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Abstract 

Cell therapy has recently gained much attention as a novel treatment method for a range of 

diseases.  Many early examples of mesenchymal stem cell use have focussed on infusion of a 

cell population and rely on the cells locating to the area of tissue damage.  The development 

of implantable materials in the form of microcarriers to deliver cell populations to the site of 

injury could help enhance efficacy of treatment.  Such carriers may also be used to expand 

cell populations in vitro.   In this thesis, a range of cell culture beads have been formulated 

using calcium phosphate ceramics, with and without the addition of a hydrogel such as gellan 

gum.  The processing of the calcium phosphate (brushite) cement beads was shown to be 

critical to cell attachment, with the use of a crystallisation inhibitor in the formulation causing 

cell detachment.  By conditioning the beads post manufacture or by using a process of 

granulation of brushite crystals, it was possible to generate beads that enable attachment and 

proliferation of the cells: a ~34 fold increase in the case of post treated beads and ~6 fold in 

the case of granulated beads. It was also shown that modification of gellan gum with nano-

scale HA (nHA) at a concentration of 50 wt% allowed the control of mechanical properties by 

increasing yield strength and bulk modulus by four- and nine fold, respectively.  Finally, it 

was shown that both ceramic and ceramic-hydrogel beads were conducive to bone formation 

when culturing MC3T3 pre-osteoblast cells in static and dynamic conditions, respectively. 
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Chapter 1 

INTRODUCTION 
 

 

Every year millions of people worldwide suffer from cartilage injuries and bone loss due to 

diseases, trauma, sporting activities, and age related degeneration. As such there is an ever 

increasing demand for the repair and regeneration of these tissues.  

 

Bone is continuously remodelled during our lifespan and most bone lesions, such as fractures, 

can heal well with conventional conservative therapy or surgery. In cases where the bone 

defect is large and unconfined, surgical augmentation using bone graft or bone graft substitute 

is required.  Autologous and allograft bone substitutes have significant disadvantages 

including inconsistency, the need for a second surgical procedure, donor site pain and in the 

case of allograft, the risk of disease transmission and rejection (Amini et al. 2012). 

 

Cartilage has limited regenerative capabilities since it is largely avascular, so regeneration 

requires physical augmentation. Microfracture, the implantation of autologous chonrocytes 

and osteochondral transplantation are the currently available techniques for cartilage lesion 

regeneration (Cancedda et al. 2003; Kafienah et al. 2007). These techniques, however, have 

been only practical for the treatment of focal lesions. For this reason there is a need for the 

development of alternative techniques for the regeneration of diseased and damaged bone and 

cartilage tissues.  
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Tissue engineering using a population of cells can overcome the drawbacks of these existing 

treatments methods. Tissue engineering approaches, which still have much lower efficacy 

than autografts, need to be much improved before widespread clinical application.  One 

limiting factor is that it is challenging to provide a sufficiently large number of appropriate 

cells and localise these within the site of implantation. Bone marrow stromal cells (or 

mesenchymal stem cells) (MSCs) have considerable potential for expediting the repair of a 

range of connective tissues including bone and cartilage (Caplan 2007). The clinical 

application of MSCs, however, due to the low number which can be obtained from a single 

donor is limited (Caplan and Bruder 2001). Therefore there are still significant challenges that 

need to be addressed. The development of a culture system which enables the rapid scale- up 

of MSCs to a number that is feasible for clinical application is currently being investigated. In 

addition ensuring that the population of MSCs differentiates along the desired lineage without 

the need for re-seeding the retrieved cells is challenging. The use of microcarriers in the 

development of implantable material with precisely engineered modulus, can address future 

challenges in developing large cell expansion processes and in achieving control of desired 

tissue formation for tissue regeneration (Malda and Frondoza 2006;  Park et al. 2013a).  

 

In the design of culture beads, the microenvironment; material architecture, surface chemistry 

and stiffness of the material to which the cells are attached are key elements that can exert 

significant influence on cell fate in therapeutic cell delivery.  Among the compositions 

developed, calcium phosphate cements (CPCs), have been widely investigated as materials for 

bone and (in combination with soft matter) cartilage tissue replacement and have found 

numerous clinical applications in the last three decades due to their biocompatibility in 

musculoskeletal tissues, osteoconductivity and the fact that they may be processed in ambient 
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conditions which are not detrimental to the incorporation of bioactive molecules and 

therapeutics, (Coutinho et al. 2010; Lin and Yeh 2004; Faleh Tamimi Mariño et al. 2007b; 

Penel et al. 1999). Cell-attached culture beads formed from these materials could be used for 

cell therapy. Brushite (CaHPO4.2H2O) is a calcium phosphate that is several orders of 

magnitude more soluble than hydroxyapatite (HA; Ca10(PO4)6OH2) and as such may be 

resorbed into the body following implantation.  It is surprising; therefore, that few studies 

have focused on the use of brushite-based materials in the form of culture beads.  One of the 

aims of this project was to develop a method for the fabrication of brushite culture (BC) beads 

and to investigate cellular attachment to the surface of BC beads systematically in terms of the 

influence of cement chemistry and the type setting retardant additives used in cement 

production. The effect of other properties of the beads including surface area and surface 

topography, which are dependent on manufacturing processes, on cellular behaviour was also 

investigated. 

 

Another class of implantable materials that could be used to manufacture culture beads are 

hydrogels. The use of these materials in therapeutic cell delivery has been limited by the fact 

that they do not readily facilitate cell attachment and their relative fragility (Malafaya et al. 

2007).  One approach to improve the attachment of cells to hydrogel surfaces and modulate 

elasticity to direct differentiation appropriately is to incorporate synthetic calcium phosphate 

particles into the hydrogel matrix. Although several authors have reported the reinforcement 

of hydrogels with ceramic particles, there have not been any studies that investigate the effect 

of size and crystallinity of HA particles on the mechanical properties of hydrogel. 
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 In this thesis therefore, nano-sized synthetic hydroxyapatite (nHA) and micro-scale HA 

(mHA) particles were used to manufacture gellan gum (GG)/HA nanocomposites. The effect 

of size and crystallinity of HA particles on the mechanical properties of the hydrogel was 

investigated in order to achieve a more physiologically relevant range of mechanical 

properties.  Additionally, the influence of HA nanocrystal incorporation into the gellan gum 

(GG) matrix on behaviour of GG/HA culture beads in terms of cell adhesion was investigated 

in a spinner flask and compared to that of GG/HA disk and static bead cultures. 
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Chapter 2 

MUSCULOSKELETAL TISSUES: STRUCTURE AND REPAIR 
 

The human musculoskeletal system comprises bone, cartilage, muscle, ligament, 

intervertebral discs and tendon, all of which are important building blocks of the human body 

that support and bind tissues and organs together and allow for movement of the body 

(Yaszemski and Yasko, 2007).  This organ system fulfils important tasks including 

maintenance of stability, support, movement, protection and storage. The muscles are 

responsible for giving the body its shape, generating heat, maintaining posture and allowing 

movement. Bone, the skeletal portion of this system, provides the structure for muscles to 

attach through tendons. The skeletal system is the framework of the body, and serves as a 

structure and protection for fragile body tissues and vital internal organs such as the heart, 

brain, lung, kidney and liver in the human body as well as the main storage system for the two 

most abundant minerals in the body; calcium and phosphorous. It is also responsible for the 

production of the blood cells.  

All of the aforementioned tissues repair naturally in the human body, however, there are some 

defects of a critical size that result from trauma, tumour resection, and infection that are too 

large to regenerate spontaneously and require clinical repair and reconstructive surgery to 

restore function. Understanding the properties of the musculoskeletal system is essential for 

the evaluation of current therapies and to allow for the development of more targeted methods 

of regeneration. In the following sections, therefore, the structure and function of 

musculoskeletal tissues, bone and cartilage are summarized, along with the appropriate 

http://en.wikipedia.org/wiki/Calcium
http://en.wikipedia.org/wiki/Phosphorus
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strategies, traditional and current treatment for the damaged and diseased bone and cartilage 

defects. 

2.1. Bone 

Bone is a hierarchically complex structured material with remarkable mechanical 

performance which is responsible for movement and is the main storage system for the most 

abundant minerals of our body such as calcium and phosphorous. It is also responsible for the 

production of the blood cells. The basic building blocks of bone are collagen fibrils, providing 

its tensile strength, and nHA, which give it stiffness in compression (Fratzl et al. 2004).  

Bone is continuously being built-up and broken-down during the life span of an individual as 

a result of the balance between the activities of osteoblasts and osteoclasts, which sequentially 

carry out formation of new bone and resorption of old bone.  The correct balance of this 

process is critical to bone strength (Cancedda et al. 2003; Clarke 2008).  

2.1.1. Bone structure 

Bone consists of two main types; cortical and spongy. The combination and architecture of 

these two are responsible for the essential mechanical function of the skeleton. The adult 

human skeleton is composed of 80% cortical bone (compact type of bone tissue) which is 

denser than spongy bone and surrounds the marrow space, whereas spongy-bone (cancellous 

bone) constitutes 20% of the weight of the skeleton (Clarke 2008; Salgado et al. 2004). The 

outer surface of the bones is covered with a dense layer of vascular connective tissue called 

periosteum, except at joints where bone is lined by articular cartilage, which contains blood 

vessels, nerve fibres, and osteoblasts and osteoclasts. Both types of bone are composed of 

osteons.  Osteons, which are known as haversian systems consist of concentric circles 
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(lamellae) surrounding the central cavity containing blood vessels and nerves (Clarke 2008). 

They consist of pores containing osteocytes (Figure 2.1.). 

 

Figure 2.1: Diagram representation of the main structural features of a typical long 

bone with a magnified view showing the finer details (http://www.mhhe.com/).  

2.1.2. The cells of bone 

Bones contain four types of cells; osteoprogenitor cells, osteoblasts, osteocytes, and 

osteoclasts. The first three cell types are responsible for formation and maintenance of the 

bone matrix and the role of the osteoclast cells is the degradation of the bone matrix (LeGeros 

2008). The least differentiated cells, osteoprogenitors, are located in the periosteum and the 

bone marrow. These cells divide to produce additional cells, osteoblasts that are responsible 

for synthesising bone matrix. Osteoblasts that become encapsulated in lacuna within the 

mineralised matrix differentiate to form osteocytes. The lacunae are connected to each other 

by small channels called canaliculi (Weiner and Wagner 1998). The exchange of nutrients and 

http://www.mhhe.com/
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waste products to maintain the viability of the osteocytes is through these channels. 

Osteocytes are derived from osteoblasts and are thought to maintain the secreted mineralized 

extracellular matrix (ECM).  

2.1.3. Bone pathologies and tissue grafting 

Bone defects can occur as a result of trauma, tumour resection, resection following infection, 

biochemical disorders, or abnormal skeletal development (Amit et al. 2006). The ageing 

population and occurrence of sports-related injuries also enhance the requirement for new 

bone to replace or to restore the function of traumatized, damaged, or lost bone. A bone graft 

or a bone substitute is often essential in an orthopaedic and maxillofacial surgery to assist 

healing of large traumatic or post-surgical defects and of osseous congenital deformities 

(Kneser et al. 2006). The xenograft, allograft and autograft have traditionally been used for 

many years as bone grafts for the replacement of lost or damaged bone tissue.  

 

Until recently, the use of autologous bone has been considered the preferred choice to 

augment bone tissue healing and repair. In an autograft reconstruction, the graft is taken from 

elsewhere in the patient’s body and used as the new bone or to form new bone tissue. This 

traditional technique has no risk of disease transfer or rejection from the body, in contrast 

with allografting where the bone graft is transplanted from one person to another presenting a 

risk of disease transmission and rejection from the patient’s body. The use of autologous bone 

in bone repair has significant problems such as the need for a second surgical procedure, 

donor site pain, morbidity associated with infection, nerve damage and the limited quality of 

bone that can be harvested. 
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Xenografts are organs or tissues transplanted from other species to patient’s body (e.g. a graft 

from a cow to a human) (Richardson et al. 1999).  The use of most xenograft tissues is 

excluded because of a vigorous immune response on implantation leading to a high failure 

rate (Babensee et al. 1998; Garfein et al. 2003). 

2.2. Cartilage 

Articular cartilage is composed of a complex, highly organised extracellular matrix (ECM) 

which principally consists of water, collagen, and proteoglycans, with other non-collagenous 

proteins, and one unique cell population embedded in the matrix, known as chondrocytes 

(Bhosale and Richardson 2008; Cancedda et al. 2003; Newman 1998). The cells and the 

matrix are distributed within four different cartilage layers identified as the superficial zone, 

transitional zone, middle or deep zone and calcified cartilage zone (Pearle et al. 2005) (Figure 

2.2). Together these components are responsible for providing a protective surface for the 

joint, allowing it to withstand significant load.  

 
 

Figure 2.2: The structure of cartilage demonstrating a zonal arrangement (Pearle et al. 

2005). 
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There exist three different types of cartilage within different areas of the body such as the 

knee, shoulder, ribs, ear, intervertebral discs and the nose (Figure 2.3). Articular cartilage, 

which is also called hyaline cartilage, covers the joint surfaces facilitating smooth movement 

at joints. The second type of cartilage, fibro-cartilage, which contains a higher proportion of 

collagen in the ECM compared to hyaline cartilage, is found in many areas in the body such 

as the intervertebral discs and elastic cartilage forms the ear and nose and is characterized by 

the presence of elastin in the ECM (Temenoff and Mikos 2000). 

 

 

Figure 2.3: A diagrammatic representation of cartilaginous regions found in different 

areas of the human body (http://dancehealthier.com/2012/04/). 
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2.2.1. Damage and repair (strategies for articular cartilage repair) 

Cartilage is unique among other connective tissue as this tissue is a poorly vascularized and 

has limited regenerative capability (Hwang et al. 2007; Malda et al. 2003a). Although the 

structure appears simple with only one cell type, it has a complex and highly organised ECM. 

Therefore, the reconstruction of cartilage defects caused by trauma and degenerative joint 

diseases that may be driven by changes in biomechanics, cytokines, growth factors and 

cellular responses has been a major clinical problem in the practice of orthopaedic surgery 

(Chang et al. 2005; Mackay et al. 1998). Several methods including microfracture, the 

enhancement of chondral resurfacing by providing an environment for new tissue formation 

and the usage of the body’s own healing potential, joint lavage, tissue debridement, 

implantation of autologous chondrocytes and osteochondral transplantation are currently 

available for the repair of articular cartilage lesions (Cancedda et al. 2003; Kafienah et al. 

2007). These techniques however are often less than satisfactory and they may lead to the 

formation of fibrous tissue, apoptosis and further degeneration of cartilage. They have been 

only practical for the treatment of focal lesions. To repair large and unconfined cartilage 

defects, such as those found in osteoarthritis, the implantation of 3-dimensional engineered 

cartilage tissue has great potential as a permanent method of regeneration (Mahmouddifar and 

Doran, 2005). The most effective cartilage engineering protocols are discussed later in the 

following sections in this thesis. 

2.3. Cell therapy  

Cell therapy has recently gained significant attention for the regeneration of diseased and 

damaged tissues. This strategy relies on the delivery of cells into a patient’s body to aid in the 

direct formation of new tissue. This novel clinical approach overcomes the complications that 

can be caused by autologous transplants and allogeneic treatment for bone and cartilage repair. 
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Currently most bone and cartilage repair methods using cell therapy depend on the cell source, 

a feasible cell expansion system and the right choice of cell carriers to the site of injury. The 

transplantation of autologous chondocytes into defect areas such as chondral defects has been 

used clinically since 1987 and it has been used for approximately 12,000 patients worldwide, 

however the limitation of this cell based therapy is the low number of the obtained cells from 

donor tissue (Naveena et al. 2012). Also for large bone defects there are still significant 

challenges to be overcome to make the therapies clinically feasible. 

 A system with multifunctional characteristics, comprising the ability of provision of a 

sufficiently large number of cells for the therapy as well as preservation of cell phenotype 

following the expansion and delivery to form bone and cartilage tissues is required as a 

permanent solution for cartilage lesions and large bone defects.  

2.3.1. Tissue Engineering (TE) 

Tissue engineering as an effective alternative to the traditional grafting techniques was 

defined back in early 1990s (Langer and Vacanti, 1993). This multidisciplinary science aims 

at restoring damaged and diseased tissues by combining the principles of engineering, 

biological science, materials, and then manipulating the interactions between them 

(Eisenbarth, 2007; Leor et al. 2005; Naveena et al. 2012) to develop biological tissue 

replacements or enhance tissue or organ function. In the last several decades, tremendous 

advances have been made in the field of tissue engineering, particularly with tissue of simple 

structure such as skin (Amini et al. 2012). Engineering tissues like bone and cartilage, 

however, is more challenging as the structure and mechanical strength of these tissues vary by 

their distinct and dynamic loading conditions, as well as location in the body (Amini et al. 

2012). In bone and cartilage, therefore, tissue engineering must consider very carefully 
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cellular and molecular developmental biology and morphogenesis, bioengineering and 

biomechanics to ensure that the final product exhibits the appropriate properties. 

2.3.1.1. Tissue engineering bone 

Bone tissue engineering can be classified into three approaches; the design of the materials 

that are used as direct bone graft replacements to induce formation of bone from the 

surrounding tissue (acellular: no additional cellular component), those that act as a carrier for 

implanted bone cells (cellular systems) and the third group that are designed for delivery of 

osteoinductive growth factor such as bone morphogenic proteins. The latter group can be also 

used with cellular bone tissue-engineered constructs which may be loaded with growth factors 

capable of enhancing bone function (Burg et al. 2000). The success of bone tissue engineering 

depends on suitability of the selected carriers. Materials must exhibit appropriate mechanical 

properties and microstructure.  In addition, they must be able to facilitate attachment that will 

initiate bone function (Marolt et al. 2012; Shin et al. 2004; Yuan and Groot 2005).  Some 

bone tissue engineering attempts for repairing bone defects are summarised in Table 2.1. 

Efforts are still being made to discover new strategies to make bone tissue engineering more 

clinically feasible.  These strategies involve developing mechanically stronger, porous 

scaffolds to achieve proper vascularization and host integration, designing 

immunomodulatory biomaterials by incorporating growth factors via the scaffold or 

genetically modified cells that release increased levels of angiogenic vascular endothelial 

growth factor (VEGF) to modulate the host’s foreign-body response to inhibit fibrous tissue 

formation (Amini et al. 2012) and recently improving  biologics delivery strategies with the 

use of  carriers with appropriate form, function, or fixation (Hollister and Murphy 2011). 

Many other strategies including the application of stem cells for expediting the repair of bone 
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tissue are also currently being investigated in the field of bone tissue engineering (A. I. 

Caplan 2005, 2007; Horwitz et al. 1999; Tuan et al. 2003).   

Although much progress has been made, all approaches in bone tissue engineering have been 

“single-component” and there are still many crucial hurdles for the translation of scaffold and 

cell-based bone tissue engineering therapies to clinical use (Hollister and Murphy 2011). For 

bone tissues engineering to become a widespread clinical reality, multi-component strategies 

consisting of all necessary components (i.e. appropriate carrier, cells, appropriate culture 

condition and growth factor) are required.  For instance, a bioreactor - culture bead system 

that can combine all these components can be a potential solution for safer and more effective 

bone tissue engineering.  

Table 2.1: A summary of key bone tissue engineering papers. 

Scaffold materials Geometry Fabrication technology Cell type 
Bone 

formation 
References 

Bioactive glass 

ceramic 
Disk shape 

Ready samples 

supplied by 

USBiomaterials 

Human 

primary 

osteoblasts 

In vitro 
Xynos et al. 

2000 

Bovine Collagen-

Hydroxyapatite 

Disk shape 

composites 

Dehydration and ץ-ray 

irradiated of composite 

mixture 

Human 

osteoblast 

cells 

In vitro & 

 in vivo 

 Rodrigues et al. 

2003 

Polycaprolactone 

(PCL) 

Cylinders with 

3-D orthogonal 

periodic porous 

architectures 

Selective laser 

sintering 

Primary 

human 

gingival 

fibroblasts 

In vivo 
Williams et al. 

2005  

Calcium 

phosphate 

(HA+β-TCP) 

Evacuated 

microcarriers 

Oil-in-water 

emulsification method 
MSCs In vivo Jin et al. 2012 

Modified PLGA Circular plate 

Coating with natural 

biomaterial solutions of 

collagen, chitosan, or 

N-succinyl-chitosan 

Rat calvaria 

stromal cells 
In vitro Wu et al. 2006  

Akermanite-

bioactive ceramics 
Disk shape Sol–gel process (hBMSC) In vitro Sun et al.  2006  

n-HA/PA 
Rectangular 

shape 

Thermally induced 

phase inversion 

processing technique 

(MSCs) 

from 

neonatal 

rabbits 

In vivo 

(defect on 

rabbit 

mandible) 

Guo et al. 2011 
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2.3.1.2. TE-Cartilage  

Cartilage tissue engineering similar to TE-bone provides a potential solution for cartilage 

regeneration  (Kafienah et al. 2007). Cartilage tissue regeneration can be more challenging as 

cartilage cannot self-repair and is avascular (LaPorta et al. 2012). In cartilage tissue 

engineering approaches, autologous chondrocytes are used to generate the 3-dimensional 

structure of the tissue. The use of these approaches, however, is limited because of their low 

quantity and the lack of autologous donor tissue for large and unconfined defects. This has led 

researchers to explore the use of stem or progenitor cells as a cell source for generation of 

cartilage tissue (Kafienah et al. 2007). Stem or progenitor cells isolated from foetal and adult 

cartilage as an alternative cells source are demonstrate significant therapeutic potential for 

articular cartilage repair (Cetinkaya et al. 2011).  The success of cartilage tissue engineering 

also strongly depends on the specific cell-carrying structures as a supporting matrix for cell 

expansion as well as providing signals for cell growth and the induction of chondrogenesis 

(Suh et al. 2000).  Hydrogels are a class of polymer-based materials that have been 

extensively reported as scaffolds for cartilage tissue engineering, due to their similar structure 

to cartilage with highly hydrated features composed of chondrocytes cells embedded in the 

matrix. Three-dimensional structures formed from chitosan, agarose, gellan gum, type I and II 

collagen gels, and alginate have been shown to have potential as cell-laden scaffolds for 

promotion of chondrogenesis in the presence of defined medium (Hwang et al. 2007; Xi Lu et 

al. 19999; Suh et al. 2000).   Efforts are still being continuously devoted to discover new 

strategies to make cartilage tissue engineering clinically more feasible. One recent study by 

Fayol et al. (2013) demonstrated the feasibility of forming cartilage tissue units of defined 
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sizes and shapes from stem cell aggregates by magnetic condensation in chondrogenic media 

(Fayol et al.2003). 

2.4. Cell delivery 

 

The delivery of cells to the site of an injury has been shown to expedite healing for the 

treatment of many diseases. For examples the most current method for cartilage-repair is an 

introduction of chondrogenic cells into the defect area (Cetinkaya et al. 2011). The survival 

and engraftment of directly  injected specific cell types into the targeted location, however, 

can be adversely impacted by various factors including: cellular microenvironment of the 

implantation site which may not be able to maintain the viability of cells due to the extent of 

tissue disease and injury, active clearance of the injected cells by the host immune response 

and mechanical damage of the cells caused by the injection process (Franco et al. 2011). For 

this reason, cell delivery requires a supporting matrix to provide cell protection during 

delivery (Kretlow et al. 2009). In order to achieve successful cell delivery, two main critical 

elements should be considered, including the right choice of biomaterial carrier that serves as 

a mechanical and biological support for cell growth and appropriate structure in which cells 

can reside. The supporting matrix for delivery of cells should be able to maintain the 

phenotype of cells for the formation of desired tissue.  

 

2.4.1. Cell types 

Cell therapy requires cells that are easy to harvest, isolate and feasible to scale-up to provide a 

sufficiently large number in a rapid and cost effective manner to expedite tissue healing. For 

research purposes, animal cells and commercially available cells (e.g. 3T3 fibroblast cells, 

MC3T3 osteoblast precursor cells) are normally used to validate and improve processing as 

they are easy to obtain, well-established cell-lines and are reproducible (Griffith 2002). The 
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outcome between different cells from different species varies due to their metabolic activity 

and phenotypic stability. It might even vary within a species with different ages, biopsy 

locations and the health of the donor (Giannoni et al. 2005).  

Cell sources for therapeutic applications can be divided into two categories including 

differentiated cells which can be isolated from the tissue of interest, and/or stem cells from 

stromal tissues which have this ability to differentiate into various types of cells such as 

osteoblast, chondrocytes, adipocytes and myoblasts under certain development pathway and 

also have self- renewal potential (Cancedda et al. 2003). Differentiated cells are preferred as a 

logical choice in tissue engineering applications as they can build and maintain the tissue of 

interest in vivo, however, their use is limited due to their low proliferation capacity, limited 

supply of donor tissue, and instability of their phenotype after expansion (Benya 1982; 

Cancedda et al. 2003). Chondrocytes, for example, lose their phenotype after prolonged 

expansion in cell culture (Cetinkaya et al. 2011).  

The use of undifferentiated (stem/progenitor) cells is favourable due to their higher 

proliferation capacity compared to differentiated cells for the in vitro production of 

engineered tissue. They can be expanded in vitro and their differentiation can be induced by 

changing culture conditions. Stem cells, such as human mesenchymal (MSCs) have 

considerable potential for expediting the repair of a diversity of connective tissues (cartilage, 

bone, and ligament/tendon) (Chen et al. 2013).  

 

2.4.1.1. Mesenchymal stem cells (MSCs) 

The potential of Mesenchymal Stromal Progenitor/Stem Cells (MSCs) was discovered by 

Alexander Friedenstein in the 1960s and now is a key to the development for biological cell-

based therapy in tissue repair approaches (A. Caplan and Bruder 2001; Delorme et al. 2006). 
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MSCs are present in bone marrow aspirates, skeletal muscle connective tissue, human 

trabecular bone, adipose tissue, periosteum, foetal blood, liver, and umbilical cord blood 

(Chen et al. 2013; Mackay et al. 1998; Rodrigues et al. 2011). Due to their ability to 

differentiate into the skeletal connective tissue: osteoblasts, chondrocytes, adipocytes, 

myoblasts and vascular lineages, they are attracting considerable interest as the source of 

progenitor cells for research and clinical purposes in the tissue regeneration field (Augello et 

al. 2010; Cancedda et al. 2003; Caplan 2007; Chen et al. 2013; Deans and Moseley 2000). 

Clinical trials and applications of MSCs cells in the field of bone and cartilage tissue 

engineering have been extensively increased. The treatment of Osteogenesis Imperfecta (OI), 

a bone disease, by MSCs cells went through late stage trial and the promising results showed 

their potential for bone regeneration (Horwitz et al. 1999).   The potential of MSC cells was 

also shown for the treatment of osteoarthritis with autologous bone marrow derived MSCs 

injection into the patient’s articular cartilage defect.  Furthermore results from phase III 

clinical study of articular cartilage regeneration conducted for the treatment of large defects in 

the knee joints of elderly patients have shown the safety and feasibility of umbilical cord 

blood-derived MSCs for this cell therapy (Wakitani et al. 2002) .  

The required numbers of MSCs vary depending on the type of treatment, for example, the 

estimated cell dose needed for cartilage tissue regeneration per patient is between 15 to 45 

million (Wakitani et al. 2002) and for treatment of non-union bone defect, estimated cell 

number needed per patient is between 40 to 100 million. One major drawback of MSCs are 

their low cell source quantity (Boo et al. 2011). MSCs are typically grown on plastic tissue 

culture dishes as monolayers with no additional coating. The current two-dimensional tissue 

culture platform can be used when low cell doses are needed but it becomes impractical when 

doses above 50 million are needed. There are still significant challenges to be overcome in 
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this area to make the therapies clinically feasible. The three main key challenges are: rapid 

scale-up of MSCs to a number that is feasible for clinical application, controlling the plastic 

nature of the cell ensuring that a population of MSCs differentiates along the desired lineage 

and preserving MSC phenotype following repeated trypsinisations (Boo et al. 2011). For this 

reason, a new strategy of culturing of cells with the ability of amplifying the MSCs cell 

number as well as maintaining their characteristic and delivery of the proliferated cells to the 

defect site would be needed to address all the aforementioned challenges for successful stem 

cell-based therapies.   

2.4.2. Delivery strategy 

Strategies to repair bone and cartilage mainly involves the ex-vivo culturing and expansion of 

osteoprogenitor, chondrogenitors or stem cells within the 3-dimensional (3D) scaffolds and 

then implantation of  cell-attached construct into the area of damage. Most developed 3D 

scaffolds as a carrier to support and deliver cells into defect site in tissue engineering have 

been fabricated into fibrous meshes, blocks, foams, films, rods, and porous sponges 

(Brahatheeswaran et al. 2011; Jin et al. 2012). The main disadvantages associated with most 

of these formulations and scaffold design are their inability to be loaded with bioactive 

molecules and therapeutics for when drug delivery is required, and the incorporation of these 

forms of fabricated carriers may be limited due to defect geometry leading to incomplete 

bone–implant contact and thus to poor osteointegration (Theiss et al. 2005). Also they are 

impractical for provision of sufficient numbers of cells of desired phenotypes for cell delivery. 

These disadvantages have limited their use as a delivery system in cell therapy.  

An ideal delivery system should be able to successfully deliver cells and or bioactive 

molecules and therapeutics to a damaged or lost tissue while simultaneously providing a 
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microenvironment with appropriate material architecture, and stiffness for the cells to which 

the cells are initially exposed together with the ability to maintain the cell phenotype 

following implantation (Amini et al. 2012).  Furthermore, superior formulations with the 

ability to fill different shaped cavities efficiently and the capacity to be injectable directly into 

defective site  are other aspects that need to be considered in material selection and design 

(Habraken et al. 2007). FFSu et al. (2011) fabricated microcarriers with a novel open and 

hollow shell-like structure which allow the cells to attach and proliferate on both, outer and 

inner surface of the microcarriers enabling better cell delivery efficiencies (Su et al. 2011).  

Jin et al. also produced hollow, but empty CaP microspheres as cell carrier for MSCs. The 

implantation of pre-cultured hollowCaP microspheres-MSCs cell complex in a 6mm-diameter 

rat calvarial defect for 12 weeks  showed a significant improvement in new bone tissue 

formation (Jin et al. 2012). 

2.5. Microcarrier technologies  

The use of microcarriers was introduced by Van Wezel for the production of viral vaccines 

and biological cell products in 1967 (Jos Malda and Frondoza 2006; Velden-deGroot 1995; 

Wang et al. 2008). Since then, the use of microcarriers has gained extensive attention in other 

fields of medicine.  In the pharmaceutical industry, microcarriers with a controlled release 

profile and defined particle size have an important role for effective drug release in the 

treatment of various diseases such as treatment of cancer and immune system diseases (M. 

Oliveira and Mano 2011). In the field of tissue engineering and regenerative medicine, 

microcarriers have also been adopted as culture systems for cell expansion and differentiation 

of various tissues like bone (Howard et al. 1983; Qiu et al. 2000), cartilage (Cetinkaya et al. 

2011; J. Malda et al. 2003a), skin (Voigt et al. 1999), liver (Davis and Vacanti 1996) and 

blood vessels (X. T. Sun et al. 2004).  



 

21 
 

 

Microcarrier-based cultivation systems in cell therapy can be used as a scalable solution for 

cell expansion of anchorage- dependent cells and also as a carrier for delivery of cells and/or 

bioactive molecules.  They have also been shown to influence cell behaviour at the diseased 

bone or cartilage site, eliminating the need for re-seeding the retrieved cells into a delivery 

system as illustrated in Figure 2.4. (Jos Malda and Frondoza 2006; Jeong-Hui Park et al. 

2013a; Jung-Hui Park et al. 2013b). This culture technique offers advantages including: 

higher surface area for attachment and growth of anchorage-dependent cells in a small volume, 

enhancement of cell phenotype, maintenance of homogeneous environmental conditions 

throughout the culture, the ability to monitor and control of various parameters like pH, CO2, 

levels of nutrient components and agitation of cell suspension in a spinner flask, and/ or  

rotating chamber system (Jos Malda and Frondoza 2006).  The use of microcarriers in 

comparison with other 3D-structured materials, such as porous sponges or fibrous meshes, 

can provide greater flexibility for filling different-shaped cavities with closer packing and also 

minimal invasive handling in surgery in repairing the tissue defect by minimizing the scar 

formation (Jin et al. 2012). 
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Figure 2.4. A schematic diagram showing the process for the application of injectable 

scaffold microspheres for cartilage tissue engineering (Chung et al. 2007). 

 

The  chemical composition, surface topography, degree of porosity and charge density of the 

microcarriers are key factors that need to be considered during their design as they have a 

direct effect on the initial cell attachment, growth of the cells and regulating cell fate in 

therapeutic cell delivery (Jin et al. 2012). The size distribution, density, and their ability to 

withstand sterilization without compromising structural integrity are other factors which are 

also important in the design of the microcarriers. In particular recently, in the repair of 

cartilage and bone, a large number of studies have been conducted on new approaches for 

development of  novel microcarriers in order to improve the delivery efficiency (Malda and 

Frondoza 2006). The most commonly used and commercially available microcarriers are the 

dextran-based (Cytodex 1 and Cytodex 2), collagen-coated (Cytodex 3) and gelatine 
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(Cultispher) microcarriers. These types of commercial microcarriers have been extensively 

investigated for research purposes  and/ or clinical trial for the production of high numbers 

and a wide range of cell types including foetal chondrocytes, MSCs, and osteoblasts  (Baker 

and Goodwin 1997; Cetinkaya et al. 2011; Freed et al. 1993; J. Malda et al. 2003b; Sautier et 

al. 1992).  

 

The use of these commercially available microcarriers for bone and cartilage repair, however, 

might be limited due to some issues such as their problematic ability for delivery of bioactive 

agents in a controlled manner, their slow degradation, lack of osteoconductivity, limitations in 

modifying their mechanical properties, and the requirement for cell retrieval from their 

surfaces by enzymatic methods which compromise cell viability.  For this reason, there is still 

much research in this area for development of the novel microcarriers from other materials to 

address the aforementioned drawbacks (M. Oliveira and Mano 2011). To address the issue of 

the traditional enzymatic methods for cell recovery from microcarriers, Cetinkaya et al. (2011) 

used thermosensitive Poly(N-isopropylacrylamide, NIPAAm) (PNIPAAm), which is  FDA 

approved, to produce microcarriers, and the results have demonstrated that the use of 

PNIPAAm containing microcarriers overcome the use of toxic enzymes for cell retrieving 

which was an issue when Biosilon and Cytodex-1 microcarriers were used for cell expansion 

(Cetinkaya et al. 2011; Ratner and Bryant 2004; J. Sun and Tan 2013). The cells were 

detached by cold induction. The non-degradable nature of these biomaterials, however, 

limited their use as implantable materials (M. Oliveira and Mano 2011). 

 

Calcium phosphate based materials, biodegradable polymers, and their composites which 

have been extensively used in clinical application for bone and cartilage tissue engineering are 
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promising candidates for production of microcarriers, thus a number of workers recently have 

attempted to develop microcarriers from these materials either in individual form or in 

composite form that can make bone and cartilage tissue regeneration clinically feasible. Table 

2.2 lists some of the recent developed microcarriers in bone and cartilage tissue engineering 

research.  

 

Table 2.2: Examples of microcarriers used as cultivation systems in recent bone and 

cartilage tissue engineering research.  

 

Microcarriers Application 
Size 

(µm) 

In 

vitro/ 

in 

vivo 

References 

Dextran based-

Cytodex 

& 
(PHEMAPNIPAAm) 

Beads 

MSC expansion for 

tissue engineering 
~ 800 

In 

vitro 
Boo et al. 2011 

Gealtin-based 

beads 

Chondrocytes 

expansion  

~100-

200 

In 

vitro  
Glattauer et al. 2010 

Bioactive ceramic Bone regeneration ~1000 
In vivo 

 
Jin et al. 2012 

Gelatine-grafted 

gellan 

For musculoskeletal 

or dermatological 

fields 

450-600 
In 

vitro 
Wang et al. 2008 

PLGA 
Cartilage 

regeneration  
60-80 

In 

vitro 

and in 

vivo  

Bouffi et al. 2010 

CPC-alginate 

composite 
Bone regeneration 150-250 

In 

vitro 
Jung-Hui Park et al. 2013b 

Hydroxyapatite 

Injectable 

formulation for bone 

tissue engineering 

212–300 

500–706 
In vivo Fischer et al. 2003 

CaP(HA-TCP)  

Evacuated 

morphology for 

bone tissue 

regeneration  

200-500 In vivo  Park et al. 2010 
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2.6. Common biomaterials used as cell carriers 

Numerous classes of biomaterial are used in tissue engineering as support structures, 

including metals, ceramics, glasses, polymers and various composites.  The choice of suitable 

biomaterials is a key factor to the successful delivery of cells in cell therapy.  This is because 

it serves to reproduce the three dimensional structure of the extracellular matrix and provide 

signals to the cells that direct new tissue formation. ECM has an important role in the process 

of cell attachment. Cell attachment on a conventional biomaterial occurs through interaction 

between ECM components including fibronectin, collagen, laminin, and vitronectin with 

specific cell surface receptors known as integrins (Bačáková et al. 2004; Hynes 1992). The 

first binding site for many integrins to be defined is amino acid sequence Arg-Gly-Asp 

commonly known as RGD which present in firbronectin, vitronectin and in a variety of other 

adhesion proteins on ECM (Lotfi et al. 2013). In the design of cell-adhesive materials, 

therefore some specific surface modifications such as the incorporation of RGD peptides 

or/and immobilization of collagen/gelatin moieties might be required to obtain specific cell 

surface interaction. The development of tissue engineering is directly dependent on advances 

in material technology (Burg et al. 2000).  

Biomaterials for bone and cartilage repair must be bioactive, osteoconductive (allows the 

bone cells to adhere, proliferate and form ECM on its surface and pores), osteoinductive 

(induce new bone formation through recruiting progenitor cells), and biodegrade during 

application (Porter et al., 2009; Eisenbarth, 2007). The mechanical properties of the 

biomaterial; material architecture and stiffness of the matrix in which attached cells reside are 

also important factors that can have a direct impact on cell fate.  Biomaterials of biological or 

synthetic origin have been used as scaffolds for bone and cartilage tissue engineering. 
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Biomaterials used in tissue engineering and cell therapy may be divided as follows: natural 

polymers (e.g. aligante, chitosan, chitin, and gellan gum), synthetic polymers (e.g. poly 

(caprolactone) and poly (lactic-coglycolide), and calcium phosphate- based biomaterials (e.g. 

hydroxyapatite, β-TCP, and brushite) (Dawson et al., 2008) and composites of these. The 

importance of these materials along with their major advantages and disadvantages are 

described in the following sections.  

2.6.1. Calcium phosphate-based biomaterials  

The use of calcium phosphate-based materials dates as far as 1920 when it was reported for 

the first time by Albee and Morison (Bohner 2000; LeGeros 2008). These materials have 

important advantages of having bone-mineral-like properties, osteoconductivity, 

biodegradability and the ability to bind directly to bone with no fibrous tissue growth 

(Qinghong et al. 2007; Solaiman et al. 2013; Tadic and Epple 2004). The degradation 

products of these materials are non- toxic and they are easily cleared from the body (Kasten et 

al. 2008) . 

There are currently many compositions of calcium phosphate ceramic available on the market. 

Hydroxyapatite (HA), α- and β-tricalcium phosphate, octacalcium phosphate (OCP), and 

dicalcium phosphate in the form of ceramics, cements, and thin coatings are examples of 

calcium phosphate phases that have been used clinically (Habibovic et al. 2008; Langstaff et 

al. 1999; F. Tamimi Mariño et al. 2007a). These materials have been widely used either as 

direct bone replacements, thin- coating on metal implants,  or as a carriers for implanted bone 

cells with containing osteoinductive growth factors. Calcium phosphate compounds can be 

classified as two different categories: 1) calcium phosphates that are obtained by precipitation 

from an aqueous solution at room temperature, which are also called low temperature calcium 
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phosphate and 2) those calcium phosphate compounds that are obtained through thermal 

reactions, which are called high temperature calcium phosphates. All calcium phosphate 

cements (i.e. brushite) belong to the first category and most other CaP compounds (i.e HA 

and β-TCP) are categorized in the second group. 

 

2.6.1.1. Calcium phosphate cement  

The first hydraulic calcium phosphate cement was discovered by Brown and Chow in the mid 

1980’s (Brown and Chow 1990; Theiss et al. 2005).  Calcium phosphate cement (CPC) can be 

described as a powder or a mixture of powders that upon mixing with water or an aqueous 

solution turn into a pasty, mouldable compound that hardens to a firm mass with time at room 

temperature. CPCs have been widely investigated as materials for hard tissue replacement and 

have found numerous clinical applications in the last three decades. CPCs, have several 

advantages over calcium phosphate ceramics that are processed at high temperature.  Most 

importantly processing at room temperature allows the incorporation of bioactive molecules 

and therapeutics ( Park et al. 2013b). 

CPCs typically harden following a dissolution–precipitation reaction which is dependent upon 

the solubility of the cement reactants. Equilibrium conditions favour the formation of HA 

above pH 4.2, whereas below pH 4.2, the reaction product is dicalcium phosphate dihydrate 

(CaHPO4.2H2O; DCPD; brushite) (Apelt et al. 2004); Barralet et al., 2004; Xia et al., 2006). 

Brushite cements (BCs) have recently attracted much interest as implantable scaffolds since 

they are more soluble than HA at physiological pH, and so may be resorbed and replaced by 

bone more rapidly following implantation (Barralet et al., 2004; Marino et al., 2007b). 
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Brushite (CaHPO4.2H2O; dicalcium phosphate dihydrate) cement was first reported in 1987 

by Lemaitre et al (1987).  As a mineral, it is found in biological systems such as bone, kidney 

stones and dental calculi (Bohner 2000).  It exhibits a relatively high solubility (log KSP=6.6) 

in physiological conditions (Selen and Tas 2010; Tas and Brown 2011). As a consequence, 

brushite cements recently have been developed and studied as implantable scaffolds in in vitro 

and in vivo studies (Uwe Klammert et al. 2010; Penel et al. 1999).  Brushite cements (BC) are 

obtained following a dissolution-precipitation reaction at a pH value lower than 4.2 from 

either mixing the β-TCP powder and orthophosphoric acid (H3PO4), or β-TCP and 

monocalcium phosphate monohydrate (MCPM; CaH2PO4.H2O) (Ginebra et al. 2012; Grover 

et al. 2003). It can be also produced by a mixture of TTCP, MCPM and CaO (Bohner 2000). 

In the absence of setting inhibitors, the rapid crystallisation of brushite in acidic conditions 

means that the material can flash-set. This makes it unusable and significantly diminishes the 

mechanical properties it exhibits. The setting time of brushite cement is strongly influenced 

by the dynamic solubility of the basic phase and acid concentration.  A smaller particle size 

and the presence of trace quantities of CaO can significantly accelerate setting (Bohner 2000). 

In order to make brushite cement formulations more suitable as implantable scaffolds and/or 

injectable cements, significant improvements in setting, mechanical, and handling properties 

of brushite cement were achieved by using crystallization retardants, such as sodium 

pyrophosphate (SP) and citric acid (CA) (Barralet et al. 2004; Gbureck et al. 2004). The 

structure of brushite was illustrated in figure 2.5 including sheets with a composition of 

CaHPO4 linked together by water molecules. 
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Figure 2.5: Molecular Structure of brushite illustrating sheets of composition CaHPO4 

linked together by water molecules (Elliot J.C., 1994). 

Brushite is known to transform to HA in physiological conditions (pH>7), into dicalcium 

phosphate (DCP) at (pH<6) and into OCP at pH=6-7 (Bohner 2000). The conversion of large 

amounts of brushite into precipitated hydroxyapatite after implantation in vivo has been 

reported to reduce the resorption rate of DCPD and also cause an inflammatory reaction due 

to the release of large amounts of acid from the cement paste (Flautre et al. 1999; F. Tamimi 

Mariño et al. 2007a). Several studies have prevented this by adding magnesium ions to the 

cement paste as an inhibitor of apatite crystal growth (Bohner et al. 2003; Theiss et al. 2005). 

The addition of pyrophosphate ions to brushite cement was also shown to prevent HA 

formation within the hardened material. Grover et al. (2006) reported that brushite cement 



 

30 
 

containing a pyrophosphate phase resisted hydrolysis to form hydroxyapatite over 90 days of 

ageing in vitro (Grover et al. 2006).  

 

2.6.1.2. Calcium phosphate ceramics  

Non-setting calcium phosphate ceramics such as HA have been used widely as implant 

coating materials for orthopaedic and dental applications due to their compositional similarity 

with the mineral phase of bone and teeth (Predoi et al. 2008).  They have been used in the 

augmentation of hips, knees, teeth, the stabilization of the jawbone and in spinal fusion 

(Kalita et al. 2007).  This section introduces several important calcium phosphate ceramics 

that are of interest to the work in this thesis.   

  Nanocrystallie hydroxyapatite (nHA) 

Nano-size hydroxyapatite (HA) have been the focus of interest in the area of hard tissue 

regeneration as it is considered that it exhibits superior biological and mechanical properties 

and stronger affinity with the mineral component of human bones and teeth than 

microcrystalline HA (Sprio et al. 2008).  It has a structural and chemical composition similar 

to bone mineral (Pang and Bao 2003). Furthermore, it has been shown that it is 

osteoconductive and bioactive and can bond well with hard and soft tissues.  Its major clinical  

applications include: surface coating for orthopaedic and dental metal implants, and the 

fabrication of sponges and granules for the augmentation and regeneration of bone (Lazić et al. 

2001). HA ceramic coating of metal implants induces bone formation at the implant surface 

(osseointegration) and also reduces release of metal ions since its tight association with the 

bone creates a physical barrier.   Since it is highly adsorbent, it has also been used extensively  

as a drug delivery system agent for the local release of growth hormones, antibiotics, and 
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antimicrobials molecules to the osseous defect sites in expedite healing or suppress the 

inflammation process (Zakharov et al. 2004).  Furthermore, considerable recent research has 

focused on the use of these inorganic particles as a filler to adjust the mechanical properties of 

the structures intended for bone tissue engineering (Lin and Yeh 2004). The use of HA on its 

own is limited, however, owing to its brittleness and low strength (Kim et al. 2004) and its 

difficulty in handling and maintaining in the defect sites.  As a consequence many studies 

have recently been conducted on the design of HA composites with polymers to enhance 

physical properties while maintaining osteoconduction (Rungsiyanont et al. 2011; Swetha et 

al. 2010). Another disadvantage of HA in comparison with other calcium phosphate 

compounds (e.g. brushite and octacalcium phosphate) is its slow rate bioresorption in vivo.  

To address this problem Sprio et al (2007) investigated the simultaneous substitution of 

carbonate, magnesium and silicon into the HA lattice.  It was demonstrated that the decrease 

of crystallinity associated with substitution increased the solubility of the HA in physiological 

conditions.  

 

There are various techniques of HA powder preparation including chemical precipitation from 

aqueous solutions, sol-gel procedures, hydrothermal synthesis, electrochemical deposition and 

emulsion and micro-emulsion routes (Pang and Bao 2003; Salimi et al. 2012). The 

morphology, crystallinity, and particle size of the synthesized HA are dependent on the route 

of preparation and these properties will have a direct influence on the effectiveness of the 

powder on its application. (Pang and Bao 2003). For example Wang et al. (1998) have 

proposed that the smaller particle size of synthesized HA significantly increased the 

mechanical properties of the composite compared to that of a powder composed of 

comparatively large particles.  It was also reported that HA scaffolds fabricated with 
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nanocrystalline-HA enabled more rapid osteoblast growth, and presumably more rapid 

calcification and bone formation in vitro in comparison with the scaffolds prepared with 

mirco-sized HA crystals ( Smith et al. 2006). 

2.6.2. Polymeric carriers 

Polymeric materials have been used widely in diverse applications as drug delivery systems, 

orthopaedic fixation devices such as pins, rods and screws, hip joint replacements and bone 

replacement materials (Nair and Laurencin 2006) . They have great design flexibility as their 

composition and structure can be tailored to suit various applications (Liu and Ma 2004; 

Swetha et al. 2010). 

The biodegradability of polymers can be adjusted through molecular design; some polymers 

can degrade by cellular and enzymatic pathways and some, due to their chemical bonds can 

undergo hydrolysis upon exposure to the body’s aqueous environment. Polymers can be 

fabricated into different shapes with desired porosity contributing to tissue in-growth. Their 

surface chemistry can be designed by introducing various chemical functional groups to 

induce tissue formation (Gunatillake and Adhikari 2003). Polymeric materials can be mixed 

with other polymers or inorganic materials in order to modify and improve their application as 

composite materials from both mechanical and biological point of views for bone and 

cartilage tissue engineering. They may be categorized into natural polymers like alginate, 

gellan gum, collagen, gelatin, chitosan and synthetic polymeric materials like 

poly(caprolactone), poly(ethylene glycol), poly(vinyl alcohol), and poly(lactic-co-glycolic 

acid) (Madhumathi et al. 2009).  
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2.6.2.1. Natural polymers 

The application of natural polymers as biomaterials dates back thousands of years ago and 

they are considered among the first biodegradable biomaterials used clinically 

(Brahatheeswaran et al. 2011; Nair and Laurencin 2006). Natural polymers are used widely in 

the pharmaceutical and medical industries due to their low cost and biodegradability. They 

can be categorized as: polysaccharides (starch, alginate, chitin/chitosan,  and hyaluronic acid); 

protein derivatives (soy, collagen, fibrin, and silk) or a variety of biofibres, such as 

lignocellulose (Swetha et al. 2010). Carriers may be formed from hydrophilic naturally 

derived polymers in water-based solutions, which allows the polymer network to swell 

forming a hydrogel. Certain proteinaceous polymers contain extracellular matrix features that 

may promote better interaction with cells and enhanced their ability to guide migration and 

growth during tissue regeneration (Malafaya et al. 2007). Due to their biological origin, 

however, they may contain pathogenic impurities and elicit an immune response. Their weak 

mechanical properties and uncontrollable degradability has also limited their application as an 

individual component in bone and cartilage tissue engineering. 

 

 

Hydrogels from natural polymers  

  

Hydrogels are physically or chemically cross-linked hydrophilic polymer networks that may 

be bonded through covalent or non-covalent interactions (cohesion forces such as ionic bond, 

hydrogen bond and van der Waals forces). The polymeric networks are able to absorb large 

volumes of water (Drury and Mooney 2003a; Lee and Mooney 2001). 
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Naturally derived hydrogel forming polymers such as alginate, chitosan, collagen, gelatine, 

and hyaluronic acid  are of great interest for tissue regeneration and cell delivery, due to their 

tissue-like properties, namely high water content, cytocompatibility and a structure thought to 

be akin to the ECM. Currently they are being used to deliver cells and bioactive molecules 

and to engineer various types of tissues like cartilage, bone, liver and muscles (Drury and 

Mooney 2003a).   

 

Hydrogels have been used widely as cell carriers for cartilage engineering in vitro and in vivo 

because they have a similar structure to cartilage.  Cartilage is formed from a matrix 

containing high levels of type II collagen which maintains its physical structure through the 

absorbtion of high volumes of water.  Within the ECM of the cartilage are embedded a 

population of cells called chondrocytes that do not readily proliferate.  Numerous researchers 

have therefore embedded chondrocytes within hydrogel matrices (Di Martino et al. 2005; Suh 

and Matthew 2000). For example, Oliveira et al have demonstrated that the encapsulated 

chondrocytes within gellan gum hydrogel remained viable and produced the hyaline-like 

ECM in vitro and the primary in vivo results demonstrated the ability of this natural hydrogel 

as an injectable system for cartilage augmentation (Oliveira et al. 2010b). Chitosan-based 

materials have also been shown to be potentially beneficial to wound healing articular 

cartilage of rats enabling localisation and subsequent proliferation at the site of application 

(Xi Lu et al. 1999). 

 

Composites of hydrogel and ceramics have also been the focus of interest as they provide an 

enhanced structure both from mechanical and biological point for tissue engineering of 

cartilage when compared to the individual materials alone.  The following section expands 
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upon the chemical and physical properties of the hydrogel material used for the fabrication of 

the culture beads investigated in this thesis. 

Gellan gum  

Gellan gum (GG) is a natural polysaccharide manufactured by microbial fermentation of the 

Sphingomonas paucimobilis bacterium (Dai et al. 2008). It forms a strong gel (an elastic gel 

or a true gel) not a weak gel in the presence of cations in aqueous conditions.  GG is formed 

of a combination of four sugars with a tetrasaccharide repeating unit of α-L-rhamnose, one β- 

D-glucuronic acid and two β-D-glucose residues as illustrated in figure 2.5.   

 

Figure 2.6: A diagram representing the chemical structure of Low Acyl Gellan gum 

(Mao et al. 2006) 

The sugar chains subsequent self-organise through the formation of three-fold double helices.  

The helices then aggregate to form a three-dimensional network upon lowering the 

temperature under mild conditions (Evageliou et al. 2010; J. Oliveira et al. 2010b).  The 

presence of calcium ions within this matrix enhances aggregation and so enhances mechanical 

properties.  Endotoxin-free GG has been used for drug delivery, for cell immobilisation and as 

a substrate in tissue engineering (Silva-Correia et al. 2011; A. M. Smith et al. 2007).  

Although it has been less widely used as other hydrogels such as alginate, it has a number of 

significant advantages.  For example, its gelation occurs in an order of magnitude less calcium 
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that alginate and so gelation may occur in culture medium or body fluids.  It is also 

substantially more robust than alginate and does not readily disintegrate on immersion in 

sodium containing solutions (Hunt and Grover 2010; Jahromi et al. 2011).  GG, however, 

does not readily facilitate cell attachment. The lack of cellular affinity is due to its extremely 

hydrophilic nature, particularly on the outer surfaces which prevents the adsorption of ECM 

proteins, which are required for cell adhesion (Wang et al. 2008).  Several effective strategies 

have been employed to improve the cellular affinity of this hydrogel such as the incorporation 

of RGD peptides (which directly mediate attachment), immobilization of collagen/gelatin 

moieties and protein cross-linking, which has been shown to be successful (T. Chen et al. 

2003; Hern and Hubbell 1998).  Wang et al have shown that a covalent coating of gelatine on 

gellan gum microspheres enhanced cell adhesion on the gel surface (Wang et al. 2008). Their 

investigation demonstrated the potential of these modified microspheres as an injectable 

vehicle for cell delivery in musculoskeletal or dermatological regenerative medicine. The low 

mechanical properties of GG (when compared with ceramics or metals) can also be 

problematic for their further application as templates for tissue regeneration (Coutinho et al. 

2010). The mechanical properties of GG can be improved by combining physical 

(temperature and the presence of cations) and chemical cross-linking mechanisms (chemical 

modification and UV exposure). One study by Countinho et al investigated the synthesis of a 

new class of GG by the incorporation of a methacrylate group onto the GG chain in the 

presence of cations prior to photocrosslinking. It has been shown that their method enabled 

the development of MeGG hydrogels with highly tunable physical and mechanical properties 

without affecting their biocompatibility. Another way to adjust the mechanical properties of a 

hydrogel including GG is to reinforce the structure using inorganic particles such as HA, 
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which has been shown to be effective in enhancing both mechanical properties and cell 

attachment (Lin and Yeh 2004). 

2.7. Composite-based materials for cell delivery in microcarrier design  

 

In order to overcome the properties associated with hydrogel-based materials, research has 

been undertaken to develop composite materials that exhibit tuneable mechanical properties 

and, despite consisting largely of hydrogel, may facilitate strong cell attachment.  For 

example composites of natural polymers and ceramics have been fabricated such that the 

scaffold structure exhibits a composition and microstructure as close to bone as possible (Lin 

and Yeh 2004, (Zhao et al. 2002).  

 

The hydrogel materials enable the formation of spherical particles of high uniformity, without 

the need for heat treatment and the use of the ceramic fillers provides sites for the adsorption 

of molecules that are able to facilitate the cell adhesion process.  In addition, it has been 

shown that the addition of particles fillers may prevent uncontrollable degradation and loss of 

structural stability of natural polymers (Jeong-Hui Park et al. 2013a). The most widely 

investigated compositions have utilised HA as a filler with variety of degradable polymers to 

which has been shown to mediate cell attachment and optimise mechanical properties and 

degradation rate (Swetha et al. 2010). Various successful nanocomposite microcarrier system 

has been reported recently.  In one study by Shen et al. (2010) HA/PLGA microspheres were 

developed as an injectable scaffold for bone tissue repair.  The authors showed that the 

inclusion of HA into PLGA increased the cell adhesion, proliferation and subsequent 

differentiation (Shen et al. 2010). Kim et al. (2007) also demonstrated that collagen–apatite 

nanocomposite microspheres with similar structure to natural bone structure encouraged cells 
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to differentiate down an osteogenic lineage in biological conditions and bone mineralized 

matrix formation (Kim et al. 2007). Spherical substrates of other composites such as inorganic 

bioactive glass/PLGA (Yao et al. 2004) and bioactive glass/ poly (lactide-co-caprolactone) 

(Yu et al. 2009) have also been successfully made and the results indicated that the 

combination of bioactive inorganic phases with the aforementioned degradable polymers 

enhanced osteogenic differentiation, matrix production and also accelerated their bonding 

with host hard tissue. 

2.8. Concluding statement 

 

The importance of cell-based therapy enabled through delivery using materials, which can be 

implanted into the patients’ body for regeneration of diseased and damaged tissue has been 

discussed.  One limiting factor of this novel clinical approach is that it is challenging to 

provide a sufficiently large number of appropriate cells and localise these within the site of 

implantation. It has been shown that microcarrier-based cultivation systems in cell therapy in 

the development of implantable material with precisely engineered modulus can be used as a 

scalable solution for cell expansion of anchorage-dependent cells and also as a carrier for 

delivery of cells and/or bioactive molecules.  Factors important to the design of microcarriers 

include the microenvironment; material architecture, surface chemistry and stiffness of the 

material to which the cells are attached, since these have a strong influence on cell behaviour. 

One relatively un-investigated material type for the manufacture of culture beads is the CPC, 

which due to their osteoconductivity and the fact that they may be processed in ambient 

conditions enable the incorporation of temperature sensitive therapeutics during manufacture.  

As such, this thesis focuses on the development of cell culture beads containing calcium 

phosphates synthesised in ambient conditions. It reports how formulation has a strong 
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influence on bead performance and demonstrates that it is possible to generate culture beads 

of well-defined properties through a systematic approach to formulation.  Two final 

compositions, a polymer (GG) – HA composite and a brushite ceramic were tested in static 

and dynamic culture (only in the case of GG/HA composites) to demonstrate and compare the 

efficacy of the two materials. 
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Chapter 3 

GENERAL METHODS AND MATERIALS 

 

3.1. Cell culture procedures   

Two different cell lines were used in this thesis including: the NIH 3T3 murine fibroblast cell 

line and the MC3T3 cell line purchased from LGC (Middlesex, UK).  One source of primary 

cells was also used to characterise biological response to the final material formulation. 

Primary rat bone marrow stromal cells (BMSCs) were extracted from Wistar rats following 

sacrifice.  To isolate these cells, recently the femora were dissected from sacrificed adult 

albino Wistar rats.  The soft tissue was cleaned from the femora using a scalpel and then they 

were placed into a transport medium that contained: Minimum Essential Medium (α-MEM ;), 

10% penicillin/streptomycin, 2.5% HEPES, and 1% amphotericin (all from Sigma Aldrich, 

UK) until required.  Subsequently, the epiphyses were removed and the femora were washed 

using supplemented α-MEM which contained, 10% Foetal Bovine Serum (FBS) (PAA, 

Somerset, UK), 10% penicillin/streptomycin,, 2.5% HEPES, 1% amphotericin and 10% L-

glutamine (Sigma Aldrich, UK).  The resulting suspension of cells was centrifuged at 1000 

rpm for 3 min to form a cell pellet.  The cells were then incubated in a 75mL flask in a 

humidified atmosphere of 95% air and 5% CO2 at 37ºC.    

All cell lines were grown in D-MEM (Dulbecco’s Modified Eagle Medium) (Sigma, UK) 

which was supplemented with 10% FBS (PAA, Somerset, UK) 2.4% L-glutamine, 2.4% 

HEPES buffer, and 1% penicillin/ streptomycin.  All cultures were maintained in sterile 
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conditions at 37ºC with 5% CO2 and 100% relative humidity and media was changed every 

two days. 

All culture dishes (12 multiwell plates and petri dishes) for cell culture experiments were 

coated with 1.5 mL of Sylgard (type 184 silicone elastomer; Dow Corning Corporation, 

Midland, MI) and left to polymerize for at least a week before use to provide a non-cell-

adhesive surface underneath the samples. All samples for cell culture were sterilized with 

ethanol (70%; Fisher Scientific, UK) and then left overnight under ultraviolet light to 

complete the sterilization process before cell seeding. 

 

3.1.1. Cell culture in osteogenic differentiation media  

To determine the functional activity of the grown MC3T3 cells and BMSCs on the culture 

beads for the synthesis of mineralized matrix, the cultures were provided with supplemented 

DMEM (as specific in section 3.1) containing 50 μg/ml ascorbic acid 2-phosphate (Sigma-

Aldrich, UK), 10 nM dexamethasone (Sigma-Aldrich, UK) and 10 mM β-glycerol phosphate 

(Sigma-Aldrich, UK). 

 

3.2. MTT assay for cell attachment and growth   

The cell attachment and proliferation of seeded cells on to the surface of the samples was 

quantified by using an MTT colourimetric assay after culturing for an appropriate time.  MTT 

solution (5mg/ml) was prepared under sterile conditions in phosphate buffer saline (NaCl 

138mM; KCl 27mM, phosphate buffered saline: PBS) (Sigma, UK). At each time, MTT 

solution (500µL) was added into the sample-cells construct in the DMEM. They were then 

left in incubator at 37⁰C for 4 h.  Mitochondria of viable cells reduce the yellow, water-

soluble MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma, UK) to 
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water-insoluble blue crystals of formazan, which was dissolved by acidic isopropanol (MTT 

solvent) after removal ofthe culture medium.  The absorbance of this coloured solution was 

quantified spectrophotometrically by measuring at a wavelength of 620nm using a microplate 

reader (BIO-TEK, US), which gives an indication of cell number. 

3.3. DAPI staining  

The adherent cells on the culture beads were labelled with 4´,6-diamidino-2-phenylindole 

(DAPI), a fluorescent dye.  DAPI dye can pass through the intact cell membrane of fixed cells 

and bind strongly to Adenine-Thymine base pairs in DNA. DAPI (Sigma-Aldrich, UK) stock 

solution was prepared at 1:1000 in PBS.  300µL of DAPI solution was added to the fixed cells 

for 5 min.  Samples were rinsed with PBS several times.  Cell-constructs were placed on a 

coverslip and one drop of anti-fade reagent was added onto the top of the samples.  Samples 

were visualized using confocal laser microscopy (Leica, UK). The excitation maximum for 

DAPI bound to double stranded DNA is 358 nm, and the emission maximum is 461 nm. 

3.4. Alkaline phosphatase activity 

The alkaline phosphatase activity was assayed according to the method of Lowry et al. 

(Lowry et al. 1951). Briefly, culture beads were collected from the media at various time 

intervals. The samples were washed with PBS and then suspended in 500µL PBS containing 

100 mM glycine, 1 mM MgCl2 and 0.05% Triton X-100 for 10 min.  Aliquots of 60 µl were 

incubated with 300 µl of p-nitrophenyl phosphate solution at 37ºC for 45 min. After adding 

900 µl of ice cold 250 mM NaOH, the quantity of p-nitrophenol liberated was measured by 

monitoring absorbance at 405 nm using a UV-Vis plate reader. 
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3.5. Alizarin red staining  

The ability of the MC3T3 pre-osteoblast cells grown on culture beads to produce mineralised 

matrix and nodules was examined by Alizarin Red S staining (Sigma-Aldrich, UK) at specific 

time points. Alizarin Red S, an anthraquinone derivative, forms as alizarin red-S-calcium in 

the chelation process with calcium existing in the mineralized matrix.  This produces a 

birefringent staining.  

 

At each interval time, the cell-bead complexes were collected and fixed with 3.7% 

formaldehyde (Sigma-Aldrich, UK) in PBS for 20 min at room temperature and washed with 

PBS. The complexes were stained in 40mM Alizarin Red S (Sigma Aldrich, UK) pH 4.2, for 

5 min, and washed thoroughly five times with distilled water; the red matrix was visualised 

using light microscopy (Axiolab, Zeiss, Oberkochen, Germany). 

 

3.6. Composition characterisation 

3.6.1. X-ray diffraction (XRD) 

 

X-ray diffraction was conducted to determine the crystal structure of any inorganic phases.  

XRD provides a measure of the atomic spacing and the structural properties e.g. preferred 

orientation, phase composition and grain size of crystalline materials. A fine powder of the 

sample was mounted between two pieces of a magic tape in an X-ray diffractometer (Bruker 

D8 Advanced, Karlsruhe, Germany) and diffraction data were collected in the 2θ range 

between 10º and 60º with a step size of 0.028º/2θ. Short scans (30 min) and long scans (3 h) 

were conducted depending on the signal from the sample. Diffraction patterns were compared 

with known standards of each compound from the JCPDS database. 
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3.6.2. Raman microspectrometry 

Confocal Raman microscopy, a light scattering technique, was also used to identify chemical 

properties of the samples by identifying the chemical bonds present within the material 

regardless of crystallinity. The composition of brushite cement samples after aging was 

evaluated from absorption bands specific to the mineral using Confocal Raman 

microspectroscopy (Alpha 300R, WITec, Germany) with a helium neon (785 nm) laser with 

excitation at a power of 3 mW. The overall spectral resolution was 2 cm
−1

.  The spectra were 

obtained in the 200–2000 cm
−1

 range. The ×100 microscope objective used in a confocal 

configuration give a micrometric spot size. To enable direct comparison between specimens, 

all spectra are presented with a normalized intensity. 

3.7. Specific surface area (SSA) measurement 

Specific surface area (SSA) was determined using a Nitrogen Adsorption Apparatus 

(Micromeritics, UK) with a Brunauer- Emmett-Teller (BET) transform to analyse the data.  

This method was used to measure the SSA of brushite culture beads prepared with different 

methods and also synthesised HA particles. The SSA of a biomaterial depends on the shape 

and size of the particle.  The result is expressed in unit of area per mass of sample (m
2
/g). 

3.8. Microstructural characterization 

3.8.1. Scanning electron microscopy 

To analyze the morphology and microstructure of the non-aged and aged brushite cement in 

DMEM solution, scanning electron microscopy (SEM) (quanta200, Fei, CZ) equipped with 

energy dispersive X-ray analysis (EDX) (INCA x-sight, oxford analytical instrument, UK) 

was utilized on carbon vaporized samples. SEM operates on the same basis as the light 

microscope but uses a focused beam of high-energy electrons on the surface of the specimens 
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in a vacuum state instead of light to generate the image. The surface of the sample is 

bombarded with electrons and the interaction of electrons with the sample results in the 

release of signals (i.e. secondary electrons, heat, X-ray, visible light and backscattered 

electrons) which reveal information about the sample including morphology, chemical 

composition, crystalline structure and orientation of the materials making up the sample. The 

signals which include generation of secondary electron from the surface of the sample with 

lower energy are collected to produce SEM images. 

 

The morphology and microstructure of the GG hydrogel and GG/HA nanocomposites 

samples was also determined using scanning electron microscopy. The samples were mounted 

onto a stub and etched at -90ºC, to reduce ice-crystal formation and were coated with gold 

before being viewed at an appropriate accelerating voltage using scanning electron 

microscopy (Phillips XL30 ESEM FEG, Netherlands). 

3.8.1.1. Biological samples  

 

To observe the morphology of the culture beads and the attached cells on to the beads at 

required time-points, the cell-bead complexes were fixed in 1.5% glutaraldehyde (Sigma-

Aldrich, UK) at 4ºC. Cells were then dehydrated through a series of increasing concentrations 

of ethanol (50, 70, 80, 90, and 100%) for 10 min at each concentration. This process then was 

continued by immersing in dry ethanol for 10 minutes. After dehydration, the cell-beads were 

critical-point-dried with CO2, coated with gold and examined under a scanning electron 

microscope (SEM; quanta200, Fei, CZ). 
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3.9. Transmission electron microscopy (TEM)  

Transmission electron microscopy (TEM) (Jeol 1200EX, Japan) was used to investigate the 

morphology of the nanocrystalline structures.  This technique was based on firing a beam of 

electrons through the specimen of interest in a vacuum state. The sample must be thin enough 

to allow the electrons to pass through it. For this reason the powders were first dispersed in 

ethanol and subsequently ultrasonicated before application to a carbon TEM grid.  

3.10 Statistical analysis 

All data were expressed as mean ± standard deviation of the mean. T-tests were used to 

evaluate the statistical significance of the differences between groups.  Differences were 

judged significant if p<0.05. 
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Chapter 4 

   NOVEL RESORBABLE BRUSHITE-BASED CELL 

CULTURE BEADS 
 

Culture beads can potentially be used as three-dimensional scaffolds to allow the localization 

of a cell population to the site for regeneration and for the successful provision of a 

sufficiently large number of cells for a therapy (Alfred et al. 2011; Glattauer et al. 2010). This 

type of culture system has distinct advantages over traditional monolayer culture for the mass 

production of cells, by providing increased surface area and a better approximation of 

complex biological processes, enabling cells to behave as they would in the body (E. A. 

Botchwey et al. 2001; Jos Malda and Frondoza 2006; Nam et al. 2007). An ideal material for 

manufacturing of the culture beads would be formed from a composition that could be 

implanted and has a rate of resorption that can match the rate of new bone formation 

(Glattauer et al. 2010; Shi et al. 2009). During the last three decades calcium phosphate (CaP) 

cements (CPC) have been widely investigated as materials for hard tissue replacement, and 

have found numerous clinical applications (Penel et al. 1999; Pina et al. 2010). However, 

there is little mention in the literature of CPCs being used as culture beads, despite their 

obvious advantages over calcium phosphate ceramics that are processed at high temperature.  

CPCs, for example, allow the incorporation of temperature sensitive molecules and give the 

possibility of fabricating materials of complex morphology (F. Tamimi Mariño et al. 2007a).   

Brushite cements have gained more attention recently as implantable scaffolds, as they are 

more soluble than hydroxyapatite at physiological pH, and so may be resorbed and replaced 

by bone following implantation (Barralet et al. 2004; F. Tamimi Mariño et al. 2007a). Despite 
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these attributes, very few studies have focused on the use of these materials in the form of 

culture beads and cell adhesion capacity of them, something that is of great importance if the 

materials are to be used in cell delivery. Therefore the first part of this chapter, part a, aimed 

to investigate cellular attachment to the surface of brushite cement (BC) beads systematically 

in terms of the influence of cement chemistry and the type of setting retardant used in cement 

production.  The following section, part b, presents a comparison of methods for the 

fabrication of brushite based culture beads and the effect of manufacturing process of three 

types of BC beads on cellular behaviour and matrix deposition was investigated. 

 

  



 

49 
 

Chapter 4A: Brushite cement formulation to maximise cell 

adhesion 

 

The first reported brushite cement formulations were weak, set rapidly and could not be 

injected through a needle.  Consequently, additives were used to tune their properties for 

specific applications. In the literature, significant improvements in setting, mechanical and 

handling properties of brushite cement were achieved by using crystallisation retardants, such 

as sodium pyrophosphate, and citric acid, which also functions to reduce cement viscosity 

(Barralet et al. 2004; Gbureck et al. 2004; Faleh Tamimi Mariño et al. 2007b; Tamimi et al.).  

The use of such retardants would be essential to successfully manufacture brushite cement 

culture beads. Citric acid has been reported to have a potent viscosity reducing effect on 

brushite cement formulations and increases setting time. There are several studies that have 

investigated the influence of citric acid on the properties of calcium phosphate cement, in 

terms of strength improvement of the CPC, the retardation of  the HA formation, and 

feasibility of  the design of fully injectable cements (Barralet et al. 2004; Gbureck et al. 2004; 

Tamimi et al.). There has not yet been, however, any study to investigate the effect of the use 

of this retardant on the biological properties of the brushite cement in terms of cellular affinity 

to the surface of these materials.  In order to develop implantable brushite-based culture 

beads, cell growth is required prior to implantation, therefore in this part of this chapter, 

cellular attachment to the surface of brushite cement beads was investigated systematically in 

terms of the influence of cement chemistry and the type of setting retardant used in cement 

production.  
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4.1. Methods and materials 

4.1.1. Preparation of brushite culture beads using cement casting method 

(denoted as sample BC) 

 

β-Tricalcium phosphate (β-TCP) was synthesized by heating a mixture of monetite (DCPA; 

Mallinckrodt Baker, Griesham, Germany) and calcium carbonate (CC; Merck, Darmstadt, 

Germany) to 1050ºC for 24 h followed by quenching to room temperature in a desiccator. The 

product consisted of phase pure and highly crystalline β-TCP as verified by X-ray diffraction 

(XRD). The sintered cake was crushed using a pestle and mortar and passed through a 355 

µm sieve. Milling was performed in a planetary ball mill (PM400 Retsch, Germany, diameter: 

400 mm). Brushite cements beads (BC) were synthesised by combining β-TCP with 3.5 M 

orthophosphoric acid (OA) (Fisher Scientific, Leicestershire, UK) containing citric acid (CA) 

(200 mM, Fisher Scientific, Leicestershire, UK) and/or sodium pyrophosphate (SP) (200 mM, 

Sigma-Aldrich, Dorset, UK) retardants at a powder to liquid ratio (P/L) of 3 g/ml. The 

hardening reaction of the brushite cement used in this study occurs in accordance with 

Equation 1 (L. M. Grover et al. 2003). 

Ca3 (PO4)2+H3PO4+6H2O 3CaHPO4.2H2O             (Equation 4.1) 

The resulting paste was cast into a mould to form spherical samples ~1000 µm in diameter. 

The samples were allowed to harden at 37⁰C for 24 h and afterwards the BC beads (Figure 

4.1A) were repeatedly washed in PBS (200 mM, Sigma-Aldrich, Dorset, UK) to eliminate 

unreacted OA. The samples were sterilized with ethanol (70%) (Fisher Scientific, 

Leicestershire, UK) and then left overnight under ultraviolet light to complete the sterilization 

process. As a comparison with brushite cement, a brushite compact (BPC), not hardened 
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through a cementing process was also characetrised.  The BPC (supplied by AstraZeneca) 

disc shaped samples were prepared by compressing brushite powder using a universal testing 

machine (Zwick, Germany) at a rate of 1mm/min in a 6mm diameter press to a load of 7000N.  

Samples were then sterilised using the same method as for the BC beads. 

4.1.2.   Cell culture  

 

3T3 fibroblast cells were seeded onto the sterile BC beads and BPC samples separately in 12-

multiwell plates at a final density of 6.0 ×10
4
 cells per well in 2ml DMEM (section 3.1). 

4.1.2.1. MTT assay- non-treated BC beads 

Preliminary cytocompatibility testing of BC beads after culturing the BC beads for 7 days 

following manufacture and repeated washing with PBS was analysed using the MTT assay 

(section 3.2). 

 4.1.2.2. MTT assay- treated (aged) beads  

To investigate the effect of dynamic in vitro aging of BC beads in DMEM on phase 

composition changes and subsequently on the mechanism of cell adhesion over 7 days 

culturing, the BC beads were aged in serum-free DMEM at 37ºC over a period of 1 week. The 

DMEM was refreshed every two days. On day 7, the aged BC beads were seeded with 3T3 

fibroblast at the same density that was reported for the non-treated samples (6.0 ×10
4
 cells per 

well) and cell attachment was analysed by MTT assay (section 3.2). Tissue culture plastic 

(TCP) surfaces with identical conditions were used as controls. 

 4.1.2.3.   DAPI staining 

The effect of cement chemistry and the influence of setting retardant upon cell attachment,  

was evaluated by preparation of brushite cement beads using CA and SP as setting retardants 
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and brushite cement beads with only SP as a retardant.  Cells were seeded at a final density of 

6.0 ×10
4
 cells per well in 2 ml DMEM and allowed to adhere for 4 h at 37±1ºC until 

biological characterization (section 3.1). After culturing for one day the number of adherent 

cells on to the both types of BC beads made with using mixture of retardants were labelled 

with DAPI (section 3.3).  Samples were visualised using confocal laser microscopy (Leica, 

UK). The cell attachments on the substrates were also quantified using the MTT assay. 

4.1.3. Determining the presence of intermediate phase in the cement 

 

To determine the effect of citric acid as setting retardant in formation of intermediate phase in 

the cement matrices, the beads made with CA and SP and only with SP were aged in distilled 

water for 7 days.  To find the quantity of mass lost relating to the presence of intermediate 

phase from the cement samples with time, samples were removed daily from the aging 

medium, dried in a freeze dryer and then weighed.  

4.1.4. Composition and microstructural characterization of non- aged and 

aged brushite cement 

Phase composition of the BC beads made with CA and SP setting retardants before and after 

aging in distilled water were characterized using X-ray diffraction (section 3.7.1). Short scans 

(30 min) were conducted for BC samples before and after aging in DMEM solution and long 

scans (3 h) for the BC samples before and after immersion in distilled water. 

Energy dispersive X-ray analysis (EDX) was used to determine the Ca/P ratio of the BC 

beads before and after aging which was calibrated using known calcium phosphate standards. 

Confocal Raman microspectroscopy was conducted (section 3.6.2.) to investigate the 
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relationship between the cell attachment and the crystalline changes of BC beads before and 

after aging in DMEM solution for 7 days. 

To analyze the morphology and microstructure of the non-aged and aged brushite cement in 

DMEM solution, scanning electron microscopy (SEM) (section 3.8.1) was utilized on carbon 

vaporized samples. 

4.2. Results 

4.2.1. Preliminary Cytocompatibility test on fabricated BC beads (C) 

Initially resorbable calcium phosphate cement beads (brushite) were fabricated (Fig. 4.1A) 

using a cement casting method (section 4.1.1.) and then the cellular response to the beads was 

investigated using the MTT assay. Preliminary results from cytocompatibility testing of BC 

beads after culturing the BC beads for 7 days following manufacture and repeated washing 

with PBS demonstrated that, there was little or no evidence of cell growth in the period 

between one and five days of culture, (Fig. 4.1B), however on day 6, absorbance increased 

and a further significant increase (p<0.05) was observed on day 7 (Fig. 4.1B). This large 

increase in absorbance may be correlated with an increase in cell number.   
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Figure 4.1: A) SEM micrograph of a BC culture bead, an d B) Results from the MTT 

assay on 3T3 fibroblasts grown on BC after culturing for 1, 2, 3, 4, 5, 6, and 7 days.  

Data points represent mean values of n = 9 specimens ± standard deviation. 
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To investigate whether this was due to conditioning of the surface with protein or crystalline 

phase changes within the material in this time, BC samples were aged for 1 week with serum-

free DMEM refreshment every 2 days. When the conditioned samples were seeded with cells 

to the same density under the same culture condition as for non-aged samples, there was 

considerably more cell attachment after 1 day. Indeed, at this time point, the adhered cell 

number on the surface of the cement was even higher than on the TCP control (Fig. 4.2). 

 

Figure 4.2: The MTT results of 3T3 fibroblast adhered to aged (7 days) and non-aged 

BC, after culturing for 1 day.  The difference between the two conditions, aged and non-

aged BC is significant (*p<0.001). Positive control is tissue culture plastic (TCP). 

Brushite cement without cell seeding was also used as control sample. Results are 

displayed as mean of n = 9 specimens ± standard deviation. 
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4.2.2. Effect of dynamic in vitro aging in DMEM on phase composition, 

morphology and microstructure of BC culture beads 

4.2.2.1. SEM and XRD analysis 

 

In order to investigate whether the cell attachment was due to the formation of an apatitic 

layer on the surface of the cement following immersion in DMEM (as previously reported), 

the surface of the material was characterised using scanning electron microscopy and X-ray 

diffraction.   Prior to immersion in DMEM, the cement as expected consisted of fully 

blade/plate-like crystals of ~10 µm in length/diameter (Fig.  4.3A).  Following immersion in 

DMEM, the surface of the material was covered with a finer particulate material, which could 

have been clusters of octacalcium phosphate (OCP) or Ca-deficient hydroxyapatite (HA) (Fig. 

4.3B). 
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Figure 4.3: SEM micrographs of A) Non-aged BC beads, B) BC aged in DMEM for 7 

days. i) scale bar, 10µm, ii) scale bar 5 µm, iii) scale bar 20 µm and iv) scale bar 10 µm. 

 

To confirm this, the samples were characterised using X-ray diffraction, which demonstrated 

the presence of OCP or HA within the cement matrix (Fig. 4.4). OCP is a metastable phase 

and conversion to HA usually occurs rapidly, consequently the material consisted of both 

OCP and HA. 
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Figure 4.4: X-ray diffraction patterns of the BC beads before and after aging in DMEM 

solution for 7 days i) Aged-BC beads, ii) Non-aged BC beads and iii) BPC. Peaks 

indicative of brushite and β-TCP are marked with asterisks and triangles, respectively.  

With aging, OCP (closed circles) and HA (closed rectangles) appeared as a new phase 

suggesting phase transformation of brushite to OCP/HA. 

 

4.2.2.2. EDX analysis 

 

Further evaluation of the cement chemistry demonstrated an increase in Ca/P (Table 4.1), as 

might be expected with the formation of OCP/HA within the cement matrix. The calculated 

calcium to phosphorous molar ratio (Ca/P) of the BC beads before aging was different from 

after aging in DMEM solution. It increased from ~ 1.1 to 1.22 which as may be expected for 
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the transformation of brushite to OCP/ Ca-deficient HA. The apatite which  has been 

transformed from OCP in in vitro physiological condition was a Ca-deficient HA, having a 

chemical composition with a lower Ca/P molar ratio and higher acid phosphate content 

(Suzuki et al. 2006).  

 

Table 4.1. EDX analysis values of the Ca and P atomic composition of the transformed 

phase of brushite cements before and after immersion in DMEM solution and distilled 

water for 7 days. Results are displayed as mean of n = 3 specimens ± standard deviation. 

 

Sample Aging medium Ca /P atomic ratio 

BC N/A 1.1±0.06 

Aged-BC DMEM 1.22±0.01 

BPC N/A 0.98±0.02 

Aged-BC Distilled water 1.57±0.03 

 

 

4.2.2.3. Raman Microspectrometry 

 

Examination by confocal Raman microscopy was also undertaken to investigate the 

relationship between the cell attachment and the crystalline changes of brushite cement beads 

before and after aging in DMEM solution for 7 days.  Raman spectra of pure brushite, and β-

tricacium phosphate (β-TCP) were compared with the aged cement specimens (Fig. 4.5b).  

The micro-Raman spectra of non-aged brushite cement beads, and brushite cement beads aged 
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for 7 days was shown in Figure 4.5a. The absorption bands in the range of 1500-1200 cm
-1

 are 

representative of pure β-TCP and in the range of 1020-940 cm
-1 

are characteristic to brushite 

(Figure 4.5b) suggesting that initially the prepared BC beads consisted mostly of β-TCP and 

brushite. The results of Raman microspectrometry also demonstrated that the aging protocol 

in DMEM solution led to phase transformation of β-TCP and brushite to OCP/carbonated 

apatite. The formation of OCP/carbonate apatite can be confirmed by observation of some 

specific vibrational modes of PO4
3-

 and CO3
2-

 which have been reported for these phases 

(Crane et al. 2006; De Mul et al. 1986; Penel et al. 1998; Penel et al. 1999; Tsuda and Arends 

1993). 

 

 Figure 4.5: Micro-Raman spectral analysis a) comparing spectra for aged and non-aged 

BC and b) none-aged BC and pure β-TCP and brushite. 
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The main vibrational modes corresponding to composition changes of brushite to 

OCP/carbonated apatite are listed in Table 4.2. 

 

Table 4.2.  Main micro-Raman wavenumbers observed in aged brushite in DMEM for 7 

day. 

Wavenumbers 

(cm
-1

) 

Micro-Raman vibrational 

mode 

Component 

380 

522 

ν 2PO4
3-

 

ν 2PO4
3-

 

DCPD 

OCP 

580 ν 4PO4
3-

 OCP 

873 P-OH stretch Carbonated apatite 

947 ν 1PO4
3-

 Carbonated apatite 

980 P–O stretch DCPD 

1057 

1078 

ν 3PO4
3-

 

ν1CO3 

Carbonated apatite 

Carbonated apatite 

 

4.2.3. Effect of dicalcium phosphate–citrate complex present within 

brushite matrix on cell attachment 

4.2.3.1. DAPI staining 

 

Since brushite is more soluble than OCP or HA, it was possible that the brushite surface was 

not sufficiently stable to enable cell attachment.  To investigate this hypothesis, compacted 
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pellets were formed using BPC and cells were seeded onto the surface of BPC samples.  As 

previously reported, following seeding on the surface of brushite cement culture beads formed 

from the mixture of β-TCP and OA solution; there was no cell attachment after culturing for 1 

day (Fig. 4.6a). In the case of the compacted DCPD samples (BPC), however there was cell 

attachment following seeding (Fig. 4.6b) which confirms the ability of pure brushite to enable 

cell attachment. This suggested that the poor cell attachment to the surface of the brushite 

cement prepared using β-TCP/OA with CA and SP retardants (Fig. 4.6a) prior to conditioning 

could be due to the presence of an intermediate phase within the cement matrix that washed 

out during aging.   

 

The cell attachment to the surface of the cement beads made using only CA was compared to 

cell attachment to the surface of cement made only SP as setting retardants and brushite made 

with CA and SP immersed in distilled water for 7 days (Fig. 4.6c, d, and e). The results from 

DAPI staining of seeded cells onto surface of the cement beads separately contrasted the 

ability of cells to attach to their surfaces respectively, which supported the presence of the 

soluble intermediate phase in the cement made using CA (Fig. 4.6).  
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Figure 4.6: Comparison of the cell adhesion on different brushite cement surfaces after 

1-day cell culture using DAPI staining. a)untreated fabricated brushite cement (BC), b) 

compacted bruhiste powder (BPC), c) brushite cement made using only CA was denoted 

as BC-CA; d) brushite cement made using only SP was denoted as BC-SP; e) brushite 

cement made using CA and Sp immersed in distilled water for 7 days was denoted as 

IBC. Scale bar=200 µm 

 

The MTT results also quantitatively showed that the brushite cement did not support cell 

attachment; however the compacted DCPD did (Fig. 4.7). The results from an MTT assay as 

well as DAPI staining results demonstrated that the immersed BC had a significantly (p< 

0.001) enhanced cell attachment compared with BC made only using CA and non-aged 

material (p<0.01) (Fig. 4.7).  
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Figure 4.7: The MTT results of 3T3 fibroblasts attached on the five different substrates 

at day 1. (Control sample is brushite cement without cell seeding). The cell attachment 

on the surface of IBC, BC-SP and BPC were significantly higher than that of the BC. 

*p<0.05 when comparing BPC to BC surface, 
# 

p<0.001 when comparing IBC and BC-

SP surface to BC-CA. 
† 

p<0.01when comparing IBC to non-aged BC. Results are 

displayed as mean of n = 9 specimens ± standard deviation. 

 

The presence of an intermediate phase within the cement matrix was determined by 

measuring mass loss from the cement made using citrate and pyrophosphate or pyrophosphate 

alone as a retardant. In the case of the brushite cement beads formed using sodium citrate and 

pyrophosphate as retardants, there was a mass loss of nearly 3wt% within 1 day of immersion 

(Fig.4.8).  In comparison, the cement beads formed using no retardant lost as little as 0.3wt% 

in the same time period.   
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Figure 4.8: Mass loss of BC samples made from sodium citrate and pyrophosphate 

retardants in distilled water up to 7 days. Significant mass loss was observed within 1 

day of immersion.  

 

Further characterisation of the cement using X-ray diffraction, showed the presence of 

broader peaks for the cement prior to immersion (Fig. 4.9b). The peaks width changes of 

brushite cement before and after immersion were compared by evaluation of the position and 

full width at half maximum intensity (FWHM) of the peaks. This might suggest the presence 

of an x-ray amorphous intermediate phase within the cement matrix prior to immersion. 

Following immersion, the peaks on the X-ray diffraction patterns were significantly narrowed 

suggesting a higher level of crystallinity which may also correspond to the dissolution of an 

amorphous intermediate phase (Fig. 4.9a). 
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Figure 4.9: X-ray diffraction patterns of a) immersed-BC in distilled water, b) Non- 

immersed BC and c) BPC. The peaks on the non-immersed specimen were broader than 

those on the immersed–BC. The major peaks for brushite and β-TCP are marked with 

circles and triangles, respectively. 

The XRD patterns of the BC beads made only with SP and without any retardants (Fig. 4.10) 

as well as BC beads sample after immersion and BPC (Fig. 4.9a and c), showed higher 

crystallinity compared to BC samples before immersion (Fig. 4.9b). This suggested that the 

brushite cement formed using SP and /or no retardants showed no amorphous intermediate 

phase within the cement matrix whereas the use of CA retardant in brushite cement caused 
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formation of an amorphous dicalcium phosphate-citrate complex that inhibited cell 

attachment to the surface of brushite. 

 

 

Figure 4.10: X-ray diffraction patterns of a) BC beads made only with SP, b) brushite 

cement made without any retardant. The peaks on both samples were narrower than 

those on the non-immersed BC (shown in previous figure).  
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4.3. Discussion 

 

Brushite cement based culture beads are ideal carriers for cell delivery, given that they 

provide a three dimensional scaffold, as well as having a higher surface area for cell 

cultivation compared to monolayer cultures, they are typically more resorbable than 

hydroxyapatite ceramics. In this chapter the resorbable brushite cement culture beads (Fig. 

4.1A) were formed and it was demonstrated that the cell attachment to the surface of brushite 

cement beads can be influenced by cement chemistry and the use of setting retardants during 

cement production.  The brushite cement beads formed from the mixture of β-TCP and OA 

solution using CA and SP as setting retardants didn’t facilitate cell attachment (Fig. 4.1B). 

While some have reported cell attachment to brushite cement,  the variety of formulations 

used and the pre-treatments applied to the materials hinder direct comparison (U. Klammert et 

al. 2009; Le Nihouannen et al. 2008; Tamimi et al. 2008).  This highlights the importance of 

systematically characterising the chemistry and biological reaction of the cast materials in 

order to identify formulation parameters that could influence cell attachment.   

 

The first part of this chapter has demonstrated that the dynamic aging protocol of brushite 

cement beads in DMEM solution at 37º C has a profound effect on the cellular affinity to the 

surface of cement upon aging (Fig. 4.2) which may have been as a result of changes in phase 

composition on the surface of the cement following immersion in DMEM (Fig. 4.2 and Fig. 

4.3(a)). Brushite is commonly known to be a metastable phase of CaP under normal 

atmospheric conditions. It tends to gradually transform to HA crystals in aqueous solutions 

under the normal physiological pH of 7~7.5 (D. Lee and Kumta 2010). Mandel and Tas 

(2010) recently demonstrated that brushite powders soaked in commercial DMEM solutions, 

at 36.5 °C for about one week, were able to completely transform into OCP (Mandel and Tas 
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2010). OCP is also metastable and a precursor to the formation of an apatitic calcium 

phosphate phase (Dekker et al. 2005; Suzuki et al. 2006). The cell attachment on to the 

surface of aged brushite samples could be attributed to the formation of OCP or hydrolyzed 

Ca-deficient HA. Cell attachment to OCP has previously been reported in the literature. 

(Suzuki et al. 2006). HA also absorbs ECM proteins that support the binding of cells to its 

surface (Zhao et al. 2006). Since the sample for XRD analysis might be removed near the 

middle of the hydrolysis process of OCP to HA, the XRD patterns of aged brushite cement in 

DMEM consisted of both OCP and carbonated apatite (Fig. 4.4). It has been shown that the 

apatite which  has been transformed from OCP in in vitro physiological condition was a Ca-

deficient HA, having a chemical composition with a lower Ca/P molar ratio and higher acid 

phosphate content as observed in biological crystals (Suzuki et al. 2006).  

 

The calculated calcium to phosphorous molar ratio (Ca/P) of the non- aged BC beads (Table 

4.1) was different after aging in DMEM solution. It increased from ~ 1.1 to1.22 which is 

further evidence for the transformation of brushite to OCP/HA. Raman spectra as well as 

XRD evidenced the presence of OCP or HA within the cement matrix after aging (Fig. 4.5a). 

In order to develop implantable brushite-based culture structures preferably, culture beads, 

cell growth is required prior to implantation, therefore further investigation was required to 

optimize the biological properties of these materials in terms of cell attachment and 

proliferation along with their other properties. To our knowledge this is the first report of 

investigation of the influence of brushite cement chemistry and setting retardants upon cell 

attachment on to the surface of these materials.  Following seeding on the surface of brushite 

cements formed using CA and SP as retardants and with only CA, there was no cell 

attachment after culturing for 1 day (Fig. 4.6a and 4.6c). The mass loss of nearly 3% of the 
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brushite cement within 1 day (Fig. 4.8) of immersion compared to the cement formed using 

sodium pyrophosphate alone with ~ 0.9% mass loss in the same period could be explained by 

the presence of dicalcium phosphate citrate intermediate phase in the cement matrices which 

prevented cell attachment to the surface of the materials. Therefore this may be why the 

surfaces of the cements made with CA and SP and with only CA as retardants (Fig. 4.6) did 

not facilitate cell attachment. Although different studies showed the potent effect of citric acid 

as setting retardant to increase compressive strength, setting time and injectability of calcium 

phosphate cements, the formation of an intermediate dicalcium phosphate citrate complex 

could be problematic for the cell adhesion capacity of brushite cement or may result in a 

deterioration of compressive strength of the cement in higher concentration (Hofmann et al. 

2006) . X-ray diffraction patterns of the cement before and after immersion (Fig. 4.9) 

displayed peaks typical of brushite and β-TCP and appeared to have a very similar 

composition – little or no apatite was detected within the material. The peaks on the un-aged 

specimen were broader than those on the aged material, implying low crystallinity (Fig. 4.9a 

and 4.9b).  

 

According to the equation (4.1) and the initial quantity of citric acid as a setting retardant used 

in the preparation of cement paste, the amount of dicalcium phosphate-citrate complex which 

could be formed was  about ~2.6 %, which corresponds well with the mass loss (~3%) we 

measured from the BC after immersion in water (Fig.4.8). This may suggest that an x-ray 

amorphous phase was present within the un-aged specimen, which dissolved rapidly 

following immersion. Therefore our study suggested that the presence of this intermediate 

phase inhibit cell attachment to the surface of brushite. 
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4.4. Conclusion 

In the first section of this chapter, the resorbable calcium phosphate cement (brushite) beads 

were fabricated and it has been shown that cell attachment to the surface of a BC material can 

be influenced by retardant type. The use of citrate in the form of CA was shown to hinder cell 

attachment up to 7 days following immersion, this was shown not to be the case with pure 

brushite or when SP was used as a retardant. The initial poor attachment of cells to the surface 

of the cements made with CA could be attributed to the formation of an amorphous dicalcium 

citrate phase within the cement material which slowly dissolved following immersion in the 

culture medium. While this prevention of cell attachment if the material is implanted directly 

is not a significant problem, if the BCs are to be used as culture beads for cell delivery, poor 

cell attachment is highly undesirable. 
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Chapter 4B: A comparison of methods for the fabrication of 

brushite based culture beads 

 
In this section of this chapter, two other alternative methods; cement granulation technique 

and soaking Marble granules along with the cement casting method (used in the first section 

of this chapter) were introduced and used to produce brushite granules. The effect of 

manufacturing process of three types of BC beads on cellular behaviour was investigated. The 

granules were characterized with respect to their surface morphology, size, phase composition 

and specific surface area.  

 

Other properties of culture beads, such as surface topography and surface area as well as 

surface chemistry are  capable of directing cellular responses including initiation of cell 

attachment, proliferation and induction of bone nodule formation (Amini et al. 2012). 

In order to compare the biological behaviour of the granules produced with different methods, 

preliminary cellular tests on to the beads was carried out using MC3T3 cells.  The functional 

activity of the MC3T3 pre-osteoblast cells grown on three types of brushite-based culture 

beads to produce mineralised matrix and nodules was also examined by positive bone matrix 

mineralization indicated with Alizarin Red S staining. 
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4.5. Methods and materials 

4.5.1. Preparation of brushite culture beads with three different methods 

4.5.1.1. Cement casting method (denoted as sample C) 

The first of these brushite beads (C) was prepared by cement casting method which consisted 

of casting a paste of β-TCP and 3.5M orthophosphoric acid (OA) containing 200mM citric 

acid (CA) and/or 200mM sodium pyrophosphate (SP) retardants at a powder to liquid ratio 

(P/L) of 3 g/ml in to spherical shape moulds. The hardened beads were post-treated for 

optimization of cell attachment by immersion in culture media and sterilized with ethanol and 

then left overnight under ultraviolet light to complete the sterilization process. 

4.5.1.2. Cement granulation method (denoted as sample G) 

The brushite cement paste was prepared accordance with the method in previous section 

(3.2.1). The cement paste was allowed to harden at 37ºC for 1 h. The hardened cement was 

granulated in a high- speed food processor (Kenwood CH180 food processor, 0.35 L, 300W). 

Granules with different sizes were produced. Granules with the size of ~1000µm were 

selected by sieving. Afterwards the beads were repeatedly washed in PBS (200 mM, Sigma-

Aldrich, Dorset, UK) to eliminate unreacted OA. The samples (Figure 4.11b) were post-

treated for optimization of cell attachment by immersion in culture media and sterilized with 

ethanol (70%) (Fisher Scientific, Leicestershire, UK) and then left overnight under ultraviolet 

light to complete the sterilization process.  
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4.5.1.3 Soaking marble (CaCO3) granules in phosphate solution (denoted as 

sample M) 

Marble (calcium carbonate) granules (Merck KGaA, Darmstadt, Germany) with the size of 

~900µm were soaked in phosphate solution to prepare brushite granules.  To prepare the 

phosphate solution 10g of NH4H2PO4 (Merck, Germany) was dissolved in 50mL of double 

distilled water. Two grams of marble granules were then placed into the phosphate solution 

and soaked in sealed glass bottles at room temperature for 20h without stirring. The granules 

were filtered and washed with 1.5L distilled water. They were dried at 37º C overnight 

(Figure 4.11c). 

 

Figure 4.11: Brushite culture beads prepared with three different methods 

 

4.5.2. Physicochemical characterization of brushite culture beads 

Surface morphology and size of all fabricated beads were analysed with scanning electron 

microscopy (section 3.8.1). The composition and crystallinity of all of them were determined 

by x-ray diffraction (section 3.6.1). Specific surface area of the beads was measured by BET 

of nitrogen adsorption data (section 3.7.). Image J was used to analyze circularity of the 

fabricated granules. 
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4.5.3. Cell culture  

MC3T3 osteoblast precursor cells were seeded onto the beads after sterilization (section 3.1) 

with a density of 10
5
cells/ml in 2 ml DMEM correcting for the surface area of the beads. Cell 

growth on bead surfaces was recorded by MTT assay (section3.2) on the 1
st
, 3

rd
, 5

th
, 7

th
 and 

9
th

 day of culture. The functional activity of the MC3T3 pre-osteoblast cells grown on 

brushite beads to produce mineralised matrix and nodules was examined by positive bone 

matrix mineralization indicated with Alizarin Red S staining (section 3.6.) at defined time-

points. 

  

4.6. Results 

4.6.1. Effect of preparation route on brushite culture beads characteristics 

4.6.1.1. SEM and XRD 

Despite recent significant attention to brushite–based cement in hard tissue repair, there are 

very few studies that have focused on the use of this material in the form of granules. 

Accordingly, three different kinds of brushite beads were produced using three different 

methods. The granules were characterized with respect to their surface morphology, size, 

phase composition and specific surface area. The size of all three types of prepared beads was 

relatively consistent (~1000µm) with similar true density (Fig. 4.12, Table 4.3).  
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Figure 4.12: SEM micrograph showing the approximate size of brushite beads, a) (C) 

beads prepared by cement casting method, b) (G) beads prepared by cement 

granulation method, and c) (M) beads prepared by soaking marble granules in 

phosphate solution.   
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The XRD patterns of all granules exhibited relatively similar crystallinity. The XRD patterns 

from (M) beads showed only peaks indicative of brushite and the (G) and (C) beads displayed 

both peaks typical of brushite and some unreacted β-TCP (Fig.4.13). 

 

Figure 4.13: X-ray diffraction patterns of brushite culture beads prepared with three 

different methods: cement casting method(C), cement granulation method (G), and 

soaking marble granules in phosphate solution (M).   

SEM micrographs revealed distinct patterns of surface topography of the three kind of 

prepared beads (Fig 4.14.). The (C) group exhibited relative flat surface composed of sharp 

plate-like crystals with~10µm length and ~
 
0.1µm width (Fig.4.14i). The (G) beads exhibited 

a relatively rough surface composed of Water lily (WL)-shaped brushite crystals (Miller et al. 

2012) about ~100µm in diameter, which consisted of small crystals of approximately 1-2µm 

( Fig. 4.14ii). The (M) group also exhibited a relatively rough surface, however fewer (WL)-
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shaped brushite crystals and consisted of larger flake-like crystals approximately 25-30µm in 

length.  The difference exist in the surface topography of these beads may be attributed to the 

dissolution/reprecipitation process used during beads production. 

 
 

Figure 4.14: SEM micrograph showing the morphology of brushite beads prepared with 

three different methods. 
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4.6.2. A comparison of cellular attachment and proliferation on three types 

of brushite beads  

Following seeding onto the beads, all three types of the brushite cement beads supported cell 

attachment and proliferation; however there was a significant difference between the 

attachment of cells to the (M) beads compared with (G) and (C) groups. The cell attachment 

was significantly (p<0.001) higher than that of C and G beads (Fig. 4.15) which may be due 

to the surface characteristics of the M beads. 

 

Figure 4.15: The MTT results of 3T3 fibroblast cultures on three types of brushite 

culture bead. The cell attachment on brushite beads prepared with soaking marble 

method (M) was seen to be significantly higher (p<0.001) than that of C and G beads. 

The proliferative activity of cells during the 9 days culture period however was seen to 

be significantly (p<0.001) higher in the case of G beads and C beads respectively 

compared with the M group. BC samples without cell seeding were used as control. 

Sample Data points represent mean values of n = 9 specimens ± standard deviation. 
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 Over the duration of study the increase in cell number at day 9 compared with that at day 1 

was significantly (p<0.001) higher in the case of (G) beads, and (C) beads respectively 

compared with the (M) group (Table 4.3). The higher fold-increase of cell number on (G) and 

(C) beads may be due to the higher specific surface areas of the G and C beads (Table 4.3). 

 

Table 4.3. Properties of the beads and the percentage of increase in cell number of each 

bead during the 9-day culture 

Methods of brushite beads 

fabrication 

True 

Density 

(g/cm
3
) 

Circularity Surface area 

(m
2
/g) 

% Increase in cell 

number during 9 

day culture period 

Cement casting (C) 2.75 0.91±0.05 4.81±0.01 168 

Cement Granulation (G) 2.72 0.79±0.07 3.56±0.01 181 

Soaking Marble granules (M) 2.62 0.78±0.06 0.65±0.006 87 

 

 

4.6.3. A comparison of nodule formation by MC3T3-E1 cells grown on 

three types of brushite culture beads  

The functional activity of the MC3T3 pre-osteoblast cells grown on brushite granules to 

produce mineralised matrix and nodules was examined by positive bone matrix mineralization 

indicated with Alizarin Red S staining after one week of culture on the beads (Fig.4.16) 

Alizarin Red staining indicated that (M) and (G) groups of culture beads supported the 

mineralized nodule formation of pre-osteoblast MC3T3 cells; however little or no red staining 

was observed in the case of (C) group (Fig. 4.16 a) indicating that these beads do not 
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stimulate osteogenic activity of MC3T3 osteoblast precursor cells so much as the (G) and (M) 

groups (Fig.4.16 b &c). It was found that negative control with no cells showed no little 

alizarin red staining in isolated regions around the beads. The negative control was performed 

to ensure that the positive staining in the brushite-cell complexes was not because of the 

presence of the calcium in the material. 

 

Figure 4.16: Alizarin Red Staining of MC-3t3 cells indicating of mineralized matrix 

synthesis. a) cell-beads (C) prepared by cement casting method, b) cell-beads (G) 

prepared by cement granulation method and c) cell-beads (M) prepared by soaking 

marble granules in phosphate solution in  osteogenic media for 7 days.  Control samples 

are beads with no cells. Scale bar =100µm. 
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4.7. Discussion  

Brushite-based materials are promising candidates for the manufacture of culture beads in cell 

therapy for bone tissue regeneration as, due to their relatively high solubility, they may be 

resorbed and replaced by bone following implantation. Despite these attributes, no studies 

have focused on the methods for the fabrication of brushite culture beads and the evaluation 

of manufacturing process of the different methods and brushite granules properties on cellular 

behaviour.  Here, three different methods for the fabrication of brushite-based culture bead 

were evaluated and it was demonstrated that brushite culture bead characteristics are strongly 

dependent on preparation route.  The resulting differences in surface properties and chemistry 

were shown to strongly influence cell attachment and the proliferation of seeded cells on the 

three types of brushite culture beads.  The tendency of the fabricated beads to initiate bone 

nodule formation in vitro was also shown to be strongly influenced by manufacturing process.  

The size of all three type of fabricated beads was relatively consistent (~1000µm; Fig. 4.12) 

with similar true density (Table 4.3). All granules consisted of predominantly brushite (Figure 

4.13).  The XRD results confirmed that the samples exhibited a similar level of crystallinity 

and demonstrated peaks indicative of only brushite in the case of (M) group and peaks typical 

of brushite and some un-reacted β-TCP in the case of (G) and (C) groups (Fig. 4.13). SEM 

micrographs, however, revealed distinct surface topographies for the three formulations of 

prepared beads which may be attributed to the dissolution/reprecipitation process used for 

producing the beads (Fig 4.14). 

All three types of brushite cement bead supported cell attachment and proliferation; however 

the cell attachment on (M) group beads was significantly (p<0.001) higher than that on the (C) 

and (G) beads (Fig. 4.15) which may be due to the surface characteristics of the M beads. 
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Surface topography, has been reported to have a strong influence on the initial cellular events 

at the cell-material interface (Jin et al. 2012; Lampin et al. 1997; Müller et al. 2008). In this 

study the (M) group beads in comparison with (G) and (C) groups exhibited a relatively rough 

surface with larger water lily (WL) shaped brushite crystals and this seems to be more 

supportive for MC3T3 cells attachment compared with the flat plate (FP) like crystals and 

smoother surfaces that were present on the beads prepared using cement casting and 

granulation.  Osteoblast-like cells have previously been shown to attach to rougher surfaces 

more extensively than to comparable smoother surfaces (Deligianni et al., 2000; Byon et al., 

1996). Surface roughness affects the kinetics of protein adsorption and the structure of the 

adsorbed protein that influence cell reaction (Lampin et al. 1997). 

Over the duration of study, the proliferative activity of the seeded cells was significantly 

(p<0.001) higher in the case of (G) beads, and (C) beads respectively compared with the (M) 

group (Table 4.3) this could be attributed to different specific surface areas of similar-sized 

fabricated brushite culture beads. The specific surface areas of the (G) beads and (C) beads 

were higher than that of (M) beads. Surface roughness might also have an effect on 

proliferative activity; it is known from the literature that, low cell proliferation was observed 

on surfaces of the highest roughness (Ponsonnet et al. 2002; Wall et al. 2009). Variations in 

surface texture or microtopography can influence cells in a wide variety of ways by 

modifying diffusion through the channels thus influencing the access of nutrients and the 

escape of their waste products (Ito 1999; Von Recum and Van Kooten 1996). However in this 

study, as the surface roughness of (M) and (G) groups were similar compared to the surface of 

(C) groups the higher proliferative activity of seeded cells on (G) and (C) beads must relate to 

their different specific surface area rather than surface topography.  



 

84 
 

The capacity of the cells on all three types of culture beads for the synthesis of mineralized 

matrix was assessed by Alizarin Red staining. Control cultures with no cells showed no 

alizarin staining (Fig. 4.16). Cell-microcarrier complexes in osteogenic media in the case of 

(G) and (M) beads showed positive staining indicating the ability of cultured cells on these 

beads to enable the deposition of mineralized matrix (Fig. 4.16) whereas in the case of the C 

groups with flat surface composed of sharp plate-like crystals showed little or no alizarin red 

staining indicating inability to stimulate osteogenic differentiation of seeded cells. Cell 

aggregate 

differentiation and matrix production have also been reported to be altered by surface 

topography (Boyan et al. 1996; H.-I. Chang and Wang 2011; Kieswetter et al. 1996) . It has 

been demonstrated that rough surfaces were also superior to smooth surfaces in promoting 

osteogenic induction of osteoblasts- like cells (Boyan et al. 1996).  In this study the circularity 

of the fabricated brushite granules were evaluated using Image J and it was shown that the 

cellular behaviour of seeded cells did not depend on the circularity of the granules and no 

correlation was observed between circularity and cellular attachment and proliferation.  

4.8. Conclusion 

Different methods were used to fabricate brushite based culture beads. Dependence on the 

characteristics of the granules on the preparation route was studied with respect to cell 

attachment to their surfaces and proliferation. All three types of beads supported cell 

attachment and proliferation. The (M) group, however, exhibited the highest extent of initial 

cell attachment among the groups. The (G) group demonstrated the highest increase in cell 

population during the 9-day culture period.  The (M) and (G) culture beads have been shown 

to have the ability to stimulate osteogenic differentiation of MC3T3 osteoblast precursor. 

Surface topography has been shown to be the most important factor in initial cell attachment 
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and promoting osteogenic induction of osteoblasts- like cells.  Among the formulations tested, 

all have potential for further use as culture supports, however, the beads formed by 

granulation performed the best with respect to both cell attachment and mineralisation.  
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Chapter 5 

THE DEVELOPMENT OF CALCIUM PHOSPHATE/GELLAN 

GUM NANO-COMPOSITES FOR CELL DELIVERY  
 

Hydrogel materials are widely studied for application in tissue regeneration because of their 

tissue-like properties. Namely, they have a high water content, can be cytocompatible, and 

exhibit a morphology akin to that of the extracellular matrix (ECM).  Furthermore, they can 

be injected into the desired site and can gel through relatively mild reactions, causing a 

minimal inflammatory response (Birdi et al. 2012; J. L. Drury and Mooney 2003b; Malafaya 

et al. 2007).   

Many different hydrogels have been investigated for application in the body; one such 

material is gellan gum (GG).  GG is a natural polysaccharide manufactured by microbial 

fermentation of the Sphingomonas paucimobilis bacterium.  It forms a stable gel in presence 

of cations in aqueous conditions, through the formation of three-fold double helices, which 

subsequently aggregate to form a three dimensional network  upon lowering the temperature 

under mild conditions (Evageliou et al. 2010; J. T. Oliveira et al. 2010a).  Endotoxin-free GG 

has been used for drug delivery, for cell immobilization, and as a substrate in tissue 

engineering (Silva-Correia et al. 2011; A. M. Smith et al. 2007). The use of gellan gum is 

limited, however, owing to their imperfect cell affinity, biocompatibility or other physical 

characteristics (Wang et al. 2008) . One approach to improve these deficiencies is to 

incorporate synthetic calcium phosphate (CaP) into the biopolymer matrix. In part a of this 

chapter, therefore, synthetic HA of two different crystallite sizes: one on the nano and the 

other on the micro scale have been used to manufacture HA/gellan gum (GG) composites to 
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achieve a more physiologically relevant range of mechanical properties and in the second 

section, part b, the influence of incorporation of HA nanocrystals into the GG matrix on 

behaviour of GG/HA culture beads in terms of cell adhesion, proliferation was investigated in 

spinner flask and compared to that of static cultures. The ability of the fabricated beads for 

synthesis of mineralized matrix was also assessed. 
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Chapter 5A: Tailoring gel modulus using dispersed nano-

crystalline hydroxyapatite 

Considerable recent research has focused on understanding the importance of elastic modulus 

of scaffold materials on the phenotypes of attached or encapsulated cells, indeed researchers 

are now focussing on controlling new tissue formation by adjusting modulus (Colley et al. 

2009; Discher et al. 2005; Engler et al. 2006). For example, it has been shown that an elastic 

matrix ranging from (20-40KPa) favours the differentiation of naive mesenchymal stem cells 

(MSCs) to osteoblasts, in contrast an elastic modulus of around 8-17KPa, favours the 

differentiation of MSCs to myoblasts (Engler et al. 2006).  One way to adjust the mechanical 

properties of a hydrogel is to reinforce the structure using inorganic particles such as 

hydroxyapatite (HA), the predominant mineral constituent of bone (Swetha et al. 2010).  

Many researchers have tried to recapitulate this structure using a combination of HA with a 

variety of biopolymers, for example, Lin and Yeh fabricated a series of alginate/HA 

composite scaffolds by phase separation.  They demonstrated that the incorporation of HA 

into alginate hydrogel improved both cell attachment and mechanical properties of the 

composite (Lin and Yeh 2004). The incorporation of HA nanocrystals into chitosan- 

carboxymethyl cellulose scaffolds has also been reported to improve the compressive strength 

and modulus of the scaffold intended for bone tissue engineering (Liuyun et al. 2008). 

The non-stoichiometric HA crystallites found in bone are nanocrystalline (Rungsiyanont et al. 

2011) and it is thought that the impressive mechanical properties exhibited by bone may be 

partly attributed to the intercalation of these nanocrystals into the collagenous matrix, which 

would not be possible if the particulate was microcrystalline.  Despite the apparent 

importance of crystallite size to the overall mechanical performance of such a biopolymeric 
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structure, to date no-one has evaluated the influence of crystallite size on the mechanical 

properties of hydrogel composite materials.  This section of this chapter, therefore, compared 

the mechanical properties of GG hydrogel reinforced using micro and nanoscale HA crystals 

at different concentrations.  The mechanical properties of the gel were determined using a 

universal mechanical testing machine and the influence of HA seeding on gel structure was 

determined using scanning electron microscopy.  

 

5.1. Methods and materials 

5.1.1. Synthesis of nano-sized hydroxyapatite 

Nano-sized hydroxyapatite (nHA) particles were prepared by precipitation. Briefly, 

Ca(NO3)2.4H2O (calcium nitrate, Fisher Scientific, Leicestershire, UK) and (NH4)2HPO4 

(ammonium phosphate, Fisher Scientific, Leicestershire, UK) were dissolved in double-

distilled water.  The pH of both suspensions was adjusted to 11 with concentrated NH4OH 

(aqueous ammonia, Fisher Scientific, Leicestershire, UK). The Ca(NO3)2.4H2O was added 

drop-wise to the vigorously stirred (NH4)2HPO4, whilst maintaining the pH at 11 by further 

addition of NH4OH. The final suspension was then left to stir for 1 h at room temperature.  

This resulted in the formation of a milky white precipitate. The precipitated HA was separated 

from the solution by centrifugation at 3000 rpm for five minutes, which was repeated five 

times. The HA slurry was dried at 65°C for 24 h and the dried HA was then ground to powder 

using a pestle and mortar. 
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5.1.2. Synthesis of micro-sized hydroxyapatite 

To compare the effect of the size and crystallinity of the HA particles on the mechanical 

properties of the hydrogel, micro-crystalline HA (mHA), which consisted of a combination of 

HA and a small quantity of β-TCP (β-Ca3(PO4)), was prepared. The microcrystalline material 

was prepared by sintering half of the nHA in a furnace (Carbolite, CWF, 1300, UK) at 800°C 

for 1 h.  The non-heat treated part of the batch was designated as nHA and the sintered part as 

mHA. 

5.1.3. XRD of HA powders 

Prior to preparation of the composite, the phase composition and crystallinity of the ‘‘as 

prepared’’ and calcined HA powder were analysed by using an X-ray diffractometer (section 

3.6.1). 

The peak broadening of the XRD peaks was used to estimate the crystallite size in a direction 

perpendicular to the crystallographic plane based on Scherrer’s formula (3.1) as follows (Pang 

and Bao 2003): 

   
    

        
 

Where  s is the crystallite size (nm), λ the wavelength of  -ray beam (λ=0.15406 nm for Cu 

Kα  radiation), FWHM the full width at half maximum for the diffraction peak under 

consideration [rad]; and θ the diffraction angle [º]. The diffraction peak at 2 =26.04 was 

chosen for calculation of the crystallite size since it was clearly identifiable in both material 

types and was relatively uninfluenced by adjacent peaks. 

Specific surface area of the both synthesized nano-sacle and micro-scale hydroxyapatite were 

measured (Table 5.1) by BET surface area analyzer (section 3.7.).  

(5.1) 
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5.1.4. Preparation of GG/HA composite 

To prepare the pure GG hydrogel, low-acyl gellan powder (Kelcogel, GG-LA, Atlanta, USA) 

was dissolved in distilled water at 2.5% (w/w) at 90ºC with continuous stirring. The 

concentration of GG hydrocolloid was kept at a constant 2.5% (w/w) for all the composites. 

The prepared HA nanoparticles were incorporated into the GG dispersion to make the 

composite. Five and three composites were prepared with nHA and mHA, respectively (Table 

5.1) to investigate the effect of size and crystallinity of hydroxyapatite on composite 

mechanical properties. The un-sintered (nano-size) and sintered (micro-size) HA were added 

into gellan solution in the form of a sol and as fine powders, respectively.  

In the case of HA sol, the nano-size HAP (un-sintered) was first dispersed completely in 

double-distilled water with the homogeniser at 26,000 rpm for 3 min. The dispersion was then 

added to the gellan colloid and stirred continuously, then 5mL of CaCl2 (calcium chloride, 

Merck, Germany) was added and stirred continuously for 1 min. The resulting solutions were 

poured into a cylindrical mould of diameter 21mm and height 80mm and transferred to a 

refrigerator at 4⁰C to accelerate gel formation. 

The influence of size and crystallinity of the HA in two forms of nano-scale and micro-scale 

crystallite size on the mechanical properties of the GG hydrogel and composites was 

determined by compression testing using a Universal Testing machine (5848, Instron, UK) at 

a cross-head speed of 20 mm/min. The samples were cylindrical with a diameter of 21mm and 

a height of 20mm and were cut from the previously prepared cylindrical specimens using a 

razor blade. The mechanical properties (compressive strength and bulk modulus) were the 

mean of eight measurements. A t-test was used to determine the statistical significance of the 

differences in mechanical properties. 
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Compressive strength can be calculated as follows: 

  
 

 
                             

Where F is the load applied (N) and A is original cross sectional area  

And for bulk modulus, initially Strain is given by: 

  
  

  
                         

Where    is reduction of length and     is original length of the samples 

And Young’s modulus can be calculated as follow: 
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Table 5.1. Preparation conditions for GG/HAP composite 

Gellan gum/HA composite   

Gellan gum solution 

concentration 

(Wt %) 

HA content (wt %) Surface area (m
2
/g) 

 Sol 

(nano-size) 

Powder 

(micro-size) 

Un-sintered 

(nHA) 

Sintered 

(mHA) 

2.5 0 0 
  

2.5 0.25 0.25 
  

2.5 2.5 2.5 84.72±0.06 7.93±0.02 

2.5 25 25 
  

2.5 50 - 
  

2.5 75 - 
  

 

5.2. Results 

5.2.1. Determining phase composition and crystallite size of synthesised HA 

particles 

The XRD patterns from the “as prepared” HA after drying at 65°C (un-sintered) exhibited 

only peaks indicative of HA and the samples that were sintered at 800 °C displayed both  

peaks typical of HA and some β-TCP as a result of decomposition of HA during sintering 

(Figure 5.1).   
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 Figure 5.1: Powder diffraction pattern of nanocrystal synthesised HA ‘as prepared HA’ 

at 65
o
C temperature (top) and micro-scale crystallite HA sintered at 800

o
C temperature 

(bottom). Peaks indicative of HA and β-TCP are marked with rectangles and triangles, 

respectively. The diffraction peak at 2 =26.04 (002) was chosen for calculation of the 

crystallite size. Inset: the crystallite size of HA calculated by Scherrer’s equation. 

In the case of the non-heat treated specimen, the peaks indicative of HA were broader than 

those of the sintered HA, indicating an increase in particle size following heat treatment.  The 

calculated crystallite size (Xs) of the HA before and after sintering using Scherrer’s formula 

were 52 and 150 nm, respectively (Figure 5.1).  
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5.2.2. Determining the morphology of the heated and non-heated HA 

crystals 

TEM micrographs were also used to estimate the average HA crystallite size and morphology 

of the heat treated and non-heat treated specimens (Figure 5.2). The crystallite size of the HA 

synthesized at low temperature consisted of elliptical HA crystals of approximately ~50 nm in 

length and ~20nm in width and the particles on the grid were highly agglomerated.  In 

comparison the HA particles sintered at 800⁰ C appeared to be larger than the nHA particles 

(as shown in Figure 5.2), but were still in the form of elongated elliptical crystallites.  These 

particles, however, were of a more regular morphology and showed less tendency to 

aggregate on the grid than the nHA particles.  

 

 

Figure 5.2: TEM micrograph of the as- prepared HA powder, a) before heat treatment 

and b) the HA powder after heat treatment. 
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5.2.3. Effect of size and crystallinity of HA particles on compressive 

strength and modulus of the composites 

Prior to inclusion of HA crystals into the GG matrix, the GG hydrogel exhibited a 

compressive strength and modulus of 39.9 ± 2.6 KPa and 94.3 ± 7.3 KPa, respectively. 

Following the inclusion of nano sized HA crystals into GG matrix, the compressive strength 

and modulus of the composite significantly increased (p<0.001) to 70.6 ± 4.5 KPa and 180.9 

± 8.1 KPa, respectively (Figure 5.3A & 5.3B). In the case of mHA crystals, however, there 

was a significant (p<0.001) reduction in the mechanical properties of the composite (Figure 

5.3A & 5.3B).  

 

 

Figure 5.3: (A) The compressive strength and (B) The bulk modulus of the 2.5%GG,  

2.5%GG ⁄ 2.5%mHA,  and 2.5%GG ⁄ 2.5% nHA (w/w).  Results are displayed as mean 

of n = 8 specimens ± standard deviation. 
*, #

 p<0.001 
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5.2.4 Effect of size and crystallinity of HA particles on the nanostructure of 

the composite 

To further determine the effect of nHA and mHA crystals on the nanostructure of the 

composite, SEM images of the microstructure of the unmodified GG (Figure 5.4a, 5.4b), 

GG/m-HA (Fig. 5.4c, 5.4d) and GG/n-HA (Figure 5.4c) were collected.  From Figure 5.4 it 

can be noted that the unmodified GG hydrogel has a nanostructure with pore size diameter of 

~0.2-0.5 µm. The inclusion of micro-sized HA crystals resulted in a less dense composite 

matrix with larger pore sizes of approximately 1 µm compared to GG hydrogel. In 

comparison, a densely packed mesh with smaller pore size was formed in the case of the gel 

containing the nHA particles (Figure 5.4e, 5.4f).  
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Figure 5.4: SEM micrographs of a,b) 2.5%GG hydrogel, c,d) 2.5%GG/2.5%mHA (w/w), 

and e,f) 2.5%GG/2.5%nHA (w/w). Scale bars = 5µm. 
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5.2.5. Effect of nHA and mHA content on the mechanical properties of 

composite 

To investigate the effect of the HA content on the mechanical properties, further 

experimentation was carried out with nHA concentrations in the range of 0.25 – 75wt%. The 

compressive strength and bulk modulus of the composite increased with the nHA content 

(Figure 5.5A & 5.5B). The maximum value of compressive strength (162.5±9.3 KPa) (Table 

5.2) was observed when the nHA content reached 50 wt%.  Particle reinforcement of the gel 

had a similar effect on bulk modulus of the GG/nHA composite as it did to the compressive 

strength (Figure 5.5B). The bulk modulus of the composite was increased by 9 fold from 

94.3±7.3 KPa without nHA addition to 880.8±67.4 KPa (Table 5.2) when the nHA was 

incorporated at 50 wt.%, however there was a reduction when the HA content was increased 

to 75 wt%. This suggests that the nHA crystals at high concentration of 75 wt% might not 

produce a homogenous composite, perhaps as a result of particle agglomeration.  It is 

noteworthy that the incorporation of nHA crystals even at a concentration of 0.25% was 

effective in improving the mechanical properties of the composite (Figure 5.5A& 5.5B).  In 

comparison, there was no general trend increase in the mechanical properties of the mHA/GG 

composite when the mHA content was increased (Figure 5.5A&5.5B). In the case of mHA 

only three concentrations of 0.25% and 2.5% and 25% were examined as the large crystal size 

of HA at high concentration led to high levels of agglomeration within the gel and 

subsequently heterogeneity of the samples.  As such, it was not possible to make gel samples 

using mHA/GG at concentrations higher than 25%. The incorporation of mHA crystals even 

at a concentration of 0.25% decreased both compressive strength and bulk modulus of the 

composite compared to GG hydrogel and nHA/GG composite. This effect was significant 

when the concentration of mHA increased to 2.5% (Figure 5.5A&5.5B). An increase in the 
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compressive strength and bulk modulus of the mHA/GG composite was observed only when 

the mHA concentration was at 25 wt. %. The large errors associated with the measurement of 

mechanical properties at a ceramic loading of 25% mHA/GG could be as a result of gel 

heterogeneity.  

 

Figure 5.5: The compressive strength of A) nHA/GG and mHA/GG composites and B) 

The bulk modulus of the nHA/GG and mHA/GG composites with different HA contents. 

The GG concentration for all composites were constant (2.5wt%). Results are displayed 

as mean of n = 8 specimens ± standard deviation. 
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Table 5.2. Compressive strength and bulk modulus of the composites 

HA content 

(Wt.%) 

Compressive strength (KPa)  Bulk modulus (KPa) 

  GG/nHA  GG/nHA 

      0 
   39.9±2.5          94.3±7.3 

   0.25    52.2±2.6           95.7±6.1 

    2.5   70.6±4.4           180.9±8.1 

    25   124.1±3.8           544.6±24.1 

    50   162.5±9.2           880.7±67.3 

 

 

5.2.6. Deformation behaviour of GG hydrogel and GG/HA composites 

The stress-strain curves for the unmodified GG, and modified GG hydrogel reinforced using 

micro and nanoscale HA crystals, are shown in Figure 5.6.  From the stress- strain curves one 

may note that the deformation behaviour of unmodified GG contrasted with the GG/HA 

composites. In the case of the GG hydrogel the initial fracture initiated at ~40 KPa, followed 

by a sharp reduction in stress (Figure 5.6a). The deformation behaviour of GG/mHA and 

GG/nAH, however, differed dramatically from unmodified GG in that the load required to 

enable deformation of the specimens continued to increase (Figure 5.6b and 5.6c). Crack 

growth in the material was slow indicating a different failure mechanism.  
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Figure 5.6: Typical stress-strain curves of a) unmodified GG hydrogel, b) 2.5%GG/ 

25%mHA, and c) 2.5%GG / 50%nHA. 

 

5.3. Discussion 

Hydrogels are widely used in tissue regeneration since, on the nanoscale, they are of similar 

morphology to the extracellular matrix (ECM).  They also exhibit a high water content 

enabling mass transport of nutrients to and waste products from encapsulated cells.   One 

important parameter, which has been shown to influence the type of tissue formed around the 

material, is its elastic modulus.  It has been proposed that controlling the modulus of the 

implanted materials may therefore influence tissue formation in vivo (Byrne et al. 2007). As a 
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consequence several authors have modified the mechanical properties exhibited by hydrogels 

using hydroxyapatite particles as fillers (Lin and Yeh 2004; Liuyun et al. 2008; Swetha et al. 

2010).  To date, however, no-one has systematically evaluated the effect of size and 

crystallinity of the encapsulated HA particles on the bulk mechanical properties of the 

composite. 

The level of crystallinity and the morphology of the reinforcing HA particles used in this 

study were adjusted by sintering at a temperature low enough to avoid complete phase 

transformation to β-tricalcium phosphate (β-TCP; Ca3(PO4)2).  Indeed XRD demonstrated that 

sintering at 800°C resulted in no phase change, but did result in a significant increase in the 

crystallite size of the material (Figure 5.1).  This was further confirmed using transmission 

electron microscopy (Figure 5.2) and is in agreement with previous research (Pang and Bao 

2003; Santos et al. 2004).  

The incorporation of the nHA reinforcement resulted in significant increases in both the bulk 

modulus and yield strengths of the composite materials (Figures 5.3 and 5.5), yet 

reinforcement using the mHA resulted in a significant reduction in both yield strength and 

bulk modulus (Figure 5.3).  The mechanical properties of a composite material are determined 

by factors, including: the mechanical properties of the filler material, the volume fraction of 

the reinforcing agent, the homogeneity of the composite matrix and stress transfer between 

the reinforcing particulate and the bulk matrix (Ebrahimian-Hosseinabadi et al. 2011).  In the 

case of the composite investigated in this study, it is likely that the size effect of the 

reinforcement may be attributed to both nanostructural changes in the gel matrix and also 

matrix heterogeneity.  Indeed, SEMs of the gel nanostructure demonstrate that the mean pore 

size of the nHA reinforced gel is not significantly influenced by nHA addition  (Figure 5.4), 
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whereas the pore size of the mHA reinforced material is significantly increased (Figure 5.4).  

The gelation of GG proceeds through the formation of triple helices which subsequently 

aggregate to form fibres.  The presence of the mHA may have disrupted this process, resulting 

in the formation of fewer cross-links between the polymer fibres and hence a less dense 

network with a larger mean pore size.  Such a nanostructural change has previously been 

reported to cause a significant reduction in the mechanical properties of chitosan gels (Francis 

Suh and Matthew 2000) .   GG junction zones are thought to be ~1.5 nm in diameter and are 

formed from four aggregated gellan helices (Yoshida and Takahashi 1993).  It may be that the 

small crystallite size of the nHA prevented any significant change in the molecular 

organisation of the gel matrix.  It may also be that the relatively high specific surface area of 

the nHA enabled more effective wetting of the crystallites than the mHA crystallites, thus 

enhancing the interaction between the polymer matrix and the ceramic phase (Rajkumar et al. 

2011).  Such an increase in matrix/reinforcing agent interaction would result in a significant 

increase in both the strength and stiffness of the material.  Interactions between the gellan and 

the nHA, may have maintained the dispersion of the particulate during gelation, resulting in a 

more homogeneous gel matrix than in the case of the mHA reinforcement.  Large-scale 

heterogeneities in gels have been previously reported to cause a weakening of the bulk 

material (Zhou et al. 2009).  Increasing levels of nHA loading in the material resulted in a 

monotonic increase in both yield strength and bulk modulus up to a loading of 50wt. % after 

which, there was a significant reduction (Figure 5.5).  It is possible, therefore that it is at this 

point that the weight fraction of particles became sufficient that the GG was not able to 

maintain crystallite dispersion resulting in the formation of heterogeneities within the 

composite matrix. 
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5.4. Conclusion  

In this part of this chapter it was shown that the size and crystallinity of the calcium 

phosphate crystals have significant effects on the mechanical properties of a GG matrix.  It 

was shown that while the inclusion of nHA significantly increased the compressive strength 

and bulk modulus of the GG hydrogel, the microscale (mHA) material acted to weaken it 

(2.5wt. %HA).  Furthermore, it was found that by increasing the content of the nHA in the 

composite to 50 wt%, the yield strength and bulk modulus was increased by four- and nine 

fold, respectively. By using different levels of nHA reinforcement in the gel matrix, therefore, 

it will be possible to produce materials of defined modulus, which may be investigated in the 

future to control cell differentiation.  
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Chapter 5B: nHA/gellan gum nano-composite beads with 

osteogenic potential  

 

In the previous section it was shown that the incorporation of nano-crystalline hydroxyapatite 

into a gellan matrix was effective in adjusting the mechanical properties of the nano-

composite which would be beneficial for the control of desired tissue formation.  In this 

section of the chapter, nano-sized hydroxyapatite was used to manufacture gellan 

gum/hydroxyapatite culture beads. 

Here we have fabricated uniform pure GG beads and nHA/GG culture beads using a water-in-

oil method. The optimum level of incorporated nHA into GG matrix required to initiate cell 

attachment was determined. MC3T3 cell attachment and proliferation were evaluated to 

demonstrate cell responses on GG and GG/nHA beads with various nHA loading and 

compared with that of a GG/nHA disk  and conventional tissue culture plastic. 

The feasibility of using the GG/nHA beads in spinner flask cultures for cell expansion was 

also evaluated and compared to that of conventional monolayer cultures and static beads 

cultures. Furthermore the ALP activity of the MC3T3 pre-osteoblast cells grown on GG/nHA 

beads and the ability to produce mineralised matrix and nodules was examined.  Preliminary 

experiments were performed with BMSC cells to evaluate the potential of the beads to 

stimulate osteogenic differentiation, 
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5.5. Methods and materials 

5.5.1. Synthesis of GG/nHA and GG beads using water-in-oil technique 

The GG/nHA beads with an average size of 500µm were prepared using a water-in-oil 

emulsion method as illustrated in Figure 5.7. Briefly, The GG solution was prepared by 

dissolving low-acyl gellan powder in distilled water at 2.5% (w/w) at 90°C. HA sol was 

prepared by dispersing the nHA powder in distilled water with the homogenizer at 24,000 

rpm for 3 min.  The sol was then added into 2.5% gellan solution at 90°C. The mixture of 

GG/nHA solution was added into pre-heated 90˚C oil phase under stirring at 500 rpm for 10 

minutes. The mixture was finally transferred into an excess amount of 1wt% CaCl2 solution to 

enhance the gel strength.  

The pure GG beads were also prepared with the aforementioned method without addition of 

HA sol into the GG solution as a control. The fabricated beads were sterilized with ethanol 

(70%; Fisher Scientific) and then immersed in PBS and left overnight under ultraviolet light 

to complete the sterilization process  for cell culture.  
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Figure 5.7: The production of GG/nHA beads by the water-in-oil method and images of 

fabricated beads a) GG beads prepared without HA sol addition, b) GG/0.25%nHA and 

c)GG/ 25%nHA beads 
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To determine the optimum level of nano-hydroxyapatite in to GG matrix to facilitate cell 

attachment, various HA contents of 0.25%, 2.5%, 5% and 25% (w/w) were used to 

manufacture nHA/GG culture beads. 

Disc-shaped samples of the GG/HA composites were also prepared by pouring the gellan-

nHA mixture into a disk mould of diameter 13mm and thickness of 2mm and transferred to a 

refrigerator at 4
°
C to accelerate gel formation. Samples were then sterilized using the same 

method as for the beads. 

 

5.5.2. Cell culture on the GG, GG/HA beads, and GG/HA disk shape 

samples 

5.5.2.1. Static condition  

Mouse MC3T3 cells were used to evaluate the potentials of GG/HA beads as candidate 

culture beads for cell delivery.  The GG beads and GG/HA beads were used in a concentration 

of 0.1g approximately of 200 beads, per well of sylgard pre-coated 24-well plate. The total 

surface area of the beads in each well was around 2.2cm
2
 (equivalent to the surface area of a 

well of a 24-well plate as control).  

Cells were seeded onto the sterile GG, GG/HA beads and disc-shaped samples separately at 

final density of 2 x10
4
 cells /cm

2
 surface of GG /nHA beads and GG /nHA disks.  The 

viability of cells seeded on to the surface of the beads was analysed using an MTT assay after 

culturing for 7 days (section 3.2).  

The number of adherent cells on to GG /nHA beads was also labelled with DAPI (section 3.3) 

and samples were visualised using confocal laser microscopy (Leica, UK).  
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5.5.2.2. Dynamic condition-spinner flask 

For stirred cultures, 25-ml spinner flasks from Wheaton were used, with a final volume of 25 

ml. The spinner flasks were placed on a magnetic stirrer inside a 37°C incubator with 5% 

CO2. The GG/HA beads were used in a concentration of 180mg, per flask. The total available 

surface area of the beads in each flask was around 2.2cm
2
 (equivalent to the surface area in 

static condition). Cell seeding was performed at final density of 2 x10
4
 cells /cm

2
 surface of 

nHA/GG beads with intermittent stirring for 2 minutes every 30 minutes at 25 rpm for 3 

hours, it was then increased to 45 rpm for 1.5 hours. Continuous stirring at 45, 50, 55 to a 

final 65 rpm was continued at 15 minute intervals (Tebb et al. 2006). Sampling of the cell-

beads complexes were performed at required time-points for evaluation of cell adherence and 

proliferation. The cell adherence and proliferation was determined using MTT assay (section 

3.2) and scanning electron microscopy as described in section 3.8.1.1 was used to observe the 

cell morphology and distribution  

 

5.5.3. Cell differentiation  

The functional activity of the MC3T3 pre-osteoblast cells grown on GG/HA beads was 

examined by measuring ALP activity as described in section 3.4. Furthermore mineralised 

matrix and nodules formation was estimated by Alizarin Red S staining, at interval times 

(section 3.5). The same experiment was performed with BMSCs to demonstrate the potential 

of these beads to stimulate osteogenic differentiation. 
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5.6. Results 

5.6.1. Characterization of fabricated beads 

5.6.1.1. Optical and SEM analysis 

Pure GG culture beads and nHA/GG composite culture beads with various nHA content of 

0.25%, 2.5%, 5% and 25% (w/w) were successfully fabricated using emulsification method. 

Figure 5.8 is the image of GG/nHA beads taken by bright field microscope. Twenty beads 

were chosen randomly to measure the beads diameter. As shown spherical composite beads 

with diameter approximately 300-500 µm could be fabricated using the emulsification method. 

The SEM micrograph was also used to estimate the average size of fabricated beads 

confirming formation of uniform spheres and to examine the morphology of the beads (Figure 

5.9A).  The surface morphology shows the presence of fine nHA particulate material 

distributed evenly and confirmed that the GG and nHA mixed homogeneously. It can also 

been shown a relatively smooth surface with a textured surface on the micro-scale (Figure 

5.9B). 

 

Figure 5.8. The optical micrograph of composite GG/nHA beads fabricated using 

emulsion technique. The average diameter of the beads is between 300-500µm. 
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Figure 5.9: SEM micrograph of GG/nHA composite fabricated beads at different 

magnification. 
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5.6.2. Influence of nHA loading on cytocompatibility 

After fabrication of the composite beads with various nHA content, the cellular response to 

the beads was investigated using the MTT assay. Preliminary cellular tests after culturing the 

beads for 7 days demonstrated that the unmodified GG and the GG/nHA composites with 

nHA concentration up to 2.5% (w/w) did not support cell attachment and proliferation at any 

time point throughout the study (Fig. 5.10). The cell attachment and proliferation was initiated 

when the nHA content was increased to 5wt% and there was a steady increase in cell number 

over the duration of the experiment (Fig 5.10).  

 

Figure 5.10:  Results from the MTT assay of MC-3T3 cell grown on GG, GG/nHA with 

various nHA content and tissue culture plastic (TCP). Gellan beads without cell seeding 

were also used as control sample. 
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Increasing the nHA loading of the composite to 25wt% resulted in significant increase (p< 

0.001) in the cell number on the culture beads over a cultivation period of 7 days (Fig. 5.11). 

No significant difference was observed in cell attachment when the nHA loading of the 

composite was increased however, significant difference (P<0.001) in proliferation of MC3T3 

pre-osteoblast cells was found between GG/5%nHA and GG/25%nHA beads. GG culture 

beads were used as control and it can be seen that they exhibited no cell attachment and 

proliferation at all over the 7 days of cultivation. 

 

Figure 5.11: Comparison of cell proliferation on GG/5%nHA and GG/25%nAH culture 

beads determined by MTT assay of MC-3T3 cell grown on to the beads shown as 

absorbance. GG beads didn’t facilitate cell attachment and cell growth at any time point 

throughout the study. The number of cells on GG/25%nHA beads was seen to be 

significantly increased (p<0.001) than that of GG/5%nHA beads over the cultivation 

period. Data points represent mean values of n = 9 specimens ± standard deviation. 

Time(day)

0 1 2 3 4 5 6 7 8

A
b

so
rb

a
n

c
e
(n

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

GG beads

GG/5%HA beads

GG/25%HA beads



 

115 
 

The cell attachment and cell proliferation on to the GG/5%nHA and GG/25%nHA beads were 

also visualised and compared at day 5 using DAPI staining. The results have confirmed that 

the fabricated culture beads supported cell attachment and proved the presence of proliferative 

cells on to the beads and also as well as MTT results have demonstrated that the culture beads 

with 25% (w/w) nHA content showed significant increase in cell number and proliferation 

(Figure  5.12). 

 

Figure 5.12: Cell attachment and proliferation was visualized and compared under 

confocal laser microscopy by using nuclear stain DAPI. a and d) cell- free beads (control 

samples), b and e) cell-GG/5%nHA beads complexes, c and f) cell-GG/25%nHA  beads 

complexes after culturing  for 5 days. The images confirms significant increase in cell 

number and proliferation of MC3T3 cells on GG/25%nHA beads compared to that of 

GG/5%nHA beads 
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5.6.3. Comparison of cell growth in static and dynamic culture condition  

As a result the GG/25%nHA was selected and considered ideal for further cell culture study in 

spinner flask. The feasibility of using these beads in spinner flask cultures for cell expansion 

was evaluated and corasedmpared to that of conventional monolayer cultures and static beads 

cultures (Fig 5.10). Following seeding onto the beads at various conditions, there was a 

significant difference between the attachment and proliferation of MC-3T3 cells to the 

dynamic GG/25%nHA culture beads as compared to monolayer culture and static culture 

beads (Figure 5.11). In dynamic culture conditions, the cells after the inoculation enter a lag 

phase from day 0 to 3 days followed by a log phase of cell proliferation (day 4-6) leading to 

the maximum cell growth at day 7.  In contrast the proliferation in static monolayer (control 

sample) proceeded as might be expected, the cell number increased slowly (day 1-5) and was 

in stationary phase by day 7 (Figure 5.11). 

The static culture beads followed the same trend as dynamic condition however with 

significantly lower cell increase during the cultivation time. The better cell attachment and 

proliferation in stirred suspension cultures can be explained by the homogeneous culture 

environment created in the stirred culture and more availability of the entire free surface of 

beads in suspension culture, thus cells had a greater chance of coming into contact with 

microcarriers.  
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Figure 5.13: Comparison of cell proliferation on GG/25%nHA beads with various 

culture conditions; static and dynamic culture condition (spinner flask). There was a 

significant difference (p<0.001)between the attachment and proliferation of MC-3T3 

cells to the dynamic GG/25%nHA beads as compared to monolayer culture and static 

GG/25%nHA beads were seen at all-time points. Data points represent mean values of n 

= 9 specimens ± standard deviation. 
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5.6.3.1. SEM analysis of cell- beads complexes  

In stirred suspension cultures, the cell adherence, distribution and proliferation on to the beads 

were further observed by SEM. The results show that the cells grew favourably on composite 

beads. It was shown that the cells appeared to attach to the beads firmly and became flattened 

on day 3 (Figure 5.14a, b) and started to form cell bridges with the adjacent beads to form an 

aggregate of cells (Figure 5.14c). On day 5, active proliferation of cells was observed over the 

surface of the beads (Figure 5.14d). 

 

 

Figure 5.14. SEM micrographs of the MC-3T3 cells grown on the surface of nHA/GG 

culture beads; a, b, c) day 3, and d) day 5. 
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5.6.4. Quantitative and qualitative analysis on cultured cells differentiation  

The functional activity of the MC3T3 pre-osteoblast cells grown on GG/25%nHA beads was 

examined by measuring ALP activity after culturing for 7 and 14 days as shown in Figure 

5.15. The ALP activity was enhanced at each time point in cells cultivated on GG/25%nHA 

beads both in conditioned and un-conditioned culture media without requiring exogenous 

addition of biochemical factors compared with the cells cultured on TCP in un-conditioned 

culture media. The ALP activity on control cultures on TCP are only found to be increased 

when the culture media was supplemented with ascorbic acid, dexamethasone and β-glycerol 

phosphate as biochemical factors. There was a significant difference (p< 0.001) between ALP 

activity in cells on beads in un-conditioned media and un-conditioned TCP on day 14. (Figure 

5.15). The increase of ALP activity in cells cultivated on beads in un-conditioned culture 

media suggest that the fabricated GG/25% nHA nanocomposite in the form of 3D culture 

beads alone might be sufficient to induce osteogenesis without the presence of biochemical 

factors. 
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Figure 5.15: Comparison of Alkaline phosphatase (ALP) activity of the MC3T3 cells on 

the GG/25%nHA beads after culturing for up to 7 and 14 days in osteogenic and non-

osteogenic media. Tissue culture plastic was used as a control. ALP activity was 

normalised to cell number. Interestingly the ALP activity increased in cells cultivated on 

beads in the media without requiring exogenous addition of biochemical factors as well 

as in osteogenic media. The difference between ALP activity in cells on beads in un-

conditioned media and in un-conditioned TCP at day 14 was significant *p<0.001. 

 

Furthermore mineralised matrix and nodules formation was assessed qualitatively by Alizarin 

Red staining (Figure 5.16). Control cultures with no cells showed no alizarin staining (Figure 

5.16a, d). Cell-beads complexes in osteogenic media showed positive staining indicating the 
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ability of cultured cells on GG/HA beads in deposition of mineralized matrix (Figure 5.16b, c- 

top row) as it was confirmed with ALP activity measurement. Moreover, the culture beads 

without osteogenic media appeared to be able to induce differentiation and matrix 

mineralization (Figure 5.16e, f - bottom row). 

 

 

Figure 5.16: Alizarin Red Staining of MC-3T3 cells indicating of mineralized matrix 

synthesis. a and d) Control-beads with no cells, b and e) cell-beads complexes in 

osteogenic media for 3 days , c and f) cell-beads complexes in osteogenic media for 5 

days. Top row is cell-beads complexes in osteogenic media and bottom row is in non-

osteogenic media. Scale bars=100µm 

In order to demonstrate the potential of these fabricated beads to stimulate osteogenic 

differentiation in BMSCs, preliminary experiments were undertaken with BMSCs. The ALP 

activity of cultured BMSCs on GG/25%nHA beads were measured after culturing for 7 days 

(Figure 5.17A).The ALP activity in BMSCs as well as in MC3T3 cells was found to be 



 

122 
 

increased both in osteogenic and non-osteogenic media without the need for addition of 

biochemical factor compared with control (Non-osteogenic media TCP). There was a 

significant difference between ALP activity in cells on beads in both conditioned and 

unconditioned media and in cells in un-conditioned TCP suggesting the osteogenic 

differentiation of cultivated BMSCs on GG/25%nHA beads. 

Qualitative Alizarin Red staining assay also indicated the ability of cultured BMSCs on   

GG/nHA beads to induce differentiation and bone nodule formation (Figure 5.17B).   

 

Figure 5.17: A) Comparison of the ALP activity for the BMSCs cultured on GG/nHA 

beads in osteogenic media (OS-Beads), non-osteogenic media (Non OS-Beads) and 

Osteogenic and non-osteogniec tissue culture plastic (OS TCP and NOnOS-TCP). Cells 

cultured in OS-beads and Non OS-Beads were significantly higher than that of the cells 

in Non OS- TCP. *p<0.05 when comparing OS-beads and Non OS- TCP. 
#
 p<0.001 when 

comparing Non OST-beads and Non OS-TCP. B) Alizarin red staining of BMSCs in 1) 

osteogenic media and 2) non-osteogenic media indicating the ability of cells to induce 

matrix mineralization. Results are displayed as mean of n = 9 specimens ± standard 

deviation. Scale bar =100µm 
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5.7. Discussion 

In this study, GG/nHA composite culture beads were fabricated and MC3T3 cells were 

observed to attach, spread, proliferate and form mineralised nodules. It was demonstrated that 

the incorporation of hydroxyapatite into gellan gum at concentrations of above 5wt% can 

enhance the ability of gellan hydrogel to support cell attachment and proliferation (Figure 

.5.10). The cell attachment and proliferation which was examined with an MTT assay was 

initiated when the nHA content was increased to 5 wt%. The lack of cellular affinity of gellan 

hydrogel was due to the extremely hydrophilic nature of GG and particularly on the exterior 

surfaces which prevented the adsorption of ECM proteins and consequently does not allow 

cell attachment (Wang et al. 2008; Wang et al. 2010).  The incorporation of nanocrystalline 

HA particulates which has been shown to have a strong adsorptive property for ECM proteins 

overcome this disability and support the binding of cells to its surface (Y.-L. Chang et al. 

1999; Zhao et al. 2006). Due to this property of nHA, the cell number on the culture beads 

increased as the nHA content increased (Figure 5.11).  

DAPI staining as well as MTT results qualitatively demonstrated the cell attachment and 

proliferation of seeded cells on to the GG/5%nHA beads and a significant increase of cell 

number with increasing of HA content up to 25 wt% by day 5 (Figure 5.12).  

 As a result, the GG/25%nHA was then selected and considered ideal for further cell culture 

study. The feasibility of using these beads in spinner flask cultures for cell expansion was 

evaluated and compared to that of conventional monolayer cultures and static beads cultures. 

The level of cell attachment and proliferation significantly increased in spinner flask in 

comparison with static culture conditions (Figure 5.13). The better cell attachment and 
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proliferation in stirred suspension cultures can be explained by the homogeneous culture 

environment created in the stirred culture and more availability of the entire free surface of 

beads in suspension culture, thus cells had a greater chance of coming into contact with 

microcarriers (Yu et al. 2004). Stirred culture systems have been reported to be suitable 

candidates for the expansion of cells while maintaining the original phenotypic characteristics 

(Boo et al. 2011). Dynamic culture systems improve the mass transport of oxygen and 

nutrients to the culture beads that influence a better cell growth in spinner flask (Sikavitsas et 

al. 2002) .   

Further analysis of cell-beads complexes by SEM (Figure 5.14) following culture spinner 

flask showed that the cells adhered, proliferated and could form aggregates of cells on to the 

GG/25%nHA indicating the ability of the fabricated composite beads for cell supporting and 

aggregate formation which would facilitate their delivery into defect sites (Jos Malda and 

Frondoza 2006). The cells-beads aggregates can be delivered into the defects through 

injection and they can be useful to provide larger cell construct which are useful for bigger 

defects. 

The ability of the matrix to stimulate differentiation and cells to produce mineralised matrix 

and nodules is important with regard to development of materials for bone regeneration. This 

ability depends on various factors including material composition, the microenvironment, the 

surface texture of scaffold, and condition of culture system (i.e. dynamic and static culture 

condition). The functional activity of the MC3T3 pre-osteoblast cells grown on GG/25%nHA 

beads were quantitatively assessed using ALP activity after culturing for 7 and 14 days, and 

quantitatively observed using Alizarin Red staining. The ALP activity was enhanced at each 

time point in cells cultivated on GG/25%nHA beads indicating the ability of fabricated 
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GG/HA to induce osteogenic differentiation (Figure 5.15) in this cell type. The Alizarin Red 

staining also demonstrated the mineralized matrix formation by cells onto the composite 

beads.  In this study, the combination of stirred suspension-culture beads system may have the 

most important effect on differentiation. It has been proposed that the mechanical forces 

generated by the stirring action result in cellular osteogenesis and mineralization through 

promotion of growth factor signalling pathways (Edward Andrew Botchwey 2002; Sikavitsas 

et al. 2002; Yeatts and Fisher 2011; Yu et al. 2004). Differentiation and mineralization 

phenomena have also been reported to be affected and enhanced on rougher surfaces 

(Deligianni et al. 2000). However in this study, the fabricated GG/nHA exhibited a smooth 

surface with a presence of some texture (Figure 5.9), therefore high ALP activity in cells 

grown on GG/nHA beads and formation of mineralized matrix may be attributed to the matrix 

composition and dynamic condition of the system. 

It is well known that many osteoblast cultures only mineralise in the presence of osteogenic 

mediator. However here, interestingly, it has been shown that the cells cultivated on beads in 

unconditioned media when no osteogenic mediators are present, exhibited mineralised matrix 

and nodules formation as evidenced by increased ALP activity and calcium deposition. This 

suggests that, the combination of the GG/nHA culture beads composition and its 3D-construct 

might provide cues that induce osteogenic differentiation. Recently Tseng et al (2012) found 

that the altering the culture condition from 2D to 3D microcarrier system is sufficient to 

induce osteogenesis without the need for osteogenic mediator in culture media through 

alteration of cytoskeletal tension  (Tseng et al. 2012). These two mentioned factors alone 

might be enough to induce osteogenesis and mineralize matrix formation. The elastic modulus 

of the matrix in which attached cells reside is also an important factor that can have a direct 

impact on cell differentiation. Tissues are known to be responsive to the stiffness of their 
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substrate (Discher et al. 2005). As it has been previously shown in this chapter, part A, the 

incorporation of 25wt% into GG matrix could adjust and increase the elastic modulus by 

fivefold which might be alone enough to favour the functional activity cultured MC3T3 cells 

without the need for the presence of osteogenic mediators. The osteogenic potential of these 

fabricated beads in conditioned and un-conditioned media was also examined with BMSCs 

cells and the results from ALP activity assay and calcified matrix formation indicated by 

positive Alizarin Red histochemical staining in both conditions were also confirmed the 

suitability  and ability of these culture beads for cell delivery in bone tissue regeneration. This 

characteristic of the GG/nHA culture beads can be very crucial in simplifying tissue 

engineering strategies for therapeutic application in regenerative medicine.   

 

5.8. Conclusion  

The results presented in this part have shown that the GG/nHA nanocomposites culture beads 

could be successfully fabricated which are also useful for using in spinner culture. It has been 

shown that the inclusion of synthetic nHA particles into GG matrix enabled cell attachment to 

the surface of the composite materials. It has been shown that unmodified GG and the 

GG/nHA composites with HA concentration up to 2.5% (w/w) did not support cell attachment 

and proliferation.  Cell adhesion and proliferation was significantly improved when the cells 

cultured on GG/5%nHA and GG/25%nHA beads than when they were cultured on GG beads 

alone. Furthermore it was found by increasing the content of nHA into GG matrix from 5wt% 

to 25wt%, the proliferative activity of the MC3T3 cells increased significantly.  

Further experiments demonstrated that the dynamic flow environment compared to static 

conditions enhanced the cell attachment and proliferation of MC-3T3 cells on GG/nHA 

culture beads. The quantitative analysis, ALP activity assessment, on cultured cells 



 

127 
 

differentiation on to the beads indicated that the ALP activity increased in cells on both 

conditioned and un-conditioned media compared with TCP in unconditioned media which are 

only found to be increased when the culture media was supplemented with osteogenic 

mediator.  Positive alizarin red staining also indicated that the MC3T3 osteoblast–like cells 

cultured on 2.5%GG/25%nHA beads have been shown to form aggregates and synthesize 

mineralized matrix. Importantly such mineralisation occurred without the need for osteogenic 

mediator in culture demonstrating the remarkable ability of fabricated GG/nHA culture beads 

to induce osteogenesis and mineralization. These beads were also found to be capable to 

stimulate osteogenic differentiation when BMSCs used in the absence of osteogenic media. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 
 

6.1. Conclusion  
 

In this thesis, novel approaches to develop implantable calcium phosphate containing culture 

beads for cell therapy in bone and cartilage tissue regeneration were introduced. Two types of 

culture beads; resorbable calcium phosphate (brushite) culture beads and calcium phosphate 

(HA)/gellan gum nanocomposite culture beads were fabricated. The capacity of each type of 

culture bead to facilitate cell adhesion, proliferation and to maintain the phenotype of the 

seeded cells and deposition of mineralized matrix has been evaluated. In addition in the case 

of brushite beads, a comparison of methods for fabrication of these beads was also 

investigated, and in the case of GG/HA culture beads, prior to their fabrication, the effect of 

size and crystallinity of HA on the mechanical properties of hydrogel was investigated. 

6.1.1. Novel resorbable brushite-based cell culture beads 

Resorbabale brushite-based culture beads were formed using three different methods. Initially 

the effect of surface chemistry of brushite cement scaffold on cellular behavior was 

systematically investigated. It has been shown that cell attachment to the surface of the 

brushite cement (BC) could be inhibited by the presence of an intermediate dicalcium 

phosphate–citrate complex, formed in the cement as a result of using citric acid, a retardant 

and viscosity modifier used in many cement formulations. The BC beads formed from the 

mixture of β-TCP/orthophosphoric acid using citric acid did not allow cell attachment without 

further treatment. Aging of BC beads in serum-free Dulbecco’s Modified Eagle’s Medium 
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(DMEM) solution at 37°C for 1 week greatly enhanced the cell adhesion capacity of the 

material.  

Furthermore, a comparison of cellular responses on three types of brushite beads prepared 

with different methods has been assessed and the results showed the manufacturing process 

and subsequent properties of the beads (surface area and topography) influenced the initial 

cell attachment, proliferative activity of seeded cells and matrix mineralization. Surface 

topography has been shown to be the most important factor in initial cell attachment and 

promoting osteogenic induction of osteoblasts- like cells. The proliferation activity of seeded 

cells was affected by surface area of fabricated brushite granules. It has been shown that the 

granule with higher surface area exhibited a more favourable cell proliferation. All three types 

of fabricated brushite granules have exhibited different sphericity and it has been shown that 

the cellular behaviour of seeded cells did not seem to depend on sphericity of the granules and 

no correlation was observed between the sphericity and cellular attachment and proliferation. 

These finding has important applications for cell delivery and also in the development of 

injectable cements. 

 

6.1.2. The development of calcium phosphate/gellan gum nano-composites 

for cell delivery 

Calcium phosphate (HA)/gellan gum nanocomposites with various HA content were 

developed. The effect of size and crystallinity of HA particles on the mechanical properties of 

GG matrix has been studied through microstructure and compression testing. It was shown 

that while the inclusion of nHA significantly increased the compressive strength and bulk 

modulus of the GG hydrogel, the mHA material acted to weaken it (2.5 wt% HA). 
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Furthermore, it was found that by increasing the content of the nHA in the composite to 50 

wt%, the yield strength and bulk modulus were increased by four- and nine- fold, respectively. 

The reinforcing effect of nHA was attributed to its higher association with the GG coil 

structure when compared with the mHA, which disrupted gel structure. By using different 

levels of nHA reinforcement in the gel matrix, it will therefore be possible to produce 

materials of defined modulus, which may be investigated in the future to control cell 

differentiation. 

Further to this study, preliminary cellular tests on fabricated GG /nHA culture beads with 

various HA content demonstrate that the unmodified GG and GG /nHA beads with HA 

concentration up 2.5% did not support cell attachment and proliferation. The cell attachment 

and proliferation was initiated when the nHA content was increased to 5wt%. Increasing the 

HA loading of the composite to 25wt% resulted in significant increase in the cell number on 

the culture beads as well as gel modulus. The feasibility of using the GG/nHA beads in 

spinner flask cultures for cell expansion was also evaluated and compared to that of 

conventional monolayer cultures and static beads cultures. The better cell attachment and 

proliferation in stirred suspension cultures was observed compared to that of monolayer 

culture and static GG/nHA beads. It has been also shown that the GG/nHA culture beads have 

the ability to stimulate osteogenic differentiation of MCT3T osteoblast precursor cells. 

 

In conclusion, from this study, among the formulations tested, all have potential for further 

use as culture supports, however, the GG/nHA composite beads was the best combination 

with respect to the feasibility of using these beads in dynamic conditions for cell expansion 

with higher cell adhesion and proliferation rate as well as capability of these beads to 

stimulate osteogenic differentiation when BMSCs used interestingly in the absence of 
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osteogenic media. Moreover the elastic modulus of these beads can be adjusted by 

manipulation of HA content which has a great interest on controlling new tissue formation. It 

is clear however that further assessment of the potential of these culture beads for cell therapy 

would be required in evaluation of these beads with adjusted moulds for formation of tissue of 

interest and also the feasibility of these beads for scaling up which all are discussed in the 

following sections. 

 

6.2. Future work 

In this thesis two different calcium phosphate containing culture beads of resorbable brushite 

culture beads and GG/nHA culture beads have been formulated and tested for their ability to 

support cell adhesion, proliferation and controllable differentiation. In each case different 

studies and methods haven been tried and performed to optimize the potential of these culture 

beads for cell delivery.  By conditioning the brushite beads post manufacture or by using a 

process of granulation of brushite crystals, it was possible to generate beads that enable 

attachment and proliferation of the cells.   By using of small scale stirred GG/nHA culture 

beads, it was possible to produce a higher cell yield for osteoblast precursor cells compared to 

static beads and conventional monolayer culture system. In addition it was proven that the 

nano-crystalline HA was more effective in the development of GG/HA nano-composite 

compared to micro crystalline HA for production of materials of defined modulus which is 

important factor to control cell differentiation.  

In each case however, it is clear that further assessment of the potential of these culture beads 

for cell therapy with the aim of cell expansion and control of cell differentiation are still 

required. This would concentrate on different aspects for each case: 
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6.2.1. Fabrication of porous brushite culture beads  

One of the drawbacks of cements material is their lack of macroporosity which is one of the 

key requirements for the material design to direct and support tissue ingrowth (M. P. Ginebra 

et al. 2010).   Fabrication of porous culture beads would allow increase in number of adhered 

cells through their increased surface area (Shi et al. 2009) and also can be beneficial since the 

expansion of cells internally will protect cells from shear stress during culture process and 

later for injection. It has been shown that the leaching process in which soluble particulates of 

sucrose, mannitol, sodium bicarbonate, and sodium hydrogen phosphate can be added during 

the preparation of the cement paste can produce porous cement materials (Chung and Park 

2007). 

Various other methods can be investigated to produce porous brushite culture beads. These 

methods include freeze-drying (Narbat et al. 2006), solid free form fabrication or direct rapid 

prototyping with a controllable porous formation (Kwon et al. 2013) and selective laser 

sintering technique (use of 3D computer-aided design to build 3D porous beads) (Shuai et al. 

2013). 

6.2.2. Dynamic culture condition (medium perfusion system) of brushite 

beads 

In this thesis the cell culture study for brushite culture beads was only performed in static 

conditions.  Further work should focus on a dynamic culture condition such as fluidised bed 

bioreactors can be used for these brushite beads to determine the feasibility of using these 

beads in dynamic conditions for cell expansion and compare to that of static culture system.  

Cement granules, due to their high density and quick sedimentation cannot be used in a 

spinner flask. A fluidised bed system by medium perfusion can be ideally utilised in which a 
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flow perfusion enable the diffusion of medium, all required nutrients, onto the surface of each 

bead and also throughout the internal part of each individual beads in the case of porous 

brushite beads. The effect of flow rate, shear stress and other processing parameters (e.g. 

velocity of perfusion, and the effect of fluidised bed column diameter) on cell attachment, 

proliferation and differentiation can be investigated and how this dynamic condition can be 

used as a scale up system to produce large quantities of cultured cells.  

6.2.3. Human MSCs cultivation on fabricated brushite culture beads 

This study has proved the potential of the fabricated brushite culture beads for cell attachment, 

proliferation and bone formation when culturing osteoblast precursor cells. The obtained 

results from this study may be fully applicable to other cell line such as mesenchymal stem 

cells (MSCs). The potential of this system should be exploited for human therapy. MSCs can 

be used as a cell source to determine the suitability of these beads for expansion of stem cells 

and maintenance of the multipotentiality of these cells. 

6.2.4. Brushite beads as drug delivery matrices 

Cements materials such as brushite have been shown to be an ideal candidate as delivery 

systems for bioactive molecules and therapeutics in bone tissue engineering as well as a 

supporting matrix for cell attachment, proliferation and differentiation due to their low- 

temperature processing of the cements and their injectability characteristics (M. Ginebra et al. 

2006). Therefore the methods of incorporating growth factors into the fabricated beads can be 

investigated. The bioactive molecules can be added into cement paste in the form of liquid or 

powder. The kinetics of drug release form different brushite beads prepared with different 

methods should be investigated. 
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6.2.5. Applicability of fabricated GG/nHA with adjusted elastic modulus for 

controlling new tissue formation 

Mammalian cells are known to respond to the elastic modulus of the surface to which they 

adhere (Discher et al. 2005; Engler et al. 2006). Consequently, there is interest in developing 

strategies to control the elastic moduli of materials, including hydrogels. In this thesis in the 

development of GG/nHA nanocomposites, the effect of size and crystallinity of nHA particles 

on the mechanical properties of GG hydrogel was investigated. It has been shown that the 

inclusion of nHA particles effectively increased the mechanical properties of GG hydrogel in 

comparison with micro sized HA particles. By using different levels of nHA reinforcement in 

the gel matrix, it will therefore be possible to produce materials of defined modulus which has 

been reported to be vital to control cell differentiation. Further experiments would be 

interesting to examine whether it is possible to use these composites to control cell 

differentiation. MSCs can be utilised to investigate the effect of elastic modulus of fabricated 

GG/nHA nano-composite on behaviour of MSCs cells for various cell differentiation 

including osteogenic and chondrogenic cells. 

 

6.2.6. Scaling- up cultured cells on GG/nHA beads 

 
The applicability of using a small scale stirred GG/nHA culture beads to produce a higher cell 

yield for osteoblast precursor cells compared to static condition has been proven in this study. 

Large amount of cells for cell differentiation and subsequent transplantation would be 

required for human cell therapy (Fernandes et al. 2009). The suitability of these culture beads 

for stem cell expansion and the preservation of multipotency of seeded stem cells should be 

investigated and also GG/nHA culture beads in spinner flask for expansion of MSCc can be 

scaled up as controlled bioreactors in future.  
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The use of fluidized bed system can also be interesting to investigate for scaling-up of 

cultured cells on GG/nHA beads. Although spinner flask bioreactors have been reported 

beneficial to produce a higher cell yield and for scaling-up cultured cells (Fernandes et al. 

2009), the mechanical mixing caused by impeller motion can induce unwanted shear gradients 

in the spinner flask which will influence on cell viability (Temenoff and Mikos 2000). Fluid 

circulation in fluidized bed instead of impeller motion in spinner flask can be useful to 

prevent this from occurring.  
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hypothesized that the dicalcium phosphate–citrate complex
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