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Abstract

The industrial prilling process is a common technique to produce small pellets which

are generated from the break-up of rotating liquid jets. In many cases the fluids used

are molten liquid and/or contain small quantities of polymers and thus typically can be

modelled as non-Newtonian liquids. Industrial scale set-ups are costly to run and thus

mathematical modelling provides an opportunity to assess methods to improve efficiency

and introduce greater levels of precision. In order to understand this process, we consider a

mathematical model to capture the essential physics related to a cylindrical drum which is

rotated about its axis and from which a slender liquid jet emerges from a hole placed on the

side of the drum. Furthermore, surfactants my be used in such process to manipulate the

size of the resulting droplets. In this thesis, we model the viscoelastic nature of the fluid

using the Oldroyd-B model. An asymptotic approach is used to simplify the governing

equations and then we consider a linear temporal stability analysis of the resulting set of

equations.

The effect of gravity on viscoelastic liquid jets has been discussed both with rotation and

without rotation. The trajectory of this problem has been plotted in three dimensions.

Our results show the effect of many non-dimensional parameters on the linear instability

of a viscoelastic curved liquid with gravity and without gravity.
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Chapter 1

Introduction

Liquid jets have attracted the attention of many researchers in a wide range of disci-

plines from nuclear fission to DNA sampling. Scientists and researchers have investigated

phenomena associated with liquid jets, including the process of break-up, drop formation

and rupture, because of their relevance to many different industrial applications, such

as fertilizer and ink jet printing. A deep understanding of the mechanisms of break-up

of liquid jets and the associated flow dynamics is heavily dependent on the nature or

constitution of the fluid and for this some knowledge of different fluids used in industry

are required. Knowledge associated with complex fluid flows also has relevance in de-

termining the actual process or techniques used to generate droplets. In all such cases,

whilst experiments provide data and quantitative relationships between fluid properties

and for example droplet sizes, analytical techniques can almost always be used to better

understand these processes.

First of all, this thesis will start by giving a general explanation of liquid jets and

it will give some applications for the occurrence of this phenomenon, both in everyday

life, such as domestically, in kitchens and showers, or in industry with ink-jet printing

problems. Then the literature for studies in inviscid jets will be examined which includes

studies by Savart (1833) and Rayleigh (1878). After that, an analysis of viscous jets will
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be given which was initiated by Weber (1836). Recent studies were conducted which

were investigated by Wallwork (2002a) and Uddin (2007) for liquid curved jets and many

others, as can be seen in section (2.1). In section (2.2), we will also look at the background

of viscoelastic jets which is the subject of this thesis. We also present in this chapter

break-up regimes and nonlinear dynamics.

In Chapter 3, the prilling process is introduced and some details are given about the

theoretical and experimental work carried out more recently at the University of Birm-

ingham.

To give a better understanding about viscoelastic fluids, we start Chapter 4 by giving

the meaning of the term of viscoelastic and some examples of this phenomenon. It will

be seen in this chapter that there are many models which can be used for non-Newtonian

fluids. These constitutive models provide a mathematical description of the how the stress

in a non-Newtonian fluid relates to the strain can affect on the behaviour of these fluids.

In this thesis, we have used the simplest model to investigate the instability of viscoelastic

liquid jets, which is Maxwell-Upper convected model, known as Oldroyd-B.

In Chapter 5, we examine the temporal instability of straight viscoelastic liquid jets

falling under the influence of gravity. An asymptotic analysis is used to obtain the steady

state solutions, and then we derive the dispersion relation.

Chapter 6 gives more details about the prilling process in terms of mathematical for-

mulation of non-Newtonian liquids for studying the linear instability of this problem.

Most of the studies are related to Newtonian fluids. However, non-Newtonian fluids need

more examination, because many industrial liquids, even those which are involved in the

production of fertilizers, are non-Newtonian. In the University of Birmingham, there are

many researchers who have studied the prilling process in Newtonian fluids and have de-

veloped a procedure to examine non-Newtonian fluids. Therefore, in this thesis, we will
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utilize an alternative non-Newtonian model to study non-Newtonian fluids, especially vis-

coelastic liquid jets in the spiralling process. An asymptotic analysis is used to derive

the equations of motion and boundary conditions at leading order. We also examined the

temporal instability to obtain the dispersion relation for viscoelastic liquid curved jets.

We present some results at the end of this chapter.

In Chapter 7, we investigate nonlinear instability of viscoelastic curved jets by using

a finite difference scheme which is based on the two-step Lax-Wendroff method. We

therefore discuss break-up lengths, the break-up time, main and satellite droplet sizes.

In Chapter 8, we extend Chapter 6 by considering the liquid emerging from the orifice

and falling under gravity. We present the trajectory of the centerline of liquid jets in three

dimensions. Moreover, we study the linear analysis as we did in that chapter.

In Chapter 9, we study linear and nonlinear instability of viscoelastic liquid curved jets

by including surfactants. In this chapter, we can see that surfactants decrease the surface

tension which means that growth rates, break-up lengths and droplets formation changes

by changing the initial surfactant concentration. In Chapter 10, we give some conclusions

and future work which we can study.

1.1 Articles extracting from this thesis

• Alsharif, A., M., Uddin, J. and Afzaal, M. F. Instability of Viscoelastic Liquid Curved

Jets, submitted to Journal of Applied Mathematical Modelling, December 2013 (Chapter

6 and 7).

• Alsharif, A., M. & Uddin, J. 2013, The Influence of Gravity on The Temporal In-

stability of Viscoelastic Liquid Curved Jet, World Academy of Science, Engineering and

Technology, 79, 1742-1748 (Chapter 8).
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• Alsharif, A., M. & Uddin, J. Instability of Viscoelastic Liquid Curved Jets with

Surfactants, submitted to the Journal of Non-Newtonian Fluid Mechanics, April 2014

(Chapter 9).
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Chapter 2

Literature Review

2.1 Introduction

A jet is a stream of liquid which emerges from a nozzle and has a column shape. In

this thesis, we will focus on the break-up of liquid jets, which has applications in many

areas. For example, we can see the liquid jet in kitchens, when water emerges from a

tap, in agriculture when a farmer irrigates his field, in powder technology, and in ink-jet

printing.

Liquid jet dynamics is also relevant to fields which deal with small-scale phenomena,

even on the nanometer scale, such as DNA sampling, and can have pharmaceutical appli-

cations. For example, pharmaceutical companies use the freeze-drying process to produce

tablets. In all such cases the classical approach to studying the theory of the instability

of liquid jets has been investigated by Rayleigh (1878) for inviscid liquid jets.

In order to understand these phenomena, it is important to study the break-up of liquid

jets theoretically and verify it experimentally. It is also necessary to investigate drop sizes

in order to reduce liquid quantity costs.
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2.2 Inviscid and Viscous Jets

The earliest experimental work on the break-up of a liquid jet was conducted by Savart

(1833) who observed that the break-up of a liquid jet depends on a feature intrinsic of the

fluid motion. He also noticed that there is a small drop (satellite) between main drops.

Another experiment was conducted by Plateau (1873) who found that the crucial role of

the jet break-up is the surface tension, which can be considered as the energy per unit

area of interface . Lord Rayleigh (1878) carried out the first theoretical treatment for the

instability of an incompressible inviscid liquid jet and found that the driving force for the

jet break-up is the surface tension. He investigated the effect of the capillary force on a

cylindrical jet which has radius r = a and studied the traveling wave modes of the form

exp(ωt− i(kz−nθ)), where ω is the growth rate, k is the wavenumber, θ is the azimuthal

coordinate and t is the time. Rayleigh found that when a perturbation to inviscid liquid

jets is made, the dispersion relation, which describes the relationship between ω and k,

takes the form

ω2 =
γ(ka)

ρa3
(1− n2 − (ka)2)

I
′
n(ka)

In(ka)
, (2.1)

where γ is the surface tension and In is the modified Bessel function of order n. The

disturbances are axisymmetric for n = 0 so that the previous equation becomes

ω2 =
γ(ka)

ρa3
(1− (ka)2)

I1(ka)

I0(ka)
. (2.2)

For ka > 1, the jet is stable which means the disturbances will not grow. Rayleigh

found that the maximum growth occurs at ka = 0.697 with a corresponding wavelength

ω ≈ 2πR/0.697 ≈ 9R. When n 6= 0 this means the growth rate (ω) is imaginary and does

not grow with time.
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There are many references which go into detail about the instability of liquid jets and

the reader is referred to Eggers (1997), Middleman (1995) and Lin (2003). The viscosity

of the jet was considered in the case of a cylinder of incompressible liquid by Weber (1936)

who found that the wavelength of most unstable waves is increased by the viscosity. Weber

(1936) followed the same analysis as for the inviscid liquid jet (for n = 0) to obtain the

dispersion relation which is

ω2 + ω
2µ k2

I0(kR)

[
I
′

1(kR)− kk̃I1(kR)I
′
1(k̃R)

(k2 + k̃2I1(k̃R)

]
=
σR

ρµ2

kR(k2 − k̃2)I1(kR)

(k2 + k̃2)I0(kR)
(1− k2R2), (2.3)

where k̃2 = k2 + ω
µ

.

This quadratic equation has a positive solution at the maximum wavenumber which is

ka = 1√
2(1+3Oh)

, where Oh = µ√
ρσa

is the Ohnesorge number. This result shows the effect

of viscosity, which is µ, on the system. When µ = 0 we obtain the dispersion relation for

inviscid liquid jets, which takes the form ka = 1√
2
≈ 0.707. This result differs from the

inviscid case.

Tomotika (1935) investigated the linear instability of a cylindrical thread of a viscous

liquid jet into another viscous liquid. He found that the linear instability depends upon

the viscosity and density ratios of two fluids. He also discussed the effect of surface tension

on both viscous liquid jets.

A more rigorous asymptotic approach has been applied by Papageorgiou (1995) to the

system governing the dynamics of a liquid jet to search for a nonlinear solution. He also

found that there are good agreements between theoretical and asymptotic solutions. In

addition to this, he investigated the break-up behaviour for viscous liquid threads for

different initial conditions.

Typically, for instability in liquid threads or jets two types of instabilities are presented;

firstly, temporal instability, which is the cases considered above in Rayleigh’s analysis

7



where k is real and the growth rate is complex; and secondly, spatial instability. This

was discussed by Keller, Rubino & Tu (1973). They suggested that waves might grow in

space and thus investigated disturbances with complex k and times realized that spatially

growing waves do exist. Their studies were on a cylindrical liquid jet which emerged from

a nozzle, and followed Rayleigh’s analysis.

Newtonian jet stability was examined by Grant & Middleman (1965) in terms of predicting

the stability in turbulent and laminar jets which emerged from a nozzle. They have also

modified Weber’s theory to study the break-up of laminar liquid jets. The nonlinear

temporal instability of capillary liquid jets was investigated by Ashgriz & Mashayek (1995)

and it was found that when the Reynolds number is very small, the satellite drops are

not observed, and the satellite drops can be seen when the Reynolds number is high.

Wallwork (2002a) used a mathematical model to investigate the prilling process, because

this process has many industrial applications, such as producing urea pellets fertilizer. The

work of Wallwork et al. (2002b) examines the trajectory and stability of inviscid curved

liquid jets; their investigation revealed temporal and spatial stability in the case of steady

state solutions. They also conducted some experiments for inviscid rotating liquid jets

and found agreement between the theoretical and experimental work. Decent et al. (2002)

extended the previous work to include gravity in the examination of linear stability by

Wallwork (2002a). Moreover, the influence of viscosity on the trajectory and stability of

the break-up of rotating liquid jets has been examined by Decent et al. (2009) and the

experiments agree with the theoretical work.

The influence of gravity on capillary jet instability was investigated by Cheong et al.

(2004) and they found drop formation by using a finite difference solution. They also

conducted experiments to compare with the numerical results, and found that the increase

in gravity decreases disturbance frequency and, without including gravity, the maximum

wave number is k = 0.697, which agrees with Rayleigh’s result. The linear analysis of a
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vertical viscous liquid jet falling under gravity was discussed by Sauter & Buggisch (2005).

There is an article which reviews surface instabilities for different types of instabilities

which is done by Malkin (2008).

2.3 Viscoelastic Jets

It is important to understand the behaviour of non-Newtonian jets because such jets

have many industrial applications, such as ink jet printing, fertilizers, roll coating and

paint leveling. Zhang et al. (2002) discussed the surfactant with viscoelastic film by using

the Oldroyd-B model. non-Newtonian fluids have been investigated by Uddin et al. (2006)

by using the power-law model to examine the linear instability of a rotating liquid jet.

Uddin et al. (2006), also derived the dispersion relation to study the growth rate and

wavenumber. The linear instability predicts that the drop sizes are uniform. However, the

nonlinear instability gives non-uniform sizes, which are known as satellite droplets. Uddin

et al. (2008a) studied nonlinear temporal solutions by using the Lax-Wendroff method for

non-Newtonian liquid curved jets. In the same paper, these researchers used the simplest

model which is the Power-Law for studying non-Newtonian fluids, which is used widely

in many areas, especially in engineering. Uddin et al. (2008b) also studied the instability

of liquid curved jets with surfactant. They found that break-up lengths increase, when

the rotation rates increase. They also observed that satellite droplets decrease, when the

effectiveness of surfactants( which is β see Chapter 9) increases. Another finding is that

increasing the surfactant concentration leads to delay in the jet break-up. The linear

and nonlinear instability were discussed by Uddin & Decent (2009) for non-Newtonian

liquid curved jets with surfactant by using the Power-Law model. Following this, Uddin

& Decent (2012) examined drop formation for non-Newtonian liquid curved jets with

surfactant by using a finite difference scheme known as the Lax-Wendroff method(see Press

et al. (2001)). Goren & Gottlieb (1982) investigated the theory of linear stability on break-
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up of viscoelastic liquid jets by using Oldroyd’s 8-constant model. They found agreement

in this theory with previous studies; for example, if the elastic tension is not included, the

shear-thinning liquid jets are less stable than Newtonian liquids. A numerical approach

has been used by Renardy (1995) to investigate break-up of Newtonian and viscoelastic

liquid jets for the Giesekus model and upper convected Maxwell model. The stability

of viscoelastic jets has been examined by Middleman (1965) who compared growth rates

of disturbances along viscous and viscoelastic liquid jets and found that a viscoelastic

liquid jet is less stable than a Newtonian liquid jet. Goldin et al. (1969) considered

the instability of viscoelastic liquid threads and identified the presence of thin ligaments

between droplets which they attributed to the effects of stress on the fluid. They also

compared the linear stability between inviscid, Newtonian and viscoelastic liquid jets,

and found that the growth rate of viscoelastic liquid jets is higher than that of Newtonian

liquid jets and smaller than that of inviscid liquid jets for the same zero shear viscosity

fluid. Mageda & Larson (1988) have used the Oldroyd-B model (see section 4.4 for

more details) for ideal elastic liquids, called Boger fluids, for investigating the rheological

behavior of polyisobutylene and polystyrene when the shear rates are low. They found

that this model gives a good description of recovery of shear rates and relaxation time of

the fluid.

Schummer & Thelen (1988) studied the break-up of a viscoelastic liquid jet by using an

upper-convected Jeffrey’s model (for more details see section 4.7), and also investigated

its linear stability. Larson (1992) wrote an article reviewing instability in viscoelastic

flows in which he described the simplest model for studying the viscoelastic jets, which

is the Oldroyd-B model. This model will be used for studying the break-up of viscoelas-

tic liquid jets in the next chapter. However, according to Larson (1992), the Oldroyd-B

model has two limitations. One of them is that the model has only one relaxation time,

whereas fluids have spectrum of time. The other one is that prediction of the growth rate
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Figure 2.1: A viscoelastic liquid jet which is aqueous polyacrylamide solution at high-speed
video under Capillary force where the surface tension is γ = 62mNm−1, the velocity of
the jet is 30cms−1, the contribution of the polymer is ηp = 0.0119Pas, the polymer time
is λ = 0.012 s , and the Deborah number is De = 18.2. The orifice is at the left of the
image (see Clasen et al. (2006)).

is unlimited in this model. Larson (1992) also illustrated the linear and nonlinear insta-

bility for Newtonian and non-Newtonian fluids. The asymptotic analysis and numerical

computation was applied to stretching of viscoelastic jets to study linear stability and

onset of stretching dynamics by Chang (1999), using the Oldroyd-B and FENE model

to describe the viscoleastic structure of the fluid. The resulting dispersion relation was

found to be a cubic equation, which was solved to investigate the stability of a filament

near pinch-off where fluid is drained from ligaments into beads.

The beads-on-string structure of viscoelastic jets means that we have large droplets

which are connected by thin threads as can be seen in Fig. 2.1. This phenomenon was

examined by Clasen et al. (2006) using the Oldroyd-B model.

They also used the Oldroyd-B model, which is described as one dimensional, to exam-

ine the dilute polymer solution (see section 4.4 for more details about this model). Their

study described the behaviour of this model for different initial conditions and compared

it to the experimental work. The numerical study was conducted by Li & Fontelos (2003)

for the beads-on-string structure of viscoelastic liquid jets by using an explicit finite dif-

ference method. They found that the variation of elastic force is larger than the variation

of the capillary force by approximately four times.

Fontelos (2003) investigated the break-up of viscoelastic jets by using the Johnson-

Segalman model. He discussed three assumptions, which were the boundary conditions
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for polymeric fluids, the polymeric contribution (which is very high or very low), and

the traveling wave solution. Fontelos & Li (2004) studied the evolution and break-up

of viscoelastic liquid jets for two models: the Giesekus model and FENE-P type. They

found that the radius of the jet decreases linearly close to the break-up. Temporal linear

instability of a viscoelastic jet immersed in a Newtonian fluid was conducted by Gunawan

et al. (2005), who used the constitutive model for the fluid as Jeffrey’s model. The nu-

merical study for pendant drop formation of viscoelastic liquid jets in air which emerged

from a nozzle was examined by Davidson et al. (2006). They used the Oldroyd-B model

and compared the drop shapes numerically with experimental work. Cooper-White et al.

(2002) investigated the effects on elasticity of the drop of the liquid jet caused by gravity.

They found that the comparison between numerical and experimental work was the same,

but that the presence of elasticity led to different results, specifically towards the onset

of pinch-off.

Roy et al. (2006) used the Fredholm-alternative theorem to obtain the equation of

motion in order to study viscoelastic filament behavior by using the Oldroyd-B model.

They discovered that the falling and rising behavior of viscoelastic liquid jets is different

from that of Newtonian liquid jets. The beads-on-string structure of viscoelastic threads

was discussed by Clasen et al. (2006). They used the Oldroyd-B model to this problem to

study the beads-on-string and liquid bridge. This article is well-presented, and explains

the theoretical analysis and experimental study. The viscoelastic jets were examined

without rotation. Renardy (2008) studied the linear stability of viscoelastic shear flow in

the limit of high Weissenberg and Reynolds numbers by using Maxwell upper convected

fluid. The behavior of linear instability of three dimensional non-Newtonian liquid jets

was discussed by Liu & Liu (2006). Liu & Liu (2008) discussed the temporal instability of

viscoelastic liquid jets for axisymmetric and asymmetric disturbances. They found that

the growth rate of viscoelastic jets is larger than the growth rate of Newtonian fluid and
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smaller than the inviscid one for axisymmetric and asymmetric disturbances.

The dynamics of beads-on-string structure and filament thread have been discussed

by Ardekani et al. (2010) for weakly viscoelastic jets by using the Giesekus constitutive

equation (see section 4.8 for more details) and the results were compared with those of

the Oldroyd-B model (when α = 0). They found that the mobility factor α, which is a

dimensionless parameter corresponding to the anisotropy of the hydrodynamic drag on

the polymer molecules (Giesekus 1982), has an influence on the neck of droplets. Mor-

rison et al. (2010) studied the viscoelasticity of the drop of ink which emerged from the

nozzle. Axisymmetric instabilities for viscoelastic liquid jets were analysed by Carroll

& Joo (2008) theoretically and experimentally in the presence of an electric field. The

FENE-CR (Chilcott and Rallison (1988)) constitutive equation was used for modeling

the problem and they found good agreements between the experimental studies and the

numerical results. Moreover, the temporal linear stability was studied by Li et al. (2011)

for an electrical viscoelastic liquid jet by using the Oldroyd-B model. In terms of elec-

trical conductivity, they used the Taylor-Melcher theory. The dispersion relation was

derived theoretically and examined in many cases, which were: without electrical field,

with electrical field, and when considering the influence of liquid elasticity on the linear

stability. They found that the normal electric field destabilizes the axisymmetric and non-

symmetric disturbances for viscoelastic liquid jets. The equivalent case with viscosity was

investigated by Hohman et al. (2001a, 2001b).

Brenn et al. (2000) investigated linear analysis of axisymmetric non-Newtonian liquid

jets by using the corotational Oldroyd 8-constant model (for more details see section 4.9).

They pointed out that at the same value of the Ohnesorge number, the growth rate of

viscoelastic jets becomes larger than the growth rate of Newtonian jets, which suggests

that viscoelastic liquid jets are more unstable than the Newtonian liquid jets due to the

interaction between viscosity of the liquid and elastic effects inherent within the fluid.
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Figure 2.2: Four types of break-up regimes which are: (a) Rayleigh regime, (b) first-
induced regime, (c) second-induced regime and (d) atomization regime. Taken from Lin
and Reits (1998)

According to Funada & Joseph (2003), there are two dimensionless numbers, namely the

Reynolds and the Deborah numbers, which are instrumental in determining the rate at

which a column of fluid disintegrates into droplets.

2.4 Break-up Regimes

When the liquid emerges from a circular nozzle, the break-up occurs and it becomes

liquid droplets. There are four types of break-up and each one has different characteris-

tics. Rayleigh regime and first wind-induced regime happen when the speed is low, and

from these two regimes the break-up does not happen near the orifice. The third one

is second wind-induced regime which does happen near the orifice. The last one is the

atomization regime, which is similar to the third one, as both occur at high speed. These

regimes are presented in Fig. 2.2. We are interested in investigating the first regime which

is the Rayleigh regime. Linear instability can be used to predict the break-up length of
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a liquid jet by examining either short or long wavelength disturbances (see Decentet al.

(2009)). Investigations of short wavelength disturbances render the governing equations

more intractable than the equivalent analysis based on long wavelengths, where the slen-

derness of the jet can be used to form a small dimensionless parameter, which in turn is

used to reduce the governing equations into a set of simpler equations using asymptotic

theory. In this thesis we therefore adopt the latter approach and examine long wavelength

disturbances.

2.5 The Non-Linear Dynamics of Break-up

Linear stability analysis predicts that liquid jets break up and produce uniform drop

sizes along the axis of approximately the same wavelength of the initial disturbance. How-

ever, according to Chaudhary & Maxworthy (1980a, 1980b), by investigating the nonlinear

phenomena, it can be observed that a number of smaller satellite droplets appeared in

this case which are not equal in size. The first attempt at making a numerical simulation

for studying break-up of inviscid liquid jets was made by Lee (1974) and presented the

main and satellite droplet sizes. Pimbley & Lee (1977) studied the behavior of satellite

droplet sizes theoretically and experimentally by considering the spatial instability anal-

ysis. Rutland & Jameson (1971) studied the non-linear effect of liquid jet break-up to

predict the size of the main and primary (satellite) droplets experimentally in order to

compare their results with Yuen (1968) in which they found good agreement. They also

found a good agreement between the theoretical and experimental behavior examined

by Bousfield (1986) for studying the non-linear analysis of break-up of viscoelastic fila-

ments. Kang & Chen (1995) performed a non-linear instability analysis for viscoelastic

film affected by gravity using the Oldroyd-B model.

In order to study nonlinear instability, a full analysis of the governing equations with free

surface boundary conditions is an extremely difficult set of equations to solve analytically
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and numerically. For this reason, we use an asymptotic approach to reduce the equations

to one-dimensional models. Eggers & Dupont (1994) examined drop formation in a one-

dimensional equation for viscous liquid jets. They investigated a one-dimensional equation

by expanding a Taylor series with respect r as follows

v(z, r, t) = v0(z, t) + r2v2(z, t) + ...

u(z, r, t) = −1

2
rv0z(z, t)−

1

4
v2z(z, t) + ...

p(z, r, t) = p0(z, t) + r2p2(z, t) + ...

where v, u and p are the axial velocity, radial velocity and pressure fields respectively.

Substituting these expressions into the Navier-Stokes and the free boundary surface, the

non-linear system are

vt = −vvz −
pz
ρ

+
3ν(h2vz)z

hz
,

p = γ

(
1

h(1 + h2
z)

1
2

− hzz

(1 + h2
z)

3
2

)
,

ht = −vhz −
1

2
vzh,

where h(z, t) is the position of the free surface, and ν = µ/ρ is the kinematic viscosity.

In this thesis, we will derive equations similar to the above for viscoelastic liquid curved

jets.
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Chapter 3

Theoretical work

3.1 Prilling Process

Prilling is an industrial process which is used to produce fertilizer pellets with a very

small diameter, and these pellets have a different size owing to the break-up. This process

can be applied either to fertilizer products, such as urea and ammonium nitrate, or to

chemical products as an example NaOH (sodium hydroxide). When the liquid emerges

from orifices, small satellite drops are wasted, so that manufacturers which produce the

product need to save money by making the droplets uniform in size. The largest company

for producing fertilizer pellets using industrial prilling during the last decade was Norsk

Hydro based in Norway. In their set-up, they used a cylindrical drum to hold the molten

urea, measuring 1 m in height and 0.5 m in the diameter. This can has 2000 small orifices

and rotates at approximately 320-450 revolutions per minute (rpm). Therefore, the liquid

emerges from these orifices and breaks up into small satellite droplets. The photograph for

this prilling can from Norsk Hydro is shown in Figs. 3.1 and 3.2. In order to investigate

the full production scale model in more detail a slightly smaller drum was constructed

in the School of Chemical Engineering at the University of Birmingham, which in fact

replaced a much smaller scale ‘table-top’ experiment within the School of Mathematics
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Figure 3.1: Photograph of a prilling can. Courtesy of GEA Niro A S

where a small baked beans can was used as the drum!

3.2 Theoretical Work

In order to motivate a theoretical analysis of the industrial prilling process we consider

a cylindrical container, containing a viscoelastic fluid, which has radius s0 and rotates

about its axis with angular velocity Ω. A small orifice with radius a is located on the

curved face of the container and subsequently a slender jet emerges from the container due

to hydrostatic pressure and centrifugal forces. The governing equations which describe

the change in momentum and conservation of mass may be derived in non-dimensional
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Figure 3.2: Photograph showing multiple jets emerging from a can (which is the dark
shape at the bottom of this picture) in the prilling process. It can be seen that there are
some droplets at the top of this picture. Taken from Wallwork (2002a).

form and these are found to be similar to those presented in Uddin (2007). However, in

the present problem we have a more complex fluid which requires a number of additional

features in the governing equations. In particular, we model the viscoelastic nature of the

jet using the Oldroyd-B model. We use a curvilinear coordinate system (s, n, φ), where

s is the arc-length of the jet and (n, φ) are plane polar coordinates in any cross section

of the jet. In addition, the centerline of the jet is represented by Cartesian coordinates

(X, Y, Z). A schematic of the set-up modelled together with a diagram showing pictorially

the coordinate system used is shown in Figs. 3.3 and 3.4. This was used by Wallwork
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Figure 3.3: Sketch of coordinate system which uses the X, Y, Z axis. O represents the
orifice from which the liquid emerges (see Wallwork (2002a)).

Figure 3.4: The centerline of the jet (see Wallwork (2002a)).

(2002a), X = X(s, t) and Z = Z(s, t) where t is the time. We use

es = Xi,sei, (3.1)
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the unit vectors in this coordinate system are calculated by using a principal normal

vector p and a binormal vectorb to the centerline (see Wallwork (2002a))

p =
es,s
|es,s|

=
Xi,ssei√
Xj,ssXj,ss

and

b = p× es =
εijkXj,ssXk,sei√

XL,ssXL,ss

.

There are another two vectors en and eφ, which are defined as

en = cosφp+ sinφb, (3.2)

and

eφ = − sinφp+ cosφb. (3.3)

Now substitutions are made for p and b into the previous two equations and the unit

vectors are obtained as follows

en =
1√

XL,ssXL,ss

(
cosφXi,ss + sinφ εijkXj,ssXk,s

)
ei, (3.4)

eφ =
1√

XL,ssXL,ss

(
− sinφXi,ss + cosφ εijkXj,ssXk,s

)
ei. (3.5)
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For this coordinate system, we need to determine the structure functions, hs, hn and hφ,

which are defined as

hi =

∣∣∣∣∂r∂i
∣∣∣∣ for i = s, n, φ.

To describe the flow, we use a vector field as u = ues + ven + weφ, then we can find

that ∇u, ∇ · u, ∇× u and ∇2u are

∇u =
1

hs

∂u

∂s
es +

∂v

∂n
en +

1

n

∂w

∂φ
eφ,

∇ · u =
1

nhs

[
∂

∂s
(nu) +

∂

∂n
(nhsv) +

∂

∂φ
(hsw)

]
,

∇× u =
1

nhs

∣∣∣∣∣∣∣∣∣∣
hses en neφ

∂
∂s

∂
∂n

∂
∂φ

hsu v nw

∣∣∣∣∣∣∣∣∣∣
,

and

∇2u =
1

nhs

[
∂

∂s

(
n

hs

∂u

∂s

)
+

∂

∂n

(
nhs

∂u

∂n

)
+

∂

∂φ

(
hs
n

∂u

∂φ

)]
.

It can be seen from Batchelor (1967), p. 600, that the components of the stress tensor σ

in the curvilinear coordinate system take the form

τ11 =
1

h1

∂u1

∂ξ1

+
u2

h1 h2

∂h1

∂ξ2

+
u3

h3 h2

∂h1

∂ξ3

,
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τ23 =
h3

2h2

∂

∂ξ2

(
u3

h3

)
+

h2

2h3

∂

∂ξ3

(
u2

h2

)
.

For this problem we choose ξ1 = s, ξ2 = n, ξ3 = φ and h1 = hs = 1 + n cosφ(XsZss −

XssZs), h2 = 1, h3 = n (see Wallwork et al. (2002b)) and the total stress tensor is given

by

Π = −pI + τ ,

Πss = −p+ 2µ.
1

hs
.

[
∂u

∂s
+ (υ cosφ− w sinφ)(XsZss −XssZs)

]
,

Πnn = −p+ 2µ
∂υ

∂n
,

Πφφ = −p+ 2µ.
1

n
.

(
∂w

∂φ
+ υ

)
,

Πsn = Πns = µ

[
1

hs

∂υ

∂s
+
∂u

∂n
− u

hs
cosφ(XsZss −XssZs)

]
,

Πnφ = Πφn = µ

(
∂w

∂n
− w

n
+

1

n
.
∂υ

∂φ

)

and

Πsφ = Πφs = µ

[
1

n
.
∂u

∂φ
+
u

hs
sinφ(XsZss −XssZs) +

1

hs
.
∂w

∂s

]
.
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The position vector is known as

r =

s∫
0

es ds+ n en, (3.6)

where es and en are in equations (3.3) and (3.4) respectively. After substituting these

equations into equation (3.6), we obtain

r = (X + n cosφZs)ei − n sinφej + (Z − n cosφXs)ek.

Părău et al. (2007) found expressions for u, v and w as follows. First,

dr

dt
= ues + ven + weφ = (uXs + v cosφZs)ei −

(v sinφ+ w cosφ)ej + (uZs − v cosφXs + w sinφXs)ek. (3.7)

However, we have the velocity field in the form

dr

dt
= (Xs

∂s

∂t
+Xt +

∂n

∂t
cosφZs −

∂φ

∂t
n sinφZs + φn cosφZss

∂s

∂t
+ n cosφZst)ei −

(
∂n

∂t
sinφ+

∂φ

∂t
n cosφ)ej

+(Zs
∂s

∂t
+ Zt −

∂n

∂t
cosφXs +

∂φ

∂t
n sinφXs − n cosφXss

∂s

∂t
− n cosφXst)ek. (3.8)
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By equating the unit vectors (3.7) and (3.8), we find

uXs + v cosφZs − w sinφZs = Xs
∂s

∂t
+Xt +

∂n

∂t
cosφZs −

∂φ

∂t
n sinφZs +

n cosφZss
∂s

∂t
+ n cosφZst (3.9)

v sinφ+ w cosφ =
∂n

∂t
sinφ+

∂φ

∂t
n cosφ (3.10)

uZs − v cosφXs + w sinφXs = Zs
∂s

∂t
+ Zt −

∂n

∂t
cosφXs +

∂φ

∂t
n sinφXs − n cosφXss

∂s

∂t
− n cosφXst, (3.11)

and after solving the last three equations, we obtain (as seen in Părău et al. (2007))

u =
∂s

∂t
(1 + n cosφ(XsZss −XssZs)) +XtXs + ZtZs + n cosφ(XsZst −XstZs), (3.12)

v =
∂n

∂t
+ cosφ(XtZs −XsZt), (3.13)

w = n
∂φ

∂t
− sinφ(XtZs −XsZt). (3.14)

We use these equations (3.12)-(3.14) to derive the kinematic condition (see Eq. 6.27).

Now we turn our attention to the governing equations which are the continuity equation

and Navier-Stokes equations respectively (see Wallwork (2002a))

∇ · u = 0,

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ν∇2u − 2w × u−w × (w × r′

), (3.15)
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where ρ is the density, p is the pressure, ν is the kinematic viscosity, r
′

is the position

vector and the velocity field is u = ues + ven + weφ. For this system of equations, we

have boundary conditions which are firstly the kinematic condition

D

Dt

(
R(s, φ, t)− n

)
= 0 for n = R(s, φ, t) (3.16)

where R(s, φ, t) is a function which gives the free surface position, we can write the

previous equation as

∂R

∂t
+
∂R

∂s

∂s

∂t
+
∂R

∂φ

∂φ

∂t
− ∂n

∂t
= 0. (3.17)

And, secondly, the tangential stress condition and the normal stress condition are respec-

tively, ti ·Π ·n = ti ·∇σ for i = 1, 2 and n ·Π ·n = σκ, where σ is the surface tension, n is

the normal unit vector and κ is the mean curvature of the free surface and Π is the total

stress tensor which is obtained from −pI + µ(∇u+ (∇u)T ). We have another condition

for this problem which is the arc-length condition

X2
s + Z2

s = 1.

We apply the transformation as Wallwork (2002a) did to obtain the non-dimensionalization.

We use an asymptotic analysis, as in Wallwork (2002a), to solve and find the steady state
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for this problem by assuming that

u = u0(s, t) + (εn)u1(s, n, φ, t) +O(ε2)

v = (εn)v1(s, φ, t) + (εn)2v2(s, φ, t) +O(ε3)

w = (εn)w1(s, φ, t) + (εn)2w2(s, φ, t) +O(ε3)

p = p0(s, t) + (εn)p1(sφ, t) +O(ε2)

R = R0(s, t) + (εn)R1(sφ, t) +O(ε2)

X = X0(s, t) + εX1(s, n, φ, t) +O(ε2)

Z = Z0(s, t) + εZ1(s, n, φ, t) +O(ε2).

From these assumptions, we find the equations which we use to determine the trajectory.

These equations, derived by Wallwork (2002a), state that

u0 =

(
1− 1

Rb2
(X2 + 2X + Z2) +

2

We
(1− 1

R0

)

) 1
2

(3.18)

dR0

ds
= −WeR2

0((X + 1)Xs + ZZs)

Rb2(1 + 2WeR0u2
0)

(3.19)

Zss =
WeR0Xs

WeR0u2
0 − 1

(
2u0

Rb
+
ZXs − (X + 1)Zs

Rb2

)
(3.20)

X2
s + Z2

s = 1, (3.21)

where X0 = X, Z0 = Z, Rb is the Rossby number, Rb = U
s0Ω

and We is the Weber

number, We = ρU2a
σ

. To solve the previous equations, we need to have initial conditions

which are

X = Z = Zs = 0, Xs = R0 = u0 = 1 at s = 0. By using a Runge-Kutta method, these

equations are solved numerically by using the ODE45 package in MATLAB to obtain the

trajectory of the centerline of the curved jet. This method will be used in Chapter 6 to

determine the trajectory of viscoelastic curved jets. To investigate the linear temporal
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stability of disturbances about the base steady state, we use the following approach

u = u(s, n, φ, ε) + δũ(s, s, n, φ, t, t) +O(δ2)

p = p(s, n, φ, ε) + δp̃(s, s, n, φ, t, t) +O(δ2)

R = R(s, n, φ, ε) + δR̃(s, s, n, φ, t, t) +O(δ2)

X = X(s, ε) + δεX̃(s, s, t, t) +O(δ2)

where first terms of these equations are the steady state solutions obtained by solving

(3.18)-(3.21), whereas the variables with tilde are unsteady variables obtained after mak-

ing perturbations to this system of equations. It can be considered that the traveling

modes take the form exp(iks + ωt), where s = t
ε
, t = t

ε
, k is the wave number and ω

is the wave growth rate. It can be noticed that we use Fourier series for expanding the

velocity, pressure and radius in φ, and find eigenvalue relationships, each associated with

cos(nφ) and sin(nφ) where n is integer.

Wallwork et al. (2002b) derived the linear stability for inviscid liquid jets and obtained

the relationship

(ω + iku0)2 =
1

We

(
1

R2
0

(1− n2)− k2

)
k
I
′
n(kR0)

In(kR0)
,

where In is the nth order modified Bessel function. When n = 0 which means the

disturbances are axisymmetric, we obtain the dispersion relation as follows

ω + iku0 =

√
1

We

(
1

R2
0

− k2

)
k
I1(kR0)

I0(kR0)

which is similar to the classic Rayleigh mode. The modes become unstable when 0 <

kR0 < 1. The most unstable wavenumber k∗ can be determined from the above equation

and is found to have the form k∗ = 0.697
R0(s)

where R0(s) is the solution found by solving the
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equations (3.18)-(3.12).

According to Wallwork (2002a), the dispersion relation for viscous liquid jets takes the

form

ω2 +
3µk2

ρ
ω =

σk

ρa2

(
1− (kR0)2

) I ′1(kR0)

I0(kR0)
,

from the last equation, we can find the most unstable wave number from the form

k∗(s) =
1

21/4R
3/4
0 (s)

√√
2R0(s) + 3Oh

(3.22)

where Oh (= µ√
σaρ

) is the Ohnesorge number. From the above equation it can be seen

that for the case where viscosity is absent, i.e. when Oh = 0, the expression obtained

corresponds to the most unstable wavenumber found for the inviscid case by Rayleigh as

one would expect.

3.3 Experimental Work

There was an attempt to investigate the dynamics of the breakup of jets which emerged

from orifice. This spiraling process was conducted by Wong et al. (2004) at University of

Birmingham school of Mathematics. The apparatus of this experiment was a cylindrical

can with a diameter of 0.085 m and height of 0.115 m. This can rotated about its axis.

It also had two sizes of orifice, which were 0.001 m and 0.003 m. A peristaltic pump

was used (Waltson-Mason 505 s) for filling up the can with wasted liquid. A high speed

camera was also used for studying the trajectory of the jet, which is capable of capturing

10,000 frames per second. Additionally, Wong et al. (2004) used a personal computer to

download the images. The dimensionless groups which were used were Reynolds number

(Re = ρUa
µ

), Rosby number (Rb = U
s0Ω

),Weber’s number (We = ρU2a
σ

) and Ohnesorge’s

number (Oh = µ√
σaρ

). The ranges of these parameters taken in the experiment were
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1 < Re < 103 , 0.2 < Rb < 4.5, 0.5 < We < 2.5 and 5 × 10−3 < Oh < 4 × 10−1. The

exit velocity was calculated by the total volume of liquid collected during 1 minute by the

cross-sectional area. Different fluids were used in this experiment for discovering physical

properties, such as water and glycerol. They have investigated four modes for breakup

which were indicated as M1, M2, M3 and M4.

Mode M1 (Figs. 3.7 and 3.8) shows rapid formation with few or absent satellite

Figure 3.5: Diagram of the experimental laboratory scale setup

droplets and surface tension convected downstream. In this mode the breakup occurs

for water jets which emerged from a 0.001 m orifice. Mode M2 (Figs. 3.9 and 3.10)

represents short wavelength and satellite drops which are formed in between the drops

because of capillary pinch-off. When the velocity of the exit jet was increased the breakup

mode changed from M1 to M2. Mode M3 (Figs. 3.11 and 3.12) showing long wavelength

and jet breakup, happens simultaneously along the jet. By using fluids which have high

viscosity with high exit velocity the break-up for this mode occurs. Mode M4 (Figs.

3.13 and 3.14) is nonlinear disintegration and bends away from the centerline. This mode
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Figure 3.6: Photograph of the experimental laboratory scale setup

happens as a result of using fluids which have high viscosity with low exit velocity. The

theoretical prediction for this experiment was investigated by Wallwork et al. (2002b) for

inviscid liquid jets. Decent et al. (2009) extends this work to include the influence of

viscosity and gravity and studied the temporal and spatial stability. Wong et al. (2004)

reported that the experimental data for some modes showed the linear stability is not

enough for predicting breakup. However, it appears that non-linear analysis is required

to give better results. Părău et al. (2006, 2007) studied the non-linear viscous liquid jets.

The preceding discussion about experiments has been concerned with rotating Newtonian
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Figure 3.7: Experimental photos of a spiralling liquid jet for different rotation rates. The
fluid here is Newtonian and the rotation rates from top to bottom and left to right are 0
rpm, 50 rpm, 100 rpm and 200 rpm respectively. Taken from Uddin (2007)

Figure 3.8: Sketch showing Mode 1 break-up (see Wong et al. (2004)).

Figure 3.9: Photographs showing Mode 2 break-up (see Wong et al. (2004)).

liquid jets. However, more recently experiments involving spiraling non-Newtonian liquid

jets were conducted by Hawkins et al. (2007) which are presented in Fig. 3.15.
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Figure 3.10: Sketch showing Mode 2 break-up (see Wong et al. (2004)).

Figure 3.11: Photograph showing Mode 3 break-up (see Wong et al. (2004)).

Figure 3.12: Sketch showing Mode 3 break-up (see Wong et al. (2004)).
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Figure 3.13: Photographs showing Mode 4 break-up (see Wong et al. (2004)).

Figure 3.14: Sketch showing Mode 4 break-up (see Wong et al. (2004)).
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Figure 3.15: Experimental image of pendant drop formation in rotating shear thinning
jets. We = 16.06, Rb = 1.9049, Oh = 0.0220, Re = 181.98, ρ = 1025.05 Kg m−3,
k = 0.01197 Pas, α = 0.920. See Hawkins et al. (2007) for more details.

35



Chapter 4

Viscoelastic Models

4.1 Introduction

In nature there exist some types of fluids which have characteristics shared by both ideal

fluids, which have no resistance to shear flow, and elastic solids which retain their original

shape after being stretched. These fluids are called viscoelastic fluids. For example,

mayonnaise takes a different shape when a small disturbance is applied. After disturbing

the mayonnaise, it will keep the same shape for a long time. This fluid has both a viscous

behaviour and an elastic behaviour (see Morrison (2001) ).

In addition, viscoelastic fluids are susceptible to deformations and stresses. These fluids

have energy stored within their structure as a strain energy. When a deforming stress is

removed, these fluids will show an elastic recovery time. This time is called relaxation

time which we express in this thesis as λ.

Newtonian fluids are characterised by fluids where the viscosity does not change, but the

viscosity of non-Newtonian fluids will vary with the shear rate. Moreover, the governing

equations for incompressible Newtonian fluids which are equation of motion, equation of
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continuity and constitutive equation are

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + ρg, (4.1)

∇ · u = 0, (4.2)

τ = µ

(
∇u+ (∇u)T

)
, (4.3)

where u is the velocity, p is the pressure, g is the external force, τ is the stress tensor, ρ

is the density and µ is the viscosity. When we consider a non-Newtonian fluid which is

assumed incompressible the previous equations (4.1) and (4.2) will remain valid, however

equation (4.3) will be modified as we will see in section 4.4. The study of deformation

and flow is called rheology.

4.2 Non-Newtonian Fluids

Chhabra & Richardson (2008) have shown that a non-Newtonian fluid is one in which the

flow curve, that is the relationship between stress and shear, is non-linear and therefore the

viscosity is not constant. In addition to this, there are two differences between Newtonian

fluids and non-Newtonian fluids in terms of modeling which are

1. For a Newtonian fluid the constitutive equation is

τ = µ

(
∇u+∇(u)T

)
+ (

2

3
µ− κ)(∇ · u)I (4.4)

where µ is the dynamic viscosity, u is the velocity gradient tensor, κ is the dilatation

viscosity and I is the identity tensor. Since we model the fluid as incompressible we may

ignore the divergence of u. Then the equation (4.4) becomes

τ = µ

(
∇u+ (∇u)T

)
= µγ, (4.5)
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where γ is the rate of strain tensor. The viscosity in non-Newtonian fluids is not constant.

2. Non-Newtonian fluid have a relaxation time (see Maxwell model eq. 4.11) which is

responsible for the flow to respond at a delay time. This relaxation time is crucial to

study in viscoelastic fluids.

4.3 Viscoelastic Fluids Behavior

From the classical theory of elasticity, there is a relationship between changes or defor-

mations to a body and the force which are acting upon it; this is known as Hooke’s Law.

The mathematical description of this relationship for a fluid can be written as

τ = µ

(
∇w + (∇w)T

)
= Gγ, (4.6)

where G is the elastic modulus andw is the displacement vector. According to Chhabra &

Richandson (2008), there are many materials which have the ability to keep and recover

shear stress, such as polymer melts, soap and synovial fluids. These materials, when

affected by stress and deformed, will return to the original shape when the stress is

removed.

4.4 Constitutive Equations

The simplest constitutive equation for studying non-Newtonian fluids is the Oldroyd-B

equation which is given by Oldroyd (1950). The extra stress tensor in this equation can

be written as

τ = τ s + τ p,

where τ s is the viscous stress tensor and τ p is the polymeric contribution to the stress

tensor. In this thesis, we will use Eq. (4.13) to present the polymeric contribution.
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4.5 The Maxwell Model

According to Yamaguchi (2010), this model consists of viscous elements which are known

as dashpot (η is the viscosity) and elastic elements assigned as a spring, where E is the

modulus. Consider that the stress τ1 in the spring is Eγ1 and the stress in the dashpot

is η

(
∂γ2
∂t

)
= ηγ2 and τ =τ1 = τ2. Then we can write the total strain of the system as

γ = γ1 + γ2, (4.7)

∂γ

∂t
=
∂γ1

∂t
+
∂γ2

∂t
, (4.8)

∂γ

∂t
=

∂τ 1

∂t

E
+
τ 2

η
, (4.9)

∂γ

∂t
=

∂τ
∂t

E
+
τ

η
, (4.10)

τ + λ
∂τ

∂t
= ηγ, (4.11)

where λ = η
E

is the relaxation time (see Fig. 4.1).

Figure 4.1: Maxwell Model

At steady state, equation (4.11) becomes the Newtonian constitutive equation. This

equation is a differential equation model. There is another expression to calculate the

stress which is in the form

τ =
η

λ

∫ t

−∞
exp

(
−(t− τ)

λ

)
∂γ

∂t
dσ. (4.12)

Moreover, Joseph (1990) discussed that there are two other models for this model which
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are called Upper-Convected Maxwell (UCM) and Lower-Convected Maxwell (LCM) re-

spectively

τ + λτ∇ = µγ, (4.13)

τ + λτ4 = µγ, (4.14)

where the symbols ∇ and 4 are known upper convected derivative and lower convected

derivative of an arbitrary tensor A respectively as

A∇ =
DA

DT
− (∇u)T ·A−A · ∇u, (4.15)

A4 =
DA

DT
+ (∇u)T ·A+A · ∇u. (4.16)

Yamaguchi (2010) explained that the lower-convected Maxwell (LCM) is not commonly

used owing to disagreement between the theoretical and experimental work, whereas the

upper-convected Maxwell (UCM) has good results compared to experimental work.

4.6 Co-rotational Maxwell Model

Another model, similar to the Maxwell Model considered above, takes the form

τ + λτ ◦ = µγ, (4.17)

where τ ◦ is defined as

τ ◦ = τ −wT · τ − τ ·w, (4.18)
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and the vorticity tensor is

w =
1

2

(
∇u− (∇u)T

)
.

This model is called Jaumann time derivative or co-rotational (see Larson (1988)).

4.7 Jeffrey’s Model

Morrison (2001) explained that in Maxwell’s Model there is a linear term missing which

is the time derivative of the rate of strain, so this model is

τ + λ
∂τ

∂t
= µ

(
γ + λr

∂γ

∂t

)
, (4.19)

when we use the two ways to present Jeffrey’s equation as in upper-convected and lower-

convected, so we obtain the Oldroyd-B and Oldroyd-A equations respectively (see Larson

(1988) ),

τ + λτ∇ = µ(γ + λrτ
∇), (4.20)

τ + λτ4 = µ(γ + λrγ
4), (4.21)

where λ is the relaxation time and λr is the retardation time. It can be seen that when

λr = 0, we obtain Maxwell’s model. The constitutive equation for Oldroyd-B can be

written as

τ = τ s + τ p, (4.22)
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where τ s(= µsγ) is the solvent stress and τ p is the polymer stress which satisfies the

UCM equation

τ p + λτ∇p = µpγ. (4.23)

4.8 Giesekus’s Model

Giesekus (1982) has given a simple constitutive model to model polymer fluids which are

based on deformation-dependent mobility. This model has the form

τ + λτ∇ + aτ 2 = µγ. (4.24)

We can notice that this model is the UCM plus an extra quadratic term, where a is the

mobility factor.

4.9 Oldroyd Eight-Constant Equation

Oldroyd has produced a general constitutive equation from which we can derive the UCM,

LCM, Giesekus and Jeffrey’s model. According to Larson (1988), this equation has the

form

τ + λτ ◦ + µ0tr(τ )γ − µ1(τ · γ + γ · τ ) + ν1(σ : τ )δ = (4.25)

µ0

[
τ + λrγ

◦ − µ2γ
2 + ν2γ : γδ

]
,
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where

γ = ∇u+ (∇u)T ,

w = ∇u− (∇u)T ,

τ ◦ =
∂τ

∂t
+ (u · ∇)τ +

1

2
(w · τ − τ ·w),

γ◦ =
∂γ

∂t
+ (u · ∇)γ +

1

2
(w · τ − τ ·w).

(4.26)

4.10 Co-rotational Jeffrey Model

According to Larson (1988), there is another model corresponding to co-rotational Maxwell

equation (CRM) which is co-rotational Jeffrey’s equation, that can be found by adding

retardation term to (CRM), in the form

τ + λτ ◦ = µ(γ + λrγ
◦), (4.27)

where γ◦ is the co-rotational time derivative, defined as

γ◦ = γ · −wT · γ − γ ·w. (4.28)

4.11 Johnson-Segalman Model

This model is combined between the upper-convected and lower-convected Maxwell, so

that the form is

τ + λτ � = µγ, (4.29)
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where τ � is the combination of the upper-convected and lower-convected derivative

τ � = τ · −∇uT · τ − τ · ∇u+ a(τ · γ + γ · τ ),

= τ · −wT · τ − τ ·w − a(τ · γ + γ · τ ), (4.30)

where a is the slip parameter. It can be shown that this model includes the upper-

convected, lower-convected and co-rotational derivative (see Larson (1988) ).

In this thesis, we will use the Maxwell model (see Eq. 4.13) to present the polymeric

contribution for studying the linear and non-linear instability of viscoelastic liquid curved

jets. This model is more commonly used in practice, because there are good agreements

between the theoretical and experimental work.
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Chapter 5

Temporal Instability of

Viscoelastic Liquid jets Falling

Under Gravity

As the aim of this thesis is to investigate the instability and behaviour of viscoelastic

liquids under various non-uniform flow configurations, we begin with the simplest case

where a liquid jet falls vertically under gravity. In this case, a non-uniform steady state

of viscoelastic liquid jet will be affected by the gravitational force .

5.1 Problem Formulation

In this chapter, we will examine the linear instability of straight liquid jets falling

under the influence of gravity. We assume that we have a column of an incompressible

viscoelastic liquid jet emerging from an orifice which has radius a. We therefore consider

this problem by using cylindrical coordinates (r, θ, z), where z lies along the axis of the

jet, r is the radial direction and θ is the azimuthal direction. To begin with, we have to

determine the equations of motion which are the continuity equation, momentum equation

and constitutive equation. We use the Oldroyd-B model to study the viscoelastic liquid
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jet. The equations of motion take the form

∇ · u = 0,

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ · τ + ρg,

τ = µs(∇u+ (∇u)T ) + T

λT5 + T = µp γ

∂T

∂t
+ (u ·∇)T − T ·∇u− (∇u)T · T =

1

λ
(µpγ − T ), (5.1)

where u is the velocity in the form u = vez + uer + weφ , ρ is the density of the fluid, p

is the pressure, µs is the viscosity of the solvent, g is the acceleration due to gravity, T

is the extra stress tensor that represents the elastic contribution to the stresses and µp is

the viscosity of the polymer. Then the equations of motion are

∂u

∂r
+
∂v

∂z
+
u

r
= 0, (5.2)

ρ

(
∂u

∂t
+ v

∂u

∂r
+ u

∂u

∂z

)
= −∂p

∂z
+ µs

(
1

r

∂

∂r
(r
∂u

∂r
) +

∂2u

∂z2

)
+
∂Tzz
∂z

+ ρg, (5.3)

ρ

(
∂v

∂t
+ v

∂v

∂r
+ u

∂v

∂z

)
= −∂p

∂r
+ µs

(
∂

∂r

(
1

r

∂

∂r
(rv)

)
+
∂2v

∂z2

)
+

1

r

∂

∂r

(
rTrr

)
,(5.4)

∂Trr
∂t

+ v
∂Trr
∂r

+ u
∂Trr
∂z
− 2Trr

∂v

∂r
=

1

λ

(
2µp

∂v

∂r
− Trr

)
, (5.5)
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∂Tzz
∂t

+ v
∂Tzz
∂r

+ u
∂Tzz
∂z
− 2Tzz

∂u

∂z
=

1

λ

(
2µp

∂u

∂z
− Tzz

)
. (5.6)

The position of the free surface can be determined by r − R(z, t) = 0 and the normal

vector is given by ∇(r −R(z, t)), which gives

n =
1

E

(
− ∂R

∂z
ez + er

)
,

where

E =

(
1 +

(
∂R

∂z

)2) 1
2

.

The normal stress condition is n ·Π ·n = σκ, where Π is the total stress tensor given by

−pI + τ , which can be written as

p− 2µs

((
∂R

∂z

)(
∂u

∂z
+
Tzz
2µs

)
+
∂v

∂r
+
Trr
2µs
− ∂R

∂z

(
∂u

∂r
+
∂v

∂z

))
= σκ, (5.7)

where σ is the isotropic surface tension and κ is the mean curvature of the free surface

κ =
1

r

(
− ∂

∂z

(
r

E

∂R

∂z

)
+

∂

∂r

(
r

E

))
,

the tangential condition t · Π · n = 0 is

(
1−

(
∂R

∂z

))(
∂v

∂z
+
∂u

∂r

)
+ 2

∂R

∂z

(
∂u

∂z
− ∂v

∂r
− 1

2

(
Trr − Tzz

))
= 0, (5.8)

and finally the kinematic condition D
Dt

(R(z, t)− r) = 0 is

∂R

∂t
− v + u

∂R

∂z
= 0. (5.9)
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5.2 Nondimensionalization

We non-dimensionalize our equations by using the following transformations

z =
z

L
, r =

r

a
, t =

U

L
t, p =

1

U2ρ
p, ε =

a

L
,

u =
u

U
, v =

v

U
, R =

R

a
, T =

L

Uµ0

T,

where u and v are the axial and the radial velocity components, U is the exit speed of the

jet, a is radius of the orifice, L is an axial length scale, T is the extra stress tensor and µ0

is the total of the viscosity, and then we drop overbars to get the following dimensionless

parameters where Re = Uρa
µ0

is the Reynolds number(= inertia force/viscosity force),

αs = µs
µ0

is the viscosity ratio, We = ρU2a
σ

is the Weber number (= inertia force/surface

tension force), F = U√
ga

is the Froude number (= inertia force/gravity force) and De = λU
L

is the Deborah number (= relaxation time /observation time). The equations therefore

become

∂v

∂r
+ ε

∂u

∂z
+
v

r
= 0, (5.10)

(
ε
∂u

∂t
+ v

∂u

∂r
+ εu

∂u

∂z

)
= −ε∂p

∂z
+
αs
Re

(
1

r

∂u

∂r
+
∂2u

∂r2
+ ε2∂

2u

∂z2

)
+

1

Re

(
ε
∂Tzz
∂z

)
+

1

F 2
, (5.11)

(
ε
∂v

∂t
+ v

∂v

∂r
+ εu

∂v

∂z

)
= −∂p

∂r
+
αs
Re

(
1

r

∂v

∂r
− v

r2
+
∂2v

∂r2
+ ε2∂

2v

∂z2

)
+

1

Re

(
Trr
r

+
∂Trr
∂r

)
, (5.12)
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∂Trr
∂t

+
v

ε

∂Trr
∂r

+ u
∂Trr
∂z
− 2

ε
Trr

∂v

∂r
=

1

De

(
2(1− αs)

ε

∂v

∂r
− Trr

)
, (5.13)

∂Tzz
∂t

+
v

ε

∂Tzz
∂r

+ u
∂Tzz
∂z
− 2Tzz

∂u

∂z
=

1

De

(
2(1− αs)

∂u

∂z
− Tzz

)
. (5.14)

The normal stress condition is

p− 2αs
Re

(
ε2

(
∂R

∂z

)(
∂u

∂z
+
Tzz
2αs

)
+

1

ε

∂v

∂r
+
Trr
2αs
−

ε
∂R

∂z

(
1

ε

∂u

∂r
+
∂v

∂z

))
=

κ

We
, (5.15)

where

κ =
1

r

(
− ε2 ∂

∂z

(
r

E

∂R

∂z

)
+

∂

∂r
(
r

E
)

)
,

the tangential condition is

(
1− ε2

(
∂R

∂z

)2)(
ε
∂v

∂z
+
∂u

∂r

)
+ 2ε

∂R

∂z

(
ε
∂u

∂z
− ∂v

∂r
− ε

2

(
Trr − Tzz

))
= 0 (5.16)

and the kinematic condition is

ε
∂R

∂t
− v + εu

∂R

∂z
= 0. (5.17)
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5.3 Asymptotic Analysis

We expand u, v, p in Taylor series in εr (see Eggers (1997) and Hohman et al. (1984)) and

R, Tzz, Trr in ε.

u = u0(z, t) + (ε r)u1(z, t) + ...

v = (ε r)v1(z, t) + (ε r)2v2(z, t) + ...

p = p0(z, t) + (ε r)p1(z, t) + ...

R = R0(z, t) + εR1(z, t) + ...

Tzz = T 0
zz(z, t) + ε T 1

zz(z, t) + ...

Trr = T 0
rr (z, t) + ε T 1

rr(z, t) + ...

We substitute these asymptotic expansions in the equations of motion. We can therefore

find from the equation of continuity

O(ε) :
∂u0

∂z
= −2v1. (5.18)

We may also obtain from the equation of motion in axial direction at leading order,

∂u0

∂t
+ u0

∂u0

∂z
= −∂p0

∂z
+
αs
Re

(
4u2 +

∂2u0

∂z2

)
+

1

Re

∂T 0
zz

∂z
+

1

F 2
. (5.19)

From the tangential condition we have

u1 = 0,

u2 =
1

4

∂2u0

∂z2
+

3

2R0

∂R0

∂z

∂u0

∂z
+

1

2R0

(
T 0
zz − T 0

rr

)
. (5.20)
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from the normal stress condition we get

p0 = − αs
Re

∂u0

∂z
+

1

R0We
+
T 0
rr

Re
,

p1 = −R1

R2
0

+
4v2

R0

. (5.21)

Now we substitute p0 and u2 into Eq. (5.20), then it becomes

∂u0

∂t
+ u0

∂u0

∂z
= − ∂

∂z

(
1

R0We

)
+

3αs
R2

0 Re

∂

∂z

(
R2

0

∂u0

∂z

)
+

1

R2
0Re

∂

∂z

(
R2

0(Tzz − Trr)
)

+
1

F 2
. (5.22)

And the kinematic condition is

O(ε) :
∂R

∂t
+
∂u0

2∂z
R + u0

∂R0

∂z
= 0. (5.23)

From the extra stress tensor in the radial and axial directions at leading order, we have

∂T 0
rr

∂t
+ u0

∂T 0
rr

∂z
− 2

ε
T 0
rr

∂

∂r
(εrv1) =

1

De

(
2(1− αs)

ε

∂

∂r
(εrv1)− T 0

rr

)
, (5.24)

∂T 0
zz

∂t
+ u0

∂T 0
zz

∂z
− 2T 0

zz

∂u0

∂z
=

1

De

(
2(1− αs)

∂u0

∂z
− T 0

zz

)
, (5.25)

which substituting from Eq. (5.19) into the last equation, we get

∂T 0
rr

∂t
+ u0

∂T 0
rr

∂z
+ T 0

rr

∂u0

∂z
=

1

De

(
− (1− αs)

∂u0

∂z
− T 0

rr

)
. (5.26)

When F → ∞, the equations (5.22), (5.25) and (5.26) are the same as those found by

Clasen et al. (2006).
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5.4 Steady State Solutions

Now we look for steady state solutions by considering all the variables to be a function of

z. Thus, steady state solutions are given by solutions to

u0
∂u0

∂z
= − ∂

∂z

(
1

R0We

)
+

3αs
R2

0 Re

∂

∂z

(
R2

0

∂u0

∂z

)
+

1

R2
0Re

∂

∂z

(
R2

0(T 0
zz − T 0

rr)

)
+

1

F 2
. (5.27)

1

2

∂u0

∂z
R + u0

∂R0

∂z
= 0. (5.28)

From Eq. (5.28), we can see that R2
0u0 = constant, and now we use last expression to

write our equations in the form

u0
∂u0

∂z
= − 1

2We

1
√
u0

∂u0

∂z
+

3αs
Re

(
∂2u0

∂z2
− u2

0z

u0

)
+

1

Re

(
∂

∂z
(T 0

zz − T 0
rr)−

1

u0

∂u0

∂z
(T 0

zz − T 0
rr)

)
+

1

F 2
. (5.29)

u0
∂T 0

rr

∂z
+ T 0

rr

∂u0

∂z
=

1

De

(
− (1− αs)

∂u0

∂z
− T 0

rr

)
, (5.30)

u0
∂T 0

zz

∂z
− 2T 0

zz

∂u0

∂z
=

1

De

(
2(1− αs)

∂u0

∂z
− T 0

zz

)
, (5.31)

we can see that Eqs. (5.29)-(5.31) have three unknowns which are u0, T 0
zz and T 0

rr.

To solve this system of equations, we apply a second order finite difference scheme to

discretize Eqs. (5.29)-(5.31). We also specify the boundary condition at the nozzle as
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Figure 5.1: Graph showing the steady radius R0 versus z for different values of the Froude
number F for viscoelastic liquid jets. Here the parameters are We = 10, Re = 20,De = 10
and αs = 0.20.
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Figure 5.2: Graph showing the steady radius R0 versus z for two different values of the
Reynolds number Re for viscoelastic liquid jets. Here the parameters are We = 10, De =
10, αs = 0.20 and F = 1.

u(0) = 1 and T 0
zz(0) = T 0

rr(0) = 0 and the downstream boundary condition is obtained by

quadratic extrapolation of the last interval mash point. The nonlinear Eqs. (5.29)-(5.31)

are solved at each step using a modified Newton’s method. Here we only compute the

Jacobian for the first iteration, so the guess at the next step uses the previous calculated
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Figure 5.3: Graph showing the steady stress tensor T 0
zz versus z for two different values of

the Froude number F for viscoelastic liquid jets. Here the parameters are We = 10, Re =
20, De = 10 and αs = 0.20.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

z

T
z
z

 

 

De=10

De=100

Figure 5.4: Graph showing the steady stress tensor T 0
zz versus z for two different values

of the Deborah number De for viscoelastic liquid jets. Here the parameters are We =
10, Re = 20, αs = 0.20 and F = 1.

solution. A similar approach was used by Părău et al. (2007) for the case of spiralling

liquid jets. The numerical accuracy can be checked by varying the grid interval ds and

mash points M and it was found that the results are dependent of ds and M when

ds < 0.1 and M > 200. In Figs. 5.1 to 5.6 we plot graphs to show the effects of gravity
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Figure 5.5: Graph showing the steady stress tensor T 0
rr versus z for two different values of

the Froude number F for viscoelastic liquid jets. Here the parameters are We = 10, Re =
20, De = 10 and αs = 0.20.
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Figure 5.6: Graph showing the steady stress tensor T 0
rr versus z for two different values

of the Deborah number De for viscoelastic liquid jets. Here the parameters are We =
10, Re = 20, αs = 0.20 and F = 1. It can be seen that when De = 100 the values of T 0

rr

are very small which are not equal to 0.

on the radius and the extra stress tensor T 0
rr of viscoelastic liquid jets emerging from a

nozzle as we move down the jet. We found from these graphs that when gravity increases

(meaning the Froude number F decreases), the radius of the jet thins more quickly and

this result shows that gravity affects the jet as expected. In Fig. 5.2 we investigate the
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effect of viscosity. We can observe from this graph that when the viscosity increases,

the jet becomes slower. In addition, we plot a graph to show the influence of varying

the Froude number on the extra stress tensor T 0
zz along the jet and we notice that when

the Froude number increases, the extra stress tensor T 0
zz decreases along the z-direction

(see Fig. 5.3). Moreover, the relationship between T 0
zz and z for different values of the

Deborah number De is plotted in Fig. 5.4. It can be noticed from this graph when the

Deborah number increases, the extra stress tensor T 0
zz decreases. In Fig. 5.6 we can see

that increasing the Deborah number leads to an increase in the extra stress tensor T 0
rr

along the viscoelastic liquid jet.

5.5 Temporal Instability of the Steady State Solu-

tions

We make a perturbation about the steady state solutions which are obtained from the

previous section as follows

u = u(z, r) + δû(z, r, t),

R = R(z) + δR̂(z, r, t),

Tzz = Tzz(z, r) + δT̂zz(z, r, t),

Trr = Trr(z, r) + δT̂rr(z, r, t),

p = p(z, r) + δp̂(z, r, t),
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where u = ûez + v̂er and δ is a small dimensionless number. Now we substitute these

expressions into (5.10)-(5.17) and we keep terms of order delta, we therefore have

∂v̂

∂r
+ ε

∂û

∂z
+
v̂

r
= 0, (5.32)

(
ε
∂û

∂t
+ v

∂û

∂r
+ v̂

∂u

∂r
+ εu

∂û

∂z
+ εû

∂u

∂z

)
= −ε∂p̂

∂z
+
αs
Re

(
1

r

∂û

∂r
+
∂2û

∂r2
+ ε2∂

2û

∂z2

)
+

1

Re

(
ε
∂T̂zz
∂z

)
, (5.33)

(
ε
∂v̂

∂t
+ v

∂v̂

∂r
+ v̂

∂v

∂r
+ εu

∂v̂

∂z
+ εû

∂v

∂z

)
= −∂p̂

∂r
+
αs
Re

(
1

r

∂v̂

∂r
− v̂

r2
+
∂2v̂

∂r2
+ ε2∂

2v̂

∂z2

)
+

1

Re

(
T̂rr
r

+
∂T̂rr
∂r

)
, (5.34)

∂T̂rr
∂t

+
1

ε

(
v
∂T̂rr
∂r

+ v̂
∂Trr
∂r

)
+ u

∂T̂rr
∂z

+ û
∂Trr
∂z
− 2

ε

(
Trr

∂v̂

∂r
+ T̂rr

∂v

∂r

)
=

1

De

(
2(1− αs)

ε

∂v̂

∂r
− T̂rr

)
, (5.35)

∂Tzz
∂t

+
1

ε

(
v̂
∂Tzz
∂r

+ v
∂T̂zz
∂r

)
+ û

∂Tzz
∂z

+ u
∂T̂zz
∂z
−

2

(
T̂zz

∂u

∂z
+ Tzz

∂û

∂z

)
=

1

De

(
2(1− αs)

∂û

∂z
− T̂zz

)
. (5.36)

The normal stress condition is

p̂− 2αs
Re

(
1

ε

∂v̂

∂r
+
T̂rr
2αs

)
=

1

We

(
− R̂

R2
0

− ∂2R̂

∂z2

)
. (5.37)
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The tangential condition is

(
∂v̂

∂z
+

1

ε

∂û

∂r

)
= 0, (5.38)

and the kinematic condition is

ε
∂R̂

∂t
− v̂ + ε

(
u
∂R̂

∂z
+ û

∂u

∂z

)
= 0. (5.39)

The length scale over which the jet develops is z = 0(1), but disturbances which are

caused by instability are very small which is of order a (that is comparable with ε when

z = O(1)) and this was used by many authors, such as Wallwork (2002b) and Uddin

(2007). Then we consider the travelling wave modes of the form exp(ikz + λt), where

z = z/ε, t = t/ε, k = k(z) = O(1) and λ = λ(z) = O(1) then we make the substitutions

û = ũ(z, z, r, t, t),

R̂ = R̃(z, z, t, t),

T̂zz = T̃zz(z, z, r, t, t),

T̂rr = T̃rr(z, z, r, t, t),

p̂ = p̃(z, z, r, t, t), (5.40)

where û = ũez+ṽen . We substitute these expressions into Eqs.(5.34)-(5.42). We therefore
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obtain at leading order

∂ṽ

∂r
+
∂ũ

∂z
+
ṽ

r
= 0, (5.41)

(
∂ũ

∂t
+ u

∂ũ

∂z

)
= −∂p̃

∂z
+
αs
Re

(
1

r

∂ũ

∂r
+
∂2ũ

∂r2
+
∂2ũ

∂z2

)
+

1

Re

(
∂T̃zz
∂z

)
, (5.42)

(
∂ṽ

∂t
+ u

∂ṽ

∂z

)
= −∂p̃

∂r
+
αs
Re

(
1

r

∂ṽ

∂r
− ṽ

r2
+
∂2ṽ

∂r2
+
∂2ṽ

∂z2

)
+

1

Re

(
T̃rr
r

+
∂T̃rr
∂r

)
, (5.43)

∂T̃rr
∂t

+ u
∂T̃rr
∂z
− 2Trr

∂ṽ

∂r
=

1

De

(
2(1− αs)

∂ṽ

∂r

)
, (5.44)

∂T̃zz
∂t

+ u
∂T̃zz
∂z
− 2Tzz

∂ũ

∂z
=

1

De

(
2(1− αs)

∂ũ

∂z

)
, (5.45)

the normal stress condition is

p̃− 2αs
Re

(
∂ṽ

∂r
+
T̃rr
2αs

)
=

1

We

(
− R̃

R2
0

− ∂2R̃

∂z2

)
. (5.46)

The tangential condition is

(
∂ṽ

∂z
+
∂ũ

∂r

)
= 0, (5.47)

and the kinematic condition is

∂R̃

∂t
− ṽ +

(
u
∂R̃

∂z
+ ũ

∂u

∂z

)
= 0. (5.48)
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We will look for general solutions by using the form

ũ = (exp(ik(z)z + λ(z)t))u,

ṽ = i(exp(ik(z)z + λ(z)t))v,

T̃zz = (exp(ik(z)z + λ(z)t))T zz,

T̃rr = (exp(ik(z)z + λ(z)t))T rr,

p̃ = (exp(ik(z)z + λ(z)t))p,

R̃ = (exp(ik(z)z + λ(z)t))R, (5.49)

we substitute these expressions into the equations (5.41)-(5.48) and we find that

∂v

∂r
+ iku+

v

r
= 0, (5.50)

(λ+ iku0)u = −ikp+
αs
Re

(
1

r

∂u

∂r
+
∂2u

∂r2
− k2u

)
+

1

Re

(
ikT zz

)
, (5.51)

(λ+ iku0)v = −i∂p
∂r

+
αs
Re

(
1

r

∂v

∂r
− v

r2
+
∂2v

∂r2
− k2v

)
+

1

Re

(
T rr
r

+
∂T rr
∂r

)
, (5.52)

(λ+ iku0)T zz =

(
2ikT 0

zz +
2

De
(1− αs)ik

)
u, (5.53)

(λ+ iku0)T rr =

(
2(1− αs)

De
+ 2T 0

rr

)
∂v

∂r
, (5.54)

p− T rr
Re

=
1

We

(
− 1

R2
0

+ k2

)
R, (5.55)

(λ+ iku0)R = u. (5.56)
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The solutions for these equations are

u = A1(z)I0(kR0)− A2(z)k̃I0(k̃R0), (5.57)

v = A1(z)
1

k
I1(kR0)− A2(z)

k

k̃
I1(k̃R0), (5.58)

p = −A1(z)
λ+ iku0

k
I0(kR0)−

1

Re(λ+ iku0)

(
(1− αs)
De

+ T 0
zz

)(
A1I1(kR0)− A2kI1(k̃R0)

)
, (5.59)

where k̃ = k2 + Re
αs

(λ + iku0), A1 and A2 are constants and I0, I1 are zeroth and first

modified Bessel functions respectively. From the boundary conditions, we have

R =
u

λ+ iku0

,

p− 2αs
Re

∂u

∂r
− 1

Re(λ+ iku0)

(
(1− αs)
De

+ T 0
rr

)
∂u

∂r
=

R

We

(
k2 − 1

R2

)
and

ku+
∂v

∂r
= 0.

Now we substitute the previous solutions into the boundary condition so that we obtain

(after considerable algebra) the dispersion relation as follows

λ̃2 +
2αsk

2

Re

(
1 +

(1− αs)
Deλ

+ T 0
zz + T 0

rr

){
I ′1(kR0)

I0(kR0)
− 2kk̃I ′1(k′R0)I1(kR0)

I1(k′R0)(k2 + k̃2)

}
λ̃

=
k

We

(
1

R2
0

− k2

)
I1(kR0)(k̃2 − k2)

I0(kR0)(k̃2 + k2)
, (5.60)

where λ̃ = λ+ iku0 and k̃ = k2 + Re
αs

(λ+ iku0).
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When αs = 1 and T 0
zz = T 0

rr = 0, we have the same dispersion relation for Newtonian

liquid jets as found by Weber (1931), namely

(
λ+ iku0

)2

+
2k2

Re

{
I ′1(kR0)

I0(kR0)
− 2kk̃I ′1(k′R0)I1(kR0)

I1(k′R0)(k2 + k̃2)

}(
λ+ iku0

)
=

k

We

(
1

R2
0

− k2

)
I1(kR0)(k̃2 − k2)

I0(kR0)(k̃2 + k2)
, (5.61)

where

k̃ = k2 +Re(λ+ iku0).

In addition, our equation (5.60) can be reduced to inviscid liquid jets when Re→∞ and

then we obtain Rayleigh’s famous result

(
λ+ iku0

)2

=
k

We

(
1

R2
0

− k2

)
I1(kR0)

I0(kR0)
. (5.62)

5.6 Results and Discussions

To investigate the temporal instability, the dispersion relation (5.60) has λ which is

complex and k is real. Here we are interested in describing the temporal instability so that

<(λ) > 0. Therefore, we solve this dispersion relation (5.60) by using Newton’s method

to find the most unstable wavenumber k = k∗(z), which corresponds to the maximum

growth rate for each z. It is known (see Wallwork (2002a) and Uddin (2007)) that the

most unstable wavenumber varies along the jet. In Fig. 5.7 we show the relationship

between the growth rate and the wavenumber of viscoelastic liquid jets for different values

of the Reynolds number Re. We can notice from this graph that when we decrease the

Reynolds number which means increasing the viscosity, the growth rate decreases, which

will correspond to a longer jet. In addition, the effects of increasing the Reynolds number

on the maximum growth rate have been plotted in Fig. 5.8. In this figure we choose
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two different values of the Reynolds number which are Re = 20 and 40 and the rest of

the parameter are fixed. We can also see from this figure that the maximum growth rate

increases, when the Reynolds number decreases (see at Re = 40). Fig. 5.9 shows that

increasing the Weber number We leads to a decrease in the growth rate. In Figs. 5.10 and

5.11 we can see that increasing the Weber number leads to a decrease in the wavenumber

of the most unstable mode and the maximum growth rate along the viscoelastic jet.

To see how the Deborah number affects the linear instability behaviour, we plot graphs

to show the relationship between the maximum growth rate disturbance and the wavenum-

ber of the most unstable mode for different values of the Deborah number De (see Figs.

5.12 and 5.13). It can be observed from these graphs that when we increase the Deborah

number, the maximum growth rate and the most unstable mode increase along the jet.

Thus, these results confirm that when the Deborah number decreases, the growth rate

decreases which means when the Deborah number is equal to 0, the corresponding dis-

turbance growth rate of viscoelastic jets will return to Newtonian liquid jets. This was

reported by Brenn et al. (2000).

Here we look at studying the viscosity ratio αs on linear instability of viscoelastic

liquid jets. We plot a graph to study the relationship between the growth rate and the

wavenumber for different values of the viscosity ratio (see Fig. 5.14). In Fig. 5.15 we

display the wavenumber of the most unstable mode against the axial direction. We can

notice from this graph that when the viscosity ratio increases, the wavenumber of the most

unstable mode decreases along the jet. We find the same result in the case of plotting the

relationship between the maximum growth rate and the z direction (see Fig. 5.16). In

order to examine the influence of the Froude number F on the linear instability behaviour,

we display two graphs (Figs. 5.17 and 5.18) to investigate the wavenumber of the most

unstable mode versus the axial direction z (see Fig. 5.17) and the maximum growth rate

against the axial direction z for different values of the Froude number F . From these
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graphs we can see that when the Froude number F decreases (meaning the gravitational

force increases), the wavenumber of the most unstable mode and the maximum growth

rate increase along the jet. For example, when the Froude number F is equal to 0.5, the

wavenumber of the most unstable mode and the maximum growth rate have greater values

in comparison with the Froude number F at 1. It can therefore be seen from Figs. 5.17

and 5.18 that gravity has affected the stability of viscoelastic liquid jets as we expected.

Furthermore, Fig. 5.19 shows that viscoelastic liquid jets exhibit a larger growth rate

than a viscous liquid jet and a slower growth rate than an inviscid liquid jet. This result

agrees with the same finding reported by Goldin et al. (1969). In general, viscosity and

elasticity of non-Newtonian liquid jets are much more complicated in the behaviour to

linear instability than Newtonian jets. Moreover, the viscosity stabilizes the jet in com-

parison with inviscid jets, as we can see in Fig. 5.19 the disturbance growth rate decreases

for Newtonian jets, whereas viscoelastic jets result in a destabilization comparison with

Newtonian jets.

The area between the growth rate of inviscid jets and viscoelastic jets is due to the

interaction of the viscosity and elasticity on non-Newtonian fluids, which is called the

viscoelasticity-induced region, whereas the area between viscous jets and viscoelastic jets

are elasticity-induced region (see Brenn et al. (2000)).
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Figure 5.7: Graph showing the relationship between the growth rate λ and the wavenum-
ber k of viscoelastic liquid jets for various Re. Here the parameters are We = 10, Re =
30, De = 10.
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Figure 5.8: Graph showing the relationship between the maximum growth rate λmax
against z of viscoelastic liquid jets for different values of the Reynolds number Re. Here
the parameters are We = 10, De = 10, αs = 0.20 and F = 1.
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Figure 5.9: Graph showing the relationship between the growth rate λ and the wavenum-
ber k of viscoelastic liquid jets for various We. Here the parameters are We = 10, Re =
30, De = 10.
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Figure 5.10: Graph showing the relationship between the wavenumber of the most unsta-
ble mode kmax against z of viscoelastic liquid jets for different values of the Weber number
We. Here the parameters are De = 10, Re = 20, αs = 0.20 and F = 1.
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Figure 5.11: Graph showing the relationship between the maximum growth rate λmax
against z of viscoelastic liquid jets for different values of the Weber number We. Here
the parameters are De = 10, Re = 20, αs = 0.20 and F = 1.
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Figure 5.12: Graph showing the relationship between the wavenumber of the most unsta-
ble mode kmax against z of viscoelastic liquid jets for different values of the Weber number
We. Here the parameters are De = 10, Re = 20, αs = 0.20 and F = 1.
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Figure 5.13: Graph showing the relationship between the maximum growth rate λmax
against z of viscoelastic liquid jets for different values of the Deborah number De. Here
the parameters are We = 10, Re = 20, αs = 0.20 and F = 1..
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Figure 5.14: Graph showing the relationship between the growth rate λ and the wavenum-
ber k of viscoelastic liquid jets for various αs. Here the parameters are We = 10, Re =
30, De = 10.
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Figure 5.15: Graph showing the relationship between the wavenumber of the most unsta-
ble mode kmax against z of viscoelastic liquid jets for different values of the viscosity ratio
αs. Here the parameters are We = 10, Re = 20, De = 10 and F = 1.
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Figure 5.16: Graph showing the relationship between the maximum growth rate λmax
against z of viscoelastic liquid jets for different values of the viscosity ratio αs. Here the
parameters are We = 10, Re = 20, De = 10 and F = 1.
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Figure 5.17: Graph showing the relationship between the wavenumber of the most un-
stable mode kmax against z of viscoelastic liquid jets for different values of the Froude
number F . Here the parameters are We = 10, De = 10 and αs = 0.20.
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Figure 5.18: Graph showing the relationship between the maximum growth rate λmax
against z of viscoelastic liquid jets for different values of the Froude number F . Here the
parameters are We = 10, De = 10 and αs = 0.20.
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Figure 5.19: Graph showing the relationship between the growth rate and the wavenumber
of inviscid liquid jets where We = 10, liquid jets viscous where Re = 30, We = 10 and
viscoelastic liquid jets Re = 30, We = 10, De = 10 and αs = 0.20.
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Chapter 6

Linear Instability of Viscoelastic

Liquid Curved Jets

In the previous chapter we discussed the temporal instability of a straight viscoelastic

jet falling under the influence of gravity. Here we will extend the previous chapter to

investigate the linear instability of viscoelastic curved jets without including gravity. As

we know, rotating liquid jets are used in prilling processes to produce fertilizer pellets

(see Chapter 3). This process has been investigated by many authors (see Wallwork

(2002a), Uddin (2007) and Parau (2006, 2007)). The liquids, which are used in this

process, are normally viscoelastic fluids so that we are interested in studying this process

mathematically which is much more complicated than straight jets.

6.1 Problem Formulation

Consider a large cylindrical container which has radius s0 and rotates with angular velocity

Ω. This container has an orifice at the bottom with radius a. This radius is very small

compared with the radius of the container. This problem is examined by choosing a

coordinate system (X, Y, Z) rotating with the container, having an origin at the axis of

container and the position of the orifice is at (s0, 0, 0) as illustrated in Figs. 3.3 and
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3.4. Due to the rotation of the container the liquid leaves the orifice in a curve. In this

problem of the prilling process, we consider the centripetal acceleration of the jet is very

large compared with the force of gravity. We can therefore assume the jet moves in the

(X,Z) plane, so that the centerline can be described by coordinates (X(s, t), 0, Z(s, t)),

where s is the arc-length along the middle of the jet which emerges from the orifice and t is

the time (see Wallwork (2002a)). In any cross-section of the jet we also have plane polar

coordinates (n, φ), which are the radial and azimuthal direction and have unit vectors

which are es, en, eφ. (see Decent et al. (2002)). The velocity components for this problem

are (u,v,w), where u is the tangential velocity, v is the radial velocity and w is the

azimuthal velocity.

To begin with, we have to determine the equations of motion which are continuity

equation, momentum equation and constitutive equation. We use the Oldroyd-B model

to study the viscoelastic liquid jet. The equations of motion take the form

∇ · u = 0,

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ · τ − 2w × u−w × (w × r),

τ = µs(∇u+ (∇u)T ) + T

λT5 + T = µp γ

∂T

∂t
+ (u ·∇)T − T ·∇u− (∇u)T · T =

1

λ
(µpγ − T ), (6.1)
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where u is the velocity in the form u = ues + ven + weφ , ρ is the density of the fluid, p

is the pressure, the angular velocity of the container is w = (0, w, 0), µs is the viscosity

of the solvent, T is the extra stress tensor that represents the elastic contribution to the

stresses and µp is the viscosity of the polymer. The equation (6.1)4 is an upper convected

derivative (see page 38). Then the equations of motion are

hs

(
∂u

∂t
+ (v cosφ− w sinφ)(ZstXs −XstZs) + v

∂u

∂n
+
w

n

∂u

∂φ

)
+ u

∂u

∂s
+

u(v cosφ− sinφ)(XsZss − ZsXss) = −∂p
∂s

+

(
2Ω(v cosφ− sinφ) + Ω2((X + r0)Xs + ZZs)

)
hs

+
ν

hs

(
−n cosφ(XsZsss − ZsXsss)

h2
s

(
∂u

∂s
+ v cosφ(XsZss − ZsXss)− w sinφ(XsZss − ZsXss)

)
+

1

hs

(
− u(XsZss − ZsXss)

2 +
∂2u

∂s2
+

(
2
∂v

∂s
cosφ+ v cosφ

)
(XsZsss − ZsXsss)−

w sinφ(XsZsss − ZsXsss)− 2
∂w

∂s
sinφ(XsZss − ZsXss)

)
+

(1 + 2n cosφ(XsZss − ZsXss))
1

n

∂u

∂n
+ nhs

∂2u

∂n2
+
hs
n2

∂2u

∂φ2
− 1

n

∂u

∂φ
sinφ(XsZss − ZsXss)

)

+
1

hs

[
∂Tss
∂s

+ 2(v cosφ− w sinφ)(XsZss − ZsXss)Tss +
∂Tsn
∂n

hs +
hs
n

∂Tsφ
∂φ

+
hsv

n
Tsφ

]
. (6.2)
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hs

(
∂v

∂t
+ u cosφ(XstZs − ZstXs) + v

∂v

∂n
+
w

n

∂v

∂φ
− w2

n

)
+ u

∂v

∂s
−

u2 cosφ(XsZss −XssZs) = − ∂p

∂n
hs − 2Ωhsu cosφ+

(Ω2 cosφ((X + r0)Zs − ZXs + n cosφ))hs +

ν

hs

(
−n cosφ(XsZsss−XsssZs)

h2
s

(
∂v

∂s
− u cosφ(XsZss −XssZs)

)
+

1

hs

(
− v cos2 φ (XsZss −XssZs)

2 +
∂2v

∂s2
− 2

∂u

∂s
cosφ (XsZss −XssZs)−

u cosφ(XsZsss−XsssZs) + w sinφ cosφ(XsZss −XssZs)
2

)
+

(1 + 2εn cosφ(XsZss −XssZs))
∂v

∂n
+ nhs

∂2v

∂n2
− (

∂v

∂φ
− w) sinφ(XsZss −XssZs) +

hs
n

(
∂2v

∂φ2
− v − 2

∂w

∂φ
)

)
+

1

hs

[
∂Tsn
∂s

+ (v cosφ− w sinφ)(XsZss −XssZs)Tsn −

u cosφTsn +
∂Tnn
∂n

hs +
hs
n

∂Tnφ
∂φ

+
hsv

n
Tnφ −

w

n
hsTnφ

]
. (6.3)
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hs

(
∂w

∂t
+ u sinφ(ZstXs −XstZs) + v

∂w

∂n
+
w

n

∂w

∂φ
− vw

n

)
+ u

∂w

∂s
+

u2 sinφ(XsZss −XssZs) =

(
− 1

n

∂p

∂φ
hs + 2Ωu sinφ+

Ω2 sinφ(ZXs − (X + r0)Zs − n cosφ)

)
hs +

ν

hs

(
−n cosφ(XsZsss −XsssZs)

h2
s

(
∂w

∂s
+ u sinφ(XsZss −XssZs)

)
+

1

hs

(
− w sin2 φ (XsZss −XssZs)

2 +
∂2w

∂s2
+ 2

∂u

∂s
sinφ (XsZss −XssZs) +

u sinφ(XsZsss −XsssZs) + v sinφ cosφ(XsZss −XssZs)
2

)
+

(1 + 2n cosφ(XsZss −XssZs))
∂w

∂n
+ nhs

∂2w

∂n2
− (

∂w

∂φ
+ v) sinφ(XsZss −XssZs) +

hs
n

(
∂2w

∂φ2
− w + 2

∂v

∂φ
)

)
+

1

hs

[
∂Tsφ
∂s

+ (v cosφ− w sinφ)(XsZss −XssZs)Tsφ −

u

hs
Tsφ sinφ(XsZss −XssZs) +

∂Tnφ
∂n

hs +
hs
n

∂Tφφ
∂φ

+
2hsv

n
Tφφ

]
. (6.4)

These equations are similar to Părău et al. (2007) except in this case we have some

additional terms which are related to the extra stress tensor T . We note here again that

the constitutive model used is Oldroyd-B model.

Owing to the fact that the components in the stress tensor are symmetrical, there are

six expressions that may be derived as follows. These have been determined after lengthy

algebra using (6.1).
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∂Tss
∂t

+
u

hs

∂Tss
∂s

+
v

ε

∂Tss
∂n

+
w ∂Tss
εn ∂φ

− 2

hs

(
∂u

∂s
+ v cosφ − w sin φ

)
(XsZss − ZsXss)Tss −

2

hs

(
∂v

∂s
+
∂u

∂n
− u cos φ (XsZss − ZsXss)

)
Tsn −

2

hs

(
∂w

∂s
+

1

n

∂u

∂φ
+ u sin φ (XsZss − ZsXss)

)
Tsφ =

1

λ

[
2µp
hs

(
∂u

∂s
+ (v cos φ− w sin φ)(XsZss − ZsXss)

)
− Tss

]
, (6.5)
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∂t

+
u

hs

∂Tsn
∂s

+
v

ε

∂Tsn
∂n

+
w ∂Tsn
εn ∂φ

− 1

hs

(∂u
∂s

+ v cosφ(XsZss − ZsXss)−

w sin φ(XsZss − ZsXss)
)
Tsn −

1

hs

(
∂v

∂s
+
∂u

∂n
− u cos φ (XsZss − ZsXss)

)
Tnn −

1

ε

∂v

∂n
Tsn −

1

hs

(
∂w

∂s
+

1

n

∂u

∂φ
+ u sin φ (XsZss − ZsXss)

)
Tnφ

−
(

1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tss −

(
1

ε

∂w

∂n
− w

εn
+

1

εn

∂v

∂φ

)
Tsφ

=
1

λ

[
µp
hs

(∂v
∂s

+
hs
ε

∂u

∂n
− u cosφ(XsZss − ZsXss)

)
− Tsn

]
, (6.6)

∂Tsφ
∂t

+
u

hs

∂Tsφ
∂s

+
v

ε

∂Tsφ
∂n

+
w

εn

∂Tsφ
∂φ
− 1

hs

(∂u
∂s

+ v cosφ(XsZss − ZsXss)−

w sin φ(XsZss − ZsXss)
)
Tsn −

1

ε

(
∂w

∂n
− w

n
+

1

n

∂v

∂φ

)
Tsφ

−
(
∂u

ε∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tss −

1

hs

(∂v
∂s

+
∂u

ε∂n
−

u cosφ(XsZss − ZsXss)
)
Tnn −

1

hs

(∂w
∂s

+ u sinφ(XsZss − ZsXss) +
1

εn

∂u

∂φ

)
Tnφ

=
1

λ

[
µp

(
1

εn

∂u

∂φ
+

u

hs
sinφ(XsZss − ZsXss) +

1

hs

∂w

∂s

)
− Tsφ

]
, (6.7)
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∂Tnn
∂t

+
u

hs

∂Tnn
∂s

+
v

ε

∂Tnn
∂n

+
w

εn

∂Tnn
∂φ

−2

(
1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tsn −

2

ε

∂v

∂n
Tnn

−2

ε

(
∂w

∂n
− w

n
+

1

n

∂v

∂φ

)
Tnφ = −1

λ

(
2µp
ε

∂v

∂n
− Tnn

)
, (6.8)

∂Tnφ
∂t

+
u

hs

∂Tnφ
∂s

+
v

ε

∂Tnφ
∂n

+
w

εn

∂Tnφ
∂φ

−
(

1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tsφ −

1

ε

(∂v
∂n

+
1

n

∂w

∂φ
+
v

n

)
Tnφ −

1

ε

(
∂w

∂n
− 1

n

∂v

∂φ

)
Tφφ −

(
1

εn

∂u

∂φ
+
u

hs
sin φ (XsZss − ZsXss) +

1

hs

∂w

∂s

)
Tsn =

1

λ

[
µp
ε

(∂w
∂n
− w

n
+

1

n

∂v

∂φ

)
− Tnφ

]
, (6.9)

∂Tφφ
∂t

+
u

hs

∂Tφφ
∂s

+
v

ε

∂Tφφ
∂n

+
w ∂Tφφ
εn ∂φ

− 2

εn

(
∂v

∂φ
− w +

∂w

∂n

)
Tnφ

−2

(
1

εn

∂u

∂φ
+
u

hs
sin φ (XsZss − ZsXss) +

1

hs

∂w

∂φ

)
Tsφ −

2

εn

(
∂w

∂φ
+ v

)
Tφφ =

1

λ

[
2µp
εn

(
∂w

∂φ
+ v

)
− Tφφ

]
, (6.10)

in which λ is the relaxation time, and hs = 1 + n cosφ(XsZss − ZsZss) . To solve

the equation of motion, continuity equation and constitutive equation, we have to use

suitable boundary conditions. The position of the free surface can be determined by

n−R(s, t, φ) = 0, and the normal vector is given by ∇(n−R(s, t, φ)), which gives
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n =
1

E

(
−∂R
∂s

.
1

hs
. es + en −

∂R

∂φ
.

1

R
. eφ

)
,

where

E =

(
1 +

1

h2
s

(
∂R

∂s

)2

+
1

R2

(
∂R

∂φ

)2
) 1

2

.

The normal stress condition is n ·Π · n = σκ, where Π is the total stress tensor given

by −pI + τ , where σ is the isotropic surface tension and κ is the curvature of the free

surface;

κ =
1

nhs

(
− ∂

∂s

(
n

Ehs

∂R

∂s

)
+

∂

∂n

(
nhs
E

)
− ∂

∂φ

(
hs
En

∂R

∂φ

))
.

After some algebra the normal stress condition is given by

p− 2µs
E2

(
(
∂R

∂s
)2 1

h3
s

(
∂u

∂s
+ (v cosφ− sinφ)(XsZss − ZsXss) +

hs
2µs

Tss

)

+
∂v

∂n
+

1

2µs
Tnn +

1

R3
(
∂R

∂φ
)2

(
∂w

∂φ
+ v +

1

2µs
Tφφ

)
− ε

hs

∂R

∂s

(
1

hs

∂v

∂s

+
∂u

∂n
− u

hs
cosφ(XsZss − ZsXss) +

1

2µs
Tsn

)
+

1

Rhs

∂R

∂s

∂R

∂φ

(
1

R

∂u

∂φ

+
u

hs
sinφ(XsZss − ZsXss) +

1

hs

∂u

∂s
+

1

2µs
Tsφ

)

− 1

R

∂R

∂φ
(R
∂w

∂n
− w

R
+

1

R

∂v

∂φ
)

)
=

κ

We
on n = R(s, t), (6.11)
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The tangential stress conditions are ti ·σ ·n = 0, where i = 1, 2 and t1 = es+ ∂R
∂s
. 1
hs
.en,

t2 = ∂R
∂φ
. 1
R
.en + eφ. So that, the first tangential stress condition is

(
1−

(
∂R

∂s

)2
1

h2
s

){
∂v

∂s
+ hs

∂u

∂n
− u cosφ(ZsZss −XssZs) +

Tsn
µs

}
+

2
∂R

∂s

{
∂v

∂n
− ∂u

∂s

1

hs
− 1

hs
v cosφ− w sinφ(XsZss −XssZs)−

1

2µs
(Tss − Tnn)

}
= 0,

(6.12)

and the second tangential stress condition is

(
1−

(
∂R

∂φ

)2
1

R2

)(
∂w

∂n
− w

R
+

1

R

∂v

∂φ
+
Tnφ
µs

)
+

2

R

∂R

∂φ

(
∂v

∂n
− 1

R
(
∂w

∂φ
+ v) +

1

2µs
(Tnn − Tφφ)

)
= 0. (6.13)

The kinematic condition is

D
Dt

(R(s, t, φ)− n) = 0 on n = R(s, φ, t). We can write the previous equation as

∂R

∂t
+
∂R

∂s

∂s

∂t
+
∂R

∂φ

∂φ

∂t
− ∂n

∂t
= 0.

The pressure condition on the free surface is p = σκ on n = R.

6.2 Non-Dimensionalisation

We use the same transformation which is used in Uddin (2007) to make our equations

dimensionless. Consequently, the momentum equation and the continuity equation are

similar to Uddin (2007) but differ only in the terms of constitutive equations. In summary
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we use the following scales

u =
u

U
, v =

v

U
, w =

w

U
, n =

n

a
, ε =

a

s0

, R =
R

a
,

T =
s0

Uµ0

T, s =
s

s0

, t =
U

s0

t, p =
p

ρU2
, X =

X

s0

, Z =
Z

s0

,

where u, v and w are the tangential, radial and azimuthal velocity components, U is the

exit speed of the jet in the rotating frame, s0 is the radius of the cylindrical drum, a is

radius of the orifice, ε is the aspect ratio of the jet, T is the extra stress tensor and µ0 is

the total viscosity of the solvent and the polymer. After dropping overbars, the equation

of motion is the same as found in Părău et al. (2007), but there are extra terms related

to viscoelastic terms as follows

εn
∂u

∂s
+ hs

(
v + n

∂v

∂n
+
∂w

∂φ

)
+ εn (v cosφ− w sinφ) (XsZss − ZsXss) = 0, (6.14)
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hs

(
ε
∂u

∂t
+ ε(v cosφ− w sinφ)(ZstXs −XstZs) + v

∂u

∂n
+
w

n

∂u

∂φ

)
+

εu
∂u

∂s
+ εu(v cosφ− sinφ)(XsZss − ZsXss) = −ε∂p

∂s
+

(
2ε

Rb
(v cosφ− sinφ) +

ε

Rb2
((X + r0)Xs + ZZs)

)
hs +

αs
hsRe

(
−nε3 cosφ(XsZsss − ZsXsss)

h2
s

(
∂u

∂s
+ v cosφ(XsZss − ZsXss)−

w sinφ(XsZss − ZsXss)

)
+
ε2

hs

(
− u(XsZss − ZsXss)

2 +

∂2u

∂s2
+

(
2
∂v

∂s
cosφ+ v cosφ

)
(XsZsss − ZsXsss)− w sinφ(XsZsss − ZsXsss)−

2
∂w

∂s
sinφ(XsZss − ZsXss)

)
+ (1 + 2εn cosφ(XsZss − ZsXss))

1

n

∂u

∂n

+nhs
∂2u

∂n2
+
hs
n2

∂2u

∂φ2
− ε

n

∂u

∂φ
sinφ(XsZss − ZsXss)

)
+

1

hsRe

[
ε
∂Tss
∂s

+ 2ε(v cosφ− w sinφ)(XsZss − ZsXss)Tss +

∂Tsn
∂n

hs +
hs
n

∂Tsφ
∂φ

+
hsv

n
Tsφ

]
, (6.15)
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hs

(
ε
∂v

∂t
+ εu cosφ(XstZs − ZstXs) + v

∂v

∂n
+
w

n

∂v

∂φ
− w2

n

)
+ εu

∂v

∂s
−

εu2 cosφ(XsZss −XssZs) = − ∂p

∂n
hs −

2εhs
Rb

hsu cosφ+

(
ε

Rb2
cosφ((X + r0)Zs − ZXs + n cosφ)

)
hs +

αs
hsRe

(
−ε3n cosφ(XsZsss−XsssZs)

h2
s

(
∂v

∂s
− u cosφ(XsZss −XssZs)

)
+

ε2

hs

(
− v cos2 φ (XsZss −XssZs)

2 +
∂2v

∂s2
− 2

∂u

∂s
cosφ (XsZss −XssZs)−

u cosφ(XsZsss−XsssZs) + w sinφ cosφ(XsZss −XssZs)
2

)
+

(1 + 2εn cosφ(XsZss −XssZs))
∂v

∂n
+ nhs

∂2v

∂n2
− ε(∂v

∂φ
− w) sinφ(XsZss −XssZs) +

hs
n

(
∂2v

∂φ2
− v − 2

∂w

∂φ
)

)
+

1

hsRe

[
ε
∂Tsn
∂s

+ ε(v cosφ− w sinφ)(XsZss −XssZs)Tsn −

εu cosφTsn +
∂Tnn
∂n

hs +
hs
n

∂Tnφ
∂φ

+
hsv

n
Tnφ −

w

n
hsTnφ

]
, (6.16)
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hs

(
ε
∂w

∂t
+ εu sinφ(ZstXs −XstZs) + v

∂w

∂n
+
w

n

∂w

∂φ
− vw

n

)
+ εu

∂w

∂s
+

εu2 sinφ(XsZss −XssZs) =

(
− 1

n

∂p

∂φ
hs +

2ε

Rb
u sinφ+

ε

Rb2
sinφ(ZXs − (X + r0)Zs − n cosφ)

)
hs +

αs
hsRe

(
−ε3n cosφ(XsZsss −XsssZs)

h2
s

(
∂w

∂s
+ u sinφ(XsZss −XssZs)

)
+

ε2

hs

(
− w sin2 φ (XsZss −XssZs)

2 +
∂2w

∂s2
+ 2

∂u

∂s
sinφ (XsZss −XssZs) +

u sinφ(XsZsss −XsssZs) + v sinφ cosφ(XsZss −XssZs)
2

)
+

(1 + 2εn cosφ(XsZss −XssZs))
∂w

∂n
+ nhs

∂2w

∂n2
− ε(∂w

∂φ
+ v) sinφ(XsZss −XssZs) +

hs
n

(
∂2w

∂φ2
− w + 2

∂v

∂φ
)

)
+

1

hsRe

[
ε
∂Tsφ
∂s

+ ε(v cosφ− w sinφ)(XsZss −XssZs)Tsφ −

εu

hs
Tsφ sinφ(XsZss −XssZs) +

∂Tnφ
∂n

hs +
hs
n

∂Tφφ
∂φ

+
2hsv

n
Tφφ

]
. (6.17)

The equations of the extra stress tensor become
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∂Tss
∂t

+
u

hs

∂Tss
∂s

+
v

ε

∂Tss
∂n

+
w ∂Tss
εn ∂φ

− 2

hs

(
∂u

∂s
+ v cosφ − w sin φ

)
(XsZss − ZsXss)Tss −

2

hs

(
∂v

∂s
+
∂u

∂n
− u cos φ (XsZss − ZsXss)

)
Tsn −

2

hs

(
∂w

∂s
+

1

n

∂u

∂φ
+ u sin φ (XsZss − ZsXss)

)
Tsφ =

1

De

[
2(1− αs)

hs

(
∂u

∂s
+ (v cos φ− w sin φ)(XsZss − ZsXss)

)
− Tss

]
, (6.18)

∂Tsn
∂t

+
u

hs

∂Tsn
∂s

+
v

ε

∂Tsn
∂n

+
w ∂Tsn
εn ∂φ

− 1

hs

(∂u
∂s

+ v cosφ(XsZss − ZsXss)−

w sin φ(XsZss − ZsXss)
)
Tsn −

1

hs

(
∂v

∂s
+
∂u

∂n
− u cos φ (XsZss − ZsXss)

)
Tnn −

1

ε

∂v

∂n
Tsn −

1

hs

(
∂w

∂s
+

1

n

∂u

∂φ
+ u sin φ (XsZss − ZsXss)

)
Tnφ

−
(

1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tss −

(
1

ε

∂w

∂n
− w

εn
+

1

εn

∂v

∂φ

)
Tsφ

=
1

De

[
(1− αs)
hs

(∂v
∂s

+
hs
ε

∂u

∂n
− u cosφ(XsZss − ZsXss)

)
− Tsn

]
, (6.19)

∂Tsφ
∂t

+
u

hs

∂Tsφ
∂s

+
v

ε

∂Tsφ
∂n

+
w

εn

∂Tsφ
∂φ
− 1

hs

(∂u
∂s

+ v cosφ(XsZss − ZsXss)−

w sin φ(XsZss − ZsXss)
)
Tsn −

1

ε

(
∂w

∂n
− w

n
+

1

n

∂v

∂φ

)
Tsφ

−
(
∂u

ε∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tss −

1

hs

(∂v
∂s

+
∂u

ε∂n
−

u cosφ(XsZss − ZsXss)
)
Tnn −

1

hs

(∂w
∂s

+ u sinφ(XsZss − ZsXss) +
1

εn

∂u

∂φ

)
Tnφ

=
1

De

[
(1− αs)

(
1

εn

∂u

∂φ
+

u

hs
sinφ(XsZss − ZsXss) +

1

hs

∂w

∂s

)
− Tsφ

]
, (6.20)
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∂Tnn
∂t

+
u

hs

∂Tnn
∂s

+
v

ε

∂Tnn
∂n

+
w

εn

∂Tnn
∂φ

−2

(
1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tsn −

2

ε

∂v

∂n
Tnn

−2

ε

(
∂w

∂n
− w

n
+

1

n

∂v

∂φ

)
Tnφ = − 1

De

(
2(1− αs)

ε

∂v

∂n
− Tnn

)
, (6.21)

∂Tnφ
∂t

+
u

hs

∂Tnφ
∂s

+
v

ε

∂Tnφ
∂n

+
w

εn

∂Tnφ
∂φ

−
(

1

ε

∂u

∂n
+

1

hs

∂v

∂s
− u

hs
cos φ (XsZss − ZsXss)

)
Tsφ −

1

ε

(∂v
∂n

+
1

n

∂w

∂φ
+
v

n

)
Tnφ −

1

ε

(
∂w

∂n
− 1

n

∂v

∂φ

)
Tφφ −

(
1

εn

∂u

∂φ
+
u

hs
sin φ (XsZss − ZsXss) +

1

hs

∂w

∂s

)
Tsn =

1

De

[
(1− αs)

ε

(∂w
∂n
− w

n
+

1

n

∂v

∂φ

)
− Tnφ

]
, (6.22)

∂Tφφ
∂t

+
u

hs

∂Tφφ
∂s

+
v

ε

∂Tφφ
∂n

+
w ∂Tφφ
εn ∂φ

− 2

εn

(
∂v

∂φ
− w +

∂w

∂n

)
Tnφ

−2

(
1

εn

∂u

∂φ
+
u

hs
sin φ (XsZss − ZsXss) +

1

hs

∂w

∂φ

)
Tsφ −

2

εn

(
∂w

∂φ
+ v

)
Tφφ =

1

De

[
2(1− αs)

εn

(
∂w

∂φ
+ v

)
− Tφφ

]
, (6.23)

where the dimensionless parameters are the Rossby number Rb = U
s0Ω

, the Weber number

We = ρU2a
σ

, the Reynolds number Re = ρUa
µ

, the Deborah number De = λU
s0

and the ratio

between the viscosity of the solvent and the total of the viscosity αs = µs
µ0

= µs
µs+µp

.
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6.3 Non-Dimensionalisation of Boundary Conditions

It can be found that the normal stress condition is given by

p− 2αs
Re

1

E2

(
ε2

(
∂R

∂s

)2
1

h3
s

(
∂u

∂s
+ (v cosφ− sinφ)(XsZss − ZsXss) +

hs
2αs

Tss

)

+
1

ε

∂v

∂n
+

1

2αs
Tnn +

1

εR3

(
∂R

∂φ

)2 (
∂w

∂φ
+ v +RTφφ

)
− ε

hs

∂R

∂s

(
1

hs

∂v

∂s

+
1

ε

∂u

∂n
− u

hs
cosφ(XsZss − ZsXss) +

1

2αs
Tsn

)
+

ε

Rhs

∂R

∂s

∂R

∂φ

(
1

εR

∂u

∂φ

+
u

hs
sinφ(XsZss − ZsXss) +

1

hs

∂u

∂s
+

1

2αs
Tsφ

)

− 1

R

∂R

∂φ
(R
ε∂w

∂n
− εw

R
+
ε

R

∂v

∂φ

)
=

σ κ

We
on n = R(s, t), (6.24)

where

κ =
1

hs

(
−ε2 ∂

∂s

(
n

Ehs

∂R

∂s

)
+

∂

∂n

(
nhs
E

)
− ∂

∂φ

(
hs
En

∂R

∂φ

))
.

E =

(
1 +

ε2

h2
s

(
∂R

∂s

)2

+
1

R2

(
∂R

∂φ

)2
) 1

2

.

hs = 1 + εn cosφ(XsZss −XssZs).
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The first tangential stress condition is

(
1− ε2

(
∂R

∂s

)2
1

h2
s

){
ε
∂v

∂s
+ hs

∂u

∂n
− εu cosφ(ZsZss −XssZs) +

ε

αs
Tsn

}
+ 2ε

∂R

∂s{
∂v

∂n
− ε∂u

∂s

1

hs
− ε

hs
v cosφ− w sinφ(XsZss −XssZs)−

ε

2αs
(Tss − Tnn)

}
= 0, (6.25)

and the second tangential stress condition is

(
1− (

∂R

∂φ
)2 1

R2

)(
∂w

∂n
− w

R
+

1

R

∂v

∂φ
+

ε

αs
Tnφ

)
+

2

R

∂R

∂φ

(
∂v

∂n
− 1

R
(
∂w

∂φ
+ v) +

ε

αs
(Tnn − Tφφ)

)
= 0. (6.26)

Another boundary condition is the arc-length condition X2
s + Z2

s = 1 and also the kine-

matic condition is

hs

(
ε
∂R

∂t
+ (cosφ+

1

n

∂R

∂t
sinφ)(XtZs −XsZt)− v +

∂R

∂φ

w

n

)
+εu

∂R

∂s
− ε ∂R

∂s
(XtZs −XsZt + εn cosφ(XsZss − ZsXss)) = 0. (6.27)

These boundary conditions (6.24) and (6.27) are applied at the free surface n = R(s, φ, t).

6.4 Asymptotic Analysis

We now examine the above set of equations in more detail. We begin by expanding

u, v, w and p in Taylor’s series in εn (see Eggers (1997) and Hohman et al. (1984)) and

R,X,Z, Tss, Tnn, Tφφ in asymptotic series in ε. We suppose that the leading order form

of the axial component of the velocity is independent of φ. It is also assumed that small

perturbations do not affect the centerline. Therefore, we have
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u(s, n, φ, t) = u0(s, t) + (ε n)u1(s, φ, t) + (ε n)2u2(s, φ, t) + ...

v(s, n, φ, t) = (ε n)v1(s, φ, t) + (ε n)2v2(s, φ, t) + ...

w(s, n, φ, t) = (ε n)w1(s, φ, t) + (ε n)2w2(s, φ, t) + ...

p(s, n, φ, t) = p0(s, φ, t) + (ε n)p1(s, φ, t) + ...

R(s, n, φ, t) = R0(s, t) + (ε)R1(s, φ, t) + ...

X(s, n, φ, t) = X0(s) + (ε)X1(s, t) + ...

Z(s, n, φ, t) = Z0(s) + (ε)Z1(s, t) + ...

Tss(s, n, φ, t) = T 0
ss(s, t) + ε T 1

ss(s, t) + ...

Tnn(s, n, φ, t) = T 0
nn (s, t) + ε T 1

nn(s, t) + ...

Tφφ(s, n, φ, t) = εT 1
φφ(s, t) + ε2 T 2

φφ(s, t) + ...

Tsn(s, n, φ, t) = ε T 1
sn(s, t) + ε2 T 2

sn(s, t) + ...

Tsφ(s, n, φ, t) = ε Tsφ(s, t) + ε2 T 2
sφ(s, t) + ...

Tnφ(s, n, φ, t) = ε T 1
nφ(s, t) + ε2 T 2

nφ(s, t) + ...

It can be found from the continuity equation that

O(εn) : u0s + 2v1 + w1φ = 0, (6.28)

O(εn)2 : u1s + 3v2 + w2φ + 3v1 + (w1φ cosφ− w1 sinφ) (XsZss −XssZs) = 0.

(6.29)
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By solving the second tangential stress condition, it can be found that

O(εn) : R3
0v1φ = 0, (6.30)

O(εn)2 : 3R2
0R1v1φ +R4

0(w2 + v2φ)− 2R2
0R1φw1φ = 0. (6.31)

From (6.30) we see that v1φ = 0, and by differentiating (6.28), we obtain w1φφ = 0.

Because w1 is periodic in φ we must have w1 = w1(s, t). That leads to v1 = −u0s
2

and

from (6.31) we obtain

w2 + v2φ = 0. (6.32)

Using the first tangential stress condition, we obtain

O(εn) : u1 = u0 cosφ(XsZss −XssZs), (6.33)

O(εn)2 : u2 =
3

2
u0s

R0s

R0

+
u0ss

4
+

R0s

2αsR0

(T 0
ss − T 0

nn). (6.34)

By differentiating (6.32) with respect to φ we have

w2φ = −v2φφ, (6.35)

so that

v2φφ − 3v2 = u1s + (3v1 cosφ− w1 sinφ)(XsZss −XssZs), (6.36)

so when the expression for u1 and v1 are used, we obtain

v2φφ − 3v2 =
(
u0(XsZsss −XsssZs)−

u0s

2
(XsZss −XssZs)

)
cosφ

−w1 sinφ(XsZss −XssZs). (6.37)
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v2 and w2 are periodic solutions

v2 =
1

4

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
cosφ+

w1

4
sinφ(XsZss −XssZs), (6.38)

w2 =
1

4

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
sinφ+

w1

4
cosφ(XsZss −XssZs). (6.39)

Based on the momentum equation in the radial direction, we have at leading order

p0n = 0 and at order ε it gives

p1 =

(
u2

0(XsZss −XssZs)−
2

Rb
u0 +

(X0 + 1)Z0s − Z0X0s

Rb2

)
cosφ

− αs
Re

(
5

2
u0s(XsZss −XssZs) + u0s(XsZsss −XsssZs)

)
cosφ+

αs
Re

w1 sinφ(XsZss −XssZs). (6.40)

We will henceforth use X and Z instead of X0 and Z0 for simplicity.

For the momentum equation in the azimuthal direction, we have at leading order, p0φ = 0.

At next order, which is order ε, we obtain the equation given above. From the normal

stress condition at leading order, we have

p0 = −αsu0s

Re
+

1

R0We
+
T 0
nn

Re
, (6.41)

and we also have at order ε

p1 =
1

R0We

(
−R1φφ +R1

R2
0

+ cosφ(XsZss −XssZs)

)
+

4αsv2

Re
. (6.42)
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By substituting the expression v2 in the last equation, we obtain

p1 =
1

R0We

(
−R1φφ +R1

R2
0

+ cosφ(XsZss −XssZs)

)
+

αs
Re

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
cosφ+

αsw1

Re
sinφ(XsZss −XssZs). (6.43)

If we substitute for p1 from (6.40) into the previous equation, we obtain

(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
1

WeR0

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0. (6.44)

The momentum equation (6.15) in the axial direction at order ε is

u0t + u0u0s = −p0s +
(X + 1)Xs + ZZs

Rb2
+

αs
Re

(uoss + 4u2 + u2φφ) +
1

Re

∂T 0
ss

∂s
, (6.45)

after substituting the expressions for u2 and p0, the previous equation becomes

u0t + u0u0s = − 1

We

∂

∂s

(
1

R0

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
. (6.46)

From the kinematic condition at order ε, it can be obtained

R0t +
u0s

2
R0 + u0R0s = 0. (6.47)

From the extra stress tensor, which is Tss, Tsn, Tsφ, Tnn, Tnφ, Tφφ,we have at leading order
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as follows

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (6.48)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (6.49)

We have the last equation which is the arc-length at order ε

X2
s + Z2

s = 1. (6.50)

we can see that the equations (6.46)-(6.49) and (6.50) reduce to Clasen et al. (2006) when

Rb→∞.

6.5 Steady State Solutions

From the previous section, we have the six variables which are u0, R0, X, Z, T
0
ss, T

0
nn. These

variables are functions of s only in the steady state. Hence, the steady state equations

are

u0u0s = − 1

We

∂

∂s

(
1

R0

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
, (6.51)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (6.52)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (6.53)

93



(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
1

WeR0

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (6.54)

u0s

2
R0 + u0R0s = 0, (6.55)

X2
s + Z2

s = 1. (6.56)

From (6.55) R2u = constant is found. Now, we use the initial conditions R(0) = 1 and

u(0) = 1, so that, we obtain R2u = 1 after using this expression, equation (6.46) becomes

u0u0s = − 1

2We

u0s√
u

+
(X + 1)Xs + ZZs

Rb2

+
3αs
Re

(
u0ss −

u2
0s

u0

)
+

1

Re

(
∂

∂s
(T 0

ss − T 0
nn)− u0s

u0

(T 0
ss − T 0

nn)

)
, (6.57)

(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
√
u

We

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (6.58)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (6.59)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (6.60)

X2
s + Z2

s = 1. (6.61)

If we allow De → 0 and αs = 1 (which implies µp = 0) we have T 0
ss and T 0

nn → 0
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and (6.57)-(6.61) which produce the equivalent set of equations found in Părău et al.

(2006,2007). Furthermore, if we let Re → ∞ we obtain the inviscid equation of Decent

et al. (2009). In the equations (5.57)-(5.61), we have five unknowns, which areX,Z, u0, T
0
ss

and T 0
nn. We solve these equations for high viscosity fluids by using the Runge-Kutta

method. Părău et al. (2006, 2007) have used the Runge-Kutta method and Newton’s

method to solve the problem of viscous liquid curved jets and compared the results with

the Runge-Kutta method for inviscid case. They found a good agreement between the

two methods for the steady centerline and radius of the jet. Părău et al. (2006, 2007)

also found that there is a very little difference with and without viscosity in numerical

solutions. To find the steady state solutions for the equations (6.57)-(6.61), we make

Re → ∞ in the inviscid case, because we consider low viscosity fluids here. Decent

et al. (2009) solved the Newtonian fluid by using this assumption. Therefore, we will

use the same assumption in this paper to find the steady state solutions. However, if we

consider that these equations are dependent of t, this means that X0t 6= 0 and Z0t 6= 0.

This assumption leads to there being some extra unsteady terms in these equations in

E = ZsXt − ZtXs. (see Părău et al. (2007)). Părău et al. (2007) have considered the

case with X(s, t) = X0(s, t) + X̂(s, t) and Z(s, t) = Z0(s, t) + Ẑ(s, t) and then found a

set of equations linearized in X̂ and Ẑ. Părău et al. (2007) also found the maximum

deviation of order 10−2 of the perturbation of the steady state centerline. This value

is small compared to the O(1) values of X0(s) and Z0(s). Therefore, E ≈ 0 is a very

accurate assumption to be taken from the orifice to the break-up point. Experimentally

Wong et al. (2004) observe that the centerline of the jet is steady, which means Xst ≈ 0,

Zst ≈ 0 and E ≈ 0. As we mentioned earlier, we solve the equations (6.59)-(6.63) for

inviscid centerline problem (which means Re→∞) using the Runge-Kutta method with

the boundary conditions at the nozzle as X(0) = Z(0) = Zs(0) = T 0
ss(0) = T 0

nn(0) = 0

and u(0) = Xs(0) = 1. In Figs. 6.1-6.5, we find the jet trajectory, the extra stress tensor

95



(T 0
ss, T

0
nn) and the jet radius for different values of Rossby and Weber numbers by using the

Runge-Kutta method which is the ODE45 package in MATLAB. In the next paragraph,

we will give more explanations about these figures.

For different values of the Rossby number (rotation rates), we plot a graph which is

Fig 6.1 to see the effect of this number on the liquid jet. This graph shows that when

the Rossby number is small, the liquid coils quickly. In Fig. 6.2 the graph shows that a

small value of the Weber number makes the liquid coil very fast. This is obvious due to

the inertia which means the speed of the jet is low, the liquid coils quickly. In addition,

in Fig. 6.3 we display the relationship between the extra stress tensor, which is T 0
ss, and

the arc-length for different values of the Rossby number and this graph shows when the

rotation is very high the extra stress tensor has more effect on the jet. Moreover, in Figs.

6.4 and 6.5 these graphs correspond to different values of the Rossby number for the extra

stress tensor, T 0
nn and the radius of the jet, R0 along the arc-lengths. From these figures,

it can be seen that the jet becomes thin when the arc-length is increased.

6.6 Temporal Instability

Now we make small perturbations to the steady state solution, so that we have

u(s, t) = u0(s) + δû exp(iκs+ ωt) +O(δε) + cc., (6.62)

R(s, t) = R0(s) + δR̂ exp(iκs+ ωt) +O(δε) + cc., (6.63)

p(s, t) = p0(s) + δp̂ exp(iκs+ ωt) +O(δε) + cc., (6.64)

Tss(s, t) = T0ss(s) + δT̂ss exp(iκs+ ωt) +O(δε) + cc., (6.65)

Tnn(s, t) = T0nn(s) + δT̂nn exp(iκs+ ωt) +O(δε) + cc., (6.66)

X(s, t) = X(s) + δεX̂(s, s, t, t) + cc., (6.67)

Z(s, t) = Z(s) + δεẐ(s, s, t, t) + cc., (6.68)
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where s = s/ε is small length scales, t = t/ε is small time scales, k = k(s) and ω = ω(s)

are the wavenumber and frequency of the disturbances, cc is complex conjugates and δ is

a small constant which is 0 < δ < ε2 (see Uddin (2007)). The symbols with subscripts

denote steady state solutions. In order to prevent instability of wave modes with zero

wavelength, we replace the leading order pressure term in (6.46) with the full expression

of the mean curvature which is

1

We

(
1

R(1 + ε2R2
s)

1
2

− ε2Rss

(1 + ε2R2
s)

3
2

)
.

Many authors have used the complete mean curvature expression, such as Lee (1974) and

Eggers (1997).

Then the axial equation of motion becomes

ut + u0u0s = − 1

We

∂

∂s

(
1

R(1 + ε2R2
s)

1
2

− ε2Rss

(1 + ε2R2
s)

3
2

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
, (6.69)

with

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (6.70)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
. (6.71)
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Figure 6.1: The trajectory of an inviscid liquid jet obtained by using a Runge-Kutta
method and the orifice is placed at (0,0). The jet curves more when the Rossby number
decreases (meaning high rotation rates). We use We = 100, De = 10 and αs = 0.20.
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Figure 6.2: The trajectory of an inviscid liquid jet obtained by using the Runge-Kutta
method and orifice is placed at (0,0). The jet curves more when the Weber number
decreases. We use Rb = 1.5, De = 10 and αs = 0.20.

6.7 Dispersion Relation

The perturbation equations (6.62)-(6.68) are now substituted into the equations (6.69),

(6.47), (6.70) and (6.71). The resulting set of equations may be written in matrix form
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Figure 6.3: Graph showing the relationship between T 0
ss and arc-length s of a rotating

liquid jets for different values of Rossby number at We = 25, De = 10 and αs = 0.20.
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Figure 6.4: Graph showing the relationship between T 0
nn and arc-length s of rotating

liquid jets for different values of Rossby number at We = 25, De = 10 and αs = 0.20.



3α̃sk2

Re
+ ω + iku0 − ik

We

(
1
R2

0
− k2

)
+ 2ik

R0Re

(
T 0
ss − T 0

nn

)
ik
Re

− ik
Re

ikR0

2
ω + iku0 0 0

−2ikT 0
ss − 2ik

De
0 ω + iku0 0

ikT 0
nn + ik

De
0 0 ω + iku0
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Figure 6.5: Graph showing the relationship between the radius, R, and the arc-length, s,
for different values of the Rossby number where We = 100, De = 10 and αs = 0.20.

If we seek non-trivial solutions then the determinant of this matrix must be zero which

yields

(
ω + iku0

)2

+ 3α̃sk2

Re

(
ω + iku0

)
− k2R0

2We

((
1
R2

0
− k2

)
− 2We

R0Re
(T 0

ss − T 0
nn)

)
−

k2

Re

(
2T 0

ss + T 0
nn + 3

De

)
= 0. (6.72)

We note that there is a new scaling for the viscosity ratio which is α̃s = αs

ε
. Without this

new scaling, we cannot bring the viscous term into the dispersion relation. We mentioned

earlier, αs + αp = 1, where αs and αp are the solvent viscosity and the polymeric viscosity

respectively. After substituting the new scaling, the last equation becomes εα̃s + αp = 1,

which means that αp � αs. However, both the solvent viscosity and the polymeric

viscosity are very small µs, µp � 1. By choosing ωi = −ku0, we get

ω2
r +

3α̃sk
2

Re
ωr −

k2R0

2We

(
(

1

R2
0

− k2)− 2We

R0Re
(T 0

ss − T 0
nn)

)
−

k2

Re

(
2T 0

ss + T 0
nn +

3

De

)
= 0, (6.73)

100



which becomes

ωr =
−3α̃sk

2

2Re
+
k

2

√
2

R0We

(
(1− (kR0)2 − 2We

R0Re
B

)
+

4

Re

(
2T 0

ss + T 0
nn +

3

De

)
+

(
3α̃sk

Re

)2

.

(6.74)

We differentiate the last equation with respect to k to find the most unstable wavenumber

k = k∗ which is given by

k∗ =
1

(2R3
0)1/4

(
R0GWe

2
+ 1− 2B

) 1
2

√(
3α̃sOh+

√
2R0

) , (6.75)

where B = T 0
ss − T 0

nn and G = 4
Re

(
2T 0

ss + T 0
nn + 3

De

)
. For temporal instability, the

growth rate ωr is positive which occurs when 0 < kR0 < 1 . When De→ 0, αs = 1 and

T 0
ss = T 0

nn = 0 the dispersion relation is

k∗ =
1

(2R3
0)1/4

1√(
3Oh+

√
2R0

) , (6.76)

which is the same as for Newtonian liquid jets which was found by Decent et al. (2009).

6.8 Results and Discussion

From the dispersion relation (6.72), we can examine the linear instability of viscoelastic

liquid curved jets in two ways; which are a spatial and temporal instability analysis. In

the case of a spatial instability analysis, which grows in space along the jet, we consider

that ω is imaginary and k is complex (i.e. k = kr + iki, where kr is the wavenumber of the

wave and ki is the spatial growth rate). The second instability, which we can investigate
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from the dispersion relation (6.72), is the temporal instability where k is real and this

kind of instability, which occurs when <(ω)>0, will be examined throughout this thesis.

In addition, to find the most unstable mode, which is referred here as k∗, of viscoelastic

curved jets we use Eq. (6.75). In order to study the behavior of the growth rate and

the wavenumber of viscoelastic liquid curved jets, there are four parameters that can

affect the temporal instability, which are the Reynolds number, the Weber number, the

Deborah number and the viscosity ratio. Firstly, we will discuss the effects of the Reynolds

number on the jet for two different values and fix the rest of the parameters. Secondly,

the explanations of the influence of different values of the Weber number (keeping the

rest of parameters fixed) on the jet are induced in section 6.8.2. Thirdly, the effects of the

Deborah number (change De and keeping all parameters fixed) on the jet is investigated

in section 6.8.3. Finally, the effects of viscosity ratio on viscoelastic liquid curved jets are

investigated in section 6.8.4.

6.8.1 The Effects of Reynolds Number on Viscoelastic Liquid

Curved Jets

In Figs. 6.6 and 6.8, we chose different values of the Rossby number, Rb = 0.5, 1.5 and

4 for two values of the Reynolds number which are Re = 1000 and 3000 for obtaining

the relationship between the growth rate of the most unstable mode and the arc-length s.

From these figures, it can be noticed that when the Rossby number is small (meaning the

rotation rate is high), the growth rate of the most unstable mode becomes large and as

well when the Reynolds number is enhanced the growth rate of the most unstable mode

is increased. Figs. 6.7 and 6.9 show the relationship between the maximum wave number

for the most unstable k∗ and the arc-length s for different values of Reynolds number,

Re = 1000 and 3000 and found that high rotation rates lead to an increase in the maximum

wavenumber. It can be seen in Figs. 6.10 and 6.11 that when the Reynolds number is
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increased, the growth rate of the most unstable mode and the maximum wavenumber is

increased at a constant Rb = 0.5. Figure 6.12 shows the relationship between the growth

rate of disturbances and corresponding different values of the Reynolds number. We see

that when we increase the Reynolds number the growth rate will also increase so that a

reduction in viscosity leads to shorter jets.

6.8.2 The Effects of Weber Number on Viscoelastic Liquid Curved

Jets

The correlation between the maximum growth rate and the arc-length s is represented

in Figs. 6.13-6.15 and it can be noticed that when the rotation is increased the maximum

growth rate is decreased for different values of the Weber number. However, the rela-

tionship between the maximum wavenumber for the most unstable mode k∗ is plotted in

Figs. 6.14-6.16 and it can be seen that when the Rossby number is increased the maximum

wavenumber decreased. Figs. 6.17 and 6.18 show the effect of increasing Weber number

on the maximum growth rate and the maximum wavenumber against the arc-length s

respectively and this is the same result which is discussed about the maximum growth

rate in Figs. 6.14-6.16. Fig. 6.19 indicates the relationship between the maximum growth

rate and two values of the Weber number which means when we increase Weber number

the maximum growth is decreased.

6.8.3 The Effects of Deborah Number on Viscoelastic Liquid

Curved Jets

From Figs. 6.20-6.22, we can see that the relationship between the maximum growth

rate and the arc-length s are plotted for two values of the Deborah number, De = 15 and

25. In Figs. 6.21-6.23 the maximum wavenumber of the most unstable mode k∗ is plotted

against the arc-length s, and it can be seen that increasing rotation rates decrease the
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maximum wavenumber k∗. Fig. 6.24 shows that increasing the Deborah number decreases

the maximum growth rate.

6.8.4 The Effects of Viscosity Ratio on Viscoelastic Liquid Curved

Jets

In this section, we investigate the influence of the viscosity ratio αs on the behavior

of viscoelastic liquid curved jets. The relationship between the maximum growth rate

and the arc-length s are plotted in Figs. 6.25-6.27 for different values of the viscosity

ratio, αs = 40 and 60. In Figs. 6.26-6.28, we plot the maximum wavenumber against

the arc-length along the jet and we see that when rotation rates are high, the maximum

wavenumber becomes high. In Figs. 6.29 and 6.30, we make a comparison between

the maximum growth rate and the maximum wavenumber and the arc-length for two

different values of the viscosity ratio (α̃s = 40 and 60). It can be observed that when

we increase the viscosity ratio the maximum growth and the wavenumber of the most

unstable mode are decreased which means in this case the liquid becomes more elastic

and in general increasing the viscosity ratio leads to decrease the growth rate (see Fig.

6.31). Furthermore, we plot a graph to show the relation between the growth rate and

the wavenumber for various values of s (see Fig. 6.32). It can be observed from this graph

that when we increase the arc-length s, the growth rate increases along the jet.

Moreover, the relationship between the growth rate and the wavenumber is plotted in

Fig. 6.33 for three fluids, which are inviscid fluid, viscous fluid and viscoelastic fluid. It

can be observed from this graph that viscoelastic jets are more unstable than Newtonian

jets and less unstable than inviscid jets. This result agrees with Goldin’s result (see Goldin

1969) where here R0 = 1 for straight jets.

In order to examine the break-up of viscoelastic liquid curved jets, we will use nonlinear

theory to investigate the break-up lengths and satellite droplets. This nonlinear theory
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Figure 6.6: Graph showing the relationship between the growth rate ω∗r for the most
unstable mode and the arc-length s for a viscoelastic liquid jet for different values of the
Rossby number Rb, where the dimensionless numbers are Re = 1000, We = 10, De = 15
and α̃s = 20.

will be studied in this thesis in Chapter 7.
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Figure 6.7: Graph showing the relationship between the wavenumber of the most unstable
k∗ and the arc-length s for a viscoelastic liquid jet for different values of the Rossby number
Rb, where the dimensionless numbers are Re = 1000, We = 10, De = 15 and α̃s = 20.
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Figure 6.8: Graph showing the relation between the growth rate ω∗r of the most unstable
mode and the arc-length s for a viscoelastic liquid jet for different values of the Rossby
number Rb, where the dimensionless numbers are Re = 3000, We = 10, De = 15 and
α̃s = 20.

106



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

s

k
*

 

 

Rb = 0.5

Rb = 1.5
Rb =4.0

Figure 6.9: Graph showing the relationship between the maximum wavenumber of the
most unstable k∗ and the arc-length s for a viscoelastic liquid jet for different values of the
Rossby number Rb, where the dimensionless numbers are Re = 1000, We = 10, De = 15
and α̃s = 20.
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Figure 6.10: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet for two values of the Reynolds number, Re = 1000
(green line), 3000 (red line), at Rb = 0.5, where the dimensionless numbers are We = 10,
De = 15 and α̃s = 20.

107



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

s

k
*

Figure 6.11: Graph showing the relationship between the maximum wavenumber of the
most unstable k∗ and the arc-length s for a viscoelastic liquid jet for two values of the
Reynolds number, Re = 1000 (green line), 3000 (red line), at Rb = 0.5, where the
dimensionless numbers are We = 10, De = 15 and α̃s = 20.
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Figure 6.12: Graph showing the relation between the growth rate ω∗r of the most unstable
mode and the Reynolds number Re for a viscoelastic liquid jet, where the dimensionless
numbers are We = 10, De = 15 and α̃s = 20.
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Figure 6.13: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and the arc-length k for a viscoelastic liquid jet for different values of the
Rossby number Rb, where the dimensionless numbers are Re = 1000, We = 30, De = 15
and α̃s = 20.
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Figure 6.14: Graph showing the relationship between the maximum wavenumber of the
most unstable k∗ and the arc-length s for a viscoelastic liquid jet for different values of the
Rossbt number Rb, where the dimensionless numbers are Re = 1000, We = 30, De = 15
and α̃s = 20.
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Figure 6.15: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and the arc-length s for a viscoelastic liquid jet for different values of the
Rossby number Rb, where the dimensionless numbers are Re = 1000, We = 50, De = 15
and α̃s = 20.
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Figure 6.16: Graph showing the relationship between the maximum wavenumber of the
most unstable k∗ and the arc-length s for a viscoelastic liquid jet for different values of the
Rossbt number Rb, where the dimensionless numbers are Re = 1000, We = 50, De = 15
and α̃s = 20.
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Figure 6.17: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet, for two values of the Weber number, We = 30, 50
and Rb = 0.5, where the dimensionless numbers are Re = 1000, De = 15 and α̃s = 20.
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Figure 6.18: Graph showing the relationship between the maximum wavenumber k∗ and
the arc-length s for a viscoelastic liquid jet, for two values of the Weber number, We =
30, 50 and Rb = 0.5, where the dimensionless numbers are Re = 1000, De = 15 and
α̃s = 20.
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Figure 6.19: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and different values of the Weber number, We, for a viscoelastic liquid jet,
where the dimensionless numbers are Re = 1000, De = 15 and α̃s = 20 .
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Figure 6.20: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and the arc-length s for a viscoelastic liquid jet for different values of the
Rossby number, where the dimensionless numbers are Re = 1000, We = 10, De = 15 and
α̃s = 20.
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Figure 6.21: Graph showing the relationship between the maximum wavenumber k∗ of the
most unstable mode and the arc-length s for a viscoelastic liquid jet for different values of
the Rossby number, where the dimensionless numbers are Re = 1000, We = 10, De = 15
and α̃s = 20.
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Figure 6.22: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 25 and α̃s = 20.
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Figure 6.23: Graph showing the relationship between the maximum wavenumber k∗ and
the arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re =
1000, We = 10, De = 25 and α̃s = 20.
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Figure 6.24: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and different values of the Deborah number De for a viscoelastic liquid
jet, where the dimensionless numbers are Re = 1000, We = 10 and α̃s = 20 .

114



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

s

ω
*

 

 

Rb = 0.5
Rb = 1.5
Rb = 4.0

Figure 6.25: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃s = 40.
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Figure 6.26: Graph showing the relationship between the maximum wavenumber k∗ and
the arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re =
1000, We = 10, De = 15 and α̃s = 40.
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Figure 6.27: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃s = 60.
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Figure 6.28: Graph showing the relationship between the maximum wavenumber k∗ and
the arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re =
1000, We = 10, De = 15 and α̃s = 60.
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Figure 6.29: Graph showing the relationship between the growth rate ω∗r and the arc-
length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃s = 40 and 60.
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Figure 6.30: Graph showing the relationship between the maximum wavenumber k∗ and
the arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re =
1000, We = 10, De = 15 and α̃s = 40 and 60.
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Figure 6.31: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode and different values of the viscosity ratio α̃s for a viscoelastic liquid jet,
where the dimensionless numbers are Re = 1000, We = 15 and De = 20 .
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Figure 6.32: Graph showing the relationship between the growth rate against the
wavenumber for various values of s at Re = 1000, We = 15, De = 10 and α̃s = 20.
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Figure 6.33: Graph showing the relationship between the growth rate against the
wavenumber for three fluids, which are inviscid fluid where We = 15, viscoelastic
fluid where Re = 1000, We = 15, De = 15 and α̃s = 20 and viscous fluid at
Re = 1000,We = 15.
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Chapter 7

Nonlinear Instability of Break-up

of Viscoelastic Liquid Curved Jets

7.1 Introduction

In the previous chapter, we investigated the linear instability of viscoelastic liquid

curved jets by using an asymptotic method to derive a set of one-dimensional equations.

Using a temporal instability analysis, a dispersion relation was found and from this, we

studied the growth rates and the wavenumber for the most unstable mode along the jet.

In the case of straight jets, the growth rates and the wavenumber are constant therefore

we can find the break-up length and drop sizes of the main droplets. However, the

growth rates and the wavenumber are non-constant along the viscoelastic liquid curved

jets. Thus, using linear theory, we cannot give a good prediction of the break-up and the

droplet sizes of the prilling process. In addition, by using this theory, we cannot determine

the satellite droplet size and the non uniformity in the break-up. In order to study these

two phenomena, which are very important in terms of experiments, we will use the finite
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difference method. It is very necessary close to break-up when the surface becomes more

deformed to use the full curvature term which is

p =
1

We
((1 + ε2R2

s)
− 1

2 − ε2Rss(1 + ε2R2
s)
− 3

2 ),

because without using this term the jet is unstable to short wavelengths and it is found

that a small droplet is connected by a slender neck. Many authors use the full term

curvature for this form. For example, Li and Fontelos (2003) and Clasen et al. (2006)

used it for studying the beads-on-string structure for viscoelastic jets. Brenner et al.

(1997) used this curvature term to give a good equilibrium shape of break-up liquid jets

at high Reynolds number. They also made comparisons between numerical simulations

and experimental work on droplet sizes of liquid jets and found excellent agreement.

7.1.1 Lax-Wendroff Method

We can write the PDEs in the form of a flux conservative equation as

∂u

∂t
= −∂F (u)

∂s
, (7.1)

where F is called the flux vector, which can depend on u and spatial derivatives of u (see

Press et al. (2001) and Duchateau and Zachmann (1989)). Let consider that F is equal

to f(x, t), then we have one dimensional equation which is ut + fx = 0, so that an explicit

scheme can be written as

un+1
j − unj = −σ

2

(
F n
j+1 − F n

j−1

)
, (7.2)
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where σ is the Courant number, which is the ratio between time steps and space steps.

This method can be unstable (see Hirsch(1990) Vol. 2), and therefore we use the approx-

imation

unj →
1

2
(unj+1 + unj−1). (7.3)

The finite difference approximation then is

un+1
j =

1

2
(unj+1 + unj−1)− σ

2
(F n

j+1 − F n
j−1). (7.4)

Now this method is called Lax Friedrichs scheme, which is stable and accurate in both

time and space but only first order in those variables. In order to improve the accuracy

of our approximation, second order space centered schemes are used. For nonlinear of

PDEs, the Richtmyer scheme can be used. In this scheme, an intermediate time step is

used and the solution is moved forward one time step in two steps and this scheme is also

known as the two step Lax-Wendroff scheme (see Press et al. (2001)). This scheme can

be written as

u
n+1/2
j+1/2 =

1

2
(unj+1 + unj )− dt

2ds
(F n

j+1 − F n
j ), (7.5)

un+1
j = unj −

dt

ds
(F

n+1/2
j+1/2 − F

n+1/2
j−1/2 ), (7.6)

where F
n+1/2
j+1/2 is calculated by using Eq. 7.5.

This scheme (Eqs. 7.5 and 7.6) can be used to find the break-up of a liquid jet. We

assume the jet will have broken, when the radius reaches a small value which we can
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arbitrarily choose as 5% (for consistency with previous work, e.g. Părău et al. (2007)) of

the initial radius; this method has been used by many authors (see Părău et al. (2006-

2007) and Uddin (2007). We cannot use this approach downstream of the break-up point,

because the jet can break up into droplets, and our numerical solution has no physical

meaning.

7.1.2 Viscoelastic Jet Simulation

We use the two-step Lax-Wendroff scheme to find the break-up of a viscoelastic liquid

jet. The equations, which derived in chapter 5 (5.71)-(5.73) and (5.47), are

ut + u0u0s = − 1

We

∂

∂s

(
1

R(1 + ε2R2
s)

1
2

− ε2Rss

(1 + ε2R2
s)

3
2

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
, (7.7)

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (7.8)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (7.9)

Rt +
us
2
R + uRs = 0. (7.10)

We now change the variable as follows A = A(s, t), where A(s, t) = R2(s, t), and then we

rewrite our equations as

∂A

∂t
= − ∂

∂s

(
Au

)
,

(7.11)
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ut +

(
u2

2

)
s

= − 1

We

∂

∂s

4

(
2A+ (εAs)

2 − ε2AAss

)
(

4A+ (εAs)2

)3/2
+

(X + 1)Xs + ZZs
Rb2

+

3αs
Re

(Aus)s
A

+
1

Re

(
A(Tss − Tnn)

)
s

A
(7.12)

∂Tss
∂t

= −u∂Tss
∂s

+ 2
∂u

∂s
Tss +

1

De

(
2(1− αs)

∂u

∂s
− Tss

)
, (7.13)

∂Tnn
∂t

= − ∂

∂s
(uTnn)− 1)

De

(
(1− αs)

∂u

∂s
+ Tnn

)
. (7.14)

We solve this system of equations as we did in Chapter 6 for the steady state by using the

initial conditions at t = 0 which are A(s, t = 0) = R2
0(s), u(s, t = 0) = u0(s), Tss(s, t =

0) = 0, Tnn(s, t = 0) = 0. At the nozzle, we use upstream boundary conditions

A(0, t) = 1, u(0, t) = 1 + δ sin

(
κt

ε

)
,

where κ is a non-dimensional wavenumber of the perturbation of frequency and δ (which

is kept small) is the amplitude of the initial non-dimensional velocity disturbance. In the

calculation, we have used the value of ε(= a
s0

) which can be measured from experiments

using ε = 0.01. This value is the same as found in experiments and industrial problems

(see Wong et al. (2004)). To represent the solution in the X − Z plane, we have from

the steady state solutions section 6.5 that X(S) = X(s), Z(S) = Z(s) where s = εS.

We can therefore find Xs(S) and Zs(S). By using the numerical method described above,

we can calculate R(s, t). To make sure that the numerical scheme is convergent, here we

choose that the time step is very small which is less than half the square of the space
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step (see Părău et al. (2007)). In order to display the curved jet, we are required to

determine the normal vector along the centerline of the jet (X(s), Z(s)), which is in this

case n = (−Zs(s), Xs(s))). Thereafter the free surface of the jet is given by (X(s), Z(s))+

R(s, t)(−Zs(s), Xs(s)) and (X(s), Z(s))−R(s, t)(−Zs(s), Xs(s)). T determine size of main

droplets, we need to integrate between two local minimums (which correspond to pinch

points along the jet). If we label them as h1 and h2 then

Vdrop = π

∫ h2

h1

R2
0ds,

where the drop radius R equates to a sphere, then

R̂ =

(
3Vdrop

4π

) 1
3

.

7.2 Results

As we mentioned before, the break-up is chosen to happen when the radius is less than

5% . In this simulation, we plot some profiles which are in Fig. 7.1 to see the effect of

the Deborah number on the break-up length of a viscoelastic rotating liquid jet. From

these graphs, it can be observed that when we increase the Deborah number the break-up

length increases along the jet, meaning that the liquid in this case behaves more elastic

in nature, which we expected to get from our results, because when the Deborah number

is very high (say 2000), the liquid becomes purely elastic and will never break up.

We plot a graph to check the accuracy of our numerical solutions for various ds and

various number of mesh pointsM (see Fig. 7.2) and in this thesis dt is equal to 5×10−6 (see

Părău et al. (2007)). Figure 7.3 shows break-up lengths of viscoelastic liquid curved jets

versus the Deborah number. It can be seen that when the Deborah number is increased,

break-up lengths increase. The same findings are discovered for break-up time with the
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Deborah number, which is in Fig. 7.4. The relationship between main and satellite droplet

sizes and the Deborah number are shown in Fig. 7.5. From this graph, we can see that

main and satellite droplet sizes increase with increasing the Deborah number.

In Fig. 7.6, we show some profiles which indicate the break-up for different values

of the wavenumber where k is chosen as 0.3, 0.6 and 0.9. It can be noticed from these

figures that when we increase the wavenumber, the break-up of the liquid is decreased.

Moreover, we plot a graph to show the effect of the wavenumber κ on the break-up length

for two values of the Rossby number, Rb = 1 and 3, which is in Fig. 7.7. It was found

that the most unstable wavenumber increases, when κ is approximately to equal 0.60. It

can also be seen from this figure that when the wavelength disturbances are short, we

have a long break-up length.

Figure 7.8 is a graph showing the relationship between the droplet radius and the

wavenumber κ for observing main and satellite droplet sizes. We can see that main and

satellite droplet sizes decrease when the wavenumber increases. In Fig. 7.9, we find that

when the initial perturbation (δ is chosen as 0.1 and 0.01) is large the break-up becomes

short. In addition, the jet profile and the radius are plotted in Fig. 7.10 for two different

values of the Rossby number (Rb = 1 and 8). It can be seen that the rotation rate has

increased the break up length of the jet. In Fig. 7.11, we study the effect of the rotation

rates on the break up length and find that when the rotation rates are very high, the

break-up length increases, while in Fig. 7.12, we investigate the break-up time versus the

Rossby number and we see that decreasing the Rossby number leads to an increase in

the break-up time. We can therefore address from these Figs.7.11 and 7.12 that there is

no monotonic relationship between the rotation rates and the break-up length and time

respectively. Fig. 7.13 shows main and satellite droplet sizes versus the Rossby number

for viscoelastic liquid curved jets. We can see that main droplet sizes do not change

too much with increasing rotation rates, whereas satellite droplet sizes increase, and this
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result agrees with the Newtonian spiralling jets. Furthermore, when the Reynolds number

and the Deborah number are small we have a longer break-up length, as can be seen in

Fig. 7.14. In these figures, we choose different values of the Reynolds number and the

Deborah number. Another non-dimensionless parameter is the Weber number, We, which

is plotted against the break-up length in Fig. 7.15. From this figure, it can be noticed

that when the Weber number is increased, the break-up length is increased, especially

for high rotation rates (see at Rb = 1).In Fig. 7.16, we show how the Reynolds number,

Re, affects the break-up length. We found that the break-up length decreases when the

Reynolds number increases. It can also be noticed that when the rotation rates are high,

Rb = 1, we have a high break-up length.

We use the same method to study the influence of the viscosity ratio, αs, on the break-

up length and break-up time, as can be seen in Fig. 7.17 and Fig. 7.18. When we increase

the viscosity ratio, the break-up length is increased and is more for high rotation rates,

Rb = 1, while the break-up time is increased with low rotation rates when the viscosity

is increased. Fig. 7.19 shows the effects of the viscosity ratio on the droplet radius for

the main and satellite droplet sizes. We find that the viscosity ratio has a small effect on

the main droplet size. However, the influence can be seen in the satellite droplet size, as

when the viscosity ratio increases the satellite droplet size increases.

In Fig. 7.20, we show the difference between three types of liquids (inviscid, viscous

and viscoelastic) in terms of breaking up lengths. It can be observed from this figure

that the break-up of viscoelastic liquid jets occurs faster than viscous liquid jets and more

slowly than inviscid liquid jets. Părău et al. (2007) plot a graph to show the relationship

between the radius of the jet and the arc-length for inviscid and viscous liquids. They

found that the inviscid jets break-up faster than the Newtonian jet.
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7.3 Discussion

There are many applications of break-up liquid jets which emerge from an orifice, as-

suming that the centerline of the jet is straight, with ink-jet printing. However, it can be

considered that the centerline is curved, which is known as the prilling process. This case

is investigated here for viscoelastic liquid curved jets by using the Oldroyd-B model. It is

also important in this process to study the effect of the rotation on the break-up lengths

and drop sizes.

We have made an assumption, which is that the viscosity does not affect the trajectory

of the centerline (see Decent et al. (2005) and Uddin (2007)) and this is taken as an

inviscid liquid jet. It was found that decreasing the Reynolds number, which corresponds

to high viscosity, increases the break-up length (see Fig. 7.16). It was also observed

that increasing the viscosity ratio, which is the total of the solvent and polymeric liquid,

increases the break-up length (see Fig. 7.17). When the Reynolds number and the

Deborah number are small, we have a longer break-up length, which means the liquid

is highly viscoelastic (see Fig. 7.14). The main and satellite droplets are examined for

different values of the Rossby number and it is found that satellite droplet sizes are

decreased with decreasing rotation rates in 0.5 6 Rb 6 2.

It was noticed that the non-Newtonian (viscoelastic) liquid jet breaks up earlier than

Newtonian liquid jets and later than inviscid jets (see Fig. 7.20), and this result agrees

with the linear instability which is found in Chapter 6.
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Figure 7.1: Graph showing the relationship between the break-up length and De where
Re = 1000, We = 10, k = 0.5, δ = 0.01 and αs = 0.2. We can see that the break-up
length increases when the Deborah number is increased.
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Figure 7.3: Graph showing the relationship between break-up lengths and the Deborah
number De for two values of the Rossby number. Here we have Re = 3000, We = 10,
k = 0.5, δ = 0.01 and αs = 0.2. It can be noticed that break-up lengths is increased when
the Deborah number is increased.
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Figure 7.4: Graph showing the relationship between break-up time and the Deborah
number De for two values of the Rossby number. Here we have Re = 3000, We = 10,
k = 0.5, De = 10, δ = 0.01 and αs = 0.2. It can be noticed that the break up time is
increased when the Deborah number is decreased.
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Figure 7.5: Graph showing the relationship between main and satellite droplet sizes and
the Deborah number De. Here we use Re = 1000, We = 10, k = 0.5, δ = 0.01, αs = 0.2
and Rb = 1.
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Figure 7.6: Graph showing the influence of wavenumber, k, on the viscoelastic liquid
curve jet. From left to right for these figures, we use k = 0.3, 0.6 and 0.9 respectively.
Here we have Re = 1000, Rb = 2, We = 10, De = 10, δ = 0.01 and αs = 0.20. We can
be seen that when the wavenumber is increased the break-up is decreased.
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Figure 7.7: Break-up lengths of viscoelastic liquid curved jets versus the wavenumber,
k, for two different values of Rb. In this case we have Re = 3000, We = 10, De = 10,
δ = 0.01 and αs = 0.2. When the rotation rate is high, we obtain longer jets for short
wavelength disturbances.
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Figure 7.8: Graph showing the relationship between the main and satellite droplet radius
of the jet and the wavenumber, κ. We can notice that satellite droplets radius decrease
with increasing the wavenumber. Here we use Re = 1000, We = 10, De = 10, δ = 0.01,
αs = 0.2 and Rb = 1.
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Figure 7.10: The profile of two different values of the Rossby number, where the values of
the parameters here are Re = 1000, We = 10, De = 10, k = 0.8, αs = 0.20 andδ = 0.01.
We notice that when we increase the rotation rate, the break-up length increases

134



1 1.5 2 2.5 3 3.5 4 4.5 5
40

45

50

55

60

65

70

Rb

b
r
e

a
k
−

u
p

 l
e

n
g

th

 

 

α
s
=0.2

α
s
=0.6

Figure 7.11: Graph showing the relationship between the break-up length and Rb where
Re = 3000, We = 10, k = 0.5, De = 10 and δ = 0.01. We can see that the break-up
length increases when the rotation rate is increased.
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Figure 7.12: Graph showing the relationship between the break-up time and Rb. Here we
have Re = 3000, We = 10, k = 0.5, De = 10 and δ = 0.01. It can be noticed that the
break-up time is increased when the rotation rate is decreased.
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Figure 7.14: The profile of the break up of viscoelastic liquid jets for different values of
the Reynolds number and the Deborah number can be seen in these figures. We observe
that when these two numbers are small, we have longer break up. Here we use Rb = 2,
We = 10, k = 0.8, δ = 0.01 and αs = 0.1
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Figure 7.15: Break-up lengths of viscoelastic liquid curved jets against the Weber number
for two different values of the Rossby number. Here we use the parameters Re = 3500,
De = 10, κ = 0.84, δ = 0.001 and αs = 0.2. When the Weber number is increased, the
break-up length is increased and when the rotation rate is high, we have longer jets.
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Figure 7.16: Break-up lengths of viscoelastic liquid curved jets plotted against the
Reynolds number for two values of Rb. Here the parameters are We = 10, De = 10,
k = 0.65, δ = 0.01 and αs = 0.2. It can be noticed that when the Reynolds number is
small, we obtain longer jets.
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Figure 7.17: Break-up lengths of viscoelastic liquid curved jets plotted against the viscos-
ity ratio αs for two values of Rb = 1 and 3. The parameters are Re = 3000, We = 10,
De = 10, k = 0.5 and δ = 0.01. We observe that when we increase the viscosity ratio,
the break-up increases.
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Figure 7.18: Graph showing the relationship between the break-up time and the viscosity
ratio αs. It can be seen that increasing the viscosity ratio leads to increase the break-up
time. Her we use Re = 3000, We = 10, De = 10, k = 0.5 and δ = 0.01.
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Figure 7.19: Graph showing the relationship between the main and the satellite droplet
radius of the jet and the viscosity ratio αs of viscoelastic liquid curved jets. As can be seen
satellite droplet sizes increase with increasing the viscosity ratio. Here we use Re = 1000,
We = 10, De = 10, k = 0.6, δ = 0.01 and Rb = 1.
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Figure 7.20: Graph showing the relationship between the radius of the jet and the arc-
length for three different liquids. We notice that the break-up lengths of non-Newtonian
liquid jets (viscoelastic) occur closer to the nozzle than Newtonian liquid jets and after
the inviscid liquid jets. We use Re = 3000, We = 10, De = 20, k = 0.62, δ = 0.01,
αs = 0.2 and Rb = 1.

140



Chapter 8

The Influence of Gravity on the

Break-up of Viscoelastic Liquid

Curved Jets

8.1 Introduction

In Chapter 6, we neglected gravity because the can rotates very fast. However, if we make

an assumption that the can rotates slowly, this means gravity will affect the break-up, so

that there is another function, which is Y (s) has to be considered in the vertical direction

as illustrated in Fig. 8.1.

Wallwork (2002a) investigated the influence of gravity for the inviscid case and viscous

case. Decent et al. (2002) and Partridge (2006) conducted the influence of gravity for a

rotating liquid jet. However, Uddin & Decent (2010) studied instability of non-Newtonian

liquid curved jets under gravity. Uddin (2007) has also investigated the influence of gravity

of non-Newtonian liquid curved jet by adding surfactants. The equations of motion and
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Figure 8.1: This image shows the rotating orifice at (0, 0, 0) in the coordinate system
(X, Y, Z) falling under the effect of gravity and (X(s, t), Y (s, t), Z(s, t) describes the cen-
terline of the jet.

the Oldroyd-B model are

∇ · u = 0, (8.1)

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ g +∇ · τ − 2w × u−w × (w × r), (8.2)

τ = µs(∇u+ (∇u)T + T , (8.3)

λT5 + T = µp γ, (8.4)

∂T

∂t
+ (u ·∇)T − T ·∇u− (∇u)T · T =

1

λ
(µpγ − T ). (8.5)
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We have two boundary conditions which are the kinematic condition which takes the form

∂R

∂t
+ u · ∇R = 0, (8.6)

and the dynamic condition which is

n ·Π · n = σκ, and ti ·Π · n = ti · ∇σ, (8.7)

and the arc-length condition is

X2
s + Y 2

s + Z2
s = 1,

where Π = −pI + (∇u+ (∇u)T ) + T .

These equations are similar to Decent et al. (2002) and Partridge (2006). However, the

differences are in the equations of the extra-stress term which is T .

We expand u, v, w, p in Taylor series in εn and R,X,Z, Tss, Tnn, Tφφ, Tsn, Tsφ, Tnφ in ε.

u = u0(s, t) + (ε n)u1(s, φ, t) + ...

v = (ε n)v1(s, φ, t) + (ε n)2v2(s, φ, t) + ...

p = p0(s, φ, t) + (ε n)p1(s, φ, t) + ...

R = R0(s, t) + (ε)R1(s, φ, t) + ...

X = X0(s) + (ε)X1(s, t) + ...

Y = Y0(s) + (ε)Y1(s, t) + ...

Z = Z0(s) + (ε)Z1(s, t) + ...

Tss = T 0
ss(s, t) + ε T 1

ss(s, t) + ...

Tnn = T 0
nn (s, t) + ε T 1

nn(s, t) + ...

Tφφ = εT 1
φφ(s, t) + ε2 T 2

φφ(S, T ) + ...

Tsn = ε T 1
sn(s, t) + ε2 T 2

sn(s, t) + ...
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Tsφ = ε T 1
sφ(s, t) + ε2 T 2

sφ(s, t) + ...

Tnφ = ε T 1
nφ(s, t) + ε2 T 2

nφ(s, t) + ...

We use the same asymptotic expansion which was discussed in the previous chapter,

including Y, which is the same as the expansion of X and Z.

We substitute these asymptotic expansions in the equations of motion. We can therefore

find from the equation of continuity at leading order

v1 = −u0s

2
. (8.8)

It can be also obtained that from the equation of motion in s-direction at leading order

u0t + u0u0s = −p0s +
(X + 1)Xs + ZZs

Rb2

+
3αs
Re

(u0ss −
u2

0s

u0

)− Ys
F 2

+
1

R2
0Re

(
(
∂

∂s
R2

0(T 0
ss − T 0

nn)

)
. (8.9)

and in n-direction the equation of motion at leading order is ∂p0
∂n

= 0.

The equation of motion in n-direction at O(ε) is (as seen in Wallwork (2002a))

u2
0 cosφ(X2

ss + Y 2
ss + Z2

ss)
1
2 = −p1n −

1

F 2

Zs(X
2
ss + Y 2

ss + Z2
ss)

1
2

(cosφ(YssZs − YsZss)−Xss sinφ)

+
1

F 2

(sinφ(YssZs − ZssYs) +Xss cosφ)(cosφ(XssZs −XsZss) + Yss sinφ)

(cosφ(YssZs − ZssYs)−Xss sinφ)(X2
ss + Y 2

ss + Z2
ss)

1
2 )

+

(
−2u0Zs

Rb
+
X + 1

Rb2

)
(sinφ(YssZs − YsZss) +Xss cosφ)

(X2
ss + Y 2

ss + Z2
ss)

1
2

+

(
2u0Xs

Rb
+

Z

Rb2

)
(cosφ(YsXss − YssXs)− Zss sinφ)(sinφ(YssZs − YsZss) +Xss cosφ)

(cosφ(YssZs − ZssYs)−Xss sinφ)(X2
ss + Y 2

ss + Z2
ss)

1
2

−(
2u0Xs

Rb
+

Z

Rb2

)(
Ys(X

2
ss + Y 2

ss + Z2
ss)

1
2

cosφ(YssZs − ZssYs)−Xss sinφ)

)
+

1

Re

(
1

n

∂v1

∂n
+
∂2v1

∂n2
+

1

n2

(
− v1 +

∂2v1

∂φ2

))
. (8.10)
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The equation of motion in φ-direction at leading order is ∂p0
∂t

= 0, and in φ-direction at

leading order is (as seen in Wallwork (2002a))

−u2
0 sinφ(X2

ss + Y 2
ss + Z2

ss)
1
2 = − 1

n
p1φ +

1

F 2

(
cosφ(XssZs − ZssXs) + Yss sinφ

(X2
ss + Y 2

ss + Z2
ss)

1
2

)

+

(
−2u0Zs

Rb
+
X + 1

Rb2

)(
cosφ(YssZs − ZssYs)− sinφXss

(X2
ss + Y 2

ss + Z2
ss)

1
2

)

+

(
2u0Xs

Rb
+

Z

Rb2

)(
cosφ(YsXss −XsYss)− sinφZss

(X2
ss + Y 2

ss + Z2
ss)

1
2

)
+

1

Re

(
2

n2

∂v1

∂φ

)
, (8.11)

u0t + u0u0s = − 1

We
(

1

R0

)s +
(X + 1)Xs + ZZs

Rb2

+
3αs
Re

(u0ss −
u2

0s

u0

)− Ys
F 2

+
1

R2
0Re

(
∂

∂s
R2

0(T 0
ss − T 0

nn)

)
, (8.12)

(X2
ss + Y 2

ss + Z2
ss)

(
u2

0 −
3αs
Re

u0s −
√
u

We

)
= −Yss

F 2
+

2

Rb
u0(XsZss − ZsXss) +

(X + 1)Xss + ZZss
Rb2

= 0, (8.13)

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (8.14)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (8.15)

ZsXss − ZssXs

F 2
− 2Yssu0

Rb
+

(X + 1)(YssZs − YsZss)
Rb2

+
Z(YsXss − YssXs)

Rb2
= 0, (8.16)

145



∂R0

∂t
+ u0R0s +

R0

2
u0s = 0. (8.17)

8.2 Steady State Solutions

By using the steady state of the equations (8.12)-(8.16), we have the governing equations

for this system as

u0u0s = − 1

2We

u0s√
u

+
(X + 1)Xs + ZZs

Rb2

+
3αs
Re

(u0ss −
u2

0s

u0

)− Ys
F 2

+
1

Re

(
∂

∂s
(T 0

ss − T 0
nn)− u0s

u0

(T 0
ss − T 0

nn)

)
, (8.18)

(X2
ss + Y 2

ss + Z2
ss)

(
u2

0 −
3αs
Re

u0s −
√
u

We

)
= −Yss

F 2
+

2

Rb
u0(XsZss − ZsXss) +

(X + 1)Xss + ZZss
Rb2

= 0, (8.19)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (8.20)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (8.21)

ZsXss − ZssXs

F 2
− 2Yssu0

Rb
+

(X + 1)(YssZs − YsZss)
Rb2

+
Z(YsXss − YssXs)

Rb2
= 0, (8.22)

and finally the arc-length condition is

X2
s + Y 2

s + Z2
s = 1. (8.23)
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These are a system of six equations in six unknowns which are X, Y, Z, u0,T 0
ss and T 0

nn.

We solve these equations in the inviscid limit for obtaining the trajectory of the jet with

the following initial conditions as u0(0) = R0(0) = Xs(0) = 1 and Y (0) = X(0) = Z(0) =

Zs(0) = Ys(0) = T 0
ss = T 0

nn = 0.

We use the same assumptions used in the previous chapter to solve these set of equations

and find the corresponding trajectory of the viscoelastic curved jet which is similar to

Uddin & Decent (2010) who studied the effect of gravity on non-Newtonian liquid jets.

Uddin (2007) also investigated the influence of gravity on non-Newtonian liquid curved

jets with surfactant by considering Re → ∞ which means the viscosity has a negligible

effect on the steady state solutions. Figs. 8.2 and 8.3 show the influence of changing the

Froude number and the Rossby number on the trajectory of a viscoelastic liquid jet which

means when we decrease the Froude number the effect of gravity becomes stronger on the

trajectory. We find the relationship between the extra stress tensor, T 0
ss and T 0

nn and the

arc-length s for different values of Rossby number and Froude number which are in Figs.

8.4-8.7. Fig. 8.8 shows the solutions of a liquid jet emerging from an orifice and falling

under the influence of gravity for different values of the Weber number.

8.3 Linear Analysis

In Chapter 6 we did not establish an explicit relationship between the most unstable

wavenumber and rotation. By changing the initial steady state solutions for u0 and R0,

we determined the linear stability. We follow the same approach for finding linear stability

under influence of gravity. As before, the Rossby number and Weber, and in this case the

Froude number, are non-dimensional parameters which are manifested only in the steady

state solution.

It can be noticed in Fig. 8.9 the radius of the jet decreases with an increasing arc-length

s. This Figure also shows when the Froude number is increased with constant Rossby
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number, F = 0.5, 1 and 3, Rb = 8, the radius of the jet increases which means the liquid

jet becomes thinner and moves slowly. In Figs. 8.10 and 8.11, we plot the correlation

between the growth rate and the wavenumber of the most unstable modes and the arc-

length for different values of Froude number.

In Fig. 8.12, we chose a different value of the Rossby number, making Froude number as a

constant, showing that when we increase the Rossby number the radius of the jet increases

as well. The same procedure is applied in Figs. 8.13 and 8.14 to find the relationship

between the growth rate and the most unstable mode for the wavenumber and arc-length

s. It can also be seen that when the Rossby number increases the growth rate and the

wavenumber increases.

In Fig. 8.15, we make the Rossby number and the Froude number changeable. The

same results were found when finding the growth rate and the wavenumber for the most

unstable mode with arc-length s in Figs. 8.16 and 8.17.

From Fig. 8.18, we make the Rossby number very high and the Froude number varies

which means no rotation for determining the radius of the jet against arc-length s. In

Figs. 8.19 and 8.20, we see that when the Rossby number is very high and the Froude

number is changeable the growth rate for the most unstable mode and the maximum

wavenumber against arc-length increase when the Froude number is decreased.
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Figure 8.2: Graph showing the trajectory of a rotating liquid jet under the effect of gravity
and rotation for different values of Froude number at We = 10, αs = 0.2 and De = 2.

0
1

2
3

4
5

0246810

−8

−6

−4

−2

0

 

X
Z

 

Y

Rb=1, F=2

Rb=2, F=2
Rb=6, F=2

Figure 8.3: Graph showing the trajectory of a rotating liquid jet under the effect of gravity
and rotation for different values of Rossby number at We = 10, αs = 0.2 and De = 2.
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Figure 8.4: Graph showing the relationship between T 0
ss and arc-length s of a rotating

liquid jets under the effect of gravity for different values of Rossby number number at
F = 3, We = 25, αs = 0.2 and De = 2.
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Figure 8.5: Graph showing the relationship between T 0
nn and arc-length s of a rotating

liquid jets under the effect of gravity for different values of Rossby number number at
F = 3, We = 25, αs = 0.2 and De = 2.
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Figure 8.6: Graph showing the relationship between T 0
ss and arc-length s of a rotating

liquid jets under the effect of gravity for different values of Froude number number at
Rb = 1.5, We = 25, αs = 0.2 and De = 2.
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Figure 8.7: Graph showing the relationship between T 0
nn and arc-length s of a rotating

liquid jets under the effect of gravity for different values of Froude number number at
Rb = 1.5, We = 25, αs = 0.2 and De = 2.
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Figure 8.8: Graph showing the trajectory of a rotating liquid jets under the effect of
gravity and rotation for different values of the surface tension at αs = 0.2 and De = 2.
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De = 2.
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Figure 8.10: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode against the arc-length s for a viscoelastic liquid jet, where the dimensionless
numbers are Re = 1000, We = 10, De = 15 and α̃s = 20.
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Figure 8.11: Graph showing the relationship between the most unstable mode k∗ and the
arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15, and α̃s = 20.
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Figure 8.12: Graph showing the relationship between the radius and the arc-length s for
different values of Froude number and Rossby number when We = 15.
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Figure 8.13: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode against the arc-length s for a viscoelastic liquid jet, where the dimensionless
numbers are Re = 1000, We = 10, De = 15 and α̃s = 20.
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Figure 8.14: Graph showing the relationship between the most unstable mode k∗ and the
arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃s = 20.
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Figure 8.15: Graph showing the relationship between the radius and the arc-length s for
different values of Froude number and Rossby number when We = 15.
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Figure 8.16: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode against the arc-length s for a viscoelastic liquid jet, where the dimensionless
numbers are Re = 1000, We = 10, De = 15 and α̃s = 20.
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Figure 8.17: Graph showing the relationship between the most unstable mode k∗ and the
arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃s = 20.
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Figure 8.18: Graph showing the relationship between the radius and the arc-length s for
different values of Froude number and Rossby number when We = 15.
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Figure 8.19: Graph showing the relationship between the growth rate ω∗r of the most
unstable mode against the arc-length s for a viscoelastic liquid jet, where the dimensionless
numbers are Re = 1000, We = 10, De = 15 and α̃s = 20.
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Figure 8.20: Graph showing the relationship between the most unstable mode k∗ and the
arc-length s for a viscoelastic liquid jet, where the dimensionless numbers are Re = 1000,
We = 10, De = 15 and α̃ = 20.
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Chapter 9

Linear Instability of Viscoelastic

Liquid Curved Jets with

Surfactants

9.1 Background on Surfactants

In liquid jets, surface tension plays an important role in instability. Therefore, in this

chapter, we will be interested in investigating the influence of using surfactants on the

break-up of viscoelastic curved jets. A surfactant, known as a surface active agent, is a

chemical material which tends to reduce the surface tension of the droplets.

Surfactants have many forms which they can come in; however, there are generally

three categories, which are: Ionic, Non-ionic and Amphoteric (see Walker (2012)).

Ionic surfactants have molecules which have charged (negative or positive) heads. These

kind of surfactants are the most common, and are found in products such as soaps and

shampoos. Non-Ionic surfactants are not charged, but they contain two parts, which are

polar head and non-polar tail (see Fig. 9.1). These two parts of the molecular surfactant

with liquid in free surface can be disregarded, as the head point will go inside the liquid
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Figure 9.1: Surfactants geometry

while the tail point is in the free surface. Amphoteric surfactants have polar heads which

are charged either negatively or positively depending on the measurement of the acidity

or basicity of the aqueous solution (pH). These kinds of surfactants are not in common

use.

9.1.1 Effect of Surfactants on Break-Up of Liquid Jets

Many authors have studied the effects of adding small amounts of surfactants on straight

liquid jets. For example, Whitaker (1976) examined the instability of inviscid liquid jets

with surfactants. The linear instability of viscous liquid jets and a surfactant has been

carried out by Hansen et al. (1999). They have found that the growth rate decreases

with including surfactants; this is clear, because the surfactant slows the growth rate of

disturbances.

160



Anshus (1973) investigated theoretically the effect of surfactants on liquid jets in two

cases which are compressible and incompressible. He found that the surfactants decrease

the growth rate, especially in the case of incompressible liquid jets. Craster et al. (2002)

studied Newtonian liquid jets with surfactants by using a one-dimensional model. The

case of weakly viscoelastic jets with surfactants has been examined by Zhang et al. (2002)

in a study in which they discussed the influence of the viscosity ratio, using the Oldroyd-B

model.

Timmermans and Lister (2002) have used a nonlinear analysis to study a surfactant

laden thread in inviscid liquid jets. They used a one-dimensional nonlinear model to

examine the effect of the surfactant on the change of surface tension gradients. Uddin

(2007) investigated the effects of surfactants on the instability of rotating liquid jets. He

discovered that surfactants reduce the growth rate of liquid curved jets and found that

adding surfactants in non-Newtonian liquid curved jets delay the break-up. He also exam-

ined the steady state trajectories and noticed that when the concentration of surfactants

is increased, the liquid jet curves less and the radius along the jet decays more quickly.

Uddin (2007) discussed the effects of gravity on the liquid curved jets with surfactants

and from the linear instability found that the wavenumber of the most unstable mode

increases as gravity is increased.

Stone and Leal (1990) examined the break-up of liquid jets with surfactants by extend-

ing the work of Stone et al. (1986) to include insoluble surfactants. Viscous liquid jets

and soluble surfactants have been studied by Milliken et al. (1993) and Milliken & Leal

(1994). They observed that Marangoni stress decreased with increasing the viscosity and

surfactant solubility.
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9.2 Problem Formulation

As we have modelled the spiralling process in Chapter 6, here we consider the same

assumption by supposing that we have a large cylindrical container which has radius s0

and rotates with angular velocity Ω. We also assume that the liquid which emerges from

the orifice has a layer of an insoluble surfactant and the concentration of the surfactant is

fixed. This problem is examined by choosing a coordinate system (X, Y, Z) rotating with

the container, having an origin at the axis of the container; the position of the orifice is

at (s0, 0, 0). Initially, we outline the continuity, momentum and constitutive equations

of motion. Due to the surfactant concentration, we have a convection-diffusion equation

along the liquid interface. We use the Oldroyd-B model for the viscoelastic term. These

equations therefore take the form

∇ · u = 0,

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ · τ − 2w × u−w × (w × r),

τ = µs(∇u+ (∇u)T ) + T

λT5 + T = µp γ

∂T

∂t
+ (u ·∇)T − T ·∇u− (∇u)T · T =

1

λ
(µpγ − T ), (9.1)

where (u) is the velocity in the form (u) = (u)es + (v)en + (w)eφ , ρ is the density of

the fluid, p is the pressure, the angular velocity of the container is (w) = (0, w, 0), µs is

the viscosity of the solvent, (T ) is the extra stress tensor that represents the viscoelastic
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contribution, and µp is the viscosity of the polymer. The surfactant concentration along

the jet is given by (see Stone & Leal (1990) and Blyth & Pozrikidis (2004))

Γt +∇s · (Γus) + Γ (∇s · n)(u · n) = S(Γ,Bs) +Ds∇2
sΓ, (9.2)

where Γ is the surfactant concentrations at the interface, ∇s = (I−nn) ·∇ is the surface

gradient operator, Ds is the surface diffusivity of surfactant, us = (I − nn) · u is the

surface or tangential velocity, and ∇s · n = 2κ where κ is the mean curvature of the

free surface. The surfactant source term, S, takes absorption from the free surface into

account, and acts as a function of surfactant concentration on the surface Γ and the bulk

Bs. The third term on the left of (9.2) relates to the effect of normal forces on dilatation

by expansion (see Blyth & Pozrikidis (2004)).

We consider in this study that the diffusivity of surfactant is small (Ds = 0) and the

surfactant is insoluble (S = 0). For example, if surfactants with typical diffusivity 10−10-

10−9 mm2 s−1 (see Tricot (1997)) were added to the liquid-bridge experiments of Zhang,

Padgett & Basaran (1995), so that the Peclet number would be at least 103-104. This

approach has been taken by Timmermans & Lister (2002) for investigating the linear

stability of a liquid thread with surfactants. Uddin (2007) examined linear and nonlinear

instability of non-Newtonian liquid curved jets with surfactants by using the model

Γt + u ·∇sΓ − Γn · ((n ·∇)u) = 0. (9.3)

The boundary conditions are

∂R

∂t
+ u · ∇R = 0, (9.4)
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normal and tangential conditions are

p+ n ·Π · n = σ∇ · n, (9.5)

and

ti ·Π · n = ti · ∇σ, (9.6)

where

Π = −pI + µ

(
∇u + (∇u)T

)
+ T,

the normal vector is

n =
1

E

(
−∂R
∂s

1

hs
es + en −

∂R

∂φ

1

R
eφ

)
, (9.7)

tangential vectors are

t1 = es +
1

hs

∂R

∂s
en and t2 =

1

R

∂R

∂φ
en + eφ,

and the arc-length condition is

X2
s + Z2

s = 1. (9.8)

Moreover, in order to incorporate the dependence of the surface tension on the surfactant

concentration, we use the surfactant equation of state which is the Szyskowski equation

that is given by

σ = σ̃ + Γ∞RgT log

[
Γ∞ − Γ
Γ∞

]
, (9.9)
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which is a special case from the Frumkin equation of state (see Tricot (1997))

σ = σ̃ + Γ∞RgT (log(1− Γ∞
Γ

) +
AΓ 2
∞

2Γ 2
),

where σ̃ is the surface tension of the liquid in the absence (Γ = 0) of any surfactant, Γ∞

is the maximum packing concentration of surfactant, Rg is the universal gas constant, T

is the temperature and A is the molecular interaction parameter.

This equation gives the relation between the surfactant concentration Γ and the surface

tension of the liquid-gas interface.

9.3 Non-Dimensionalisation

We can express our equations in dimensionless terms by using the following transfor-

mations

u =
u

U
, v =

v

U
, w =

w

U
, n =

n

a
, ε =

a

s0

,

R =
R

a
, T =

s0

Uµ0

T, s =
s

s0

, t =
U

s0

t, p =
p

ρU2
,

X =
X

s0

, Z =
Z

s0

, σ =
σ

σ̃
, Γ =

Γ

Γ∞
, (9.10)

where u, v and w are the tangential, radial and azimuthal velocity components, U is the

exit speed of the jet in the rotating frame, s0 is the radius of the cylindrical drum, a is

radius of the orifice, ε is the aspect ratio of the jet, T is the extra stress tensor, µ0 is

the total viscosity of the solvent and the polymer and σ and Γ are dimensionless with

respect to the surface tension and the surfactant concentration, then dropping over bars.

The equations of motion are the same as in Chapter 6, which means that the continuity
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equation is

εn
∂u

∂s
+ hs

(
v + n

∂v

∂n
+
∂w

∂φ

)
+ εn (v cosφ− w sinφ) (XsZss − ZsXss) = 0, (9.11)

the rest of the equations are found in Chapter 6 (6.15)-(6.23).

The surfactant concentration equation is (see Uddin (2007))

Γt = − u

hs

∂Γ

∂s
− v

ε

∂Γ

∂n
− w

εn

∂Γ

∂φ
+

Γ

E

(
ε2

h2
s

(
∂R

∂s

)2
∂u

∂s
− 1

hs

(
∂R

∂s

)
∂u

∂n
+

1

nRhs

∂R

∂φ

∂R

∂s

∂u

∂φ
− ε

h2
s

(
∂R

∂s

)
∂v

∂s
+

1

ε

∂v

∂n
− 1

εnR

∂R

∂φ

∂v

∂φ
+

ε

Rh2
s

∂R

∂φ

∂R

∂s

∂w

∂s
− 1

R

∂R

∂φ

∂w

∂n
+

1

εnR2

(
∂R

∂φ

)2
∂w

∂φ

)
. (9.12)

9.4 The Non-dimensionalisation of Boundary Condi-

tions

It can be found that the normal stress condition is

p− 2αs
Re

1

E2

(
ε2

(
∂R

∂s

)2
1

h3
s

(
∂u

∂s
+ (v cosφ− sinφ)(XsZss − ZsXss) +

hs
2αs

Tss

)
+

1

ε

∂v

∂n
+

1

2αs
Tnn +

1

εR3

(
∂R

∂φ

)2 (
∂w

∂φ
+ v +RTφφ

)
−

ε

hs

∂R

∂s

(
1

hs

∂v

∂s
+

1

ε

∂u

∂n
− u

hs
cosφ(XsZss − ZsXss) +

1

2αs
Tsn

)
+

ε

Rhs

∂R

∂s

∂R

∂φ

(
1

εR

∂u

∂φ
+
u

hs
sinφ(XsZss − ZsXss) +

1

hs

∂u

∂s
+

1

2αs
Tsφs

)

− 1

R

∂R

∂φ
(R
ε∂w

∂n
− εw

R
+
ε

R

∂v

∂φ

)
=

σ κ

We
on n = R(s, t), (9.13)
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where

κ =
1

hs

(
−ε2 ∂

∂s

(
n

Ehs

∂R

∂s

)
+

∂

∂n

(
nhs
E

)
− ∂

∂φ

(
hs
En

∂R

∂φ

))
.

E =

(
1 +

ε2

h2
s

(
∂R

∂s

)2

+
1

R2

(
∂R

∂φ

)2
) 1

2

.

hs = 1 + εn cosφ(XsZss −XssZs).

The first tangential stress condition is

(
1− ε2

(
∂R

∂s

)2
1

h2
s

){
ε
∂v

∂s
+ hs

∂u

∂n
− εu cosφ(ZsZss −XssZs) +

ε

αs
Tsn

}
+ 2ε

∂R

∂s{
∂v

∂n
− ε∂u

∂s

1

hs
− ε

hs
v cosφ− w sinφ(XsZss −XssZs)−

ε

2αs
(Tss − Tnn)

}
=

εRe

We

(
ε

hs

∂σ

∂s
+

1

hs

∂R

∂s

∂σ

∂n

)
, (9.14)

and the second tangential stress condition is

(
1− (

∂R

∂φ
)2 1

R2

)(
∂w

∂n
− w

R
+

1

R

∂v

∂φ
+

ε

αs
Tnφ

)
+

2

R

∂R

∂φ

(
∂v

∂n
− 1

R
(
∂w

∂φ
+ v) +

ε

αs
(Tnn − Tφφ)

)
=
εRe

We

(
1

R

∂R

∂φ
+

1

n

∂σ

∂φ

)
. (9.15)

Another boundary condition is the arc-length condition X2
s + Z2

s = 1 and also the kine-

matic condition is

hs

(
ε
∂R

∂t
+ (cosφ+

1

n

∂R

∂t
sinφ(XtZs −XsZt)− v +

∂R

∂φ

w

n

)
+εu

∂R

∂s
− ε ∂R

∂s
(XtZs −XsZt + εn cosφ(XsZss − ZsXss)) = 0. (9.16)
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These boundary conditions (9.13) and (9.16) are applied at the free surface n = R(s, φ, t).

9.5 Asymptotic Analysis

As discussed earlier, u, v, w and p are expanded in εn (see Eggers (1997) and Hohman

et al. (1984) ) and R,X,Z, Tss, Tnn, Tφφ in asymptotic series in ε. We assume that the

leading order of the axial component of the velocity is independent of φ. It is also assumed

that small perturbations do not affect the centerline. Therefore, we have

u(s, n, φ, t) = u0(s, t) + (ε n)u1(s, φ, t) + (ε n)2u2(s, φ, t) + ...

v(s, n, φ, t) = (ε n)v1(s, φ, t) + (ε n)2v2(s, φ, t) + ...

w(s, n, φ, t) = (ε n)w1(s, φ, t) + (ε n)2w2(s, φ, t) + ...

p(s, n, φ, t) = p0(s, φ, t) + (ε n)p1(s, φ, t) + ...

R(s, n, φ, t) = R0(s, t) + (ε)R1(s, φ, t) + ...

X(s, n, φ, t) = X0(s) + (ε)X1(s, t) + ...

Z(s, n, φ, t) = Z0(s) + (ε)Z1(s, t) + ...

Tss(s, n, φ, t) = T 0
ss(s, t) + ε T 1

ss(s, t) + ...

Tnn(s, n, φ, t) = T 0
nn (s, t) + ε T 1

nn(s, t) + ...

Tφφ(s, n, φ, t) = εT 1
φφ(s, t) + ε2 T 2

φφ(s, t) + ... ...

Tsn(s, n, φ, t) = ε T 1
sn(s, t) + ε2 T 2

sn(s, t) + ...

Tsφ(s, n, φ, t) = ε Tsφ(s, t) + ε2 T 2
sφ(s, t) + ...

Tnφ(s, n, φ, t) = ε T 1
nφ(s, t) + ε2 T 2

nφ(s, t) + ...
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The following expansions have been used for the surfactant concentration Γ and the

surface tension σ as

Γ = Γ0(s) + εΓ1(s) +O(ε2),

σ = σ0(s) + εσ1(s) +O(ε2).

It can be found from the continuity equation that

O(εn) : u0s + 2v1 + w1φ = 0 (9.17)

O(εn)2 : u1s + 3v2 + w2φ + ((3v1 + w1φ) cosφ− w1 sinφ)

(XsZss −XssZs) = 0. (9.18)

By solving the second tangential stress condition, it can be found that

O(εn) : R3
0v1φ = 0 (9.19)

O

(
(εn)2

)
: 3R2

0R1v1φ +R4
0(w2 + v2φ)− 2R2

0R1φw1φ = 0 (9.20)

It can be seen that v1φ = 0, and by differentiating (9.17), we obtain w1φφ = 0. Because

w1 is periodic in φ we must have w1 = w1(s, t). That leads to v1 = −u0s
2

and from (9.20)

we obtain

w2 + v2φ = 0. (9.21)

Using the first tangential stress condition, it can be obtained that

O(εn) : u1 = u0 cosφ(XsZss −XssZs) (9.22)

O

(
(εn)2

)
: u2 =

3

2
u0s

R0s

R0

+
u0ss

4
+

R0s

2αsR0

(T 0
ss − T 0

nn) +

(
Re

We

)
σ0s

2R0

.(9.23)
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By differentiating (9.21) with respect to φ we have

w2φ = −v2φφ, (9.24)

so that

v2φφ − 3v2 = u1s + (3v1 cosφ− w1 sinφ)(XsZss −XssZs), (9.25)

and when the expressions for u1 and v1 are used, we obtain

v2φφ − 3v2 =
(
u0(XsZsss −XsssZs)−

u0s

2
(XsZss −XssZs)

)
cosφ

−w1 sinφ(XsZss −XssZs). (9.26)

Periodic solutions for v2 and w2 are

v2 =
1

4

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
cosφ+

w1

4
sinφ(XsZss −XssZs), (9.27)

and

w2 =
1

4

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
sinφ−

w1

4
cosφ(XsZss −XssZs). (9.28)

Based on the momentum equation in the radial direction, we have at leading order
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p0n = 0 and at order ε is given by

p1 =

(
u2

0(XsZss −XssZs)−
2

Rb
u0 +

(X0 + 1)Z0s − Z0X0s

Rb2

)
cosφ

− αs
Re

(
5

2
u0s(XsZss −XssZs) + u0s(XsZsss −XsssZs)

)
cosφ−

αs
Re

w1 sinφ(XsZss −XssZs). (9.29)

We will use X and Z instead of X0 and Z0 for simplicity.

For the momentum equation in the azimuthal direction, we have at leading order p0φ =

0, and obtain the above equation at order ε for p1. From the normal stress condition at

leading order, we have

p0 = −u0s

Re
+

σ0

R0We
+
T 0
nn

Re
, (9.30)

and we also have at order ε

p1 =
σ0

R0We

(
−R1φφ +R1

R2
0

+ cosφ(XsZss −XssZs)

)
+

4αsv2

Re
. (9.31)

By substituting the expression v2 in the last equation, we obtain

p1 =
σ0

R0We

(
−R1φφ +R1

R2
0

+ cosφ(XsZss −XssZs)

)
+

αs
Re

(u0s

2
(XsZss −XssZs)− u0(XsZsss −XsssZs)

)
cosφ+

αsw1

Re
sinφ(XsZss −XssZs). (9.32)

If we substitute p1 from (9.31) into the previous equation, we obtain

(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
σ

WeR0

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0. (9.33)
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The momentum equation in the axial direction at order ε is

u0t + u0u0s = −p0s +
(X + 1)Xs + ZZs

Rb2
+

αs
Re

(uoss + 4u2 + u2φφ) +
1

Re

∂T 0
ss

∂s
. (9.34)

After substituting the expressions u2 and p0, the previous equation becomes

u0t + u0u0s = − 1

We

∂

∂s

(
σ0

R0

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
+

2σ0s

WeR0

. (9.35)

From the kinematic condition at order ε, it can be obtained

R0t +
u0s

2
R0 + u0R0s = 0. (9.36)

From the extra stress tensor, which is Tss, Tsn, Tsφ, Tnn, Tnφ, Tφφ,we have at leading order

as follows

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (9.37)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
. (9.38)

We have the arc-length at order ε

X2
s + Z2

s = 1. (9.39)
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The last equation which is the surfactant transport equation at leading order is

Γ0t + u0Γ0s +
u0s

2
Γ0 = 0. (9.40)

There is another equation related to the surfactant concentration Γ to the surface tension

of the liquid-gas interface, which is Szyskowski equation (see Tricot(1997))

σ = 1 + βlog(1− Γ ), (9.41)

where the parameter β = Γ∞RgT/σ̃ is known as the effectiveness of surfactants. However,

if we consider that these equations are not independent of t, then X0t 6= 0 and Z0t 6= 0.

This assumption leads to there being some extra unsteady terms in these equations in

E = ZsXt − ZtXs (see Părău et al. (2007)). Părău et al. (2007) have used that X(s, t) =

X0(s, t) + X̂(s, t) and Z(s, t) = Z0(s, t) + Ẑ(s, t) and then solved the linearized equations.

They also found the maximum deviation of order 10−2 of the perturbation of the steady

state centerline. This value is small compared to the O(1) values of X0(s) and Z0(s).

Therefore, E ≈ 0 is a very accurate assumption to be taken from the orifice to the break-

up point. Experimentally Wong et al. (2004) observed that the centerline of the jet is

steady, which means Xst ≈ 0, Zst ≈ 0 and E ≈ 0.

9.6 Steady State Solutions

From the previous section, we have six variables which are u0, R0, X, Z, T
0
ss and T 0

nn.

These variables are functions of s only in the steady state. Hence, the steady state
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equations are

u0u0s = − σ0

We

∂

∂s

(
1

R0

)
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
+

2σ0s

WeR0

, (9.42)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (9.43)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn = − 1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (9.44)

(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
1

WeR0

)
− 2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (9.45)

X2
s + Z2

s = 1, (9.46)

u0s

2
R0 + u0R0s = 0, (9.47)

and

u0s

2
Γ0 + u0Γ0s = 0. (9.48)

From (9.47) and (9.48), we can notice that R2u and Γ 2
0 u0 are constants. Now, we use

the initial conditions R(0) = 1 = u(0) and Γ0(0) = ζ, where ζ is the initial surfactant

concentration (0 ≤ ζ ≤ 1), we therefore obtain R2u = 1 and Γ 2
0 u0 = ζ2. After using these
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expressions, the previous equations (9.42)-(9.46) become

u0u0s = −(1 + βlog(1− ζu
−1
2

0 ))

We

u0s

2
√
u0

+
βζ

2u0We

uos

(1− ζu
−1
2

0 )
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss −

u2
0s

u0

)
+

1

Re

(
∂

∂s
(T 0

ss − T 0
nn)− u0s

u0

(T 0
ss − T 0

nn)

)
, (9.49)

u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (9.50)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (9.51)

(XsZss −XssZs)

(
u2

0 −
3αs
Re

u0s −
1

We

(
1 + βlog(1− ζu

−1
2

0 )

)
√
u0

)
−

2

Rb
u0 +

(X + 1)Zs − ZXs

Rb2
= 0, (9.52)

and

X2
s + Z2

s = 1. (9.53)

From the equations (9.49)-(9.53), we have five unknowns which are X,Z, u0, T
0
ss and T 0

nn.

This system of non-linear differential equations can be solved by using a finite difference

scheme. Părău et al. (2006, 2007) have used this method and Newton’s method to solve

the previous equations with viscosity and compared the results with the Runge-Kutta

method for the inviscid case and found a good agreement between the two for the steady

centerline and radius of the jet. Equations (9.49)-(9.53) with the viscous terms form a very

stiff differential equation and are difficult to solve in general even without the viscoelastic
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terms. We therefore, given the analysis which is to come, show that the centerline is

unaffected at leading order, by viscous terms, using the limit Re → ∞ to solve (9.49)-

(9.53) to obtain our centerline. Decent et al. (2009) found the centerline of viscous liquid

jets by using the limit Re → ∞ to find the steady state solutions. Uddin (2007) and

Uddin et al (2008b) also used this assumption to find the centerline of non-Newtonian

liquid jets with and without surfactants. Therefore, we will use the same assumption

in this thesis to find the steady state solutions. In order to show that the centerline is

independent of viscosity to leading order, let us consider that the expansions take the

form

u = u0(s) + εu1(s, n, φ) +O(ε2), v = v0(s) + εv1(s, n, φ) +O(ε2),

Tss = T 0
ss(s) + εT 1

ss(s, n, φ) +O(ε2), Tnn = T 0
nn(s) + εT 1

nn(s, n, φ) +O(ε2),

R = R0(s) + εR1(s, n, φ) +O(ε2), p = p0(s) + εp1(s, n, φ) +O(ε2),

σ = σ0(s) + εσ1(s, n, φ) +O(ε2), Γ = Γ0(s) + εΓ1(s, n, φ) +O(ε2),

and set w = 0 which means there is no azimuthal velocity. We substitute them into the

the governing equation, and therefore obtain at leading order

v1 = −n
2

du0

ds
, (9.54)

∂u0

∂t
+ u0

∂u0

∂s
= −∂p0

∂s
+

1

Rb2

(
(X + 1)Xs + ZZs

)
+

αsOh√
We

( 1

n

∂u1

∂n
+
∂2u1

∂n2
+

1

n2

∂2u1

∂φ2

)
+

Oh√
We

(
∂T 0

ss

∂s

)
, (9.55)

∂p0

∂n
= 0 and

∂p0

∂φ
= 0,
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u0
∂T 0

ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (9.56)

u0
∂T 0

nn

∂s
+
∂u0

∂s
T 0
nn =

−1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
, (9.57)

− cosφ(XsZss −XssZs)u
2
0 = −∂p1

∂n
− 2u0 cosφ

Rb
+

cosφ

Rb2

(
(X + 1)Zs − ZXs

)
, (9.58)

sinφ(XsZss −XssZs)u
2
0 = −∂p1

∂n
− 2u0 sinφ

Rb
− sinφ

Rb2

(
(X + 1)Zs − ZXs

)
, (9.59)

u0
∂R0

∂s
= v1 on n = R0

p1 −
2Oh√
We

∂v1

∂n
=

σ0

We

(
− 1

R2
0

(
R1 +

∂2R1

∂φ2

)
+ cosφ(XsZss −XssZs)

)
on n = R0 (9.60)

and

∂u1

∂n
= u0 cosφ(XsZss −XssZs) +

Oh−1

We
1
2

∂σ0

∂s
. (9.61)

We have

u0
∂u0

∂s
+
∂p0

∂s
− (X + 1)Xs + ZZs

Rb2
=
αsOh√
We

(
∇2
n,φu1

)
+

Oh√
We

∂Tss
∂s

, (9.62)

where

∇2
n,φ =

1

n

∂

∂n
+

∂2

∂n2
+

1

n2

∂2

∂φ2
.

Suppose that

f(s) =

√
(We)

αsOh

(
u0
∂u0

∂s
+
∂p0

∂s
− ((X + 1)Xs + ZZss)/Rb

2)
)
− 1

αs

∂T 0
ss

∂s
,
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so that f(s) = ∇2
n,φu1, which is a Neumann problem on a circular domain, where s is a

parameter. We determine the solvability condition by multiplying the above equation by

û(s, n, φ) and integrating over the domain S (0 6 n 6 R0, 0 6 φ 6 2π) then we have

∫∫
S

(
û∇2

nφu1

)
dS =

∫∫
S

ûf(s) dS,

where û satisfies the homogeneous Neumann problem such that

∇2
nφu = 0 with

∂û

∂n
= 0 on n = R0.

Greens identity gives

∫∫
S

(
û∇2

nφu1

)
dS =

∫
B

u
∂u1

∂n
dΩS,

where ΩS is the boundary of S. Then we get

2π∫
0

R0∫
0

ûnf(s)dndφ =

2π∫
0

[
û
∂u1

∂n

]
n=R0

R0dφ

=

2π∫
0

[û]n=R0

(
u0 cosφ(XsZss −XssZs) +

Oh−1

√
We

∂σ0

∂s

)
R0dφ

=

2φ∫
0

[û]n=R0(g(s) cosφ+ h(s))R0dφ, (9.63)

where g(s) = u0(XsZss −XssZs) and h(s) = Oh−1
√
We

∂σ0
∂s

. The general solution to the homo-

geneous Neumann problem which is bounded in 0 6 n 6 R0 and is periodic in φ with

period 2π is û = γ(s), which means that this result cannot be a function of the radial or
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azimuthal direction. Then we have

γ(s)R0g(s)[sinφ]2π0 + γ(s)R0h(s)[φ]2π0 = γ(s)f(s)[
n2

2
]R0
0 [φ]2π0

where R0 6= 0, we thus have f(s) = 2h(s)
R0

so that

f(s) =
1

Oh
√
We

2

R0

∂σ0

∂s
.

Then we have

∂u0

∂t
+ u0

∂u0

∂s
− (X + 1)Xs + ZZs

Rb2
= −∂p0

∂s
+

2

R0We

∂σ0

∂s
. (9.64)

To obtain p1, we solve the equations (9.58),(9.59) and (9.60),

p1 =
σ0n

R0We
cosφ(XsZss −XssZs)−

Oh√
We

∂u0

∂s
+ h1(s), (9.65)

where h1(s) is an arbitrary function of s. We can see that there are no viscous terms in

the equation (9.64), which means that we obtain the same leading order equations for the

trajectory in the inviscid case.

The boundary conditions at the nozzle are X(0) = Z(0) = Zs(0) = T 0
ss(0) = T 0

nn(0) = 0

and u(0) = Xs(0) = 1. In Figs. 9.2-9.7, we find the jet trajectory, the extra stress tensor

T 0
ss, T

0
nn and the jet radius for different values of ζ and β by using the Runge-Kutta

method which is the ODE45 package in MATLAB. In the next paragraph, we will give

more explanations about these figures.

In Figs. 9.2 and 9.4, we show the effects of the initial surfactant concentration ζ and

the parameter β on trajectories of the liquid jet respectively. From these figures, it can

be observed that when ζ and β are increased liquid jets coil slowly. We also plot graphs,
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which are in Figs. 9.3 and 9.5 to see the influence of increasing the initial surfactant

concentration ζ and the parameter β on the arc-length s. We observe that greater values

of these parameters lead to a decrease in the radius of the jet which means that the jet

becomes thin when the arc-length s is increased. Moreover, on Figs. 9.6 and 9.7 we find

the relationship between the extra stress tensors, which are T 0
ss and T 0

nn and the arc-length

for different values of the parameter β, and these graphs show that when this parameter

increases, the extra stress tensors have more effect on the jet. Fig. 9.8 shows the effects

of the Rossby number on the surface tension for viscoelastic liquid curved jets and we can

see that when rotation rates increase, the surface tension increases.
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Figure 9.2: The trajectory of rotating liquid jets with the effect of surfactants, which is
solved by using the Runge-Kutta method and emerging from an orifice placed at (0,0). The
jet curves increase when the initial surfactant concentration increases. The parameters
here are We = 8, Rb = 2, De = 20, αs = 0.2 and β = 0.4.

9.7 Temporal Instability

In this section we consider small temporal perturbations of our steady state solutions as

we did in Chapter 6. However, here we linearize the surface tension by using a Taylor
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Figure 9.3: The radius of rotating liquid jets with changing the initial surfactant concen-
tration versus the arc-length s. Here we have We = 8, Rb = 2, De = 20, αs = 0.2 and
β = 0.4. It can be seen that increasing the initial surfactant concentration increases the
radius of the jet along the jet.
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Figure 9.4: The trajectory of rotating liquid jets, which is solved by using the Runge-
Kutta method and emerging from an orifice placed at (0,0). The jet curves increase when
the parameter β increases. Here we have We = 8, Rb = 2, De = 20, αs = 0.2 and ζ = 0.4.

series to expand Eq. (9.41), we therefore get

σ = (1 + βlog(1− ζ)) + σ
′
(ζ)(Γ − ζ)

= (1 + βlog(1− ζ))− β

(1− ζ)
(Γ − ζ)

= σe − EΓ (9.66)
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Figure 9.5: The radius of rotating liquid jets with changing the parameter β versus the
arc-length s. Here we have We = 8, Rb = 2, De = 20, αs = 0.2 and β = 0.4. It can be
observed that increasing the parameter β increases the radius of the jet along the jet.
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Figure 9.6: The effect of changing the parameter β of a rotating liquid jet on the extra
stress tensor T 0

ss along the jet.Here we use We = 8, De = 20, β = 0.4, α̃s = 0.2 and
Rb = 2.

where σe = (1 + βlog(1 − ζ)) + βζ
(1−ζ) is the surface tension of the undisturbed liquid jet

and E = β/(1− ζ) is the Gibbs elasticity (see Uddin (2007)).

The radius of the jet is of order a, which is comparable to ε when s = O(1), when we

make perturbations along the jet then we consider the travelling wave modes of the form
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Figure 9.7: The effect of changing the parameter β of a rotating liquid jet on the extra
stress tensor T 0

nn along the jet.Here we use We = 8, De = 20, β = 0.4, α̃s = 0.2 and
Rb = 2.
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Figure 9.8: The relationship between the surface tension and the arc-length s of a rotating
viscoelastic liquid jet. Here we use We = 10, De = 20, β = 0.25 and αs = 0.20.

(u,R, Tss, Tnn, Γ ) = (u0, R0, T
0
ss, T

0
nn, Γ0) + δ(û, R̂, T̂ss, T̂nn, Γ̂ ) exp(iκs+ ωt), (9.67)
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where s = s/ε is small length scales, t = t/ε is small time scales, k = k(s) and ω = ω(s)

are the wavenumber and frequency of the disturbances and δ is a small constant which is

0� δ � ε2 (see Uddin (2007)). We have to use the full expression for the mean curvature

(see Lee (1974) and Eggers (1997)) to prevent instability to waves with zero wavelength

which is

1

We

(
1

R(1 + ε2R2
s)

1
2

− ε2Rss

(1 + ε2R2
s)

3
2

)
.

The axial equation of motion becomes

ut + u0u0s = − 1

We

∂

∂s

(
σ

(
1

R(1 + ε2R2
s)

1
2

− ε2Rss

(1 + ε2R2
s)

3
2

))
+

(X + 1)Xs + ZZs
Rb2

+
3αs
Re

(
u0ss + 2u0s

R0s

R

)
+

1

Re

(
1

R2
0

∂

∂s
R2

0 (T 0
ss − T 0

nn)

)
, (9.68)

∂T 0
ss

∂t
+ u0

∂T 0
ss

∂s
− 2

∂u0

∂s
T 0
ss =

1

De

(
2(1− αs)

∂u0

∂s
− T 0

ss

)
, (9.69)

∂T 0
nn

∂t
+ u0

∂T 0
nn

∂s
+
∂u0

∂s
T 0
nn = − 1

De

(
(1− αs)

∂u0

∂s
+ T 0

nn

)
. (9.70)
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9.8 Dispersion Relation

The perturbation equations (9.67) are now substituted into the equations (9.68), (9.36),

(9.69), (9.70) and (9.40), which has the following matrix



3k2α̃s

Re
+ ω + iku0 − ikσ0

We

(
1
R2

0
− k2

)
+ 2ik

R0Re
(T 0

ss − T 0
nn) ik

Re
− ik
Re

ikE
WeR0

ikR0

2
ω + iku0 0 0 0

−2ikT 0
ss − 2ik

De
0 ω + iku0 0 0

ikT 0
nn + ik

De
0 0 ω + iku0 0

ikΓ0

2
0 0 0 ω + iku0


There is a new scaling for the viscosity ratio which is α̃s = αs

ε
. Without this new

scaling, we cannot bring the viscous term into the equations which derived the dispersion

relation. We mentioned earlier, αs + αp = 1, where αs and αp are the solvent viscosity

and the polymeric viscosity respectively. After substituting the new scaling, the last

equation becomes εα̃s + αp = 1, which means that αp � αs. However, both the solvent

viscosity and the polymeric viscosity are very small µs, µp � 1. Now, we find non-trivial

solutions for the above system and, therefore, we obtain

(
ω + iku0

)2

+ 3k2α̃s

Re

(
ω + iku0

)
− k2σ0R0

2We

[(
1
R2

0
− k2

)
− 2We

R0Re

(
T 0
ss − T 0

nn

)]
−

k2

Re

(
2T 0

ss + T 0
nn + 3

De

)
+ k2EΓ0

2WeR0
= 0, (9.71)

here ω = ωr + iωi, where ωr is the growth rate of disturbances and ωi is the wavenumber

of disturbances. Then

ω2
r +

3k2α̃s
Re

ωr −
k2σ0R0

2We

(
1

R2
0

− k2 − 2We

R0Re

(
T 0
ss − T 0

nn

))
− k

2

Re

(
2T 0

ss + T 0
nn +

3

De

)
+

k2EΓ0

2WeR0

= 0, (9.72)
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which becomes

ωr =
−3k2α̃s

2Re
+

k

2

√
2σ0

R0We

(
1− (kR0)2 − 2We

R0Re

)
+

4

Re

(
2T 0

ss + T 0
nn +

3

De

)
+

(
3kα̃s
Re

)2

− 2EΓ0

WeR0

,

(9.73)

where

2σ0

R0We

(
1− (kR0)2 − 2We

R0Re

)
+

4

Re

(
2T 0

ss + T 0
nn +

3

De

)
+

(
3kα̃s
Re

)2

− 2EΓ0

WeR0

> 0,

we differentiate Eq. 9.73 with respect to k to find the most unstable wavenumber k = k∗

which is given

k∗ =

√
R0GWe

2
− 2B + (σ0 − Γ0E)√√

2R3
0σ0

(
3α̃s

√
We
Re

+
√

2σ0R0

) , (9.74)

where B = T 0
ss − T 0

nn, G = 4
α̃sRe

(
2T 0

ss + T 0
nn + 3

De

)
. For temporal instability, the growth

rate ωr is positive which happens when 0 < kR < 1 where k = k∗, and R0 found from

the steady state solutions. When De = 0 and T 0
ss = T 0

nn = 0 the dispersion relation is

k∗ =
(σ0 − Γ0E)

1
2√√

2R3
0σ0

(
3Oh+

√
2σ0R0

) , (9.75)

where Oh =
√
We
Re

which is the same as for Newtonian liquid jets with surfactant, as found

by Uddin (2007).
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9.9 Discussion

In order to determine the break-up of liquid jets from the linear instability analysis, we

seek to find the largest value of the growth rate which corresponds to the wavenumber of k

(referred as k∗ in this work) from the nozzle to downstream the jet. However, as mentioned

earlier in this thesis, we can use the linear instability to find the size of main droplets, but

not satellite droplets. From the dispersion relation (9.72), we find the wavenumber (k∗)

and the growth rate of the most unstable mode against the arc-length s for a number of

cases;

in Fig. 9.9 we plot the growth rate of a viscoelastic liquid jet with surfactant against

the wavenumber for different distances from the nozzle. It can be noticed that at the

nozzle (meaning s = 0) the growth rate starts to increase with distance along the jet.

The effect of surfactants on viscoelastic liquid curved jets has been examined in Fig. 9.10.

We can see from this figure that when we increase the initial surfactant concentration

ζ the growth rate decreases. This is a result to be expected as surfactants dampen or

reduce the growth of disturbances.

Figs. 9.11 and 9.12 show that when the wavenumber of the most unstable mode k∗

increases along the liquid jet, rotation rates are increased (meaning that Rb decreases). In

addition, we can see in Fig. 9.13 that when we increase the effectiveness of surfactants β,

the wavenumber of the most unstable mode of viscoelastic liquid curved jets is decreased,

which means that when the parameter β = 0.25 the most unstable mode k∗ is equal 0.6,

whereas with β = 0.5 the most unstable mode is equal 0.50 at the nozzle. Similarly,

we do the same thing for the growth rate of the most unstable mode which can be seen

in Figs. 9.14-9.16, so that in Figs. 9.14 and 9.15, we show the effect of changing the

parameter β for two different values (0.25 and 0.5) on the maximum growth rate. We

make a comparison to see how these two values of β affect the growth rate of the most
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unstable mode and we find that when the parameter β is increased the maximum growth

rate is decreased (see Fig. 9.16). In Figs. 9.17 and 9.18, we study the effect of the

Reynolds number Re on the viscoelastic liquid curved jets with surfactants where the

parameter β is fixed. From these figures, it can be observed that when we decrease the

Reynolds number the wavenumber and the growth rate of the most unstable mode are

decreased and this means that the liquid becomes more viscous and it will take more time

to break-up.

Here we plot graphs to see the relationship between the maximum growth rate and the

wavenumber of the most unstable mode against the arc-length s for two different values of

the Deborah number (De = 5 and 20) which are in Figs 9.19 and 9.20. It can be observed

from these graphs that when the Deborah number is increased the growth rate and the

wavenumber are increased.

When we increase the viscosity ratio α̃s the maximum wavenumber and the growth rate

are decreased which means the liquid is more elastic. These results are shown in Figs.

9.21 and 9.22. In Figs. 9.23 and 9.24 show that when we increase the initial surfactant

concentration ζ and the parameter β is fixed the growth rate and the wavenumber of

the most unstable mode are decreased which means the liquid becomes thicker along the

arc-length s.
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Figure 9.9: Graph showing the growth rate versus the wavenumber of viscoelastic liquid
curved jets with surfactants from a nozzle at s = 0 to s = 0.5 along the jet. The other
parameters here are We = 10, Re = 1000, Rb = 2, ζ = 0.2, β = 0.5, De = 20 and
α̃s = 20.
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Figure 9.10: Graph showing the growth rate versus the wavenumber of viscoelastic liquid
curved jets with surfactants at the nozzle for different values of the initial surfactant
concentration. The other parameters here are We = 10, Re = 1000, Rb = 2, ζ = 0.2, β =
0.5, De = 20 and α̃s = 20.
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Figure 9.11: The wavenumber of the most unstable mode k∗ versus the arc-length s for
different values of the Rossby number. The other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20, α̃s = 20 and β = 0.25.
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Figure 9.12: The wavenumber of the most unstable mode k∗ versus the arc-length s for
different values of the Rossby number. The other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20, α̃s = 20 and β = 0.5.
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Figure 9.13: The wavenumber of the most unstable mode k∗ versus the arc-length s for two
different values of the parameter β. The other parameters are We = 15, Re = 1000, ζ =
0.5, De = 20, α̃s = 20 and Rb = 0.5.
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Figure 9.14: The maximum growth rate ω∗ versus the arc-length s for different values of
the Rossby number. The other parameters here are We = 15, Re = 1000, ζ = 0.5, De =
20, α̃s = 20 and β = 0.25.
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Figure 9.15: The maximum growth rate ω∗ versus the arc-length s for two different values
of the parameter β . The other parameters here are We = 15, Re = 1000, ζ = 0.5, De =
20, α̃s = 20 and β = 0.5.
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Figure 9.16: The maximum growth rate ω∗ versus the arc-length s for two different
values of the Rossby number. The other parameters here are We = 15, Re = 1000, ζ =
0.5, De = 20, α̃s = 20 and Rb = 0.5.
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Figure 9.17: The maximum wavenumber k∗ versus the arc-length s for two different
values of the Reynolds number. The other parameters here are We = 15, Rb = 0.5, ζ =
0.5, De = 20, α̃s = 20 and β = 0.25.
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Figure 9.18: The maximum growth rate ω∗ versus the arc-length s for two different
values of the Reynolds number. The other parameters here are We = 15, Rb = 0.5, ζ =
0.5, De = 20, α̃s = 20 and β = 0.25.
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Figure 9.19: Graph showing the relationship between the maximum growth rate ω∗r and
the arc-length s for viscoelastic liquid curved jets with surfactants for two different values
of the Deborah De, where the other parameters here are We = 15, Re = 1000, ζ =
0.5, Rb = 0.5, α̃s = 20 and β = 0.25.
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Figure 9.20: Graph showing the relationship between the wavenumber of the most un-
stable k∗ and the arc-length s for viscoelastic liquid curved jets with surfactants for
two different values of the Deborah number De , where the other parameters here are
We = 15, Re = 1000, ζ = 0.5, Rb = 0.5, α̃s = 20 and β = 0.25.
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Figure 9.21: Graph showing the relationship between the growth rate of the most unstable
mode ω∗r and the arc-length s for viscoelastic liquid curved jets with surfactants for two
different values of the viscosity ratio α̃s , where the other parameters here are We =
15, Re = 1000, ζ = 0.5, De = 20 and β = 0.25.
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Figure 9.22: Graph showing the wavenumber of the most unstable mode k∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of
the viscosity ratio α̃s, where the other parameters here are We = 15, Re = 1000, ζ =
0.5, De = 20 and β = 0.25.
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Figure 9.23: Graph showing the growth rate of the most unstable mode ω∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of the
initial surfactant concentration ζ, where the other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20 and β = 0.5.
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Figure 9.24: Graph showing the wavenumber of the most unstable mode k∗ and the arc-
length s of viscoelastic rotating liquid jets with surfactants for two different values of the
initial surfactant concentration ζ, where the other parameters here are We = 15, Re =
1000, ζ = 0.5, De = 20 and β = 0.5.
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9.10 Nonlinear Temporal Solutions

Linear instability analysis predicts that liquid jets break-up and produce uniform drop

sizes along the axis of approximately the same wavelength of initial disturbances. How-

ever, it can be observed that a number of smaller satellite droplets appeared in this case

which are not equal in size. Therefore, we use nonlinear temporal analysis to examine the

break-up length and the formation of the satellite droplets. We replace the leading order

pressure term p0 = σ
We

1
R0

with the expression for the full curvature term which contains

only R0 and is not φ-dependent, namely

p =
σ

We

[
1

R0(1 + ε2R2
0s)

1/2
− ε2R0ss

(1 + ε2R2
0s)

3/2

]
. (9.76)

For simplicity, we denote A = A(s, t), where A(s, t) = R2(s, t) and G = Γ 2
0 ; then we

rewrite our equations (9.36), (6.38), (9.39) and (9.41) as

∂u

∂t
= −

(
u2

2

)
s

− 1

We

∂

∂s

(
σ

4(2A+ (εAs)
2 − ε2AAss)

(4A+ (εAs)2)3/2

)
+

(X + 1)Xs + ZZs
Rb2

+

2σs

A
1
2We

+
3αs
Re

(Aus)s
A

+
1

Re

(
A(Tss − Tnn)

)
s

A
, (9.77)

∂Tss
∂t

= − ∂

∂s
(uTss) + 3

∂u

∂s
Tss +

1

De

(
2(1− αs)

∂u

∂s
− Tss

)
, (9.78)

∂Tnn
∂t

= − ∂

∂s
(uTnn)− 1

De

(
(1− αs)

∂u

∂s
+ Tnn

)
, (9.79)

∂A

∂t
= − ∂

∂s
(Au), (9.80)
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∂G

∂t
= − ∂

∂s
(Gu). (9.81)

We solve this nonlinear system of equations as we did in section 6 for the steady state

by using the initial conditions at t = 0 which are

A(s, t = 0) = R2
0(s), u(s, t = 0) = u0(s), G(s, o) = Γ 2

0 (s), Tss(s, t = 0) = 0, Tnn(s, t = 0) = 0.

At the nozzle, we use upstream boundary conditions

u(0, t) = 1 + δ sin

(
κt

ε

)
, Γ (0, t) = ζ, A(0, t) = 1,

where κ is a non-dimensional wavenumber of the perturbation of frequency and δ ( of

which we used a small size) is the amplitude of the initial non-dimensional velocity dis-

turbance. In the calculation, we have used the value of ε (= a
s0

) which can be measured

from experiments using ε = 0.01. This value is the same as found in experiments and

industrial problems (see Wong et al (2004)).

9.11 Results and Discussions

A profile has been plotted (Fig. 9.25) to show the effect of increasing the concentra-

tion of initial surfactants on the break-up of viscoelastic liquid curved jets. From this

profile we see that when we enhance the initial surfactant concentration, the liquid jet

becomes longer in terms of breaking up. In Fig. 9.26 we make a compression to see the

effect of adding surfactant on the break-up of viscoelastic liquid curved jets. It can be

observed that adding surfactants on liquid jets delay the break-up of viscoelastic liquid

jets. These results are the same found by Uddin (2007) for spiralling liquid jets with sur-

factants. Furthermore, we plot profiles to see the effects of increasing the viscosity ratio

on viscoelastic curved jets with surfactants, which is in Fig. 9.27. We can see from these
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profiles that when we increase the viscosity ratio, the break-up length will increase. In

Fig. 9.28 we make a profile to see the effect of rotating liquid jets with surfactant for two

values of rotation rates which are high rotation rates (Rb = 2) and very small rotation

rates (Rb = 100, meaning straight liquid jets) and we can see that when we have high

rotation rates, viscoelastic liquid curved jets with surfactants will break up later than

straight jets.

A graph has been plotted to check the accuracy of the numerical simulation for various

ds and various mesh points M (see Fig. 9.29). Moreover, we discuss the break-up length

versus the Rossby number Rb with and without adding surfactants (see Fig. 9.30). From

this figure we notice that when rotation rates are increased the break-up increases and

when we have a surfactant on liquid jets that leads to an increase in the break-up as

well. In Fig. 9.31 we show that when we add surfactants on viscoelastic liquid curved

jets satellite droplet sizes are decreased. It can be also observed that decreasing rotation

rates imply to small satellite droplet sizes and this result agrees with Parau et al. (2007).

Furthermore, we plot a graph (Fig. 9.32) to see variations of wavenumber κ on main

droplet sizes for viscoelastic jets with and without surfactants. From this figure we find

that increasing the wavenumber decreases main droplet sizes and we also see that adding

surfactants to liquid curved jets leads to an increase in the main droplet size of viscoelastic

liquid curved jets. In Fig. 9.33 we see that when we have viscoelastic liquid curved jets

with surfactant this leads to an increase in satellite droplet sizes with a variation in the

wavenumber. From this figure as well, when we decrease the wavenumber, satellite droplet

sizes are increased either with surfactants or without it for liquid jets. We plot a graph

(Fig. 9.34) to find the break-up length of viscoelastic liquid curved jets with surfactants

with making the wavenumber variation. From this figure we notice that when we add

surfactants to liquid jets this leads to an increase in the break-up length.

In Fig. 9.35 we observe that increasing the viscosity ratio αs makes the liquid jet have a
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Figure 9.25: Graph showing viscoelastic liquid curved jets with surfactants by chang-
ing the initial surfactant concentration ζ. The parameters here are Re = 2000, We =
10, Rb = 2, k = 0.7, De = 20, δ = 0.01, β = 0.5 and αs = 0.20.

longer break-up length both in the presence of surfactants and without it. Moreover, we

plot a graph (Fig. 9.36) to find main droplet sizes when the viscosity ratio is varied and

we see that main droplet sizes are not changed too much. However, In Fig. 9.37 it can

be noticed that satellite droplet sizes increase when the viscosity ratio is increased.

Now we turn our attention to study the effectiveness of surfactants (β). In order to do

this, we see in Fig. 9.38 that increasing the parameter β leads to an increase in the break-

up length. In addition, the relationship between main droplet sizes and the parameter

β is shown in Fig. 9.39 and we see that high rotation rates imply to increase the main

droplet sizes. In Fig. 9.40 we show that when the rotation rates are high, satellite droplet

sizes decrease with increasing the parameter β. These results agree with Uddin (2007).
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Figure 9.26: Graph showing the relationship between the radius R0 and the distance along
the jet s with and without surfactants for viscoelastic liquid curved jets. The parameters
here are Re = 2000, We = 10, Rb = 2, k = 0.7, De = 20, δ = 0.01, β = 0.5 and
αs = 0.20.
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Figure 9.27: Rotating viscoelastic liquid jets with surfactants when the viscosity ratio
αs is varied (0.20 and 0.60 respectively). The parameters here are Re = 2000, We =
10, Rb = 2, k = 0.7, De = 20, δ = 0.01, β = 0.5 and ζ = 0.1.
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Figure 9.28: The profile of two different values of the Rossby number Rb, where the other
parameters here are Re = 2000,We = 10, k = 0.7, De = 20, δ = 0.01 , ζ = 0.2, β = 0.5
and αs = 0.20.
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Re = 2000,We = 10, Rb = 1, k = 0.8, ζ = 0.2, β = 0.5, De = 10, δ = 0.01, αs = 0.2,
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Figure 9.30: Graph showing break-up lengths for different values of the Rossby number
Rb for viscoelastic rotating liquid jets with and without surfactants. The parameters here
are Re = 2000, We = 10, k = 0.8, De = 20, δ = 0.01 and αs = 0.20.
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Figure 9.31: Satellite droplet sizes versus different rotation rates Rb for viscoelastic liquid
curved jets with and without surfactants. The parameters here are Re = 2000, We =
10, k = 0.8, De = 20, δ = 0.01 and αs = 0.20.
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Figure 9.32: Graph showing main droplet sizes and the wavenumber of disturbances κ
for viscoelastic liquid curved jets with and without surfactants. The parameters here are
Re = 2000, We = 10, Rb = 2, De = 20, δ = 0.01 and αs = 0.20.
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Figure 9.33: Graph showing satellite droplet sizes and the wavenumber of disturbances κ
for viscoelastic liquid curved jets with and without surfactants. The parameters here are
Re = 2000, We = 10, Rb = 2, De = 20, δ = 0.01 and αs = 0.20.
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Figure 9.34: Break-up lengths versus the wavenumber of disturbances κ of viscoelastic
liquid curved jets with and without surfactants. The parameters are Re = 2000, We =
10, Rb = 2, De = 20, δ = 0.01 and αs = 0.20.
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Figure 9.35: Break-up lengths versus the viscosity ratio αs of viscoelastic liquid curved
jets with and without surfactants. The parameters here are Re = 2000, We = 10, Rb =
2, De = 20 and δ = 0.01.
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Figure 9.36: Graph showing the relationship between main droplet sizes and the viscosity
ratio αs with and without the effect of surfactants on viscoelastic liquid curved jets. The
parameters here are Re = 2000,We = 10, Rb = 2, k = 0.8, De = 20 and δ = 0.01.
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Figure 9.37: Graph showing the relationship between satellite droplet sizes and the vis-
cosity ratio αs with and without the effect of surfactants on viscoelastic liquid curved jets.
The parameters here are Re = 2000,We = 10, Rb = 2, k = 0.8, De = 20 and δ = 0.01.
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Figure 9.38: Graph showing the relationship between break-up lengths and the parameter
β for two different values of rotation rates Rb with and without the effect of surfactants
on viscoelastic liquid curved jets. The parameters here are Re = 2000, We = 10, k =
0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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Figure 9.39: Graph showing the relationship between main droplet sizes versus the pa-
rameter β for two different values of rotation rates Rb with and without the effect of
surfactants on viscoelastic liquid curved jets. The parameters here are Re = 2000, We =
10, k = 0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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Figure 9.40: Graph showing the relationship between satellite droplet sizes versus the
parameter β for two different values of rotation rates Rb with and without the effect of
surfactants on viscoelastic liquid curved jets. The parameters here are Re = 2000, We =
10, k = 0.8, De = 20, ζ = 0.3, δ = 0.01 and αs = 0.20.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

The purpose of this thesis is to extend the work done by Uddin (2007), by incorporating

viscoelasticity into the model. There are many researchers who have studied the prilling

process in different cases for both the Newtonian case (see Wallwork (2002a)) and for

the non-Newtonian case (see Uddin (2007)). A theoretical analysis of a slender liquid jet

which emerges from an orifice of a rotating container was considered.

In Chapters 1 and 2, we started by giving a general meaning of liquid jets and looked

at the background of inviscid jets, viscous jets and viscoelastic liquid jets. Whilst looking

at some experiments which were done by Wong (2004), and giving brief details of the

theoretical work that was investigated by Wallwork (2002a) for the prilling process, we

used similar equations to those used by Wallwork (2002a) and by Părău et al. (2007) but

with extra terms, as discussed in Chapter 6.

There are many models for studying viscoelastic liquid jets, although some of them are

extremely difficult to use for constitutive equations, especially for the prilling process,

such as the Oldroyd 8-constant model, which was discussed in Chapter 4.
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In Chapter 5 we examined the temporal linear instability of viscoelastic straight liq-

uid jets falling under the influence of gravity. We solved the set of equations in two-

dimensional models. We found the steady state solutions of this problem by using New-

ton’s method. Moreover, we derived the dispersion relation of viscoelastic liquid jets.

From this dispersion relation, the findings were:

• When the Froude number F decreases (i. e meaning gravity is increased (see Figs. 5.22

and 5.23 respectively)), the wavenumber of the most unstable mode and growth rate in-

crease.

• Decreasing the Weber number We and the viscosity ratio αs leads to an increase in the

growth rate (see Figs. 5.14 and 5.19 respectively).

• Viscoelastic liquid jets exhibited a larger growth rate than viscous liquid jets and a

slower growth rate than an inviscid liquid jet (see Fig. 5.24), which agrees with the same

finding reported by Goldin et al. (1969).

In Chapter 6, we used the Maxwell upper-convected model (Oldroyd-B) for investigat-

ing the temporal instability of viscoelastic liquid curved jets. The linear instability gives a

better understanding for predicting main droplet sizes, so we used an asymptotic analysis

at leading order to derive the governing equations for this problem. We also used the

normal model to derive the dispersion relation for studying linear stability theory and

found the growth rate and wavenumber of the most unstable mode along the jet. We

also made a comparison between the dispersion relation of viscoelastic jets, Newtonian

and inviscid liquid jets as done by Wallwork (2002). He considered steady state solutions,

obtained from solving a nonlinear set of equations using the Runge-Kutta method, and

found that the radius along the jet decreases against the arc-length. The trajectory was

plotted on the X −Z plane for different values of the Rossby and Weber numbers, and it

was observed that when we decrease the Rossby number (meaning high rotation rates) the

liquid curves more, which was seen in Fig. 6.1, confirming the results of Wallwork (2002a).
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The growth rate and the wavenumber of the most unstable mode were plotted against

the arc-length for different values of the non-dimensional parameter Reynolds number,

the Weber number, the Deborah number and the Rossby number, and the findings were:

• Increasing the Reynolds number leads to an increase in the growth rate of viscoelastic

liquid jets.

• Increasing the Weber number and the Deborah number decreases the growth of vis-

coelastic liquid jets.

• When the Rossby number is decreased, the growth rate and the wavenumber of the

most unstable mode is increased.

• When the viscosity ratio is increased, the growth rate and the wavenumber of the most

unstable mode is decreased.

In Chapter 7, we examined break-up lengths and main and satellite droplet sizes of vis-

coelastic rotating liquid jets by using a finite difference scheme based on the two-step Lax-

Wendroff method. We found that decreasing the Reynolds number, which corresponds

to high viscosity, leads to an increase in the break-up length (see Fig.7.11). Moreover,

increasing the viscosity ratio αs, which is the total of the solvent and polymeric liquid,

was found to increase the break-up length (see Fig. 7.12). In addition, we found that

the non-Newtonian (viscoelastic) liquid jet breaks up earlier than Newtonian liquid jets

and later than inviscid jets (see Fig. 7.15), which agrees with the linear instability which

is found in Chapter 5. We also noticed that when we increase rotation rates, this leads

to an increase in main droplet sizes. Furthermore, we found that when we increase the

Deborah number De, break-up lengths and main and satellite droplet sizes increase.

In Chapter 8, we included the influence of gravity (the Froude number) on viscoelastic

liquid curved jets by considering the velocity of the can which was very slow, so the same

analysis, which was presented in Chapter 6, followed. Many cases are considered in this

chapter, such as those in which the Froude number is variable and the Rossby number is

211



constant and vice versa, where the Froude number and the Rossby number vary and the

Froude number is variable but without rotation. It can be noticed from the last cases that

the Froude number has affected the jet and makes it more stable. These results are the

same as demonstrated in Chapter 6, without including gravity, and support the findings

that were obtained by Wallwork (2002a). The trajectory for the liquid curved jet was also

found in three dimensions (X, Y, Z).

In Chapter 9, we extended Chapter 6 by including surfactants. In this chapter, we

investigated the linear and nonlinear instability of viscoelastic rot instability of viscoelastic

rotating liquid jets by adding surfactants. We found a number of interesting findings,

which are:

• Increasing the initial surfactant concentration ζ and the effectiveness of surfactant β

lead the jet to coil slowly.

• When we increase the initial surfactant concentration ζ, the growth rate of viscoelastic

rotating liquid jets decreases (see Fig. 9.10).

• Increasing the effectiveness of surfactants β was found to decrease the maximum growth

rate and the most unstable mode along the jet (see Figs. 9.16 and 9.17 respectively).

These results agree with the same finding reported by Uddin (2007) in the case of non-

Newtonian liquid curved jets with surfactants. In the presence of viscoelastic rotating

liquid jets with adding surfactants, there are two extra parameters which are the Deborah

number and the viscosity ratio. Therefore, we found that:

• When we increase the Deborah number, the growth rate decreases.

• Increasing the viscosity ratio leads to an increase in break-up lengths and main and

satellite droplet sizes.
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10.2 Future Work

Viscoelastic liquid jets have a great number of potential applications, due to the many

practical and engineering processes in which they are used. Therefore, there are many

constitutive equations (as mentioned in Chapter 4) which we can use to study this subject.

10.2.1 Prilling Processes

In Chapter 6, we investigated the temporal instability of viscoelastic curved jets by

using the Maxwell Upper Convected (MUC) model. However, in future, we can examine

the same problem by using Giesekus’s model and we can make a comparison between

these two models.

Decent et al. (2009) investigated the temporal and spatial instability (the second being

more realistic) for Newtonian liquid jets, so that it is possible to examine the spatial

instability for viscoelastic curved jets. We can also extend Chapter 9 by studying the

effects of gravity on the instability of viscoelastic liquid rotating jets with surfactants.

In prilling processes, an ambient gas can affect the jet break-up and therefore this

is another possible extension to investigate the effect of an ambient gas on viscoelastic

straight and curved jets.

10.2.2 Electrospinning Processes

This phenomenon has been considerably investigated in the last two decades owing to

its potential applications, such as producing ink jet printers and ultra-fine nanofibers.

Viscoelasticity plays an important role in this process, because a liquid fiber has high

molecular polymer solutions, and viscoelasticity affects the instability and break-up of

liquid jets for this reason.
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There are few articles in this subject in terms of mathematical analysis (see Hohman

et al. (2001), Feng (2003) and Caroll and Joo(2008)) due to the complexity of this prob-

lem, which consists of coupling between the elastic field and viscoelastic liquid jets. For

instance, if we look at Caroll and Joo (2003), we can see the same contributions made by

the equations of viscoelastic liquid jets as we got in this thesis, but without the rotational

force. Therefore, we can include the rotational force to study the instability of electro-

spinning of viscoelastic liquid jets and we can also investigate the non-linear instability

to see the effects of the electrical force on break-up lengths and drop formation. Caroll

and Joo (2003) used the Oldroyd-B model to examine the linear instability of electrically

viscoelastic jets, so we can use another model, which is the Giesekus model, to investigate

the linear instability of a straight and a curved electrically charged viscoelastic liquid

jet. Furthermore, Hohmann et al. (2001) and Caroll and Joo (2003) found that when the

electrical conductivity is very low, the instability occurs at low wavenumber. However, we

can consider this linear instability of electrical charged viscoelastic curved jets at a high

electrical conductivity. We can also examine the instability of curved electrically charged

viscoelastic jets with surfactant. In this project we can find drop formations and how the

electric field affects the trajectory of a liquid jet, main and satellite droplets and break-up

length.

10.2.3 Compound Liquid Jets

Uddin (2007) examined the linear and nonlinear instability of inviscid compound jets,

it would be worth investigating the instability of compound rotating jets. We can also

find the drop formation and discuss the effect of the rotation rates on the break-up the

inner and outer jet. In addition to this, my colleague Faheem Afzaal and I are to submit

an article to the Journal of Physics of Fluids relating to the effects of an ambient gas

on the temporal instability of inviscid compound jets falling under gravity. Furthermore,
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we can extend this article to investigate the linear instability of Newtonian compound

liquid jets falling under the influence of gravity with an ambient gas. The last point to

make is that some experiments relating to viscoelastic liquid jets could be conducted in

the department of Chemical Engineering in the King Abdullah University of Science and

Technology.
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