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Abstract 

Basal like breast cancer (BLBC) is a highly aggressive and invasive subtype of triple negative 

breast cancer. BLBC patients are offered empirical treatments, which is associated with poor 

patient prognosis. The recent study of the genomic and transcriptomic background of 2000 breast 

cancers together with the discovery of a 10p13 chromosomal gain in BLBC suggest that a kinase 

known as CaMK1D serves as a driver for disease progression. In-house testing of small molecule 

compounds using structure-based techniques have already exhibited selective inhibition of the 

CaMK1D oncogenic state locking it in an autoinhibitory state. Here, we developed a cell-based 

model system for assays required to evaluate these inhibitors in vitro. BLBC cell lines, HCC70 

and MDA-MB-231, were stably transformed using lentiviral transfections to express varying 

CaMK1D protein levels; knockdown, basal and overexpression. Western blot analysis of the 

MDA-MB-231 model system identified potential biomarkers that could serve as a molecular 

readout of the inhibitor potency. Cytotoxicity and migration assays using the MDA-MB-231 

model system proposed that primary inhibitor of interest, GSK-3 XIII, is a not a CaMK1D-

specific inhibitor in vitro. Thus, the model system generated is appropriate for studying the 

preliminary in vitro effects of CaMK1D inhibition in cell-based assays. 
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1. Introduction 

Cancer (used interchangeably with ‘tumour’ in this thesis) refers to the development of a mass of 

cells due to generally uncontrolled division and growth of cells (Hanahan and Weinberg, 2011). 

These malignant tumour cells can then invade nearby tissues causing damage in that cellular 

niche. One of the most common and heterogeneous type of cancer is breast cancer; it accounts for 

about 30% of new cancers in females in the U.K. (Cancer Research UK, 2014). Regardless of 

similar alterations at the genomic, transcriptomic and proteomic levels, these breast cancer 

entities display radical variations morphologically and histologically. Subsequently, they respond 

differently to treatments resulting in varying patient outcomes (Perou et al., 2000). This 

underpins the need for personalised therapy, which utilises such information to determine 

appropriate treatment. 

 

1.1 Molecular subtypes of Breast Cancer                                                                                                                                                                                                                                                                                                                        

Depending on the gene expression pattern, breast cancer can be sub-divided into five molecular 

types; normal-like, human epidermal growth factor receptor 2 (HER2)-associated, luminal-like 

Type A, luminal-like Type B and basal-like (Perou et al., 2000) (Figure 1). Of these, it has been 

particularly hard to target basal-like breast cancer (BLBC) because it is often a triple negative 

breast cancer (TNBC), i.e. the tumour cells do not express oestrogen receptor (ER), progesterone 

receptor (PR) or HER2. Consequently, while tamoxifen and Herceptin (a humanised anti-HER2 

monoclonal antibody) can be used as a targeted therapy for ER+ and HER2+ cancers, 

respectively, conventional anticancer agents are not effective against BLBC (Rakha et al., 2008). 

BLBC are resistant to these drugs and treatments for BLBC rely on a combination of general cell 
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toxicity drugs, for example, doxorubicin and cisplatin. Thus, the current method of management 

includes palliative care and treatments that are available to other stage- and grade- matched breast 

cancers (Rakha et al., 2008). 

 

 

 

 

 

 

 

Figure 1. A schematic of molecular subtypes of breast cancer. There are 5 subtypes of breast cancer – 

basal-like, luminal-like Type A, luminal-like Type B, HER2-associated and normal-like - based on the 

resemblance of cell type, expression of receptors and other genetic variants  (Blows et al., 2010). 

 

BLBC accounts for 12-37% of breast cancers incidences in the U.K. (Toft and Cryns, 2011). 

Several studies have shown that BLBC is associated with poor patient outcome (Fan et al., 2006). 

Frequently diagnosed as an interval cancer and as an invasive ductal carcinoma of no special 

type, BLBC particularly affects the younger, Hispanic or African-American premenopausal 

females (Majorano et al., 2010). BLBC is so-called because it displays molecular features similar 

to those of basal or myoepithelial features, including high-molecular-weight cytokeratins - 

CK5/6, CK14, CK17 - and proteins like P-cadherin (Badve et al., 2011). Additionally, this form 
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of cancer is also associated with a high mitotic count. Histologically, BLBC is a pushing border 

tumour and contains necrotic or fibrotic tissues (Majorano et al., 2010). The tumour is proposed 

to be highly infiltrated with lymphocytes and presents with both typical and atypical medullary 

features (Badve et al., 2011). Not only does it have high DNA copy number variations, it has 

been demonstrated that BLBC are often characterised by mutations in BRCA1 mutants (Wang et 

al., 2010). Hence, this tumorigenic phenotype could be the result of one or more prevalent genetic 

mutation.   

 

1.2 Genetic causes of BLBC  

One of the enabling characteristics of cancer is genomic instability and mutation (Hanahan and 

Weinberg, 2011). Mutations at the chromosomal level can act as drivers for cancer. Oncogenic 

genes and loss of tumour suppressor genes can alter the function of proteins, resulting in aberrant 

signalling. A common copy number variation observed in BLBC is a chromosomal gain at the 

10p region (Bergamaschi et al., 2008). Amongst the genes within the smallest chromosomal gain 

detected in the 10p13 region, the only protein kinase, and therefore potential druggable target, is 

calcium/calmodulin-dependent protein kinase 1D (CaMK1D) (Figure 2). Although it is proposed 

to mediate glucose metabolism in hepatocytes (Haney et al., 2013) and is associated with Type II 

diabetes (Gamboa-Meléndez et al., 2012), CaMK1D is generally an understudied protein and its 

specific biological role is currently an enigma. CaMK1D is often referred to as CaMK1 like 

kinase (CKLiK) because CKLiK is considered to be a splice variant of CaMK1D. The expression 

of CKLiK is well characterised in polymorphonuclear leukocytes, whereas CaMK1D is 

expressed in a variety of tissues such as the ovaries, liver and brain (Verploegen et al., 2000; 

Verploegen et al., 2005). 
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Figure 2. The genomic profile of the 10p13 cytoband of primary breast cancers based on 

comparative genomic hybridization. A total of 172 breast tumours were obtained from four different 

cohorts, a Korean cohort and three Norwegian cohorts known as Doxo, Fumi and Ull, and their 

chromosomal levels studied. The columns of the profile correspond to a distinct tumour, and are organised 

according to their molecular subtype and cohort. The rows correspond to a distinct gene. Red corresponds 

to a gain in the tumour sample at the genomic position whereas green represents a loss. The smallest 

genomic region in BLBCs that demonstrated an overall gain contained 7 genes, one of which is CaMK1D 

(Bergamaschi et al, 2008). 

 

Interestingly, CaMK1D has been proposed to be a driver for disease progression by a large scale 

genomic and transcriptomic analysis of 2000 breast cancers (Curtis et al., 2012). A study was 

conducted in which some of the effects of CaMK1D in BLBC had been characterised. MCF-10A 

mammary epithelial cells with CaMK1D overexpression have demonstrated to enhance cell 

proliferation and cell cycle progression (Bergamaschi et al., 2008). CaMK1D overexpression 
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correlated with decreased E-cadherin expression, reflecting a loss in cell-cell contact. 

Furthermore, increased expression of vimentin and scratch wound assays demonstrated that 

CaMK1D overexpression promotes cell migration (Bergamaschi et al., 2008). Altogether, the 

data proposed that CaMK1D overexpression or hyperactivity promotes an epithelial-

mesenchymal transition (EMT), a feature which is characteristic of BLBC progression. 

 

1.3 CaMK1D is a member of the Ca2+-/Calmodulin-dependent kinase signalling pathway 

The human CaMK1D protein is comprised of 385 residues with a known molecular weight of 

42.9 kDa (Tong, 2011). It functions as a protein kinase, which refers to an enzyme that covalently 

adds the gamma phosphate group(s) from adenosine triphosphate (ATP) molecules to other 

proteins in a process known as phosphorylation. This alters the function or location of this 

phosphorylated target. In response to extracellular physiological or internal stimuli, intracellular 

signalling events often rely on phosphorylation to convey the signals. Such signalling events are 

vital for various cellular processes including cell proliferation, cellular metabolism, apoptosis, 

and gene expression (Dancey and Sausville, 2003). The human genome contains 518 known 

kinases that are divided into 10 groups; of which one is known as the Calcium/Calmodulin 

(Ca2+/CaM) Kinase (CaMK) family (Manning and Whyte, 2002). Of the 80 members in this 

family, each subfamily of these Serine/Threonine (Ser/Thr) kinases contain a N-terminal kinase 

catalytic domain followed by an autoinhibitory domain (AID) in the C-terminal region  that is 

contiguous to and overlap part of a Ca2+/CaM binding domain (CBD) (Swulius and Waxham, 

2008). Thus, the activation of these kinases intrinsically depends on Ca2+ signalling. 
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Ca2+ interactions are vital for countless signalling pathways in all cell types. The concentration of 

cytosolic Ca2+ generally increases due to the increase of transport of extracellular Ca2+ via Ca2+ 

transporters or Ca2+- channels or due to the release of Ca2+ from intracellular stores, for example, 

the sarcoplasmic and endoplasmic reticulum (SR & ER) (Berridge et al., 1998).  Calcium can act 

as a secondary messenger and can interact with downstream Ca2+ binding proteins to facilitate 

events including cell proliferation and apoptosis. CaM is known as a Ca2+ sensor and is one of 

such binding proteins that is highly conserved in all eukaryotic cells and contains four Ca2+- 

binding sites. To activate this Ca2+ sensor, the binding of at least two Ca2+ ions to CaM is 

required to induce a conformational change associated with ligand binding (Berridge et al., 

1998). 

 

Some of the more indirect effects of Ca2+ are facilitated by the CaM kinase family of proteins. 

Ca2+/CaM is an allosteric activator of CaMK proteins. In the absence of Ca2+/CaM, these Ser/Thr 

kinases adopt a relatively inactive state in which the AID folds over and conceals the catalytic 

cleft. The binding of Ca2+/CaM to the CBD relieves the kinase of its autoinhibitory state. This 

exposes the catalytic cleft and the kinase adopts an active state allowing it to phosphorylate the 

Ser/Thr residues on CaMK substrate proteins (Hook and Means, 2001). Full activation of these 

CaMK proteins involves not only Ca2+/CaM binding but also a CaMK protein- mediated 

phosphorylation of the activation loop. The basal level of CaMK1D activity is stimulated by 

Ca2+/CaM binding, however, a 30-fold increase in activity has been reported upon the addition of 

an upstream kinase, CaMKK (Ishikawa et al., 2003). In the presence of Ca2+, CaM binds to and 

aids the activation of CaMKK (Figure 3). This activated kinase can then phosphorylate the 

activation loop of CaMK1D at Thr180 (Ishikawa et al., 2003). Enhanced activation of CaMK1D 
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is proposed to lead to phosphorylation of downstream targets, for example, cyclin dependent 

kinase 9 (CDK9), which can modulate RNA Polymerase-II mediated transcription 

(Ramakrishnan and Rice, 2012).  

 

Most of the members of the CaMK family of kinases are localised to the cytoplasm, however it 

has been reported that CaMK1D translocates to the nucleus upon a stimulus, for example, Ca2+ 

influx (Sakagami et al., 2005). There, it may phosphorylate the cAMP-responsive element 

binding protein (CREB) (Kimura et al., 2002), a ubiquitous transcription factor that regulates 

transcription of genes involved in cell growth and differentiation (Shaywitz and Greenberg, 

1999). Subsequently, this decreases E-cadherin expression and increases vimentin expression, 

which can decrease cell adhesion and increase cell migration, respectively (Bergamaschi et al., 

2008). The members of the CaMK family can remain in constitutively active state even following 

decay in the Ca2+ signals due to their ability to autophosphorylate. To return these kinases to their 

basal activity, Ser/Thr phosphatases are required to remove the activating phosphates from the 

phosphorylation sites (Soderling and Stull, 2001). 
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Figure 3. A schematic of the proposed Ca2+ signalling pathway involving CaMK1D. Extracellular 

Ca2+ and/or Ca2+ from the SR/ER stores bind to CaM in the cytoplasm. Together they bind to activate 

CaMKK. Ca2+/CaM binding and CaMKK-dependent phosphorylation activates CaMK1D, which can 

phosphorylate CDK9 and translocate to the nucleus. In an unknown mechanism, CaMK1D is proposed to 

bind to CREB and mediate the transcription of genes such as vimentin and E-cadherin.  
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1.4 CaMK1D as a druggable target 

‘The druggable genome’ refers to the human genes coding for proteins that can be targeted by 

drug-like compounds, of which 22% are Ser/Thr and Tyr protein kinases (Hopkins and Groom, 

2002). Although a protein target is considered potentially druggable if it exhibits a reasonable 

binding affinity with a small molecule compound, it is only considered as a drug target if it is 

associated with a disease and the efficacy of lead molecules have been demonstrated. One of the 

most successful mechanism-based drug molecules is Imatinib or Glivec, an inhibitor developed to 

target an oncogenic tyrosine kinase overexpressed in chronic myeloid leukemia (CML) 

(Capdeville et al., 2002). It attained acceptable drug specificity because only the oncogenic, 

constitutively active form of the kinase is expressed during disease progression and is 

distinguishable from the tightly regulated activity of the normal form of the enzyme found in 

non-transformed cells. Successful drug discovery relies on the iterative modification and testing 

of a series of lead compounds that exhibit an acceptable balance of cellular activity and minimal 

off-target toxicity. This is achieved through medicinal chemistry optimization to engineer in 

specificity, affinity and drug-like properties. A protein kinase C inhibitor was the lead compound 

for Glivec, which was processed further using medical chemistry by the addition of certain 

derivatives (Capdeville et al., 2002). These modification fulfilled the requirements for an 

effective small molecule therapeutic agent with minimal drug-drug-interactions that expresses the 

appropriate absorption, distribution, metabolism and excretion features. Thus, in the end Glivec 

was successfully developed for cancer treatment as a water soluble compound with good oral 

bioavailability (Capdeville et al., 2002), and demonstrated a way forward for the development of 

additional kinase inhibitors as selective anti-cancer agents. 
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Bergamaschi and colleagues proposed that the Ser/Thr kinase hyperactivity of CaMK1D acts as a 

breast cancer driver (Bergamaschi et al., 2008), suggesting that its enzymatic activity is an 

appealing drug target. Similarly to Glivec, a screen relevant to the cancer must be conducted to 

identify and progress the CaMK1D inhibitors as potential lead compounds for this novel target. 

Substrate- or ATP- binding sites within a protein are generally functionally relevant, thus small 

molecule inhibitors competing for such binding sites (KD ≤10µM) to induce a toxic effect are 

deemed to be effective. Previous research carried out by the groups of Stefan Knapp (University 

of Oxford) and Michael Overduin (University of Birmingham) showed the interaction between 

kinase inhibitors and CaMK1D using X-ray crystallography and NMR techniques. Since most 

kinase inhibitors are ATP analogues (Rinnab et al., 2008), the inhibitors were generally expected 

to occupy the ATP-binding site of CaMK1D. The inhibitor of initial interest, which is 

commercially available, was glycogen synthase kinase (GSK)-3 XIII. It was originally developed 

as an inhibitor of the GSK3 kinase (Rinnab et al., 2008), which is implicated in several 

physiological functions that involve cell proliferation and cell death (Takahashi-Yanaga, 2013). 

This inhibitor can also bind to CaMK1D to cause an autoinhibitory effect on the kinase by 

locking it in an autoinhibitory state, as viewed in the 2.3Å inhibitor complex crystal structure 

(Figure 4). Thus, by designing effective and specific inhibitors of CaMK1D one can lay the basis 

for developing targeted systemic treatment for BLBC patients.  
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Figure 4. Crystal structure of CaMK1D with GSK-3 XIII inhibitor. (PDB:2JC6) The GSK-3 XIII 

inhibitor is bound to the ATP binding site within the N-lobe of this monomeric CaMK1D, thereby locking 

the AID (denoted as αR1 and αR2) within the C-lobe (Figure provided by Stefan Knapp, University of 

Oxford). 

 

One of the unusual attributes which accounts for the success of Glivec is that CML disease 

progression results from only one aberrant signalling pathway event. In contrast, the majority of 

tumours are the result of several deregulated proteins involved in multiple signalling pathways. 

Although, the exact biological pathway involving CaMK1D in cancer cells is poorly understood, 

CaMKK and CaMK1V have been reported to indirectly activate Protein Kinase B (PKB) and 

members of the MAPK/ERK pathway, respectively (Soderling, 1999; Means, 2000). However, 
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other components of diverse pathways may also be affected. Furthermore, the generally high 

sequence homology within members of the CaMKK family suggests that their binding sites and 

specificities could be conserved, allowing a single compound to bind several related members. 

Previously, it has been demonstrated that a CaMKII inhibitor- KN93- and siRNA can inhibit 

CaMKI by triggering cell cycle arrest and reducing cell proliferation in adenocarcinomic MCF-7 

cells (Rodriguez-Mora, 2005). This suggests that members of the same family can be targeted by 

the same inhibitor. There are 4 known isoforms of kinases in the CaMK1 subfamily – CaMK1A, 

CaMK1B, CaMK1D and CaMK1G. The sequences of these isoforms are highly conserved 

throughout the kinase except at the C-terminus region following the AID (Ishikawa et al., 2003). 

The inhibitors that target the catalytic or AID or such domains could be translated to other 

kinases due to limited sequence diversity. On the other hand, off targets should be avoided to 

achieve tumour selectivity. This highlights the requirement of generating a model system to study 

the drug’s specificity for the target, i.e. CaMK1D, as well as a series of off-targets such as related 

CaMKK family members. 

 

1.5 Targeting CaMK1D as a form of targeted therapy for BLBC 

The method of screening a series of compounds for modulation of an established disease target is 

known as a targeted drug discovery. To conduct this process under in vitro conditions, it is 

essential to develop a cell-based model system designed to test the effects of the compounds on 

cells expressing various CaMK1D levels in different tumorigenic backgrounds corresponding to 

different states of the disease progression. Upon the generation of this model system, several cell-

based assays should be conducted as readouts of an inhibitor’s specificity and potency in the 

cancer cell model as well as other tissues where toxic side-effects could be anticipated.   
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2. Aims of the Project 

 

 To establish a cell-based model system to test for specific inhibitors against 

CaMK1D. 

This will be achieved by generating a panel of stably transformed cell lines (referred to as 

‘model system’) with three different CaMK1D expression levels - knockdown, basal and 

overexpression- to test for the inhibitors’ specificity. We predicted that inhibitors 

targeting CaMK1D under basal and overexpression conditions would recapitulate the 

phenotype observed under the CaMK1D knockdown condition. Comparison of effects at 

basal and overexpression conditions also allows us to determine if the inhibitor is 

CaMK1D-specific or exhibits off-target effects. 

 To determine the relevant downstream targets of CaMK1D that can serve as 

biomarkers for CaMK1D-specific inhibitors.  

This will be achieved by western blot analysis of predicted CaMK1D substrates and 

associated signalling pathways, based on the literature available.  

 To perform cell-based assays for the evaluation of the in vitro effects by the 

inhibitors and the identification of potential CaMK1D-specific lead compounds. 

This will be achieved by performing cytotoxicity and wound-healing assays, which will 

determine the binding affinity of the compound, and inhibitory effects on cell migration 

and invasion respectively. This would reflect the specificity and potency of the inhibitor 

under these varying CaMK1D expression levels. 

 



CONFIDENTIAL 

 

14 
 

3. Material & Methods 

3.1 Plasmid DNA isolation 

In order to generate cell lines with varying CaMK1D expression levels, the following ampicillin–

resistant plasmids were amplified and purified: pLVX, HA-tagged CaMK1D, sh1753, sh1754, 

sh95712, sh97125, pSPAX and pMD2.G (Sigma-Aldrich). Bacterial transformation was carried 

out by thawing 40µl of competent E.coli DH5α cells (Life Technologies) on ice prior to the 

incubation with 2µl of the 1µg/µl plasmid for 5 minutes on ice. The DH5α cells underwent a 30-

second heat shock at 42˚C, followed by a 2-minute incubation on ice. The cells were then 

incubated at 37˚C for an hour with 250µl of SOC (Novagen) pre-warmed to room temperature on 

a shaker at 220rpm. 80µl of this mixture was plated onto an LB agar plate containing ampicillin 

pre-warmed to room temperature. The plate was inverted and cells were incubated overnight at 

37˚C. Pre-autoclaved LB media (1ml) was added to the agar plate and mixed with a spreader. 

This step was performed twice before the media containing cells from the colonies was used to 

inoculate a 500ml LB medium with ampicillin at 37˚C and 60rpm overnight. The culture was 

harvested once it appeared to be turbid with an OD reading of 600nm. DNA was isolated using 

the Plasmid Maxi Kit (QIAGEN) according to the manufacturer’s instructions. The purified 

plasmids were then used to transfect human cell lines. 

 

3.2 Cell culture 

Human cell lines were tested for effects of CaMK1D expression and inhibition. These included 

HEK 293T (ATCC:-LGC) and MDA-MB-231 (ATCC:-LGC) cells, which were cultured in 

Dulbecco's modified Eagle's medium (DMEM) (Gibco) containing 1% Penicillin/Streptomycin 
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(P/S) (Gibco) and 10% heat-inactivated Fetal Bovine Serum (HI-FBS) (Gibco). HCC70 (ATCC:-

LGC) cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco) 

containing 1% P/S (Gibco) and 10% HI-FBS (Gibco). All these cell lines were grown and 

maintained at 37˚C and 5% CO2 in an incubator with 95% humidity. 

 

3.3 Cell transfections 

3.3.1 Transient transfections 

The HEK 293T cells were grown to 80-90% confluency for plasmid transfections. A transfection 

volume of 8μl of plasmid and 12μl of polyethylenimine (Sigma-Aldrich) was vortexed and 

incubated in 1ml of serum-free media for 15 minutes at room temperature prior to their addition 

to HEK 293T cells. This was performed with each of the following plasmids: pLVX, HA-tagged 

CaMK1D, sh1753, sh1754, sh95712, sh97125. These cells were then grown in DMEM 

containing 2% FBS with the transfected solution for 8 hours before the media was replaced with 

10% serum-containing media. These cells were cultured for 40 hours prior to lysis. 

 

3.3.2 Lentiviral transfection 

Lentiviral transductions were performed on two cell lines of interest, HCC70 and MDA-MB-231. 

Thus, the following procedure was performed three times. Packaging cells, i.e. HEK 293T, were 

grown to 80-90% confluency preceding plasmid transfections. A transfection volume of 8μl of 

plasmid, 12μl of pSPAX and 12μl of pMD2.G was vortexed and incubated in 1ml of serum-free 

media for 15 minutes at room temperature prior to their addition to the packaging cells. This was 

performed with each of the following plasmids; pLVX, HA-tagged CaMK1D, sh1753, sh1754, 

sh95712 and sh97125. The cell lines to be transfected with the infective virus were also grown to 
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80-90% confluency preceding viral transfections. At 24 hours and 48 hours post-transduction, the 

viral particles suspended in the media of these packaging cells were filtered. Infective virus 

containing pLVX and HA-tagged CaMK1D were directly added to the cell line of interest 

whereas infective virus containing sh1753, sh1754, sh95712 and sh97125 were pooled and 

collectively added to the cell line of interest. At 48 hours post this viral transfection, the media 

was replaced with media containing 2mg/ml puromycin (Fisher Scientific) to select for stable 

transfectants. 

 

3.4 Cell morphology imaging 

3.4.1 Morphology of the 2D culture 

Cells were plated at a density of 8.0x105 onto 60mm dishes and incubated for 48 hours. Upon 

attaining 80-90% confluency, cells were imaged using Axiovert S 100 microscope (Zeiss) at 10X 

magnification with the Scion Image software (Scion Corporation). 

 

3.4.2 Morphology of the 3D culture 

Thaw matrigel (BD Biosciences) on ice. 50µl of 100% matrigel was spread onto each well of an 

8-well glass Nunc Lab-Tek Chamber Slide (Thermo Scientific), placed on ice. This Chamber 

Slide was placed on a rocker for 5 minutes prior to placing it in an incubator. 1x104 cells in 200µl 

were mixed in a 1:1 ratio of cells to 8% matrigel in media. This mixture was plated into each 

chamber of the Chamber Slide and incubated for 5 days. Upon attaining sufficient colonies, 

400µl of 4% paraformaldehyde (PFA) was added to each well and incubated for 15 minutes at 

room temperature. Then the PFA was removed and replaced with fresh PFA. This was left to 

incubate overnight at 4˚C. The PFA was removed and 400µl of phosphate buffered saline (PBS) 
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containing 10% azide was added to every chamber. The Chamber Slide was sealed with parafilm 

until imaging. Images were taken on Axiovert S 100Z microscope with the Scion Image software 

at 10X magnification. 

 

3.5 Cell lysis 

Cultured cells from the transient and lentiviral transfections were incubated on ice for 5 minutes 

before washed trice with cold PBS. Subsequently, they were lysed with 1x Laemmli buffer 

containing 1x PhosSTOP (Roche EASYpack) and 2x Protease inhibitor (Roche EASYpack) for 5 

minutes on ice. Cells were then scraped into an eppendorf and sonicated at 10 microns (Soniprep 

150). These lysates were centrifuged for 7 minutes at 14000rpm and at 4˚C. The supernatant was 

removed and boiled at 95˚C for 5 minutes. 

 

3.6 Western Blot 

The protein levels in the lysates prepared from the cell transfections and lysates of other cell lines 

previously prepared were quantified using DC Protein Assay (BioRad) on a 96-well plate (BD 

Falcon) according to the manufacturer’s instructions. A DC iMark microplate reader (BioRad) 

was used to measure the absorbance of the assay at 750nm. For identification by gel 

electrophoresis, 15-20μg of proteins with 5x reducing Laemmli buffer were loaded onto 4-12% 

TGX precast gels (BioRad). Gels were transferred onto PVDF membranes (BioRad) within 7 

minutes using the TransBlot Turbo Transfer System (BioRad). Membranes to be tested with 

antibodies targeting the phosphorylated forms of proteins were blocked in 3% bovine serum 

albumin (BSA) in 1x Tris-Buffered Saline with Tween 20 (TBST) whereas those targeting the 

non-phosphorylated forms of proteins were blocked using 5% milk 1xTBST for 1 hour. This was 
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followed by an overnight incubation at 4˚C with primary antibodies (Table 1). Primary antibodies 

were removed and membranes subjected to three 10-minute washes with 1xTBST. They were 

then incubated with secondary antibodies (LiCor Odyssey) diluted 1:20 000 in appropriate 

blocking solution, which included fluorophore-attached Goat anti-Rabbit and anti-Mouse, for 1 

hour at room temperature. Secondary antibodies were removed and membranes were subjected to 

three 10-minute washes with 1xTBST. Blots were processed using Gel Imaging Scanner (LiCor 

Odyssey). 
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Table.1. Details of the primary antibodies used for western blot analysis. Listed are the details of 

primary antibodies used for the characterization of the MDA-MB-231 model system. These antibodies 

were diluted in 1x TBST containing 3-5% BSA and 0.01% azide  

 

Antibody Dilution Clonality Source Manufacturer  

CaMK1D 1:10 000 monoclonal rabbit Abcam 

Syntenin-1 1:1000 monoclonal rabbit Abcam 

Phospho- syntenin-1 

Ser6  

1:1000 polyclonal rabbit Generated “in-

house” 

Phospho-syntenin-1 

Tyr4   

1:1000 polyclonal rabbit Generated “in-

house” 

Phospho-syntenin-1 

Tyr47   

1:1000 polyclonal mouse Generated “in-

house” 

E-Cadherin 1:100 monoclonal mouse Abcam 

Vimentin 1:1000 polyclonal rabbit Abcam 

Phospho-CREB Ser133 1:1000 monoclonal rabbit Cell Signaling 

Phospho-Ser 1:1000 polyclonal rabbit Abcam 

Phospho-Thr 1:1000 polyclonal rabbit Zymed 

EGFR 1:1000 monoclonal mouse Neomarkers 

MEK1/2 1:1000 polyclonal rabbit Cell Signaling 

ERK1/2 1:1000 polyclonal rabbit Cell Signaling 

p38 MAPK 1:1000 polyclonal rabbit Cell Signaling 

β-actin 1:30 000 monoclonal mouse Sigma-Aldrich 
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3.7 Proliferation Assay  

In order to understand the effect on CaMK1D expression on proliferation, exponentially growing 

cells were plated onto COSTAR 96-well plates (Corning) with 100μl of the appropriate media. 

The experimental wells contained cells with media whereas the control wells contained media 

only. The experimental and control conditions were plated in triplicates. To optimise cell seeding 

density, the experimental conditions were cells plated at 10 different cell densities, ranging from 

7.8x10 to 4.0x104 at a 2-fold difference in media containing 10% FBS, prepared by serial 

dilution. To optimise serum conditions, cells were plated a 5.0x104 density in serum-free media 

24 hours prior to being subjected to the experimental conditions, which were four different serum 

concentrations; serum-free, 1% FBS, 3% FBS and 10% FBS. Fresh media containing Alamar 

Blue (Life Technologies) was added in a 10-fold dilution to all wells 4 hours prior to the required 

time of proliferation reading. Plates were read at 0, 24, 48, 72, and 96 hours, with the 0 hour 

time-point being 4 hours after the cells were seeded. The fluorescence resulting from the 

reduction of Alamar Blue was measured using Wallac 1420 VICTOR2 V microplate reader 

(Perkin Elmer) and Wallac 1420 Manager software (Perkin Elmer) with the excitation and 

emission wavelength at 560nm and 590nm respectively. The experiment was carried out three 

times. The mean of the control wells was subtracted from the mean of its respective experimental 

wells. The adjusted mean values of the three experiments were then calculated and plotted. 

 

3.8 Cytotoxicity Assay 

3.8.1 Cytotoxicity Assay performed on HCC70 cells 

In order to test the cellular activity of the CaMK1D inhibitor on proliferation, exponentially 

growing cells were plated at 4x103 cell density onto COSTAR 96-well plates with 100μl RPMI 
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containing 10% FBS and cultured for 72 hours. The experimental conditions were cells 

containing different GSK-3 XIII inhibitor (Calbiochem) concentration in 1% dimethyl sulfoxide 

(DMSO) (Sigma-Aldrich), ranging from 0.001 to 100 µM each with a 10-fold difference. 

Experimental wells contained cells exposed to the inhibitor whereas controls were exposed to 1% 

DMSO. The experimental and control conditions were plated in triplicates. Alamar Blue was 

added in a 1:10 dilution to all wells 4 hours prior to the required time of proliferation reading. 

Plates were read 48 hours after exposure to the inhibitor using PHERAstar Plus microplate reader 

(BMG LABTECH) with MARS data analysis software (BMG LABTECH) with the excitation 

and emission wavelength at 560nm and 590nm respectively. The mean of the control wells was 

subtracted from the mean of the respective experimental wells and was plotted based on a 4-

parameter logistic regression model. 

 

3.8.2 Cytotoxicity Assay performed on MDA-MB-231 cells 

Exponentially growing cells at 5x103 density were plated onto COSTAR 96-well plates with 

100μl DMEM. Experimental wells contained cells exposed to 10μM of GSK-3 XIII inhibitor in 

1% DMSO whereas controls were cells exposed to 1% DMSO. The experimental and control 

conditions were plated in triplicates. Together with 10μl of Alamar Blue reagent, fresh media 

containing 10μM of GSK-3 XIII inhibitor and 1% DMSO was replaced in the experimental and 

control wells, respectively, 4 hours prior to the required time of proliferation reading. Plates were 

read at 0, 24, 48, 72, 96, 120 and 144 hours, with the 0 hour treatment time-point being 4 hours 

after the cells were seeded. Plates were read using Wallac 1420 VICTOR2 V microplate reader 

and Wallac 1420 Manager software with the excitation and emission wavelength at 560nm and 

590nm respectively. The experiment was carried out three times. The mean of the control wells 
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was subtracted from the mean of its respective experimental wells. The adjusted mean values of 

the three experiments were then calculated and plotted. 

 

3.9 Migration Assay 

In order to test the cellular activity of the CaMK1D inhibitor on migration, cells were plated in 

media containing 10% FBS at a cell density of 2.1x104 cells per chamber of the Culture-Insert 

migration dish (Ibidi). These were incubated to attach and develop a confluent layer overnight. 

The media was removed prior to the removal of the Culture-Insert unit. Media containing 10μM 

GSK-3 XIII and 1% DMSO was added to the experimental and control migration dishes 

respectively. Images were taken at 10X objective on Eclipse TS100 microscope (Nikon) using 

QCapture software (QImaging) at 0, 6 and 24 hours.  

 

3.10 Statistical analysis 

Standard error of the mean (s.e.m) was provided for experiments performed three times. The P 

values for data analysis were calculated using Student’s t test (2-tailed test with 2 sample of equal 

variance) on Microsoft Excel 2013. Data with P values < 0.05 were considered to be statistically 

significant and denoted as “*” whereas P values < 0.005 were considered to be statistically very 

significant and denoted as “**”. 
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WB: anti-CaMK1D 

4. Results 

4.1 Validation of CaMK1D protein expression in human tumour-derived cell lines 

Evaluation of CaMK1D expression across a variety of human breast cancer lines only reported 

the level of CaMK1D transcripts present in the cells. This is insufficient as the microarray data 

does not reflect the translational efficiency of these transcripts and subsequently the level of 

CaMK1D protein expression. Hence, a panel of cell lines with varying molecular characteristics 

(Kao et al., 2009) were selected (Table 2) and analysed for the expression of CaMK1D by 

western blot (Figure 5). Human kidney epithelial HEK 293T cells transfected with an HA-tagged 

CaMK1D plasmid was used as a positive control. Not only was CaMK1D expressed in the 

mammary luminal epithelial HB2 cell line and the lung adenocarcinoma A549 cell line, it was 

also detectable in the following tumour-derived cell lines; HCC70, ZR75-1, T47D, MD-IBC3, GI 

101, CAMA-1, Sum52 and BT474. Thus, any of these tumorigenic human breast cancer cell lines 

could be used to generate a cell-based assay system. 

 

 

 

 

Figure 5. Western blot analysis of CaMK1D expression in a series of cell lines. This blot confirms that 

the CaMK1D protein is expressed in HCC70, ZR75-1, T47D, A549, MD-IBC3, HB2, GI 101, CAMA-1, 

Sum52 and BT474 cell lines. 
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CELL LINE CELL LINE CHARACTERISTIC 

HCC70 Basal-like triple negative breast primary ductal carcinoma cells 

ZR75-1 Luminal-type ER+ breast invasive ductal carcinoma cells 

T47D Luminal-type ER+ PR+ invasive breast ductal carcinoma cells 

CaCo Colorectal adenocarcinoma cells 

HEK 293T HA-CAMK1D Kidney epithelial cell transfected with HA-tagged CaMK1D plasmid 

MRSV4.4 SV40 immortalization cells acquired from human milk   

A549 Adenocarcinomic alveolar basal epithelial cells 

MD-IBC3 Inflammatory breast cancer cells 

HB2 MTSV1-7 mammary luminal epithelial cells isolated from human 

milk 

GI101 Breast  metastatic carcinoma cells 

CAMA-1 Luminal-type human breast cancer cells 

MDA-MB-435 Breast metastatic carcinoma  

SUM52 Luminal-like ER+ & HER2+ breast metastatic carcinoma 

BT474 Luminal- like ER+ PR+ HER2+ breast invasive ductal carcinoma 

 

Table 2. A list of cell lines selected for analysis of CaMK1D expression by Western blot. Tumorigenic 

and non-tumorigenic cell lines of various molecular subtypes and disease stages were tested for the 

presence for CaMK1D protein. All cell lines were human-derived tumours or originated from human milk. 
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4.2 Selection of cell lines and evaluation of the constructs used for the generation of the cell-

based model system 

The above panel of tumorigenic cell lines generally exhibit mutations in several proteins resulting 

in numerous aberrant signalling pathways. Studying the effects of CaMK1D amidst a single 

tumorigenic background may not be translatable to other tumorigenic states. To tackle this issue, 

we aimed to establish model systems from two triple-negative BLBC cell lines that express 

different basal levels of CaMK1D expression – high and low. The cell line selection was based 

on the mRNA levels presented by Curtis and colleagues (2012) and on the results of the western 

blot analysis of CaMK1D protein expression (Figure 5). The first cell line selected was HCC70, 

which had the highest reported level of CaMK1D mRNA expression (Kao et al., 2009). The cell 

line selected for its low reported CaMK1D mRNA expression was MDA-MB-231. 

 

The cell-based model system was comprised of a panel of three stably transformed cell lines with 

varying CaMK1D expression levels; an empty vector control, a CaMK1D overexpressed and a 

CaMK1D knockdown. This required three different types of DNA constructs that affect 

CaMK1D protein expression. An empty vector pLVX plasmid was selected to develop the 

control cell line. An HA-tagged CaMK1D plasmid was selected for the generation of the 

CaMK1D overexpression line. Combination of four CaMK1D-specific shRNAs- sh1753, sh1754, 

sh95715 and sh97125- were selected for the generation of the CaMK1D knockdown line. To 

validate the efficiency of these constructs prior to performing the lentiviral transfection, the 

plasmids were transiently transfected into HEK 293T cells as they transfect readily (Figure 6). 

Actin served as loading control. Western blot analysis validated that the HA-tagged CaMK1D 

plasmid successfully overexpressed CaMK1D. The shRNAs effectively targeted CaMK1D 



CONFIDENTIAL 

 

26 
 

50 kDa 

37 kDa 

50 kDa 

37 kDa 

HEK 293T 

CaMK1D 

β-actin 

resulting in a decrease of CaMK1D expression albeit the extent of protein knockdown varied. 

The sh97125 RNA yielded the highest level of knockdown whereas sh1754 displayed the lowest 

level of knockdown. Nonetheless, these four shRNAs can be used together to generate the stable 

CaMK1D knockdown cell line.  

 

 

 

 

 

 

 

 

Figure 6. Western blot analysis validating the efficiency of the constructs to be used for the 

generation of the cell-based assay system. The empty vector pLVX reported the basal level of CaMK1D 

expression in HEK 293T cells. The four shRNA- sh1753, sh1754, sh95175, sh97125- plasmids 

downregulated CaMK1D expression when compared to cells expressing pLVX. Transfection of HA-

tagged CaMK1D upregulated CaMK1D in HEK 293T cells. Actin served as loading control. 
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4.3 Establishment of the two cell-based assay systems  

Stably transfected lines for the cell-based assay systems were generated to investigate and 

characterize the effects of CaMK1D at varying expression levels amid different tumorigenic 

backgrounds. This was achieved with lentiviral transfections of the validated constructs into 

HCC70 and MDA-MB-231 cell lines as described in the Materials and Methods. Successfully 

transformed cells were collectively selected with puromycin. After two weeks of puromycin 

selection, morphological differences were observed in the HA-tagged CaMK1D overexpression 

line, and the shRNA CaMK1D knockdown line compared to the empty vector control line 

(Figure 7). Cells were grown on plastic for 48 hours prior to imaging. HCC70 transfected with 

the empty vector displayed a morphological feature reflective of its epithelial nature. HCC70 

shared features of a fibroblast-like appearance that is spindly and multi-polar. Empty vector 

transfected MDA-MB-231 cells had a fibroblast-like appearance that was generally bipolar. 

However, in both of the cell-based model systems, cells overexpressing CaMK1D appeared to 

form colonies in tight cohesive clumps with cells growing in vertical layers. Contrastingly, the 

CaMK1D knockdown cells appeared to be more elongated and flatter, with colonies growing in 

loose cohesive monolayers that were spread out. These differences in morphology serve as a 

primary indicator that these two panels of cell lines were successfully transfected and could be 

characterised further.  
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HCC70 pLVX HCC70 shCaMK1D HCC70 HA-CaMK1D 

   

MDA-MB-231 pLVX MDA-MB-231 shCaMK1D MDA-MB-231 HA-CaMK1D 

 

Figure 7. Morphology of the stably transfected lines of the BLBC cell-based model systems in 2D 

culture at 20X magnification. The HCC70 (top) and MDA-MB-231 (bottom) panel of transformed cell 

lines with empty vector, CaMK1D knockdown and CaMK1D overexpression. Overall, CaMK1D 

knockdown resulted in flatter cells that spread out to form a monolayer compared to the morphology 

observed at basal CaMK1D expression whereas CaMK1D overexpressing cells grew in cohesive clumps.
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4.4 Characterisation of the biological pathway involving CaMK1D and identification of 

potential biomarkers 

The generation of a cell-based model system allows for the testing of a library of compounds 

against CaMK1D, however, validated biomarkers that serve as a readout of the potential 

inhibitors have not yet been identified. This is largely because the CaMK1D-dependent biological 

signalling pathway remains understudied. Potential biomarkers could be direct or indirect 

downstream proteins with expression levels that correlate to the CaMK1D expression levels. To 

identify such biomarkers, the initial characterisation of these stably transfected cell lines was 

conducted through western blot analysis. The model system to be cultured and maintained well 

enough for several cell-based experiments was the MDA-MB-231 panel of transformed cell lines. 

In these analyses, the pLVX transformed line served as the control, as it reflected the basal levels 

of proteins in the MDA-MB-231 cell line. Actin served as loading control. Western blot analysis 

confirmed that CaMK1D was effectively suppressed in the shRNA transfected MDA-MB-231 

line (Figure 8). Compared to the basal level expressed by the vector transfected line, the 

CaMK1D overexpression line displayed approximately a 19-fold increase in CaMK1D 

expression. Additionally, it is has been proposed that CaMK1D overexpression results in 

increased vimentin levels and decreased E-cadherin levels (Bergamaschi et al., 2008), which is a 

characteristic of the EMT phenotype. However, no apparent changes were observed in the 

expression of vimentin or E-cadherin between the cell lines tested here (Figure 9). 
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Figure 8. Western blot analysis (A) and quantification (B) of CaMK1D protein in the lentiviral-

transformed MDA-MB-231 cell lines at steady state conditions. (n=1). Stable transfection of shRNA 

against CaMK1D effectively downregulated CaMK1D expression in MDA-MB-231 cells. The stable 

transfection of HA-CaMK1D resulted in a 19-fold increase in CaMK1D expression compared to the basal 

levels of CaMK1D expressed in MDA-MB-231, as shown by the pLVX empty vector control. 

  

B) 

A) 
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Figure 9. Western blot analyses (A) and quantification (B) of vimentin and E-cadherin proteins in 

the lentiviral-transformed MDA-MB-231 cell lines at steady state conditions. (n=1). No significant 

changes were observed in vimentin or E-cadherin expression upon CaMK1D knockdown (shCaMK1D) 

and overexpression (HA-CaMK1D) compared to the basal levels expressed by the empty vector (pLVX).  

 

A) 

B) 
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The MAPK/ERK pathway has been reported to be implicated in BLBCs (Toft and Cryns, 2011). 

Studies have shown that EGFRs are generally overexpressed in BLBCs, which subsequently 

promotes cell proliferation via the MAPK/ERK pathway (Hoeflich et al., 2009). Additionally, 

MDA-MB-231 cells have been reported to have inherent BRAF and KRAS mutations (Lehmann 

et al., 2011). KRAS, a GTPase and oncogene, propagates signals from proteins like c-Raf, 

thereby affecting cell proliferation. Western blot analyses were performed to delineate the 

potential association between expression levels of CaMK1D and proteins involved in the 

MAPK/ERK pathway (Figure 10 and 11). There was an approximate 2-fold increase in 

transmembrane EGFR protein upon the overexpression and knockdown of CaMK1D. No 

significant differences were observed in c-Raf protein levels between the empty vector and 

CaMK1D knockdown whereas there was a 2.5-fold decrease between CaMK1D overexpression 

and the empty vector. Interestingly, there was a 2.5-fold increase in MEK1/2 protein levels with 

CaMK1D knockdown and a 1.2-fold decrease with CaMK1D overexpression compared to basal 

levels of expression. The ERK1/2 protein expression followed a similar pattern with a 1.6-fold 

increase upon CaMK1D knockdown and a 1.2-fold decrease with CaMK1D overexpression 

compared to the basal level of ERK1/2 expression. Similar to c-Raf expression level, the total 

p38 MAPK levels did not vary between the empty vector and knockdown cell line, however, 

there was a 2.7-fold decrease with CaMK1D overexpression. Collectively, this data suggests the 

CaMK1D directly or indirectly affect members of the MAPK pathway and could intersect this 

pathway at several stages. Additionally, MEK1/2 and ERK1/2 could serve as a biomarker since 

their expression levels inversely correlate to CaMK1D expression levels. 
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Figure 10. Western blot analysis (A) and quantification (B) of EGFR protein in the lentiviral 

transfected MDA-MB-231 cell lines at steady state conditions. (n=1). A 2-fold increase in EGFR 

expression was observed in CaMK1D knockdown and overexpression compared to the empty vector 

pLVX.  
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Figure 11. Western blot analyses (A) and quantification (B) of selected members of the MAPK 

pathway in the lentiviral transfected MDA-MB-231 cell lines at steady state conditions. (n=1) 

MEK1/2 and ERK1/2 show similar patterns with increased expression levels in CaMK1D knockdown 

cells and decreased expression upon CaMK1D overexpression. CaMK1D overexpression resulted in an 

approximate 2-fold decrease in c-Raf and p38 MAPK expression.  

B) 

A) 



CONFIDENTIAL 

 

35 
 

For comparison the levels of another protein, syntenin-1, which is associated with poor outcome 

in TNBC patients (Yang et al., 2013) was also tested. Syntenin-1 is a scaffold adaptor protein, 

which is known to mediate signalling from transmembrane proteins (e.g. syndecans) to 

cytoskeletal proteins and downstream cytosolic effectors (Sala-Valdés et al., 2012), thereby 

affecting cell-cell adhesion and protein transport. Since CaMK1D is a Ser/Thr kinase and 

syntenin-1 has known Ser phosphorylation sites, the potential correlation between CaMK1D and 

syntenin-1 expression levels was studied by western blot experiments (Figure 12). The overall 

levels of syntenin-1 increased when CaMK1D was suppressed and vice versa was observed when 

CaMK1D was overexpressed. Similar patterns were observed with “in-house” generated 

antibodies that recognise phosphorylated forms of syntenin-1. CaMK1D overexpression and 

knockdown resulted in a 3-fold decrease and increase, respectively, of overall syntenin-1 

expression. There was an approximate 1.65-fold increase in phosphorylated Ser6, Tyr4 and Tyr47 

residues of syntenin-1 upon CaMK1D knockdown. In contrast, CaMK1D overexpression led to a 

3-fold, 1.3-fold, and 1.4-fold decrease in the phosphorylated syntenin-1 residues Ser6, Tyr4 and 

Tyr47, respectively. The decrease in phosphorylation proposes that CaMK1D overexpression 

downregulates syntenin-1 activity.  

 

Due to its substrate specificity, CaMK1D would be expected to phosphorylate the Ser residues 

but not the Tyr residues, at least directly. However, studies suggest that these Tyr residues could 

be phosphorylated by members of the Src family (Sala-Valdés et al., 2012). Altogether, this data 

suggests that CaMK1D directly or indirectly affects syntenin-1 protein levels and activity at 

steady state conditions. Not only could syntenin-1 be a potential biomarker for CaMK1D 

inhibition in cell-based assays, this data suggests that targeting CaMK1D alone may potentially 
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be insufficient for treating basal-like or triple negative breast cancer as elevated syntenin 

expression is associated with poor prognosis. Thus, this initial result represents a potentially 

important link between two pathways but requires further exploration. 
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Figure 12. Western blot analyses (A) and quantification (B) of syntenin-1 and phosphorylated 

residues on syntenin-1 in the lentiviral transfected MDA-MB-231 cell lines at steady state 

conditions. (n=1). CaMK1D knockdown and overexpression resulted in a 3-fold increase and decrease in 

syntenin-1, respectively, compared to the pLVX control. Similarly, expression of phosphorylated Ser6, 

Tyr4 and Tyr47 on syntenin-1 displayed an inverse correlation to CaMK1D expression. 

B) 

A) 
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One of the proposed downstream nuclear targets of CaMK1D is CREB (Bergamaschi et al, 

2008), a ubiquitous transcription factor that is stimulated by several pathways (Shaywitz and 

Greenberg, 1999). Western blot analysis of whole cell lyastes showed that there was an 

approximate 2-fold decrease in phosphorylated CREB in both CaMK1D knockdown and 

overexpression compared to the empty vector (Figure 13). CREB phosporylation could be tightly 

controlled by CaMK1D wherein the under- or over- expression of CaMK1D could result in the 

activation of different phosphatases, such as PTEN (Ross and Gericke, 2009). Subsequently, this  

may lead to a lower expression of phosphorylated CREB. 

 

Detection of other potential downstream effectors of CaMK1D was achieved by analysing 

western blots against antibodies that target phosphorylated Ser and Thr residues (Figure 14). 

Three bands were observed in the phosphorylated Ser blot, referred to as Band 1 (observed 

between 37 and 50 kDa), Band 2  (observed between 37 and 50 kDa below Band 1) and Band 3 

(just below 37 kDa). CaMK1D knockdown and overexpression resulted in a 1.2-fold increase and 

a 1.4-fold decrease, respectively, in Band 1 of phosphorylated Ser. There was no change between 

the empty vector and CaMK1D knockdown in Band 2 of phospho-Ser whilst CaMK1D 

overexpression showed approximately 1.1-fold decrease. CaMK1D knockdown displayed an 

approximate 1.3-fold increase whereas CaMK1D overexpression resulted in a 1.8-fold decrease 

compared to the empty vector in Band 3 of phospho-Ser. A band close to 37 kDa was also 

observed with the phospho-Thr antibody. Compared to the empty vector, a 1.1-fold increase and 

a 3.1-fold decrease in phospho Thr levels was observed in CaMK1D knockdown and 

overexpression respectively. Overall, the expression of proteins with phosphorylated Ser and Thr 

residues signifcantly decreased with CaMK1D overexpression. Hence, another kinase might be 
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resposible for the phosphorylation of these proteins and increased CaMK1D expression could be 

inhibitory for this phosphorylation. Nonetheless, quatification of the western blots suggest that 

the extent of the phosphorylation of Band 1 and Band 3 phospho-Ser and the phospho-Thr band 

inversely correlate with CaMK1D expression levels. Thus, these proteins could be identified by 

mass spectrometry and could serve as potential biomarkers. 
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Figure 13. Western blot analysis (A) and quantification (B) of phosphorylated CREB Ser 133 in the 

lentiviral transfected MDA-MB-231 cell lines at steady state conditions. (n=1). There is an overall 2-

fold decrease in phosphorylated Ser 133 on CREB upon CaMK1D knockdown and overexpression 

compared to the pLVX control. 
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Figure 14. Western blot analyses (A) and quantification (B) of phosphorylated Serine and 

Threonine residues in the lentiviral transfected MDA-MB-231 cell lines at steady state conditions. 

(n=1). No significant change was observed with Band 2 of phosphorylated Ser. An approximate 1.2-fold 

increase Band 1 and Band 3 of phosphorylated Ser, and phosphorylated Thr were observed with CaMK1D 

knockdown. Compared to the pLVX control, CaMK1D overexpression exhibited a general 1.5- to 3 –fold 

decrease in phosphorylated Ser Band 1 and Band 3, and phosphorylated Thr.  
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4.5 Characterisation of cellular proliferation according to CaMK1D expression  

The pathway involving CaMK1D is not sufficiently well understood to be able to predict whether 

altering the cellular CaMK1D levels affect other cell proliferation pathways. Prior to 

understanding the proliferative behaviour and aberrant signalling within these transformed cell 

lines, the seeding density was a vital parameter that had to be optimized. Thus, a cell proliferation 

assay was carried out on the MDA-MB-231 pLVX, shCaMK1D and HA-CaMK1D transformed 

cell lines at ten cell densities. A range of 7.8x10 to 4.0x104 cells, each at a 2-fold density 

increase, were seeded in triplicates and their proliferation was studied 24 hours later (Figure 15).  

The readout for cell proliferation was the reduction of a fluorescent compound. This proliferation 

assay suggested that this range of cell density was appropriate to study the exponential growth 

phase of these three cell lines as the curves did not plateau. Yet, cells seeded at 4.0x104 density 

were approximately 90-100% confluent after 24 hours of plating. Consequently, it was 

extrapolated that 5.0x103 cells are enough to obtain an observable reading and is an appropriate 

cell density to use for further proliferation or cytotoxicity assays. Then to characterize the 

difference in proliferation across this panel of stably transfected MDA-MB-231 cells, 5.0x103 

cells of each transformed cell line were plated in triplicates and the proliferation was studied over 

96 hours. The experiment was performed three times. (Figure 16). No significant difference was 

observed between the three transformed cell lines. Thus, varying CaMK1D expression levels did 

not affect proliferation of MDA-MB-231 cells in vitro.  
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Figure 15. In vitro proliferation of the lentiviral transfected MDA-MB-231 cell lines at various cell 

densities. Cells were cultured for 24 hours in optimal serum conditions prior to the analysis of cell 

proliferation. Metabolically active cells reduce the reagent to a fluorescent indicator. The fluorescent 

signal increased exponentially from 7.8x10 to 4.0x104 cells in the pLVX, shCaMK1D and HA-CaMK1D 

transformed lines, indicating exponential growth. No significant difference was observed in the 

proliferation between these cell lines with varying CaMK1D expression. 
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Figure 16. In vitro proliferation of the lentiviral transfected MDA-MB-231 cell lines analysed over 

96 hours. (n=3). 5.0x103 cells were seeded and cultured in optimal serum conditions. Metabolically active 

cells reduce the reagent to a fluorescent indicator. There was a linear increase in proliferation throughout 

the 96 hours yet no significant difference in the proliferation was observed between these cell lines with 

varying CaMK1D expression. Data are means ± s.e.m. 
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It is possible that the lack of difference in proliferation across this panel of MDA-MB-231 

transformed cell lines is due to the presence of serum-derived growth factors in the growth 

media, which may overshadow the effect of CaMK1D overexpression or downregulation. To 

investigate the proliferative effect of the CaMK1D kinase under suboptimal conditions, the 

proliferation of this model system was studied under four serum concentrations with an 

approximate 3-fold difference; serum-free, 1% serum, 3% serum and 10% serum conditions. 

Cells were plated in triplicates with a seeding density of 5.0x103 and were studied over 96 hours 

(Figure 17, 18, 19).  The experiment was performed three times. Within 24 hours, a reduction in 

cell proliferation was observed under the serum-free condition across all three cell lines. No 

significant difference was observed between the 1%, 3% and 10% serum conditions in all three 

cell lines until 48 hours after plating. At 48 hours, the pLVX and CaMK1D knockdown cells in 

1% and 10% serum conditions exhibited lower proliferation than that at 3% serum condition, 

whereas there was no difference between these three conditions in the CaMK1D overexpressing 

cells. Yet at 72 hours in all three cell lines, there was no difference in proliferation between the 

3% and 10% conditions whilst approximately half the proliferation was observed with cells at 1% 

serum. Across all three cell lines, the growth of cells at 1% FBS started to plateau at 48 hours and 

the proliferation of cells at 10% FBS did not plateau over the course of the assay. Interestingly, 

under the 3% serum condition, proliferation of cells containing the empty vector started to 

plateau at 72 hours whereas the proliferation of CaMK1D knockdown and overexpressing cells 

did not reach a plateau throughout the experiment. 
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Figure 17. In vitro proliferation of the MDA-MB-231 pLVX cell line analysed over 96 hours under 

various serum conditions. (n=3). Cells were seeded at a 5.0x103 cell density. Metabolically active cells 

reduce the reagent to a fluorescent indicator. A general decrease in fluorescence was observed throughout 

the course of the experiment under the serum-free condition. In 1% FBS, cells grew exponentially until 48 

hours, after which it reached the stationary phase. A similar pattern was observed with 3%FBS. Cells in 

10% FBS continued to grow exponentially throughout the 96 hours. Data are means ± s.e.m. 
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Figure 18. In vitro proliferation of the MDA-MB-231 shCaMK1D cell line analysed over 96 hours 

under various serum conditions. (n=3). Cells were seeded at a 5.0x103 cell density. Metabolically active 

cells reduce the reagent to a fluorescent indicator. A general decrease in fluorescence was observed 

throughout the course of the experiment under the serum-free condition. In 1% FBS, cells grew 

exponentially until 48 hours, after which it reached the stationary phase. Cells in 3% and 10% FBS 

continued to grow linearly throughout the 96 hours. Data are means ± s.e.m. 
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Figure 19. In vitro proliferation of the MDA-MB-231 HA-CaMK1D cell line analysed over 96 hours 

under various serum conditions. (n=3). Cells were seeded at a 5.0x103 cell density. Metabolically active 

cells reduce the reagent to a fluorescent indicator. A general decrease in fluorescence was observed 

throughout the course of the experiment under the serum-free condition. In 1% FBS, cells grew 

exponentially until 48 hours, after which it reached the stationary phase. Cells in 3% and 10% FBS 

continued to grow exponentially throughout the 96 hours. Data are means ± s.e.m. 
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In all the three MDA-MB-231 transformed cell lines, the serum-free condition leads to about 

67% reduction in overall fluorescence. Proliferation under the highly sub-optimal condition of 

1% FBS was not favourable either as the cells reached the stationary phase of growth within 48 

hours of the assay. Although a similar pattern of overall cell proliferation was observed under the 

3% and 10% FBS conditions, statistically significant differences were observed at certain time 

intervals (Figure 20 and 21). Under the 3% FBS conditions, there was no statistically significant 

difference between the three transformed cell lines at 24 and 96 hours whereas there was no 

statistically significant difference at 24 and 48 hours at 10% FBS. However, a significant 

statistical difference was observed between CaMK1D knockdown and overexpression at 48 hours 

in 3% FBS when CaMK1D knockdown and overexpressing cells proliferated 1.2-fold and 1.6-

fold less than the empty vector control, respectively. A similar observation is made at 72 hours, 

when CaMK1D knockdown and overexpressing cells proliferated 1.2-fold and 1.3-fold less 

compared to the pLVX control, respectively. Under the optimal 10% FBS conditions, an 

approximate 1.3-fold less proliferation was observed in CaMK1D knockdown and 

overexpression compared to the control at 72 and 96 hours. Due to the statistically significant 

inconsistencies observed in different serum conditions at different time points, further 

cytotoxicity assays were performed under the sub-optimal 3% FBS and the optimal 10% FBS 

conditions. 
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Figure 20. In vitro proliferation of the lentiviral transfected MDA-MB-231 cell lines analysed over 

96 hours in 3%FBS.  The fold changes of CaMK1D knockdown and overexpression were compared to 

the empty vector control. At 24, 48 and 72 hours, the fold change in CaMK1D overexpression was smaller 

than that observed with CaMK1D knockdown. However, at 96 hours, the fold change in CaMK1D 

overexpression is higher than that of CaMK1D knockdown. It should be noted that there is a significant 

difference in the fold change in proliferation between CaMK1D knockdown and CaMK1D overexpression 

at 48 and 72 hours. Asterisk indicates P < 0.05. Data are means ± s.e.m. 
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Figure 21. In vitro proliferation of the lentiviral transfected MDA-MB-231 cell lines analysed over 

96 hours in 10%FBS.  The fold changes of CaMK1D knockdown and overexpression were compared to 

the empty vector control. At 24 and 48 hours, the fold change in CaMK1D overexpression was higher than 

that observed with CaMK1D knockdown. They were similar at 72 hours, however, at 96 hours, the fold 

change in CaMK1D knockdown is higher than that of CaMK1D overexpression. It should be noted that 

there is a very significant difference in the fold change in proliferation between CaMK1D knockdown and 

CaMK1D overexpression at 72 and 96 hours. Double asterisk indicates P < 0.005. Data are means ± s.e.m. 
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4.6 The potency of a potential CaMK1D-specific inhibitor on cellular proliferation  

Cytotoxicity assay is a vital tool for drug discovery as it acts as the preliminary readout for a 

drug’s potency. It allows for the in vitro study of the toxic effects of the compound via necrosis 

or apoptosis on the proliferation of the cells. After the optimisation of the two parameters, cell 

density and serum condition, the inhibitor concentration used for cytotoxicity assays had to be 

optimised. Although we were unable to culture enough of the HCC70 panel of transformed cell 

lines for several cell-based assays, microarray data suggests that HCC70 cells have inherently 

higher levels of CaMK1D expression than MDA-MB-231 cells. Thus, the initial cytotoxicity 

assay using the proposed CaMK1D-specific GSK-3 XIII inhibitor was conducted on the HCC70 

model. For this, cells were plated with a seeding density of 4.0x103 cells/well in triplicates and 

incubated for 72 hours in media containing 10% FBS. Cells were then exposed to GSK-3 XIII at 

6 different concentrations with a 10-fold difference for 48 hours prior to the proliferation reading 

(Figure 22, 23, 24). The half maximal inhibitory concentration (IC50) value is an indicator of the 

drug’s potency as it measures the concentration of compound required to inhibit a certain cellular 

process. The IC50 values of empty vector, CaMK1D knockdown and CaMK1D overexpression 

were 5.99 µM, 4.04 µM and 11.2 µM respectively. Hence, increasing levels of CaMK1D 

expression resulted in an increased IC50 value. This data suggests that the GSK-3 XIII inhibitor 

could be CaMK1D-specific. This data also proposes that 10 µM of GSK-3 XIII inhibitor would 

be suffice to observe a difference in proliferation across the panel of stably transfected cell lines 

in other cell-based assays. 
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Figure 22. In vitro cytotoxicity assay of GSK3 XIII on the lentiviral transfected HCC70 pLVX cells. 

Cells were cultured for 48 hours in optimal serum conditions prior to the analysis of cell proliferation. 

Cells were tested at inhibitor concentrations, ranging from 0.001 to 100 µM, each with a 10-fold 

difference. Metabolically active cells reduce the tetrazolium reagent to a fluorescent indicator. The IC50 

value of this inhibitor in HCC70 cells expressing basal level of CaMK1D was 5.99 µM.  
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Figure 23. In vitro cytotoxicity assay of GSK3 XIII on the lentiviral transfected HCC70 shCaMK1D 

cells. Cells were cultured for 48 hours in optimal serum conditions prior to the analysis of cell 

proliferation. Cells were tested at inhibitor concentrations, ranging from 0.001 to 100 µM, each with a 10-

fold difference. Metabolically active cells reduce the tetrazolium reagent to a fluorescent indicator. The 

IC50 value of this inhibitor in HCC70 cells expressing no/low levels of CaMK1D, was 4.04 µM.  
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Figure 24. In vitro cytotoxicity assay of GSK3 XIII on the lentiviral transfected HCC70 HA-

CaMK1D cells. Cells were cultured for 48 hours in optimal serum conditions prior to the analysis of cell 

proliferation. Cells were tested at inhibitor concentrations, ranging from 0.001 to 100 µM, each with a 10-

fold difference. Metabolically active cells reduce the tetrazolium reagent to a fluorescent indicator. The 

IC50 value of this inhibitor in HCC70 cells overexpressing CaMK1D was 11.2 µM.  
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Cytotoxicity assays using 10µM of GSK-3 XIII inhibitor were then performed on the panel of 

MDA-MB-231 transformed cell lines in 3% FBS and 10% FBS conditions. Most inhibitors are 

insoluble in water, thus DMSO is used to reconstitute the inhibitors. To eliminate the effects of 

DMSO on cellular behaviour, experiments were carried out with 1% DMSO controls. Cells were 

seeded at 5.0x103 cells/well density in triplicates and the experiment was performed three times. 

The experiment was carried out for 144 hours ensure that the effects of CaMK1D are not latent 

(Figure 25-28). Although GSK-3 XIII is a known ATP-analogue, its suggested affinity for 

CaMK1D proposes that the CaMK1D overexpressing cells would be preferentially targeted over 

the CaMK1D knockdown cells. However, no significant difference was observed between the 

three cell lines. Throughout the course of the experiment, CaMK1D knockdown resulted in a 

higher fold change than CaMK1D overexpression compared to the empty vector. Additionally, at 

24 hours, a higher proliferation was observed with CaMK1D overexpressing cells than the empty 

vector and CaMK1D knockdown cells in the 3% and 10% FBS conditions. The differences 

between the three cell lines were negligible because the data was statistically insignificant. 

However, after 24 hours, the three transformed cell lines followed a similar pattern of decrease in 

cell viability, which could be the result of cell death or cytostasis. Since a decrease in cell 

proliferation was observed in all three transformed cell lines under both conditions, the inhibitor 

targeted a protein involved in cell proliferation. This suggests that the effect was not CaMK1D-

specific, as expected, given its relatively broad kinase specificity. 
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Figure 25. In vitro cytotoxicity profile of GSK-3 XIII on the lentiviral transfected MDA-MB-231 cell 

lines in 3% FBS. Cells were seeded at a 5.0x103 cell density. Metabolically active cells reduce the 

tetrazolium reagent to a fluorescent indicator. The three cell lines follow a similar pattern of reduced cell 

viability until 72 hours. There is a slight increase in cell proliferation in CaMK1D overexpression and 

pLVX at 96 hours compared to CaMK1D knockdown cells. The reduction in cell viability continues in all 

three cell lines until 144 hours. Data are means ± s.e.m. 
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Figure 26. In vitro cytotoxicity profile of GSK-3 XIII on the lentiviral transfected MDA-MB-231 cell 

lines in 3% FBS. Overall, the fold change was greater between the CaMK1D knockdown and control 

cells compared to those observed between the CaMK1D overexpressing and control cells. However, the 

data was not statsititcally significant. Data are means ± s.e.m. 
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Figure 27. In vitro cytotoxicity profile of GSK3 XIII inhibitor on the lentiviral transfected MDA-

MB-231 cell lines in 10% FBS. Cells were seeded at a 5.0x103 cell density. Metabolically active cells 

reduce the tetrazolium reagent to a fluorescent indicator. Although CaMK1D overexpression exhibited a 

slight increase in cell proliferation at 24 and 96 hours compared to the control and CaMK1D knockdown 

cells, the three cell lines followed a similar pattern of reduction in cell viability until 144 hours. Data are 

means ± s.e.m. 
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Figure 28. In vitro cytotoxicity profile of GSK3 XIII inhibitor on the lentiviral transfected MDA-

MB-231 cell lines in 10% FBS. Overall, the fold change was greater between the CaMK1D knockdown 

and control cells compared to those observed between the CaMK1D overexpressing and control cells. 

However, the data was not statsititcally significant. Data are means ± s.e.m. 
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4.7 The potency of a potential CaMK1D-specific inhibitor on cell migration  

It has been reported that CaMK1D overexpression results in increased cell migration, a 

characteristic of EMT. Scratch wound assays were performed to determine if GSK-3 XIII targets 

a migration pathway associated with the level of CaMK1D expression. For preliminary 

investigation, cells of the MDA-MB-231 panel were cultured in optimal serum conditions, 

i.e.10% FBS, and were seeded at a 2.1x104 cell density into each chamber of Ibidi’s culture-

inserts. These inserts were lifted off after the cells attained 90% -100% confluency, which was 48 

hours after seeding. Cells were then cultured in media containing 10µM of GSK-3 XIII and the 

controls were cultured in 1% DMSO (Figure 29 and 30).  MDA-MB-231 pLVX and shCaMK1D 

under the control conditions closed the gap after 24 hours. Although the MDA-MB-231 

CaMK1D cells in 1% DMSO did not close the gap completely after 24 hours, the gap was 

narrower. This difference could be due to the result of pipetting error when plating the cells, 

resulting in fewer cells being plated in the insert. Nonetheless, all three cell lines did not close the 

gap after 24 hours of inhibition by GSK-3 XIII. Since the inhibitors effect was not limited by the 

varying CaMK1D levels expressed by this model system, this migration assay further indicates 

that GSK-3 XIII probably targets pathways involved in proliferation and migration that are 

largely independent of CaMK1D.  
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Figure 29. Scratch-wound assay of the MDA-MB-231 model system in 1% DMSO, imaged at 10X 

magnification. Cells were seeded at 2.1x104 density in optimal serum conditions. pLVX- and 

shCaMK1D- expressing cells closed the gap completely after 24 hours whereas the gap was almost closed 

yet incompletely with CaMK1D overexpressing cells. 
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Figure 30. Scratch-wound assay of the MDA-MB-231 model system in 10µM GSK-3 XIII 

substituted in 1% DMSO, imaged at 10X magnification. Cells were seeded at 2.1x104 density in 

optimal serum conditions. The gap did not close after 24 hours in the three stably transfected cell lines. 
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4.8 Morphology of the MDA-MB-231 model system in a more physiological environment   

No significant difference in cellular proliferation or migration was observed with the exposure of 

the GSK-3 XIII inhibitor to the MDA MB-231 model system. However, these cell-based assays 

were conducted on 2D cultures, which do not mimic a physiological environment. Since these 

transformed cell lines displayed morphological differences in 2D culture, we were interested to 

see if morphological differences across these cell lines were still observable in a 3D culture. To 

study this, these transformed cell lines were plated onto matrigel, a gelatinous protein matrix that 

shares similarities with the basement membrane and therefore partially resembles a physiological 

environment (Figure 31). The vector control grew in colonies that were rounded; cells with this 

morphological feature tend to have robust cell-cell adhesion (Kenny et al., 2007). Cells 

overexpressing CaMK1D displayed the same morphological feature however these colonies of 

cell aggregates appeared to be larger compared to the empty vector control. The CaMK1D 

knockdown cells grew with a stellate morphology exhibiting more protrusions. CaMK1D 

knockdown cells appear to form less cohesive cell interactions in contrast to the pLVX control 

and CaMK1D overexpression cell lines. Further staining, for example, of the nucleus or cell 

membrane proteins, could be performed to characterise these morphological differences.  
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Figure 31. Morphology of MDA-MB-231 model system in 3D culture, viewed at 10X magnification. 

Cells were seeded at 1.0x104 density under optimal serum conditions in matrigel. Cell expressing empty 

vector (left) grew in round colonies. Similar morphology was observed with CaMK1D overexpression 

(right) but the aggregates appeared to be larger. CaMK1D knockdown (middle) resulted in cells 

protruding from the colony. 
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5. Discussion 

There is an unmet clinical need for effective treatment of TNBC and BLBC, and the design 

mechanism-based small molecule therapeutic agents is a viable route for meeting this need. The 

first-line treatment for patients with TNBC generally involves a non-specific chemotherapeutic 

regime, which is generally linked with poor long-term outcomes and off-target effects (Rakha et 

al., 2008). Targeting a protein which is specifically associated with TNBC progression provides a 

basis for stratified medicine by identifying cohorts of patients that will respond positively to 

certain treatment with reduced side-effects. CaMK1D is proposed to be a driver for disease 

progression in BLBC (Bergamaschi et al., 2008), thus it is a relevant therapeutic target that can be 

implicated in a target based drug discovery programme. However, an in vitro system needs to be 

generated to test the specificity, effectiveness and potency of the inhibitor in cell-based assays in 

order to plan for future clinical trials of CaMK1D inhibitors. 

 

5.1 Evaluation of the generated cell-based model system 

The physiological level of CaMK1D protein expression in breast cancer subtypes has not been 

studied in detail, thus a model system consisting of cell lines with three varying CaMK1D 

expression levels were generated: 1) one with CaMK1D levels knocked down using shRNA, 2) 

one transfected with empty vector for basal levels of CaMK1D expression in that particular cell 

line, and 3) one overexpressing CaMK1D to study the significantly increased effect of CaMK1D. 

This was successfully borne out with lentiviral transfections of two BLBC cell lines of interest, 

i.e. HCC70 and MDA-MB-231 cells. The current method of generation of these model systems 

introduces clonal variations in the cells due to the random insertion of the plasmid. Transfected 
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cells were collectively pooled and used for all the experiments conducted, thus the results are not 

based on single clones. This is advantageous as it represents a heterogeneous population of cells, 

which could reflect tumour heterogeneity. The slight discrepancies in 2D cellular morphology 

could be the result of this clonal heterogeneity and the variation in cell cycle status at the time 

they were photographed. To avoid this, cells should be subjected to serum starvation overnight, 

inducing cell cycle arrest (Mengfei et al., 2012). This synchronizes the cell cycle status of the 

cells, allowing the analysis of the consensus morphology. Nonetheless, CaMK1D overexpressing 

cells predominantly grew in tight cohesive colonies with cells growing layers upon each other 

whereas CaMK1D knockdown resulted in the formation of a monolayer with flattered cells. This 

dominant phenotype suggests that CaMK1D expression alters cellular morphology and was the 

initial indicator that both cell lines of interest were successfully transfected, as was then 

confirmed by western blot analysis. The shRNAs chosen had effectively downregulated 

CaMK1D expression in the MDA-MB-231 cells whilst the HA-tagged CaMK1D resulted in an 

approximately 19-fold increase in CaMK1D expression. 

 

High-grade and poorly-differentiated tumours reportedly have numerous mutations; this greater 

genomic instability allows for sub-populations of tumour clones to develop drug resistance (Shaw 

and Johnson, 2012). This can be the result of the target mutation within the patient or resistant-

cancer stem cells within the tumour (Hoelder et al., 2012), as demonstrated with the anaplastic 

lymphoma kinase inhibitor, Crizotinib (Sasaki et al., 2011). In this case, the issue was tackled by 

discovering a coexisting therapeutic target and thus, the optimal form of therapy was to 

administer two inhibitors simultaneously. This exemplifies the importance of varying drug 

administration along the course of the treatment to counter the emergence of drug resistance. 
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Once another disease driver is identified in such TNBCs, this approach can be adaptable using 

this type of model system; panels of stably transformed lines can be engineered to express 

varying levels of another protein. This model system also addresses the issue of off-targets of 

kinase inhibitors, which tend to be only partially selective. In the case of CaMK1D inhibitors, 

tests in cells overexpressing only CaMK1D should reflect the primary inhibitory activity against 

CaMK1D unless the cells also inadvertently overexpress off-targets such as the other CaMK1 

isoforms. 

 

These model systems were generated with breast cancer lines harbouring several deregulated 

proteins, thus, this variation hinders the ability to study the direct effects of CaMK1D. The 

HCC70 cell line has been associated with increased cell cycle and cell division components 

(Lehmann et al., 2011). PTEN is a well-known tumour suppressor that regulates the Akt/PKB 

signalling pathway required for cell survival; aberrant PTEN expression prevents cell cycle arrest 

and evasion of apoptosis. TP53 codes for another tumour suppressor, the p53 protein, which is 

also involved in cell cycle regulation. Since these mutations also act as drivers for constitutive 

cell proliferation, the intrinsic effect of CaMK1D and CaMK1D-specific inhibitors could be 

masked by the aberrant signalling from other pathways, which may vary between cell lines. The 

success of Glivec in cells expressing mutant Abl kinase was largely due to the modulation of the 

oncogenic target kinase by a singly mutant pathway. Thus, it is insufficient to study inhibitor 

models based solely on tumorigenic cell lines. A cell-based model system from an inherently 

non-tumorigenic immortalised cell line, for example, MCF-10A, should be also tested. This cell 

line share features of these BLBCs such as being an adherent mammary epithelial cell line. 

Optimisation of the small molecule CaMK1D inhibitors could be carried out initially in 
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transfected MCF-10A cell lines, and the analysis could then be compared to the TNBC model 

systems generated here. Not only can these model systems provide a platform to these the 

biological effects of CaMK1D in vitro, a series of molecular biomarkers could be delineated. 

This has a translational aspect as well since these biomarkers could aid patient stratification. 

 

5.2 Identification of potential biomarkers 

To provide useful molecular readout of the inhibitor’s efficacy, biomarkers that report on the 

cellular activity of the target need to be validated. These would often be the downstream 

substrates of the target, however, the exact signalling pathway(s) of CaMK1D remain unclear. 

Nonetheless, BLBCs have demonstrated mutations in numerous proteins related to the Ras-Raf-

MEK-ERK pathway, such as KRAS, BRAF and EGFR (Cancer Genome Atlas Network, 2012). 

The B-Raf protein is a Ser/Thr kinase, which regulates several cellular processes such as cell 

division and differentiation. The KRAS protein is a GTPase and functions as an oncogene by 

propagating signals from proteins like c-Raf. As a result of Ras mutation, an increase in ERK1/2 

activity is often observed in BLBCs (Giltnane and Balko, 2014). Thus, some of these members 

could serve as potential biomarkers. Western blot analysis of EGFR demonstrate a 2-fold 

increase in total EGFR levels upon CaMK1D knockdown and overexpression. However, these 

bands appear to be ‘fuzzy’ or diffused bands suggesting that glycosylation has occurred. It is 

possible that the protein displays enhanced glycosylation with CaMK1D overexpression, whereas 

there is an increase in the EGFR protein levels upon CaMK1D knockdown, or vice versa. A well-

established method of detecting glycoproteins is to use glycan-binding lectins conjugated to 

fluorophores (Cummings and Etzler, 2009) that can then be quantified for analysis. This 

http://www.ncbi.nlm.nih.gov/pubmed?term=Cancer%20Genome%20Atlas%20Network%5BCorporate%20Author%5D
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technique can delineate the differences between protein expression and glycosylation in the 

bands. However, due to the mesenchymal nature of MDA-MB-231 cells, it has been 

demonstrated that its EMT nature is the result of hepatocyte growth factor/scatter factor 

(HGF/SF) and not due to EGF (Trusolino et al., 2000). Even though HGF/SF indirectly activates 

the Ras-Raf-MEK-ERK pathway, the effects on the c-MET receptor instead of EGFR signalling 

should be considered.  

 

It has also been reported that CaMK1 mediates the activation of ERK upon the calcium-

dependent depolarization of neuroblastoma NG108 cells (Schmitt et al., 2004), suggesting that 

CaMK1D overexpression would lead to an increase in ERK activity. Although the 

phosphorylated forms of ERK1/2 were not analysed, protein expression of ERK1/2 observed in 

our MDA-MB-231 model system suggested a possible contradiction. The western blot analysis of 

MEK1/2 and ERK1/2 protein expression demonstrated an inverse correlation with CaMK1D 

expression, suggesting the presence of a possible compensatory mechanism. This could occur at 

the transcriptional level, where CaMK1D affects the transcriptional machinery involved in 

expressing MEK1/2 and ERK1/2. Alternatively, at the proteomic level, CaMK1D could trigger 

the degradation of these proteins via the ubiquitin-proteasome degradation machinery. It has been 

observed in A431 human epidermoid carcinoma cells that ERK1/2 ubiquitination and subsequent 

degradation is modulated by MEKK1 upon sorbitol induction (Lu et al., 2002). Similarly, the 

glycosylation status of EGFR in the MDA-MD-231 model system could target this degradation 

pathway. CaMK1D overexpression also led to a decrease in c-Raf and p-38 MAPK whereas no 

significant change was observed at basal and knockdown levels. This suggests that there could be 

a potential threshold of CaMK1D that is tolerated by the cells before its expression results in a 
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decrease of these selected MAPK proteins by a similar mechanism to the reduction of the 

MEK1/2 and ERK1/2 protein expression. Nonetheless, MDA-MB-231 cells are associated with 

BRAF, CDKN2A, KRAS, NF2, TP53 and PDGFRA mutations (Lehmann et al., 2011). Thus, a 

conclusive schematic or mechanism of action of the CaMK1D and Ras-MEK pathway cannot be 

derived by characterising CaMK1D in the background of these mutations. Members of the 

MAPK/ERK pathway may not serve as useful specific biomarkers because they are often 

implicated in TNBCs, however, targets of these pathway could be studied to delineate the 

CaMK1D signalling pathway. 

 

Bergamaschi and colleagues suggested that overexpression of CaMK1D in MCF-10A cells led to 

increased vimentin levels and increased cell migration, hence, proposed that CaMK1D is 

involved in EMT. However, they had performed these cell-based assays with a single clone of 

CaMK1D overexpressing cells. In contrast, our studies revealed no significant changes in 

vimentin and E-cadherin expression, which was expected due to the inherent mesenchymal nature 

of MDA-MB-231 cells. Bergamaschi and colleagues also proposed CREB to be a downstream 

substrate of CaMK1D. Not only has immunoprecipitation analysis demonstrated that CaMK1D 

phosphorylates CREB in vitro, KCl depolarization in CaMK1D overexpressing cells induces an 

increase in CREB activity (Sakagami et al., 2005). This contradicts our western blot data from 

which we propose that CaMK1D knockdown and overexpression result in a decrease of 

phosphorylated CREB. This could be the result of three mechanisms of action. 1) CREB is 

suggested to be dephosphorylated by PTEN, a phosphatase, which is known to be implicated in 

MDA-MB-231. CaMK1D knockdown could result in lower levels of phosphorylated PTEN, 

thereby increasing its activity (Ross and Gericke, 2009). The PTEN enzyme can then 



CONFIDENTIAL 

 

72 
 

dephosphorylate CREB. 2) Calpain is a calcium-dependent cysteine protease known to be 

expressed in abundance in MDA-MB-231 (Hu et al., 2010). CaMK1V is thought to be a 

downstream effector of calpain. Cellular depolarization and calcium-dependent decrease of 

CaMK1V activity resulted in a 10-fold decrease in phosphorylated CREB (Hu et al., 2010). Thus, 

CaMK1D overexpression could affect the activity of calpain, causing a decrease in CREB 

phosphorylation. 3) Phosphorylation of Ser133 on CREB results in CREB activation, which is 

proposed to be mediated by CaMKII, CaMKIV (Sun et al., 1994) and more recently, CaMK1D 

(Bergamaschi et al., 2008). Earlier studies of CREB activation demonstrated that CaMKII-

mediated phosphorylation of Ser142 on CREB inhibits CREB activation. Thus, Ser142 serves as 

a negative regulatory site (Sun et al., 1994). Similarly to the ability of CaMKII to phosphorylate 

both sites, Ser133 and Ser142, CaMK1D could be speculated to phosphorylate Ser142. The 

antibody used in our analysis was specific for phospho-Ser133 on CREB, thus this theory could 

be tested using antibodies targeting phosphorylated forms of Ser142. 

 

It has recently been discovered that the scaffolding protein, syntenin-1, correlates to poor patient 

outcome in TNBC (Yang et al., 2013). Since syntenin has Ser residues that could potentially be 

directly phosphorylated by the kinase activity of CaMK1D, it was studied by western blot 

analysis.  CaMK1D expression levels correlated inversely with the protein expression levels of 

syntenin-1 and phosphorylated Ser and Tyr residues on syntenin-1. Since CaMK1D cannot 

phosphorylate Tyr residues, this mechanism of action is proposed to be indirect, i.e. CaMK1D 

may interact with another protein that leads to phosphorylation of syntenin-1. Nonetheless, 

syntenin-1 could be a potential biomarker and should to be analysed across other model systems, 

for example, HCC70, to identify cell-line specific effects.  
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To identify substrates phosphorylated on Ser/Thr residues that could correlate with CaMK1D 

expression, we analysed the levels phosphorylated Ser and Thr residues across the MDA-MB-231 

panel of transformed cell lines. Two phosphorylated Ser bands displayed an increase with 

CaMK1D knockdown and a decrease with CaMK1D overexpression. One band was observed 

between 37 and 50kDa, which could correspond to phosphorylated Ser 217/221/298 on MEK1/2 

since total protein levels of MEK1/2 followed similar distribution. The other phosphor-Ser band 

was observed below 37kDa, which could correspond to syntenin-1 as observed from our 

phosphor-Ser specific syntenin-1 antibody. Since these antibodies were not protein-specific, this 

is an insensitive method of detecting phosphorylated proteins. Each band could represent more 

than one protein with potential Ser/Thr sites. These bands should be analysed by mass 

spectrometry to identify the protein(s).  

 

The most well-established substrate of CaMK1D is CDK9. CaMK1D depletion and inhibition of 

other members of the CaMK cascade have been demonstrated to downregulated the 

phosphorlyation of the CDK9 T loop (Ramakrishnan and Rice, 2012). Commercially available 

antibodies suggest that phosphorylation of Thr29 or Thr186 only CDK9 would result in band at 

approxiamtely 42kDa. Since our western blot analysis of phosphorylated Thr resulted in a band 

just below 37 kDa, it is unlikely that our non-specific Thr antibodies detected the phosphorylated 

forms of CDK9. To study this, phospho-CDK9 specific antibodies should be tested. However, 

phospho-Ser bands were observed between 37 and 50 kDa and there are several other established 

phosphorylation sites on CDK9, such as Ser175 (Mbonye and Karn, 2014). This residue is an 

indirect downstream target of the Src pathway via PKC phosphorylation (Joseloff et al., 2002). 

Thus, another avenue to explore for potential biomarkers is members of the Src pathway.  
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A conclusive biological mechanism of action of CaMK1D cannot yet be derived from these 

analyses because the generation of these whole cell lysates and western blot analysis were only 

performed once. This process needs to be conducted at least two more times before conclusions 

can be convincingly established. Additionally, total protein levels are not reflective of the 

phosphorylated states of these proteins and subsequently, the proteins’ activity. It would also be 

appropriate to understand the wider number of pathways which are targeted by these inhibitors of 

CaMK1D. Western blot analysis of, for example, the members of the Akt/PKB and the apoptotic 

pathway, after cells have been subjected to the inhibitors should be performed. This would 

provide a more detailed understanding of overall cellular mechanism of action of the inhibitors. 

 

5.3 Inhibitor testing in cell-based assays 

In vitro screening studies of have identified kinase inhibitors with nanomolar affinities for the 

CaMK family of kinases (Remsing et al., 2009; Anastassiadis et al., 2011; Davis et al., 2011). 

Fragments of these compounds that retain efficient high affinity for CaMK1D can in principle be 

combined and merged to generate novel CaMK1D-specific inhibitors. One such compound, 

GSK-3 XIII, has been studied by Stefan Knapp’s and Michael Overduin’s labs using X-ray 

crystallography and NMR spectroscopic methods, showing an affinity of KD of approximately 

1µM for the ATP binding region, thus locking CaMK1D in an autoinhibitory state. Although 

GSK-3 XIII was originally synthesized to target glycogen synthase, structural understanding of 

the backbone of this inhibitor and in vitro analysis of the compound in these cell based systems 

provides a foundation for the design of a novel cell-permeable CaMK1D-specific inhibitor.  
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The initial GSK-3 XIII inhibitor dose effect was tested on the HCC70 panel of transformed cell 

lines. An approximate 2-fold increase in IC50 value was observed with CaMK1D overexpression 

(IC50 value = 11.232 µM) in HCC70 compared to the knockdown cells (IC50 value = 4.035µM). 

This was expected with a CaMK1D-specific inhibitor as an increased inhibitor concentration 

would be required to target a higher level of target expression. However, the experiment was only 

carried out once because HCC70 cells were technically hard to maintain due to their limited 

growth. Nonetheless, it was elucidated from this assay that 10µM of inhibitor would be suffice to 

perform cytotoxicity assays. An overall decrease in cell proliferation was observed in the MDA-

MB-231 model system upon exposure to 10µM of GSK-3 XIII under optimal and sub-optimal 

serum conditions. It is unclear if the effect was due to cell death or cytostasis. However, the 

difference between the three stably transfected cell lines was not significant. This suggests that 

GSK-3 XIII targeted a protein involved in cell proliferation, which was not CaMK1D and growth 

factors present in the serum did not contribute to proliferative ability of the cells. Furthermore, no 

significant difference was observed in migration upon the exposure of the MDA-MB-231 model 

system to GSK-3 XIII. Altogether, this preliminary data suggests that GSK-3 XIII is not a 

CaMK1D-specific inhibitor in this cell type. 

  

5.4 Evaluation of the cell-based assays established to assess CaMK1D function in vitro 

Studies have shown that CaMK1D can be activated with Ca2+ and CaM binding yet without the 

Thr phosphorylation by CaMKK. Although CaMK1D is capable of sustaining a partially active 

state at steady-state conditions, a 1.5-fold increase in CaMK1D activity has been demonstrated 

with ionomycin stimulation (Ishikawa et al., 2003). The experiments conducted here were 

performed under steady state conditions, thus, it is possible that there were insufficient calcium 
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stores to activate the high non-physiological CaMK1D levels in the CaMK1D overexpression 

transformed line. Although western blot analysis confirm the protein expression of CaMK1D, the 

experiments conducted so far may not reflect the CaMK1D activity. Comparison with a cell line 

transfected with a CaMK1D kinase dead mutant might provide insights to the cellular CaMK1D 

activity, however the mutant itself may alter several unknown signalling pathways. To tackle this 

issue, the cell-based assays could be carried out simultaneously with and without calcium 

stimulation, which can be achieved with ionomycin treatment. 

 

Our western blot analysis has suggested that the CaMK1D overexpression is significantly above 

the physiological levels. Yet, this exceedingly high CaMK1D overexpression did not exhibit 

responses reflective of inhibition upon the exposure to the GSK-3 XIII inhibitor. One possibility 

is that the effect of CaMK1D in 2D cell-based assays could be subtle. Differences in cellular 

morphology of the MDA-MB-231 model system in our 3D culture suggest that CaMK1D can be 

studied in a more physiological environment. Culturing cells in 3D matrigel does not completely 

recapitulate the intricacies of a tumour microenvironment, for example, the angiogenic network 

or the evasion of the immune system, yet it captures the nutritional and gaseous gradient of a 

physiological tumour niche - the substrate, oxygen, carbon dioxide and waste availability 

(Fischbach et al., 2007). It also reflects the tumour heterogeneity in terms of gene expression 

patterns as epigenetic changes could also be result of selection pressure present in physiological 

environments. This is absent in a 2D plastic cell culture, which develops in a highly uniform 

environment. The apical-basal polarity of proteins modifies not only the morphology of cells but 

also the cellular function (Fischbach et al., 2007). Thus, responses to drugs in 2D culture do not 

necessarily reflect a physiological response. Whereas 2D cultures permit the complete 
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penetration of drug to cells, under physiological conditions, tumorigenic cells can form in a 

spheroid mass, in which cells on the outer surface are subjected to the inhibitors whilst those 

within the spheroid are chemoprotected by those cells. Studies have shown that 3D cultures are 

more likely to upregulate genes associated with “stemness”, hence are likely to reflect the 

inhibitors’ efficacy with cancer stem cells present (Fischbach et al., 2007). Thus, cell-based 

assays used to analyse the effects of GSK-3 XIII should be performed on 3D cultures of the 

model system.  

 

5.5 Extended application of CaMK1D-specific inhibitors 

According to Waddington’s theory of genetic canalization, tumours without any common 

mutations could affect the same network (Hofree et al., 2013). Not all BLBCs are TNBCs, and 

vice versa (Cancer Genome Atlas Network, 2012). Thus, these model systems can be generated 

with other appropriate cell lines. Recently, another breast cancer subtype has emerged, which is 

known as claudin-low. This name is due to the decreased expression of claudins, which modulate 

the tight-tight junctions in epithelial cells. These TNBCs exhibit EMT features with increased 

immune-infiltrate and display enhanced processes associated with “stemness” (Prat et al., 2010). 

Claudin-low and BLBC are proposed to be more similar regarding their gene expression 

compared to their counterparts. In fact, MDA-MB-231, has been demonstrated to exhibit a gene 

expression pattern reflective of the claudin-low breast cancer subtype (Prat et al., 2010). 

Additionally, both of these TNBCs, claudin-low and BLBC, demonstrate similar patient 

prognosis (Perou, 2010). Thus, targeting CaMK1D could be extended to patients with claudin-

low breast cancer. CaMK1D has also been associated with type-II diabetes, where RNAi studies 

have suggested that CaMK1D regulates gluconeogenesis and glycolysis regulation in a primary 



CONFIDENTIAL 

 

78 
 

human hepatocyte model (Haney et al., 2013). Previous cDNA microarray studies have reported 

CaMK1D downregulation in retinoblastoma tissues (Chakraborty et al., 2007). Another study 

have reported that deletion of the 10p13 chromosomal region was commonly observed in 

childhood neuroblastoma (Altura et al., 1997). The understanding of CaMK1D biological 

significance and the generation of a CaMK1D-specific drug would not only benefit breast cancer 

patients, it could be applicable to other health conditions. 
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6. Conclusion 

In conclusion, the CaMK1D-specific model system established here using mammary tumorigenic 

cell lines is an appropriate preliminary system for the evaluation of potential CaMK1D-specific 

inhibitors using cell-based assays, which include western blot analysis of signalling biomarkers, 

cytotoxicity analysis and wound healing experiments. Potential novel CaMK1D biomarkers, such 

syntenin-1, have been identified in the preliminary analyses of the MDA-MB-231 model system. 

Nonetheless, phosphorylated forms of other potential biomarkers need to be analysed to 

determine cellular protein activity. Cytotoxicity and migration assay of the MDA-MB-231 model 

system exposed to the primary inhibitor of interest, GSK-3 XIII, demonstrated that its toxicity 

was not CaMK1D-specific although the numerous tumorigenic mutations inherent in MDA-MB-

231 cells could mask this potential CaMK1D-specific inhibitory effect. Thus, this type of model 

system should also be generated with a non-tumorigenic immortalised cell line, for example, 

MCF-10A, to validate this theory. Further modifications to this model system are required prior 

to high throughput testing of the in vitro inhibitory effects of small molecule compounds, but the 

system is now appropriate for analysis of the cellular activities and signalling effects of pilot sets 

of CaMK1D inhibitors. 
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