
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ROLL COMPACTION OF PHARMACEUTICAL 
EXCIPIENTS AND PREDICTION USING 

INTELLIGENT SOFTWARE 
 
 
 

By 
 
 

RACHEL FRAN MANSA 
 
 
 
 
 
 
 
 
 

A thesis submitted to 
The University of Birmingham 

for the degree of 
DOCTOR OF PHILOSOPHY 

 
 
 
 

 
 Department of Chemical Engineering 
 School of Engineering 
 The University of Birmingham 
 July 2006 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 
 
 
 
 
 
 
 
 
 

Summary 
 
Roll compaction is a dry granulation method.  In the pharmaceutical industry 
it assists in binding tablet ingredients together to form a larger mass.  This is 
conducted to ease subsequent processing, decrease dust, improve flowability, 
improve material distribution, more suitable for moisture and heat sensitive 
materials than wet granulation methods, minimises operating space and 
suited for a continuous manufacturing set-up.  In pharmaceutical roll 
compaction various types of powder material mixtures are compacted into 
ribbon that are subsequently milled and tableted.  The aim of this research is 
to investigate the use of intelligent software (FormRules and INForm 
software) for predicting the effects of the roll compaction process and 
formulation characteristics on final ribbon quality.  Firstly, the tablet 
formulations were characterised in terms of their particle size distribution, 
densities, compressibility, compactibility, effective angle of friction and angle 
of wall friction.  These tablet formulations were then roll compacted.  The 
tablet formulation characteristics and roll compaction results formed 64 
datasets, which were then used in FormRules and INForm software training.  
FormRules software highlighted the key input variables (i.e. tablet 
formulations, characteristics and roll compaction process parameters).  Next 
these key input variables were used as input variables in the model 
development training of INForm.  The INForm software produced models 
which were successful in predicting experimental results.  The predicted nip 
angle values of the INForm models were found to be within 5%, which was 
more accurate to those derived from Johanson’s model prediction.  The 
Johanson’s model was not successful in predicting nip angle above the roll 
speed of 1 rpm due to air entrainment.  It also over-predicted the 
experimental nip angle of DCPA and MCC by 200%, while the approximation 
using Johanson’s pressure profile under-predicted the experimental nip angle 
of DCPA by 5-20% and MCC by 20%. 
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1 Introduction 

 

ABSTRACT 

Roll compaction is a simple and cost effective dry granulation method used to bind 

smaller particles together to form a bigger mass to ease processing, decrease dust, 

improve flowability and improve material distribution.  This section presents the 

basic process of roll compaction, the types of roll compaction assembly designs, the 

research objectives of this work and the research strategies employed. 
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The roll compaction process involves compressing powder material in between two 

counter rotating rollers.  Roll compaction is traditionally used in the metallurgical 

industry to produce metal sheets, the mining industry to produce coal briquettes from 

waste coal powder, the mineral industry to crush rocks, the agricultural industry to 

make fertilizer pellets by briquettting, and the pharmaceutical industry to produce 

granules for tabletting.  The last of these uses is of interest in this work. Figure 1.1 

shows the role of roll compaction within the pharmaceutical tableting process. 

 

Mixing of drug and excipients 
 

Roll Compaction 
 

Milling 
 

Tabletting 
 

Figure 1.1  Tabletting process 

 

1.1 Basics of the Roller Compactor Process 

Figure 1.2 shows the schematic diagram of roll compactor.  The process consists of 

three regions: the slip region, the nip region and the release region.  In the slip 

region, the feed powder flows into the roll gap but the rollers are moving faster than 

the powder so that relative slip occurs. De-aeration also occurs and there comes a 

point at which the powder is gripped by the rollers (at the “nip angle”, α) so that 

relative movement ceases between the powder and roll surface, and compaction 
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occurs. In the nip region the pressure may be very high (up to ~ 230 MPa for the 

roller compactor used here).  A greater nip angle implies a larger maximum stress, so 

that to achieve acceptable compaction, the nip angle must be sufficiently large. In 

the release region, the compacted ribbon may show stress relaxation as it is released 

from the rolls. The resulting expansion of the compact is a function of the physical 

characteristics of the material, roll diameter, roll speed and roll pressure. Details of 

the press employed in this project are provided in section 4.2.1. 

Slip region

Nip Angle, α

Intermediate pressure
region

High pressure
region

Pressure/displacement

Bulk

Densified

Brittle

Plastic

Compacted

 
Figure 1.2  Schematic of the roller compaction process. 

 

1.2 Possible Roll Compactor Designs 

Various designs of the roll compactor are available.  Basically the designs can be 

classified into five major characteristics of the design:  i) roller assembly, ii) side 

sealing, iii) feeding mechanism, iv) roll surface type and v) roll layout. 
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1.2.1 Roller Assembly 

The rollers can be fixed (usually instrumented and specifically made) or adjustable 

(e.g. Fitzpatrick L83 Chilsonator, Gerteis 3 W-Polygram etc).  The fixed rollers do not 

move during compaction except for a slight give during higher pressure compaction 

and the compaction pressure is determined by the set roll gap and roll speed.  On the 

other hand, adjustable rollers were made to be movable to control the roll 

compaction pressure during roll compaction.  The fixed rollers are prone to powder 

jamming as opposed to the adjustable rollers. 

 

1.2.2 Side Sealing 

Sealing on either end of the roller gap is necessary to stop the powders from flowing 

away from the space between the two rollers.  There can be two types of sealing; the 

side plate assembly and the rim roll assembly.  The side plate is usually made of 

PTFE-platelet to avoid metal-metal friction and wear.  The rim rolls consist of one 

roller with rims on both side and the other roll runs within the cavity of this rim.  

Imagine male and female fitting whereby one fits within the other.  This allows the 

resistance to high transversal pressure without losing the sealing capability. 
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1.2.3 Feeding Mechanism 

The feeding mechanism can be by gravity or by force feeding using a screw feeder.  

In gravity feeding method a hopper guides the powder material to the region 

between the two rollers and the hopper is filled up with powder material.  The force 

feeding system is usually applied using a screw which is placed inside a hopper and 

the screw end is directed to the space between the two rollers.  The screw pushes 

powder material inside the hopper towards the roll compaction region and this 

reduces the effect of air entrainment in the feeding region.  The distance between 

the screw end and the roll compaction region will also determine the ribbon compact 

quality. 

 

1.2.4 Roll Surface Type 

The types of roller surface are smooth, rough, corrugated, ribbed, pocketed etc.  The 

rough, ribbed or corrugated roll compactor surface assists the compaction process by 

providing grip on the powder material.  A pocketed roller surface is used for 

briquetting.   

 

1.2.5 Roll Layout 

The fifth major characteristic design of the roll compactor is the layout of the rollers.  

There are three types of layouts; vertical, horizontal and inclined.  The commonly 
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used layout is the horizontal layout.  The powder material flows by gravity or screw 

feeder into the space between the rollers and undergoes compaction.  The inclined 

layout allows easy harvesting of the ribbon compacts (e.g. Gerteis compactors 

inclined at 30o).  The vertical layout might cause the roll compaction of the powder 

material to be unsuccessful because the draw angle is fairly small and the powder 

material remains at the slip zone since gravity is not overcome by friction with the roll 

surface. 

 

1.3 Research Objectives 

The overall aim of this research is to predict roll compaction output properties from 

tablet formulation and roll compaction process parameters using intelligent software 

(i.e. Formrules and INForm software).  The specific aims are to characterise the 

tablet formulation and the ribbon characteristics.  These results are related to the roll 

compaction processing conditions using the intelligent software. Next the intelligent 

software prediction is compared to traditional mathematical model predictive method 

(i.e. Johanson’s Theory, (Johanson, 1965)).  This was done to assess the strengths 

and weaknesses of the intelligent software predictions and to be compared against a 

well established mathematical theoretical model. 

 

The novelty of this research lies in the fact that it relates the effects of varying the 

tablet formulations on the final ribbon quality within the intelligent software.  Then 
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the use of the intelligent software provides the ability of predicting roll compaction 

process parameters for specific formulations and required ribbon quality. 

1.4 Investigation Strategy 

First of all it was important to measure the physical characteristics of the powder 

material (Chapter 3).  The powder characterisation information was used for both the 

training of intelligent software and the calculations associated with the theoretical 

approach.  The intelligent software was used in the form of a numeral representation 

of the powder according to certain physical characteristics, whereas, the theoretical 

approach used the Compressibility κ, angle of wall friction and effective angle of 

internal friction as independent variables.   

 

The next step was to conduct roll compaction experiments on the various tablet 

formulations (Chapter 4).  This was conducted to build a database of information 

which was to be examined by the intelligent software.  Subsequently the prediction of 

the roll compaction output properties using a theoretical approach was conducted 

(Chapter 5).  Then the key variables (i.e. most important powder characteristics) 

were investigated using a datamining intelligent software (Chapter 6).  Information 

from Chapter 6 was then used in Chapter 7 to develop models.  After that the model 

predictability was investigated and compared to the theoretical model. 
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2 Literature Survey 

 

ABSTRACT 

Roll compaction use in pharmaceutical application was first reported in 1966 by 

Jaminet and Hess, and Cohn et al.  The first model to describe and predict the 

process of roll compaction was developed a year prior to that (Johanson, 1965). In 

the subsequent years rigorous roll compaction research was then conducted.  This 

research mainly covered the effects of the process parameters on roll compaction, 

validation of existing models and novel methods for improving the roll compaction 

process.  However, there is little information regarding the relationships between 

powder material characteristics and the quality of the final roll compacted ribbon.  

This is very important in the pharmaceutical industry because a wide range of 

formulations are used.  In other fields, neural networks have been found to 

successfully produce predictive models for processes with a high number of input 

variables that are multivariate in nature.  Thus, intelligent software was chosen here 

for predictive model development.  This section gives a short history of the roll 

compaction process, previous research conducted on roll compaction and 

background on the individual programs which make up the intelligent software used 

here. 
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2.1 A Brief History of Roll Compaction  

Henry Bessemer first used roll compaction to produce bronze flakes to make 

pigments for gilt decorations in 1843.  Then in the 1900s, Hardy (1938) and 

Siemens and Hardy (1904), produced patents of rolling metal powders.  Next Naeser 

and Zirm (1950) produced a systematic experimental study of the roll compaction of 

iron strip.  Subsequently in 1966, the first pharmaceutical applications of roll 

compaction were published by Jaminet and Hess, 1966, and Cohn et al., 1966. 

 

In 1965, Johanson introduced a Rolling Theory for Granular Solids.  It was the first 

complex and the only fully predictive mathematical model which predicts the nip 

angle and the pressure distribution after the powder is nipped by the rollers.  After 

two decades, Katashinkii (1986) used the slab method to produce an analysis of the 

nip region.  The analysis predicted the pressure distribution and roll separating force 

in metal rolling processes.  Then one decade later, Inghelbrecht et al. used a 

Multilayer Feed-Forward neural network (MLF) to model the granule friability as a 

function of roll compaction parameters.  Next, Turkoglu et al. (1999) used neural 

networks and genetic algorithms to predict and optimise the effect of binder type, 

binder concentration and the number of roll compaction passes on the properties of 

compressed tablets.  

 

In 2001, Odagi et al. developed a 2-D simulation of the roll compaction process 

using Discrete Element Method software.  Loginov et al. (2001) produced a 

 9



Chapter 2  Literature Survey 

briquetting simulator, which is a roll compactor with deep pockets on the surface to 

produce pellets and also a scale up mathematical model.  Two years later, Dec et al. 

expounded the Finite Element Method for predicting the powder behaviours in the 

nip region.  Recently Zinchuk et al. (2004) presented a roll compaction simulation 

method which was then used in scale up.   The background for all the modelling 

methods developed over the past years will be summarised in the next section 

except for Johanson’s Theory which is explained in Chapter 5. 

 

2.1.1 Models Developed to Describe and Predict Roll Compaction 

 

2.1.1.1 Slab Method 

The slab method is generally used in the metal rolling process to predict the 

pressure distribution and roll separating force.  It was first used by Katashinkii 

(1986) to predict pressures during the rolling process of metal powders.  The model 

considers plane sections which are assumed to be constant as they pass through the 

rolls.   

 

These plane sections are represented by the trapezoidal slabs shown in Figure 2.1.  

The force balance on the slab gives the equilibrium equation for the x-direction and 

is expressed as: 

( ) ( ) 0tan2 =−+
∂

∂
f

x p
x

h
τα

σ  (2.1) 
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Figure 2.1  Stresses acting on the element in the roll nip region.  (Figure is obtained from Dec et al.,  

2003) 

The frictional stress is expressed by: 

)()(:)( ρμρτ YppforYf ≥=  (2.2) 

)()(:)( ρμμτ Yppforppf <=  (2.3) 

 

Where )(ρY is the effective shear stress function and )( pμ is the coefficient of 

friction as a function of normal pressure determined from conducting a shear test on 

a shear tester. 

 

The model requires the value of nip angle, neutral angle, initial stress conditions and 

density.  The values of nip angle and neutral angle were taken from experimental 

data, while the initial stress conditions and density were assumed.  The calculation 

 11



Chapter 2  Literature Survey 

process was repeated until the result was equivalent to the compacted strip density.  

However the compacted material density for each subsequent calculation step was 

determined from compression test data for a corresponding mean stress. 

 

2.1.1.2 Neural Network Modeling 

Neural network modeling has been used by Inghelbrecht et al. in 1997 to predict the 

quality of compacts and granules from roll compaction of drum dried waxy starch.  

The process parameters were velocity of rolls (RS), horizontal screw speed (HS), 

vertical screw speed (VS) and air pressure (Pair).  The neural network modeling was 

based on 80 roll compaction experiments.  Out of 80 data sets, 60 were selected to 

be the training set.  The next 20 data sets were used to test the performance of the 

neural network model.  The multilayer feed forward network structure consisted of 

four inputs (i.e. 4 process parameters), five nodes in the hidden layer (a Sigmoidal 

transfer function was used) and one output (i.e. friability with a linear transfer 

function).  The sigmoid transfer function was used to allow the prediction of non-

linear relationships in the data.  The neural net was trained using the 

backpropagation learning algorithm (i.e. supervised learning).  The results were 

then compared to the results of quadratic modeling.  The quadratic modeling was 

conducted using a central composite index and it is described by the equation 

below. 
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Where  is the response (e.g. friability), is the regression coefficients, Y b x the 

factors (e.g. compactor parameters) and is the number of factors (n=4).  The 

neural network was found to model the friability better than quadratic modeling. 

n

 

2.1.1.3 Discrete Element Method (DEM) 

In 2001, Odagi et al. developed a 2-dimensional discrete element method (DEM) 

simulation method for the flow properties of a powder undergoing roller compaction.  

DEM follows the conventional DEM scheme proposed by Tsuji, i.e. Hertz theory 

controls the particle-particle normal contacts and Mindlin theory describes the 

particle interaction in tangential direction (Tsuji et al., 1992).  However, Odagi 

introduced an additional adhesive force ( =100maf gg) which considers the effect of 

powder cohesiveness.  The adhesive force was obtained from experimental 

measurements on tensile strength of compressed powder strips.  The DEM 

simulations were based on assumptions that the particles are spherical and mono-

sized.  It requires detailed particle properties (Table 2.1) and experimental 

conditions (Table 2.2, which were obtained from Michel et al., 1993).  The 

simulation of the dynamic flow of the roll compaction of powder was 2 seconds. 

 

The simulations were conducted with and without the adhesive forces.  In the 

absence of adhesive force and low roll speed, there was little effect on the particle 

motion, particle flow rate between roll gap, and the powder density distribution.  

Furthermore the powder material failed to be compressed.  In the presence of 

adhesive forces and increasing roll speed the powder flowrate increases linearly.  
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The results from the DEM simulation compare qualitatively with the experimental 

results.  The DEM simulation pressure distribution deviated from the experimental 

results at roll speeds above 5 rpm.  This was assumed to be due to the spherical 

approximation of the particle shape and the air effect which was neglected in the 

DEM simulations. 

Table 2.1  Calculation conditions 

Number of particles 30000 

Particle diameter 100 µm 

Particle density 2000 kg/m3
 

Young’s modulus 1x105 Pa 

Poisson’s ratio 0.26 

Poisson’s ratio (w) 0.33 

Friction coefficient (p-p, p-w) 0.6 

af /(mgg)=0 1 x 10-5 s 
Time Step 

af /(mgg)=100 5 x 10-6 s 

 

Table 2.2  Experimental conditions used for the DEM simulation (Michel et al., 1993) 

Roll diameter 100 mm 

Length of roll 46 mm 

Gap width between two rolls 1.3 mm 

Particle density 2500 kg/m3
 

Particle mean diameter 30 µm 

Effective internal angle of friction 20.2o
 

Effective wall angle of friction 35o
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2.1.1.4 Finite Element Method (FEM) 

The finite element method (FEM) has been used to analyse the roll compaction of 

powder.  Dec et al. (2003) developed a two-dimensional model for roll compaction 

process using a commercially available ABAQUS finite element code.  This simulation 

was conducted in order to evaluate the effect of the frictional coefficient at the 

roll/powder interface and the feed stress on basic process variables.  The basic 

process variables are roll force, roll torque, nip angle and neutral angle.  The rollers 

were represented as rigid elements of 100 mm diameter.  The powder material was 

represented by a material mesh comprising of an array of 80 x 12 plane-strain 

continuum elements with reduced integration (CPE4R).  The roll gap was 2.0 mm 

and the powder material entry angle was approximately 18o.  The constitutive model 

of the powder was based on a pressure-dependent yielding plasticity model 

(modified Drucker-Prager/Cap model) with linear elasticity.  This rate-independent 

model was calibrated on a series of mechanical tests, which were diametrical 

compression, simple compression and compaction in an instrumented die.  Based on 

shear testing measurements the internal frictional angle was estimated to be 65o.  

The friction for the roll/material was assumed to follow the Coulomb friction law with 

a constant frictional coefficient.  The simulation was conducted until steady state 

conditions were achieved.  The steady state conditions were based on constant 

values of the roll force and roll torque.  The results from the simulations were: 

• Confirmation of the two regions expected in the interaction between the 

powder material and the roll surface, i.e. of the slip in the feed zone and 

sticking in the nip region. 
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• At coefficient of frictions of 0.35 and 0.50, the nip angle was approximately 

8.5o and 12o respectively. 

• Increasing the coefficient of friction for a given feed stress increased the 

maximum roll pressure. 

• Agreements to the expected increase in roll force and roll torque with 

increasing feed stress and frictional coefficient. 

• The ribbon density increases with an increase in frictional coefficient and feed 

stress. 

 

The advantages of FEM over previously employed modelling methods are: 

• Models can be tailor made for a specific powder material via a process of 

hypothesis, numerical testing and reformulation. 

• The model can predict compact densities, material flow, deformation energy, 

shear stress (roll torque), pressure distribution (roll force), nip angle and 

neutral angle. 

• Adaptation to include a feeding process and roll surface geometry could be 

conducted. 

However the problems in implementing FEM are from preparation of input data.  

This is because there needs to be a more accurate material model to represent the 

range of densities of compaction and using the appropriate friction model to 

describe the phenomena on the powder material and roll surface interface. 
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2.1.1.5 Roll Compactor Simulator 

Zinchuk et al. (2004) proposed a method for simulation of the roller compaction 

process along with the techniques for quantitative evaluation of its products.  This 

model included three major components: 

i. A compaction simulator producing a simulation of the compression events 

during roller compaction. 

ii. A demonstration of characterisation of powders at different stages of 

densification using of the material relative density. 

iii. Evaluation of equivalency between “simulated” and real compaction products 

using relative density and tensile strength. 

The method was based on using a batch process (i.e. direct vertical compaction of 

powder) to represent the process of a continuous process (i.e. roll compaction) 

(Figure 2.2).  The displacement, D of the Upper and Lower punch is converted into 

the rotational speed of a tangential point on the roll surface via a sine function 

(Equation (2.5)). 

)sin(, tRDntDisplaceme ω=  (2.5) 

Where D is displacement, R is roll radius, ω  is roll rotation, t is time. 

 

Solid fraction and tensile strength were identified by Zinchuk et al. (2004), as key 

indicators of ribbon quality and were used in evaluation of the simulation.  Their 

results showed good mechanical properties agreement for equivalent solid fraction 

of real and simulated microcrystalline cellulose ribbons.  They also claimed that this 
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proved the ability of this method to help in scale up and enable formulation of tablet 

dosage forms beginning from the initial drug development process.  

 

 
Figure 2.2  Schematic of the simulation of a roller compaction process using a compaction simulator 

(Adapted from Zinchuk (2004)). 

 

In 2001, Loginov et al. proposed a new roll briquetting simulator for understanding 

the densification and performance of the roll compaction process. Furthermore, they 

developed a mathematical model to relate the results obtained in the laboratory 

scale to industrial scale.  

2.1.2 Investigations on Roll Compaction 

In this section, a summary of the previous research conducted on roll compaction is 

presented in tabular form and divided into five major areas.  
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2.1.2.1 Previous roll compaction work on pharmaceutical excipients 

Essentially there is a large amount of research conducted on the roll compaction of 

pharmaceutical excipients but it was rarely quantified (Table 2.3).  This section 

summarises the effects of binders on roll compacted material, comparison of 

fluidized bed granulation and roll compaction granulation and the effect of roll 

compaction on pharmaceutical excipients.  Parrot (1981) reported that roll 

compacted lactose and dibasic calcium phosphate granules did not improve granule 

mean particle size and bulk density.   Inghelbrecht and Remon (1998) conducted 

work on lactose of varying particle size in addition to manipulating the roll 

compaction process parameters.  They found that roll compaction of spray dried 

lactose was difficult because lactose was free flowing.  In addition to that they also 

discovered that the range of roll compaction parameter settings was influenced by 

the type, particle size, particle size distribution and bulk density of the powder 

material but the effects were not modeled. 

 

2.1.2.2 Investigations into the effect of roll compaction process parameters 

Table 2.4 shows a summary the work done on varying the roll compaction process 

parameters.  It covers research which varied the roll speed, roll gaps, feed pressure, 

vacuum feeding and cycles of roll compaction passes.   
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2.1.2.3 Validation of theoretical models 

Table 2.5 shows a list of the validation conducted previously on Johanson’s Theory 

and a force balance developed to relate shear to pressure.  The Johanson’s model 

was shown to be able to predict experimental results well by Hubert et al. (2000) 

and Yusof et al. (2005).  While, Schonert and Sanders (2002) showed that their 

force balance exhibited two regions whereby, firstly the calculated shear value 

agrees very well with measured shear and secondly, the calculated shear value 

deviates remarkably with measured shear.  This was explained as a result of 

material slip near the relaxation zone.  It is interesting to note that they indicated 

that the increase in maximum pressure just above the gap neck, although no 

slipping occurs at this point, might be an indirect effect of the material slip near the 

relaxation zone. 

 

2.1.2.4 Novel roll compaction methods and innovations 

Table 2.6 shows a list of the novel roll compactions methods, such as using acoustic 

emission, a method to assess the feasibility of powder material for roll compaction 

and using ultrasound to enhance the performance of a roll compactor.   

 

2.1.2.5 Previous roll compaction research conducted at The University of 

Birmingham 

Table 2.7 shows the summary of previous roll compaction research conducted at the 

University of Birmingham.  Michel (1994) highlighted the existence of neutral angle, 

 20



Chapter 2  Literature Survey 

 21

which was not accounted for in Johanson’s model.  He also showed that the 

throughput and the roll speed relationship stopped being linear at higher speeds due 

to deaeration problems in the feed region.  This information was useful in adapting 

the model for comparison in this study.  In 2001, Boursel proposed a derivation to 

include air entrainment effect into the Johanson’s Theory.  It was decided that for 

an initial comparison of the predictability of the software it would be wise to use a 

more established model like the original Johanson’s model.  Boursel also reported 

that roll compaction of varying particle sizes, at constant roll gap, varies the roll 

speed range greatly.  This was noted and used as a guide for this research.   

 

Perera (2004) found that higher nip angle resulted in longer compaction time and 

lubrication had an adverse effect on nip angle.  He explained that nip angle was 

found to increase if the effective angle of internal friction, cohesion of powder was 

increased, the powder moisture content increased or the roll gap and the roll speed 

were decreased.  It is interesting to observe the ability of the intelligent software 

model to predict the combined effect of the effective angle of wall friction, roll gap 

and roll speed.  Bindhumadhavan (2004) reported on his validation of Johanson’s 

model for the roller compaction of powders.  He found that the peak pressure was 

predicted accurately by the model and that at lower roll speeds, the influence of roll 

speed on peak pressure was accurately predicted by the model.  This was to be 

accounted for in the use of Johanson’s model for comparison with the intelligent 

software prediction. 
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Table 2.3  Previous work on effects of roll compaction on pharmaceutical excipients 

Investigators Pharmaceutical Excipients/roll 
compactor Objective Finding 

Jaminet and 
Hess, 1966 Lactose starch mixture/ Hutt 

Investigated the effect of 
different binders on the 
properties of briquettes, 

granules and tablets. 

• The addition of binders to lactose starch mixture resulted in the 
significant decrease of non compacted material. 

• The addition of ethylcellulose increased the briquette strength, however 
the addition of carbowax 4000 had the opposite effect. (The briquette 
strength was tested using a bending method). 

• The addition of a small amount of water decreased the amount of non 
compacted material and weakened the briquettes. 

• The roll compaction process parameter and briquette strength strongly 
determined the particle size distribution of the granules. 

• Proposed a starting material for roll compaction which contained corn 
starch (30%), lactose (63%), talc (2%), macrogol 4000 (1%) and MCC 
(4%). 

Parrott, 1981 

Lactose, dibasic calcium 
phosphate, magnesium 

carbonate, calcium carbonate/ 
Freund or vector - concavo-

convex roll compactor (rim length 
7mm and angle of 65o) 

Investigations on the effects 
of roll compaction using a 

concavo-convex roll 
compactor on 

pharmaceutical powders. 

• All the materials had an increase in granule mean particle size and bulk 
density except for lactose and dibasic calcium phosphate.  Might be due 
to the brittle nature of the flakes which may have fractured in the 
oscillating granulator.  This produced a smaller median diameter. 

• The roll compaction had a negative influence on flowability. 

Li and Peck, 
1990 Maltodextrin/ Fitzpatrick 

Compare agglomeration by 
fluidized bed granulation and 

roll compaction dry 
granulation 

• The fluidized bed granulation produced highly porous granules of low 
bulk density, whereas roll compaction produced granules with a 
significantly low degree of granular porosity with high bulk density. 

• The roll compacted granules showed a better flowability.  In terms of 
gravimetric and volumetric flowrate. 

• Granules produced from roll compaction indicated a higher resistance to 
deformation. 
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Inghelbrecht 
and Remon, 

1998 

Four types of lactose of varying 
particle size/ Fitzpatrick L83 

Chilsonator 

Pressure, roll speed, vertical 
and horizontal screw speed 

• Pressure had the most influence on the granule properties, followed by 
roll speed and then horizontal screw speed.  Pressure refers to the air 
pressure used in controlling the hydraulic pressure between the rolls. 

• The type, particle size and density had an influence on the range of roll 
compaction parameter settings. 

• Spray dried lactose was reported to be difficult to handle. 

• Best compact quality was produced at high pressure and low screw 
speed. 
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Table 2.4  Previous work on effect of process parameters and powder properties on roll compaction 

Investigators Roll compaction 
equipment/protocol 

Investigated roll 
compaction process 

parameters 
Finding 

Cohn et al., 
1966 

Fitzpatrick / Roll compaction 
of Potassium chloride to 

investigate the effect of oil 
pressure on the amperage of 
roll compaction, amount of 

non compacted material and 
the hardness of the tablet. 

oil pressure 
• Leakage of powders caused large roll compaction problems. 

• No simple relationship existed between the input variables and the output variables, but the optimal 
settings of the output variables were found.  

Spinov and 
Vinogradov, 

1967 

Roll compaction on a copper 
powder with a  vacuum 

deaeration facility 

Roll speed constant 
at 17.5 m/min, roll 

diameter of 
120mm, material 
was fed using a 
hopper of length 

80mm and 
inclination of 48o

 

• Vacuum deaeration during roll compaction minimized the pores and improved the quality of the 
compacted strips. 

• The bulk density and porosity of compacted strips were constant during vacuum deaeration roll 
compaction. 

Funakoshi et 
al., 1977 

Freund or vector - roll 
compactor designed as a 
concavo-convex pair/  roll 
compaction of lactose, and 

mixtures with small amount of 
riboflavin 

Studied the factors 
affecting the 
compacting 

pressure 
distribution. 

• The concavity of the roll rims were varied between 45, 65, 75 and 90o.  This concavity adjusted the 
uniformity of the pressure over the whole width of the rolls.  The best result was obtained at 65o. 

Petit-Renaud 
et al., 1998 

Specially instrumented roll 
press by K.R. Komarek (B-

100 QC) 

Roll speed, screw 
speed and roll gap 

• Increase in roll speed resulted in a linear increase of the mass throughput at constant roll gap and 
screw speed until a critical roll speed at which the mass throughput decreased. 

• Increase in roll speed resulted in a decrease of the normal pressure and nip angle. 
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Hirohata et 
al., 2001 

Roll compaction on electrolytic 
copper powder 

Differential speed 
rolling (roll speed 
ratio 1.00, 1.20 and 
1.33).  

Roll gap (0.05, 0.10 
and 0.15 mm) 

• The lower speed roller experiences a forward slip which is affected by the increase in roll speed 
ratio.  While the higher speed roller experiences a decrease in roll speed at roll speed ratio of 1.33. 

• The rolling load becomes smaller with increasing roll speed ratio under constant compacting speed 
ratio.  The rolling load is measured with a load cell of strain gage type mounted on a bearing 
supporting the rolls. The compacting speed ratio is the powder volume required to compact the 
powder per unit length and width. 

• The rolling load increases linearly with increasing compacting speed ratio. 

• Relative density increased with roll speed ratio for the same rolling load. 

• Compacted strip thickness for each initial roll gap becomes larger with increasing rolling load at 
constant roll speed ratio. 

• At decreasing rolling load the relative density variation of compacted strips rolled at different roll 
speed ratios decreased. 

Bultmann, 
2002 

Gerteis 3 W-Polygram / roll 
compaction of MCC 

Multiple compaction 
passes (up to 10 

passes) 

• Reduction of amount of fines with multiple compactions. 

• After roll compaction, powder flow properties improved and the mean granule size was increased. 

• Tablet tensile strength decreased after the first two compression passes. 

Simon and 
Guigon, 
2003 

Roll compaction of lactose, 
alumina and sodium chloride 
on specially instrumented roll 

press by K.R. Komarek (B-
100 QC) 

Feeding conditions 
of single screw feed 

• The local pressure in the feeding zone varies with time with the same period as the screw feeder 
rotation. 

• The compacted strip exhibits variation of density and strength according to the fluctuations of the 
screw feeding rate. 

• The powder-packing properties were also found to affect the heterogeneity of the compacted strip. 

Lecompte et 
al., 2005 

Roll compaction of organic 
powder on a specially 

designed instrumented roll 
compactor 

Roll speed, roll gap, 
press strength, 

rotation angle and 
the feed strength 

• The pressure during roll compaction was constant and symmetrical because as opposed to Simon 
and Guigon’s (2003) findings the screw feeder end was located further from the rolls. 

• Feeding-roll ratios below 1 result in the powder compaction mainly occurring in the centre of the roll 
width. 

• At high feeding-rolling ratio, homogenous pressure along the roll width is achieved. 

• Increasing feeding-rolling ratio results in a uniform pressure distribution and better compact quality. 
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Table 2.5  Validation of roll compaction theoretical models 

Investigators Validation work Finding 

Hubert et al., 2000 
Validated the Compressibility equation used in 
Johanson’s theory using a die-press and roll 
press. 

• Proposed a new set of equations derived from using material properties based on the 
modulus of volume transformation. 

• Johanson’s theory was found to fit well with experimental results. 

Schonert and Sander, 
2002 

A sensor was used to measure the pressure 
and shear forces in the roll compaction process 
of a particle bed. Based on a force balance, an 
equation was derived to relate shear to 
pressure. Assuming the proportionality 
between the transversal pressure in the bed 
and the normal pressure on the roller. 

• The predicted and experimental results showed that there are two regions: a) the calculated 
and measured shear agrees very well b) the calculated and measured shear deviates 
remarkably. 

• The above finding was explained as due to material slip. Material slip only exists near the 
outlet in the relaxation zone, and no slip occurs around the shortest distance between the 
rollers (i.e. gap neck). 

• The material slip in the last part of the relaxation zone causes a tensile force on the material 
above the gap neck and increases due to the shear on the rollers.  This tensile force was 
supposed and included in the force balance. 

• This tensile force could explain the increase in maximum pressure just above the gap neck, 
although no slipping occurs at this point. 

Yusof et al., 2005 

A smooth roll compactor (diameter 0.08m and 
width 0.20m) was used to roller compact 
maize powder to validate the roll compaction 
parameters (roll force and roll torque) 
predicted by Johanson’s Theory. 

• The model predicted the experimental results (roll force and roll torque) reasonably well, 
despite being sensitive to the initial bulk porosity variations. 

• The roll power decreased as the roll gap and the roll speed decreased. 

• Throughput increased linearly with the increase in roll gap and roll speed.   

• The pressing time increased as the roll gap increased and the roll speed decreased. 

• Changes in the feed powder amount and friction ratio had little or no effect on the calculated 
roll power, throughput and pressing time. 
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Table 2.6  Novel roll compaction methods and innovations 

Investigators Novel Method Findings 

Hakanen et al., 1993  Acoustic emission was used to characterise the 
roll compaction process. • Over-compaction of microcrystalline cellulose could be detected using this method. 

Salonen et al., 1997 

Acoustic relaxation emissions (ARE) from roll 
compaction of microcrystalline cellulose (MCC) 
and maize starch (MS) were detected using a 
microphone. 

• ARE signal from compacting powder consists of short acoustic pulses of varying intensities. 

• Intensity of ARE was found to increase when applied compressive force was increased for 
roll compaction of both MCC and MS. 

• They suggested a possible relationship between the ARE and Young’s modulus. 

• They also suggested the possible relationship of ARE and cohesive energy density of the 
powder, which could explain the parallels between ARE and Young’s modulus (further work 
required). 

Gereg and Cappola, 2002 

A feasibility study was developed to identify 
powder material which could be roll 
compacted.  It was conducted through a series 
of powder material characterisation, lab-scale 
hydraulic pressing of tablet compacts and 
industrial scale roll compaction to identify 
process parameters suitable to achieve the 
appropriate granule size and density.  

• The material characteristics found for regular-grade and spray-dried Lactose were 
microscopy, bulk and tap density, Carr’s Index, angle of repose, flow rate and sieve 
analysis. 

• Hydraulic pressing of tablet compacts and roll compaction produced a final tablet with 
similar density and hardness.  Hence this suggested that the method developed was 
appropriate to determine the suitability of powders for roll compaction.   

Gaete-Garreton et al., 
2003 

Investigated the results of using ultrasound to 
enhance the performance of a roller mill. 

• The use of ultrasonic energy resulted in a reduction in the total power required to operate 
the grinding in the roller mill. 

• The shaft torque required was found to be reduced with the presence of ultrasonic field. 

• Less abrasive wear on the grinding surface was observed with the use of ultrasonic field. 
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Table 2.7  Investigations conducted in the University of Birmingham. 

Investigators Roll compactor 
details Material Objectives Findings 

Michel, 1994 

Specially made 
instrumented roll 
compactor with one 
pressure sensor on 
the surface of each 
of the two rollers. 

Gravity feeding  

Roller diameter: 
100 mm  

Roller width: 
46 mm 

SH alumina 
(SH100 and 
SH500) 

• To investigate the 
important parameters  
of roll compaction 

• Compressibility; κSH100 = 8.5 and κSH500 = 12.5 

• Effective angle of internal friction (o); SH100 = 35, SH500 = 39 

• Cohesion (kPa); SH100 = ~8, SH500 = ~0 

• Angle of wall friction; SH100 = 24, SH500 = 22.5 

• Very strong influence of the roll speed on the roll compactor 

performance and compact properties.  The throughput and roll speed 

relationship stops being linear at higher speeds due to aeration in the 

feed region. 

• Showed that the pressure required to obtain a ribbon compact of given 

density can be estimated from uniaxial compaction tests using 

pressure-density equations. 

• Developed a model to relate the throughput to the neutral angle.  The 

neutral angle was found to decrease with increasing roll speed and was 

independent of the roll gap. 

• At the same pressure at slip/nip transition, equivalent pressure profiles 

and resulting densities can be found at varying speeds. 

• The neutral angle decreased with increasing roll speed and independent 

of roll gap. 

• Pressure at the centre of the roller width was found to be higher than 

the pressure at the ends of the roller width. 
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Bourseul, 2001 

Specially made 
instrumented roll 
compactor with one 
pressure sensor on 
one roll surface. 

Gravity feeding 

Roller diameter: 
200 mm 

Roller width: 
46 mm 

SH alumina 
(SH100, SH150, 
SH300 and 
SH500) 

• To gain a theoretical 
and experimental 
understanding of the 
physical phenomena 
controlling the 
operation of a roll 
press and the 
formation of 
agglomerates. 

• To establish predictive 
models using the 
intrinsic characteristics 
of the powder and the 
press. 

• To characterise the 
specificity of roll 
compaction as a 
forming process 
through 
characterisation of the 
compacts 

• In roll compaction of varying particle sizes, at constant roll gap, the roll 

speed range varies greatly. 

• Investigation on 3 types of rollers (200 mm diameter smooth roller, 100 

mm diameter smooth and rough rollers) and one type of powder 

material resulted in the results following a power law: 

ω.../ hB
m eADP −= , where mP is the maximum pressure reached in 

the roll compactor, D the roll diameter,  the roll gap, h ω  the angular 

speed and A  and  are constants. B

• Proposed a derivation to include air entrainment effect into the 

Johanson’s Theory.  The model predicted the influence of roll speed 

and roll gap correctly provided the appropriate permeability factor is 

used and above h/D>0.01.  However the model overestimates the 

effect of h/D at h/D<0.01. 

• Attrition results indicated that roll compacted ribbon compacts were 

more resilient than tablet compacts produced from uniaxial compaction. 

• Ribbon compacts of different geometrical density appeared to display 

the same pore size distribution, as opposed to tablet compacts which 

only achieved the same mean pore size at very high compaction 

pressures. 

• This study showed that the way the compact density is achieved (i.e. 

the history of the particle bonds) outweighs the macroscopic end result 

(i.e. the final compact density). 
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Perera, 2004 

Instrumented roll 
compactor with one 
pressure sensor on 
one roll surface. 

Gravity feeding 

Roller diameter: 
200 mm 

Roller width: 
46 mm 

Microcrystalline 
cellulose (Avicel: 
PH101, PH102, 
and PH105) 

Lactose (regular 
and free flow) 

• To understand and 
estimate the roll 
compaction properties 
of a given powder 
physical characteristics. 

 

• To investigate the 
analogy between 
uniaxial compaction 
and roll compaction 
process 

• The Kawakita correlation (empirical correlations for pressure-density 

relationships) showed the best fit to experimental data in both uniaxial 

compaction and roll pressing compared to Heckel and Cooper-Eaton 

equations. 

• The results from the Kawakita correlation for uniaxial compaction and roll 

compaction showed that they corresponded well with each other.  Hence 

it was proposed that uniaxial compaction could be used as a prediction for 

the performance of a given powder in roll compaction operations. 

• Young’s modulus of the ribbon compact was independent of particle size 

and inversely proportional to the roll gap, roll speed and lubricant 

content. 

• Higher nip angle resulted in longer compaction time.  Lubrication had an 

adverse effect on nip angle. Nip angle was found to increase if: 

1. the effective angle of internal friction and cohesion of 

powder was increased 

2. the powder moisture content increased 

3. the roll gap and the roll speed were decreased. 

• Positron Emission Particle Tracking (PEPT) results showed that the 

existence of two different velocity regions in the roll compaction process.  

The point at which the particle velocity changed is assumed to be the nip 

angle.   

• The PEPT nip angle value was compared to nip angle predicted from 

Johanson’s theory.  It was found that Johanson’s theory overestimated 

the nip angle. 
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Bindumadhavan, 
2004 

Instrumented roll 
compactor with one 
pressure sensor on 
one roll surface. 

Gravity feeding 

Roller diameter: 
200 mm 

Roller width: 
46 mm 

Microcrystalline 
cellulose (Avicel 
PH102) 

α-Lactose 
monohydrate 

Carbomers 

To understand the 
relationship between 
powder properties, roll 
compactor dimension, 
process parameters and 
product characteristics. 

• An increase in fines content of powder material increased the peak 
pressure applied, compact bulk density and compact strength. 

• The peak pressure and nip angle increase with an increase in inter-
particle friction and wall friction. 

• The performance of the roll compactor was found to depend strongly on 
the composition of the powder mixture. 

• An increase in the roll gap and roll speed decreases the compaction 
pressure. 

• PEPT results showed that nip angle could be estimated from particle 
velocity. 

• The PEPT estimated nip angle was comparable with the nip angle values 
from the pressure profiles.  The PEPT result confirmed the assumptions of 
the Johanson’s model, that there exist two different particle velocity 
zones. 

• X-ray microtomography results showed that the compacts were denser in 
the middle part compared to the sides of the ribbon compact. Indicating a 
non-uniform pressure distribution across the roll width. 

• Validation of Johanson’s model for the roller compaction of powders 
showed that: 

1. The measured roll pressures increased more rapidly than 
the predicted values as the powder passes through the nip 
region.  The difference increases with decreasing minimum 
gap. 

2. Peak pressure was predicted accurately by the model. 

3. The roll gap size had a significant effect on the nip angles.  
The slip nip intersection showed that the nip angle was 
independent of roll gap, however the predicted pressure 
gradient showed that nip angle was comparable with 
experimental results. 

4. At lower roll speeds, the influence of roll speed on peak 
pressure was accurately predicted by the model. 
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2.2 Intelligent Software 

It has long been realised that the relationship between the pharmaceutical 

excipients, roll compaction process parameters and ribbon properties is non-linear.  

As Rowe and Roberts (1998) pointed out, the formulator must take into account the 

properties of the active ingredient as well as possible chemical interactions between 

it and the other ingredients.  These are added to improve processibility and product 

properties, which may not necessarily contribute to product chemical stability. 

Furthermore there may be interactions between the added ingredients leading to 

physical instability. Other factors such as cost, market demand and the requirements 

of the regulatory bodies (FDA*, MHRA† etc) are important influences on the 

ingredients and process used in the product formulation. Although models and 

simulations may be available, in many cases the formulation process has to be 

carried out in a design space that is multi-dimensional in nature and difficult to 

conceptualise (Rowe and Roberts, 1998). Thus there are many factors as 

summarised in Figure 2.3 which must be considered by the formulator. 

 

The complexity of formulation design and the formulation process is a highly 

specialized task, requiring specific knowledge and often years of experience. To 

retain in-house expertise which may be lost as a result of employee movement, 

                                        

* Food and Drug Administration 

† Medicines and Healthcare Regulatory Authority 
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computer technology is used to harness this knowledge. Therefore in the last two 

decades the pharmaceutical industry has moved towards using artificial intelligence 

technology to predict these complex relationships and document it in a form 

available to all.  

 
Figure 2.3  Complexity of formulation process. Adapted from Roberts and Rowe (1998). 

In this research, intelligent software used were based on Artificial Neural Networks 

(ANNs), Genetic Algorithm (GA), fuzzy logic and neurofuzzy logic (see sections 2.2.1 

to 2.2.4 for a description of each of these systems).   The advantages of this 

software include: 

♦ The softwares were designed especially for pharmaceutical applications and 

personnel expertise in the individual systems programming is not required to 

perform any modelling work.   

♦ The user can pick the software up and use the software to perform modelling 

on a database of input/output information. This gives the researcher ample 

time to collect information to build a database of information.  
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This research is different from Inghelbrecth et al. (1997) and Turkoglu et al. (1999) 

because here the inputs into the ANNs and genetic algorithm (GA) models include 

powder characteristics in addition to roll compaction process parameters.  The 

following section gives a background of the computer programs applied in the 

intelligent software mentioned above. 

2.2.1 Artificial Neural Networks (ANNs) 

ANNs are biologically inspired computer programs designed to simulate the way in 

which the human brain processes information.  These systems gather information by 

detecting the patterns and relationships in data and they learn (or are trained) 

through experience, not from programming (Agatonovic-Kustrin and Beresford, 

2000).  An ANN is formed from hundreds of single units, known as artificial neurons 

or processing elements, which are connected with coefficients (weights).  These 

constitute the neural structure and are organised in layers.  The layers consist of an 

input layer, one or more hidden layers and an output layer.  In short, ANNs are 

mathematical systems that mimic the way in which the human brain processes 

information (Erb, 1993).   

 

The first mathematical model of a biological neuron was presented by McCulloch and 

Pitts (1943).  They suggested the unification of neuro-physiology with mathematical 

logic which paved the way for significant results in ANNs research.  Then in 1949, 

Hebb proposed a learning rule derived from a model based on synaptic connections 

between nerve cells responsible for biological associative memory.  In 1958, 
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Rosenblatt refined the rule developed originally by Hebb in the perceptron model 

(i.e. a simple model of a neuron).  Then Willshaw and Von der Malsburg proposed 

the self organising map architecture based on competitive learning in 1976.  A 

comprehensive review of the most significant steps in ANNs research can be found 

in Rajasekaran and Pai (2003). 

 

The power of neural computations comes from connecting neurons in a network.  

Each processing element has weighted inputs, a transfer function and one output.  

The behaviour of a neural network is determined by three factors: 

 

i. the transfer functions of its neurons, 

ii. the architecture itself, 

iii. the learning algorithm (rules). 

 

An artificial neuron is also known as a processing element.  A processing element 

has inputs, a transfer function and one output.  It is essentially an equation which 

balances inputs and outputs.  An artificial neuron has connection weights which 

represent the memory of the system.  The weights, wi are the adjustable 

parameters and in that sense a neural network is a parameterised system.  The 

weighed sum of the inputs constitutes the activation of the neuron.  The activation 

signal is passed through the transfer function to produce a single output of the 

neuron between zero to one.  The type of output greatly depends on the type of 

transfer function used.  In the example, the transfer function is sigmoidal.  During 
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training, the weight connections are adjusted until the error in predictions is 

minimised and the network reaches the specified level of accuracy.  Once the 

network is trained and tested it can be given new input information to predict the 

output.   

x1 

output 

f(Σxiwi) 
transform 

w1 

Σxiwi 
activation w2 

w3 

x2 

x3 

weights 

inputs 

yT 

Transfer function 

a) b)

If inputs are x1=1, x2=2, x3=3 and 

Weights are w1=0.4, w2=0.1, w3=0.2 

Then Summations S =  ∑
n

i
ii wx

S = 1(0.4) + 2(0.1) + 3(0.2) = 1.2 

If sigmoid transfer function is used,  
 i.e. yt = 1/(1+e-aS)  

 since a = 1, then yt=1/(1+e-1.2) = 0.77 

Figure 2.4  Model of an Artificial Neuron processing a numeric data (Rowe and Roberts, 1998) 

 

The four basic types of transfer functions are the thresholding function, piecewise-

linear function, sigmoidal function and hyperbolic tangent function (Haykin, 1994; 

Rajasekaran and Pai, 2003).  Table 2.8 illustrates the transfer functions and the 

types of output each of them gives.  The thresholding function is the first and 

simplest form of transfer function developed by McCulloch and Pitts (1943).  This 

transfer functions forms the neuron which is referred to in literature as the 

McCulloch-Pitts model.  The piecewise-linear function can be viewed as a linear 
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combiner‡ or as a threshold function.  The most common form of activation function 

is the sigmoid function (Haykin, 1994).  The slope parameter allows the sigmoid 

function to have varying slopes.  It assumes values in the range of 0 to 1.  

According to Haykin (1994), the important feature of the neural network theory is 

that it is differentiable.  Lastly, hyperbolic tangent function is a very flexible, non-

linear, continuous and differentiable function (Bhadeshia, 1999).  Chapter 7 shows 

that the transfer function is an important feature in the training of ANN models. 

 

The way that the neurons are connected to each other has a significant impact on 

the network.  Just like ‘real’ neurons, artificial neurons can receive either excitatory 

or inhibitory inputs.  Excitatory inputs cause the summing mechanism of the next 

neuron to add while the inhibitory inputs cause it to subtract (Agatonovic-Kustrin 

and Beresford, 2000). A neuron can also inhibit other neurons in the same layer.  

This is called lateral inhibition.  The network wants to ‘choose’ the highest 

probability and inhibit all others.  This concept is also called competition.  For 

instance in Multilayer Feedforward Network the number of nodes (neuron cells) in 

the hidden layer can affect the results of the model training.  Having fewer nodes 

sometimes might be better than having more nodes, as shown in Chapter 7. 

 

                                        

‡ Linear combiner is also known as an adder for summing the input signals which is weighted by the 

respective synapses of the neuron. 
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Table 2.8  Types of transfer functions 

Transfer function Illustration Output signal, yt
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Where w is weights, x is inputs 
and θ is another constant. 

(Bhadeshia, 1999) 

 

 

 

 

 



Chapter 2  Literature Survey 

Table 2.9  Three fundamentally different classes of Network Architecture. (Rajasekaran and Pai, 2003) 

Type of NN architecture Description Illustration 

Single layer feedforward 
network 

It has two layers: input and output layer.  Input layer transmits 
the signals to the output layer.  The output layer performs the 

computation. 

 

Multilayer feedforward network 
(also known as multilayer 

perceptron, MLP) 

It has three layers: input, hidden layer and output layer.  The 
input layer is linked to the hidden layer.  The hidden layer aids 

in performing useful intermediary computation directing the 
input to the output layer.  The output layer performs 

computation.  There could be more than one hidden layer. 

 

 

Recurrent neural network 

Similar to the feedforward network above except that there is 
at least one feedback loop.  A feedback loop can exist between 
the output layer and the input layer or neurons with its output 

fed back to itself as an input. 
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weights 
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Figure 2.5  Classification of learning algorithm (Rajasekaran and Pai, 2003).  The red linking lines show the classification of the learning algorithm 
within the intelligent software used within for this research. 

Neural Network Learning Algorithms 

Supervised Learning (Error based) Unsupervised learning Reinforced learning (Output based) 

Error Correction 
Gradient decent 

Stochastic Hebbian Competititve 

Least Mean Square Backpropagation 
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Table 2.9 shows three fundamentally different classes of ANN.  In the Single Layer 

Feedforward Network, the network links an output layer with an input layer, and 

information is stored in the network within the modifications made to the weight 

coefficients of the network.  The Multilayer Feedforward Network is similar to the 

Single Layer Feedforward Network except for the added hidden layer.  The hidden 

layer enables the network to acquire a global perspective despite its local 

connectivity.  This is because the hidden layers give the network an extra set of 

synaptic connections and extra dimension of neural interactions (Churchland and 

Sejnowski, 1992).   

 

The Recurrent Neural Network is different from the Feedforward Network because it 

would have at least one feedback loop.  A neuron cell can have its output fed back 

into its input or the “output layer” output is fed back into the “input layer” input.  

This feedback loop has a large impact on the learning capability of the network and 

on its performance.  The intelligent software used in this research applies the 

Multilayer Feedforward Network architecture. 

 

The architecture of the ANN is very closely linked to the learning algorithm used to 

train the network.  Figure 2.5 shows the classifications of learning algorithms and 

the red connecting lines show the classification of the learning algorithm used in this 

work.  The figure shows a broad classification of ANNs into three basic types: 

supervised, unsupervised and reinforced.  Supervised learning is a form of 

regression that relies on example pairs of data: inputs and outputs of the training 

 41



Chapter 2  Literature Survey 

set.  Comparison is made between the network’s computed output and the correct 

expected output to determine the error.  The error is then used to change the 

network parameters to improve model performance.  Unsupervised learning means 

that the target output is not presented to the network.  Thus the system learns on 

its own by discovering and adapting to structural features in the input patterns.  In 

the reinforced learning, the system is presented with an indication of the correctness 

or incorrectness of the computed output.  The information guides the networks 

learning process, whereby a reward is presented for a computed correct answer and 

a penalty is given for a computed incorrect answer.  The explanation on these 

learning algorithms can be found in Haykin (1994) or Rajasekaran and Pai (2003).  

The backpropagation learning algorithm is explained in the subsection 2.2.1.1.  It is 

a supervised learning algorithm which works on the principle of error correction 

gradient descent (see Section 9.5.3.5 in Appendix 5). 

 

ANNs are a digitised model of a human brain.  It is able to perform pattern 

recognition skills just like a brain, but its skill is limited because it is not as complex 

as the brain.  ANNs rarely have more than a few hundred or a few thousands 

processing elements, while the human brain has ~100 billion neurons.  The 

advantages of ANNs are (Rowe and Roberts, 1998): 

 

i. ANNs are diverse as they are able to deal with complex, real world applications 

where data is fuzzy and non-linear. 

ii. They are able to learn new relationships within the input data. 
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iii. Once trained a neural network can deal with unseen data and generate correct 

responses. 

iv. ANNs are able to extract information from incomplete data or noisy data.  

Because they are statistical systems they are able to recognise underlying 

noise. 

v. They are robust since there are many processing neurons in an ANN and 

damage to a few does not bring the system to a halt. 

vi. Although training a neural network can be relatively slow and demanding of 

computer power, once trained ANNs are inherently fast. 

vii. ANNs can adapt to new and changing environments and are easy to maintain. 

 

2.2.1.1 Backpropagation 

Backpropagation is a feedforward ANNs training strategy.  It consists of an iterative 

optimisation of the error function.  This error function represents a measure of the 

performance of the network (Haykin, 1994; Rumelhart et al., 1986).  This error 

function E is defined as the mean square sum of differences between the values of 

the output units of the networks and the desired target values (see equation (2.6)) 

∑∑
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(2.6) 

 

Where tj and aj are the target and actual response values of output neuron j,  NL is 

the number of output neurons and L is the number of layers.  The error function 

depends on the size of the pattern set and the number of output neurons of the 
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specific network used and simulation performed.  To allow consistent comparisons, 

some ANNs simulators divide the summation of the equation (2.6) by NL·P.    

 

A pattern set is the input and corresponding target output.  In a simulation the 

pattern error is calculated sequentially in an iterative manner.  The weight 

corrections are performed during this training process to adapt the network to the 

desired behaviour.  The weight corrections depend on the type of backpropagation 

strategies used (see section 9.5.3.5).  The iteration continues until the weight values 

allow the network to represent the required relationships between input and output.  

Each presentation of the overall pattern set is named an epoch. 

 

The minimisation of the error function depends on the strategies employed to 

manipulate the weight corrections.  Five strategies which were used in the INForm 

software are presented in section 9.5.3.5. 

2.2.2 Genetic Algorithms 

Turban (1995) defines the genetic algorithm (GA) as a software program that learns 

from experience in a similar (simplified) manner to the way in which biological 

systems learn.  Basically the GA is loosely based on the biological principles of 

genetic variation and natural selection, mimicking the principal ideas of evolution 

over many generations.  It works with a population of individuals, each of which is a 

candidate solution to the problem.  These individuals then reproduce through 

mating/mutation, all the time evolving new solutions to the problem.  Eventually 
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after several generations an optimum solution will be found (Rowe and Roberts, 

1998).  Comparatively, the biological genetic evolution consist of an individual (or a 

population) of a biological species.  Whereas, the GA of an individual (or a 

population), is in the form of a string or ordered sequence of numbers representing 

a numerical solution and the mechanism of operation is based on logic and 

mathematics. 

 

The use of evolutionary principles to compute problems and produce solutions was 

initiated by Friedberg in the 1950s.  Then the methods that are still used today were 

developed in the 1960s.  The first two important methods were Evolutionary 

Programming and Evolutionary Strategies.  In 1965, Fogel invented Evolutionary 

Programming in which finite state automata are evolved.  Then in 1965 and 1970, 

Schwefel and Rechenberg developed Evolutionary Strategies which are numerical 

optimisations on the basis of evolutionary principles.  Next in 1965, Holland invented 

GA in which there is a representation of the solution which is varied and mapped 

onto the real solution by some function.  Following that, the real solution is then 

tested on the problem to get the fitness of the individual.  Further reading on the 

history of GA can be found in Rajasekaran and Pai (2003).   

 

The GA software assists the neural network software by fine tuning (optimising) the 

model which has been developed.  The software can only perform its intended 

function by possessing the following features (Rowe and Roberts, 1998): 
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i. Fitness function – a numerical description to differentiate between a good or 

bad solution. 

ii. Logical selection method – a logical method of selecting individual solutions to 

become parents of the next generation of solutions. 

iii. Crossover and mutation operators – a logical mixing method analogous to the 

mixing of genes that accompanies reproduction and mutation chromosomes.   

 

A diagrammatic form of the GA cycle is shown in Figure 2.6.  The advantages of 

applying GA as an optimisation technique are listed below: 

i. It is a stochastic algorithm, i.e. it relies on random elements in parts of its 

operation rather than being determined by specific rules. 

ii. It is not susceptible to the initial starting point. 

iii. It has the ability to find global maxima/minima. 

iv. It is rapid and efficient. 

v. The technique is effective for optimisation. 

 

The GA is used in the optimisation section of the INForm software (Chapter 7).  The 

optimisation can terminate under two conditions:  

i. Once the specified number of iterations has been reached, regardless of 

whether the solutions actually meet the optimisation criteria the optimisations 

will stop.  The final solutions will be the ones which best meet the criteria given 

within the constraints of the optimisation iterations.   

ii. If the optimisation criteria are met. 
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Figure 2.6  The GA cycle 

2.2.3 Fuzzy Logic 

Fuzzy logic is a problem solving technique with applications in control and decision 

making.  It produces simple linguistically-expressed rules in the form of IF (condition 

1) AND (condition 2) AND (condition3), THEN (conclusion 1, with confidence factor 

x).  The confidence factor associated with conclusion 1, describes the degree of 

membership to the extremes of the fuzzy set.  For example, in stating that 

something is “hot” with a confidence factor of 0.7, the membership of that property 

is 70% in the “hot” set and 30% in the “cold” set.  The intelligent software strength 

lies in its ability to draw conclusions and generate responses based on vague, 

ambiguous, incomplete and imprecise information.  To simulate this process of 
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human reasoning it applies the mathematical theory of fuzzy sets first defined in the 

1960s by Zadeh.  

 

Zadeh extended the traditional definition of a logic premise from having just two 

extremes (either completely true or completely false) to one in which there is a 

range in degree of truth from 0 to 100 per cent.  Hence there is a range from 

partially true to partially false.  Fuzzy logic thus extends traditional logic in two 

ways: firstly, sets can be labelled qualitatively using linguistic terms (e.g. hot, cold, 

warm); and secondly, the elements of these sets can be assigned varying degrees of 

membership called membership functions. 

 

Fuzzy logic is explained by the example shown in Figure 2.7 (Rowe and Roberts, 

1998).  In this example the x axis is temperature with ranges for the fuzzy sets 

“cold”, “cool”, “warm” and “hot”.  The y axis represents the membership function 

and ranges from 0 to 100.  It can be seen that the temperature 16oC can be 

regarded as both cool and warm with membership functions of 80 and 20 

respectively.  This means 16oC is cool to a greater degree than it is warm.  The 

membership function is very subjective in nature and is a matter of definition rather 

than measurement. 

 

For example in a simple conventional thermostat Fuzzy logic is expressed in a simple 

set of linguistic rules to control the on-off switch of a thermostat.  If the thermostat 

allows minimum and maximum settings, for instance 20 - 22oC and set at 21oC.   
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Figure 2.7  Fuzzy sets of temperature 

This concept can be observed when the temperature rises to 22oC the heater and 

fan is turned off and when the temperature drops to 20oC the heater and fan is 

turned on.  Thus the temperature is controlled to fluctuate around 21oC.  The rules 

which control the thermostat may take the form: 

♦ IF temperature is cold THEN fan_speed IS high 

♦ IF temperature is cool THEN fan_speed IS medium 

♦ IF temperature is warm THEN fan_speed IS low 

♦ IF temperature is hot THEN fan_speed IS zero 

 

The linguistic variables cold, cool, warm and high are labels which refer to the set of 

overlapping values shown in Figure 2.7.  The labels are triangular input sets and are 

called membership functions (or linguistic membership functions).  Figure 2.8 shows 

the stages in which a fuzzy controller works.  Initially a crisp input, a temperature of 

18oC, is translated into fuzzy truth-values in a process called fuzzification.  This 

means that IS cool with truth value 0.7 (70%) and IS warm with truth value 0.3 

 49



Chapter 2  Literature Survey 

(30%).  Then in “Rule Evaluation”, a calculation is performed to determine the 

relevant rules and fuzzy output truth values are computed.  Thus in this case the 

Rule 3 which is the fan speed will be medium with a truth of 0.7 and Rule 4 which is 

fan speed will be low with the truth 0.3.  Finally defuzzification combines these two 

values to calculate the crisp output value for the fan speed, which falls between 

medium and low. 

 

1.0

0.0

Cold Cool HotWarm0.5

10 15 20 25 30

Fuzzification DefuzzificationRule Evaluation

By Rule 3
Fan speed is medium 
with truth value 0.7

By Rule 4
Fan speed is low 
with truth value 0.3

0.7

0.3

Zero Low Medium High

 
Figure 2.8  The system of fuzzy controller workings 

This example illustrates the concepts of Fuzzy Logic and how it can be used to 

control a process.  In intelligent software system the same concept is applied to 

make decisions about various inputs (Chapter 6).  The next section describes how 

fuzzy Logic is combined with ANN to extract rules from data sets. 

2.2.4 Neurofuzzy Logic 

Neurofuzzy techniques unite the generality and flexibility of representation, a feature 

of fuzzy logic, with the powerful learning and adaptive capability of ANNs (Jang et 

al., 1997).  It produces a similar result to fuzzy logic i.e. simple linguistically-

expressed rules in the form of IF (condition 1) AND (condition 2) AND (condition3), 
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THEN (conclusion 1, with confidence factor x).  The neural networks in neurofuzzy 

logic are not Multi-Layer Perceptron (MLP) networks but are Associative Memory 

Networks (AMNs).  MLPs and AMNs have different structures.  Figure 2.9 shows the 

basic structure of neurofuzzy logic. 

 

Input
Space

Multivariate
membership
functions

Weight 
Vector

Network
Output

Σ

 
Figure 2.9  Basic structure of a neurofuzzy system (Adapted from Bossley, 1997) 

 

Neurofuzzy networks are neural-processing structures that emulate the fuzzy logic 

functions.  They are similar in architecture to the multilayer perceptron but are not 

adaptive; each must be constructed specifically for its intended application (Skapura, 

1996).  In the multilayer perceptron each element is completely interconnected 

between layers with each connection being a specific weight.  However in the 

neurofuzzy network the connections are only between elements that require them 

for specific rules and there are no associated weights. 
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2.3 Summary 

This chapter has covered a short history of roll compaction, a brief explanation of 

the major modelling techniques used for roll compaction, summary of previous 

research on roll compaction and a brief background on the individual software 

systems.The research conducted on roll compaction mainly comprised of the effects 

of the process parameters on roll compaction, validation of existing models and 

novel methods in improving the roll compaction process.  There is a gap in 

knowledge about the ability to predict the relationship of powder material 

characteristics to the final roll compacted ribbon quality.  Compared to the industries 

where roll compaction is mainly used, the pharmaceutical companies utilise a more 

varied powder material in their tablet formulations.  It is important for the 

pharmaceutical industry to develop a model to understand the contributions of 

various types of pharmaceutical excipients on the final ribbon quality which in turn 

contributes to the final tablet quality. 

 

Research conducted by Inghelbrecht et al. in 1997 showed that neural networks had 

been successful in predicting the relationship between roll compaction process 

parameters and the ribbon compacts and granules.  The ANNs are flexible and able 

to process a high number of input variables which are multivariate in nature.  The 

intelligent software mainly applying ANNs, was made with ease of use in mind and 

flexibility in organizing large amounts of data and input variables to predict output 

property.  Therefore the intelligent software was chosen to be used as prediction 

software for model development.   
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The review on roll compaction modelling techniques highlighted the fact that 

Johanson’s theory and DEM simulation were the only two models which had taken 

into account the powder material characteristics and had been validated to predict 

roll compaction outputs.  However Johanson’s theory was used more often than 

DEM modelling, thus Johanson’s theory is a more established theory and was used 

in comparison to the predictability of models developed from the intelligent 

software. 

 

Extensive work has been predominantly conducted to investigate effects of roll 

compaction processing parameters.  However there is a lack of study on the 

contributions of the powder characteristics to the final roll compacted product (i.e. 

ribbon compact) quality.  The intrinsic characteristics of the ribbon compact are 

largely due to the characteristics of the starting material.  For instance, Johanson’s 

theory has taken into account the Compressibility κ, effective angle of internal 

friction and the angle of wall friction of the powder material but it did not consider 

the contribution of the particle size distribution.  Research conducted in the 

subsequent years did not consider relating the effects of the particle size distribution 

to the ribbon quality in a predictive model.  Particle size distribution is only one of 

many methods which could be used for powder material characterisation.  Chapter 3 

describes the various powder characterisation methods employed here and the 

results from this chapter were used in the intelligent software model training in 

Chapters 6 and 7. 
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3 Characterisation of Pharmaceutical Excipients 

Used in Roll Compaction 

 

ABSTRACT 

The physical characteristics of pharmaceutical excipients contribute to the success or 

failure of pharmaceutical processing.  The traditional methods of characterising 

pharmaceutical excipients are by size and morphology of individual particles (Aulton, 

2002).  However in terms of processing pharmaceutical products the bulk powder 

consists of millions of particles and it is important to be able to represent this as an 

integrated effect.  Hence it is important to be able to represent this integrated effect 

in terms of bulk powder properties.  The type of bulk material characterisation for 

this research was chosen from previous roll compaction modelling work. 

 

This section describes the methods of determining the bulk powder material 

characteristics for five types of powder materials (i.e. pure and binary mixtures).  

The investigated powder material characteristics were particle size distribution, 

poured density, tap density, true density (i.e. particle density), Compressibility κ, 

compactibility, angle of internal friction, angle of wall friction and flow function.  
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3.1 Introduction 

Pharmaceutical excipients are powder materials in a tablet which are not the active 

ingredients.  They are added to ease the tabletting operation and to improve the 

quality of the tablet.  Previous modelling methods revealed that certain powder 

material characteristics were important in predicting the roll compaction output 

property.  For instance, Johanson’s theory showed that the Compressibility κ, 

effective angle of internal friction and angle of wall friction were important 

variables in predicting the roll compaction pressure distribution and nip angle.  In 

addition to that, DEM simulation required the particle density, particle mean 

diameter, effective angle of internal friction and angle of wall friction to model the 

roll compaction process.  Hence, in this research work it was decided that the bulk 

powder material characterisation would include experiments to determine particle 

size distribution, poured density, tap density, true density (i.e. particle density), 

Compressibility κ, compactibility, angle of internal friction, angle of wall friction and 

flow function.  In this section, the methods of bulk powder material 

characterisations are described and the results are presented.   

3.2 Materials 

Microcrystalline cellulose, dicalcium phosphate anhydrate and magnesium stearate 

were used as supplied and in the following mixtures: 1:1 and 2:1 ratios of MCC and 

DCPA, and MCC with 1% of MgSt.    
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Table 3.1  shows the basic material information.  The interested reader can find 

further details of the main pharmaceutical uses and range of physicochemical 

characteristics in American Pharmaceutical Association and The Pharmaceutical 

Society of Great Britain (1986) and Cartensen and Ertell (1990).  SEM photos of the 

three materials are shown in the next couple of pages. 

 

Table 3.1  Material data 

Material Commercial name/Supplier Physical appearance Type of Excipient 

Microcrystalline 
cellulose (MCC) 

Comprecel M101/ Mingtai 
Chemical Co. Ltd, Taiwan 

from UNIVAR, UK 

White, insoluble in water, non-
reactive, free-flowing and 

needle-like structure. 

Filler, binder, diluent, disintegrant, 
lubricant or glidant. 

Dicalcium 
phosphate 
anhydrous 

(DCPA) 

Anhydrous Emcompress 
/UNIVAR, UK 

White, odourless, and tasteless 
powder. 

Diluent or a direct compression 
excipient. 

Magnesium 
stearate (MgSt) 

Magnesium 
stearate/Mallinckrodt, USA 

White powder and unctuous 
nature  

Lubricant, glidant or antiadherent. 

 

3.3 Apparatus and Methodology 

3.3.1 Determination of Particle Size Distribution 

Particle size distribution is a very important particle characteristic.  Although using 

an average particle size is sometimes sufficient, it is usually very useful to know the 

width of a particle size distribution in agglomeration.  As one obvious example of 

the importance of the size distribution, the void fraction will be affected by whether 

the “fines” in a powder are small enough to fill the voids between the larger 

particles.  The higher the amount of pores the weaker the compact is, hence by 

filling the pores with fines the compact is strengthened. 
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The particle size distributions of the excipients were determined using laser light 

scattering (Sympatec Helos-Rodos T4.1).  This equipment converts the angular 

distribution of the forward scattered light intensity from a multiparticle field 

measurement into a size distribution (Seville et al., 1997).  For particles that are 

much larger than the wavelength of light, any interaction with particles causes light 

to be scattered in a forward direction with only a small change in angle.  This 

phenomenon is known as the Fraunhofer diffraction.   

 

As the sample is fed into the observation region, it is illuminated using a parallel 

beam from a He/Ne laser. The scattered light is captured and focused on to a 

position-sensitive detector at the focal point of the lens. The distribution of 

scattered light is then converted into a particle volume distribution. 

 

An injector size of 4 mm§, vibration on the chute of 70% and height of funnel gap 

over the chute of 2 mm was selected and this automatically gave the settings for 

the VIBRI feeder.  The lens numbers used were R4 (range 0 – 350 μm) or R5 

(range 0 – 875 μm) depending on the size range of the particles.  The minimum 

mass of sample used to obtain enough sample distribution was 25 g. The pressure 

at which the powder material was dispersed was chosen at 0.5 bar increments 

starting from 0.5 to 3 bar.  The powder materials were dispersed at increasing 

                                        

§ The diameter of the injector should be selected based on the particle size, its diameter should be 

at least three times the particle diameter to prevent blockage. 
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pressure to obtain an optimum measuring pressure.  This is done in order to 

ensure disaggregation without undue attrition. It should be noted that some 

samples may not exhibit an optimum pressure and these should be tested at an 

arbitrary pressure (e.g. 1bar) for comparison of results.   

3.3.2 Determination of Poured and Tap Density 

The poured density can be defined as the mass of the particles divided by the 

volume they occupy, including the space between the particles (American Society 

for Testing and Materials, 1994).  Tap density is defined as the apparent powder 

density obtained under stated conditions of tapping (British Standards Institution, 

1991).  Tap density may be expected to depend on the shape, absolute size and 

size distribution, and surface characteristics of the ultimate particles, as well as the 

state of agglomeration of the powder (Veale, 1972).  The poured and tap density 

measurement was conducted for all the powder materials mentioned in section 3.2.   

3.3.2.1 Carr’s Index 

A simple test has been developed to evaluate the flowability of a powder by 

comparing the poured (fluff) density (ρb) and tapped density (ρt) of a powder and 

the percentage at which it packed down (Aulton, 2002).  Carr found that the 

percentage compressibility of a powder is a direct measure of the potential powder 

arch or bridge strength and stability.  It is calculated according to Equation (3.1): 

( ) 100%' ×
−

=
densityTapped

densityPoureddensityTappedindexsCarr
(3.1) 
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This index can be determined on small quantities of powder and may be 

interpreted as in Table 3.2.  This table shows the generalized relationship between 

descriptions of powder flow and percent compressibility, according to Carr 

(Staniforth, 2002).  Carr’s Index is a one-point determination and does not reflect 

the rate at which the powder flows. 

Table 3.2  Carr’s Index as an indication of powder flow. 

Carr’s Index (%) Type of flow 

5-15 Excellent (free-flowing granules) 

12-16 Good (free flowing powdered granules) 

18-21 Fair (powdered granules) 

23-28 Poor (very fluid powders) 

28-35 Poor (fluid powders cohesive powders) 

35-38 Very Poor (fluid cohesive powders) 

>40 Extremely Poor (cohesive powders) 

3.3.2.2 Hausner ratio 

Hausner found that the ratio of tapped density to poured density was related to 

interparticle friction (Staniforth, 2002).  He showed that powders with low 

interparticle friction, such as coarse spheres had ratios of approximately 1.2, 

whereas more cohesive, less free-flowing powder such as flakes, have Hausner 

ratios greater than 1.6.  Table 3.2 shows the Hausner ratio as an indication of 

powder flowability 

Table 3.3  Hausner ratio as an indication of powder flowability 

Hausner ratio Type of flow 

<1.25 Good flow 

>1.25 Poor flow 
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Prior to analysis of poured density, 160 g of powder material was weighed and 

placed into a glass bottle.  The glass bottle was not more than half full to allow 

blending of the composite by 10-end-over-end revolutions. The sample was then 

sieved. Next 25 g of the sieved powder material was weighed and placed into a 

glass jar. Subsequently the jar was tumbled by end to end motion for 10 

revolutions in 20 seconds.  After that the powder material was sieved again with a 

1 mm sieve to remove lumps.  

 

A clean 250 ml graduated cylinder was weighed. The powder material was 

transferred into the graduated cylinder; a paper funnel was placed on the cylinder 

mouth, then the cylinder was held at a 45o angle and with a metal spatula the 

powder material was fed into the cylinder.  After 20 seconds the graduated cylinder 

was tapped onto the palm of the hand three times.  Subsequently after 30 seconds 

an estimated average level in the cylinder to the nearest millilitre was recorded as 

Vo.  Next the cylinder was reweighed.  After that the bottom of the cylinder was 

layered with a piece of rubber cover to protect the glass cylinder and then placed 

on a Peschl shear tester sieve shaker (Figure 3.1) to be vibrated at maximum 

amplitude until the level of powder stopped decreasing.  This means after tapping 

for a time, t or more, the volume in the graduated cylinder remained constant.  

Finally an estimated average level in the cylinder to the nearest millilitre was 

recorded as Vf.  The steps above were repeated three times on each powder 

material.   
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a) 

Initial level of powder Vo

Final level of powder Vf

Rubber cover
Vibrating surface

Vibrating sieve shaker

  b)  
Figure 3.1  a)  Tapping device and  b)  Peschl Shear Tester Vibrating Sieve Shaker 

3.3.3 True Density Measurements – Hydrostatic Weighing 

True density (also called the true particle density) is defined as the mass of a 

particle divided by its volume, excluding open pores and closed pores (British 

Standards Institution, 1991).  Hydrostatic weighing is also known as the 

displacement method.  This method involves determining the volume of a solid 

sample by comparing the weight of the sample in air to the weight of the sample 

immersed in a liquid of known density.  The volume of the sample is equal to the 

difference in the two weights divided by the density of the liquid.  Subsequently, 

the density of the sample can be determined by dividing the loss of weight of the 

immersed object by the volume found.  Water was used in this study as the liquid 

displacement medium.  All 5 powder materials are insoluble in water.  It is 

assumed that water penetrates all the pores. 

 

First the empty density bottle and cover was weighed (g).  Secondly, the 

temperature of water was recorded (oC).  Then the bottle was filled with water, 

covered and weighed (g).  Next the bottle was emptied; a powder material with 
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known mass (g) was poured into the bottle and refilled with water.  Finally the 

bottle was weighed (g).  This experiment was repeated five times for each powder 

material.   

 

To calculate the true density of the solid sample; firstly the total volume of bottle 

(cm3) was obtained by dividing the mass of water mW1 by the density ρ of water at 

temperature (oC).  Then the final mass of water (after adding the sample) mW2 was 

calculated by subtracting the mass of sample and the mass of empty bottle from 

the final bottle mass.  Next the volume of water was obtained by taking a ratio of 

the final mass of water mW2 over the density of water.  Hence the volume of 

sample is the volume of water subtracted from the total volume of the bottle.  

Finally the true density of sample can be obtained from the ratio of mass of sample 

over volume of sample. 

3.3.4 Uniaxial Compaction – Compressibility and Compactibility Study 

The aim of this investigation was to obtain a Compressibility value κ for each 

individual powder sample.  The Compressibility value κ reflects the ability of a 

powder bed to decrease in volume under increasing pressure (Snow et al., 1997).  

It is interesting to note that the compression of powder within the roll compaction 

process has itself been compared with the operation of uniaxial compaction (see 

Section 4.3 ).  The powder sample was compressed in a punch and die (Figure 

3.2).  As the pressure increases the density of the powder bed increases (see 

Figure 3.3).   The powder Compressibility κ is defined as the reciprocal of the slope 
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of the linear portion of the pressure profile. The density at pressure P is given by a 

compaction equation of the form: 

κ

ρρ
1

⎥
⎦

⎤
⎢
⎣

⎡
=

o
o P

P  
(3.2) 

where ρo is the density at an arbitrary standard pressure Po.  This equation has 

been shown in this study to apply approximately over the range 40 to 100 MPa. 

 

Force

h 

Figure 3.2  Schematic diagram of uniaxial compaction of the powder material. 
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Figure 3.3  Graph of log10 of density (kg/m3) against log10 of pressure (MPa) for 0.3 g of MCC 

(Pharmacel 101) compacted to maximum pressure of 100 MPa at compaction speed of 1 mm/sec. 

An instrumented uniaxial press (30 kN, Lloyd Instruments 6000R, Fareham, 

England) was used to fabricate the compacts (Figure 3.4).  The punch and die was 
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10 mm in diameter. Firstly the mass of powder material ms which gave a 1 to 3 

tablet height to diameter ratio at zero porosity was weighed. Next the punch and 

die were lubricated with 6%w/w of MgSt in methanol and allowed to dry prior to 

hand filling. The powder material of mass ms was then filled into the 10 mm die 

diameter and aligned under the punch ready for compression (Figure 3.2).  Next, 

the sample was compressed at pressures of 100 MPa at a speed of 1 mm/sec.  This 

uniaxial compaction speed was calculated from the slowest roll compaction speed 

(i.e. 1 rpm for nip angle of 3o see section 9.1 in Appendix 1 for calculation) for 

comparison.  Then the tablet thickness in the die was recorded.  Finally the ejected 

tablet thickness was measured using an electronic vernier micrometer (Mitutoyo, 

Japan). This experiment was repeated five times for two pure samples and three 

binary mixtures. 

 

A compliance test was conducted to validate the efficiency of the testing machine.  

The compliance test involved pressing the punch onto a flat surface (Figure 3.5).  

The flat surface must be the same material as the bottom punch and the punch 

was moved down at a speed of 1 mm/sec.  The result was used to correct the 

uniaxial compaction profile (see Section 9.2 in Appendix 2).   
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a) b) 

Figure 3.4  a) Punch and die, b) Lloyd universal testing machine. 

 

Force

 
Figure 3.5  Schematic diagram of compliance test. 

 

The tablets produced from the uniaxial compaction above were then mechanically 

tested to investigate the compaction behaviour of the powder material.  The 

mechanical testing employed in this study is the diametrical compression test.  This 

is an indirect method of determining the radial tensile strength of homogenous 

disk-shaped materials by the failure of the tablet (Edge et al., 2000).  The radial 

tensile strength refers to the maximum tensile stress a material will withstand prior 
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to fracture.  This test will be used to approximate the compactibility of the tablets.  

Compactibility is defined as the ability of the powder to form a mechanically 

resistant tablet, described in terms of tablet strength against the applied 

compaction stress.  The compactibility will be represented by the tensile strength 

calculated from the Equation (3.3), (Fell and Newton, 1970): 

Dt
F

x πσ 2=  (3.3) 

 

where σx is the tensile strength F is the force required to break the tablet, D is the 

diameter of the tablet and t is the tablet thickness. 

Force

 
Figure 3.6  Schematic diagram of diametric tensile testing. 

 

The compression test involved applying load onto the tablets along the tablet 

diameter (Figure 3.6).  The load was increased until a failure plane was 

established. The compact failed (i.e. breaks in tension) when the crack propagates 

across the specimen. This test was performed at a crosshead movement rate of 

0.5 mm/sec and a load limit of 500N, using a 5kN load cell in a Lloyds Instruments 

LR30K machine, Fareham, England.  Again the machine was remotely controlled by 

the computer via software. The software plotted a load against displacement graph 
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where the behaviour of the tablets being tested could be observed.  This 

experiment was repeated five times for two pure samples and three binary 

mixtures. 

3.3.5 Schulze Shear Testing – Powder Flow Investigations 

The presence of inter-molecular forces results in a tendency for solid particles to 

stick to themselves (cohesion) and to other surfaces (adhesion).  The cohesive 

forces acting between particles in a powder bed are composed mainly of short-

range, non-specific van der Waals forces which increase as particle size decreases 

and vary with changes in relative humidity (Staniforth, 2002).  The magnitude of 

cohesion and adhesion affects the frictional forces acting within a powder bed and 

resisting powder flow (Seville et al., 1997). 

 

The shear test has been designed to determine the flow properties of bulk solids 

that are required for establishing the functional and structural dimensions of silos, 

bins and hoppers.  It is also used for quality control and research in the field of 

industrial process technology which requires the mechanics of bulk solids.  The 

flow properties which arise from the interpretations of the shear testing are the 

effective angle of internal friction, the angle of wall friction and the flow function of 

the powder material investigated.   

 

 

 

 67



Chapter 3  Characterisation of Pharmaceutical Excipients Used in Roll Compaction 

Effective Angle of Internal Friction 

Knight (2003) explained that the powder state in the nip of a roll compactor is 

analogous to that in the converging section of a hopper, except that the powder 

becomes more compressed as it moves.  It is therefore appropriate here to use a 

shear tester to measure the frictional properties of the powder which are of 

importance in determining the flow into the compactor 

 

By using the Mohr-Coulomb relationship (Nedderman, 1992; Seville et al., 1997) 

the effective angle of internal friction could be evaluated from the yield locus (also 

known as the Coulomb yield line) for a specific powder using a simple direct shear 

test.  The Schulze shear cell is a simple approximation method to evaluate the yield 

locus of a powder material.  It is an annular shear cell and it is one of three well 

known shear cells.  The other two are the Jenike (Figure 3.7 a)) and the rotational 

(or Peschl) shear cell.  The shear tester method of operation is rotational shearing 

in an annular trough.   

 

The Coulomb model is a macroscopic yield criterion for initiating flow. It is 

represented in a two-dimensional stress representation. The third dimensional 

stress is not taken into account in the yield criterion.  For a powder to start to 

shear, or yield, Coulomb proposed a linear relationship between the shear stress 

and normal stress (Seville et al., 1997) (Figure 3.7 b)): 

φμ tan=  (3.4) 
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c+= μστ  (3.5) 

where τ and σ are the shear and normal stresses μ is the internal friction 

coefficient and c is the cohesive shear stress or cohesion (i.e. the shear stress of 

the powder material under zero applied load).  The internal friction coefficient μ is 

defined as the ratio of the shear force σA to the normal force τA (Figure 3.7 a)). 

a) 

σA

τA

                          b)  

τ

c φ

σ  
Figure 3.7  a) Schematic diagram showing the Jenike shear cell and b)  the graphical representation 

of the Coulomb Model, where τ is shear stress, σ is normal stress, c is cohesive shear stress and 
μ = tan φ and a typical value of φ is 25 to 45 degrees. 

 

The Schulze shear** testing equipment is shown in Figures 3.12 and 3.13.  Firstly 

the sample was fed into the annular trough using a vibrating shaker to remove 

agglomerates. Next, it was consolidated with a predefined normal stress σpre acting 

onto the annular lid.  Then it was sheared while the normal stress was kept 

constant.  The shear force increases with time t as indicated in the left diagram of 

Figure 3.8.  After the shear stress reaches a constant value (i.e. the point at which 

the powder is in a state of steady flow), this was taken as the first point on the 

yield locus as shown on the right of Figure 3.8.  Next the shearing is reversed until 

the shear stress is zero and then the normal stress is brought back to zero. 

 
                                        

** It was commercially supplied by Dr.-Ing. Dietmar Schulze, Germany. 
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Figure 3.8  On the left is a plot of shear stresses and on the right is the yield locus. 

 

 
Figure 3.9  Ring Shear Tester RST-XS. Automatic powder tester/flowability tester. 
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Figure 3.10  Diagrams and picture of Schulze RST-01 annular shear cell. 

 

Following that, the sample is sheared again at a normal stress σsh, which is less 

than σpre.  Table 3.4 shows the list of consolidation stresses and normal stresses 

used in the shear tests.  Since the powder sample was then sheared at a smaller 

normal load than at preshear, it flowed at a lower shear stress.  This lower shear 

stress corresponds to another point on the yield locus as shown in Figure 3.8.  The 

following points were found in the same manner but at increasing normal stress 

σsh (but less than σpre), which then forms the yield locus.  

Table 3.4  Consolidation stress and normal stress values used within the shear testing test. 

Consolidation stress σpre 8 kPa 7 kPa 6 kPa 

Normal stress σsh 1 1.6 kPa 1.4 kPa 1.2 kPa 

Normal stress σsh 2 3.2 kPa 2.8 kPa 2.4 kPa 

Normal stress σsh 3 4.8 kPa 4.2 kPa 3.6 kPa 

Normal stress σsh 4 6.4 kPa 5.6 kPa 4.8 kPa 

Normal stress σsh 5 1.6 kPa 1.4 kPa 1.2 kPa 
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Traditionally, it is assumed that the Mohr’s circle describing the stress state during 

a consolidation or steady flow process touches the appropriate incipient yield locus 

at its end point, as shown in Figure 3.8 for the case of a Coulomb material 

(Nedderman, 1992).  This interpretation gives rise to two important concepts, the 

effective yield locus and the flow function.  The tangent of the larger Mohr circle 

running through the origin defines the effective yield locus and the angle to the 

horizontal is the effective angle of internal friction φe.   

 

Angle of Wall Friction 

The angle of wall friction φw is an approximation of the friction of powder material 

on a surface, which in this case is a stainless steel surface (Equation (3.6)) (Brown 

and Richards, 1970).  The wall yield locus has been used to describe the 

relationship between the tangential and normal forces at the roll surface in the roll 

compaction process (Johanson, 1965).  A linear wall yield locus is the ideal 

Coulomb Model for slip against a surface.  It states that for a powder to slide 

against a surface, the following conditions must be met (Figure 3.11 b)): 

ww φμ tan=  

ww c+= σμτ  

(3.6) 

(3.7) 

 

where τ and σ are the shear and normal stresses, μw is the internal friction 

coefficient and cw is the cohesive shear stress or cohesion (i.e. the shear stress of 

the material under zero applied load).   The wall yield locus is described by the 

angle of wall friction φw. 
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a)  

τA

σA

            b)   

τ

cw φw

σ  
Figure 3.11  a) Schematic diagram showing the Jenike wall shear cell and b)  the graphical 

representation of the Coulomb Model for wall friction, where τ is shear stress, σ is normal stress, cw 
is cohesive shear stress and μ w= tan φw and a typical value of φw is 15 to 35 degrees. 

An approximate measurement of the angle of wall friction can also be carried out 

using the Schulze shear tester.  The shear cell was replaced with a wall friction cell; 

see Figure 3.12.  The wall material is stainless steel which is the same material as 

the surface of the rollers.  The wall shear stresses τw required to move the powder 

material across the wall material are measured under different normal stresses σw.  

In the Schulze wall shear experiment four decreasing normal stresses were chosen 

and plotted on a graph of shear stress τ against normal stress σ (see Table 3.5).  

Connecting the points on the graph produces a wall yield locus.  The angle of the 

wall yield locus to the horizontal is the angle of wall friction σw.   

 
Figure 3.12  Schulze RST-03 annular wall shear cell. 
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Table 3.5  Normal stress values used in wall shear testing. 

Normal stress σsh 1 6.0 kpa 

Normal stress σsh 2 4.4 kpa 

Normal stress σsh 3 2.8 kpa 

Normal stress σsh 4 1.2 kpa 

 

Flow Function 

The flow function of a powder is the inverse of the gradient of the graph of 

unconfined yield stress σc against the consolidation stress σ1.  The larger the flow 

function, the better a bulk solid flows.  Powders are classified in this approach as 

‘free flowing’, ‘easy flowing’, ‘cohesive’, ‘very cohesive’ and ‘non-flowing’.  A ‘non-

flowing’ powder builds up stable arches or pipes when discharged from a silo, or 

cakes at storage or transport.   In industries which involve bulk powder handling, it 

is essential to be able to describe the flowability of a powder or a bulk solid.   

 

The relationship between consolidation stress σ1 and unconfined yield stress σc 

could be shown through a simple uniaxial compression test as shown in Figure 3.13 

(Schulze, 2003).  Step a) in Figure 3.13 shows a cylinder with frictionless walls 

filled with a fine-grained, cohesive bulk solid.  Firstly the bulk solid was 

consolidated by the consolidation stress σ1.  Subsequently in b) the cylinder is 

removed and then in c) the cylindrical bulk solid sample is exposed to an increasing 

compressive stress until the specimen breaks (flows). The stress acting at failure is 

called the unconfined yield stress σc.  
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σ  A1
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a) b) c)  
Figure 3.13  Uniaxial compression test to obtain the unconfined yield stress of a powder material. 

The unconfined yield stress σc increases with increasing consolidation stress σ1.  

Figure 3.14 shows that the unconfined yield stress σc is dependent on 

consolidation stress σ1.  The classification of the flow function numbers are as 

shown below:

Flow Function, FF Type of Flow 

 

FF<1 Non-flowing 

1<FF<2 Very cohesive (to non-flowing) 

2<FF<4 Cohesive 

4<FF<10 Easy flowing 

10<FF Free flowing 

 

The Schulze shear tester can be used to obtain the flow function value.  These 

values were obtained from the interpretation of shear test data using a Mohr’s 

Circle on Figure 3.8.  In the shear testing experiment the consolidation stress σ1 is 

a consequence of the normal stress σpre.  Hence, by using three varied normal 

stresses σpre, three respective consolidation stresses σ1 were obtained.  These were 

then plotted on the graph of unconfined yield stress σc against the consolidation 

stress σ1 (see Figure 3.14). 
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Figure 3.14  Graph of unconfined yield stress σc against consolidation stress σ1 for the evaluation of 
DCPA powder flow function. 

A well defined procedure was laid out in the operating manual (Schulze, 2002).  

The operation of the tester is limited to the filling of the shear cell (or the wall 

friction cell) with powder materials, the placement of the cell on the tester, 

entering the test parameters into the computer program RST-CONTROL 95 and 

starting the test and finally cleaning of the shear tester.  Every step of the shearing 

is guided by the computer prompts.  The computer program conducts all the 

calculations to obtain the mechanical properties of the powder.  The underlying 

concepts and calculations are explained in Nedderman (1992).  

3.4 Results and Discussions 

3.4.1 The Particle Size Distribution for Pure Materials and Binary 
Mixtures 

Figure 3.15 shows that DCPA has a narrow particle size distribution and comprises 

smaller particles than MCC.  Both the pure powder materials have monomodal 
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particle size distributions.  Mixing MCC into DCPA at 2:1 ratio and 1:1 ratio gives a 

bimodal particle size distribution, as would be expected.   

 

Mixing 1% MgSt to pure MCC gives a monomodal particle size distribution which 

lies on top of the pure MCC frequency distribution.  This means that the addition of 

1% MgSt does not produce changes to the particle size distribution that are 

detectable using laser light diffraction.   

 

The information on Table 3.6 is obtained from the particle size distribution figure 

above.  The ratio of (d84-d16)/d50 will be used to represent the powder material 

PSD characteristics within the software simulation.  Basically, on the extremes a 

high value of Ratio (d84-d16)/d50 represents a wide PSD and/or low PSD d50 and a 

low value of Ratio (d84-d16)/d50 represents a narrow PSD and/or high value of 

PSD d50.  However it could not differentiate between a narrow PSD over a small 

PSD d50 and a high PSD over a high PSD d50.  This will cause a problem if the 

types of powder material used were more varied.  But since in this study we only 

have two extremes of high and low Ratio (d84-d16)/d50 and it is easy to 

determine which one has a wide PSD or narrow PSD therefore it is sufficient at this 

stage to represent the PSD. 
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Figure 3.15  Graph showing the particle size distribution of pure DCPA, pure MCC, MCC with 1% 

MgSt, binary mixture of MCC + DCPA 1:1 mixture and MCC + DCPA 2:1 mixture.  Left Y-axis 
represents the cumulative distribution of the particles.  Right Y-axis represents the frequency 

distribution. 

Table 3.6  Particle size distribution for pure and binary mixtures of pharmaceutical excipients 

Sample PSD d50 (µm) PSD d16 (µm) PSD d84 (µµm) 
Ratio  

(d84-d16)/d50 

DCPA 14.24 4.42 27.17 1.60 

MCC + DCPA (1:1 Mix) 39.76 12.96 105.62 2.33 

MCC + DCPA (2:1 Mix) 46.06 14.50 118.67 2.26 

MCC 54.87 20.84 124.33 1.89 

MCC + 1%MgSt 53.77 18.98 122.37 1.92 
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3.4.2 The Poured and Tap Density for Pure Materials and Binary Mixtures 

Table 3.7 shows the poured and tap density of the powder materials studied.  

DCPA has a higher poured and tap density compared to MCC. The MCC particles 

have a needle like structure which makes them susceptible to bridging and arching. 

Bridging and arching of particles may lead to very low tap densities (Veale, 1972). 

This could explain why MCC has a lower tap density than DCPA.  In contrast, DCPA 

particles have an almost cubic structure which eases the rearrangement of particles 

within a bed and decreases voidage, thus giving them a higher poured and tap 

density.  

 

Binary mixtures of 1:1 and 2:1 of MCC and DCPA decreases in poured and tap 

density compared to pure DCPA.  This is expected because the amount of DCPA 

per unit volume is decreasing.  However the addition of 1% of MgSt to MCC is 

contributes to a very slight increase in poured and tap density.  The tap density of 

MCC found in this study is comparable to the value (430 kg/m3) found in the 

American Pharmaceutical Association and The Pharmaceutical Society of Great 

Britain (1986). 

 

According to Carr’s Index classification DCPA has poor flow for a very fluid powder, 

whereas the binary mixtures of MCC and DCPA, pure MCC and lubricated MCC have 

poor flow and are classified as fluid cohesive powders.  However according to the 

Hausner ratio classification the powders are all poor flowing powders. 
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Table 3.7  Results from poured and tap density measurements 

Sample Poured density (kg/m3) Tap density (kg/m3) Carr's Index Hausner's ratio

DCPA 866.00 ± 24.28 1189.90 ± 6.15 27.25 1.37 

MCC + DCPA (1:1 Mix) 560.14 ± 7.18 865.15 ± 5.03  35.26 1.54 

MCC + DCPA (2:1 Mix) 446.49 ± 3.26 658.98 ± 3.82 32.25 1.48 

MCC 311.00 ± 2.23 450.47 ± 4.06 30.91 1.45 

MCC + 1%MgSt 324.09 ± 7.35 454.65 ± 8.27 28.72 1.40 

3.4.3 The True Densities for Pure Materials and Binary Mixtures 

The true densities found in this section are all approximated values found using the 

water displacement method.  The true densities for DCPA and MCC (grade PH101) 

(see Table 3.8) found in this study are comparable to the values found in literature 

American Pharmaceutical Association and The Pharmaceutical Society of Great 

Britain (1986), Roberts et al. (1995), which are 2873 kg/m3 and 1510 kg/m3 

respectively.   

 

Table 3.8 shows that DCPA has the highest true density value whereas MCC has 

the lowest true density value. Pure MCC and MCC with 1% of MgSt have 

comparable true densities.  Addition of 1% of MgSt to MCC does not change the 

true density, which was expected.  The true densities of 1:1 and 2:1 mixture of 

MCC and DCPA are decreasing compared to pure DCPA, which was also as 

expected.   
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Table 3.8  True densities from water displacement approximations 

Sample True density (kg/m3) 

DCPA 2849 ± 16 

MCC + DCPA (1:1 Mix) 1820 ± 36 

MCC + DCPA (2:1 Mix) 1750 ± 37 

MCC 1509 ± 31 

MCC + 1%MgSt 1500 ± 27 

 

The true density was used in determining the density of ribbons produced from the 

roller compaction experiments in Chapter 4.   

3.4.4 Compressibility κ Value and Tensile Strength of Powder Materials 
Obtained from Uniaxial Compaction and Diametrical Compaction 

The Compressibility κ value reflects the reduction in powder volume under 

pressure.  Figure 3.16 shows the corrected†† uniaxial compaction of profile in the 

form of applied pressure against punch displacement.   

 

The Compressibility κ value is the reciprocal of the gradient of the slope of log10 of 

density (kg/m3) against log10 of pressure (MPa).  Table 3.9 shows a high 

Compressibility κ value for DCPA and a relatively low Compressibility κ value for 

MCC.  Hence MCC is more compressible than DCPA.  The DCPA tablets produced 

were friable at the edges and this material is also widely known to be difficult to 

compress, whereas the MCC tablets were solid and compact.  This might be due to 

                                        

†† The correction was conducted using the compliance test results. 
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the particle shape and the particle size distribution of the powder material.   DCPA 

has a small particle size distribution as opposed to the larger particle size 

distribution of MCC, which gives MCC a higher capacity for pore filling.  

Furthermore, MCC is soft and ductile (Roberts and Rowe, 1987), which means that 

it yields more easily under compression.   

 

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5

Displacement (mm)

Pressure 
(MPa)

 
Figure 3.16  An example of the corrected uniaxial compaction profile of MCC at 1 mm/sec in a 

10 mm die. 

 

Table 3.9  Results from uniaxial compaction of powder material in 10 mm die, 100 MPa and 1 mm/s 
and diametrical test at 0.5 m/s 

Sample Compressibility κ  Tensile Strength (MPa)  

DCPA 4.11 ± 0.13 0.52 ± 0.21 

MCC + DCPA (1:1 Mix) 2.92 ± 0.04 3.25 ± 0.42 

MCC + DCPA (2:1 Mix) 2.80 ± 0.02 4.27 ± 0.23 

MCC 2.63 ± 0.02 5.90 ± 0.19 

MCC + 1%MgSt 2.57 ± 0.04 6.13 ± 0.02 
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MCC has the highest tensile strength whereas DCPA has the lowest tensile strength 

(see Table 3.2).  This means that MCC forms a strong compact and DCPA forms a 

comparatively weak compact.  Mixing MCC with 1% MgSt does not change the 

tensile strength significantly.  Increasing the ratio of MCC in a binary mixture of 

MCC and DCPA increases the tensile strength of the binary mixture.  The needle-

like structure of MCC may also contribute to its compactibility, which means the 

ability of the powder to remain in its compacted form.   DCPA on the other hand 

deforms by brittle fracture under compression and hence is less compactable. 

3.4.5 Shear Testing and Flowability 

The flow function data in Table 3.10 showed a significant difference between the 

pure excipients and binary mixtures.  For instance, the flow function of MCC was 

4.2, which means that it is a cohesive powder.  Lubrication of the MCC powder with 

1% of MgSt increased its flow function, which is reflected in its increased 

flowability.  The flow function of DCPA is 8.9, which means that it is easy flowing.  

Binary mixtures of MCC and DCPA have an improved flow compared to pure MCC, 

although the flow was not related to the ratio of the binary mixtures. 

 

The effective angle of internal friction did not show a significant difference as the 

consolidation stress was decreased from 8 kPa to 6 kPa.  The effective angle of 

internal friction for DCPA is the lowest (about 36o) and MCC has the highest value 

(about 46o).  Lubrication of MCC with 1% MgSt did not show an obvious change in 

effective angle of internal friction.  However the binary mixtures of MCC and DCPA 
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show an increase in effective angle of internal friction as the proportion of MCC 

increases.   

 

DCPA has a higher angle of wall friction on stainless steel than MCC, which means 

that DCPA has more resistance to flow on stainless steel surface compared to MCC.  

This is in agreement with a statement made by Brown and Richards, 1970 that the 

wall friction of particles smaller than 20 μm is about double that of the coarsest 

grade (-76+53 μm).  Compared to pure MCC, lubricating MCC with 1% MgSt 

decreased the angle of wall friction,   MCC + 1% MgSt mixture’s decrease in 

friction to the stainless steel surface.  The angle of wall friction for binary mixtures 

of MCC and DCPA decreases as the ratio of MCC increases.   

Table 3.10  Results from the shear testing 

Effective angle of internal friction(o) 

Sample 
consolidation 

stress     
8kPa  

consolidation 
stress     
7kPa 

consolidation 
stress     
6kPa 

Angle of wall friction (o) Flow Function 

DCPA 36.7 36.3 36.3 19.1 8.33  (Easy flowing)

MCC + 
DCPA (1:1 

Mix) 
41.0 41.3 41.3 17.7 6.70  (Easy flowing) 

MCC + 
DCPA (2:1 

Mix) 
43.0 43.3 44.0 10.8 7.21 (Easy Flowing)

MCC 46.7 46.7 46.3 9.9 4.20      (Cohesive) 

MCC + 
1%MgSt 46.3 47 46.7 7.8 8.94 (Easy flowing)
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3.5 Summary 

In this section a description of the pure powder materials and description of the 

methods employed to characterise the pure powder materials and the binary 

mixtures have been presented.  The particle size distribution experiment 

established that the DCPA had a smaller particle size distribution compared to MCC.   

It also showed that DCPA has a narrower particle size distribution compared to 

MCC.  These two characteristics of the powder material were expressed in the 

Ratio (d84-d16)/d50.   

 

The poured density and tap density of the powder materials were represented by 

Carr’s Index and Hausner ratio.  Carr’s Index classified DCPA as a powder which 

has poor flow although it was classified by the shear testing as a very fluid powder, 

whereas MCC has a poor flow although it was classified by the shear testing as a 

fluid cohesive powder.  The Compressibility κ value found from uniaxial compaction 

of a bed of the powder material indicated that dicalcium phosphate was less 

compressible than MCC.  Diametrical compression showed that the MCC retained 

its compacted form better than DCPA.  

 

Shear testing was used to find the flow functions, effective angle of internal friction 

and angle of wall friction of the powder materials.  According to this test DCPA is 

an easy flowing powder whereas MCC is a cohesive powder.  The shear test also 

gave an effective angle of wall friction which shows that DCPA has a higher angle 

of friction on a the stainless steel surface than MCC.   
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The bulk powder material characteristics are summarised in Table 3.11.  These 

data provide the material characteristics to be used in the predictive intelligent 

software in Chapter 6 and 7.   

Table 3.11  Powder Characteristics.  The results shown are up to one standard deviation. 

Sample DCPA 
MCC + DCPA 

(1:1 Mix) 
MCC + DCPA 

(2:1 Mix) MCC 
MCC + 

1%MgSt 

Particle size distribution     

PSD d50* (µm) 14.24 39.76 46.06 54.87 52.17 

PSD d16* (µm) 4.42 12.96 14.5 20.84 18.53 

PSD d84* (µm) 27.17 105.62 118.67 124.33 120.4 

Ratio (d84-d16)/d50  1.6 2.33 2.26 1.89 1.95 

Densities     

True density 
(kg/m3) 2849 ± sd16 1820 ± sd36 1750 ± sd37 1509 ± sd31 1500 ± sd27 

Tap Density 
(kg/m3) 1190  ± sd6 865 ± sd5 659 ± sd4 450 ± sd4 455 ± sd8 

Poured density 
(kg/m3) 866 ± sd24 560 ± sd7 446 ± sd3 311 ± sd2 324 ± sd7 

Carr's Index 27 35 32 31 29 

Hausner's ratio 1.37 1.54 1.48 1.45 1.4 

Uniaxial compression     

Compressibility κ** 
4.11 ± 
sd0.13 

2.92 ± 
sd0.04 

2.80 ± 
sd0.02 

2.63 ± 
sd0.02 

2.57 ± 
sd0.04 

Tensile Strength 
(MPa) 

0.52 ± 
sd0.21 

3.25 ± 
sd0.42 

4.27 ± 
sd0.23 

5.90 ± 
sd0.19 

6.13 ± 
sd0.02 

Shear testing     

Effective angle of 
friction (o) 36.3 ± sd0.6 41.3 ± sd0.6 44 ± sd0.0 46.3 ± sd0.6 46.7 ± sd0.6 

Angle of Wall 
Friction (o) 19.1 ± sd0.4 17.7 ± sd0.4 10.8 ± sd0.2 9.9 ± sd1.4 7.8 ± sd0.5 

Flow Function 8.33 9.16 7.21 4.16 8.94 
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4 Production of Ribbon Compacts by Roll 

Compaction 

 

ABSTRACT 

Roll compaction experiments on the powder materials were conducted to investigate 

the effects of varying roll compaction process parameters on pure and binary 

mixtures of the powder materials.  The roll compactor was fed by gravity feeding.  It 

was found that different types of powder materials can only be roll compacted 

within a specific roll speed range and over a particular roll gap range.  It was also 

observed that DCPA formed friable ribbon compacts, but binary mixtures of DCPA 

and MCC produced stronger compacts.  The pressure-density relationship for roll 

compaction was comparable to uniaxial compaction at lower pressures.  

 

The key aim of this section was to build a database of roll compaction of various 

powder materials.  A description of the roll compaction equipment and methods for 

ribbon production and ribbon density determination are presented. 
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4.1 Introduction 

In the previous chapter, the powder materials were characterised.  The next step in 

this research was to conduct roll compaction experiments on the powder materials 

to investigate the effects of varying roll compaction process parameters on pure and 

binary mixtures of the powder materials.  In this section, a description of the roll 

compaction equipment is given, the method of ribbon compact production is 

explained, the technique of determining the ribbon density is established and the 

results are discussed.   

 

The key aim of this section was to build a database of roll compaction of various 

powder materials.  The results from this section will be used in Chapters 5, 6 and 7.  

In Chapter 5 the results will be compared with predictions from a theoretical model.  

In Chapter 6 the results will be used to determine the optimum inputs for the 

predictive intelligent software in Chapter 7. 

4.2 Equipment and Methods 

4.2.1 The Roll Compactor 

The roll compactor was constructed at the University of Birmingham and is shown in 

Figure 4.1.  The design is adapted from work by Michel (1994) and Bourseul (2001).  

The two fixed rollers of width 46 mm and diameter 200 mm are driven by two 

stepper motors.  The stepper motors are controlled by a LabVIEW program 

(National Instruments, UK) and driven by a single quartz oscillator unit (McLennan 

Servo Supplies Ltd, UK: Model PM160). An external clock transmits the same 
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impulse frequency to both motors, which ensures a simultaneous rotation. The step 

length was fixed for this work at a 0.9o angle.  Therefore, a roll speed of 10 rpm was 

equivalent to 3600o per minute or 60o per second or 66.67 impulses per second. The 

roller speed was varied between 0.5 and 9 rpm. The nominal roll gap was manually 

adjusted between 0 and 5 mm using the gap-setting screw before running the 

experiment.  

 

During the experimental run both rollers are nominally fixed, but as a result of the 

compacting action, the actual roll gap exceeds the setting and is monitored 

continuously using two linear displacement transducers. The difference results from 

the elasticity of the press itself.  

 

1 2

3 
4 5

6

7 8

9 9 Legend: 
1. Fixed roller 
2. Movable axis roller 
3. Mobile Bearing Block 
4. Linear Displacement         
     Transducer 
5. Slip Rings Unit 
6. Gap Setting Screw 
7. Cheek Plate 
8. Hopper Brace 
9. Stepper Motor 
10. Power Supply Unit 
      (For the Pressure Sensors) 

 

10

 
Figure 4.1  Photograph of Roller Compactor at the University of Birmingham. 

There are two types of sensors on the equipment: two linear displacement 

transducers (Schlumberger DFG 5.0, RS Components Ltd., Corby, UK) and one 

piezo-electric pressure sensor which can detect a maximum pressure of 2,750 bars 

(PCB 105C33, Techni-Measure, Studley, UK). The piezo-electric pressure sensor is 
 89
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located within one roller and enables the profiles of the pressure normal to the 

surface of the rollers to be recorded.    

 

The nip angle defines the point at which the powder material starts getting roll 

compacted, therefore it is important to measure this value. Figure 4.2 shows the 

compaction profile of microcrystalline cellulose at a roll gap of 1.2 mm and a roll 

speed of 1 rpm. The nip angle could be estimated from the data by fitting straight 

line segments to the pressure profile as shown.  The neutral angle is the angle at 

which the maximum roll compaction pressure occurs and represents the transition 

between the nip and the release region occurs.  Note that, depending on the 

material properties, the peak pressure does not necessarily occur at the smallest 

distance between the two rollers (i.e. at the point of closest approach to the 

horizontal). Both Michel (1994) and Bourseul (2001) showed that the neutral angle 

decreases as the roll speed increases.  There is also evidence that an increase in 

particle size results in a decrease in neutral angle.  The main process parameters for 

the roll compaction are the roll gap, roll speed, roll surface and feed pressure. 
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Figure 4.2  A typical roll compaction pressure profile. P is the pressure and Pm is the maximum 

pressure. The graph shows roller compaction of MCC, at a roll gap of 1.2 mm and a roll speed of 
1 rpm. 

 

4.2.2 Production of Ribbons 

To operate the roll compactor, firstly the LabVIEW program “roll press operation.vi”  

was loaded from the desktop.  Next the motor control, the power supply for the 

displacement transducers and the pressure sensor were switched on.  Then the 

rollers were cleaned using laboratory paper towelling soaked with ethanol to remove 

any debris or powder from the roller surface.  After that the roll gap was adjusted 

using the feeler gauge and gap setting screw (see Figure 4.1).  The roll gap accross 

the roll width was kept uniform to avoid any leakage and non-uniform ribbon 

compact density.  Subsequently the location of the pressure sensor was adjusted to 

the vertical position as a starting position using a low roll speed (1 rpm).  Next the 

experiment data file was named to start the rolls rolling.  After the pressure sensor 
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was set on the vertical position, the roll speed was set on the LabVIEW program.  

Roll speed and roll gap were varied in the roll compaction experiment as shown in 

Table 4.1. 

 

To produce the ribbon compacts, firstly an empty bucket was weighed and placed 

under the roll compactor release region.  Then the extractor fan was turned on.  

Next the powder material was fed into the hopper to the vibrating feeder.  After that 

the rolls were set to start rolling.  Next the rolls were allowed to achieve a full 360o 

turn to allow the pressure sensor reading to reach a steady minimum value.  Then 

the vibrating feeder was set to feed powder material into the roll compactor hopper.  

Subsequently the roll compaction process was stopped by firstly switching off the 

vibrating feeder and then clicking on “END” button in the LabVIEW window after 

about 10-25 rotations.  Next the bucket filled with sample is weighed.   

 

The roll compaction process does not always succeed in forming ribbon compacts.  

This may be due to the rolls jamming or the powders failing to compact.  The rolls 

can be jammed by cohesive or high bulk density powder material.  Both these types 

of powders can choke the feeding area and impede deaeration.  To maintain a 

constant roll compaction of cohesive or high bulk density powder materials the 

powder was fed carefully.  This meant manually controlled feeding to avoid 

underfeeding or overfeeding the feed area of powder.  A vibrating feeder was used 

to assist in maintaining a constant feed into the feed region, but as this does not 

totally solve the problem of overfeeding and underfeeding, extra attention to the 

feed region is required. 
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Table 4.1  Roll compaction experiments conducted for each material.  The minimum amount of roller 
rotation achieved for certain powders were 8 turns and the maximum amount of roller rotation for 
other powders were 30 turns. 

Experimental 
reference 

Powder Materials Roll Speed (rpm) Roll Gap (mm) 

1 DCPA 1 1.40 

2 DCPA 1 1.20 

3 DCPA 1 1.00 

4 DCPA 1 0.80 

5 DCPA 1.5 1.40 

6 DCPA 2 1.40 

7 DCPA 2 1.20 

8 DCPA 2 1.00 

9 DCPA 2 0.80 

10 DCPA 3 1.20 

11 DCPA 3 1.00 

12 DCPA 3 0.80 

13 MCC 1 1.00 

14 MCC 1 1.10 

15 MCC 1 1.20 

16 MCC 1 1.40 

17 MCC 3 0.70 

18 MCC 3 0.80 

19 MCC 3 1.00 

20 MCC 3 1.20 

21 MCC 5 0.70 

22 MCC 5 0.80 

23 MCC 5 1.00 

24 MCC 5 1.20 

25 MCC+DCPA (2:1 mix) 1 1.00 

26 MCC+DCPA (2:1 mix) 1 1.20 

27 MCC+DCPA (2:1 mix) 1 0.80 

28 MCC+DCPA (2:1 mix) 1.5 1.00 

29 MCC+DCPA (2:1 mix) 2 1.20 

30 MCC+DCPA (2:1 mix) 2 0.80 

31 MCC+DCPA (2:1 mix) 3 1.00 
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32 MCC+DCPA (2:1 mix) 3 1.20 

33 MCC+DCPA (2:1 mix) 3 0.80 

34 MCC+DCPA (2:1 mix) 5 1.00 

35 MCC+DCPA (2:1 mix) 5 1.20 

36 MCC+DCPA (2:1 mix) 5 0.80 

37 MCC + 1%MgSt 1 0.80 

38 MCC + 1%MgSt 1 0.60 

39 MCC + 1%MgSt 1 0.40 

40 MCC + 1%MgSt 3 0.80 

41 MCC + 1%MgSt 3 0.60 

42 MCC + 1%MgSt 3 0.40 

43 MCC + 1%MgSt 4 0.40 

44 MCC + 1%MgSt 4 0.50 

45 MCC + 1%MgSt 5 0.80 

46 MCC + 1%MgSt 5 0.60 

47 MCC + 1%MgSt 5 0.40 

48 MCC + 1%MgSt 5 0.50 

49 MCC + DCPA (1:1 mix) 1 0.80 

50 MCC + DCPA (1:1 mix) 1 1.00 

51 MCC + DCPA (1:1 mix) 1 1.20 

52 MCC + DCPA (1:1 mix) 1.5 1.20 

53 MCC + DCPA (1:1 mix) 2 0.80 

54 MCC + DCPA (1:1 mix) 2 1.00 

55 MCC + DCPA (1:1 mix) 2 1.20 

56 MCC + DCPA (1:1 mix) 3 0.80 

57 MCC + DCPA (1:1 mix) 3 1.00 

58 MCC + DCPA (1:1 mix) 3 1.20 

59 MCC + DCPA (1:1 mix) 5 0.80 

60 MCC + DCPA (1:1 mix) 5 1.00 
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4.2.3 Determination of Ribbon Density 

The ribbon density was obtained by firstly taking samples across the ribbons as 

shown in Figure 4.3 a).   Each sample was weighed ms and then coated with a thick 

layer of microcrystalline wax (M-Coat W-1, Vishay Micro-Measurements U.K.) and 

weighed again.  The wax was melted on a hot plate and applied onto the ribbon 

compact using a brush.  The coating kept the ribbon compact dry while it was 

immersed it in water (Figure 4.3 b)).  Next the density of wax and wax coated 

ribbon density was determined using the hydrostatic weighing method (explained in 

section 3.3.4).  The density of the ribbon was then obtained by compensating for 

the added wax (see Section 9.2 in Appendix 2). 

 

a) 

Ribbon 
Compact

Ribbon 
sample          b)  

Wax coating

Ribbon sample

 
Figure 4.3   a) Schematic of a ribbon compact and the ribbon samples taken for density 

measurements. b) Schematic of a wax coated ribbon sample. 

4.3 Results and Discussions 

4.3.1 Experimental Observations 

The success of roll compaction was dependent on the type of material being 

compacted.  It was observed that DCPA could only be roll compacted from 1 – 

3 rpm, while the other four materials were compactable up to 5 rpm.  It is not clear 

why the roll compaction of DCPA at roll speeds higher than 3 rpm failed to produce 

ribbon compacts.  But from experimental observations, the combination of the DCPA 

being the heaviest bulk powder material combined with its ease of flowing did 
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disrupt the powder deaeration during roll compaction at high roll speed.  The bulk 

powder flowed through the roller gap and thus was not compressed into a ribbon. 

 

In addition to that the minimum and maximum roll gaps were also different for each 

of the powder materials.  For example the lubricated MCC (MCC + 1% MgSt) could 

only be roll compacted at very low roll gaps.  At roll gaps higher than 0.8 mm, it was 

observed to flow through the roll gap without experiencing compression.   

Ribbon 
Compact

Ribbon 
splitting

Ribbon 
Compact

Ribbon 
cracking

 
Figure 4.4  Schematic diagram of cracking and splitting along the dotted lines were observed on the 

DCPA ribbon compact. 

 

Roll compaction of MCC or DCPA at low roll speed and low roll gap caused the roll 

compactor to jam.  The MCC and lubricated MCC ribbon compacts ranged from hard 

to friable ribbons and no splitting of the ribbons occurred. The DCPA compacts were 

friable throughout the range of compaction pressures and showed cracking and 

splitting at higher pressures (Figure 4.4).  The pure MCC produced a better ribbon 

compact than pure DCPA.  The ribbon compact of MCC and DCPA 2:1 mixture 

produced a good compact similar to a ribbon compact from pure MCC. 
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Table 4.2  Summary of the tablet formulations characteristics and their respective roll compaction 
processing parameters. 

  Material 
Characteristics DCPA MCC + DCPA 

(1:1 mix) 
MCC + DCPA 

(2:1 mix) MCC MCC + 
1%MgSt 

Particle size 
distribution  

(d16, d50, d84) in 
(µm) 

4, 14, 27 

Narrow PSD 

13, 40, 106 

Wide PSD 

15, 46, 119 

Wide PSD 

21, 55, 124 

Wide PSD 

19, 52, 120 

Wide PSD 

Bulk/Poured density 
(kg/m3) 

866 ± sd24 

(Heavy 
material) 

560 ± sd7 

(average 
weight 

material) 

446 ± sd3 

(average 
weight 

material) 

311 ± sd2 

(Light material) 

324 ± sd7 

(Light material) 

Compressibility κ 
4.11 ± sd0.13 

Least 
compressible 

2.92 ± sd0.04 2.80 ± sd0.02 2.63 ± sd0.02 
2.57 ± sd0.04 

Most 
compressible 

Tensile Strength 
(MPa) 

0.52 ± sd0.21 

Weakest 
compact 

3.25 ± sd0.42 4.27 ± sd0.23 5.90 ± sd0.19 
6.13 ± sd0.02 

Strongest 
compact 

Flow function 
8  

(easy flowing) 

9  

(easy flowing) 

7  

(easy flowing) 

4  

(cohesive) 

9  

(easy flowing) 

Roll compaction 
speed range (rpm) 1 - 3 1 - 5 1 - 5 1 - 5 1 - 5 

Roll compaction gap 
range (mm) 0.8 – 1.4 0.8 – 1.2 0.8 – 1.2 0.7 – 1.2 0.4 – 0.8 

 

4.3.2 Relationships between Ribbon Density, Ribbon Porosity and 
Average Maximum Pressure 

Figure 4.5 shows the expected relationship between increasing roll compaction 

pressure and the ribbon density (see equation (3.2)).  The higher ribbon density for 

DCPA in Figure 4.5 reflects its higher poured density and particle density as opposed 

to MCC, which has a lower poured density and particle density.  But in general the 

higher ribbon density was produced at lower roll speeds.  Figure 4.6 shows the 

relationship between ribbon porosity and log Pm.  The ribbon porosity generally 

decreases as the pressure increases for all the formulation.  However each 
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formulation has varying slopes.  DCPA has the sharpest decrease in slope and MCC 

has the slowest decrease in slope with increasing pressure. 

Average Maximum Pressure, Pm (MPa)
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MCC 
MCC + 1% MgSt

 
Figure 4.5  Log ρ as a function of log Pm.  Results are from roller compaction of excipients at roll 

speeds of 1- 5 rpm and roll gaps of 0.5-1.4 mm. 
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Figure 4.6  Ribbon Porosity as a function of log Pm.  Results are from roller compaction of excipients 

at roll speeds of 1- 5 rpm and roll gaps of 0.5-1.4 mm. 
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4.3.3 Comparison between Roll Compaction and Uniaxial Compaction 

The following figures in this section are to show a comparison between uniaxial 

compaction and roll compaction.  The uniaxial compaction was conducted at a 

compression speed of 1mm/sec and to a maximum pressure of 100MPa for five 

repeats (as shown in Section 3.3.4).  The graphical points for uniaxial compaction 

shown here is an average of five repeated compressions and the relationship was 

compared to roll compaction.  Generally the uniaxial and roll compaction relationship 

shows divergence as the compaction pressure increases.  There is little agreement 

between the two methods in the case of the MCC + 1%MgSt mixture, which may 

reflect the different wall effects, since MgSt has a strong effect on wall friction.  It is 

to be noted that the results are quite different from those of Michel (1994) and 

Bourseul (2001), using inorganic materials, where good correspondence between 

the two methods was observed. 
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Figure 4.7  Comparison of uniaxial compaction with roll compaction for DCPA. 
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Figure 4.8  Comparison of uniaxial compaction with roll compaction for MCC + DCPA (2:1 mix). 
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Figure 4.9  Comparison of uniaxial compaction with roll compaction for MCC + DCPA (1:1 mix). 
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Figure 4.10  Comparison of uniaxial compaction with roll compaction for MCC. 
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Figure 4.11  Comparison of uniaxial compaction with roll compaction for MCC + 1% MgSt.   
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4.3.4 The Effect of Roll Compaction Process Parameter Variation on Nip 
Angle 

It is interesting to note that at constant roll speeds and increasing roll gap, the 

overlapping error in the nip angle may signify that the values may not be different 

from each other (Figure 4.13 to Figure 4.17).  However, the roll compaction 

pressure profile in Figure 4.12 shows that for a constant roll gap, an increase in roll 

speed decreases the nip angle and this was repeated for all the powder materials.  

This trend was also observed by Michel (1994) and Bourseul (2001) in work on roll 

compaction (with 100 mm diameter rollers) of alumina (SH 150 which has a d50 of 

11 μm).  The nip angle for roll compaction of alumina with roll gaps of 0.85 - 

1.2 mm at roll speeds between 0.5 – 1.5 rpm was between 3 and 6 degrees.  
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Figure 4.12  Pressure profile graph, where P is pressure and Pm is maximum pressure. This graph is 
a result of roll compaction of DCPA, at constant roll gap of 1.2 mm and roll speeds of 1 rpm, 2 rpm 

and 3 rpm. 

The roll compaction of all the powder materials was conducted between 1 rpm and 

5 rpm except for DCPA (i.e. 1-3 rpm).  This is because above 3 rpm the DCPA 
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powder material flows through the rolls and no compaction was achieved.  DCPA 

has a narrower PSD and smaller d50 compared to the other powder materials 

(Section 3.4.1).  Michel (1994) and Boursel (2001) found that increasing the particle 

size, resulted in varied roll compaction operating roll speed ranges, as in the roll 

speed range was 0.5 to 1.1 rpm for particle having a d50 of 11 µm and the roll 

speed range was 5 to 20 rpm for particle having a d50 of 39 µm.  Michel concluded 

that the influence of particle size on the roll speed was related to the conveying 

capacity of the press in the feeding zone and proposed that Johanson’s theory which 

accounted for the effect of permeability could at least explain the tendency above 

qualitatively. 

 

Perera (2004) found that nip angle increased if the effective angle of friction was 

increased, the cohesion of powder was increased, the roll gap was decreased or the 

roll speed was decreased.  The present work was in agreement with all of the above 

except for roll gap.  In this study the nip angle is observed to increase as the roll 

gap increases.  The nip angle was found to increase as the effective angle of 

internal friction increased from DCPA, MCC + DCPA (1:1mix), MCC +DCPA (2:1) mix 

to MCC.  The lubrication of MCC resulted in the decrease of the powder cohesivity, 

which in turn decreased the nip angle.  Furthermore the lubricated MCC was roll 

compacted at a lower roll gap compared to pure MCC and all the other materials.  It 

is also interesting to note that as the tensile strength increased the nip angle 

increased for all the powders except for lubricated MCC. Generally the nip angle 

increased for all the material as roll speed decreased and roll gap was increased. 
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Figure 4.13  Nip angle as a function of roll speed for DCPA. 
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Figure 4.14  Nip angle as a function of roll speed for MCC + DCPA (1:1 mix). 
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Figure 4.15  Nip angle as a function of roll speed for MCC + DCPA (2:1 mix). 
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Figure 4.16  Nip angle as a function of roll speed for MCC + DCPA (2:1 mix). 
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Figure 4.17  Nip angle as a function of roll speed for MCC + 1% MgSt. 
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Figure 4.18  Pressure profile graph, where P is pressure and Pm is maximum pressure. This graph is 

a result of roll compaction of MCC + DCPA (2:1 mixture), at constant roll speed of 3 rpm and roll 
gaps of 0.8 mm, 1.0 mm and 1.2 mm. 
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Figure 4.18 shows that for a constant roll speed, an increase in the roll gap 

increases the nip angle.  These trends can be observed for all the samples (Figure 

4.23).  Bourseul (2001) found that the nip angle increased with roll gap at smaller 

roll gaps but then showed a maximum.  This was not investigated in the present 

work, as very large roll gaps, give poor compacts. 
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Figure 4.19  Nip angle as a function of roll gap for DCPA. 
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Figure 4.20  Nip angle as a function of roll gap for MCC + DCPA (1:1 mix). 
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Figure 4.21  Nip angle as a function of roll gap for MCC + DCPA (2:1 mix). 

 

 108



Chapter 4  Production of Ribbon Compacts by Roll Compaction 

MCC

3

4

5

6

7

8

9

0.6 0.8 1 1.2 1.4
Roll Gap (mm)

N
ip

 A
ng

le
,  

 
 (o )

1 rpm
3 rpm
5 rpm

 
Figure 4.22  Nip angle as a function of roll gap for MCC. 
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Figure 4.23  Nip angle as a function of roll gap for MCC + 1% MgSt. 

 

 109



Chapter 4  Production of Ribbon Compacts by Roll Compaction 

4.3.5 The Effect of Roll Compaction Process Parameter Variation on 
Average Maximum Pressure 

The maximum compaction pressure increased at constant roll speed and decreasing 

roll gap (Figure 4.24).   On the other hand if the roll gap was kept constant and the 

roll speed was decreased the maximum compaction pressure increased (Figure 

4.25). 
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Figure 4.24  Plot of pressure profile. This graph is a result of roll compaction of MCC + DCPA (2:1 
mixture), at constant roll speed of 3 rpm and roll gaps of 0.8 mm, 1.0 mm and 1.2 mm.  
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Figure 4.25  Plot of pressure profile. This graph is a result of roll compaction of MCC + DCPA (2:1 

mixture), at constant roll gap of 1 mm and roll speeds of 1 rpm, 3 rpm and 5 rpm. 
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4.4 Summary 

In this section a database of roll compaction performance on powder materials at 

various process parameters was successfully collected, and the effect of roll 

compaction pressure for each powder material density was found.  Roll compaction 

process parameters was found to differ for each of the powder material, i.e. the roll 

speed and roll gap range were not the same for all the materials.  Furthermore the 

compaction and density relationship for uniaxial compaction and roll compaction 

were compared.  It was found that for DCPA the roll compaction and uniaxial 

compaction densities were in agreement at lower pressure and deviated at higher 

pressure.  For the other four powder materials the relationships were not in 

agreement throughout the pressure range.  

 

In general, 

♦ Increase in powder material effective angle of internal friction and cohesivity 

increased the nip angle.  

♦ In the case of powder material lubrication, decrease in powder material 

cohesivity decreases the operational roll gaps and nip angle. 

♦ Decrease in powder material d50 size decreases the maximum roll speed 

operational range. 

♦ Increase in roll speeds or decrease in roll gaps decreases the nip angle. 

♦ Increase in the roll gap, decreases the maximum applied pressure in the nip. 

♦ Increase in the roll speed, decreases the maximum applied pressure in the 

nip. 
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The results from this section will be used in Chapters 5, 6 and 7.  In Chapter 5 this 

results will be compared with predictions from a theoretical model.  In Chapters 6 

and 7 they are used as inputs to an intelligent software model.  The models find key 

variables from the inputs and find cause-and-effect result to predict outputs. 
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5 Johanson’s Theory 

 

ABSTRACT 

Johanson’s theory is the most established roll compaction theoretical model.  This 

section gives the basic background on powder mechanics, i.e. the stresses and 

strain on a body, the Mohr’s circle, the ideal coulomb material and Mohr-Coulomb 

failure analysis.  The powder mechanic basics are important to understand the 

effective yield function (Jenike-Shield criterion).  Johanson’s theory was developed 

on the basis of the Jenike-Shield criterion.  Although, Johanson’s theory is 

theoretical, it has been validated numerous times in previous research.  However its 

limitation is that it does not account for powder deaeration in the nip region (i.e. it 

does not account for varying roll speeds) and neutral angle. 

 

This section also shows that Johanson’s theoretical prediction of agreed well with 

the experimental data for all the powder material.  
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5.1 A Brief Explanation of Johansons’s Theory 

The Rolling Theory for Granular Solids developed by Johanson (1965) predicts the 

pressure distribution after the powder is nipped by the rollers.  It also predicts the 

nip angle, which describes the point at which the powder is nipped by the rollers.  

The roll compacted material is assumed to be isotropic, frictional, cohesive and 

compressible.  This is in parallel to the assumptions in the effective yield function 

proposed by Jenike and Shield (1959).   

 

Sections 5.1.1 to 5.1.5 provide the fundamental background of the concept of soil 

mechanics and plasticity on which Jenike and Shield (1959) based the effective yield 

function.  This was then used by Johanson to represent the plane-strain and plane-

stress condition of the granular solid between the rolls.  Sections 5.1.6 and 5.1.7 

present Johanson’s mathematical model to predict the pressure profile in the nip 

region and the nip angle. 

5.1.1 Definition of Stress and Strain 

Consider a prismatic body, under compression (Figure 5.1).  It deforms as shown by 

the dashed lines.  The deformation of the body depends on the force per unit area.  

The force per unit area is called stress, σ.  The change in length divided by the 

original length is the strain, ε. 
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Figure 5.1  Stress and strain 

where, σ1 is the major principal stress in Pa, σ3 is the minor principal stress in Pa, ε1 

is the strain caused by compression and ε3 is the strain caused by expansion. 

5.1.2 Mohr’s Circle 

Mohr’s Circle is a method for representing the steady state stresses in a material as 

a function of material.  It gives all possible combinations of normal stress  σ and 

shear stress τ at a point.  It is only applicable to two-dimensional situations. 

 

 115



Chapter 5  Johanson’s Theory 

σyy

σxxσxx

σyy

τyx

τyx

τxy

τxy

Positive 
direction

 
Figure 5.2  Definition of normal and shear stresses. 

The compressive stresses are taken to be positive (Figure 5.2).  In the use of Mohr’s 

circle, the shear stresses are taken to be positive when acting on an element in an 

anticlockwise direction.  For the element to be stable τxy = - τyx.  Since the basic 

definitions have now been presented, the stress components can be calculated for a 

wedge-shaped body of unit depth normal to the paper. 

 

σ τ

σyy

σxx

τyx

τxy

θ

y

x

 
Figure 5.3  Stresses on a wedge-shaped body. 

Take the area on the hypotenuse AC to be unity (Figure 5.4).  Thus the area of AB 

and BC faces are cos θ and sin θ respectively. 
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σ τ

σyy Sin θ

σxx Cos θ
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θ

A B

C  
Figure 5.4  Forces on the wedge-shaped body. 

Resolving forces in the direction of the normal stress: 

θθτθθσθθτθθσσ cossinsinsinsincoscoscos yxyyxyxx ++−= (5.1) 

 

Resolving the shear forces: 

θθτθθσθθτθθστ sinsincossincoscossincos yxyyxyxx +−+= (5.2) 

 

Substituting τxy = - τyx and recalling cos 2θ = 1 – 2 sin2 θ = 2 cos2 θ - 1, and that 

sin 2θ = 2 sin θ cos θ: 

( ) ( ) θτθσσσσσ 2sin2cos
2
1

2
1

xyyyxxyyxx −−++=  (5.3) 

 

and 

( ) θτθσστ 2cos2sin
2
1

xyyyxx +−=  (5.4) 
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Let  

( )yyxxp σσ +=
2
1  (5.5) 

222

2 xy
yyxxR τ

σσ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=  (5.6) 

( )yyxx

xy

σσ
τ

λ
−

=
2

2tan  (5.7) 

Thus, 

( )λθσ 22cos ++= Rp  (5.8) 

( )λθτ 22sin += R  (5.9) 

The equations (5.8) and (5.9) give the definitions of a circle on (σ,τ) axes, and 

known as Mohr’s Circle. 

τ

σ

2θ
2λ

U X(σxx,τxy)

Y
(σyy,τyx)

σ3 σ1p

 
Figure 5.5  Mohr’s Circle for stresses 

 

The centre point of the circle (Figure 5.5) is p and the radius is R.  The stresses on x 

and y planes, (σxx,τxy) and (σyy,τyx) are marked by the points X and Y respectively.  
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Every point on the circle represents a combination of normal stress σ and shear 

stress τ on some plane.  The two planes of most interest are the planes on which 

the shear stress is zero, which are known as the major principal plane and the minor 

principal plane.  The stresses acting on these planes are known as the major 

principal stress σ1 and the minor principal stress σ3.  Mohr’s circle was used 

together with the Coulomb yield criterion to form the Mohr Coulomb Failure 

Analysis, as described below. 

5.1.3 Ideal Coulomb material 

The Coulomb yield criterion describes the behaviour of bulk solids. 

c+= μστ  (5.10) 

where μ is the coefficient of friction and is equivalent to the tangent of the angle of 

inclination φ,  and c is cohesion.  The ideal Coulomb material is presented as a 

straight line on Figure 5.6. 

τ

c φ

σ  
Figure 5.6  Shear stress/normal stress behaviour for an ideal Coulomb Material. 
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For material with τ < μσ + c, no motion in the bulk solid will occur.  For τ = μσ + c, 

a slip plane will be formed. However τ > μσ + c, cannot occur. 

5.1.4 Mohr-Coulomb Failure Analysis 

By plotting the Coulomb yield criterion on a Mohr’s Circle diagram we have 3 

possibilities of powder flow behaviour. 

 

τ

σ

S

i)
ii)

iii)

 
Figure 5.7  Mohr’s Circle and the coulomb line 

 

In condition i) the material is in static equilibrium since τ < μσ + c. No powder flow 

occurs. Next in condition ii) the powder slips at plane S, a point at which τ = μσ + c.  

For all other points on condition ii)  τ < μσ + c and no powder flow occurs. However 

in condition iii) the material shows τ > μσ + c and this condition is physically 

impossible. 
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5.1.5 Effective Yield Function 

The roll compaction of pharmaceutical excipients involves continuous shear 

deformation of the powder material into a solid mass.  The material is assumed to 

be isotropic, frictional, cohesive, compressible and obey the effective yield function 

proposed by Jenike and Shield (1959). 

Normal Stress, σσ 

Effective Yield Locus

φ E

σ 3 σ 1

φ W

Wall Yield Locus

Shear 
stress,
    τ

2υ

A

 
Figure 5.8  Effective and wall yield loci 

 

The effective yield function for plane strain and plane stress condition of the powder 

material between the rolls can be represented in the Figure 5.8,  where φE is the 

effective angle of friction, φw is the angle of wall friction and υ is the acute angle 

between the tangent to the roll surface and the direction of the major principal 

stress σ1 (Figure 5.9).   

 

The effective yield equation (5.11) was combined with the equations of equilibrium 

in plane strain and axial symmetry to form a hyperbolic system of partial differential 
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equations.  This system can be solved if provided with sufficient boundary conditions 

(Johanson, 1964).  

 

υ

σ1

Roll Surface

Centre line 
between the 
two rollers

 
Figure 5.9  Acute angle υ  

31

31sin
σσ
σσφ

+
−

=E  (5.11) 

 

The condition of slip on the surface of the rollers gives one boundary condition.  At 

the roll surface, the relationship between the tangential and the normal forces is 

given by the wall yield locus (Figure 5.8).  The angle of wall friction φw describes this 

locus but, for calculation purposes, it is more convenient to use the acute angle υ.  

The shear stress and the normal stress at the surface of the rollers are described by 

Point A in Figure 5.8. 

w
E

w φ
φ
φ

πυ −⎥
⎦

⎤
⎢
⎣

⎡
−=

sin
sin

arcsin2  (5.12) 

 

The effective angle of friction φE and the angle of wall friction φw are experimented 

inputs. 
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5.1.6 Determination of Pressure Profile in the Nip Region 

θ
α

Vα ΔL

ΔL

S

d+S

d/2

x  
Figure 5.10  Region of nip in a roll press 

The material in the nip region does not experience slip along the roll surface.  It 

must be compressed to the final roll gap dimension.  This means volume Vα must be 

compressed to volume Vθ between the same arc-length segments.  Continuity 

requires that the bulk densities ρα and ρθ in volumes Vα and Vθ be related by, 

θ

α

θ

α

ρ
ρ

V
V

=  (5.13) 

 

Pressure σθ at any angle θ<α can be determined as a function of the pressure σα at 

angle θ=α by a pressure density relationship.  Experimental evidence such as 

conducted in Section 4.3, indicates that for increasing pressures the log density is a 

linear function of log pressure.  This relationship is presented by  
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κ

θ

α

θ

α

ρ
ρ

σ
σ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (5.14) 

 

Substituting density with volume we get 

κ

θ

α

θ

α

σ
σ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

V
V  (5.15) 

 

where κ is a material property, the Compressibility value.  This is taken as constant 

and in practice this is an approximation, as shown in Section 3.4.4.  

 

Volume Vθ in the arc-length segment ΔL is  

 

( )[ ] θθθ coscos1−+Δ= DSLWV  
(5.16) 

 

Where D is the diameter of the rollers and W is the roll width.  Combining the 

equations (5.14) and (5.15) gives 

κ

αθ

θθ

αα
σσ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ −+

⎟
⎠
⎞

⎜
⎝
⎛ −+

=
coscos1

coscos1

D
S
D
S

 (5.17) 

 

Hence the pressure distribution between the rolls can be obtained provided the nip 

angle is known.  Equation (5.17) is only applicable for angles θ ≤ α. 
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5.1.7 Determination of Nip Angle 

The principle of the determination of nip angle is that at that point the non-slip 

pressure gradient is the same as the pressure gradient for slip.  Consider the 

pressure gradient dσ/dx, where x is the vertical coordinate in Figure 5.10.  By 

assuming that slip occurs along the roll surface, the pressure gradient dσ/dx would 

be determined by equation (5.12) and the Jenike-Shield yield criterion (i.e. effective 

yield function).  By first order approximation we obtain: 

( ) ([ ])μμθ

φυθπσ
σ

+−−⎥⎦
⎤

⎢⎣
⎡ −+

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
AA

D
SDdx

d w

cotcotcos1
2

tan
2

4
 (5.18) 

 

where   
2

2
πυθ ++

=A  

 

Pressure
gradient
(dσ/dx)

θθi θh θ=60o

Pressure gradient 
for slip along 
roll surface

Pressure gradient
for no slip along 
roll surface

 
Figure 5.11  Vertical pressure gradient versus angular position in roll bite. θh is the angle which 

describes the height of powder material in between the rolls. 
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The solid line in the figure above is a typical pressure gradient profile given by the 

Equation (5.18) for the condition of slip along the roll surface.  Near θ=θh, the 

pressure gradient dσ/dx is zero.  However when slip does not occur along the roll 

surface, pressure σ is given by equation (5.17) and the pressure gradient is  

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −++

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
θθ

θθκσ
σ θ

coscos1
2

tan1cos2

D
S

D
dD

D
S

dx
d  (5.19) 

 

This pressure gradient is zero for angles θ = 0o and for θ = 60o.  Johanson (1965) 

proposed that the intersection of the two pressure gradient curves is a point at 

which the nip angle occurs. Hence θ i = α and can be found by equating equations 

(5.18) and (5.20).   

( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −++

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
+−−⎥⎦

⎤
⎢⎣
⎡ −+

⎟
⎠
⎞

⎜
⎝
⎛ −−

θθ

θθκσ

μμθ

φυθπσ θ

coscos1
2

tan1cos2

cotcotcos1
2

tan
2

4

D
S

D
dD

D
S

AA
D
SD

w

 (5.20) 

 

Equation (5.20) is used to calculate the nip angle.  This nip angle is then used to 

give a pressure profile within the nip region using equation (5.17).  This pressure 

profile will then allow for an approximation of a new nip angle value.  Both these nip 

angle values will be compared to the nip angle obtained from the roll compaction 

experiments (Chapter 4).  The Compressibility value κ, angle of wall friction φw and 

effective angle of friction φE were found and reported in Sections 3.4.4 and 3.4.5.  
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Table 5.1 shows a summary of the material properties used as inputs to this 

calculation. 

Table 5.1  Material properties 

Powder Material Effective Angle of Friction, 
φE (o) 

Angle of wall friction, 
φw (o) 

Compressibility κ 

(Compressed at 
100 MPa at a speed 

of 1 mm/sec) 

DCPA 36.3 19.1 4.11 

MCC + DCPA (1:1 mix) 41.3 17.7 2.92 

MCC + DCPA (2:1 mix) 44.0 10.8 2.79 

MCC 46.3 9.9 2.63 

MCC + 1% MgSt 46.7 7.8 2.57 

5.2 Johanson’s Prediction of Nip Angle 
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Figure 5.12  Pressure gradients against angular position for MCC + DCPA (1:1 mix) roll compacted at 

1 rpm and 1.2 mm. 

The nip angle found from solving the equation (5.20) was fed into equations (5.18) 

and (5.19) to produce the pressure gradient profiles shown in Figure 5.12. 
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Figure 5.13 presents a comparison of Johanson’s pressure profile prediction with 

experimental results at various roll gaps and at a roll speed of 1 rpm within the nip 

region.  The lowest roll speed was used for comparison as Johanson’s theory does 

not account for roll speed and neglects deaeration effects.  By choosing the slowest 

speed the deaeration effects on the experimental results are minimised.  Good 

agreement between theory and experiment is demonstrated. 
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Figure 5.13  Experimental and Johanson Pressure Profile within the nip region.  The powder material 

used in this is MCC + DCPA (2:1 mix) roller compacted at 1 rpm. 

Here, the nip angle found from equation (5.20) was used in equation (5.17) to 

produce a pressure profile. In previous work by Bindhumadhavan (2004), it was 

found that the pressure profile needed to be fitted to the maximum pressure 

achieved in the experiment.  This approach was also adopted in the present work.  

Johanson’s approach does not predict the neutral angle, which as observed does not 

 128



Chapter 5  Johanson’s Theory 

always occur at θ=0.  For purposes of comparison, therefore the angle at which the 

maximum pressure occurs is taken here to be zero. 

 

A nip angle was approximated from Johanson’s pressure profile above by using the 

tangent to the steepest section of the profile.  This is done because this is the same 

method which is used to get the nip angle from experimental pressure profiles.  The 

theoretical nip angle from equation (5.20) is always larger.  In the subsequent 

graphs it will be called ‘Approximation using Johanson Pressure Profile’.  Figure 5.14 

presents a comparison of the experimental nip angles with the prediction from 

Johanson’s model for all five powder materials.  For DCPA and 1:1 mixture of MCC 

and DCPA the prediction from equation (5.20) deviates hugely from the 

experimental nip angle i.e. double the experimental nip angle.  However for 2:1 

mixture of MCC and DCPA, MCC and MCC with 1%MgSt, the deviation decreases as 

S/D ratio increases.  Subsequently the ‘Approximation using Johanson Pressure 

Profile’ showed very small deviation from the experimental nip angle, to within 1o
 to 

2o.  Overall the theoretical prediction agreed well with the experimental data for all 

the materials.  
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Figure 5.14  Variation of nip angle with dimensionless roll gap for powder material compacted at 1 
rpm. 

 

5.3 Concluding Remarks 

This section has presented the powder mechanics background required to 

understand the theory behind the Johanson’s theory.  This section also shows that 
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Johanson’s theory prediction agreed well with the experimental data for all the 

powder material.  However it must be noted that the Johanson’s theory does not 

account for powder deaeration in the nip region and the neutral angle.  Hence for 

the purpose of comparison with experimental results, the experimental results were 

produced from roll compaction at 1 rpm roll speed and varying roll gaps.   

 

Furthermore the experimental pressure profile was normalised to zero angle at the 

maximum pressure.  Note that the Compressibility κ values used here were obtained 

from experiments conducted at 100 MPa compression pressure and 1 mm/sec 

compaction speed because Compressibility κ varies with maximum uniaxial 

compaction pressure.  The theoretically predicted nip angle in this section was 

compared to the values predicted by the intelligent software in Section 7. 
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6 Intelligent Software: Formrules – Finding rules 

 

ABSTRACT 

FormRules software is specific example a ‘data-mining’ intelligent software program 

which produces simple linguistically-expressed rules in the form of IF (condition 1) 

AND (condition 2) AND (condition3), THEN (conclusion 1, with confidence factor x).  

It highlights the key variables which are important to a specific output property.  

These key variables will then be used as inputs in the INForm software training.  It 

is important, however, for the user to evaluate the practicality and relevance of the 

inputs used and highlighted in the software because the software is not designed to 

do this.  If this aspect is neglected unrealistic relationships may be predicted.  

Ultimately this software is able to process a large amount of information quickly and 

efficiently; as soon as the database is set up inside FormRules, different types of 

trials are possible.   

 

This section describes how the software was trained to develop models and presents 

the results of training 11 trials which were conducted with varying types of input 

variables.   
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FormRules is based on neurofuzzy logic which combines adaptive (learning) 

capabilities of ANN and the linguistic capabilities of fuzzy logic (Jang  et al., 1997).  

Neurofuzzy logic is a combination of ANN and fuzzy logic and was explained in 

Section 2.2.4.  FormRules software is used in sequence with INForm software.  

Firstly, FormRules is used to determine the key variables that relate the properties 

of the roll compacted ribbons to the initial formulation in the form of rules.  Having 

established this, the INForm software is then used to provide quantitative 

predictions (Lindberg and Colburn, 2004).  INForm software is presented in Chapter 

7. 

6.1 Practical Application  

The main aim of using FormRules software is to determine the key variables relating 

initial formulation to roll compaction product properties and to discover the 

minimum number of inputs required to produce satisfactory predictive model. 

6.1.1 Training FormRules  

The powder characteristics of the formulation are listed in Table 3.11.  These 

powder characteristics along with roll compaction process parameters and outputs 

were then fed into the FormRules.  Trials were conducted to relate the powder 

characteristics and roll compaction process parameter to the output.  The trials were 

also used to investigate the minimum number of inputs required to develop a good 

model.   A general FormRules software training flow chart is shown in Figure 6.1.   
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See Appendix 4 for brief user-software interface tutorial.  For this investigation the 

inputs and outputs listed in Figure 6.2 were used in the FormRules software training.  

Note that the average maximum pressure and the average nip angle are 

intermediate output properties of the roll compaction process.  The FormRules 

manual (Intelligensys, 2002) states that the minimum amount of data required by 

the neurofuzzy system to produce a reliable model is 2 or 3 data sets per input.  In 

this case a sufficient number of data sets supplied: 64 data set for, 18 inputs, which 

equates to 3.5 data sets per input. 

 

After the data were imported into the software, the inputs and outputs of the model 

were set.  These are inputs and outputs in the input space and output space of 

Figure 2.9.  The first model training was conducted with default settings.  If the f-

ratio falls below 4 and the trained data set R2 is less than 80 hence the model 

requires retraining.  Retraining involves changing the training parameters (Section 

9.4.3, Appendix 4) to fulfil the requirement of a good model.  A good model is a 

model which gives an f-ratio of more than 4 and a trained data set R2 of more than 

80 (Section 6.1.2).  Following successful model training, the neurofuzzy results 

diagram can be displayed to highlight the key variables found for each output 

(Figures 6.3 to 6.6).  Then the linguistically-expressed rules (e.g. Table 6.1) can be 

obtained in a report form so as to aid in understanding the specific relationships 

between the inputs and the outputs. 
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Setting inputs and outputs 

Developing the model 

Entering 
data 

Using the Model 

Change 
Training 

Parameter 

 

Yes 

No
Are the f-ratio > 4 
and the Trained R  

> 80? 

2

Generate 
reports 

 
Figure 6.1  FormRules Training flowchart 
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- Ratio of M:D 
- % MgSt 

- d50 
- d16 
- d84 

- Ratio (d84-d16)/d50 
- Particle density (kg/m3) 

- Tap density (kg/m3) 
- Bulk density (kg/m3) 

- Carr’s Index 
- Hausner’s ratio 

- Compressibility - κ 
- Tensile Strength (MPa) 

- Angle of Internal Friction 
(AoISR) 

- Angle of wall friction (AoIWF) 
- Flow function 

- Roll gap 
- Roll speed 

- Ribbon density 
- Porosity 

- Average roll 
compaction 
pressure*  

- Average nip angle*  

Ingredient 

Processing 
condition

Property 

 
Figure 6.2  List of inputs to be investigated using Formrules against the output values required. 

*Average roll compaction pressure and average nip angle are intermediate output properties of the 
roll compaction process. The ratio of M:D stands for ratio of MCC:DCPA. 

6.1.2 f-ratio and FormRules R2 Explained 

The statistics system used to assess the quality of the model in the INForm software 

is called ANOVA (Analysis of Variance).  The results of ANOVA are expressed in the 

form of f-ratio and R2.  The f-ratio is the ratio of the mean square of the model, over 

the mean square of the error.    

)1(

mod

−−
==−

kn
SSE

k
SSR

errortheforsquaresmean
eltheforsquaresmeanratiof  

 

(6.1) 

where SSR is the sum of squares for the model, SSE is the sum of squares for the 

error, k is the number of weights and biases (i.e. degrees of freedom for model), n 

is the number of datasets and n-k-1 is the degrees of freedom for the error. 
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For the model to be of acceptable quality the mean squares for the model need to 

be at least four times greater than the mean squares of the error, i.e. f-ratio > 4. 

 

The R2 in INForm is calculated from 

10012 ×⎟
⎠
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(6.2) 

 

For linear regression the total variance in a single output variable can be expressed 

as  

SST = SSR+ SSE 
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(6.3) 

where SST is the total sum of squares, y  is the mean of the dependent variable, 

and is the predicted value from the model. ŷ

 

In FormRules software training, the R2 value should be at least 80% for a good 

quality model. 
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6.1.3 Results and Discussion for Trial A 

6.1.3.1 Neurofuzzy Diagrams 

Figure 6.3 show the neurofuzzy results for ribbon density.  This figure highlights that 

the PSD Ratio (d84-d16)/d50, the Roll Speed and Roll Gap are important input 

variables for ribbon density.  Only these three inputs were predicted by FormRules 

software to affect the ribbon density.  In the display diagram this relationship is 

shown by the box labeled submodel 1.  In the next section, the linguistically-

expressed rules for ribbon density output are explained. 

 
Figure 6.3  Neurofuzzy Results for ribbon density (kg/m3) 

Figures 6.4 to 6.6 show the neurofuzzy results for ribbon porosity, average 

maximum pressure and average nip angle.  The neurofuzzy models developed for 

each one contain more than one submodel.  This is because the software is 

detecting multivariate effects of the inputs on each of the outputs.  In the earlier 
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case of neurofuzzy results for ribbon density, the submodel 1 is observed to be 

combining the effects of three input variables,  whereas in the neurofuzzy results for 

ribbon porosity, submodel 1 combines the effect of 2 input variables and submodel 2 

and 3 consist of only one input variable.  Each of these submodels has an 

independent effect on the ribbon porosity.  This can be observed more intricately 

within the linguistically-expressed rules. 

 
Figure 6.4  Neurofuzzy results for ribbon porosity 
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Figure 6.5  Neurofuzzy results for average maximum pressure (MPa) 

 

 
Figure 6.6  Neurofuzzy results for average nip angle (o) 
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6.1.3.2 Linguistically-Expressed Rules 

Table 6.1 shows the neurofuzzy rules developed by the FormRules software for 

ribbon density in Trial A.  Note that the rules are numbered to ease discussion.  It 

can be seen that the relationships between the inputs and the output are not linear.  

Referring to rules 1 – 3, at low Roll Speeds and Roll Gaps the Ribbon Density is high 

except when the PSD Ratio (d84-d16)/d50 is in mid range.  In this case the ribbon 

density is low with membership function of 58%.  This membership function 

indicates that the ribbon density is 58% low and it also means that the ribbon 

density is 42% high.  This is a fuzzy relationship linguistic expression rule which 

sounds ambiguous but could be useful when defuzzified in steps shown in Section 

2.2.3.   

 

Rules 4 – 6 state that at low Roll Speeds and high Roll Gaps, the Ribbon Density is 

mainly high with the exception again that at PSD Ratio (d84-d16)/d50 in Mid the 

ribbon density is low with membership function of almost 90%.  This means that it 

is more definite for powder materials with PSD Ratio (d84-d16)/d50 in mid range, 

roll compacted at low Roll Speed and high Roll Gap to be of low Ribbon Density.  It 

can also be seen from rules 4 and 6 that their membership functions are lower 

hence the chances of obtaining a high ribbon density are less.  Rules 7 to 12 show 

that at high Roll Speeds, regardless of Roll Gap and PSD Ratio (d84-d16)/d50, the 

Ribbon Density will be low but at varying membership functions.  The Ribbon 

Density is definitely low for rules 7 and 11. 
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Table 6.1 Neurofuzzy rules for ribbon density (kg/m3) submodel 1 for Trial A. 
Rule 1 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (1.00) 

Rule 2 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.58) 

Rule 3 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.69) 

Rule 4 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (0.75) 

Rule 5 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.87) 

Rule 6 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.54) 

Rule 7 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

Rule 8 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.63) 

Rule 9 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.63) 

Rule 10 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (0.64) 

Rule 11 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (1.00) 

Rule 12 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.72) 

 

Table 6.2 shows that although ribbon porosity is calculated from ribbon density the 

neurofuzzy rules developed from FormRules software are very different for both 

outputs.   

Table 6.2  Neurofuzzy rules for ribbon porosity submodel 1, 2 and 3 for Trial A. 
SubModel:1 

Rule 1 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW THEN Ribbon Porosity is LOW (1.00) 

Rule 2 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is MID THEN Ribbon Porosity is LOW (1.00) 

Rule 3 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH THEN Ribbon Porosity is LOW (1.00) 

Rule 4 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW THEN Ribbon Porosity is LOW (1.00) 

Rule 5 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is MID THEN Ribbon Porosity is HIGH (1.00) 

Rule 6 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH THEN Ribbon Porosity is HIGH (1.00) 

 

SubModel:2 

Rule 1 - IF Ratio (d84-d16)/d50 is LOW THEN Ribbon Porosity is HIGH (1.00) 

Rule 2 - IF Ratio (d84-d16)/d50 is HIGH THEN Ribbon Porosity is LOW (0.93) 

 

SubModel:3 

Rule 1 - IF PSD d16 is LOW THEN Ribbon Porosity is HIGH (0.77) 

Rule 2 - IF PSD d16 is HIGH THEN Ribbon Porosity is LOW (0.53) 

 

The submodel 1 and 2 results are expected.  However the submodel 3 is not 

expected; the rules 1 and 2 indicate that at low PSD d16 the ribbon porosity is high 

and at high PSD d16 the ribbon porosity is low.  It may be assumed that the 
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FormRules software has detected that pharmaceutical formulations with large 

amounts of smaller particles would produce ribbon of lower porosity because of the 

higher possibility of pore filling. 

 

Table 6.3 shows the neurofuzzy rules for the average maximum pressure output, 

which has three submodels and the first one detected the combined effect of Roll 

Speed and Angle of Wall Friction.  In submodel 1 only rules 2 and 3 give a high 

maximum pressure.  These rules states that at low Roll Speeds and from mid to high 

range of Angle of Wall Friction, a high roll compaction pressure can be obtained.  

The importance of angle of wall friction to the average maximum pressure is in 

agreement with Johanson’s Theory as shown in Chapter 5.  Submodel 2 has stated 

the obvious, however submodel 3 has stated that PSD d84, the upper range of the 

PSD is important to the Average Maximum Pressure.  This is logical as larger 

particles would be compacted at higher pressure than smaller particles at constant 

volume. 

 

Table 6.4 shows the neurofuzzy rules for average nip angle (o) with two submodels.  

The first submodel relates Hausner’s Ratio to the nip angle.  As mentioned in section 

3.3.2, Hausner’s Ratio is related to interparticle friction and low Hausner’s Ratio 

means the powder flows well, while higher ratio means poor flow.  The rules 1 to 3 

in submodel 1 are logical, considering that for good flowing powders the nip angle is 

lower and for poor flowing powders the nip angle is higher.  Submodel 2 combines 

the effect of Roll Speed, Roll Gap and Tensile Strength on the Average Nip Angle.   
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Table 6.3  Neurofuzzy rules for Average Maximum Pressure (MPa) submodel 1, 2 and 3 for Trial A. 
AoIWF is Angle of Wall Friction. 

SubModel:1 

Rule 1 - IF Roll Speed (rpm) is LOW AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

Rule 2 - IF Roll Speed (rpm) is LOW AND AoIWF is MID THEN Ave. Max Pressure (MPa) is HIGH (1.00) 

Rule 3 - IF Roll Speed (rpm) is LOW AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is HIGH (1.00) 

Rule 4 - IF Roll Speed (rpm) is MID AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

Rule 5 - IF Roll Speed (rpm) is MID AND AoIWF is MID THEN Ave. Max Pressure (MPa) is LOW (0.95) 

Rule 6 - IF Roll Speed (rpm) is MID AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is LOW (1.00) 

Rule 7 - IF Roll Speed (rpm) is HIGH AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

Rule 8 - IF Roll Speed (rpm) is HIGH AND AoIWF is MID THEN Ave. Max Pressure (MPa) is LOW (1.00) 

Rule 9 - IF Roll Speed (rpm) is HIGH AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is LOW (1.00) 

 

SubModel:2 

Rule 1 - IF Roll Gap (mm) is LOW THEN Ave. Max Pressure (MPa)  is HIGH (1.00) 

Rule  2- IF Roll Gap (mm) is HIGH THEN Ave. Max Pressure (MPa)  is LOW (1.00) 

 

SubModel:3 

Rule 1 - IF PSD d84 is LOW THEN Ave. Max Pressure (MPa) is LOW (0.96) 

Rule 2 - IF PSD d84 is HIGH THEN Ave. Max Pressure (MPa) is HIGH (0.70) 

 

The Roll Speed and Roll Gap were explained in Section 4.3.4 and tensile strength 

was explained in Section 3.3.4.  The experimental results show that for increasing 

roll gap and decreasing roll speed the nip angle increases.  The opposing effects of 

the roll gap and roll speed on nip angle are hard to quantify.  Yet Submodel 2 

highlighted that for Rules 1, 2, and 5 to 8 the average nip angle were low.  

Whereas, Rules 3 and 4 gave a high average nip angle, which means that the 

combination of low Roll Speeds, high Roll Gap and Tensile Strength are important 

to, regardless of the Tensile Strength being high or low.  Generally, the rules 1 to 8 

do not give any indication that the Tensile Strength has a large effect on Average 

Nip Angle except for rules 3 and 4 however it was observed in Chapter 4 that 

increasing tensile strength resulted in an increase in nip angle except for lubricated 
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MCC. Thus this is just one of the examples where the FormRules software has 

highlighted inputs which are multivariate in nature. 

Table 6.4  Neurofuzzy rules for average nip angle (o), submodel 1 and 2 for Trial A. 

SubModel:1 

Rule 1 - IF Hausner's Ratio is LOW THEN Ave Nip Angle (o)  is LOW (0.78) 

Rule 2 - IF Hausner's Ratio is MID THEN Ave Nip Angle (o)  is HIGH (0.67) 

Rule 3 - IF Hausner's Ratio is HIGH THEN Ave Nip Angle (o)  is HIGH (0.53) 

 

SubModel:2 

Rule 1 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Tensile Strength (MPa) is LOW THEN Ave Nip Angle (o) is LOW (0.79) 

Rule 2 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Tensile Strength (MPa) is HIGH THEN Ave Nip Angle (o) is LOW (0.69) 

Rule 3 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Tensile Strength (MPa) is LOW THEN Ave Nip Angle (o) is HIGH (0.53) 

Rule 4 - IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Tensile Strength (MPa) is HIGH THEN Ave Nip Angle (o) is HIGH (1.00) 

Rule 5 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Tensile Strength (MPa) is LOW THEN Ave Nip Angle (o) is LOW (1.00) 

Rule 6 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Tensile Strength (MPa) is HIGH THEN Ave Nip Angle (o) is LOW (1.00) 

Rule 7 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Tensile Strength (MPa) is LOW THEN Ave Nip Angle (o) is LOW (1.00) 

Rule 8 - IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Tensile Strength (MPa) is HIGH THEN Ave Nip Angle (o) is LOW (0.54) 

 

6.1.3.3 Concluding Remarks for Trial A 

The FormRules program was found to be user friendly and straightforward to use.  

The default settings were found to be suitable for the data sets obtained from roll 

compaction.  In Trial A all 18 inputs were fed into the FormRules software and 8 

inputs were highlighted as the key variables. The key variables for the roll 

compaction output property and intermediate output property are summarized in 

Table 6.5.   

 

Trial A showed that the FormRules software was successful in detecting the 

importance of the roll compaction process parameters as input variables in relation 

to the output properties.  Generally, the software detected sound multivariate 
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relationships between inputs and outputs.  However, it is important to be aware of 

the relevance of the key variables which this software highlights as important in 

relation to the output property. 

Table 6.5  Summary of key variables found by FormRules software model for Trial A. 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio (d84-d16)/d50, Roll Speed (rpm) and Roll Gap (mm) Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 

Submodel 3 : PSD d16 

Ribbon Porosity 

Submodel 1 : Angle of Wall Friction (AoIWF) and Roll Speed (rpm) 

Submodel 2 : Roll Gap (mm) 

Submodel 3 : PSD d84  

Average Maximum Pressure (MPa) 

Submodel 1 : Hausner’s Ratio 

Submodel 2 : Tensile strength (MPa), Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

 

In the following section, 11 Trials were presented to demonstrate the ability of the 

FormRules software to highlight key variables from lesser amounts of inputs and 

produce workable neurofuzzy rules.  Then FormRules software was used in 

sequence with INForm (See Chapter 7).  The chosen trials in this chapter were used 

in the next chapter to train INForm. 

6.2 Results and Trials 

Combinations of various numbers of inputs relating to roll compaction process 

conditions were tested in 11 trials.  The model assessment for Trials A – K are 

shown in Table 6.6, which summarises the f-ratio and the Mean Square (MS) Error 
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for each output property.  The table also shows the MS Error for each model and the 

system structure developed for the specific trial output property.  The f-ratio values 

are all above 4 and the test R2 values are all above 85%. 

 

Table 6.6  Summary model assessments for Trials A – K. 

Trial Output Property MS Error System structure f-ratio Test R2
 

Ribbon D (kg/m3) 0.0011 17(2)18(2)6(3) 178.57 97.72 

Ribbon Porosity 0.0075 17(2)18(3)+6(2)+4(2) 51.85 88.48 

Ave. Max Pressure (Mpa) 0.0114 17(3)15(3)+18(2)+5(2) 26.50 85.11 
A 

Ave Nip Angle (o) 0.0011 11(3)+17(2)18(2)13(2) 253.17 97.99 

Output Property 0.0011 12(2)13(2)5(3) 178.57 97.72 

Ribbon D (kg/m3) 0.0075 12(2)13(3)+5(2)+3(2) 51.85 88.48 

Ribbon Porosity 0.0114 12(3)11(3)+13(2)+4(2) 26.50 85.11 
B 

Ave. Max Pressure (Mpa) 0.0011 7(3)+12(2)13(2)9(2) 253.17 97.99 

Ave Nip Angle (o) 0.0012 1(2)5(2)3(2)+6(2)2(2) 172.77 97.39 

Output Property 0.0053 5(2)6(2)2(2)+3(2)+1(2) 58.77 91.87 

Ribbon D (kg/m3) 0.0069 3(2)+6(2)2(2)5(3) 37.91 90.96 
C 

Ribbon Porosity 0.0016 5(2)4(3)+3(2)6(2) 190.61 97.00 

Ave. Max Pressure (Mpa) 0.0022 1(3)3(2)+4(2)2(2) 118.91 95.28 

Ave Nip Angle (o) 0.0074 3(2)4(3)+1(3) 52.34 88.58 

Output Property 0.0064 4(2)3(3)2(2)+1(3) 37.53 91.63 
D* 

Ribbon D (kg/m3) 0.0016 3(2)4(3)+1(3)+2(2) 187.93 96.96 

Ribbon Porosity 0.0011 1(2)6(2)4(3)+7(2)2(2) 128.76 97.62 

Ave. Max Pressure (Mpa) 0.0074 6(2)7(3)+1(3) 52.34 88.58 

Ave Nip Angle (o) 0.0116 6(3)4(3)+7(2)+3(2) 25.97 84.85 
E 

Output Property 0.0011 4(3)+6(2)1(2)7(2) 245.52 97.93 

Ribbon D (kg/m3) 0.0012 1(2)5(2)3(2)+6(2)2(2) 172.77 97.39 

Ribbon Porosity 0.0053 5(2)6(2)2(2)+3(2)+1(2) 58.77 91.87 

Ave. Max Pressure (Mpa) 0.0069 3(2)+6(2)2(2)5(3) 37.91 90.96 
F 

Ave Nip Angle (o) 0.0016 5(2)4(3)+3(2)6(2) 190.61 97.00 
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Output Property 0.0016 1(2)8(2)7(2)+9(2)2(2) 132.47 96.62 

Ribbon D (kg/m3) 0.0074 8(2)9(3)+1(3) 52.34 88.58 

Ribbon Porosity 0.0064 9(2)8(3)2(2)+6(3) 37.81 91.69 
G 

Ave. Max Pressure (Mpa) 0.0011 7(3)+8(2)9(2)1(2) 247.04 97.94 

Ave Nip Angle (o) 0.0011 7(2)8(2)6(3) 178.57 97.72 

Output Property 0.0075 7(2)8(3)+6(2)+4(2) 51.85 88.48 

Ribbon D (kg/m3) 0.0068 8(2)7(3)2(2)+5(2) 38.53 91.09 
H 

Ribbon Porosity 0.0010 7(2)8(2)6(3)+5(2) 198.86 98.14 

Ave. Max Pressure (Mpa) 0.0012 1(2)7(2)5(2)+8(2)2(2) 172.77 97.39 

Ave Nip Angle (o) 0.0084 7(2)8(3)+3(2) 52.85 87.06 

Output Property 0.0114 7(3)6(3)+8(2)+5(2) 26.50 85.11 
I* 

Ribbon D (kg/m3) 0.0011 4(3)+7(2)8(2)1(2) 247.04 97.94 

Ribbon Porosity 0.0012 1(2)5(2)4(2)+6(2)2(2) 172.77 97.39 

Ave. Max Pressure (Mpa) 0.0084 5(2)6(3)+3(2) 52.85 87.06 

Ave Nip Angle (o) 0.0069 4(2)+6(2)2(2)5(3) 37.91 90.96 
J* 

Output Property 0.0011 5(2)3(3)+4(2)6(2)+1(2)5(2) 192.32 97.88 

Ribbon D (kg/m3) 0.0012 1(2)5(2)3(2)+6(2)2(2) 172.77 97.39 

Ribbon Porosity 0.0053 5(2)6(2)2(2)+3(2)+1(2) 58.77 91.87 

Ave. Max Pressure (Mpa) 0.0114 5(3)4(3)+6(2)+3(2) 26.50 85.11 
K 

Ave Nip Angle (o) 0.0011 4(3)+5(2)1(2)6(2) 245.52 97.93 

 

Table 6.7 summarises the inputs fed into each trial.  Note that the greyed cells are 

inputs which were fed into the FormRules program and the numbered items 

represent the frequency at which the inputs were highlighted in each of the Trials.  

Trial A was conducted to investigate the ability of FormRules software to process 

and highlight key variables from the maximum amount of inputs.  Then the 

highlighted key variables from Trial A as well as the formulation variables and 3 

inputs (i.e. Carr’s Index, Compressibility κ and effective angle of internal friction) 

which were thought to be important were used as inputs in Trial B to investigate the 
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importance of these variables when compared to each other or not.  Next, Trial C 

was conducted to determine if the FormRules software would be successfully trained 

without the Formulation inputs (i.e. Ratio M:D and MgSt%) but with only PSD d16, 

PSD d84, Ratio (d84-d16)/d50, Hausner’s Ratio, tensile strength and Angle of Wall 

Friction.  These inputs were characteristics which were highlighted in earlier trials. 

 

Following that, Trial D was conducted to investigate the minimum amount of inputs 

that would be sufficient to form neurofuzzy rules.  Then Trials E to H were 

conducted to study if feeding the FormRules software with inputs from each 

characterisation group (i.e. shear testing, uniaxial compaction, densities and PSD) 

would be successful.  Next the highlighted key variables from Trial B were used as 

inputs in Trial I with the exception of adding the Ratio M:D and replacing tensile 

strength with Compressibility κ.  Tensile strength was switched to Compressibility κ 

because in practice it is experimentally more straightforward to obtain this value 

than to obtain tensile strength. This trial was conducted to investigate whether 

FormRules software would show that the formulation would be picked up as an 

important variable, to allow for easy association of which sample it is in the INForm 

model prediction and if Compressibility κ would be highlighted as important. 

 

After that, Trial J was conducted to investigate whether the FormRules software 

would be successfully trained with only two characteristic inputs, which are Ratio 

(d84-d16)/d50 and Compressibility κ on top of the Formulation and Process 

Condition.  These two inputs are most directly characterised and in practice the 
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industry would want to be able to perform the most representative, simplest and 

quickest characterisation method for the formulation.  Lastly, Trial K was conducted 

to check if the FormRules software could be successfully trained with only two 

characteristic inputs that are Compressibility κ and Angle of Wall Friction on top of 

the Formulation and Process Condition.  These two inputs are characteristics of the 

powder material which were used in Johanson’s Theory in Chapter 5 to predict the 

nip angle value.  This trial is important because the model trained from this input 

will be used in comparison to Johanson’s Theory.  However within the model trained 

for predicting the average nip angle, it was found that the Angle of Wall Friction was 

highlighted as a key variable but not Compressibility κ.  The Compressibility κ is a 

very important factor in Johanson’s model to predict nip angle.  Although this trial 

was tested in the INForm model training, it was not reported in Chapter 7 because it 

does not provide a better comparison to the traditional model than the Trials D, I or 

J. 

 

Only 7 out of 11 trials were used in INForm software training.  This was done 

because Trials A and B had similar outputs hence there was no reason to repeat the 

same trial on INForm software training.  The Trials E, G and H, were not tested on 

INForm software training because these tests were only conducted to observe the 

results of training a model with inputs derived mainly from one method of 

characterisation (e.g. Trials H inputs were all from particle size characterisation only) 

and the inputs were only highlighted for certain numbers of outputs or not all.  Trial 

F was trained for INForm because the Compressibility κ was highlighted as key 
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variable for all the outputs and it was interesting to see if this trial would be 

successfully produce a good model. 

6.2.1 Neurofuzzy result summary  

In this subsection the results of the neurofuzzy modelling are summarised.  The key 

variables (i.e. the submodel inputs) for each of the output are shown in tabular 

form. 

 

Trial A There were 18 inputs altogether and the inputs were classified under 

Formulation, Particle Size Distribution (PSD), Densities, Uniaxial 

Compaction, Shear Testing and Process Condition.  The trial successfully 

highlighted 8 inputs as important variables and successfully formed good 

predictive models in INForm.  Table 6.5 shows the summary of the key 

variables highlighted by FormRules software modeling. 

 

Trial B 13 inputs were fed into the FormRules program.  Although the trial was 

successful, it showed that only 8 inputs were highlighted as important 

variables instead of all 13 inputs which activated as inputs.  It was noted 

that in this trial the Formulation inputs were not highlighted as important 

variables.  Table 6.8 shows the summary of the key variables highlighted 

by FormRules software. 
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Table 6.7  FormRules trials 

TRIALS A B C D* E F G H I* J* K 

Ratio of M:D 4 3 2 3 2 2 3 Formulation 

MgSt% 3 1 3 2 1 1 2 2 

d50     

d16 1 1 1   1   

d84 1 1 1   2   

PSD 

Ratio (d84-d16)/d50 2 2 2   3 1 2   

Particle Density (kg/m3)     

Tap Density (kg/m3)     

Bulk Density (kg/m3)     

Carr's Index   1   

Densities 

Hausner's Ratio 1 1 1   2 1   

Compressibility κ   4 2 3 3 Uniaxial compaction 

Tensile Strength (MPa) 1 1 1   1   

Angle of internal friction (AoISR)   1   

Angle of Wall Friction (AoIWF) 1 1 1   3 1 2 

Shear test 

Flow function     

Roll Speed 4 4 5 4 4 4 4 4 4 5 4 Process condition 

Roll Gap (mm) 4 4 4 4 4 4 4 4 4 4 4 

Success of modelling in FormRules software Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Tested on INForm rules Yes No Yes Yes No Yes No No Yes Yes Yes 

Success of modelling in INForm rules Yes n/a Yes Yes n/a Yes n/a n/a Yes Yes Yes 
Note: The greyed cells are inputs which were fed into the FormRules software and the numbered items represent the frequency at which the inputs were highlighted in each of the trials. 

* Represent trials which had been chosen to be optimised and experimentally validated in INForm 
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Table 6.8  Summary of Neurofuzzy results from FormRules software model training for Trial B 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio (d84-d16)/d50, Roll Speed (rpm) and Roll Gap (mm) Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 

Submodel 3 : PSD d16 

Ribbon Porosity 

Submodel 1 : Angle of Wall Friction and Roll Speed (rpm)  

Submodel 2 : Roll Gap (mm) 

Submodel 3 : PSD d84 

Average Maximum Pressure (MPa) 

Submodel 1 : Hausner’s Ratio  

Submodel 2 : Tensile Strength (MPa), Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

 

Trial C 8 inputs were used and the trial was successful.  8 inputs were 

highlighted as important variables.  This trial did undergo INForm model 

training and was successful.  Table 6.9 shows the summary of the key 

variables highlighted by FormRules software. 

Table 6.9  Summary of Neurofuzzy results from FormRules software model training for Trial C 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio (d84-d16)/d50, Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 

Submodel 3 : PSD d16 

Ribbon Porosity 

Submodel 1 : Angle of Wall Friction and Roll Speed (mm) 

Submodel 2 : Roll Gap (mm) 

Submodel 3 : PSD d84 

Average Maximum Pressure (MPa) 

Submodel 1 : Hausner’s Ratio 

Submodel 2 : Tensile Strength (MPa), Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

 153



Chapter 6  Intelligent Software: Formrules – Finding rules 

Trial D 4 inputs were fed into the FormRules program.  They were classified 

under Formulation and Process Condition.  The trial was successful, 4 

inputs were highlighted as important and successfully formed good 

predictive models in INForm.  Table 6.10 shows the summary of the key 

variables highlighted by FormRules software.  

 

Table 6.10  Summary of Neurofuzzy results from FormRules model training for Trial D 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D and  Roll Speed (rpm)  

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : MgSt%, Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio of M:D 
Ribbon Porosity 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : Ratio of M:D 
Average Maximum Pressure (MPa) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : Ratio of M:D 

Submodel 3 : MgSt % 

Average Nip Angle (o) 

 

Trial E 7 inputs were fed into the FormRules program, classified under 

Formulation, Shear Testing and Process Condition.  The trial was 

successful and 6 inputs were highlighted as important variables.  This trial 

did not undergo INForm model training.  Table 6.11 shows the summary 

of the key variables highlighted by FormRules software.  
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Table 6.11  Summary of Neurofuzzy results from FormRules software model training for Trial E 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Angle of Wall Friction and  Roll Speed (rpm)  

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio of M:D 
Ribbon Porosity 

Submodel 1 : Angle of Wall Friction and Roll Speed (rpm)  

Submodel 2 : Roll Gap (mm) 

Submodel 3 : Angle of Internal Friction 

Average Maximum Pressure (MPa) 

Submodel 1 : Angle of Wall Friction 

Submodel 2 : Ratio of M:D, Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

 

Trial F 6 inputs were fed into FormRules program, classified under Formulation, 

Uniaxial compaction and Process Condition.  The trial was successful and 

6 inputs were highlighted as important variables.  This trial did undergo 

INForm model training and was successful.  Table 6.12 shows the 

summary of the key variables highlighted by FormRules software. 

Table 6.12  Summary of Neurofuzzy results from FormRules software model training for Trial F 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Compressibility κ and  Roll Speed (rpm)  

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : MgSt%, Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Compressibility κ 

Submodel 3 : Ratio of M:D 

Ribbon Porosity 

Submodel 1 : Compressibility κ 

Submodel 2 : MgSt%, Roll Speed (rpm) and Roll Gap (mm) 
Average Maximum Pressure (MPa) 

Submodel 1 : Tensile Strength (MPa) and Roll Speed (mm) 

Submodel 2 : Compressibility κ and Roll Gap (mm) 
Average Nip Angle (o) 
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Trial G 9 inputs were fed into the FormRules program, classified under 

Formulation, Densities and Process Condition.  The trial was successful 

and 6 inputs were highlighted as important variables.  This trial did not 

undergo INForm model training.  Table 6.13 shows the summary of the 

key variables highlighted by FormRules software. 

Table 6.13  Summary of Neurofuzzy results from FormRules software model training for Trial G 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Hausner’s Ratio and  Roll Speed (rpm)  

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio of M:D  
Ribbon Porosity 

Submodel 1 : MgSt%, Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : Carr’s Index 
Average Maximum Pressure (MPa) 

Submodel 1 : Hausner’s Ratio 

Submodel 2 : Ratio of M:D, Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

 

Trial H 9 inputs were fed into the FormRules program, classified under 

Formulation, Densities and Process Condition.  The trial was successful 

and 6 inputs were highlighted as important variables.  This trial did not 

undergo INForm model training.  Table 6.14 shows the summary of the 

key variables highlighted by FormRules software. 
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Table 6.14  Summary of Neurofuzzy results from FormRules software model training for Trial H 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio (d84-d16)/d50, Roll Speed (rpm) and Roll Gap (mm) Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 

Submodel 3 : PSD d16 

Ribbon Porosity 

Submodel 1 : MgSt%, Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : PSD d84 
Average Maximum Pressure (MPa) 

Submodel 1 : Ratio (d84-d16)/d50, Roll Speed (rpm) and Roll Gap (mm) 

Submodel 2 : PSD d84 
Average Nip Angle (o) 

 

Trial I 8 inputs were used and the trial was successful.  8 inputs were 

highlighted as important variables.  This trial did undergo INForm model 

training and was successful.  Table 6.15 shows the summary of the key 

variables highlighted by FormRules software. 

Table 6.15  Summary of Neurofuzzy results from FormRules software model training for Trial I 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Compressibility κ and Roll Speed (rpm) 

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 
Ribbon Porosity 

Submodel 1 : Angle of Wall Friction and Roll Speed (rpm)  

Submodel 2 : Roll Gap (mm) 

Submodel 3 : Compressibility κ 

Average Maximum Pressure (MPa) 

Submodel 1 : Hausner’s Ratio  

Submodel 2 : Ratio of M:D, Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 
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Trial J 6 inputs were used and the trial was successful.  6 inputs were 

highlighted as important variables.  This trial did undergo INForm model 

training and was successful.  Table 6.16 shows the summary of the key 

variables highlighted by FormRules software.  

Table 6.16  Summary of Neurofuzzy results from FormRules software model training for Trial J 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Compressibility κ and Roll Speed (rpm) 

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Ratio (d84-d16)/d50 
Ribbon Porosity 

Submodel 1 : Compressibility κ  

Submodel 2 : MgSt%, Roll Speed (rpm) and Roll Gap (mm) 
Average Maximum Pressure (MPa) 

Submodel 1 : Ratio (d84-d16)/d50 and Roll Speed (rpm) 

Submodel 2 : Compressibility κ and Roll Gap (mm) 

Submodel 3 : Ratio of M:D and Roll Speed (rpm) 

Average Nip Angle (o) 

 

 

Trial K 6 inputs were used and the trial was successful.  6 inputs were 

highlighted as important variables.  This trial did undergo INForm model 

training and was successful.  Table 6.17 shows the summary of the key 

variables highlighted by FormRules software.  
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Table 6.17  Summary of Neurofuzzy results from FormRules model training for Trial K 

Key Variables Roll Compaction Output Property 

Submodel 1 : Ratio of M:D, Compressibility κ and Roll Speed (rpm) 

Submodel 2 : MgSt% and Roll Gap (mm) 
Ribbon Density (kg/m3) 

Submodel 1 : MgSt%, Roll Speed (rpm) and Roll Gap (mm)  

Submodel 2 : Compressibility κ 

Submodel 3 : Ratio of M:D 

Ribbon Porosity 

Submodel 1 : Angle of Wall Friction and Roll Speed (mm) 

Submodel 2 : Roll Gap (mm) 

Submodel 3 : Compressibility κ 

Average Maximum Pressure (MPa) 

Submodel 1 : Angle of Wall Friction 

Submodel 2 : Ratio of M:D, Roll Speed (rpm) and Roll Gap (mm) 
Average Nip Angle (o) 

 

6.3 Discussions 

The FormRules program was found to be successfully trained for all the 

combinations of inputs in Trials A – K.  Table 6.7  shows that inputs which were 

highlighted as important in the earlier trials would repetitively be highlighted as 

important in subsequent trials.  These inputs are Ratio (d84-d16)/d50, Hausner’s 

Ratio, Compressibility κ, Angle of Wall Friction and processing condition.  The 

processing condition inputs were expected to be important and were always 

highlighted as a key variable by the FormRules trials.  However the formulation 

inputs (i.e. Ratio M:D and 1%MgSt) were not always highlighted as important 

variables (as shown in Trial A and Trial C).   

 

A closer look at the Ratio (d84-d16)/d50 (Trials A – C and Trials H - J) input showed 

that it was a key variable for the models developed for ribbon density, ribbon 
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porosity and average nip angle.  This is a good indication that the software could 

detect the importance of the PSD in the production of ribbons.  Neurofuzzy logic 

from Trial B (Table 6.18) was used as an example to show the neurofuzzy rules 

developed to relate Ratio (d84-d16)/d50 to the outputs.  The rules report that at 

high Roll Speed the Ribbon Density is low regardless of the Roll Gap and the Ratio 

(d84-d16)/d50 and this is in agreement with real experimental results.  Low Roll 

Speed resulted in high Ribbon Density regardless of the Roll Gap but at mid range of 

Ratio (d84-d16)/d50 the Ribbon Density was low.  This could be due to the roll 

compaction of MCC + 1%MgSt which was one of the two values which were in the 

mid range of the extremes for Ratio (d84-d16)/d50.  Lubrication of the powder 

material results in low Ribbon Density in the end product.  However, it showed that 

a combination of Roll Speed, Roll Gap and Ratio (d84-d16)/d50 affected the Ribbon 

Density in a non-linear way.    

 

Table 6.19 shows the neurofuzzy rules developed for ribbon porosity in Trial B.  This 

trial showed that at high Ratio (d84-d16)/d50 roll compaction produced low ribbon 

porosity, while at low Ratio (d84-d16)/d50 roll compaction produced high ribbon 

porosity.  There is a larger amount of fines in the high Ratio (d84-d16)/d50 than at 

low Ratio (d84-d16)/d50.  Hence the reported effects on ribbon porosity might be 

due to the amount of fines within the compact.  A larger amount of fines in the 

powder material produced ribbon compacts with lower porosity. 
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Table 6.18  Neurofuzzy rules for Trial B Ribbon Density output. 
SubModel:1 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.58) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.69) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (0.75) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.87) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.54) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.63) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.63) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (0.64) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.72) 

 

Table 6.19  Neurofuzzy rules for Trial B Ribbon Porosity output. 

SubModel:2 

IF Ratio (d84-d16)/d50 is LOW THEN Ribbon Porosity is HIGH (1.00) 

IF Ratio (d84-d16)/d50 is HIGH THEN Ribbon Porosity is LOW (0.93) 

 

 

Table 6.20 shows the neurofuzzy rules developed for the average nip angle in Trial 

B.  It shows that combinations of Roll Speed, Roll Gap and Ratio (d84-d16)/d50 

affected the average nip angle in a non-linear way. 

Table 6.20  Neurofuzzy rules for Trial B Average Nip Angle (o) output. 

SubModel:1 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ave Nip Angle (o) is HIGH (0.97) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ave Nip Angle (o) is LOW (1.00) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ave Nip Angle (o) is LOW (1.00) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ave Nip Angle (o) is HIGH (1.00) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ave Nip Angle (o) is HIGH (0.64) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ave Nip Angle (o) is HIGH (0.70) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ave Nip Angle (o) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ave Nip Angle (o) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ave Nip Angle (o) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ave Nip Angle (o) is LOW (0.53) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ave Nip Angle (o)  is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ave Nip Angle (o) is LOW (1.00) 
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The next highlighted key variable was Hausner’s Ratio for the outputs of ribbon 

density and average nip angle.  Trial H was chosen to exhibit the neurofuzzy rules 

developed for the outputs ribbon density and average nip angle (see Table 6.21 and 

Table 6.22).   

 

Table 6.21  Neurofuzzy rules for Trial H Ribbon Density (kg/m3) output. 

SubModel:1 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND Hausner's Ratio is LOW THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND Hausner's Ratio is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND Hausner's Ratio is LOW THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND Hausner's Ratio is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND Hausner's Ratio is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND Hausner's Ratio is HIGH THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND Hausner's Ratio is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND Hausner's Ratio is HIGH THEN Ribbon D (kg/m3) is HIGH (1.00) 

 

Table 6.22  Neurofuzzy rules for Trial H Average Nip Angle (o) output. 

SubModel:1 

IF Hausner's Ratio is LOW THEN Ave Nip Angle (o) is LOW (0.79) 

IF Hausner's Ratio is MID THEN Ave Nip Angle (o) is HIGH (0.66) 

IF Hausner's Ratio is HIGH THEN Ave Nip Angle (o) is HIGH (0.52) 

 

 

Then Compressibility κ was a key variable for ribbon density, ribbon porosity, 

average maximum pressure and average nip angle.  Trial G was chosen to exhibit 

the neurofuzzy rules developed for all the outputs affected by Compressibility κ (see 

Table 6.23 to Table 6.26).   
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Table 6.23  Neurofuzzy rules for Trial G Ribbon Density (kg/m3) output. 

SubModel:1 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND Compressibility κ is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND Compressibility κ is HIGH THEN Ribbon D (kg/m3) is HIGH (0.57) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND Compressibility κ is LOW THEN Ribbon D (kg/m3) is LOW (0.84) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND Compressibility κ is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND Compressibility κ is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND Compressibility κ is HIGH THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND Compressibility κ is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND Compressibility κ is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

 

Table 6.24  Neurofuzzy rules for Trial G Ribbon Porosity output. 

SubModel:2 

IF Compressibility κ is LOW THEN Ribbon Porosity is LOW (1.00) 

IF Compressibility κ is HIGH THEN Ribbon Porosity is HIGH (1.00) 

 

Table 6.25  Neurofuzzy rules for Trial G Average Maximum Pressure (MPa) output. 

SubModel:1 

IF Compressibility κ is LOW THEN Ave. Max Pressure (MPa) is LOW (0.61) 

IF Compressibility κ is HIGH THEN Ave. Max Pressure (MPa) is LOW (1.00) 

 

Table 6.26  Neurofuzzy rules for Trial G Average Nip Angle (o) output. 

SubModel:2 

IF Compressibility κ is LOW AND Roll Gap (mm) is LOW THEN Ave Nip Angle (o) is LOW (1.00) 

IF Compressibility κ is LOW AND Roll Gap (mm) is HIGH THEN Ave Nip Angle (o) is LOW (1.00) 

IF Compressibility κ is HIGH AND Roll Gap (mm) is LOW THEN Ave Nip Angle (o) is HIGH (1.00) 

IF Compressibility κ is HIGH AND Roll Gap (mm) is HIGH THEN Ave Nip Angle (o) is HIGH (1.00) 

 

 

It is interesting to note that the Angle of Wall friction was a key variable for ribbon 

density, average maximum pressure and average nip angle.  Moreover it was most 

frequently highlighted as a key variable for the average maximum pressure.  Trial F 

was chosen to exhibit the neurofuzzy rules developed for all the outputs affected by 

Angle of Wall Friction (see Table 6.27, Table 6.28 and Table 6.29).   
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Table 6.27  Neurofuzzy rules for Trial F Ribbon Density (kg/m3) output. AoIWF is Angle of Wall 
Friction. 

SubModel:1 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND AoIWF is LOW THEN Ribbon D (kg/m3) is LOW (0.52) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND AoIWF is MID THEN Ribbon D (kg/m3) is LOW (0.50) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is LOW AND AoIWF is HIGH THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND AoIWF is LOW THEN Ribbon D (kg/m3) is HIGH (0.89) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND AoIWF is MID THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Ratio of M:D is LOW AND Roll Speed (rpm) is HIGH AND AoIWF is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND AoIWF is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND AoIWF is MID THEN Ribbon D (kg/m3) is HIGH (0.87) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is LOW AND AoIWF is HIGH THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND AoIWF is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND AoIWF is MID THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Ratio of M:D is HIGH AND Roll Speed (rpm) is HIGH AND AoIWF is HIGH THEN Ribbon D (kg/m3) is LOW (0.99) 

 

Table 6.28  Neurofuzzy rules for Trial F Average Maximum Pressure (MPa) output. AoIWF is Angle of 
Wall Friction. 

SubModel:1 

IF Roll Speed (rpm) is LOW AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF Roll Speed (rpm) is LOW AND AoIWF is MID THEN Ave. Max Pressure (MPa) is HIGH (1.00) 

IF Roll Speed (rpm) is LOW AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is HIGH (1.00) 

IF Roll Speed (rpm) is MID AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF Roll Speed (rpm) is MID AND AoIWF is MID THEN Ave. Max Pressure (MPa) is LOW (0.75) 

IF Roll Speed (rpm) is MID AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND AoIWF is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND AoIWF is MID THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND AoIWF is HIGH THEN Ave. Max Pressure (MPa) is LOW (1.00) 

 

SubModel:3 

IF AoISR is LOW THEN Ave. Max Pressure (MPa) is LOW (1.00) 

IF AoISR is HIGH THEN Ave. Max Pressure (MPa) is HIGH (0.87) 

 

Table 6.29  Neurofuzzy rules for Trial F Average Nip Angle (o) output. AoIWF is Angle of Wall Friction 

SubModel:1 

IF AoIWF is LOW THEN Ave Nip Angle (o) is LOW (0.81) 

IF AoIWF is MID THEN Ave Nip Angle (o) is HIGH (0.90) 

IF AoIWF is HIGH THEN Ave Nip Angle (o) is LOW (0.63) 

 

 

The next stage would be to choose the trials which would be brought into INForm 

model training, prediction and experimental validation.  The chosen trials are Trial D, 
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Trial I and Trial J.  Trial D was chosen because it was interesting to observe the 

capabilities of the software when given only the formulation and roll compaction 

process parameters as inputs to produce predictive models.  Trial I was chosen to 

form predictive models to relate the material characteristics which the 

pharmaceutical industry are interested in to the output property of the roll 

compaction process.  Trial J was chosen because it minimised the amount of inputs, 

the two characterisation experiments were the most straightforward and they are 

frequently obtained experimentally in the pharmaceutical industry. 

 

 

6.4 Summary 

The success of each trial proved that the FormRules software can take any amount 

of inputs within the rule of thumb of 2-3 inputs per data set.  It can produce 

neurofuzzy rules which highlight the key variables which affect the output property.  

However the user should keep in mind the practicality and relevance of the inputs 

used and highlighted in the software because the suggested relationships are not 

always physically appropriate.  As soon as the database is set up inside FormRules, 

different types of trials are possible.  The flexibility of the software allows the user 

to set up trials rapidly according to what is required by the user.   

 

This chapter shows how FormRules is used for the initial formulation and selection 

of the roll compaction process condition to give the desired roll compaction output 
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property via neurofuzzy rules.  11 types of trials on the different combinations of 

input variables were also presented.  3 of the trials were chosen for INForm model 

training, prediction and experimental validation.  They are Trial D, Trial I and Trial J, 

which will be discussed in the following chapter. 
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7 Intelligent Software: INForm – Intelligent 

Formulation 

 

ABSTRACT 

INForm software is an example of intelligent software which detects cause-and-

effect relationships from experimental data sets.  It develops predictive models and 

subsequently optimises these models.  It can be used for conducting “what if” 

experiments.  This means the consequence of changing the formulation or the 

processing condition within a given range on the output property can be obtained.  

Furthermore, the “optimisation function” on INForm model can be used to search for 

the combination of formulation and process conditions which will give the closest 

value to the output properties required by the user.  The roll compaction process 

parameters were predicted for specific tablet formulation and output properties.  

Experimental work validated that the predictions were accurate.  Then the ability of 

the INForm models to predict output properties was investigated and compared to 

Johanson’s model for prediction of the nip angle.  The INForm model showed a 

better agreement with the experimental results compared with Johanson’s model 

prediction. 

 

This section describes the method of training INForm software to develop models, 

shows how the model could be of use and compares the INForm model prediction to 

Johanson’s model prediction. 
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The INForm programme utilises ANNs, GA, fuzzy logic and neurofuzzy logic (see 

Sections 2.2.1 to 2.2.4).  As mentioned earlier ANNs are mathematical systems that 

mimic the way in which the human brain processes information (Erb, 1993).  They 

are used to generate ‘black box’ models that link inputs to outputs from 

experimental data sets and detect relationships.  Subsequently GA and fuzzy logic 

are employed for optimisation in the multidimensional space.   

 

This chapter describes the method of using the software for roll compaction of 

pharmaceutical excipients listed in Chapter 3.  Alongside this, the rationale behind 

the training parameters for the models is presented.  Then as stated in Chapter 6 

the key inputs for Trial D, Trial I and Trial J will be fed into three separate models 

for training and optimisation of each of the models.  The trained model is then used 

in a case study to search for the combination of process conditions for a required 

output property of a formulation.  A comparison between Johanson’s theory 

(Chapter 5) and the INForm model was conducted. 

7.1 Practical Application  

The aim of using INForm software was to develop models designed to predict roll 

compaction process parameters for a specified formulation and roll compaction 

output property.  Trial D was used as an example for the training of INForm.   
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7.1.1 Training INForm - Trial D 

Before the software training could be conducted, the bulk data obtained from the 

roll compaction experiments (Chapter 4) on five different types of formulation were 

divided into three groups.  The first group was used as the validation data.  The 

validation data were a data set which was withheld from the software and consisted 

of 20% of the bulk data set (12 data sets).  The validation data sets were carefully 

chosen from the spread of data so as not to disrupt and form large missing regions 

in the experimental space.  The second group of data was called the test data and 

consisted of 20% of the balance of the bulk data (test data = 10 data sets and 

training data = 41 data sets) after the validation data had been withheld.  The same 

care in choosing the data set was practiced.   

 

The test data was the data set used by the software to check, if the errors in the 

training of the model were decreasing with every iteration cycle conducted.  If the 

errors did increase the software calculation stopped and the calculation was 

restarted to obtain a better model.  The test data set could be manually chosen or 

could be automatically chosen by the software.  To ensure that the model would 

train well, there should be at least 2-3 training data set per input.  In the INForm 

training of trial D there were 10 training data sets per input, which is a good ratio to 

model with. 

 

Figure 7.1  shows the general steps in the training of the INForm programme.  The 

steps through the software interface are explained in Appendix 5.  Initially the data 
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need to be in a text file to be fed into the software.  Secondly the highlighted 

inputs/outputs from Trial D were set in INForm.  Next the model was trained 

separately for each output.  This was done to allow an independent prediction for 

each output property.  Then the model was developed by choosing the correct set of 

test data from the bulk data and also using the right set of training parameters 

(training parameters are explained in Section 9.5.3).  Initially the test set data was 

chosen randomly from the bulk data set, while training parameters were used as 

default.  Next the model was trained. Figure 9.32 shows the window which contains 

the neural network training results.  Then the model was assessed for its ability to 

predict using the steps explained in Section 7.1.2.   

 

Once the model was found to be predicting data successfully, the model was used to 

construct surface response graphs (3D graphs), make “what if” predictions and for 

optimisation of Trial D, Trial I and Trial J.  The response surface graphs show how 

well the data covers different regions of space, while the “what if” predictions can 

be used to predict the output properties for specified formulation and roll 

compaction process conditions. 
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Figure 7.1  Flowchart showing the steps in training and optimisation of INForm programme. 
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7.1.2 The Model Assessment – Is the Model Predictive? e Model Predictive? 

Model 
Trained 

Is the f - ratio>4, 
train data R2 ≥ 0.85 

and 
test data R2 ≥ 0.85?

Is the Linear 
Regression training 
data R2 ≥ 0.85 and 
test data R2 ≥ 0.85? 

Is the Linear 
Regression 

validation data 
R2 ≥ 0.85?

Model retraining

Change: 
i. Training parameter random seed 

number 
 

ii. Network structure transfer 
function for 1st hidden layer to 
Tanh and/or 2nd hidden layer to 
Tanh 
 

iii. Network structure hidden layer 
nodes 
 

iv. Test data sets 
 

v. Increasing number of hidden 
layers 
 

vi. Backpropagation strategy 
  

vii. Number of Epochs 

No

 Yes 

No

No

 Yes

NoIf the test data is y% of 
the training data. Then is 
the Test error/MSE ≤ y? * 

 Yes 

 Yes 

Model is a 
good fit 

  
Figure 7.2  Flow of trained model assessment and readjustment of the network structure.  *This 

condition depends on the size of the bulk data and the size of the test data taken out (see text for 
explanation). 

Figure 7.2  Flow of trained model assessment and readjustment of the network structure.  *This 
condition depends on the size of the bulk data and the size of the test data taken out (see text for 

explanation). 

 172



Chapter 7  Intelligent Software: INForm – Intelligent Formulation 

After the model was trained, it was assessed for ability to predict.  Figure 7.2 shows 

the sequence of model assessment.  Firstly, the MS error and the test error were 

observed.  It is very rare that the software will be able to achieve an error value of 

10-4.  Therefore Colburn (2006) stated a couple of conditions which could be used to 

ensure a model was sufficiently trained.  The basic condition is that if the test data 

consists of 10% of the training data, then the ratio of test error to MS error should 

be less than 10 to obtain an acceptable trained model.  However, this condition 

depends on the size of the bulk data set and the size of the test data set taken out.  

If the size of the bulk data set was extremely large then 50% of the test data would 

not affect the coverage of space in the training data.  In this case the Test Error 

should be equal to or just a little more than the MS Error to obtain a sufficiently 

trained model. 

 

Next the model statistics were checked for positive results. Table 7.1 showed a 

positive result except for the test data R2 for average maximum pressure.  A positive 

result was indicated by an f-ratio of more than 4, “train data R2” greater than 0.85 

and the “test data R2” greater than 0.85.  A high R2 value does not really mean that 

the model has been trained exceptionally well.  It can mean that it is well trained or 

was overtrained.  An overtrained model will not be able to predict unseen data 

because it has memorized the training and test data and has lost its ability to 

predict.  The f-ratio and the INForm R2 values were explained in section 6.1.2.   If 

the results were negative the model was retrained by changing either the test set 

data or the training parameters.  The adjustment to the training parameter was 
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explained in the section 9.5.3.  If the model gave a positive result (as shown in 

Table 7.2) the next stage would be to assess the predictability of the model on the 

training and test data.   

Table 7.1  Summary of Model Statistics from the INForm model training result. 

Output Property f-ratio Train data R2
  Test data R2

Ribbon Density (kg/m3) 25.19 0.99 0.93 

Ribbon Porosity 8.07 0.97 0.93 

Average Maximum Pressure (MPa) 14.30 0.98 0.75 

Average Nip Angle (o) 89.79 1.00 0.91 

 

Table 7.2  Summary of Model Statistics from the INForm model retraining result. 

Output Property f-ratio Train data R2
  Test data R2

Ribbon Density (kg/m3) 33.13 0.99 0.94 

Ribbon Porosity 21.29 0.99 0.92 

Average Maximum Pressure (MPa) 12.53 0.98 0.85 

Average Nip Angle (o) 43.20 0.99 0.91 

 

This was conducted by constructing a linear regression line for the predicted against 

observed data.  Figure 7.3 and Figure 7.4 show examples of this linear regression 

line for Trial D.  The slope of the linear regression line should be unity and the R2 

should be equal to or more than 0.85.  If this requirement was not fulfilled the 

model was retrained.  But as the example shows the requirement was fulfilled.  

Following this the model was assessed to ensure that the model trained was not 

memorizing the train and test data.   
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This involved constructing a similar regression line for validation data (Figure 7.5).  

The same requirement applies to the slope of this graph and the R2.  If these 

requirements were fulfilled then models can be used for prediction. If it was not 

fulfilled than the model will be retrained.  The linear regression R2 values for all the 

output properties were above 0.85.  This means that the model trained for the Trial 

D using default parameters except for the 1st hidden layer transfer function changed 

to Tanh was a good model. 
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Figure 7.3  Output property linear regression for training data predicted against observed for Trial D. 
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Figure 7.4  Output property linear regression for test data predicted against observed for Trial D. 
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Figure 7.5  Output property linear regression for validation data predicted against observed for Trial 
D. 

7.1.2.1 f-ratio and INForm R2 

Similar with FormRules f-ratio and R2, hence please refer to Section 6.1.2.  However 

in INForm software training, the R2 value should be at least 75% for a good quality 

model, this condition was increased to 85% for roll compaction.  This is because the 

standard deviations within the training and testing datasets were small.  Hence, the 

user could expect a better quality model which could give predictions with a high R2 

value. 
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7.1.3 Using the Model 

Section 7.1.1 described the training and assessment of the trained model.  Once this 

model was trained it could be used for “what if” predictions or for optimisation.  

“What if” predictions are a feature of this software which can be used to predict the 

output properties for specified formulation and roll compaction process parameters.  

On the other hand, optimisation is a feature which can be used to predict the roll 

compaction process parameters for a specified formulation and output property or 

the formulation for a specified roll compaction process and output property. 

 

7.1.3.1 “What if” Predictions  

“What if” predictions can be used to predict the output properties resulting from 

specific formulation and roll compaction process parameters.  Before “what if” 

predictions can be conducted it is advisable to observe the response surface graphs.  

The response surface graphs show how well the data covers different regions of 

space, hence allowing the user to be able to use the “what if” predictions within the 

range of roll compaction process parameters to obtain reliable output predictions.  It 

is important to note that INForm software does not extrapolate results well.  

 

Appendix 5, Section 9.5.3 shows the method of obtaining the response surface 

graphs and conducting “what if” predictions.  In brief, a set of data for a formulation 

was chosen to consult.  The roll compaction process parameters were then fed into 

the “given” column.  Prediction of the output properties can then be conducted.   
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7.1.3.2 Optimising the Formulation 

Optimisation can be used either to predict the roll compaction process parameters 

from a specified formulation and output property or to predict the formulation from 

a specified roll compaction process property and output property.  In this study the 

roll compaction process parameters were predicted from a specified formulation and 

output property.  The process of optimisation is shown in Figure 7.6.  Section 

9.5.4.3 (Appendix 5) shows a simplified tutorial-like method to work with the 

software interface. 

 

A data set close to the desired output property was chosen for consultation.  This 

speeds up the optimisation process.  The next stage involves adjusting the 

optimisation configuration.  This feature allows the user to specify certain objectives 

for the software optimisation.  The weight can be set on a scale of 0 to 10.  This 

shows a relative importance between conflicting objectives.  For example the user is 

trying to predict the roll compaction process parameters required for a combination 

of output properties.  The user can then specify in what order the output properties 

should be satisfied.   

 

Next the desired output property is fed into the Mid1 and Mid2 columns (Figure 

9.42).  Both these values should be the arithmetic mean of the Minimum and 

Maximum values.  At default, Min and Max would display the global minimum and 

maximum values.  But after the Mid1 and Mid2 are changed these values should be 

adjusted to have a value within the global minimum/maximum range and to keep 
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Mid1 and Mid2 as the arithmetic mean.  These values for Min, Mid1, Mid2 and Max 

are used to direct the optimisation program to calculate a result within a desired 

range.  The desirability function further assists the optimisation program to focus on 

either the lower end, higher end, near mid values or just no preference.  There are 

four types of desirability functions; ‘tent’, ‘down’, ‘up’ and ‘flat’ and they are 

described in Table 7.3. 

Table 7.3  Description for each desirability function 

Desirability function Sketch Description 

Tent 

0

1

 

The values between Mid1 and Mid2 are 
of 100% desirability and Min/Max are of 

0% desirability.  The desirability 
increases linearly from Min to Mid1 and 

decreases from Mid2 to max. 

Down 

0

1

 

The values below Mid2 are of 100% 
desirability and Max is 0% desirability.  
The desirability decreases linearly from 

Mid2 to Max. 

Up 

0

1

 

The values above Mid1 are of 100% 
desirability and Min is 0% desirability.  
The desirability increases linearly from 

Min to Mid1. 

Flat 

0

1

 

All values have equal desirability. 

 

 180



Chapter 7  Intelligent Software: INForm – Intelligent Formulation 

Choose a data set close 
to the output property 

value to consult 

Adjust optimisation 
configuration 

Optimisation  

Is the desirability 
above 0.85?

Adjust optimising 
parameter: 
 
1. Number of Iterations 
2. Replacement % 

Choose non random 
ingredient values  

Fix the formulation

Yes

No

 Model Optimised

 Consult Screen

 
Figure 7.6  Flowchart for optimisation of roll compaction process. 

 

Once the optimisation configuration has been adjusted, the optimisation can be 

conducted on the model using given values (also known as the values used for 

consultation).  Next the formulation values are fixed and non-random starting 

ingredient values are used for optimisation.  The optimisation desirability result 

should be above 85%.  If this requirement is not fulfilled, then the optimisation 

parameters can be changed.  These parameters control the GA’s operation.  The 
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number of iterations is the number of calculation cycles which are performed before 

the optimisation is halted.  This value can be increased if the calculation is found to 

stop too early.  The replacement % is the number of ‘genetic material’ (calculated 

values) which will be replaced in each iteration.  A large replacement % will mean a 

large sample is taken from the data spread and there will be a longer calculation 

time.  A smaller replacement % is used to focus the calculation to the best value. 

 

7.2 Results and Discussions 

7.2.1 Discussing the Challenges of using the Connections Tab to use the 
Key Variables Highlighted by FormRules Software 

The connections tab is shown by Figure 9.30 in the Appendix 5, Section 9.5.3.6.  It 

allows the user to break the connection a particular input has with the specific 

output model network.  If the input’s connection to the specific output is broken, 

then it is no longer used in building the model for that respective output.  This gives 

the user more options of building a better model which employs the results 

produced by the FormRules software. 
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Table 7.4  Example 1 for INForm model training example of Trial I for the connectivity function. 

 Example Output 
property 

Training parameters 
which were adjusted 

(RS is random seed, 
TF is transfer 

function) 

Activated input 
connection Epoch 

Train 
set 

mean 
sq 

error 

Test 
set 

mean 
sq 

error 

Test 
error/M

SE 
f-ratio 

Train Set 
R-

squared 

Test Set 
R-

squared 

system 
structure 

Ribbon 
density 
(kg/m3) 

RS=9823; 

nodes=2. 

Ratio M:D, 
Compressibility κ, roll 
speed, MgSt% and 

Roll Gap 

992 0.0037 0.0020 0.5360 1.26683 -51.7093 -19.0516 
I(5) - 

HL(2) - 
O(1) 

Ribbon 
porosity 

RS=500;  

nodes=2.  

Roll Speed, Roll Gap 
and Ratio (d84-

d16)/d50 
167 0.0096 0.0124 1.2932 1.40112 -182.431 17.0702 

I(3) - 
HL(2) - 
O(1) 

Ave. Max 
Pressure 
(MPa) 

RS=500,  

nodes=2. 

Angle of Wall Friction, 
Roll Speed, Roll Gap 
and Compressibility κ 

999 0.0215 0.0096 0.4459 2.59824 24.609 22.2349 
I(4) - 

HL(2) - 
O(1) 

Example 
1 

Ave Nip 
Angle (o) 

RS=500;  

nodes=2.  

Hausner’s Ratio, Ratio 
M:D, Roll Speed and 

Roll Gap 
982 0.0019 0.0116 5.9897 114.206 98.2167 84.679 

I(4) - 
HL(2) - 
O(1) 
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Table 7.5  Example 2 INForm model training example of Trial I for the connectivity function. 

 Example Output 
property 

Training parameters 
which were adjusted 

(RS is random seed, 
TF is transfer 

function) 

Activated input 
connection Epoch 

Train 
set 

mean 
sq 

error 

Test 
set 

mean 
sq 

error 

Test 
error/M

SE 
f-ratio 

Train Set 
R-

squared 

Test Set 
R-

squared 

system 
structure 

Ribbon 
density 
(kg/m3) 

Random seed=5765; 

 nodes=3. 

Ratio M:D, 
Compressibility κ, Roll 
Speed, MgSt% and 

Roll Gap 

652 0.0015 0.0060 4.1222 0.586779 -33.8567 -31.8859 
I(5) - 

HL(3) - 
O(1) 

Ribbon 
porosity 

Random seed=2345; 

1st hidden layer 
transfer 

function=Tanh;  

output transfer 
funciton=Tanh;  

nodes=3.  

Roll Speed, Roll Gap 
and Ratio (d84-

d16)/d50 
616 0.0036 0.0078 2.1651 0.684784 -178.851 1.44392 

I(3) - 
HL(3) - 
O(1) 

Ave. Max 
Pressure 
(MPa) 

Random seed=1;  

1st hidden layer 
transfer 

function=tanh,  

output transfer 
function=tanh;  

nodes=3. 

Angle of Wall Friction, 
Roll Speed, Roll Gap 
and Compressibility κ 

989 0.0112 0.0394 3.5238 1.1284 6.76101 41.2454 
I(4) - 

HL(3) - 
O(1) 

Example 
2 

Ave Nip 
Angle (o) 

Random seed=500,  

nodes=2. 

Hausner’s Ratio, Ratio 
M:D, Roll Speed and 

Roll Gap 
982 0.0019 0.0116 5.9897 114.206 98.2167 84.679 

I(4) - 
HL(2) - 
O(1) 
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Table 7.6  Example 3a for INForm model training example of Trial I for the connectivity function. 

Example Output 
property 

Training parameters 
which were adjusted 

(RS is random seed, TF 
is transfer function) 

Activated input 
connection Epoch 

Train 
set 

mean 
sq 

error 

Test 
set 

mean 
sq 

error 

Test 
error/ 

MSE 
f-ratio 

Train Set 
R-

squared 

Test Set 
R-

squared 

system 
structure 

Ribbon 
density 
(kg/m3) 

RS=5230, 

1st hidden layer 
TF=Tanh, 

Output TF=tanh, 

Nodes=3. 

Standard incremental 

Ratio M:D, 
Compressibility κ, Roll 
Speed, MgSt% and 

Roll Gap 

439 0.0105 0.0085 0.8060 11.0146 89.8041 86.6748 
I(5) - 

HL(2) - 
O(1) 

Ribbon 
porosity 

Same as above Same as above 230 0.0218 0.0185 0.8487 8.01836 83.0834 81.6824 
I(5) - 

HL(2) - 
O(1) 

Ave. 
Max 

Pressure 
(MPa) 

Same as above Same as above 258 0.0126 0.0068 0.5426 18.5488 92.2128 91.8507 
I(5) - 

HL(2) - 
O(1) 

Example 
3a 

Ave Nip 
Angle 

(o) 
Same as above Same as above 325 0.0041 0.0081 1.9678 44.7334 96.2313 89.3625 

I(5) - 
HL(2) - 
O(1) 

 

 

 185 



Chapter 7  Intelligent Software: INForm – Intelligent Formulation 

 186 

Table 7.7  Example 3b for INForm model training example of Trial I for the connectivity function. 

Example Output 
property 

Training parameters 
which were adjusted 

(RS is random seed, TF 
is transfer function) 

Activated input 
connection Epoch 

Train 
set 

mean 
sq 

error 

Test 
set 

mean 
sq 

error 

Test 
error/ 

MSE 
f-ratio 

Train Set 
R-

squared 

Test Set 
R-

squared 

system 
structure 

Ribbon 
density 
(kg/m3) 

RS=5230, 

1st hidden layer 
TF=Tanh, 

Output TF=tanh, 

Nodes=3. 

Standard incremental 

Ratio M:D, 
Compressibility κ, Roll 
Speed, MgSt% and 

Roll Gap 

439 0.0105 0.0085 0.8060 0.818794 -205.445 -228.645 
I(5) - 

HL(2) - 
O(1) 

Ribbon 
porosity 

RS=5230, 

1st hidden layer 
TF=Tanh, 

Output TF=tanh, 

Nodes=3. 

Standard batch 

Roll speed, Roll Gap 
and Ratio (d84-

d16)/d50 
624 0.0100 0.0118 1.1821 31.0527 92.2511 88.3136 

I(3) - 
HL(2) - 
O(1) 

Ave. 
Max 

Pressure 
(MPa) 

Same as above Same as above 999 0.0245 0.0070 0.2863 15.1446 84.8313 91.6239 
I(3) - 

HL(2) - 
O(1) 

Example 
3b 

Ave Nip 
Angle 

(o) 
Same as above Same as above 769 0.0057 0.0167 2.9276 46.8081 94.7577 77.9888 

I(3) - 
HL(2) - 
O(1) 
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However it was found out that using this feature did not produce positive results.  

For Trial I, the FormRules software showed that for each of the output properties 

different input parameters were important.  These key parameters were connected 

to the specific output property in the INForm model training.  The model training 

proved to be complicated and difficult to use.  Although the interactive training 

mode which can be chosen is able to give flexibility in changing the training 

parameters during training, the comparison of MS Error and Test Error does not 

always guarantee a good model.  The f-ratio and the R2 can only be seen after all 

the models had been trained and it is difficult to gauge the acceptability of the 

model without observing these values.   

 

This feature can be observed from the INForm model training examples of Trial I 

shown in Tables 7.4 to 7.7. The training was conducted separately and interactively 

for each output property.  This meant that training was conducted for each output 

sequentially after another, but without being allowed to check the training result of 

the currently trained output property.  The key input variables for each output 

property were activated for the respective output property (see Table 6.15 for the 

key input variables).  Example 1 (Table 7.4) shows the training parameters adjusted 

for each of the output properties.  The ratio of test error to MSE was less than 10 

for all the output properties, yet only the Average Nip Angle model produced an f-

ratio of more than 4, Train R2 more than 85 and Test R2 of 85.  The model training 

for the other 3 outputs failed i.e. for ribbon density, ribbon porosity and average 

maximum pressure.  Example 2 (Figure 7.5) shows the next simulation test on the 
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same Trial I.  The training parameters for Average Nip Angle were kept constant, 

but were adjusted for the first 3 outputs.   Example 2 was conducted to achieve a 

higher ratio of test error over MSE.  However it still gave failed outputs for the first 3 

output properties. 

 

It was difficult to conduct the training without being able to observe the immediate 

training result.  Hence, to make the training of this model easier and to allow the 

user to observe the results of the training as soon as possible the training method 

was changed.  Initially only the first output property was trained using a specific 

training parameter combination (Table 7.6).  The results for the rest of the output 

properties were ignored.  After the training parameters for the first output property 

were found to be successful, the second output property training was conducted 

while keeping the successful training parameters for the first output property 

constant (Table 7.7).   

 

Although the first training parameters were kept constant for the first output 

property and changed for the second output property the result produced was 

unsuccessful for the first output property, while it was successful for the second 

output property.  The results indicated that each of the four output property training 

events had some influence on each of the others.  This makes the model 

complicated and difficult to train because each of the output properties will have 

different key inputs according to FormRules models, but the results of the INForm 

training showed that all four output property models will be inter-related.  Thus the 
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different combinations of training parameters of each output property need to be 

found and this will take a lengthy time with a lot of effort required from the user.  If 

this feature was not used, i.e. the inputs were all activated for the model training 

(as was reported) the training process was usually simpler, quicker and successful. 

7.2.2 The INForm Assessment Summary on Trial D, Trial I and Trial J 

Table 7.8 shows the summary of the assessments of the Trials D, I and J.  The table 

contains the MS error and the Test error which are part of the first step of model 

training.  The model statistics (i.e. f-ratio, Training R2 and Test R2) are summarised 

and that Trials D, I and J were trained successfully.  The regression lines are also 

summarised in this table.  It shows that all three trials were assessed and validated 

to be good models.   

 

These models can be safely used for “what if” predictions and optimisations.  The 

Trial D system structure for all the output properties are all similiar with 4 inputs, 5 

hidden layers and 1 output.  The Trial I system structure for all output properties 

except for ribbon porosity has 8 inputs, 2 hidden layers and 1 output.  The Trial I 

system structure for ribbon porosity had 8 inputs, 3 hidden layers and 1 output.  

The Trial J system structures for all the output properties are all similar with 6 

inputs, 3 hidden layers and 1 output. 
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Table 7.8  The summary of assessments for Trials D, I and J. 

f-ratio Train R2 Test R2 Train R2  Test R2  Validat

Ribbon Density 998 0.0009 0.0040 I(4) - HL(5) - O(1) 33 0.99 0.94 0.99 0.97 0.

Ribbon Porosity 984 0.0017 0.0086 I(4) - HL(5) - O(1) 21 0.99 0.92 0.99 0.93 0.

Average Max Pressure 375 0.0037 0.0127 I(4) - HL(5) - O(1) 13 0.98 0.85 0.98 0.87 0.

Average Nip Angle 344 0.0007 0.0069 I(4) - HL(5) - O(1) 43 0.99 0.91 0.99 0.94 0.

Ribbon Density 408 0.0022 0.0044 I(8) - HL(2) - O(1) 42 0.98 0.93 0.98 0.94 0.

Ribbon Porosity 176 0.0030 0.0102 I(8) - HL(3) - O(1) 12 0.98 0.90 0.98 0.91 0.

Average Max Pressure 153 0.0098 0.0096 I(8) - HL(2) - O(1) 14 0.94 0.89 0.94 0.94 0.

Average Nip Angle 998 0.0011 0.0042 I(8) - HL(2) - O(1) 86 0.99 0.94 0.99 0.95 0.

Ribbon Density 999 0.0011 0.0029 I(6) - HL(3) - O(1) 54 0.99 0.95 0.98 0.97 0.

Ribbon Porosity 239 0.0044 0.0084 I(6) - HL(3) - O(1) 17 0.97 0.92 0.96 0.93 0.

Average Max Pressure 999 0.0083 0.0059 I(6) - HL(3) - O(1) 11 0.95 0.93 0.97 0.90 0.

Average Nip Angle 342 0.0007 0.0067 I(6) - HL(3) - O(1) 87 0.99 0.91 1.00 0.93 0.

Linear regression lines
Test ErrorMS ErrorNumber of 

Epochs
System structure

Model Statistics

ial D

ial I

ial J

Output propertyials
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7.2.3 “What if” Predictions  

The response surface graphs for trial D are shown in Figures 7.7 to 7.10.  The data 

points are represented by the red triangles.  The response graphs display the 

extrapolation of the experimental ranges of the formulations.  This is because the 

software can understand the global maximum and global minimum from the total 

data sets which it has been trained on, but cannot differentiate between the specific 

maximum and minimum ranges for the individual formulations.  Hence the graphs 

show the way the data covers different regions of space as well as giving an 

extrapolation of the results to cover the global maximum and minimum of the 

experimental range.  The extrapolated regions should not be taken as reliable 

information for the “what if” predictions. 

 

Certain graphs show negative values for example in the ribbon porosity 3D graph for 

MCC (Figure 7.8) and average maximum pressure 3D graph for MCC + 1%MgSt 

(Figure 7.9).  These negative values were outside the range of experiments.  The 

model has conducted an extrapolation of the results and has concluded improbable 

results.   

 

Table 7.9 shows the “what if” predictions.  Three examples were given.  Each 

example was given a best match for “Ingredients” and “Properties”.  This command 

instructs the model to interpolate and find the closest result to either the 

“ingredients” or “properties”.  Using the best match for “ingredients” allows one to 
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observe what possible output property would be expected if one conducted a certain 

experiment on a specified formulation.  The best match for “properties” gave the 

formulation and roll compaction process parameter values which result in the most 

similar output values. 

 

In Example 1 (Table 7.9), the DCPA formulation was chosen and interpolation of the 

data was conducted.  The prediction was in agreement with the expected trends in 

the roll compaction process.  Comparing the best match ingredient to the “what if” 

result, the constant roll gap and increasing roll speed would produce a ribbon of 

lower density, higher porosity, lower roll compaction pressure and lower nip angle.  

The best match properties found the closest match to the output results from the 

data base and given the formulation and inputs related to it. 

 

Both examples 2 and 3 (Table 7.9), show the extrapolation of the roll compaction 

process parameters.  In example 2 the roll compaction roll speed is exaggerated (25 

rpm) to show that the prediction of the model was not limited by the range of the 

roll compaction process parameter.  However it is important to note that the results 

are not reliable in this case.  In practice the roll compactor would not be able to 

compact at that roll compaction speed, but if it did the ribbon density should be 

lower not higher, while the ribbon porosity should be higher, than the best match 

“ingredients” result.  Example 3 showed that even a relatively small extrapolation 

out of the range of process parameters gives an incorrect result, as shown by the 

roll compaction pressure results.   
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The response surface can be used to plan the “what if” predictions and also plan the 

experiment. Next we can deduce that the predictions that are well within the 

process parameters are reliable.  But extrapolations out of the process conditions 

are not reliable.  The best match ingredients command is useful when we need to 

check if the predicted values are reliable.  The best match property command can 

be used to search for the formulation and roll compaction process parameters 

contributing to it.  But the formulation could not be specified to obtain the roll 

compaction process parameters.  This could be conducted in the optimise section 

(Section 7.1.3.2). 
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DCPA 

 

MCC 

 

MCC + DCPA (1:1) 

 

MCC + DCPA (2:1) 

 

MCC + 1%MgSt 

 

Figure 7.7  The response surfaces for ribbon density. The red triangles are points from the train and 
test data set. 
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DCPA 

 

MCC 

 

MCC + DCPA (1:1) 

 

MCC + DCPA (2:1) 

 

MCC + 1%MgSt 

 

Figure 7.8  The response surfaces for ribbon porosity. The red triangles are points from the data sets. 
The red triangles are points from the train and test data set. 
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DCPA 

 

MCC 

 

MCC + DCPA (1:1) 

 

MCC + DCPA (2:1) 

 

MCC + 1%MgSt 

 

Figure 7.9  The response surfaces for average maximum pressure (MPa). The red triangles are points 
from the train and test data set. 
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Figure 7.10  The response surfaces for average nip angle (o). The red triangles are points from the 
train and test data set. 
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MCC + DCPA (1:1) 

 

MCC + DCPA (2:1) 

 

MCC + 1%MgSt 
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Table 7.9  “What if predictions” examples 

Example 1 Example 2 Example 3 

Inputs 

"What if" Best Match 
Ingredient 

Best Match 
Properties "What if" Best Match 

Ingredient 
Best Match 
Properties "What if" Best Match 

Ingredient 
Best Match 
Properties 

Ratio of M:D 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 

MgSt % 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 

Roll Speed (rpm) 2.50 2.00 3.00 25.00 5.00 2.00 4.00 4.00 5.00 

Roll Gap (mm) 1.00 1.00 1.20 2.00 1.20 1.20 1.00 0.40 1.00 

          

Outputs Predicted Best Match 
Ingredient 

Best Match 
Properties Predicted Best Match 

Ingredient 
Best Match 
Properties Predicted Best Match 

Ingredient 
Best Match 
Properties 

Ribbon D (kg/m3) 1548.42 1670.66 1509.32 1581.41 679.67 1598.24 783.02 1224.79 708.12 

Ribbon Porosity 0.46 0.41 0.47 0.43 0.55 0.44 0.50 0.18 0.53 

Ave. Max Pressure (MPa) 19.98 28.98 7.07 22.61 12.33 15.45 -56.05 144.80 18.10 

Ave Nip Angle (Degrees) 3.93 4.18 4.12 5.35 5.52 4.50 5.62 4.35 5.53 
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7.2.4 Optimisation 

The optimisation process predicted results which were compared with experimental 

results and are shown in Table 7.10.  It is shown that the optimisation for trials D, I 

and J were all successful in predicting the experimental parameters by setting ribbon 

porosity output.  It should be noted that the optimisation procedure would not 

reproduce the same roll compaction results if the same optimisation was repeated.   

Table 7.10  Summary of optimisation results compared to experimental results. 

Data fed into optimisation Data given by 
optimisation Results obtained from experiments 

Trials 

Ratio M:D MgSt % Ribbon 
Porosity 

Roll 
Speed 
(rpm) 

Roll Gap 
(mm) 

Roll 
Speed 
(rpm) 

Roll Gap 
(mm) 

Ribbon 
Porosity 

Trial D 0 0 0.35 1.94 0.61 1.94 0.60 0.34±0.01 

Trial D 1 0 0.25 1.00 1.27 1.00 1.25 0.24±0.01 

Trial I 0 0 0.35 1.06 1.23 1.06 1.25 0.39±0.01 

Trial I 1 0 0.25 1.20 1.21 1.20 1.20 0.26±0.02 

Trial J 0 0 0.35 1.73 0.72 1.73 0.70 0.37±0.02 

Trial J 1 0 0.25 2.07 0.40 2.07 1.00 0.24±0.04 

 

7.2.5 Comparison between Johanson’s Theory and “What if” Predictions in 
predicting the Nip Angle 

Figure 7.11 shows Johanson’s theory predictions and also INForm software “what if” 

predictions.  There are three models developed in INForm.  They are Trial D, Trial I 

and Trial J.  These trials produced predictions which were in better agreement with 

the experimental results than Johanson’s theory prediction.  The INForm models 
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were able to predict the experimental nip angle to within an accuracy of 5%.  

Basically any of the three trials could be used to predict the Nip Angle.   Whereas 

the Johanson’s model was not successful in predicting nip angle above the roll 

speeds of 1 rpm due to air entrainment.  It also over-predicted the experimental nip 

angle of DCPA and MCC by 200%, while the approximation using Johanson’s 

pressure profile under-predicted the experimental nip angle of DCPA by 5-20% and 

MCC by 20%.  Hence this shows that the INForm software was very flexible and 

could produce models from different combinations of inputs which can be used to 

make good predictions.   

 

In addition to that, the INForm software was also easier to use compared to 

Johanson’s theory.  The types of input variables can be varied whereas for 

Johanson’s theory the independent variables are set.  The INForm software models 

can also be set to predict different types of outputs in one calculation, whereas 

Johanson’s theory can only predict the Nip Angle in one calculation.  Further 

calculation is required to obtain other required outputs.  Moreover, Johanson’s 

theory does not account for the effects of varying roll speed due to deaeration in the 

nip region and INForm software could use any available data to give an accurate 

prediction.  Nonetheless, the setting up of the INForm software model did take time 

in terms of collecting experimental data and setting it up in the software but the 

usage of the model to predict required outputs was very quick. 
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As long as the model has been tested to predict for data which it has not seen 

before (validation data) then it could be used to safely predict output properties 

within the region of space for which experimental data has been conducted.  It may 

be concluded that the model is robust within the experimental space but not out of 

it whereas Johanson’s model is robust for any type of sample material and roll 

compaction process parameters.  Furthermore the software is a very useful tool to 

organise a large amount of data on different types of pharmaceutical excipients and 

using those data to contribute in predicting the required output properties of the 

products. 

 

However the model developed from this software does not have a mathematical 

form unlike Johanson’s model.  The INForm model is also not based on physics of 

materials but cause-and-effect within the dataset.  In addition to that the effects of 

each input variable were not clear in INForm software models unlike Johanson’s 

models. 

 

7.3 Summary 

This work concludes that the INForm software could be used to develop models to 

predict the effects of tablet formulation and roll compaction process parameters on 

final ribbon quality.  This investigation implies that the software could be used to 

develop models with the minimum input variables, such as formulation contents 

ratio and percentage of lubricant.  It can also develop models to include input 
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variables which are characteristics of the tablet formulation such as Compressibility 

κ or PSD Ratio (d84-d16)/d50 such as shown in Trial I and J.  It has been proven in 

this work that the results from the ’what if predictions’ and the optimisation feature 

could be trusted within the space of experimental data.  The results from the “what 

if” predictions were also compared to Johanson’s theory and proved to be give a 

more agreeable prediction.   
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Figure 7.11  Comparison of the Johanson’s theory prediction and INForm software prediction of nip 
angle for powder material compacted at 1 rpm. 

 

It can be suggested that this software be used as a form of database to collect large 

amounts of information for the Pharmaceutical Industry, which will then benefit the 

industry as a predictive tool to obtain answers to help solve problems.  It was 

discovered that as long as the software was fed a sufficient amount of datasets, it 

was very useful to predict a large amount of output properties from a limited 

amount of material characteristics.   

 

However this software should not be used to predict for new untried formulations or 

roll compaction process parameters.  This is because this software works on a basis 

of cause and effect and can only predict for experimental ranges which it has been 

trained on.  It does not do well when used for extrapolating results.  In such cases 

as predicting new untried formulations, the traditional engineering mathematical 

models should be used.  This is because for new formulations, the basic physical 

characteristics will be accounted for within the traditional mathematical models and 

not accounted for in the INForm models. 

 

Trials on the INForm software to investigate the benefit of using key variables found 

from FormRules were unfruitful.  It was because it made the model training more 

complicated as separate models for each output needed to be developed.  In 

addition there was no easy way to assess the quality of each trained model as soon 
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as one is trained.  An assessment on the training and test MS error was insufficient 

to confirm that the model was of a good quality. 

 

Furthermore, one can say that the INForm software models are “just a fancy form of 

regression” and could one not get results which are just as good by regression 

alone?  It can also be hypothesized that in a linear relationship the ‘what if 

prediction’ is comparable to the common regression method.  For instance the roll 

compaction output property could be obtain by working forward from the specific 

formulation and roll compaction process parameter to intra-polate on the output 

property using the regression relationship.   

 

Following that the optimisation results could also be reproduced using the regression 

method by working back using the output property to obtain the roll compaction 

process parameter for a specific formulation.  However, this has not been 

investigated within this research and it is unknown what advantages the INForm 

software has over the regression method in a non-linear input output relationship.  

Nevertheless it is interesting to note that Inghelbrecth et al. (1997) reported that 

the Multilayer Feed-Forward Network neural network (MLF) predicted the granule 

friability more accurately than a second order polynomial.  Moreover the 

comparisons can be made between the concepts within ANN and regression analysis 

(Table 7.11).  The ANNs are essentially equations interrelated to each other nodes 

within a network and is easy to model non linear relationships, while regression 
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analysis is limited by polynomial equations and more challenging to model non linear 

relationships. 

Table 7.11  Summarised comparison between neural networks and regression analysis. 

Neural Networks Regression Analysis 

Inputs Independent variables 

Outputs Dependent variables 

Calculates using mathematical equation Calculates using mathematical equation 

Weights Coefficient 

Improves model by evaluation of prediction error. Improves model by evaluation of prediction error. 

 

Investigations comparing regression to neural network, which did not involve roll 

compaction have been conducted in the past and showed two things (De Veaux et 

al., 1993; Timofei et al., 1997; Subramanian et al., 2004).  De Veaux et al. reported 

that the multivariate adaptive regression splines (MARS) were more accurate and 

made faster calculations than ANNs, while Timofei et al. reported that the ANNs 

performed slightly better than Multiple Linear Regression analysis.  Subramanian et 

al. (2004) demonstrated that ANNs showed less error than multiple regression 

analysis and provided a more accurate prediction.  De Veaux et al. (1993) found 

that MARS produces a model where basis functions are grouped together based on 

the order of interactions of the predictor variables they contain, whereas neural 

networks produce a black box.  MARS was also found to generally give a better 

prediction than neural networks at a lower number of data points.  As the number of 

data points increased, the two methods were expected to asymptotically reach the 

same level of accuracy.   
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Tomefei et al. (1997) found that the MLR approach lead to a better interpretation of 

the contribution of individual terms, but neural networks can extract more 

information from the data than statistical methods, especially where non-linear 

relationships are involved. Subramanian et al. (2004), reported that the normalised 

error from ANNs prediction was less than the multiple regression analysis, ANNs 

easily handled large amounts of input variables and became more helpful when the 

number of experiments were greater.  In the multiple regression analysis, higher 

number of input variables led to a polynomial with more coefficients, which involves 

tedious computation.  In view of this, the ANNs were more flexible to work with 

when historical data was available. 

 

Nevertheless this software is superior to the simple regression method in terms of 

handling large amounts of data and when used to obtain specific values from the 

data in a time efficient way.  This is because regression can only be done to 

calculate for one value, whereas the INForm software could be used to calculate 

several different outputs property, formulation or roll compaction process 

parameter.  It must be noted that this modelling method does not describe how 

each input contributes to the output properties whereas regression equation would.   
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8 Final Conclusions and Future Work 
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8.1 Main Conclusions 

Research on the roll compaction as a dry granulation method has been conducted 

since the 1960’s.  Although the effects of roll compaction of various types of powder 

materials on the final ribbon compact or tablet quality have been reported, they 

have rarely been quantified.  The aim of this work was therefore to develop 

predictive models using intelligent software which relate the tablet formulations and 

roll compaction process parameters to the final ribbon quality.  The intelligent 

software model was compared to a traditional theoretical model and from this, a list 

of strengths and weaknesses of the present models were determined.  Below, the 

general conclusions associated with the roll compaction of a variety of tablet 

formulations are presented, along with conclusions relating to the predictive models.  

8.1.1 Production of Ribbon Compacts from Tablet Formulations 

Gravity feeding roll compaction experiments conducted on five types of tablet 

formulation revealed that different types of powder material characteristics required 

specific roll compaction roll gap and roll speed ranges.  In comparing uniaxial 

compaction to roll compaction, it was found that for DCPA the densities were in 

agreement at lower pressure and deviated at higher pressure.  For the other four 

tablet formulations the relationships were not in agreement over the investigated 

pressure ranges. 
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The roll compaction of a variety of tablet formulations resulted in the following 

conclusion: 

♦ The nip angle generally increases if: i) maximum applied pressure in the nip 

increases, ii) the powder material effective angle of internal friction increases, 

iii) the powder material cohesivity increases, iv) the roll speed decreases, or 

v) the roll gap increases.  However in the case of lubricated powder, the 

decrease in powder material cohesivity decreased the nip angle as well as the 

operational roll gaps. 

♦ The upper limit of the roll speed operational range was found to decrease as 

the powder material d50 decreased. 

♦ The maximum applied pressure in the nip decreases if the roll gap increases 

or if the roll speed decreases. 

8.1.2 Predictive Capability of Models 

FormRules software training was found to produce good neurofuzzy models which 

highlighted the key input variables which affected the output properties.  The 

appropriateness of the key inputs should be carefully considered because the 

suggested relationships are not always practical and physically significant.  The 

FormRules models were found to be flexible; as soon as the database is set up 

inside the software, rapid and varied trials are possible. 

 

The highlighted key input variables from FormRules models were used in INForm 

model development.  Three trials were chosen to be investigated using the INForm 
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software.  Those three trials were all successfully trained to produce good predictive 

models.  The INForm models were found to be useful in two ways: 

i. “What if” predictions could be used to find the roll compaction output 

property for a particular tablet formulation and roll compaction at specific 

process parameters.  In industrial practice, this would save a lot of 

experimentation time, provided that the tablet formulation and the roll 

compaction process parameters are within the scope of the database. 

ii. The “Optimisation” function could be used to predict the roll compaction 

process parameters for a specific tablet formulation, at a known output 

property.  The predicted roll compaction process parameters were in 

agreement with experimental results. 

 

The INForm models were used to predict nip angle values and were compared to 

experimental results and Johanson’s model prediction.  This showed that the INForm 

model predictions were in better agreement with the experimental results compared 

to Johanson’s model.  Table 8.1 shows a comparison of the two models.  This 

research does not claim that an INForm model is superior to Johanson’s model, but 

it does show the strengths and weaknesses of using the INForm model for 

prediction. 

 

The ability of INForm software to handle large amounts of data to detect “cause and 

effect” relationships can be of great use in the pharmaceutical industry.  This would 

enable the industry to save time by decreasing the number of experiments for new 
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tablet formulations plus the software provides a database for an organised 

reference, and if the model was trained with good datasets, it could ease the 

validation process essential for good manufacturing practice. 

Table 8.1  Summary of the comparison of INForm model and Johanson’s Model. 

INForm Model Johanson’s Model 

Does not have any obvious mathematical equations to 

relate inputs to outputs. Usually known as a “Black 

box” model. 

Mathematical Model based on established powder 

mechanics theories. 

Does account for the increasing Roll Speed, as the 

data are considered in detecting the “cause and effect” 

relationships between input and output. 

Does not account for effects of increasing roll speed 

due to the air entrainment within the nip region. 

Could not predict outside the scope of data that it has 

been fed.  i.e. fails when used to extrapolate outside 

the range of tablet formulation or roll compaction 

process parameters which it was trained on. 

Could predict nip angles for any material provided that 

the model is fed sufficient material characteristics. (i.e. 

Compressibility κ, effective angle of friction and angle 

of Wall Friction.) 

Once the model is trained, the model could be used to 

process large amounts of information of various tablet 

formulations and process parameters to predict 

required output property quickly. 

Could only be conducted for one tablet formulation 

and process parameter to obtain one output property 

at any one time.   

Produces very accurate nip angle predictions. 

Predictions of nip angles showed very small deviation 

from the experimental nip angle, which is within 1o
 to 

2o. 

Flexible – Predictions improve with volume and type of 

data 
Rigid – Fixed performance 
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8.2 Future Work 

Based on the experimental research presented in this thesis, the subjects listed 

below are suggested avenues for future work: 

i. To produce tablets from the roll compacted ribbons and to study the 

disintegration and dissolution times of the tablets.  These values can then be 

used in comparison with tablets produced via wet granulation. 

ii. To find a better representation of PSD or to prove that PSD Ratio (d84-

d16)/d50 is a good indication of PSD width and median.  PSD has an obvious 

effect on the roll compaction of powder materials.  It would benefit the 

INForm models if PSD was indicated by a less ambiguous representation. 

iii. To add into the present intelligent software data base.  By varying the type of 

tablet formulation, which highlights each the bulk powder characteristics to a 

different extent. 

iv. To compare the INForm models prediction with regression analysis prediction 

and Johanson’s model modified by Boursel (2001) to accommodate air 

entrainment. 
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9.1 Appendix 1 

Comparison of roll compaction to uniaxial compaction. 

Converting the angular speed of the roller compactor to horizontal speed. 

Compaction direction
A

B

Angular speed θ
distance ds

dθ
θ

dx
r

distance ds

LHS RHS

C

 

Since LHS = RHS 

Consider RHS 

Where length of arc, θrddsAC ==  

Hence θsindsdx =  

 θθ sinrddx =  

 θθ sin
dt
dr

dt
dx

=  

Because there are two compressions occurring simultaneously, thus the compaction 

speed is: 

 θθ sin22
dt
dr

dt
dx

=  

 

 214



Chapter 9  Appendices 

Radius, r = 100.00 mm 
 

Table 2  The conversion of roll speed to horizontal compaction speed. 

Nip Angles 
(o) 

roll 
speed 
(rpm) 

roll speed 
(rad/s) 

Horizontal 
compaction 

speed (mm/s) 

Horizontal 
compaction 

speed 
(mm/min) 

3 1 0.1047 1.10 65.75 

4 1 0.1047 1.46 87.64 

5 1 0.1047 1.83 109.50 

6 1 0.1047 2.19 131.33 

7 1 0.1047 2.55 153.12 
 

9.2 Appendix 2 

Compliance results and an example of punch displacement according to 

the equipment compliance result 
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Figure 9.1  Compliance test result for the 30 kN load cell at 1mm/s vertical speed. 

The graph above shows the compliance.  The graph produces a relationship 

represented by the equation below: 
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where  is the displacement of the machine, and cy x  is the load.  The equation 

above is used to correct the original displacement of the uniaxial compaction results 

using the equation below.   

cyntdisplacemeOriginalntdisplacemecorrectedCompliance −=  

 

9.3 Appendix 3 

Ribbon density calculations 

To calculate the ribbon density; firstly the total volume of bottle (cm3) was obtained 

by dividing the initial mass of water (g) by the density ρ of water at temperature 

(oC).  The initial mass of water (g) was obtained by subtracting mass of empty 

bottle (including cover) from mass of bottle and cover filled with water.  Then the 

final mass of water (after adding the sample) was calculated by subtracting the 

mass of wax coated ribbon compact and the mass of empty bottle from the final 

bottle mass.  Next the volume of water was obtained by taking a ratio of the final 

mass of water over the density of water.  Hence the volume of sample is the volume 

of water subtracted from total volume of bottle.  Then the mass of wax was 

obtained by subtracting mass of ribbon from mass of wax coated ribbon.  Since the 

volume of wax coated sample is equal to the sum of volume of ribbon sample and 

Volume of wax.  Replacing the volumes for the ratio of mass over densities we 

obtained, volume of wax coated ribbon sample = mass of ribbon sample / density of 
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ribbon sample + mass of wax / density of wax.  Rearranging this equation would 

give us the ribbon density = mass of ribbon sample (1/ (volume of wax coated 

ribbon sample – mass of wax / density of wax)).  Finally ribbon porosity was 

calculated from, ε = 1- (ribbon density / true density). 

 

9.4 Appendix 4 

FormRules software tutorial  

9.4.1 Entering Data and Setting Inputs and Outputs 

Initially the 64 data sets were filled into excel and saved as a text file (FR803a.txt).  

The first row was filled with the input/output name and the first column was filled 

with the formulation name.  Next the text file was imported into the FormRules by 

clicking on “Data Sheet” button and clicking on “Import” (Figure 9.2).   
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Figure 9.2  Importing data into FormRules 

Figure 9.3 shows the imported data sets within FormRules.   

 
Figure 9.3  Data set has been imported into FormRules 
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Then “Ok” was clicked on to bring the user into setting field types for the inputs and 

outputs (Figure 9.4).  In this window the user was required to set the inputs and 

outputs for the model training.  The inputs are known as ingredients and processing 

condition, while the output was known as property within this program.  Hence the 

formulation and formulation characteristics were set as “ingredient”, the process 

parameters were set as “processing condition” and the roll compaction output and 

intermediate output property was set as “property”.  Note that inputs which were 

not used were set as “not used”. 

 

 
Figure 9.4  Setting field types 

After the field types were set the data analysis window will appear (Figure 9.5).  

Although the possibility of analyzing the data has been provided, it is not essential 

to conduct the analysis unless the user has doubts on the data coverage, or needs 

to check on the simple statistics or to look for outliers.   
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Figure 9.5  Data analysis 

On the data analysis window, the “Ok” button was clicked and this brings the user to 

the training window which is explained in the next section (Figure 9.6).   

9.4.2 Model Training 

In this training window the “parameter” button can be clicked on to reveal the 

model training parameters.  There are three separate tabs shown by Figure 9.7, 

Figure 9.8 and Figure 9.9.  Initial training would use the default settings but 

subsequent training would require the training parameters to be readjusted.  Each 

of the training parameters is explained in Section 9.4.3.  In the training of the 

FormRules for data set FR803a.txt the default settings for the training parameters 

were used.  To proceed to training the “Train” button was clicked. 
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Figure 9.6  Training window 

 
Figure 9.7  Model Training Parameter: Minimisation tab 
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Figure 9.8  Model Training Parameter: Model Selection 

 
Figure 9.9  Model Training Parameter: Fuzzy sets 
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9.4.2.1 Training complete 

After training was completed a small window indicating the completion of training 

will appear as shown in Figure 9.10.  Click “Ok” on the “Training is complete!” 

window.  Note that in the FormRules model training each output property has been 

trained independently from each other. Note that in the FormRules model training 

each output property has been trained independently from each other. 

 

 
Figure 9.10  Model training completed 

9.4.2.2 Assessing the trained model 

The trained model was assessed by evaluating the f-ratio and R2 value within the 

model statistics tab which could be opened by clicking on the “Spreadsheet” button.  
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A good model would show computed f-ratio above 4 and Train Set R2 values of 

above 80.  As shown in Figure 9.11 the model was successfully trained. 

 

 
Figure 9.11  Model statistics on which the models can be assessed for acceptability 
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9.4.2.3 Examining the trained models 

Clicking on the “Graphical” button gives the neurofuzzy results window as shown in 

Figure 9.13 which is a graphical display of the submodels for each property, and the 

highlighted inputs to each submodel.  The figure shows that the inputs Ratio (d84-

d16)/d50, roll speed (rpm) and roll gap (mm) are key variables in relation to ribbon 

density (kg/m3).  There are two ways in which the fuzzy rules can be obtained.  

Firstly, by clicking on the “Spreadsheet” button and choosing the “Rules” tab (Figure 

9.12).   

 

Secondly by left-clicking on the “Submodel: 1” box in Figure 9.13 and choosing 

“Show Rules”.  The fuzzy rules for ribbon density submodel: 1 are listed below: 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (1.00) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.58) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.69) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is HIGH (0.75) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.87) 

IF Roll Speed (rpm) is LOW AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is HIGH (0.54) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (0.63) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is LOW AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.63) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is LOW THEN Ribbon D (kg/m3) is LOW (0.64) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is MID THEN Ribbon D (kg/m3) is LOW (1.00) 

IF Roll Speed (rpm) is HIGH AND Roll Gap (mm) is HIGH AND Ratio (d84-d16)/d50 is HIGH THEN Ribbon D (kg/m3) is LOW (0.72) 
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Figure 9.12  FormRules model training results 
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Figure 9.13  Neurofuzzy Results for ribbon density (kg/m3) 

 

Submodel is the name of the set of rules relating a set of inputs to one output.  It 

can be seen that for some outputs, the software generates up to three submodels.  

By highlighting the output property name in the left hand column, the neurofuzzy 

result for that output would be displayed.  As shown in Figure 9.14, Figure 9.15 and 

Figure 9.16.   
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Figure 9.14  Neurofuzzy results for ribbon porosity 

 
Figure 9.15  Neurofuzzy results for average maximum pressure (MPa) 
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Figure 9.16  Neurofuzzy results for average nip angle (o) 

 

9.4.3 Model Training Parameters 

9.4.3.1 Minimisation Parameter 

Figure 9.7 shows the minimisation parameter which controls the gradient descent 

minimisation of the neurofuzzy system.  The minimisation parameter used in this 

system is known as the ridge regression factor.  Ridge regression is a method 

originally developed for solving badly conditioned linear regression problems (Hoerl 

and Kennard, 1970).  It adds a term that minimises the magnitude of the regression 

coefficients and makes the calculation more stable.  In FormRules model training a 

small ridge regression parameter is desirable as it reduces the chance of over-

training. 
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9.4.3.2 Model Selection Criterion 

The choice of model selection criterion is important because it determines the most 

appropriate model and the quality of the trained model.  The type of model selection 

criterion is affected by the size of the data set, the amount of noise in the data and 

the complexity of models developed.  Figure 9.8 shows the default model selection 

criterion which is Structural Risk Minimisation (SRM; see below).  There are two 

types of model selection criteria: the first is the validation and the second is the 

statistical significance method.  Examples of the former are Cross Validation (CV) 

and Leave-one-out Cross Validation (LOOCV).  Examples of the later are SRM, 

Minimum Descriptor Length (MDL), Bayesian Information Criteria (BIC) (see below 

for further explanation.  

 

The effect of using different models has not been tested in this investigation. 

FormRules uses SRM as a default and this generally produces the best balance 

between simplicity of models and predictability of the results.   

 

Structural Risk Minimization (SRM) 

SRM is a complex machine learning and statistical inference.  The neural network 

with fixed architecture and α corresponding to the weights and biases is considered 

as a learning machine (Burges, 1998).  The principle of SRM (Vapnik, 1979) was 

summarised in Burges (1998).  The SRM was introduced to find the subset of 
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functions which minimizes the bound on an actual risk (or problem).  It is a 

structure which arranges chosen set of functions so that the Vapnik Chervonenkis 

(VC) dimension h varies smoothly.  The structure divides the entire class of 

functions into nested subsets (Figure 9.17). 

h3 h2 h1 h1 < h2 < h3… h4 

 

Figure 9.17  Nested subsets of functions, ordered by VC dimension. 

 

For a trained machine the expectation of the test error which is also known as the 

actual risk is therefore: 

),(|),(|
2
1)( yxdPxfyR αα −= ∫  (9.1) 

P(x,y) is assumed to be some unknown probability distribution and neural network is 

the machine that needs to learn the mapping of xi a yi.  The “empirical risk” Remp 

(α) is defined to be the mean error rate on the training set and depicted as shown 

below:  
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The quantity |),(|
2
1 αii xfy −  is called the loss and in the case it can only take the 

values 0 and 1.  With probability 1-η, the following bound holds (Vapnik, 1995): 
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l
hlhRR emp

)4/log()1)/2(log()()( ηαα −+
+≤  (9.3) 

Where h is a non-negative integer called the Vapnik Chervonekis (VC) dimension.  

The right hand side of (9.3) is the “risk bound”. 

 

The SRM used in FormRules software was based on the risk minimization theory 

explained above.  Assuming function: 
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Here  
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=  (9.5) 

where P is the number of data patterns, N is the number of independent parameters 

in the model structure and 1+N is the VC dimension h. 

And  [z]∞ = z if z ≥ 0 

 [z]∞ = ∞ if z < 0 

 MSE = Mean Square Error is a sum of the overall output errors.  It measures 

how well the model fits into a particular set of training data. 

 232



Chapter 9  Appendices 

( )∑∑
==

−==
P

p

pp
P

p
P predictedRtgetR

P
E

P
MSE

1

2)()(

1

11
 (9.6) 

where R(p)tget is the target value of property in the pattern p, R(p)predicted is the 

predicted (current) value of property in pattern p, p is the pattern or data record 

number and P is the total number of patterns. 

 

FormRules SRM model selection criteria have two parameters which are called C1 

and C2.  The C2 parameter is fixed but C1 can be manually modified by unchecking 

the auto-scale. Decreasing C1 will give more complex models.  Auto-scale was 

checked on to allow the automatic scaling of C1 from 0.8 to 1.0.  If the number of 

data points is above 100 then a value of 1.0 is used for C1.  If there are fewer than 

100 data points, then the C1 value is scaled linearly between 0.8 and 1.0 and for 

very small data sets the value is closer to 0.8.  Decreasing C1 will give more complex 

models, and even quite a small change can have a significant effect.   

 

Minimum Descriptor Length (MDL) 

Minimum Description Length (MDL) is an information theoretical model selection 

principle. MDL seeks to minimize the number of bits‡‡ needed to describe the data 

over the available models. Rissanen (1978), formulated the MDL idea using 

essentially the formal equivalent of negative-log probabilities (Rissanen, 1978).  He 

developed his ideas on MDL further in 1987, 1989 and 1996 (Rissanen, 1987; 

                                        

‡‡ Bits is short for binary digit which is each 0 or 1 in the binary system of a computer language. 
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Rissanen, 1989; Rissanen, 1996).  A review of the fundamentals and latest 

development in MDL is presented by Grunwald (2005).   

 

Grunwald stated that MDL does embodies a preference for ‘simpler’ models rather 

than a best fitting model as an inference strategy useful in a very complex 

environment.  He concluded that MDL is a versatile method for inductive inference 

which can be interpreted in four different ways and still give a reasonable result.  It 

is asymptotically consistent and achieves good rates of convergence.  Hansen and 

Yu reported excellent MDL behaviour in a regression context (Hansen and Yu, 2000; 

Hansen and Yu, 2001).  Allen et al. (2003), Kontkanen et al. (1999) and Modha and 

Masry (1998) reported excellent behaviour of predictive coding in Bayesian network 

model selection and regression.  However if none of the distributions under 

consideration represents the data generating machinery very well, then MDL may 

sometimes not find the ‘best’ approximation within this area.  This has been 

observed in practice (Clarke, 2003; Kearns et al., 1997; Pednault, 2003). 

 

In FormRules software MDL is a function taking the form shown below: 

P
PNMSEMDL )ln()ln( +=  (9.7) 
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Bayesian Information Criteria (BIC) 

Bayesian Information Criteria (BIC) is derived from an extension of Schwarz’s (1978) 

basic idea.  BIC is used in model selection to provide a measure of the weight of 

evidence favoring one model over another (or the Bayes factor) (Weakliem, 1999). 

Jeffreys firstly developed Bayesian methods for inductive inference in 1939 (Jeffreys, 

1939).  Then in 1992 Bayesian approach in the neural network literature was 

introduced by Mackay (Mackay, 1992).  Kass and Wasserman (1995) report a review 

of the techniques of Bayesian inference. 

 

In the FormRules software the BIC has a function of the form: 

 

 

[ ]∞
∞

=⎥⎦
⎤

⎢⎣
⎡

−
−+

= zMSE
NP

NPPMSEBIC )1)(ln(
 (9.8) 

 

where  [z]∞ = z if z ≥ 0 

  [z]∞ = ∞ if z < 0 

 

Cross Validation (CV) 

Cross Validation (CV) is used to select between competing model alternatives.  First 

CV divides the dataset into a training set and a test set (Friedl and Stampfer, 2002).  

Then the test set is used for testing the model which was built on the training set.  

These two steps were repeated for a number of divisions of the data.  Then the test 
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procedure results are combined and used for the next model selection and 

assessment.  The idea for CV was first developed by Stone (1974). 

 

In FormRules software the CV function partitions the data into a number of subsets.  

Only one subset is used as a test set and the remaining data are used as a training 

set.  This is repeated for every subset and the performance of the model was 

determined from the average adjusted Mean Square Error (MSE(adj)) of the tests.  

Mean Square Error was adjusted to take into account the complexity of the network 

compared to the number of data patterns: 

( ) ( )
2

1

)()(1 ∑
=

−
−

=
P

p

pp predictedRtgetR
NP

adjMSE  (9.9) 

where R(p)tget is the target value of the property in the pattern p, R(p)predicted is 

the predicted (current) value of property in pattern p, p is the pattern or data record 

number and P is the total number of patterns. 

 

The problem with this method was that each model being tested must be trained 

the same number of times as there are subsets.  Hence the number of subsets (CV 

parameter) should be kept below 10.  Increasing it would cause the training time to 

be longer.  The CV parameter (i.e. “No. Subsets”) belongs to CV and will only need 

to be changed if the CV model selection criterion is chosen (Figure 9.18). 
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Figure 9.18  Model Training Parameter: Model Selection 

 

Leave One Out Cross Validation (LOOCV) 

Leave One Out Cross Validation (LOOCV) is a variation of CV.  In FormRules 

software LOOCV, each subset corresponds to only one data record.  The process of 

training as described above was not conducted because it would be impractical.  

Hence an analytical solution was used which determined the MSE if the process was 

conducted.  LOOCV MSE calculation does not go through minimization during the 

model selection process but only once a solution has been found.  The disadvantage 

of using LOOCV is that it involves a slow inversion of a matrix, it is significantly 

slower than the statistical methods and it has the highest tendency to overtrain. 
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ydiagPy
N

LOOCV ΡΡ= −2)(1
 (9.10) 

Ρ  is the projection matrix calculated via singular value decomposition (SVD) of the 

auto-correlation matrix.  It can be used to calculate the network weights.  N is the 

number of data patterns and y is the vector of output values. 

 

9.4.3.3 Fuzzy Set Parameter 

 

Figure 9.19 shows the fuzzy set tab within the model training parameter. This tab 

explains the options in manipulating the structure of the neurofuzzy logic network.  

FormRules model training occurs in phases.  The initial phase involves the system 

trying out a series of models with a fixed number of densities (i.e. nodes) per input.  

After the best model was found, a refining stage occurs in which the model adapts 

the number of nodes per input.  Inputs fed in as text are encoded, the model will 

use 1st Order Fuzzy Set Densities and the number of sets are defined by the number 

of text values.  Changes on this tab do not alter the results for text inputs.   

 

Inputs fed in as numeric data will use 2nd Order Fuzzy Set Densities.  These are 

linear or triangular in shape as explained in Section 2.2.3.  The number of sets 

which are required to obtain a good match between actual and predicted values 

depends on the relationship between input and output.  A linear relationship 

requires the minimum of 2 sets.  A non-linear relationship would require 3 or more.  

By default sets of 2 and 3 set densities are used. Higher set densities require longer 
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to train and produce more complicated rules.  The default settings were used in 

training. 

 

The “adapt nodes” are left as checked to allow for adaptation to occur after the final 

model has been found to develop better models.  The “maximum number inputs” 

per submodel can be set from 1 to 4.  By default a maximum of 4 inputs are used 

per submodel.  Reducing this may reduce the complexity of the rules, but in general 

will result in the match between predicted and actual results to be less good.  The 

“maximum number of nodes per input” can be set from 10 to 15.  By default a 

maximum of 15 nodes are used per input.  Reducing this will reduce the complexity 

of the rules and increase the speed of model minimisation; however this will result 

in the match between predicted and actual results being reduced in quality.   
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Figure 9.19  Model Training Parameter: Fuzzy sets 

 

 

9.5 Appendix 5 

INForm software tutorial – Example Trial D 

9.5.1 Entering data and setting inputs/outputs 

Initially the data was filed into The Excel Spreadsheet.  The first row was filled with 

the input/output name and the first column was filled with the formulation name.  

Then 42 data sets were stored in a file named INF1208a.txt.  This file was imported 

into the INForm program by clicking on “Data Sheet” button and then on “Import” 

(Figure 9.20).  Figure 9.21 shows the imported data sets within INForm.  Then “Ok” 
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was clicked to open up the next window, which is setting field types window (Figure 

9.22).  In this window the inputs and outputs were set.  The inputs were labeled in 

two classifications “Ingredients” and “Processing Conditions”.  The output was 

labeled as the “Property”.  The “Not Used” label was used for inputs or outputs 

which were not activated within the modeling.  For example the Hausner’s Ratio will 

be assigned as “Not Used”.  The data analysis window (Figure 9.23) will replace the 

“Set Field Types” window after the inputs/outputs were set.  No data analysis was 

conducted on this window.  Next “Ok” was clicked to open up the following 

“Training” window which will be explained in the next section. 

 
Figure 9.20  Importing data into INForm software. 
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Figure 9.21  Imported data set. 

 

 

 
Figure 9.22  Setting inputs and outputs. 
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Figure 9.23  Data analysis. 

9.5.2 Model training: Model development and assessment 

Figure 9.24 shows the training window.  The “Outputs trained” box shows the 

choices to train the model together in one model or separately.  The outputs were 

trained separately.  Next the test data was set by clicking on “Options” button on 

Figure 9.25.  Test data was imported from INF1201testdata.txt.  Following this the 

Model Training Parameters window was opened by clicking on “Parameters”.  

Initially the default training parameters were used (Figure 9.26 to Figure 9.30).  The 

training was initiated by clicking on “Train” button on the training window.  Once the 

training was completed the “Results” box will be activated (Figure 9.31) and the 

quality of the model will be assessed using the steps shown in Figure 9.36. 

 

In the example shown, clicking on “View Results” button will show us the training 

results window (Figure 9.32).  The data from this page is summarized in the Table 
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7.1.  The f-ratios are above 4 and the train data R2s are above 0.85 for all the 

output property.  However for test data the R2 value was above 0.85 for all except 

average maximum pressure, hence this model was not a good model and needs to 

be retrained.  The transfer function for the 1st hidden layer will be changed from 

Asymmetric sigmoid to Tanh.  

 

The retrained model results are shown by Table 7.2.  The retrained model shows an 

acceptable model was trained.  Next the linear regression lines for train data and 

test data were evaluated.  Figure 7.3 and Figure 7.4 shows that the linear regression 

R2 values were all above 0.85 and this means that the model trained was 

acceptable.  To ensure that the model trained was not memorizing the train and test 

data, the validation data was predicted and the results are shown in Figure 7.5.  The 

linear regression R2 values for all the output property were above 0.85.  This means 

that the model trained for the Trial D using Tanh function as the 1st hidden layer 

transfer function and default parameters was a good model. 
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Figure 9.24  Training window. 

 
Figure 9.25  Setting test data. 
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Figure 9.26  Model Training Parameters : Training Parameters Tab. 

 
Figure 9.27  Model Training Parameters : Test Data Tab. 
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Figure 9.28  Model Training Parameters : Network Structure Tab. 

 
Figure 9.29  Model Training Parameter : Type Tab. 
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Figure 9.30  Model Training Parameters : Connections Tab. 

 
Figure 9.31  The training results 
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Figure 9.32  Training Results: Model Statistics 

9.5.3 The Training Parameters are explained 

The training parameters were explained in this section.  However the order in which 

the parameters are presented is not the order in which the parameters are 

readjusted before retraining.  The stages of readjustments of the network are 

presented in Figure 7.2.   
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9.5.3.1 Training parameters: Backpropagation parameters and Targets 

On the training parameters tab (Figure 9.26) the options for changing the learning 

rate, momentum, target epochs and target MS error are given.  These training 

parameters are linked to the backpropagation strategies (explained in section 

9.5.3.5).  If either the standard incremental or standard batch was chosen the 

learning rate and momentum parameters requires adjusting during training.  If the 

angle driven learning option was chosen an initial value of the learning rate and 

momentum needs to be set.  However if the Quickprop was chosen then only an 

initial learning rate needs to be set.  Otherwise no initial value of the learning rate 

and the momentum is required for the default INForm backpropagation strategy (i.e. 

RPROP).   

 

The target epochs are the number of iterations that had been used in training the 

network.  If the model was unsuccessfully trained there is a possibility that the 

number of epochs will need to be increased.  Note that the number of epochs will 

not improve the results of the MS error and the test error if the neural network set 

up was not suitable for the type of data chosen or the type of test data chosen.  The 

number of epochs should be changed only if one of two conditions occurs.  The first 

is if the size of the total data sets which failed to train was extremely large.  The 

second is if the test error and MS Error were observed to be approaching the target 

values but was stopped before the target convergence could be achieved by a 

limitation in the number of iterations.  Otherwise this parameter is usually the last to 

be adjusted.  The target MS error is 10-4 and this value is rarely achieved. 
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The random seed is a function which initializes the network with different small 

weights.  Changing this number would generate new sets of weights for the network 

and this could effectively improve or worsen the model training.  However, this is a 

good first step to take if the model was not training well. 

 

9.5.3.2 Smart stop: minimum and overshoot iteration 

The smart stop ensures that the training stops at the optimum combination of test 

error and MS error.  This parameter is only activated when the test data is used to 

assist in training the network.  According to Colburn (2006), smart stop compares 

the values of test error against the product of weight multiplied with MS error.  The 

weight can be specified or can be automatically specified by INForm.  The weight is 

basically the ratio of test data to the MS error, which normalises the value of MS 

error to be compared to test error.   

 

If the normalised MS error is greater than the test error, the network training will 

continue.  Otherwise if the normalised MS error is less than the test error, the 

network training will cease.  However the smart stop, allows the calculation cycle to 

continue beyond this point until the specified number of iterations (iteration 

overshoot) is reached.  Then if the conditions are still not met, the smart stop will 

restart the calculations from the point at which the test error first exceeded 

normalised MS error.  This can be observed from the Figure 9.33.   
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The minimum iterations determine the minimum number of calculation cycles the 

network conducts before the smart stop is implemented.  The iteration overshoot 

ascertains the maximum number of calculation cycles in the ‘forward look’ before 

smart stop can be implemented.  If the network model training was observed to be 

stopped too early, then this value should be increased.  This is indicated by the 

quick rise and fall of the test error and the MS error in the graph of mean square 

error against number of epochs in Figure 9.33. 

 

 
Figure 9.33  Graph of mean square error against number of epochs for average maximum pressure 

neural network training. 

9.5.3.3 Transfer function 

On the network structure tab (Figure 9.28), the transfer function for the hidden 

layers could be changed to Asymmetric sigmoid, Tanh or Symmetric sigmoid.  
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Sigmoidal and Tanh transfer functions are in the shape of an “S”.  This Asymmetric 

and Symmetric transfer function converts the neuron’s net input of negative to 

positive infinity into outputs of values 0 to 1.  Whereas Tanh transfer function 

converts the net input into values between  – 1 and 1. The output transfer function 

has the same choices as the hidden layers except for linear transfer function.  The 

linear transfer function will convert the neuron’s net input to any value.   

 

Asymmetric sigmoid is the most commonly used transfer (Haykin, 1994) function in 

the ANN training hence it is used as a default in the INForm software for the hidden 

layer.  However the linear transfer function is used for the output layer.  The type of 

transfer function can change the way in which the neural network trains.  Thus if 

the model failed to train under default settings, the user is advised to change the 

transfer function.  It was reported that Tanh (also known as Hyperbolic Tangent 

Function) is a very flexible, non-linear, continuous and (Bhadeshia, 1999).  Hence 

Tanh has been used in previous trials which showed it seems to work best for most 

of the data.  Note that the hidden layer transfer function would be the second 

network structure to be changed and followed by the output transfer function 

(Figure 7.2). 

 

9.5.3.4 Hidden layers 

The network structure can be specified on the network structure tab (Figure 9.28).  

The number of hidden layers is one.  This should always be kept at minimum to 
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avoid developing complex models for a simple input – output relationship.  The 

number of hidden layers can be increased if the model failed to train or the 

expected relationship between input and output is non-linear and multivariate.  The 

number of nodes in the hidden layer can be changed.  Initially during training the 

default number of nodes was used (5 nodes).  However if the model does not train 

well, then by trial and error the amount of nodes can be adjusted. It is best to use 

the least amount of nodes to avoid overtraining the network.   

 

9.5.3.5 The backpropagation strategies 

The backpropagation strategy can be specified on the type tab (Figure 9.29).  These 

strategies are standard incremental, standard batch, angle driven learning, resilient 

backpropagation (RPROP) and Quickprop.  The subsequent paragraphs will briefly 

explain these strategies.  Backpropagation is one of the most famous training 

algorithms for multilayer perceptrons (MLP) (Schiffman et al., 1993).  It is a gradient 

descent technique which minimises the error between the target and actual output 

values to train a neural network MLP.  

 

In MLP training, an initial weight was assumed for the nodes in the hidden layers.  

Then using these weights an output was calculated.  Initially this actual output 

usually differs largely from the target value.  Thus the weights are adjusted to 

minimise the error function E (also known as Mean Square error (MS error) in the 

INForm program).   This error function represents a measure of the performance of 
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the network (Haykin, 1994; Rumelhart et al., 1986).  A more comprehensive 

explanation of the basics of backpropagation is presented in section 2.2.1.1.  Figure 

9.34 shows the flow of calculation for standard incremental backpropagation. 

 

New weight values 
are calculated using 

equation (9.2) 

Initial 
weight 

Change the 
learning rate ε 

and the 
momentum α

ANN 
trained 

ANN 
calculation 

E ≤ E* ? 

MS Error E is calculated from 
equation (9.3) and (9.1) 

No

Yes 

 
Figure 9.34  Flow of calculation for standard incremental backpropagation.  E* is set at 10-4 in 

INForm. 

This error function E is defined as the mean square sum of differences between the 

values of the actual output units of the networks and the desired target values (see 

equation (9.1)). 
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tj and aj are the target and actual response values of output neuron j in the pattern 

p.  Note that actual response is the currently calculated output.  NL is the number of 

output neurons, L is the number of layers and P is the total number of patterns.  In 

the INForm programme the square of the difference between target and actual 

response was multiplied by a belief factor of record pattern p represented by bp.  In 

terms of formulation, the pattern p is referring to a single experimental recipe.  

There are two basic backpropagation strategies for updating the weights; standard 

incremental and standard batch.   

 

Standard incremental 

In standard incremental the new weights are calculated each time a new data 

record is presented to the neural network (Figure 9.34).  The calculation is 

conducted by equation (9.2) (Rumelhart et al., 1986). 
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Here  is the change in weight for the node connecting node i and node k for 

the nth iteration of the process.  ε is the learning rate and α is the momentum.   E

( )nwikΔ
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is the difference between the calculated and observed outputs of the pth pattern.   
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In these backpropagation strategies the learning rate and momentum are two 

adjustable parameters (non-negative numbers) (Rumelhart et al., 1986).  The 

learning rate allows control of the average size of the weight changes and the 

momentum function is used to speed up training in very flat regions of the error 

surface, and it suppresses weight oscillations in step “valleys”. 

 

Standard batch 

The second alternative given by the INForm software is standard batch in which the 

new weights are calculated only after all the patterns have been presented to the 

neural network. The weight was calculated by replacing the Ep in equation (9.3) 

ith E calculated from equation w

of data. 

(9.1).  It is important to note that the sum of 

weights can become very large in this strategy causing the weight change to be 

large.  Following this the weights and the MS error can diverge leading to 

unsuccessful training.  Thus the learning rate must be kept small to avoid this 

divergence.  However the learning rate is dependent on the size and nature of the 

data set, hence it is important to use trial and error to find the right learning rate 

value for different sets 

 

Angle driven learning rate 

Another backpropagation strategy was to adjust the learning rate during training.  It 

is called the angle-driven learning rate approach proposed by Chan and Fallside 

(Chan and Fallside, 1987).  It is an adaptation of angle between gradient directions 

in consecutive iterations.  The calculation method considered that previous weight 

 257



Chapter 9  Appendices 

update  and the current gradient descent  vector directions gave an 

angle between θ them.  In successive iterations this angle θ gives information about 

the properties of the error surface.  If these two vectors gave similar directions, it 

indicated stability of the search procedure, and then the learning rate value can be 

increased.  However if a noticeable difference between these directions was 

detected (shown by a change in the angle value between iterations), it suggests 

that there are irregular regions present on the error surface.  This situation requires 

a reduction in the learning rate.  The angle information is calculated from the cosine 

rule (equation 
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Note that the angle between  and  is equal to the angle between 

 and  only when momentum is not used.  Otherwise the effect of 

momentum on the learning rule, combined with the direction of the previous 

gradient vector  results in a weight update  that follows a direction 

different from the gradient one.  Basically this strategy uses the principle that if the 

error value decreased to a small value then the learning rate is increased, while if 

the error value increases, the learning rate is decreased.   
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The value of the learning rate for the current iteration is obtained by combining its 

value in the previous iteration with the current value of cos θ (see equation (9.5)). 

⎟
⎠
⎞

⎜
⎝
⎛ += − nnn θεε cos

2
111  

(9.5) 

 

Subsequently, once the vectors are in parallel, the adaptation on the momentum 

was proposed based on the fact that it should be proportional to the value of the 

learning rate nnn ελα = .  Further details on the momentum could be obtained from 

Chan and Fallside (1987) or briefly in Moreira and Fiesler (1995). 

 

Quickprop 

The next backpropagation strategy given in the INForm option is Quickprop, 

developed by Fahlman (1988).  It is mainly composed of a set of heuristics and was 

adapted from two basic approaches.  The first approach was to dynamically adjust 

the learning rate (based heuristically on the history of the computation) and the 

second approach was the second-order method (based on Newton’s method).   

 

According to Moreira and Fiesler (1995) the main principle of Quickprop is to 

perform independent optimisation for each weight.  It minimises an approximation 

of its curve by using a parabola whose arms turn upwards (Figure 9.35).  At each 

step, the parabola is minimised using the inclination of the corresponding weight 

dimension of the error surface in the current and previous step.  The weight 

adjustment equation for this method is  
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This equation has no learning rate, but the step size could still be controlled using a 

“maximum growth factor” μ to avoid the situation at which the parabola determines 

a very large or infinite step.  The upper limit is )1()( −Δ≤Δ nwnw ijij μ  and μ was 

suggested to be 1.75.   

1 2

0.5Mean 
Square 
Error

 
Figure 9.35  Mean square error versus weight value 

For the first step and cases where the previous weight step is zero, quickprop uses 

simple gradient descent (i.e. delta rule, see Moreira and Fiesler (1995)) along with 

the learning rate.  The quickprop was improved by combining both update rules 

which results in always adding the delta rule update to the quadratic rule, 

mentioned above.  However, when the sign of the steepness in the current step is 

opposite to the previous one, only the quadratic rule is used. 
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Further improvements involve adding a weight decay term to each weight to prevent 

it from growing exceedingly and causing overflow.  Finally, the flat-spot elimination 

technique is proposed.  A flat-spot problem causes a weight too small to update 

which is to be avoided in training.  This technique involves always adding a constant 

of 0.1 to the derivative of the actual output.  Quickprop requires a learning rate and 

momentum to be fed into it to initiate or to restart (if it has been set to zero) 

training. 

 

RPROP 

The default backpropagation strategy given in INForm is RPROP.  It is an adaptive 

version of the “Manhattan-Learning” rule (Riedmiller and Braun, 1992).  RPROP is 

based on the sign of the local gradient in consecutive iterations and the weight 

update is done directly without the use of the derivative or the learning rate.  In 

each iteration, the update rate )(nijΔ  was added to each weight.  The value of 

 is adapted by the gradient sign technique. )(nijΔ
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If the current local gradient is positive, the update-value is subtracted to the weight. 

On the other hand, if the current local gradient is negative, the update-value is 

added to the weight.  However with a gradient of zero, the weight remains 
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unchanged.  To start the calculation a small initial update value  was chosen.  

To stop oscillation and arithmetic underflow of floating point values the step sizes 

were bound by upper and lower limits.  The RPROP does not require an input for the 

learning rate or momentum parameter. 

)(nijΔ

 

Advantages and disadvantages of the backpropagation strategies 

Previous research has shown that Quickprop and RPROP have comparable training 

speeds (Schiffmann et al., 1994).  However Quickprop, RPROP does not require the 

user to feed it any values for the learning or momentum parameter.  Hence for 

simple data and novice users the RPROP was the best choice for a default 

parameter.  In saying that RPROP has its faults such as it has convergence 

problems, resulting in a poor mean square error or fails to train the model.  In such 

cases another backpropagation strategy is tried. 

 

The disadvantage of the standard incremental and standard batch strategies are 

that both uses the learning rate and momentum parameter, thus in developing the 

model the user must choose “interactive mode” to change these parameters while 

training.  This can be problematic as it is difficult to adjust these parameters even 

for relatively uncomplicated problems.  Thus for beginners it is not advisable to use 

these two strategies but if it were attempted, the INForm manual can be referred to 

for possible methods and tips. 
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Quickprop is different to standard incremental and standard batch strategy such that 

it is less dependent on the initial starting value, in that Quickprop adjusts the values 

of the learning rate during the course of the training.  However a large learning rate 

can cause problems which can be alleviated using a smaller learning rate value.   

 

Angle driven learning rate is similar with Quickprop as it adjust the values of the 

learning rate during the course of the training.  Previous work by Moreira and Fiesler 

(1995) uncovered that it was not advantageous over the fixed parameter methods,  

in terms of number of iterations, it could not converge in several situations and it 

was the least performing of all the adaptive methods studied.  In fixed parameter 

methods the parameters will be maintained at their defined values during training 

and fewer parameters are adapted to the data. 

 

In general they are no hard rules about which other backpropagation methods 

should be used if the default fails because it will always depend on the type of data 

fed into the neural network.  So trial and error is used to obtain the best 

backpropagation method for any data used. 

9.5.3.6 Connections 

The connections tab is shown by Figure 9.30.  It allows the user to break the 

connection a particular input has with the network.  It displays a list of inputs the 

user has set in the Set Field Types.  Each input has a check-box next to its name.  

By default all the check-boxes are ticked on, which means that each input is 
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connected to the network.  If the box is un-ticked then that input is no longer used 

in building the model. 

 

There is a subtle difference between setting that input as not used in the Set Field 

Types screen and breaking the connection that an input has to the network.  If set 

as not used then that input is not used in any property models and the data for that 

input is not displayed in the results tables.  According to the INForm Manual, 

breaking an input’s connection to the network can be done for specific output 

property models at occasions whereby the user knows which inputs are important 

variables and which ones are not.  The input’s connection for the non important 

variables may be disconnected.  By excluding inputs that are not relevant, the 

models are likely to be simpler and easier to interpret.  The data for the excluded 

input is still included in results tables because it may have been used by some of the 

property models.     

 

9.5.4 Using the model 

9.5.4.1 Response surface graph – 3D graph 

The response graphs were constructed by first choosing a data set for a specified 

formulation.  This was done by clicking on “View Data” button on Model Consult 

Window (Figure 9.36), highlighting a specified formulation data set and clicking on 

“To Consult” button (Figure 9.37).  Then clicking on the “3D Graph” button opened 
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the 3D Graph Setup window (Figure 9.38).  The response graphs can then be 

constructed as preferred. 

 

9.5.4.2 “What if predictions” 

The “what if predictions” was conducted by filling in values for a specified 

formulation and roll compaction process condition in the given column and clicking 

on the “Predict” button.  The predicted results appeared in the “Found” column 

(Figure 9.39).  These values were compared with the closest input data set by 

clicking on the “Properties” button and choosing “Use Found Values” (Figure 9.40).  

Then the “Best Match” button was clicked on and “Ingredients” was chosen (Figure 

9.41). 

 

 
Figure 9.36  Model Consult window 
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Figure 9.37  Choosing a formulation “To Consult”. 

 

 
Figure 9.38  3D Graph Setup for average maximum pressure against roll speed (rpm) against roll gap 

(mm). 
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Figure 9.39  Predicted “What if” result. 

 
Figure 9.40  To move the predicted “What if” values into the Given Column from Found Column. 

 
Figure 9.41  To choose best match for either ingredients or properties. 
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9.5.4.3 Optimising the formulation 

To conduct optimisation on the trained model initially a set of data corresponding to 

the specific formulation and the closest value to the output value should chosen for 

consulting from the view data option. The optimisation of the model can then be 

conducted by clicking on “Optimise” button.  The Figure 9.42 shows the optimiser 

configuration window where the optimisation can be adjusted to obtain an objective. 

 

Trial D will be used as an example in this optimisation.  The objective of this 

example was to use the optimisation feature to obtain the roll compaction process 

parameter which produces an MCC ribbon porosity of 0.25.  In this example the 

ribbon porosity of 0.25 was required and hence a weighting of 10, Mid1 and Mid2 

are 0.25 and a desirability function of “tent” was chosen (Figure 9.43).  Next the 

value of min and max for ribbon porosity were adjusted to be equidistant in value 

from the Mid1 and Mid2 value because these values should be the arithmetic mean 

between the min and max points.   

 

The desirability function chosen for ribbon porosity was the “tent” to show that the 

values between Mid1 and Mid2 are of 100% desirability (Figure 9.44).  The values 

for the Mid1 and Mid2 are the values which we would like to obtain for that output 

property.  The weighting, Mid1 and Mid2 for the other output properties were left at 

default values.  The desirability function was changed to “flat” because the output 

property values had equal desirability (Figure 9.45).   

 

 268



Chapter 9  Appendices 

After the optimizer configuration was set, the “Ok” button on Figure 9.43 was 

clicked.  The Optimize window follows (Figure 9.46).  Next click on the “Use Given” 

button to fill in the “Value” columns with data which was initially chosen in the 

consult window because by guiding the optimisation by giving it the closest value to 

the objective value, the user would assist the software in obtaining the desired 

output faster.  Then the in the “Fixed” column, the boxes for the Ratio M:D and 

MgSt% was ticked.  This is because these values represent the formulation type and 

it is to be kept fixed. 

 

Next the “Optimize” button was clicked on and the user will be asked “Start the 

optimisation using random ingredient values?”  The user should choose “No”, since 

specific values have been fed into the “Value” column.  This will initiate the 

optimisation of the models.  After the optimisation is completed the results can be 

assessed.  The desirability for all the outputs should be above 85%. 
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Figure 9.42  Optimizer configuration window 

 
Figure 9.43  Optimizer configuration with maximum ribbon porosity desirability.  Showing the need to 

find the roll compaction process parameter required to produce a ribbon of porosity of 0.25. 

 

 

 270



Chapter 9  Appendices 

 
Figure 9.44  Graph of ribbon porosity desirability against values.  Which shows the “tent” desirability 

function. 

 
Figure 9.45  Graph of ribbon density desirability against values.   Which is the “flat” desirability 

function. 
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Figure 9.46   Result of optimizing the Trial E for MCC ribbon porosity of 0.25.  

 

9.6 Appendix 6 - List of publications 

Rachel Mansa, Rachel Bridson, Richard Greenwood, Jonathan Seville and Helen 

Barker, (16-18th March, 2005), Using Intelligent Software to Predict the Effects of 

Formulation and Processing Parameters on Roller Compaction, 8th International 

Symposium on Agglomeration, Bangkok, Thailand, page 167 – 178. 

 

Rachel Mansa, Rachel Bridson, Richard Greenwood, Jonathan Seville and Helen 

Barker, (16-18th March, 2004), Using Intelligent Software to Predict the Effects of 

Formulation and Processing Parameters on Roller Compaction, International 

Congress for Particle Technology, Partec2004, Nuremberg Germany, page 24.9. 
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