |=

Qz.

Case s1 |= Pz By the induction hypothesis (for cB), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for cB), s2 |= Qz.

Case 2
S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇓ s3

S;O1 ∗O2 s1, try cB handle ek by ch ⇓ s3

Let Σ pairstable, and S;O1 ∗O2 |= Σ. Then, using Lemma 6.2.1, we infer S;O1 |=

Σ and S;O2 |= Σ. Hence we can apply the induction hypothesis to the smaller

derivation trees for

S;O1 s1, cB ⇑ ek, s2 and S;O2 s2, ch ⇓ s3

First, let s1 |= P . Then by the induction hypothesis (for cB), s2 |= Q′k and, again

by the induction hypothesis (for ch), s3 |= Qh. That gives us the condition on the

Hoare triple required for validity. It remains to check the conditions on signals.

115

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O1 ∗O2) or not.

Case z ∈ dom(O1 ∗O2) Suppose that s1 |= Pz. We need to prove that s3 |= Pz ∨

Qz. As O1 and O2 have disjoint domains, there are two subcases, where z is

in either dom(O1) or in dom(O2)

Case z ∈ dom(O1) and z /∈ dom(O2) By the induction hypothesis (for cB),

s2 |= Pz ∨Qz.

Case s2 |= Pz By the induction hypothesis (for ch), s3 |= Pz.

Case s2 |= Qz By the induction hypothesis (for ch), s3 |= Qz.

Case z /∈ dom(O1) and z ∈ dom(O2) By the induction hypothesis (for cB),

s2 |= Pz. Then, by the induction hypothesis (for ch), s3 |= Pz ∨Qz.

Case z /∈ dom(O1 ∗O2) in this case, z /∈ dom(O1) and z /∈ dom(O2).

Case s1 |= Pz By the induction hypothesis (for cB), s2 |= Pz.

Then, by the induction hypothesis (for ch), s3 |= Pz.

Case s1 |= Qz By the induction hypothesis (for cB), s2 |= Qz. Then, by the

induction hypothesis (for ch), s3 |= Qz.

Case 3
S;O1 s1, cB ⇑ ek, s2 S;O2 s2, ch ⇑ e2, s3

S;O1 ∗O2 s1, try cB handle ek by ch ⇑ e2, s3

Let Σ pairstable, and S;O1 ∗O2 |= Σ. Then, using Lemma 6.2.1, we infer S;O1 |=

Σ and S;O2 |= Σ. Hence we can apply the induction hypothesis to the smaller

derivation trees for

S;O1 s1, cB ⇑ ek, s2 and S;O2 s2, ch ⇑ e2, s3

First, let s1 |= P . Then by the induction hypothesis (for cB), s2 |= Q′k and, again

by the induction hypothesis (for ch), s3 |= Q′2. That gives us the condition on the

Hoare triple required for validity. It remains to check the conditions on signals.

116

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O1 ∗O2) or not.

Case z ∈ dom(O1 ∗O2) Suppose that s1 |= Pz. We need to prove that s3 |= Pz ∨

Qz. As O1 and O2 have disjoint domains, there are two subcases, where z is

in either dom(O1) or in dom(O2)

Case z ∈ dom(O1) and z /∈ dom(O2) By the induction hypothesis (for cB),

s2 |= Pz ∨Qz.

Case s2 |= Pz By the induction hypothesis (for ch), s3 |= Pz.

Case s2 |= Qz By the induction hypothesis (for ch), s3 |= Qz.

Case z /∈ dom(O1) and z ∈ dom(O2) By the induction hypothesis (for cB),

s2 |= Pz. Then, by the induction hypothesis (for ch), s3 |= Pz ∨Qz.

Case z /∈ dom(O1 ∗O2) in this case, z /∈ dom(O1) and z /∈ dom(O2).

Case s1 |= Pz By the induction hypothesis (for cB), s2 |= Pz.

Then, by the induction hypothesis (for ch), s3 |= Pz.

Case s1 |= Qz By the induction hypothesis (for cB), s2 |= Qz. Then, by the

induction hypothesis (for ch), s3 |= Qz.

Case 4
S;O s1, cB ⇑ e2, s2 e2 6= ek

S;O s1, try cB handle ek by ch ⇑ e2, s2

Let Σ pairstable, and S;O |= Σ. Hence we can apply the induction hypothesis to

the smaller derivation tree for

S;O s1, cB ⇑ e2, s2

First, let s1 |= P . Then by the induction hypothesis, s2 |= Q′2. That gives us

the condition on the Hoare triple required for validity. It remains to check the

conditions on signals.

117

Let z be a signal name with Σ(z) = (Pz . Qz). We make a case distinction, based

on whether z ∈ dom(O) or not.

Case z ∈ dom(O) Suppose that s1 |= Pz. By the induction hypothesis (for cB),

s2 |= Pz ∨Qz.

Case z /∈ dom(O) We make a case distinction, based on whether s1 |= Pz or s1 |=

Qz.

Case s1 |= Pz By the induction hypothesis (for cB), s2 |= Pz.

Case s1 |= Qz By the induction hypothesis (for cB), s2 |= Qz.

Finally Thus, the judgment Σ ` {P} try cB handle ek by ch {Q} throws η is valid for

every case. �

118

CHAPTER 7

NESTED BINDINGS

In this chapter we explain how our operational semantics and logic handle the situation

when two signals with the same name are bound in the signal context.

Both operational semantics and logic can support nested bindings of the signals with

the same name, but in a slightly different manner. In operational semantics, it is straight-

forward. We define [z 7→ ch] in S [z 7→ ch] as an update of the signal binding S with

two alternatives: if initially z /∈ dom(S), then z is added to the S; if z ∈ dom(S), then

it is overridden in a sense that z points to the new handler ch.

However, we can restrict the signal binding only to install signals that haven’t been

already bound. This restriction is enforced in our logic, whenever we write Σ, z : Iz . Iz

that is the case that z /∈ dom(Σ). If z ∈ dom(Σ), then Σ, z : Iz . Iz is undefined. If we

assume that we add a signal z into the binding with z and both signals are pointing to

the different handlers, then the binding becomes inconsistent. Restricting them to point

to the same handler would not be enough, as a problem of finding which z belongs to the

outer scope and which to the inner one still remains.

One may say, that our logic is too restrictive when dealing with the signal binding.

That is not true, as we can easily achieve a signal overriding in the logic by combination

of blocking and binding commands , thanks to the notion of block in our language. Com-

pared to the operational semantics, where we can override by a literal updating, it may

look a bit cumbersome, but the logic remains clear and consistent with the restrictions

on Σ and z.

119

[z 7→ ch2]; ∅ s1, c1 ⇓ s2

[z 7→ ch1]; ∅ s1, bind z to ch2 in c1 ⇓ s2 [z 7→ ch1]; ∅ s2, c2 ⇓ s3

[z 7→ ch1]; ∅ s1, (bind z to ch2 in c1); c2 ⇓ s3

Figure 7.1: Nested persistent signal binding

[z 7→ ch2](z) = ch2 S; ∅ s1, ch2 ⇓ s2 S; ∅ s2, c1 ⇓ s3

S; [z 7→ ch2] s1, c1 ⇓ s3

S; [z 7→ ch2] s1, c1 ⇓ s3 S; ∅ s3, c2 ⇓ s4

S; [z 7→ ch2] s1, c1; c2 ⇓ s4

S; [z 7→ ch2] s1, c1; c2 ⇓ s4

S; [z 7→ ch1] s1, bind/1 z to ch2 in c1; c2 ⇓ s4 S; [z 7→ ch1] s4, c3 ⇓ s5

S; [z 7→ ch1] s1, (bind/1 z to ch2 in c1; c2); c3 ⇓ s5

Figure 7.2: Nested one-shot signal binding

7.1 Operational Semantics Example

It is not a problem to override the persistent signal and the corresponding handler in

the big-step operational semantics. Assume that the signal binding S already contains

z, such that S(z) = ch1. If deeper in a tree, a command for the signal binding of z to

another handler is called, we get S [z 7→ ch2]. In both places we have z ∈ dom(S), but z is

bound to the different handlers. That perfectly complies with the idea of block structures.

Moreover, when a control flow returns from a brunch with the updated handler for z, the

previous binding for z is restored as shown in the Figure 7.1.

With the one-shot signals we observe the following situation in Figure 7.2. Assume

that the one-shot binding is split between two branches. Deeper in the first branch the

one-shot signal with an existing name (let’s call it z) is installed. If signal arrives after

it, a newly bound handler will be executed and the signal name will be removed from

the binding. When the control flow leaves a block where the last signal was bound, the

previous binding is restored. This actually means that the one-shot signal binding is

reinstalled.

120

S [z 7→ cg]; ∅ s1, c1 ⇓ s2 S [z 7→ cg](z) = cg S; ∅ s2, cg ⇓ s3

S; ∅ s1, bind z to cg in c1 ⇓ s3

S [z 7→ ch]; ∅ s1, block z in (bind z to cg in c1) ⇓ s3

S [z 7→ ch]; ∅ s1, b ⇓ s3 S [z 7→ ch](z) = ch S; ∅ s3, ch ⇓ s4

S; ∅ s1, bind z to ch in (block z in (bind z to cg in c1)) ⇓ s4

Figure 7.3: Persistent signal binding scope

∅; [z 7→ cg] s1, c1 ⇓ s2 [z 7→ cg](z) = cg ∅; ∅ s2, cg ⇓ s3

∅; ∅ s1, bind/1 z to cg in c1 ⇓ s3

∅; [z 7→ ch] s1, block z in (bind/1 z to cg in c1) ⇓ s3

∅; [z 7→ ch] s1, b ⇓ s3 [z 7→ ch](z) = ch ∅; ∅ s3, ch ⇓ s4

∅; ∅ s1, bind/1 z to ch in (block z in (bind/1 z to cg in c1)) ⇓ s4

where b = block z in (bind/1 z to cg in c1)

Figure 7.4: One-shot signal binding scope

At first glance it might seem that the idea of one-shot signals is violated in this exam-

ple, because a handler with the same name could run twice in this situation. However,

from the perspective of the block structuring (scoping), it is a proper behaviour. When

the binding command had been invoked, a new block was formed. Thus, the signal

z was handled according to the binding of its current block. Opposite to the binding

command, which creates a scope where the corresponding signal exists (bound to a han-

dler and an element of the signal binding), the blocking command defines a scope where

corresponding signal is blocked (literally excluded from the signal binding).

We may apply the uniqueness restriction for the signal binding in operational seman-

tics. For the example in the Figure 7.3, we have to assume that initially z /∈ dom(S)

and b = block z in (bind z to cg in c1). Example with the one-shot signals is given in

Figure 7.4.

121

Σ, z : Iz . Iz ` {P1} c1 {Q} Σ ` {Iz} ch {Iz}

I1 stable Iz . Iz

Σ ` {P1 ∧ Iz} bind z to ch in c1 {Q ∧ Iz}

Σ ` {P1 ∧ Iz} bind z to ch in c1 {Q ∧ Iz} Σ ` {Q ∧ Iz} c2 {P3}

Σ ` {P1 ∧ Iz} (bind z to ch in c1) ; c2 {P3}
where Σ = z1 : I1 . I1

Figure 7.5: Nested signal binding

Σ, z : Ig . Ig ` {P} c1 {Q} Σ ` {Ig} cg {Ig}

Σ stable Ig . Ig

Σ ` {P ∧ Ig} bind z to cg in c1 {Q ∧ Ig}

P ∧ Ig stable Ih . Ih Q ∧ Ig stable Ih . Ih

Σ, z : Ih . Ih ` {P ∧ Ig} block z in (bind z to cg in c1) {Q ∧ Ig}

Σ, z : Ih . Ih ` {P ∧ Ig} b {Q ∧ Ig} Σ ` {Ih} ch {Ih} Σ stable Ih . Ih

Σ ` {P ∧ Ig ∧ Ih} bind z to ch in b {Q ∧ Ig ∧ Ih}
where b = (block z in (bind z to cg in c1))

Figure 7.6: Signal binding and blocking result in overriding

7.2 Logic Example

Whenever we apply a binding rule for the signal z, it is always restricted to the case

that z /∈ dom(Σ). Therefore, in the example in Figure 7.5, z 6= z1. In other words

z /∈ dom(z1 : I1 . I1).

In the example in Figure 7.6, an overriding is achieved by the combination of signals

binding and blocking. Assume that initially z /∈ dom(Σ) and that all required stability

assumptions hold.

122

CHAPTER 8

INTRODUCTION TO REENTRANCY

In this chapter we summarise the ideas behind reentrancy from various domains and

provide a glossary of the reentrancy related terms. One of the main contributions of this

chapter is addressing relations between reentrancy and other notions such as interrupted

signal handlers, thread safety, stability, locks and exception handlers.

Reentrancy is an important notion, but a definition for it, and in some sense attitude,

is highly domain dependent. For example, in Object Oriented Programming (OOP)

domain a lot of work has been done to develop various reentrancy detection systems,

and in some approaches authors go even further and propose the reentrancy elimination

techniques. In approaches towards verification, the reentrant calls could be classified into

consistent and inconsistent calls, where an absence of the latter ones is desired. In the

domain of the hardware interrupts, reentrancy has also negative connotation, therefore

there are proposed techniques to prevent reentrancy of interrupts. At the same time, in

multithreading Operating Systems (OS) domain, reentrancy is tightly connected with the

notion of thread safety. Moreover, even in the single-threaded environment a reentrant

code (usually functions or procedures) is more preferable to nonreentrant one, as even in

the single-threaded environments a piece of code may not be atomic.

Reentrancy might have different meaning in every domain, and could be related to

various concepts such as interrupts, thread-safety and atomicity. One of the goals in our

work is to summarise ideas of reentrancy from various domains, and try to propose some

basic and general definition. Thus, we had to check the literature in this domain first.

123

8.1 Reentrancy in OOP

In OOP, the reentrancy of a call on the object could be explained in the following way.

Assume an object has a few methods. When one of the methods called, a code inside that

method non-directly or directly calls another (or the same) method of the same object.

The second method call in these circumstances is called a recursive call. This definition

does not say anything about the number of threads, but still, it is quite important to

know how it is interrupted or where the second method comes from, as the interrupting

method call could come from the same thread, or from another concurrent one.

8.1.1 Short Literature Observation

The reentrancy could be defined via graphs [68]. There is a notion of object race, which

is not an equivalence to a data race, but it is its prerequisite. A part of the race de-

tection analysis is actually a reentrancy analysis (another part is a lock analysis). The

relation between object and object calls could be represented via graphs. Therefore,

when we talk about reentrancy or nonreentrancy in this approach, technically we mean

reentrancy/nonreentrancy of edges of the object graph. Nonreentrancy is important for

the object race analysis, as it indicates that the execution of events in two threads does

not yield to the object race. Idea it that if an edge is not reentrant, then two threads

must not execute events on that edge.

Reentrancy in OOP could be defined without graphs, but still points-to graphs are

used for the reentrancy analysis [29]. One may say that the author performs reasoning in

terms of the modules, as concepts of combination and inclusion of the modules is one of

the main ideas. Therefore, for better understand of this work one should first understand

the notion of modules.

When the same class or block of code is included to more than one program, then

there is possibility of a reentrant call. The notion of a stack is used in analysis and

definitions. An object is called active in a particular state, if the stack in that state

124

contains a frame for this object. To be precise, a frame, where that object is a receiver

of the method call. In other words, an object is called active in a state if there is an

active method call on it. According to [29], an object is consistent, if its invariant holds,

and inconsistent otherwise. A method call is reentrant on an object, if the call stack

already contains a method invocation on that object. Author calls the method invocations

reentrant on an object, whenever any method invocation called while another invocation

is still registered in the stack. So, it shouldn’t be the same method, to call the method

invocation reentrant. Thus, reentrancy is defined with respect to the notion of the object,

but not the function/procedure. Identifying the reentrancy of calls is important for the

program validation and verification.

8.1.2 Example Scenarios

• Assume that the method of an object has access to the class global variable. One

can make an invariant on it. Code inside the method non-directly, avoiding plain

recursion, calls the same method on the same object (on itself). Thus, the second

method call is classified as a recursive call.

• An object has a few methods. When one of the methods called, a code inside that

method non-directly calls another method of the same object. Thus, the second

method call is also classified as a recursive call.

8.2 OOP and Multithreading

In OOP with multithreading, the focus moves from the interaction of objects and method

calls inside of the single thread, to interaction between two threads via method calls on

the same object simultaneously. Reentrancy could be addressed as a property of the

program executed in the multithreading environment. Moreover, some authors propose

an approach, where nonreentrant Java programs are converted into reentrant via replacing

the global state with the thread-local state and performing each execution in a new thread

125

[104]. Actually, authors deal with the reentrancy of external calls to API methods of a

program. That is not the same as recursive method calls internal to the program. One

may conclude that authors do not focus on a low-level (interrupts or self modifying code),

but focus on the user-level program running. It should be noted that the definition of

the low-level and up-level are highly domain dependent. A notion of reentrancy also has

a tight relation to the multicores. If the program is reentrant, as defined by [104], then

it can be run in parallel on multicore without concurrency control.

8.3 Multithreading as Part of the OS

In this section we focus on a definition of the reentrant procedure and Operating Systems

with multiple users support. One of the definitions of reentrancy via a definition of the

reentrant procedures in operating systems is as follows. “A reentrant procedure is one

in which a single copy of the program code can be shared by multiple users during the

same period of time.” [90]. There are few obligations to achieve procedure reentrancy.

The local data for every user should be stored separately and the program code shouldn’t

modify itself. The idea of the reentrant procedure is that it can be safely interrupted

by another program which calls the same procedure. Safety in this context means that

both procedures interrupted and interrupting will produce correct and reliable result as

if they were executed sequentially. According to the author [90], a reentrant code allows

an efficient use of memory, as only a single copy of the code is loaded and kept in the

main memory, while many applications can call that code or procedure.

In multithreaded Operating Systems, a concurrent thread scheduler manages threads

in the kernel [37]. It is called concurrent, because there may be multiple threads in the

system running the scheduler code at the same time. A thread scheduling itself might be

implemented as a separate thread that runs concurrently with other threads in the kernel.

One shouldn’t forget about the context switch between the threads. One thread might

be preempted while executing a routine, then another thread will call the same routine

126

or start using the same resource (e.g.: queue). When the interrupts are introduced, the

non-reentrancy of the interrupts is ensured via the special flag or register. The interrupt

service routines (ISR) could be executed in the separate threads. The context of the

previously running thread should be stored before the ISR and restored afterwards.

A reentrancy of threads is related to the thread safety, as when one thread is inter-

rupted, via an explicit interrupt or a thread manager, and another thread starts running,

it may result in a situation when the block of code runs inside of itself (interrupted

copy). If the thread is interrupted actually by the interrupt, then ISR should run. In

some implementations it runs in a separate thread, but still a non-reentrancy of the ISR

is enforced, and no other threads’ context is loaded until ISR returns.

8.3.1 Reentrant Kernels

According to [11], “All Unix kernels are reentrant”. Therefore, several processes may

be executing in Kernel Mode simultaneously. Nonreentrancy of the kernel means that a

process can only be suspended while it is in User mode. To achieve a reentrant kernel only

the reentrant functions should be used, or alternatively the locking mechanism should be

used to ensure that only one process executes a nonreentrant function at a time.

8.4 Event-Driven Programming

Literally, an event is a common name for both hardware interrupts and signals, which

are also known as software interrupts. In the domain of event-driven programs, exists an

event enabling/disabling mechanism that might be considered as an alternative to the

blocking mechanism designed in our work.

According to the authors who work in the domain of event driven programming, the

”events have been viewed by many researchers as alternative to threads” [38]. That is

rather challenging statement, and studying reentrancy in the domain of the event driven

programming could be one of the directions for future work.

127

8.5 Reentrant Locks

The idea of the reentrant locks is that they can be acquired multiple times by the same

thread without blocking [104]. The reentrant locks may lead to the data races and dead-

locks. Nevertheless, the correct usage of them facilitates the concurrent programming.

For example, keeping track of locks that are used by any particular thread facilitates the

verification that resources, which are associated with the locks, remain available even

after multiple lock acquisition by the same thread [39]

8.6 Objective C

According to the Apple Concurrency Programming Guide, a reentrant code is the

code that can be started on a new thread safely while it is already running on another

thread” [49]. An OS X Glossary [48] covers the notion of a reentrant functions in the

following way. “Said of code that can process multiple interleaved requests for service

nearly simultaneously. For example, a reentrant function can begin responding to one

call, be interrupted by other calls, and complete them all with the same results as if the

function had received and executed each call serially.”

The Objective C inherits signal handling mechanism from the BSD. However, an

alternative mechanism on the higher level is proposed. The Grand Central Dispatch

(GCD) mechanism is a proposed alternative to the threads. GCD also provides a handling

mechanism for events (signals) on a higher level. By our classification, only the one-shot

signals, which are implemented via queue, were adopted, what simplifies and in some

cases eliminates the reentrancy problems.

8.7 Glossary of the Reentrancy Related Terms

This section combines various definitions of reentrancy and reentrant functions, method,

procedures, routines, programs, locks and etc.

128

reentrant code is the code that can be started on a new thread safely while it is already

running on another thread [49].

reentrant (code) can process multiple interleaved requests for service nearly simulta-

neously. For example, a reentrant function can begin responding to one call, be

interrupted by other calls, and complete them all with the same results as if the

function had received and executed each call serially [48].

reentrant functions One way to provide reentrancy is to write functions so that they

modify only local variables and do not alter global data structures. Such functions

are called reentrant functions [11].

reentrant (function) A function is reentrant when it is possible for it to be called at

the same time by more than one thread. This implies that any global state be

protected by mutexes. Note that this term is not used uniformly and is sometimes

used to mean either recursive or signal-safe. These three issues are orthogonal. [61,

p. 367]

reentrant function A function is said to be reentrant if it can safely be simultaneously

executed by multiple threads of execution in the same process. In this context,

’safe’ means that the function achieves its expected result, regardless of the state

of execution of any other thread of execution [56, p. 423].

The SUSv3 definition of a reentrant function is one “whose effect, when called by two or

more threads, is guaranteed to be as if the threads each executed the function one

after the other in an undefined order, even if the actual execution is interleaved.”

reentrant function A reentrant function is one that can be used by more than one

task concurrently without fear of data corruption. A reentrant function can be

interrupted at any time and resumed at a later time without loss of data. Reentrant

functions either use local variables or protect their data when global variables are

used [54].

129

reentrant function A reentrant function can also be called simultaneously from mul-

tiple threads, but only if each invocation uses its own data [80].

reentrant function Does not hold static data over successive calls. Does not return a

pointer to static data; all data is provided by the caller of the function. Uses local

data or ensures protection of global data by making a local copy of it. Must not

call any non-reentrant functions [54].

non-reentrant function A non-reentrant function is one that cannot be shared by more

than one task unless mutual exclusion to the function is ensured either by using a

semaphore or by disabling interrupts during critical sections of code [54].

non-reentrant function a function that have static variables or that modify global

variables or resources without any sort of locking mechanisms [27].

reentrant kernel But a reentrant kernel is not limited only to such reentrant functions

(although that is how some real-time kernels are implemented). Instead, the kernel

can include nonreentrant functions and use locking mechanisms to ensure that only

one process can execute a nonreentrant function at a time.

All Unix kernels are reentrant [11].

reentrant program Let an execution of a program P be any external invocation of

P , e.g., running P ’s main method or invoking a public API method from P . A

program P is reentrant iff for any two executions ei and ej of P such that ei and

ej have no mutable shared inputs (. . .), the results of ei and ej are unaffected by

how the executions are ordered, including parallel interleavings [104].

reentrant lock The reentrant locks can be acquired multiple times by the same thread

without blocking [104].

The reentrant locks may lead to the data races and deadlocks. However, the correct

usage of them facilitates the concurrent programming [39].

130

reentrant program A program is reentrant if distinct executions of the program on dis-

tinct inputs cannot affect each other, whether run sequentially or concurrently [104]

reentrant procedure A useful concept, particularly in a system that supports multiple

users at the same time, is that of the reentrant procedure. A reentrant procedure is

the one in which a single copy of the program code can be shared by multiple users

during the same period of time. Reentrancy has two key aspects: the program code

cannot modify itself and the local data for each user must be stored separately. A

reentrant procedure can be interrupted and called by an interrupting program and

still execute correctly upon return to the procedure. In a shared system, reentrancy

allows more efficient use of main memory: one copy of the program code is kept in

main memory, but more than one application can call the procedure [90].

reentrancy Reentrancy refers to a function’s capability to work correctly, even when

it’s interrupted by another running thread that calls the same function. That is,

a function is reentrant if multiple instances of the same function can run in the

same address space concurrently without creating the potential for inconsistent

states [27].

reentrant event Blocking, Preemption, Nesting, and Reentrancy. Contrarily to the

threads, event handlers cannot block so they run to completion except when pre-

empted by another event handler. Events have an asymmetric preemption relation

with the non-event code: event handlers can preempt non-event code but not the

contrary. Events are nested when they preempt each other. Nesting events are used

to allow time-sensitive events to be handled with low latency. An event is said to

be reentrant when it directly or indirectly preempts itself [38].

reentrant method call A method call is re-entrant on an object o, if the call stack

already contains a method invocation of the method on object o. A re-entrant call

furthermore is inconsistent, if the object o is not consistent at the re-entrant call

site. An object o is active in a particular execution state, if the state contains a stack

131

frame where o is the receiver object of the method call. An object is consistent, if

its invariant holds [29].

async-signal safe function a function is async-signal safe if it can be safely called from

within a signal handler [87].

A function may be async-signal safe in one implementation, and not async-signal

safe in others. Thus, the async-signal safety is highly implementation dependent.

asynchronous-safe function (asynchronous-safe sometimes referred to as async-safe,

or signal-safe) An asynchronous-safe function is a function that can safely and

correctly run even if it is interrupted by an asynchronous event, such as a signal

handler or interrupting thread. An asynchronous-safe function is by definition reen-

trant, but has the additional property of correctly dealing with signal interruptions.

Generally speaking, all signal handlers need to be asynchronous-safe. [27]

thread-safe function A thread-safe function can be called simultaneously from multi-

ple threads, even when the invocations use shared data, because all references to

the shared data are serialized [80].

thread safe function A function is said to be thread-safe if it can safely be invoked

by multiple threads at the same time; put conversely, if a function is not thread-

safe, then we can’t call it from one thread while it is being executed in another

thread [56, p. 655].

. . . a function is not thread-safe: it employs global or static variables that are shared

by all threads [56, p. 656].

reentrant service A service that is safe to call from multiple threads in parallel. If a

service is reentrant, there is no burden placed on calling routines to serialize their

access or take other explicit precautions. See also thread-serial service, and thread-

synchronous service. IBM Glossary: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/

index.jsp?topic=/com.ibm.aix.glossary/doc/glossary/glossary02.htm

132

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.glossary/doc/glossary/glossary02.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.glossary/doc/glossary/glossary02.htm

8.8 Towards New Definition and Glossary

One may divide the concept of reentrancy in two parts: literal re-entering of the function

or code to itself and re-accessing of the resource already held by the function or code.

Actually, there is no problem if a function is interrupted by itself or in other words re-

enters itself, unless both instances share the same global variable. Thus, an explanation

of reentrancy in OOP domain looks more precise and detailed. If reentrancy happens,

it does not mean that everything breaks without further investigation. Therefore, a

classification of reentrancy into good (safe) and bad (unsafe) sounds reasonable.

We try to provide a glossary for the terms that are used by programmers and ratio-

nalize them in terms of theory and language we have designed. First of all, inconsistency

is not a property of the state s, but a relation between a state and a resource invari-

ant. A state is consistent if it satisfies the invariant, s |= I. Second, reentrancy is a

special case of indirect recursion that is nondeterministic via signal handlers. And third,

async-safety and reentrancy are related but different; async-safety could be achieved by

enforcing reentrancy or blocking of the signals.

8.9 Comparison of the Reentrancy in OOP and Pro-

cedural Paradigms

Object in OOP is a mutable state with a set of methods that can modify the state

(Figure 8.1). When the issue of reentrancy is raised, usually, the reentrancy of method

calls is meant. The reentrancy of method call occurs, when from an active method call

on object another method of that object is called. That could be a direct or non direct

call. One may ask, why is it called reentrant even if not the same method is actually

called? Such thought are influenced by the notion of reentrancy from the procedural

languages, where for reentrancy to happen, a function should re-enter itself (Figure 8.2).

It should be noted that reentrancy is not a property of a function or code, it is a relation

133

state
I

I

Figure 8.1: Method calls and returns

f
f

I

I

Figure 8.2: Function reenters function

and resource sharing influences the reentrancy.

Thus, in procedural language, when we say a reentrant function it means that con-

current execution of that function will not corrupt the resource for any instance of that

function [56, 11, 27]. That could be expressed using invariants. A reentrant function

does not invalidate an invariant initialised for some shared resource. It could be noted

that invariant could be violated inside of the function, but should be restored before re-

turn. Same idea could be used to understand the reentrancy of method calls in OOP. An

invariant should be initialised before the method call, and should be expected to remain

valid on return from the method call. We should think of an object as of a resource, and

not focusing on the inner structure of it. Then it becomes clear, why for the reentrant

method call it is not limited for calling itself only. When a method call runs on an object,

and then directly or indirectly calls another method of the same object, a second method

call re-enters the object.

Despite this huge similarity, there are some differences as well. In procedural lan-

guages, a function could be reentrant or not reentrant. That is already enough to un-

derstand that if a reentrant function is interrupted via signal handler by another call of

the same function, everything remains in a consistent state. For sure, for the sake of this

example, it is assumed that the signal handler does not modify any global state. We can

134

assume that the signal handler consists of one reentrant function only. In OOP, a fact

of the reentrant method call on an object does not infer that the object remains in a

consistent state or not. Therefore, the reentrant method calls are divided into consistent

and inconsistent reentrant calls [29]. Shortly, if a reentrant method call invalidates an

invariant, it is called inconsistent.

8.9.1 Invariants

Instantiation of invariant for method call on object looks easier comparing to the function

or procedure. Programmer can see the inner structure of the object (its fields - its state),

if the source code is available. For the procedures, it is even not obvious, if the reentrancy

exists and at what level does it happen; thus, instantiation of a proper invariant may

need much more efforts. Instance of an object encapsulates a state inside, and reentrancy

(re-enter of functions or re-access by functions) is defined with respect to the object’s

state. In procedural languages, reentrancy of a function code itself does not represent

much. More importantly, if deeper in a chain of function calls, some global variable

(resource) is used.

8.9.2 Reentrant Call From an Inconsistent State

A consistency of the state is a relation between an invariant and the state. If the invariant

holds in a particular state, then it is called a consistent state, and vice versa. In terms

of OOP, when the reentrancy of method calls happens in the inconsistent state, then the

reentrancy is inconsistent (bad).

One may ask the following question: “How is the notion of consistent reentrancy

related to the interrupter and interrupted method or function?” Save-restore is a known

technique to achieve reentrancy in some cases. This technique is straightforward and

details are as follows: when interrupted function resumes its execution, all linked resources

should remain in the same state, or invariant that was instantiated before interruption

should hold. Use of invariants, for example some variable should remain positive, gives

135

us more freedom and flexibility.

Before we call a method (function) we instantiate an invariant, that holds just before

the call. That invariant could be violated in-between of call and return, but it should

be valid on return. Assume that the method is interrupted when invariant does not

hold (inconsistent state), that is the case of inconsistent reentrancy. Assume that the

interrupter restores all linked resources on return, thus for the interrupted method that

was just a pause. However, interrupter started its execution in the inconsistent state. So

it did not corrupted the interrupted method call, but it used inconsistent data as input

for its own execution; thus, whatever result was produced, it is not reliable.

TOCTTOU (time of check to time of use) is a similar class of problems that should

be described. It is a next example for the problematic situation described above. In

TOCTTOU, the interrupter in some cases may be considered as unaffected participant.

Where the interrupted procedure is no longer reliable or consistent after it resumes.

An artificial example of badly encoded database transactions is given below. Assume

we have a function (method) that encapsulates a balance check and if there is enough

money withdraws them from the account. First instance of a function starts its execution,

performs a balance check, and after ensuring that there is enough money wants to call

money withdraw sub-procedure. However, it is interrupted and another instance of this

function checks balance and withdraws money. Then the first instance of a function

resumes its execution and performs another withdraw, potentially making a negative

balance.

Noteworthy, that the save-restore technique doesn’t achieve reentrancy for both callers

in some circumstances. Thus, this technique is just a mitigation, as it potentially can

achieve a reentrancy for one participant only.

136

8.10 Reentrant and Interrupted Handlers

From the implementation point of view, the signal handler is just a function. Being a part

of the OS architecture, imposes some restrictions and limitations. Creating a reentrant

signal handler might be hard. It should be noted, that reentrancy here has a meaning that

another instance of the same handler (function) re-enters itself. Therefore, in most Unix

based system a signal that caused a signal handler to run is implicitly (automatically)

blocked inside of the handler. Thus, reentrancy of a signal handler with respect to itself

is avoided.

That may create a false feeling of a safety: as reentrancy of the same handler is for-

bidden, the signal handler need not to be reentrant [11]. The signal handler interruption

by other signals is not forbidden. Technically (according to the current notation in the

literature), such interruption is not a case of reentrancy of two distinct handlers. How-

ever, directly or indirectly (via another function call) two distinct signal handlers may

share the same resource. For example, errno global variable. Thus, two distinct signal

handlers actually re-enter the same state.

Keeping this renewed notion of reentrancy in mind, we may conclude that for every

non-blocked signal its handler should be reentrant with respect to all other non-blocked

signals’ handlers. Means that the handlers should not share directly or indirectly any

resources with each other. In practice, it might be very hard to achieve; in other words

just unfeasible. Therefore, one may try to adopt invariants to address reentrancy. And

the definition of the reentrancy could be modified a bit (inspired by reentrancy in OOP).

We may break a tight connection between reentrancy implies safety (current definition

in procedural languages). Then, we will divide reentrancy in safe and unsafe. e.g.: two

functions re-enter a state, thus, it is a case of reentrancy. Is it safe or unsafe depends on

what they do with that state: modify or just read?

Here come the invariants. Let’s consider a simple scenario. When the handler (func-

tion) is interrupted, an invariant with respect to the shared variable should be instanti-

137

ated. Another signal handler runs, and on its return that invariant is validated. If the

invariant holds, that is the case of a safe reentrancy, otherwise unsafe.

8.11 Reentrancy and Thread-Safety

Discussion in this section is inspired by “Writing Reentrant and Thread-Safe Code” by

IBM http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.genprogc/doc/

Reentrance and thread safety are both related to the way that functions handle re-

sources. Reentrance and thread safety are separate concepts: a function can be either

reentrant, thread-safe, both, or neither [54].

A thread-safe function protects shared resources from concurrent access by locks.

Thread safety concerns only the implementation of a function and does not affect its

external interface. There are several methods to make a function thread safe. First of

all, one may associate a lock with a function or group of functions, which operate with

the same resources. Thus, when the function is called, a lock will be acquired, and on

function return the lock will be released. That is very straightforward approach that has

its limitations such as only one thread at a time may use the function. Therefore, in

most critical situation (if that function is a big chunk of the program) all threads will

operate almost sequentially, what definitely contradicts the idea of multithreaded and

parallel program execution. More advance method is to associate the lock not with the

whole function, but only with its critical sections that operate with some shared variable.

Thus, the lock will be obtained and released only during work in the critical sections.

Consequently, most of the time parallel threads would not wait for each other, and wait

only if more than one thread are in critical section and requested the lock. “Thread-

specific data” or “Thread-local storage” are another methods that makes a function

thread-safe without changing its interface. The rough idea behind these techniques is

to use only memory that is local to the thread. Surprisingly, that includes even static

and global memory, but which is made local (to be more precise, part of it made local)

138

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.genprogc/doc/

for the particular thread. For more detail on thread-specific data please see “PThreads

Primer”[61] by Lewis et. al.

There are functions that by definition are nonreentrant, because they operate with (or

return the) pointers to statically allocated storage, or just use static storage to keep some

information between multiple function calls. Finally, the most efficient way of making a

function thread-safe is to make it reentrant, as reentrant functions do not require locking

mechanism to achieve thread safety [56].

According to the documentation of a Qt project [80], a thread-safe function can

be called from multiple threads simultaneously, even when the shared data is used by the

invocations, because all references to the shared data are serialized, where a reentrant

function can be called from multiple threads simultaneously, only if no data is shared

among invocations.

Comparing Qt to the IBM documentation, thread safety and reentrancy is not tightly

related, as extra conditions should be explicitly satisfied. A function could be thread-safe

but not reentrant. A reentrant function could be thread safe with some extra conditions

such as each invocation uses its own data. Where according to the IBM documentation,

for a function to be reentrant implies that it is thread-safe as well.

8.12 Relation Between Stability and Reentrancy

In this section we try to answer the following question. Do stability assumptions implicitly

guarantee reentrancy?

Σ pairstable means that any signal from the dom(Σ) does not invalidate invariants,

preconditions or postconditions of other signals from the dom(Σ). Thus, any signal

handler may be interrupted by another one in a safe way, for all z such that z ∈ dom(Σ).

Therefore, we may conclude that all signal handlers (∀z. s.t. z ∈ dom(Σ)), are reentrant

with respect to each other and invariants they hold. Please note, that the Definition

of Σ pairstable does not cover the case when the signal handler for z is interrupted

139

by itself. However, two identical signal handlers could be bound to two different signal

names; thus, when one of them is interrupted by another one and Σ pairstable, then

that handler is indirectly reentrant to itself. Therefore, when we assume Σ pairstable

in our logic, we restrict all signals in dom(Σ) to be reentrant with respect to each other.

We are talking about signal handlers’ reentrancy, and our invariant is instantiated at

the beginning of the handler and validated on its return. So, it is a bit more abstract level

than functions, procedures or their inner structure. However, technically, signal handlers

remain being plain functions.

Two signal handlers may call the same library function that is known to be non-

reentrant. They may use a locking mechanism to call that function, but the risk of

a deadlock becomes very high if main program also calls that non-reentrant function.

Blocking all of the signals, while calling non-reentrant function, is an alternative, but it

may impair the performance. Saving the affected resources before and restoring them

after the non-reentrant function call, could be a solution in some cases (e.g. reporting

error with errno), but definitely it is not a silver bullet.

Achieving reentrancy of a function with respect to itself is not easy, and it becomes

even harder if that function is a signal handler, as locks are dangerous.

8.13 Locks, Reentrancy and Signal Handlers

It should be clarified, what kind of locking mechanism we keep in mind while addressing

signal handling. Locks in a multithread environment and locks in a single thread have

subtle difference. The latter kind is extremely dangerous for usage inside of the signal

handlers.

Signals arrive nondeterministically, so the signal handlers might be called at any time

of the program run, no matter whether a thread holds a lock or not. Assume a single

threaded program with enabled signals handling mechanism. Both the program and the

signal handler operate with the same resource lock. If a program (thread) acquires a

140

lock and then a signal arrives, which triggers the signal handler, that will result in a

deadlock. The signal handler cannot proceed, as it is waiting for a lock that should be

released by the program, but the program cannot release the lock and proceed either, as

it is interrupted by the signal handler and wait until it returns.

Thus, calling locks from a signal handler is not recommended. However, the following

workaround could be used. A signal handler may just spawn a new thread, which contains

all the required logic including lock acquisition, and immediately return. So the main

thread of the program would not be blocked for a long time and could continue as soon

as the signal handler returns. As a result, we get two threads that will compete for

the resource in parallel, but the danger of the deadlock is eliminated. If the first thread

acquires the lock, the second thread will block on attempt to get the same lock, but when

the first thread returns the lock, the second thread continues.

Another example comes from the Multithreaded Programming Guide by Oracle

http://docs.oracle.com/cd/E19253-01/816-5137/gen-26/index.html,

which describes a similarity between thread safety and asynchronous-signal safety. The

problems of asynchronous-signal safety arises when the operation of a signal handler

interfere with the executing operation that is being interrupted. Assume that a program

called a function printf() that has not completed and returned yet. Then, due to

a received signal, a signal handler is called that also calls the function printf(). As

a result, with high probability an output of two simultaneously calls of the function

printf() would be intertwined. As we learned from the previous example of this section,

such problem cannot be mitigated with locks (an example of synchronisation primitives),

as syntonisation between the signal handler and the corresponding interrupted thread

with locks will quickly result into a deadlock. Thus, to avoid interference between the

thread and the signal handler, one should not use synchronisation primitives, but, for

example, block signals with signal mask or call only asynchronous-signal safe functions

form the signal handlers.

To avoid interference between the handler and the operation, ensure that the situation

141

http://docs.oracle.com/cd/E19253-01/816-5137/gen-26/index.html

never arises. Perhaps you can mask off signals at critical moments, or invoke only Async-

Signal-Safe operations from inside signal handlers.

8.14 Signal and Exception Handlers

In the current real-life implementations, exceptions have higher priority over signals.

However, in some cases exceptions could be implemented via signals. That shifts a focus

of the discussion to another question: priority within signals. In our language, we consider

exceptions as a separate construct that resembles signals but nevertheless different. The

priority of exceptions over signals in real-life implementations is influenced by the fact

that exceptions usually indicate that some error happened (e.g.: memory corruption) and

further calculations with high probability are no longer reliable or just impossible due to

hardware fault. Our semantics and logic can support both models (priority of the signals

or priority of the exceptions) after minor modifications, but we stick to the convention

accepted in the real-life implementations. Also, both exception and signal handlers are

represented via functions or commands in our language

8.15 Summary and Discussion

To avoid clashes, during executions of the non-reentrant code, all interrupts (signals)

should be blocked. However, non-interruptible code is dangerous in a way that if it

loops, it can’t be interrupted. Therefore, the non-interruptible signal handlers should

not contain process sleep, wait or freeze kind of commands.

For a function to be reentrant, it shouldn’t call nonreentrant functions. For a kernel

to be reentrant, all processes should deal with non-reentrant functions via lock, or use

only reentrant functions. For a handler to be reentrant, it shouldn’t contain nonreentrant

code or calls to the nonreentrant functions. So, can we use locks in the handlers to deal

with the nonreentrant code, analogous to the approach used for kernels? At least in the

Linux, we cannot reliably call mutex locks and unlocks from the signal handlers. Assume

142

that the signal arrives while a thread holds the lock. If the signal handler tries to acquire

the same lock, it fails, as the lock is held by the thread. Thus, they result in a deadlock,

as the signal handler will wait for a lock, while the thread will wait until the handler

returns to proceed and to free the lock.

A few scenarios of the signal handling should be considered. In first scenario, all

signals are blocked in the signal handler, thus they are uninterruptible. In the second,

only the same signal is blocked, thus it cannot interrupt itself, but it is interruptible by

other signal handlers. And in the third scenario, no signals are blocked. According to the

literature (e.g.:[11]), the signal handlers in the first and the second scenarios need not to

be reentrant, where in the last one they should be reentrant. Some authors [27] mention

the danger of the second scenario though. Also, the GNU libc documentation [34] warns

that if not all signals blocked then they shouldn’t call nonreentrant functions or modify

global data. What if in the second scenario, two handlers call the same nonreentrant code?

Thus, when one handler interrupts another one (assume both handlers are different, but

call the same nonreentrant function), the same nonreentrant code may re-enter itself.

143

CHAPTER 9

REENTRANCY LINEAR TYPE SYSTEM

In this chapter we extend our language with local variables and functions to study reen-

trancy. Then we define a Reentrancy Linear Type System and extended logic which is

used to address programs with reentrant and nonreentrant functions. First of all, the

extended logic with RLTS could be used to verify whether a function is reentrant or not.

And the key contribution is that it could be used to verify a program whether it is safe

to use nonreentrant functions in it or not.

There are two strategies one can adopt while designing a language. One may design a

semantics that will prevent unsafe situations; thus, following this approach a safe language

could be designed. Alternatively, a semantics may describe an unsafe language, where

a bad coding practice will result in a critical situations such that memory corruptions,

faults or errors. This is rather philosophic question, to decide at what level the safety of

a language should be achieved. Should the language try to “defend” itself, or should the

programmer follow the acceptable code practices, so as an output one will get a program

that wouldn’t fail during the runtime.

We pick the second approach, so our operational semantics, despite being idealized

up to some limit, reflects the real-life implementations. Therefore, we aim to contribute

a logic (type system), using which one may statically analyse the code and predict that

the program will run as expected or finish in an error state. However, we also designed

several pieces of the operational semantics that try to prevent faulty situations. We used

it for better understanding of the interaction between signals and functions; and as a first

144

step towards studying reentrancy. One can use this semantics to design a safe language

with functions, exceptions and signals.

A question of reentrancy is not limited to the persistent signals only, as the one-shot

signals interfere with a code of the main program. Thus, the reentrancy of a function

may occur when the signal handler or the main program code is interrupted by a signal

handler. It could be the same or completely different signal, as various signal handlers

may call the same nonreentrant functions. We call a signal handler reentrant if it calls

reentrant functions only. We call a signal handler nonreentrant, if it calls at least one

nonreentrant function.

The sharing that is problematic concerns the resource that the non-reentrant func-

tions access, not the functions themselves. For example, malloc and free are different

functions accessing the same resource, the free list. Non-async-safe functions are a lin-

early used resource in one-shot signal handlers. The specification of library functions

does not necessarily tell us what the shared resource is that a non-safe handler accesses.

The specification tells us whether the function is async safe. Even if signal handlers

are not interruptible, a non-safe function could have been called by the main program,

interrupted by a signal handler, and then called by the handler again. Async-safety and

reentrancy are related but different. Async-safety could be achieved if all used functions

are reentrant or all signals are blocked.

It should be noted that even async-signal safe functions deal with errno in non-

reentrant way [56]. Thus, one can conclude that async-signal safe functions are not

completely safe if error handling mechanism is considered as part of that functions.

9.1 Language with Functions and Local Variables

A reentrant-safe self-interruption of signal handlers imposes strong restrictions on what

can be done inside of a handler. Commands modify a global state; thus, for a code to

make something useful in such restrictive conditions, the local state should be introduced.

145

Therefore, we introduce functions in our language, as they have local variables and the

same time have access to the global variables.

Local variables declaration is of the form

local y1, . . . , yn in c

Here y1, . . . , yn are the local variables and c is the command, in scope of which local

variables are defined. Each function declaration is of the form

fun f () = cf in cB

Here f is the name of a function, cf is the body of the function, and cB is the command,

in scope of which the function f is defined. Finally, the function bindings are stored in

a function context F that is of the form

[f1 7→ c1], . . . , [fn 7→ cn]

and the general rule of the function binding and the function context extension is of the

following form

F [fj 7→ cj] s1, cB ⇓ s2

F s1, fun f1 () = c1 in . . . fn () = cn in cB ⇓ s2

where j has the next range 1 ≤ j ≤ n.

We define a big-step semantics for a language with function calls and local variables

in Definition 9.1.1. The big-step rules for operational semantics are given in Figure 9.2,

Figure 9.3 and Figure 9.4.

Definition 9.1.1 The syntax of the language is given in Figure 9.1.

146

Commands

c ::= whileEB do c (while construct)

| ifEB then c1 else c2 (if else construct)

| a (Atomic command)

| x := E (Assignment)

| x+ + (Increment)

| x−− (Decrement)

| c1; c2 (Sequential composition)

| local y1, . . . , yn in c (command with local variables)

| fun f () = cf in cB (Function declaration)

| f(); (Function call)

| fun f1 () = cf in . . .

fn () = cn in cB (Program run)

| throw e (Exception throwing)

| try cB handle e by ch (Exception handling)

| block z in c (Blocking of the signals)

| bind z to fz in cB (Binding of the persistent sign handler)

| bind/1 z to fz in cB (Binding of the one-shot sign handler)

Expressions

E ::= x (Variables)

| EI (Integer expressions)

| EB (Boolean expressions)

EI ::= n (Integers)

| EI + EI | EI − EI | . . . (Basic arithmetic operations)

EB ::= true | false (Booleans)

| EI ≤ EI | EI > EI | . . . (Basic arithmetic operations)

Figure 9.1: The syntax of the language

147

 s1, EB ⇓ true S;O1;F s1, c ⇓ s2 S;O2;F s2, whileEB do c ⇓ s3

S;O1 ∗O2;F s1, whileEB do c ⇓ s3

 s1, EB ⇓ true S;O;F s1, c ⇑ e, s2

S;O;F s1, whileEB do c ⇑ e, s2

 s1, EB ⇓ false

S;O;F s1, whileEB do c ⇓ s1

S;O;F s1 [pj 7→ 0], c [yj 7→ pj] ⇓ s2

S;O;F s1, local y1, y2, . . . in c ⇓ (s2 � dom(s1))

S;O;F s1 [pj 7→ 0], c [yj 7→ pj] ⇑ e, s2

S;O;F s1, local y1, y2, . . . in c ⇑ e, (s2 � dom(s1))

S;O;F [f 7→ cf] s1, cB ⇓ s2

S;O;F s1, fun f () = cf in cB ⇓ s2

S;O;F [f 7→ cf] s1, cB ⇑ e, s2

S;O;F s1, fun f () = cf in cB ⇑ e, s2

F (f) = cf S;O;F s1, cf ⇓ s2

S;O;F s1, f();⇓ s2

F (f) = cf S;O;F s1, cf ⇑ e, s2

S;O;F s1, f();⇑ e, s2

fz ∈ dom(F) S;O [z 7→ fz];F s1, cB ⇓ s2

S;O;F s1, bind/1 z to fz in cB ⇓ s2

fz ∈ dom(F) S;O [z 7→ fz];F s1, cB ⇑ e, s2

S;O;F s1, bind/1 z to fz in cB ⇑ e, s2

fz ∈ dom(F) S [z 7→ fz];O;F s1, cB ⇓ s2

S;O;F s1, bind z to fz in cB ⇓ s2

fz ∈ dom(F) S [z 7→ fz];O;F s1, cB ⇑ e, s2

S;O;F s1, bind z to fz in cB ⇑ e, s2

S − z;O − z;F s1, c ⇓ s2

S;O;F s1, block z in c ⇓ s2

S − z;O − z;F s1, c ⇑ e, s2

S;O;F s1, block z in c ⇑ e, s2

Figure 9.2: Big-step rules for operational semantics - Part 1

148

S;O1;F s1, cB ⇓ s2 S(z) = fz S − z;O2;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S(z) = fz S − z;O1;F s1, fz();⇓ s2 S;O2;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

O1 ∗O2(z) = fz S;O1 − z;F s1, fz();⇓ s2 S;O2 − z;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S;O1;F s1, cB ⇓ s2 S(z) = fz S − z;O2;F s2, fz();⇑ e, s3

S;O1 ∗O2;F s1, cB ⇑ e, s3

S(z) = fz S − z;O1;F s1, fz();⇓ s2 S;O2;F s2, cB ⇑ e, s3

S;O1 ∗O2;F s1, cB ⇑ e, s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇑ e, s3

S;O1 ∗O2;F s1, cB ⇑ e, s3

O1 ∗O2(z) = fz S;O1 − z;F s1, fz();⇓ s2 S;O2 − z;F s2, cB ⇑ e, s3

S;O1 ∗O2;F s1, cB ⇑ e, s3

S(z) = fz S − z;O;F s1, fz();⇑ e, s2

S;O;F s1, cB ⇑ e, s2

O(z) = fz S;O − z;F s1, fz();⇑ e, s2

S;O;F s1, cB ⇑ e, s2

Figure 9.3: Big-step rules for operational semantics - Part 2

149

s1, a ⇓ s2

S;O;F s1, a ⇓ s2

 s1, E ⇓ v

S;O;F s1, x := E ⇓ s1 [x 7→ v]

S;O1;F s1, c1 ⇓ s2 S;O2;F s2, c2 ⇑ e, s3

S;O1 ∗O2;F s1, c1 ; c2 ⇑ e, s3

S;O1;F s1, c1 ⇓ s2 S;O2;F s2, c2 ⇓ s3

S;O1 ∗O2;F s1, c1 ; c2 ⇓ s3

S;O1;F s1, c1 ⇑ e, s2

S;O1 ∗O2;F s1, c1 ; c2 ⇑ e, s2
S;O;F s1, throw e ⇑ e, s1

S;O;F s1, cB ⇑ e, s2 S;O;F s2, ch ⇓ s3

S;O;F s1, try cB handle e by ch ⇓ s3

S;O;F s1, cB ⇓ s2

S;O;F s1, try cB handle e by ch ⇓ s2

S;O;F s1, cB ⇑ e, s2 S;O;F s2, ch ⇑ e2, s3

S;O;F s1, try cB handle e by ch ⇑ e2, s3

S;O;F s1, cB ⇑ e2, s2 e2 6= e

S;O;F s1, try cB handle e by ch ⇑ e2, s2

 s1, EB ⇓ true S;O;F s1, c1 ⇓ s2

S;O;F s1, ifEB then c1 else c2 ⇓ s2

 s1, EB ⇓ true S;O;F s1, c1 ⇑ e, s2

S;O;F s1, ifEB then c1 else c2 ⇑ e, s2

 s1, EB ⇓ false S;O;F s1, c2 ⇓ s2

S;O;F s1, ifEB then c1 else c2 ⇓ s2

 s1, EB ⇓ false S;O;F s1, c2 ⇑ e, s2

S;O;F s1, ifEB then c1 else c2 ⇑ e, s2

Figure 9.4: Big-step rules for operational semantics - Part 3

150

9.1.1 Big-Step Rules in Detail

The present set of the big-step rules builds on the language presented in Chapter 3. To

keep the rules short, the exception convention is assumed implicitly.

Local variables

The local variables are replaced by a fresh location (p) that is initialised to 0 or false

depending on the required type (integer or boolean).

S;O;F s1 [pj 7→ 0], c [yj 7→ pj] ⇓ s2

S;O;F s1, local y1, y2, . . . in c ⇓ (s2 � dom(s1))

S;O;F s1 [pj 7→ 0], c [yj 7→ pj] ⇑ e, s2

S;O;F s1, local y1, y2, . . . in c ⇑ e, (s2 � dom(s1))

State limitation (s2 � dom(s1)) results into location cleanup. Thus, all local variables

that have been introduced during the state change to s2 are discarded, and only local

variables that had been introduced before state change from s1 to s2 remains.

Function declaration

S;O;F [f 7→ cf] s1, cB ⇓ s2

S;O;F s1, fun f () = cf in cB ⇓ s2

S;O;F [f 7→ cf] s1, cB ⇑ e, s2

S;O;F s1, fun f () = cf in cB ⇑ e, s2

We keep two separate rules for the local variables and the function calls. Therefore, the

rule for the function call doesn’t include state limitation (location clean up).

Function call of non-recursive functions

For the non-recursive functions, the running function is excluded from the function con-

text F .

151

F (f) = cf S;O;F−f s1, cf ⇓ s2

S;O;F s1, f();⇓ s2

F (f) = cf S;O;F−f s1, cf ⇑ e, s2

S;O;F s1, f();⇑ e, s2

Function call of recursive functions

For the recursive functions, the running function is not excluded from the function context

F in contrast to the non-recursive functions.

F (f) = cf S;O;F s1, cf ⇓ s2

S;O;F s1, f();⇓ s2

F (f) = cf S;O;F s1, cf ⇑ e, s2

S;O;F s1, f();⇑ e, s2

Signal binding and blocking

To bind a function fz as a signal handler for the signal z, a function context F should

contain the function fz. Therefore, we have fz ∈ dom(F) condition in binding rules. To

block a signal z, it is removed from the signal context S and O. See Figure 9.5.

Signal handling

In Figure 9.6, we consider three cases such as signal handlers are uninterruptible, partially

interruptible (cannot interrupt itself), and fully interruptible. One may observe, that

there is no difference in the last two groups of the rules for the ones-shot signal handling.

One-shot signals could be handled only once; thus, the one-shot signal handler cannot

interrupt itself, as it contradicts an idea of the one-shot signals in general. Examples of

the signal handling combinations with functions are given in Figure 9.7.

In Figure 9.8, we observe that the non-recursive function prevents the signal handlers

from calling itself. Despite the fact that the signal bindings are not restricted, this limi-

152

fz ∈ dom(F) S;O [z 7→ fz];F s1, cB ⇓ s2

S;O;F s1, bind/1 z to fz in cB ⇓ s2

fz ∈ dom(F) S;O [z 7→ fz];F s1, cB ⇑ e, s2

S;O;F s1, bind/1 z to fz in cB ⇑ e, s2

fz ∈ dom(F) S [z 7→ fz];O;F s1, cB ⇓ s2

S;O;F s1, bind z to fz in cB ⇓ s2

fz ∈ dom(F) S [z 7→ fz];O;F s1, cB ⇑ e, s2

S;O;F s1, bind z to fz in cB ⇑ e, s2

S − z;O − z;F s1, c ⇓ s2

S;O;F s1, block z in c ⇓ s2

S − z;O − z;F s1, c ⇑ e, s2

S;O;F s1, block z in c ⇑ e, s2

Figure 9.5: Signal binding and blocking

tation arise from the nature of non-recursive functions. Therefore, to address reentrancy

our language has to support recursive functions. The corresponding examples are given

in Figure 9.9.

According to the example in Figure 9.10, one may say that there is no explicit need

to support recursive functions, as by the nature of one-shot signals, a signal handler

cannot be executed twice. However, the next situation should be considered as well. The

same function could be bound to a few different signals. For example, see Figure 9.11.

Therefore, recursive functions are needed even for the one-shot signal handling.

Assignment

It is analogous to the rule defined in Chapter 3, but extended with a function context F .

 s1, E ⇓ v

S;O;F s1, x := E ⇓ s1 [x 7→ v]

153

Signal handlers are uninterruptible:

S;O;F s1, cB ⇓ s2 S(z) = fz ∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s3

S(z) = fz ∅; ∅;F s1, fz();⇓ s2 S;O;F s2, cB ⇓ s3

S;O;F s1, cB ⇓ s3

S;O − z;F s1, cB ⇓ s2 O(z) = fz ∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s3

O(z) = fz ∅; ∅;F s1, fz();⇓ s2 S;O − z;F s2, cB ⇓ s3

S;O;F s1, cB ⇓ s3

Signal handlers are interruptible, except by itself:

S;O1;F s1, cB ⇓ s2 S(z) = fz S − z;O2;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S(z) = fz S − z;O1;F s1, fz();⇓ s2 S;O2;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

O1 ∗O2(z) = fz S;O1 − z;F s1, fz();⇓ s2 S;O2 − z;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

Signal handlers are fully interruptible:

S;O1;F s1, cB ⇓ s2 S(z) = fz S;O2;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S(z) = fz S;O1;F s1, fz();⇓ s2 S;O2;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

O1 ∗O2(z) = fz S;O1 − z;F s1, fz();⇓ s2 S;O2 − z;F s2, cB ⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

Figure 9.6: Signal interruption

154

F (fz) = cz ∅; ∅;F−fz s2, cz ⇓ s3

∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s2 S(z) = fz ∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s3

F (fz) = cz S − z;O2;F−fz s2, cz ⇓ s3

S − z;O2;F s2, fz();⇓ s3

S;O1;F s1, cB ⇓ s2 S(z) = fz S − z;O2;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

F (fz) = cz S;O2;F−fz s2, cz ⇓ s3

S;O2;F s2, fz();⇓ s3

S;O1;F s1, cB ⇓ s2 S(z) = fz S;O2;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

F (fz) = cz ∅; ∅;F−fz s2, cz ⇓ s3

∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s2 O(z) = fz ∅; ∅;F s2, fz();⇓ s3

S;O;F s1, cB ⇓ s3

F (fz) = cz S;O2 − z;F−fz s2, cz ⇓ s3

S;O2 − z;F s2, fz();⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

F (fz) = cz S;O2 − z;F−fz s2, cz ⇓ s3

S;O2 − z;F s2, fz();⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

Figure 9.7: Persistent and One-shot Signal handling

155

S;O′2;F−fz s2, cz ⇓ s3 S(z) = fz

(F−fz)(fz) = ∅

S;O′′2 ;F−fz s3, fz();⇓ s4

S;O′2 ∗O′′2 ;F−fz s2, cz ⇓ s4

F (fz) = cz S;O′2 ∗O′′2 ;F−fz s2, cz ⇓ s4

S;O2;F s2, fz();⇓ s4

S;O1;F s1, cB ⇓ s2 S(z) = fz S;O2;F s2, fz();⇓ s4

S;O1 ∗O2;F s1, cB ⇓ s4

Figure 9.8: Non-rec function prevents the handlers from calling itself

S;O′2;F s2, cz ⇓ s3 S(z) = fz

F (fz) = cz S;O′′2 ;F s3, cz ⇓ s4

S;O′′2 ;F s3, fz();⇓ s4

S;O′2 ∗O′′2 ;F s2, cz ⇓ s4

F (fz) = cz S;O′2 ∗O′′2 ;F s2, cz ⇓ s4

S;O2;F s2, fz();⇓ s4

S;O1;F s1, cB ⇓ s2 S(z) = fz S;O2;F s2, fz();⇓ s4

S;O1 ∗O2;F s1, cB ⇓ s4

Figure 9.9: Recursive function

F (fz) = cz S;O2 − z;F s2, cz ⇓ s3

S;O2 − z;F s2, fz();⇓ s3

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s3

S;O1 ∗O2;F s1, cB ⇓ s3

Figure 9.10: One-shot signal handling and non-recursive functions

156

F (fz) = cz S;O4 − z′;F s3, cz ⇓ s4

S;O4 − z′;F s3, fz();⇓ s4

S;O3 − z′;F s2, cz ⇓ s3 O3 ∗O4(z′) = fz S;O4 − z′;F s3, fz();⇓ s4

S;O3 ∗O4;F s2, cz ⇓ s4

F (fz) = cz S;O2 − z;F s2, cz ⇓ s4

S;O2 − z;F s2, fz();⇓ s4

S;O1 − z;F s1, cB ⇓ s2 O1 ∗O2(z) = fz S;O2 − z;F s2, fz();⇓ s4

S;O1 ∗O2;F s1, cB ⇓ s4

where O2 − z = O3 ∗O4

Figure 9.11: One-shot signal handling and recursive functions

Increment and Decrement

The rules are analogous to the rules defined in Chapter 3, but extended with a function

context F .

 s1, x ⇓ v

S;O;F s1, x+ + ⇓ s1 [x 7→ v + 1]

 s1, x ⇓ v

S;O;F s1, x−− ⇓ s1 [x 7→ v − 1]

Sequential composition

These rules are analogous to the rules defined in Chapter 3, but extended with a func-

tion context F . Also note that function context is copied between branches similar to

persistent signal context.

157

S;O1;F s1, c1 ⇓ s2 S;O2;F s2, c2 ⇓ s3

S;O1 ∗O2;F s1, c1 ; c2 ⇓ s3

S;O1;F s1, c1 ⇓ s2 S;O2;F s2, c2 ⇑ e, s3

S;O1 ∗O2;F s1, c1 ; c2 ⇑ e, s3

S;O1;F s1, c1 ⇑ e, s2

S;O1 ∗O2;F s1, c1 ; c2 ⇑ e, s2

Repetitive while command

Rules for the while command are analogous to the rules defined in Chapter 3, but

extended with a function context F .

 s1, EB ⇓ false

S;O;F s1, whileEB do c ⇓ s1

 s1, EB ⇓ true S;O1;F s1, c ⇓ s2 S;O2;F s2, whileEB do c ⇓ s3

S;O1 ∗O2;F s1, whileEB do c ⇓ s3

 s1, EB ⇓ true S;O;F s1, c ⇑ e, s2

S;O;F s1, whileEB do c ⇑ e, s2

Conditional if-else structure

Rules for the if-else structure are analogous to the rules defined in Chapter 3, but

extended with a function context F .

158

 s1, EB ⇓ true S;O;F s1, c1 ⇓ s2

S;O;F s1, ifEB then c1 else c2 ⇓ s2

 s1, EB ⇓ false S;O;F s1, c2 ⇓ s2

S;O;F s1, ifEB then c1 else c2 ⇓ s2

 s1, EB ⇓ true S;O;F s1, c1 ⇑ e, s2

S;O;F s1, ifEB then c1 else c2 ⇑ e, s2

 s1, EB ⇓ false S;O;F s1, c2 ⇑ e, s2

S;O;F s1, ifEB then c1 else c2 ⇑ e, s2

Exception handling

Rules for the exception handling are analogous to the rules defined in Chapter 3, but

extended with a function context F .

S;O;F s1, throw e ⇑ e, s1

S;O;F s1, cB ⇑ e, s2 S;O;F s2, ch ⇓ s3

S;O;F s1, try cB handle e by ch ⇓ s3

S;O;F s1, cB ⇓ s2

S;O;F s1, try cB handle e by ch ⇓ s2

S;O;F s1, cB ⇑ e, s2 S;O;F s2, ch ⇑ e2, s3

S;O;F s1, try cB handle e by ch ⇑ e2, s3

S;O;F s1, cB ⇑ e2, s2 e2 6= e

S;O;F s1, try cB handle e by ch ⇑ e2, s2

159

S;O;F [f 7→ cf] s1 [p1 7→ 0] [p2 7→ 0], cB [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 9]

S;O;F s1 [p1 7→ 0] [p2 7→ 0], (fun f () = cf in cB) [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 9]

S;O;F s1, local y1, y2 in (fun f () = cf in cB) ⇓ ((s1 [p1 7→ 3] [p2 7→ 9]) � dom(s1))

where cf = y2 := y1 ∗ y1; and cB = y1 := 3; f();

; ; s1 [p1 7→ 0] [p2 7→ 0], 3 ⇓ 3

S;O;F [f 7→ cf] s1 [p1 7→ 0] [p2 7→ 0], y1 := 3; [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 0] A

S;O;F [f 7→ cf] s1 [p1 7→ 0] [p2 7→ 0], (y1 := 3; f();) [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 9]

A =

F [f 7→ cf](f) = cf S;O;F s1 [p1 7→ 3] [p2 7→ 0], cf [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 9]

S;O;F [f 7→ cf] s1 [p1 7→ 3] [p2 7→ 0], f(); [y1 7→ p1] [y2 7→ p2] ⇓ s1 [p1 7→ 3] [p2 7→ 9]

Figure 9.12: Imitation of the argument passing and return

9.1.2 Argument Passing and Global Variables

Global variables could be used to replace argument passing via parameters, and return

mechanism of the functions. The global variables themselves could be imitated using

local variables. Before any function definition, two local variables could be defined. One

could be used to provide arguments, and another to return results (imitation of a return

value). Just assign a value to the first variable before the function call, and store a final

value to the second variable inside of the function. For example, see Figure 9.12.

9.2 Logic and Reentrancy Linear Type System

We define a program logic and Reentrancy Linear Type system for the language (Sec-

tion 9.1) with local variables, functions, signal and exception handling. Reentrancy Linear

Type System ensures that non-reentrant functions are used at most once or not used at

all in the environment with signals. This definition slightly deviates from the standard

definitions of the Linear Logic, where linear resources are used exactly once and affine

resources are used at most once. Thus, in the former case, resources should be used at

160

least once and at most once. In the latter case, there is no obligations to use a resource;

thus, it might be used once or not at all.

9.2.1 Reentrancy Judgement

In our logic, a reentrancy judgment is of the next form

Σ; Φ; Ψ
R

` c

Definition 9.2.1 (Reentrancy judgement) Let Σ be a signal context, Φ be a reen-

trant function context, Ψ be a non-reentrant function context, and c be a command. We

say that Σ; Φ; Ψ
R

` c holds if for all function calls inside of the command c, that is the case

that the functions are ∈ dom(Φ) or all signals are blocked (in other words, Σ is ∅). That

is checked by induction over the command c construction using rules from Figure 9.13

and Figure 9.14.

For any atomic command a, a reentrancy judgement Σ; Φ; Ψ
R

` a trivially holds.

Base cases

Let f ∈ dom(Φ), then the reentrancy judgement holds.

f ∈ dom(Φ)

Σ; Φ; Ψ
R

` f()

Let n ∈ dom(Ψ) and signal context be empty, then the reentrancy judgement also holds.

n ∈ dom(Ψ)

∅; Φ; Ψ
R

` n()

161

(Atomic)

Σ; Φ; Ψ
R

` a
(Throw)

Σ; Φ; Ψ
R

` throw ej

Σ; Φ; Ψ
R

` c1 Σ; Φ; Ψ
R

` c2
(Seq)

Σ; Φ; Ψ
R

` c1 ; c2

Σ; Φ; Ψ
R

` cB Σ; Φ; Ψ
R

` ch
(ExnHandle)

Σ; Φ; Ψ
R

` try cB handle ek by ch

n ∈ dom(Ψ)
(NFunCall)

Σ; Φ; Ψ
R

` n();

n ∈ dom(Ψ)
(NFunCall)

∅; Φ; Ψ
R

` n();

f ∈ dom(Φ)
(RFunCall)

Σ; Φ; Ψ
R

` f();

Σ; Φ; Ψ, n : Pn . Qn

R

` cB
(NFunDef)

Σ; Φ; Ψ
R

` fuN n () = cn in cB

Σ; Φ, f : Pf . Qf ; Ψ
R

` cB Σ; Φ, f : Pf . Qf ; Ψ
R

` cf
(RFunDef)

Σ; Φ; Ψ
R

` fun f () = cf in cB

Σ; Φ; Ψ
R

` c
(SigBlock)

Σ, z : Pz . Qz; Φ; Ψ
R

` block z in c

Σ; Φ; Ψ
R

` c1 Σ; Φ; Ψ
R

` c2
(IfElse)

Σ; Φ; Ψ
R

` ifEB then c1 else c2

Σ; Φ; Ψ
R

` c
(While)

Σ; Φ; Ψ
R

` whileEB do c

Σ; Φ; Ψ
R

` c
(Var)

Σ; Φ; Ψ
R

` local y1, y2, . . . in c

Figure 9.13: RLTS logic rules - Part 1

162

Σ, z : Pz . Qz; Φ, f : Pz . Qz; Ψ1

R

` cB Σ; Φ, f : Pz . Qz; Ψ2

R

` f();

Σ; Φ, f : Pz . Qz; Ψ1,Ψ2

R

` bind/1 z to f in cB

Σ, z : Iz . Iz; Φ, f : Iz . Iz; Ψ1

R

` cB Σ; Φ, f : Iz . Iz; Ψ2

R

` f();

Σ; Φ, f : Iz . Iz; Ψ1,Ψ2

R

` bind z to f in cB

Σ, z : Pz . Qz; Φ; Ψ1

R

` cB Σ; Φ; Ψ2, n : Pz . Qz

R

` n();

Σ; Φ; Ψ1,Ψ2, n : Pz . Qz

R

` bind/1 z ton in cB

Σ, z : Iz . Iz; Φ; Ψ1

R

` cB Σ; Φ; Ψ2, n : Iz . Iz
R

` n();

Σ; Φ; Ψ1,Ψ2, n : Iz . Iz
R

` bind z ton in cB

Figure 9.14: RLTS logic rules - Part 2

Advanced example

Any non-reentrant function call with unrestricted signal context is potentially unsafe.

Can we say the same about the non-reentrant function definition? A body cn of the non-

reentrant function n, may contain function calls of any non-reentrant function from Ψ.

And there is no need to check it for reentrancy, as it is by definition non-reentrant. That

is why we have a separate rule fuN for the non-reentrant function definition. However,

we should check the command cf . If it does not call any non-reentrant functions, then

the whole construct is reentrant safe. On the other hand, if it makes a call to any

non-reentrant function (with unrestricted signal context), then the reentrancy judgement

could not be derived; thus, the whole construct is not reentrancy safe.

163

Σ; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn

R

` cf

Σ; Φ, f : Pf . Qf ; Ψ
R

` (fuN n () = cn in cf)

Σ; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn ` {Pf} cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn ` {Pn} cn {Qn} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} fuN n () = cn in cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} fuN n () = cn in cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ
R

` (fuN n () = cn in cf)

Σ; Φ; Ψ ` {P} fun f () = (fuN n () = cn in cf) in cB {Q} throws η

If we replace (fuN n () = cn in cf) with bind/1 z ton in cf or bind z to f in cf , then we

have to check all the elements cf and n(); or f();.

Finally, a reentrant function f , which is defined in a scope of cB, contains a signal

binding construct in its function body. Thus, if command cB will call the function f

then during its execution a function n could be invoked if a signal z arrives. We can

paraphrase it by saying that execution of cB could be interrupted by the function n. We

know that the function n is non-reentrant, but we have a Ψ splitting mechanism in our

linear type system that prevents sharing of a non-reentrant function by the main code

and the handler. Please note that the function n could be used before the function call

of f , or after it returns, in a sequential way as many times as needed. It is not important

what the function n does. It is enough to know that n is non-reentrant, because splitting

ensures that it may be used only once; either in the command body or in the signal

handler.

164

9.2.2 Reentrancy Judgement for Non-reentrant Function Call

As we address function reentrancy with respect to itself (and not the case of interrupting

of any non-reentrant function by another non-reentrant function), then ∅; Φ; Ψ
R

` f(); is

rather strict.

n ∈ dom(Ψ)
(NFunCall-1)

∅; Φ; Ψ
R

` n();

n ∈ dom(Ψ) ∀z.z ∈ dom(Σ) ∧ Σ(z) = f();∧f 6= n
(NFunCall-2)

Σ; Φ; Ψ
R

` n();

We conjecture that it is enough to show that the function f is not bound to any signal that

is stored in the signal context. Thus, for Σ; Φ; Ψ
R

` n(); we need an extra condition such

that ∀z.z ∈ dom(Σ) that is the case that n is not bound to z: ∀z.z ∈ dom(Σ) ∧ Σ(z) =

f();∧f 6= n.

We need Σ(z) = f(); for our rule to work. However, Σ(z) was always used to access

pre and post conditions of the signal handler; e.g.: Σ(z) = Iz . Iz or even Σ(z) = z :

Iz . Iz. If we check the signal binding rule, the name of the function is not stored in the

signal context, only function’s pre- and post- conditions.

Understanding of the relation between signals and functions influences the binding

rule for the reentrancy judgement as well.

Σ, z : Iz . Iz; Φ; Ψ1

R

` cB Σ; Φ; Ψ2, n : Iz . Iz
R

` n();

Σ; Φ; Ψ1,Ψ2, n : Iz . Iz
R

` bind z ton in cB

According to the NFunCall-1 rule, Σ in Σ; Φ; Ψ2, n : Pz . Qz

R

` n(); should be

nonempty to satisfy reentrancy judgement. Adoption of the NFunCall-2 rule, should

allow non-empty Σ, if the signals bound in Σ do not call a function f . An explicit

relation between signal and function names could require a new definition for the signal

165

context. However, we should check the influence of RLTS (in particular Ψ splitting)

to this problem. We know that the function becomes a signal handler in two steps: a

function definition and a signal binding. We also know that Ψ splitting ensures linear

(affine) use of the non-reentrant functions; thus, use of the non-reentrant functions in

the signal binding construct is safe. In other words, with RLTS (Ψ splitting) it is not

possible to have a signal z ∈ dom(Σ) in Σ; Φ; Ψ2, n : Pz . Qz

R

` n();, such that z is bound

to n.

Thus, NFunCall becomes similar to the RFunCall.

n ∈ dom(Ψ)
(NFunCall)

Σ; Φ; Ψ
R

` n();

f ∈ dom(Φ)
(RFunCall)

Σ; Φ; Ψ
R

` f();

Examples

z1 : I1 . I1, z2 : I2 . I2; ∅; ∅
R

` cB

n2 ∈ dom(n2 : I2 . I2)

z1 : I1 . I1; ∅;n2 : I2 . I2

R

` n2();

z1 : I1 . I1; ∅;n2 : I2 . I2

R

` bind z2 ton2 in cB

z1 : I1 . I1; ∅;n2 : I2 . I2

R

` bind z2 ton2 in cB

n1 ∈ dom(n1 : I1 . I1)

∅; ∅;n1 : I1 . I1

R

` n1();

∅; ∅;n1 : I1 . I1, n2 : I2 . I2

R

` bind z1 ton1 in (bind z2 ton2 in cB)

9.2.3 Free Variables

In terms of predicates, quantification of the variables is the only syntactic construct that

binds variables in our language (Definition 9.2.2). Thus, in an expression of the form:

∀x.P

all occurrences of variable x in predicate P are bound. All other variable occurrences are

free.

166

We define FV() with respect to the variables (identifiers) to which we can make an

assignment. Thus, function, signal and exception names are excluded.

Definition 9.2.2 (Free variables; FV(P))

FV(∀x.P) = FV(P) \ {x} (quantification)

FV(∃x.P) = FV(P) \ {x} (quantification)

FV(x) = {x} (variable)

FV(n) = ∅ (integer)

FV(true | false) = ∅ (boolean)

FV(E1 = E2) = FV(E1) ∪ FV(E2) (equality)

FV(E1 ≤ E2) = FV(E1) ∪ FV(E2) (less or equal)

FV(E1 + E2) = FV(E1) ∪ FV(E2) (addition)

Analogously to the case with predicates, quantification of the variables is one of the

syntactic commands that binds variables in commands of our language (Definition 9.2.3).

Another syntactic command that binds variables is a local variables construct.

167

Definition 9.2.3 (Free variables; FV(c))

FV(x) = {x} (variable)

FV(n) = ∅ (integer)

FV(true | false) = ∅ (boolean)

FV(x := E) = FV(x) ∪ FV(E) (assignment)

FV(c1; c2) = FV(c1) ∪ FV(c2) (seq comp)

FV(whileEB do c) = FV(EB) ∪ FV(c) (while)

FV(ifEB then c1 else c2) = FV(EB) ∪ FV(c1) (conditional)

∪FV(c2)

FV(throw e) = ∅ (exn throw)

FV(try cB handle e by ch) = FV(cB) ∪ FV(ch) (exn handl)

FV(local y1, . . . , yn in c) = FV(c) \ {y1, . . . , yn} (variables)

FV(fun f () = cf in cB) = FV(cf) ∪ FV(cB) (fun def)

FV(f();) = ∅ (function call)

FV(block z in c) = FV(c) (signal block)

FV(bind z to fz in cB) = FV(cB) (signal bind)

FV(bind/1 z to fz in cB) = FV(cB) (signal bind)

FV(E1 = E2) = FV(E1) ∪ FV(E2) (equality)

FV(E1 ≤ E2) = FV(E1) ∪ FV(E2) (less or equal)

FV(E1 + E2) = FV(E1) ∪ FV(E2) (addition)

Definition 9.2.4 (Fresh name/variable) A fresh variable x in a particular scope is a

variable such that is neither bound nor free in a given scope.

Whenever we define a new function (e.g.: fun f () = cf in cB) or install a new

signal via signal binding (e.g.: bind z to fz in cB), it is implicitly assumed that f and z

are fresh names (Definition 9.2.4).

168

All the constructs in our language are block structured. Therefore, if the function

name f is bound, then there is no limitations in defining a new function with the same

name f , as it will be defined in an inner scope. Thus, our language supports function and

signal overloading. When the control flow leaves the inner scope with redefined function

f , the corresponding function context will be automatically restored, as we adopt big-step

operational semantics.

Before we can analyse the program using our logic, it is required to know which

exceptions could be raised by the program. Thus, a signal context η should contain

information about the exception that can be thrown by the (inside of the) program, so

we can apply our logic rules. We cannot use functions for the signal binding, unless

they are presented in the function context (means that they have been defined earlier).

However, we do not limit throw to appear only inside of the try-handle block. Thus,

one may write a program where a signal handler, that throws an exception, is defined

in an outer scope, and the exception is caught in some (or not in any) inner scope.

Thus, if signal arrives in a scope where a particular exception is not caught, an exception

propagation will start. If there is no handle construct anywhere in the outer scope, the

program will terminate with a raised exception. Thus, we cannot statically decide if an

exception e from throw e is bound to the try-handle or free, as signals that may use

throw e arrive nondeterministically.

Function and signal names are added only via corresponding rules; thus, whenever

one meet function or signal name, then it is definitely bound via the function or the signal

context. Therefore, Definition 9.2.4 for the function and signal names could be simplified

to the next statement“is a variable such that is not bound”, as there is no free function

or signal name could appear.

9.2.4 Function Context Ψ Splitting

Definition 9.2.5 Given two non-reentrant function contexts Ψ1 and Ψ2, we define a

partial operation ”,” as follows:

169

• If dom(Ψ1) ∩ dom(Ψ2) = ∅, we write Ψ1,Ψ2 for Ψ1 ∪Ψ2.

• If dom(Ψ1) ∩ dom(Ψ2) 6= ∅, then Ψ1,Ψ2 is undefined.

In the real-life implementations, exists a list of asynchronous safe functions that is

safe to use inside of the signal handlers [56, 87, 91, 88, 9, 51]. In our approach, we

keep track of functions that is unsafe to use inside of the signal handlers and call them

non-reentrant.

As the reentrancy happens nondeterministically via a signal handler, then the “safety”

of that reentrancy should be checked. If the functions that interrupt each other are

not from the list of non-reentrant functions, then the reentrancy is safe. If the non-

reentrant function is interrupted by any non-reentrant function, then such reentrancy is

not safe. Reentrant safe functions do not call non-reentrant functions, or block all signals

(to prevent potentially unsafe reentrancy) while the non-reentrant functions are called.

Therefore, we introduce a non-reentrant function context splitting (Definition 9.2.5) as

part of the reentrancy linear type system. It should be noted that Ψ splitting is orthogonal

to Ω splitting. It is safe to call non-reentrant functions sequentially; thus, there is no Ψ

splitting in most of the logic rules (e.g.: sequential composition, if-else structure, while

structure, exception handling and etc). A logic rule for the signal binding (and handling

at the same time) requires Ψ splitting as the signals arrive nondeterministically.

Let’s consider the following examples in Figure 9.15 and Figure 9.16. In the former

example, a nonreentrant function f should not be called from the body b and the handler

h. In the latter example, it is safe to call a nonreentrant function in both b and h.

9.2.5 Logic Rules

Logic rules, which are summarised in Figure 9.17, Figure 9.18 and Figure 9.19, are dis-

cussed in detail throughout this section.

170

Σ; Φ; Ψ ` bind z toh in b, where f ∈ dom(Ψ)

b

h

f

Figure 9.15: Ψ splitting in signal binding

Σ; Φ; Ψ ` try b handle e by h throws η, where f ∈ dom(Ψ)

b

h

f

Figure 9.16: No Ψ splitting in exception handling

Function definition

Σ; Φ; Ψ, n : Pn . Qn ` {P} cB {Q} throws η

Σ; Φ; Ψ, n : Pn . Qn ` {Pn} cn {Qn} throws η

Σ; Φ; Ψ ` {P} fuN n () = cn in cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ
R

` cf

Σ; Φ; Ψ ` {P} fun f () = cf in cB {Q} throws η

Without a reentrancy judgement, we would need two separate rules to cover both cases

when the function could be called reentrant (empty signal context or non-reentrant func-

171

Σ; Φ; Ψ, n : Pn . Qn ` {P} cB {Q} throws η

Σ; Φ; Ψ, n : Pn . Qn ` {Pn} cn {Qn} throws η
(NFDef)

Σ; Φ; Ψ ` {P} fuN n () = cn in cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ
R
` cf

(RFDef)
Σ; Φ; Ψ ` {P} fun f () = cf in cB {Q} throws η

Φ(f) = P . Q
(RFunCall)

Σ; Φ; Ψ ` {P} f(); {Q} throws η

Ψ(f) = P . Q
(NFunCall)

Σ; Φ; Ψ ` {P} f(); {Q} throws η

Σ, z : Pz . Qz; Φ, f : Pz . Qz; Ψ1 ` {P} cB {Q} throws η

Σ; Φ, f : Pz . Qz; Ψ2 ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz
(SOR)

Σ; Φ, f : Pz . Qz; Ψ1,Ψ2 ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

Σ, z : Iz . Iz; Φ, f : Iz . Iz; Ψ1 ` {P} cB {Q} throws η

Σ; Φ, f : Iz . Iz; Ψ2 ` {Iz} f(); {Iz} throws η

Σ stable Iz
(SBR)

Σ; Φ, f : Iz . Iz; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Figure 9.17: Hoare logic rules - Part 1

172

Σ, z : Pz . Qz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2, f : Pz . Qz ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz

Σ; Φ; Ψ1,Ψ2, f : Pz . Qz ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2, f : Iz . Iz ` {Iz} f(); {Iz} throws η

Σ stable Iz

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Σ; Φ; Ψ ` {P} c {Q} throws η

P stable Pz . Qz Q stable Pz . Qz η stable Pz . Qz

Σ, z : Pz . Qz; Φ; Ψ ` {P} block z in c {Q} throws η

Figure 9.18: Hoare logic rules - Part 2

tion context). One may suggest the following rules:

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

∅; Φ, f : Pf . Qf ; Ψ ` {Pf} cf {Qf} throws η

Σ; Φ; Ψ ` {PB} fun f () = cf in cB {QB} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ; Φ, f : Pf . Qf ; ∅ ` {Pf} cf {Qf} throws η

Σ; Φ; Ψ ` {PB} fun f () = cf in cB {QB} throws η

However, a command cf could be non-atomic; thus, the emptiness of the signal context

should be checked higher in the derivation tree of the cf .

173

Σ; Φ; Ψ ` {P1} c1 {P2} throws η Σ; Φ; Ψ ` {P2} c2 {P3} throws η
(Seq)

Σ; Φ; Ψ ` {P1} c1 ; c2 {P3} throws η

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]
(Atomic)

Σ; Φ; Ψ ` {P} a {Q} throws η

{P}x := E′ {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]
(Assignment)

Σ; Φ; Ψ ` {P}x := E′ {Q} throws η

η stable Σ Q stable Σ
(Throw)

Σ; Φ; Ψ ` {η(ej)} throw ej {Q} throws η

Σ; Φ; Ψ ` {P} cB {Qb} throws η, ek : Qk Σ; Φ; Ψ ` {Qk} ch {Qh} throws η

Σ; Φ; Ψ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

Σ; Φ; Ψ ` {I ∧ EB} c {I} throws η ¬EB stable Σ
(WhileRule)

Σ; Φ; Ψ ` {I} whileEB do c {I ∧ ¬EB} throws η

Σ; Φ; Ψ ` {EB ∧ P} c1 {Q} throws η Σ; Φ; Ψ ` {¬EB ∧ P} c2 {Q} throws η

Σ; Φ; Ψ ` {P} ifEB then c1 else c2 {Q} throws η

Σ; Φ; Ψ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ
(Conseq)

Σ; Φ; Ψ ` {P ′} c {Q′} throws η′

Σ; Φ; Ψ ` {P1} c {Q1} throws η1 Σ; Φ; Ψ ` {P2} c {Q2} throws η2
(Conj)

Σ; Φ; Ψ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

Σ; Φ; Ψ ` {P} c {Q} yj /∈ FV(P) yj /∈ FV(Q)
(LocVar)

Σ; Φ; Ψ ` {P} local y1, y2, . . . in c {Q}

Figure 9.19: Hoare logic rules - Part 3

174

Function call

Φ(f) = P . Q

Σ; Φ; Ψ ` {P} f(); {Q} throws η

Ψ(f) = P . Q

Σ; Φ; Ψ ` {P} f(); {Q} throws η

Sequential composition

Σ; Φ; Ψ ` {P} c1 {P ′} throws η Σ; Φ; Ψ ` {P ′} c2 {Q} throws η

Σ; Φ; Ψ ` {P} c1; c2 {Q} throws η

Atomic commands

{P} a {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

(Atomic)
Σ; Φ; Ψ ` {P} a {Q} throws η

Assignment

{P}x := E ′ {Q}

(P . Q) stable Σ η stable Σ

∀z.Σ(z) = z : ∀α.Pz . Qz ∃E.Q =⇒ Pz [α 7→ E]

(Assignment)
Σ; Φ; Ψ ` {P}x := E ′ {Q} throws η

Signal binding

One may suggest that by checking stability on the level of function definition, we may

remove stability checks from the signal binding. However, the only significant difference

would be more strict conditions for the functions, as potentially all of them might become

signal handlers.

175

There is a design question, should we include f ∈ dom(Φ) in the logic rules for signal

binding? If one refer to the current convention regarding signals and functions, then

only reentrant functions could be safely called from the signal handlers. Thus, including

f ∈ dom(Φ) sounds reasonable. However, in our logic we may weaken the limitations

and still show that the program will run safely. The trick is in our approach, where we

focus on the non-reentrant functions. We do not limit non-reentrant functions to be used

in signal handlers, as it might be the case that the non-reentrant functions are not used

in a block of code, or if they are used then the signal context is empty (all signals are

blocked). Actually, the first step of defence is the function addition to the corresponding

context. In other words, functions are checked for the reentrancy safety while lifted to

the function context. Functions from Φ are safe; and functions from Ψ require an extra

attention to ensure safety of the programs. Ψ splitting, as part of the Reentrant Linear

Type System, takes care of the non-reentrant functions in signal handling. That could

be classified as the second step of defence. Thus, including f ∈ dom(Φ) is redundant.

Further discussion is given in Section 9.2.7.

Updated rules for the signal binding are presented in Figure 9.20. There are four

of them, as the standard rules for the one-shot and the persistent signal binding are

extended with the notions of non-reentrant functions and Ψ splitting.

Blocking

Σ; Φ; Ψ ` {P} c {Q} throws η

P stable Pz . Qz Q stable Pz . Qz η stable Pz . Qz

Σ, z : Pz . Qz; Φ; Ψ ` {P} block z in c {Q} throws η

176

Σ, z : Pz . Qz; Φ, f : Pz . Qz; Ψ1 ` {P} cB {Q} throws η

Σ; Φ, f : Pz . Qz; Ψ2 ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz

Σ; Φ, f : Pz . Qz; Ψ1,Ψ2 ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

Σ, z : Iz . Iz; Φ, f : Iz . Iz; Ψ1 ` {P} cB {Q} throws η

Σ; Φ, f : Iz . Iz; Ψ2 ` {Iz} f(); {Iz} throws η

Σ stable Iz

Σ; Φ, f : Iz . Iz; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Σ, z : Pz . Qz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2, f : Pz . Qz ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz

Σ; Φ; Ψ1,Ψ2, f : Pz . Qz ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2, f : Iz . Iz ` {Iz} f(); {Iz} throws η

Σ stable Iz

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Figure 9.20: Signal Binding Rules

177

Exception binding and throwing

η stable Σ Q stable Σ

Σ; Φ; Ψ ` {η(ej)} throw ej {Q} throws η

Σ; Φ; Ψ ` {P} cB {Qb} throws η, ek : Qk Σ; Φ; Ψ ` {Qk} ch {Qh} throws η

Σ; Φ; Ψ ` {P} try cB handle ek by ch {Qb ∨Qh} throws η

Repetitive while construct

Σ; Φ; Ψ ` {I ∧ EB} c {I} throws η ¬EB stable Σ

Σ; Φ; Ψ ` {I} whileEB do c {I ∧ ¬EB} throws η

Conditional if-else construct

Σ; Φ; Ψ ` {EB ∧ P} c1 {Q} throws η Σ; Φ; Ψ ` {¬EB ∧ P} c2 {Q} throws η

Σ; Φ; Ψ ` {P} ifEB then c1 else c2 {Q} throws η

Rule of consequence

Σ; Φ; Ψ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ

Σ; Φ; Ψ ` {P ′} c {Q′} throws η′

Rule of conjunction

Σ; Φ; Ψ ` {P1} c {Q1} throws η1 Σ; Φ; Ψ ` {P2} c {Q2} throws η2

Σ; Φ; Ψ ` {P1 ∧ P2} c {Q1 ∧Q2} throws η1 ∧ η2

Local variables

Definition 9.2.2 for the free variables is given in Section 9.2.3.

Σ; Φ; Ψ ` {P} c {Q} yj /∈ FV(P) yj /∈ FV(Q)

Σ; Φ; Ψ ` {P} local y1, y2, . . . in c {Q}

178

9.2.6 Implicit Versus Explicit Stability Assumptions

As signal handlers are functions, potentially, stability assumptions could be already em-

bedded into the judgments.

Σ; f : I . I; ∅ ` {P ∧ I} (bind z to f in cB) {Q ∧ I} throws η

Σ; f : I . I; ∅ ` {I} (a1; a2) {I} throws η

Σ; f : I . I; ∅
R
` (a1; a2)

Σ; ∅; ∅ ` {P ∧ I} fun f () = (a1; a2) in (bind z to f in cB) {Q ∧ I} throws η

Σ; f : I . I; ∅
R
` a1 Σ; f : I . I; ∅

R
` a2

Σ; f : I . I; ∅
R
` (a1; a2)

{I} a1 {P ′}

I stable Σ P ′ stable Σ

Σ stable (I . P ′) η stable Σ

Σ; f : I . I; ∅ ` {I} a1 {P ′} throws η

{P ′} a2 {I}

P ′ stable Σ I stable Σ

Σ stable (P ′ . I) η stable Σ

Σ; f : I . I; ∅ ` {P ′} a2 {I} throws η

Σ; f : I . I; ∅ ` {I} (a1; a2) {I} throws η

Σ, z : I . I; f : I . I; ∅ ` {P} cB {Q} throws η
f : I . I(f) = I . I

Σ; f : I . I; ∅ ` {I} f(); {I} throws η

Σ stable I

Σ; f : I . I; ∅ ` {P ∧ I} (bind z to f in cB) {Q ∧ I} throws η

As Σ stable (I . P ′) and Σ stable (P ′ . I) are checked when the function is added.

Functions are used as signal handlers. Thus, the question is can we remove Σ stable I

from the binding rule.

179

The case for the one-shot signal binding is analogous:

Σ; f : Pz . Qz; ∅ ` {P ∧ Pz} (bind z to f in cB) {Q ∧ (Pz ∨Qz)} throws η

Σ; f : Pz . Qz; ∅ ` {Pz} (a1; a2) {Qz} throws η

Σ; f : Pz . Qz; ∅
R

` (a1; a2)

Σ; ∅; ∅ ` {P ∧ Pz} fun f () = (a1; a2) in (bind/1 z to f in cB) {Q ∧ (Pz ∨Qz)} throws η

Σ; f : Pz . Qz; ∅
R

` a1 Σ; f : Pz . Qz; ∅
R

` a2

Σ; f : Pz . Qz; ∅
R

` (a1; a2)

{Pz} a1 {P ′}

Pz stable Σ P ′ stable Σ

Σ stable (Pz . P
′) η stable Σ

Σ; f : Pz . Qz; ∅ ` {Pz} a1 {P ′} throws η

{P ′} a2 {Qz}

P ′ stable Σ Qz stable Σ

Σ stable (P ′ . Qz) η stable Σ

Σ; f : Pz . Qz; ∅ ` {P ′} a2 {Qz} throws η

Σ; f : Pz . Qz; ∅ ` {Pz} (a1; a2) {Qz} throws η

Σ, z : Pz . Qz; f : Pz . Qz; ∅ ` {P} cB {Q} throws η
f : Pz . Qz(f) = Pz . Qz

Σ; f : Pz . Qz; ∅ ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz

Σ; f : Pz . Qz; ∅ ` {P ∧ Pz} (bind z to f in cB) {Q ∧ (Pz ∨Qz)} throws η

Our assumption works in both cases; however, we need to check if it holds when the

rule of consequence is used.

Σ; Φ; Ψ ` {P} c {Q} throws η P ′ ⇒ P Q⇒ Q′ η ⇒ η′

P ′ stable Σ Q′ stable Σ η′ stable Σ

Σ; Φ; Ψ ` {P ′} c {Q′} throws η′

180

So let’s consider the next example:

Σ; f : I . I; ∅ ` {P ∧ I} (bind z to f in cB) {Q ∧ I} throws η

Σ; f : I . I; ∅ ` {I} (a1; a2) {I} throws η

Σ; f : I . I; ∅
R
` (a1; a2)

Σ; ∅; ∅ ` {P ∧ I} fun f () = (a1; a2) in (bind z to f in cB) {Q ∧ I} throws η

Σ; f : I . I; ∅
R
` a1 Σ; f : I . I; ∅

R
` a2

Σ; f : I . I; ∅
R
` (a1; a2)

{P1} a1 {Q1}

P1 stable Σ Q1 stable Σ

Σ stable (P1 . Q1) η stable Σ

Σ; f : I . I; ∅ ` {P1} a1 {Q1} throws η

I ⇒ P1 Q1 ⇒ P2 η ⇒ η

I stable Σ P2 stable Σ η stable Σ

Σ; f : I . I; ∅ ` {I} a1 {P2} throws η

{P3} a2 {Q3}

P3 stable Σ Q3 stable Σ

Σ stable (P3 . Q3) η stable Σ

Σ; f : I . I; ∅ ` {P3} a2 {Q3} throws η

P2 ⇒ P3 Q3 ⇒ I η ⇒ η

P2 stable Σ I stable Σ η stable Σ

Σ; f : I . I; ∅ ` {P2} a2 {I} throws η

Σ; f : I . I; ∅ ` {I} (a1; a2) {I} throws η

Σ, z : I . I; f : I . I; ∅ ` {P} cB {Q} throws η
f : I . I(f) = I . I

Σ; f : I . I; ∅ ` {I} f(); {I} throws η

Σ stable I

Σ; f : I . I; ∅ ` {P ∧ I} (bind z to f in cB) {Q ∧ I} throws η

Thus, from this example we can conclude that Σ stable (P1 . Q1) and Σ stable (P3 . Q3)

do not trivially imply Σ stable I. We know that Q1 ⇒ P2, P2 ⇒ P3 and Q3 ⇒ I. By

transitivity, we can replace Q1 with P3. We can also replace Q3 with I. Thus, we get

Σ stable (P1 . P3) and Σ stable (P3 . I). However, I ⇒ P1 does not imply P1 ⇒ I;

thus, we can not replace P1 with I in Σ stable (P1 . P3).

181

9.2.7 Reentrant (Φ) Versus Nonreentrant (Ψ) Functions

During the step of a function definition, we decide whether a particular function is

reentrant-safe or not. According to this decision, the function is added to a corresponding

function context. Thus, at any point of a tree derivation we know that the functions from

Φ are reentrant-safe and from Ψ are not.

Actually, we omit ’-safe’ ending, in the context of this thesis. Thus, unless it is

clearly stated that we are talking about the sole fact of re-entering, under reentrancy we

understand that function (or handler) is reentrant safe.

To enforce the policy, currently advised in the real-life implementations, we may limit

signal binding to the functions from the reentrant context only. This limitation could be

addressed in the program logic even without use of the reentrancy linear type system.

Thus, for the binding command of this form bind z to f in cB we need to add an extra

check, such that f ∈ dom(Φ). Then, the logic rules extended in this way could be used

to verify the programs whether they comply with that policy or not.

This approach may form an incomplete understanding of the features provided by the

linear type system. Moreover, limitations that could be supported by our program logic

are only suggested by the community and not followed in many cases. Thus, the program

logic will taint such programs that use non-reentrant functions in the signal handlers as

unsafe. However, they are only potentially unsafe. Moreover, with use of the reentrancy

linear type system, we may push our analysis further and understand if the program is

actually unsafe or, despite the fact of using non-reentrant functions, is safe. Thus, use

of the program logic extended with the reentrancy linear type system allows addressing

much bigger set of programs.

Examples and corresponding discussions

To show what kind of programs will be missed without the linear type system, we provide

a series of examples.

182

Example 1: Ψ split, whether main command use non-reentrant functions or not is

the main concern. If a provider of the command c complies with its ’interface’ in the

judgement (function f is never used inside), then it is safe to use f as a signal handler.

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} c {Q} throws η
Ψ2, f : Iz . Iz(f) = Iz . Iz

Σ; Φ; Ψ2, f : Iz . Iz ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Example 2: Ψ splitting could be done in both directions (to the left branch: body

of the command, and to the right branch: body of the signal handler).

Σ, z1, z2; Φ; Ψ ` {P} c {Q}

f2 : Iz . Iz(f2) = Iz . Iz

Σ, z1; Φ; f2 : Iz . Iz ` {Iz} f2(); {Iz} throws η

Σ, z1; Φ; Ψ, f2 : Iz . Iz ` {P ∧ Iz} bind z2 to f2 in c {Q ∧ Iz}

f1 : Iz . Iz(f1) = Iz . Iz

Σ; Φ; f1 : Iz . Iz ` {Iz} f1(); {Iz} throws η

Σ; Φ; Ψ, f1 : Iz . Iz , f2 : Iz . Iz ` {P ∧ Iz} bind z1 to f1 in (bind z2 to f2 in c) {Q ∧ Iz} throws η

This examples is used to show that if the non-reentrant function is not used in a particular

signal handler, then it could be used in the main command, which in turn could consist

of another signal binding that will consume another non-reentrant function.

We should clarify our definition of the non-reentrant function. We say that a function

is non-reentrant if it is unsafe to run two entities of the same function concurrently (via

nondeterministic interrupt in our case). Thus, non-reentrancy describes the function with

respect to itself, and not with respect to the broader sense of unsafe functions. Sharing

a resource (or not sharing) makes functions safe or unsafe with respect to each other.

It is hard to address interference between two different unsafe functions that share a

resource, as we don’t have an explicit notion of a resource in our language. However, we

can imitate global variables that will serve as a good example of a critical resource. Thus,

any function that deals with it will be unsafe and non-reentrant. A related discussion

183

about granularity is continued in Section 9.2.9.

Various Ψ splittings

Case 1: Two signals are bound to the same non-reentrant function (via function name)

Σ, z1, z2; Φ; Ψ ` {P} c {Q}

∅(f) =

Σ, z1; Φ; ∅ ` {Iz} f(); {Iz}

Σ, z1; Φ; Ψ ` {P ∧ Iz} bind z2 to f in c {Q ∧ Iz}

f : Iz . Iz(f) = Iz . Iz

Σ; Φ; f : Iz . Iz ` {Iz} f(); {Iz}

Σ; Φ; Ψ, f : Iz . Iz ` {P ∧ Iz} bind z1 to f in (bind z2 to f in c) {Q ∧ Iz}

Case 2: It is assumed that the local variable x has been defined and initialised to 1, c1

equals to (bind z1 to f1 in (bind z2 to f2 in c2)). Two signals are bound to two different

function names, but literally, they are identical in terms of commands.

There are two problems here. First of all, RLTS is not helpful when two functions

with different names but identical non-reentrant code interfere. The second, stability

assumption covers functions only at the high level but inner code remains unchecked by

them.

184

∅; z1, z2 : x = 1 . x = 1; ∅ ` {(x = 1)} c2 {(x = 1)}
(f2 : x = 1 . x = 1)(f2) = (x = 1 . x = 1)

∅; z1; f2 ` {(x = 1)} f2(); {(x = 1)}

(x = 1) stable (x = 1) . (x = 1)

∅; z1 : x = 1 . x = 1; f2 ` {(x = 1)} bind z2 to f2 in c2 {(x = 1)}

∅; z1 : x = 1 . x = 1; f2 ` {(x = 1)} bind z2 to f2 in c2 {(x = 1)}
(f1 : x = 1 . x = 1)(f1) = (x = 1 . x = 1)

∅; ∅; f1 ` {(x = 1)} f1(); {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} bind z1 to f1 in (bind z2 to f2 in c2) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} fuN f2 () = (x := 0;x+ +;) in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} fuN f2 () = (x := 0;x+ +;) in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; ∅ ` {(x = 1)} fuN f1 () = (x := 0;x+ +;) in (fuN f2 () = (x := 0;x+ +;) in c1) {(x = 1)}

Case 3: It is assumed that the local variable x has been defined and initialised to 1, c1

equals to (fuN f2 () = (x := 0;x + +;) in (bind z2 to f2 in c2)). Two signals are bound

to two different function names, but literally, they are identical in terms of commands.

The main difference with an example above is that function definition and signal binding

are mixed.

185

{(x = 1)}x := 0; {(x = 0)}

(x = 0) stable z1 : x = 1 . x = 1

(x = 1) stable (x = 1) . (x = 0)

∅; z1; f2 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; z1; f2 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; z1; f2 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; z1; f2 : x = 1 . x = 1 ` {(x = 1)} bind z2 to f2 in c2 {(x = 1)}

∅; z1; f2 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; z1; ∅ ` {(x = 1)} (fuN f2 () = (x := 0;x+ +;) in (bind z2 to f2 in c2)) {(x = 1)}

∅; z1; ∅ ` {(x = 1)} c1 {(x = 1)}
(f1 : x = 1 . x = 1)(f1) = (x = 1 . x = 1)

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} f1(); {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} bind z1 to f1 in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} bind z1 to f1 in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; ∅ ` {(x = 1)} fuN f1 () = (x := 0;x+ +;) in (bind z1 to f1 in c1) {(x = 1)}

In this example, it is clear that the program in unsafe. It was recognised when the second

function f2 was added to the function context. In particular, stability assumptions failed

for the function f2 body. Thus, further logic tree derivation (for the bind z2 to f2 in c2)

becomes unimportant.

It should be noted, that the high strictness of the stability assumptions in this partic-

ular example has a positive effect (but it might be too strict in other cases). Technically,

alternating of the function definition and immediate signal binding corresponds to the

signal binding with commands (without functions). Unless current function mechanism

becomes updated to address this problem (Time of Stability Check to Time of Function

186

Call), a language with commands looks safer.

The main difference with the previous example, where the problem has not been

recognised by the logic, is that in this example function definitions alternate with signal

bindings. Therefore, during the second function definition the signal context is non-

empty; and stability assumptions are checked at that step.

In previous example, all functions were defined in a scope with an empty signal

context; thus, their potential interference via signal handlers, which were bound later,

was not restricted by stability assumptions.

The problem arise due to the fact that functions become signal handlers in two steps:

function definition, and signal binding. Stability is checked when the function body is no

longer visible. Thus, we may update the function definition rule to check stability even

before we bind it to a signal. For example:

Σ; Φ; Ψ, n : Pn . Qn ` {P} cB {Q} throws η

Σ; Φ; Ψ, n : Pn . Qn ` {Pn} cn {Qn} throws η

Ψ stable Pn . Qn Pn stable Ψ Qn stable Ψ

Σ; Φ; Ψ ` {P} fuN n () = cn in cB {Q} throws η

Unfortunately, this approach results in overhead, as not every function is used in signal

handlers. Moreover, that may add even more strictness to the logic, what might make it

less useful.

9.2.8 Examples and Tricky Questions

Example 1: What if we try to bind a non-reentrant function to a reentrant one? In

this particular example, when the “reentrancy relation” is checked, the signal context

is empty, thus
R

` holds. The current strictness makes our logic work. If we will try to

187

weaken our requirement (empty signal context), the logic may break.

z : Iz . Iz; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn ` {P} cB {Q} throws η

z : Iz . Iz; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn ` {Pf} block z inn(); {Qf} throws η

z : Iz . Iz; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn

R

` block z inn();

z : Iz . Iz; Φ; Ψ, n : Pn . Qn ` {P} fun f () = (block z inn();) in cB {Q} throws η

∅; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn

R

` n();

z : Iz . Iz; Φ, f : Pf . Qf ; Ψ, n : Pn . Qn

R

` block z inn();

Example 2: What if a non-reentrant function n binds a signal inside? Linear type

system prevents reentrancy via nondeterministic signals. As when the rule for the signal

binding is applied, the nonreentrant context is splitted between body of the command

(in this case call of a function n();) and the signal handler (which in this example is also

a function call n();). Thus, the nonreentrant function could be used only in the “body”

(left subtree) or the handler (right subtree).

z : Iz . Iz; ∅; Ψ1 ` {P}n(); {Q} throws η

∅; ∅; Ψ2 ` {Iz}n(); {Iz} throws η

∅; ∅;n : Pn . Qn ` {Pn∧Iz} (bind z ton inn();) {Qn∧Iz} throws η

∅; ∅;n : Pn . Qn ` {P∧Iz} cB {Q∧Iz} throws η

∅; ∅;n : Pn . Qn ` {Pn∧Iz} (bind z ton inn();) {Qn∧Iz} throws η

∅; ∅; ∅ ` {P ∧ Iz} fuN n () = (bind z ton inn();) in cB {Q ∧ Iz} throws η

Example 3: What if a reentrant function f binds a signal inside? In this example, when

the signal is called, it will call the function f , and the function f will bind/rebind the

signal to the same function f once again. Thus, the signal will be unblocked, what may

result into the signal handler interruption by itself, but the function is reentrant! It is a

feature of our language.

188

A =

z : Iz . Iz; f : Pf . Qf ; ∅ ` {P} f(); {Q} throws η

∅; f : Pf . Qf ; ∅ ` {Iz} f(); {Iz} throws η

∅; f : Pf . Qf ; ∅ ` {Pf∧Iz} (bind z to f in f();) {Qf∧Iz} throws η

∅; f : Pf . Qf ; ∅ ` {P∧Iz} cB {Q∧Iz} throws η A

∅; f : Pf . Qf ; ∅
R

` (bind z to f in f();)

∅; ∅; ∅ ` {P ∧ Iz} fun f () = (bind z to f in f();) in cB {Q ∧ Iz} throws η
z : Iz . Iz; f : Pf . Qf ; ∅

R

` f(); ∅; f : Pf . Qf ; ∅
R

` f();

∅; f : Pf . Qf ; ∅
R

` (bind z to f in f();)

Example 4: Binding a reentrant function to a reentrant one. In this example, a function

n comes from the reentrant function context. Thus, when we use it inside of the definition

for the function f , the
R

` relation holds.

Σ, z : Iz . Iz; Φ, n : Pn . Qn, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ, z : Iz . Iz; Φ, n : Pn . Qn, f : Pf . Qf ; Ψ ` {Pf}n(); {Qf} throws η

Σ, z : Iz . Iz; Φ, n : Pn . Qn, f : Pf . Qf ; Ψ
R

` n();

Σ, z : Iz . Iz; Φ, n : Pn . Qn; Ψ ` {P} fun f () = n(); in cB {Q} throws η

189

9.2.9 Level of Granularity

What is the optimal level of granularity to address reentrancy and safety: signal handlers,

functions or commands? Shortly, signal handlers are functions in our language; thus,

reentrancy of the handlers depends on the reentrancy of the functions. Moreover, even

if we limit self interruption of the signal handlers, the question of handlers reentrancy

(technically function reentrancy) remains open, as two different signals might be bound

to the same function. Same strategy could be applied to the functions, as the same block

of code might be used in more than one function body. Thus, even if forbid recursive

functions, the same block of code may interleave with itself via functions with different

names. Functions in our language are encapsulated blocks of code with names. When

we talk about function reentrancy, we mean reentrancy of the function by itself, or in

other words, reentrancy of the block of code by itself. Thus, the functions level looks

like a perfect choice of granularity to address reentrancy and corresponding safety in

our language. Of course, the problem of reentrancy evolves from the shared resource

concurrency, but we don’t have instruments to address it on the level of access to the

resources.

Granularity of Ψ splitting

Granularity of the non-reentrant functions splitting depends on the definition of function

non-reentrancy (or reentrancy-safety). This discussion is highly related to the logic rules

design of the reentrancy judgements (Section 9.2.7).

One may define that being a non-reentrant function means that it is unsafe to interfere

with any function (including reentrant and non-reentrant). Then using any non-reentrant

function as a signal handler will impose huge limitations to the main program code. To

ensure safety of the program all function calls should be forbidden while such signal is

installed. This approach will badly influence the code reuse, as most of the time the

same blocks of commands will be used repeatedly instead of the function calls. Use

190

of reentrant functions as the signal handlers at least allows use of reentrant functions

inside of the main program code. In this scenario, an explicit notion of the non-reentrant

functions brings too little in compare to the overhead it creates. Thus, it is easier to forbid

using non-reentrant functions in signal handlers. However, use of non-reentrant functions

inside of the main code (even with reentrant signal handlers) is still unsafe. A suggested

solution would be blocking all installed signals before the non-reentrant function call. If

the reentrant functions only read global variables or do not access them at all, then this

limitation (signal blocking) could be withdrawn.

One may define that being a non-reentrant function means that it is unsafe to interfere

with any other non-reentrant functions, but safe to interfere with reentrant functions

(an example of the reentrant function could be int get(); function that just returns

some value). That would lead to a rather unbalanced Ψ splitting. We may call it as

a coarse-grained splitting. A RLTS enforces the Ψ splitting by exclusive separating

non-reentrant functions between the main code and the signal handlers. With the current

scenario in charge, only one signal handler may use non-reentrant functions in a particular

scope, or the main program only. One may say that the non-reentrant context splitting

is rather clumsy in this scenario, but it is much easier to define a reentrancy judgment

with such coarse grained splitting (Section 9.2.7).

Finally, one may define that being a non-reentrant function means that it is unsafe

to interfere with respect to itself. Actually, that is the most close scenario to the real-life

implementations. For example, a discussion ([56, page 424]) of the function crypt();,

which is not async-safe, is explained in terms of interfering with itself. The non-reentrant

function context could be split between any number of signal handlers and the main code.

We call such Ψ splitting as a fine-grained splitting. Unfortunately, even with such fine-

grained splitting a problem may arise, if two non-reentrant functions contain identical

code or use the same resource. crypt(); is non-reentrant, because it statically allocates

some variables. Thus, we may assume that the non-reentrant functions deal only with

the global variables that are reachable only by them. Therefore, non-reentrant functions

191

will be non-reentrant to itself, but with bigger chances could be reentrant to each other.

On the other hand, it is harder to define a reentrancy judgment with a fine-grained Ψ

splitting (Section 9.2.7).

Shift to reentrant functions

We may try to project the ideas discussed in Section 9.2.9 to the reentrant functions.

When we say that function is reentrant, then it is safe to interrupt this function even by

non-reentrant functions. For example, a set(int arg); function, that only sets some

value via assignment. Assignment is an atomic operation, and calling any non-reentrant

function via the signal handling before or after it does not make set(int arg); unsafe.

However, if any non-reentrant function is interrupted via signals by some reentrant

function, then the program safety might be violated. For example, set(int arg); reen-

trant function might corrupt some global variable on which the interrupted non-reentrant

function depends. It should be noted that set(int arg); could be non-reentrant with

respect to itself despite it is almost atomic. A postcondition of the function might be

invalidated if it is interrupted via another instance of the function call. A function is a

wrap around commands (unwrap and command run is not atomic). Thus, even if the

function contains an assignment command, we may still study a reentrancy of it.

9.2.10 Interaction Between Functions and Signals

To see how non-reentrant and reentrant functions interact with signals, let’s consider

examples in this section. These examples also help to understand where the stability is

checked.

192

Nonreentrant functions and signal binding

Let a1 and a2 are two atomic commands. Let cB be f(); f();.

Ψ, f : Pf . Qf (f) = Pf . Qf

Σ; Φ; Ψ, f : Pf . Qf ` {P} f(); {P ′} throws η
Ψ, f : Pf . Qf (f) = Pf . Qf

Σ; Φ; Ψ, f : Pf . Qf ` {P ′} f(); {Q} throws η

Σ; Φ; Ψ, f : Pf . Qf ` {P} f(); f(); {Q} throws η

{Pf} a1 {P ′f} η stable Σ

Pf stable Σ P ′f stable Σ Σ stable (Pf . P
′
f)

Σ; Φ; Ψ, f : Pf . Qf ` {Pf} a1 {P ′f} throws η

{P ′f} a1 {Qf} η stable Σ

P ′f stable Σ Qf stable Σ Σ stable (P ′f . Qf)

Σ; Φ; Ψ, f : Pf . Qf ` {P ′f} a2 {Qf} throws η

Σ; Φ; Ψ, f : Pf . Qf ` {Pf} a1; a2 {Qf} throws η

Σ; Φ; Ψ, f : Pf . Qf ` {P} cB {Q} throws η

Σ; Φ; Ψ, f : Pf . Qf ` {Pf} a1; a2 {Qf} throws η

Σ; Φ; Ψ ` {P} fuN f () = a1; a2 in cB {Q} throws η

Let cB equals bind z to f in c. Assume that Pf = Qf = Iz. We also need to ensure

that Iz holds from the very beginning.

Σ; Φ; Ψ, f : Pf . Qf ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Σ; Φ; Ψ, f : Pf . Qf ` {Pf} a1; a2 {Qf} throws η

Σ; Φ; Ψ ` {P ∧ Iz} fuN f () = a1; a2 in (bind z to f in c) {Q ∧ Iz} throws η

Then there are two options for Ψ splitting.

193

Let c equals f();. Also assume that Pf = P and Qf = Q. Option Ψ1, f : Pf . Qf :

Ψ1, f : Pf . Qf (f) = Pf . Qf

Σ, z : Iz . Iz; Φ; Ψ1, f : Pf . Qf ` {P} f(); {Q} throws η
Ψ2(f) =

Σ; Φ; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Option Ψ2, f : Pf . Qf : So c can not have any function f calls.

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} c {Q} throws η
Ψ2, f : Pf . Qf (f) = Pf . Qf

Σ; Φ; Ψ2, f : Pf . Qf ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Reentrant functions and signal binding

Let’s consider signal binding to reentrant functions. Let c equals f(); and assume that

P = Q = Pf = Qf = Iz.

Φ, f : Pf . Qf (f) = Pf . Qf

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} f(); {Q} throws η
Φ, f : Pf . Qf (f) = Pf . Qf

Σ; Φ, f : Pf . Qf ; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} a1; a2 {Qf} throws η

Σ; Φ; Ψ ` {P ∧ Iz} fun f () = a1; a2 in (bind z to f in c) {Q ∧ Iz} throws η

194

9.2.11 Motivational Examples

Ψ splitting

A function context Ψ splitting ensures that non-reentrant functions may not be called

simultaneously in the main code and in the signal handler. Thus, if a particular non-

reentrant function is called from the main code and during execution is interrupted by

a signal that bound to the same function, then the safety of a program is jeopardised

(first derivation tree). However, if the same signal interrupted the main program while

another code was running, then the handler (with non-reentrant function(s)) run is safe

(second derivation tree).

In a summary for the first two derivations, we can say that it is a chance for the

program to preserve safety even signal handlers with non-reentrant functions are executed.

One may try to avoid the calling non-reentrant functions from the main code. However,

signal handlers are interruptible by another signals; thus, the same function could be

called via signal handler interruption by another handler.

There is also an extreme case bind z to f in f();, where a signal is bound to the non-

reentrant function in a block where that function is called (third and forth derivation

trees). Thus, the non-reentrant function is definitely called at least once. So processing a

signal z is not safe in any case, as non-reentrant function already has been used as linear

resource.

195

Σ, z : Iz . Iz; Φ; Ψ1, f : Iz . Iz ` {P} c {Q} throws η
Ψ2(f) =

Σ; Φ; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} c {Q} throws η
Ψ2, f : Iz . Iz(f) = Iz . Iz

Σ; Φ; Ψ2, f : Iz . Iz ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {P ∧ Iz} bind z to f in c {Q ∧ Iz} throws η

Ψ1, f : Iz . Iz(f) = Iz . Iz

Σ, z : Iz . Iz; Φ; Ψ1, f : Iz . Iz ` {Iz} f(); {Iz} throws η
Ψ2(f) =

Σ; Φ; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {Iz} bind z to f in f(); {Iz} throws η

Ψ1(f) =

Σ, z : Iz . Iz; Φ; Ψ1 ` {Iz} f(); {Iz} throws η
Ψ2, f : Iz . Iz(f) = Iz . Iz

Σ; Φ; Ψ2, f : Iz . Iz ` {Iz} f(); {Iz} throws η

Σ; Φ; Ψ1,Ψ2, f : Iz . Iz ` {Iz} bind z to f in f(); {Iz} throws η

One may ask, do we actually need the forth derivation? The function f is called at least

once in the main code. What if the signal arrives before the main command even started?

It the automated verifier builds derivation trees, then it depends on the implementation

whether it starts from the left or right subtree.

Reentrant functions and indirect recursion

The normal program style will have the form as in Figure 9.21 and Figure 9.22, where

one define a function in an outer scope, then bind a signal to the function in the inner

scope, and nesting may continue. In other words, one define a function set, then a set

196

of signals, and then the main code runs, which may call predefined function and handle

registered signals.

In our language, there is no limitations on function code for using nested commands or

signal binding; thus, one can bind a signal inside of the function body, as in Figure 9.23.

An effect of such construct is that when the function will be called, a new signal will be

bound, so the c1 of a function will run in a scope with extended signal binding. As soon as

control flow leaves the function scope, the recently installed signal will be automatically

uninstalled.

One may decide to move all the code inside of the function body, and leave only the

function call inside of the program body, as in Figure 9.24. In a sense, it is like a main

function in many programming languages, the program execution starts from calling the

main function.

If a function comes from the reentrant context, then the next code

bind z to f in f();

is not an extreme case (Figure 9.25). One may note that a call of a function f in a left

subtree (main code) could be interrupted by a signal z. On the other hand, a call of the

function f in a right subtree (handler code) could not be interrupted by itself via a signal

z.

One may try to create an extreme case derived from the Figure 9.25 and to loop the

function call with a signal binding. A trick is in putting binding scope into the function

body: fun f () = (bind z to f in f();) in f();. A corresponding derivation in logic

is presented in Figure 9.26. Operationally, it would be almost meaningless, because a

function call triggers a signal binding, which in its turn binds a signal to the same function

and calls the same function recursively. Even without processing arriving signals, that

will result in a loop. Anyway, our logic handles this case. If we use bind/1 instead of

bind, then we get another interesting situation. A one-shot signal will be reinstalled in

197

Σ, z : Iz . Iz; Φ, f : Iz . Iz; Ψ1 ` {P} c2 {Q} throws η
Φ, f : Iz . Iz(f) = Iz . Iz

Σ; Φ, f : Iz . Iz; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P ∧ Iz} bind z to f in c2 {Q ∧ Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P ∧ Iz} bind z to f in c2 {Q ∧ Iz} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} c1 {Qf} throws η

Σ; Φ; Ψ ` {P ∧ Iz} fun f () = c1 in (bind z to f in c2) {Q ∧ Iz} throws η

Figure 9.21: Example 01

Σ, z : Pz . Qz; Φ, f : Pz . Qz; Ψ ` {P} c2 {Q} throws η
Φ, f : Pz . Qz(f) = Pz . Qz

Σ; Φ, f : Pz . Qz; Ψ ` {Pz} f(); {Qz} throws η

Σ; Φ, f : Pz . Qz; Ψ ` {P ∧ Pz} bind/1 z to f in c2 {Q ∧ (Pz ∨Qz)} throws η

Σ; Φ, f : Pz . Qz; Ψ ` {P ∧ Pz} bind/1 z to f in c2 {Q ∧ (Pz ∨Qz)} throws η

Σ; Φ, f : Pz . Qz; Ψ ` {Pz} c1 {Qz} throws η

Σ; Φ; Ψ ` {P ∧ Pz} fun f () = c1 in (bind/1 z to f in c2) {Q ∧ (Pz ∨Qz)} throws η

Figure 9.22: Example 02

every nested scope, thus it can run only once in every scope, but from the point of view

of the whole program, it will be executed more than one times.

What if we just write fun f () = f(); in f();? Let’s consider a derivation tree in

Figure 9.27. One can observe that the loop could be contracted without signal binding

mechanism, as the recursive functions are permitted in our language.

Some problems arise even without signal binding. The program itself could be de-

signed to be bad, without respect to the logic. For example, check Figure 9.28.

Σ; Φ, f : Pf . Qf ; Ψ ` {P} c2 {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P ∧ Iz} bind z to f in c1 {Q ∧ Iz} throws η

Σ; Φ; Ψ ` {P ∧ Iz} fun f () = (bind z to f in c1) in c2 {Q ∧ Iz} throws η

Figure 9.23: Example 03

198

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} f(); {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} c {Qf} throws η

Σ; Φ; Ψ ` {Pf} fun f () = c in f(); {Qf} throws η

Figure 9.24: Example 04

Φ, f : Iz . Iz(f) = Iz . Iz

Σ, z : Iz . Iz; Φ, f : Iz . Iz; Ψ1 ` {Iz} f(); {Iz} throws η
Φ, f : Iz . Iz(f) = Iz . Iz

Σ; Φ, f : Iz . Iz; Ψ2 ` {Iz} f(); {Iz} throws η

Σ; Φ, f : Iz . Iz; Ψ1,Ψ2 ` {Iz} bind z to f in f(); {Iz} throws η

Figure 9.25: Example 05

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} f(); {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {P ∧ Iz} bind z to f in f(); {Q ∧ Iz} throws η

Σ; Φ; Ψ ` {P ∧ Iz} fun f () = (bind z to f in f();) in f(); {Q ∧ Iz} throws η

Figure 9.26: Example 06

Σ; Φ, f : I . I; Ψ ` {I} f(); {I} throws η

Σ; Φ, f : I . I; Ψ ` {I} f(); {I} throws η

Σ; Φ, f : I . I; Ψ
R

` f();

Σ; Φ; Ψ ` {I} fun f () = f(); in f(); {I} throws η

Figure 9.27: Example 07

199

A =

∅; f : Pf . Qf ; ∅ ` {P ∧ Iz} bind z to f in (x := 1; f();x := 0;) {Q ∧ Iz} throws η

B =

∅; f : x = 0 . x = 0; ∅ ` {x = 0} (x := 1; f();x := 0;) {x = 0} throws η

A B

∅; ∅; ∅ ` {P ∧ Iz} fun f () = (x := 1; f();x := 0;) in (bind z to f in (x := 1; f();x := 0;)) {Q ∧ Iz} throws η

Subtree B derivation:

{x = 0}x := 1; {x = 1}

∅; f : x = 0 . x = 0; ∅ ` {x = 0}x := 1; {x = 1} throws η
(f : x = 0 . x = 0)(f) = (x = 0 . x = 0)

∅; f : x = 0 . x = 0; ∅ ` {x = 1} f(); {x = } throws η

∅; f : x = 0 . x = 0; ∅ ` {x = 0} (x := 1; f();) {x = } throws η

∅; f : x = 0 . x = 0; ∅ ` {x = 0} (x := 1; f();) {x = 0} throws η
{x = }x := 0; {x = 0}

∅; f : x = 0 . x = 0; ∅ ` {x = }x := 0; {x = 0} throws η

∅; f : x = 0 . x = 0; ∅ ` {x = 0} (x := 1; f();x := 0;) {x = 0} throws η

Figure 9.28: Example 08

z : x > 0 . x > 0; f : x > 0 . x > 0; ∅ ` {x > 0} (x+ +;) {x > 0}
Φ(f) = (x > 0) . (x > 0)

∅; f : x > 0 . x > 0; ∅ ` {x > 0} f(); {x > 0}

∅; f : x > 0 . x > 0; ∅ ` {x > 0} (bind z to f inx+ +;) {x > 0}

Φ(f) = (x > 0) . (x > 0)

∅; f : x > 0 . x > 0; ∅ ` {x > 0} f(); {x > 0}

∅; f : x > 0 . x > 0; ∅ ` {x > 0} (bind z to f inx+ +;) {x > 0}

∅; ∅; ∅ ` {(x > 0)} fun f () = (bind z to f inx+ +;) in f(); {(x > 0)}

Figure 9.29: Example 09

200

F (f) = cf

[z 7→ f]; ∅; [f 7→ (bind z to f inx+ +;)] s1, x+ +;⇓ s2

∅; ∅; [f 7→ (bind z to f inx+ +;)] s1, (bind z to f inx+ +;) ⇓ s2

∅; ∅; [f 7→ (cf)] s1, f();⇓ s2

F (f) = cf

[z 7→ f](z) = f ∅; ∅; [f 7→ (cf)] s1, f();⇓ s2 [z 7→ f]; ∅; [f 7→ (cf)] s2, x+ +;⇓ s3

[z 7→ f]; ∅; [f 7→ (bind z to f inx+ +;)] s1, x+ +;⇓ s3

∅; ∅; [f 7→ (bind z to f inx+ +;)] s1, (bind z to f inx+ +;) ⇓ s3

∅; ∅; [f 7→ (bind z to f inx+ +;)] s1, f();⇓ s3

∅; ∅; ∅ s1, fun f () = (bind z to f inx+ +;) in f();⇓ s3

Figure 9.30: Example 10

Φ(f) = (x > 0) . (x > 0)

z : x > 0 . x > 0; f : x > 0 . x > 0; ∅ ` {x > 0} f(); {x > 0}
Φ(f) = (x > 0) . (x > 0)

∅; f : x > 0 . x > 0; ∅ ` {x > 0} f(); {x > 0}

∅; f : x > 0 . x > 0; ∅ ` {x > 0} (bind z to f in f();) {x > 0}

Φ(f) = (x > 0) . (x > 0)

∅; f : x > 0 . x > 0; ∅ ` {x > 0} f(); {x > 0}

∅; f : x > 0 . x > 0; ∅ ` {x > 0} (bind z to f in f();) {x > 0}

∅; ∅; ∅ ` {(x > 0)} fun f () = (bind z to f in f();) in f(); {(x > 0)}

Figure 9.31: Example 11

In Figure 9.29, throwsη is omitted for space saving. In Figure 9.30, if no signal arrives,

then the result of execution fun f () = (bind z to f inx++;) in f(); is an increment of

the initial value of x by one. For every signal interrupt and consequent recursive function

call, a value of x will be incremented by one. Signal arrives nondeterministically, thus

the final value of x is unpredictable. However, x could be used as a counter of arrived

and processed signals. Note: cf = bind z to f inx+ +;

In Figure 9.31, throwsη is omitted for space saving. Even without signals,

(bind z to f in f();) will never terminate (Figure 9.32).

201

F (f) = cf

[z 7→ f]; ∅; [f 7→ cf] s2, f();⇓ s3

[z 7→ f]; ∅; [f 7→ cf] s2, (bind z to f in f();) ⇓ s3

[z 7→ f]; ∅; [f 7→ (cf)] s2, f();⇓ s3

F (f) = cf

[z 7→ f](z) = f ∅; ∅; [f 7→ (cf)] s1, f();⇓ s2 [z 7→ f]; ∅; [f 7→ (cf)] s2, f();⇓ s3

[z 7→ f]; ∅; [f 7→ (bind z to f in f();)] s1, f();⇓ s3

∅; ∅; [f 7→ (bind z to f in f();)] s1, (bind z to f in f();) ⇓ s3

∅; ∅; [f 7→ (bind z to f in f();)] s1, f();⇓ s3

∅; ∅; ∅ s1, fun f () = (bind z to f in f();) in f();⇓ s3

Figure 9.32: Example 12

9.2.12 Non-linear Interference

The aim of these examples is to show what may happen when a function non-linearly

interfere with itself. Therefore, there is no division between reentrant and non-reentrant

functions in the version of the logic used in these examples.

Initial set up where every nested scope presented separately. We define a set of

variables x, y, t in the most outer scope. Thus, from any inner scope these variables will

be considered as global.

local x, y, t in c1

Then we define a non-reentrant function n that nullifies the variable t (in c1). (fun

in operational semantics, and fuN in logic;)

fun n () = (t := 0;) in c2

as a space saving measure, we may use nb notation to express body of the function n.

Then we define a function f (in c2), such that

fun f () = (n(); t := x;x := y; y := t;n();) in c3

as a space saving measure, we may use fb notation to express body of the function f .

202

Then we bind f to a signal z (in c3):

bind/1 z to f in c4

And the main program sets initial values and calls f (in c4):

x := 1; y := 9; f();

Thus, we have the next derivation tree (it is actually a subtree, as we trimmed the set

up bits) in case if signal z never arrives: (signal handling is not addressed in the example

below, but we still have to show the omega splitting explicitly)

∅; [z 7→ f]; [n 7→ nb] [f 7→ fb] s, x := 1;⇓ s [x 7→ 1]

∅; ∅; [n 7→ nb] [f 7→ fb] s [x 7→ 1], y := 9;⇓ s [x 7→ 1] [y 7→ 9]

∅; [z 7→ f]; [n 7→ nb] [f 7→ fb] s, x := 1; y := 9; ⇓ s [x 7→ 1] [y 7→ 9]

([n 7→ nb] [f 7→ fb])(f) = fb

∅; ∅; [n 7→ nb] [f 7→ fb] s [x 7→ 1] [y 7→ 9], (n(); t := x;x := y; y := t;n();) ⇓ s [x 7→ 9] [y 7→ 1]

∅; ∅; [n 7→ nb] [f 7→ fb] s [x 7→ 1] [y 7→ 9], f(); ⇓ s [x 7→ 9] [y 7→ 1]

∅; [z 7→ f]; [n 7→ nb] [f 7→ fb] s, x := 1; y := 9; ⇓ s [x 7→ 1] [y 7→ 9]

∅; ∅; [n 7→ nb] [f 7→ fb] s [x 7→ 1] [y 7→ 9], f(); ⇓ s [x 7→ 9] [y 7→ 1]

∅; [z 7→ f]; [n 7→ nb] [f 7→ fb] s, x := 1; y := 9; f();⇓ s [x 7→ 9] [y 7→ 1]

What does happen if signal arrives? For simplicity, assume that fb equals to (t :=

x;x := y; y := t;).

203

Without signal handling:

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], t := x;⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], x := y;⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 9] [t 7→ 1], y := t;⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y; y := t;) ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

One may observe that when the program terminates the values of x and y are swapped,

and as side effect the variable t contains the last value of y.

With signal handling just before the first command:

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], t := x;⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], x := y;⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 9] [t 7→ 1], y := t;⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y; y := t;) ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

[f 7→ fb](f) = fb

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y; y := t;) ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], f(); ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

[z 7→ f](z) = f

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], f(); ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 1] [t 7→ 1], t := x;⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 9]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], t := x; ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 9]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], t := x; ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 9]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 1] [t 7→ 9], x := y;⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 9]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 9]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 9]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 1] [t 7→ 9], y := t;⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 9]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y; y := t;) ⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 9]

204

In the example above, a signal z triggered a signal handler, which is a function f , before

the first command of the program.

Assume there is an invariant such that {I} (t := x;x := y; y := t;) {I} or {I} f(); {I}

holds. With pre- and postconditions, it will have the next form: {x = X ∧ y =

Y } f(); {x = Y ∧y = X}. So, in terms of pre- and postconditions, for the inner function

call f (via signal handler that arrived at the very beginning) the judgement {x = 1∧ y =

9} f(); {x = 9 ∧ y = 1} is true. However, for the (outer) function call f from a body of

the program, the judgement {x = X ∧ y = Y } (t := x;x := y; y := t;) {x = Y ∧ y = X}

does not hold as we get {x = 1 ∧ y = 9} (t := x;x := y; y := t;) {x = 1 ∧ y = 9}.

If the pre- and post conditions will have the next form (x = X ∧ y = Y) for P and

(x = X ∧ y = Y) ∨ (x = Y ∧ y = X) for Q, then {x = 1 ∧ y = 9} (t := x;x := y; y :=

t;) {x = 1 ∧ y = 9} is true.

With signal handling in between: What if the signal z arrives during execution

of f?

If we apply the logic to the example below, then obviously {(x = X ∧ y = Y)} (t :=

x;x := y; y := t;) {(x = X ∧ y = Y) ∨ (x = Y ∧ y = X)} is not true, as we got

{(x = 1 ∧ y = 9)} (t := x;x := y; y := t;) {(x = 1 ∧ y = 1)} at the end.

205

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], t := x;⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], x := y;⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], (t := x;x := y;) ⇓ s [x 7→ 9] [y 7→ 9] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 9] [t 7→ 1], y := t;⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], (t := x;x := y; y := t;) ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

[f 7→ fb](f) = (t := x;x := y; y := t;)

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], (t := x;x := y; y := t;) ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], f(); ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

[z 7→ f](z) = f

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], f(); ⇓ s [x 7→ 9] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 9] [y 7→ 1] [t 7→ 1], x := y;⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], x := y; ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 9], t := x;⇓ s [x 7→ 1] [y 7→ 9] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9] [t 7→ 1], x := y; ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y;) ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 1] [y 7→ 1] [t 7→ 1], y := t;⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

∅; [z 7→ f]; [f 7→ fb] s [x 7→ 1] [y 7→ 9], (t := x;x := y; y := t;) ⇓ s [x 7→ 1] [y 7→ 1] [t 7→ 1]

Precondition (or invariant) of the signal in the signal binding should hold from the

very beginning. In case with function, there is no such limitation, as programmer has

control over when he/she calls the function. However, as we use functions in signal

bindings, the preconditions for them should hold from the very beginning as well. (This

applies only to the functions that are used as signal handlers.)

206

Σ, z : Pz . Qz; Φ ` {P} cB {Q} throws η

Σ; Φ ` {Pz} f(); {Qz} throws η

Σ stable Pz . Qz

Σ; Φ ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

z : Pz . Qz; f : Pz . Qz ` {P} cB {Q} throws η

∅; f : Pz . Qz ` {Pz} f(); {Qz} throws η

∅ stable Pz . Qz

∅; f : Pz . Qz ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

Let cB = f();, but first, let cB = (t := x;x := y; y := t;); this is just to avoid long

trees at this stage. Actually, (t := x;x := y; y := t;) is a body of the function f . Let

P and Pz = {x = X ∧ y = Y }, Q and Qz = {x = Y ∧ y = X}. Let’s consider the left

subtree (cB):

z : Pz . Qz; f : Pz . Qz ` {Pz} t := x; {P1} throws η

z : Pz . Qz; f : Pz . Qz ` {P1}x := y; {P2} throws η

z : Pz . Qz; f : Pz . P2 ` {Pz} (t := x;x := y;) {P2} throws η

z : Pz . Qz; f : Pz . Qz ` {Pz} (t := x;x := y;) {P2} throws η

z : Pz . Qz; f : Pz . Qz ` {P2} y := t; {Qz} throws η

z : Pz . Qz; f : Pz . Qz ` {Pz} (t := x;x := y; y := t;) {Qz} throws η

207

What does happen when we substitute the place holders?

{x = X ∧ y = Y } t := x; {x = X ∧ y = Y }

(x = X ∧ y = Y) stable z : Pz . Qz . . .

z : Pz . Qz ; f : Pz . Qz ` {x = X ∧ y = Y } t := x; {P1} throws η

z : Pz . Qz ; f : Pz . Qz ` {x = X ∧ y = Y } t := x; {P1} throws η

z : Pz . Qz ; f : Pz . Qz ` {P1}x := y; {P2} throws η

z : Pz . Qz ; f : Pz . P2 ` {x = X ∧ y = Y } (t := x;x := y;) {P2} throws η

z : Pz . Qz ; f : Pz . Qz ` {x = X ∧ y = Y } (t := x;x := y;) {P2} throws η

z : Pz . Qz ; f : Pz . Qz ` {P2} y := t; {x = Y ∧ y = X} throws η

z : Pz . Qz ; f : Pz . Qz ` {x = X ∧ y = Y } (t := x;x := y; y := t;) {x = Y ∧ y = X} throws η

We cannot derive this tree as stability assumption does not hold; (x = X ∧ y =

Y) stable z : Pz . Qz is equivalent to (x = X ∧ y = Y) stable z : (x = X ∧ y =

Y) . (x = Y ∧ y = X).

9.2.13 Non-linear Interference - Part 2

In Section 9.2.12, we considered scenarios where an interrupting instance of the function

(let’s say f) corrupts (via signal handler) the interrupted instance of f ; thus, the inter-

rupted instance of the function f returns unreliable results. In this Section 9.2.13, we

will address a situation where the interrupting function f returns unreliable results, as

its preconditions do not hold inside of the interrupted function f ; in other words, inside

of its own body.

Programmer has control over the functions, such that where to call them in the pro-

gram. The preconditions of the function should be known as well, it is its interface in some

sense. Thus, before one calls the function he should satisfy the function’s preconditions.

Then, he may expect a reliable outcome of the function. However, when the function is

interrupted via signal handler, programmer has no control over which preconditions are

satisfied, as signals arrive nondeterministically. Assume that the function f performs an

208

operation of division by a variable y. Thus, it’s precondition could have the next form

y 6= 0 (or y > 0). So, when one calls the function f form the body of a command c, he

should check that y is not equal to zero or assign any value that is not equal to zero.

When the function is called via the signal handler, y could have any value.

To discuss this example, we use the following the binding rule.

z : Iz . Iz; f : Iz . Iz ` {P} cB {Q} throws η

z : Iz . Iz; f : Iz . Iz ` {Iz} f(); {Iz} throws η

Iz stable Iz . Iz

∅; f : Iz . Iz ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

When one binds a new signal hander, its preconditions should hold at that point. In

this version of the language signal handlers are functions, so the function’s preconditions

(function that is used as a signal handler) should hold at the point of signal binding.

Moreover, according to the stability assumptions (implicit and explicit), that precondi-

tions should hold even during execution of the main command. For example, if cB assigns

zero to y, then stability assumptions (in a derivation tree for the atomic command) will

not hold.

Example Let’s consider this situation in terms of operational semantics. We define a

local variable x in the most outer scope: local x in c1. Thus, from any inner scope these

variables will be considered as global. Assume that in c1 we have a function f defined in

the next form fun f () = (x := 0;x++;) in c2. Finally, we define c2 as bind z to f in c3,

where c3 is f();. Thus, a function call f might be interrupted by itself. If signal arrives

before the first command of the function runs or after function call completes, then the

result of such interleaving is equal to sequentially composed function calls. Shortly, x

will be equal 1 after every function call. However, if signal arrives during the function f

call, then the result will be different (e.g.: x = 2).

We skip straightforward steps and start from c3 execution level. For space saving, fb

209

[z 7→ f]; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ f]; ∅; [f 7→ fb] [x 7→ 0], x+ +;⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[f 7→ fb](f) = (x := 0;x+ +;)

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], f();⇓ s [x 7→ 1]

Figure 9.33: Signal z never arrives

replaces x := 0;x+ +;.

Please note: it is not important whether the signal z is one-shot or persistent in these

examples, as the body interfere with the signal handler in non-linear way. Thus, it is

enough for any signal to interrupt the body at least once to have a destructive effect.

Case 1: signal z never arrives, Figure 9.33.

Case 2: signal is handled before the function call, Figure 9.34.

Case 3: signal is handled during the function call, Figure 9.35.

Case *: corresponding program addressed in logic, Figure 9.36.

To address the following program

fun f () = (x := 0;x+ +;) in (bind z to f in f();)

in our logic, we cannot skip the initial steps, where the signals are bound and functions

are defined. If we start from the same level as operational semantics examples, we can

get the derivation tree as in Figure 9.36.

However, a derived subtree in Figure 9.36, does not depict all the details. So let’s

derive a tree from the very beginning, but after the local variable x has been defined and

initialised to 1, Figure 9.37. Stability assumption holds trivially, as a signal context is

empty before a signal z binding.

The function f is defined before the signal binding; thus, in the right subtree, where

the stability assumptions of the function body should be checked, the signal context is

210

∅; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 0]

∅; ∅; [f 7→ fb] [x 7→ 0], x+ +;⇓ s [x 7→ 1]

∅; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[f 7→ fb](f) = (x := 0;x+ +;)

∅; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→], f(); ⇓ s [x 7→ 1]

[z 7→ f](z) = f

∅; ∅; [f 7→ fb] s [x 7→], f(); ⇓ s [x 7→ 1]

∅; [z 7→ f]; [f 7→ fb] [x 7→ 1], x := 0;⇓ s [x 7→ 0]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ f]; ∅; [f 7→ fb] [x 7→ 0], x+ +;⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[f 7→ fb](f) = (x := 0;x+ +;)

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], f();⇓ s [x 7→ 1]

Figure 9.34: Signal is handled before the function call

211

∅; ∅; [f 7→ fb] [x 7→ 0], x := 0;⇓ s [x 7→ 0]

∅; ∅; [f 7→ fb] [x 7→ 0], x+ +;⇓ s [x 7→ 1]

∅; ∅; [f 7→ fb] [x 7→ 0], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[f 7→ fb](f) = (x := 0;x+ +;)

∅; ∅; [f 7→ fb] [x 7→ 0], (x := 0;x+ +;) ⇓ s [x 7→ 1]

∅; ∅; [f 7→ fb] s [x 7→ 0], f(); ⇓ s [x 7→ 1]

∅; [z 7→ f]; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ f](z) = f

∅; ∅; [f 7→ fb] s [x 7→ 0], f(); ⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], x := 0;⇓ s [x 7→ 1]

[z 7→ f]; ∅; [f 7→ fb] [x 7→ 1], x+ +;⇓ s [x 7→ 2]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 2]

[f 7→ fb](f) = (x := 0;x+ +;)

[z 7→ f]; ∅; [f 7→ fb] [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 2]

[z 7→ f]; ∅; [f 7→ fb] [x 7→], f();⇓ s [x 7→ 2]

Figure 9.35: Signal is handled during the function call

(f : Iz . Iz)(f) = (Iz . Iz)

z : Iz . Iz; f : Iz . Iz ` {Iz} f(); {Iz} throws η

assume that x initilalised to 1, and Iz = (x = 1)

(f : x = 1 . x = 1)(f) = (x = 1 . x = 1)

z : x = 1 . x = 1; f : x = 1 . x = 1 ` {x = 1} f(); {x = 1} throws η

Figure 9.36: Non-reentrant function bound to a signal

212

(f : x = 1 . x = 1)(f) = (x = 1 . x = 1)

z : x = 1 . x = 1; f : x = 1 . x = 1 ` {(x = 1)} f(); {(x = 1)}
(f : x = 1 . x = 1)(f) = (x = 1 . x = 1)

∅; f : x = 1 . x = 1 ` {(x = 1)} f(); {(x = 1)}

∅; f : x = 1 . x = 1 ` {(x = 1)} bind z to f in f(); {(x = 1)}

∅; f : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; f : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; f : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; f : x = 1 . x = 1 ` {(x = 1)} bind z to f in f(); {(x = 1)}

∅; f : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅ ` {(x = 1)} fun f () = (x := 0;x+ +;) in (bind z to f in f();) {(x = 1)}

Figure 9.37: Non-reentrant function bound to a signal - simplified

empty. Later in the tree, when the function f is called, the signal context is no longer

empty. Actually, even if the signal context is nonempty initially, the function body will

miss all signals that will be installed later. It is neither a feature nor a bug, it is a

limitation of the logic. For more details please see Section 9.4.1.

9.2.14 Commands Instead of Functions

Let’s compare examples of a language with functions in Figure 9.38 and Figure 9.39 to a

language without functions in Figure 9.40 and Figure 9.41.

In the examples in Figure 9.39 and Figure 9.41, a signal context Σ was non-empty

from the very beginning. Let’s address almost the same program (bind z to (x := 0; x+

+;) in (x := 0;x+ +;)) that was studied above, but without functions.

Case 1: signal z never arrives, Figure 9.42.

Case 2: signal is handled before the first command, Figure 9.43.

Case 3: signal is handled after the first command, Figure 9.44.

Case *: corresponding program addressed in logic, Figure 9.45.

To address this program (bind z to (x := 0;x + +;) in (x := 0;x + +;)) in our logic,

we start almost from the very beginning. We assume that x initialised to 1 beforehand,

213

Σ, z1 : Iz . Iz, z2 : Iz . Iz; Φ; ∅ ` {P} c {Q} throws η

Σ, z1 : Iz . Iz; Φ; ∅ ` {Iz} f(); {Iz} throws η

Σ, z2 : Iz . Iz stable Iz

Σ, z1 : Iz . Iz; Φ; ∅ ` {P ∧ Iz} bind z2 to f in c {Q ∧ Iz} throws η
Σ, z1 : Iz . Iz; Φ; ∅ ` {P ∧ Iz} bind z2 to f in c {Q ∧ Iz} throws η

Σ; Φ; ∅ ` {Iz} f(); {Iz} throws η

Σ stable Iz

Σ; Φ; ∅ ` {P ∧ Iz} bind z1 to f in (bind z2 to f in c) {Q ∧ Iz} throws η
Σ; f : Iz . Iz; ∅ ` {P ∧ Iz} bind z1 to f in (bind z2 to f in c) {Q ∧ Iz} throws η

Σ; f : Iz . Iz; ∅ ` {Iz} cf {Iz} throws η

Σ; f : Iz . Iz; ∅
R
` cf

Σ; ∅; ∅ ` {P ∧ Iz} fun f () = cf in (bind z1 to f in (bind z2 to f in c)) {Q ∧ Iz} throws η

Figure 9.38: In language with functions - Op. sem.

Let c = a1 and cf = a2.

{Iz} a2 {Iz}

Iz stable Σ Iz stable Σ Σ stable (Iz . Iz) η stable Σ

Σ; f : Iz . Iz; ∅ ` {Iz} a2 {Iz} throws η

(f : Iz . Iz)(f) = Iz . Iz

Σ; f : Iz . Iz; ∅ ` {Iz} f(); {Iz} throws η

(f : Iz . Iz)(f) = Iz . Iz

Σ, z1 : Iz . Iz; f : Iz . Iz; ∅ ` {Iz} f(); {Iz} throws η

Figure 9.39: In language with functions - Logic

214

Σ, z1 : Iz . Iz, z2 : Iz . Iz ` {P} c {Q} throws η

Σ, z1 : Iz . Iz ` {Iz} ch {Iz} throws η

Σ, z2 : Iz . Iz stable Iz

Σ, z1 : Iz . Iz ` {P ∧ Iz} bind z2 to ch in c {Q ∧ Iz} throws η
Σ, z1 : Iz . Iz ` {P ∧ Iz} bind z2 to ch in c {Q ∧ Iz} throws η

Σ ` {Iz} ch {Iz} throws η

Σ stable Iz

Σ ` {P ∧ Iz} bind z1 to ch in (bind z2 to ch in c) {Q ∧ Iz} throws η

Figure 9.40: In language with commands - Op.sem

Let c = a1 and ch = a2.

{Iz} a2 {Iz}

Iz stable Σ Iz stable Σ Σ stable (Iz . Iz) η stable Σ

Σ ` {Iz} a2 {Iz} throws η

{Iz} a2 {Iz}

Iz stable Σ, z1 : Iz . Iz Iz stable Σ, z1 : Iz . Iz

Σ, z1 : Iz . Iz stable (Iz . Iz) η stable Σ, z1 : Iz . Iz

Σ, z1 : Iz . Iz ` {Iz} a2 {Iz} throws η

Figure 9.41: In language with commands - Logic

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→ 0], x+ +;⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

∅; ∅ [x 7→], bind z to (x := 0;x+ +;) in (x := 0;x+ +;) ⇓ s [x 7→ 1]

Figure 9.42: Signal z never arrives

215

∅; ∅ s [x 7→], x := 0;⇓ s [x 7→ 0] ∅; ∅ s [x 7→ 0], x+ +;⇓ s [x 7→ 1]

∅; ∅ s [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)](z) = (x := 0;x+ +;)

∅; ∅ s [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→ 1], x := 0;⇓ s [x 7→ 0]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→ 0], x+ +;⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 1]

∅; ∅ [x 7→], bind z to (x := 0;x+ +;) in (x := 0;x+ +;) ⇓ s [x 7→ 1]

Figure 9.43: Signal is handled before the first command

∅; ∅ s [x 7→ 0], x := 0;⇓ s [x 7→ 0] ∅; ∅ s [x 7→ 0], x+ +;⇓ s [x 7→ 1]

∅; ∅ s [x 7→ 0], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 0]

[z 7→ (x := 0;x+ +;)](z) = (x := 0;x+ +;)

∅; ∅ s [x 7→ 0], (x := 0;x+ +;) ⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], x := 0;⇓ s [x 7→ 1]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→ 1], x+ +;⇓ s [x 7→ 2]

[z 7→ (x := 0;x+ +;)]; ∅ [x 7→], (x := 0;x+ +;) ⇓ s [x 7→ 2]

∅; ∅ [x 7→], bind z to (x := 0;x+ +;) in (x := 0;x+ +;) ⇓ s [x 7→ 2]

Figure 9.44: Signal is handled after the first command

216

and Iz = (x = 1) as shown in Figure 9.45. All the problems with stability assumptions for

this program arise because the program’s code is non-reentrant, but the RLTS could

prevent this. For details please refer to Section 9.2.11.

Even if the preconditions are weakened a little bit, for example, for any initial value

of x the given code returns 1, it will still fail. We use to represent any value. For an

example with weakened preconditions, see Figure 9.46.

9.2.15 Functions and RLTS

Let’s apply the ideas that appeared in Section 9.2.11, for the program

fuN f () = (x := 0;x+ +;) in (bind z to f in f();)

Operational semantics tree derivations are identical to the cases 1, 2 and 3 in Sec-

tion 9.2.13. Logic rules with embedded RLTS are described in Section 9.2.5.

217

{(x = 1)}x := 0; {(x = 0)}

(x = 1) stable z : x = 1 . x = 1

(x = 0) stable z : x = 1 . x = 1

(x = 1) stable ((x = 1) . (x = 0))

(x = 1) stable ((x = 1) . (x = 0))

z : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}
{(x = 0)}x : ++; {(x = 1)}

(x = 0) stable z : x = 1 . x = 1

(x = 1) stable z : x = 1 . x = 1

(x = 1) stable ((x = 0) . (x = 1))

(x = 1) stable ((x = 0) . (x = 1))

z : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}
z : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

z : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

z : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x = 1)}x := 0; {(x = 0)} ∅ ` {(x = 0)}x+ +; {(x = 1)}

∅ ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

z : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x = 1)} bind z to (x := 0;x+ +;) in (x := 0;x+ +;) {(x = 1)}

Figure 9.45: Non-reentrant code bound to a signal

218

{(x =)}x := 0; {(x = 0)}

(x =) stable z : x = . x = 1

(x = 0) stable z : x = . x = 1

(x =) stable ((x =) . (x = 0))

(x = 1) stable ((x =) . (x = 0))

z : x = . x = 1 ` {(x =)}x := 0; {(x = 0)}
{(x = 0)}x : ++; {(x = 1)}

(x = 0) stable z : x = . x = 1

(x = 1) stable z : x = . x = 1

(x =) stable ((x = 0) . (x = 1))

(x = 1) stable ((x = 0) . (x = 1))

z : x = . x = 1 ` {(x = 0)}x+ +; {(x = 1)}
z : x = . x = 1 ` {(x =)}x := 0; {(x = 0)}

z : x = . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

z : x = . x = 1 ` {(x =)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x =)}x := 0; {(x = 0)} ∅ ` {(x = 0)}x+ +; {(x = 1)}

∅ ` {(x =)} (x := 0;x+ +;) {(x = 1)}

z : x = . x = 1 ` {(x =)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x =)} (x := 0;x+ +;) {(x = 1)}

∅ ` {(x =)} bind z to (x := 0;x+ +;) in (x := 0;x+ +;) {(x = 1)}

Figure 9.46: Non-reentrant code bound to a signal. Weakened preconditions.

219

It is assumed that the local variable x has been defined and initialised to 1.

(f : x = 1 . x = 1)(f) = (x = 1 . x = 1)

z : x = 1 . x = 1; ∅; f : x = 1 . x = 1 ` {(x = 1)} f(); {(x = 1)}
(∅)(f) =

∅; ∅; ∅ ` {(x = 1)} f(); {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} bind z to f in f(); {(x = 1)}

or

(∅)(f) =

z : x = 1 . x = 1; ∅; ∅ ` {(x = 1)} f(); {(x = 1)}
(f : x = 1 . x = 1)(f) = (x = 1 . x = 1)

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} f(); {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} bind z to f in f(); {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} bind z to f in f(); {(x = 1)}

∅; ∅; f : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; ∅ ` {(x = 1)} fuN f () = (x := 0;x+ +;) in (bind z to f in f();) {(x = 1)}

Despite the fact that stability assumption holds trivially (initially empty signal context),

RLTS indicates that this program is unsafe.

9.2.16 Motivation of the Reentrancy Granularity

In C language, static variables are not stored in stack. Thus, every instance of the

function uses the same piece of memory. On the other hand, automatic variables (a

default option) are placed on stack. Thus, whenever the function is called and the new

stack frame is created, a new piece of memory is allocated for the automatic variables.

220

If an automatic variable is declared inside of a function, then the scope and visibility

of that variable is limited to the body of the function. The visibility and scope of that

variables could be limited, if another variable with the same name is declared later in the

code of the function body.

Functions that use automatic variables only are reentrant. When another (second)

instance of the same function interrupts execution of itself (first instance), a separate

piece of memory is provided to the automatic variables in a freshly created stack frame.

Visibility and scope of the static variables differs form the automatic ones. If the

static variable is declared inside of the function body, then the scope of that variable

is limited to the body of the function and the visibility of that variable is limited to all

instances of the function. In other words, the same piece of memory that corresponds

to the static variable will be shared between all instances of the function where it has

been declared. However, the static variable declared in one function is not visible from

another one. If the static variable is declared in an outer scope of the function definition,

then the scope and the visibility of that variable is limited to the outer scope. That means

the variable is visible from any instance of any function defined in that scope.

Functions that use static variables in non-atomic way are non-reentrant. If two

instances of the same function will interfere concurrently with each other, the outcome

is no longer reliable, as the same piece of memory is shared concurrently. The global

and the static variables are different, but have some similarities in terms of scope and

visibility when declared in an outer scope that in turn can have function definitions.

To address reentrancy closer to the real-life implementation, we need to imitate the

static variables. Actually, our definition and understanding of the function reentrancy

strongly relies on the visibility of the static variables. A function is non-reentrant, if

two instances of it have access to the same piece of memory. In real life situations, that is

the case when the function adopts static variables. The same situation could happen, it

the function works with the global variables; global from the function’s point of view.

In our language, we do not have explicit global or static variables, but we can

221

imitate the required settings of visibility by declaring local variables in outer scopes.

Therefore, in our language, we can study the problem of reentrancy that corresponds

to the real-life situations, despite the fact that we don’t have an explicit notion of the

static variables.

Example: Idealisation for the static variable

We consider two examples, with and without RLTS in place.

Remark 9.2.6 In logic with signals, exceptions and RLTS the format of a judgement is

Σ; Φ; Ψ ` {P} c {Q} throws η

And in logic with signals and exceptions, but without RLTS the format of a judgement

is as follows

Σ; Φ ` {P} c {Q} throws η

Remark 9.2.7 Rules for the operational semantics are given in Section 9.1.

In logic (with RLTS):

(f : Pf . Qf)(f) = Pf . Qf

z : Pf . Qf ; ∅; f : Pf . Qf ` {Pf} f(); {Qf} throws η
∅(f) =

∅; ∅; ∅;` {Pf} f(); {Qf} throws η

∅; ∅; f : Pf . Qf ` {Pf} bind/1 z to f in f(); {Qf} throws η

∅; ∅; f : Pf . Qf ` {Pf} bind/1 z to f in f(); {Qf} throws η

∅; ∅; f : Pf . Qf ` {Pf} (x := 0;x+ +;) {Qf} throws η

∅; ∅; ∅ ` {Pf} (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

∅; ∅; ∅ ` {Pf} (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

x /∈ FV(Pf)

x /∈ FV(Qf)

∅; ∅; ∅ ` {Pf} local x in (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

222

In logic (without RLTS):

(f : Pf . Qf)(f) = Pf . Qf

z : Pf . Qf ; f : Pf . Qf ` {Pf} f(); {Qf} throws η
(f : Pf . Qf)(f) = Pf . Qf

∅; f : Pf . Qf ` {Pf} f(); {Qf} throws η

∅; f : Pf . Qf ` {Pf} bind/1 z to f in f(); {Qf} throws η

∅; f : Pf . Qf ` {Pf} bind/1 z to f in f(); {Qf} throws η

∅; f : Pf . Qf ` {Pf} (x := 0;x+ +;) {Qf} throws η

∅; ∅ ` {Pf} (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

∅; ∅ ` {Pf} (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

x /∈ FV(Pf)

x /∈ FV(Qf)

∅; ∅ ` {Pf} local x in (fuN f () = (x := 0;x+ +;) in (bind/1 z to f in f();)) {Qf} throws η

In op.sem.: (safe run)

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], x := 0; [x 7→ p1] ⇓ s1 [p1 7→ 0]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], x+ +; [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], (x := 0;x+ +;) [x 7→ p1] ⇓ s1 [p1 7→ 1]

F (f) = (x := 0;x+ +;)

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], (x := 0;x+ +;) [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 1]

f ∈ dom(F)

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 1]

∅; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], bind z to f in f(); [x 7→ p1] ⇓ s1 [p1 7→ 1]

∅; ∅; ∅ s1 [p1 7→ 0], fun f () = (x := 0;x+ +;) in (bind z to f in f();) [x 7→ p1] ⇓ s1 [p1 7→ 1]

∅; ∅; ∅ s1, local x in (fun f () = (x := 0;x+ +;) in (bind z to f in f();)) ⇓ s1

223

In op.sem.: (interference with the signal handler)

F (f) = (x := 0;x+ +;);

∅; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], (x := 0;x+ +;) [x 7→ p1] ⇓ s1 [p1 7→ 1]

∅; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], x := 0; [x 7→ p1] ⇓ s1 [p1 7→ 0]

([z 7→ f])(z) = f

∅; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], x := 0; [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], x := 0; [x 7→ p1] ⇓ s1 [p1 7→ 1]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 1], x+ +; [x 7→ p1] ⇓ s1 [p1 7→ 2]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], (x := 0;x+ +;) [x 7→ p1] ⇓ s1 [p1 7→ 2]

F (f) = (x := 0;x+ +;)

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], (x := 0;x+ +;) [x 7→ p1] ⇓ s1 [p1 7→ 2]

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 2]

f ∈ dom(F)

[z 7→ f]; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], f(); [x 7→ p1] ⇓ s1 [p1 7→ 2]

∅; ∅; [f 7→ (x := 0;x+ +;)] s1 [p1 7→ 0], bind z to f in f(); [x 7→ p1] ⇓ s1 [p1 7→ 2]

∅; ∅; ∅ s1 [p1 7→ 0], fun f () = (x := 0;x+ +;) in (bind z to f in f();) [x 7→ p1] ⇓ s1 [p1 7→ 2]

∅; ∅; ∅ s1, local x in (fun f () = (x := 0;x+ +;) in (bind z to f in f();)) ⇓ s1

9.3 Experimental Material

In this section we present and discuss some experimental material to show how the logic

with Reentrancy Linear Type System may be further developed in the future.

224

9.3.1 Signal Binding and Functions

Functions become signal handlers in two steps. First of all, a function f is added into the

function context Φ by a function definition rule. Then, a signal z is bound to the function

f from the function context Φ by a signal binding rule. In the previous version of the logic

rules (Logic Rules are presented in Section 9.2.5), stability is checked when a function

body cf is no longer visible. The function body cf is visible only during the function

definition rule. Thus, the rules were providing a ground for the TOCTOU situation. For

examples, please refer to the Section 9.2.7 and Section 9.2.13.

Auxiliary definitions

We have to add auxiliary definitions (Definition 5.3.1) for the new forms of stability in

our program logic; thus, we extend Definition 5.3.1 with two extra points.

Definition 9.3.1 (Stability conditions Extended)

1. For a function context Φ (analogous for Ψ), we write P stable Φ if for all fj ∈

dom(Φ) with Φ(fj) = (Pj . Qj), it is the case that P stable (Pj . Qj).

2. We write Φ stable (P . Q) if for all fj in dom(Φ) with Φ(fj) = (Pj . Qj), we have

Pj stable (P . Q) and Qj stable (P . Q).

9.3.2 Variations of the Logic Rule Updates

Stability checks during function definition

We may update the logic rules to check stability for the functions at the level of the func-

tion definition, even before we bind it to the signals. Thus, we may remove the stability

checks at the level of signal bindings, as all signal handlers are functions; therefore, their

interference with each other was already controlled by the stability checks during the

function definitions.

225

Σ; Φ, f : Pf . Qf ; Ψ ` {P} cB {Q} throws η

Σ; Φ, f : Pf . Qf ; Ψ ` {Pf} cf {Qf} throws η

Σ; Φ, f : Pf . Qf ; Ψ
R

` cf Φ ∪Ψ stable Pf . Qf

Pf stable Φ ∪Ψ Qf stable Φ ∪Ψ

Σ; Φ; Ψ ` {P} fun f () = cf in cB {Q} throws η

Σ; Φ; Ψ, n : Pn . Qn ` {P} cB {Q} throws η

Σ; Φ; Ψ, n : Pn . Qn ` {Pn} cn {Qn} throws η

Φ ∪Ψ stable Pn . Qn Pn stable Φ ∪Ψ Qn stable Φ ∪Ψ

Σ; Φ; Ψ ` {P} fuN n () = cn in cB {Q} throws η

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2 ` {Iz} f(); {Iz} throws η

(((((((
Σ stable Iz

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Σ, z : Pz . Qz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2 ` {Pz} f(); {Qz} throws η

((((((((((
Σ stable Pz . Qz

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

That may look as an overhead, because not every function becomes a signal handler.

However, the “early” stability checks make sense, as when we enforce stability checks at

the same time the functions are lifted into the function context, we ensure that no matter

how the functions will be used in this environment/context (as signal handlers or just as

functions), safety of the program will be satisfied.

226

Examples

Example 1: It is assumed that the local variable x has been defined and initialised to 1,

c1 equals to (bind z1 to f1 in (bind z2 to f2 in c2)). Two signals are bound to two different

function names, but literally, they are identical in terms of commands.

With the previous version of the rules, there were two problems: interference of two

functions with different names, but identical non-reentrant code was unaddressed and

stability assumptions covered the functions at the high level only, but the inner code

remained unchecked. The same problems exist with the current version of the rule.

227

∅; z1, z2 : x = 1 . x = 1; ∅ ` {(x = 1)} c2 {(x = 1)}
(f2 : x = 1 . x = 1)(f2) = (x = 1 . x = 1)

∅; z1; f2 ` {(x = 1)} f2(); {(x = 1)}

(((((((((((((((

(x = 1) stable (x = 1) . (x = 1)

∅; z1 : x = 1 . x = 1; f2 ` {(x = 1)} bind z2 to f2 in c2 {(x = 1)}

∅; z1 : x = 1 . x = 1; f2 ` {(x = 1)} bind z2 to f2 in c2 {(x = 1)}
(f1 : x = 1 . x = 1)(f1) = (x = 1 . x = 1)

∅; ∅; f1 ` {(x = 1)} f1(); {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} bind z1 to f1 in (bind z2 to f2 in c2) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1, f2 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

f1 : x = 1 . x = 1 stable f2 : x = 1 . x = 1 (x = 1) stable f1 : x = 1 . x = 1

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} fuN f2 () = (x := 0;x+ +;) in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} fuN f2 () = (x := 0;x+ +;) in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅ stable f1 : (x = 1) . (x = 1) (x = 1) stable ∅

∅; ∅; ∅ ` {(x = 1)} fuN f1 () = (x := 0;x+ +;) in (fuN f2 () = (x := 0;x+ +;) in c1) {(x = 1)}

Adding stability checks at the level of the function definitions does not work, as the

function bodies are non-atomic. The resulting effect is very similar to the original version

of the rules, where stability was checked in the signal binding rule. Thus, it could be

228

a designer’s choice: to check stability for a function only if it is registered as a signal

handler (via signal binding rule), or to check stability among all functions (via function

definition rule). In the second case, more checks to be done, but as a positive effect any

function may become a signal handler at any stage later. It should be also noted, that

in the second case functions become more restrictive.

Stability checks for the function context as part of the atomic rule

A problem with the previous approach, is that when we add new function to the context,

we have access to the function body, as to the block of code. Therefore, we can not check

the influence of each atomic command that function body consists of at this level.

Actually, we are trying to address an extreme case when the same non-reentrant

block of code is used in two functions with different names. If one follows the basic

programming practices, there will be just one function that is attempted to be used in

an unsafe way, and the RLTS will determine that the program is unsafe.

However, this is an extreme case of another scenario as well. The same non-reentrant

block of code could be used in two different functions, that perform different tasks. Still,

one may suggest to adhere to the good programming practices, so the repeated non-

reentrant block of code will be encapsulated into the functions; thus, RLTS will be able

to check the program for unsafe use of the non-reentrant functions.

We may try to update the logic rules to check stability of the functions at the level

of the atomic commands.

229

{P} a {Q}

(((((((
P stable Σ (((((((

Q stable Σ ((((((((((
Σ stable (P . Q) η stable Σ

Φ ∪Ψ stable P . Q P stable Φ ∪Ψ Q stable Φ ∪Ψ

Σ; Φ; Ψ ` {P} a {Q} throws η

Σ, z : Iz . Iz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2 ` {Iz} f(); {Iz} throws η

(((((((
Σ stable Iz

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Iz} bind z to f in cB {Q ∧ Iz} throws η

Σ, z : Pz . Qz; Φ; Ψ1 ` {P} cB {Q} throws η

Σ; Φ; Ψ2 ` {Pz} f(); {Qz} throws η

((((((((((
Σ stable Pz . Qz

Σ; Φ; Ψ1,Ψ2 ` {P ∧ Pz} bind/1 z to f in cB {Q ∧ (Pz ∨Qz)} throws η

We check Φ∪Ψ stable P . Q instead of Σ stable (P . Q), as the functions could be lifted

into the signal context later. We do want to keep P stable Σ and Q stable Σ, but for

the same reason as mentioned above, we might need to replace them with P stable Φ∪Ψ

and Q stable Φ∪Ψ. However, it looks like P stable Φ∪Ψ and Q stable Φ∪Ψ enforce

too strict restrictions on the use of the functions.

Examples

Example 2: It is assumed that the local variable x has been defined and initialised to 1,

c1 equals to (bind z1 to f1 in (bind z2 to f2 in c2)). Two signals are bound to two different

function names, but literally, they are identical in terms of commands.

230

{(x = 1)}x := 0; {(x = 0)}

(x = 1) stable (x = 1) . (x = 0)

(x = 1) stable (x = 1) . (x = 1)

(x = 0) stable (x = 1) . (x = 1)

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

{(x = 0)}x+ +; {(x = 1)}

(x = 1) stable (x = 0) . (x = 1)

(x = 0) stable (x = 1) . (x = 1)

(x = 1) stable (x = 1) . (x = 1)

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)}x := 0; {(x = 0)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 0)}x+ +; {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} fuN f2 () = (x := 0;x+ +;) in c1 {(x = 1)}

∅; ∅; f1 : x = 1 . x = 1 ` {(x = 1)} (x := 0;x+ +;) {(x = 1)}

∅; ∅; ∅ ` {(x = 1)} fuN f1 () = (x := 0;x+ +;) in (fuN f2 () = (x := 0;x+ +;) in c1) {(x = 1)}

It does not work with the current configuration. The first explanation is that the

function f1 has been defined as a non-reentrant function. There is no need to check its

interference with itself, as by definition it is non-reentrant. Another explanation, is that

RLTS would prevent sharing the function f1 between the main program and the signal

handler; thus, the stability checks in the example above are redundant. Therefore, one

should not re-check the interference of the function with itself as it is covered by RLTS.

And once again, not every function becomes a signal handler, so enforcing stabil-

ity checks for every function in the atomic commands is too restrictive. Actually, this

approach enforces to use reentrant functions only.

Enforcing stability for the every function during atomic commands run is too restric-

231

tive. Enforcing stability without accessing function body does not allow to cover all the

cases, especially when the function definition and registering of the signal handler are

spaced out (do not come one after another). Thus, with current logic we can address

reentrancy of the same functions, but not reentrancy of the concurrent code. There would

be no TOCTOU situation, if the two functions f1 and f2 had the same name (what ac-

tually corresponds to a good programming practice and idea of using functions). If the

functions were called f , then RLTS would recognise unsafe code in the program.

9.4 Pros and Cons

To address interference between various non-reentrant (unsafe) functions one will need

to operate on the level of resources. On the other hand, our RLTS allows addressing

function self-reentrancy, which corresponds to the real-life implementations. Studying

reentrancy at the level of code and functions is still a challenging task.

What if a reentrant function f binds a signal inside? For example, please see Sec-

tion 9.2.8, Example 3. When the signal is called, it calls the function f , and the function

f binds/rebinds the signal to the same function f once again. Thus, the signal will be

unblocked, what may result into the signal handler interruption by itself. Nevertheless,

the function is reentrant and such behaviour is a feature of our language.

9.4.1 Limitations of the Logic with RLTS

Please consider the example in Figure 9.37. Stability assumption holds trivially, as a

signal context is empty before a signal z binding. The function f is defined before the

signal binding; thus, in the right subtree, where the stability assumptions of the function

body should be checked, the signal context is empty. Later in the tree, when the function

f is called, the signal context is no longer empty. Actually, even if the signal context is

nonempty initially, the function body will miss all signals that will be installed later. It

is neither a feature nor a bug, it is a limitation of the logic.

232

CHAPTER 10

LITERATURE REVIEW

In this chapter we summarise relevant findings and supporting ideas we built on from the

literature of various domains. Articles have been organised in a few groups, thought the

groups are not disjoint and may overlap.

10.1 Exception Handling

Exception handling is not just error signalling mechanism but efficient and flexible control

structure that could be used to construct a complex control flow.

Asynchronous Exceptions in Haskell [64] by Simon Marlow, Simon Peyton Jones,

Andrew Moran and John Reppy. In most programming languages asynchronous excep-

tions are heavily restricted, as their improper use may badly influence the reliability of

the programs. Haskell probably is the only language that provides both full support

and a formal semantics for asynchronous interrupts. In this paper [64], authors use the

notions of asynchronous exceptions, asynchronous signalling and interrupts almost in-

terchangeably. The motivational example behind this work is truly asynchronous and

nondeterministic signalling of one thread by another.

Concurrent Haskell is an extension of the standard Haskell that is capable of creating

new threads and performing communication between threads. This work presents an op-

erational semantics for Concurrent Haskell and extends it with asynchronous exceptions.

Extension includes addition of the primitive that enables one thread to asynchronously

raise an exception in another thread, block and unblock operations to enable or disable

233

interrupts in a particular scope.

Exceptional Syntax [7] by Benton et. al. Beside the general introduction to the

idea of exception handling, this article extended the usual simply-typed lambda calculus

with exceptions (names, types, constructs, rules and etc). Moreover, the corresponding

big-step operational semantics has been presented. Finally, authors discussed alternative

to ML style handle construct.

Implementation of exception handling [16] by David Chase. This article presents

core idea of exception handling and provides some examples at the machine code level.

Moreover, various implementation techniques for exception handling have been presented

and discussed.

Generic Exception Handling and the Java Monad [63] by Lutz Schröder and

Till Mossakowski. In this article, authors characterised Moggi’s exception monad trans-

former by an equational theory, and presented calculi for exception monads that take

into account both normal and abrupt termination.

Compiling Exceptions Correctly [44] by Graham Hutton and Joel Wright. This

article discusses basic method of compiling exceptions using stack unwinding. Moreover,

authors explain and verify that method using functional programming techniques. For

this purpose, authors developed a compiler for a small language extended with exceptions,

and gave a proof of its correctness with respect to a formal semantics of the language.

Calculating an Exceptional Machine [45] by Graham Hutton and Joel Wright.

This article is a continuation of the previous work [44]. Authors developed an abstract

machine for evaluation of expressions in the previously designed language with exceptions.

The key program transformation technique used in this work is a defunctionalisation that,

according to authors, was neglected in recent years.

Exception handling for copyless messaging [53] by Svetlana Jakšić and Luca

Padovani. This paper addresses a combination of exceptions and copyless messaging

mechanism, where only pointers to messages are exchanged between two processes and

the messages themselves are stored in an exchange heap. Authors assume exceptions are

234

in general unpredictable, where in our work exceptions are triggered at the specific point

of the code. Their model includes message sending over channels that are established

between peers (endpoints), where we focus on a receiving side only.

Through out the paper, the focus from exceptions slightly moves towards the ideas of

transactional memory. Combination of exceptions and resource management is a tricky

task. There is a need to keep a track of resources, as in case of abnormal process ter-

mination and jump of the control flow via exception, the resources should be handled

correctly (destructed or reallocated depending on the situation). Another complication

is that handling of an exception at a closest try might not be desirable in a specific

circumstances and exception should be propagated further. The existing solution is a

proper use of try-final block but it has its own drawbacks. As an alternative solution,

authors combine static analysis and transaction-like semantics of try blocks. Authors

study interaction between try-catch-finally construct and ”resource management”,

where we are address interaction between signals and exceptions.

The Definition of Standard ML [69] by Milner et. al. This article presents a

classic style of exception throwing and handling. We have adopted this style to add

exceptions to a big-step operational semantics.

In the lecture slides based on Handlers of Algebraic Effects [79] by Gordon D.

Plotkin and Matija Pretnar, the focus is on exception handlers that are addressed with

Monad. Authors show an explicit interest in designing of the general operational seman-

tics for handling mechanism and combining signals with other control structures in the

same language. It was also noted that addressing the notion of ”recursion” is important

but requires some extra efforts.

10.2 Ghost Variables

Ghost variables are clearly defined in papers like [85, 97, 105] and compared to other

forms of variables such as “logical”, “auxiliary”, “freeze” or “rigid” in [97, 105]. One may

235

observe that these forms could be identical or orthogonal to the idea of ghost variables.

In The Spirit of Ghost Code [33], authors provide a simple ML-style programming

language with mutable state and ghost code. The non-interference is enforced by a type

system with effects, which also allows the same data types and functions to be used in

both regular and ghost code. Authors also discussed a procedure of ghost code erasure

and proved its safety using bisimulation.

In A Marriage of Rely/Guarantee and Separation Logic [98, 99] and Modular

fine-grained concurrency verification [97], authors mention that the ghost variables

become unavoidable when unary postcondition is used. These papers show how to define a

two-state predicate from the single-state predicates. This method relies on the next bit of

notation ’↼’, which is used to define the state just before the action. Thus,
↼
x and x denote

the value of the program variable x before and after the action respectively. Authors

provide a definition of stability for the binary relations, and using the facts mentioned

above, transform it to the form that describes stability of a single state predicate P under

a binary relation R.

Authors in The Rely-Guarantee Method for Verifying Shared Variable Con-

current Programs [105] briefly introduce the notion of the ghost variables According to

this paper, ghost variables might be also called as logical, freeze or rigid variables. In this

work, y is used to denote a vector of program variables, whereas the logic variables are

indexed with 0. The definition of stability in this paper adopts ghost variables instead

of the harpooned ones.

In The craft of programming [84], towards the proper procedure declaration,

author defines the notions of formal and actual parameters, and addresses the interference

between formal parameters and global identifiers The notions of identifier, environment,

and state are crucial. Environment maps identifiers into their meanings. State maps

variables into their values. Variables is a part of the state of the computation and

Identifiers are phrases of a program that denote variables. Expression is a phrase

that describes the computation of a value that depends upon the state of the computation.

236

For example, let’s consider what does x = y = 17 mean in an environment η and in a

state σ. There are two variants: η maps identifier x to a variable a and y to b, where σ

maps both variables a and b into the same value 17; η maps identifiers x and y into the

variable a, where σ maps variable a into the value 17. We can observe that identifiers

and variables form two levels of abstraction.

Theories of programming languages [85] uses a notion of the ghost variables.

This was motivated by the fact that single state assertions can not directly describe a

relationship between two states. This is a fundamental book which can open a door to

the theory of programming languages. It starts from basic concepts as predicate logic

and finally shows how functional language might be build. Author explains all essential

concepts such as continuations, concurrency, type systems and polymorphism in detail.

In A Hoare Logic for Call-by-Value Functional Programs [82], authors provide

a detailed explanation of ghost variables and ghost parameters. One of the key ideas of

the parameterization of a function with ghost variables is that when the set of remaining

elements is implicit in the stack, a ghost variable might be used in order to refer to it.

One may conclude that we may call a ghost identifier as a ghost variable if it is used in

the context of an expression, and as a ghost parameter if it is used in the context of a

function.

In Elimination of ghost variables in program logics [40], authors present a for-

mal model of the ghost variables. However, it is just an introduction before discussion of

the problems that emerge with the ghost variables. Therefore, the work towards of elimi-

nation of the ghost variables is a key part of the paper. Authors also address semantics of

ghost variables and modelling of the extra-functional properties. Auxiliary variables are

parameters in assertions used in Hoare logic to relate values of program variables to their

initial values. They are scoped across one assertion (Hoare triple). According to authors,

in concurrency the meanings of auxiliary variable and ghost variable are swapped. Thus,

when ghost variables appear in the shared-variable concurrency, they may appear under

the name of auxiliary variables.

237

In Hoare Type Theory, Polymorphism and Separation [74], authors shortly

introduce ghost variables and mention the logic variables as an equivalent name. Further-

more, the notions of the ghost heap variable and the fresh ghost variable are discussed.

In later work, Towards Type-theoretic Semantics for Transactional Concurrency [73],

authors describe ghost variables and binary postconditions.

Authors make no difference between ”dummy variables”, ghost or auxiliary variables

in The “Hoare Logic” of CSP, and All That [59]. It is also mentioned that some

authors avoid ghost variables, whether others find it inelegant to use dummy variables in

a program when their values can be easily defined.

In the Order Theory for Big-Step Semantics [101], authors provide a big-step

semantics for a small call-by-need calculus that supports first-class functions and pairs.

Actually, syntax is as for a standard λ calculus with pairs. To address non-termination

with a big-step semantics, one should specify a coinductive relation for non-terminating

programs, beside inductive relation for terminating ones. Authors present a deterministic

call-by-value calculi and a typing system with the soundness proof.

In Rely-Guarantee References for Refinement Types Over Aliased Muta-

ble Data [35], authors explain that to preserve assumptions about aliases, all side effects

should be restricted in some way. Analogously, in our logic we use stability assumptions

for these purposes. In this work on aliases and references, authors adopt ideas of mul-

tithreading rely/guarantee. Also, there is an explicit use of the stability. Thus, a brief

explanation of the stability in terms of actions through the aliases is presented.

In Variables as Resource in Hoare Logics [77], authors use variable-resource

descriptions in assertions. They also present two constructs for variable and procedure

declaration. It is not mentioned explicitly, but according to the ’local - in - end’ construct,

authors deal with the notion of “local” variables. It should be noted that comparing to

our approach, authors do not provide any kind of resource context splitting for parallel

processes. Instead, they introduced a resource context that maps all resource identifiers

to their corresponding invariants.

238

10.3 Understanding Reentrancy

In the real world implementations, there exists a list of asynchronous safe functions that

is safe to use inside of the signal handlers [56, 87, 91, 88, 9, 51]. On the contrary, in our

approach, we keep track of functions that are unsafe to use inside of the signal handlers

and call them non-reentrant. As reentrancy happens nondeterministically via a signal

handler, “safety” of the reentrancy should be checked. If the functions that interrupt

each other are not from the list of non-reentrant functions, then the reentrancy is safe.

If the non-reentrant function is interrupted by any non-reentrant function, then such

reentrancy is not safe.

The reentrancy could be defined via graphs [68]. There is a notion of object race, which

is not equivalent to a data race, but it is its prerequisite. The relation between object and

object calls could be represented via graphs. Therefore, when we talk about reentrancy

or nonreentrancy in this approach, technically we mean reentrancy/nonreentrancy of

edges of the object graph. Nonreentrancy is important for the object race analysis, as it

indicates that the execution of events in two threads does not yield to the object race.

Reentrancy in OOP could be defined without graphs, but still points-to graphs are used

for the reentrancy analysis [29].

There exists a definition of the reentrant procedure in the OS with multiple users

support [90]. One may try to understand the definition of the reentrancy via a definition

of the reentrant procedures in operating systems. According to the author [90], there

are few obligations to achieve procedure reentrancy. The local data for every user should

be stored separately and the program code shouldn’t modify itself. The idea of the

reentrant procedure is that it can be safely interrupted by another program that calls

the same procedure. Safety in this context means that both procedures (interrupted and

interrupting) are execute correctly, as if they were executed sequentially. According to

the author [90], a reentrant code allows an efficient use of memory, as only a single copy

of the code is kept in the main memory, while many applications can call that code.

239

In All Unix kernels are reentrant [11] by Bovet, author addresses kernel reen-

trancy. In Unix, several processes may be executing in Kernel Mode simultaneously.

Nonreentrancy of the kernel means that a process can only be suspended while it is in

User mode. To achieve a reentrant kernel only the reentrant functions should be used,

or the locking mechanism should be used to ensure that only one process executes a

nonreentrant function at a time.

In Safe and Structured Use of Interrupts in Real-Time and Embedded

Software [81] by John Regehr, nested and reentrant interrupts are compared. The

difference between reentrant interrupts and reentrant functions is explained in detail.

Overall, this work provides technical and detailed introduction to interrupts.

A Static Analysis to Detect Re-Entrancy in Object Oriented Programs [29]

by Manuel Fähndrich, Diego Garbervetsky, and Wolfram Schulte. Authors present their

work towards re-entrancy analysis of the object oriented programs. The aim of the

analysis, which is based on the pointer analysis, is in detecting of the inconsistent re-

entrant calls in programs.

Controlling Aspect Reentrancy [94] by Éric Tanter. This work is in domain of

the aspect-oriented programming and focused on the reentrant application of aspects.

Author classifies the reentrancy, discusses how to avoid the reentrancy, and proposes how

to control the reentrancy.

Reasoning about Java’s Reentrant Locks [39] by Christian Haack, Marieke Huis-

man, and Clément Hurlin. Authors develop a verification technique, which is based on

a concurrent separation logic, for a concurrent language with reentrant locks. Locks are

associated with the resources and reentrancy may lead to the situation when resources

are reacquired. The proposed technique is designed to detect the resource reacquisition.

In A Modality for Safe Resource Sharing and Code Reentrancy [89], authors

introduce and formalize a sharing modality in support of sharing linear resources. One

of the interesting approaches used in this work is that sharing is supported without using

locks. The code reentrancy is studied in scope of the developed modality.

240

10.4 Abstract Machines

Abstract machines for programming language implementation [25] by Diehl

et. al. This article explains what are the abstract machines and how they could be

used. Authors provide an annotated review of various abstract machines designed for

different programming paradigms such as imperative, object oriented, functional, logic

and concurrent ones.

A Functional Correspondence between Monadic Evaluators and Abstract

Machines for Languages with Computational Effects [2] by Ager et. al. In this

article, authors construct CEK machines from monadic evaluators for the computational

lambda calculus. Furthermore, an abstract machine for stack inspection and exceptions

has been presented.

A Resource-Aware Semantics and Abstract Machine for a Functional Lan-

guage with Explicit Deallocation [71] by Montenegro et. al. In this work, authors

step by step built an imperative abstract machine starting from a big-step operational

semantics for the first-order eager language. This semantics has been extended with

memory consumption annotations and it correctness has been proven with respect to the

abstract machine.

The Persistent Abstract Machine [20] by Connor et. al. In this article, heap

based storage architecture together with stack frames are explained in detail. In the

presented architecture, the stack frame format contains 13 fields. Whereas in signal

abstract machine, the stack frame has only 2-3 fields. This article is very useful for

understanding of general concepts of abstract machines.

In From Natural Semantics to Abstract Machines [1], authors present an ap-

proach to the construction of abstract machines from natural semantics descriptions.

They start from introducing a class of L-attributed natural semantics. An algorithm

for extracting abstract machines from the natural semantics with a correctness proof is

presented. Authors discuss applications of the extraction and limitations of the approach.

241

In Coinductive big-step operational semantics [60] by Xavier Leroy and Hervé

Grall, authors address connections between the coinductive big-step semantics and the

standard small-step semantics. An equivalence of them has been proven and discussed.

A small-step semantics is a common choice for proving soundness of type systems, and

a big-step semantics is a choice for proving the correctness of program transformations

(proof that the program preserves its behaviour). Authors combine two interpretations

of the reduction rules (finite and infinite) into the third coinductive interpretation of

the rule, which covers finite and infinite reductions. Finally, authors push their big-step

semantics further, and extend it with traces. From our experience, traces are a very

powerful instrument.

A Simple Semantics and Static Analysis for Stack Inspection [5] describes

an access control mechanism realised via the run-time stack inspection, which is a com-

mon feature of the JVM and the .NET platforms. Authors discuss a static analysis of

safety, which they denote as the absence of security errors. To remove run-time checks,

several program transformations are identified and explained. Finally, authors provide a

denotational semantics in “eager” form and show its equivalence to the “lazy” semantics

via stack inspection.

10.5 Separation Logic and Stability

Local Action and Abstract Separation Logic [14] by Calcagno et. al. This is rather

theoretical paper that presents sequential abstract separation logic, trace semantics, and

concurrency model. Authors abstracted from the usual definition of the separation logic.

Thus, there is no use of a domain of heaps or partial operators in this work. In this

article, separation algebra is a cancellative partial commutation monoid.

Certifying low-level programs with hardware interrupts and preemptive

threads [32] by Feng et. al. This work presents a program logic for assembly language

with interrupts. In their semantics, blocking interrupts transfers ownership of parts of

242

the heap among interrupt handlers, in the style of concurrent separation logic. Resource

separation between the handler and the main body of the program would greatly simplify

the stability conditions that need to be checked.

Precision and the Conjunction Rule in Concurrent Separation Logic [36] by

Gotsman et. al. The soundness proof for the conjunction rule is known to be nontrivial.

This article shows that the proof could be done easier by ensuring that conjunction rule

is not used in a derivation, or by introducing precise assertions and invariants.

10.6 Logic and Reasoning

Separation Logic for Small-step Cminor [4] by Appel et. al. In this article, authors

redesigned imperative programming language Cminor to make it suitable for Hoare Logic

reasoning. The main contribution is a separation logic that has been designed for this

language. In this work, classical Hoare triples have been extended to sextuples. This

approach emerged from the need of dealing with nonlocal control constructs.

Java Program Verification via a Hoare Logic with Abrupt Termination [43]

by Jacobs et. al. This article discusses some limitations of Hoare logic. Furthermore,

the notion of Hoare logic is extended to deal with abrupt termination and side effects.

Despite break, return and continue, the exception also causes an abrupt termination.

Both Hoare Logic for Java in Isabelle/HOL [100] and A Hoare Logic for

the Coinductive Trace-Based Big-Step Semantics of While [72] articles mention

various limitations of Hoare logic and then extend basic Hoare logic to handle side-

effecting expressions, exceptions, and other nontrivial features.

Modular reasoning for deterministic parallelism [26] by Mike Dodds, Suresh

Jagannathan, and Matthew J. Parkinson. According to the authors, deterministic par-

allelism can facilitate the addition of concurrency control protocol into the programs.

However, deterministic parallelism approach requires automatically injected control con-

structs to ensure consistency of observable behaviour with the original program’ [26]. In

243

other words, a sequential program is annotated to indicate the sections that can execute

concurrently.

The problem definition is as follows: it is hard to create efficient concurrent programs,

because it is necessary to coordinate the access of parallel threads to shared data. Authors

noted, that effective reasoning about concurrent programs requires modular abstractions

(reasoning in terms of abstract behaviour) [26]. Also, this paper is focused on verification

of barriers (concurrency construct), as according to the authors, deterministic parallelism

could be achieved by using compiler-injected barriers [26]. Authors highlighted most

important aspects concerning barriers and decided to use concurrent abstract predicates,

based on separation logic, to reason in a modular way about implementation of barriers.

The whole section was devoted to specification for deterministic parallelism. One

important assumption has been made by authors, they expect that code sections suitable

for parallelization are known, and distributed into threads wisely. According to defini-

tion, ”barriers are associated with resources that are shared between concurrent program

segments” [26]. Also it is defined that there are two types of barrier: grant barrier that

notifies and wait barrier that blocks. Another assumption was about compiler, it is ex-

pected that it will inject all barriers correctly without modifying original meaning of the

program. During explanation of barriers, a notion of channel has been introduced.

Authors criticized the opportunity to reason about program behaviour using the op-

erational semantics of the barrier implementation, as any changes to the implementation

may require reproving the correctness of the parallelization analysis [26]. Therefore, au-

thors reason about program behaviour in terms of abstract specifications for grant, wait

and newchan. Authors used O’Hearn’s Par rule of concurrent separation logic to reason

about the parallel composition of threads. As parallel rule requires preconditions, two

predicates have been introduces: fut and req. As we understand, they are quite similar

to the usual R and G predicates from rely-guarantee logic.

Finally, authors introduced a chain of channels which allows many thread to access

the same resource in a sequence [26].

244

A Semantic Basis for Local Reasoning [106] by Hongseok Yang and Peter

O’Hearn. In this article, authors continue their work on semantics of an approach for

reasoning about mutable data structures. One of the key points in this work is that it is

possible to avoid frame axioms when certain assumptions are satisfied.

10.7 Soundness, Completeness and Verification

Java Program Verification at Nijmegen: Developments and Perspective [52]

by Jacobs et. al. This article gives historical overview of the works dedicated to the Java

program verification. This work drew our attention because its aim was to reason about

reasonably complex and powerful languages with side-effect in expressions, exceptions

and other forms of abrupt control flow.

A Sound and Complete Program Logic for Eiffel[65] and A Soundness and

Completeness of a Program Logic for Eiffel [66] by Nordio et. al. These articles

focused on the program logic for Eiffel, which has a different from other languages (e.g.,

Java-like languages) exception handling mechanism. Furthermore, interesting observa-

tions have been presented on Exception Handling and Once Routines.

Concurrency Verification Introduction to Compositional and Noncomposi-

tional Methods [23] by de Roever et.al. and Tentative steps toward a development

method for interfering programs [55] by Jones. A key contribution of rely/guarantee

logic [55, 23] is to introduce binary relations on states, in addition to the unary predicates

on states known from Hoare logic. Using such relations, we can express that a process

relies on the interleaved state changes being contained in the relation, that is, (σi, σi+1).

A Structural Proof of the Soundness of Rely/guarantee Rules [17] is a longer

version of the [18]. In this work, it is assumed that components of a rely/guarantee spec-

ification satisfy certain constraints with respect to each other. Author provides axioms,

which we consider as constraints, that show interaction between states and interference,

which comes from the environment. The notion of independent expressions is presented

245

in this work. It has the next form: b indep R. What is quite strong restriction as

it requires that evaluation of the expression b, which can be used as a precondition, is

completely unaffected by interference constrained by R.

25 Years of Formal Proof Cultures [41] by Furio Honsell provides a great ret-

rospective overview of the Formal Proofs. Authors tried to clarify some controversial

issues that appear in the theory and practice of Logical Frameworks, including issues

that possibly have been the main cause of a diverse specifications.

In Reasoning about concurrent programs: Refining rely-guarantee think-

ing [47], rely-guarantee is embedded into a refinement calculus for concurrent programs,

in which programs are developed in steps from an abstract specification. Authors ex-

tended the implementation language with specification constructs by adding two new

commands to the existing pre and postconditions. These commands are guar(g)(c) and

rely(r)(c).

A few relevant to our research articles in the concurrency series were found at ACM

Queue magazine. They are Proving the Correctness of Nonblocking Data Struc-

tures [24], Nonblocking Algorithms and Scalable Multicore Programming [3],

and The Balancing Act of Choosing Nonblocking Features [67]. The first ar-

ticle covers nonblocking synchronization and its correctness proof. The second article

explores and examines available alternatives to lock-based synchronization. And the last

one, addresses design requirements of nonblocking systems.

10.8 Signals and Technical Documentation

As a first step, to understand the nature and current implementation of the signals in Unix

like systems, we referred to the following literature: Understanding the Linux Kernel [9],

UNIX Systems Programming: Communication, Concurrency and Threads [87], Advanced

Programming in the UNIX(R) Environment [91], and The GNU C Library Reference

Manual [88].

246

The Art of Software Security Assessment: Identifying and Preventing Soft-

ware Vulnerabilities [27] by Dowd et. al. Attacks on software security published by

Zalewski using malicious signal handling were the initial motivation for logic and seman-

tics we have designed and presented in this thesis. A critical ingredient in Zalewski’s

exploits is the idea to cause the same handler to run twice and thereby corrupt a re-

source. Signal implementation make it possible to specify that a handler should run

at most once, becoming uninstalled after running for the first (and only) time. This is

the main justification for making a distinction between one-shot and persistent signal

handlers.

INTERNATIONAL STANDARD ISO/IEC 14882 [51], Information technol-

ogy - Programming languages - C++ . This document contains important notes about

signal handlers and exceptions. According to the clause 18.10, paragraph 9, the use of

exception throw in signal handlers is restricted. Moreover, the signal handler may only

consist of POF (“plain old function”). These are restriction that we overcome in our

idealised language with signals.

DWARF Debugging Information Format [19], UNIX International. DWARF

format is well known for debugging purposes. However, this format is also used to create

special stack frames that are used by stack unwinding process to restore the state and

registers. To design unwind function in our signal abstract machine, we referred to this

format and that made our language closer to the real life implementations. In our lan-

guage, the unwind function is called when the control flow jumps via raised exception. To

locate corresponding exception handler and clean up the stack from signal and exception

handlers that belong to the scope the control flow has left, the unwind function unwinds

the stack according to the defined rules.

C++ exception handling for IA-64 [22] by Christophe de Dinechin. This ar-

ticle explains exception handling from the implementation perspective, based on IA-64

architecture. There are many exception-handling solutions and all of them have different

impact on performance. Therefore, author addressed some of them (Portable Exception

247

Handling, and Table-Driven Exception Handling) and highlighted problems that occur

during implementation. The most important concepts explained in this article are unwind

tables, stack unwinding routine, and landing pads.

Understanding the Linux Kernel [10], Second Edition and The Linux Pro-

gramming Interface [56]. Both books give detailed explanation of signal handling

mechanism in Linux. The author of the latter, highlights the interesting differences be-

tween various Unix and Linux implementations. The second book also contains many

examples and code snippets that make it easier to understand the implementation aspects

of signals.

The needs of the formal verification for the embedded systems is discussed in Syn-

chronous Models for Embedded Software [12]. Every design flow may need a dif-

ferent kind of formal verification methods. Compared to the traditional software design,

the design of embedded software is more challenging, because in addition to the correct

implementation of the systems, one has to consider non-functional constraints such as

real-time energy consumption, behaviour and reliability [12].

In A Verified Compiler for Relaxed-Memory Concurrency [102], authors con-

sider the semantic design and verified compilation of a C-like programming language for

concurrent shared-memory computation on x86 multiprocessors. According to the au-

thors, the design of such a language is subtle by several factors. Some of them are: the

effects of compiler optimization on concurrent code, the need to support high-performance

concurrent algorithms, and the desire for a reasonably simple programming model.

As an introduction in Investigating Time Properties of Interrupt-Driven Pro-

grams [42], authors discuss interrupt mechanism as a technique to support multi threads,

where interrupts are implemented in terms of asynchronous signals and synchronous

events. One of the key ideas is to address interrupts as threads. Then the time-operational

semantics is presented, where interrupts have time properties; that allows to segregate

interrupts which violates some time restrictions. The defined model of the interrupts is

rather close to the real implementations, and even includes interrupt requesting, which is

248

reminiscent of signal sending. The crucial difference to our signals’ model is that in this

paper, interrupt handlers does not modify the data states of the interrupted programs.

In another words, the handler and the program are executed in a separate memory, which

eliminates the concurrency problem.

10.9 Continuations

Continuations, functions and jumps [95] by Hayo Thielecke. This paper explains an

idea of continuations and how they are connected to the functions and jumps. Jumping

is an example of control structure, and if extend the jump with an extra argument it

will model the continuation. Moreover, from the compiler perspective, any function call

consist of two jumps: from caller to the callee and back. Thus, the ideas of continuation

are already inside of modern techniques but we could gain much more by extracting

continuations explicitly.

Author presents the notion of continuation passing style, and explains it with com-

prehensive examples. A short retrospective literature review has been given to show how

continuation passing style has been developed. A particular attention was paid to the

technique and process of transformation from simple C program into the program with

non-returning functions. In general, it consists of two main steps: CPS transformation

from functions to jumps with arguments and transformation from jumps (eliminating

goto) into functions. During the discussion, the callcc control operator has been in-

troduced. It has been shown by author, how continuations can improve and enrich

programming language (e.g.: power of callcc). And finally, continuation ideas have

been represented in λ calculus as more general and complete version.

In Continuations from Generalized Stack Inspection [78], a question of contin-

uations in modern platforms and languages is discussed. Authors presented a translation

from Scheme to the language which deals with continuations in more close to standard

stack evaluation model. The crash course to continuation marks has been provided.

249

Stimulus for this work was the fact that implementation of continuations in modern

platforms, VMs (Sun JVM, Microsoft CLR) and modern languages meets the problem

regarding run-time stack. To be more precise, there are no instructions for installing

and saving the run-time stack in these VMs [78]. The general solution in situation when

continuations are desired is allocating control stack in the heap. What in turn leads to

other disadvantages concerning debugging and security management [78].

Proposed solution contains translation of Scheme programs with call/cc into a lan-

guage with a generalized stack inspection mechanism. To study theory part of this ques-

tion and develop prototype, the mechanism of ”continuation mark” (Scheme) has been

used. In another prototype, authors used exception handlers and exception throws to

emulate continuation mark mechanism.

Elimination of call/cc has been shown by authors in a few steps. First of all, the

source language with call/cc has been defined. Then, call/cc has been replaced by

continuation marks what finally result in target language. And as the last bit, defunc-

tionalization is performed what simply means replacing functions with records. This

transformations require deeper knowledge of Scheme, familiarity with λ calculus and

defunctionalization in general.

This paper highlights the following points: complexity needed for implementation of

continuations, the way of possible prototyping continuations using exception handlers

and throws, projection of continuations theory to practical usage in Web Technologies,

different concepts and mechanisms related to continuations.

Monads and composable continuations [103] by Philip Wadler. This paper ex-

pects that readers are already familiar with monads and composable continuations, but

still it presentes a short summary of monads and continuations. It is explained, how

translations from λ calculus to monads could be performed. Author presents continu-

ations as a special case of monad translation. The source language used in this work

has been extended with various operators such as escape, shift, and reset. By evaluating

monad, author resulted in desired type systems.

250

A Mathematical Semantics for Handling Full Jumps [92] by Christopher Stra-

chey and Christopher P. Wadsworth. This paper focuses on developing of small program-

ming language with basic continuation-jump support. Syntax and semantic equations are

fully and clearly described in an informal way.

Checkpoints and Continuations Instead of Nested Transactions [57] by Eric

Koskinen and Maurice Herlihy. The core idea of this paper is representing usefulness

of usage continuations together with checkpoints to enforce partial commits and roll-

backs. This scheme is compared with nested transactions that may be used to reach

similar effect. Concept consists of two main parts: checkpoints which are stored in a run-

time computation log and continuations themselves. Authors specified that continuation

mechanism can be implemented differently in various languages.

In Effect for Cooperable and Serializable Threads [107], authors focus on race

freedom and atomicity. This paper contains references to the original Lipton’s [62] theory.

Authors built an effect system which enables cooperative reasoning. The thing which

differs this paper from other is yield annotations. It is known that atomic annotations

are used to indicate atomic blocks. In turn, yield annotations are used to specify

program points where interference may occur. Finally, the notion of cooperative traces

is introduced and discussed in this paper.

251

CHAPTER 11

CONCLUSIONS

This chapter summarises the thesis in terms of what has been achieved, surveys previous

research in the related domains, and outlines directions for future work. We idealized

signal handling in combination with the more familiar exception handling to focus on

some of their semantic and logical features. So let us zoom out for a wider view and

reflect on what has been achieved in this thesis.

We defined an operational semantics for a language with both exception and signal

handling. Signal handlers have persistent and one-shot control flow semantics. Moreover,

signal handlers are not restricted to block all other signals during the execution. This

makes our operational semantics close to the real life implementations. For example, in

Unix like systems signal handlers may interrupt each other leaving a system with a set

of nested interrupts. However, the most interesting feature of the operational semantics

is the multiplicative way that one-shot signals are propagated. One-shot signal binding

is split into two disjoint bindings when a semantics rule has two premises.

To compare how the idealized stack machine models features of real signal implemen-

tations, we designed and presented an abstract stack machine for signal handlers. We

showed the challenges one may encounter if he decides to implement a language with

block structured exception and signal handling. We defined two operational semantics to

show their differences and informally discuss a relation between them. In big-step it is

easy to describe and reason about block structured constructs. Whereas the small-step

operational semantics, in our case abstract machine, is much easier to relate to the real

252

life implementations.

We defined a program logic with specifications for signal handlers and exception con-

text to address concurrency explicitly. Specifications of the signal handlers limit how

the handler interferes with the commands of the program body and other handlers.

In contrast to signal binding splitting in semantics, the signal context, which contains

specifications of installed handlers, is used additively. Moreover, the signal context is

shared rather than split in the logic rules. We adopted the notion of stability from the

Rely/Guarantee logic to address how exception and signal handlers with commands in-

fluence each other. Some of the capabilities of the designed logic have been shown via

examining of the idioms of signal usage. For example, how the logic deals with invariant

preserving and signal masking.

No doubt, with unsound logic one may derive properties of a program that do not

hold. Therefore, one of the main contributions of this thesis is a soundness proof of the

logic with respect to the big-step operational semantics. A path towards soundness proof

was not straightforward and resulted in a set of supporting lemmas and conditions. To

relate signal handling in operational semantics with logic, we imposed the condition that

all signal bindings respect the specification given by the whole signal context. As besides

supporting signal handling, our language supports exceptions, we introduced a form of

stability condition between signal and exception contexts in the logic.

Understanding of the reentrancy is crucial in concurrent environment. Therefore,

the related literature has been carefully analysed and the most important and relevant

to our research findings has been summarized in the thesis. We provided a glossary

of the reentrancy related terms, to show that they are extremely domain dependent.

In particular, to show how diverse the definitions of reentrancy could be, we compared

the notion of reentrancy in Object Oriented and Procedural paradigms. Reentrancy is

important because it is tightly related to the thread-safety, asynchronous signal safety,

locking, stability and etc.

Finally, we extended the logic with functions and local variables to address reentrancy,

253

and defined the Reentrancy Linear Type System. To make functions closer to the common

implementations, we imitate argument passing and return values of the functions with

global variables. We defined a classification for the functions, so they could be reentrant or

non-reentrant. The designed Reentrancy Linear Type System ensures that non-reentrant

functions are used at most once or not used at all in the environment with signals.

We also raised some open-ended questions regarding variations of the logic rules due to

availability of the Reentrancy Linear Type System.

11.1 Related Work

We are not aware of previous operational semantics and corresponding logic for signals,

although Feng, Shao, Guo and Dong [32] presents a program logic for assembly language

with interrupts, which are analogous to signals at the hardware level. In their semantics,

blocking interrupts transfers ownership of parts of the heap among interrupt handlers, in

the style of concurrent separation logic.

Hutton and Wright [46] study interruptions as asynchronous exceptions. By contrast,

signals are a software alternative to hardware interrupts, where signal handlers could be

addressed as asynchronous subroutine calls.

The use of binary predicates on program states in rely-guarantee [55] is a key technique

from the concurrency literature that we have borrowed and adapted to signals. In recent

years, rely-guarantee logic has received a boost due to its “marriage” with separation

logic [98].

The tension between control flow and resource management has long been apparent

in programming language design. In Java, the cleanup of resources when an exception

leaves control of a block has been the cause of nests of finally clauses, and Java 7 adds

a new try-with-resources block [76] for automatically closing resources like streams.

The uninstalling of signal handlers in our semantics serves an analogous purpose.

The contrast between persistent and one-shot signal handlers is reminiscent of the

254

distinction between first-class and one-shot, linearly used continuations [8] and the re-

source usage in separation logic [86]. The way we have treated signal bindings in the

big-step semantics borrows ideas from linear logic. Recall that we write

S;O s1, c ⇓ s2

for a judgement involving a persistent signal binding S and a one-shot signal binding

O. As we have illustrated with the examples in Section 3.6, the signal binding S can be

shared between two commands c1 and c2 in a sequential composition, whereas O has to

be split into disjoint parts O1 and O2. This splitting prevents a one-shot signal handler

from being re-used and makes it a linear resource just like the contexts in a linear logic.

In fact, Dual Intuitionistic Linear Logic [6] has two zones Γ and ∆ in the context, one

which allows sharing and one which does not, as in the following rule that shares ∆ and

splits Γ:
Γ1; ∆ `M : A(B Γ2; ∆ ` N : A

Γ1,Γ2; ∆ `M N : B

Recent work from the Flint group [37] presents a two-layer framework that is used

to verify a concurrent thread management with a machine model including registers,

instruction pointer, etc.

Huang et. al. [42] address interrupt-driven programs, but their main focus is on time

semantics and time properties. Moreover, in their language, the interrupt handler does

not modify the state of the interrupted programs.

Plotkin [79] models exception handlers with monads. Developing a general operational

semantics for handling mechanisms and combining signals with other control structures

in the same language are mentioned as further work. It was also noted that addressing the

notion of ”recursion” is important but requires extra work. Before addressing handling

mechanism in general, author also started his work from a notion of exception handling.

A paper by [53] addresses a combination of exceptions and copyless messaging mech-

255

anism, where only pointers to messages are exchanged between two processes and the

messages themselves are stored in an exchange heap. Authors assume exceptions are in

general unpredictable, where in our work exceptions are triggered at the specific point of

the code, but the signals’ arrival is assumed to be unpredictable.

11.2 Directions for Future Work

In this section we outline what we believe to be most important and promising directions

for future research. Work has already started on some of the them, but the details are

out of scope of this thesis.

11.2.1 Separation Logic for Resource and Ownership

A natural extension of our program logic and operational semantics is the integration

with separation logic [86] to address issues like deallocation of pointers. In recent years,

rely-guarantee logic has received a boost due to its “marriage” with separation logic [98].

Our motivating examples from software security [27, 21] involve double free errors, which

separation logic has successfully addressed in the absence of signals.

Resource separation between the handler and the main body of the program would

greatly simplify the stability conditions that need to be checked. The ownership transfer

described in the work Feng, Shao, Guo and Dong [32] for interrupts should also occur

when signals are temporarily blocked.

11.2.2 Correctness of Signal Machine with Respect to Big-step

Semantics

The formal connection between the big-step operational semantics and the signals ab-

stract machine remains to be established. We conjecture that they are observationally

equivalent and that this may be proved by way of a simulation relation.

256

11.2.3 Implementation

Signals have been part of the long evolution of Unix, and are correspondingly complex. To

implement block-structured signal handling and integrate it with exceptions, the present

signal mechanism may have to be revisited. The present implementations pose severe

restrictions on programmers, for instance on using non-local control in a handler. Re-

moving such implementation restrictions would enable natural programming idioms. In

this thesis, we built on the operational semantics presented earlier for proving soundness

of a Hoare logic for signals.

11.2.4 Signals in a Concurrent Setting

Many of the difficulties with “re-entrant” signal handlers are closely related to concurrent

programming. Similarly, rely-guarantee logic is designed for shared-variable concurrency.

Hence we would like to have a common logic for signals and parallel processes. One

difficulty is that the assumptions about signals are so weak that it is not easy to see

what pre- and postcondition we could specify for a kill command, since the signal may

be handled much later or even ignored entirely. A more technical difficulty comes from

the tension between the conjunction rule and trace (and also continuation) semantics.

Defining a trace semantics (like the Aczel trace one for rely-guarantee [23]) and adding

exceptions to it (in the double barrelled CPS style [96]) seems straightforward. However,

proving the conjunction rule is known to be thorny in such a scenario. By contrast,

a big-step operational semantics is technically convenient for block-structured control,

which led us to prefer it to a trace semantics in the present thesis.

11.2.5 Reentrancy and Safety

There is no unified definition for the reentrancy and it is often confused with thread

safety or async safety. Moreover, it is highly implementation dependant, what leads to

a discrepancy in definitions. We are working towards addressing the reentrancy with

257

our logic and Reentrancy Linear Type System. The easiest way to achieve the safety

is to block all signals (that prevents both safe and unsafe reentrancy), which could be

addressed with a blocking rule in our logic. We aim to proof soundness of the updated

logic with Reentrancy Linear Type System. Another potential branch of work is to

address incomplete calls (aka slow library calls) with our logic, where interrupted and

killed processes should be restarted until the desired outcome is reached.

11.2.6 Application to Software Security

The problem Zalewski’s “Sending Signals for Fun and Profit” attack [27] is that is run

twice, causing a double free and hence memory corruption. The signal constructs defined

in the present thesis could prevent such vulnerabilities by installing the handler as a

one-shot handler, or by jumping out of the handler using an exception.

258

Bibliography

[1] Mads Sig Ager. From natural semantics to abstract machines. In Sandro Etalle,
editor, Logic Based Program Synthesis and Transformation, volume 3573 of Lecture
Notes in Computer Science, pages 245–261. Springer Berlin Heidelberg, 2005.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence be-
tween monadic evaluators and abstract machines for languages with computational
effects. Theoretical Computer Science, 342:04–28, 2005.

[3] Samy Al Bahra. Nonblocking algorithms and scalable multicore programming.
Commun. ACM, 56(7):50–61, July 2013.

[4] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step cminor.
In Proceedings of the 20th international conference on Theorem proving in higher
order logics, TPHOLs’07, pages 5–21, Berlin, Heidelberg, 2007. Springer-Verlag.

[5] Anindya Banerjee and David A. Naumann. A simple semantics and static analysis
for stack inspection. CoRR, abs/1309.5144, 2013.

[6] Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. LFCS Report
Series - Laboratory for Foundations of Computer Science, 1996.

[7] Nick Benton and Andrew Kennedy. Exceptional syntax. J. Funct. Program.,
11:395–410, July 2001.

[8] Josh Berdine, Peter W. O’Hearn, Uday Reddy, and Hayo Thielecke. Linear contin-
uation passing. Higher-order and Symbolic Computation, 15(2/3):181–208, 2002.

[9] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel, First Edition.
O’Reilly, 1 edition, 2000.

[10] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel, Second Edition.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2 edition, 2002.

[11] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[12] J. Brandt. Synchronous models for embedded software. Master’s thesis, Department
of Computer Science, University of Kaiserslautern, July 2013. Habilitation.

[13] Stephen Brookes. A semantics for concurrent separation logic. In Theoretical Com-
puter Science, pages 16–34. Springer, 2004.

259

[14] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and
abstract separation logic. In Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Science, pages 366–378, Washington, DC, USA, 2007. IEEE
Computer Society.

[15] Arthur Charguéraud. Pretty-Big-Step Semantics. In Matthias Felleisen and
Philippa Gardner, editors, 22nd European Symposium on Programming (ESOP),
Rome, Italie, March 2013. Springer.

[16] David Chase. Implementation of exception handling, Part I. j-JCLT, 5(4):229–240,
jun 1994.

[17] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness of
rely/guarantee rules. J. Log. Comput., 17(4):807–841, 2007.

[18] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness of
rely/guarantee rules (revised). Technical report, School of Computing Science,
University of Newcastle, 2007.

[19] DWARF Standards Committee. DWARF Debugging Information Format Industry
Review Draft, July 1993. Programming Languages SIG, Revision: 2.0.0 (July 27,
1993).

[20] Richard C. H. Connor, Alfred L. Brown, Raymund Carrick, Alan Dearle, and
Ronald Morrison. The persistent abstract machine. In John Rosenberg and David
Koch, editors, POS, Workshops in Computing, pages 353–366. Springer, 1989.

[21] Horia V Corcalciuc. A taxonomy of time and state attacks. In International Work-
shop on Secure Software Engineering, 2012.

[22] Christophe de Dinechin. C++ exception handling for IA-64. In Proceedings of the
1st conference on Industrial Experiences with Systems Software - Volume 1, pages
8–8, Berkeley, CA, USA, 2000. USENIX Association.

[23] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction
to Compositional and Noncompositional Methods. Number 54 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
November 2001.

[24] Mathieu Desnoyers. Proving the correctness of nonblocking data structures. Queue,
11(5):30:30–30:43, May 2013.

[25] S. Diehl, P. H. Hartel, and P. Sestoft. Abstract machines for programming language
implementation. Future Generation Computer Systems, 16(7):739–51, May 2000.

[26] Mike Dodds, Suresh Jagannathan, and Matthew J. Parkinson. Modular reasoning
for deterministic parallelism. SIGPLAN Not., 46:259–270, January 2011.

260

[27] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Addison-Wesley
Professional, 2006.

[28] Itanium C++ ABI: Exception Handling, March 2001. (Revision: 1.22).

[29] Manuel Fähndrich, Diego Garbervetsky, and Wolfram Schulte. A static analysis
to detect re-entrancy in object oriented programs. Journal of Object Technology,
7(5):5–23, 2008.

[30] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and implementation, PLDI
’08, pages 170–182, New York, NY, USA, 2008. ACM.

[31] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. Combining domain-specific
and foundational logics to verify complete software systems. In Proceedings of the
2nd international conference on Verified Software: Theories, Tools, Experiments,
VSTTE ’08, pages 54–69, Berlin, Heidelberg, 2008. Springer-Verlag.

[32] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong. Certifying low-level programs
with hardware interrupts and preemptive threads. J. Autom. Reason., 42:301–347,
April 2009.

[33] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The Spirit of
Ghost Code. http://hal.inria.fr/hal-00873187/PDF/main.pdf.

[34] Inc Free Software Foundation. The GNU C Library Reference Manual. http:

//www.gnu.org/software/libc/manual/html_node/Blocking-for-Handler.

html, January 2013. for Version 2.17 of the GNU C Library. Accessed: 2013-03-19.

[35] Colin S. Gordon, Michael D. Ernst, and Dan Grossman. Rely-guarantee references
for refinement types over aliased mutable data. In PLDI 2013, Proceedings of the
ACM SIGPLAN 2013 Conference on Programming Language Design and Imple-
mentation, Seattle, WA, USA, June 17–19, 2013.

[36] Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction rule
in concurrent separation logic. 27th Conference on the Mathematical Foundations
of Programming Semantics, MFPS 27, Pittsburgh, PA, USA, May 25–28, 2011.
Electr. Notes Theor. Comput. Sci., 2011.

[37] Yu Guo, Xinyu Feng, Zhong Shao, and Peizhi Shi. Modular verification of con-
current thread management. In Proc. 10th Asian Symposium on Programming
Languages and Systems (APLAS’12), Kyoto, Japan, volume 7705 of Lecture Notes
in Computer Science. Springer-Verlag, 2012.

[38] Kyong-Hoon Kim Guy Martin Tchamgoue and Yong-Kee Jun. Testing and debug-
ging concurrency bugs in event-driven programs. International Journal of Advanced
Science and Technology, 40:55–68, 2012.

261

http://www.gnu.org/software/libc/manual/html_node/Blocking-for-Handler.html
http://www.gnu.org/software/libc/manual/html_node/Blocking-for-Handler.html
http://www.gnu.org/software/libc/manual/html_node/Blocking-for-Handler.html

[39] Christian Haack, Marieke Huisman, and Clément Hurlin. Reasoning about java’s
reentrant locks. In Proceedings of the 6th Asian Symposium on Programming Lan-
guages and Systems, APLAS ’08, pages 171–187, Berlin, Heidelberg, 2008. Springer-
Verlag.

[40] Martin Hofmann and Mariela Pavlova. Elimination of ghost variables in pro-
gram logics. In Proceedings of the 3rd conference on Trustworthy global computing,
TGC’07, pages 1–20, Berlin, Heidelberg, 2008. Springer-Verlag.

[41] Furio Honsell. 25 years of formal proof cultures: some problems, some philosophy,
bright future. In Proceedings of the Eighth ACM SIGPLAN international workshop
on Logical frameworks & meta-languages: theory & practice, LFMTP ’13, pages
37–42, New York, NY, USA, 2013. ACM.

[42] Yanhong Huang, Yongxin Zhao, Jianqi Shi, Huibiao Zhu, and Shengchao Qin.
Investigating time properties of interrupt-driven programs. In SBMF, pages 131–
146, 2012.

[43] Marieke Huisman and Bart Jacobs. Java program verification via a hoare logic
with abrupt termination. In Proceedings of the Third Internationsl Conference on
Fundamental Approaches to Software Engineering: Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS 2000, FASE
’00, pages 284–303, London, UK, 2000. Springer-Verlag.

[44] Graham Hutton and Joel Wright. Compiling exceptions correctly. In Dexter Kozen
and Carron Shankland, editors, MPC, volume 3125 of Lecture Notes in Computer
Science, pages 211–227. Springer, 2004.

[45] Graham Hutton and Joel Wright. Calculating an Exceptional Machine. In Hans-
Wolfgang Loidl, editor, Trends in Functional Programming volume 5. Intellect,
feb 2006. Selected papers from the Fifth Symposium on Trends in Functional
Programming, Munich, November 2004.

[46] Graham Hutton and Joel Wright. What is the meaning of these constant interrup-
tions? J. Funct. Program., 17(6):777–792, 2007.

[47] Hayes IJ, Cliff B. Jones, and Colvin RJ. Reasoning about concurrent programs: Re-
fining rely-guarantee thinking. Technical report, Newcastle University, September
2013. No. CS-TR-1395.

[48] Apple Inc. OS X Glossary. http://developer.apple.com/library/

mac/#documentation/General/Conceptual/SLGlobalGlossary/Glossary/

Glossary.html, July 2010. Accessed: 2013-03-14.

[49] Apple Inc. Concurrency Programming Guide - Glossary. http:

//developer.apple.com/library/mac/#documentation/General/Conceptual/

ConcurrencyProgrammingGuide/Glossary/Glossary.html, December 2012.
Accessed: 2013-03-14.

[50] ISO/IEC. 14882:1999 Programming languages - C++, 1999.

262

http://developer.apple.com/library/mac/#documentation/General/Conceptual/SLGlobalGlossary/Glossary/Glossary.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/SLGlobalGlossary/Glossary/Glossary.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/SLGlobalGlossary/Glossary/Glossary.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/Glossary/Glossary.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/Glossary/Glossary.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/Glossary/Glossary.html

[51] ISO/IEC. 14882:2011 Information technology - Programming languages - C++,
2011.

[52] Bart Jacobs and Erik Poll. Java program verification at nijmegen: Developments
and perspective. In Nijmegen Institute of Computing and Information Sciences,
pages 134–153. Springer, 2003.

[53] Svetlana Jakšić and Luca Padovani. Exception handling for copyless messaging.
In Proceedings of the 14th symposium on Principles and practice of declarative
programming, PPDP ’12, pages 151–162, New York, NY, USA, 2012. ACM.

[54] Dipak Jha. Use reentrant functions for safer signal handling. http://www.ibm.com/
developerworks/library/l-reent/index.html, January 2005. IBM. Accessed:
2013-03-19.

[55] C. B. Jones. Tentative steps toward a development method for interfering programs.
ACM Trans. Program. Lang. Syst., 5:596–619, October 1983.

[56] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System
Programming Handbook. No Starch Press, San Francisco, CA, USA, 1st edition,
2010.

[57] Eric Koskinen and Maurice Herlihy. Checkpoints and continuations instead of
nested transactions. In SPAA ’08: Proceedings of the twentieth annual symposium
on Parallelism in algorithms and architectures, pages 160–168, New York, NY,
USA, 2008. ACM.

[58] Jaroslaw D. M. Kusmierek and Viviana Bono. Big-step operational semantics re-
visited. Fundam. Inform., 103(1-4):137–172, 2010.

[59] Leslie Lamport and Fred B. Schneider. The “hoare logic” of csp, and all that. ACM
Trans. Program. Lang. Syst., 6(2):281–296, April 1984.

[60] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf.
Comput., 207(2):284–304, February 2009.

[61] Bil Lewis and Daniel J. Berg. Threads Primer: A Guide to Multithreaded Program-
ming. Prentice Hall Press, Upper Saddle River, NJ, USA, 1995.

[62] Richard J. Lipton. Reduction: a method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

[63] Lutz Schröder and Till Mossakowski. Generic exception handling and the java
monad. In Algebraic Methodology and Software Technology, Lecture Notes in Com-
puter Science, volume 3116, pages 443–459. Springer, 2004.

[64] Simon Marlow, Simon L. Peyton Jones, Andrew Moran, and John H. Reppy. Asyn-
chronous Exceptions in Haskell. In Proceedings of the 2001 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), Snowbird,
Utah, USA, June 20-22, 2001, pages 274–285, 2001.

263

http://www.ibm.com/developerworks/library/l-reent/index.html
http://www.ibm.com/developerworks/library/l-reent/index.html

[65] Martin Nordio and Cristiano Calcagno and Peter Müller and Bertrand Meyer. A
sound and complete program logic for Eiffel. In M. Oriol and B. Meyer, editors,
TOOLS-EUROPE, volume 33 of Lecture Notes in Business and Information Pro-
cessing, pages 195–214, 2009.

[66] Martin Nordio and Cristiano Calcagno and Peter Müller and Bertrand Meyer.
Soundness and completeness of a program logic for Eiffel. Technical Report 617,
ETH Zurich, 2009.

[67] Maged M. Michael. The balancing act of choosing nonblocking features. Queue,
11(7):50:50–50:61, July 2013.

[68] Ana Milanova and Wei Huang. Static object race detection. In APLAS, pages
255–271, 2011.

[69] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition
of Standard ML - Revised. The MIT Press, rev sub edition, May 1997.

[70] Eugenio Moggi. Computational lambda calculus and monads. In Proceedings,
Fourth Annual Symposium on Logic in Computer Science, pages 14–23, 1989.

[71] Manuel Montenegro, Ricardo Peña-Maŕı, and Clara Segura. A resource-aware se-
mantics and abstract machine for a functional language with explicit deallocation.
Electr. Notes Theor. Comput. Sci., 246:167–182, 2009.

[72] Keiko Nakata and Tarmo Uustalu. A hoare logic for the coinductive trace-based
big-step semantics of while. In Andrew D. Gordon, editor, ESOP, volume 6012 of
Lecture Notes in Computer Science, pages 488–506. Springer, 2010.

[73] Aleksandar Nanevski, Paul Govereau, and Greg Morrisett. Towards type-theoretic
semantics for transactional concurrency. In Proceedings of the 4th international
workshop on Types in language design and implementation, TLDI ’09, pages 79–90,
New York, NY, USA, 2009. ACM.

[74] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and sep-
aration in hoare type theory. In Proceedings of the eleventh ACM SIGPLAN inter-
national conference on Functional programming, ICFP ’06, pages 62–73, New York,
NY, USA, 2006. ACM.

[75] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proceedings of the 15th International Work-
shop on Computer Science Logic, CSL ’01, pages 1–19, London, UK, 2001. Springer-
Verlag.

[76] Oracle. The try-with-resources Statement, 2011.

[77] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as re-
source in hoare logics. In LICS, pages 137–146. IEEE Computer Society, 2006.

264

[78] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi, and
Matthias Felleisen. Continuations from generalized stack inspection. SIGPLAN
Not., 40(9):216–227, 2005.

[79] Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic effects. In Giuseppe
Castagna, editor, ESOP, volume 5502 of Lecture Notes in Computer Science, pages
80–94. Springer, 2009.

[80] Qt Project and Digia. Qt 4.8 Documentation - Reentrancy and Thread-
Safety. http://qt-project.org/doc/qt-4.8/threads-reentrancy.html. Ac-
cessed: 2013-03-19.

[81] John Regehr. Safe and Structured Use of Interrupts in Real-Time and Embedded
Software, chapter 16, pages 1–12. Chapman and Hall/CRC, 2012/06/17 2007.

[82] Yann Régis-Gianas and François Pottier. A hoare logic for call-by-value functional
programs. In Proceedings of the 9th international conference on Mathematics of
Program Construction, MPC ’08, pages 305–335, Berlin, Heidelberg, 2008. Springer-
Verlag.

[83] Bernhard Reus and Thomas Streicher. About Hoare logic for higher-order store.
In ICALP’05, volume 3580 of LNCS, pages 1337–1348. Springer, 2005.

[84] John C. Reynolds. The craft of programming. Prentice Hall International series in
computer science. Prentice Hall, 1981.

[85] John C. Reynolds. Theories of programming languages. Cambridge University
Press, 1998.

[86] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science (LICS), pages 55–74. IEEE, 2002.

[87] Kay Robbins and Steve Robbins. UNIX Systems Programming: Communication,
Concurrency and Threads (2nd Edition). Prentice Hall PTR, June 2003.

[88] Sandra Loosemore and Richard M. Stallman and Roland McGrath and Andrew
Oram and Ulrich Drepper. The GNU C Library Reference Manual, nov 2007.
Edition 0.12, last updated 2007-10-27, for version 2.8.

[89] Rui Shi, Dengping Zhu, and Hongwei Xi. A modality for safe resource sharing
and code reentrancy. In Proceedings of the 7th International colloquium conference
on Theoretical aspects of computing, ICTAC’10, pages 382–396, Berlin, Heidelberg,
2010. Springer-Verlag.

[90] William Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall Press, Upper Saddle River, NJ, USA, 6th edition, 2008.

[91] Richard W. Stevens and Stephen A. Rago. Advanced Programming in the UNIX(R)
Environment (2nd Edition). Addison-Wesley Professional, 2005.

265

http://qt-project.org/doc/qt-4.8/threads-reentrancy.html

[92] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathe-
matical semantics for handling fulljumps. Higher Order Symbol. Comput., 13(1-
2):135–152, 2000.

[93] Maxim Strygin and Hayo Thielecke. Operational semantics for signal handling. In
SOS 2012, volume 89 of EPTCS, pages 149–163, 2012.

[94] Éric Tanter. Controlling aspect reentrancy. J. UCS, 14(21):3498–3516, 2008.

[95] Hayo Thielecke. Continuations, functions and jumps. SIGACT News, 30(2):33–42,
1999.

[96] Hayo Thielecke. Comparing control constructs by double-barrelled CPS. Higher-
order and Symbolic Computation, 15(2/3):141–160, 2002.

[97] Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

[98] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and sepa-
ration logic. In In 18th CONCUR, pages 256–271. Springer, 2007.

[99] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and sepa-
ration logic. Technical Report UCAM-CL-TR-687, University of Cambridge, Com-
puter Laboratory, June 2007.

[100] David von Oheimb. Hoare logic for Java in Isabelle/HOL. In In Isabelle/HOL. Con-
currency and Computation: Practice and Experience 13, pages 1173–1214, 2001.

[101] Jérôme Vouillon. Order Theory for Big-Step Semantics. http://hal.

archives-ouvertes.fr/hal-00782145, 2011.

[102] Jaroslav Ševč́ık, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan,
and Peter Sewell. Compcerttso: A verified compiler for relaxed-memory concur-
rency. J. ACM, 60(3):22:1–22:50, June 2013.

[103] Philip Wadler. Monads and composable continuations. Lisp Symb. Comput.,
7(1):39–56, 1994.

[104] Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reentrancy. In Proceed-
ings of the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering,
ESEC/FSE ’09, pages 173–182, New York, NY, USA, 2009. ACM.

[105] Qiwen Xu, Willem P. de Roever, and Jifeng He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Asp. Comput., 9(2):149–174,
1997.

[106] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning. In
Proceedings of the 5th International Conference on Foundations of Software Science
and Computation Structures, FoSSaCS ’02, pages 402–416, London, UK, UK, 2002.
Springer-Verlag.

266

http://hal.archives-ouvertes.fr/hal-00782145
http://hal.archives-ouvertes.fr/hal-00782145

[107] Jaeheon Yi and Cormac Flanagan. Effects for cooperable and serializable threads.
In TLDI ’10: Proceedings of the 5th ACM SIGPLAN workshop on Types in language
design and implementation, pages 3–14, New York, NY, USA, 2010. ACM.

267

	Introduction
	Block Structure and Control
	One-side Interleaving and Concurrency
	Rely-guarantee and Binary Relations
	Linear Use and Resources
	Big-step Semantics and Exceptions
	Motivation
	Outline of the Thesis

	Language Design and Signals
	Base Language
	Validity and Soundness
	Adding Exceptions
	Exception Operations
	Exception Convention
	Exception Contexts

	Adding Block-structured Signals
	Operational Semantics
	Signal Handling Convention
	Program Logic with Specifications for Signal Handlers

	Operational Semantics
	Block Structured Signals and Exceptions
	Evaluation of Expressions
	Big-step Rules in Detail
	Assignment
	Sequential Composition
	Repetitive Construct while
	Exception Handling
	Conditional Construct if
	Signal Binding
	Signal Handling
	Signal Blocking

	skip command
	Interaction between Signal and Exception Handling
	Question of Priority - Design Choice

	Examples for Operational Semantics
	Basic Examples
	Interruptible Signal Handlers
	One-Shot & Persistent Signals Bindings
	Signals & Exceptions

	Abstract Machine
	From Big-step to Abstract Machine
	Stack Machine for Signal Handlers
	Examples of the Machine Runs
	Towards Signal Machine Correctness
	Notes about Signals Implementation
	Core Idea
	Bit Vector
	Exceptions and Signals
	Implementation of Exception Handling

	Logic Reasoning
	Program Logic with Specifications for Signal Handlers
	Exception Context
	Stability
	Program Logic for Signal and Exception Handling
	Supporting Lemmas
	Logic Rules in Detail
	Atomic and Assignment
	Sequential Composition
	One-shot Signal Binding
	Persistent Signal Binding
	Persistent Versus One-shot Signal Binding
	Signal Blocking
	Exception Throwing/Raising and Handling
	Repetitive while Construct
	Conditional if Construct
	Rule of Consequence
	Rule of Conjunction

	Ghost Variables
	Quantification and Instantiation of the Ghost Variables
	Example with Quantified Ghost Variables

	Idioms of Signal Usage - Logic Examples
	Invariant Preserving
	Signal Masks in Unix-like Systems
	Double Free and Linear Use of Resources

	Logic Soundness
	Signal Binding and Signal Context
	Supporting Lemmas
	Proof of Soundness
	Persistent Signal Binding
	One-shot Signal Binding
	Signal Blocking
	Sequential Composition
	Atomic Commands
	Repetitive while Command
	Rule of Consequence
	Rule of Conjunction
	Conditional if-else Command
	Exception throw Command
	Exception Handling

	Nested Bindings
	Operational Semantics Example
	Logic Example

	Introduction to Reentrancy
	Reentrancy in OOP
	Short Literature Observation
	Example Scenarios

	OOP and Multithreading
	Multithreading as Part of the OS
	Reentrant Kernels

	Event-Driven Programming
	Reentrant Locks
	Objective C
	Glossary of the Reentrancy Related Terms
	Towards New Definition and Glossary
	Comparison of the Reentrancy in OOP and Procedural Paradigms
	Invariants
	Reentrant Call From an Inconsistent State

	Reentrant and Interrupted Handlers
	Reentrancy and Thread-Safety
	Relation Between Stability and Reentrancy
	Locks, Reentrancy and Signal Handlers
	Signal and Exception Handlers
	Summary and Discussion

	Reentrancy Linear Type System
	Language with Functions and Local Variables
	Big-Step Rules in Detail
	Argument Passing and Global Variables

	Logic and Reentrancy Linear Type System
	Reentrancy Judgement
	Reentrancy Judgement for Non-reentrant Function Call
	Free Variables
	Function Context Splitting
	Logic Rules
	Implicit Versus Explicit Stability Assumptions
	Reentrant () Versus Nonreentrant () Functions
	Examples and Tricky Questions
	Level of Granularity
	Interaction Between Functions and Signals
	Motivational Examples
	Non-linear Interference
	Non-linear Interference - Part 2
	Commands Instead of Functions
	Functions and RLTS
	Motivation of the Reentrancy Granularity

	Experimental Material
	Signal Binding and Functions
	Variations of the Logic Rule Updates

	Pros and Cons
	Limitations of the Logic with RLTS

	Literature Review
	Exception Handling
	Ghost Variables
	Understanding Reentrancy
	Abstract Machines
	Separation Logic and Stability
	Logic and Reasoning
	Soundness, Completeness and Verification
	Signals and Technical Documentation
	Continuations

	Conclusions
	Related Work
	Directions for Future Work
	Separation Logic for Resource and Ownership
	Correctness of Signal Machine with Respect to Big-step Semantics
	Implementation
	Signals in a Concurrent Setting
	Reentrancy and Safety
	Application to Software Security

	Bibliography

