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Abstract

Within the pharmaceutical industry there is current interest in the colon as a site for

drug delivery: in particular delivery to the proximal colon, which possesses the most

favourable characteristics for absorption. The most prevalent type of contraction of the

smooth colonic muscle is segmental, rather than propulsive, in nature. This promotes the

mixing of material within the lumen, which in turn increases the contact of contents with

the epithelial surface, aiding absorption. The colonic epithelium is lined with a thin layer

of mucus which acts as a protective barrier and provides lubrication.

Very few physical or theoretical models have been developed to assist with the under-

standing of dosage form behaviour within the colon. Better understanding of this could

help in product development through the prediction of residence time and uptake of a

given drug.

We model the colon as a cylindrical pipe, whose boundary represents the circular mus-

cle layer. Under the assumption that the boundary of the pipe is axisymmetric and that

the contractions may be modelled by a standing wave of small amplitude, we employ a

perturbation expansion to describe the behaviour of both one and two layer fluid flow.

Using both Newtonian and non-Newtonian constitutive equations and numerical tech-

niques to solve the ODEs arising from our asymptotic analysis we present the resulting

flow fields.

Utilising the results for one layer flow and the method of Lagrangian particle tracking



we create a model of drug delivery which analyses the proportion, by volume, of a drug

reaching the colonic epithelium. In doing this we find that the segmental contractions of

the colon lead to effective mixing of the fluid. We investigate the results of varying the

fluid rheology and contractile properties, finding that the amplitude of contraction has

the largest effect of the proportion of particles absorbed. The results prove themselves

robust to variation in contractile frequency, fluid viscosity and ratio between radius and

wavelength, which is promising in terms of consistent drug delivery across a range of

physiological states.
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Chapter 1

Introduction

The gastrointestinal (GI) tract forms the main part of the digestive system and the colon

is the final organ of this. The large intestine is comprised of the caecum and colon,

although the terms colon, large intestine and bowel are generally used interchangeably.

Figure 1.1: Anatomy of the large intestine and rectum [70].

The colon is a continuous tube approximately 1.5 m in length [1], with diameter

varying from around 8.5 cm at the caecum to 2.5 cm at the sigmoid colon [70]. The
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proximal, or right, colon consists of the ascending and transverse regions and the distal,

or left, colon consists of the descending and sigmoid regions. Two sharp bends give the

colon its recognisable shape; these bends are known as the right colic, or hepatic, flexure

and the left colic, or splenic, flexure and are labelled in figure 1.1.

Material flows into the caecum from the small intestine; this flow is regulated by

the ileocaecal valve. The ascending colon is approximately 12 cm in length [1], running

between the ileocaecal valve and the hepatic flexure. Here it becomes the transverse colon,

which is approximately 45 cm in length [1]. This is the largest part of the colon and also

has the most motility. The transverse colon runs along until it reaches the splenic flexure,

where it becomes the descending colon. Due to the higher position of the splenic flexure

in the body compared to the hepatic, the descending colon is longer than the ascending

colon [1]. The sigmoid colon, also known as the ‘S-shaped’ colon, begins at the pelvic

brim, as a continuation of the descending colon. It is approximately 40 cm in length [1].

As will be discussed in more detail later, there is a layer of smooth circular muscle

located within the interior of the colonic wall. Perpendicular to this, an outer muscle layer

runs longitudinally along the colon and is split into three strips known as the taeniae coli.

These three strips fuse together once they reach the rectum. The circular muscle is

responsible for segmental contractions which serve to mix the fluid content within the

colon whereas contractions of the longitudinal muscle initiate propulsion of the colonic

contents distally.

Haustra are created in places along the length of the colon due to the fact that the

taeniae are shorter than the true length of the colon [25]. The folds between the haustra

are known as interhaustral folds and contain all layers of the colonic wall [25]. Within the

proximal colon the haustra are fixed because of the fusion between the taeniae and the

underlying circular muscle. In the distal colon, however, the haustra are not fixed and

are formed by the contractile activity of the taeniae.
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The main functions of the colon are absorption of water and electrolytes as well as the

storage of faecal matter [25]. Most absorption takes place in the proximal colon whereas

the main role of the distal colon is that of storage.

In this thesis we aim to create a mathematical model of the flow induced by the seg-

mental contractions of the smooth colonic muscle and solve using analytical techniques.

In doing so we aim to represent the behaviour and flow of the colonic fluid under such

conditions. We do this with the intention of mathematically investigating the pharmaco-

logical problem of the behaviour of a drug dosage form once it is exposed to the colonic

environment.

1.1 Motivation: Drug Delivery

The oral delivery of a drug to the colonic region of the GI tract is of current interest within

the pharmaceutical research industry. Section 1.3.1 describes the colonic environment in

more detail.

In order to reach the colon before a drug begins to be released from a dosage form

(e.g. a tablet or capsule) some type of modified release is required. Research into mod-

ified/controlled release techniques for oral drug delivery has stemmed from a desire to

improve the efficacy of medication whilst reducing the side effects, thereby maximising

patient compliance [72]. The methods used for targeting the colon are not important to

us from a mathematical point of view, i.e. it is not necessary to know these in order to

solve the problem; however a brief knowledge of the methods available is useful to create

a wider understanding of the overall picture.

Successful targeting of the colon requires the exploitation of some feature unique to

the colonic environment [49]. Perhaps the simplest method would be to release the drug

after a pre-determined amount of time, possibly around four hours after leaving the stom-

ach [70], due to a relatively consistent small intestinal transit time. However, there is
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still an amount of variation between individuals and even within individuals [38]. Alter-

natively there is a change in pH at the junction between the small intestine and colon

which could be utilised for modified release [49, 70]. At this junction contents are ex-

posed to large pressures and break up of dosage forms is often observed [72], suggesting

pressure-controlled dosage forms as a method [49], although its reliability has not yet been

thoroughly tested [72]. The colonic environment has a higher bacterial concentration than

the more proximal regions of the GI tract [38], in addition these bacteria are unique to the

colon [49, 70, 72]. The enzymes produced by these bacteria could also be used to achieve

site-specific release. For example bacterial degradable polymers have been used to coat a

dosage form, shielding the drug from the hostile environments of the stomach and small

intestine and allowing it to be released in the colon; this is due to biodegradable enzymes

being found only in the colon [57]. Ultimately it is the physical and chemical properties

of the drug itself which should determine which delivery system is adopted [49].

The reasons for pharmaceutical interest lie in both topical (localised) and systemic

(whole body) delivery [68]. Drugs delivered to the colon may be used for the local treat-

ment of diseases such as ulcerative colitis, bowel cancer and Crohn’s disease. Preventing

drug release until the dosage arrives at the colon increases the bioavailability of the drug

at the site it is to treat [58] and allows a lower dose to be administered, thus reducing the

side effects to the rest of the body [57]. Delivery to the colon for treatment of a non-local

disease would be chosen if the characteristics of the colon or of the drug made the colon

a more attractive site for delivery than other regions.

For systemic treatment a method of delivery known as mucoadhesion is receiving much

interest [17, 59, 68]. Bioadhesion occurs when two surfaces, with at least one biological in

nature, adhere to one another for a prolonged period of time; mucoadhesion is the term

used in pharmaceutical sciences when the biological surface in question is either mucus

or a mucous membrane (mucosa) [59]. In particular the colon may prove a good site for
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mucoadhesion. A thin layer (of the order of tens of microns) of mucus lines the interior

wall of the colon, making this a viable method; section 1.3.1 deals with the physiology

and conditions within the interior of the colon.

The original motivation for research into the mucoadhesive process was its potential to

manipulate the transit time of a dosage form [68]. Within the GI tract contents are subject

to highly variable transit times [68]; this variability has caused problems, particularly with

modified release dosage forms [38]. In theory mucoadhesion could reduce this variability

thus helping to improve the efficacy and reliability of a given drug. In addition, once a

dosage form has attached itself to the mucus or mucosa at a given site, the drug diffusion

barrier may be reduced [68], improving the rate of absorption; this attachment could also

protect a drug from any degradation which may otherwise occur from any colonic material

[68].

There has not been much in vivo success with mucoadhesive approaches in either the

human stomach or small intestine, despite in vitro and small animal studies showing the

potential for success [38]. As of yet relatively little research has been conducted into

colonic mucoadhesion, but several properties of colonic physiology and motility make

success look more promising here than in the upper GI regions [68], these properties will

be discussed in sections 1.3.1 and 1.3.2.

Traditionally many protein and peptide based drugs such as insulin have been unable

to be delivered via the oral route, due to enzymatic degradation and poor absorption in

the stomach and small intestine [57]. The delivery of drugs such as these to the colon

shows promise due to its less hostile environment when compared to the more proximal

GI regions [27].

Other advantages of targeting the colon for systemic drug treatment relate to general

types of delivery approach. Targeting the colon for drug absorption provides an opportu-

nity to increase the time between consecutive doses [72]. In addition a near neutral pH,
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relatively long transit time and less digestive enzymatic activity than the stomach and

small intestine all provide the colon with advantages as a site for drug targeting [58].

Quantifying and modelling the fluid within the colon presents a challenge. Colonic

fluid has some complex properties and is non-Newtonian in nature (refer to section 1.2);

in addition to this, its composition alters as it progresses through the colon - from a

viscous liquid to a semi-solid state. Research literature into the viscosity and density of

fluids within the GI tract is limited and often not comparable due to different rheological

measuring techniques. As well as the bulk fluid (also known as chyme or digesta), the

properties of colonic mucus need investigating. Again this is a non-Newtonian fluid and

is described as viscoelastic [28] - having both viscous and elastic properties. As far as

we are aware data on human colonic mucus in its normal state has not been published,

potentially due the relative inaccessibility of the colonic region, although there is some

information available for mucus from other regions of the human body.

As well as the complex nature of the fluid in the colon, the motility of the circular

colonic muscle presents modelling difficulties. The motility patterns of the colon vary

between and within individuals and are affected by eating patterns, time of day and

disease, amongst other things. Data on the motility of the colon, including both segmental

and propulsive contractions, are reviewed in section 1.3.2. We will see that it is the

contractions of the circular muscle which cause mixing of the fluid within the colon and

that this is key to the absorption of material into the bloodstream.

In the design of dosage forms and methods of drug targeting, often only one or two

variables relating to the GI tract are considered [38]. Clearly this cannot be representa-

tive of the colonic environment. A mathematical model can be formulated in terms of

parameters which will allow far more variables to be taken into account and the relative

importance of each variable to be quantified. It is important to be able to do this since

gut physiology is not well understood [38] and so being able to test dosage form behaviour
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over a wide range of values for each variable is desirable. In particular the effects of disease

on the colonic environment and motility has received little attention despite its obvious

influence on the efficacy of a given drug [38, 72]. For example, opposite effects on drug

absorption can be seen from increased fluid volumes as opposed to increased motility [72].

The use of a mathematical model gives an advantage here as it provides the opportunity

to investigate both drug and fluid behaviour at physical extremes.

1.2 An Introduction to Rheology

In this section we investigate the types of constitutive equation for some classes of fluid

related to those which may be found within the colonic lumen.

One of the most useful tools in studying the behaviour of a material is the set of

general equations of motion (under the assumptions made within a continuum mechanics

framework), given in Cartesian vector form by

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · τ + ρF , (1.2.1)

where t is time; u, ρ, p, τ are the velocity, density, pressure and shear stress of the

fluid respectively; and ρF is the body force acting on the fluid. This equation is made

specific to a material via a constitutive equation for the shear stress τ . To fully describe

the flow and behaviour of a given material additional information is required such as the

compressibility of the material and possibly various thermodynamic equations.

Generalised Newtonian Fluids

Newtonian fluids obey a linear relationship between shear stress, τ , and shear rate (or rate

of strain), γ̇, with the constant of proportionality, µ, known as the (dynamic) viscosity of

the fluid. In terms of the fluid velocity the shear rate is given by ∇u+ (∇u)T , so that in
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Cartesian co-ordinates the components of shear rate are given by

γ̇ij =
∂ui
∂xj

+
∂uj
∂xi

. (1.2.2)

The Newtonian model describes the behaviour of various fluids, such as water, extremely

well. However, many fluids of importance in industry and the sciences (including biological

fluids) do not follow this simple relation. In particular many materials exhibit both fluid

and solid properties under different conditions. We shall utilise various rheological models

in our study of the complex behaviour and flow within the colon.

After Newtonian fluids, the most simple type of model is that of a generalised New-

tonian fluid (GNF). For such fluids the viscosity is not constant but a function of shear

rate. The constitutive equation of a GNF is of the form [9, p170]

τ = µ(γ̇)γ̇,

where µ(γ̇) is known as the apparent viscosity of the fluid and

γ̇ =

√
tr(γ̇T γ̇)

2
,

with tr(A) denoting the trace of the matrix A and the sign of the square root chosen such

that γ̇ ≥ 0. The GNF model is particularly useful in industrial flow problems where the

effects of shear-dependent viscosity are of primary importance [9, p169].

One of the first proposed GNF models was the power law model of Ostwald (1925)-de

Waele (1923) [15]. The constitutive equation for a power law fluid is given by [5, p19]

τ = kγ̇n−1γ̇,
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where k is known as the consistency index (with units Pa · sn) and n is a nondimensional

parameter known as the power law exponent. The response of the fluid viscosity as the

shear rate increases or decreases is described by n. If n = 1 then the equation reduces

to that of a Newtonian fluid (with viscosity k). If n < 1 then the fluid is described as

shear thinning, i.e. the viscosity decreases as the shear rate increases, for example modern

paints. If n > 1 then the fluid is described as shear thickening, i.e. the viscosity increases

as the shear rate increases, for example custard.

This model has been used extensively for industrial problems due to its simplicity

and the fact that often the most important region of the log µ vs log γ̇ plot (determined

experimentally) is the linear region, also termed the ‘power law region’, see figure 1.3. It

is in this region that the power law holds; however care should be taken as the model

breaks down at very high or very low shear rates when compared to experimental results

(due to the prediction of infinite viscosity) and should be avoided for flows which may be

subject to either of these conditions.

(a) Shear stress vs shear rate (b) Viscosity vs shear rate (logarithmic
scale)

Figure 1.2: Constitutive relationships for a power law fluid.

A GNF model which avoids the problem of infinite and zero viscosity at very high or
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very low shear rates is that of Carreau (1972). The apparent viscosity for a Carreau fluid

is given by [5, p18]

µ− µ∞
µ0 − µ∞

= [1 + (mγ̇)2]
n−1
2 , (1.2.3)

where µ0 is the limit of viscosity as γ̇ → 0 (zero-shear viscosity), µ∞ is the limit of

viscosity as γ̇ →∞, (infinite-shear viscosity), m is a constant parameter with dimension

time and n is a dimensionless parameter which has the same meaning as in the power law

model. Using (1.2.3) we may write the constitutive equation for a Carreau fluid as

τ = µ0[(1− µc)(1 + (mγ̇)2)
n−1
2 + µc]γ̇, (1.2.4)

where µc = µ∞/µ0 is the ratio between the infinite-shear and zero-shear viscosities. The

main difference between this and the power law model can be seen by the predicted

behaviour of the viscosity at very high and very low shear rates. For a shear thinning

power law fluid:

µ→

 ∞, as γ̇ → 0

0, as γ̇ →∞,

whereas for a Carreau fluid:

µ→

 µ0, as γ̇ → 0

µ∞, as γ̇ →∞.

The Carreau model was later extended by Yasuda by the addition of a dimensionless

parameter a, to give the Carreau-Yasuda model [45, p231]

τ = µ0[(1− µc)(1 + (mγ̇)a)
n−1
a + µc]γ̇.

In this model a describes the transition between the zero-shear region and the power law
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Figure 1.3: Viscosity vs shear rate for a Carreau fluid with logarithmic scale.

region [9, p171]. Note that setting a = 2 returns the Carreau equation.

An example of a constitutive equation which has been used to model food data is the

De Kee model [10, p40]. In this model the apparent viscosity given by

µ(γ̇) = µ1e
−t1γ̇ + µ2e

−0.1t1γ̇ + µ∞,

where the parameters µ1, µ2 and µ∞ are all viscosities and the parameter t1 has dimension

time. This model describes the behaviour of a shear thinning fluid, with µ → µ1 + µ2 +

µ∞ = µ0 as γ̇ → 0 and µ→ µ∞ as γ̇ →∞.

There are several shortcomings of GNF models, in particular with the power law model

due to its simplicity (only two parameters); however it is this very simplicity which makes

its use so attractive within industry. As has already been mentioned, the power law

model cannot describe viscosity for shear thinning fluids at low shear rates, although this

problem can be overcome by using a Carreau model; it should be noted that the Carreau

model does not lend itself to analytical solutions. In addition, according to Bird et al. [9,

p175], it is not possible to relate the power law parameters k and n with the molecular

weight and concentration within the fluid. It may be especially desirable to be able to

do this in fields such as polymer science. More generally questions arise as to the limits
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of validity for GNF models due to the empirical nature of their development [9, p233],

with such models arising via curve-fitting existing data on viscosity - shear rate - shear

stress relationships. Ultimately choosing which GNF model to use, or whether to use a

more complicated model altogether, comes down to a balancing act between realism and

actually being able to formulate a mathematical model which can be solved to provide

(useful) results.

Viscoelastic Fluids

Analogous to Newtonian fluids we have Hookean solids. In the same way that shear

stress is related to shear rate via constant viscosity for a Newtonian fluid, for a Hookean

solid the shear stress is related to the strain, γ, via a constant elastic modulus, G, i.e.

τ = Gγ. If we consider small displacements and let li represent the displacement in the

i-direction from the reference configuration at t0 to time t, then the linear theory for small

deformations gives us the infinitesimal strain tensor (in Cartesian co-ordinates) [9, p257]

γij(t0, t) =
∂li
∂xj

+
∂lj
∂xi

. (1.2.5)

Since γ depends on two times, t0 and t, Hookean solids may be described as having

‘memory’, whereas Newtonian fluids, where γ̇ depends only on time t, do not have a

memory of past events.

Materials may be considered as lying on a continuum between Hookean behaviour and

Newtonian behaviour; this is where the Deborah number, De, proves useful. The Deborah

number was introduced by Reiner and is defined as

‘The ratio of a characteristic (relaxation) time of a material to a characteristic time of

the relevant deformation process.’ [5, p161]

In the limit De → 0, Newtonian behaviour may be observed. This corresponds to a

short characteristic time or a long deformation process, for example if we consider a glass
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window of uniform thickness over a long enough period of time, there will appear to have

been a flow of glass from the top of the window to the bottom. In the limit De → ∞,

material behaves as a Hookean solid. This may be due to either a long relaxation time

or a fast deformation process, for example it is sometimes the case that lubricating oils

passing through gears appears solid-like [5, p6].

The earliest in depth work into materials which are neither Hookean nor Newtonian

was undertaken by Weber in 1935, studying silk threads [15]. He identified the phe-

nonomen of stress relaxation, which he termed the ‘after effect’ [15].

Maxwell appears to have been the first to attempt to obtain a constitutive equation

for a viscoelastic fluid. He postulated that fluids with both elastic and viscous properties

could be described by [9, p258]

τxy +
µ

G

∂τxy
∂t

= µγ̇xy. (1.2.6)

For steady-state motions, ∂τxy/∂t = 0 and (1.2.6) simplifies to the equation for a Newto-

nian fluid with viscosity µ. At the other extreme, for sudden changes in stress, ∂τxy/∂t

dominates the left hand side (LHS) of (1.2.6) and, after integration with respect to t, we

arrive at the equation for a Hookean solid with elastic modulus G [9, p258].

More generally, Maxwell’s equation is given by [9, p259]

τ + λ1
∂τ

∂t
= µγ̇, (1.2.7)

where λ1 is the relaxation time of the fluid, defined as the time taken for the shear stress in

the material to reduce to e−1 of its initial value [40]. This first order differential equation

may be written in integral form as [9, p260]

τ (t) =

∫ t

−∞

(
µ

λ1
e−(t−t

′)λ1

)
γ̇(t′) dt′,
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where (µe−(t−t
′)λ1)/λ1 is known as the relaxation modulus, which decays exponentially

as we go backwards in time, i.e. as t′ → −∞ [9, p260]. In its integral form Maxwell’s

equation relates the stress at the present time t to the shear rate at all past times t′, via a

weighting factor (the relaxation modulus) which gives more weight to those events in the

recent past rather than the distant past. This has been described as a notion of ‘fading

memory’ [9, p260].

Hooke’s constitutive equation uses the assumption of small displacements and since

Maxwell’s linear equation is based on Hooke’s equation it follows that Maxwell’s equation

must only be valid under the same restriction. In addition Maxwell’s model has been

found to be too simple, with only two constants, to describe linear viscoelastic data.

Despite this, Maxwell played a key role in the development of linear viscoelasticity and

his equation provided a major starting point for research into nonlinear viscoelastic models

[9, p260].

Another linear viscoelastic constitutive equation is the Jeffreys model, given by [9,

p261]

τ + λ1
∂τ

∂t
= µ

(
γ̇ + λ2

∂γ̇

∂t

)
. (1.2.8)

This model extends that of Maxwell by the inclusion of the time derivative of γ̇ and the

addition of a second time constant λ2, the retardation time. The retardation time of a

material is defined as the time taken for the strain to reach 1− e−1 of its final value after

the imposition of a constant shear stress [40]. In integral form the Jeffreys model is given

by [9, p261]

τ (t) =

∫ t

−∞

(
µ

λ1

(
1− λ2

λ1

)
e−(t−t

′)λ1 + 2
µλ2
λ1

δ(t− t′)
)
γ̇(t′) dt′,

which makes use of the Dirac delta function, δ. Both the Maxwell and Jeffreys models

may also be written in terms of the strain rather than the shear rate.
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The general linear viscoelastic model (GLVM) encompasses both the Maxwell and

Jeffreys models as well as many others. The GLVM may be written as [5, p45]

τ (t) =

∫ t

−∞
G(t− t′)γ̇(t′) dt′, (1.2.9)

where G(t− t′) is the relaxation modulus of the material [9, p263].

As already discussed, the GLVM is only valid for materials subjected to small defor-

mations; as a consequence of this the model cannot describe any shear rate dependence

of viscosity. Although the GLVM works reasonably well as a starting point for the study

of viscoelastic behaviour, more complex mathematical descriptions are required for the

majority of materials [9, p264].

In 1903 Zaremba, and later Jaumann in 1905, extended the developed theory of linear

viscoelasticity to a nonlinear framework by introducing a ‘corotational derivative’ (referred

to as Jaumann derivatives) [15]. These derivatives allow for a frame of reference which

translates and rotates with the material. A major breakthrough in the study of nonlinear

viscoelastic models came with the work of J. G. Oldroyd in 1950, in which he introduced

to constitutive equations the idea of convected derivatives [15].

Oldroyd proposed necessary criteria for a constitutive equation to be admissible. He

states that any such equation should be independent of

1. the frame of reference;

2. the position in space and the motion of the fluid element; and

3. the stress and strain in any neighbouring elements [9, p480].

Since the behaviour of a viscoelastic fluid depends on its past shear rates as well as the

present, the third principle tells us that the idea of ‘fluid memory’ must be associated with

material elements rather than points in space [5, p143]. At the very least time derivatives
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in the linear models considered thus far should be replaced by the material time derivative,

D/Dt; however it turns out that time derivatives of a more complex nature are required

in order to satisfy the second principle [5, p144]. This is where Oldroyd’s convected time

derivatives make an appearance.

Oldroyd introduced the idea of a convected co-ordinate system in relation to constitu-

tive equations in his paper of 1950 [46]. In this system co-ordinate surfaces x̂i = constant

are embedded in the material and deform with it. Thus any material element has the

same co-ordinates x̂1, x̂2, x̂3 for all times t [5, p145][9, p480]. In a similar way to how the

material time derivative

D

Dt
: v 7→ ∂v

∂t
+ (u · ∇)v

allows us to move from a Lagrangian system to an Eulerian one, the upper convected

(contravariant) time derivative

5 : A 7→ DA

Dt
− (∇u)T ·A−A · (∇u)

allows us to move to a convected system. For a more thorough treatment of the theory

behind convected co-ordinates refer to Oldroyd [46], Bird [9] or Barnes [5].

Using his new system, Oldroyd was able to extend the models of Maxwell and Jef-

freys by replacing the time derivatives in (1.2.7) and (1.2.8) with upper convected time

derivatives. The Oldroyd B, or upper convected Jeffreys, model is given by [5, p147]

τ + λ1τ
OOO = µ(γ̇ + λ2γ̇

OOO). (1.2.10)

In the next section we study the interior and motility of the colon, in particular we

investigate the role and values of the rheological parameters required for use within the

relevant rheological models of this section.
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1.3 Modelling the Colon

In this section we introduce the features and properties of the colon and its environment

that we will require in order to create a representative model.

We investigate the properties of chyme and mucus, taking particular interest in the

rheological and physical parameters necessary for the creation of a mathematical model.

We also consider the motility patterns of the colon - the frequency, causes and effects

of the different types of muscular contraction. Altogether this information will allow us

to combine both the fluid properties and the geometrical features of the colon into a

mathematical model.

1.3.1 The Interior of the Colon and the Biorheology of Chyme

and Mucus

In this section the structure of the internal colonic wall is discussed and the properties

of fluids within the colonic lumen are investigated. These properties will provide an

important basis for the mathematical modelling of the fluid flow within the colon, allowing

us to link the theory of the previous section with the physiological reality.

The mucosa, also known as the mucous membrane, is the moist tissue which lines many

organs and body cavities such as the intestines, nose and lungs [17]; the mucosal surface

of the colon is described as being relatively smooth [25]. Lying beneath and supporting

the mucosa there is a deeper connective tissue known as the submucosa. Between the

mucosa and the submucosa is a thin layer of smooth muscle known as the muscularis

mucosa [17, 25]. There are a further two layers of smooth muscle - each of which controls

various motility patterns (see section 1.3.2).

The colonic mucosa contains enterocytes, as well as goblet and enteroendocrine cells

[68]; enterocytes are responsible for absorption, goblet cells secrete mucus and enteroen-
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Figure 1.4: The interior of the colon.

docrine cells produce hormones. The mucosa of the GI tract is composed of two main

layers: the lamina propria and the luminal epithelium [68].

The lamina propria lies immediately beneath the epithelium, supporting it, and is

comprised of loose connective tissue [17]. This tissue contains a combination of fibroblasts,

lymphocytes, plasma cells and macrophages [25].

The intestinal epithelium is single-layered [17] and columnar [25]. Single-layered ep-

ithelia contain goblet cells which secrete mucin, which then hydrates to create a mucus

layer on the surface of the epithelium; making the epithelial layer moist [59]. This mucus

layer is viscoelastic in nature [17] and we shall use this type of rheological equation when

modelling it. The crypts of Lieberkühn are glands found in the epithelium of the colon

(as well as the small intestine) which extend almost as far as the muscularis mucosa. The

lining of the base of these crypts is composed of undifferentiated epithelial cells, which

show progressive maturation into both goblet cells and columnar epithelium as they climb

the walls of the glands [25].

The general concensus is that the main functions of this mucus layer are protection

and lubrication; mucus is described by Edsman and Hägerström [17] as ‘mediating the
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interactions between the epithelial cells and their environment.’ This mediation is achieved

by the provision of lubrication between the epithelium and passing fluids and waste,

maintaining the water balance at a site and binding particles, bacteria and viruses. The

lubricant effect is particularly important in the distal colon, protecting the epithelium

from abrasion due to solid matter [70]. Varum et al. [68] also give the mucus layer’s role

as a diffusion barrier between the epithelium and the lumen, as well as the provision of a

hospitable environment for the microflora of the colon. The mucus layer also plays a role

in the defence against infection and disease [17, 68]. It may be worth noting that both

the adhesive and cohesive properties of the mucus gel are increased as the water content

is decreased [17].

It is generally accepted that the mucus of the colon consists of two distinct layers;

although most literature on the properties of colonic mucus consider it as just the one

layer. The first of these layers is a firmly adherent mucus gel layer which acts as a stable

protective barrier between the lumen and the epithelium [62, 68]. It also provides a habitat

for the microflora of the gut [62]. Above this firmly adherent layer there lies a loose layer

of mucus which provides the lubricative properties [68]. This loose layer is described by

Strugala et al. [62] as ‘an extensive sloppy mucus layer’ and they hypothesise that its

purpose is to act as a lubricant in order to protect the epithelium from shear stress. The

thickness of these two layers, both together and relative to each other, differs along the

gastrointestinal tract and between species of mammals [68].

The mucus gel is composed predominately of water, approximately 95% [17, 68]. The

rest of the mucus gel is made up of glycoproteins, lipids, free proteins and mineral salts

[17]. However, it is impossible to know the exact composition in any location in any one

person as this will vary depending on factors such as the role of the mucus and the health of

the individual [17]. The location of the mucus also affects its composition (for example,

the colon versus the small intestine), as do genetics, age, gender and gastrointestinal
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activity [68].

Mucus turnover is affected by the sensitivity of the goblet cells to mucus secretory

stimuli and also the rate at which mucus is ‘lost’ due to stresses in the lumen. Although

there is little information regarding the rate of mucus renewal in the human gastrointesti-

nal tract [68], Rubenstein and Tirosh [54] showed that mucus turnover and sensitivity to

mucus secretory stimuli were lower in the rat caecum and colon than in the stomach and

small intestine. It is considered likely that this may also be the case in humans [68].

Both the dynamic viscosity and relaxation time of a fluid are essential in the formu-

lation of a viscoelastic model. Unfortunately these have not been widely investigated, if

at all measured, for human colonic mucus; thus numerical data from other regions of the

human body must be relied on. Qualitatively the mucus layer viscosity increases progres-

sively from the proximal to the distal colon [63]. The viscosity also varies radially with

a low viscosity near the intestinal lumen and a high viscosity adjacent to the epithelium

[63].

Lai et al. [28] claim that the macrorheological behaviour of mucus produced at various

sites within the body is similar - due to the similar total mucin content. They quote

an upper limit for mucus viscosity at low shear rates as 104 − 106 times higher than

water, i.e. 10 − 1000 Pa · s. In particular, Lai et al. reference several studies involving

pig gastrointestinal mucus which show secretions from different regions displaying overall

structural similarities, suggesting similar rheological properties between gastric, duodenal

and colonic mucus.

Table 1.1: Mean viscosities of gastric mucus [12].

Shear rate (s−1) 1.15 2.30 5.75 11.50 23.0 46.0 115.0 230.0
Viscosity (×10−2 Pa · s) 8.46 4.69 2.85 1.95 1.48 1.23 0.84 0.61

Table 1.1 displays the results of Curt and Pringle [12], giving the mean viscosity of the

gastric mucus of twelve control subjects. The viscoelastic models considered in section
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1.2, e.g. Oldroyd B, do not take into account the shear rate dependent nature of a fluid,

instead they make use of the zero-shear viscosity. Therefore the viscosities at low shear

rates are considered of most importance. The remaining data could be used to attempt

to fit the parameters in a power law or Carreau model for example.

Other sites of the human body have had the rheological behaviour of their mucus

studied more extensively, for example the lungs, nose and cervix. Mucus displays a spec-

trum of relaxation times covering several orders of magnitude depending on the frequency

of motion it is subjected to. For example Smith et al. [60] found a relaxation time for

mucus of approximately 0.03 s by taking data from oscillatory rheometry experiments at

a frequency of 5− 10 Hz and fitting them to a Maxwell model. For our system the mucus

is exposed to much lower frequencies and the review article values that we give are likely

to be more indicative of the physical situation.

Within the respiratory system a viscosity of 12− 15 Pa · s [28, 51] for bronchial mucus

has been reported as optimal for mucociliary clearance [28]. In addition Quraishi et al.

[51] quote a general estimate of the relaxation time of mucus of 30 s. For respiratory

mucus Lauga [29] reviews studies suggesting a range of viscosities of 10− 1000 Pa · s and

a relaxation time again of approximately 30 s.

Rheological data available for cervical mucus also shows a relatively wide range of

accepted values. Lauga’s review reports on agreement in various literature of viscosities

in the range 0.1− 10 Pa · s and relaxation times of 1− 10 s.

The thickness and continuity of the colonic mucus layer is another area which presents

difficulties in finding human measurements. Where human data exists it tends to be

contradictory, or at the very least not in agreement with other data (see table 1.2).

This may be down to the methods used for collection and measurement as some staining

techniques cause dehydration, and therefore shrinkage, of the mucus layer [68]. The colon

possesses a thicker mucus layer than other regions of the GI tract, which is one reason
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why the colon may prove a more successful site for mucoadhesion than the stomach or

small intestine [68].

Disease in particular may have a marked effect on mucosal thickness, which is im-

portant since one reason for investigating colonic drug delivery is that of localised, or

topical, delivery to treat colonic disease; in such conditions, the thickness of mucus may

be markedly different. It has been reported, see for example [50, 68], that, in comparison

with healthy control subjects, there is a tendency for patients with ulcerative colitis to

have a thinner and more discontinuous than usual mucus layer and possibly for those with

Crohn’s disease to have a thicker than usual layer, although this has not yet proved to

have statistical significance.

Pullan et al. [50] conducted a study into the thickness of colonic mucus in patients suf-

fering from either ulcerative colitis or Crohn’s disease. They aimed to relate inflammatory

activity, age and drug treatment to mucus thickness and found mean values for thickness

in the control group ranged from 107 µm in the right colon to 155 µm in the rectum.

Matsuo et al. [37] aimed to improve the understanding of the histochemical composition

of the surface mucus layer within the human colon. As part of this they measured the

mean thickness as ranging from 39.1 µm in the ascending colon to 101.5 µm in the rectum.

Finally Strugala et al. [62] published a study which focused mainly on the thickness and

continuity of the mucus layer in the rectum of patients suffering from various degrees of

ulcerative colitis and Crohn’s disease. However, as part of this study they also measured

the mucus thickness and percentage of mucus discontinuity throughout the colon of their

control subjects; finding a range of mean values of 20− 52.5 µm from the caecum to the

rectum.

None of these studies found any significant relation between mucus thickness and either

age or drug treatment and a summary of their results is given in tables 1.2 and 1.3.

Finally we investigate the main fluid content of the colon. There are various factors
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Table 1.2: Summary of Results (Thicknesses given in µm).
Caecum Ascending Transverse Descending Sigmoid Rectum

Pullan Controls 107 107 134 134 155
Matsuo Total 36.7 39.1 57.5 69.6 101.5
Strugala Controls 20 25 35 50 52.5
Pullan UC 90 90 43 43 60
Pullan CD 190 190 232 232 294
Matsuo Loosely Adherent 31.1 34.4 50.5 62.0 88.8
Matsuo Firmly Adherent 5.6 4.7 7.0 7.6 12.7

Table 1.3: Results of Strugala et al. for Rectal Mucus.
Group Sample Size Mean Thickness (µm) % Discontinuity
Normal 10 32.5 1.0
Quiescent UC 18 28.1 1.6
Mild Active UC 12 26.7 13.5
Moderate Active UC 8 25.9 16.6
Severe UC 5 15.0 25.7
Crohn’s Disease 6 19.6 6.1

which need to be looked at when considering the digestive fluid within the colonic lumen.

From a drug delivery perspective, fluid is essential for the dispersion and absorption of

a dosage form; hence the presence, or not, of fluid and the volume available is of high

importance. McConnell et al. [38] take values from a study by Cummings et al. which

found a mean total fluid volume in the colon of 187 ml, compared to mean post mortem

total fluid volumes of 118 ml and 212 ml for the stomach and small intestine respectively,

found by Gotch et al. The total fluid volume present does not give a full picture however.

Schiller et al. [55] used magnetic resonance imaging (MRI) to determine the free fluid con-

tent in the small and large intestine. It was observed that free intestinal water represents

only a fraction of the total intestinal water and is inhomogeneously distributed through-

out the lumen, forming fluid pockets of different volumes. A pharmaceutical dosage form

may be exposed to anything from 1 to 100 ml of free fluid [38] but the behaviour of the

dosage may be very different at these two extremes [68]. In this thesis we consider the

fluid to be homogeneously distributed, however future modelling work could consider the

inhomogeneous distribution of fluid.

Although the colon has a much smaller surface area than the small intestine it is still

very efficient at absorbing fluid - for every two litres of water entering the caecum there
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is less than 200 ml of residual water in the stools and up to four litres of water a day may

be absorbed [70]. In a healthy human adult the flow rate of chyme from the ileum to the

colon is 1− 2 litres per hour [70].

Chyme is a shear thinning fluid whose rheological behaviour and composition changes

as it progresses through the different regions of the colon. The fluid has changed from

liquid to a more viscous semi-solid material by the time it has reached the latter stages of

the colon, due to water absorption. However, this is not the only cause of change; from

about halfway through the ascending colon consolidation of the luminal contents begins

to occur, creating a single mass which gradually becomes more homogeneous and viscous

[72].

The viscosity of colonic contents has not been well studied, if at all, in humans. Most

information pertains to research conducted into the effect of diet on the viscosity of the

small intestine digesta of pigs and chickens for example. Since our interest lies in the

ascending colon it is worth considering the viscosities in the small intestine because the

fluid in the ascending colon is rheologically similar to that in the ileum and there is a lack

of data regarding the large intestine. Comparing viscosity measurements across different

studies can prove very difficult. The non-Newtonian nature of chyme means that the shear

rate at which viscosity is measured is extremely important, ideally a variety of shear rates

would be used for measurement or at least the same shear rate used for all measurements

to allow comparison, depending on the exact purpose of the study. Due to this dependence

on shear rate, values for viscosities found in different studies often cannot be compared nor

can the consistency of results be evaluated. In addition the region sampled and whether

viscosity is measured with or without the removal of large particles (centrifugation) may

affect the viscosity significantly. After the process of centrifugation the material, with

large particles removed, is referred to as supernatant.

Lund et al. [34] considered the effect of diet on the viscosity of the small intestinal
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content in rats. The rats were fed a diet of cellulose, oat gum or ground oats and mea-

surements were made both before and after centrifugation at a shear rate of 50 s−1 using

a rotary viscometer with cone and plate attachment. They were unable to measure the

viscosity of the control group (fed cellulose) before centrifugation, however after this pro-

cess the viscosity of the material was described as being not measurably different from

water. The mean viscosities for those fed a diet of oat gum were measured as 1.877 Pa · s

and 0.111 Pa ·s before and after centrifugation respectively. For those fed a diet of ground

oats the resulting viscosities were 1.868 Pa · s before centrifugation and 0.82 Pa · s after.

Lee et al. [30] investigated the effect of the concentration of guar meal (because of its

use as a high protein, relatively inexpensive feed) in the diet of chickens on the viscosity

of small intestinal digesta. Measurements were taken from the duodenum, jejunum and

ileum using a cone and plate viscometer. Chyme from the ileum is the most viscous from

these three regions and also the closest in nature to that in the caecum and ascending

colon. The mean viscosity for ileal material was given as 0.00325 Pa · s, with viscosity

increasing as the concentration of guar meal increased. At 10% concentration viscosity

was measured as 0.0581 Pa · s.

Takahashi et al. [64] also used chickens in their research. In contrast to Lund et al.

and Lee et al., Takahashi et al. were concerned with the shear-dependant properties of

digesta, rather than the influences of diet. The viscosity of small intestinal and caecal

contents were measured at a shear rate of 1 s−1 using a tube-flow viscometer, producing

results of 3.8 Pa · s and 82 Pa · s respectively. The density of the caecal contents with

particles was measured as 1030 kg/m3. In addition, Takahashi and Sakata have published

several papers examining the viscous properties of pig caecal contents in relation to the

proportion of large particles remaining. They measured the coefficient of viscosity of caecal

contents with particles removed to be 0.0013 Pa · s [66] and found this to be independent

of shear rate, i.e. the caecal contents without particles were Newtonian in nature. In the
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same study the material containing particles displayed shear thinning behaviour with a

viscosity of 3.7 Pa · s at 1 s−1. They also found density to be independent of the large

particle content, with a value given of 1010 kg/m3 [65].

Other measurements for pig intestinal viscosities include those of Roberts et al. [53]

and McDonald et al. [39]. Roberts et al. give a maximum zero shear rate viscosity of

0.057 Pa · s for the jejunal digesta of their control group. For McDonald et al. values of

viscosity (with particles removed) for the caecum at a shear rate of 60 s−1 range between

0.00167 and 0.00618 Pa · s depending on diet. Similarly values for the proximal colon are

given between 0.00248 and 0.0052 Pa · s.

Here we have seen a wide range of viscosity values, and not all for the relevant regions.

At the very least though they give us an idea of the viscosity of the colonic chyme and

the values for the small intestine can give an appropriate lower bound for viscosity. The

most appropriate data for our purposes come from the measurements made at low shear

rate (e.g. 1 s−1) and without any removal of large particles.

1.3.2 The Motility of the Colon

Understanding the motility of the colon is important in establishing appropriate boundary

conditions for a mathematical model. In this section we consider the types of colonic

motility and their prevalence as well as factors which affect these.

Transit of contents through the colon is not continuous [38] and is controlled through

the motor activity of the colonic smooth muscle. It is widely accepted that there are

two main types of contractile activity within the colon - propulsive contractions (mass

movements) and non-propulsive contractions (segmental activity) [4, 8, 25, 43, 72].

In the colon the majority of contractions are segmental in nature [37, 47], particularly

within the caecum and ascending colon. These are non-propulsive, rapid contractions of

the circular muscle layer [25, 70] and they occur independently at adjacent sites within
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the colon [71]. The frequency of these contractions is given by Misiewicz [43] as 2.5−3 per

minute, corresponding to an individual duration of 20− 24 s and a duration of 10− 60 s

per contraction is given by Weisbrodt [71], which corresponds to a frequency of 1 − 6

per minute. Gill et al. [22] investigated the contractile activity of colonic muscle in

vitro and found a contractile frequency of 6.3±0.6 per minute for the circular muscle in

the right colon, significantly higher than that in the left colon of 3.4±0.3 per minute.

Segmental contractions serve to mix the luminal contents with colonic enzymes [72] and

increase contact of material with the mucosa [70, 43], allowing absorption of water and

electrolytes into the bloodstream. In addition contraction of the circular muscle slows

transit through the colon [8, 43]. This delay should prove beneficial in terms of drug

delivery, increasing the amount of time available for drug absorption; in particular it

may mitigate against the lower surface area of the colon in comparison to the small

intestine [70, 72]. Raised pressure within the lumen provides a measure of the forces

exerted by the colonic muscle on the intraluminal contents [43] and provides a means

of identifying segmental contractions [72]. Information on the pressure amplitudes of

segmental contractions is generally consistent in the literature, with Misiewicz [43] quoting

10− 60 mmHg (∼ 1.333− 8 kPa), Bassotti et al. [8] 5− 50 mmHg (∼ 0.667− 6.667 kPa)

and Weisbrodt [71] 10− 50 mmHg (∼ 1.333− 6.667 kPa).

Mass movements are described as ‘rare events’, occurring approximately 1 − 4 times

per day in healthy subjects [70, 71]. The contraction of the longitudinal muscle is re-

sponsible for these propulsive mass movements [71] and from the transverse colon to the

sigmoid colon these contractions predominate [25]. This type of motion has not been

observed elsewhere in the GI tract and may be characterised as an intense and prolonged

peristaltic wave [70]. During a propulsive contraction segmental contractions stop and

a loss of haustrations may be observed; the colon is then subjected to a contraction of

the longitudinal muscle that propels the contents of the lumen distally [71], by creating
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a left-right pressure gradient [8]. After a mass movement has taken place, haustrations

and contractions of the circular muscle return.

A second type of propulsive activity has been observed in the colon, termed peri-

staltic or antiperistaltic contractions depending on the direction of propulsion [70]. These

type of contractions occur more frequently than mass movements and are also known as

propagating sequences, of either ‘high’ or ‘low’ amplitude [4, 7, 8]. This classification by

amplitude is not absolute and values as to what constitutes a high or low amplitude differ

between authors and studies. Additionally high amplitude propagating contractions are

sometimes used to mean the same as mass movements in the literature [8].

The lack of clear differentiation between types of activity need not be of concern in

this project. Firstly, propagating contractions occur much less frequently than segmental

ones and secondly, the segmental contractions of the ascending colon are the ones of

interest in terms of successful drug delivery. This is because they serve to both mix the

luminal material and delay its transit, thereby optimising the amount of fluid absorbed.

Occasional propagating contractions may alter the situation significantly, this is something

that could be investigated in future work. Overall, colonic motility is lower and less

disruptive than that of the stomach and small intestine [38]. This reduces the stresses in

the lumen which in turn helps to lower the rate of mucus removal. This, together with the

likely lower sensitivity to mucus secretory stimuli, make colonic mucoadhesive residence

time less rate-limited by mucus turnover than the upper regions of the gastrointestinal

tract.

The response of colonic motor activity to various stimuli and variations in situation has

been experimentally investigated. The main factors which seem to have been considered

are response to meals and the sleep-wake cycle. Other considerations have included age,

sex and disease.

It is generally accepted that colonic motor activity is increased after meals [4, 8, 43, 70,
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63]; however, the type of activity affected is not completely clear. Mass movements may be

stimulated by the ingestion of food [43], resulting in the distal transport of contents which

allows the potential for further emptying from the small intestine [7]. Contrary to this

though, Washington et al. [70] report that despite an almost immediate response to eating

of the smooth colonic muscle, there was no emptying of the right colon. This is explained

by an increase in non-propagating, rather than propagating, activity immediately after

eating [70]. Indeed Bassotti et al. [8] describe the activation of the motor reflexes of both

the proximal and distal colon within 1−3 minutes of eating and report that this response,

lasting 2− 3 hours, mainly increases the segmental activity. However, in a later study [7],

Bassotti et al. found that the average number of low amplitude propagating contractions

increased significantly in the two hours after a meal. In contrast to this Bampton et al.

[4] found no overall increase in the frequency of low amplitude propagating sequences

between two hours before and two hours after eating, instead they found an increase in

the amplitude of these contractions. They also found a significant increase in the number

of high amplitude propagating sequences after a meal, with numbers returning to base

values three hours afterward.

The type of food consumed is also reported to affect colonic motility, with fat having

a greater stimulant effect than either protein or carbohydrates [70]. A meal consisting

purely of fat produces both an early (10 − 40 minutes) and a late (70 − 90 minutes)

response; with simultaneous ingestion of protein the late response is lost whereas both

responses are curtailed by the ingestion of amino acids [70].

The effect of the sleep-wake cycle on colonic motility is clearer than that of eating.

It is well documented that sleep has a profound inhibitory effect on both propagating

and non-propagating colonic motor activity [7, 43]. In addition to a decrease in activity

during sleep there is a specific increase in activity upon waking [70], particularly that of

a propagating nature [7].
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Segmental activity is reportedly decreased in those suffering from diarrhoea and in-

creased in those with constipation, whereas the opposite is the case with the frequency

of mass movements [43]. Those suffering from chronic constipation also have a severely

limited or absent motor response to eating, in both the proximal and distal colon [8] as

well as a significantly lower response to wakening in comparison with controls [38].

Colonic motor activity is also thought to be affected by age, with the suggestion that

segmental activity increases and propulsive activity decreases with age [8]. Both hormones

and drugs can affect colonic motility, for example adrenaline and noradrenaline decrease

the activity of smooth muscle and morphine delays transit through the caecum and as-

cending colon [70]. Studies involving women at different stages of the menstrual cycle and

during pregnancy have also shown that progesterone may depress colonic motility [70].

Other factors may affect the actual transit of material, for example patients with

ulcerative colitis have been found to have a significantly faster transit time than controls

[38]. It is unclear as to what role, if any, gender plays in transit time with some studies

showing no difference and others reporting a significantly faster transit time in women

[70].

Gastric emptying and colonic transit are the major variables involved in the length of

time it takes a drug to travel through the GI tract [72]. Whole bowel transit in healthy

humans has been placed at 24−36 hours, with a wide range of variation being shown and

times being highly influenced by an individual’s pattern of daily activity [70]. McConnell

et al. [38], however, place colonic transit time at 6 − 48 hours, with values greater than

70 hours reported. These results show that there is a wide range of variation in colonic

transit within individuals; in fact there may be large variations even within one individual.

As previously mentioned, the mucoadhesive approach can manipulate the transit time of

a dosage form, thereby reducing this variability [68]. Wilson [72] breaks the colon down

into regions in order to study the transit times of dosage forms. He reports times of 3− 5
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hours for the ascending colon; 0.2− 4 hours for the transverse colon; and 5− 72 hours for

the descending colon and sigmoid colon combined.

For the models we present in this thesis we do not consider the effects of factors such as

eating or sleep. This may be taken into account in future work, for example by specifying

the time of day that a dosage is taken or whether it is taken with food or without.

The most important variable relating to colonic motility for our models is the frequency

of the contractions. In addition the qualitative information gathered about segmental

contractions allows us to choose a suitable mathematical function for the colonic wall and

appropriate boundary conditions.

1.4 Existing Models of the Gastrointestinal Tract

The literature on existing models of the GI tract can be divided into roughly three types

(with some overlap). These are:

1. artificial physical models;

2. mathematics based computational and theoretical models; and

3. imaging based computational models.

Relatively few of these models consider the colon but we should be able to gain some

insight through other regions. The models have different investigative focus, depending

on their type, the methods used and the interests of their creators.

Artificial Physical Models

In 1998, Macfarlane et al. [36] developed a three-stage compound continuous culture

system to study the responses of human colonic bacteria to the transit time of fluid through

the system, in particular the effect on bacterial concentration. The system was designed

to mimic the main environmental and nutritional conditions affecting fermentation by
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bacteria within the proximal and distal colons. Vessel 1 represents the proximal colon

and vessels 2 and 3 represent the distal colon. They concluded that they had produced

a useful model for the study, under different environmental and nutritional conditions, of

large intestinal microorganisms. The purpose of this model was very different from our

own and it did not attempt to take into account the geometry, motility or fluid dynamics

within the colon.

A similar model of this kind, for studying the colonic bacterial environment, is that of

Spratt et al. [61] from 2005; a three-stage tubular model. This model may be considered

an extension of the previous one. The three stages represent the ascending, transverse

and descending colons. According to Spratt et al., one key disadvantage of Macfarlane et

al.’s model is the oversimplification of the fluid mixing processes due to the use of stirred

reactors. This is improved on by the development of a membrane fermenter, with an

aqueous solution on the outside used to control the removal of water and metabolites from

the interior flow. They also aimed for a system where inlet flow rate and concentration,

Reynolds number and total water flux were comparable with the true situation, with

some success. Thus Spratt et al. not only considered the reproduction of the fermentation

conditions but also some of the fluid dynamic aspects within the colon. Their model

proved more representative than that of Macfarlane et al., although neither attempted to

consider the effects of colonic motility.

Henry et al. [23] created what they described as an ‘ex vivo’ gastric model, constructed

using silicone, based on computed tomography (CT) scans of the human stomach. 3D

computer models of the stomach were developed from these images and data such as

wall thickness, surface area and volume measured. Silicone was identified as a suitable

polymer, with similarly distensibility to that of the human stomach, to be used to create

the model. The hollow gastric model was created using the computer model and then

pressure-volume measurements were taken and compared to experimental values in the
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literature, with reasonable results. The main aim of this study was to demonstrate the

possibility of manipulating CT scans to obtain realistic models of the stomach, in terms

of geometry, compliance and pressure-volume relationship, comparison with human data

showed success in this aim.

The physical models reviewed have included two which considered fluid insofar as

its bacterial content, but not its dynamics. These models both considered the colon,

and considered it as three separate regions with different properties as opposed to just

one. The other physical model investigated the solid properties of an organ, namely the

stomach, with concerns similar to those we will encounter with the imaging based models.

Mathematics Based Models

Mathematics based models come in two forms: specific and general. General ones look

at a mathematical problem that could have applications to the GI tract (and/or other

areas of the body). For example Rao and Mishra [52] investigate the peristaltic transport

of a power law fluid in a porous tube and Woollard et al. [73] develop a model for solute

transport in a wavy walled channel. Both of these have potential applications to small

intestinal fluid flow, with the ‘wavy walls’ representing the villi. Misra and Pandey [44]

investigate the peristaltic flow of two layers of power law fluid through a cylindrical tube

with the express purpose of providing a model for the study of the flow of chyme through

the small intestine. A further study into the flow of chyme through the small intestine

using a non-Newtonian fluid is that of Tripathi et al. [67], using a fractional generalised

Burgers’ fluid1 with long wavelength and small Reynolds number assumptions. This type

of analysis had already been performed using a non-fractional generalised Burgers’ model

1The fractional generalised Burgers’ model is given by(
1 + λα1

∂α

∂tα
+ λα2

∂2α

∂t2α

)
τ =

(
1 + λβ3

∂β

∂tβ
+ λβ4

∂2β

∂t2β

)
γ̇,

where 0 < α ≤ β < 1 [67].
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and Tripathi et al. found the results to be favourable, in terms of the transport of chyme,

with the non-fractional model. GI specific papers are presented by Eastwood [16] and

Macagno and Christensen [35]. Eastwood develops mathematical equations to describe

the effects in the intestinal lumen of dietary fibre and Macagno and Christensen investigate

the fluid mechanics, including the transport and mixing, of the duodenum.

In terms of specific models the oesophagus has received a reasonable amount of at-

tention. Until Liao et al. [33] in 2004, most studies into oesophageal mechanics had

considered it as a homogeneous one-layered structure. However the outer muscular layer

and inner mucosal layer are significantly different [75] making this approach limited in un-

derstanding stress and strain distributions. Using images of snap-frozen rats’ oesophagus,

Liao et al. produced a two-layered finite element model of the solid mechanics. Adding

the material constants for each layer allowed them to simulate deformations and calcu-

late stress-strain distributions. A two-layered finite element model was also developed by

Yang et al. [75] and published in 2006. This model additionally considers the effects of

mucosal buckling, a phenomenon caused by the instability under active contraction of the

inner mucosal layer [74]. The purpose of this study was to demonstrate the feasibility of

using finite element analysis to simulate the peristaltic nature of transport through the

oesophagus and the potential benefits of the relationship between the structures, functions

and mechanical properties of the tissue. Both of these models consider only the material

tissue properties and none of the properties of fluid within the lumen, the dynamics of

flow or the coupling between the solid and fluid mechanics.

Also investigating the oesophagus is a study by Yassi et al. [76] from 2004. The focus

of this research however, lies with the lower oesophagus sphincter (LOS) rather than the

oesophageal tissue. The LOS regulates flow between the oesophagus and stomach; it al-

lows contents to flow into the stomach and acts as a barrier to prevent flow from the high

pressure environment of the stomach to the lower pressure environment of the oesoph-
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agus. An ineffective LOS may cause gastroesophageal reflux or, at the other extreme,

dysphagia (difficulty in swallowing) - both of which are serious disorders. In this study

photographic images were used to obtain geometric information for the oesophagus and

gastroesophageal junction. A volume mesh was then fitted to this data using an iterative

finite element linear fitting process and the muscle fibre directions of each muscle layer

were embedded into the finite element geometry. This study provides a model which can

act as a framework for future research into the functional behaviour during swallowing of

the oesophagus and LOS.

Dillard et al. [14] concern themselves with a different GI junction - the antroduodenal

junction between the stomach and the duodenum of the small intestine. This junction is

thought to play a role in the effectiveness of the mixing of gastric content and duodenal

secretions, which in turn affects the absorption of the material once it reaches the small

intestine. Computational models were designed to allow a variety of physical situations

and mathematical parameters to be studied. These models were based on 2D channel

flows which allow the inclusion of a prescribed moving boundary and the Navier-Stokes

equations were used for flow, with the Reynolds number lying between 1 and 333. The fluid

mixing was then quantified in each case using a scalar variance, where the variance of the

scalar species concentration, φ, is calculated (see [14] for details). The main considerations

of this study were the effects on transport and mixing of the pulsatile nature of gastric

outflow, the geometric features of the junction and the interaction of these with the wall

motion at the junction.

After developing a computational model of the stomach, Pal et al. [48] used it to

present evidence for their discovery of a new phenomenon of gastric contractile activity,

one which differs from the classical description of gastric emptying and has implications for

drug delivery. In the classical description the proximal stomach (the fundus) stores chyme

and supplies it the distal stomach (the antrum), with fundic contractions maintaining the
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gastro-duodenal pressure difference. Chyme is then ground and mixed by the action of

antral contractions before passing into the duodenum at a rate controlled by the pyloric

sphincter. Pal et al. used MRI data from a healthy human stomach to create a geometrical

model and quantified the fluid motion via the lattice Boltzmann method (see [48] for

details), extended to incorporate moving boundary conditions. From here they used

particle tracking to validate their idea of the existence of a ‘Magenstrasse’ or stomach

road. This is a narrow path from the fundus, through the centre of the antrum, to the

duodenum, allowing content to pass from the most proximal regions of the stomach to the

intestines within 10 minutes. Their next step was to demonstrate that this path is created

by antral contraction waves by ‘turning off’ this activity in their computer simulation.

The implications for drug delivery are in terms of transit time, with those released on

the Magenstrasse able to reach the small intestine within minutes as opposed to hours for

those released off it.

All of the theoretical models mentioned are based on the fluid dynamics created by

the wall motion and geometry, whereas the papers of Dillard et al. and Pal et al. are the

only computational ones which consider any of the fluid dynamics within the GI tract. In

addition there does appear to be a significant gap in fluid dynamics based models for the

ileum and colon. Both of the studies by Dillard et al. and Pal et al. also indicate one of the

main advantages of computer simulation and mathematical models over physical models:

the ability to adjust parameters. This enables us to investigate different observable events

and their causes as well as what the effects of changes caused by, for example disease, may

be. The other studies of this type reviewed appear to mainly concentrate on the material

tissue properties and geometry of an organ and their relation to functional behaviour.
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Imaging Based Models

The most widely used method for studying the biomechanics of the GI tract is bag dis-

tension [19, 31]. In brief this method involves the insertion of an inflatable ‘bag’ into the

relevant area using a specially designed probe containing a channel for the infusion and

withdrawal of water. Data obtained via distension are traditionally based on pressure-

volume measurements [31], however these cannot provide the information necessary for

studying the mechanical properties of the organ tissue [19]. Several studies have indi-

cated that the mechanoreceptors of the GI wall are not directly sensitive to pressure or

volume [20], but instead are tension receptors [31]. In addition, symptoms associated with

the GI tract are often related to disturbances in mechanical function and motility [19].

These factors, together with the complex GI geometry, have led researchers to develop

techniques based on cross-sectional imaging in order to assess geometric variables [21].

One method of imaging, which has been shown to produce reliable measurements for

pressure changes and the geometry of the gastroesophageal junction, is a device known as a

functional lumen imaging probe (FLIP). McMahon et al. [41] used data gathered from this

device to investigate the flow through the gastroesophageal junction using computational

fluid dynamics (CFD). They created a 2D model using cross-sectional images from FLIP

scans and used CFD to predict the flow during reflux, as well as obtaining information on

shear stresses at the wall. The main purpose of this study was to illustrate the potential of

numerical methods in developing a better understanding of the gastroesophageal junction.

The rest of the studies that we mention in this section follow a similar pattern to one

another, with a significant overlap in contributors. They each follow the same general

structure, although there are some slight variations. Their main interest in developing

computer modelling techniques appears to have been the potential to predict regional

stresses and strains in inaccessible locations [31]. First an imaging technique was used

to produce cross-sectional images of a given region; a form of bag distension was used to
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create distension of the organ under consideration. Various computer programmes were

used for the processing of scanned images, with reslicing and surface smoothing used

to reconstruct a 3D model. From here various geometric and biomechanical parameters

were calculated and although these vary between studies, the main considerations were

curvature, wall thickness, tension, stress and strain.

The human stomach was modelled using images acquired from real-time ultrasonog-

raphy and a Fourier transform method for surface smoothing and curvature calculations

[32]. The human rectum was modelled with assistance from MRI scans and a modified

non-shrinking Gaussian smoothing method was used to reduce irregularities (see [20] for

details). Ultrasound scans were used to create a model of the human duodenum, whose

segments were then assessed for circularity [19]. The sigmoid colon was modelled us-

ing human MRI scans and again using the modified non-shrinking Gaussian smoothing

method to reduce irregularities [21]. In summary, the regions for which computational

models have been developed using the general method outlined in the previous paragraph

are the stomach, duodenum, sigmoid colon and rectum.

An acknowledged weakness in each of these studies is the method used for calculating

the wall stress. Wall tension, T , was calculated using Laplace’s law [31]

P = T (κ1 + κ2), (1.4.1)

where P is the transmural pressure and κ1, κ2 are the principal curvatures. From this the

stress, σ, could be calculated via [31]

σ =
T

h
, (1.4.2)

where h is the wall thickness. The authors note that Laplace’s law is only valid for thin-

walled structures and is based on an assumption of circularity [20] and therefore its use
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is not ideal in this situation. However, Laplace’s law as given in these papers is more

generally used for calculating fluid surface tension and may be too simplistic to generalise

this to solid mechanics.

Problems were also encountered when it came to measuring wall thickness and with

edge detection. For example, the wall thickness at the thinnest part of the rectum was

measured as less than 1mm, yet the pixel size in that study [20] was 0.39mm. This made

detecting the exact edge in that region difficult, potentially leading to added inaccuracy in

the calculations for wall thickness and stress. The general technique used in these studies

requires a large amount of time for image post-processing and computer simulation, as

well as some radiological expertise [19]. It is hoped that these problems may be overcome,

or limited, in future by the improvement of scanners with better image resolution and

increased speed of image acquisition as well as improved software for edge detection and

3D computation [20, 21, 19]. However, these studies have shown the potential benefits

of this type of image based modelling and provided a framework and the motivation for

further research and refinement of technique and equipment.

In the next section we discuss the type of model we intend to create and the ways in

which we will go about this.

1.5 Considerations for Drug Delivery and the Math-

ematical Modelling of Colonic Motility

In the next three chapters we work towards the presentation of a preliminary analytical

model of flow in the human ascending colon under segmental (‘mixing’) contractions.

We attempt to replicate, where possible, the physical and rheological characteristics of

the biological situation in our choice of parameter regimes. A model is necessarily an

idealisation of the real system, based on our existing knowledge of the colon, digestive

system and the fluids within it. Further assumptions will then be made to ensure that
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mathematical solutions can be found, in particular the assumption of small amplitude

wall movement.

We study the ascending colon due to its relevance in the absorption of drugs and

nutrients. We consider only the activity of segmental contractions of the colonic muscle

as these contractions are the most prevalent type of motor activity in this region and

also the ones responsible for the mixing of luminal content. The efficiency of mixing

affects how much material is exposed to the epithelial surface and hence how much is

absorbed and the rate at which absorption occurs; this is of paramount importance when

considering drug delivery. We do not directly consider the effects of absorption of fluid

through the colonic epithelium on the flow, mixing or composition of the luminal fluid.

To simplify the problem we consider the fluid to be homogeneously distributed and the

contractions driving the flow to be continuous. We also assume that the pipe modelling

the colon and the flow within are axisymmetric, an assumption which is justified by the

axisymmetric nature of the muscular contractions. We model the contractions of the

circular muscle by prescribing the motion of the pipe boundary; we choose a standing

wave of small amplitude in order to allow the use of perturbation techniques. A standing

wave is chosen as this mimics the effects of mixing within the lumen created by the

contraction of colonic muscle. Figure 1.5 provides a general depiction of the geometries

we consider. In our models flow is induced only by the motion of the boundary; there is

no underlying pressure gradient.

In chapter 2 we develop the analytical techniques to be used in this thesis by consid-

ering a one layer model of Newtonian fluid flow. We build on this model in chapter 3

by adding a second layer of fluid to our model; that is we have an inner core of Newto-

nian fluid surrounded by an outer layer of Oldroyd B fluid with a solid boundary. This

represents the physical situation of chyme filling the intraluminal space, with a layer of

viscoelastic mucus lining the intestinal epithelium. We also investigate the relative impor-
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(a) One Fluid Layer.

(b) Two Fluid Layers.

Figure 1.5: Two small amplitude models with (a) describing the one layer model and (b)
describing the two layer model. In both (a) and (b) R0 is the mean radius of the pipe, λ
is the wavelength, ε � 1 is a nondimensional parameter describing the amplitude of the
wave and the function R(z∗, t∗) is the boundary function of the pipe, where t∗ is time.
Additionally in (b) η0 is the mean position of the interface as a proportion of R0 and
η(z∗, t∗) is the function for the free surface at the interface.

tance and influence of the parameters specific to the two layer model; for each parameter

we choose a range of values and vary the given parameter within this range whilst leaving

the other parameter values fixed.

In chapter 4 we consider a one layer model in which chyme is represented by a shear

thinning Carreau rheological model. It is well established that intestinal chyme is a non-

Newtonian fluid which displays shear thinning behaviour [13, 39, 64, 66]. Although a

power law model would prove the simplest to handle we use the more general Carreau

model due to the inadequacies of the power law model at low shear rates. We may expect

low shear rates with our model because the flow is governed by the wall motion which is

of small amplitude.
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Finally, in chapter 5 we consider the delivery of a drug within the colon. To do this

we utilise the method of Lagrangian particle tracking to determine the proportion of drug

particles which will reach the colon wall over the length of one contraction. Then in

section 5.2 we estimate values for the parameters in the fluid model and vary the value

of these in order to ascertain the relative influence and importance of each parameter on

delivery to the colonic epithelium. This level of analysis involving parameter variation is

not possible with physical models and it is the ability to allow parameter variation which

gives us the potential to be able to take the effects of disease into account.
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Chapter 2

Modelling the Colon as a Pipe

subject to Small Amplitude Wall

Motion

In this chapter we create a model of mixing within the colon under the assumption of small

amplitude boundary oscillations. We model the colon as an axisymmetric cylindrical pipe

of arbitrary radius and length, with the single Newtonian fluid flow inside the pipe being

driven by the motion of the pipe boundary. Due to the small amplitude of the oscillation

we use perturbation theory to analyse the flow and mixing of chyme up to second order.

We are presently concerned with the mixing aspect of colonic motion and as such we

choose to consider a standing wave representation of the boundary, rather than a travelling

wave which would cause net transport. We set the equation of the pipe boundary as

R∗(z∗, t∗) = R

(
R0

√
1 + 2ε

(
ei(

2π
λ
z∗−ωt∗) + e−i(

2π
λ
z∗+ωt∗)

))
, (2.0.1)

whereR(z) represents the real part of z; R0 is the mean radius of the pipe; the wavelength

and angular frequency of the oscillation are given by λ and ω respectively; ε � 1 is a

dimensionless parameter; z∗ is axial distance along the pipe; and t∗ is time. Typical values
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for these parameters are given by R0 = 0.025 m; ω = π/10 rad/s; and λ = 0.06 m.
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Figure 2.1: Plots of the shape of the boundary, equation (2.0.1) with the typical parame-
ters above and ε = 0.01, for increasing t, where t = ωt∗ represents the proportion of time
through one contractile period of length t = 2π.

The (dimensional) equations for the velocity field of an incompressible Newtonian fluid

in axisymmetric cylindrical polar co-ordinates are given by

0 =
1

r∗
∂

∂r∗
(r∗u∗r) +

∂u∗z
∂z∗

ρ

(
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

)
= −∂p

∗

∂r∗
+ µ

(
1

r∗
∂

∂r∗

(
r∗
∂u∗r
∂r∗

)
+
∂2u∗r
∂z∗2

− u∗r
r∗2

)
ρ

(
∂u∗z
∂t∗

+ u∗r
∂u∗z
∂r∗

+ u∗z
∂u∗z
∂z∗

)
= −∂p

∗

∂z∗
µ

(
1

r∗
∂

∂r∗

(
r∗
∂u∗z
∂r∗

)
+
∂2u∗z
∂z∗2

)
,
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where u∗ = (u∗r(r
∗, z∗, t∗), 0, u∗z(r

∗, z∗, t∗)) is the velocity field, ρ is the density and µ is

the dynamic viscosity of the fluid. In addition we have the boundary conditions

u∗r(R
∗, z∗, t∗) = Ṙ∗(z∗, t∗)

u∗z(R
∗, z∗, t∗) = 0

u∗r(0, z
∗, t∗) = 0

∂u∗z
∂r∗

(0, z∗, t∗) = 0,

where Ṙ∗ is the first derivative of R∗ with respect to time. These arise due to no slip at

the boundary and symmetry about the z∗-axis.

We must now nondimensionalise our equations, for this we use the scalings

u∗ = ωR0u; x∗ = R0x; and t∗ =
1

ω
t,

where ω is the angular frequency of the wall contractions and R0 is the pipe radius.

Additionally we scale pressure by

p∗ = µωp

=
ρ(ωR0)

2

Re
p

where the Reynolds number is given by

Re =
ρωR2

0

µ
.

Taking an estimate for the viscosity and density of chyme of µ = 5 Pa·s and ρ =

1000 kg/m3 respectively, we calculate the Reynolds number as approximately 0.03927.

We note that the reduced Reynolds number, given by εRe, is the one which gives the
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physical balance between inertial and viscous forces. Tables 2.1 and 2.2 display the stan-

dard parameter values that we use in this chapter.

Table 2.1: Standard Dimensional Parameter Values.
Parameter Description Value Units
R0 Radius 0.025 m
ω Contractile frequency π/10 rad/s
λ Wavelength 0.06 m
µ Zero shear viscosity 5 Pa·s
ρ Fluid density 1000 kg/m3

Table 2.2: Standard Nondimensional Parameter Values.
Parameter Value
Re 0.039
k 5π/6
ε 0.01

The nondimensional equations of motion are given by

0 =
1

r

∂

∂r
(rur) +

∂uz
∂z

Re

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+

1

r

∂

∂r

(
r
∂ur
∂r

)
+
∂2ur
∂z2

− ur
r2

Re

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+

1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

with the nondimensional boundary conditions given by

ur(R, z, t) = Ṙ(z, t)

uz(R, z, t) = 0

ur(0, z, t) = 0

∂uz
∂r

(0, z, t) = 0,
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where

R(z, t) = R
(√

1 + 2ε (ei(kz−t) + e−i(kz+t))

)
(2.0.2)

and k = 2πR0/λ. Since ε� 1 we may expand (2.0.2) as follows

R(z, t) = R
(

1 + ε
(
ei(kz−t) + e−i(kz+t)

)
− ε2

2

(
e2i(kz−t) + e−2i(kz+t) + e−2it

)
+ o(ε3)

)
.

(2.0.3)

We expand the boundary and equation variables about ε� 1 so that

R(z, t) = 1 + εR1(z, t) + ε2R2(z, t) + o(ε3) (2.0.4)

p(r, z, t) = p0 + εp1(r, z, t) + ε2p2(r, z, t) + o(ε3), (2.0.5)

note that p∗0 is the pressure at leading order, so that

p0 =
Re

ρ(ωR0)2
p∗0.

There is no flow at leading order since at O(1), R = R0 and p = p0, both of which are

constant, since we assume there is no underlying pressure gradient at O(1). Therefore

ur(r, z, t) = εur1(r, z, t) + ε2ur2(r, z, t) + o(ε3) (2.0.6)

uz(r, z, t) = εuz1(r, z, t) + ε2uz2(r, z, t) + o(ε3). (2.0.7)

In order to work out the boundary conditions we must expand ur and uz using Taylor
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series. Firstly,

ur(R, z, t) = ur(1 + εR1 + ε2R2 + . . . , z, t)

= ur(1, z, t) + (εR1 + ε2R2 + . . .)
∂ur
∂r

(1, z, t) + (εR1 + . . .)2
∂2ur
∂r2

(1, z, t) + . . .

= εur1(1, z, t) + ε2
(
ur2(1, z, t) +R1(z, t)

∂ur1
∂r

(1, z, t)

)
+ o(ε3).

Similarly,

uz(R, z, t) = εuz1(1, z, t) + ε2
(
uz2(1, z, t) +R1(z, t)

∂uz1
∂r

(1, z, t)

)
+ o(ε3)

ur(0, z, t) = εur1(0, z, t) + ε2ur2(0, z, t) + o(ε3)

uz(0, z, t) = εuz1(0, z, t) + ε2uz2(0, z, t) + o(ε3).

Thus the boundary conditions are given by

εur1(1, z, t) + ε2
(
ur2(1, z, t) +R1(z, t)

∂ur1
∂r

(1, z, t)

)
= εṘ1(z, t) + ε2Ṙ2(z, t)

εuz1(1, z, t) + ε2
(
uz2(1, z, t) +R1(z, t)

∂uz1
∂r

(1, z, t)

)
= 0

εur1(0, z, t) + ε2ur2(0, z, t) = 0

ε
∂uz1
∂r

(0, z, t) + ε2
∂uz2
∂r

(0, z, t) = 0.

In the next two sections we look at the equations at O(ε) and O(ε2) respectively and

determine solutions based on the boundary equation.
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2.1 Flow at O(ε)

We consider the flow at O(ε) using the results from the previous section. The equations

of motion at O(ε) are given by

0 =
1

r

∂

∂r
(rur1) +

∂uz1
∂z

(2.1.1)

Re
∂ur1
∂t

= −∂p1
∂r

+
1

r

∂

∂r

(
r
∂ur1
∂r

)
+
∂2ur1
∂z2

− ur1
r2

(2.1.2)

Re
∂uz1
∂t

= −∂p1
∂z

+
1

r

∂

∂r

(
r
∂uz1
∂r

)
+
∂2uz1
∂z2

. (2.1.3)

Using the Taylor series for ur and uz about both R(z, t) and 0 we see that the boundary

conditions at O(ε) are given by

ur1(1, z, t) = Ṙ1(z, t)

uz1(1, z, t) = 0

ur1(0, z, t) = 0

∂uz1
∂r

(0, z, t) = 0.

Using the equations for the boundary (2.0.3) and (2.0.4) we see that

R1(z, t) = R
(
ei(kz−t) + e−i(kz+t)

)
.

For this type of boundary we assume that solutions are of the form

ur1(r, z, t) = R
(
f1(r)e

i(kz−t) + f2(r)e
−i(kz+t))

uz1(r, z, t) = R
(
g1(r)e

i(kz−t) + g2(r)e
−i(kz+t))

p1(r, z, t) = R
(
h1(r)e

i(kz−t) + h2(r)e
−i(kz+t)) .
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Substituting these into the O(ε) equations (2.1.1) - (2.1.3) and equating coefficients of

ei(kz−t) and e−i(kz+t) we obtain the six equations

0 =
df1
dr

+
1

r
f1(r) + ikg1(r) (2.1.4)

0 =
df2
dr

+
1

r
f2(r)− ikg2(r) (2.1.5)

0 = −dh1
dr

+
d2f1
dr2

+
1

r

df1
dr

+

(
iRe− k2 − 1

r2

)
f1(r) (2.1.6)

0 = −dh2
dr

+
d2f2
dr2

+
1

r

df2
dr

+

(
iRe− k2 − 1

r2

)
f2(r) (2.1.7)

0 = −ikh1(r) +
d2g1
dr2

+
1

r

dg1
dr

+
(
iRe− k2

)
g1(r) (2.1.8)

0 = ikh2(r) +
d2g2
dr2

+
1

r

dg2
dr

+
(
iRe− k2

)
g2(r). (2.1.9)

These equations suggest that we have f = f1 = f2, g = g1 = −g2 and h = h1 = h2.

Rearranging (2.1.4) we find that

g(r) =
i

k

(
df

dr
+
f(r)

r

)
(2.1.10)

and substituting this into (2.1.8) we obtain an expression for h,

h(r) =
1

k2
d3f

dr3
+

2

rk2
d2f

dr2
+

(
iRe

k2
− 1

r2k2
− 1

)
df

dr
+

(
1

r3k2
+
iRe

rk2
− 1

r

)
f(r). (2.1.11)

From this and (2.1.6) we obtain an ODE for f , given by

0 =
1

k2
d4f

dr4
+

2

rk2
d3f

dr3
+

(
iRe

k2
− 3

r2k2
− 2

)
d2f

dr2
+

(
3

r3k2
+
iRe

rk2
− 2

r

)
df

dr

+

(
2

r2
− iRe

(
1 +

1

r2k2

)
+ k2 − 3

r4k2

)
f(r).

(2.1.12)
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Taking A = iRe− k2 for simplicity, the general solution of (2.1.12) is given by

f(r) = c1I1(rk) + c2K1(rk) + c3J1(
√
Ar) + c4K1(−i

√
Ar)

where Jα, Iα and Kα are Bessel functions of the first kind and modified Bessel functions

of the first and second kind respectively.

We must now formulate our boundary conditions in terms of the function f . First we

have ur1(1, z, t) = Ṙ1(z, t), now

Ṙ1(z, t) = −i
(
ei(kz−t) + e−i(kz+t)

)
ur1(1, z, t) = f(1)

(
ei(kz−t) + e−i(kz+t)

)
,

therefore we have

f(1) = −i.

Next we consider uz1(1, z, t) = 0, which implies that we must have g(1) = 0. But this is

the same as

g(1) =
i

k

(
df

dr
(1) + f(1)

)
= 0,

i.e.

df

dr
(1) = i.

The condition ur1(0, z, t) = 0 tells us that

f(0) = 0.

Finally we consider ∂uz1(0, z, t)/∂r = 0, so that dg(0)/dr = 0, but

dg

dr
=
i

k

(
d2f

dr2
+

1

r

df

dr
− 1

r2
f(r)

)
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so that we have

d2f

dr2
+

1

r

df

dr
− 1

r2
f(r)→ 0 as r → 0.

Thus, to summarise, the boundary conditions are given by

f(1) = −i
df

dr
(1) = i

f(0) = 0

d2f

dr2
+

1

r

df

dr
− 1

r2
f(r) → 0 as r → 0.

In order to determine the constants c2 and c4 we consider the behaviour of f and its

derivatives as r → 0, using the small argument expansions given for Bessel functions [2,

p360,375]. Now

f(r) ∼ c1
rk

2
+ c2

1

rk
+ c3

√
Ar

2
+ c4

i√
Ar

as r → 0

→ c2
1

rk
+ c4

i√
Ar

as r → 0.

In order to satisfy the condition f(0) = 0 we require

c2
1

k
+ c4

i√
A

= 0, i.e. c2 = −ikc4√
A
.

We now consider the second condition at r = 0; differentiating f(r) we have

df

dr
= c1k

(
I0(rk)− I1(rk)

rk

)
+ c2k

(
−K0(rk)− K1(rk)

rk

)
+c3
√
A

(
J0(
√
Ar)− J1(

√
Ar)√
Ar

)
− ic4

√
A(

−K0(−i
√
Ar)− iK1(−i

√
Ar)√

Ar

)
,
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which leaves us with

df

dr
∼ c1

k

2
+ c2k

(
ln(rk)− 1

(rk)2

)
+ c3

√
A

2
− ic4

√
A

(
ln(−i

√
Ar) +

1

Ar2

)
as r → 0.

Differentiating again we have

d2f

dr2
= c1k

2

(
−I0(rk)

rk
+ I1(rk) +

2I1(rk)

(rk)2

)
+ c2k

2

(
K0(rk)

rk
+K1(rk) +

2K1(rk)

(rk)2

)
+c3A

(
−J0(

√
Ar)√
Ar

− J1(
√
Ar) +

2J1(
√
Ar)

Ar2

)
− c4A(

iK0(−i
√
Ar)√

Ar
+K1(−i

√
Ar)− 2K1(−i

√
Ar)

Ar2

)
,

so that

d2f

dr2
∼ c1

k3r

2
+ c2k

2

(
− ln(rk)

rk
+

1

rk
+

2

(rk)3

)
− c3
√
A

3
r

2

+c4A

(
i ln(−i

√
Ar)√

Ar
− i√

Ar
+

2i

(
√
Ar)3

)

as r → 0.
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Therefore as r → 0,

d2f

dr2
+

1

r

df

dr
− 1

r2
f(r) ∼ c1

k3r

2
+ c2k

2

(
− ln(rk)

rk
+

1

rk
+

2

(rk)3

)
− c3
√
A

3
r

2

+c4A

(
i ln(−i

√
Ar)√

Ar
− i√

Ar
+

2i

(
√
Ar)3

)
+ c1

k

2r

+c2
k

r

(
ln(rk)− 1

(rk)2

)
+ c3

√
A

2r

−ic4
√
A

r

(
ln(−i

√
Ar) +

1

Ar2

)
−c1

k

2r
− c2

1

r3k
− c3
√
A

2r
− c4

i√
Ar3

,

that is, as r → 0,

d2f

dr2
+

1

r

df

dr
− 1

r2
f(r) → 1

r

(
c2k − ic4

√
A− c2k ln(rk) + ic4

√
A ln(−i

√
Ar)

+ c2k ln(rk)− ic4
√
A ln(−i

√
Ar)
)

+
1

r3(
2c2
k

+
2ic4√
A
− c2
k
− ic4√

A
− c2
k
− ic4√

A

)
=

1

r

(
c2k − ic4

√
A
)
.

In order to satisfy the condition d2f/dr2+1/r(df/dr)−f(r)/r2 → 0 as r → 0, we require

c2k − ic4
√
A = 0, i.e.

c2 =
ic4
√
A

k
.

But in order to satisfy f(0) = 0 we require

c2 = −ikc4√
A
.
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Suppose that c4 6= 0, then

ic4
√
A

k
= −ikc4√

A
⇔ k2 = −A = −iRe + k2

⇔ 0 = iRe,

in which case we require Re = 0, but we wish this to remain arbitrary. Hence we set

c4 = 0 which means that c2 = 0 and

f(r) = c1I1(rk) + c3J1(
√
Ar). (2.1.13)

Using (2.1.13) and its differentials together with (2.1.10) and (2.1.11) we find that

g(r) =
i
(
c1kI0(rk) + c3

√
AJ0(

√
Ar)
)

k

h(r) =
iRe c1I0(rk)

k
.

We now use the remaining two boundary conditions to determine the following matrix

equation for c1 and c3, I1(k) J1(
√
A)

kI0(k)− I1(k)
√
AJ0(

√
A)− J1(

√
A)


 c1

c3

 =

 −i
i

 . (2.1.14)

Note that (2.1.14) may be solved analytically, however since this will not necessarily be

the case in later problems we use Matlab to determine c1 and c3 and plot solutions.

In this section we have considered the geometry of a pipe with arbitrary radius and

length and small amplitude wave motion of the wall. The motion of the wall drives the

flow of a Newtonian fluid contained within the pipe.

Figures 2.2 - 2.6 display a series of velocity and vorticity plots for various t with

55



fixed parameters. Recall R0 = 0.025 m, ω = π/10 rad/s, λ = 0.06 m, µ0 = 5 Pa·s,

ρ = 1000 kg/m3, and ε = 0.01. The flow of the interior fluid is slower at t = 0 and t = π

than at t = π/2 and t = 3π/2, this is because the wall is at rest for t = kπ. Overall

magnitude at the former times is of the order of tenths of microns per second (or tenths of

millimetres per hour), whereas at the latter times it is of the order of tenths of millimetres

per second (or tens of centimetres per hour).

Flow in the axial direction is antisymmetric about z∗ = 0.03 m (i.e. half the wave-

length) at each time step, due to the nature of the boundary. Radial flow is symmetric

about z∗ = 0.03 m, and for t = 0, π (i.e. when the boundary is at rest) it is also symmetric

about r∗ = R0/2 = 0.0125 m, with velocity magnitude symmetric about z∗ = 0.03 m. In

this sense flow in the negative and positive directions can be considered to ‘balance’ out

over one wavelength at each time step.

In addition to the symmetries at each time step, the figures in this section display

anti-symmetry in time over one cycle for u∗r, u
∗
z and the vorticity. For example, at t = 0

the plots for u∗r, u
∗
z and the vorticity all have equal magnitude but opposite direction

to their respective plots at t = π and similarly for t = π/2 compared with t = 3π/2.

Together these points suggest that there is no overall transport through the pipe - this is

a consequence of the boundary function, supporting our choice for R1.
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Figure 2.2: Colour plots of u∗r (m/s) at O(ε) for the standard parameters, where r∗ and z∗

have units m. The colour scales differ between subplots in order to prevent detail being
lost at the times with slower flow velocity.
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Figure 2.3: Colour plots of u∗z (m/s) at O(ε) for the standard parameters, where r∗ and z∗

have units m. The colour scales differ between subplots in order to prevent detail being
lost at the times with slower flow velocity.
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Figure 2.4: Magnitude of velocity (m/s) at O(ε) for the standard parameters, where r∗

and z∗ have units m. The colour scales differ between subplots in order to prevent detail
being lost at the times with slower flow velocity.
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Figure 2.5: Vorticity of flow (s−1) at O(ε) for the standard parameters, where r∗ and z∗

have units m. The colour scales differ between subplots in order to prevent detail being
lost at the times with lower vorticity.
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Figure 2.6: Velocity fields at O(ε) for the standard parameters at four time instants,
where r∗ and z∗ have units m.
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2.2 Flow up to O(ε2)

We now consider the flow at O(ε2) using the results from earlier in this chapter. The

equations of motion at O(ε2) are given by

0 =
1

r

∂

∂r
(rur2) +

∂uz2
∂z

(2.2.1)

Re

(
∂ur2
∂t

+ ur1
∂ur1
∂r

+ uz1
∂ur1
∂z

)
= −∂p2

∂r
+

1

r

∂ur2
∂r
− ur2

r2
+
∂2ur2
∂r2

+
∂2ur2
∂z2

(2.2.2)

Re

(
∂uz2
∂t

+ ur1
∂uz1
∂r

+ uz1
∂uz1
∂z

)
= −∂p2

∂z
+

1

r

∂uz2
∂r

+
∂2uz2
∂r2

+
∂2uz2
∂z2

, (2.2.3)

where ur1, uz1 are known from the previous section. The above equations differ from the

ones at O(ε) in that they include some inertial effects.

Using the Taylor series for ur and uz about both R(z, t) and 0 we see that the boundary

conditions at O(ε2) are given by

ur2(1, z, t) = Ṙ2(z, t)−R1(z, t)
∂ur1
∂r

(1, z, t)

uz2(1, z, t) = −R1(z, t)
∂uz1
∂r

(1, z, t)

ur2(0, z, t) = 0

∂uz2
∂r

(0, z, t) = 0.

Using the equations for the boundary (2.0.3) and (2.0.4) we see that

R2 = R
(
−1

2

(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

))
.
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For this type of boundary we assume solutions of the form

ur2(r, z, t) = R
(
α1(r)e

2i(kz−t) + α2(r)e
−2i(kz+t) + α3(r)e

−2it)
uz2(r, z, t) = R

(
β1(r)e

2i(kz−t) + β2(r)e
−2i(kz+t) + β3(r)e

−2it)
p2(r, z, t) = R

(
δ1(r)e

2i(kz−t) + δ2(r)e
−2i(kz+t) + δ3(r)e

−2it) .
Substituting these, along with those for ur1 and uz1, into the O(ε2) equations (2.2.1) -

(2.2.3) and equating coefficients of e2i(kz−t), e−2i(kz+t) and e−2it we obtain the nine equa-

tions

dα1

dr
+
α1

r
+ 2ikβ1 = 0 (2.2.4)

dα2

dr
+
α2

r
− 2ikβ2 = 0 (2.2.5)

dα3

dr
+
α3

r
= 0 (2.2.6)

−2iα1 + f
df

dr
+ ikfg =

1

Re

(
−dδ1

dr
+

1

r

dα1

dr
− α1

r2
+

d2α1

dr2
− 4k2α1

)
(2.2.7)

−2iα2 + f
df

dr
+ ikfg =

1

Re

(
−dδ2

dr
+

1

r

dα2

dr
− α2

r2
+

d2α2

dr2
− 4k2α2

)
(2.2.8)

−2iα3 + 2f
df

dr
− 2ikfg =

1

Re

(
−dδ3

dr
+

1

r

dα3

dr
− α3

r2
+

d2α3

dr2

)
(2.2.9)

−2iβ1 + f
dg

dr
+ ikg2 =

1

Re

(
−2ikδ1 +

1

r

dβ1
dr

+
d2β1
dr2
− 4k2β1

)
(2.2.10)

−2iβ2 − f
dg

dr
− ikg2 =

1

Re

(
2ikδ2 +

1

r

dβ2
dr

+
d2β2
dr2
− 4k2β2

)
(2.2.11)

−2iβ3 =
1

Re

(
1

r

dβ3
dr

+
d2β3
dr2

)
. (2.2.12)

These equations suggest that we have α = α1 = α2, β = β1 = −β2, δ = δ1 = δ2 and three

ODEs to find α3, β3 and δ3.

Now, solving (2.2.6) gives us

α3 =
a

r
, (2.2.13)
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solving (2.2.12) gives us

β3 = b1J0(r
√

2iRe) + b2K0(r
√

2iRe),

and solving (2.2.9), together with (2.2.13), gives us

δ3 = c+ Re

(
2ia ln r − 2

∫ r

0

f
df

dr′
dr′ + 2ik

∫ r

0

fg dr′
)
, (2.2.14)

where a, b1, b2 and c are constants to be determined. Thus our solutions may now be

written as

ur2(r, z, t) = R
(
α(r)

(
e2i(kz−t) + e−2i(kz+t)

)
+
a

r
e−2it

)
ur2(r, z, t) = R

(
β(r)

(
e2i(kz−t) − e−2i(kz+t)

)
+
(
b1J0(r

√
2iRe) + b2K0(r

√
2iRe)

)
e−2it

)
p2(r, z, t) = R

(
δ(r)

(
e2i(kz−t) + e−2i(kz+t)

)
+ δ3(r)e

−2it) ,
where δ3(r) is given by equation (2.2.14).

Rearranging (2.2.4) we find that

β(r) =
i

2k

(
dα

dr
+
α(r)

r

)
(2.2.15)

and substituting this into (2.2.10) we obtain an expression for δ,

δ(r) =
1

4k2
d3α

dr3
+

1

2rk2
d2α

dr2
+

(
iRe

2k2
− 1

4r2k2
− 1

)
dα

dr
+

(
1

4r3k2
+

iRe

2rk2
− 1

r

)
α(r)

+
Re

2

(
i

k
f

dg

dr
− g2

)
.
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Using this and (2.2.7) we obtain an ODE for α, given by

1

4k2
d4α

dr4
+

1

2k2r

d3α

dr3
+

(
iRe

2k2
− 3

4k2r2
− 2

)
d2α

dr2
+

(
3

4k2r3
+

iRe

2k2r
− 2

r

)
dα

dr

+

(
4k2 +

2

r2
− iRe

(
1

2k2r2
+ 2

)
− 3

4k2r4

)
α

+Re

(
i

2k

(
f

d2g

dr2
+

df

dr

dg

dr

)
− gdg

dr
+ f

df

dr
+ ikgf

)
= 0.

(2.2.16)

In order to solve this we will utilise a Lobatto IIIa finite difference formula implemented

via Matlab’s bvp4c algorithm; given a system of ODEs of the form y′ = F (x,y) on

the interval [a, b], bvp4c finds a solution subject to appropriate boundary conditions of

the form G(y(a),y(b)) = 0. First however we must determine appropriate boundary

conditions in terms of α.

We begin with the conditions on ur2. We recall that

ur2(r, z, t) = R
(
α(r)

(
e2i(kz−t) + e−2i(kz+t)

)
+
a

r
e−2it

)
;

now ur2|r=0 = 0, hence we must set a = 0, leaving

α(0)
(
e2i(kz−t) + e−2i(kz+t)

)
= 0

from which we deduce α(0) = 0. The second condition is given by

ur2(1, z, t) = Ṙ2(z, t)−R1(z, t)
∂ur1
∂r

(1, z, t),

now

R1
∂ur1
∂r

∣∣∣∣
r=1

=
df

dr
(1)
(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
= i

(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
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and

Ṙ2 = i
(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
,

thus

Ṙ2 −R1
∂ur1
∂r

∣∣∣∣
r=1

= 0,

i.e. ur2|r=1 = 0. This leaves us with α(1) = 0.

Next we look at the conditions on uz2. At r = 0, ∂uz2/∂r = 0, but

∂uz2
∂r

=
(
−b1
√

2iReJ1(r
√

2iRe) + ib2
√

2iReK1(−ir
√

2iRe)
)

e−2it

+
dβ

dr

(
e2i(kz−t) − e−2i(kz+t)

)
therefore we must consider the small argument expansions for Bessel functions [2, p360,375].

As r → 0

J1(r
√

2iRe) ∼
√

2iRe

2
r

K1(−ir
√

2iRe) ∼ i

r
√

2iRe
.

This suggests that we must take b2 = 0 and that b1J1(0) = 0, leaving

dβ

dr
(0)
(
e2i(kz−t) − e−2i(kz+t)

)
= 0,

i.e.

dβ

dr
(0) = 0.

Now

dβ

dr
=

i

2k

(
d2α

dr2
+

1

r

dα

dr
− α

r

)

66



thus we have

d2α

dr2
+

1

r

dα

dr
− α

r
→ 0 as r → 0.

Finally we have

uz2|r=1 = −R1
∂uz1
∂r

∣∣∣∣
r=1

= −dg

dr
(1)
(
e2i(kz−t) − e−2i(kz+t)

)
,

but

dg

dr
(1) =

i

k

(
d2f

dr2
(1) +

df

dr
(1)− f(1)

)
=

i

k

d2f

dr2
(1)− 2

k
,

where f is known, therefore

β(1)
(
e2i(kz−t) − e−2i(kz+t)

)
−
(
b1
√

2iReJ1(
√

2iRe)
)

e−2it =

(
− i
k

d2f

dr2
(1) +

2

k

)
(
e2i(kz−t) − e−2i(kz+t)

)
.

Equating coefficients of e2i(kz−t) − e−2i(kz+t) and e−2it we have

b1 = 0

β(1) = − i
k

d2f

dr2
(1) +

2

k
.

Using equation (2.2.15), together with α(0) = 0, we see that the latter of these conditions

is equivalent to

dα

dr
(1) = −2

d2f

dr2
(1)− 4i.
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In summary, the four boundary conditions are given by

α(1) = 0

dα

dr
(1) = −2

d2f

dr2
(1)− 4i

α(0) = 0

d2α

dr2
+

1

r

dα

dr
− 1

r2
α(r) → 0 as r → 0.

The first three of these conditions are compatible with using bvp4c, however we must

simplify the fourth. To this end we consider the behaviour of d2α/dr2 + 1/r(dα/dr) −

α(r)/r2 for small values of r. Now, as r → 0

α(r) ∼ α(0) + r
dα

dr
(0) +

r2

2

d2α

dr2
(0) + . . .

dα

dr
(r) ∼ dα

dr
(0) + r

d2α

dr2
(0) + . . .

d2α

dr2
(r) ∼ d2α

dr2
(0) + . . . ,

then (since α(0) = 0)

d2α

dr2
+

1

r

dα

dr
− 1

r2
α(r) =

d2α

dr2
(0) +

1

r

dα

dr
(0) +

d2α

dr2
(0)− 1

r

dα

dr
(0) +

1

2

d2α

dr2
(0) + o(r)

=
3

2

d2α

dr2
(0) + o(r),

Thus we have (3/2)(d2α/dr2) → 0 as r → 0 and since α is continuous we have the

condition

d2α

dr2
(0) = 0.

In order to use bvp4c we rewrite the fourth order ODE (2.2.16) as a system of equations
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of the form α′ = y(r,α), with α1 = α, α2 = α′, α3 = α′′ and α4 = α′′′, so that

α′1 = α2

α′2 = α3

α′3 = α4

α′4 = y(r, α1, α2, α3, α4),

where

y = 4k2
(
− 1

2k2r
α4 −

(
iRe

2k2
− 3

4k2r2
− 2

)
α3 −

(
3

4k2r3
+

iRe

2k2r
− 2

r

)
α2

−
(

4k2 +
2

r2
− iRe

(
1

2k2r2

)
− 3

4k2r4

)
α1

−Re

(
i

2k

(
f

d2g

dr2
+

df

dr

dg

dr

)
− gdg

dr
+ f

df

dr
+ ikgf

))
.

In order to avoid singularities when solving the problem numerically we set a lower limit

of r = 0.01 instead of r = 0. Thus bvp4c solves the above system of equations subject to

α1(1) = 0, α1(0.01) = 0, α2(1) = −2d2f(1)/dr2 − 4i and α3(0.01) = 0.

Recall the parameter values that we use areR0 = 0.025 m, ω = π/10 rad/s, λ = 0.06 m,

µ0 = 5 Pa·s, ρ = 1000 kg/m3, and ε = 0.01.
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Figure 2.7: Colour plots of u∗r (m/s) up to O(ε2) for the standard parameters, where r∗

and z∗ have units m. The colour scales differ between subplots in order to prevent detail
being lost at the times with slower flow velocity.
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Figure 2.8: Colour plots of u∗z (m/s) up to O(ε2) for the standard parameters, where r∗

and z∗ have units m. The colour scales differ between subplots in order to prevent detail
being lost at the times with slower flow velocity.
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Figure 2.9: Magnitude of velocity (m/s) up to O(ε2) for the standard parameters, where
r∗ and z∗ have units m. The colour scales differ between subplots in order to prevent
detail being lost at the times with slower flow velocity.
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Figure 2.10: Vorticity of flow (s−1) up to O(ε2) for the standard parameters, where r∗

and z∗ have units m. The colour scales differ between subplots in order to prevent detail
being lost at the times with lower vorticity.
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Figure 2.11: Velocity fields up to O(ε2) for the standard parameters at four time instants,
where r∗ and z∗ have units m.
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Figures 2.7 - 2.11 represent the combined O(ε) and O(ε2) flow. Comparing figures 2.2

- 2.6 of the previous section to the equivalent figures 2.7 - 2.11 in this section there are

no obvious differences in the flow to different orders of ε.

In order to check that this lack of difference is not simply down to taking Re � 1

and therefore rendering the additional terms at O(ε2) negligible, figures 2.12 and 2.13

compare the flow at both orders for Re = 200. As we see from these figures increasing Re

has an effect on the actual flow, however there are still no obvious differences in the flow

to different orders of ε.

Thus the main points from section 2.1 hold. At each time step flow in the axial

direction is antisymmetric, whilst radial flow is symmetric, about z∗ = 0.03 m; velocity

magnitude is also symmetric about z∗ = 0.03 m. In this sense flow in the negative and

positive directions can be considered to ‘balance’ out over one wavelength at each time

step. In addition to the symmetries at each time step, the plots display antisymmetry in

time over one cycle for u∗r, u
∗
z and the vorticity.

In this chapter we have calculated the flow fields of a Newtonian fluid, within a pipe

of arbitrary radius and length with a small amplitude standing wave for the pipe wall.

We considered flow to both O(ε) and O(ε2), with ε = 0.01, and found that there appears

to be no advantage in going to higher order in this case. We shall use these results when

we investigate particle transport in chapter 5. In the next chapter we consider a similar

geometry but with a thin layer of a second fluid lining the pipe wall to represent the

mucus layer in the colon.
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Chapter 3

Modelling the Colon as a Pipe

with Two Layers of Fluid under

Small Amplitude Wall Motion

In this chapter we add a mucus layer to the flow to create a two layer model of pipe flow

with a standing wave outer wall R∗ = R∗(z∗, t∗) and a free surface η∗ = η∗(z∗, t∗) between

the two different fluids. Physiologically we are considering the inner fluid to be the bulk

digestive fluid, represented by a Newtonian model, and the outer fluid to be a thin mucus

layer, represented by the viscoelastic Oldroyd B model. The inner fluid, which is such

that 0 ≤ r∗ < η∗(z∗, t∗), has velocity u∗[1], density ρ[1] and pressure p∗[1], whilst the outer

fluid, which is such that η∗(z∗, t∗) < r∗ < R∗(z∗, t∗), has velocity u∗[2], density ρ[2] and

pressure p∗[2]. Where the superscript [i] (or subscript i) is used, we take i to range over

the values 1 and 2.
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3.1 Developing the Equations of Motion with Appro-

priate Boundary and Interfacial Conditions

The constitutive equation for a Newtonian fluid is given by

τ ∗[1] = µ[1]γ̇∗[1], (3.1.1)

and the constitutive equation for an Oldroyd B fluid is given by

τ ∗[2] + λ1τ
∗[2]O = µ[2](γ̇∗[2] + λ2γ̇

∗[2]O), (3.1.2)

where AOOO is the upper convected derivative of A, given by

AOOO =
DA

Dt
− (∇u∗)T ·A−A · (∇u∗)

=
∂A

∂t
+ (u∗ · ∇)A− (∇u∗)T ·A−A · (∇u∗).

In addition, λ1 is the relaxation time, λ2 is the retardation time and µ[2] is the total

viscosity of the fluid, given by µ[2] = µs + µp, where µs is the solvent viscosity and µp is

the polymeric viscosity. The equations of motion are given by

0 =
1

r∗
∂

∂r∗
(r∗u∗[i]r ) +

∂u
∗[i]
z

∂z∗

∂u
∗[i]
r

∂t∗
+ u∗[i]r

∂u
∗[i]
r

∂r∗
+ u∗[i]z

∂u
∗[i]
r

∂z∗[i]
=

1

ρ[i]

(
−∂p

∗[i]

∂r∗
+
τ
∗[i]
rr

r∗
− τ

∗[i]
θθ

r∗
+
∂τ
∗[i]
rr

∂r∗
+
∂τ
∗[i]
rz

∂z∗

)
∂u
∗[i]
z

∂t∗
+ u∗[i]r

∂u
∗[i]
z

∂r∗
+ u∗[i]z

∂u
∗[i]
z

∂z∗
=

1

ρ[i]

(
−∂p

∗[i]

∂z∗
+
τ
∗[i]
rz

r∗
+
∂τ
∗[i]
rz

∂r∗
+
∂τ
∗[i]
zz

∂z∗

)
.

Using (3.1.1) the relevant components of shear stress for a Newtonian fluid are given
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by

τ ∗[1]rr = 2µ[1]∂u
∗[1]
r

∂r∗

τ ∗[1]rz = µ[1]

(
∂u
∗[1]
r

∂z∗
+
∂u
∗[1]
z

∂r∗

)

τ
∗[1]
θθ = 2µ[1]u

∗[1]
r

r∗

τ ∗[1]zz = 2µ[1]∂u
∗[1]
z

∂z∗
,

with the components of shear stress for an Oldroyd B fluid, using (3.1.2) and Appendix

B, given by

τ ∗[2]rr + λ1

(
∂τ
∗[2]
rr

∂t∗
+ u∗[2]r

∂τ
∗[2]
rr

∂r∗
+ u∗[2]z

∂τ
∗[2]
rr

∂z∗
− 2τ ∗[2]rr

∂u
∗[2]
r

∂r∗
− 2τ ∗[2]rz

∂u
∗[2]
z

∂r∗

)

= 2µ[2]

(
∂u
∗[2]
r

∂r∗
+ λ2

(
∂2u

∗[2]
r

∂t∗∂r∗
+ u∗[2]r

∂2u
∗[2]
r

∂r∗2
+ u∗[2]z

∂2u
∗[2]
r

∂z∗∂r∗

−2

(
∂u
∗[2]
r

∂r∗

)2

− ∂u
∗[2]
z

∂r∗

(
∂u
∗[2]
r

∂z∗
+
∂u
∗[2]
z

∂r∗

) ;

τ ∗[2]rz + λ1

(
∂τ
∗[2]
rz

∂t∗
+ u∗[2]r

∂τ
∗[2]
rz

∂r∗
+ u∗[2]z

∂τ
∗[2]
rz

∂z∗
− τ ∗[2]rr

∂u
∗[2]
r

∂z∗
− τ ∗[2]zz

∂u
∗[2]
z

∂r∗
− τ ∗[2]rz(

∂u
∗[2]
r

∂r∗
+
∂u
∗[2]
z

∂z∗

))
= µ[2]

(
∂u
∗[2]
r

∂z∗
+
∂u
∗[2]
z

∂r∗
+ λ2

(
∂2u

∗[2]
r

∂t∗∂z∗
+
∂2u

∗[2]
z

∂t∗∂r∗

+u∗[2]r

(
∂2u

∗[2]
r

∂r∗∂z∗
+
∂2u

∗[2]
z

∂r∗2

)
+ u∗[2]z(

∂2u
∗[2]
z

∂z∗∂r∗
+
∂2u

∗[2]
r

∂z∗2

)
− 2

(
∂u
∗[2]
r

∂r∗
∂u
∗[2]
r

∂z∗
+
∂u
∗[2]
z

∂r∗
∂u
∗[2]
z

∂z∗

)

−

(
∂u
∗[2]
r

∂z∗
+
∂u
∗[2]
z

∂r∗

)(
∂u
∗[2]
r

∂r∗
+
∂u
∗[2]
z

∂z∗

)))
;
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τ
∗[2]
θθ + λ1

(
∂τ
∗[2]
θθ

∂t∗
+ u∗[2]r

∂τ
∗[2]
θθ

∂r∗
+ u∗[2]z

∂τ
∗[2]
θθ

∂z∗
− 2τ

∗[2]
θθ

u
∗[2]
r

r∗

)
= 2

µ[2]

r∗

(
u∗[2]r + λ2(

∂u
∗[2]
r

∂t∗
+ u∗[2]r

∂u
∗[2]
r

∂r∗
+ u∗[2]z

∂u
∗[2]
r

∂z∗
− 3

u
∗[2]2
r

r∗

))
;

and finally

τ ∗[2]zz + λ1

(
∂τ
∗[2]
zz

∂t∗
+ u∗[2]r

∂τ
∗[2]
zz

∂r∗
+ u∗[2]z

∂τ
∗[2]
zz

∂z∗
− 2τ ∗[2]zz

∂u
∗[2]
z

∂z∗
− 2τ ∗[2]rz

∂u
∗[2]
r

∂z∗

)

= 2µ[2]

(
∂u
∗[2]
z

∂z∗
+ λ2

(
∂2u

∗[2]
z

∂t∗∂z∗
+ u∗[2]r

∂2u
∗[2]
z

∂r∗∂z∗
+ u∗[2]z

∂2u
∗[2]
z

∂z2

−2

(
∂u
∗[2]
z

∂z∗

)2

− ∂u
∗[2]
r

∂z∗

(
∂u
∗[2]
r

∂z∗
+
∂u
∗[2]
z

∂r∗

) .

We take one Reynolds number, valid throughout the pipe, defined as

Re =
ρ[1]ωR2

0

µ[1]
.

Through taking the same parameter values as in the one layer case, i.e. R0 = 0.025 m,

ω = π/10 rad/s, ρ[1] = 1000 kg/m3 and µ[1] = 5 Pa·s, we have Re ≈ 0.039. For the inner

fluid we nondimensionalise according to

u∗[1] = ωR0u
[1]; x∗ = R0x; t∗ =

1

ω
t; p∗[1] =

ρ[1](ωR0)
2

Re
p[1];

and τ ∗[1] = µ[1]ωτ [1].
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The nondimensional equations pertaining to the inner fluid are then given by

0 =
1

r

∂

∂r
(ru[1]r ) +

∂u
[1]
z

∂z

∂u
[1]
r

∂t
+ u[1]r

∂u
[1]
r

∂r
+ u[1]z

∂u
[1]
r

∂z
=

1

Re

(
−∂p

[1]

∂r
+

1

r

(
τ [1]rr − τ

[1]
θθ + r

∂τ
[1]
rr

∂r
+ r

∂τ
[1]
rz

∂z

))
∂u

[1]
z

∂t
+ u[1]r

∂u
[1]
z

∂r
+ u[1]z

∂u
[1]
z

∂z
=

1

Re

(
−∂p

[1]

∂z
+

1

r

(
τ [1]rz + r

∂τ
[1]
rz

∂r
+ r

∂τ
[1]
zz

∂z

))

τ [1]rr = 2
∂u

[1]
r

∂r

τ [1]rz =

(
∂u

[1]
r

∂z
+
∂u

[1]
z

∂r

)

τ
[1]
θθ = 2

u
[1]
r

r

τ [1]zz = 2
∂u

[1]
z

∂z
.

For the outer fluid we nondimensionalise using

u∗[2] = ωR0u
[2]; x∗ = R0x; t∗ =

1

ω
t; p∗[2] =

ρ[2](ωR0)
2

Re
p[2];

τ ∗[2] = µ[2]ωτ [2]; and M [2] = λ1ω.

We also introduce the nondimensional parameters

µ̄ =
µ[2]

µ[1]
; ρ̄ =

ρ[2]

ρ[1]
and λ̄ =

λ2
λ1
.

We take estimates of ρ[2] = 1000 kg/m3, µ[2] = 10 Pa·s and λ1 = 30 s for the mucus

density, zero shear viscosity and relaxation time respectively. In addition we note that

the retardation time in the Oldroyd B model is given by λ2 = µsλ1/(µp + µs) [40]; thus

we take λ2 = 6.5 × 10−4λ1/µ
[2] s, where 6.5 × 10−4 Pa·s is an estimate for the dynamic

viscosity of water at body temperature. The equations of motion for the outer fluid are
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then given by

0 =
1

r

∂

∂r
(ru[2]r ) +

∂u
[2]
z

∂z

Re

(
∂u

[2]
r

∂t
+ u[2]r

∂u
[2]
r

∂r
+ u[2]z

∂u
[2]
r

∂z

)
= −∂p

[2]

∂r
+
µ̄

ρ̄

(
1

r

(
τ [2]rr − τ

[2]
θθ + r

∂τ
[2]
rr

∂r
+ r

∂τ
[2]
rz

∂z

))

Re

(
∂u

[2]
z

∂t
+ u[2]r

∂u
[2]
z

∂r
+ u[2]z

∂u
[2]
z

∂z

)
= −∂p

[2]

∂z
+
µ̄

ρ̄

(
1

r

(
τ [2]rz + r

∂τ
[2]
rz

∂r
+ r

∂τ
[2]
zz

∂z

))
,

whilst the shear stress equations are given by

τ [2]rr +M [2]

(
∂τ

[2]
rr

∂t
+ u[2]r

∂τ
[2]
rr

∂r
+ u[2]z

∂τ
[2]
rr

∂z
− 2τ [2]rr

∂u
[2]
r

∂r
− 2τ [2]rz

∂u
[2]
z

∂r

)
= 2

(
∂u

[2]
r

∂r
+ λ̄M [2]

∂2u[2]r
∂t∂r

+ u[2]r
∂2u

[2]
r

∂r2
+ u[2]z

∂2u
[2]
r

∂z∂r
− 2

(
∂u

[2]
r

∂r

)2

− ∂u
[2]
z

∂r

(
∂u

[2]
r

∂z
+
∂u

[2]
z

∂r

) ;

τ [2]rz +M [2]

(
∂τ

[2]
rz

∂t
+ u[2]r

∂τ
[2]
rz

∂r
+ u[2]z

∂τ
[2]
rz

∂z
− τ [2]rr

∂u
[2]
r

∂z
− τ [2]zz

∂u
[2]
z

∂r
− τ [2]rz

(
∂u

[2]
r

∂r
+
∂u

[2]
z

∂z

))

=

(
∂u

[2]
r

∂z
+
∂u

[2]
z

∂r
+ λ̄M [2]

(
∂2u

[2]
r

∂t∂z
+
∂2u

[2]
z

∂t∂r
+ u[1]r

(
∂2u

[2]
r

∂r∂z
+
∂2u

[2]
z

∂r2

)
+ u[2]z

(
∂2u

[2]
z

∂z∂r

+
∂2u

[2]
r

∂z2

)
− 2

(
∂u

[2]
r

∂r

∂u
[2]
r

∂z
+
∂u

[2]
z

∂r

∂u
[2]
z

∂z

)
−

(
∂u

[2]
r

∂z
+
∂u

[2]
z

∂r

)(
∂u

[2]
r

∂r
+
∂u

[2]
z

∂z

)))
;

τ
[2]
θθ +M [2]

(
∂τ

[2]
θθ

∂t
+ u[2]r

∂τ
[2]
θθ

∂r
+ u[2]z

∂τ
[2]
θθ

∂z
− 2τ

[2]
θθ

u
[2]
r

r

)
=

2

r

(
u[2]r + λ̄M [2]

(
∂u

[2]
r

∂t
+ u[2]r

∂u
[2]
r

∂r
+ u[2]z

∂u
[2]
r

∂z
− 3

u
[2]2
r

r

))
;
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and

τ [2]zz +M [2]

(
∂τ

[2]
zz

∂t
+ u[2]r

∂τ
[2]
zz

∂r
+ u[2]z

∂τ
[2]
zz

∂z
− 2τ [2]zz

∂u
[2]
z

∂z
− 2τ [2]rz

∂u
[2]
r

∂z

)
= 2

(
∂u

[2]
z

∂z
+ λ̄M [2]

∂2u[2]z
∂t∂z

+ u[2]r
∂2u

[2]
z

∂r∂z
+ u[2]z

∂2u
[2]
z

∂z2
− 2

(
∂u

[2]
z

∂z

)2

− ∂u
[2]
r

∂z

(
∂u

[2]
r

∂z
+
∂u

[2]
z

∂r

) .

The boundary conditions are the same as in chapter 2, i.e.

u[2]r (R(z, t), z, t) = Ṙ(z, t)

u[2]z (R(z, t), z, t) = 0

u[1]r (0, z, t) = 0

∂u
[1]
z

∂r
(0, z, t) = 0.

In addition to these we must also formulate the interfacial conditions at the free surface

between our two fluids.

The kinematic condition (C.1) is given by

∂η

∂t
+ u[i]z (η(z, t), z, t)

∂η

∂z
= u[i]r (η(z, t), z, t)

and continuity of velocity is expressed as

u[1](η(z, t), z, t) = u[2](η(z, t), z, t).

Note that the boundary conditions and the two interfacial conditions above are nondi-

mensional.
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The (dimensional) normal and tangential stress conditions are given by

(t∗[1] − t∗[2]) · n̂∗ = −σκ∗

t∗[1] · l∗ = t∗[2] · l∗,

at r∗ = η∗, where t∗[i] are the stress vectors, n̂∗ and l∗ are the unit normal and a tangential

vector to the interface, σ is the interfacial tension and κ∗ is the curvature of the interface.

Now t
∗[i]
j = σ

∗[i]
jk n̂

∗
k, with σ

∗[i]
jk = −p∗[i]δjk + τ ∗[i]. Using the scalings for p∗[i] and τ ∗[i] we

have σ
∗[i]
jk = µωσ

[i]
jk, with

σ
[1]
jk = −p[1]δjk + τ [1]

σ
[2]
jk = −ρ̄p[2]δjk + µ̄τ [2].

We note that n̂∗ = n̂ and l∗ = l, in addition κ∗ = κ/R0, with κ = ∇· n̂. Thus the normal

stress condition is given by

(t[1] − t[2]) · n̂ = − κ

Ca
,

where Ca is the capillary number, defined as

Ca =
µ[1]ωR0

σ

and the tangential stress condition is given by

t[1] · l = t[2] · l.

Taking an estimate for the interfacial tension of σ = 0.072 N/m we have Ca ≈ 0.5454.
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In this problem we have

n̂ =

(
1 +

(
∂η

∂z

)2
)− 1

2 (
1, 0,−∂η

∂z

)

which gives

κ =
1

η

(
1 +

(
∂η

∂z

)2
)− 1

2

− ∂2η

∂z2

(
1 +

(
∂η

∂z

)2
)− 3

2

.

In order for the vector l to be tangential to the interface we require

l · n̂ =

(
1 +

(
∂η

∂z

)2
)− 1

2 (
lr − lz

∂η

∂z

)
= 0.

Taking lr = ∂η/∂z and lz = 1 we have

l =

(
∂η

∂z
, 0, 1

)
.

3.2 Developing the Solutions to the Problem

As in the previous chapter we take a boundary of the form

R(z, t) ∼ 1 + εR1(z, t) + ε2R2(z, t) + . . .

86



as ε→ 0. Again we assume that the pressure is constant at leading order, then we have

η(z, t) ∼ η0 + εη1(z, t) + ε2η2(z, t) + . . .

p[i](r, z, t) ∼ p
[i]
0 + εp

[i]
1 (r, z, t) + ε2p

[i]
2 (r, z, t) + . . .

u[i](r, z, t) ∼ εu[i](r, z, t) + ε2u[i](r, z, t) + . . .

τ [i](r, z, t) ∼ ετ [i](r, z, t) + ε2τ [i](r, z, t) + . . .

as ε → 0, where η0 and p
[i]
0 are constant. Now η0 = 1 − mucus layer thickness/R0, so

taking η0 = 0.995 corresponds to a mucus layer thickness of 125 µm.

At leading order there is no flow, so we consider only the behaviour of the fluids at

higher order. The equations of motion and shear stress at O(ε) for the inner fluid are

given by

0 =
1

r

∂

∂r
(ru

[1]
r1) +

∂u
[1]
z1

∂z
(3.2.1)

Re
∂u

[1]
r1

∂t
= −∂p

[1]
1

∂r
+
τ
[1]
rr1

r
− τ

[1]
θθ1

r
+
∂τ

[1]
rr1

∂r
+
∂τ

[1]
rz1

∂z
(3.2.2)

Re
∂u

[1]
z1

∂t
= −∂p

[1]
1

∂z
+
τ
[1]
rz1

r
+
∂τ

[1]
rz1

∂r
+
∂τ

[1]
zz1

∂z
(3.2.3)

τ
[1]
rr1 = 2

∂u
[1]
r1

∂r
(3.2.4)

τ
[1]
rz1 =

∂u
[1]
r1

∂z
+
∂u

[1]
z1

∂r
(3.2.5)

τ
[1]
θθ1 = 2

u
[1]
r1

r
(3.2.6)

τ
[1]
zz1 = 2

∂u
[1]
z1

∂z
. (3.2.7)
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The equations of motion and shear stress at O(ε) for the outer fluid are given by

0 =
1

r

∂

∂r
(ru

[2]
r1) +

∂u
[2]
z1

∂z
(3.2.8)

Re
∂u

[2]
r1

∂t
= −∂p

[2]
1

∂r
+
µ̄

ρ̄

(
τ
[2]
rr1

r
− τ

[2]
θθ1

r
+
∂τ

[2]
rr1

∂r
+
∂τ

[2]
rz1

∂z

)
(3.2.9)

Re
∂u

[2]
z1

∂t
= −∂p

[2]
1

∂z
+
µ̄

ρ̄

(
τ
[2]
rz1

r
+
∂τ

[2]
rz1

∂r
+
∂τ

[2]
zz1

∂z

)
(3.2.10)

τ
[2]
rr1 +M [2]∂τ

[2]
rr1

∂t
= 2

(
∂u

[2]
r1

∂r
+ λ̄M [2]∂

2u
[2]
r1

∂t∂r

)
(3.2.11)

τ
[2]
rz1 +M [2]∂τ

[2]
rz1

∂t
=

∂u
[2]
r1

∂z
+
∂u

[2]
z1

∂r
+ λ̄M [2]

(
∂2u

[2]
r1

∂t∂z
+
∂2uz1
∂t∂r

)
(3.2.12)

τ
[2]
θθ1 +M [2]∂τ

[2]
θθ1

∂t
=

2

r

(
u
[2]
r1 + λ̄M [2]∂u

[2]
r1

∂t

)
(3.2.13)

τ
[2]
zz1 +M [2]∂τ

[2]
zz1

∂t
= 2

(
∂u

[2]
z1

∂z
+ λ̄M [2]∂

2u
[2]
z1

∂t∂z

)
. (3.2.14)

We will only be considering flow up to O(ε) in this chapter. This is because the added

complexity in going to higher order does not add corresponding detail to the results, as

seen in section 2.2.

The boundary conditions at O(ε) are as in section 2.1, i.e.

ur1(1, z, t) = Ṙ1(z, t)

uz1(1, z, t) = 0

ur1(0, z, t) = 0

∂uz1
∂r

(0, z, t) = 0.
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Using a Taylor expansion,

u(η(z, t), z, t) = ur(η0 + εη1(z, t) + . . . , z, t)

= u(η0, z, t) + εη1(z, t)
∂u

∂r
(η0, z, t) + . . .

= εu(η0, z, t) + o(ε2),

therefore continuity of velocity is given by

u[1](η0, z, t) = u[2](η0, z, t).

In addition the kinematic condition (3.1) at O(ε) is given by

u
[i]
r1(η0, z, t) = η̇1(z, t).

Recall that the normal and tangential stress conditions are given by

(t[1] − t[2]) · n̂ = − κ

Ca

t[1] · l = t[2] · l.

Using the binomial expansion on 1/(η0 + εη1 + . . .) and powers of 1 + (∂η/∂z)2 we have

n̂ =

(
1 + o(ε2), 0,−ε∂η1

∂z
+ o(ε2)

)
l =

(
ε
∂η1
∂z

+ o(ε2), 0, 1 + o(ε2)

)
κ =

1

η0
− ε

(
η1
η0

+
∂2η1
∂z2

)
+ o(ε2)
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and using Taylor expansions about η0 we have

p[i](η(z, t), z, t) = p
[i]
0 + εp

[i]
1 (η0, z, t) + o(ε2)

τ [i](η(z, t), z, t) = ετ
[i]
1 (η0, z, t) + o(ε2).

From here we may work out the individual components of shear stress at r = η0 for

each fluid,

t[1]r = σ[1]
rr n̂r + σ[1]

rz n̂z

=
(
−p[1] + τ [1]rr

)
n̂r + τ [1]rz n̂z

= −p[1]0 + ε(−p[1]1 + τ
[1]
rr1) + o(ε2)

and

t[1]z = σ[1]
rz n̂r + σ[1]

zz n̂z

= τ [1]rz n̂r +
(
−p[1] + τ [1]zz

)
n̂z

= ε

(
τ
[1]
rz1 + p

[1]
0

∂η1
∂z

)
+ o(ε2),

so that

t[1] ∼


−p[1]0 + ε(−p[1]1 + τ

[1]
rr1)

0

ε
(
τ
[1]
rz1 + p

[1]
0
∂η1
∂z

)
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as ε→ 0. We also have

t[2]r = σ[2]
rr n̂r + σ[2]

rz n̂z

=
(
−ρ̄p[2] + µ̄τ [2]rr

)
n̂r + µ̄τ [2]rz n̂z

= −ρ̄p[2]0 + ε
(
−ρ̄p[2]1 + µ̄τ

[2]
rr1

)
+ o(ε2)

and

t[2]z = σ[2]
rz n̂r + σ[2]

zz n̂z

= µ̄τ [2]rz n̂r +
(
−ρ̄p[2] + µ̄τ [2]zz

)
n̂z

= ε

(
µ̄τ

[2]
rz1 + ρ̄p

[2]
0

∂η1
∂z

)
+ o(ε2),

so that

t[2] ∼


−ρ̄p[2]0 + ε

(
−ρ̄p[2]1 + µ̄τ

[2]
rr1

)
0

ε
(
µ̄τ

[2]
rz1 + ρ̄p

[2]
0
∂η1
∂z

)


as ε→ 0.

Using these results for t[i], we have

t[i] · l = 0

at O(1). At O(ε) we have

t[1] · l = τ
[1]
rz1(η0, z, t)

t[2] · l = µ̄τ
[2]
rz1(η0, z, t),
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therefore the tangential stress condition at O(ε) is given by

τ
[1]
rz1(η0, z, t) = µ̄τ

[2]
rz1(η0, z, t).

The jump in stress at the interface is

t[1] − t[2] =


−p[1]0 + ρ̄p

[2]
0 + ε

(
−p[1]1 + ρ̄p

[2]
1 + τ

[1]
rr1 − µ̄τ

[2]
rr1

)
0

ε
(
τ
[1]
rz1 − µ̄τ

[2]
rz1 + ∂η1

∂z

(
p
[1]
0 − ρ̄p

[2]
0

))
 ,

thus we have

(
t[1] − t[2]

)
· n̂ = −p[1]0 + ρ̄p

[2]
0 + ε

(
−p[1]1 + ρ̄p

[2]
1 + τ

[1]
rr1 − µ̄τ

[2]
rr1

)
+ o(ε2).

Therefore the normal stress condition at leading order is given by

−p[1]0 + ρ̄p
[2]
0 = − 1

Caη0

and at O(ε) takes the form

−p[1]1 (η0, z, t) + ρ̄p
[2]
1 (η0, z, t) + τ

[1]
rr1(η0, z, t)− µ̄τ

[2]
rr1(η0, z, t) =

1

Ca

(
η1
η20

+
∂2η1
∂z2

)
.
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In summary, at O(ε) we have the following conditions

ur1(1, z, t) = Ṙ1(z, t)

uz1(1, z, t) = 0

ur1(0, z, t) = 0

∂uz1
∂r

(0, z, t) = 0

u[1](η0, z, t) = u[2](η0, z, t)

u
[i]
r1(η0, z, t) = η̇1(z, t)

τ
[1]
rz1(η0, z, t) = µ̄τ

[2]
rz1(η0, z, t)

−p[1]1 (η0, z, t) + τ
[1]
rr1(η0, z, t) = −ρ̄p[2]1 (η0, z, t) + µ̄τ

[2]
rr1(η0, z, t) +

1

Ca

(
η1
η20

+
∂2η1
∂z2

)
.

As in the one layer case we take

R(z, t) = R
(√

1 + 2ε (ei(kz−t) + e−i(kz+t))

)
,

where k = 2πR0/λ, thus

R1(z, t) = R
(
ei(kz−t) + e−i(kz+t)

)
.

We assume that the position of the interface follows the motion of the boundary, therefore

we take the free surface at O(ε) to be of the form

η1(z, t) = R
(
η̃1e

i(kz−t) + η̃2e
−i(kz+t)) ,
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where η̃1, η̃2 are constant. We then take solutions of the form

u
[i]
r1(r, z, t) = R

(
f
[i]
1 (r)ei(kz−t) + f

[i]
2 (r)e−i(kz+t)

)
u
[i]
z1(r, z, t) = R

(
g
[i]
1 (r)ei(kz−t) + g

[i]
2 (r)e−i(kz+t)

)
p
[i]
1 (r, z, t) = R

(
h
[i]
1 (r)ei(kz−t) + h

[i]
2 (r)e−i(kz+t)

)
τ
[i]
rr1(r, z, t) = R

(
α
[i]
1 (r)ei(kz−t) + α

[i]
2 (r)e−i(kz+t)

)
τ
[i]
rz1(r, z, t) = R

(
β
[i]
1 (r)ei(kz−t) + β

[i]
2 (r)e−i(kz+t)

)
τ
[i]
θθ1(r, z, t) = R

(
γ
[i]
1 (r)ei(kz−t) + γ

[i]
2 (r)e−i(kz+t)

)
τ
[i]
zz1(r, z, t) = R

(
δ
[i]
1 (r)ei(kz−t) + δ

[i]
2 (r)e−i(kz+t)

)
.

We begin by considering the inner fluid, substituting these solutions into the equations

(3.2.1) - (3.2.7), we see

f
[1]
1 (r) = f

[1]
2 (r) = f [1](r); g

[1]
1 (r) = −g[1]2 (r) = g[1](r); h

[1]
1 (r) = h

[1]
2 (r) = h[1](r);

α
[1]
1 (r) = α

[1]
2 (r) = α[1](r); β

[1]
1 (r) = −β[1]

2 (r) = β[1](r);

γ
[1]
1 (r) = γ

[1]
2 (r) = γ[1](r); and δ

[1]
1 (r) = δ

[1]
2 (r) = δ[1](r),
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from which we obtain the seven equations

0 =
df [1]

dr
+
f [1](r)

r
+ ikg[1](r) (3.2.15)

−iRef [1](r) = −dh[1]

dr
+
α[1](r)

r
− γ[1](r)

r
+

dα[1]

dr
+ ikβ[1](r) (3.2.16)

−iReg[1](r) = −ikh[1](r) +
β[1](r)

r
+

dβ[1]

dr
+ ikδ[1](r) (3.2.17)

α[1](r) = 2
df [1]

dr
(3.2.18)

β[1](r) = ikf [1](r) +
dg[1]

dr
(3.2.19)

γ[1](r) =
2

r
f [1](r) (3.2.20)

δ[1](r) = 2ikg[1](r). (3.2.21)

Upon substitution of (3.2.18) - (3.2.21) into (3.2.15) - (3.2.17) we have

0 =
df [1]

dr
+
f [1](r)

r
+ ikg[1](r) (3.2.22)

0 = −dh[1]

dr
+

d2f [1]

dr2
+

1

r

df [1]

dr
+

(
iRe− 1

r2
− k2

)
f [1](r) (3.2.23)

0 = −ikh[1](r) +
d2g[1]

dr2
+

1

r

dg[1]

dr
+
(
iRe− k2

)
g[1](r). (3.2.24)

Rearranging (3.2.22) we obtain

g[1](r) =
i

k

(
df [1]

dr
+

1

r
f [1](r)

)
, (3.2.25)

which upon differentiating twice and substituting into (3.2.24) yields

h[1](r) =
1

k2
d3f [1]

dr3
+

2

rk2
d2f [1]

dr2
+

(
iRe

k2
− 1

r2k2
− 1

)
df [1]

dr

+

(
iRe

rk2
− 1

r
+

1

r3k2

)
f [1](r).

(3.2.26)
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From this and (3.2.23) we obtain a fourth-order ODE for f [1](r), given by

1

k2
d4f [1]

dr4
+

2

rk2
d3f [1]

dr3
+

(
iRe

k2
− 3

r2k2
− 2

)
d2f [1]

dr2
+

(
iRe

rk2
+

3

r3k2
− 2

r

)
df [1]

dr

+

(
2

r2
− iRe

(
1 +

1

r2k2

)
+ k2 − 3

r4k2

)
f [1] = 0.

(3.2.27)

In the same way that we have done before, substituting our expressions for u
[2]
r1 , u

[2]
z1

etc. into (3.2.8) - (3.2.14) shows us that

f
[2]
1 (r) = f

[2]
2 (r) = f [2](r); g

[2]
1 (r) = −g[2]2 (r) = g[2](r); h

[2]
1 (r) = h

[2]
2 (r) = h[2](r);

α
[2]
1 (r) = α

[2]
2 (r) = α[2](r); β

[2]
1 (r) = −β[2]

2 (r) = β[2](r);

γ
[2]
1 (r) = γ

[2]
2 (r) = γ[2](r); and δ

[2]
1 (r) = δ

[2]
2 (r) = δ[2](r).

Using this we are left with the seven equations relating to the outer Oldroyd B fluid,

0 =
df [2]

dr
+
f [2](r)

r
+ ikg[2](r) (3.2.28)

−iRef [2](r) = −dh[2]

dr
+
µ̄

ρ̄

(
α[2](r)

r
− γ[2](r)

r
+

dα[2]

dr
+ ikβ[2](r)

)
(3.2.29)

−iReg[2](r) = −ikh[2](r) +
µ̄

ρ̄

(
β[2](r)

r
+

dβ[2]

dr
+ ikδ[2](r)

)
(3.2.30)

α[2](r) = 2Λ
df [1]

dr
(3.2.31)

β[2](r) = Λ

(
ikf [2](r) +

dg[2]

dr

)
(3.2.32)

γ[2](r) =
2

r
Λf [1](r) (3.2.33)

δ[2](r) = 2ikΛg[1](r), (3.2.34)

where

Λ =
1− iλ̄M [2]

1− iM [2]
.
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Upon substitution of (3.2.31) - (3.2.34) into (3.2.28) - (3.2.30), we obtain

0 =
df [2]

dr
+
f [2](r)

r
+ ikg[2](r) (3.2.35)

0 = −dh[2]

dr
+
µ̄Λ

ρ̄

d2f [2]

dr2
+
µ̄Λ

rρ̄

df [2]

dr
+

(
iRe− µ̄Λ

r2ρ̄
− k2µ̄Λ

ρ̄

)
f [2](r) (3.2.36)

0 = −ikh[2](r) +
µ̄Λ

ρ̄

d2g[2]

dr2
+
µ̄Λ

rρ̄

dg[2]

dr
+

(
iRe− k2µ̄Λ

ρ̄

)
g[2](r). (3.2.37)

Rearranging (3.2.35) we obtain

g[2](r) =
i

k

(
df [2]

dr
+

1

r
f [2](r)

)
, (3.2.38)

which upon differentiating twice and substituting into (3.2.37) yields

h[2](r) =
µ̄Λ

k2ρ̄

d3f [2]

dr3
+

2µ̄Λ

rk2ρ̄

d2f [2]

dr2
+

(
iRe

k2
− µ̄Λ

r2k2ρ̄
− µ̄Λ

ρ̄

)
df [2]

dr

+

(
iRe

rk2
− µ̄Λ

rρ̄
+

µ̄Λ

r3k2ρ̄

)
f [2](r).

(3.2.39)

From this and (3.2.36) we obtain a fourth-order ODE for f [2](r), given by

µ̄Λ

k2ρ̄

d4f [2]

dr4
+

2µ̄Λ

rk2ρ̄

d3f [2]

dr3
+

(
iRe

k2
− 3µ̄Λ

r2k2ρ̄
− 2

µ̄Λ

ρ̄

)
d2f [2]

dr2
+

(
iRe

rk2
+

3µ̄Λ

r3k2ρ̄
− 2µ̄Λ

rρ̄

)
df [2]

dr
+

(
2µ̄Λ

r2ρ̄
− iRe

(
1 +

1

r2k2

)
+
k2µ̄Λ

ρ̄
− 3µ̄Λ

r4k2ρ̄

)
f [2] = 0.

(3.2.40)

We must now formulate our boundary and interfacial conditions in terms of f [i](r).
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As in the one layer fluid case the boundary conditions are given by

f [2](1) = −i
df [2]

dr
(1) = i

f [1](0) = 0

d2f [1]

dr2
+

1

r

df [1]

dr
− 1

r2
f [1] → 0 as r → 0.

At r = η0 the radial velocity is given by

u
[i]
r1(η0, z, t) = f [i](η0)R1(z, t),

thus the r-component of the continuity of velocity condition is given by

f [1](η0) = f [2](η0).

Similarly, using the definition for g[i](r) and the fact that

u
[i]
z1(η0, z, t) = g[i](η0)

(
ei(kz−t) − e−i(kz−t)

)
,

the z-component of the continuity of velocity condition becomes

df [1]

dr
(η0) =

df [2]

dr
(η0).

We have the expression for u
[i]
r1 above and

η̇1(z, t) = −iη̃1ei(kz−t) − iη̃2e−i(kz+t),
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therefore

f [i](η0) = −iη̃1 = −iη̃2.

Since η̃1 and η̃2 are non-zero constants it follows that η̃1 = η̃2 = η̃. Therefore the kinematic

condition is given by

f [i](η0) = −iη̃. (3.2.41)

Recall the tangential stress condition is given by τ
[1]
rz1 = µ̄τ

[2]
rz1, using the definitions for

β[i], (3.2.19) and (3.2.32), this becomes

ikf [1] +
dg[1]

dr
= µ̄Λ

(
ikf [2] +

dg[2]

dr

)
.

Upon substitution of g[i](r), i.e. equations (3.2.25) and (3.2.38), into the above equation

and using the kinematic condition and continuity of velocity, we obtain the tangential

stress condition in terms of f [i],

d2f [2]

dr2
=

1

µ̄Λ

d2f [1]

dr2
+

(
1

µ̄Λ
− 1

)(
1

η0

df [1]

dr
+ iη̃

(
1

η20
− k2

))

at r = η0.

Finally, the normal stress condition is given by

−p[1]1 + ρ̄p
[2]
1 + τ

[1]
rr1 − µ̄τ

[2]
rr1 =

1

Ca

(
η1
η20

+
∂2η1
∂z2

)
,

which becomes, using the definitions for α[i], p
[i]
1 and η1,

−h[1] + ρ̄h[2] + 2
df [1]

dr
− 2µ̄Λ

df [2]

dr
=

η̃

Ca

(
1

η20
− k2

)
.

Upon substitution of h[i], (3.2.26) and (3.2.39), into the above equation and using the

kinematic condition, continuity of velocity and the tangential stress condition, we obtain
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the normal stress condition in terms of f [i],

d3f [2]

dr3
=

1

µ̄Λ

d3f [1]

dr3
+

(
3

(
1− 1

µ̄Λ

)(
1

η20
+ k2

)
+
iRe

µ̄Λ
(1− ρ̄)

)
df [1]

dr
+ η̃

(
k2

µ̄ΛCa(
1

η20
− k2

)
+i

(
3

η0

(
1− 1

µ̄Λ

)(
1

η0
− k2

)
− iRe

µ̄Λη0
(1− ρ̄)

))

at r = η0.

We are now in a position to determine a solution to this problem. The general solution

to (3.2.27) is given by

f [1](r) = c1I1(rk) + c2K1(rk) + c3J1(
√
Ar) + c4K1(−i

√
Ar),

where

A = iRe− k2,

and is valid for 0 ≤ r < η0. The general solution to (3.2.40) is given by

f [2](r) = d1I1(rk) + d2K1(rk) + d3J1(
√
Br) + d4K1(−i

√
Br),

where

B =
iReρ̄

µ̄Λ
− k2,

and is valid for η0 < r < R0.

Using our previous work in section 2.1 to show that the two boundary conditions at

r = 0 indicate c2 = c4 = 0, we have

f [1](r) = c1I1(rk) + c3J1(
√
Ar).

Note that, as a general solution, this does not depend on any non-Newtonian parameter;
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however, since the interfacial conditions are affected by the non-Newtonian nature of the

outer fluid, it is possible that some non-Newtonian effects may be observed in the fluid

near the interface.

We now have seven unknowns, c1, c3, d1, d2, d3, d4 and η̃, and seven remaining condi-

tions to determine them. Rewriting these conditions in terms of the general solutions for

f [1] and f [2] (see Appendix D) we are able to put them into the form M · c = b, where

c =

(
c1 c3 d1 d2 d3 d4 η̃

)T
.

We may then use Matlab to solve this system of equations and create plots which

represent the flow.
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Table 3.1: Standard Dimensional Parameter Values.
Parameter Description Value Units
R0 Radius 0.025 m
ω Contractile frequency π/10 rad/s
λ Wavelength 0.06 m

µ[1] Chyme zero shear viscosity 5 Pa·s
ρ[1] Chyme fluid density 1000 kg/m3

µ[2] Mucus zero shear viscosity 10 Pa·s
ρ[2] Mucus fluid density 1000 kg/m3

λ1 Mucus relaxation time 30 s
λ2 Mucus retardation time 0.00195 s
σ Interfacial tension 0.072 N/m

Table 3.2: Standard Nondimensional Parameter Values.
Parameter Value
Re 0.039
k 5π/6
ε 0.01
η0 0.995
Ca 0.5454
µ̄ 2
ρ̄ 1
λ̄ 6.5× 10−5
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Figure 3.1: Colour plots of u∗r (m/s) at O(ε) for the standard parameters, where r∗ and z∗

have units m. The colour scales differ between subplots in order to prevent detail being
lost at the times with slower flow velocity.
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Figure 3.2: Colour plots of u∗z (m/s) at O(ε) for the standard parameters, where r∗ and z∗

have units m. The colour scales differ between subplots in order to prevent detail being
lost at the times with slower flow velocity.
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Figure 3.3: Magnitude of velocity (m/s) at O(ε) for the standard parameters, where r∗

and z∗ have units m. The colour scales differ between subplots in order to prevent detail
being lost at the times with slower flow velocity.
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Figure 3.4: Vorticity of flow (s−1) at O(ε) for the standard parameters, where r∗ and z∗

have units m.

106



0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

0.0002 m/s

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

(a) t = 0 (t∗ = 0 s)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

(b) t = π/2 (t∗ = 5 s)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

(c) t = π (t∗ = 10 s)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

(d) t = 3π/2 (t∗ = 15 s)

Figure 3.5: Velocity fields at O(ε) for the standard parameters at four time instants with
blue representing chyme and red representing mucus, where r∗ and z∗ have units m.
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So far in this chapter we have formulated the equations of motion and the boundary

and interfacial conditions for the two layer flow of a Newtonian fluid and an Oldroyd B

fluid. The viscoelastic Oldroyd B model was used to represent the thin layer of mucus

lining the colonic epithelium. After formulating these equations and conditions we found

solutions for the flow at O(ε). The only non-Newtonian parameters to appear in the

general solution for the Oldroyd B fluid at O(ε) are M [2] and λ̄ (through their effect on Λ),

the scaled relaxation time and ratio between retardation and relaxation time respectively.

In addition both the normal and tangential stress conditions involve Λ and we also have a

normal stress condition appearing at O(1) which does not affect our flow fields but could

be used as a pressure condition (which we have not considered in this thesis).

To view the effect on the flow of including a mucus layer we compare figures 2.2 -

2.6 to figures 3.1 - 3.5. There is little or no difference at t = π/2 and t = 3π/2, but

small differences may be seen in the velocity magnitude and pattern at t = 0 and t = π

between the two models. This may be due to the elastic nature of mucus, with energy

being released even when the wall is momentarily at rest. At these times both |u∗z| and

the velocity magnitude have their maxima near the edge of the pipe with this model,

whereas the maxima occur around the centre of the pipe with the previous one layer

model. In addition u∗r remains non-zero closer to the outer boundary in the two layer

model. However, these differences in velocity occur only at t = 0 and t = π, where the

flow is much slower than at other times; figures 2.6 and 3.5 put the differences in velocity

magnitude into perspective. Thus there is little difference overall in the flow between the

one and two layer models.

In the next section we shall investigate what influence the parameters specific to the

two layer model have on the flow. We will do this by in turn fixing all except one parameter

and allowing that one to take a range of values based on our understanding of the physical

reality.
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3.3 Variation of Mucus Specific Parameters

We now investigate the effects of varying the parameters specific to the two layer model.

We consider only parameters specific to the mucus layer here since we will investigate the

influence of other parameters in chapter 5.

The figures in this section look at plotting u∗z for fixed values of z∗ and u∗r for fixed

values of r∗; in these plots the velocity scale is 50 times the length scale. For u∗z we look

at (dimensional) z∗ = λ/12, λ/8, λ/4, i.e. z∗ = 0.005, 0.0075, 0.015 m. We only need to

look at the first quarter of the wavelength since the two halves are anti-symmetric (about

z∗ = λ/2) and each half wavelength is symmetric about z∗ = λ/4. For u∗r we consider

(nondimensional) r = 0.1, 0.5, 0.9, which corresponds to dimensional values of 0.0025,

0.0125 and 0.0225 m.

Figure 3.6(a) displays the u∗z flow profile for the parameters from the previous section

at t = 0, π/2, π, 3π/2, which corresponds to times of 0, 5, 10 and 15 s. At each time |u∗z|

is greatest for z∗ = 0.015 m and least for z∗ = 0.005 m, as we expected based on figure

3.2. In the rest of this section we look at only t = 0 when considering the parameter

influence on u∗z, since flow at this time step contains regions of flow in both the positive

and negative directions.

Similarly, figure 3.6(b) displays the u∗r flow profile for the parameters from the previous

section at t = 0, π/2, π, 3π/2. As we can see |u∗r| is greatest at t = π/2 and t = 3π/2

(again, as expected based on figure 3.1), thus we choose to consider u∗r at t = π/2 for the

rest of this section.

109



0 0.01 0.02 0.03
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

0 0.01 0.02 0.03
0

0.005

0.01

0.015

0.02

0.025

z∗

r∗
0 0.01 0.02 0.03

0

0.005

0.01

0.015

0.02

0.025

z∗

r∗

0 0.01 0.02 0.03
0

0.005

0.01

0.015

0.02

0.025

z∗
r∗

(a) u∗z (m/s) for fixed values of z∗ (m).

0 0.02 0.04 0.06
0

0.01

0.02

0.03

0.04

z∗

r∗

0 0.02 0.04 0.06
0

0.01

0.02

0.03

0.04

z∗

r∗

0 0.02 0.04 0.06
0

0.01

0.02

0.03

0.04

z∗

r∗

0 0.02 0.04 0.06
0

0.01

0.02

0.03

0.04

z∗

r∗

(b) u∗r (m/s) for fixed values of r∗ (m).

Figure 3.6: Flow profiles at t = 0, π/2, π, 3π/2 (l-r, t-b) for the standard parameters with
velocity scale 50 times the length scale.
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Figure 3.7: Flow profiles for varying µ[2] (Pa·s) with velocity scale 50 times the length
scale.
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Figure 3.8: Flow profiles for varying λ1 (s) with velocity scale 50 times the length scale.
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Figure 3.9: Flow profiles for varying ρ[2] (kg/m3) with velocity scale 50 times the length
scale.
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Figure 3.10: Flow profiles for varying η0 with velocity scale 50 times the length scale.
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Figure 3.7 displays the flow for the values µ[2] = (0.01, 0.1, 1, 10, 100, 1000) Pa·s, this

is equivalent to varying the ratio µ̄ between the viscosities of the two fluids (recall µ[1] =

5 Pa·s, µ̄ = µ[2]/µ[1]). The flow appears to tend towards a limit which is reached when

µ̄ ≥ O(1). Setting µ[2] = 0.01 Pa·s does have a relatively large effect on |u∗z|, with the

magnitude of flow significantly greater in the radial outer half than for the next value

µ[2] = 0.1 Pa·s. However, the range of realistic physical values for mucus viscosity does

not extend as low as 0.01 Pa·s; thus for the relevant range of mucus viscosities we see that

altering the exact value has little effect on the flow velocities.

Figures 3.8 and 3.9 suggest that the value of the parameters λ1 and ρ[2] has no effect

on flow velocity for the ranges λ1 ∈ [0.1, 60] s and ρ[2] ∈ [800, 1300] kg/m3. Similarly

varying the value of η0 in figure 3.10 between 0.992 and 1 (corresponding to mucus layer

thicknesses of 200− 0 µm) has little effect on the overall flow viscosity.

In this chapter we have calculated the flow fields for the two layer flow of a Newtonian

fluid and an Oldroyd B fluid. The viscoelastic Oldroyd B model was used to represent

the thin layer of mucus lining the colonic epithelium. After formulating these equations

and conditions we found solutions for the flow at O(ε). We found that the main difference

between the one and two layer models is an increased fluid velocity at t = 0, π in the two

layer model; however the velocities at these times are much lower than at other times,

thus the absolute effect on the flow is limited. Additionally we have shown that the mucus

parameters have little effect on the flow velocity for the range of values we might expect

them to take. Together these two results will lead us to use the one layer model when we

investigate particle tracking in chapter 5. In the next chapter we consider one layer flow

where chyme is represented using the Carreau rheological model.
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Chapter 4

Modelling the Colon as a Pipe

subject to Small Amplitude Wall

Motion using a Carreau

Rheological Model

In this chapter we create a model with the same geometrical features of that in chapter 2,

i.e. an axisymmetric pipe with small amplitude wall contractions. In this case, however,

we shall use a Carreau rheological model, rather than a Newtonian one, to represent

colonic chyme.

As we have done previously we set the equation of the pipe boundary as

R∗(z∗, t∗) = R

(
R0

√
1 + 2ε

(
ei(

2π
λ
z∗−ωt∗) + e−i(

2π
λ
z∗+ωt∗)

))
. (4.0.1)
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4.1 The Carreau Equations

Recall that the constitutive equation for a Carreau fluid is given by (1.2.4),

τ ∗ = [(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞]γ̇∗,

where m is a constant parameter with dimension time and n is a dimensionless constant.

The parameter m determines the shear rate at which the transition between Newtonian

and power law behaviour occurs and n is the power law exponent and is a measure of

the shear thinning nature of the fluid. The asymptotic values for viscosity are given by

µ0 and µ∞, valid as γ̇∗ → 0 and γ̇∗ → ∞ respectively. This gives the Carreau model an

advantage over the power law model, as the power law model breaks down at very high

and very low shear rates; in particular under a small amplitude assumption the shear

rates will be small.

The (dimensional) equations for a velocity field u∗ = (u∗r(r
∗, z∗, t∗), 0, u∗z(r

∗, z∗, t∗)) in

axisymmetric cylindrical polar co-ordinates are given by

0 =
1

r∗
∂

∂r∗
(r∗u∗r) +

∂u∗z
∂z∗

(4.1.1)

∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

=
1

ρ

(
−∂p

∗

∂r∗
+
τ ∗rr
r∗
− τ ∗θθ
r∗

+
∂τ ∗rr
∂r∗

+
∂τ ∗rz
∂z∗

)
(4.1.2)

∂u∗z
∂t∗

+ u∗r
∂u∗z
∂r∗

+ u∗z
∂u∗z
∂z∗

=
1

ρ

(
−∂p

∗

∂z∗
+
τ ∗rz
r∗

+
∂τ ∗rz
∂r∗

+
∂τ ∗zz
∂z∗

)
. (4.1.3)

In addition, since the boundary conditions are independent of the type of fluid, we have
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the conditions

u∗r(R
∗, z∗, t∗) = Ṙ∗(z∗, t∗)

u∗z(R
∗, z∗, t∗) = 0

u∗r(0, z
∗, t∗) = 0

∂u∗z
∂r∗

(0, z∗, t∗) = 0.

We must now find expressions for the components of the deviatoric stress tensor, τ ∗.

The shear rate tensor, γ̇∗, is given by the matrix

γ̇∗ =


2∂u

∗
r

∂r∗
0 ∂u∗r

∂z∗
+ ∂u∗z

∂r∗

0 2u
∗
r

r∗
0

∂u∗r
∂z∗

+ ∂u∗z
∂r∗

0 2∂u
∗
z

∂z∗


so that

tr(γ̇∗T γ̇∗) = 4

(
∂u∗r
∂r∗

)2

+ 2

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)2

+ 4

(
∂u∗z
∂z∗

)2

+ 4

(
u∗r
r∗

)2

and

γ̇∗ =

√
2

(
∂u∗r
∂r∗

)2

+ 2

(
∂u∗z
∂z∗

)2

+

(
∂u∗z
∂r∗

)2

+

(
∂u∗r
∂z∗

)2

+ 2
∂u∗r
∂z∗

∂u∗z
∂r∗

+ 2

(
u∗r
r∗

)2

.
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Therefore we find that the relevant components of shear stress are given by

τ ∗rr = 2
∂u∗r
∂r∗

[(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞]

τ ∗rz =

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
[(µ0 − µ∞)(1 + (mγ̇∗)2)

n−1
2 + µ∞]

τ ∗θθ = 2
u∗r
r∗

[(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞]

τ ∗zz = 2
∂u∗z
∂z∗

[(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞].

The relevant derivatives of these are given by

∂τ ∗rr
∂r∗

= 2
∂2u∗r
∂r∗2

[(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞] +m2(n− 1)(µ0 − µ∞)

(1 + (mγ̇∗)2)
n−3
2
∂u∗r
∂r∗

∂(γ̇∗2)

∂r∗

∂τ ∗rz
∂z∗

=

(
∂2u∗r
∂z∗2

+
∂2u∗z
∂r∗∂z∗

)
[(µ0 − µ∞)(1 + (mγ̇∗)2)

n−1
2 + µ∞] +

m2(n− 1)

2

(µ0 − µ∞)(1 + (mγ̇∗)2)
n−3
2

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
∂(γ̇∗

2
)

∂z∗

∂τ ∗rz
∂r∗

=

(
∂2u∗r
∂z∗∂r∗

+
∂2u∗z
∂r∗2

)
[(µ0 − µ∞)(1 + (mγ̇∗)2)

n−1
2 + µ∞] +

m2(n− 1)

2

(µ0 − µ∞)(1 + (mγ̇∗)2)
n−3
2

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
∂(γ̇∗2)

∂r∗

∂τ ∗zz
∂z∗

= 2
∂2u∗z
∂z∗2

[(µ0 − µ∞)(1 + (mγ̇∗)2)
n−1
2 + µ∞] +m2(n− 1)(µ0 − µ∞)

(1 + (mγ̇∗)2)
n−3
2
∂u∗z
∂z∗

∂(γ̇∗2)

∂z∗
,
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where

∂(γ̇∗2)

∂r∗
= 4

∂u∗r
∂r∗

∂2u∗r
∂r∗2

+ 4
∂u∗z
∂z∗

∂2u∗z
∂r∗∂z∗

+ 2
∂u∗z
∂r∗

∂2u∗z
∂r∗2

+ 2
∂u∗r
∂z∗

∂2u∗r
∂r∗∂z∗

+2
∂u∗r
∂z∗

∂2u∗z
∂r∗2

+ 2
∂u∗z
∂r∗

∂2u∗r
∂r∗∂z∗

+ 4
u∗r
r∗

(
1

r∗
∂u∗r
∂r∗
− u∗r
r∗2

)

and

∂(γ̇∗2)

∂z∗
= 4

∂u∗r
∂r∗

∂2u∗r
∂z∗∂r∗

+ 4
∂u∗z
∂z∗

∂2u∗z
∂z∗2

+ 2
∂u∗z
∂r∗

∂2u∗z
∂z∗∂r∗

+ 2
∂u∗r
∂z∗

∂2u∗r
∂z∗2

+2
∂u∗r
∂z∗

∂2u∗z
∂z∗∂r∗

+ 2
∂u∗z
∂r∗

∂2u∗r
∂z∗2

+ 4
u∗r
r∗2

∂u∗r
∂z∗

.

The continuity equation remains as (4.1.1), equation (4.1.2) now becomes

ρ

(
∂u∗r
∂t∗

+ u∗r
∂u∗r
∂r∗

+ u∗z
∂u∗r
∂z∗

)
= −∂p

∗

∂r∗
+ [(µ0 − µ∞)(1 + (mγ̇∗)2)

n−1
2 + µ∞](

2

r∗
∂u∗r
∂r∗
− 2

u∗r
r∗2

+ 2
∂2u∗r
∂r∗2

+
∂2u∗r
∂z∗2

+
∂2u∗z
∂r∗∂z∗

)
+m2(n− 1)(µ0 − µ∞)

(1 + (mγ̇∗)2)
n−3
2

(
∂u∗r
∂r∗

∂(γ̇∗2)

∂r∗
+

1

2

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
∂(γ̇∗2)

∂z∗

)

and equation (4.1.3) is given by

ρ

(
∂u∗z
∂t∗

+ u∗r
∂u∗z
∂r∗

+ u∗z
∂u∗z
∂z∗

)
= −∂p

∗

∂z∗
+ [(µ0 − µ∞)(1 + (mγ̇∗)2)

n−1
2 + µ∞](

1

r∗

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
+
∂2u∗z
∂r∗2

+ 2
∂2u∗z
∂z∗2

+
∂2u∗r
∂r∗∂z∗

)
+m2(n− 1)(µ0 − µ∞)

(1 + (mγ̇∗))
n−3
2

(
1

2

(
∂u∗r
∂z∗

+
∂u∗z
∂r∗

)
∂(γ̇∗2)

∂r∗
+
∂u∗z
∂z∗

∂(γ̇∗2)

∂z∗

)
.

These equations may be simplified by noting that

∂

∂r∗
(∇ · u∗) =

∂2u∗r
∂r∗2

+
1

r∗
∂u∗r
∂r∗
− u∗r
r∗2

+
∂2u∗z
∂r∗∂z∗

∂

∂z∗
(∇ · u∗) =

∂2u∗r
∂r∗∂z∗

+
1

r∗
∂u∗r
∂z∗

+
∂2u∗z
∂z∗2

,
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but since our fluid is incompressible, ∇·u∗ = 0, therefore the two above expressions equal

zero.

We must now nondimensionalise these equations, for this we use the scalings

u∗ = ωR0u; x∗ = R0x; and t∗ =
1

ω
t,

additionally we scale pressure by

p∗ =
ρ(ωR0)

2

Re
p

where the Reynolds number is given by

Re =
ρωR2

0

µ0

.

Tables 2.1 and 2.2 on page 46 display the standard parameter values that we use in this

chapter. We introduce two dimensionless numbers, the first of these is a parameter, M ,

which we define as

M = mω

and the second is a parameter, µc, which we define as

µc =
µ∞
µ0

.

Since chyme is a shear thinning fluid we have µc < 1. It is unclear what range of values

m should take since it is a parameter specific to the Carreau model, which has not been

fit to colonic rheological data. Fluids for which a Carreau-type model has been fit give

a wide variation of values for m. For example, Escudier et al [18] fit a Carreau-Yasuda

model to viscosity data from xanthan gum solutions and determined a value for the time
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parameter of λCY = 60.7 s, whereas Wan Nik et al [69] fit a Carreau model to various

bio-edible oils and found that their time parameter λ ranged from 0.132 − 1.61 s. The

Carreau model has also been used to describe blood flow, with a value of λ = 3.313 s

given by Shibeshi and Collins [56] and in Appendix E we find a value of m = 11309 s for

tomato soup.

The nondimensional equations of motion are given by

0 =
1

r

∂

∂r
(rur) +

∂uz
∂z

;

Re

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ [(1− µc)(1 +M2γ̇2)

n−1
2 + µc](

1

r

∂ur
∂r
− ur
r2

+
∂2ur
∂r2

+
∂2ur
∂z2

)
+M2(1− µc)(n− 1)

(1 +M2γ̇2)
n−3
2

(
∂ur
∂r

∂(γ̇2)

∂r
+

1

2

(
∂ur
∂z

+
∂uz
∂r

)
∂(γ̇2)

∂z

)
;

and

Re

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+ [(1− µc)(1 +M2γ̇2)

n−1
2 + µc](

1

r

∂uz
∂r

+
∂2uz
∂z2

+
∂2uz
∂r2

)
+M2(1− µc)(n− 1)

(1 +M2γ̇2)
n−3
2

(
1

2

(
∂ur
∂z

+
∂uz
∂r

)
∂(γ̇2)

∂r
+
∂uz
∂z

∂(γ̇2)

∂z

)
.

(4.1.4)
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The nondimensional boundary conditions are then given by

ur(R, z, t) = Ṙ(z, t)

uz(R, z, t) = 0

ur(0, z, t) = 0

∂uz
∂r

(0, z, t) = 0,

where we recall

R(z, t) = R
(

1 + ε
(
ei(kz−t) + e−i(kz+t)

)
− ε2

2

(
e2i(kz−t) + e−2i(kz+t) + e−2it

)
+ o(ε3)

)
.

As in chapter 2 we expand the boundary and equation variables about ε� 1 so that

R(z, t) = 1 + εR1(z, t) + ε2R2(z, t) + o(ε3)

p(r, z, t) = p0 + εp1(r, z, t) + ε2p2(r, z, t) + o(ε3)

ur(r, z, t) = εur1(r, z, t) + ε2ur2(r, z, t) + o(ε3)

uz(r, z, t) = εuz1(r, z, t) + ε2uz2(r, z, t) + o(ε3),

with the boundary conditions given by

εur1(1, z, t) + ε2
(
ur2(1, z, t) +R1(z, t)

∂ur1
∂r

(1, z, t)

)
= εṘ1(z, t) + ε2Ṙ2(z, t)

εuz1(1, z, t) + ε2
(
uz2(1, z, t) +R1(z, t)

∂uz1
∂r

(1, z, t)

)
= 0

εur1(0, z, t) + ε2ur2(0, z, t) = 0

ε
∂uz1
∂r

(0, z, t) + ε2
∂uz2
∂r

(0, z, t) = 0.

For the rest of this chapter we make the assumption that M = mω = O(1/
√
ε), in
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doing so we may expand the terms involving M2γ̇2 as follows

(
1 +M2γ̇2

)α ≈ 1 + αM2γ̇2 +
α(α− 1)

2
M4γ̇4.

Note that M2γ̇2 = O(ε).

The work of this section gives us the following problem at O(ε):

0 =
1

r

∂

∂r
(rur1) +

∂uz1
∂z

Re
∂ur1
∂t

= −∂p1
∂r

+
1

r

∂

∂r

(
r
∂ur1
∂r

)
+
∂2ur1
∂z2

− ur1
r2

Re
∂uz1
∂t

= −∂p1
∂z

+
1

r

∂

∂r

(
r
∂uz1
∂r

)
+
∂2uz1
∂z2

subject to

ur1(1, z, t) = Ṙ1(z, t)

uz1(1, z, t) = 0

ur1(0, z, t) = 0

∂uz1
∂r

(0, z, t) = 0.

This is identical to the problem in section 2.1, thus the results of that section hold here.

We now consider the flow at O(ε2).

4.2 Shear Thinning Effects on the Flow of Chyme

We now consider the flow at O(ε2) using the results from section 4.1. The O(ε2) equations,

letting M̂ =
√
εM = O(1), are given by

0 =
1

r

∂

∂r
(rur2) +

∂uz2
∂z

(4.2.1)
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Re

(
∂ur2
∂t

+ ur1
∂ur1
∂r

+ uz1
∂ur1
∂z

)
= −∂p2

∂r
+

1

r

∂

∂r

(
r
∂ur2
∂r

)
+
∂2ur2
∂z2

− ur2
r2

+(1− µc)
(n− 1)

2
M̂2γ̇21

(
1

r

∂

∂r

(
r
∂ur1
∂r

)
+
∂2ur1
∂z2

− ur1
r2

) (4.2.2)

and

Re

(
∂uz2
∂t

+ ur1
∂uz1
∂r

+ uz1
∂uz1
∂z

)
= −∂p2

∂z
+

1

r

∂

∂r

(
r
∂uz2
∂r

)
+
∂2uz2
∂z2

+(1− µc)
(n− 1)

2
M̂2γ̇21

(
1

r

∂

∂r

(
r
∂uz1
∂r

)
+
∂2uz1
∂z2

)
,

(4.2.3)

where ur1, uz1 and therefore γ̇1 are known from the previous section. The above equations

differ from the ones at O(ε) in that they include both inertial and non-Newtonian effects.

As in the Newtonian case we have the following boundary conditions at O(ε2)

ur2(1, z, t) = Ṙ2(z, t)−R1(z, t)
∂ur1
∂r

(1, z, t)

uz2(1, z, t) = −R1(z, t)
∂uz1
∂r

(1, z, t)

ur2(0, z, t) = 0

∂uz2
∂r

(0, z, t) = 0.

Due to the extra terms involved, compared to the Newtonian model, we assume solu-

tions of the form

ur2(r, z, t) = R
(
α1(r)e

2i(kz−t) + α2(r)e
−2i(kz+t) + α3(r)e

−2it + α4(r)e
3i(kz−t)

+ α5(r)e
−3i(kz+t) + α6(r)e

i(kz−3t) + α7(r)e
−i(kz+3t)

)
uz2(r, z, t) = R

(
β1(r)e

2i(kz−t) + β2(r)e
−2i(kz+t) + β3(r)e

−2it + β4(r)e
3i(kz−t)

+ β5(r)e
−3i(kz+t) + β6(r)e

i(kz−3t) + β7(r)e
−i(kz+3t)

)
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pz2(r, z, t) = R
(
δ1(r)e

2i(kz−t) + δ2(r)e
−2i(kz+t) + δ3(r)e

−2it + δ4(r)e
3i(kz−t)

+ δ5(r)e
−3i(kz+t) + δ6(r)e

i(kz−3t) + δ7(r)e
−i(kz+3t)

)
.

In a similar manner to that in sections 2.1 and 2.2, we substitute these solutions into

equations (4.2.1) - (4.2.3) and equating coefficients of the seven types of exponential we

find α1 = α2, α4 = α5, α6 = α7, β1 = −β2, β4 = −β5, β6 = −β7, δ1 = δ2, δ4 = δ5 and

δ6 = δ7. This leaves us with four sets of three equations.

The first set of equations

dα1

dr
+
α1

r
+ 2ikβ1 = 0 (4.2.4)

Re

(
−2iα1 + f

df

dr
+ ikfg

)
= −dδ1

dr
+

1

r

dα1

dr
− α1

r2
+

d2α1

dr2
− 4k2α1 (4.2.5)

Re

(
−2iβ1 + f

dg

dr
+ ikg2

)
= −2ikδ1 +

1

r

dβ1
dr

+
d2β1
dr2
− 4k2β1 (4.2.6)

are as in section 2.2.

The second set of equations are also as in section 2.2

dα3

dr
+
α3

r
= 0

Re

(
−2iα3 + 2f

df

dr
− 2ikfg

)
= −dδ3

dr
+

1

r

dα3

dr
− α3

r2
+

d2α3

dr2

−2iReβ3 =
1

r

dβ3
dr

+
d2β3
dr2

.

These have solutions

α3(r) =
a

r

β3(r) = b1J0(r
√

2iRe) + b2K0(r
√

2iRe)

δ3(r) = c+ Re

(
2ia ln r − 2

∫ r

0

f
df

dr′
dr′ + 2ik

∫ r

0

fg dr′
)
,
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where a, b1, b2 and c are constants to be determined.

In addition to those found in the Newtonian case we also have a third set of equations

dα4

dr
+
α4

r
+ 3ikβ4 = 0 (4.2.7)

−3iReα4 = −dδ4
dr

+
1

r

dα4

dr
− α4

r2
+

d2α4

dr2
− 9k2α4 + (1− µc)

(n− 1)

2
M̂2

(
2

(
df

dr

)2

− 2k2g2

+

(
dg

dr

)2

− k2f 2 + 2ikf
dg

dr
+ 2

f 2

r2

)(
1

r

df

dr
− f

r2
+

d2f

dr2
− fk2

)
(4.2.8)

−3iReβ4 = −3ikδ4 +
1

r

dβ4
dr

+
d2β4
dr2
− 9k2β4 + (1− µc)

(n− 1)

2
M̂2

(
2

(
df

dr

)2

− 2k2g2

+

(
dg

dr

)2

− k2f 2 + 2ikf
dg

dr
+ 2

f 2

r2

)(
1

r

dg

dr
+

d2g

dr2
− k2g

)
(4.2.9)

and a fourth set

dα6

dr
+
α6

r
+ ikβ6 = 0 (4.2.10)

−3iReα6 = −dδ6
dr

+
1

r

dα6

dr
− α6

r2
+

d2α6

dr2
− k2α6 + (1− µc)

(n− 1)

2
M̂2

(
6

(
df

dr

)2

− 6k2g2

−
(

dg

dr

)2

+ k2f 2 − 2ikf
dg

dr
+ 6

f 2

r2

)(
1

r

df

dr
− f

r2
+

d2f

dr2
− fk2

)
(4.2.11)

−3iReβ6 = −ikδ6 +
1

r

dβ6
dr

+
d2β6
dr2
− k2β6 + (1− µc)

(n− 1)

2
M̂2

(
2

(
df

dr

)2

− 2k2g2

−3

(
dg

dr

)2

+ 3k2f 2 − 6ikf
dg

dr
+ 2

f 2

r2

)(
1

r

dg

dr
+

d2g

dr2
− k2g

)
.

(4.2.12)
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As in section 2.2 rearranging equations (4.2.4) - (4.2.6) gives us expressions for β1, δ1

β1(r) =
i

2k

(
dα1

dr
+
α1

r

)

δ1(r) =
1

4k2
d3α1

dr3
+

1

2rk2
d2α1

dr2
+

(
iRe

2k2
− 1

4r2k2
− 1

)
dα1

dr
+

(
1

4r3k2
+

iRe

2rk2
− 1

r

)
α1

+
Re

2

(
i

k
f

dg

dr
− g2

)
and the ODE for α1

1

4k2
d4α1

dr4
+

1

2k2r

d3α1

dr3
+

(
iRe

2k2
− 3

4k2r2
− 2

)
d2α1

dr2
+

(
3

4k2r3
+

iRe

2k2r
− 2

r

)
dα1

dr

+

(
4k2 +

2

r2
− iRe

(
1

2k2r2
+ 2

)
− 3

4k2r4

)
α1

+Re

(
i

2k

(
f

d2g

dr2
+

df

dr

dg

dr

)
− gdg

dr
+ f

df

dr
+ ikgf

)
= 0.

Rearranging (4.2.7) we find that

β4(r) =
i

3k

(
dα4

dr
+
α4

r

)

substituting this into (4.2.9) we obtain an expression for δ4,

δ4(r) =
1

9k2
d3α4

dr3
+

2

9rk2
d2α4

dr2
+

(
iRe

3k2
− 1

9r2k2
− 1

)
dα4

dr
+

(
1

9r3k2
+

iRe

3rk2
− 1

r

)
α4

− i

6k
(1− µc)(n− 1)M̂2

(
2

(
df

dr

)2

− 2k2g2 +

(
dg

dr

)2

− k2f 2 + 2ikf
dg

dr
+ 2

f 2

r2

)
(

1

r

dg

dr
+

d2g

dr2
− k2g

)
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Using this and (4.2.8) we obtain an ODE for α4, given by

1

9k2
d4α4

dr4
+

2

9k2r

d3α4

dr3
+

(
iRe

3k2
− 1

9k2r2
− 2

)
d2α4

dr2
+

(
1

3k2r3
+

iRe

3k2r
− 2

r

)
dα4

dr

+

(
9k2 +

2

r2
− iRe

(
1

3k2r2
+ 3

)
− 1

3k2r4

)
α4 −

1

2
(1− µc)(n− 1)M̂2[(

2

(
df

dr

)2

− 2k2g2 +

(
dg

dr

)2

− k2f 2 + 2ikf
dg

dr
+ 2

f 2

r2

)
(

1

r

df

dr
− f

r2
+

d2f

dr2
− fk2 +

i

3k

(
1

r

d2g

dr2
− 1

r2
dg

dr
+

d3g

dr3
− k2dg

dr

))
+
i

3k

(
4

df

dr

d2f

dr2
− 4k2g

dg

dr
+ 2

dg

dr

d2g

dr2
− 2k2f

df

dr
+ 2ikf

d2g

dr2
+ 2ik

df

dr

dg

dr

+4
f

r2
df

dr
− 4

f 2

r3

)(
1

r

dg

dr
+

d2g

dr2
− k2g

)]
= 0.

Rearranging (4.2.10) we find that

β6(r) =
i

k

(
dα6

dr
+
α6

r

)

substituting this into (4.2.12) we obtain an expression for δ6,

δ6(r) =
1

k2
d3α6

dr3
+

2

rk2
d2α6

dr2
+

(
3iRe

k2
− 1

r2k2
− 1

)
dα6

dr
+

(
1

r3k2
+

3iRe

rk2
− 1

r

)
α6

− i

2k
(1− µc)(n− 1)M̂2

(
2

(
df

dr

)2

− 2k2g2 − 3

(
dg

dr

)2

+ 3k2f 2 − 6ikf
dg

dr
+ 2

f 2

r2

)
(

1

r

dg

dr
+

d2g

dr2
− k2g

)
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Using this and (4.2.11) we obtain an ODE for α6, given by

1

k2
d4α6

dr4
+

2

k2r

d3α6

dr3
+

(
3iRe

k2
− 3

k2r2
− 2

)
d2α6

dr2
+

(
3

k2r3
+

3iRe

k2r
− 2

r

)
dα6

dr

+

(
k2 +

2

r2
− 3iRe

(
1

k2r2
+ 1

)
− 3

k2r4

)
α6 − (1− µc)

(n− 1)

2
M̂2[

i

k

(
4

df

dr

d2f

dr2
− 4k2g

dg

dr
− 6

dg

dr

d2g

dr2
+ 6k2f

df

dr
− 6ikf

d2g

dr2
− 6ik

df

dr

dg

dr

+4
f

r2
df

dr
− 4

f 2

r3

)(
1

r

dg

dr
+

d2g

dr2
− k2g

)
+
i

k

(
1

r

d2g

dr2
− 1

r2
dg

dr
+

d3g

dr3
− k2dg

dr

)
(

2

(
df

dr

)2

− 2k2g2 − 3

(
dg

dr

)2

+ 3k2f 2 − 6ikf
dg

dr
+ 2

f 2

r2

)
+

(
6

(
df

dr

)2

−6k2g2 −
(

dg

dr

)2

+ k2f 2 − 2ikf
dg

dr
+ 6

f 2

r2

)(
1

r

df

dr
− f

r2
+

d2f

dr2
− fk2

)]
= 0.

We must now determine appropriate boundary conditions in terms of α1, α4 and α6.

We have

ur2(r, z, t) = R
(
α1(r)

(
e2i(kz−t) + e−2i(kz+t)

)
+
a

r
e−2it + α4(r)

(
e3i(kz−t) + e−3i(kz+t)

)
+α6(r)

(
ei(kz−3t) + e−i(kz+3t)

) )

uz2(r, z, t) = R
(
β1(r)

(
e2i(kz−t) − e−2i(kz+t)

)
+
(
b1J0(r

√
2iRe) + b2K0(r

√
2iRe)

)
e−2it

+β4(r)
(
e3i(kz−t) − e−3i(kz+t)

)
+ β6(r)

(
ei(kz−3t) − e−i(kz+3t)

) )
and the boundary conditions

ur2(1, z, t) = Ṙ2(z, t)−R1(z, t)
∂ur1
∂r

(1, z, t)

uz2(1, z, t) = −R1(z, t)
∂uz1
∂r

(1, z, t)

ur2(0, z, t) = 0

∂uz2
∂r

(0, z, t) = 0.
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We recall that

R1(z, t) = R
(
ei(kz−t) + e−i(kz+t)

)
R2(z, t) = R

(
−1

2

(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

))
ur1(r, z, t) = R

(
f(r)

(
ei(kz−t) + e−i(kz+t)

))
uz1(r, z, t) = R

(
g(r)

(
ei(kz−t) − e−i(kz+t)

))
,

where f and g are as calculated in section 2.1.

We begin with the conditions on ur2. Now ur2(0, z, t) = 0 so we must set a = 0 (i.e.

α3(r) ≡ 0) which leaves

α1(0)
(
e2i(kz−t) + e−2i(kz+t)

)
+α4(0)

(
e3i(kz−t) + e−3i(kz+t)

)
+α6(0)

(
ei(kz−3t) + e−i(kz+3t)

)
= 0,

from which we deduce α1(0) = 0, α4(0) = 0 and α6(0) = 0.

Considering the condition at the other boundary we note

R1
∂ur1
∂r

∣∣∣∣
r=1

=
df

dr
(1)
(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
= i

(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
and

Ṙ2 = i
(
e2i(kz−t) + e−2i(kz+t) + 2e−2it

)
,

thus

Ṙ2 −R1
∂ur1
∂r

∣∣∣∣
r=1

= 0,

i.e. ur2(1, z, t) = 0. This leaves us with α1(1) = 0, α4(1) = 0 and α6(1) = 0 and is

consistent with a = 0.
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Next we look at the conditions on uz2. At r = 0, ∂uz2/∂r = 0, but

∂uz2
∂r

=
dβ1
dr

(
e2i(kz−t) − e−2i(kz+t)

)
+

dβ4
dr

(
e3i(kz−t) − e−3i(kz+t)

)
+

dβ6
dr

(
ei(kz−3t) − e−i(kz+3t)

)
+
(
−b1
√

2iReJ1(r
√

2iRe) + ib2
√

2iReK1(−ir
√

2iRe)
)

e−2it

therefore we must consider the small argument expansions for Bessel functions [2, p360,375].

As r → 0

J1(r
√

2iRe) ∼
√

2iRe

2
r

K1(−ir
√

2iRe) ∼ i

r
√

2iRe
.

This suggests that we must take b2 = 0 and that b1J1(0) = 0, leaving

dβ1
dr

(0)
(
e2i(kz−t) − e−2i(kz+t)

)
+

dβ4
dr

(0)
(
e3i(kz−t) − e−3i(kz+t)

)
+

dβ6
dr

(0)
(
ei(kz−3t) − e−i(kz+3t)

)
= 0,

i.e. dβ1(0)/dr = 0, dβ4(0)/dr = 0 and dβ6(0)/dr = 0. Using the equations for βi in terms

of αi we have the conditions

d2α1

dr2
+

1

r

dα1

dr
− α1

r
→ 0 as r → 0

d2α4

dr2
+

1

r

dα4

dr
− α4

r
→ 0 as r → 0

d2α6

dr2
+

1

r

dα6

dr
− α6

r
→ 0 as r → 0.

As in chapter 2 considering the behaviour of these three expressions as r → 0 leaves us
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with

d2α1

dr2
(0) = 0

d2α4

dr2
(0) = 0

d2α6

dr2
(0) = 0.

Finally we have

uz2(1, z, t) = −R1(z, t)
∂uz1
∂r

(1, z, t)

= −dg

dr
(1)
(
e2i(kz−t) − e−2i(kz+t)

)
,

but

dg

dr
(1) =

i

k

(
d2f

dr2
(1) +

df

dr
(1)− f(1)

)
=

i

k

d2f

dr2
(1)− 2

k
,

where f is known, therefore

β1(1)
(
e2i(kz−t) − e−2i(kz+t)

)
−
(
b1
√

2iReJ1(
√

2iRe)
)

e−2it + β4(1)
(
e3i(kz−t) − e−3i(kz+t)

)
+β6(1)

(
ei(kz−3t) − e−i(kz+3t)

)
=

(
− i
k

d2f

dr2
(1) +

2

k

)(
e2i(kz−t) − e−2i(kz+t)

)
.
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Equating coefficients of the exponentials we have

b1 = 0

β1(1) = − i
k

d2f

dr2
(1) +

2

k

β4(1) = 0

β6(1) = 0.

Using the equations for βi in terms of αi, together with the conditions αi(0) = 0 we have

dα1

dr
(1) = −2

d2f

dr2
(1)− 4i

dα4

dr
(1) = 0

dα6

dr
(1) = 0.

In summary, the first set of boundary conditions are given by

α1(1) = 0

α1(0) = 0

dα1

dr
(1) = −2

d2f

dr2
(1)− 4i

d2α1

dr2
(0) = 0,
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the second set by

α4(1) = 0

α4(0) = 0

dα4

dr
(1) = 0

d2α4

dr2
(0) = 0,

and the third set by

α6(1) = 0

α6(0) = 0

dα6

dr
(1) = 0

d2α6

dr2
(0) = 0.

We use Matlab’s bvp4c code to solve the three ODEs, using the standard parameters

of chapter 2 and M̂ = 1. This leaves us able to investigate the influence of the two

additional parameters n and µc = µ∞/µ0.

Figures 4.1 - 4.6 display colour plots of the velocities at t = π/2 for both ε = 0.1 and

ε = 0.5 for different degrees of shear thinning behaviour. We consider t = π/2 since this

time (together with t = 3π/2) is when the maximum values for velocity occur. In these

six figures we look at Newtonian (n = µc = 1), weakly shear thinning (n = µc = 0.9),

moderately shear thinning (n = µc = 0.5) and strongly shear thinning (n = µc = 0.1)

parameters.

Figure 4.1 shows that the shear thinning parameters have little effect on the magnitude

of u∗r for ε = 0.1; although the area of flow at maximum velocity increases slightly as n

and µc decrease. Increasing the value of ε to ε = 0.5, as displayed in figure 4.2, shows that
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the maximum value of u∗r is larger for strongly shear thinning parameters than the rest,

but the most notable effect is on the regions of non-zero velocity. These regions appear to

elongate as n and µc decrease; in doing so, the location of the maximum velocities moves

from the wall of the colon toward the centre as the fluid becomes more shear thinning;

this leads to u∗r being a similar velocity at the wall for a strongly shear thinning fluid as

a Newtonian one.

Figures 4.3 and 4.4 show that the outer edges of the main flow regions for u∗z move

closer to the the centre of the colon as the fluid becomes more shear thinning; i.e. the

‘strip’ of zero flow at the colon wall becomes wider. This effect is more pronounced for

ε = 0.5, as is the increase in maximum velocity as the fluid becomes more shear thinning.

Figure 4.4(d) (n = µc = 0, 1, ε = 0.5) shows two regions of slow, relative to the maximum,

velocity flow appearing between the colon wall and the main regions of flow. In addition

we see that as n and µc decrease the maximum values of u∗z no longer appear at the centre

of the colon (i.e. along the z∗-axis).

Figures 4.5 and 4.6 show that the maximum magnitude of velocity increases as n and

µc decrease. However, the distribution of flow also changes, therefore it may be beneficial

to consider the spatial mean values for velocity magnitude as n and µc vary. In particular,

figures 4.6(c) and 4.6(d) show an increase in regions with zero, or relatively low, velocity

as the fluid becomes more shear thinning, especially near to the colon wall.
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(a) Newtonian (n = 1, µc = 1)
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(b) n = 0.9, µc = 0.9
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(c) n = 0.5, µc = 0.5
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(d) n = 0.1, µc = 0.1

Figure 4.1: Colour plots of u∗r (m/s) up to O(ε2) at t = π/2 for the standard parameters,
with ε = 0.1, where r∗ and z∗ have units m.
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0 0.01 0.02 0.03 0.04 0.05 0.06

0.005

0.01

0.015

0.02

0.025

z
∗

r
∗

 

 

−0.01

−0.005

0

0.005

0.01

(b) n = 0.9, µc = 0.9

0 0.01 0.02 0.03 0.04 0.05 0.06

0.005

0.01

0.015

0.02

0.025

z
∗

r
∗

 

 

−0.01

−0.005

0

0.005

0.01

(c) n = 0.5, µc = 0.5

0 0.01 0.02 0.03 0.04 0.05 0.06

0.005

0.01

0.015

0.02

0.025

z
∗

r
∗

 

 

−0.01

−0.005

0

0.005

0.01

(d) n = 0.1, µc = 0.1

Figure 4.2: Colour plots of u∗r (m/s) up to O(ε2) at t = π/2 for the standard parameters,
with ε = 0.5, where r∗ and z∗ have units m.
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(a) Newtonian (n = 1, µc = 1)
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(b) n = 0.9, µc = 0.9
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(c) n = 0.5, µc = 0.5
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(d) n = 0.1, µc = 0.1

Figure 4.3: Colour plots of u∗z (m/s) up to O(ε2) at t = π/2 for the standard parameters,
with ε = 0.1, where r∗ and z∗ have units m.

139



0 0.01 0.02 0.03 0.04 0.05 0.06

0.005

0.01

0.015

0.02

0.025

z
∗

r
∗

 

 

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

(a) Newtonian (n = 1, µc = 1)
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(b) n = 0.9, µc = 0.9
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Figure 4.4: Colour plots of u∗z (m/s) up to O(ε2) at t = π/2 for the standard parameters,
with ε = 0.5, where r∗ and z∗ have units m.
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(a) Newtonian (n = 1, µc = 1)
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(b) n = 0.9, µc = 0.9

0 0.01 0.02 0.03 0.04 0.05 0.06

0.005

0.01

0.015

0.02

0.025

z
∗

r
∗

 

 

0

0.5

1

1.5

2

x 10
−3

(c) n = 0.5, µc = 0.5
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(d) n = 0.1, µc = 0.1

Figure 4.5: Magnitude of velocity (m/s) up to O(ε2) at t = π/2 for the standard param-
eters, with ε = 0.1, where r∗ and z∗ have units m.
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Figure 4.6: Magnitude of velocity (m/s) up to O(ε2) at t = π/2 for the standard param-
eters, with ε = 0.5, where r∗ and z∗ have units m.

142



We now consider the spatial mean of |u∗| =
√
u∗2r + u∗2z , given by

〈|u∗|〉r,z =

∫ λ
0

∫ R0

0
|u∗| r∗ dr∗ dz∗∫ λ

0

∫ R0

0
r∗ dr∗ dz∗

.

We use a repeated mid-point rule to calculate the above integrals using Matlab. Figure

4.7 shows the results of this when varying n for fixed values of µc. At t = π/2 it is clear

that velocity magnitude increases as n and µc decrease. However, this is not the case at

t = 0 and since t = π/2 is just one instant of time in the flow cycle we now consider the

spatio-temporal mean of velocity magnitude,

〈|u∗|〉r,z,t =

∫ 2π

0

∫ λ
0

∫ R0

0
|u∗| r∗ dr∗ dz∗ dt∫ 2π

0

∫ λ
0

∫ R0

0
r∗ dr∗ dz∗ dt

.

We note the result of the above calculation is not affected by leaving t as a nondimensional

variable.

Plotting n against 〈|u∗|〉r,z,t for fixed values of µc, we see that when ε = 0.1 (figure

4.8(a)) the mean velocity magnitude (over space and time) increases as n and µc increase,

i.e. the velocity decreases as the fluid becomes more shear thinning. This is opposite to

what happens with the spatial mean at t = π/2 as seen in figure 4.7(b); to get a clearer

picture of what happens we consider how the spatial mean velocity varies with time.

Figure 4.9 shows how the ‘degree’ of shear thinning behaviour of the fluid affects the

way the spatial mean velocity varies with time. Figure 4.9(a) helps to explain the results

in figure 4.8(a); although at the peaks where mean velocity is maximum the velocity is

higher the more shear thinning the fluid is, the opposite occurs for lower velocities on the

curve.

Figure 4.8(b) shows that we have the opposite relationship between n, µc and 〈|u∗|〉r,z,t

for ε = 0.5 compared with when ε = 0.1; i.e. mean velocity increases as n and µc decrease.

Comparing the curves in the two plots of figure 4.9 shows us why we get different rela-
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tionships between the shear thinning parameters and the spatio-temporal mean velocity

magnitude for the two values of ε; we can see in figure 4.9(b) that the spatial mean ve-

locity is highest when µc = 0.1 for most of the contractile period when ε = 0.5, therefore

we would expect 〈|u∗|〉r,z,t to increase as the fluid becomes more shear thinning as figure

4.8(b) shows.

Figures 4.8 and 4.9 both suggest that the value of ε has a significant effect on the

relationship between the shear thinning parameters and the magnitude of velocity. In

order to investigate this we fix n = 0.1 and plot ε against 〈|u∗|〉r,z,t for various values of

fixed µc as in figure 4.10(a). We see that for larger values of ε in the range, mean velocity

increases as the fluid becomes more shear thinning. Figure 4.10(b) enlarges the plot for

the range of ε where the relationship between the value of the shear thinning parameters

and mean velocity reverse. We see the same reversing in relationship between µc and

〈|u∗|〉r,z,t for different values of n (figure 4.11); the lower the value of n, i.e. the more

shear thinning the fluid, the lower the value for ε that leads to the type of relationship as

in figure 4.8(b) (a decrease in n and µc leading to an increase in 〈|u∗|〉r,z,t).
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Figure 4.7: Power law exponent n vs the spatial mean magnitude of flow, 〈|u∗|〉r,z, for
ε = 0.1 and fixed values of viscosity ratio µc. We note that the plot for t = π is identical
to that of t = 0 and the plot for t = 3π/2 is identical to that of t = π/2 due to the
symmetry of the flow.
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Figure 4.8: Power law exponent n vs the spatio-temporal mean 〈|u∗|〉r,z,t for fixed values
of viscosity ratio µc, with (a) ε = 0.1 and (b) ε = 0.5.
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Figure 4.9: t vs 〈|u∗|〉r,z for the power law exponent n = 0.1 and fixed values of viscosity
ratio µc, with (a) ε = 0.1 and (b) ε = 0.5.
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Figure 4.10: ε vs 〈|u∗|〉r,z,t for the power law exponent n = 0.1 and fixed values of viscosity
ratio µc. Figure (b) is an inset of figure (a).
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Figure 4.11: ε vs 〈|u∗|〉r,z,t for fixed values of the viscosity ratio µc, with (a) n = 0.5 and
(b) n = 0.9.
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In this chapter we have calculated the flow fields of a Carreau fluid within a pipe of

arbitrary radius and length driven by a small amplitude standing wave for the pipe wall.

The Carreau fluid represents intestinal chyme, the pipe represents the ascending colon

and the small amplitude standing wave represents the segmental contractions of the colon

wall. Within our parameter regime we found the flow at O(ε) is identical to that of a

Newtonian fluid. At O(ε2), however, the flow is dependent on the Carreau shear thinning

parameters. We found that the more shear thinning the fluid was, quantified by decreasing

n and µc, the higher the maximum values of velocity; however, the relationship between

the shear thinning parameters and mean velocity is less straightforward. Whether the

spatio-temporal mean increases or decreases as µc decreases depends on the value of ε; in

particular the critical range of ε where this relationship reverses depends on the power

law exponent n. The lower the value of n, the lower the value εc(n) for which the mean

velocity increases as µc decreases when ε ≥ εc.

In the next chapter we investigate particle transport within the ascending colon.
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Chapter 5

Lagrangian Particle Tracking

used as a Model for Drug Delivery

In this chapter we expand the work of chapter 2 to consider the transport of a particle

once it enters the colon. We have chosen to use the one layer model for simplicity, due

to the limited impact of mucus specific parameters on the bulk flow within our two layer

model. For transportation of a particle it is the bulk flow which is important, thus the

inclusion of only one layer is a suitable simplification. If we were instead concerned with

the mechanisms of absorption or the chemical make up of a drug then consideration of

the mucus layer and fluid interface would be more critical.

We consider a dosage form consisting of an outer vessel with several solid microspheres

containing the drug to be delivered inside. These microspheres are released when the

dosage reaches the colon via some mechanism such as the ones described in section 1.1.

Figure 5.1 describes this process.

We estimate the size of the Péclet number, Pe, in order to determine the relative

influence of advective and diffusive forces on transport. The diffusion coefficient for a
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particle in a low Reynolds number fluid is given by the Stokes-Einstein equation

D =
kBT

6πµr
,

where kB ≈ 1.38 × 10−23 J/K is the Boltzmann constant; T is the absolute temperature

of the fluid (∼ 300 K at body temperature); µ is the viscosity of the fluid; and r is the

radius of the microsphere. To find an approximate upper bound for D in our problem we

take kB ≈ 10−23 J/K and a microsphere radius of 1 µm, therefore

D ≈ 10−23 × 3× 102

(3× 10)π × 10−6

≈ O(10−16 m2s).

From this we have

Pe =
εωR2

0

D

≈ O(1011)

� 1,

thus advection dominates over diffusion and we consider advection as the mechanism of

particle transport rather than diffusion or a combination of the two. In addition we do

not consider dissolution of the microspheres, since we assume that the drug is not released

until it reaches the mucosa.

We develop a Matlab code for solving the relevant kinematic ODE and calculating the

percentage of particles reaching the colon wall for absorption (given an even distribution

at t = 0). We analyse these results and the effects of changing parameter values, including

a mechanism for considering the length of diffusion of a given drug.
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(a) Step 1: Intact dosage form. (b) Step 2: Exterior of dosage
form breaks down and begins to re-
lease microspheres.

(c) Step 3: The microspheres are
transported within the colon via
advection, with the drug released
into the bloodstream once the mi-
crosphere reaches the mucosa.

Figure 5.1: Stages of drug delivery in the colon.

5.1 Force Balance and Particle Tracking Method

We begin by considering the motion of a spherical particle through a given fluid, we may

then use Stokes’ Law for the frictional force acting on the particle. Thus using Newton’s

second law we have

m
d2x∗

dt∗2
= 6πµa

(
u∗(x∗)− dx∗

dt∗

)
, (5.1.1)
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where m is the mass of the particle; x∗ = (r∗, z∗) gives the position of the particle; a is

the radius of the particle; and u∗ is the fluid velocity calculated (up to O(ε2)) in chapter

2. We also have the initial conditions

x∗(0) = x∗0

dx∗

dt∗
(0) = 0.

Nondimensionalising equation (5.1.1) with x∗ = R0x, u∗ = ωR0u
∗ and t∗ = t/ω we

have

Md2x

dt2
= u(x)− dx

dt
,

where

M =
mω

6πµa

=
4
3
πa3ρPω

6πµa

=
2a2ρPω

9µ
,

and ρP denotes the density of the particle. If we assume our particles have a radius of

no more than 1 mm, i.e. a = 10−3 m, and ω = π/10 as in previous chapters, then taking

ρP ≈ 2× 103 kg/m3 we have

M≈
4π
9
× 10−4

µ
.

Now, µ in this problem has been taken as 5 Pa·s and is unlikely to be smaller than

O(10−1 Pa · s), thus M� 1 and we use the equation

dx

dt
= u(x(t), t),
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subject to x(0) = x0, as our particle tracking ODE.

Recall that u is dependent on the functions f and α. Our results for α, determined

using bvp4c, are valid only for 0.01 < r < 1, to maintain numerical regularity, therefore

we cannot calculate u outside this range. Once a particle reaches r = 1 it is considered

to be ‘captured’ by the wall and no longer subject to the forces of the flow. Thus we set

α = 0 for both r < 0.01 and r > 1, and set f = 0 for r > 1.

We use an explicit Runge-Kutta (Dormand-Prince) formula implemented via Mat-

lab’s ode45 algorithm to solve equation (5.1) subject to an initial condition on position.

To begin with we run the code for t ∈ [0, 2π], i.e. one cycle of the periodic contraction.

We also set a maximum timestep with the ode45 code of t = 0.02π (i.e. 1% of the cycle

length) in order to minimise calculation errors.

Figure 5.2: Grid of initial positions used for particle tracking with the indices 1 ≤ i ≤ II
and 1 ≤ j ≤ JJ .

To visualise these results we split the r−z plane into a grid of equally sized rectangles

and take the centre of each of these rectangles to be the initial position of one particle.

Figures 5.3 and 5.4 show the results of this for various values of ε on a 10 × 10 grid for

both full and half wavelengths. As we might expect, increasing the value of ε increases

the distance that a particle travels.
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Figure 5.3: Particle paths over one wavelength for a range of amplitudes.
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Figure 5.4: Particle paths over half a wavelength for a range of amplitudes.
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In order to analyse these results we need to calculate the proportion of particles which

reach the wall. In addition we want to consider the effects of molecular diffusion on

absorption, i.e. to mimic diffusion we specify a line where we consider a particle to be

‘close enough’ to the wall for drug absorption. To this end we introduce a parameter d,

such that if r ≥ d at some point of the path the particle is considered to have reached

the wall via diffusion. This allows us to create ‘look up’ tables with data which could be

used for drugs with different diffusion coefficients and hence different characteristic length

scales for diffusion.

Since we are dealing with a cylindrical geometry we need to consider volumes of the

grid elements, rather than area of the r − z plane, as the volume that an element of the

plane represents increases as r does. The proportion of particles reaching r = d, φ(d), is

then given by

φ(d) =
2
∫ ∫

κ(d)
r dr dz

R2
0λ

, (5.1.2)

where κ(d) is the domain consisting of elements in the r−z plane for which particles enter

the region r ≥ d. To calculate φ over half a wavelength instead we replace λ by λ/2. To

determine (5.1.2) in Matlab we first introduce a matrix Mij, such that Mij = 1 if there

exists a point on the (i, j)th path such that r ≥ d, otherwise Mij = 0. This is done within

the Matlab function for f by switching the (i, j)th entry from 0 to 1 if r ≥ d. The area

of an annulus between a < r < R is given by π(R2 − a2), thus for each element such that

Mij = 1 we calculate the difference of the squares of the two r boundaries. We store these

in a matrix Vij (where Vij = 0 if Mij = 0), then the volume of particles reaching the wall

is

πz
∑
i,j

Vij,

where z is the width of one element. This allows us to find the proportion, φ, of particles
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reaching the wall via

φ =
Volume of particles reaching the wall

Total volume of cylinder

=
z
∑

i,j Vij

R2
0λ

.

Tables 5.1 and 5.2 display the results of this method over a full and half wavelength

respectively using a 20 × 20 grid. Despite the symmetry of the flow the proportional

results for a full wavelength are not identical to those of a half wavelength since the initial

positions used in each case will be different. As we qualitatively observed using figures 5.3

and 5.4 increasing the value of ε, i.e. increasing the amplitude of the contraction relative

to the colon radius, increases the proportion of particles which are absorbed. In addition,

as we would expect, φ(d) increases as d decreases.
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Table 5.1: Proportion of particles absorbed over one wavelength.
ε

d 0.01 0.05 0.1 0.25 0.5

1 0.029 0.129 0.257 0.548 0.667
0.99 0.039 0.129 0.261 0.548 0.667
0.98 0.049 0.153 0.273 0.548 0.667
0.97 0.098 0.202 0.322 0.571 0.676
0.95 0.125 0.219 0.343 0.581 0.676
0.9 0.216 0.305 0.416 0.613 0.781
0.85 0.302 0.385 0.496 0.658 0.805
0.8 0.383 0.454 0.559 0.696 0.821
0.7 0.530 0.586 0.661 0.780 0.855
0.5 0.755 0.791 0.828 0.894 0.931

Table 5.2: Proportion of particles absorbed over half a wavelength.
ε

d 0.01 0.05 0.1 0.25 0.5

1 0.029 0.124 0.261 0.545 0.688
0.99 0.039 0.137 0.261 0.549 0.688
0.98 0.044 0.149 0.270 0.554 0.688
0.97 0.098 0.206 0.328 0.573 0.698
0.95 0.125 0.223 0.345 0.575 0.708
0.9 0.216 0.313 0.423 0.613 0.781
0.85 0.302 0.393 0.489 0.654 0.826
0.8 0.383 0.464 0.552 0.694 0.843
0.7 0.530 0.593 0.662 0.774 0.871
0.5 0.757 0.789 0.829 0.892 0.928
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5.2 The Effect of Parameters on Absorption

In this section we consider the influence our parameters have on the proportion of par-

ticles which are considered to have been absorbed. We consider our results over half a

wavelength since the flow is symmetric, then the results will be more accurate than over a

full wavelength due to smaller rectangles for the same size grid. We also choose to run our

results for ε = 0.1, this keeps ε small but also makes the geometry slightly more realistic.

We denote the proportion of particles absorbed over half a wavelength by the function φ,

which is dependent on d and the parameter being varied. We run the codes for one cycle

only since, due to the periodicity of flow, running the code for multiple cycles does not

increase the value of φ. In addition, altering the period of the contraction does not affect

the value of φ over a full cycle.

In order to decide what size of grid we should use we ran the code for the grid sizes

shown in table 5.3. Convergence was achieved to within 10% relative error for a 20× 20

grid compared to a 40 × 40 grid, thus we choose to use a 20 × 20 grid as a compromise

between accuracy and running time of the code.

Table 5.3: Values of φ for different size grids.
Number of subdivisions of each side of grid

d 10 15 20 30 40

1 0.249 0.257 0.261 0.254 0.253
0.99 0.279 0.265 0.261 0.262 0.267
0.98 0.279 0.271 0.270 0.306 0.297
0.97 0.279 0.279 0.328 0.312 0.306
0.95 0.374 0.357 0.345 0.358 0.341
0.9 0.441 0.436 0.423 0.421 0.422
0.85 0.52 0.472 0.489 0.502 0.490
0.8 0.548 0.554 0.552 0.553 0.554
0.7 0.67 0.680 0.662 0.664 0.663
0.5 0.832 0.841 0.829 0.830 0.831

We recall that the dimensional parameters, together with our estimated values, are
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given by

R0 = 0.025 m; λ = 0.06 m; ω =
π

10
rad/s; µ0 = 5 Pa · s; and ρ = 1000 kg/m3.

From these we have the nondimensional parameters

Re =
ρωR2

0

µ0

; k =
2πR0

λ
; and ε =

ε∗

R0

.

The ratio between inertial and viscous effects is given by εRe; k represents the ratio

between colonic radius and contractile wavelength; and ε gives us the amplitude of the

contractions as a proportion of radius. Since both r and z are scaled with respect to the

same parameter (i.e. R0) and we are investigating proportions over one contraction, it

is possible to consider the effects of parameters by looking only at the nondimensional

groupings.

The dimensional parameters above yield base values for the nondimensional parame-

ters of

Re = 0.0125π ≈ 0.039

k =
5π

6
≈ 2.62.

In order to select a reasonable range of values to investigate for Re and k we first consider

realistic ranges for the dimensional parameters. We shall consider a range for ε separately,

as this is of particular interest to pharmacologists.

We have already mentioned that the diameter of the colon varies from 8.5 cm at the

caecum to 2.5 cm at the sigmoid colon [70]. Thus we take a range for R0 of 0.015−0.04 m,

corresponding to diameters of 3− 8 cm.

There does not appear to be any information pertaining to the length of individual
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haustra in the literature, but we do know that the ascending colon is approximately

12 cm in length [1] and we use this as a guide. The length of one haustrum is taken to

be represented by half the wavelength of a contraction. For example if there were four

segments to the ascending colon then each would be approximately 3 cm in length, giving

a wavelength of λ = 6 cm. We choose a range of haustrum length of 2 − 5 cm, giving a

range for λ of 0.04− 0.1 m.

The angular frequency ω is given by ω = 2π/P , where P is the period of the contractile

wave. In section 1.3.2 we reported ranges of contractile frequency of the circular muscle

as 2.5− 3 per minute [43], 1− 6 per minute [71] and 6.3±0.6 per minute [22]. In addition

Bassotti et al. [6] found a range of frequencies of 2 − 8 per minute, with 3 per minute

the most common (hence our choice of P = 20 s as a base value earlier). Thus we take a

range for P of 7.5− 30 s, i.e. a range for ω of π/15− 4π/15 rad/s, corresponding to 2− 8

cycles per minute.

Data on the viscosity of the chyme in various intestinal regions may be found in section

1.3.1. The viscosity of rat small intestinal content, measured at a shear rate of 50 s−1

was found to be 1.877 Pa·s or 1.868 Pa·s depending on diet [34]. However our rheological

models require the zero shear viscosity, so measurements taken at a lower shear rate are

desirable. At a shear rate of 1 s−1 the viscosities of chicken small intestinal and caecal

contents have been measured as 3.8 Pa·s and 82 Pa·s respectively [64] and the viscosity of

pig caecal content as 3.7 Pa·s [65]. From this data we choose a range for µ0 of 1−80 Pa·s.

Finally, the fluid density of chyme has not been extensively measured. One value

found for chyme is given by Takahashi et al. [64] as 1030 kg/m3 for the caecal content of

chickens. The density of water at room temperature is approximately 1000 kg/m3, close

to the value of Takahashi et al. Therefore, since we lack information on mucus and chyme

densities, we take a range of values for ρ of 800− 1300 kg/m3.
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Using these ranges we have

Remax ≈ 1.74; Remin ≈ 0.000471; kmax = 2π and kmin =
3π

10
,

we therefore choose the ranges 0.0004 ≤ Re ≤ 1.75 and 3π/10 ≤ k ≤ 2π. Tables 5.4 and

5.5 display the results for these ranges.

Table 5.4: Values of φ for a range of values for Re with k = 5π/6.
Re

d 0.0004 0.4378 0.8752 1.3126 1.75

1 0.261 0.261 0.261 0.261 0.261
0.99 0.261 0.261 0.261 0.261 0.261
0.98 0.270 0.270 0.270 0.270 0.280
0.97 0.328 0.328 0.329 0.329 0.329
0.95 0.345 0.342 0.342 0.342 0.342
0.9 0.423 0.423 0.423 0.423 0.423
0.85 0.489 0.489 0.489 0.489 0.489
0.8 0.552 0.552 0.552 0.552 0.552
0.7 0.662 0.662 0.662 0.662 0.662
0.5 0.829 0.831 0.831 0.831 0.831

Table 5.5: Values of φ for a range of values for k with Re = 0.039.
k

d 0.3π 0.725π 1.15π 1.575π 2π

1 0.260 0.257 0.252 0.253 0.249
0.99 0.264 0.261 0.260 0.260 0.257
0.98 0.272 0.279 0.271 0.269 0.261
0.97 0.324 0.326 0.327 0.316 0.295
0.95 0.352 0.345 0.339 0.323 0.308
0.9 0.427 0.423 0.411 0.392 0.381
0.85 0.504 0.492 0.473 0.452 0.434
0.8 0.566 0.554 0.539 0.517 0.492
0.7 0.675 0.665 0.647 0.621 0.599
0.5 0.843 0.834 0.815 0.793 0.780

As we can see from table 5.4, with the exception of four values for d, altering the value

of Re within this range has no effect on the proportion of particles absorbed. For the four
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values of d where this is not the case (0.98, 0.97, 0.95 and 0.5) the differences in the value

of φ as Re is varied are limited; therefore it is reasonable to conclude that the exact value

of Re, within this range, is not important in calculating the proportion of particles which

are absorbed.

Table 5.5 displays the results of our parameter variation for k and in doing so shows

no simple relation between k and φ. In order to investigate further we consider how the

mean velocity changes with k, we look at the nondimensional velocity since this depends

only on k, Re and ε.

The spatio-temporal mean of a variable u in cylindrical co-ordinates is given by

〈u〉r,z,t =

∫ 2π

0

∫ π/k
0

∫ 1

0
u r dr dz dt∫ 2π

0

∫ π/k
0

∫ 1

0
r dr dz dt

.

In order to calculate this to find 〈|u|〉r,z,t, where |u| =
√
u2r + u2z, we use a repeated

mid-point rule to work out the spatial mean 〈u〉r,z(t) and then a left rectangle rule to

determine the mean over time.
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Figure 5.5: Relationships between k and mean velocity (a) linear scale; and (b) logarithmic
scale.
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Figure 5.6: Graphs displaying the relationships between (a) ε and mean velocity; and (b)
ε and φ(1), where φ(1) is the proportion of particles (by volume) which are captured by
the wall over the course of one contractile cycle.
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Figure 5.5 displays the relationship between k and the mean velocity 〈|u|〉r,z,t. This

figure shows that the relationship between k and velocity is relatively simple, with mean

velocity decreasing as the radius of the pipe increases relative to the wavelength. This sug-

gests that differences in mean velocity are not responsible for the non-monotonic changes

that we see in the value of φ as k is increased. Ultimately however the range of φ for each

value of d is small; for example, running the Matlab code for d = 1 for 100 equally spaced

values of k for the same range of k as in table 5.5 we find φmax = 0.260 and φmin = 0.249.

This is the difference between 24.9% and 26% of a drug dosage being absorbed, which in

practical terms is negligible.

We have already considered ε in tables 5.1 and 5.2. These results are of particular

interest to pharmacologists for a number of reasons. Physically the contractile amplitude

differs between individual haustra and changes at a given haustrum in separate contractile

cycles. In addition we can see that ε is the parameter which has the largest, and only

significant, effect on particle absorption. Figure 5.6 displays the relationships between ε,

〈|u|〉r,z,t and φ(1). The relationship between amplitude and velocity is linear, whereas the

relationship between ε and φ is linear for ε . 0.25, after which the rate of increase of φ

slows down with respect to ε but is still monotonically increasing.

We also consider the dimensional variable ω; this is because ω also has an effect on

the length of time we allow for a particle to reach the colon wall. As we noted earlier

in this section due to the periodicity of the flow, running the code for multiple cycles

does not increase the value of φ. This is not physically realistic and in practice other

contractile activity will affect the proportion of particles which are captured by the wall.

In addition altering the contractile frequency and running the code for the length of one

cycle does not affect the value of φ. Instead we consider fixing the dimensional, rather

than nondimensional, time for which we run the code. We choose to run the code for

t ∈ [0, 20ω] which is equivalent to t∗ ∈ [0, 20] s, i.e. the length of one cycle when using the
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standard parameter value ω = π/10 rad/s.

Over the range for ω of π/15− 4π/15 rad/s running the code for t∗ ∈ [0, 20] s yielded

the same results as running for t ∈ [0, 2π]. However running the code for 20 s as opposed

to one cycle does have a significant effect when considering low frequencies of contractile

activity.

Table 5.6: Values of φ after 20 seconds for a range of values for ω with Re = ω/8 and
k = 5π/6.

ω (rad/s)
d π/1800 π/900 π/450 π/30 2π/45 π/18

1 0 0 0 0.193 0.245 0.261
0.99 0 0 0 0.206 0.261 0.261
0.98 0 0 0 0.206 0.266 0.270
0.97 0.098 0.098 0.098 0.266 0.314 0.328
0.95 0.098 0.098 0.098 0.282 0.342 0.345
0.9 0.19 0.19 0.19 0.36 0.412 0.423
0.85 0.278 0.278 0.278 0.444 0.486 0.489
0.8 0.36 0.36 0.36 0.516 0.546 0.552
0.7 0.51 0.51 0.51 0.629 0.660 0.662
0.5 0.75 0.75 0.75 0.813 0.829 0.829

Table 5.6 displays the results for φ after 20 s, where the period of contraction ranges

from 1 hour to 36 s. As we can see the lowest frequencies (corresponding to contractile

periods of 15 minutes to 1 hour) result in no particles being captured by the wall in the

first 20 s of the cycle, which seems physically realistic; 75% of particles would, however,

enter the radial outer half of the colon in this time period. As we reach frequencies of

π/30 rad/s (i.e. 1 contraction per minute) we begin to see values for φ converging towards

our earlier results for ε = 0.1, Re = 0.039 and k = 5π/6; in fact the results are identical

for ω = π/18 rad/s, i.e. a contractile period of 36 s. Therefore our earlier results may be

considered robust over a 20 s time period, provided the period of contraction is no longer

than about 45 s. However, since over one full cycle the proportion of particles absorbed

is independent of the contractile frequency, in practice this only means that it would take
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longer for the same volume of drug to be absorbed in a patient with low frequency colonic

contractions.

In this chapter we investigated the method of Lagrangian particle tracking as a model

for drug delivery. We used a force balance and estimates for the relevant parameters

to determine the kinematic ODE to be solved. We set up a spatial grid in the r − z

plane to visualise the results and used this to calculate an estimate for the proportion of

particles which would be absorbed. In doing this we also set up a mechanism to allow

length of diffusion to be taken into account, by letting the function φ(d) represent the

proportion of particles which enter the region r ≥ d. We then considered the effects of the

parameters ε (contractile amplitude), Re (viscous versus inertial forces), k (aspect ratio)

and ω (contractile frequency) on the value of φ.

We found that ε has the largest effect on particle absorption, with φ increasing as

ε increases. Varying both Re and ω has very little effect within our parameter regime,

with the value of ω having no effect if φ is considered over a whole contractile cycle. We

found that altering the aspect ratio, k, does have an effect on the value of φ, however the

relationship between the two parameters is not simple enough to draw any conclusions.

In practical terms the difference in the value of φ for different values of k in our parameter

range is negligible.

Altering the number of contractile cycles does not increase the value of φ in our

problem whereas in reality the cumulative proportion of particles absorbed would increase

in further cycles. This is due to the influence of other contractile activity as well as changes

in amplitude between contractile cycles in the physical situation. Thus our values for φ(d)

in this chapter may be considered a lower bound for the proportion of particles entering

the region r ≥ d.
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Chapter 6

Conclusions and Further Work

In this thesis we have presented three models of the ascending colon undergoing segmental

contractions and have used one of these to begin to model site-specific drug delivery. The

three models are:

• a one layer model of flow of a Newtonian fluid;

• a two layer model consisting of an inner Newtonian fluid and an outer Oldroyd B

fluid; and

• a one layer model of flow of a Carreau fluid.

The motivation for this arose from current pharmacological interest in oral drug delivery to

the colon; the ascending colon is the region where most mixing and absorption occurs. A

mathematical model is desirable to help with the understanding of dosage form behaviour

within the colonic environment. In particular, a mathematical model has advantages over

a physical one due to its versatility in changing conditions via parameter variation.

We began by constructing one and two layer fluid models of the flow within the as-

cending colon under segmental contractions, using both Newtonian and more rheologically

relevant fluid models. In doing this we studied the appropriate literature in order to un-

derstand the geometry and motility of the colon, the fluid rheology and any important
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considerations relating to drug delivery. It was necessary to also consider the small in-

testine, in particular the ileum, due to a lack of colonic data in some cases, e.g. chyme

viscosity; the rheological similarity between the terminal small intestine and the proximal

colon make this a reasonable region to study. Some parameters are more constrained by

the data than others, for example textbook values are given for the radius R0 but no

information was found on the viscosity of colonic mucus or of human chyme. Here we

have had to use data either from other regions of the human body or from animal studies.

After presenting our fluid models we then used the one layer model to model drug delivery

via the method of Lagrangian particle tracking.

Throughout this thesis we have made various assumptions and simplifications, which

may be split into those relating to geometry and those relating to flow. We have chosen

to model the contractions of the colonic smooth muscle using a standing wave of small

amplitude. The standing wave mimics the mixing effects of segmental contractions on

the fluid flow, with no overall fluid transport. Taking the amplitude of this wave to be

O(ε), where ε� 1, allows us to employ perturbation techniques to describe the flow, thus

simplifying the problem. We also assumed that flow is induced purely by the motion of

the boundary, i.e. there is no underlying pressure gradient and that this wall motion is

axisymmetric, due to the nature of muscular contractions; thus it makes sense to assume

that the flow is also axisymmetric. In order to simplify the problem we considered the fluid

to be homogeneously distributed and the contractions driving the flow to be continuous.

We began by constructing the first model; a one layer model where chyme was repre-

sented by a Newtonian fluid. We found that at each time step, flow in the axial direction

is antisymmetric, whilst radial flow is symmetric, about z∗ = λ/2, where λ is the wave-

length of the wall contraction; velocity magnitude is also symmetric about z∗ = λ/2. In

this sense flow in the negative and positive directions could be considered to ‘balance’

out over one wavelength at each time step. In addition to the symmetries at each time

172



step, the flow displayed antisymmetry in time over one cycle for u∗r and u∗z. We found no

obvious differences in the flow between the results for O(ε) and up to O(ε2) for ε = 0.01,

which suggests there would be no advantage in going to higher order.

It is well established that both chyme and mucus display non-Newtonian behaviour.

In particular, chyme displays shear thinning behaviour and mucus displays viscoelastic

behaviour. In our second model, the two layer model, we have left chyme as a Newtonian

fluid, but included a thin layer of mucus, represented by the viscoelastic Oldroyd B

model. In this two layer model the only non-Newtonian parameters involved at O(ε)

are M [2] = λ1ω and λ = λ2/λ1, both of which relate to timescales. These appear in the

normal and tangential interfacial conditions as well as the general solution for the Oldroyd

B layer and do affect the flow at O(ε). We found that there was little or no difference in

the flow at t = π/2 and t = 3π/2 between the one and two layer models. For t = 0 and

t = π there were some small differences in the velocities, with the velocity being greater

in the two layer model. However, since the velocities at t = 0 and t = π are still much

lower than those at other times we conclude that adding a mucus layer in the way we did

has little impact on the overall flow.

We investigated the influence of the mucus specific parameters on the two layer flow

by considering the flow velocities; we found that within a range of realistic values for these

parameters the exact value of each parameter is not important to the flow profiles. For

this reason, together with the similarities in bulk flow behaviour between the one and two

layer models, and for simplicity, we chose to use the one layer model when considering

drug delivery.

We could investigate the influence of parameters further by examining their effects

on the mucus layer, rather than just the bulk flow. However, the flow within the mucus

layer may not be relevant as to whether a dosage form is delivered to the layer in the

first place. Instead the effects on the mucus layer could be considered as part of more in
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depth work investigating the transfer of a drug through mucus to the epithelium. Cu and

Saltzman [11] and Khanvilkar et al. [26] review models of molecular diffusion and drug

transfer through mucus.

One problem that we have identified with our small amplitude approach in the two

layer model is the use of ε as our small parameter. Note that the value of ε describes

the amplitude as a fraction of the pipe radius, however our mucus layer thickness is much

smaller than this value, i.e. 1 − η0 � ε. To fix this problem in future work we could

consider returning to a one layer model but employing a slip condition at the boundary to

represent the thin mucus layer. This approach could be coupled with both small amplitude

and numerical methods. Another potential area to explore occurs at our fluid interface.

Our calculations have assumed that mucus and chyme are immiscible, however this is not

the case. Relaxing this assumption would be a potential area to investigate.

In order to investigate the effects of the shear thinning behaviour of chyme we returned

to a one layer model. In our third model chyme was represented by a Carreau fluid

model. A Carreau fluid is an example of a generalised Newtonian fluid and may be

either shear thinning (as in the case of chyme) or shear thickening. We assumed that

M = mω = O(1/
√
ε), where ω is the radial frequency of the colonic contractions and

m is the time parameter of the Carreau model, relating to when the transition between

Newtonian and power law flow occurs. Within our parameter regime we found the flow at

O(ε) is identical to that of a Newtonian fluid. At O(ε2), however, the flow is dependent

on the shear thinning parameters n and µc; n is the power law exponent and µc is the

ratio between the infinite and the zero shear viscosities. The lower the two of these values

(where 0 < n, µc < 1) the more shear thinning the fluid.

We found that the more shear thinning the fluid was, the higher the maximum values

of velocity; however, the relationship between the shear thinning parameters and mean

velocity is less straightforward. Whether the spatio-temporal mean increases or decreases
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as µc decreases depends on the value of ε; in particular the critical range of ε where this

relationship reverses depends on the power law exponent n. The lower the value of n, the

lower the value εc(n) for which the mean velocity increases as µc decreases when ε ≥ εc.

For the purpose of investigating site-specific drug delivery within the ascending colon

we assumed a dosage delivery system consisting of microparticles. In this situation drug

transport would be dominated by advective, rather than diffusive, forces. Thus we em-

ployed the technique of Lagrangian particle tracking to quantify and analyse drug delivery,

using the velocity fields from the Newtonian one layer model. We assumed an even dis-

tribution of particles throughout the r − z plane over half a wavelength and set up a

function φ(d), whose value represents the proportion of particles (by volume) which enter

the region r ≥ d in the course of one contractile cycle. Due to the periodicity of the flow,

we found that running the code for multiple cycles did not increase the value of φ. In

practice continued contractile activity may affect the proportion of particles which are

captured by the wall to some degree. In addition altering the contractile frequency and

running the code for the length of one cycle did not affect the value of φ.

One limitation of our colonic model is the small amplitude assumption. We know that

small amplitude contractions are not a physically precise model, however this does not

preclude the use of small amplitude expansions to gain insight into the physics. Since

this method allows us to quantify the error in our solutions it is also possible to increase

ε until we reach the value which gives us a maximum acceptable error; our model was

expanded up to O(ε2), therefore any error in our solution is of order ε3. When considering

particle tracking we allowed the value of ε to be increased as high as ε = 0.5, which had a

significant effect on our results. For example, when ε = 0.01, the proportion of particles

which are captured by the wall is approximately 3%, whereas this jumps to approximately

69% when ε = 0.5 (see table 5.2). Varying the other nondimensional parameters, Re and

k, for a realistic range of values for this problem had little effect on the proportion of

175



particles absorbed, with values for φ(1) ranging between approximately 0.249 and 0.261

for ε = 0.1. We could expand this work further by using the velocity fields calculated

from the one layer Carreau model; this would allow us to investigate the effects of the

shear thinning parameters on drug delivery.

One way to relax the need for a small amplitude assumption in modelling colonic

contractile activity would be to employ techniques such as the finite element method.

This would not be a simple problem, due to the use of a Eulerian description for flow but

a Lagrangian one for the moving boundary. Therefore more involved techniques such as

an arbitrary Lagrangian-Eulerian (ALE) description (see, for example, [24]) would have

to be explored. However, this would also allow us to compare our results for larger values

of ε to determine the validity of our approach for these larger values. As it stands, we

may confidently use our results for, say, ε = 0.1 as a lower bound for values of φ.

The work in this thesis could be expanded further by considering the interaction

between different types of contractile activity and the effects that this has on both flow

and mixing, giving more insight into the time frames involved in drug absorption.

Previously fluid flow within the GI tract has been considered from a transit perspective,

that is contractions have been modelled as peristaltic travelling waves, mostly under a

long wavelength assumption, rather than specifically considering the effects of segmental

contractions on flow. The mathematics developed in this thesis could be applied to other

systems involving non propulsive contractions and fluid mixing; in particular systems

where such contractions are small in amplitude and the geometry has an aspect ratio of

O(1). For example, with some modifications to the geometry, the work in this thesis could

be applied to fluid mixing within the stomach.

The work in this thesis has shown that the colon is an extremely effective fluid mix-

ing system, for example with an amplitude half the length of the radius, 68% of drug

particles are captured by the colonic wall over just one contractile cycle; a more realistic
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amplitude may be a quarter the length of the radius, in which case approximately 55%

of drug particles are captured. In addition the results obtained in chapter 5 show that

the proportion of particles considered to be absorbed by the colonic epithelium is robust

to changes in parameter values, with the exception of amplitude. This is very positive

in terms of drug delivery, as it means individual differences in variables such as chyme

viscosity may be discounted; conditions which affect the amplitude of contractions would

need more careful consideration.
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Appendix A

Cylindrical Polar Co-ordinates

Here we show our conversion into cylindrical polar co-ordinates of the equations of motion

for an incompressible fluid in the absence of external body forces:

∇ · u = 0 (A.1)

Du

Dt
=

1

ρ
(−∇p+∇ · τ ) , (A.2)

where

Du

Dt
=
∂u

∂t
+ (u · ∇)u.

In cartesian co-ordinates we considered the velocity field u = ux̂ + vŷ + wẑ. With

cylindrical polar co-ordinates we wish to instead consider u = urr̂ + uθθ̂ + uzẑ, where

ur, uθ, uz are functions of r, θ, z and t,


r

θ

z

 =


√
x2 + y2

tan−1
(
y
x

)
z
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and 
r̂

θ̂

ẑ

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



x̂

ŷ

ẑ

 .

We first consider the time derivative of u. The expression for this is slightly more

complicated than it is for cartesian co-ordinates since both unit vectors r̂ and θ̂ change

with time. We have

∂r̂

∂t
=
∂θ

∂t
θ̂,

∂θ̂

∂t
= −∂θ

∂t
r̂, and

∂ẑ

∂t
= 0,

which, after application of the product rule, gives us

∂u

∂t
=

(
∂ur
∂t
− u2θ

r

)
r̂ +

(
∂uθ
∂t

+
uruθ
r

)
θ̂ +

∂uz
∂t
ẑ. (A.3)

The following two expressions are taken from Acheson [3, p352],

∇φ =
∂φ

∂r
r̂ +

1

r

∂φ

∂θ
θ̂ +

∂φ

∂z
ẑ (A.4)

u · ∇ = ur
∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
(A.5)

and we are left only to consider the divergence of the matrix τ . Given that

∇ · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

(A.6)

in cylindrical polar co-ordinates [3, p352], we find that

∇ · τ =
1

r


τrr − τθθ + r ∂τrr

∂r
+ ∂τθr

∂θ
+ r ∂τzr

∂z

2τrθ + r ∂τrθ
∂r

+ ∂τθθ
∂θ

+ r ∂τzθ
∂z

τrz + r ∂τrz
∂r

+ ∂τθz
∂θ

+ r ∂τzz
∂z

 . (A.7)
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Setting equation (A.6) equal to zero gives us the continuity equation in cylindrical

polar co-ordinates. Using equations (A.3) - (A.7) we can now write out the cylindrical

components of (A.1) and (A.2) to give us the four equations of motion:

0 =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

(A.8)

Dur
Dt
− u2θ

r
=

1

ρ

(
−∂p
∂r

+
1

r

(
τrr − τθθ + r

∂τrr
∂r

+
∂τθr
∂θ

+ r
∂τzr
∂z

))
(A.9)

Duθ
Dt

+
uruθ
r

=
1

ρr

(
−∂p
∂θ

+ 2τrθ + r
∂τrθ
∂r

+
∂τθθ
∂θ

+ r
∂τzθ
∂z

)
(A.10)

Duz
Dt

=
1

ρ

(
−∂p
∂z

+
1

r

(
τrz + r

∂τrz
∂r

+
∂τθz
∂θ

+ r
∂τzz
∂z

))
(A.11)

where

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
.

We also need to know the components of the rate of deformation tensor, D, in cylin-

drical polar co-ordinates. These are given by [3, p353]:

Drr =
∂ur
∂r

, Dθθ =
1

r

∂uθ
∂θ

+
ur
r
, Dzz =

∂uz
∂z

,

Dθz =
1

2

(
1

r

∂uz
∂θ

+
∂uθ
∂z

)
, Dzr =

1

2

(
∂ur
∂z

+
∂uz
∂r

)
,

and Drθ =
1

2

(
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

)
.
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Appendix B

Derivation of the Components of

the Oldroyd B Constitutive

Equation

The constitutive equation for an Oldroyd B fluid is given by

τ + λ1τ
OOO = µ(γ̇ + λ2γ̇

OOO),

where AOOO is the upper convected derivative of A, given by

AOOO =
DA

Dt
− (∇u)T ·A−A · (∇u)

=
∂A

∂t
+ (u · ∇)A− (∇u)T ·A−A · (∇u).

In an axisymmetric cylindrical geometry we have

∇u =


∂ur
∂r

0 ∂ur
∂z

0 ur
r

0

∂uz
∂r

0 ∂uz
∂z

 ,
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thus the shear rate is given by

γ̇ = ∇u+ (∇u)T

=


2∂ur
∂r

0 ∂ur
∂z

+ ∂uz
∂r

0 2ur
r

0

∂ur
∂z

+ ∂uz
∂r

0 2∂uz
∂z

 .

This allows us to find the components of (∇u)T · γ̇ + γ̇ · (∇u):

rr : 4

(
∂ur
∂r

)2

+ 2
∂uz
∂r

(
∂ur
∂z

+
∂uz
∂r

)
rz : 2

(
∂ur
∂r

∂ur
∂z

+
∂uz
∂r

∂uz
∂z

)
+

(
∂ur
∂z

+
∂uz
∂r

)(
∂ur
∂r

+
∂uz
∂z

)
θθ : 4

(ur
r

)2
zz : 4

(
∂uz
∂z

)2

+ 2
∂ur
∂z

(
∂ur
∂z

+
∂uz
∂r

)
,

all others are zero. In addition we have the non-zero components of (u · ∇) γ̇:

rr : 2

(
ur
∂2ur
∂r2

+ uz
∂2ur
∂r∂z

)
rz : ur

(
∂2ur
∂r∂z

+
∂2uz
∂r2

)
+ uz

(
∂2uz
∂r∂z

+
∂2ur
∂z2

)
θθ : 2

(
ur
∂

∂r

(ur
r

)
+ uz

∂

∂z

(ur
r

))
zz : 2

(
ur
∂2uz
∂r∂z

+ uz
∂2uz
∂z2

)

and

∂γ̇

∂t
=


2∂

2ur
∂t∂r

0 ∂2ur
∂t∂z

+ ∂2uz
∂t∂r

0 2
r
∂ur
∂t

0

∂2ur
∂t∂z

+ ∂2uz
∂t∂r

0 2∂
2uz
∂t∂z

 .
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Together these tell us that τθr = τθz = 0 and considering the left hand side of the

constitutive relation we have the following components of (∇u)T · τ + τ · (∇u):

rr : 2

(
τrr
∂ur
∂r

+ τrz
∂uz
∂r

)
rz : τrr

∂ur
∂z

+ τzz
∂uz
∂r

+ τrz

(
∂ur
∂r

+
∂uz
∂z

)
θθ : 2τθθ

ur
r

zz : 2

(
τzz

∂uz
∂z

+ τrz
∂ur
∂z

)
.

Using this information we find four equations for the components of shear stress in terms

of the fluid velocities,

τrr + λ1

(
∂τrr
∂t

+ ur
∂τrr
∂r

+ uz
∂τrr
∂z
− 2τrr

∂ur
∂r
− 2τrz

∂uz
∂r

)
= 2µ

(
∂ur
∂r

+ λ2(
∂2ur
∂t∂r

+ ur
∂2ur
∂r2

+ uz
∂2ur
∂z∂r

− 2

(
∂ur
∂r

)2

− ∂uz
∂r

(
∂ur
∂z

+
∂uz
∂r

)))
;

τrz + λ1

(
∂τrz
∂t

+ ur
∂τrz
∂r

+ uz
∂τrz
∂z
− τrr

∂ur
∂z
− τzz

∂uz
∂r
− τrz

(
∂ur
∂r

+
∂uz
∂z

))
= µ

(
∂ur
∂z

+
∂uz
∂r

+ λ2

(
∂2ur
∂t∂z

+
∂2uz
∂t∂r

+ ur

(
∂2ur
∂r∂z

+
∂2uz
∂r2

)
+ uz(

∂2uz
∂z∂r

+
∂2ur
∂z2

)
− 2

(
∂ur
∂r

∂ur
∂z

+
∂uz
∂r

∂uz
∂z

)
−
(
∂ur
∂z

+
∂uz
∂r

)(
∂ur
∂r

+
∂uz
∂z

)))
;

τθθ + λ1

(
∂τθθ
∂t

+ ur
∂τθθ
∂r

+ uz
∂τθθ
∂z
− 2τθθ

ur
r

)
= 2

µ

r

(
ur + λ2(

∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z
− 3

u2r
r

))
;
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and finally

τzz + λ1

(
∂τzz
∂t

+ ur
∂τzz
∂r

+ uz
∂τzz
∂z
− 2τzz

∂uz
∂z
− 2τrz

∂ur
∂z

)
= 2µ

(
∂uz
∂z

+ λ2(
∂2uz
∂t∂z

+ ur
∂2uz
∂r∂z

+ uz
∂2uz
∂z2

− 2

(
∂uz
∂z

)2

− ∂ur
∂z

(
∂ur
∂z

+
∂uz
∂r

)))
.
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Appendix C

Interfacial Conditions Between

Two Fluids

We denote the interface between the two fluids under consideration by the equation

F (x1, x2, x3, t) = 0,

so that, for example, in cartesian co-ordinates this may be expressed as

F (x, y, z, t) = z − η(x, y, t) = 0, or z = η(x, y, t).

In this section we let p1, µ1 and t1 represent the pressure, dynamic viscosity and stress

vector for the first fluid respectively and similarly for p2, µ2 and t2 with the second fluid.

For both viscous and inviscid liquids we have the kinematic condition which states

that any particles at the interface must remain at the interface [3, p65]. Therefore we

must have

DF

Dt
=
∂F

∂t
+ (u · ∇)F = 0, on F = 0. (C.1)

For viscous fluids we must also have continuity of velocity, so that u1 = u2 on F = 0.

We have the normal stress condition for a viscous liquid, which tells us that the normal
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component of stress at the free surface is balanced by the surface tension; this relates the

change in pressure across the interface to the interfacial tension and the curvature of the

given interface. The curvature, κ, is given by

κ = ∇ · n̂, (C.2)

where n̂ is the unit normal to the interface, and the coefficient of surface/interfacial

tension is denoted by σ. The stress vector, t, is given in terms of the stress tensor, σ, by

ti = σijnj.

For a Newtonian fluid,

σ = −pI + µγ̇,

which allows us to write [3, p209]

t = −pn+ µ[2(n · ∇)u+ n× (∇× u)], (C.3)

where n is a unit vector normal to the interface. If we take n to be the unit normal

pointing out of fluid one, then the normal stress condition becomes

(t1 − t2) · n = −σκ, on F = 0. (C.4)

We also require that the tangential components of stress are continuous across the

interface, i.e.

t1 · l = t2 · l, on F = 0, (C.5)

where l is a vector tangential to the interface.
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Appendix D

Boundary and Interfacial

Conditions for Two Layer Flow in

terms of General Solutions

We consider the boundary and interfacial conditions used to determine the constants in

the general solutions to the problem of two layer flow, with an inner Carreau layer and

an outer Oldroyd B layer.

Rewriting our conditions in terms of the general solutions of f [1] and f [2] allows us to

form a system of equations of the form M · x = b.

The two remaining boundary conditions are given by

f [2](1) = −i
df [2]

dr
(1) = i,

which may then be written as

d1I1(k) + d2K1(k) + d3J1(
√
B) + d4K1(−i

√
B) = −i
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and

d1 (kI0(k)− I1(k)) + d2 (−kK0(k)−K1(k)) + d3

(√
BJ0(

√
B)

−J1(
√
B)
)

+ d4

(
i
√
BK0(−i

√
B)−K1(−i

√
B)
)

= i.

Recall that continuity of velocity is given by the two equations

f [1](η0) = f [2](η0)

df [1]

dr
(η0) =

df [2]

dr
(η0),

which we then write as

c1I1(η0k) + c3J1(
√
Aη0)− d1I1(η0k)− d2K1(η0k)− d3J1(

√
Bη0)

−d4K1(−i
√
Bη0) = 0

and

c1

(
kI0(η0k)− I1(η0k)

η0

)
+ c3

(
√
AJ0(

√
Aη0)−

J1(
√
Aη0)

η0

)
+ d1

(
−kI0(η0k) +

I1(η0k)

η0

)

+d2

(
kK0(η0k) +

K1(η0k)

η0

)
+ d3

(
−
√
BJ0(

√
Bη0) +

J1(
√
Bη0)

η0

)

+d4

(
−i
√
BK0(−i

√
Bη0) +

K1(−i
√
Bη0)

η0

)
= 0.

The kinematic condition is given by

f [i](η0) = −iη̃
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and we write this in terms of the inner fluid as

c1I1(η0k) + c3J1(
√
Aη0) + iη̃ = 0.

Recall that the tangential stress condition at r = η0 is given by

d2f [2]

dr2
=

1

µ̄Λ

d2f [1]

dr2
+

(
1

µ̄Λ
− 1

)(
1

η0

df [1]

dr
+ iη̃

(
1

η20
− k2

))
,

which may be written in terms of the general solutions as

c1

(
−k

2I1(η0k)

µ̄Λ
− I1(η0k)

µ̄Λη20
+
kI0(η0k)

η0
− I1(η0k)

η20

)
+ c3

(
AJ1(

√
Aη0)

µ̄Λ
− J1(

√
Aη0)

µ̄Λη20

+

√
AJ0(

√
Aη0)

η0
− J1(

√
Aη0)

η20

)
+ d1

(
k2I1(η0k) +

2I1(η0k)

η20
− kI0(η0k)

η0

)

+d2

(
k2K1(η0k) +

2K1(η0k)

η20
+
kK0(η0k)

η0

)
+ d3

(
−BJ1(

√
Bη0) +

2J1(
√
Bη0)

η20

−
√
BJ0(

√
Bη0)

η0

)
+ d4

(
−BK1(−i

√
Bη0) +

2K1(−i
√
Bη0)

η20
− i
√
BK0(−i

√
Bη0)

η0

)

+η̃

(
i

(
1

η0
− k2

))
= 0.

The normal stress condition at r = η0 is given by

d3f [2]

dr3
=

1

µ̄Λ

d3f [1]

dr3
+

(
3

(
1− 1

µ̄Λ

)(
1

η20
+ k2

)
+
iRe

µ̄Λ
(1− ρ̄)

)
df [1]

dr
+ η̃

(
k2

µ̄ΛCa(
1

η20
− k2

)
+i

(
3

η0

(
1− 1

µ̄Λ

)(
1

η0
− k2

)
− iRe

µ̄Λη0
(1− ρ̄)

))
,
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which may then be written as

c1

(
1

µ̄Λ

(
−k3I0(η0k) +

2k2I1(η0k)

η0
− 3kI0(η0k)

η20
+

6I1(η0k)

η30

)
+

(
3

(
1− 1

µ̄Λ

)(
1

η0
+ k2

)
+
iRe

µ̄Λ
(1− ρ̄)

)(
−kI0(η0k) +

I1(η0k)

η0

))
+ c3

(
1

µ̄Λ

(
√
A

3
J0(
√
Aη0)−

2AJ1(
√
Aη0)

η0

−3
√
AJ0(

√
Aη0)

η20
+

6J1(
√
Aη0)

η30

)
+

(
3

(
1− 1

µ̄Λ

)(
1

η0
+ k2

)
+
iRe

µ̄Λ
(1− ρ̄)

)
(
−
√
AJ0(

√
Aη0) +

J1(
√
Aη0)

η0

))
+ d1

(
k3I0(η0k)− 2k2I1(η0k)

η0
+

3kI0(η0k)

η20
− 6I1(η0k)

η30

)
+d2

(
−k3K0(η0k)− 2k2K1(η0k)

η0
− 3kK0(η0k)

η20
− 6K1(η0k)

η30

)
+d3

(
−
√
B

3
J0(
√
Bη0) +

2BJ1(
√
Bη0)

η0
+

3
√
BJ0(

√
Bη0)

η20
− 6J1(

√
Bη0)

η30

)

+d4

(
−i
√
B

3
K0(−i

√
Bη0) +

2BK1(−i
√
Bη0)

η0
+

3i
√
BK0(−i

√
Bη0)

η20
− 6K1(−i

√
Bη0)

η30

)

+η̃

(
k2

µ̄ΛCa

(
1

η20
− k2

)
+ i

(
3

η0

(
1− 1

µ̄Λ

)(
1

η20
− k2

)
− iRe

µ̄Λη0
(1− ρ̄)

))
= 0.
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Appendix E

Determining Model Parameters

from Rheological Data

In this appendix we detail the methods used to fit rheological model parameters to fluid

viscosity data. We took a logarithmic scale plot of γ̇ versus µ for a tomato soup solution

from Medauden [42] and imported this into Matlab. We then used the Matlab function

ginput to collect co-ordinates for data points on the shear rate-viscosity curve and used

linear transformations to extract the original data points, shown in table E.1.

We began by fitting all 28 data points from table E.1 to a Carreau model of the form

µ(γ̇) = (µ0 − µ∞)
(
1 + (mγ̇)2

)n−1
2 + µ∞.
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Table E.1: Data points taken from [42].
γ̇ (s−1) µ (Pa · s)

1 0.0000152628 9313.247052
2 0.0000170077 9871.474375
3 0.0000229823 9871.474375
4 0.0000301244 10130.19902
5 0.0000455141 8236.265485
6 0.0000548208 8130.408368
7 0.0000806157 7283.825798
8 0.000120163 5922.047822
9 0.00017492 5659.903006
10 0.000262499 4398.032425
11 0.001012252 1522.594546
12 0.169617112 11.09031343
13 0.790495171 2.983452317
14 2.365265132 1.278620235
15 6.057353845 0.623654155
16 12.32505579 0.401728446
17 21.90442239 0.294510731
18 35.65157679 0.213133485
19 58.6182579 0.166690217
20 79.21011922 0.157263962
21 115.6956881 0.142723137
22 173.0362967 0.120631485
23 252.739847 0.10064889
24 379.282524 0.078209305
25 602.8735601 0.068719288
26 907.7879797 0.054093623
27 1462.595177 0.040433522
28 2661.647757 0.029642178
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Figure E.1: log10 γ̇ vs log10 µ for data points taken from table E.1 [42].

First we set up the residual function

Res(µ0, µ∞,m, n) =
28∑
i=1

| log10 (µ(γ̇i;µ0, µ∞,m, n))− log10(µi)|2,

where µ(γ̇i;µ0, µ∞,m, n) is the Carreau model evaluated at the ith value of γ̇ and µi is

the corresponding viscosity data value. We then used Matlab’s optimisation function

fminsearch, which implements a simplex search algorithm, to perform a least squares ap-

proximation by finding the parameter values which minimise Res. We provided an initial

estimate of (µ0, µ∞,m, n) = (8000, 0.1, 10000, 0.2) which led to the results, displayed in

figure E.2,

µ0 = 9806; µ∞ = 0.0471; m = 11309; n = 0.1438; and Res = 0.2242.

The data cannot reasonably be fit to the exponential or De Kee models over such a
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Figure E.2: Logarithmic flow curve of the Carreau model fit to rheological data from table
E.1 [42].

large range of shear rates, instead we restrict the data to a smaller range of shear rate.

There is a large jump in data values between points 11 and 12, the shear rates in our

problem are of O(0.01) which falls into this gap in data. Since shear rates are likely to be

larger, rather than smaller, than this we take the 5 data points 12− 16 and fit these to a

De Kee model in a similar way to that previously outlined.

Recall for a De Kee model we have [10, p40]

µ(γ̇) = µ1e
−t1γ̇ + µ2e

−0.1t1γ̇ + µ∞,

taking an initial estimate of (µ1, µ2, µ∞, t1) = (3.2, 1, 0, 1) we obtain the results, displayed

in figure E.3,

µ1 = 15.75; µ2 = 2.025; µ∞ = 0.3708; t1 = 3.417; and Res = 6.8× 10−6.
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Figure E.3: Semi-log flow curve of the De Kee model fit to a subset of data from E.1 [42].

These results illustrate the possibilities with fitting rheological models to viscosity

data. In order to draw more specific conclusions in relation to the colon we would ideally

have a larger number of data points, with a higher resolution of shear rate. It would also

be interesting to consider the rheology of a more realistic type of fluid to mimic actual

human digesta.

If we calculate the equations of motion for a De Kee fluid and follow the asymptotic

methods used in the main body of this thesis with the parameter values above, we find

that the flow in a pipe with small amplitude standing wave boundary contractions is

identical to that of a Newtonian fluid.
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