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Thesis abstract 

The Middle Ordovician to Late Silurian represents an interval of approximately 50 million 

years, which has been recognised as the initial, cryptic, period in the evolutionary history 

of chondrichthyan fish. The fossil remains attributed to early chondrichthyans are 

dominated by isolated dermal scales that predate the appearance of undisputed 

chondrichthyan teeth and articulated skeletons in the Lower Devonian. Investigation of 

the inter-relationships of these scale taxa and their systematic position relative to high-

ranked chondrichthyan clades has been hampered by the lack of developed scale-based 

classification schemes for jawed gnathostomes, coupled with the limited use of scale 

characters in phylogenetic studies of Palaeozoic Chondrichthyes. Here, all previously 

documented scale types of alleged Lower Palaeozoic chondrichthyans were examined 

using a combination of X-ray microtomography, SEM and Nomarski DIC optics. These 

were found to exhibit a set of characteristics (symmetrical trunk scales, areal crown 

growth and lack of hard-tissue resorption, cancellous bone and enamel) recognised as 

specific to the dermal skeleton of chondrichthyans among derived gnathostomes. The 

collected data permitted the establishment of a hierarchy of scale characters for separate 

taxonomic ranks, leading to the recognition of three Orders (Mongolepidida, 

Elegestolepida ordo nov. and Altholepida ordo nov.) of early chondrichthyans, 

differentiated by distinct types of scale-crown morphogenesis.

A scale-based cladistic analysis of jawed gnathostomes corroborated these 

results by recovering a chondrichthyan clade that incorporates all examined taxa and 

‘acanthodians’ with non-superpositional crown growth patterns. It is thus proposed that 

chondrichthyan dermoskeletal characters carry a phylogenetic signal, allowing to 
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interpret the documented diverse types of scale morphogenesis as evidence for a major 

radiation of chondrichthyan lineages in the Lower Palaeozoic.
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Chapter 1: Introduction

The Class Chondrichthyes (cartilaginous fish) is a well-supported (Brazeau 2009; 

Davis et al. 2012; Zhu et al. 2013; Dupret et al. 2014) clade of crown gnathostomes 

with a long evolutionary history that has been suggested to date back to the 

Ordovician Period (Sansom et al. 2001, 2012; Turner et al. 2004). Dermal scales 

and teeth are among the elements of the chondrichthyan skeleton most commonly 

preserved in the fossil record, as the latter lacks extensive endoskeletal 

mineralization and development of macromeric dermal bones. Accordingly, tooth 

characters feature prominently in the diagnoses of fossil chondrichthyan taxa of all 

ranks (Cappetta 1987, 2012; Ginter et al. 2010), whereas attributes of scales have 

predominantly been used to define the total chondrichthyan group (Zangerl 1979, 

1981; Maisey 1984, 1986, 1988; Lund and Grogan 1997). The majority of these 

studies assert that the integumentary skeleton of the Chondrichthyes is micromeric 

and consists of mono-odontode scales with neck canal openings. This traditional 

depiction of the chondrichthyan squamation reflects a historical emphasis on 

descriptions of the scale cover of euselachian elasmobranchs (e.g. Reif 1985; Thies 

1995; Johns et al. 1997; Ivanov 2005; Wang et al. 2009; Fischer et al. 2010; Thies 

and Leidner 2011; Ivanov et al. 2013), which is composed of simple, single 

odontode scales. A similar condition has been documented in stem chondrichthyans 

(in Iniopterygii, Zangerl and Case 1973; Grogan and Lund 2009) as well as in 

members of the stem elasmobranch Orders Phoebodontiformes (Grogan and Lund 

2008), Xenacanthiformes (Hampe 1997; Soler-Gijón 1997) and Symmoriiformes 

(Lund 1985, 1986; Coates and Sequeira 2001) and in stem Paraselachii (e.g. in 

Helodontiformes, Moy-Thomas 1936 and Chondrenchelyiformes Lund 1982), but it 
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does not encompass all structural scale types identified in the Palaeozoic record of 

the clade.

Scales with compound crowns formed of odontodes arranged in longitudinal 

rows, termed odontocomplexes and originally identified as sequentially deposited 

units of the dermoskeleton by Ørvig (1977), have been reported in a number of 

Devonian to Carboniferous taxa known from body fossils (e.g. Antarctilamna 

[Antarctilamniformes] Young 1982; Forey et al. 1992, Diplodoselache 

[Xenacanthiformes] Dick 1981, Tamiobatis [Ctenacanthiformes] Williams 1998 and 

Orodus [Orodontiformes] Zangerl 1968). Scales of a similar appearance were 

regarded by Reif (1978) to exhibit a ctenacanthid-type of development, 

distinguished from that interpreted as characteristic for euselachian scales in the 

first published classification scheme of scale morphogenesis types in the 

Chondrichthyes. However, a substantial body of work on Silurian and Lower 

Devonian microvertebrate fossils, undertaken prior to the study of Reif (1978), 

uncovered assemblages of putative chondrichthyan scale taxa that manifest diverse 

crown architectures (e.g. Elegestolepis Karatajūtė-Talimaa 1973, Mongolepis 

Karatajūtė-Talimaa et al. 1990, Seretolepis Karatajūtė-Talimaa 1968; Karatajūtė-

Talimaa 1997, Ellesmereia Vieth 1980, Altholepis Karatajūtė-Talimaa 1997 and 

Iberolepis Mader 1986). These new data were incorporated in a comprehensive 

examination of scale-morphogenesis patterns in Palaeozoic chondrichthyans by 

Karatajūtė-Talimaa (1992), who proposed a Cambrian or Ordovician origin of the 

Chondrichthyes on the basis of recognised diverse scale developmental types. 

Subsequent research substantiated the idea of a Silurian radiation of basal 

chondrichthyan fish, by identifying new polyodontode scale genera with 

Mongolepis-type odontocomplex structure (Teslepis Karatajūtė-Talimaa and 

Novitskaya 1992, Sodolepis Karatajūtė-Talimaa and Novitskaya 1997, 
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Xinjiangichthys Wang et al. 1998 and Shiqianolepis Sansom et al. 2000) along with 

other polyodontode (Tuvalepis Žigaitė and Karatajūtė-Talimaa 2008) and single 

odontode scale taxa (Kannathalepis Märss and Gagnier 2001 and Frigorilepis 

Märss et al. 2002, 2006). Furthermore, a series of publications from the past twenty 

years, describing scale species from Laurentian (‘scale morphology A’ Sansom et 

al. 1996, ‘New Genus F’ Sansom et al. 2001, ‘mongolepid scales’ Sansom et al. 

2001) and Gondwanan (Areyongalepis oervigi Young 1997 and Tantalepis 

gatehousei Sansom et al. 2012) localities, have provided the first tangible evidence 

for the presumed origin of the chondrichthyan clade in the Ordovician. 

Despite these advances, our knowledge of the early evolutionary history of the 

Chondrichthyes remains fragmentary. This is largely due to the sparse Lower 

Palaeozoic fossil record of chondrichthyans, dominated by isolated dermal scales, 

which have traditionally been disregarded as a source of phylogenetic data. Given 

the lack of endoskeletal and/or dental skeletal elements associated with the scales 

of putative basal chondrichthyans, only a few Silurian (Elegestolepis and 

Kannathalepis) and Lower Devonian (Polymerolepis Karatajūtė-Talimaa 1968; 

Hanke et al. 2013) genera that possess euselachian-type single odontode crowns 

with neck canal openings have been assigned with a degree of confidence to the 

Chondrichthyes. It is therefore suggested that a reappraisal of scale characteristics 

that takes into account the documented types of polyodontode crown architectures 

and absence of neck canals (in the mongolepid Sodolepis Karatajūtė-Talimaa and 

Novitskaya 1997 and in the alleged stem chondrichthyans Lupopsyrus Hanke and 

Davis 2012 and Obtusacanthus Hanke and Wilson 2004) is a necessary first step 

towards recognising potential dermoskeletal apomorphies of the total group 

Chondrichthyes. Dermal scale characters are considered to possibly also carry a 

phylogenetic signal at lower taxonomic levels and have been used to diagnose 
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Order- and Family-ranked chondrichthyan taxa (Karatajūtė-Talimaa et al. 1990; 

Sansom et al. 2000), as well as in existing classification schemes of thelodont 

(Märss et al. 2007) and ‘acanthodian’ (Denison 1979) vertebrates.

The goal of the present study is to build a systematic framework for the 

geologically oldest chondrichthyan fish by examining scale-based taxa (refer to 

Chapter 6 for a full list of taxa included in the study) from the Ordovician–Lower 

Devonian interval, and characterise the primitive condition of the integumentary 

skeleton in chondrichthyans and its evolution throughout the Lower Palaeozoic. 

Also investigated were a number of species that have previously been regarded to 

demonstrate the types of scale morphogenesis prevalent among Upper Palaeozoic 

chondrichthyans (the Heterodontus, Ctenacanthus and Protacrodus types of 

Karatajūtė-Talimaa 1992).

Data collection was performed by examining complete and thin-sectioned 

scale specimens with X-ray microtomography, scanning electron microscopy (SEM) 

and Nomarski differential interference contrast (DIC) microscopy, which makes this 

the first large-scale investigation of fossil microvertebrate remains to employ the 

three investigative techniques.

The information obtained on scale histological, structural and morphological 

properties was used to interpret scale developmental patterns of early 

chondrichthyans and relate these to the morphogenetic categories identified by 

Karatajūtė-Talimaa (1992).

This study assessed the diagnostic potential of scale characters at different 

taxonomic ranks and classify the examined taxa accordingly. The chondrichthyan 

affinities and inferred inter-relationships of these species were tested by a scale-

based phylogenetic analysis of Palaeozoic jawed gnathostomes. Another aim of the 

phylogenetic investigation was to resolve the position of the paraphyletic Acanthodii 
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(Brazeau 2009; Davis et al. 2012, Zhu et al. 2013) members of which 

(Brachyacanthus, Brochoadmones, Climatius, Kathemacanthus, Obtusacanthus, 

Parexus, Ptomacanthus and Vernicomacanthus) have recently been recognized as 

stem chondrichthyans (Brazeau 2009; Davis et al. 2012; Zhu et al. 2013).
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Chapter 2: Methodology and definitions of terms

2.1. METHODS

2.1.1. Scale structure analysis

Scale specimens were isolated from sediment samples by dissolution of the rock 

matrix with dilute acetic acid and petroleum ether.

Scale morphology was documented with a Zeiss SteREO Discovery.V8 stereo 

microscope and using the JEOL JSM-6060 and Zeiss EVO LS scanning electron 

microscopes at the School of Dentistry of the University of Birmingham, UK. Prior to SEM 

imaging, specimens were sputter-coated with a 25 nm-thick layer of gold/palladium alloy.

For the purpose of studying scale histology and internal structure, thin-sectioned 

specimens were examined with Nomarski differential interference contrast microscopy 

(using a ‘Zeiss Axioskop Pol’ polarization microscope) and scanning electron microscopy 

(using a JEOL JSM-6060 SEM). This involved embedding individual specimens in epoxy 

resin (©Robnor Resins RX771C) and subsequent sectioning of the set resin blocks close 

to the scale surface with a Buehler IsoMet® low speed saw. The desired level of the 

sections was then reached by manually grinding down specimens with silicon carbide 

abrasive paper (grit sizes P600, P800 and P2500) using a Buehler MetaServ® 2000 

grinder-polisher. Sectioned surfaces were polished and glued to petrographic slides with 

Buehler EpoThin adhesive resin. The sequence of sectioning, grinding and polishing was 

repeated in order to produce doubly polished thin sections suitable for light microscopy 

investigation.
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Scale examination with X-ray radiation was performed with the SkyScan 1172 

microtomography scanner at the School of Dentistry of the University of Birmingham, UK. 

The acquired microradiographs (tomographic projections) were taken at 0.3° intervals 

over a 180° rotation cycle at exposure times of 400 ms, using a 0.5 mm thick X-ray 

attenuating Al filter. These image data were processed with the SkyScan NRecon 

reconstruction software for the purpose of generating sets of microtomograms that were 

converted into volume renderings in Amira 5.4 3D analysis software.

2.1.2. Phylogenetic analysis

Data matrix. A data matrix of 90 scale-based characters and 51 taxa (see Appendix) was 

used to build a phylogeny of jawed gnathostomes that allowed to establish the position of 

putative and established Palaeozoic chondrichthyan taxa on the resultant trees. From the 

total number of characters employed in the analyses, 70 are original with the remaining 20 

being revised/adapted from recent phylogenetic studies of Palaeozoic vertebrates 

(Brazeau 2009; Wilson and Märss 2009; Davis et al. 2012; Zhu et al. 2013). Furthermore, 

22 of the examined taxa (Altholepis, Antarctilamna, Elegestolepis, Frigorilepis, 

Gladbachus, Goodrichthys, Solinalepis gen. nov., Janassa, Kannathalepis, Mongolepis, 

Canonlepis gen. nov., Protacrodus, Seretolepis, Shiqianolepis, Sodolepis, Tantalepis, 

Teslepis, Wodnika, Tezakia gen. nov., Tchunacanthus, Tuvalepis and Xinjiangichthys) have 

never previously been incorporated in a cladistic framework.

Following Brazeau (2011), contingent coding was implemented (for the purpose of 

avoiding the logical conflicts inherent to single multistate or presence/absence characters; 

see Forey and Kitching 2000) in the composition of a dataset that integrates a combination 

of unordered binary (53) and multistate (37) characters. The total character set was used 

in the performed four separate phylogenetic analyses (numbered I–IV), for two of which a 
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weight value of 2 (compared to the default value of 1) was assigned to two subsets of 

characters. One subset includes scale morphogenetic features (characters 78–90; 

analysis II), whilst the other is represented by a mixture of histological and morphogenetic 

scale attributes (characters 57, 67, 68, 74, 76, 84; analysis III) that are thought to 

differentiate total-group chondrichthyans within Gnathostomata (see Chapter 6 for details). 

The preferential weighting in analyses II and III was adopted in order to test how tree 

topology is affected by the strengthening of characters assumed to be diagnostic at high 

systematic levels.

For analyses I–III, six taxa belonging to Anaspida (Rhyncholepis), Thelodonti 

(Thelodus, Lanarkia and Archipelepis), Galeaspida (Polybranchiaspis) and Osteostraci 

(Hemicyclaspis) were selected as an outgroup. Analysis IV was performed however by 

including only Polybranchiaspis and Hemicyclaspis in the outgroup, in accordance with the 

consistent assignment of Galeaspida and Osteostraci as outgroup taxa in cladistic studies 

of early jawed vertebrates (Brazeau 2009; Davis et al. 2012; Zhu et al. 2013; Dupret et al. 

2014). The ingroup composition is dominated by genera previously referred to the 

Chondrichthyes (26 taxa, see Appendix), out of which 12 are recognised to be scale-based 

taxa (Elegestolepis, Solinalepis gen. nov., Kannathalepis, Mongolepis, Canonlepis gen. 

nov., Shiqianolepis, Sodolepis, Tantalepis, Teslepis, Tezakia gen. nov., Tuvalepis and 

Xinjiangichthys); the ‘acanthodian’ Tchunacanthus being the only other ingroup genus 

described solely from scale remains (Karatajūtė-Talimaa and Smith 2003).

Methodology. The character-taxon dataset was assembled in Mesquite version 2.75 

(Maddison and Maddison 2011) and exported to TNT version 1.1 (Goloboff et al. 2008) for 

the purpose of performing the phylogenetic analyses. In all analyses (I–IV), the TNT New 

Technology Search (set to 10000 random addition sequences with 10000 trees retained in 

memory) was implemented to generate a set of optimal and suboptimal trees that were 
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then used to calculate the most parsimonious trees (MPT) with the TNT tree bisection 

reconnection heuristic algorithm (Traditional Search).

Standard bootstrap values (for 1000 replicates) for strict consensus and most 

parsimonious trees were obtained with the resample function of TNT, configured to 

perform a traditional tree search. Bremer supports were calculated with TNT by tree 

bisection reconnection resampling of consensus trees, retaining trees suboptimal by up to 

9 steps.

2.2. DEFINITIONS OF TERMS

Traditionally (e.g. Sykes 1974; Duffin and Ward 1993; Thies 1995) the two main 

components (the crown and base) of chondrichthyan scales have been identified on 

the basis of morphological and/or topological criteria without consideration of their 

developmental origin. This approach can lead to ambiguity when attempting to 

establish the extent of these structures and, more importantly, can result in equating 

scale parts with different tissue composition across taxa. To address the above 

issues, revised definitions are provided for terms used in literature to describe 

chondrichthyan scales that have relevance to this study. The rationale behind this is 

to improve identification of homologous scale structures across taxa by introducing 

a standardised terminology.

Crown – non-attachment portion of the scale comprised of odontogenetic 

odontogenic hard tissues (new, histology-dependent, interpretation of the structure, 

Fig. 1).
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Ped i c l e  – odontogenically derived attachment portion of scales that do not 

develop basal bone or in which bone deposition succeeds odontogenic tissue 

formation (Fig. 2). The term pedicle is adopted from Johns et al. (1997), where it 

was used to designate the lower, attachment tissue of elasmobranch scales, 

regarded by these authors to be synonymous with basal bone. Here however, 

‘pedicle’ and ‘base’ refer to scale parts of different tissue composition.

Base – the non-odontogenic (osteogenic), attachment, portion of the scale (new, 

histology-dependent, interpretation of the structure, Figs. 1, 2).

Crown sur face – the upper (for recurved crowns) or anterior (for erect crowns) 

face of the scale crown (Fig. 1). Revised from Johns et al. (1997).

Lower  c rown sur face – the lower (for recurved crowns) or posterior (for erect 

crowns) face of the scale crown delineated by a sharp transition from the crown 

surface (Fig. 1). Revised from Johns et al. (1997), originally designated as 

‘subcrown’.

Lower  ped ic le  sur face – the lower face of the scale pedicle delineated by a 

sharp transition from the overlying pedicle face. Revised from Johns et al. (1997), 

originally designated as ‘subpedicle’.

Basa l  sur face – the upper face of the scale base delineated by a sharp transition 

from the overlying basal face (Fig. 1).

Lower  base sur face – the lower face of the scale base delineated by a sharp 

transition from the overlying basal face (Fig. 1).

Lower  –  the deepest insertion point of the scale within the integument determined 

through interpretation or direct observation (Fig. 1); a new term for designating the 
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attachment end of scales, which is given preference over ‘basal’ sensu Thies (1995) 

and Thies and Leidner (2011).

Upper  – the most superficial point of the scale in respect to the tissues of the 

integument, either observed or inferred (Fig. 1); a new term favoured over ‘apical’ 

sensu Thies (1995) and Thies and Leidner (2011).

Odon tode  – a mineralised integumentary or oro-pharyngeal skeletal element 

produced by the mesenchymal and epithelial components of a single odontogenic 

cell condensation (Fig. 2); invariably composed of dentine but can also consist of 

one or more of the following odontogenic tissues: enameloid, enamel, elamsodine, 

cementum and bone of attachment (sensu Sire et al 2009). This interpretation is in 

agreement with the current understanding (Fraser et al. 2010) of the nature of 

odontode elements, but specifies a larger number of tissues that can potentially be 

involved in their formation.

P r ima ry  odon todes  – the earliest formed (primordial) odontode in scales with 

polyodontode crowns and the odontode generations associated with it that are 

added subsequently in a particular developmental sequence. This introduces a new 

term and definition for elements previously referred to as ‘principle odontodes’ by 

Sansom et al. (2000). The odontodes of mono-odontode scales are equivalent to 

primordial odontodes and are also recognized as primary.

Secondary  odontodes – a developmental series of odontodes in polyodontode 

scales deposited anterior to primary odontodes and formed following the deposition 

of the crown’s primordial odontode by a non-primary initiator odontode (adopted 

with revisions from Karatajūtė-Talimaa et al. (1990).
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Odon tocomp lex  – a row or a stack of odontodes unidirectionally deposited in 

temporal succession away from an initially formed, and incipient for the complex, 

odontode (Fig. 3).

Mono -odon tocomp lex  – pertaining to scale crowns composed of a single 

odontocomplex.

Po l yodon tocomp lex  – pertaining to scale crowns formed of multiple (more than 

one) odontocomplexes.

2.3. ACQUISITION AND ACCESSION OF SPECIMENS

Institutional prefixes of accession numbers referenced in the text indicate the 

scientific collection in which figured specimens are deposited.

Specimens from the Stairway Sandstone, the Harding Sandstone, Shell Pine Unit 

No. 1, the Xiushan Formation and the Yimugantawu Formation were provided by Dr 

Ivan Sansom (University of Birmingham, UK). 

Specimens from the Chester Bjerg Formation (collected by Dr Henning Blom, 

Uppsala University), housed at the Geological Museum, Copenhagen (Natural 

History Museum of Denmark), were received on loan from Dr Gilles Cuny (curator 

of the vertebrate palaeontology collections at the Natural History Museum of 

Denmark).

Material from the Chargat, Ivane and Dashtygoi Formations was obtained from the 

private collection of Dr Valentina Karatajūtė-Talimaa (Vilnius University, Lithuania).
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Specimens from the Downtonian of the USA were kindly provided by Prof Moya 

Meredith Smith (King's College London, UK).

Muhua Formation and Czerna 1 (Czech Republic) material was received on loan 

from the private collection of Prof Michał Ginter (University of Warsaw, Poland).

The Werra Formation and the Marl Slate (Durham Province) material was loaned 

from the fossil fish collection of the Natural History Museum, London by Dr Alison 

Longbottom.

2.4. INSTITUTIONAL ABBREVIATIONS 

BU and BIRUG, Lapworth Museum of Geology, University of Birmingham, UK

FMNH, Field Museum of Natural History, Chicago, USA

GGU, Geological Survey of Denmark and Greenland, Copenhagen, Denmark

IVPP V, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of 

Sciences, Beijing, China

NHM, BMNH and NHMUK PV P., Natural History Museum, London, UK

NIGP, Nanjing Institute of Geology and Palaeontology, Chinese Academy

of Sciences, Nanjing, China

NMS, National Museums of Scotland, Edinburgh, UK

NRM-PZ X, Naturhistoriska Riksmuseet, Stockholm, Sweden

PKUM, Geological Museum, Peking University, Beijing, China
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UALVP, Laboratory for Vertebrate Paleontology, University of Alberta, Edmonton, 

Canada

UCMZ, University Museum of Zoology, Cambridge, UK
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Figure 1. Principle morphological features of scales depicted by a line drawing of a 
Mongolepis scale (BU5296) from the Upper Llandovery–Lower Wenlock (Silurian) 
Chargat Formation of north-western Mongolia in lateral view.
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Figure 2. Recognised scale components according to their developmental origin 
and topology. Line drawing of a longitudinally sectioned Elegestolepis grossi scale 
(BU5283) from the Upper Ludlow of Tuva (Russian Federation). Grey, dentine; 
yellow, bone.
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Figure 3. Odontocomplexes composing the polyodontocomplex crown of a Teslepis 

jucunda scale (BU5321) from the Upper Llandovery–Lower Wenlock (Silurian) 

Chargat Formation of north-western Mongolia. First deposited odontocomplex 
odontodes highlighted in pink.

�17



Chapter 3: North American scale taxa from the Upper Ordovician 

shed light on the early evolution of the chondrichthyan integumentary 

skeleton

3.1. INTRODUCTION

The remains of the phylogenetically diverse Lower to Middle Devonian taxa 

Kathemacanthus, Seretolepis (Hanke and Wilson 2010), Doliodus (Miller et al. 

2003; Maisey et al. 2009) and Antarctilamna (Young 1982) comprise the 

geologically oldest articulated fossils of chondrichthyan fish with preserved 

integumentary skeleton (represented by scales and spines) and endoskeleton 

(represented by its neurocranial, splanchnocranial and appendicular 

components). Coeval to these are the earliest reported examples of 

oropharyngeal odontodes in Chondrichthyes, manifested by the disarticulated 

dentitions of the Lochkovian species Leonodus carlsi Mader 1986 and 

Celtiberina maderi Wang 1993. This diversity of skeletal systems, however, is 

not evident in the pre-Devonian record of chondrichthyan fish, as the latter are 

exclusively known from dermoskeletal elements, predominantly represented by 

isolated scale remains.

Despite the limited data, a study by Karatajūtė-Talimaa (1992) on the 

early evolution of the chondrichthyan dermal skeleton identified disparate 

patterns of morphogenesis in Silurian shark-like scale taxa and interpreted those 

as indicators of an even earlier, Ordovician, initial radiation of the clade. In 

subsequent years this suggestion has been given credence by the description of 
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shallow marine vertebrate assemblages containing putative chondrichthyan 

scale taxa from Laurentian (Sansom et al. 1996, 2001) and Gondwanan (Young 

1997; Sansom et al. 2012) localities; see also reviews by Blieck and Turner 

(2003) and Turner et al. (2004). Tantalepis gatehousei (Sansom et al. 2012) is 

the geologically oldest of these species, described from the Lower Darriwilian 

(Middle Ordovician) Stairway Sandstone unit of the Larapinta Group (Northern 

Territory, Australia), with two more putative chondrichthyan taxa (Areyongalepis 

oervigi and ?Chondrichthyes gen. et sp. indet.) from Gondwana reported by 

Young (1997) from the Darriwilian beds of the Stokes Formation (Larapinta 

Group). The other previously recognised Ordovician chondrichthyans are 

Laurentian scale taxa from the Sandbian (Upper Ordovician) horizons of the 

Harding Sandstone Formation of Colorado, designated as ‘Scale morphology 

A’ (Sansom et al. 1996, 2001; Donoghue and Sansom 2002), ‘New Genus 

F’ (Sansom et al. 2001) and a mongolepid species (Sansom et al. 2001; 

Donoghue and Sansom 2002) that is formally described in Chapter 4. 

‘Scale morphology A’ and ‘New Genus F’ are the subject of the present 

investigation, which documents the histology, crown architecture and canal 

system configuration of new ‘Scale morphology A’ scale specimens from the 

Upper Ordovician of Montana (Shell Pine Unit No. 1 well, Ross 1957), as well as 

material from the Harding Sandstone referred to ‘Scale morphology A’ and ‘New 

Genus F’ (Sansom et al. 1996, 2001; Donoghue and Sansom 2002). The 

collected data contributed towards understanding the phylogenetic relevance of 

scale characters and allowed the proposed in earlier studies chondrichthyan 

affinities of the above taxa to be assessed. In more general terms, this work is 

one of only a few to characterise in detail the histology and patterning of 

odontodes in Ordovician crown gnathostomes and contributes new information 
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to the on-going research on the integumentary-skeleton evolution of Palaeozoic 

vertebrates.

3.2. SYSTEMATIC PALAEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880

Order ALTHOLEPIDA Andreev, Shelton, Cooper, Coates and Sansom ordo nov.

Included Families. Altholepidae fam. nov. and Tezakidae fam. nov.

Diagnosis. Chondrichthyans with growing poly-odontocomplex scale crowns 

developed through sequential addition of component odontodes in posterior and 

lateral directions. Primordial scale odontode the largest and most anteriorly 

positioned crown element. Odontode length varies within odontocomplexes.

Family ALTHOLEPIDAE Andreev, Shelton, Cooper and Sansom fam. nov.

Type and only genus. Altholepis Karatajūtė-Talimaa 1997.

Diagnosis. Altholepids with scale attachment composed of bone.

Family TEZAKIDAE Andreev, Shelton, Cooper and Sansom fam. nov.

Type and only genus. Tezakia gen. nov.

Diagnosis. Altholepids possessing scales entirely formed of dentine.
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Remarks. The mono-component (dentine) structure (Fig. 7a–c) of Tezakia gen. 

nov. scales is considered a Family-grade characteristic within the Altholepida, 

distinguishing Tezakidae from the members of Altholepidae, which possess 

dermoskeletal bone. This is predicated on the notion that crown morphogenetic 

pattern is more informative to the ordinal affinities of scale taxa than hard-tissue 

composition, known to be of variable developmental origin in extant batoid 

neoselachians (Reif 1979; Miyake et al. 1999). Similarly, in lower vertebrate 

fossil clades with extensively studied integumentary skeleton histology, such as 

the Thelodonti, there are documented cases of development in separate taxa of 

either dermal bone or dentine scale support tissues—e.g. within 

Phlebolepidiformes (Gross 1967; Karatajūtė-Talimaa 1978).

Genus Tezakia gen. nov.

Type and only species. Tezakia hardingi gen. et sp. nov.

Derivation of name. Derived from ‘Tezak Heavy Equipment Co.’, owners of the 

type locality, and the suffix –ia.

Diagnosis. As for the type species.

Tezakia hardingi sp. nov.

(Figs. 4, 5, 7a–d, 8)

1996 Scale morphology A; Sansom, Smith and Smith, p. 628, fig. 1, 2.

2001 Scale morphology A; Sansom, Smith and Smith, p. 161, fig. 10.3f.
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2002 Unnamed chondrichthyan; Donoghue and Sansom, p. 362, fig. 6.4–6.

2008 Ordovician shark; Johanson, Tanaka, Chaplin and Smith, p. 89. fig. 2k, l.

Derivation of name. From ‘Harding Quarry’, the name of the type locality, and 

the genitive case-ending –i.

Locality and horizon. The type locality for T. hardingi is the Harding Quarry, 

situated c. 1 km west of Cañon City (Fremont County, Colorado, USA), with a 

second locality at the Shell Pine Unit No. 1 well (Wibaux County, Montana, 

USA). The Harding Quarry specimens come from horizons H94-16, H94-20 and 

H96-20 of the Sandbian (Upper Ordovician) Harding Sandstone Formation 

(Sansom et al. 1996). The Shell Pine material is derived from core-samples from 

the Winnipeg Formation (Ross 1957) that is coeval to the Harding Sandstone.

Holotype. An isolated scale (BU5327; Fig. 4b, c) from the Harding Sandstone 

Formation.

Referred material. A total of approximately three hundred isolated scales 

(including material figured here and in Sansom et al. 1996, BU2581–BU2583) 

from the Harding Sandstone Formation and the Winnipeg Formation. Non-

figured specimens stored in the Lapworth Museum of Geology, University of 

Birmingham, UK and the Naturhistoriska Riksmuseet, Stockholm, Sweden, 

respectively.

Diagnosis. Altholepids possessing scales with predominantly needle-shaped to 

lanceolate scale odontodes organised into multiple odontocomplex rows (up to 

15) not divided by inter-odontocomplex spaces. Primordial odontode the longest 

and the most anteriorly positioned element of the crown. Tubular dentine forms 

both crown and pedicle components of scales.
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Description.

Morphology. Scale shape is primarily rhomboid to ovate (Fig. 4a–g, k), whilst a 

minority of the specimens (less than 10 per cent) are strongly elongate in either 

antero-posterior or lateral aspect (Fig. 4j). Scale length exceeds 1 mm in c. 20 

per cent of specimens and can be as much as 1.5 mm, whereas the smallest 

scales are c. 0.4 mm long. The width of the scales varies between 0.4 and 2.3 

mm and equals their length in all specimens with the exception of the oblong 

morphovariants.

Scale crowns are composite structures formed out of 3 or more (up to c. 

25) horizontally oriented odontodes that are in contact along their lower anterior 

and posterior surfaces. The crown primordium is represented by the most 

anteriorly positioned odontode (Fig. 4), whose shape varies across specimens 

from teardrop to lanceolate and is consistently identified as the largest (up to c. 

400 μm wide) element of the crown. In some specimens (Fig. 4f), the two 

odontodes flanking the primordium are also larger than the slender odontodes 

that are the most numerous crown components. Longitudinal odontocomplex 

rows are evident in crowns with high odontode counts (10 or more) and these 

originate at an increasingly posterior position away from the sagittal plane of the 

crown. The maximal number of principle odontode rows (originating at the 

anterior crown margin) reaches 15, with additional rows commonly inserted 

further posteriorly along the sides of the odontocomplex initiated by the 

primordial odontode (Fig. 4d, h, i). Medial odontocomplexes contain the most 

odontode elements (up to 3–4), whose number progressively decreases to one 

in the most lateral odontocomplexes. Odontode surfaces are devoid of ornament 
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and appear featureless apart from the presence of a pronounced medial crest in 

less than half of the specimens.

Scale pedicles are rhomboid to oval-shaped structures protruding beyond 

the anterior and lateral crown margins. The anterior half of the pedicle is 

accentuated by a thickened rim that commonly extends into a bulbous or spike-

shaped projection aligned with the primordial odontode. Less than half (c. 40%) 

of the scales exhibit marked pedicle asymmetry manifested by disproportionate 

anterior margins, the longer of which is characterised by a strongly indented 

surface (Fig. 4h, j). The pedicles range from shallow profile ones (less than 200 

μm), with a concave to flat lower surface (Fig. 4e), to ones that have massive 

(200–300 μm thick), bulbous appearance (Fig. 4g). Only the lower surface of the 

shallow-profile morphology displays numerous canal foramina represented by a 

large (up to c. 150 μm in diameter) elliptical opening, located under the anterior 

portion of the primordial odontode, and a more posterior series of smaller (up to 

c. 70 μm in diameter) foramina similarly distributed under the lower ends of 

odontodes.

Histology. The crown and pedicle components of the scales are formed of 

acellular, tubular dentine (Fig. 7a–d). The tubular network is most dense inside 

the odontodes where it assumes a tangled, arborescent appearance. These 

tubules (diameter 2–3 μm; Fig. 7d) have a preferentially vertical orientation and 

exhibit extensive branching along their course. The tubular system of the 

odontodes emerges from the termini of short dentine canals (diameter up to c.15 

μm) that issue apically from the pulp canal. When preserved, the pulps 

constitute a narrow cavity that extends the odontode length (Fig. 7a) and 

continues inside the pedicle portion of the scale as a wide vertical canal 
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(maximal diameter of over 30 μm) that is open on the lower surface of shallow 

pedicles (Fig. 7b). Similarly to crown pulps, bundles of tubules emerge from 

these large-calibre dentine canals (Fig. 7b), whereas the rest of the pedicle 

tubule system connects to a set of smaller-diameter vertical canals (up to c. 10 

μm; Fig. 7b–d).

No optically distinct boundary separates the dentine of the crown from 

that of the underlying pedicle and the two appear to be composed of a single 

continuous tissue. The pedicle dentine exhibits an uninterrupted series of growth 

lamellae that vary in thickness (5–20 μm) across the extent of the tissue. The 

predominant lamella geometry is basally convex, but locally changes to sinuous 

(Fig. 7b) in proximity of the large-calibre canal spaces.

Remarks. Cyclomorial growth has been proposed as the mechanism of scale 

development in Tezakia hardingi gen. et sp. nov. by Sansom et al. (1996), and 

this interpretation is also supported by the present study. The evidence for crown 

growth comes from the observed disparate odontode counts (from three to 

twenty five) of Tezakia gen. nov. scales, considered to indicate discrete phases 

of crown formation. Inferring growth means that the ontogenetically youngest 

scales are the ones possessing the fewest number of odontodes, and in Tezakia 

gen. nov. these contain a primordial odontode and two flanking primary 

odontodes. Specimens that could possibly represent an even earlier, mono-

odontode, developmental stage (primordial odontode supported by a rim of 

attachment tissue; Fig. 5) are also present in the material and have previously 

been described by Sansom et al. (1996, fig. 3a–d) as thelodont. Furthermore, 

the decrease of odontocomplex length in the direction of the lateral crown 

margins is considered indicative of bidirectional odontode addition—towards the 
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posterior via odontocomplex elongation and lateral through inception of new 

odontocomplex rows.

Incremental growth, evidenced by depositional lines, is also characteristic 

for the pedicle support to the crown. Due to preservational bias, the laminated 

architecture of pedicle dentine is discernable only in Tezakia gen. nov. 

specimens from the Winnipeg Formation, and these demonstrate stacked 

arrangement of the pedicle lamellae, each covering the lower surface of the 

previously deposited one. The latter do not form a continuous growth sequence 

with the lamellae of crown dentine, which are deposited concentrically around 

odontode pulp canals (Sansom et al. 1996, fig. 2c, d). Morphological data are 

also supportive of histological observations by revealing variation in pedicle 

thickness and surface relief between specimens (from low pedicles with 

concave, pitted surface to massive, smooth-surfaced, bulbous ones), considered 

representative of progressive stages of pedicle dentine formation.

The mechanism of ontogenetic development of Tezakia gen. nov. scales 

is interpreted as Altholepis-like, in accordance with the conclusions reached by 

Sansom et al. (1996). The Altholepis-type of morphogenesis represents a 

distinct kind of scale growth pattern characteristic for Altholepida, which in light 

of the new data is diagnosed somewhat differently here from the original 

definition of Karatajūtė-Talimaa (1992). Contra Karatajūtė-Talimaa (1992), a yet-

to-be-described partial, articulated specimen of Altholepis (UALVP 41483) from 

the Lochkovian of Canada (Man on the Hill section, Mackenzie Mountains, 

Northwest Territories, Canada; Hanke and Wilson 2006) provides evidence for 

formation of new scales during ontogeny by exhibiting scales in various stages 

of development (up to twofold difference in size and odontode number between 
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neighbouring scales). Another set of morpho-developmental features shared by 

the squamation of Altholepis and Tezakia nov. gen. is the combination of a large 

primordial odontode, linear odontocomplex architecture and variable length of 

odontocomplex odontodes, considered characteristic for Altholepida. In contrast, 

the scale attachment tissues of the two genera are histologically distinct and 

exhibit different growth patterns—a succession of convex up depositional 

lamellae typifying the basal bone of Altholepis (Karatajūtė-Talimaa 1997) and 

predominantly convex dentine lamellae documented in Tezakia gen. nov. 

pedicles. Hence, characterization of the attachment tissue surface curvature is 

omitted from the definition of the Altholepis morphogenetic type, despite being 

included previously by Karatajūtė-Talimaa (1992), as it is known to vary greatly 

among scale taxa classified on a basis of their particular pattern of crown 

development (e.g. mongolepid chondichthyans Sansom et al. 2000; Chapter 4). 

                                                                                               

Order incertae sedis

Family incertae sedis

Genus Canonlepis gen. nov.

Type and only species. Canonlepis smithae gen. et sp. nov.

Derivation of name. After Cañon City, situated in proximity of the type locality, 

and ‘lepis’, scale in Greek.

Diagnosis. As for the type and only species.
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Canonlepis smithae sp. nov.

(Figs. 6, 7e–k, 8)

2001 New Genus F; Sansom, Smith and Smith, p. 164, fig. 10.4h.

Derivation of name. In recognition of Professor Moya Meredith Smith (King's 

College London) and her contribution to studies on the histology of Palaeozoic 

fish.

Locality and horizon. The Harding Quarry, situated c. 1 km W of Cañon City 

(Fremont County, Colorado, USA), is the type and only known locality of C. 

smithae. The material comes from a Sandbian (Upper Ordovician) horizon 

(sample number H94-7) of the Harding Sandstone Formation.

Holotype. An isolated scale with accession number BU5265 (Fig. 6a, b).

Referred material. Five isolated scales (figured here), including the holotype.

Diagnosis. Chondrichthyans possessing growing polyodontode scales with 

crowns composed of up to eight ovate odontodes organised into three sutured 

odontocomplexes. Odontode size changes randomly inside scale crowns. Crown 

surface of odontodes ornamented by vertical ridges.

Description.

Morphology. Small scales (maximal length of 0.6 mm) with rhomboid or 

lanceolate crowns (Fig. 6) that extend posteriorly beyond the limit of the 

supporting base. The scale crowns consist of five to eight sutured odontodes 

that are arranged in a medial odontocomplex row (up to four odontodes long; 

�28



Fig. 6a–d, h) flanked by short, incipient odontocomplexes (one or two odontodes 

each; Fig. 6a–d, h). The odontodes are posteriorly curved, ovate to lanceolate 

elements ornamented by prominent vertical ridges that bifurcate basally from 

half way down the crown (Fig. 6b, c, e). The medial odontocomplex is composed 

of the largest scale odontodes (up to 0.2 mm wide), whose size varies randomly 

within an individual specimen. 

The scale base has an irregular, lobate, outline and when intact protrudes 

beyond the anterior crown border (Fig. 6a, b). Deep furrows mark the basal 

surface, whereas the lower-base face demonstrates highly granular texture and 

multiple foramina of variable diameter (30–90 μm).

Histology. Scale odontodes are composed of acellular dentine tissue (Fig. 7e–g) 

characterised by proximally wide tubules (diameter of c. 5 μm) that bifurcate as 

straight and long rami (2–3 μm in diameter and more than half of overall tubule 

length) branched terminally into fine-calibre tubules (c. 1 μm in diameter). The 

tubular system of each odontode radiates out of a short (less than half the 

odontode height) pulp cavity space (Fig. 7f, g). The latter continues inside the 

scale base as a large-calibre vertical canal (maximal diameter of c. 60 μm; Fig. 

4f, h) that opens at the lower-base surface (Fig. 7i). The basal bone exhibits a 

succession of depositional lamellae (Fig. 7h) of wavy geometry that match the 

outline of the lower basal surface. Oriented parallel to the boundaries of these 

growth increments are the intrinsic mineralised fibres (sensu Ørvig 1966) of the 

bone tissue matrix, which are intersected by c. 5 μm wide vertical bundles (Fig. 

7h) of extraneous fibres (sensu Ørvig 1966).

Remarks. The proposed bidirectional (posterior and lateral) crown growth 

pattern of Tezakia gen. nov. is similarly determined to be a feature of Canonlepis 
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gen. nov. scales, as these too exhibit odontocomplex shortening (decrease in 

odontode number) lateral of the initial odontocomplex. The two taxa are found to 

share a common odontocomplex structure (Fig. 8) typified by non-regular size 

change of constituent odontodes, but, whereas the primordial odontode of 

Tezakia gen. nov. is consistently the longest crown element this does not appear 

to be the norm for Canonlepis gen. nov. scales. Considering that Canonlepis 

gen. nov. scales do not possess a large primordial odontode, characteristic for 

Altholepida, they are regarded to develop a distinct type of crown structure that 

is similar to that seen in the Devonian putative chondrichthyan scale taxa 

Ohiolepis sp. (Basden et al. 2000, fig. 11.8), Ohiolepis newberryi (Wells 1944, pl. 

III, fig. 11, 13, 14; Gross 1973, pl. 30, fig. 8–10, 12–21; fig. 21 a, b) and 

Hercynolepis meischneri (Gross 1973, pl. 33, fig. 13–15). This patterning of 

scale odontodes, however, is also recognised in birkeniid anaspids (Märss 1986, 

pl. XXVI; Blom et al. 2002; Märss 2002, fig. 2–4) and indicates a 

phylogenetically more basal origin of the Canonlepis-type of scale 

morphogenesis. Following from this, the proposed placement of C. smithae gen. 

et sp. nov within the Chondrichthyes is dictated by the possession of a 

combination of scale characters not known to occur outside the clade (see 

Discussion section for details).
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3.3. DISCUSSION

3.3.1. The characteristics of chondrichthyan scales

Previous work on the developmental aspects of the chondrichthyan 

integumentary skeleton has identified widely diverse patterns of scale 

morphogenesis in Palaeozoic Chondrichthyes (Reif 1978; Karatajūtė-Talimaa 

1992, 1998), whereas much less is known about how these compare with the 

scale development characteristics of other lower vertebrates. It is argued here 

that the prevalent type of crown architecture of Palaeozoic chondrichthyans with 

polyodontode scales (e.g. present in Mongolepidida Karatajūtė-Talimaa 1998, 

ctenacanth-like scales Derycke et al. 1995; Ivanov 1996; Ginter and Sun 2007 

and Orodontiformes Zangerl 1968) is also developed in stem osteichthyans (in 

the Devonian genus Ligulalepis Schultze 1968; Burrow 1994). Likewise, the 

mode of scale formation of the earliest recorded chondrichthyans with mono-

odontode scale cover (Elegestolepis Karatajūtė-Talimaa 1973 and 

Kannathalepis Märss and Gagnier 2001) is also recognised in thelodontiform 

thelodonts (Turinia and Helenolepis Karatajūtė-Talimaa 1978, fig. 14, 15, 27). 

This has been acknowledged in earlier work (Märss et al. 2007) and indicates 

that some of the types of scale odontode patterning and development 

documented in basal chondrichthyans have evolved independently outside the 

clade.

Neck canal openings (sensu Reif 1978), traditionally considered a 

characteristic of the total-group Chondrichthyes (Maisey 1984, 1986; Lund and 

Grogan 1997), have also been documented in the scales of phylogenetically 

more basal acanthodian-grade gnathostomes (e.g. Diplacanthus Valiukevičius 

2003a; pers. obs., Cheiracanthus Gross 1973, fig. 35 b and Gladiobranchus 
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Hanke and Davis 2008, fig. 13) as well as in sister-group taxa (e.g. the stem 

osteichthyan Andreolepis Gross 1968 and the basal actinopterygian Cheirolepis 

Gross 1973, fig. 33 d, 34 d). Furthermore, the external exposure of odontode 

pulps in the proximity of the crown’s support tissue in certain basal 

chondrichthyans is now understood to be either a transient feature that becomes 

evident only at particular stages of scale ontogenesis (Märss et al. 2006; Hanke 

and Wilson 2010) or not to develop altogether (in the Ordovician species 

Tantalepis gatehousei Sansom et al. 2012). The former condition is exemplified 

by the identified growth series of Elegestolepis (Karatajūtė-Talimaa 1973; this 

study) and Kannathalepis (Märss and Gagnier 2001) scales that exhibit 

formation of neck canals only late in ontogeny through enclosure of vascular 

cavities by the growing crown. Neck canals can also be masked by rapid 

deposition of dentine during early scale development (in the mongolepid 

Sodolepis Karatajūtė-Talimaa 1997; Chapter 4).

The linear odontocomplex architecture of Tezakia gen. nov. and 

Canonlepis gen. nov. scales is widely developed among Palaeozoic 

chondrichthyans (e.g. present in Mongolepidida Karatajūtė-Talimaa 1998, 

Kathemacanthidae Hanke and Wilson 2010; Martínez-Pérez et al. 2010 and 

Orodontiformes Zangerl 1968), but also occurs in anaspid agnathans (Märss 

1986; Blom et al. 2002). The poly-odontocomplex scales of chondrichthyans, 

nevertheless, can be recognised by the absence of osteons that otherwise 

commonly develop in the dermal skeleton of the Anaspida (Märss 1986; Blom et 

al. 2002) and other stem gnathostome clades (e.g. Pteraspidomorphi Denison 

1953, 1967; Ørvig 1989 and Osteostraci Stensiö 1932; Denison 1952).
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The primitive state of polyodontode micromeric dermoskeletal elements in 

jawed gnathostomes is represented by various ‘placoderm’ lineages (e.g. 

Rhenanida [Ohioaspis, Gross 1973; Burrow and Turner 1999], Acanthothoraci 

[Romundina, Giles et al. 2013] and Arthrodira [Buchanosteidae, Burrow and 

Turner 1998]) and is typified by plesiomorphic characteristics, viz superpositional 

crown growth and cancellous bone formation, shared with Heterostraci, 

Astraspida (Denison 1967) and Osteostraci (Denison 1952). These are also a 

feature of the poly-odontocomplex squamation of the Osteichthyes (present in 

the stem taxa Lophosteus Gross 1969, Andreolepis Gross 1968 and Ligulalepis 

Schultze 1968)—a sister group of the Chondrichthyes according to most recent 

phylogenies (Brazeau 2009; Davis et al. 2012)—an observation that further 

emphasises the specialised nature of chondrichthyan poly-odontocomplex 

scales.

The existing way of identifying chondrichthyan scales, based on 

morphogenetic and/or vascular system features, therefore needs to be 

substituted for an approach that factors in a wider range of morphological, 

developmental and histological scale attributes. Accordingly, the proposed 

systematic placement of Tezakia gen. nov. and Canonlepis gen. nov. is dictated 

by a set of shared characters—scale symmetry and poly-odontocomplex crown 

coupled with the absence of enamel, cancellous bone, hard tissue resorption 

and superpositional odontode generation—that does not exclude their 

placement inside Chondrichthyes, but is at odds with the known integumentary 

skeleton characteristics of other lower vertebrate clades.
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3.3.2. The integumentary skeleton of Ordovician chondrichthyans

Ordovician chondrichthyan scale taxa share a poly-odontode crown structure, 

considered to be produced by two different styles of crown morphogenesis that 

are distinguished by the presence or absence of odontocomplex organisation of 

scale odontodes. The latter type is identified in the Darriwilian species Tantalepis 

gatehousei (Sansom et al. 2012), where specimens in a supposedly mono-

odontode developmental stage have been described (Sansom et al. 2012, fig. 2 

d). Comparison of these mono-odontode scales with the more common three-

odontode Tantalepis scales implies bidirectional addition of odontodes laterally 

of the crown primordium (Fig. 8). This type of growth has been termed opposite-

side zonal by Stensiö (1961, fig. 2G1–G8) and outside of Tantalepis is known 

only to occur in the scales of eugeneodontiform chondrichthyans (e.g. in 

Eugeneodus Zangerl 1981). A more complex kind of crown morphogenesis, that 

involves both lateral and posterior odontode generation (through odontocomplex 

formation), appears to be prevalent in Ordovician chondrichthyans (identified in 

Tezakia gen. nov., Canonlepis gen. nov. and in the mongolepid Solinalepis gen. 

nov. described in Chapter 4). The irregular pattern of odontode-size change 

within the odontocomplex units of Tezakia gen. nov. and Canonlepis gen. nov. 

(Fig. 8) departs considerably from the gradual posterior increase in odontode 

length documented in mongolepid scales. These odontocomplex architectures 

have a rather wide distribution among Palaeozoic Chondrichthyes, as they are 

also recognised in the squamation of post-Silurian chondrichthyans (see above 

for details).

The available histological data (this study, Sansom et al. 1996, 2000; 

Karatajūtė-Talimaa 1998; Donoghue and Sansom 2002) reveal that dentine is 
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the sole crown  component of integumentary odontodes in chondrichthyan 

lineages originating in the Ordovician. Additional evidence indicates that this 

scale odontode structure has also been retained in Silurian chondrichthyan taxa 

(Karatajūtė-Talimaa 1998; Märss et al. 2006; Žigaitė and Karatajūtė-Talimaa 

2008), contra Sire et al. (2009) who have erroneously claimed enameloid in 

mongolepid and elegestolepid scales. 

Tezakia gen. nov. and Canonlepis gen. nov. odontodes demonstrate the 

geologically oldest tubular dentines recorded in the Chondrichthyes. The dentine 

structure of Tezakia gen. nov. is found to be broadly similar to the thelodont type 

2b dentine of Žigaitė et al. (2013)— arborescent tubules confluent with large-

calibre dentine canals—described in the Silurian genera Helenolepis 

(Karatajūtė-Talimaa 1978) and Shielia (Märss and Karatajūtė-Talimaa 2002). The 

linear, large-calibre dentine-tubule architecture developed in Canonlepis gen. 

nov. is likewise present in the Thelodonti (the Turinia histological type of Märss 

et al. 2007) and within crown gnathostomes appears in the putative 

chondrichthyan scale taxon Kannathalepis milleri (Märss and Gagnier 2001). 

Uncharacteristically for chondrichthyan polyodontode scales, the pedicle dentine 

of Tezakia gen. nov. provides the only support for the crown odontodes, as 

dermal bone is absent in this genus. This is a feature shared with the mono-

odontode scales of neoselachians (Johanson et al. 2008). In contrast, 

Canonlepis gen. nov. along with the Ordovician mongolepid Solinalepis gen. nov. 

(Donoghue and Sansom 2002; Chapter 4) possess the earliest known 

chondrichthyan scales with a two-component (odontogenic and osteogenic) 

organization that is common among Palaeozoic chondrichthyans.
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3.4. CONCLUSIONS

The present study of Tezakia gen. nov. and Canonlepis gen. nov. establishes a 

hierarchy of scale characters according to which these taxa are classified at an 

ordinal (scale-crown odontode patterning), familial (scale support-tissue 

histology) and generic (scale morphology) level. On the basis of the new data, it 

is proposed that the general pattern of scale-crown morphogenesis and the hard 

tissue structure of the two taxa conform to that of basal chondrichthyans and 

justifies their placement within the Chondrichthyes, in agreement with previous 

studies (Sansom et al. 1996; Sansom et al. 2001; Donoghue and Sansom 2002; 

Johanson et al. 2008).

The identification of contrasting crown architecture and hard-tissue 

composition between Tezakia gen. nov. and Canonlepis gen. nov. specimens, 

coupled with evidence from other Ordovician chondrichthyan scale taxa 

(Donoghue and Sansom 2002; Sansom et al. 2012; Chapters 4, 6), is linked to 

rapid evolution of the integumentary skeleton within the clade and is interpreted 

to point to an extensive early diversification of basal chondrichthyan fish.
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Figure 4 (on the following page). Tezakia hardingi gen. et sp. nov. scales from the 
Sandbian (Upper Ordovician) Harding Sandstone of central Colorado, USA (a–c, f, j, k) 
and the Winnipeg Formation (Shell Pine Unit No. 1) of Montana, USA (d, e, g–i). 
Symmetrical scales with poly-odontocomplex crowns in (a) anterior crown (BU5326), (b) 
crown (BU5327 holotype), (c) postero-lateral (BU5327 holotype), (d) crown (NRM-PZ 
X1), (e) basal (NRM-PZ X2), (f) crown (BU5330), (g) basal (NRM-PZ X3) and (j) crown 
(BU5332) views. Poly-odontocomplex asymmetrical scales (h) NRM-PZ X3 and (i) 
NRM-PZ X4 in crown view. (k) Symmetrical scale (BU5335) in crown view displaying 
incipient odontocomplexes. Anterior towards the bottom in (b, d–k). (a, b, d–k) SEM 
micrographs; (c) volume rendering. Scale bar represents 200 μm in (a–g, j, k) and 300 
μm in (h, i).
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Figure 5. Light micrographs of a probable ontogenetically young (mono-
odontode) Tezakia hardingi gen. et sp. nov. scale (BU5336) from the 
Sandbian (Upper Ordovician) Harding Sandstone of central Colorado (USA), 
depicted in (a) crown and (b) basal view. Scale bar represents 200 μm.
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Figure 6 (on the following page). Canonlepis smithae gen. et sp. nov. scales from the 
Sandbian (Upper Ordovician) Harding Sandstone of central Colorado, USA. (a) Crown 
and (b) lateral crown views of BU5265 (holotype). (c, d) Crown views of BU5266 and 
BU5267. (e–g) BU5268 in (e) anterior, (f) basal and (g) posterior views. (h) Specimen 
BU5346 in lateral crown view. (a–d, h) SEM micrographs; (e–g) volume renderings. 
Anterior towards the bottom in (a, c, d, f) and towards the left in (b, h). Scale bar 
represents 200 μm.
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Figure 7 (on the following page). Hard-tissue structure and canal system architecture 
of (a–d, i) Tezakia hardingi gen. et sp. nov. and (e–h, j, k) Canonlepis smithae gen. et 
sp. nov. scales from (a, g–k) the Sandbian (Upper Ordovician) Harding Sandstone of 
central Colorado, USA and (b–d) the Winnipeg Formation (Shell Pine Unit No. 1) of 
Montana, USA. (a) Longitudinal sagittal section of BU2582. (b, c) Transverse vertical 
sections of NRM-PZ X5 and NRM-PZ X6. (d) Detail of (c). (e) Longitudinal and (f) 
transverse tomographic slices of �  BU5268. (g) Scale odontode in longitudinal section 42
(BU5267). (h) Portion of the basal bone tissue of a transversely sectioned scale 
(BU5268). (i) Detail of odontodes (top) and scale attachment tissue of BU5337 in basal 
view. Canals (red) inside a translucent specimen (BU5268) in (j) posterior and (k) crown 
views. (a–d, g, h) Nomarski DIC optics micrographs; (e, f, j, k) volume renderings; (i) 
SEM micrograph. Anterior towards left in (a, g) towards right in (e) and towards the 
bottom in (i, k). bbc, basal bone canal; pc, pulp canal; pdc, pedicle dentine canal; pdco, 
pedicle dentine canal opening; arrowheads point at dentine tubules in (e–g). Scale bar 
represents 200 μm in (a–c, f, i, k), 100 μm in (d, e, j) and 25 μm in (h).
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Figure 8. Diagrammatic representation of scale-morphogenesis patterns and 
odontocomplex structure of known Ordovician chondrichthyans. Recognised 
morphogenetic types: Eugeneodus-type (sensu this study, see Chapter 6) in Tantalepis, 
Altholepis-type (sensu this study, see Chapter 6) in Tezakia gen. nov., Ohiolepis-type 
(sensu this study, see Chapter 6) in Canonlepis gen. nov. and Mongolepis-type (sensu 
this study, see Chapter 6) in Solinalepis gen. nov.
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Chapter 4: Ordovician origin of Mongolepidida and the integumentary 

skeleton of basal chondrichthyans

4.1. INTRODUCTION 

Middle Ordovician to Upper Silurian strata have yielded a number of disarticulated 

remains that have been assigned to the chondrichthyans with varying degrees of 

confidence; a 50 million year record pre-dating the first appearance in the Devonian of 

clear chondrichthyan teeth (Leonodus	
  and Celtiberina Botella et al. 2009) and the 

earliest articulated specimens (Doliodus Miller et al. 2003; Maisey et al. 2009 and 

Antarctilamna Young, 1982). These, largely microscopic, remains include the 

elegestolepids (Karatajūtė-Talimaa 1973), sinacanthids (Zhu 1998; Sansom et al. 

2005b), taxa such as an as-yet-unnamed scale-based form from the Harding Sandstone 

(Sansom et al. 1996), Tantalepis (Sansom et al. 2012), Kannathalepis (Märss and 

Gagnier 2001) and Pilolepis (Thorsteinsson 1973), and, perhaps the most widely 

distributed and diverse collection of what Ørvig and Bendix-Almgreen, quoted in 

Karatajūtė-Talimaa (1995), referred to as ‘praechondrichthyes’, the mongolepids 

(Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa and Predtechneskyj 1995; Sansom 

et al. 2000). It is the latter which this work concentrates on, re-assessing and re-defining 

previously described members of the Mongolepidida, and describing a new taxon that 

extends the range of the order into the Ordovician, adding further evidence for a 

diversification of early chondrichthyans as part of the Great Ordovician Biodiversification 

Event that encompasses a wide variety of taxa, both invertebrate (e.g. Webby et al. 
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2004; Servais et al. 2010) and vertebrate (Sansom et al. 2001; Turner et al. 2004 in 

Webby et al. 2004 etc).

Previous work on mongolepids.

Mongolepids were first described by Karatajūtė-Talimaa et al. (1990) from the Chargat 

Formation (Upper Llandovery–Lower Wenlock) in north-western Mongolia, together with 

a diverse assemblage of early vertebrates including pteraspidomorphs (Karatajūtė-

Talimaa et al. in prep.), thelodonts (Žigaitė et al. 2011), acanthodians and elegestolepids. 

The type species Mongolepis rozmanae	
  was subsequently added to with the description 

of Teslepis jucunda	
  Karatajūtė-Talimaa and Novitskaya (1992) and Sodolepis lucens	
  

Karatajūtė-Talimaa and Novitskaya (1997), also from the Chargat Formation. 

Shiqianolepis hollandi from the Xiushan Formation (Telychian) of south China was also 

placed within the order by Sansom et al. (2000), although a new family, the 

Shiqianolepidae, was erected based upon an interpretation of the scale growth patterns 

within mongolepids. Additional material from the upper Llandovery of the Tarim Basin 

(Xinjiang Uygyr Autonomous Region, north-west China), due to be described by Wang et 

al. (in prep.), is also referable to the group. Thus, to date, the distribution of mongolepids 

has been limited to a very narrow time frame (Llandovery–Wenlock) and is also 

concentrated within the Mongol-Tuva, South China and Tarim tectonic blocks.

The taxonomic placement of the group has been greatly hampered by the 

absence of any articulated specimens that exhibit any anatomical detail of the 

mongolepid bauplan (Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa 1995).
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4.2. SYSTEMATIC PALAEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880

Order MONGOLEPIDIDA Karatajūtė-Talimaa, Novitskaya, Rozman and Sodov, 1990

Included families. Mongolepididae Karatajūtė-Talimaa et al. 1990 and Shiqianolepidae 

Sansom et al. 2000.

Emended diagnosis. Chondrichthyans with polyodontode growing scale crowns formed 

by multiple antero-posteriorly oriented primary odontocomplex rows. Odontode size 

within each row increases gradually towards the posterior of the scale. Individual 

odontodes formed exclusively of inotropically and spheritically mineralised atubular, 

acellular dentine (lamellin).

Remarks. The current study has determined scale crown growth (sensu Reif 1978) to be 

a characteristic shared by all mongolepid taxa (see Discussion for details), contrary to 

previous interpretations of synchronomorial development of scale odontodes in 

Mongolian mongolepid species (Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa and 

Novitskaya 1992, 1997). Under the revised definition of the order, the Mongolepidida 

retains the families Mongolepididae (Karatajūtė-Talimaa et al. 1990) and Shiqianolepidae 

(Sansom et al. 2000), yet contra Sansom et al. (2000) these are diagnosed on the basis 

of base histology (see below) and are expanded to also include the genera Rongolepis 

and Xinjiangichthys respectively. A third newly identified mongolepid species, Solinalepis 

levis	
  gen. et sp. nov., is placed as incertae sedis due to it not exhibiting the family-grade 

characteristics of the other members of the clade.
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Family MONGOLEPIDIDAE Karatajūtė-Talimaa, Novitskaya, Rozman and Sodov, 1990

Included genera. Mongolepis Karatajūtė-Talimaa et al. 1990,	
  Teslepis Karatajūtė-

Talimaa and Novitskaya 1992, Sodolepis Talimaa and Novitskaya 1997 and Rongolepis 

Sansom et al. 2000.

Emended diagnosis. Mongolepids possessing scale bases composed of acellular bone 

tissue with plywood-like layering.

Remarks. Scale-derived phylogenetic data (see Chapter 6) identify two monophyletic 

groups inside Mongolepidida distinguished by differences in the bone histology of the 

scale base. These substitute the scale-crown developmental characteristics used 

previously by Sansom et al. (2000) to establish the family structure of the Mongolepidida. 

Genus Mongolepis Karatajūtė-Talimaa, Novitskaya, Rozman and Sodov, 1990

Type and only species. Mongolepis rozmanae Karatajūtė-Talimaa et al. 1990, from the 

Chargat Formation, Salhit regional Stage (Upper Llandovery–Lower Wenlock) of north-

western Mongolia.

Emended diagnosis. As for the type species.

Mongolepis rozmanae Karatajūtė-Talimaa, Novitskaya, Rozman and Sodov, 1990

(Figs. 9a–c, 11a–c, 12a–c, 13d)

Emended diagnosis. Mongolepidids (pertaining to Mongolepididae) possessing scale 

crowns that attain lengths of up to 3 mm. Crowns containing a maximum of 40 primary 

odontocomplex rows separated by inter-odontocomplex spaces. Primary odontode pulps 
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opened on the crown surface via a pair of horizontal canals. Bulbous base with 

prominent crescent-shaped anterior platform that extends beyond the limit of the crown.

Holotype. An ontogenetically mature scale (M-1-031) deposited in collection M-1 of the 

Lithuanian Geological Survey, Vilnius (Karatajūtė-Talimaa et al. 1990).

Referred material. Hundreds of isolated scales (including material figured here and in 

Karatajūtė-Talimaa et al. 1990 and Karatajūtė-Talimaa and Novitskaya 1992, M-1-023) 

from the type locality; samples 16/3 and	
  ЦГЭ N1009. Non-figured specimens stored in 

the Lapworth Museum of Geology, University of Birmingham, UK. 

Description.

Morphology. Primary odontodes of the same generation are of equal size irrespective of 

scale dimensions. The number of odontocomplex rows changes with the proportions of 

the crown and its size, with scales of up to 2 mm in length usually possessing less than 

20 odontocomplexes, whereas in larger specimens their number varies from 20 to c. 35.

Primary odontodes exhibit posteriorly curved profiles and an incremental increase 

in length towards the posterior of the scale (Figs. 11a–b, 13d). This creates a significant 

height difference (over five fold in medial odontocomplexes) between the anterior- and 

the posterior-most primary odontodes, whilst odontode thickness remains relatively 

constant at c. 50 μm (Figs. 11a–b, 13d). The crown surface profile is planar (Fig. 9a, b) 

due to a gradual decrease in the angle of odontode curvature towards the posterior of 

the scale, accompanied by sloping of the crown/base contact surface (Figs. 11a, 13d).

In scales larger than 1 mm, secondary odontodes are developed to a varying 

extent along the anterior margin of the crown (Fig. 9a, b). These are arranged into rows 

and are undivided by inter-odontode spaces (Fig. 9a, b). Similarly to the main crown 

odontodes, the secondary odontodes are posteriorly arched elements that demonstrate 
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an unidirectional increase in length (Figs. 11a–b, 13d); the latter being expressed 

towards the anterior end of the scale.

The scale bases are bulbous structures (Fig. 9a–c) that reach their maximum 

thickness directly under the anterior apex of the crown. To the posterior, the majority of 

scale bases display a pitted lower-base surface produced by series of canal openings 

(Fig. 9b, c).

Histology. Scale odontodes are composed of atubular dentine (Fig. 11a–c); lamellin in 

Karatajūtė-Talimaa et al. (1990). Within individual odontodes, the lamellin displays two 

histologically distinct regions—a peripheral (10–20 μm thick) lamellar zone and an inner 

region dominated by spherites united within Liesegang waves (Fig. 11c). The diameter of 

the calcospherites changes randomly and rarely exceeds 15 μm.

Primary odontode pulps are mostly closed off or greatly constricted by dentine 

infill, but remain open at their lower end, from which emerges a pair of short (c. 15 μm) 

horizontal canals that connect the pulp cavity to the odontode surface (Fig. 12c, c1). The 

foramina of these canals face either the inter-odontocomplex spaces or, in marginal 

odontodes, are exposed at the periphery of the crown (Fig. 9a).

In a similar manner to primary odontocomplexes, the pulps of secondary 

odontodes are substantially constricted by dentine deposition, but lack the network of 

horizontal canals (Figs. 9a–b, 12c) developed inside the rest of the crown.

The scale base consists of acellular bone characterised by a succession of 

convex-down growth lamellae (up to 150 μm thick; Fig. 11a) that increase in areal extent 

towards the lower portion of the tissue. Secondary lamination is evident within these 

primary depositional structures and is produced by intrinsic mineralised fibres (sensu 

Ørvig 1966) of c. 2 μm diameter, which are likewise present at the contact surfaces of 
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primary lamellae (Fig. 11a). The basal bone tissue also harbors elaborately organised 

extraneous crystalline fibres (sensu Ørvig 1966) of c. 2 μm diameter (Fig. 11a), which 

have the appearance of hollow cylindrical rods. These are grouped into layers oriented 

obliquely in respect to one another (Fig. 11a), that propagate through the entire tissue. 

The layers exhibit upwardly arching profiles and thickness of c. 50-70 μm. A second 

extraneous component of the mineralised bone matrix consists of vertically directed 

attachment fibres (Fig. 11a) crosscutting the lamellae of the base. The former are 

mutually parallel and evenly spaced at approximately 10 μm intervals; never observed to 

group into higher order structures such as bundles or lamellae.

The base houses a vascular system represented by curved (both anteriorly and 

posteriorly) large-calibre vertical canals (c. 100 μm; Fig. 12a, b) that are split at their 

upper end into two or more rami, each merging with one of the primary odontode pulps. 

Conversely, the secondary odontode pulps are not connected to the canal system of the 

base.

Remarks. In comparison to earlier work on Mongolepis (Karatajūtė-Talimaa et al. 1990; 

Karatajūtė-Talimaa 1998), the present study interprets in a new way the mechanism of 

scale ontogenesis of the genus. Recorded size differences between Mongolepis scales 

have been used by previous authors to identify four distinct ontogenetic stages in the 

development of the scale cover. They have suggested synchronomorial crown growth 

succeeded by incremental deposition of basal bone to typify the scale morphogenesis of 

Mongolepis, with scales of ever-increasing crown size and base thickness assumed to 

be added at each stage of scale cover ontogeny.

The conducted re-examination of Mongolepis material revealed the presence of 

bases across the spectrum of documented scale sizes. More to the point, specimens of 

the sub-millimetre category, corresponding to the papillary and juvenile scales of 
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Karatajūtė-Talimaa et al. (1990), possess bases that are proportionally as thick as those 

of larger scales. This questions the validity of reconstructions depicting these scales as 

composed exclusively of odontodes (Karatajūtė-Talimaa 1998, fig. 11A2, E), perhaps 

founded upon descriptions of specimens with fully abraded bases. The morphological 

evidence is thus in favor of a hypothesis proposing incremental and mutually 

synchronous deposition of Mongolepis crown and base scale components. The 

odontocomplex structure and base depositional lamellae of Mongolepis scales are 

similarly identified in all recognised mongolepid genera and indicate that cyclomorial 

scale growth is a characteristic of the Mongolepidida (refer to Discussion for details).

Genus Teslepis Karatajūtė-Talimaa and Novitskaya, 1992

Type and only species. Teslepis jucunda Karatajūtė-Talimaa and Novitskaya, 1992, 

from the Chargat Formation (Salhit regional Stage, Upper Llandovery–Lower Wenlock) of 

north-western Mongolia.

Emended diagnosis. As for the type species.

Teslepis jucunda	
  Karatajūtė-Talimaa and Novitskaya, 1992

(Figs. 9d–e, 4d, 12d, 13a)

Emended diagnosis.	
  Mongolepidids with scale crowns that reach length of 1 mm. 

Crowns possess up to 13 odontocomplex rows divided by linear spaces. Anterior and 

lateral crown margins composed of a crescent-shaped mass of atubular globular dentine. 

Lower portions of crown pulps opened at the odontode surface via a pair of horizontal 

canals. Scale base always thicker than the crown at an antero-basally directed conical 

projection.
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Holotype. An ontogenetically mature scale (M-1-077) deposited in collection M-1 of the 

Lithuanian Geological Survey, Vilnius (Karatajūtė-Talimaa and Novitskaya 1992).

Referred material. Hundreds of isolated scales (including specimens figured here and in 

Karatajūtė-Talimaa and Novitskaya 1992) from the type locality; samples 16/3 and	
  ЦГЭ 

N1009). Non-figured specimens stored in the Lapworth Museum of Geology, University 

of Birmingham, UK. 

Description.

Morphology. The number of the scale odontocomplex rows is related to crown size and 

its proportions. In small specimens (less than 0.5 mm long) their number varies from 4 to 

6, whilst it reaches 13 in scales larger than 1 mm. Within individual odontocomplexes the 

odontode length gradually increases in a posterior direction (Fig. 11d), whereas 

odontode thickness remains relatively constant at c. 50 μm.

In the majority of specimens a crescent-shaped platform (Fig. 9d) is formed 

anterior to the odontocomplexes, and the former can be elevated slightly above the level 

of the odontodes. The absence of this thickening does not correlate with a particular 

scale size.

The base is not constricted at the contact with the crown (Fig. 9d, e) and extends 

away from this junction into an anteriorly-directed conical projection that protrudes 

beyond the crown margin. The posterior third of the base is shallower in comparison to 

its thickened anterior (Fig. 11d), and is marked by rows of canal openings (30–60 μm in 

diameter; Fig. 9e) aligned with the odontocomplexes of the crown.

Histology.	
  The	
  crown odontodes consist of atubular dentine (lamellin; Fig. 11d) exhibiting 

a predominately lamellar periphery and an inner spheritically mineralised region. The 

calcospherites of the globular lamellin attain a diameter of approximately 10 μm and 
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comprise of concentric Liesegang rings closed around a central cavity. These exhibit 

linear or concave arrested growth contact surfaces with other spherites and adjacent 

Liesegang waves. The scale odontodes possess vascular spaces in the form of vestiges 

of pulp canals that are mostly filled in by lamellin. The pulps branch out laterally as 

paired short horizontal canals (diameter 10–15 μm) that open on the odontode surface 

(Fig 12d, d1).

A structural variety of atubular dentine different from lamelline composes the 

crown platform that surmounts the thickest part of the base (Fig. 11d). This tissue 

exhibits exclusively spheritic mineralization manifested by tightly packed globules (up to 

10 μm in diameter), and lacks a canal system.

The basal bone is acellular and demonstrates a series of depositional lamellae 

demarcated by basally arched intrinsic fibres (Fig. 11d). The smallest lamellae reside at 

the level of the anterior-most odontodes, with lamella thickness varying from 15 μm to 20 

μm across the extent of the tissue.

The basal bone	
  contains extraneous mineralised fibres grouped into 20–40 μm 

thick layers with upwardly curved profiles. The fibres within each layer are mutually 

parallel but also oriented obliquely to those of adjacent lamellae, giving the bone a 

plywood-like texture. In addition to the abundant fibres with layered organization, the 

tissue contains a set of extraneous, vertically oriented fibres (Fig. 11d) that are evenly 

spaced at about 5 μm intervals and propagate up to the level of the crown-base junction.

The base is penetrated by a number of large-calibre vertical vascular canals (Fig. 

12d, d1), which connect with the pulp cavities of crown odontodes. The former are 

predominantly preserved in the posterior (thinnest) third of the base as anteriorly arching 

canals that gradually widen to c. 40 μm at the lower base surface (Fig. 12d, d1).
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Remarks. The anterior crown platform of Teslepis scales (developed also in Sodolepis) 

has received little attention in the descriptions of Karatajūtė-Talimaa and Novitskaya 

(1992) and Karatajūtė-Talimaa (1998), apart from being identified as composed of an 

undetermined type of globular basal tissue. The platform always forms at the level of the 

primary odontodes and sutures to the anterior most of them, developing at the place 

typically occupied by secondary odontodes in Mongolepis, Rongolepis, Xinjiangichthys 

and Shiqianolepis scales. From a histological perspective, the lack of lamellar matrix and 

the predominantly arrested-growth contact surfaces of spherites resemble the 

microstructure of certain types of spheritically mineralised dentine (Schmidt and Keil 

1971, fig. 46, 47). Consequently, this tissue is regarded to be globular atubular dentine 

as opposed to globular dermal bone that is commonly formed only in the cavity-rich 

cancellous zone of the exoskeleton of lower vertebrates (Ørvig 1968; Donoghue et al. 

2006; Downs and Donoghue 2009). Contrasting with the well-defined and consistent 

shape of the odontodes, the anterior platform is a structure with irregular surface and 

poorly defined boundaries, whose shape is determined by the contours of the underlying 

base. Following from the above, it could be suggested that this mass of globular dentine 

is not the product of a well-differentiated dermal papilla, which typifies early odontode 

development and determines the morphology of odontodes independently of that of the 

basal bone (Sire 1994; Sire and Huysseune 1996; Sire and Huysseune 2003). Outside 

Teslepis and Sodolepis, dentine structures with similar characteristics have not been 

documented in the integumentary skeleton of gnathostomes.

Cellular basal bone was considered by Karatajūtė-Talimaa and Novitskaya (1992) 

to be a diagnostic character of Teslepis in the original description of the genus. The 

fusiform odontocyte lacunae identified in that study are demonstrated here to actually 

represent the hollow interiors of the mineralised fibres of the bone matrix. This would 
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make the basal bone of Teslepis scales homologous to the galeaspidin-like (sensu Wang 

et al. 2005 and Sire et al. 2009) support tissue of most mongolepids.

Genus Sodolepis Karatajūtė-Talimaa and Novitskaya, 1997

Type and only species. Sodolepis lucens Karatajūtė-Talimaa and Novitskaya, 1997, 

from the Chargat Formation (Salhit regional Stage, Upper Llandovery–Lower Wenlock) of 

north-western Mongolia.

Emended diagnosis. As for the type species.

Sodolepis lucens Karatajūtė-Talimaa and Novitskaya, 1997

(Figs. 9f–g, 11e–h, 12e)

Emended diagnosis. Mongolepidids with scales reaching lengths of up to 2.5 mm that 

possess crowns composed of 4 to 8 odontocomplex rows sutured along their length. 

Crescent-shaped anterior crown platform formed of globular dentine. Base thicker than 

the crown and extended into an anteriorly directed conical projection. 

Holotype. An isolated scale (M-1-091) deposited in collection M-1 of the Lithuanian 

Geological Survey, Vilnius (Karatajūtė-Talimaa and Novitskaya 1997).

Referred material. More than a hundred isolated scales (including material figured here 

and in Karatajūtė-Talimaa and Novitskaya 1997) from the type locality; samples 16/3 and 

ЦГЭ N1009. Non-figured specimens stored in the Lapworth Museum of Geology, 

University of Birmingham, UK.
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Remarks. The gross morphology of Sodolepis scales (Fig. 9f, g) closely resembles that 

of Teslepis, with the two genera demonstrating comparable histology. The latter, 

however, are distinguished on the basis of differences in scale size and odontocomplex 

number. Sodolepis crowns can have up to 8 odontocomplexes, which is c. 40% less than 

their maximal number in Teslepis, whilst at the same time Sodolepis scales are on 

average twice as large as those of Teslepis. This is due to a corresponding increase of 

odontode and scale size in Sodolepis, leading to the formation of a relatively constant 

number of odontocomplexes irrespective of crown dimensions. In Teslepis specimens, 

on the other hand, odontode size remains consistent across all documented scale 

lengths. 

As noted by Karatajūtė-Talimaa and Novitskaya (1997), a system of horizontal 

canals cannot be identified inside Sodolepis scale crowns (Fig. 12e)—an atypical 

condition considering that the majority of mongolepid genera develop some type of pulp 

canal openings on the lower crown surface.

Genus Rongolepis Sansom, Aldridge and Smith, 2000

Type and only species. Rongolepis cosmetica from the Telychian (Upper Llandovery) of 

south China, Lower Member of the Xiushan Formation (Sansom et al. 2000).

Emended diagnosis. As for the type species.

Rongolepis cosmetica Sansom, Aldridge and Smith, 2000

(Figs. 9k–m, 11i–j)
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Emended diagnosis. Mongolepidid species with up to 2 mm long scale crowns that are 

widest at their posterior third. Crowns formed of 10 to 20 crown odontocomplex rows 

ornamented by narrow median ridges, flanked anteriorly and laterally by conical 

secondary odontodes. Lower crown face pitted by rows of foramina. Base tetragonal or 

oblong, displaced towards the scale anterior. Lower base surface concave to flat with a 

central conical projection.

Holotype. An isolated scale (NIGP 130326) from the Xiushan Formation of south China 

(Sansom et al. 2000).

Referred material. Hundreds of specimens (including material figured here and in 

Sansom et al. 2000, NIGP 130319–NIGP 130330) from the Telychian (Upper Llandovery, 

Silurian) Xiushan Formation (sample Shiqian 14B) of Leijiatun (Shiqian county, south 

China). Non-figured specimens stored in the Nanjing Institute of Geology and 

Palaeontology, Chinese Academy of Sciences, Nanjing, China.

Remarks. The uncertainty regarding the systematic position of Rongolepis in the original 

description of the genus (Sansom et al. 2000) has been attributed to a suite of 

characteristics (scale morphology, posterior of the crown composed of acellular lamellar 

bone and presence of crown odontodes) not known in the scales of other vertebrates. The 

re-examination of Rongolepis cosmetica has enabled the identification of a combination of 

features diagnostic for Mongolepidida. Of particular importance in this regard is the nature 

of the tissue composing the flared posterior extension of Rongolepis scales. Suggested to 

be formed of lamellar bone (Sansom et al. 2000), this portion of the scale in fact 

demonstrates the lamellin-type architecture of an ionotropically and spheritically 

mineralised atubular tissue devoid of attachment fibres (Fig. 11i, j). Moreover, the 

segmentation of the crown’s posterior part observed in thin sections (Fig. 11i, j; Sansom et 

al. 2000, fig. 12e) is interpreted to be produced by the contact surfaces of sutured 
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odontodes. Both the anterior to posterior increase in length of these elements and their 

arrangement in longitudinal rows over the posterior half of the base are known features of 

mongolepid primary odontocomplexes. The assignment of Rongolepis to Mongolepidida is 

thus dictated by the possession of its scales of lamellin and poly-odontocomplex growing 

crowns.

Family SHIQIANOLEPIDAE Sansom, Aldridge and Smith 2000

Included genera. Xinjiangichthys Wang et al. 1998 and Shiqianolepis Sansom et al. 

2000.

Emended diagnosis. Mongolepids with scale bases composed of avascular, cellular 

bone tissue.

Genus Xinjiangichthys Wang, Zhang, Wang and Zhu, 1998

Type and only species. Xinjiangichthys pluridentatus Wang, Zhang, Wang and Zhu, 

1998, from the Telychian (Upper Llandovery, Silurian) Yimugantawu Formation (north-

western margin of the Tarim Basin, Xinjiang, PR China).

Emended diagnosis. As for the type species.

Remarks. The placement of Xinjiangichthys inside Mongolepidida by Wang et al. (1998) 

was justified on the grounds of similarities in crown morphology and odontode patterning 

with Mongolian mongolepids (the only known mongolepid taxa at the time of its 

description), and this study advances further on that claim by identifying a poly-

odontocomplex crown structure in Xinjiangichthys scales.
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The presence of atubular dentine in Xinjiangichthys scales, another of the 

diagnostic characteristics of mongolepids (this study; Karatajūtė-Talimaa et al. 1990; 

Sansom et al. 2000), can be determined in thin-section (Fig. 11k) and through X-ray 

microtomography (Fig. 12g, h).

Furthermore, Wang et al.’s (1998) interpretation of Xinjiangichthys scale bases as 

non-growing (not supported by evidence) is rejected by demonstrating a conical basal 

tissue that supports at its apex the primordial odontode and further posteriorly the rest of 

the scale’s primary odontodes (Figs. 11k, 12h), similarly to the growing bases of 

Shiqianolepis and those of mongolepids in large.

Xinjiangichthys pluridentatus Wang, Zhang, Wang and Zhu, 1998

(Figs. 9n–o, 11k, 12g–h)

1998 Xinjiangichthys tarimensis Wang, Zhang, Wang and Zhu: pl. 1, fig. e-i.

2000 Xinjiangichthys sp. Sansom, Aldridge and Smith: 236, fig. 8.

Emended diagnosis. Shiqianolepids having wider than long scale crows that reach 

maximal length of 1 mm. Crowns composed of up to 30 sutured odontocomplexes 

bordered anteriorly by an aggregation of sutured secondary odontodes. Lower crown 

surface marked by multiple vertical rows of foramina. Pronounced constriction of the 

crown at the junction with the base. Base low, gracile with concave lower base surface.

Holotype. An isolated scale (IVPP V11663.1) from the Yimugantawu Formation of 

Xinjiang (Bachu county), China (Wang et al. 1998).
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Referred material. Two specimens from the Telychian Xiushan Formation (Leijiatun, 

Shiqian county, south China; sample Shiqian 14B), in addition to material (NIGP 130291 

and NIGP 130292) figured in Sansom et al. (2000), and five specimens (including IVPP 

V X1, IVPP V X2 and specimens figured in Wang et al. 1998, IVPP V11663.1, IVPP 

V11663.2, IVPP V11664.1, IVPP V11664.2) from the Telychian Yimugantawu Formation 

(Bachu County, Xinjiang, China). Non-figured Xiushan Formation specimens are stored 

in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 

Nanjing, China, whilst those from the Yimugantawu Formation are stored in the Institute 

of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 

Beijing, China.

Remarks. X. tarimensis and X. sp. are synonymised with X. pluridentatus based upon 

the absence of differentiating characteristics between the specimens attributed to the two 

species. The arguments (equal-sized crown odontodes, scale neck and pitted sub-crown 

surface) of Wang et al. (1998) for erecting X. tarimensis are considered not valid for the 

following reasons. The large-diameter anterior odontodes of X. pluridentatus specimens 

figured by Wang et al. (1998, pl. Ia, c) represent secondary odontodes not developed in 

all scale types of the species (specimens identified as X. tarimensis by Wang et al. 1998, 

pl. Ie-i), which is consistent with the condition documented in Mongolepis (this study and 

Karatajūtė-Talimaa et al. 1990). The presence of secondary odontodes also accounts for 

the lack of a distinct neck in the Xinjiangichthys scales they form in, by occupying the 

sloped anterior surface of the base. Addressing the third point of Wang et al. (1998), the 

numerous foramina present on the lower crown surface of scales attributed to X. 

tarimensis (Wang et al. 1998) are also detected (Fig. 9n–o, 12g–h) in Xinjiangichthys 

specimens with secondary odontodes.
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Genus Shiqianolepis Sansom, Aldridge and Smith, 2000

Type and only species.	
  Shiqianolepis hollandi Sansom et al. 2000, from the Telychian 

(Upper Llandovery) of southern China, Lower Member of the Xiushan Formation.

Emended diagnosis. As for the type species.

Shiqianolepis hollandi Sansom, Aldridge and Smith, 2000

(Figs. 9h–j, 11l, 12f, 13b, e)

Emended diagnosis. Shiqianolepids with trunk scale crowns reaching lengths of c. 1.5 

mm. Crowns composed of 5 to 9 primary odontocomplexes, separated posteriorly by 

deep inter-odontocomplex spaces, and a cluster of tightly sutured secondary odontodes 

formed anteriorly of crown odontocomplexes. Crown surface ornamented by tuberculate 

ridges. Multiple canal openings formed on the lower crown surface. Anteriorly displaced 

scale base with concave lower base surface. Oblong asymmetrical head scales (up to 1 

mm long) with irregularly-shaped odontodes distributed peripherally around a medial 

ridge.

Holotype. An isolated trunk scale (NIGP 130294) from the Xiushan Formation of 

Leijiatun (Shiqian county) south China (Sansom et al. 2000).

Referred material. Hundreds of isolated scales (including figured here material) and 

type series specimens (NIGP 130293–NIGP 130318) from the Telychian Xiushan 

Formation (sample Shiqian 14B) of Leijiatun (Shiqian county, south China). Non-figured 

specimens stored in the Nanjing Institute of Geology and Palaeontology, Chinese 

Academy of Sciences, Nanjing, China.
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Remarks. Characteristic of Shiqianolepis scales is a distinct primordial odontode located 

at the apex of the conical base. This odontode has been termed ‘proto-scale’ by Sansom 

et al. (2000) and identified as a diminutive element overlain by the much larger 

odontodes deposited at later stages of crown ontogeny. Superpositional growth, which 

results in odontodes not being exposed on the crown surface, is a condition atypical for 

other mongolepids, also demonstrated not to be a feature of Shiqianolepis scales. Upon 

examination of figured material and newly sectioned specimens, the primordial odontode 

borders recognised in Sansom et al. (2000, figs. 6b, 7) are considered here to in fact 

constitute the margins of dentine depositional lamellae (Fig. 11l), as these are 

occasionally observed to be indented by more peripherally formed calcospherites—

evidencing a centripetal mode of dentine histogenesis as opposed to stacking of primary 

odontodes. As identified here, the primordial odontode in Shiqianolepis scales is 

overlapped only at its anterior end by secondary odontodes, whilst most of its upper 

margin remains exposed on the crown surface. Similarly to the rest of the crown 

odontocomplexes of Shiqianolepis, the one incepted by the ‘proto-scale’ displays a 

gradual posterior increase of odontode size.

Family incertae sedis

Genus Solinalepis gen. nov.

Type and only species.	
  Solinalepis levis gen. et sp. nov.

Derivation of name. From ‘solinas’ (tube, pipe in Greek), pertaining to the shape of the 

scale odontodes of the species, and ‘lepis’, scale in Greek.

Diagnosis. As for the type species.
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Remarks. Characters relating to the dimensions of the scale base (its length and 

thickness in relation to those of the crown) unite Solinalepis gen. nov. (data from the 

conducted phylogenetic analysis, see Chapter 6) in a clade with members of 

Shiqianolepidae. Nevertheless, this type of morphological data is not regarded 

informative at a supra-generic level and the genus is classified outside the two 

recognised mongolepid families due to differences in scale base histology (acellular bone 

lacking plywood-like organization of its mineralised matrix). Presently, Solinalepis gen. 

nov. is treated as Mongolepidida incertae sedis for the reluctance on part of the author to 

erect a new mono-generic family.

Solinalepis levis sp. nov

(Figs. 10, 11m–n, 12i–j, 13c)

2001 ‘?Mongolepid scales’; Sansom, Smith and Smith, p. 161, fig. 10.3g, h.

2002 Unnamed chondrichthyan; Donoghue and Sansom, p. 362, fig. 6.3.

2009 Stem-chondrichthyan; Sire, Donoghue and Vickaryous, p. 424. fig. 10c.

Derivation of name. From the Latin ‘levis’ (smooth), referring to the unornamented scale 

crown surface of the species. 

Locality and horizon. The type locality is the vicinity of the Harding Quarry, situated c. 1 

km west of Cañon City (Fremont County, Colorado, USA). All Solinalepis specimens 

come from Sandbian strata (samples H94-26 and H96-20) of the Harding Sandstone. 

Holotype. An isolated trunk scale (BU5310; Fig. 10e). 
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Referred material. Hundreds of isolated scales, including material figured here. Non-

figured specimens stored in the Lapworth Museum of Geology, University of Birmingham, 

UK.

Diagnosis. Mongolepid species with trunk scales reaching less than a millimeter in 

width. Trunk scale crowns composed of sutured tubular odontodes organised in 

longitudinal odontocomplex rows (up to 30 in number). Acellular basal bone housing an 

elaborate canal system that opens via foramina on the basal surface. Tessera-like or 

bulbous head scales possessing radially arranged odontode rows.

Description.

Morphology of trunk scales. The scales vary in length between 100–400 μm, which is 

always less (up to three quarters) than their width. The crowns of specimens with lengths 

exceeding 200 μm demonstrate polygonal (Fig. 10e–g), often asymmetrical (Fig. 10f, g), 

outlines. The anterior crown margin of these scales is predominantly wedge-shaped 

whilst their posterior face is straight (Fig. 10i). In contrast, the crowns of antero-

posteriorly short (100–200 μm long) scales tend to be symmetrical, leaf-shaped 

structures (Fig. 10j–l), rarely demonstrating simple geometrical profiles in crown view.

Irrespective of crown morphology, the odontodes of all trunk scales are organised into 

closely packed antero-posteriorly aligned rows (Figs. 10f–g, j, 13c). Adjacent rows are 

displaced by approximately half an odontode diameter (c. 15 μm), resulting in offsetting 

between odontodes of neighbouring odontocomplexes (Fig. 13c). The odontodes 

themselves are cylindrical, tube-like elements with sigmoidal profiles that taper to a point 

apically (Fig. 13j). Odontode length increases gradually towards the scale’s posterior 

end, where the crown can reach a height of c. 400 μm.
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The crown/base transition is not marked by a neck-like constriction (Fig. 10e–l), 

with the base never attaining more than a third of the overall scale height. The basal 

surface is marked by deeply incised grooves (Fig. 10e–i) that give it a dimpled 

appearance, characteristic also for the lower base surface. The latter has a 

predominantly flat profile but can exhibit a central conical projection that is particularly 

well developed in leaf-shaped specimens (Fig. 10l).

Morphology of head scales. Polyodontode symmetrical or asymmetrical scales with 

recorded height between 0.5 and 1.3 mm. These are represented by two main 

morphological variants, a compact, bulbous type (Fig. 10d) and tessera-like scales (Fig. 

10a–c) of larger diameter. Both morphotypes possess irregular crowns composed of 

radially ordered odontodes, and do not exhibit distinct anterior and posterior scale faces. 

The radiating odontodes form rows (five to nine odontodes long), offset in a manner in 

which the odontodes of each row oppose the inter-odontode contacts of neighbouring 

odontocomplexes. Odontode height diminishes gradually towards the crown centre, 

accompanied by an increase of coalescence between odontodes. 

The scales exhibit a prominent central bulge, away from which the crown surface slopes 

down to the scale margin. The latter has a corrugated outline that in certain specimens is 

accentuated by deep, peripherally expanding grooves (Fig. 10a, b).

The scale base displays a granular, grooved surface and follows the outline of the 

crown. At its centre the base attains maximal thickness (Fig. 11m), and gradually 

decreases in height away from this point. The lower-base surface is predominantly 

planar or can have a moderate central concavity, but never exhibits the convex topology 

documented in trunk scale specimens. 
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Histology of trunk scales. Crown odontodes are structured out of atubular dentine 

(lamellin; Fig. 11n) that is spherically	
  mineralised in proximity of the pulp (spherite 

diameter 10–15 μm).

Cylindrical, non-branching pulp cavities occupy the centre of odontodes and are 

connected at their lower ends with the canal system of the base (Fig. 12i, j). The latter is 

represented by vertical canals that bifurcate close to the crown-base junction, with each 

pair of rami re-connecting deeper inside the base, resulting in the formation of a series of 

vascular loops (Fig. 12i, j). Vertically oriented canals emerge from the looped canal 

system and open on the lower base surface. The basal surface is similarly marked by 

numerous foramina that are the exit points for the peripheral canals of the base (Fig. 

10h).

The base is composed of acellular bone demonstrating the presence of c. 2 μm 

thick extraneous mineralised fibres that propagate vertically through the tissue (Fig. 11n).

Histology of head scales. Due to diagenetic alteration, the histology of the crown 

odontodes is largely obscured. Nevertheless, wide odontode pulp canals are evident in 

sectioned specimens (Fig. 11m), and these appear to end blindly inside the crown. The 

upper base surface is perforated by a row of foramina (Fig. 10c, d) similar to the ones 

documented in trunk scales.

The main structural components of the basal bone matrix are tightly packed, 

parallel mineralised fibres with horizontal orientation (Fig. 11m). These are crosscut by 

apically converging fibre bundles (up to 15 μm in diameter), which follow undulating 

paths across the tissue. 

Remarks. The development of lamellin-composed poly-odontocomplex scale crowns 

identify Solinalepis levis gen. et sp. nov. as a mongolepid species. Moreover, the trunk 
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scale odontocomplexes of Solinalepis gen. nov. exhibit the same progressive posterior 

increase in odontode length documented in members of the order.

Within Mongolepidida, the combination of a large odontocomplex number (>20) 

and sutured odontodes is present only in the Telychian genus Xinjiangichthys. 

Nevertheless, the two taxa are readily distinguished on the basis of scale dimensions, 

crown and base morphology and canal-opening distribution on the scale surface. 

Solinalepis gen. nov. is one of only two described mongolepid genera (the other being 

Shiqianolepis) with squamation clearly differentiated into distinct trunk (exhibiting 

recognisable anterior and posterior faces) and head morphotypes (irregular-shaped 

elements)—a condition that is consistent with that recorded in a number of 

heterosquamous Lower Palaeozoic gnathostomes known from articulated specimens 

(e.g. Climatius reticulatus Miles 1973, Obtusacanthus corroconius Hanke and Wilson 

2004, Gladiobranchus probaton Hanke and Davis 2008 and Ptomacanthus anglicus 

Miles 1973; Brazeau 2012).

4.3. DISCUSSION

4.3.1. Crown morphogenesis of mongolepid scales

Shiqianolepis hollandi is recognised as a key taxon for determining the mode of scale 

crown development in mongolepids, following the identification by Sansom et al. (2000) 

of ‘proto-scale’ (early-development phase) specimens of the species (Sansom et al. 

2000, fig. 4u, w). The size (half of that of ‘mature’ trunk scales) and the small number of 

crown odontodes (exhibiting only the earliest formed odontodes of incipient primary 

odontocomplexes) of these scales implies that in Shiqianolepis scale ontogenesis 
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involves crown enlargement through sequential addition of odontodes. Significantly, the 

Shiqianolepis-type of crown architecture (primary odontocomplex rows originating at the 

most elevated point of the base and characterised by a posterior increase in size of their 

constituent odontodes) is developed in all members of the Mongolepidida (Figs. 11a, d, 

h–i, k–l, 13) and this evidence is used to propose that the mongolepids share a 

cyclomorial pattern of scale ontogenesis.

Data from developmental studies on extant neoselachians indicate that their 

scales cannot serve as model systems for determining the mechanism of morphogenesis 

of the compound mongolepid scale crowns, as the former have been shown to be simple 

mono-odontode elements produced by a single epithelio-ectomesenchymal primordium 

(Schmidt and Keil 1971; Reif 1980b, Miyake et al. 1999; Sire and Huysseune 2003; 

Johanson et al. 2007, 2008). Examinations of multiple odontode generation in 

osteichthyan scales (Kerr 1952; Smith et al. 1972; Smith 1979; Sire and Huysseune 

1996), though, provide insight into the timing of deposition of odontode aggregations 

associated with a dermal bone support tissue. These studies reveal phases of odontode 

generation that result in an increase of odontode number throughout scale ontogeny.

The hypothesis of scale crown growth in Mongolepidida is further substantiated by 

evidence from the Palaeozoic record of the Chondrichthyes. The scale crown structure of 

certain chondrichthyan taxa described from articulated specimens (e.g. Diplodoselache 

woodi Dick 1981, Tamiobatis vetustus Williams 1998 and Orodus greggi Zangerl 1968), 

conform closely to the recorded odontode patterning of mongolepid scales. 

Diplodeselache trunk scales were noted by Dick (1981) to closely resemble those of 

Orodus and to be similarly characterised by cyclomorial growth. Previous work (Reif 

1978) on the morphogenesis of the chondrichthyan integumentary skeleton also 

recognised sequential crown elongation through regular addition of odontodes as the 
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mechanism of scale development in Orodus. This pattern of crown formation is also 

typical for scales with Ctenacanthus costellatus type of morphogenesis (defined by Reif 

1978 and equivalent to the Ctenacanthus B3 morphogenetic type of Karatajūtė-Talimaa 

1992) to which Tamiobatis scales have been attributed (Williams 1998).

4.3.2. Mongolepid scale crown histology

The origin of dentine is coincident with the emergence of skeletal mineralisation in 

vertebrates (Donoghue and Sansom 2002; Donoghue et al. 2006), with the 

phylogenetically most primitive atubular varieties of the tissue being considered to 

compose the basal bodies of certain conodont genera (Sansom 1996; Smith et al. 1996; 

Donoghue 1998; Dong et al. 2005). Conodont atubular ‘dentines’ frequently exhibit 

(Sansom 1996, fig. 2e–h; Donoghue 1998, fig. 5a–c; Dong et al. 2005, pl. 1, figs 3–9) 

peripheral lamellar fabric, substituted internally by spheritically mineralised matrix, 

making them comparable to the architecture of mongolepid lamellin (Fig. 11c, e). Apart 

from their presence in the oro-pharyngeal skeleton of conodonts and mongolepid scale 

crowns, atubular dentines have been identified with certainty only in the scale odontodes 

of the pteraspidomorph Tesakoviaspis concentrica (Karatajūtė-Talimaa and Smith 2004) 

and the fin spine ornament of sinacanthid gnathostomes (Sansom et al. 2000, 2005b).

An important aspect of the atubular nature of lamellin is that it provides 

circumstantial evidence for the involvement of atypical odontoblasts in the generation of 

the tissue. Commonly, during dentinogenesis mature odontoblasts extend long cellular 

processes into the mineralised phase, which remain contained inside tubular spaces 

after formation of the tissue is complete (Linde 1989; Linde and Lundgren 1995; Yoshiba 

et al. 2002; Magloire et al. 2004, 2009). Consequently, the inability of secretory 
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odontoblasts to form dentinal tubules is taken to suggest that such cells either did not 

penetrate at any depth the dentine matrix with their processes or lacked such altogether. 

Atypical odontoblasts devoid of large cytoplasmic projections have been reported in the 

tooth germs of the Recent sting ray Dasyatis akajei	
  (Sasagawa 1995), but these are 

found to co-exist with unipolar odontoblasts, characterised by well-developed processes. 

The apical portions of odontoblasts and their processes have been implicated as ion 

channel-rich sites capable of being activated by environmental stimuli via tubular fluid 

movement, and are presumably involved in transmitting sensory input to pulp nerve 

endings (Okumura et al. 2005; Allard et al. 2006; Magloire et al. 2009). This raises the 

possibility that mongolepid scale pulps had limited ability to transduce sensory input 

compared to an odontoblast population that forms tubular network inside a mineralised 

dentine matrix.

4.3.3. Histology of mongolepid scale bases

This and previous studies (Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa and 

Novitskaya 1992, 1997; Sansom et al. 2000) identify mongolepid scale odontodes to be 

supported by a common base composed of lamellar bone (Fig. 11a, d, g–i, k–n). The 

basal tissue of Mongolepis and Sodolepis scales has been interpreted as acellular bone 

(Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa and Novitskaya 1997), with this study 

also recognizing the absence of osteocyte lacunae in the bases of Teslepis	
  (contra 

Karatajūtė-Talimaa and Novitskaya 1992), Rongolepis (concordant with Sansom et al. 

2000) and Solinalepis gen. nov.—restricting the occurrence of cellular bone inside 

Mongolepidida to the genera Xinjiangichthys and Shiqianolepis (this study and Sansom 

et al. 2000).
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A plywood-like layering of crystalline fibres is recognised as the predominant type 

of basal bone texture of mongolepid scales, being documented in the four genera of the 

family Mongolepididae. This architecture of the mineralised matrix matches closely the 

organization of the collagen fibres in the deep dermis (stratum compactum) of extant 

neoselachians (Motta 1977; Miyake et al. 1999; Sire and Huysseune 2003) and 

osteichthyans (Kerr 1952, 1955; Sire 1993; Gemballa and Bartsch 2002) and is 

suggested to be indicative of dermal bone histogenesis achieved through mineralisation 

of a largely unmodified fibrous scaffold of the stratum compactum—a process referred to 

as metaplastic ossification (Sire 1993; Sire et al. 2009). Consequently, the observed 

absence of plywood-like layering in the cellular bone of mongolepid scale bases (in 

Xinjiangichthys, Shiqianolepis and Solinalepis gen. nov.) could be interpreted to result 

from remodelling of the original fibrous framework of stratum compactum prior to tissue 

mineralisation (a process described by Sire 1993 in the scales of the armoured catfish 

Corydoras arcuatus).

The data above allow the identification of the site of basal bone formation of 

mongolepid scales within the deep tiers of the corium, with the tissue being considered 

to periodically increase in size due to the growth increments documented in sectioned 

specimens. These depositional phases reveal a common pattern of generation of 

mongolepid scale bases, wherein each newly laid down lamella covers the lower surface 

of the previously deposited one. The geometry of the lamellae shows little change, 

implying retention of a fairly consistent base shape throughout scale ontogeny. Such a 

pattern of base morphogenesis is not unique to the Mongolepidida, but appears to be the 

prevalent mode of bone tissue growth in the scales of jawed gnathostomes, being 

demonstrated in ‘placoderms’ (Burrow and Turner 1998, 1999), ‘acanthodians’ (Denison 

1979), basal osteichthyans (Gross 1968; Schultze 1968) and basal chondrichthyans 

(Karatajūtė-Talimaa 1973; Mader 1986; Wang 1993).
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4.3.4. Canal system of mongolepid scales

Previously, the internal canal system architecture of mongolepid scales had been 

investigated in detail only in Mongolepis, Teslepis and Sodolepis through oil immersion 

studies of whole specimens and thin section work (Karatajūtė-Talimaa et al. 1990; 

Karatajūtė-Talimaa and Novitskaya 1992, 1997). The employment of X-ray 

microtomography allowed these data to be supplemented by visualizing with greater 

accuracy the three-dimensional structure of scale cavity spaces in the examined genera.

In Mongolepis, Teslepis, Sodolepis and Solinalepis gen. nov. the lower ends of 

odontode pulp cavities are continuous with the canal system of the base. Comparable 

type of vascularisation is developed in the Upper Ordovician chondrichthyan scales from 

the Harding Sandstone referred to Tezakia in Chapter 3 (‘scale morphology A’ in Sansom 

et al. 1996, 2001). The lower base surface of this taxon has been demonstrated to 

exhibit rows of foramina (Sansom et al. 1996, fig. 2a) that are similar to the basal canal 

openings of mongolepids. Likewise, the central canal of the basal bone tissue is 

continuous with the odontode pulp in the Silurian scale genera Elegestolepis (Karatajūtė-

Talimaa 1973) and Kannathalepis (Märss and Gagnier 2001), which are the earliest 

recorded mono-odontode scale taxa attributed to the Chondrichthyes (see Chapter 5). 

This condition is also identified in the mono-odontode scales of various Upper 

Palaeozoic chondrichthyans (e.g. Janassa Ørvig 1966; Malzahn 1968, Ornithoprion 

Zangerl 1966 and Hopleacanthus Schaumberg 1982), Mesozoic hybodonts (Reif 1978) 

and extant neoselachians (Reif 1980b; Miyake et al. 1999; Johanson et al. 2008).

Xinjiangichthys, Shiqianolepis and Rongolepis differ from the other mongolepid 

genera in having their entire scale canal system confined to the crown, with the lower 

ends of odontode pulps opening at the crown surface in proximity of the base. The 

posterior peripheral odontodes of these three genera display additional cavities that are 
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detected as foramina on the lower crown face. A similarly pitted lower crown surface has 

also been identified in poracanthodid ‘acanthodians’ (Gross 1956; Valiukevičius 1992; 

Burrow 2003c), the putative stem chondrichthyan Seretolepis (Hanke and Wilson 2010; 

Martinez-Perez et al. 2010), and in ctenacanthiform scales (e.g. Tamiobatis	
  vetustus 

Williams 1998 and Ctenacanthus	
  costellatus Reif 1978). In the scales of Poracanthodes 

these openings represent the posterior exit points of a complex canal network that is 

absent from mongolepid scale crowns.

Studies on the squamation of jawed gnathostomes reveal the lack of basal tissue 

vascularisation to be a common feature of many ‘acanthodians’ (Denison 1979; 

Karatajūtė-Talimaa and Smith 2003; Valiukevičius 2003a; Valiukevičius and Burrow 

2005) and chondrichthyans such as Protacrodus (Gross 1973), Orodus (Zangerl 1968) 

and Holmesella (Ørvig 1966), including some of the earliest known post-Silurian putative 

chondrichthyan scale taxa (Iberolepis, Lunalepis Mader 1986 and Nogueralepis Wang 

1993). 

Despite the observed differences in canal architecture, all mongolepid genera with 

the exception of Sodolepis develop canal openings exposed on the scale surface in the 

region the crown-base interface. These foramina represent the termini of canals 

homologous to the neck canals of euselachians (sensu Reif 1978), as they link the main 

pulp canal to the odontode surface. In Mongolepis and Teslepis this connection is 

established via one pair of short canals (the ‘horizontal canals’ of Karatajūtė-Talimaa et 

al. 1990, Karatajūtė-Talimaa and Novitskaya 1992 and Karatajūtė-Talimaa 1998) that 

issue from the lower end of each pulp. The new data presented here indicate that the 

horizontal canal system of these two genera is housed inside the scale crown, contrary 

to previous depictions of the feature at the crown-base junction (Karatajūtė-Talimaa 

1995, 1998). In contrast, the lower ends of odontode pulp canals of North American and 
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Chinese mongolepids do not branch out, and either open directly onto the scale surface 

(Shiqianolepis	
  and	
  Rongolepis) or continue inside the base (Solinalepis gen. nov.).

4.3.5 Systematic position of the Mongolepidida

Scale-based cladistic analyses have never previously been employed (but see Chapter 

6) to resolve the inter-relationships of basal gnathostomes, whilst recent phylogenies of 

Palaeozoic gnathostomes incorporate only a limited set of scale characters (Brazeau 

2009; Davis et al. 2012; Zhu et al. 2013� ). This is also true for phylogenetic 75

investigations of the total group Chondrichthyes (Lund and Grogan 1997; Grogan and 

Lund 2008; Grogan et al. 2012)—to which mongolepids have been tentatively suggested 

to belong (Karatajūtė-Talimaa and Novitskaya 1997; Sansom et al. 2000)—that give 

preference to dental over scale characteristics. Accordingly, high-ranked chondrichthyan 

clades are largely diagnosed on tooth characters (Zangerl 1981; Stahl 1999; Ginter et al. 

2010), whereas Lower Palaeozoic shark-like scale taxa are yet to be included in formal 

classification schemes of the Chondrichthyes.

The validity of Mongolepidida is reaffirmed here on the basis of an amended 

character set, which diagnoses the order by the unique combination of scale growth, 

poly-odontocomplex scale crowns and development of lamellin (the monophyly of 

Mongolepidida is also supported by scale-based phylogenetic data—see Chapter 6). The 

placement of mongolepids within Chondrichthyes, on the other hand, has been 

questioned in the past on the basis of their atubular dentine (lamellin) crowns and the 

presence of a horizontal canal system (Karatajūtė-Talimaa and Novitskaya 1992). This 

study demonstrates that the horizontal canals of Mongolepis and Teslepis are equivalent 

to euselachian neck canals, whilst revealing similar canal spaces in the crown odontodes 

of Chinese mongolepids. However, neck-like canals are also known in the scales of 
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‘placoderms’ (Burrow and Turner 1998) and basal Palaeozoic osteichthyans (Gross 

1953, 1968), and are thus not a chondrichthyan apomorphy. Addressing the other 

argument of Karatajūtė-Talimaa and Novitskaya (1992), scale dentine histology appears 

to vary greatly within the total group Chondrichthyes (e.g. distinct dentine types are 

developed in Elegestolepis Karatajūtė-Talimaa 1973, Seretolepis Hanke and Wilson 

2010, Orodus Zangerl 1968 and Hybodus Reif 1978), which makes it a poor diagnostic 

character at a supra-ordinal level. By the same token, although atubular dentine occurs 

in the Mongolepidida, it is also formed in the dermal skeleton of pteraspidomorph 

agnathans (Karatajūtė-Talimaa and Smith 2004) and therefore is uninformative in respect 

to the relationships of the order. The systematic affinities of Mongolepidida are 

determined instead by a unique combination of scale attributes that are shared with 

particular Palaeozoic chondrichthyan lineages. Reference is made here to the 

development of predominantly symmetrical trunk scales with multiple crown 

odontocomplexes that lack cancellous bone, enamel and hard tissue resorption—a type 

of squamation known also to have evolved in xenacanthiform (Diplodoselache, Dick 

1981), orodontiform (Orodus, Zangerl 1968) and cladodontomorph (e.g. Cladolepis 

Burrow et al. 2000 and Cladoselache, Dean 1909) chondrichthyans.

4.4. CONCLUSIONS

The present revision of Mongolepidida established the order as a natural group of early 

chondrichthyans characterised by poly-odontocomplex growing scales with 

Ctenacanthus-like crown architecture. However, in agreement with Karatajūtė-Talimaa 
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(1992), the scales of mongolepids are recognised to exhibit a distinct, Mongolepis, type 

of morphogenesis, on account of their lamellin composed crowns.

The description of the mongolepid genus Solinalepis gen. nov. from the Sandbian 

of North America, pushes back the first appearance of the Mongolepidida by 20 My and 

firmly places the origin of the Chondrichthyes in the Ordovician. Together with reports of 

other shark-like scale taxa from Ordovician (Sansom et al. 1996, 2001, 2012), this further 

supports the proposed by Karatajūtė-Talimaa (1992) early chondrichthyan diversification 

event, that preceded the first known appearance of chondrichthyan teeth and articulated 

skeletal remains in the Lower Devonian.
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Figure 9 (on the following page). Scale morphology of Upper Llandovery–Lower 
Wenlock (Silurian) mongolepids. (a–c) Mongolepis rozmanae scale BU5296 (Chargat 
Formation, north-western Mongolia) in (a) anterior, (b) lateral and (c) basal view. (d, e) 
Teslepis jucunda BU5322 (Chargat Formation, north-western Mongolia) in (d) crown and 
(e) basal view. (f, g) Sodolepis lucens scales (Chargat Formation, north-western 
Mongolia) in (f) crown (BU5304) and (g) lateral (BU5305) views. (h–j) Shiqianolepis 
hollandi scales (Xiushan Formation, south China) in (h) crown (NIGP 130309), (i) 
postero-basal (NIGP 130307) and (j) lateral (NIGP 130307) views. (k–m) Rongolepis 
cosmetica scale NIGP X1 (Xiushan Formation, south China) in (k) crown, (l) basal and 
(m) lateral views. (n, o) Xinjiangichthys pluridentatus scale IVPP V X2 (Yimugantawu 
Formation, north-western China) in (n) anterior and (o) posterior views. Volume 
renderings, (a–c), (g) and (i–o). SEM micrographs, (d–f) and (h). Crown and base 
foramina indicated by arrows and arrowheads respectively. Anterior to the left in (b), (g), 
(j), (m) and bottom in (c–f), (h), (k). Scale bar equals 400 μm in (a–c), 200 μm in (d, e, i, 
l–o), 500 μm in (f), and 300 μm in (g, h, j, k).
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Figure 10. SEM micrographs of Solinalepis levis gen. et sp. nov. scales from the 
Sandbian (Upper Ordovician) Harding Sandstone of Colorado, USA. (a–c) Tessera-like 
head scales in (a, b) crown (BU5307, BU5308) and (c) lateral (BU5309) views. (d) 
Bulbous head scale (BU5312) in lateral view. (e–i) Polygonal trunk scales, (e) holotype 
(BU5310) in anterior view, (f) BU5345 in crown, (g) corono-lateral and (h) partial 
posterior views, (i) BU5313 in basal view. (j–l) Lanceolate trunk scales in (j) anterior 
(BU5314), (k) lateral (BU5315) and (l) posterior (BU5311) views. Base foramina 
indicated by arrowheads. Anterior to the left in (g) and (k). Scale bar equals 300 μm in (a, 
b), 200 μm in (c), 100 μm in (d–g, i–l), and 50 μm in (h).
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Figure 11 (on the following page). Histology of the mongolepid integumentary skeleton. 
(a) Medial longitudinal section of a Mongolepis rozmanae scale (BU5297; Chargat 
Formation, north-western Mongolia). (b) Detail of (a) depicting primary and secondary 
odontodes at the anterior crown margin; (c) primary odontode lamellin microstructure in a 
longitudinally sectioned Mongolepis rozmanae scale (BU5298; Chargat Formation, north-
western Mongolia), etched for 10 min in 0.5% orthophosphoric acid. (d) Medial 
longitudinal section of a Teslepis jucunda scale (BU5324; Chargat Formation, north-
western Mongolia). (e) Lamellin architecture of two odontodes in a longitudinally 
sectioned Sodolepis lucens scale (BU5306; Chargat Formation, north-western Mongolia) 
etched for 10 min in 0.5% orthophosphoric acid. (f) Anterior third of BU5306 showing the 
contact between the globular crown dentine and the underlying basal bone. (g) Basal 
bone microstructure in BU5306 at the anterior projection of the base. (h) Sagittal 
longitudinal section of a Sodolepis lucens scale (BU5344; Chargat Formation, north-
western Mongolia). (i) Sagittal longitudinal section of a Rongolepis cosmetica scale 
(NIGP 130328; Xiushan Formation, south China). (j) Detail of NIGP 130328 showing the 
mid third of the scale crown. (k) Xinjiangichthys pluridentatus scale (IVPP V X1; 
Yimugantawu Formation, north-western China) in longitudinal section. (l) Sagittal 
longitudinal section of a Shiqianolepis hollandi trunk scale (NIGP 130312; Xiushan 
Formation, south China). (m) Sectioned Solinalepis levis gen. et sp. nov head scale 
(BU5317; Harding Sandstone, Colorado, USA) (n) transverse section of a Solinalepis 
levis gen. et sp. nov trunk scale (BU5316; Harding Sandstone, Colorado, USA). 
Nomarski differential interference contrast optics micrographs, (a), (b), (d), (e), (h) and (i–
n); SEM micrographs, (c), (f) and (g). Anterior towards the left in (a)–(j), (l) and towards 
the right in (k). GB, globular dentine; LB, lamellar bone; red dotted lines, contact 
surfaces between primary and secondary odontodes; white dotted lines, border 
between globular dentine and basal bone; white dashed line, contact surfaces between 
primary odontodes in Rongolepis. Asterisks mark bone layers with fibre orientation 
parallel to the section axis. Scale bar equals 400 μm in (a), 100 μm in (b, g, j,m), 20 μm 
in (c), 200 μm in (d, i, k, n), 50 μm in (e, f, l), and 300 μm in (h).
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Figure 12 (on the following page). Canal system of mongolepid scales. Volume 
renderings. (a–c) Canals (red) inside a translucent Mongolepis rozmanae scale 
(BU5296) in (a) lateral view, in (b) posterior view sliced along the plane 1 and in (c, c1) 
crown view sliced along plane 2. (d, d1) Canals in a transversely sliced Teslepis jucunda 
scale (BU5325) shown in posterior view. (e) Pulp cavities (red) in a transversely sliced 
Sodolepis lucens scale (BU5305) shown in postero-lateral view (f) Longitudinally sliced 
Shiqianolepis hollandi scale (NIGP 130307) in baso-lateral view. (g, h) Longitudinally 
sliced Xinjiangichthys pluridentatus scale IVPP V X2 in (g) posterior and (h) lateral 
views. (i, j) Canals system (red) inside a transversely sliced Solinalepis levis gen. et sp. 
nov scale (BU5318) shown in posterior view, (j) detail of (i). Horizontal canals depicted in 
purple in c1 and d1. Yellow arrowheads point at canal openings on the sub-crown 
surface. Red dotted line, contact surfaces between primary and secondary odontodes; 
grey dotted line, crown/base border. Scale bar equals 400 μm in (a–c), 100 μm in (d, h, 
i), 200 μm in (e), 300 μm (f, g) and 50 μm in (j).
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Figure 13. Highlighted odontocomplex organisation of mongolepid scale crowns. (a) 
Teslepis jucunda (BU5323) scale, medial portion of the crown. (b) Shiqianolepis hollandi 
(NIGP 130309) scale, medial portion of the crown. (c) Solinalepis levis gen. et sp. nov. 
trunk scale (BU5314), lateral portion of the crown. Primary odontocomplex structure in 
Mongolepidida demonstrated by line drawings of longitudinally sectioned (d) Mongolepis 
rozmanae (BU5297) and (e) Shiqianolepis hollandi (NIGP 130312) scales. In (a)–(c) 
some of the odontocomplexes are highlighted in red and green. Dark green and dark 
red, odd numbered odontodes; light green and light red, even numbered odontodes. In 
(d), (e)—light grey, primary odontodes; light yellow, secondary odontodes. Anterior 
towards the bottom in (a)–(c) and towards the left in (d), (e). Scale bar equals 100 μm in 
(a), 200 μm in (b) and 50 μm in (c).
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Chapter 5: Elegestolepis and its kin, the earliest chondrichthyans to develop 

mono-odontode scale crowns

5.1. INTRODUCTION

The type species of the genus Elegestolepis (E. grossi) was described (Karatajūtė-Talimaa 

1973) from isolated scale remains from Upper Ludlow–Pridoli strata (Elegest and Kadvoj 

outcrops, Tuva, Russian Federation) of the Tuva-Mongol terrane (Žigaitė et al. 2011)— at 

the time of publication being the earliest known taxon referred to the Chondrichthyes. 

Subsequent studies on microvertebrate fossils from the Lower Palaeozoic have led to the 

identification of stratigraphically older species attributed to Elegestolepis, represented by 

the Upper Llandovery–Lower Wenlock E. sp. (Chargat outcrop, north western Mongolia; 

Karatajūtė-Talimaa et al. 1990) from the Tuva-Mongol terrane and the Middle Llandovery 

E. conica (Nyuya River outcrop, Sakha (Yakutia) Republic, Russian Federation; 

Karatajūtė-Talimaa and Predtechenskyj 1995) from the adjacent Siberian craton. The 

palaeogeographical and stratigraphical range of taxa exhibiting Elegestolepis-like 

characteristics was further expanded with the description (Vieth 1980) of the Laurussian 

chondrichthyan scale species Ellesmereia schultzei (from Lochkovian of Ellesmere Island, 

Nunavut Territory, Canada).

According to the established by Karatajūtė-Talimaa (1992) categories of scale 

morphogenesis in Palaeozoic chondrichthyans, Elegestolepis and Ellesmereia belong to 

the Elegestolepis developmental type as a result of possessing scales with a mono-

odontode, non-growing crown enclosing a pulp canal that opens at the crown neck via a 

single foramen. Influenced by the lepidomorial theory put forward by Stensiö and Ørvig 
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(see 1951–1957 and Stensiö 1961), Karatajūtė-Talimaa (1992, 1998) proposed that 

elegestolepid scale crowns represent the simplest mono-odontode dermatoskeletal 

elements, exhibiting many of the characteristics of what were assumed by the theory to be 

the most elementary skeletal units of the integument (lepidomoria). Thus, the odontode 

development in elegestolepids was differentiated from that of other chondrichthyans with 

‘placoid’ (mono-odontode) scales, whose crowns allegedly form through coalescence of 

lepidomoria. Karatajūtė-Talimaa (1992, 1998; see also Stensiö 1961 and Zangerl 1981) 

attributed this complex morphogenetic pattern to the Polymerolepis and Heterodontus 

(euselachian; Fig. 14c) scale types identified by her. A hypothesis of odontode evolution in 

stem chondrichthyans was founded upon these assumptions, and implicates 

lepidomorium-like elements as the phylogenetic precursors of all chondrichthyan scales 

(Karatajūtė-Talimaa 1992).

In the years following the conceptualization of the lepidomorial theory, increasing 

evidence from studies on the development of the integumentary skeleton of Recent 

neoselachians (Reif 1980b; Miyake et al. 1999; Johanson et al. 2008) has discredited the 

concrescence model of odontode morphogenesis predicted by the theory, and this is now 

refuted by most authors (Smith and Coates 1998; Donoghue 2002 and references therein). 

Considering the above, a re-examination of Elegestolepis and Elegestolepis-like Silurian 

scale taxa (e.g. Ellesmereia, Kannathalepis) identified in the literature is important in 

developing a better understanding of the early evolution of single odontode integumentary 

skeletal elements in the Chondrichthyes. For that purpose, the present study investigates 

the development pattern, histology and canal system of Elegestolepis grossi scales and 

that of previously undescribed scales from the Lower Silurian of Mongolia referred to 

Elegestolepis (Karatajūtė-Talimaa et al. 1990). The new data allowed to establish a 

systematic framework for Elegestolepis-like taxa and test their chondrichthyan affinities, as 

proposed in the literature.
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5.2. SYSTEMATIC PALAEONTOLOGY

Class CHONDRICHTHYES Huxley, 1880

Order ELEGESTOLEPIDA ordo nov.

Included families. Kannathalepididae Märss and Gagnier 2001 and Elegestolepidae fam. 

nov.

Diagnosis. Chondrichthyan fish possessing mono-odontode scales with growing 

odontodes that enclose neck-canal branches of the pulp cavity (Fig. 14b). Scale supported 

by a basal bone tissue whose deposition succeeds the formation of the scale odontode.

Remarks. The recent literature on putative basal chondrichthyan taxa (e.g. mongolepids, 

elegestolepids, kathemacanthids and polymerolepidiforms) from the Lower Palaeozoic 

expresses uncertainty regarding their systematic position relative to the major clades 

(Subclasses) of the Chondrichthyes (Karatajūtė-Talimaa and Novitskaya 1997; Sansom et 

al. 2000; Märss et al. 2006; Hanke and Wilson 2010; Hanke et al. 2013). This reflects an 

inadequate understanding of the phylogenetic significance of scale-derived characters, 

which have been employed to diagnose these taxa given the general absence of 

chondrichthyan endoskeletal and dental remains in the Lower Palaeozoic.

The odontode growth that typifies the ontogenesis of Elegestolepis-like scales does 

not occur in members of established Subclasses of chondrichthyan fish (Grogan et al. 

2012) and requires Elegestolepida to be considered at present Chondrichthyes incertae 

sedis. The rationale behind erecting the order is to unite chondrichthyan species that 

possess scales with growing single-odontode crowns whose morphogenesis departs from 

that of elasmobranch ‘placoid’ scales (the Heterodontus morphogenetic type of Karatajūtė-

Talimaa 1992, 1998; Fig. 14c). This recognition of the Elegestolepis-type of scale 

development as an apomorphy of the Elegestolepida represents a conceptual change from 
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what was originally identified to be a purely morphogenic category (Karatajūtė-Talimaa 

1992, 1998).

KANNATHALEPIDIDAE Märss and Gagnier 2001

Included genera. Kannathalepis Märss and Gagnier 2001.

Revised diagnosis. Elegestolepids possessing dermal scales with vertically undivided 

pulp cavities from which multiple (up to five) horizontal neck canals emerge basally.

Remarks. The monogeneric family Kannathalepididae was introduced by Märss and 

Gagnier (2001) to distinguish Kannathalepis, identified to exhibit a specialised type of 

scale morphogenesis, from other known Silurian chondrichthyan scale taxa (mongolepid 

and elegestolepid). It was reported that the squamation of Kannathalepis consists of 

single-odontode scales along with more complex aggregates of fused ‘placoid’ scales that 

allegedly provide evidence for two separate modes of scale development within the genus 

(Märss and Gagnier 2001). The current study regards the compound scales of 

Kannathalepis as aberrant, formed by anomalous patterning that is thought to result from 

suppression of inter-scale domains in accordance with the inhibitory field model outlined 

by Reif (1980a, 1982). Localised suturing of scales has been documented in stem 

(Hydodus delabechei, Reif 1978 and Lissodus sardiniensi, Fischer et al. 2010) and crown 

(Echinorhinus brucus, Reif 1985 and Asterodermus platypterus, Thies and Leidner 2011) 

euselachians with developed mono-odontode trunk scale cover that is known to be 

prevalent within the order (Dick 1978; Dick and Maisey 1980; Reif 1985; Maisey 1989; 

Wang et al. 2009; Thies and Leidner 2011).

Complexes of randomly sutured mono-odontode scales consequently cannot be 

considered equivalent to polyodontode scales (e.g. those of Mongolepidida, Karatajūtė-
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Talimaa 1998), since the odontodes of the latter are patterned as a unit in a particular 

manner and are given support by a common base/pedicle tissue. The scale development 

in Kannathalepis can thus be identified as that of ‘placoid’ scales with a growing odontode 

and base, corresponding to the Elegestolepis morphogenetic type (Fig. 14b) of Karatajūtė-

Talimaa (1992). On that basis, Kannathalepididae is placed inside the new order 

Elegestolepida, and its validity is maintained by acknowledging the diagnostic for the 

family canal system characteristics (vertically undivided pulp cavity and multiple neck 

canals) recognised in the original description of the taxon.

Kannathalepididae was expanded subsequent to its erection to include the 

Wenlockian genus Frigorilepis, which was described from articulated body fossils (Märss 

et al. 2002, 2006). Nevertheless, crown morphogenesis in Frigorilepis has not been 

demonstrated to proceed in discrete growth phases as in elegestolepid taxa, which are 

further distinguished by the presence of scale-neck canal openings. This absence of 

diagnostic for Elegstolepida characters requires to treat Frigorilepis as family and order 

incertae sedis for the time being.

Family ELEGESTOLEPIDAE Andreev, Karatajūtė-Talimaa, Shelton, Cooper, and Sansom 

fam. nov.

Included genera. The type genus Elegestolepis Karatajūtė-Talimaa 1973, Ellesmereia 

Vieth 1980 and Deltalepis gen. nov.

Diagnosis. Elegestolepids with scales that develop a vertically branched pulp cavity that 

gives off a single horizontal neck canal and dentine canals that originate at the lower neck/

pedicle surface independently of the pulp (Fig. 21).
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Genus Elegestolepis Karatajūtė-Talimaa, 1973

Included species. The type species E. grossi Karatajūtė-Talimaa 1973 and E. conica 

Novitskaya and Karatajūtė-Talimaa 1986.

Revised diagnosis. Elegestolepidids (pertaining to the family Elegestolepidae) 

possessing up to three unornamented scale crown lobes (Fig. 15a; Fig. 16a, b, d, e) 

incised by deep, linear grooves.

Elegestolepis grossi Karatajūtė-Talimaa, 1973

(Figs. 14b, 15a, 16, 17, 21a–c) 

Locality and horizon. Examined specimens come from beds 236, 291, 293 and 295 of 

the Baital Formation (Upper Ludlow–Pridoli, Vladimirskaya 1978) at the type locality on the 

Elegest River, Tuva, Russian Federation (Karatajūtė-Talimaa 1973).

Holotype. An ontogenetically mature scale (T-003) from the Baital Formation of Tuva, 

Russian Federation (Karatajūtė-Talimaa 1973).

Referred material. More than 200 isolated scales (including specimens figured here) and 

material figured in Karatajūtė-Talimaa (1973). Non-figured specimens stored in the 

Lapworth Museum of Geology, University of Birmingham, UK.

Revised diagnosis. Elegestolepis species possessing 0.3–1 mm long scales that have 

deltoid to lanceolate, trilobate crowns and develop moderately to strongly constricted 

necks and bulbous bases during their ontogenesis (Fig. 16). Scale odontode composed of 

dentine tissue with multipolar odontocyte lacunae from which emerge canaliculi with 

dendroid branching (Fig. 17f). Cellular basal bone with layered mineralised-fibre 

organization (Fig. 17c, f, g).
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Remarks. Certain differences were noted between the interpreted here scale histology of 

E. grossi scales and the original descriptions of Karatajūtė-Talimaa 1973. The chief of 

these concerns the nature of the most superficial portion of the scale crown and neck, 

understood by Karatajūtė-Talimaa (1973) to consist of durodentine tissue (one of the less 

widely used synonyms of enameloid, Ørvig 1967; Smith and Miles 1971; Sire et al. 2009).

This ‘enameloid’ layer is found not to be a persistent feature of E. grossi scales, and 

even when present it appears discontinuous and/or absent from most of the upper crown 

surface (Fig. 17a–e), contrary to previous depictions (Karatajūtė-Talimaa 1973, fig. 2a, b; 

Sire et al. 2009, fig. 10b). This distribution is also contrary to that of enameloid tissue in 

neoselachian scales, where it is confined mainly to the upper crown region (Johns et al. 

1997; Manzanares et al. in prep.; pers. obs.). Furthermore, the architecture of the 

superficial crown region cannot be recognised in any of the known enameloid structural 

types (Johns et al. 1997; Sansom et al. 2005a; Gillis and Donoghue 2007; Guinot and 

Cappetta 2011; Andreev and Cuny 2012), but instead resembles that of the crown dentine 

and is regarded as such. The documented more porous appearance of the surface dentine 

is likely to be diagenetically induced and/or due to alteration of the original tissue 

microstructure by preparation of the specimens with unbuffered acetic acid (even in low 

concentration, the latter has been shown to damage the phosphatic tissues of conodont 

elements, Jeppsson et al. 1985; Jeppsson and Anehus 1995).

This study also demonstrates the presence of previously unidentified depositional 

lines (Fig. 17g) in the basal bone of E. grossi scales, although growth of the bone tissue 

has been inferred from specimens in different stages of development (Karatajūtė-Talimaa 

1973, 1998). The lamellae, demarcated by the depositional lines, have concave down 

profiles that follow the outline of the base, which is a common feature of growing scale 
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bases in lower vertebrates (e.g. Ørvig 1966; Zangerl 1968; Denison 1979; Burrow and 

Turner 1998, 1999; Qu et al. 2013b). 

Genus Ellesmereia Vieth 1980

Included species. Ellesmereia schultzei Vieth 1980.

Remarks. Ellesmereia (Fig. 15b) was assigned to the Elasmobranchii by Vieth (1980) 

despite being recognised to possess an Elegestolepis type of scale morphogenesis that is 

not an elasmobranch characteristic (Reif 1978; Karatajūtė-Talimaa 1992), and therefore is 

transferred to the Elegestolepida. Mature Ellesmereia scales also possess a canal system 

structure (Vieth 1980) that closely resembles the vascularization of Elegestolepis and 

Deltalepis gen. nov., and for that reason the three taxa are united at a familial level.

Genus Deltalepis gen. nov.

Included species. Deltalepis magnus gen. et sp. nov. (type species) and Deltalepis 

parvus gen. et sp. nov.

Derivation of name. From ‘delta’ (alluding to the resemblance of the scale crown to the 

Greek letter Δ) and ‘lepis’, scale in Greek.

Diagnosis. Elegestolepidids whose scales possess crowns with three and more lobes 

ornamented by tuberculate ridges (Fig. 15c, d).

Remarks. The material referred here to Deltalepis gen. nov. has never been formally 

described and/or figured, and was considered to belong to the genus Elegestolepis by 

Karatajūtė-Talimaa et al. (1990) and Karatajūtė-Talimaa and Novitskaya (1997) in their 

work on the mongolepid taxa from the Chargat Formation. Deltalepis gen. nov. scales 
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possess uncharacteristic for Elegestolepis and Ellesmereia crown morphology, 

ornamentation and pulp cavity branching pattern that taken together are suggested to 

support the erection of the new taxon. This distinction is largely based on the extent of 

documented intra- and inter-generic variation of trunk-scale morphology (e.g. crown 

shape, number of crown ridges/lobes and ornamentation) in Recent neoselachian families 

(Reif 1985; Compagno 1988; Voigt and Weber 2011). The rare among the elegestolepids 

tuberculate ornament of Deltalepis gen. nov. is consequently viewed to be a genus level 

character, with evidence for its independent occurrence in thelodonts (e.g. Erepsilepis 

Märss et al. 2006 and ?Thelodus Märss et al. 2007) and mongolepid chondrichthyans 

(Shiqianolepis and Rongolepis Sansom et al. 2000; Chapter 4) further substantiating the 

claim. The ridged lobes of Deltalepis gen. nov. are also a feature of micro-remains from 

Darriwilian (Middle Ordovician) strata of the Stokes Siltstone (central Australia), attributed 

to the putative chondrichthyan taxon Areyongalepis oervigi (Young 1997). The crown 

necks and bases of elegestolepid scales, however, are not developed in Areyongalepis 

elements, and the latter do not demonstrate identifiable vertebrate mineralised tissues 

(Young 1997 and personal observations), making their systematic position for the time 

being uncertain.

Deltalepis magnus sp. nov.

(Figs. 15c, 18, 20a–b, 21d–f)

Derivation of name. From the Latin word for large, referring to the scale size of the 

species relative to that of D. parvus gen. et sp. nov.

Locality and horizon. The type and only known locality for D. magnus is 80 km north of 

Lake Khar-Us, north-western Mongolia (Karatajūtė-Talimaa et al. 1990). All specimens 

come from sample 16/3 collected from the Upper Llandovery–Lower Wenlock (Salhit 
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regional Stage) horizons of the Chargat Formation (Karatajūtė-Talimaa et al. 1990; Žigaitė 

et al. 2011).

Holotype. An isolated, presumably trunk, scale BU5269 (Figs. 15c, 18a–c).

Referred material. Six isolated scales (figured here), including the holotype specimen.

Diagnosis. Deltalepis species possessing scales with 0.5–0.7 mm long, deltoid to elliptic, 

crowns divided into three to five discrete lobes. Parallel tuberculated ridges developed on 

the lower crown surface. The rami of the pulp cavity formed inside the scale crown connect 

directly to the main pulp canal. 

Description.

Morphology. Scales possess mono-odontode crowns with ovate to acuminate outlines 

(Fig. 18) that are 500–700 μm long and 400–700 μm wide. The crown surface displays a 

complex topography that is produced by three to five lobes separated by deeply recessed 

inter-lobe regions (Fig. 18a–c, e, g, h). The lobes are lanceolate-shaped and can exhibit 

slight divergence towards the posterior of the scale. Their surface is ornamented by sub-

parallel tuberculate ridges (up to 8 per lobe) that are absent from the smooth-faced inter-

lobe segments of the crown. Longitudinally directed ridges are similarly developed on the 

lower crown surface (Fig. 18f, i, j), and these demonstrate regular spacing across its width.

The crown transitions into an unornamented narrow neck (down to a third of the 

maximal crown width) that is located at the anterior of the scale, overhung on all sides by 

the crown. The lower portion of the neck is either gently curved outwards or flares out to 

form an ellipse-shaped pedicle. In specimens with a developed pedicle support (Fig. 18e–

g, I, j) the posterior face of the neck is pierced by a single centrally positioned foramen 

(Fig. 18f) with a diameter of c. 30–40 μm. The lower pedicle surface of some specimens is 
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deeply indented (Fig. 18i), and penetrated by the scale’s canal system, whereas in others 

it is nearly flat (Fig. 18j), exhibiting only a greatly constricted opening of the pulp.

Histology. The scale odontodes are composed solely from a highly vascular tubular 

dentine (Fig. 20a, b). The canaliculi of the dentine have a coiled appearance and display a 

tangled organization as well as extensive ramification along their length (up to c. 20 μm). 

In the upper portion of the crown, the canalicular network emerges from a complex of 

horizontally and vertically branched, interconnected, small-calibre dentine canals (diameter 

of c. 5–25 μm; Fig. 21d). The latter are most prominent inside the crown lobes where they 

associate with and connect to branches (c. 30–60 μm in diameter) of the pulp canal. For 

most of their length the pulp branches extend parallel the crown surface, before curving 

basally to merge (Fig. 21f) into a single pulp canal (c. 60–90 μm wide) inside the scale 

neck. From the posterior of the pulp issues an unbranched horizontal canal (c. 70 μm long; 

Fig. 21f) that opens on the scale neck surface. Separate from the pulp cavity system, the 

posterior half of the scales houses numerous closely spaced (up to c. 10 μm apart) 

dentine canals (10–20 μm in diameter) whose paths parallel that of the lower crown 

surface (Fig. 21e). The lower ends of these canals ramify inside the scale neck before 

either exiting the scale basally (Fig. 21e) or ending blindly inside it. 

The tissue (c. 40 μm thick) closing off the lower pedicle opening displays an 

optically discernable boundary with the overlying dentine (Fig. 20a), but it could not be 

ascertained whether it constitutes a distinct tissue type.

Deltalepis parvus sp. nov.

(Figs. 15d, 19, 20c–d, 21g–j) 
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Derivation of name. From the Latin word for small, referring to the scale size of the 

species relative to that of D. magnus gen. et sp. nov.

Locality and horizon. The type and only known locality situated 80 km north of Lake 

Khar-Us, north western Mongolia (Karatajūtė-Talimaa et al. 1990). All specimens come 

from the Upper Llandovery–Lower Wenlock (Salhit regional Stage) horizons (sample 16/3) 

of the Chargat Formation (Karatajūtė-Talimaa et al. 1990; Žigaitė et al. 2011).

Holotype. An isolated, presumed trunk, scale BU5275 (Figs. 15d, 19a, b).

Referred material. Six isolated scales (figured here), including the holotype specimen.

Diagnosis. Deltalepis species with ovoid, 0.2–0.5 mm long, scale crowns that are 

compartmentalised into seven to ten lobes. The lateral crown branches of the pulp cavity 

do not connect directly to the main pulp canal.

Description.

Morphology. The scale crowns are single odontode structures with ovoid outlines (Fig. 19) 

that are 200–500 μm long and 200–400 μm wide. Upper crown surface is divided into 

seven to ten antero-posteriorly aligned lobes (40–60 μm wide; Fig. 19a–f) separated by 

much narrower, deeply incised grooves that expand towards the posterior (up to c. 20 μm 

wide). Tubercles organised into parallel rows ornament the upper surface of the crown 

lobes (up to three rows per lobe), whereas all other scale surfaces are smooth.

The anterior of the crown is constricted into a vertically orientated neck that reaches 

a third to three-quarters of the maximal crown width, and which in some specimens 

expands basally to form a pedicle support (Fig. 19c–f, h, i). The posterior lower-neck/

pedicle face of these scales is pierced by a single foramen (Fig. 19d, h, i) with a diameter 

of 20–35 μm. A canal opening is also present on the lower pedicle surface (Fig. 19h), while 
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a row of elliptical foramina of laterally decreasing diameter (from 70 μm to 40 μm in Fig. 

19g) mark the lower face of scales lacking a pedicle attachment.

Histology. Tubular dentine tissue (Fig. 20c, d) is the only component of the scale crown. 

The dentine canaliculi are less than 2 μm in diameter and up to c. 20 μm long, with 

arborescent branching (Fig. 20d) that gives the tubular system a tangled appearance. 

Inside the lobed regions of the crown, the tubules connect to a network or vertically (c. 5–

10 μm wide and 25–40 μm long) and horizontally (c. 5 μm wide) oriented dentine canals 

(Fig. 20c; Fig. 21j) that are confluent with branches of the pulp cavity. These pulp branches 

(from c. 20 μm to c. 45 μm in diameter; Fig. 21g–j) occupy the crown lobes (one canal per 

lobe) before curving basally to merge with one another inside the scale neck. The three 

medial branches emerge from the main pulp canal—confined to the scale neck/pedicle—

whereas the more lateral ones are only indirectly connected to it through the medial rami 

(Fig. 21i). Near its lower end the main pulp canal gives off a short neck canal (Fig. 21i, j) 

that opens at the scale surface.

Posterior of the pulp-cavity canal system the scale houses a number (c. 15) of 

mutually parallel, ascending dentine canals (Fig. 21g) with diameters between c. 10 μm 

and 15 μm. These canals follow the posterior scale profile without establishing 

connections at any point with the pulp cavity and terminate basally at the lower pedicle 

surface.
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5.3. DISCUSSION

5.3.1. Chondrichthyan characteristics of elegestolepid mono-odontode scales

The odontogenic component of the vertebrate skeleton develops primarily as discrete 

elements (odontodes), each of which being the product of a single epithelia-mesenchymal 

cell condensation (Ørvig 1977; Reif 1982; Fraser et al. 2010). Odontodes are the main 

structural units of scales and in certain groups (e.g. in neoselachian chondrichthyans, Sire 

and Huysseune 2003; Eames et al. 2007; Sire et al. 2009; Fig. 14c) can form the entire 

squamation in the absence of osteogenic contribution to the integumentary skeleton. In 

Lower Palaeozoic vertebrates, dermal odontodes are typically patterned in clusters 

(polyodontodia in Ørvig 1977) that form compound scale crowns; these have been 

documented in pteraspidomorphs (Gross 1961; Denison 1967; Sansom et al. 2009), 

anaspids (Märss 1986; Blom et al. 2002; Märss 2002), galeaspids (Wang et al. 2005), 

osteostracans (Stensiö 1932) and derived gnathostomes (Schultze 1968; Gross 1969; 

Schultze 1977; Denison 1979; Karatajūtė-Talimaa 1995; Sansom et al. 1996; Burrow and 

Turner 1998, 1999; Sansom et al. 2012). The Thelodonti (Märss et al. 2007) and certain 

chondrichthyan clades (Elegestolepida Karatajūtė-Talimaa 1973, 1998; this study, 

Iniopterygii Zangerl and Case 1973; Grogan and Lund 2009 and Paleoselachii Lund 1985, 

1986; Coates and Sequeira 2001) are the exception, as their scale crowns form only from 

a single-odontode element.

The integumentary skeleton of thelodonts demonstrates the most phylogenetically 

primitive type of morphogenesis of mono-odontode scales (Smith and Hall 1990, 1993; 

Sire et al. 2009; Fig. 14a). In contrast to polyodontode scale development, where each of 

the component odontodes mineralises in a single step, the scales of thelodonts go through 

several ontogenetic phases that result in gradual elongation of the crown in basal direction 

(Gross 1967; Karatajūtė-Talimaa 1978). The latter can also possess basal bone tissue 
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(Fig. 14a) whose deposition commences only after cessation of odontode growth 

(Karatajūtė-Talimaa 1978; Märss et al. 2007). The thelodont type of scale development 

has convergently evolved in what are considered here to be basal chondrichthyans, with 

the appearance of Elegestolepida in the Llandovery. Nevertheless, during ontogenesis 

elegestolepid scales develop a more derived canal system architecture that features neck 

canal opening(s) of the odontode pulp (documented outside the Chondrichthyes in 

‘placoderms’ Burrow and Turner 1998, ‘acanthodians’ Denison 1979 and stem 

osteichthyans Gross 1953, 1968; Qu et al. 2013b) absent from the dermal skeleton of the 

Thelodonti (Gross 1967; Karatajūtė-Talimaa 1978; Märss et al. 2007). The depth of 

insertion of the scale into the integument has been suggested to have influence on the 

formation of neck canals (Hanke and Wilson 2010) and is supported by the position of 

scale necks inside the upper vascular layer (stratum spongiosum) of the dermis, 

documented in Recent neoselachians (Reif 1980b; Miyake et al. 1999). The same 

topological relationship between scales and surrounding integumentary tissues is 

attributed here to the elegestolepids, whereas the dermal odontode papillae of thelodonts 

have been interpreted to form superficially at the epithelium-mesenchyme boundary 

(Karatajūtė-Talimaa 1978; Märss et al. 2007).

Outside the Chondrichthyes, other derived gnathostomes regarded to possess 

mono-odontode body scales belong to the basal ‘placoderm’ orders Stensioellida and 

Antiarcha (see above; also refer to Johanson 2002, Brazeau 2009 and Davis et al. 2012 

for recent vertebrate phylogenies) whose scale structure is still insufficiently investigated. 

The available data on the squamation of these taxa (e.g. Stensioella Gross 1962, 

Pterichthyodes Hemmings 1978, Asterolepis Ivanov et al. 1995, Upeniece 2011 and 

Parayunnanolepis Upeniece 2011; Zhu et al. 2012) provides evidence for non-growing 

odontodes, implying this to be a plesiomorphic characteristic of the single-odontode scales 

of jawed gnathostomes. Asterolepis is the only histologically described genus from those 
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identified above, known to exhibit a multi-layered (lamellar and cancellous layers) scale-

base bone tissue of the type composing the ‘placoderm’ dermal skeleton (Ivanov et al. 

1995; Giles et al. 2013). Within derived gnathostomes the elegestolepid scale hard tissue 

histogenesis and composition conform to those common for the polyodontode scales of 

chondrichthyans, which likewise are two-component skeletal elements formed out of 

lamellar basal bone and crown dentine (Karatajūtė-Talimaa 1992). Another characteristic 

uniting Elegestolepida with the Chondrichthyes among jawed gnathostomes is the 

absence of dermoskeletal resorption and remodeling that are prevalent in placoderm-

grade gnathostomes (Downs and Donoghue 2009; Giles et al. 2013) and basal 

osteichthyans (Zhu et al. 2006).

5.3.2. Elegestolepida in the context of other Lower Palaeozoic chondrichthyans

Elegestolepids are recognised as an important component of pre-Devonian 

chondrichthyan faunas with five currently identified species grouped into two families (Fig. 

22), being second only in diversity to the order Mongolepidida (Karatajūtė-Talimaa et al. 

1990; Karatajūtė-Talimaa and Novitskaya 1992, 1997; Sansom et al. 2000, 2001; Wang et 

al. in prep.). Whilst the mongolepids (Sansom et al. 2001; Chapter 4) and several other 

chondrichthyan lineages (represented by Areyongalepis Young 1997, Tantalepis Sansom 

et al. 2012, Tezakia Sansom et al. 1996; Chapter 3 and Canonlepis Sansom et al. 2001; 

Chapter 3) have been documented to originate in the Ordovician, no remains attributable 

to Elegestolepida have been reported from this interval (Sansom et al. 2001; Turner et al. 

2004). These Ordovician taxa possess compound (polyodontode) scale crowns and lack 

neck canal openings, the former of which are now understood to not develop in all basal 

chondrichthyans (Märss et al. 2007; Hanke and Wilson 2010).
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Chondrichthyan scales with neck pulp-canal openings are known to first appear in     

the stratigraphically oldest elegestolepid species (E. conica Novitskaya and Karatajūtė-

Talimaa 1986; Karatajūtė-Talimaa and Predtechenskyj 1995), in the Middle Llandovery, 

and can be recognised as a persistent feature of the canal system of mature elegestolepid 

scales (Karatajūtė-Talimaa 1973; Vieth 1980; Märss and Gagnier 2001; Fig. 22). This 

condition is similarly developed in Silurian polyodontode chondrichthyan species (e.g. 

Tuvalepis Žigaitė and Karatajūtė-Talimaa 2008 and the monogolepids Mongolepis, 

Teslepis Karatajūtė-Talimaa 1998, Shiqianolepis and Rongolepis Sansom et al. 2000). In 

monogolepids pulps exit the lower part of crown either by giving off short rami (termed 

‘horizontal canals’ by Karatajūtė-Talimaa 1995 and considered here equivalent to the neck 

canals of elegestolepid scales) or opening directly to the crown surface (in Shiqianolepis 

and Rongolepis Sansom et al. 2000; Chapter 4).

Elegestolepida and Mongolepidida represent two distinct lineages of early     

chondrichthyans that provide an insight into the variability of scale characteristics within 

what are considered to be monophyletic groups. Across both taxa the only features shared 

by species of the same order are those relating to the pattern of crown morphogenesis, 

whilst aspects of the vascular system architecture and hard tissue structure of scales can 

show inter-species differences. Moreover, characters with a sporadic appearance in one of 

the orders can have a constant presence in the other, as is the case with the neck canal 

openings of the elegestolepids. The identification of elegestolepid taxa is thus regarded to 

require the unique character combination of a growing mono-odontode scale crown (order-

grade character) and neck canal openings (plesiomorphy of crown-group gnathostomes).

Under the formulated above diagnosis, the Wenlockian species Frigorilepis     

caldwelli, placed inside Kannathalepididae by Märss et al. (2002, 2006), is excluded from 

Elegestolepida for not demonstrating recognisable stages of scale crown growth. As 
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Frigorilepis does not develop neck canals (Fig. 22), the polygonal ultrasculptural pattern of 

the crown surface it shares with Kannathalepis has been used instead as a character to 

support its chondrichthyan affinity (Märss 2006; Märss et al. 2006). Crown ornamentation 

is regarded non-diagnostic at higher taxonomic levels (see above) and at present no 

further evidence is available to unite Frigorilepis with basal chondrichthyans. As a 

consequence, the Elegestolepis-type of morphogenesis is the only mechanism of 

development recognised in mono-odontode chondrichthyan scales from the Silurian 

Period. The inclusion of Ellesmereia into Elegestolepida demonstrates that odontode 

growth has persisted as a feature of the integumentary skeleton of chondrichthyans at 

least until the Early Devonian (Fig. 22). This last known appearance of an elegestolepid 

species coincides with a major diversification of chondrichthyans at the base of the 

Devonian (Ginter 2004; Turner 2004; Grogan et al. 2012) that sees the emergence of taxa 

with body cover of non-growing ‘placoid’ scales. Some of these species are known from 

body fossils and represent examples of the earliest recorded articulated chondrichthyan 

remains (Polymerolepis whitei Karatajūtė-Talimaa 1968, 1998; Hanke et al. 2013, 

Lupopsyrus pygmaeus Bernacsek and Dineley 1977; Hanke and Davis 2012 and 

Obtusacanthus corroconis Hanke and Wilson 2004; Fig. 22). Their scales lack the bony 

base component of the elegestolepid squamation that in Chondrichthyes has only been 

documented in scales with growing crowns (either mono- or poly-odontode). Moreover, 

Lupopsyrus and Obtusacanthus, resolved as stem chondrichthyan fish in recent 

phylogenies of early vertebrates (Brazeau 2009; Davis et al. 2012; Zhu et al. 2013), do not 

possess scale-neck openings of the pulp canal. This type of vascularization, where the 

pulp opens only towards the lower surface of scales, is however also a feature of the 

earliest recorded chondrichthyan polyodontode scales (Sansom 1996; Sansom et al. 2001; 

Donoghue and Sansom 2002; Chapter 3).
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5.4. CONCLUSIONS

The original concept of Elegestolepis-type scale morphogenesis (Karatajūtė-Talimaa 1992) 

is re-interpreted to feature stepwise crown growth and neck canal formation as its 

diagnostic characteristics. The presence of neck canal openings in Elegestolepis-like 

scales is considered to distinguish them from the growing mono-odontode scales of the 

Thelodonti (Märss et al. 2007), whereas the absence of cancellous bone and hard tissue 

resorption in these taxa are chondrichthyan apomorphies within crown gnathostomes. This 

implies that total-group Chondrichthyes have evolved two distinct morphogenetic 

processes for generation of single odontode scales, one characteristic for the 

elegestolepids and the other producing the non-growing Heterodontus-type scales (sensu 

Karatajūtė-Talimaa 1992), known in detail in euselachians. Consequently, the 

elegestolepid integumentary skeleton is seen to demonstrate one of the early forms of 

chondrichthyan scale development that are absent from more derived taxa of the clade. It 

is further speculated that the contribution of osteogenic tissues to elegestolepid scale units 

represents a phylogenetically basal state in relation to that of taxa with solely 

odontogenically derived squamation.

Shared morphogenetic patterning unites Elegestolepis Karatajūtė-Talimaa 1973     

with Ellesmereia Vieth 1980, Kannathalepis Märss and Gagnier 2001 and Deltalepis gen. 

nov into the newly erected order Elegestolepida, and this extends the known stratigraphic 

range of elegestolepid taxa from the Lower Silurian (Upper Llandovery–Lower Wenlock) to 

the Lower Devonian (Lochkovian). Furthermore, a division of the order into two families is 

established upon differences in pulp cavity architecture between Kannathalepis and all the 

other recognised elegestolepid genera.
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Figure 14. Diagrammatic representation of mono-odontode scale types in (a) the 
Thelodonti and (b, c) the Chondrichthyes. (a) A Thelodus calvus scale (adapted from 
Märss and Karatajūtė-Talimaa 2002, fig. 15F) exemplifying the thelodont morphogenetic 
type. (b) The Elegestolepis morphogenetic type represented by an Elegestolepis grossi 
scale (BU5284). (c) The Heterodontus morphogenetic type represented by a Triakis 
semifasciata scale (BU5341). blue, enameloid; brown, dentine; gold, bone.
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Figure 15. Line drawings depicting the range of crown-surface morphologies in 
elegestolepid scales. (a) Elegestolepis grossi (BU5284). (b) Ellesmereia schultzei 
(adapted from Vieth 1980, pl. 9.2). (c) Deltalepis magnus gen. et sp. nov. (holotype 
BU5269). (d) Deltalepis parvus gen. et sp. nov. (holotype BU5275). Anterior towards the 
bottom.
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Figure 16. Scales of Elegestolepis grossi from the Upper Ludlow–Pridoli (Upper Silurian) 
Baital Formation of Tuva, Russian Federation. Ontogenetically mature scales shown in (a) 
antero-lateral (BU5285), (b) lateral-crown (BU5285), (c) lateral (BU5286) and (d) 
(BU5286), (e) (BU5287) crown views. (f) Postero-lateral view of BU5289 showing the 
single neck canal opening of the scale crown. (g) Postero-basal view of an ontogenetically 
young scale (BU5343) with not fully formed pedicle support. (h) Basal view of a scale 
(BU5288) with pedicle support at an advanced stage of formation. (i) Mature scale 
(BU5289) in basal view exhibiting bulbous basal bone. SEM micrographs. Anterior towards 
right in (b), towards left in (c), towards the bottom in (d, e) and towards the top in (h, i); 
arrows indicate neck canal openings, arrowhead indicates the basal opening of the main 
pulp canal. Scale bar represents 200 μm in (a–e, g, h) and 100 μm in (f, i).
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Figure 17. Hard-tissue structure of Elegestolepis grossi scales from the Upper Ludlow–
Pridoli (Upper Silurian) Baital Formation of Tuva, Russian Federation. (a) Vertical cross 
section of a scale (BU5290) in early stage of bony base formation, etched in 0.5% 
chromium sulphate solution for 2 hours. (b) Detail of (a) showing the upper medial portion 
of the crown. (c) Vertical longitudinal section of a scale (BU5291) in advanced stage of 
basal bone developed (ontogenetically old), etched in 0.5% orthophosphoric acid for 10 
minutes. (d) Detail of BU5291 depicting the lower posterior margin of the crown. (e) Detail 
of the anterior portion of the crown of BU5291. (f) Vertical transverse section of an 
ontogenetically old scale (BU5292). (g) Basal bone of ontogenetically old scale (BU5293) 
in vertical longitudinal section. (a–e) SEM micrographs; (f, g) Nomarski interference 
contrast micrographs. Anterior towards the right in (c–e, g); (b), base. Scale bar represents 
100 μm in (a, c, f, g) 50 μm in (b, e) and 20 μm in (d).
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Figure 18. Scales of Deltalepis magnus gen. et sp. nov. from the Upper Llandovery–Lower 
Wenlock (Silurian) Chargat Formation of north-western Mongolia. Holotype specimen 
(BU5269, scale with a five-lobed crown and a gracile neck) in (a) anterior, (b) antero-
lateral and (c) crown view. (d) Scale (BU5270) with gracile neck in basal view. Scales with 
three-lobe crowns in (e) anterior, (f) posterior, (g) lateral (e–g, BU5273) and (h), crown 
(BU5271) views. (i) BU5273 in basal view revealing the lower pedicle surface. (j) Basal 
view of a scale (BU5272) with fully formed pedicle support. (a–c, h–j) SEM micrographs; 
(d–g) volume renderings. Anterior towards the right in (b), towards the bottom in (c, h) 
towards the top in (d, i, j); arrow indicates a neck canal opening. Scale bars represent 200 
μm.
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Figure 19 (on the following page). Scales of Deltalepis parvus gen. et sp. nov. from the 
Upper Llandovery–Lower Wenlock (Silurian) Chargat Formation of north-western 
Mongolia. Holotype (BU5275) in (a) crown and (b) anterior-crown view. Scale (BU5280) 
with a gracile neck in (c) anterior and (d) posterior view. Scale (BU5277) in (e) anterior and 
(f) crown view. (g) Scale (BU5278) with a gracile neck in basal view, exposing the rami of 
the pulp canal system. Scale (BU5279) with formed pedicle support in (h) basal and (i) 
postero-basal view. (a, b, e–i) SEM micrographs; (c, d) volume renderings. Anterior 
towards the bottom in (a, f) towards the top in (g–i); arrows indicate neck canal openings, 
arrowhead indicates the basal opening of the main pulp canal. Scale bar represents 200 
μm in (a–d, g) and 100 μm in (e, f, h, i).
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Figure 20. Hard-tissue structure of Deltalepis gen. nov. (a) Longitudinal vertical section of 
Deltalepis magnus gen. et sp. nov. scale (BU5274). (b) Detail of (a) showing the upper 
anterior margin of the crown. (c) Longitudinal tomographic � slice of a Deltalepis parvus 112
gen. et sp. nov. scale (BU5280). (d) View of the posterior portion of a Deltalepis parvus 
gen. et sp. nov. scale (BU5282) crown immersed in clove oil. (a, b, d) Nomarski 
interference contrast micrographs; (c) volume rendering. Anterior towards the left. Scale 
bar represents 100 μm in (a, c, d) and 50 μm in (b).

�112



Figure 21 (on the following page). Volume renderings of the scale canal system (in red) 
of examined elegestolepids. The scales are made translucent in all renderings, with the 
exception of (g). (a–c) Elegestolepis grossi scale (BU5284) from the Ludlow–Pridoli 
(Upper Silurian) Baital Formation of Tuva (Russian Federation) in (a) anterior, (b) postero-
lateral and (c) crown (depicting the lower portion of the specimen that is transversely 
sliced through the neck region) view. (d–f) Deltalepis magnus gen. et sp. nov. scale 
(BU5273) from the Upper Llandovery–Lower Wenlock (Lower–Middle Silurian) Chargat 
Formation of north-western Mongolia in (d) crown and (e) posterior view and a (f) crown 
view of the lower portion of the same specimen sliced through the neck region. (g–j) 
Deltalepis parvus gen. et sp. nov. specimens (BU5280 and BU5281) from the Upper 
Llandovery–Lower Wenlock (Lower–Middle Silurian) Chargat Formation of north-western 
Mongolia. (g) BU5280 sliced transversely through the crown in crown view. (h) BU5280 in 
anterior view. (i, j) BU5281 in (i) posterior and (j) postero-lateral view. Anterior towards the 
left in (b), towards the top in (c, f, g) and towards the bottom in (d); arrows indicate neck 
canal openings, arrowheads point at the basal opening of the main pulp canal. Scale bars 
represent 100 μm.
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Figure 22. Characteristics of mono-odontode scales of recognised Lower Palaeozoic 
chondrichthyans and their stratigraphic range. Pink rectangle designates elegestolepid 
taxa. Elegestolepis (Karatajūtė-Talimaa 1973 and data from this study), Deltalepis gen. 
nov. (data from this study), Kannathalepis (Märss and Gagnier 2001), Ellesmereia (Vieth 
1980); Frigorilepis (Märss et al. 2002, 2006), Polymerolepis (Karatajūtė-Talimaa 1998, 
Hanke et al. 2013), Lupopsyrus and Obtusacanthus (Hanke and Wilson 2004; Hanke and 
Davis 2012).
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Chapter 6: Scale-based phylogeny of Palaeozoic chondrichthyans

6.1. INTRODUCTION

Disarticulated remains of chondrichthyan fish are ubiquitous in the fossil record, with 

dermal scales providing almost exclusive evidence for the first 50 Myr of their known 

evolutionary history (Sansom et al. 2001; Turner 2004; Turner et al. 2004). Although most 

of these presumed stem chondrichthyan scale taxa from the Middle Ordovician–Upper 

Silurian interval have been described (e.g. Tantalepis Sansom et al. 2012, Canonlepis 

Sansom et al. 2001; Chapter 3, Tezakia Sansom et al. 1996; Chapter 3, Solinalepis 

Sansom et al. 2001; Chapter 4, Elegestolepis Karatajūtė-Talimaa 1973, Mongolepis 

Karatajūtė-Talimaa et al. 1990, Tuvalepis Žigaitė and Karatajūtė-Talimaa 2008, and 

Kannathalepis Märss and Gagnier 2001), their inter-relationships and affiliations to higher-

ranked clades are largely unknown. The primary obstacle that hampers progress is the 

lack of phylogenetic classification schemes for Palaeozoic chondrichthyans that 

incorporate or are entirely founded on scale characters. Instead, the existing systematic 

framework of fossil chondrichthyan taxa is built upon studies of relationships of crown 

(sensu Brazeau and Friedman 2014 following Grogan et al. 2012) and total group 

chondrichthyans (Zangerl 1981; Stahl 1999; Ginter et al. 2010) that primarily employ tooth 

and/or endoskeletal characters as means to diagnose taxonomic units.

Apart from a limited number of dermal scale features used in phylogenetic 

investigations of chondrichthyans (Grogan and Lund 2008; Grogan et al. 2012), the only 

other research that integrates scale-ba� sed data are phenetic classifications that 116

produce taxon hierarchies determined entirely by morphological parameters (Tway and 
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Zidek 1982, 1983; Johns et al. 1997) and the categorization of scale morphogenetic 

patterns performed by Reif (1978) and Karatajūtė-Talimaa (1992).

The present work addresses the problem of the still insufficiently studied 

systematics of early Chondrichthyes by conducting a scale-based phylogenetic analysis 

that incorporates the majority of the putative Lower Palaeozoic stem chondrichthyans 

recognised in the literature and representatives of major crown chondrichthyan clades 

from the Upper Palaeozoic. A reevaluation of scale morphogenetic categories in 

chondrichthyans, last revised by Karatajūtė-Talimaa (1998), was also performed in the light 

of newly described taxa, and allowed the determination of scale morphogenetic patterns 

inside the high-ranked clades identified by the analysis. The inclusion of osteichthyan, 

acanthodian-grade and placoderm-grade taxa into the data matrix for the phylogenetic 

investigation provided the basis for correlation between resultant tree topologies and those 

produced by recent studies on the relationships of derived gnathostomes (Brazeau 2009; 

Davis et al. 2012; Zhu et al. 2013; Dupret et al. 2014).

6.2. RESULTS

6.2.1 Classification schemes of scale morphogenesis in chondrichthyans

Previous studies that attempted to identify patterns of morphogenesis in fossil 

chondrichthyan scales diagnose these patterns by a combination of features related to 

crown and base histology/development and mechanism of scale-cover ontogenesis (Reif 

1978; Karatajūtė-Talimaa 1992, 1998). 

The present investigation determined that the attachment portion of the scales of 

Palaeozoic chondrichthyans can have a separate developmental origin (odontogenic/

�117



osteogenic) in taxa possessing similar crown architecture, or to be composed of the same 

tissue type in scales with distinct crown odontode patterning (Figs. 23–26; for details refer 

to Chapters 3–5). The former condition is documented in the polyodontode genera Tezakia 

(Upper Ordovician) and Altholepis (Lower Devonian), which have scale crown supports 

formed of dentine and basal bone (Karatajūtė-Talimaa 1997) respectively and, likewise, in 

the mono-odontode scales of the Silurian genus Elegestolepis (basal bone support) and 

those e.g. of the Lower Devonian taxa Polymerolepis, Lupopsyrus and Obtusacanthus 

(Hanke and Wilson 2004; Hanke and Davis 2012) that develop a dentine attachment. An 

example of one tissue type (acellular basal bone) forming the support of crowns with 

contrasting patterns of odontode arrangement are the mono-odontocomplex scales of 

Seretolepis (Lower Devonian) and Wodnika (Upper Permian) and the polyodontocomplex 

of Lower Silurian Mongolian mongolepids (Mongolepis, Teslepis and Sodolepis). Scale 

base/pedicle characteristics are therefore considered not to carry a phylogenetic signal at 

higher systematic levels and are excluded from use in conjunction with those of the crown 

in the descriptions of scale morphogenetic types (defined as categories consistent within 

Orders or higher ranked taxa).

The pattern of ontogenetic development of the squamation (defined as either 

microsquamose, mesosquamose and macrosquamose by Reif 1982) could not be 

ascertained in pre-Devonian chondrichthyan scale taxa because of the lack of data from 

articulated specimens that preserve a ‘snapshot’ of the scale cover at a particular stage of 

ontogenesis. This approach is contrary to interpretations (Karatajūtė-Talimaa 1992, 1998) 

of integumentary skeleton growth/replacement mechanisms founded solely on isolated 

scale elements, as scales lack recognizable specimen-specific features. In order to 

provide a consistent characterization of all morphogenetic types, ontogenetic features of 

the scale cover discernable in body fossils of stratigraphically younger chondrichthyan 

species are not included in their definitions.
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The interpretation of scale crown developmental processes in this study departs 

from the views of Reif (1978) and Karatajūtė-Talimaa (1992, 1998) on the presumed 

formation of polyodontode scales and accounts for the difference between the main 

morphogenetic categories recognised here (based on odontode number and patterning) 

and those proposed (growing and non-growing scales) by Karatajūtė-Talimaa (1992). It is 

presently argued that polyodontode crowns invariably form through sequential addition of 

odontodes, identifying them as growing structures, as opposed to being able to develop 

either synchronomorially or cyclomorially (Reif 1978; Karatajūtė-Talimaa 1992, 1998). The 

synchronous generation of non-growing linear odontocomplexes in mongolepid 

chondrichthyans, suggested by Karatajūtė-Talimaa et al. (1990) and Karatajūtė-Talimaa 

(1998), is refuted by the identification of ‘juvenile’ scales with rudimentary crowns in the 

mongolepid genus Shiqianolepis  (see also Sansom et al. 2000; Chapter 4). The 

odontocomplex structure of Shiqianolepis is typical for the Mongolepidida (underlining a 

common mechanism of development) and is similarly present in taxa with Ctenacanthus-

type of morphogenesis, considered here to possess growing crowns (also acknowledged 

by Karatajūtė-Talimaa 1992). Furthermore, developing dentitions of elasmobranch 

embryos have shown that the patterning of vertical tooth rows, which exhibit the linear 

architecture of scale odontocomplexes, proceeds in a stepwise manner and is dependent 

on spatial information from an initially formed horizontal tooth row (Smith 2003; Smith et al. 

2013). As hypothesised for odontocomplexes, unidirectional addition of odontodes 

accounts for the elongation of vertical tooth rows, whose constituent elements (teeth) are 

continuously produced by localised populations of progenitor cells (Smith et al. 2009; 

Tucker and Fraser 2014).

Karatajūtė-Talimaa (1992) considered scale morphogenetic types to be linked in a 

evolutionary transformational series, where simple mono-odontode scales (composed of 

either tubular or atubular dentine) give rise to all other scale types documented in 
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Palaeozoic chondrichthyans. This model has not been supported by more recent data from 

fossil taxa. The new evidence suggests that chondrichthyans with mineralised 

integumentary skeleton appeared in the Ordovician and these are known to possess 

compound scale crowns with an ordered arrangement of crown odontodes (identified in 

the genera Tantalepis, Tezakia, Canonlepis and Solinalepis). The early occurrence of the 

latter in the stratigraphic record correlates with the identification by the present 

phylogenetic analysis of polyodontode scales as plesiomorphic for chondrichthyans. 

Hence, instead of a progression from simple crowns to ones with complex developmental 

patterns, the early evolution of dermal scales within the Chondrichthyes does not appear 

to follow a linear path towards increasingly elaborate mechanisms of morphogenesis.

6.2.2. Scale morphogenetic types in chondrichthyans

Based on the number and arrangement of primary odontodes it is possible to distinguish 

four categories of morphogenetic types: mono-odontode, polyodontode non-

odontocomplex, mono-odontocomplex and polyodontocomplex.

Mono-odontode scales. These are present in putative stem and crown chondrichthyans 

and can be differentiated into separate morphogenetic types on the basis of 

developmental, histological and canal system features.

Elegestolepis-type (originally defined by Karatajūtė-Talimaa 1992). Identified in the 

stratigraphically oldest single-odontode scale taxa attributed to the Chondrichthyes. These 

are represented by the recently united in the order Elegestolepida (Chapter 5) genera 

Elegestolepis (Llandovery–Pridoli, Karatajūtė-Talimaa 1973; Karatajūtė-Talimaa and 

Predtechenskyj 1995), Deltalepis (Upper Llandovery–Lower Wenlock, Chapter 5), 

Kannathalepis (Wenlock, Märss and Gagnier 2001) and Ellesmereia (Lochkovian, Vieth 

1980). Scale odontode development proceeds in discrete growth phases that result in the 
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stepwise elongation of the lower crown region and the formation of a pedicle and neck 

canal openings in mature scales (Fig. 23a–c).

All other recognised modes of mono-odontode scale development (Polymerolepis, 

Lupopsyrus and Heterodontus types) in chondrichthyans produce non-growing crowns.

Polymerolepis-type (originally defined by Karatajūtė-Talimaa 1992). Exemplified by the 

Lower Devonian putative chondrichthyan genus Polymerolepis and characteristic for non-

growing scales that consist of a single odontode formed exclusively of dentine and 

possessing a system of neck canals (Fig. 23d, e).

Lupopsyrus-type. Exhibited by the scales of Frigorilepis (Sheinwoodian, Märss et al. 

2006), Lupopsyrus (Lochkovian, Hanke and Wilson 2004) and Obtusacanthus 

(Lochkovian, Hanke and Davis 2012), regarded to be among the stratigraphically oldest 

taxa of chondrichthyan affinities known from articulated specimens. This type of 

morphogenesis produces non-growing, single odontode scales devoid of neck canal 

openings.

Heterodontus-type (originally defined as placoid-type by Reif 1978 and 

subsequently revised under the name Heterodontus-type morphogenesis in Karatajūtė-

Talimaa 1992). This developmental pattern is recorded in the crown-group chondrichthyan 

clades Petalodontiformes (in Janassa Ørvig 1966; Malzahn 1968), Hybodontiformes and 

Neoselachii (Johns et al. 1997; Thies and Leidner 2011). The scales of these taxa develop 

as non-growing, single odontode elements that possess neck canal openings and are 

formed of dentine and capping enameloid tissue (Fig. 23f, g).

Polyodontode scales. Within the Chondrichthyes, compound scale crowns are a feature 

of putative stem-group taxa and stem euchondrichthyans (sensu Grogan et al. 2012), 

exhibiting a wide range of odontode patterning styles on the basis of which there can be 

distinguished separate morphogenetic categories.
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Eugeneodus-type. Recognised in the scales of the earliest known chondrichthyan 

taxon, the Middle Ordovician species Tantalepis gatehousei (Sansom et al. 2012), the 

supposed basal chondrichthyan Tuvalepis (Pridoli–Lochkovian, Žigaitė and Karatajūtė-

Talimaa 2008) and the eugeneodontiform species Eugeneodus richardsoni (Zangerl 1966, 

1981). The polyodontode growing crowns of their scales constitute of a single medio-

lateral (non-odontocomplex) odontode row (Fig. 24), deposited through areal bidirectional 

addition of odontodes lateral to the crown primordium.

Seretolepis-type (originally defined by Karatajūtė-Talimaa 1992). Exemplified by the 

Lower Devonian ‘acanthodians’ Parexus (Burrow et al. 2013) and Brochoadmones (Hanke 

and Wilson 2006), the putative stem chondrichthyan Seretolepis (Lower Devonian, 

Karatajūtė-Talimaa 1997; Hanke and Wilson 2010) and the Permian ‘sphenacanthid’ shark 

Wodnika (Schaumberg 1999). This type of morphogenesis produces areally growing scale 

crowns with mono-odonocomplex architecture of linearly (antero-posteriorly) arranged 

odontodes characterised by incremental increase in size in posterior direction (Fig. 25 a–

d).

Protacrodus-type (originally defined by Karatajūtė-Talimaa 1992). A second kind of 

single odontocomplex crown occurs in the scales of the poracanthodid ‘acanthodian’ 

Poracanthodes (Upper Silurian–Lower Devonian; Gross 1956; Märss 1986; Valiukevičius 

1992, 2003a), the euselachians Protacrodus (Devonian–Carboniferous; Gross 1938, 1973) 

and Holmesella (Upper Carboniferous Ørvig 1966; Cicimurri and Fahrenbach 2002). It 

consists of a series of nested scale odontodes added areally in a concentric pattern (Fig. 

25e–i). 

Chondrichthyan scales with polyodontocomplex structure possess 

odontocomplexes of exclusively linear composition. Patterns of odontode size-change 
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within the primary odontocomplexes of these scales and their crown histology are used to 

distinguish separate modes of morphogenesis within this category. 

Mongolepis-type (originally defined by Karatajūtė-Talimaa 1992). Identified in 

members of the chondrichthyan Order Mongolepidida (the Upper Ordovician genus 

Solinalepis and the Lower/Middle Silurian genera Mongolepis, Teslepis, Sodolepis, 

Xinjiangichthys, Shiqianolepis and Rongolepis, Sansom et al. 2000). Scale morphogenesis 

is characterised by the development of a polyodontocomplex crown (Fig. 26a, b) 

composed solely of atubular dentine (lamelline) that grows areally through posteriorly 

directed deposition of progressively larger odontodes.

Ctenacanthus-type (originally defined by Karatajūtė-Talimaa 1992). Recognised in 

the scales of the cladodont taxa Cladolepis (Lower Devonian, Burrow et al. 2000), 

Cladoselache (Upper Devonian, Dean 1909), Goodrichthys (Mississippian, Ginter 2009), 

the Middle–Upper Devonian antarctilamniform Antarctilamna (Young 1982) and the 

Mississippian xenacanthiform Diplodoselache (Dick 1981). This type of development 

produces scale crowns with a mongolepid architecture and growth pattern, composed 

exclusively of tubular dentine (Fig. 26c, d).

Two more developmental types (the Altholepis and Ohiolepis types) are described 

for polyodontocomplex scales with irregular pattern of odontode size change within 

odontocomplex rows. 

Altholepis-type (originally defined by Karatajūtė-Talimaa 1992). In the putative 

chondrichthyans Tezakia (Upper Ordovician, Sansom et al. 1996; Chapter 3) and 

Altholepis (Lower Devonian, Karatajūtė-Talimaa 1997). The primordial odontode 

consistently develops as the largest crown element of growing polyodontocomplex crowns 

(Fig. 26g, h).
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Ohiolepis-type. Present in the Upper Ordovician scale genus Canonlepis (Sansom 

et al. 2001; Chapter 3) and the Middle Devonian putative cladodontomorph Ohiolepis 

(Wells 1944; Gross 1973). The crowns of scales with this type of morphogenesis are 

growing polyodontocomplex structures with primordial odontodes that do not exceed the 

size of the other primary odontodes (Fig. 26e, f).

6.2.3. Chondrichthyes-specific developmental pattern of the integumentary skeleton

The defined here types of scale morphogenesis allow to differentiate patterns of 

ontogenesis of integumentary skeletal elements within the Chondrichthyes. The majority of 

these types represent specific modes of development for single odontode (the 

Elegestolepis-, Polymerolepis-, Lupopsyrus- and Heterodontus- types) and polyodontode 

(the Eugeneodus-, Seretolepis-, Protacrodus-, Mongolepis-, Altholepis- types) crowns not 

recognised in taxa placed stem-ward of the chondrichthyan node (as resolved herein), 

whereas the rest can be identified in other crown gnathostomes (e.g. the Ctenacanthus- 

and Ohiolepis- types are also present in the crown osteichthyans Ligulalepis and Dialipina 

respectively). Despite shared crown-development patterns with osteichthyans, the taxa 

possessing Ctenacanthus and Ohiolepis types of morphogenesis can be united by a 

combination of attributes (similarly recognised in the rest of the taxa included in the 

description section) that are considered unique to the chondrichthyan integumentary 

skeleton; lack of enamel, lack of dermal bone osteons, lack of hard tissue resorption and 

non-superpositional addition of odontodes. 

Enamel is widely accepted to be among the earliest to emerge mineralised-tissue 

components of the vertebrate skeleton (but see Murdock et al. 2013), as it is documented 

in the crowns of euconodont oropharyngeal elements (Donoghue 1998; Donoghue and 

Sansom 2002; Donoghue et al. 2006), whereas dermatoskeletal enamel only makes an 
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appearance at the terminal branches of the vertebrate phylogenetic tree, in the 

Osteichthyes (Donoghue and Sansom 2002; Donoghue et al. 2006; Sire et al. 2009; this 

study). By contrast, osteon formation is common in the scales of stem (in anaspids Blom et 

al. 2002, pteraspidomorphs Denison 1967; Donoghue and Sansom 2002; Donoghue et al. 

2006 and ‘placoderms’ Giles et al. 2013) and crown gnathostomes (in osteichthyans), 

along with resorption and/or remodeling of mineralised tissues (in pteraspidomorphs 

Denison 1967; Donoghue et al. 2006, osteostracans Denison 1952; Donoghue et al. 2006, 

‘placoderms’ and osteichthyans). Crown growth that involves superpositional addition of 

odontodes (newly deposited odontodes covering the free surfaces of previously deposited 

ones) is identified in some of the phylogenetically most basal vertebrate taxa known to 

possess polyodontode scale crowns (pteraspidomorphs Denison 1967), and it is also a 

prevalent feature of jawed gnanthostomes, found in ‘placoderms’, ‘acanthodians’ and 

osteichthyans (Gross 1968; Denison 1979; Burrow and Turner 1998; Qu et al. 2013a).

The chondrichthyan dermal skeleton is thus suggested to have evolved a distinct 

developmental signature by means of elimination of a number of gnathostome 

plesiomorphies and not through acquisition of novel characteristics. As the number of 

phylogenetically primitive characters retained in other major jawed gnathostome groups is 

greater than that documented in chondrichthyans, the latter are considered to exhibit the 

most derived dermatoskeletal features among vertebrates. 

6.2.4. Remarks on the phylogenetic analyses

The calculated four strict consensus trees (SCTs; Figs. 28, 29b, 30b, 31b), one for each of 

the performed analyses (I–IV), are partially resolved, with the highest number of 

polytomies (24 unresolved nodes) occurring on the branch carrying putative and 

established chondrichthyan taxa in SCT I and SCT III, compared to only six unresolved 
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nodes in SCT II and SCT IV. The SCT II polytomies are near the stem of the tree (affecting 

the thelodont branch, and those supporting the ‘placoderms’ Connemaraspis and 

Gladbachus and the osteichthyans Ligulalepis and Cheirolepis), whereas in SCT IV they 

appear more crown-wards (polytomies on the branches bearing Ligulalepis/Cheirolepis, 

Poracanthodes/Polymerolepis and Altholepis/Orodus respectively). The generated 50 

percent majority-rule trees (MRTs; Figs. 27, 29a, 30a, 31a) similarly have unresolved 

regions but possess fewer polytomies above node of the lowest placed chondrichthyan 

taxon (7 in MRT I, 4 in MRT III and 1 in MRT IV) than produced by the strict consensus 

analyses. The SCT and MRT polytomies are regarded to be soft, as both types of trees 

were calculated from sets of fully resolved most parsimonious trees (MPTs).

Those taxa that exhibit chondrichthyan-type scale morphogenesis form a 

monophyletic group in MRTs, when the full character-taxon dataset is used in analyses 

with either no preferential weighting of characters (analysis I) or with higher weight values 

assigned to a subset of characters deemed diagnostic to the chondrichthyan dermal 

skeleton (analysis III). The consistent taxon composition and similar branch topology of the 

chondrichthyan clade resolved in both of these analyses indicates that a strong 

phylogenetical signal is carried by the scale characters defined as Chondrichthyes-

specific. This interpretation is further substantiated by the difference between MRT I, III 

(Figs. 27, 30a) and the MRT produced by analysis II (higher weight values given to a 

subset of developmental characters; Fig. 29a) where all ‘acanthodian’ genera with non-

chondrichthyan, superpositional, crown growth pattern are placed on the chondrichthyan 

branch. The exclusion of anaspid and thelodont taxa from the outgroup (analysis IV) 

similarly resolves a MRT that contains a monophyletic group comprised of taxa with 

chondrichthyan and ‘acanthodian’ (superpositionally growing mono-odontocomplex crown) 

type of scale morphogenesis, but the inter-relationships of the latter differ from those 

established in analysis II.
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The synapomorphies of the Chondrichthyes identified from analyses I and III (all 

scale odontodes exposed on the crown surface; areal addition of odontodes) are 

considered to give the latter more relevance in comparison to analyses II and IV, where the 

loss of certain features (absence of scale peg-and-socket articulation; absence of enamel) 

is recognised instead as synapomorphic. Moreover, MRT I and MRT III are regarded to 

provide the most congruent taxon composition of the chondrichthyan clade based upon the 

absence of what are believed to be more basal acanthodian-grade taxa (see above), and 

on the account of the fully resolved stem of MRT I, the latter is given preference over MRT 

III to be representative of the conducted phylogenetic study.

6.2.5. Populating the stem of the chondrichthyan tree

The largest clade to exclusively consist of taxa sharing a common pattern of scale 

morphogenesis of a chondrichthyan type is the one uniting the six mongolepid genera 

included in the present study (Mongolepis, Teslepis, Sodolepis, Xinjiangichthys, 

Shiqianolepis and Solinalepis; Fig. 32), and this is consistently resolved in all generated 

trees. These results are in accordance with previous work that supports the validity of the 

Mongolepidida (Karatajūtė-Talimaa et al. 1990; Sansom et al. 2000; Sansom et al. 2001), 

and re-affirm its status as a chondrichthyan Order by grouping the mongolepids with 

putative and established chondrichthyan genera in the produced MRTs.

A large monophyletic group of Middle Ordovician to Lower Devonian 

chondrichthyans (Tantalepis, Canonlepis, Tezakia, Elegestolepis, Frigorilepis, 

Kannathalepis, Tuvalepis, Lupopsyrus and Obtusacanthus; Fig. 32) is also recognised to 

be a feature of most MRTs (I, III, IV), but, in contrast to the Mongolepidida, the former is 

heterogeneous with regard to the scale developmental types recognised in its component 

taxa. Crown characteristics exhibit polarisation within the clade, with the 
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polyodontocomplex genera Canonlepis and Tezakia being its basal-most members and the 

mono-odontode condition predominating among more derived taxa (Elegestolepis, 

Frigorilepis, Kannathalepis, Lupopsyrus and Obtusacanthus). The only part of this clade’s 

tree structure not collapsed in SCTs I and III is that above the node bearing the branches 

for Tuvalepis, Elegestolepis and Kannathalepis, the latter two of which are resolved as 

sister taxa in conjunction with their recent inclusion into the Order Elegestolepida (Chapter 

5). The derived position within the Chondrichthyes of the elegestolepids and other lower–

mid Palaeozoic taxa with single odontode scales, e.g. Lupopsyrus and Obtusacanthus, in 

all MRTs is at odds with the placement of the latter as stem chondrichthyans by Davis et 

al. (2012) and Zhu et al. (2013). This discrepancy could possibly be due to the composition 

of the character set used in the present analyses, 20 percent of which consists of 

characters not applicable to scales with mono-odontode crowns, that might cause a crown 

ward displacement of Elegestolepida+Lupopsyrus and Obtusacanthus as a consequence 

of missing data.

A grouping of all taxa with Seretolepis-type of scale morphogenesis (Parexus, 

Brochoadmones, Seretolepis and Wodnika) included in the present investigation is weakly 

supported (only resolved by analysis II), whereas the Parexus/Seretolepis pairing remains 

stable under the variable parameters of the performed analyses. When resolved in 

comparison to other internal nodes (in MRTs I, III, IV), the Parexus/Seretolepis clade is 

identified as a sister taxon to genera with Ctenacanthus-type of scale development 

(Antarctilamna and Goodrichthys), which on their own form a natural group in all of the 

calculated trees.

Gladbachus is the sole taxon identified previously as a chondrichthyan (Heidtke and 

Krätschmer 2001) to fall outside the chondrichthyan branch in the resultant phylogenies. 

Its repeated placement as either basal to or nested among ‘placoderm’-grade genera 
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implies a more stem-ward position, nearer the root node of jawed gnathostomes. It is 

considered that the unordered patterning of crown odontodes of Gladbachus scales (a 

condition yet to be documented in chondrichthyans) influences its grouping with 

‘placoderms’ despite sharing a set of character states (areal odontode addition, absence of 

enamel, bone osteons and mineralised-tissue resorption) with the polyodontode scales of 

chondrichthyans that are derived for jawed gnathostomes.

Summarising the above observations, two main configurations of the 

chondrichthyan branch in terms of topology and taxon composition can be recognised in 

MRTs. The fully resolved chondrichthyan node in MRTs II and IV supports a larger number 

of taxa as a result of the inclusion within the clade of ‘acanthodians’ (Tchunacanthus, 

Machaeracanthus, Ptomacanthus, Uranicanthus, Diplacanthus and Acanthodes) with box-

in-box (superpositional) pattern of scale odontocomplex formation. This type of crown 

development is not considered (Reif 1978; Karatajūtė-Talimaa 1992, 1998 and herein) to 

have evolved in the dermal skeleton of the Chondrichthyes and consequently it weakens 

the support for the phylogenetic placement of these taxa, determined from analyses II and 

IV. MRTs II and IV nevertheless show certain congruency with recent phylogenetic 

schemes of the total-group Chondrichthyes (Grogan and Lund 2008, 2009; Grogan et al. 

2012) with regard to the inter-relationships of genera belonging to the Antarctilamniformes 

(Antarctilamna), the Ctenacanthiformes (Goodrichthys), the Euselachii (Protacrodus and 

Wodnika), the Orodontiformes (Orodus) and the Petalodontiformes (Janassa). The 

grouping of Orodus with Janassa on the same branch in MRT II (similarly in SCT II) is in 

agreement with the position of orodontiforms and petalodontiforms inside Paraselachii, 

one of the high ranked clades of the Chondrichthyes (Grogan et al. 2012). The Subclass 

Elasmobranchii, the sister taxon to Paraselachii (Grogan et al. 2012), can similarly be 

identified by the association of Protacrodus and Wodnika into a single clade in MRT II and 

MRT IV. The elasmobranchs Antarctilamna and Goodrichthys however are 
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phylogenetically unstable due to being resolved as basal chondrichthyans (in SCT II and 

MRT II) or by falling inside the clade containing Protacrodus and Wodnika in SCT IV and 

MRT IV (uniting all elasmobranch taxa included in this study on the same branch). Analysis 

IV also shifts the position of Janassa from the presumed paraselachian clade (analysis III) 

to the sister group containing all elasmobranch taxa.

In the partially resolved chondrichthyan node recovered in MRTs I and III (missing 

acanthodian-grade taxa, identified by superpositional crown growth), the tree topology 

crown-wards of the node supporting Orodus (and putative Middle Ordovician to Lower 

Devonian chondrichthyans) is largely consistent with that of MRTs II and IV, and 

represents the most stable region of the chondrichthyan branch. Due to the polytomy at 

the chondrichthyan root node in analyses I and III, Protacrodus is the sole elasmobranch 

genus to be resolved (as a sister taxon) relative to Orodus in both MRT I and MRT III, in 

conjunction with its placement in analysis II and IV trees.

6.2.6. Degree of correlation with existing gnathostome phylogenies

Recent phylogenetic investigations of gnathostome relationships (Brazeau 2009; Davis et 

al. 2012; Zhu et al. 2013; Dupret et al. 2014) use a relatively consistent set of characters, 

largely based on the work of Brazeau (2009), that codes for features of all skeletal 

systems (dermal, endoskeletal and splanchnocranial), of which only approximately one-

tenth are related to dermal scales. The Galeaspida and the Osteostraci have repeatedly 

been selected in these analyses as an outgroup, in contrast to the trend towards 

increasing the size of the ingroup in newer studies. The cited above studies recover 

placoderms as a paraphyletic assemblage of basal jawed gnathostomes and monophyletic 

Chondrichthyes and Osteichthyes in a sister-group relationship. The position of taxa 

traditionally allied within the Acanthodii (Denison 1979; Gagnier and Wilson 1996) is in a 
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state of flux as they are recognised as either a natural group of crown gnathostomes 

(Dupret et al. 2014), stem chondrichthyans and/or osteichthyans (Brazeau 2009; Zhu et al. 

2013) or are split into derived stem gnathostomes and crown gnathostomes (Davis et al. 

2012). Tree topology (MRT I) is thus in conflict with the established position of 

osteichthyans and ‘placoderms’ by recovering the Osteichthyes as a paraphyletic group 

basal to a clade uniting acanthothoracid and arthrodire ‘placoderms’. It is plausible to 

assume that the inclusion of Anaspida and Thelodonti in analysis I affects the stem 

branches of the ingroup, since the use of a simple outgroup (Galeaspida+Osteostraci; 

analysis IV) reverses the positions of osteichthyan and ‘placoderm’ genera. Alternatively, 

the recently described Upper Silurian crown osteichthyan Guiyu (Zhu et al. 2009) and the 

‘placoderm’ Entelognathus (Zhu et al. 2013) demonstrate a combination of what are 

traditionally considered osteichthyan and placoderm specific characteristics of the dermal 

skeleton (median dorsal plates in Guiyu and marginal jaw bones in Entelognathus), 

lending support to the placement by this study of at least some placoderm-grade taxa 

inside the gnathostome crown group. 

Another outcome of this analysis is the recognition of a paraphyletic Acanthodii as a 

result of the placement of ‘acanthodians’ with mono-odontode or polyodontode areally 

growing scale crowns (Poracanthodes, Lupopsyrus, Obtusacanthus, Brochoadmones and 

Parexus) inside the Chondrichthyes. This is the first study to provide unequivocal support 

for the chondrichthyan affinities of Poracanthodes, contradicting the earlier proposed 

alternative position of the genus among stem osteichthyans (Brazeau 2009; Davis et al. 

2012). The recovery of taxa with acanthodian-grade scale structure (Machearacanthus, 

Acanthodes, Diplacanthus and Uraniacanthus) as stem chondrichthyans in MRT I (Fig. 27) 

clashes with the identified here patterns of morphogenesis of the chondrichthyan dermal 

skeleton and is not supported by any of the recent gnathostome phylogenies (Brazeau 

2009; Davis et al. 2012; Zhu et al. 2013; Dupret et al. 2014). Considering the latter, 
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‘acanthodians’ possessing superpositional arrangement of scale odontodes are tentatively 

proposed to fall outside the total-group Chondrichthyes as sister taxa to the 

chondrichthyan clade, in agreement with Zhu et al. (2013) and Dupret et al. (2014).

The results of the conducted investigation also imply a pattern of phylogenetic 

development of the gnathostome dermal skeleton concordant with recent work on the 

subject by Zhu et al. (2013), suggesting that the macromeric skeletons of osteichthyans 

and placoderms are homologous (plesiomorphic for jawed gnathostomes), and macromery 

represents the derived condition for the common ancestor of ‘acanthodians’ and 

chondrichthyans.

6.3. CONCLUSIONS

On the basis of dermal-scale characteristics this study resolves a monophyletic 

Chondrichthyes that unites Palaeozoic taxa traditionally identified as ‘acanthodian’, stem 

and crown chondrichthyans. A consistent feature of the calculated trees is the placement 

of genera (Antarctilamna, Protacrodus, Goodrichthys, Orodus, Janassa and Wodnika) 

belonging to high-ranked crown chondrichthyan taxa (Grogan and Lund 2008, 2009; 

Grogan et al. 2012) closest to the chondrichthyan node, and therefore no stem group 

members of the clade are resolved. The Ordovician–Silurian record of mongolepids and 

that of Tantalepis, Tezakia, Canonlepis, Elegestolepis and Kannathalepis however is not 

concordant with their derived position in the produced phylogenies, and given the dearth of 

previous cladistic investigations of Lower Palaeozoic chondrichthyans, the relationships of 

the former in regard to the chondrichthyan crown group are still considered uncertain.
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Several of the well-supported by the present analysis Order-level monophyletic 

groups (Mongolepidida, Elegestolepida, an unnamed clade uniting Lupopsyrus and 

Obtusacanthus and an unnamed clade uniting Parexus and Seretolepis) have been 

recognised in earlier work (Karatajùtè-Talimaa et al. 1990; Sansom et al. 2000; Dupret et 

al. 2014; Chapters 4, 5), and, as each can be differentiated by a particular chondrichthyan 

scale morphogenetic pattern, it is suggested that the crown characteristics of scales are 

diagnostic for Order ranked taxa inside the Chondrichthyes.

Despite deviating from traditional (Janvier 1996) and recent (Brazeau 2009; Davis 

et al. 2012; Zhu et al. 2013; Dupret et al. 2014) classification schemes of jawed 

gnathostomes by recovering a paraphyletic Osteichthyes basal to placoderm-grade 

gnathostomes, the present investigation is in agreement with the schemes of Zhu et al. 

(2013) and Dupret et al. (2014) on the derived position of the Chondrichthyes as the most 

closely related clade to acanthodian-grade taxa. The resultant topology of the tree stem 

will need to be corroborated by future studies, as scale characters of ‘placoderms’ and 

early osteichthyans have been documented only in a rather small body of published 

accounts on the micromeric skeleton of these taxa. One way to test the robustness of this 

and subsequent scale-based phylogenies would be to perform analyses that use an 

expanded dataset that integrates their character matrices with those of existing 

phylogenies of Palaeozoic gnathostomes. Nevertheless, a downside of this approach is 

that it causes taxa known exclusively from scale remains to be under-represented in terms 

of number of applicable characters.
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Figure 23 (on the following page). Types of morphogenetic patterns of chondrichthyan 
mono-odontode scales. (a–c) Elegestolepis-type of development exhibited by 
Elegestolepis grossi scales from the Upper Ludlow–Pridoli (Upper Silurian) Baital 
Formation of Tuva, Russian Federation. Ontogenetically (a) young (BU5343) and (b) 
mature (BU5284) scales in posterior view and a longitudinally sectioned mature scale 
(BU5283). (d, e) Polymerolepis-type of development in Polymerolepis whitei scales from 
the Lochkovian (Lower Devonian) of Dobrivlyany (Dniester section), Podolia, Ukraine. K-
T1998Fig6f depicted in (d) baso-posterior view and in (e) antero-posterior section. (f–g) 
Heterodontus-type of development exemplified by a (f) hybodont scale (transversely sliced 
specimen, BU5295) from the Tournaisian (Mississippian) Muhua Formation of Muhua 
(south China) and a scale (upper crown portion of specimen BU5301) from the extant 
neoselachian Raja montagui. SEM micrograph (a), volume renderings (b, d–f), Nomarski 
differential interference contrast micrographs (c, g). Enameloid layer marked by an 
asterisk. Neck canal openings indicated by arrows. Anterior to the left in (e, g) and to the 
right in (c). Scale bar equals 100 μm in (a–c) and 200 μm in (d–g).
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Figure 24. Morphogenetic pattern of chondrichthyan polyodontode non-odontocomplex 
scales. Eugeneodus-type development in (a, b) Tuvalepis schulzei scale (BU5342) from 
Pridoli–Lochkovian (Upper Silurian–Lower Devonian) strata of the Khondergei Formation 
of Tuva (Russian Federation) and in the (c, d) scales of Tantalepis gatehousei from the 
Darriwilian (Middle Ordovician) Stairway Sandstone (Northern Territory, Australia). BU5342 
in (a) crown view and (b) sliced transversely in posterior-crown view; (c) BU5319 in 
antero-lateral view and (d) transversely sectioned BU5320. Volume renderings (a–c), 
Nomarski differential interference contrast micrograph (d). Anterior towards the top in (d). 
Scale bar equals 200 μm in (a) and 100 μm in (b–d).
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Figure 25 (on the following page). Types of morphogenetic patterns of chondrichthyan 
mono-odontocomplex scales. (a–d) Seretolepis-type of development in a (a, b) Seretolepis 
scale from the Lochkovian (Lower Devonian) Ivane Formation of Podolia (Ukraine) and (c, 
d) Wodnika scales from the (c) Wuchiapingian (Lopingian, Upper Permian) Werra 
Formation of central Germany and (d) the Marl Slate of Durham (UK). (a) 5-461 in anterior 
view and (b) longitudinally sliced; (c) NHM 36059 in lateral crown view and a (d) 
longitudinally sectioned specimen (NHMUK PV P. 66677). (e–i) Protacrodus-type of 
development in a (e–g) Poracanthodes punctatus scale from the Pridoli of the USA and a 
(h, i) protacrodont scale from the Tournaisian (Mississippian) Muhua Formation of Muhua, 
south China. (e) BU5300 in crown view, (f) transversely and (g) longitudinally sliced 
BU5300; (h) transversely and (i) longitudinally sliced PKUM02−0178. Volume renderings 
(a–c, e–i), Nomarski differential interference contrast micrograph (d). Crosses mark 
primordial odontodes. Anterior to the left in (a, g), to the right in (b, d, i) and towards the 
bottom in (e, f, h). Scale bar equals 200 μm in (a, b, d, i) and 100 μm in (c, e, f–h).
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Figure 26 (on the following page). Types of morphogenetic patters of chondrichthyan 
polyodontocomplex scales. (a, b) Mongolepis-type of development in (a) Mongolepis 
rozmanae and (b) Shiqianolepis hollandi scales from the Upper Llandovery–Lower 
Wenlock (Silurian) Chargat Formation of north-western Mongolia and the Xiushan 
Formation of Guizhou Province (south China), respectively. (a) BU5299 in crown view and 
(b) NIGP 130311 in longitudinal section. (c, d) Ctenacanthus-type of development in 
Goodrichthys scale from the Visean (Mississippian) of Scotland. (c) BMNH P.20142a in 
anterior view and (d) longitudinally sliced. (e, f) Ohiolepis-type of development in 
Canonlepis scales from the Sandbian (Upper Ordovician) Harding Sandstone of Colorado, 
USA. (e) BU5265 in crown view and (f) longitudinally sectioned BU5267. (g, h) Altholepis-
type of development in Tezakia scales from the Sandbian (Upper Ordovician) Winnipeg 
Formation (Shell Pine Unit No. 1) of Montana, USA and the Harding Sandstone of 
Colorado, USA. (g) BU5338 in crown view and (h) longitudinally sliced BU5327. SEM 
micrographs (a, e, g), Nomarski differential interference contrast micrographs (b, f), 
Volume renderings (c, d, h). Crosses mark primordial odontodes. Anterior to the left in (d, f, 
h), to the right in (b) and towards the bottom in (a, e, g). Scale bar equals 500 μm in (a) 
200 μm in (b, g) and 100 μm in (c– f, h).
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Figure 27. Majority-rule consensus (tree length 597 steps) of 51 most parsimonious trees 
from phylogenetic analysis I and diagrammatic representation of scale characteristics of 
Palaeozoic gnathostomes. Green and red numbers indicate Bremer support and bootstrap 
values, respectively.
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Figure 28. Strict consensus (tree length 735 steps) of 51 most parsimonious trees fro m 
phylogenetic analysis I. Green and red numbers represent Bremer support and bootstrap 
values, respectively.
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Figure 29. Results of phylogenetic analysis II. (a) Majority-rule consensus (tree length 654 
steps) of 22 most parsimonious trees. (b) Strict consensus (tree length 661 steps) of 22 
most parsimonious trees. Green and red numbers represent Bremer support and bootstrap 
values, respectively.
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Figure 30. Results of phylogenetic analysis III. (a) Majority-rule consensus (tree length 
622 steps) of 112 most parsimonious trees. (b) Strict consensus (tree length 757 steps) of 
112 most parsimonious trees. Green and red numbers represent Bremer support and 
bootstrap values, respectively.
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Figure 31. Results of phylogenetic analysis IV. (a) Majority-rule consensus (tree length 
533 steps) of 16 most parsimonious trees. (b) Strict consensus (tree length 537 steps) of 
16 most parsimonious trees. Green and red numbers represent Bremer support and 
bootstrap values, respectively.
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Figure 32. Stratigraphic ranges and inter-relationships of chondrichthyan taxa (in pink) 
recovered in MPT of phylogenetic analysis I.
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Figure 33. Diagrammatic representation of odontode, crown and base shapes of the taxa 
included in the phylogenetic analyses.

�147



Figure 34. Types of dentine tubules in 
respect to their appearance proximally. 
Line drawings. (a) straight tubules 
(dermoskeletal dentine of the 
pteraspidomorph genus Eriptychius 
BU5294 from the Upper Llandovery–Lower 
Wenlock Chargat Formation of north-
western Mongolia), (b) sinuous tubules 
(scale dentine of the extant neoselachian 
species Raja montagui BU5302) and (c) 
coiled tubules (scale dentine of the 
chondrichthyan genus Tezakia BU5340 
from the Sandbian (Upper Ordovician) 
Winnipeg Formation (Shell Pine Unit No. 
1) of Montana, USA.
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Chapter 7: Conclusions

A comparison of scale characteristics of lower Palaeozoic taxa (Tantalepis, 

altholepids, Canonlepis, elegestolepids, mongolepids, Tuvalepis, Polymerolepis 

and Seretolepis) to those of established chondrichthyans and other total group 

gnathostomes (anaspids, thelodonts, pteraspidomorphs, osteostracans, 

‘placoderms’, ‘acanthodians’ and osteichthyans) has demonstrated their 

chondrichthyan affinities, which are supported by the performed phylogenetic 

analysis. Although this interpretation is in broad agreement with previous work 

(e.g. Karatajūtė-Talimaa et al. 1990; Karatajūtė-Talimaa and Novitskaya 1992, 

1997; Sansom et al. 1996, 2000, 2001, 2012), the present investigation allows 

for the first time the identification of characters common to the diverse scale 

types documented within the Chondrichthyes. These constitute synapomorphies 

of the chondrichthyan dermal skeleton (lack of superpositional scale-crown 

growth, cancellous bone, enamel and mineralized-tissue resorption) that in 

conjunction with other characters (scale morphology, odontode patterning and 

vascularisation) serve to differentiate the Class among gnathostomes. The 

additional features specify an orderly arrangement of odontodes in compound 

(polyodontode) crowns of trunk scales, which in chondrichthyans can be linear 

or concentric, symmetrical body scales and presence of neck canal openings in 

mono-odontode scales with growing crowns. 

Contrary to previous work (Karatajūtė-Talimaa 1995; Hanke and Wilson 

2010; Davis et al. 2012), the chondrichthyan taxa from the l � ower Palaeozoic 149

are recovered as derived members of the crown group. This implies the 

presence of significant ghost lineages within the Chondrichthyes, and their 
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systematic position relative to other taxa within the clade needs further 

corroboration with additional data from as yet unrecovered articulated 

specimens.

Genera historically placed inside the ‘Acanthodii’ whose polyodontode 

scales exhibit characters apomorphic for jawed gnathostomes (Parexus, 

Lupopsyrus, Poracanthodes and Brochoadmones) are recognised here to be 

chondrichthyan and were recovered as such in all calculated trees. The favoured 

interpretation of the phylogenetic data places acanthodian-grade taxa 

(Machaeracanthus, Diplacanthus, Uraniacanthus and Acanthodes) with 

exclusively superpositional pattern of scale crown growth in a sister group 

subtending the chondrichthyan node, in conflict with some recent classification 

schemes of lower vertebrates (Johanson 2002; Janvier 2007; Davis et al. 2012), 

but supported by the phylogenies of Zhu et al. (2013) and Dupret et al. (2014). 

Contra Karatajūtė-Talimaa (1992) and Reif (1978), only the crown 

characteristics of chondrichthyan scales were found to be phylogenetically 

informative at high taxonomic levels (above Family) and these define the 

morphogenetic scale types established here. In a conceptual shift from 

Karatajūtė-Talimaa (1992), growth is a feature of all polyodontode scale crowns 

(through addition of odontodes) and is also seen to occur in single odontode 

scales (through odontode elongation). A greater number than previously 

acknowledged (Karatajūtė-Talimaa 1992; Reif 1978) types of mono-odontode 

scale morphogenesis (the Elegestolepis, Polymerolepis, Lupopsyrus and 

Heterodontus types) were differentiated on the basis of developmental, 

histological or canal system criteria, whereas odontode pattering was found to 

be the primary discriminator between the morphogenetic types recognised in 

polyodontode scales (with the exception of the Mongelepis-type). The 
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phylogenetic data show that monophyletic chondrichthyan groups can possess a 

consistent scale morphogenetic signature (e.g. in Mongolepidida, Elegestolepida 

and a clade uniting Lupopsyrus and Obtusacanthus), with a tendency of wider 

systematic distribution of scale developmental patterns among geologically 

younger taxa (e.g. the Ctenacanthus-type in Antarctilamniformes and 

Cladoselachiformes and the Heterodontus-type in Hybodontiformes and 

Neoselachii).

These observations suggest rapid rates of evolution of the 

chondrichthyan integumentary skeleton during the Upper Ordovician–Lower 

Devonian interval (equated with major episodes of phylogenetic radiation), which 

generated diverse patterns of scale morphogenesis. This mid-Palaeozoic 

diversification episode is succeeded by progressive loss of scale-type diversity 

through the upper Palaeozoic and the lower Mesozoic.
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Appendix

Matrix of character states assigned to the 51 taxa included in the phylogenetic 

analyses

Acanthodes --?3-1001-111211030210-00-01000100010001--11001-000--0000000- 

00110000010-010010110?06010-0

Altholepis 1-?6-0111-223611322200-00-011110100???01--11000-0?1?0?

000000-10010000?10-010010011123010-0

Andreolepis 1-24-0001-21423003220101?-031122301?10??--00001-001111001 

000-11010010111112001010-?33010-0

Antarctilamna 11?5210?101011120202110011411011200???1?--1110110?100?00 

0000-??110000110-0?0010011?23110-0

Archipelepis ---3---1-----201222111010-0111003001?002111000--001001-10000-1? 

00000??10-0?0001------011?1

Brindabellaspis 40-44001002242?0031200-0010111200002??0?—1000??001??

00001000?12?010?1001?001000-123110-0

Brochoadmones 0?01?101??11-0110?2?00-?????1?210?030011--1??0????0-?

00000???0?1?000??11?010010110?201?0-?

Buchanosteus 4--8-1101-2249103?1201010-6111210102??0?--1000?-0?1?1?

000010010000110111112101010-?48010-0
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Canonlepis 1-?0-1011-222211221101010-011001010?????--10000-00100?

000000-01000000010-000010011123010-0 

Cheirolepis ---4-1001-111211031100000-031121301210?1--01001-000-01

001000-000100000111010010110?06010-0

Connemarraspis 4-28-0010-224210311101010-01112?3104????--11000-001?010 

000100011210001?1111001020-025010-0

Dialipina 1-04-0010-204231031201010-03112130141011--01001-00110?00  

1000-?0010010?10-000010011123010-0

Diplacanthus --20-1001-111311020011001-01000100010001--11001-110--1000000-

001110000100010010110?06010-0

Elegestolepis ---0---1-----302030110-00-410001000?????101100--11100?-0011000 

   0000000010-000001------01111

Frigorilepis ---0---1-----312221-01000---------000012101000--01---?-00000-010000

---------000------001?-

Gladbachus 4-28-0010-2249103??201010-0111210001??01--1100?-0?

0--0000010000120000111100001010-?25010-0

Goodrichthys 11262100111141110121110001410011100?????--1110111?100?0 

00?00-?????00???0-010010111?23110-0

Hemicyclaspis 1-26-1011-000830032-00-10————1510103101001-10---1100000

-001210---------110011?23001?-
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Janassa ---3---1-----210022-110?1---------03000?111100--10---?-10000-00111 

0---------010------0010-

Kannathalepis ---3---1-----212001?11000-21000?2?0??????01100--00100?0?0000-

01000000?10-0?0001------01111

Lanarkia ---5---1-----502221101010-72110030001012101000--001001-10000-

11010000010-000001------01111

Ligulalepis 11-401011011423103220100010311203012????--010111100-

01001000-00010100?1110?0010111?23110-0

Lophosteus 2-24-1001-114230222201010-031122311?????--00000-01111000  

0000-11010010??1112001010-137010-0

Lupopsyrus ---4---1-----400221-11010---------000102201000--00---00000101??1?

00---------000------0010-

Machaeracanthus --?3-1001-111211010211001-011021000?????--11011-000-0?

000000-001100000111010010110?06010-0

Mongolepis 11?411011-110721010200-010011021000?????--11000000110?

100102-----0000010-010010011123110-0

Murrindalaspis 40-400110022430131020101016111210102??1?--1000??00111?

00001001012001?11??1??01000-?23110-0

Obtusacanthus ---7---1-----610222-00-??---------030002201000--0?---0000000-??00?

0---------000------0010-

Orodus 11?61101111002123222010001011101000?0001--1??0???00-0?000  

000-10010000010-010010111123110-0
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Parexus 001011010011-31?3201010??1??101?2?010011--11?01???0--000

00101????00001?0-010010010?20110-0

Polybranchiaspis 4--8-0110-224-10310200-00-0111210002????--100000000-0?000?

02-????0000010-00001010-?25010-1

Polymerolepis ---3---1-----211220-11011--------10?0111201110--11--0?-00000-010110-

-------0000------001--

Poracanthodes 3-03-1010-111211010210-01-0210000100??01--11111-111--0100000-

00120000110-010010010126010-0

Protacrodus 30?2010111111211121200-001011100000???01--11001??00--?0000    

00-1001?000110-010010110?20110-0

Psarolepis 11-4?10011111231022210-0000311213012????--0100110010011

01000-10011010211011001010-?13110-0

Ptomacanthus 2-14-1001-113610320101010-01003120010001--11?0?-000--00000

101??1200001111010010110147010-0

Rhyncholepis 11-5000100204830322200-00033114230121010--00001100111?0? 

?000-??0?1010110-12?011011?23110-0

Romundina 4--8-0?01-224??03??201210-???12?1?02??0?--??00?-001??

00000100001211120110121010?0-?4801--?

Seretolepis 00?011010011-3110201010011011111210??011--1110111

0100000001010?1?0000?10?010010010020110-0

Shiqianolepis 10241101111102120211111011510011210?????--111000000--?0001 
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02-----00001110010010011123110-0

Sodolepis 1-?4-1011-100111001200-01-621100000?????--10000-00100?

000102-----0000010-010010011023010-0

Solinalepis 1-16-1011-100711322100-01-110001010?????--10000-00111?0001 

02-----00001100000010011123010-0

Tantalepis 2-?4-1111---2822221-01001--1------0?????2110000-00---

?0????????????--------??10-0-0210011-

Tchunacanthus 3-10-1001-111311031211200-01002100010???--1000

0-000--00000100101100001110010010010?36010-0

Teslepis 1-?4-1011-100111021200-01-621100000?????--11000-00100?

000102-----0000010-010010011023010-0

Tezakia 1-?6-1111-202212211-00-00--1------0?????0110000-00---?000000-01 

0200---------0100110230011-

Thelodus ---4---1-----401031111010-01100000030002101000--001

000-10000-11000000110-020001------01111

Tuvalepis 2-?4-1111---2112031100-00-11103?210?????--11001-01100?000000-

01120000?1??000010-0-021010-0

Uraniacanthus --20-1000-111301022011000-01000101050001--11011-100--0000000-

01120000010-010010110006010-0

Wodnika 01-0010111111311122200-01101110100060001--1100

10100--0000010101110000110-010010110?20110-0
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Xinjiangichthys 11?6310111100722002110-010510011210?????--11100000000?

000102-----00001110010010011123110-0

Character list

Sca le  morpho logy

1. Arrangement of primary odontodes on the crown surface of trunk scales: (0) in a single 

antero-posterior row, (1) in two or more antero-posterior rows, (2) in a single transverse 

(medio-lateral) row, (3) concentric, (4) unordered, (-) not applicable (mono-odontode scale 

or polyodontode scale with only a single odontode exposed on the crown surface).

2. Arrangement of secondary scale odontodes on the crown surface of trunk scales: (0) 

unordered, (1) ordered, (-) not applicable (mono-odontode scales or polyodontode scales 

without developed secondary odontodes).

3. Arrangement of odontodes on the crown surface of head scales (term restricted to the 

scales covering the pre-branchial segment of the head): (0) in rows, (1) radial, (2) 

unordered, (-) not applicable (mono-odontode scales or lack of head scale cover).

4. Predominant morphology of trunk-scale primary odontodes (Fig. 33): (0) deltoid, (1) 

circular, (2) elliptical, (3) rhomboid, (4) acuminate, (5) lanceolate, (6) needle-shaped, (7) 

cruciform, (8) stellate.
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5. Predominant morphology of trunk-scale secondary odontodes (Fig. 33): (0) deltoid, (1) 

acuminate, (2) lanceolate, (3) conical, (4) stellate, (-) not applicable (scales without 

developed secondary odontodes).

6. Morphologically similar primary scale odontodes: (0) absent, (1) present, (-) not 

applicable (mono-odontode scale crowns).

7. Crown primordium of polyodontode trunk scales the largest odontode element: (0) 

absent, (1) present, (-) not applicable (mono-odontode scale).

8. All primary crown odontodes of trunk scales exposed on the crown surface: (0) absent, 

(1) present.

9. Suturing of primary trunk-scale odontodes: (0) absent, (1) present, (-) not applicable 

(mono-odontode scale).

10. Suturing of secondary trunk-scale odontodes: (0) absent, (1) present, (-) not applicable 

(mono-odontode scale or polyodontode scale lacking secondary crown odontodes).

11. In posterior direction, the length of trunk scale primary odontodes: (0) remains 

consistent, (1) increases, (2) changes randomly, (-) not applicable (mono-odontode scales 

or poly-odontode scales with odontodes arranged in a single transverse row).
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12. In posterior direction, the width of trunk-scale primary odontodes: (0) remains constant, 

(1) increases, (2) changes in a random manner, (-) not applicable (mono-odontode scales 

or polyodontode scales organised in a single transverse row).

13. In direction of the lateral crown margins, primary-odontode size of trunk scales: (0) 

remains constant, (1) increases, (2) decreases, (3) increases and then decreases, (4) 

changes randomly, (-) not applicable (mono-odontode scales or scales with primary 

odontodes organised in a single antero-posterior row).

14. Crown shape of trunk scales (Fig. 33): (0) circular, (1) elliptic, (2) rhomboid, (3) deltoid, 

(4) acuminate, (5) lanceolate, (6) cruciform, (7) trapezoid, (8) oblong, (9) irregular.

Revised character 10 of Wilson and Märss (2009).

15. The width of trunk-scale crowns greatest: (0) at their anterior third, (1) at their mid third, 

(2) at their posterior third, (3) crown width constant.

16. Degree of extension of the posterior portion of the crown in trunk scales: (0) not 

protruded beyond the base/pedicle margin, (1) extended by less than half of its length 

beyond the base/pedicle margin, (2) extended by more than half of its length beyond the 

base/pedicle margin.

Adapted character 16 of Wilson and Märss (2009).
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17. Crown surface profile of trunk scales: (0) planar, (1) concave, (2) convex, (3) irregular.

Revised character 11 of Wilson and Märss (2009).

18. Maximal scale crown height reached: (0) at the anterior third of the scale, (1) at the mid 

third of the scale, (2) at the posterior third of the scale, (3) crown surface of uniform height.

19. Crown length to crown width ratio of trunk scales: (0) 1, (1) >1, (2) <1.

20. Crown thickness to base thickness ratio of trunk scales: (0) 1, (1) >1, (2) <1, (-) not 

applicable (scales not developing bases).

21. Constricted lower portion of trunk-scale crowns: (0) absent, (1) present.

22. Ornamented crown surface (anterior crown surface of scales with erect crown 

odontodes) of primary trunk-scale odontodes: (0) absent, (1) present.

23. Crown-surface of trunk-scale primary odontodes ornamented by: (0) ridges, (1) 

tubercles, (2) tubercles and ridges, (-) not applicable (no ornament developed).

Revised character 17 of Wilson and Märss (2009).

�191



24. Ornamented lower crown surface (posterior crown surface of scales with erect crown 

odontodes) of primary trunk-scale odontodes: (0) absent, (1) present.

Adapted character 18 of Wilson and Märss (2009).

25. Grooved lower crown surface of primary trunk scale odontodes: (0) absent, (1) 

present.

26. Secondary trunk-scale odontodes with ornamented crown surface: (0) absent, (1) 

present, (-) not applicable (scales without developed secondary odontodes).

27. Outline of trunk scale bases (Fig. 33): (0) rhomboid, (1) trapezoid, (2) deltoid, (3) 

oblong, (4) elliptic, (5) lobate, (6) obovate (egg-shaped), (7) wedge-shaped, (-) not 

applicable (scales not developing bases).

Revised character 21 of Wilson and Märss (2009).

28. Bases of trunk scales widest: (0) at their anterior third, (1) at their middle third, (2) at 

their posterior third, (3) base width constant, (-) not applicable (scales not developing 

bases).

29. Trunk-scale base extended beyond the anterior crown margin: (0) absent, (1) present, 

(-) not applicable (scales not developing bases).
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30. Lateral sides of trunk-scale bases extended beyond the crown margins: (0) absent, (1) 

present, (-) not applicable (scales not developing bases).

31. Away from the peripheral contact with the crown, the perimeter of the scale base: (0) 

decreases, (1) increases, (2) increases and then decreases, (3) remains constant, (4) 

changes randomly, (-) not applicable (scales not developing bases).

32. Scale base thickest: (0) at its anterior third, (1) at its medial third, (2) at its posterior 

third, (3) of uniform thickness, (-) not applicable (scales not developing bases).

33. Lower-base surface of ontogenetically mature trunk scales: (0) convex, (1) flat, (2) 

concave, (3) irregular, (-) not applicable (scales not developing bases).

Revised and united characters 12 and 13 of Brazeau (2009), Davis et al. (2012) and Zhu 

et al. (2013).

34. Basal surface of trunk scales: (0) smooth, (1) grooved, (-) not applicable (scales not 

developing bases).

35. Trunk scales with peg-and-socket articulation: (0) absent, (1) present.

Character 10 of Brazeau (2009), character 138 of Zhu et al. (2009), character 24 of 

Friedman and Brazeau (2010), character 10 of Davis et al. (2012) and Zhu et al. (2013).
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36. Dermocranial skeleton represented by: (0) trunk-type scales (scales with identifiable 

anterior and posterior sides), (1) tessera-like scales (scales with no discernible anterior 

and posterior sides), (2) dermal bones, (3) trunk-type scales and tessera-like scales, (4) 

trunk-type scales and dermal bones, (5) tessera-like scales and dermal bones, (6) 

dermatocranial skeleton not developed.

37. Distinct from the squamation scale-like dermoskeletal elements (scutes and/or basal 

fulcra sensu Arratia 2009) developed along the dorsal margin of the caudal fin: (0) absent, 

(1) present.

Combined characters 187 and 188 of Min and Schultze (2001).

38. Enlarged caudal keel scales (enlarged keeled scutes of Hanke and Davis 2012): (0) 

absent, (1) present.

39. Overlapping margins of trunk-scale crowns: (0) absent, (1) present.

Revised character 10 of Burrow and Turner (1999).

40. Arrangement of flank scales: (0) in vertical rows, (1) in serial (oblique) rows (sensu 

Gemballa and Bartsch, 2002), (2) unordered.

Character 15 of Brazeau (2009), character 14 of Davis et al. (2012) and Zhu et al. (2013).
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41. Lower pedicle surface of trunk scales: (0) convex, (1) flat, (2) concave, (3) irregular, (-) 

not applicable (scales not developing pedicles).

42. The pedicle of trunk scales protruded beyond the anterior crown margin: (0) absent, (1) 

present, (-) not applicable (scales not developing pedicles).

43. Bilaterally symmetrical trunk scales: (0) absent, (1) present.

Revised character 15 of Brazeau (2009), character 12 of Davis et al. (2012) and character 

14 of Zhu et al. (2013).

Sca le  cana l  sys tem

44. Canal opening(s) formed at the lower surface of trunk-scale odontodes; equivalent to 

neck-canal openings sensu Reif (1978): (0) absent, (1) present.

45. Vertical rows of foramina formed at the lower crown face: (0) absent, (1) present.

46. Odontode pulp-canals opening on the crown surface of trunk scales: (0) absent, (1) 

present.

47. Canal connections between the pulp cavity spaces of primary trunk-scale odontodes: 

(0) absent, (1) present, (-) not applicable (mono-odontode scales).
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48. Canal connections between the pulp cavity spaces of primary and secondary 

odontodes: (0) absent, (1) present, (-) not applicable (mono-odontode scales or scales not 

forming secondary odontodes).

49. Vertically branched pulp cavity space of primary scale odontodes: (0) absent, (1) 

present.

50. Scale crown dentine canals: (0) absent, (1) present.

Revised character 30 of Wilson and Märss (2009).

51. Scale base canal system: (0) absent, (1) present, (-) not applicable (scales not 

developing a base).

52. Ramification of scale-base canals: (0) absent, (1) present, (-) not applicable (avascular 

scale base tissue or scales not developing bases).

53. Canal openings formed at the basal surface of trunk-scales: (0) absent, (1) present, (-) 

not applicable (avascular scale base tissue or scales not developing bases).

54. Trunk scales penetrated by the canals of the lateral line system: (0) absent, (1) 

present.
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Revised character 16 of Brazeau (2009), character 36 of Friedman and Brazeau (2010) 

and character 15 of Davis et al. (2012) and Zhu et al (2013).

55. Pore-canal system housed inside the crowns of trunk scales: (0) absent, (1) present, 

(-) not applicable (scales with mono-odontode crowns).

A pore-canal system is defined as a network of inter-odontode cavity-spaces opened on 

the crown surface.

His to l ogy

56. Scale crown enameloid: (0) absent, (1) present.

Revised character 151 of Zhu et al. (2009), character 46 of Friedman and Brazeau (2010) 

and character 140 of Zhu et al. (2013).

57. Scale crown enamel: (0) absent, (1) present.

Character 5 of Schultze and Märss (2004).

58. Type of scale crown dentine: (0) tubular, (1) atubular.

59. Cellular scale crown dentine: (0) absent, (1) present.
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60. Type of scale dentine mineralisation: (0) inotropic, (1) spheritic, (2) inotropic and 

spheritic.

61. Shape of scale-crown odontocyte lacunae: (0) rounded, (1) elongate (Stranglakune in 

Gross 1973), (2) rounded and elongate, (-) not applicable (acellular dentine).

62. The stem of scale-dentine tubules branching: (0) along its length, (1) terminally, (-) not 

applicable (atubular scale crown dentine).

63. Branches longer than the stem of the dentine tubules: (0) absent, (1) present, (-) not 

applicable (atubular crown dentine).

64. Organisation of the proximal end of scale-dentine tubules: (0) polarised, (1) tangled, (-) 

not applicable (atubular scale crown dentine).

65. Appearance of the proximal end of scale dentine tubules (Fig. 34): (0) straight, (1) 

sinuous, (2) coiled, (-) not applicable (atubular scale dentine).

Revised character 31 of Wilson and Märss (2009).

66. Scale-crown denteons: (0) absent, (1) present.

67. Resorption of scale dentine: (0) absent, (1) present.
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68. Basal bone of trunk scales composed of two or more histologically distinct layers: (0) 

absent, (1) present, (-) not applicable (scales not developing bases).

69. Type of mineralisation of the scale base: (0) inotropic, (1) spheritic, (2) inotropic and 

spheritic, (-) not applicable (scales not developing a base).

70. Structure of the mineralised basal bone matrix: (0) lamellar, with plywood-like fibre 

organisation, (1) lamellar, with parallel alignment of mineralised fibres, (2) lamellar, with 

plywood-like and parallel fibre organisation, (-) not applicable (scales not developing a 

base).

71. Basal bone mineralised matrix containing vertically oriented attachment (extraneous) 

fibres: (0) absent, (1) present, (-) not applicable (scales not developing bases).

72. Cellular scale-base bone tissue: (0) absent, (1) present, (-) not applicable (scales not 

developing a base).

73. Scale base osteocyte canaliculi: (0) absent, (1) present, (-) not applicable (scales 

lacking a base or possessing acellular basal bone tissue).
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74. Osteon formation in scale basal bone: (0) absent, (1) present, (-) not applicable (scales 

not developing a base).

75. Outline of the scale crown/scale base contact surface: (0) planar, (1) chevron-shaped, 

(2) irregular, (-) not applicable (scales not developing a base).

76. Resorption of scale dermal bone: (0) absent, (1) present, (-) not applicable (scales 

lacking basal bone).

77. Elasmodine (lamellar dentine sensu Sire et al. 2009) formation in scales: (0) absent, 

(1) present.

Sca le  morphogenes i s

78. Type of trunk scale crown according to primary odontode number: (0) mono-odontode 

(Fig. 2), (1) polyodontode (Fig. 3).

Revised character 8 of Brazeau (2009), Davis et al. (2012) and Zhu et al. (2013) and 

character 2 of Wilson and Märss (2009).

79. Growing trunk-scale odontodes: (0) absent, (1) present.

80. Position of the crown primordium in polyodontode trunk scales: (0) at the anterior third 

of the scale, (1) at the mid third of the scale, (2) at the posterior third of the scale, (-) not 
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applicable (mono-odontode scales or polyodontode scales with odontodes organised into 

a single transverse row).

81. Primary odontocomplex formation in trunk scales (Fig. 3): (0) absent, (1) present, (-) 

not applicable (mono-odontode scale).

82. Number of primary trunk-scale odontocomplexes: (0) one, (1) more than one, (-) not 

applicable (scales not developing odontocomplexes).

83. Number of crown odontodes increasing with the increase in the size of ontogenetically 

mature trunk scales: (0) absent, (1) present, (-) not applicable (mono-odontode scales).

84. Type of primary odontode addition in polyodontode scales: (0) superpositional, (1) 

areal-superpositional, (2) areal, (3) superpositional and areal-superpositional, (4) 

superpositional and areal, (-) not applicable (mono-odontode scales).

85. Direction of primary odontode addition in scales with polyodontode crowns: (0) 

posterior, (1) lateral bidirectional, (2) lateral unidirectional, (3) posterior and lateral 

bidirectional, (4) posterior and lateral unidirectional, (5) anterior, posterior and lateral 

bidirectional, (6) concentric, (7) concentric and lateral bidirectional, (8) concentric, anterior, 

posterior and lateral bidirectional, (-) not applicable (scales with mono-odontode crowns).

Character state 5: circumferential type of deposition resulting in the formation of a nested 

set of odontodes.
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86. Secondary scale odontodes: (0) absent, (1) present.

87. Scale base (Figs. 1, 2): (0) absent, (1) present.

88. Scale pedicle (Fig. 2): (0) absent, (1) present.

89. Relative timing of pedicle and crown development in trunk scales: (0) synchronous, (1) 

asynchronous, (-) not applicable (scales not developing pedicles).

90. Relative timing of scale crown and scale base development: (0) synchronous (1) 

asynchronous, (-) not applicable (scales not developing bases).

Taxa included in the analyses, studied material, literature used in the coding the 

character-taxon matrix

Acanthodes: Gross (1947, 1973); Miles (1968); Zidek (1976, 1985); Denison (1979); 

Heidtke (1993, 1996); Derycke and Chancogne-Weber (1995); Valiukevičius (1995); 

Lelièvre and Derycke (1998); Beznosov (2009).

Altholepis: unpublished macrographs of a partial body fossil (UALVP 41483) with 

articulated squamation from the Man on the hill locality (Mackenzie Mountains, Northwest 

Territories, Canada) and c. 100 isolated scales from the Ivane Formation of Podolia, 
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Ukraine (Ivane-Zolotoye outcrop, sample 76-16). Karatajùtè-Talimaa (1997); Martínez-

Pèrez et al. (2010).

Andreolepis: Gross (1968); Richter and Smith (1995); Märss (1986, 2001); Chen et al. 

(2012); Qu et al. (2013a).

Antarctilamna: Young (1982); Forey et al. (1992); Burrow et al. (2009).

Archipelepis: Soehn et al. (2001); Märss et al. (2002, 2006, 2007).

Brindabellaspis: Young (1980); Burrow and Turner (1998, 1999).

Brochoadmones: unpublished macrographs of two articulated specimens—UALVP 41494 

and UALVP 41495. Hanke and Wilson (2006).

Buchanosteus: Young (1979); Burrow and Turner (1998, 1999).

Canonlepis: 5 isolated scales (BU5265–BU5268, BU5346) from the Harding Sandstone 

Formation (Harding Quarry, ~1 km W of Cañon City, Fremont County, Colorado, USA; 

sample number H94-7). Two thin-sectioned specimens (BU5267, BU5268) was 

investigated with Nomarski DIC optics and one specimen was examined by X-ray 

microtomography. Sansom et al. (2001).

Cheirolepis: Gross (1947, 1953, 1973); Schultze (1968); Pearson (1982); Richter and 

Smith (1995); Arratia and Cloutier (1996).

Connemarraspis: Burrow (1996, 2003a, 2006); Burrow and Turner (1998, 1999).

Dialipina: Schultze (1968, 1977); Burrow et al. (2000); Schultze and Cumbaa (2001).

Diplacanthus: articulated body fossil of D. longispinus (BIRUG 4099) and thin-sectioned 

scales (BIRUG 4040) embedded in matrix investigated by Nomarski DIC optics. Gross 

(1947, 1973); Gagnier (1996); Valiukevičius (1995, 2003a, 2003b).
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Elegestolepis: more than 200 isolated scales from the Baital Formation (beds 236, 291, 

293 and 295 of the Elegest River outcrop, Tuva, Russian Federation). Karatajùtè-Talimaa 

(1973, 1992, 1998).

Frigorilepis: Märss (2006); Märss et al. (2002, 2006).

Gladbachus: articulated partial body fossil (holotype UCMZ2000.32) and eleven scales 

extracted from the same specimen examined in section by Nomarski DIC optics. Heidtke 

and Krätschmer (2001); Burrow and Turner (2013).

Goodrichthys: isolated scales from specimen BMNH P.20142a. Moy-Thomas (1936); 

Ginter (2009).

Hemicyclaspis: Stensiö (1932); Ørvig (1968); Vergoossen (2003); Sire et al. (2009).

Janassa: Ørvig (1966); Malzahn (1968); Brandt (1996).

Kannathalepis: Märss and Gagnier (2001); Märss (2006).

Lanarkia: Gross (1967); Märss and Ritchie (1998); Märss et al. (2007); Wilson and 

Märss (2009).

Ligulalepis: Schultze (1968); Burrow (1994); Basden and Young (2001).

Lophosteus: Gross (1969, 1971); Schultze and Märss (2004).

Lupopsyrus: unpublished macrographs of specimens UALVP 41493 and UALVP 42208. 

Bernacsek and Dineley (1977); Hanke and Wilson (2004); Hanke and Davis (2012).

Machaeracanthus: 4 isolated scales from the Chester Bjerg Formation of North Greenland 

(Halls Grav locality, sample GGU 82738,). 1 specimen was examined by X-ray 

microtomography. Gross (1973), Mader (1986); Burrow et al. (2010a); Botella et al. 

(2012).
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Mongolepis: hundreds of isolated scales from Chargat Formation (type locality, 80 km 

north of the Khar-Us Lake, Mongolia). Specimens extracted from samples 16/3 and ЦГЭ N 

1009. Four thin-sectioned specimens (BU5297, BU5298, BU5354, 41706) were 

investigated with Nomarski DIC optics and scanning electron microscopy, with one other 

specimen (BU5296) examined by X-ray microtomography. Karatajùtè-Talimaa et al., 

(1990); Karatajùtè-Talimaa (1995, 1998).

Murrindalaspis: Long (1984); Burrow and Turner (1998, 1999, 2012); Burrow et al. 

(2010b).

Obtusacanthus: unpublished macrographs of specimen UALVP 41488. Hanke and Wilson 

(2004).

Orodus: articulated partial body fossil (FMNH PF 2201) and patches of articulated scales 

from the same specimen (Logan Quarry shale, Stauton Formation, Indiana, USA). Zangerl 

and Richardson (1963); Zangerl (1968, 1981).

Parexus: Articulated specimen NMS G.1956.14.14. Denison (1979); Burrow et al. (2013).

Polybranchiaspis: Thanh et al. (1995); Wang et al. (2005).

Polymerolepis: c. 30 isolated P. whitei scales (443-447, 473) from the Ivane Formation of 

Podolia, Ukraine (outcrops Bedrikovtsy, Dobrovliany, Gorodok and Ivane-Zolotoye). One 

specimen (K-T1998Fig6f) was investigated by X-ray microtomography. Obruchev and 

Karatajùtè-Talimaa (1967); Turner and Murphy (1988); Karatajùtè-Talimaa (1992, 

1998); Hanke et al. (2013).

Poracanthodes: two isolated scales from the Downtonian of the USA. One scale (BU5300) 

was examined by X-ray microtomography. Gross (1956); Märss (1986); Vergoossen 

(1999, 2000); Burrow (2003b); Valiukevičius (1992, 2003a, 2004). Contra Vergoossen 

(1999), the diagnosis of Porcanthodes is amended to include inside the genus only 
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poracanthodid species with trunk scales that possess a pore-canal system and 

demonstrate areal crown-growth pattern; identified in P. punctatus (Gross 1956; Märss 

1986; Valiukevičius 2003a) and P. menneri (Valiukevičius 1992).

Protacrodus: 3 isolated scales from the Muhua Formation (Muhua village, Guizhou 

province, south China). Material extracted from sample MH-1 (Ginter and Sun 2007). One 

specimen (PKUM02−0178) examined by X-ray microtomography. Gross (1938, 1973); 

Ginter and Sun (2007).

Psarolepis: Yu (1998); Zhu et al. (1999); Qu et al. (2013b).

Ptomacanthus: embedded in siltstone matrix scales from specimen NHM P 53880 

examined in section by Nomarski DIC optics and by means of X-ray microtomography. 

Miles (1973); Brazeau (2009, 2012).

Rhyncholepis: Märss (1986); Ritchie (1980); Blom et al. (2002).

Romundina: Denison (1978); Burrow and Turner (1999); Johanson and Smith (2003); 

Goujet and Young (2004); Giles et al. (2013).

Seretolepis: 14 isolated scales from the Ivane Formation of Podolia, Ukraine. Material from 

the Bedrikovtsy (sample 148-0), Dobrovliany (samples 74-2, 76-5), Gorodok, Ivane-

Zolotoye, Kostelniki and Zaleshchiki outcrops. 5-461 examined by X-ray microtomography. 

Karatajùtè-Talimaa (1997); Hanke and Wilson (2010); Martínez-Pérez et al. (2010).

Shiqianolepis: hundreds of isolated scales from sample Shiqian 14B (Lower Member of the 

Xiushan Formation, Shiqian County, China), including type specimens (NIGP 130293–

NIGP 130317). Complete and thin-sectioned scales were investigated with Nomarski DIC 

optics and SEM. One of the specimens (NIGP 130307) was examined by X-ray 

microtomography. Sansom et al. (2000); Wang et al. (in prep).
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Sodolepis: hundreds of isolated scales from the Chargat Formation (type locality, 80 km 

north of the Khar-Us Lake, Mongolia). Two thin-sectioned specimens (BU5306 and 

BU5344) were investigated with Nomarski DIC optics and scanning electron microscopy; 

two other specimens (BU5305 and BU5347) were examined by X-ray microtomography. 

Karatajùtè-Talimaa (1992, 1998); Karatajùtè-Talimaa and Novitskaya (1997).

Solinalepis: over 200 isolated scales from the Harding Sandstone Formation (Harding 

Quarry, ~1 km W of Cañon City (Fremont County, Colorado, USA). Specimens extracted 

from sediment samples from horizons H94-20, 26 and H96-20. Thin-sectioned specimens 

(BU5316, BU5317, BU5355–BU5358, BU4440) were investigated with Nomarski DIC 

optics with two other specimens (BU5318, BU5359) being examined by X-ray 

microtomography. Sansom et al. (2001); Donoghue and Sansom (2002); Sire et al. 

(2009).

Tantalepis: approximately 200 isolated scales from the Stairway Sandstone Formation 

(Maloney Creek, Northern Territory, Australia), including six thin sectioned specimens 

(BU5320, BU5360–BU5364) and one (BU5319) examined by X-ray microtomography. All 

specimens extracted from rock sample SS06 – 10H. Sansom et al. (2012).

Teslepis: hundreds of isolated scales from Chargat Formation (type locality, 80 km north of 

the Khar-Us Lake, Mongolia). Specimens extracted from samples 16/3 and ЦГЭ N 1009. 

Two thin-sectioned specimens (BU5324 and BU5348) were investigated with Nomarski 

DIC optics and scanning electron microscopy and one other specimen (BU5325) was 

examined by X-ray microtomography. Karatajùtè-Talimaa and Novitskaya (1992); 

Karatajùtè-Talimaa (1992, 1998).

Tezakia: a total of over 300 isolated scales from the Harding Sandstone Formation 

(samples from horizons H94-16, 26 and H96-20 of the Harding Quarry, ~1 km W of Cañon 

City, Fremont County, Colorado, USA) and the Winnipeg Formation (Shell Pine Unit No. 1) 
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of Montana, USA. Ten thin-sectioned scales (BU2582, NRM-PZ X5, NRM-PZ X6 and 

seven non-figured specimens from the Shell Pine Unit No. 1) were investigated with 

Nomarski DIC optics and other two specimens (BU5327 and an non-figured scale from the 

Shell Pine Unit No. 1) were examined by X-ray microtomography. Sansom et al. (1996, 

2001); Donoghue and Sansom (2002); Johanson et al. (2008).

Tchunacanthus: Karatajùtè-Talimaa and Smith (2003); Valiukevičius and Burrow 

(2005).

Thelodus: Gross (1967); Karatajùtè-Talimaa (1978); Märss and Karatajùtè-Talimaa 

(2002); Märss et al. (2007); Märss (2011).

Tuvalepis: 5 isolated scales from the Khondergei Formation (Bazhyn-Alaak locality, River 

Tchadan, Tuva (Russian Federation). One thin-sectioned scale (BU5350) was investigated 

with Nomarski DIC optics and one other specimen (BU5342) was examined by X-ray 

microtomography. Žigaitė and Karatajùtè-Talimaa (2008).

Uraniacanthus: Hanke and Davis (2008); Newman et al. (2012).

Wodnika: isolated scales and patches of articulated scales from specimen NHM 36059 

(Kupferschiefer Member of the Werra Formation at the Hasbergen outcrop, central 

Germany) and a complete body fossil (NHMUK PV P. 66677) with preserved squamation 

from the Marl Slate of Durham (Quarrington Quarry, Old Quarrington, Durham County, 

England). One scale from NHM 36059 was examined by X-ray microtomography and three 

of the scales (two from NHM 36059 and one from NHMUK PV P. 66677) were thin-

sectioned for light microscopy investigation.

Xinjiangichthys: five isolated scales from the Yimugantawu Formation (Bachu County, 

Xinjiang, China) and two scales (NIGP 130291 and NIGP 130292) from the Lower Member 

of the Xiushan Formation (Shiqian County, China). IVPP V X1 was thin sectioned and 
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investigated with Nomarski DIC optics and three further specimens (IVPP V X2 and two 

non-figured specimens from the Xiushan Formation) were examined by X-ray 

microtomography. Wang et al. (1998); Sansom et al. (2000); Wang et al. (in prep).

Examined taxa not included in the phylogenetic analysis. 

Ctenacanthus-type scales: ten isolated scales from Upper Visean (Carboniferous) of the 

Czech Republic (Czerna 1 locality, 25 km north west of Cracow). One specimen (BU5353) 

thin sectioned and examined with Nomarski DIC optics.

Cladoselache: approximately 30 disarticulated scales (NHM P9266) from the Cleveland 

Shale (Ohio) of USA.

Deltalepis: 12 isolated scales from the Chargat Formation of north west Mongolia. One thin 

sectioned scale (BU5273) was examined with Nomarski DIC optics and further two 

specimens (BU5273, BU5280, BU5281) were investigated by X-ray microtomography.

Raja montagui (extant neoselachian): head scale cover of a single specimen. Skin 

samples with articulated squamation thin sectioned (BU5301, BU5302) and examined by 

Nomarski DIC optics.
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