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Abstract 

 

This project aims to exploit engineered biofilms as biocatalysts in the biotransformations of enantiomerically 

pure compounds for fine chemical and pharmaceutical industry.  It aims for conditions to be designed which 

would improve reactions and formation of the engineered biofilms. 

 

Tsoligkas et al. (2012) has previously engineered a biofilm to act as a biocatalyst using tryptophan synthase, 

TrpBA produced from plasmid pSTB7 to catalyse the biotransformation of haloindoles to L-halotryptophans.  

To build on this work, biofilm formation and how the cells react to the biotransformation were investigated 

through flow cytometry and analysis of colony forming units (CFU). 

 

For biofilms to be formed from Escherichia coli (E. Coli) K-12, it was found that the plasmid pT7-csgD had to 

be present or the strain required an ompR234 point mutation to allow production of curli for extracellular 

polymeric substances to form a biofilm.  This demonstrates the importance of CsgD as a regulator for formation, 

as without an increase in cellular concentration E. coli cells failed to attach to glass surfaces. 

 

From planktonic data it is apparent that carrying out the biotransformation with 5-chloroindole has a toxic effect 

on metabolically active E. coli PHL644 pSTB7.  The source of this toxicity is not clear, it may be due to the 

products of the reaction, the chloroindole being metabolised or incorporated into the cellular proteins. 

 

Efflux data indicates that cells are incubated with fluoroindole have decreased efflux, an advantage for 

biotransformation. 
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Chapter 1.  Introduction 

 

1.1.  Overview 

Bacteria do not live primarily as planktonic cells but as biofilms; sessile communities with a complex 3D 

structure.  Bacteria can switch between these different lifestyles (Danese et al. 2000, Ogasawara et al. 2010).  

This study hopes to take advantage of this biofilm state to perform biocatalysis reactions for biotransformations 

of enantiomerically pure compounds for the fine chemical and pharmaceutical industry.  The reaction under 

investigation is the use of enzyme tryptophan synthase (TrpBA) to catalyse the conversion of haloindoles to L-

halotryptophans. This biocatalysis has previously been done through using whole cells or by immobilising the 

TrpBA enzyme.  It is hoped to use a biofilm to provide immobilised cells, in a self produced matrix, where the 

bacteria could be engineered to perform the reactions required.  Biofilms are highly robust due to their self-

immobilised nature and this is the root of their enhanced resistance and persistence in adverse environmental 

conditions and to antibiotics, making them of interest to industry (Barnhart and Chapman 2006, Rosche et al. 

2009, Zhang et al. 2007).  As a biofilm produces its own matrix that provides protection to the cells so that they 

can survive for longer and are capable of catalysing reactions for longer periods.  Thus biofilm-catalysed 

biotransformations are potentially advantageous when compared to planktonic microbes in batch or fed-batch 

reactors or immobilised enzymes since immobilisation is intricate and there are no universal ways to perform it 

(Rosche et al. 2009). 

 

1.2.  Biofilm Structure and Function 

The biofilm is a distinct lifestyle for bacteria which provides adaption to the environment (Jackson et al. 2001).  

For example, some Gram negative bacteria change from a planktonic to biofilm mode in a nutrient rich medium, 

but return to a planktonic lifestyle when nutrients are depleted to search for more (Adnan et al. 2010).  Biofilms 

consist of a community of bacteria in an extracellular matrix which consists of extracellular polymeric 

substances (EPS) that form a complex three dimensional (3D) architecture which has water channels and pillars 

that promote transfer of nutrients to individual bacterial, aiding survival (Jackson et al. 2001, Danese et al. 

2000, Barnhart and Chapman 2006).  Many species of microbes can form biofilms and their self-secreted EPS 

matrix allows protection so they can grow on many surfaces and environments persistently.  They also contain 

cells at different growth phases, which allows for persistence (Rosche et al. 2009). 
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Figure 1.1:  The Cyclical Nature of a Biofilm 
The different stages of biofilm formation, attachment, maturation and 
dispersal (Rosche et al. 2009) 

Biofilms can be formed by many bacteria on different surfaces and solid-liquid or liquid-gas interfaces and often 

occur in infections.  Biofilms are highly robust due to their self-immobilised nature and lower metabolic rate 

and this is the root of their enhanced resistance and persistence in adverse environmental conditions and to 

antibiotics, making them of interest both medically (Costerton et al. 1999) and to industry (Barnhart and 

Chapman 2006, Rosche et al. 2009, 

Zhang et al. 2007). 

 

Biofilms are made by bacteria 

experiencing distinct environmental 

and physical cues (Ito et al. 2009).  

When bacteria switch between 

planktonic and biofilm lifestyles, cells 

undergo a transition resulting in a 

marked difference in characteristics 

and behaviour including cell 

morphology, physiology and 

metabolism.  This results in genes 

being expressed from different loci, 

normally for extracellular factors that promote surface colonisation and cell-cell contacts (Ogasawara et al. 

2010, Barnhart and Chapman 2006).  Due to the diverse nature of the biofilm and its varying response to the 

environment, there are many highly regulated processes taking places, such as formation and dispersal (Wood et 

al. 2011).  Many genes are differentially expressed in biofilms including those involved in metabolism to signal 

transport (Zhang et al. 2007). 

 

1.3.  Stages of biofilm development 

Biofilm growth is a multistage process (Figure 1) determined by many cellular, environmental and surface 

factors.  A biofilm is normally formed at an air-liquid interface or on a submerged surface where cells can attach 

through appendages and EPS components, fimbriae, flagellar, polysaccharides, proteins, lipids and DNA This 

formation can be dependent on quorum sensing (QS), a type of cell-cell communication (Rosche et al.. 2009, 

Wood et al.. 2011).  Biofilms are more normally formed more readily by motile bacteria, but non motile E. coli 
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do form biofilms given enough time (Danese et al. 2000).  In this work we are mostly concentrating on the 

initial stages of biofilm development. 

 

Biofilm development is a cyclical process (Figure 1.) and occurs as follows:  Initial cell attachment to a surface 

through motility (a), followed by surface adhesion (b), permanent attachment through monolayer formation and 

biofilm proliferation (c).  Maturation then occurs through migration of clusters of cells to form multilayer 

microcolonies and the production of EPS to develop a heterogeneous and complex 3D structure (d).  Finally 

there is dispersal in response to different cues (Rosche et al. 2009, Wood et al. 2011). 

 

Different stages of biofilm development have different expression of genes particularly those involved in the 

synthesis of amino acids and membrane transporter proteins (May and Okabe 2011).  Differential expression 

occurs in different media also, such as the fim gene cluster being required for biofilm formation in rich LB 

media.  This results in biofilms developing distinct phenotypes depending on their growth medium (Danese et 

al. 2000). 

 

Biofilms have a complex 3D architecture with channels and pores. The formation of this structure is dependent 

upon adhesion, aggregation and community expansion factors (Rosche et al. 2009, Adnan et al. 2010).  EPS is 

extracellular polymeric substance which is made up of many components and is secreted into the matrix 

surrounding the bacteria in a biofilm.  Atomic Force Microscopy, which measures intermolecular forces, has 

been used to measure adhesion forces in biofilms.  In Gram positive bacterial biofilms the EPS is highly packed 

with large adhesion forces.  Conversely, Gram negative bacterial biofilms have less tightly-packed EPS and 

there are lower adhesion forces (Tsoligkas et al. 2012). 

 

1.4.  Biofilm determinants and their regulation 

1.4.1.  Attachment 

Different factors and interactions are required for biofilm formation to occur as many cell surface structures are 

required.  In E. coli, attachment and adherence of biofilms normally requires flagella, type I pili and curli 

fimbriae.  For attachment to take place flagellar mediated motility is required to create primary cell surface 

contacts then type I pili are used to stabilise these (May and Okabe 2011, Jackson et al. 2001, Danese et al.. 
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2000).  Motility through flagella allow for cell surface spread and abiotic surface attachment resulting in 

permanent attachment (Zhang et al. 2007). 

 

1.4.2.  Maturation 

When a biofilm reaches maturation cell motility would become a hindrance so flagellar gene expression is 

decreased (Jackson et al. 2001).  In maturation, distinct layers and structures develop, these have characteristic 

metabolic pathways.  This may be due to diffusion limits creating a concentration gradient resulting in 

differences in solute uptake and utilisation giving variability in the state of different cells (Rosche et al. 2009).  

Mature biofilms are thought to be brought about due to cell surface structures, type I fimbriae, curli, 

exopolysaccharide polymers, etc.  However not all these structures are always required for biofilm formation 

and maturation (May and Okabe 2011). 

 

1.4.3.  Dispersal 

Active dispersal of a biofilm is normally initiated by the bacteria, whereas passive dispersal occurs through the 

action of external forces.  Biofilm dispersal can occur under favourable conditions for expansion, as well as 

unfavourable conditions, such as lack of nutrients.  Some biofilm dispersal is believed to be cell cycle dependent 

and dispersal based on motility is a result of intracellular cyclic-di-Guanylyl Monophosphate (c-di-GMP) 

concentrations.  Other ways of activating dispersal are through degrading or repressing adhesion compounds in 

the EPS, degrading the growth substrate of the biofilm, lysing a sub-population of cells, inducing motility, 

addition of an extracellular surfactant, modifying fimbrial adhesion or increasing cell division at the outside of 

the biofilm (Jackson et al.. 2001, Ma et al.. 2011). 

 

1.4.4. Curli 

The cells ability to form curli is an important part of biofilm formation which is tied in with its low temperature 

dependent production (Barnhart and Chapman 2006, Zhang et al. 2007).  Curli is a protein component of the 

extracellular matrix (ECM) and is a bacterial amyloid that promotes adherence (Barnhart and Chapman 2006). 

 

Curli proteins are produced as soon as cells attach to a surface at initial attachment and are required for cell-cell 

interactions and virulence (Ogasawara et al. 2010) and are also required for a biofilm to form a 3D structure 

(Zhang et al. 2007).  Later in biofilm development curli expression is turned off to allow further biofilm 
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maturation to occur (Barnhart and Chapman 2006).  Curli production is also linked to bacterial cellulose 

synthesis (another component of EPS), this leads to the formation of an ECM with tight cell-cell and cell-

surface interactions (Figure 2 Brombacher et al.. 2006). 

 

In E. coli the operons for curli are csgBAC and csgDEFG which code for six proteins.  The csgBAC operon 

encodes CsgA a structural subunit, and CsgB, a nucleator protein which are made of repeat motifs and share 

30% sequence homology.  CsgC has no known role in curli synthesis and no transcript has been found from its 

gene.  Both proteins are required for curli assembly through a nucleation precipitation pathway.  The absence of 

CsgB results in monomers of CsgA being secreted as CsgA is normally excreted from bacteria and nucleated 

into fibres by CsgB (Barnhart and Chapman 2006).  The csgDEFG operon encodes four accessory proteins:  

CsgD a positive transcription regulator to csgB; CsgG, an outer membrane lipoprotein that could form a channel 

which mediates the secretion of CsgA and CsgB; CsgE, a periplasmic protein; and CsgF, another periplasmic 

protein that interacts with CsgG (Barnhart and Chapman 2006).  CsgD is an important regulator during ECM 

production as it regulates curli synthesis and indirectly effects cellulose production through adrA. 

 

Curli expression is dependent on physical and environmental cues and has a complicated regulation of the 

csgDEFG and csgBAC operons.  Osmolarity affects the csgDEFG operon (via the EnvZ-OmpR two component 

regulatory system), controlling curli production.  Temperature dependent regulation of curli occurs after CsgD 

transcription has occurred (Brombacher et al. 2006).  

 

Fimbriae and Cellulose: csg, 
ymdA, adrA 

Signalling systems: c-di-GMP, 
adrA, gsk, yoaD 

Cell aggregation 
Surface attachment 

Metabolic adaption to new growth 
conditions 

Metabolism: pyrBF, gat, metA 
Porins: ompF, ompT 
Iron sensing: fecR, FhuE 
Cold Shock: csp, infA 

CsgD 

Figure 1.2:  How CsgD transcription affects cells 
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The curli operons’ expression is environment dependent and is at its maximum when the growth media has a 

very low salt concentration, limited nutrients and is microaerophillic (low in oxygen).  CsgD is known to 

positively regulate the csgBA operon.  RpoS is a stationary phase sigma factor which is responsible for curli 

expression in stationary phase.  Cooperative regulation occurs when there is interaction between RpoS and CRL 

which binds to the csgBA promoter.  MlrA is activated by RpoS and it, in turn is a positive transcription 

regulator of csgD (Barnhart and Chapman 2006). 

 

1.4.5. CsgD Formation 

CsgD is a LuxR family transcription regulator associated with the cytoplasmic membrane that activates the 

expression of csg operons and has binding sites in csgB, adrA and the pepD promoters.  CsgD has low 

expression in exponential phase but higher expression in stationary phase (Ogasawara et al. 2010, Brombacher 

et al. 2006). The csgDEFG operon has two promoters which show features of RpoD dependence, and its 

transcription is also dependent on RpoS.  When CsgD is expressed there is an increase in the expression of 

RpoS (Ogasawara et al. 2010). 

 

Studies have suggested that CsgD is under control of several stress regulation proteins: OmpR, CpxR, Crl, CRP, 

H-NS, IHF and RcsB.  Also, a phosphorelay network from PhoQP, that senses Mg2+, to RstBA, that senses low 

pH, is involved in the regulation of the csgD promoter.  The complete regulation of CsgD synthesis is still 

poorly defined. Ten transcription factors and two sigma factors have been shown to regulate the csgD promoter; 

there is direct binding to the promoter by CpxR, H-NS, IHF, OmpR and RstA.  OmpR and IHF are known to be 

positive regulation factors and CpxR and H-NS are negative.  The increase of expression of csgD in stationary 

phase may be due to the positive influence of IHF.  When the cell enters stationary phase production of RstA, 

OmpR and CpxR are increased (Ogasawara et al. 2010). 

 

The binding affinity for the csgD promoter is highest for IHF and CpxR followed by OmpR, H-NS and RstA.  

These five transcription factors all bind within the same region between -61 and -43 base pairs (relative to the 

transcription start point) and IHF, CpxR and HN-S also bind at an upstream region, -188 to -159.  So these 

transcription factors could compete to bind to the promoter.  Ogasawara et al. (2010) also found that there is 

cooperation between some factors; between CpxR with H-NS, OmpR with IHF, and RstA with IHF.  During 
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stationary phase IHF has an increased concentration whereas H-NS has a steady concentration (Ogasawara et al. 

2010). 

 

CpxA is a sensor kinase and CpxR is a response regulator, which responds to envelope stress and the misfolding 

of periplasmic proteins.  Both CpxA and CpxR negatively regulate csgD.  The Rcs pathway is required for 

biofilm formation and responds to outer membrane stress and also negatively regulates csgD (Barnhart and 

Chapman 2006). 

 

CsgD activates transcription of the csgBAC operon encoding the structural subunits of curli and adrA, a positive 

effector of cellulose biosynthesis.  CsgD has been found to control modulation of cellulose production through 

activation of yoaD which encodes a c-di-GMP esterase.  CsgD also represses biofilm formation and cell-cell 

aggregation through repressing fecR which is a regulatory protein that responds to iron and cspA, another 

regulatory protein, which responds to cold shock.  CsgD suppresses glycine autotrophy and stimulates serine 

hydroxymethyl transferase activity by glyA.  This produces more glycine, which aids curli synthesis as curli 

contains more glycine than other proteins (Ogasawara et al. 2010, Brombacher et al. 2006). 

 

1.4.6. OmpR regulation of curli 

The ompR234 allele is a mutated version of ompR where leucine is substituted for arginine at ompR234.  This 

substitution increases the transcription of ompR and its dependent genes such as csgD.  OmpR234 increases 

transcription from the csgD promoter and increased levels of CsgD can increase curli and cellulose biosynthesis 

and biofilm formation in E. coli by constitutively activating curli gene expression (Barnhart and Chapman 

2006).  EnvZ is a sensor kinase that detects extracellular osmolarity; EnvZ activates OmpR via 

photophostransfer, which then activates genes involved in diverse responses to osmolarity.  OmpR is involved 

in curli expression and thus biofilm formation through positively regulating csgD (Barnhart and Chapman 

2006). 

 

csgD is also a known target of the small regulatory RNAs OmrA/B which interacts with csgD mRNA.  When 

OmrA and OmrB are overexpressed they inhibit at an upstream start site and decrease CsgD levels which in turn 

decreases both curli and cellulose production (Holmqvist et al. 2010). 

 



8 
 

Regulation of N-acetylglucosamine-6-phosphate (GlcNAc-6P) also has an effect on curli production: deletion of 

nagA, a GlcNAc-6P deacetylase gene, results in a decrease in the activity of curli specific promoters and thus a 

drop in curli production.  Disruption of nagC, which encodes the nag operon regulator, also results in a drop of 

curli production.  Also when there is an increase in GlcNAC-6P levels, there is a downregulation of curli 

production (Ogasawara et al. 2010). 

 

1.4.7.  Flagella 

When flagella of E. coli are turned off in the switch from planktonic growth to biofilm formation, it allows for 

cell-cell adhesion to occur.   FlhDC is the primary transcription regulator in the control of flagellar gene 

activation and synthesis.  It forms heterotetramers (FlhD2C2) (Ogasawara et al. 2010). 

 

1.4.8. Antigen 43 

Antigen 43 (Ag43) is encoded by the agn43 or flu gene and is an outer membrane protein that is a self 

recognising adhesin which increases biofilm formation in minimal medium and influences autoaggregation of E. 

coli.  Ag43 has been found to facilitate cell-cell interactions and cell-surface contacts; cells deficient in Ag43 

are deficient in forming biofilms (Danese et al. 2000, Zhang et al. 2007). 

 

Deletion of OxyR increases the ability of E. coli to form biofilms.  OxyR is activated during periods of oxidative 

stress and regulates ag43 under stress.  OxyR/Dam mediate phase variable transcriptional regulation of ag43 

(Danese et al. 2000). 

 

1.4.9. Polymeric Components of ECM 

Osmotic stress is a factor which induces the production of EPS, capsular colanic acid and poly-N-acetyl 

glucosamine and activation of cell-cell adhesion during biofilm development and maturation.  When EPS 

synthesis is promoted there is a formation of a thick mature biofilm (May et al. 2009). 

 

Colanic acid is an exopolysaccharide important in the in the maturation stage of biofilm development.  It is 

required with curli and/or type I pili for the 3D architecture to form in the biofilm (Jackson et al. 2001).  The 

Rcs phosphorelay positively controls expression of the cps operon which encodes proteins for the production 

and secretion of EPS colanic acid (Ferrieres et al. 2009). 
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Figure 1.3:  Gene network for the control of some biofilm 
determinants.  (Constructed by author) 
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Extracellular DNA (eDNA) is another component of the EPS, it is important for initial attachment and for 

maturation of biofilms to a complex 3D structure (Wood et al. 2011). 

 

Poly-N-acetylglucosamine (PNAG) is an EPS component which aids biofilm formation.  It increases the EPS 

production and is dependent on pgaA gene function.  When the YddV protein is overexpressed there is a ten 

times increase in the expression of pgaA.  YddV appears to directly regulate pgaABCD.  PNAG can be degraded 

by Dispersin B (Tagliabue et al. 2010). 

 

NhaR responds to Na+ ions and regulates transcription initiation of pgaABCD.  However pgaABCD expression 

is mainly regulated post transcriptionally through the RNA binding of CsrA resulting in negative control.  CsrA 

binds to an untranslated region (UTR) to block translation and promote degradation of the RNA.  YddV 

positively regulates pgaABCD but not through CsrA or by mRNA stabilisation (Tagliabue et al. 2010). 

 

YdeH is a protein which affects the production of PNAG through the stabilisation of PgaD (Tagliabue et al. 

2010). 

 

1.5.  Global regulators of biofilm formation 
 
1.5.1.  RpoS 

RpoS is a sigma factor that activates the transcription of genes required for the stationary phase, during stress 

and within a biofilm.  Sigma factors are small proteins which allow for RNA polymerase to bind to specific 

gene promoters.  When under stress, cells induce alternate sigma factors. RpoS is a master regulator of several 

stress responses. When E. coli is growing under normal conditions RpoS is present at low concentrations and is 

readily degraded by proteases.  When stressed, E. coli generates more RpoS which causes a reduction in growth 

rate enabling the bacteria to survive.  RpoS expression is controlled in a very complex manner at the levels of 

transcription, translation, proteolysis and allosteric activation (Jackson et al. 2001, Adnan et al. 2010). 

 

RpoS is important in biofilms for global gene regulation.  Ito et al. (2009) suggest that expression of rpoS varies 

throughout the bacterial cell cycle and that it suppresses energy metabolism and flagella-mediated motility after 

micro-colony formation allowing biofilm maturation to continue (Ito et al. 2009). 
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Ito et al. (2009) used a mutant of E. coli with a chromosomal rpoS-GFP transcription fusion strain in flow cells.  

After 24 hours the biofilm showed a high fluorescence signal (signifying high rpoS expression) at the outside of 

the biofilm and no detectable expression inside.  There was a constant signal of DsRed (red fluorescent protein) 

in the biofilm showing oxygen was diffusing throughout the biofilm.  The expression of rpoS was found to be 

four times higher on the outside of the biofilm than the inside; this was accompanied by 717 genes upregulated 

and 117 genes downregulated in this region.  The upregulated genes include 37 involved in adhesion, 28 genes 

involved in efflux systems and 7 genes involved in the stress response.  Out of these, 103 genes have been 

reported to positively regulated by rpoS and are thought to be involved in adhesion, colanic acid synthesis, stress 

responses, multidrug resistance and efflux pumps.  This expression at the outside of a biofilm is thought to 

contribute towards maturation and stress so RpoS is required for adjusting cell physiology (Ito et al. 2009). 

 

1.5.2.  CsrA 

CsrA is a global regulator protein involved in biofilm formation and the stationary phase.  CsrA represses 

metabolic pathways such as those involved in glycogen biosynthesis and catabolism and gluconeogenesis, 

which are activated in the stationary phase.  It activates glycolysis, acetate metabolism and motility.  It regulates 

these through posttranscriptionally binding to mRNA molecules to increase or decrease decay rates of target 

genes.  CsrA is antagonised by the activity of CsrB RNA which binds to it (Jackson et al. 2001). CsrA is 

involved in glycogen biosynthesis, thought to be important for biofilm formation.  If glycogen biosynthesis is 

increased there is an improvement in biofilm formation (Jackson et al. 2001). CsrA mutant strains have been 

found after attachment to form biofilms rapidly and extensively, generating a normal biofilm (Jackson et al. 

2001).  

 

CsrA is postulated to act as a signal for biofilm dispersal, as after induction of csrA there is dispersal within 4-6 

hours.  In biofilm formation it appears to increase carbon uptake through a redirection of the central carbon flux.  

So if glucose is added to the medium then csrA is expressed which represses biofilm formation (Jackson et al. 

2001).  CsrA represses the synthesis of the adhesion poly-ȕ 1, 6-N-acetyl-D-glucosamine also involved in 

biofilm formation (Ma et al. 2011).  
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1.5.3.  YcfR/BhsA  

YcfR or BhsA is thought to be involved in metabolite transport in the cell and is one of the most induced genes 

in E. coli biofilms.  It is involved in self identification, cell organisation via cell-cell contacts and intracellular 

signalling, is expressed in the cells stress response and also impedes cell aggregation.  It is a putative membrane 

protein and its promoter has binding sites for CRP and SoxS.  In biofilms it decreases formation by affecting 

glucose uptake and metabolism.  YcfR induces a global stress response by inducing osmY, osmB, ompX, sodC, 

uspB, bssS and dnaK (Zhang et al. 2007). It is thought that deletion of YcfR results in a decrease of indole and 

in LB glucose medium an increase in biofilm mass.  Mutant ycfR strains are more effective in coping with stress, 

resulting in the induction of stress tolerance genes, such as induction of acid resistant genes, gadABC so cells 

can survive at lower pH.  The stress genes induced include rpoE which represses transcription of tnaA which in 

turn decreases the concentration of indole.  So the loss of the ycfR gene results in greater biofilm formation in 

LB glucose medium (Zhang et al. 2007). 

 

Deletion of ycfR functions to increase biofilm formation at liquid-solid interfaces by the induction of genes for 

cell surface proteins affecting the cells properties, increasing cell hydrophobicity and aggregation (Zhang et al. 

2007). 

 

1.5.4  BolA 

bolA is an E. coli stress gene for the adaption into stationary phase, although its function is not clearly 

understood.  When there is high expression of bolA mRNA it may result in formation of biofilms.  bolA Is 

thought to effect cell envelopes and gives cells a round morphology with a reduced surface area which is the 

morphology found in cells in a biofilm.  BolA regulates the transcription of the D, D-carboxypeptidases: PBP5, 

PBP6 and ȕ-lactamase AmpC, all of which are involved in peptidoglycan metabolism.  Expression of bolA is 

controlled by two promoters P1 and P2; P1 is controlled by RpoS and P2 under control of ıD and transcribed by 

BolA (Adnan et al. 2010). 

 

1.5.5.  H-NS  

H-NS is a global regulator in E. coli that represses transcription by recognising curved DNA sequences and has 

been found to reduce biofilm formation (Wood et al. 2011). 
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1.5.6.  Reduced genome studies  

May and Okabe (2011) found that an E. coli ǻ13 mutant, lacking 17.6% of the genome of the MG1655 strain 

and lacking the genes for type I fimbriae, curli, exopolysaccharide polymers and AI-2,  could still generate 

biofilms.  From reduced genome mutants, they found the genes marR, mcbR, entB and yahK could be important 

for biofilm development. 

 

entB Codes for enterobactin, an iron acquisition system which may act as a signalling molecule and is 

upregulated in early biofilm development.  Some relevance can be drawn from low iron concentrations in the 

medium favouring biofilm formation, which decreases with increasing iron concentration.  yahK Appears to be 

involved in aerobic to slightly aerobic conditions. It may have a role in biofilm regulation and is hypothesised to 

be a zinc type oxidoreductase like protein.  dosC Encodes a diguanylate synthase which acts as an oxygen 

sensor, it is c-di-GMP dependent, involved in a pathway for RNA degradation and its expression accelerates 

early biofilm development.  marR Is expressed in biofilm maturation in deeper parts of the structure where 

growth is suspended.  It acts as a repressor to multiple antibiotic resistance by interacting with efflux pump 

AcrAB.  mcbR Is also involved in biofilm maturation and regulates colonic acid expression as well as repressing 

the periplasmic protein YbiM which is involved in biofilm formation.  It controls indole production, a major 

signal for biofilms to switch from attachment to maturation (May and Okabe 2011). 

 

1.6.  Quorum Sensing 

Quorum sensing (QS) is a phenomenon of cell-cell communication which research is only in the early days of 

deciphering.  It is thought to influence biofilm development through controlling different factors (Rosche et al. 

2009, Jackson et al. 2001).  QS signals work by being secreted by individual bacteria and building to an 

extracellular concentration; they are then either internalised or detected to result in a coordinated gene 

expression.  The changing concentrations of the QS signals result in regulated signal responses depending on 

cell population density and this can act as cell-cell communication (Wood et al. 2011, Jackson et al. 2001).  The 

ability to QS allows a cell to sense conditions and communicate this within a small population so there is a 

coordinated a response in the population (Tsao et al. 2011). 

 

For a signal to be considered a QS signal it should: 

 Be produced at a specific growth stage of the cells; 
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 Be able to accumulate extracellularly and be recognised by a specific receptor 

 Be able to accumulate and generate a response throughout a population of cells; and 

 Have a response that is beyond the physical changes required for the signals metabolism and 

detoxification. 

Another two requirements put forward by Lee and Lee (2010) are: 

 That the concentration of the signal required for the change in phenotype is not toxic to the cell; and 

 That the signals network is adapted to the level of the community (Lee and Lee 2010). 

 

1.6.1.  QS in biofilm formation 

1.6.1.1.  AI-2  

Autoinducer-2 (AI-2) is a QS signalling molecule in E. coli biofilms, it is normally expressed in exponential 

phase and also acts as an inter species signalling molecule (May and Okabe 2011, Lee and Lee 2010).  It is 

generated from cleavage of S-ribosylhomocysteine (SRH) by LuxS to give homocysteine and 4, 5-dihydroxy-2, 

3-pentanedione (DPD) which is then cyclised to AI-2.  AI-2 functions by being internalised by the LsrABC 

transporter and its function depends on its state of phosphorylation, affecting which genes it regulates.  AI-2 

communicates the metabolism potential of E. coli especially when recombinant proteins are being expressed by 

the cell; the extracellular concentration of AI-2 decreases on increasing expression of recombinant proteins 

(Tsao et al. 2011).  AI-2 accumulates when there is glucose present and reaches a maximum concentration at 

low pH.  It is not heat stable, but at 37°C exogenous AI-2 increases biofilm formation (Lee and Lee 2010). 

 

MqsR is known to regulate biofilm formation via AI-2, TqsA is involved in transporting AI-2 and BssR/BssS 

influences signalling through AI-2 and indole (Zhang et al. 2007). 

 

1.6.1.2.  Indole 

Indole is an interspecies QS signal, with effects on biofilm formation, repressing formation through SdiA 

(Zhang et al. 2007).  Indole is produced in stationary phase and indole in indole producing bacteria increases 

plasmid stability and drug resistance so the bacteria may use indole to survive against other non-indole 

producing bacteria and eukaryotes where indole has the opposite effect.  It is classified as a QS signal as it is 

synthesised in stationary phase, is transported by AcrEF and Mtr, and it has a role in the control of biofilm 
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virulence, plasmid stability and in drug resistance.  Its other effects include acting as a chemorepellent, 

decreasing cell motility and cell adherence to epithelial cells (Lee and Lee 2010). 

 

In E. Coli, indole is generated in a reversible reaction from tryptophan to give indole, pyruvate and ammonia 

catalysed by tryptophanase (TnaA).  TnaA can perform the reverse reaction, using indole as a carbon source to 

produce tryptophan, but the equilibrium is more favourable in the tryptophan to indole direction (Zhang et al. 

2007, Lee and Lee 2010).   

 

The gene tnaA encoding tryptophanase is induced at stationary phase and at high pH.  Transcription of the 

tnaAB operon is controlled by cAMP and cAMP receptor protein (CRP) complex which regulate in response to 

glucose concentration (Zhang et al. 2007, Lee and Lee 2010).  When E. coli has a large population and their 

carbon source is dwindling, a large quantity of indole is produced, so a glucose being present results in a lack of 

indole biosynthesis (Lee and Lee 2010). 

 

Extracellular tryptophan concentration and other amino acids also influence the production of indole, and the 

extracellular concentration of indole is cell population density dependent (Lee and Lee 2010). 

 

Low pH conditions, approximately below 4.3, lead to inhibition of indole production and a reduction in tnaA 

transcription (Lee and Lee 2010).  

 

Indole signalling mainly occurs at low temperatures, with its effects on biofilms being more pronounced at 30°C 

then at 37°C, however it is not heat labile.  At 30°C but not 37°C indole represses genes related to uracil 

biosynthesis (carAB, pyrLBI, pyrC, pyrD, pyrF, upp, and uraA)and if indole is added to an indole deficient 

mutant then it leads to differences in gene expression at the different temperatures leaving them less capable of 

surviving under stress(Lee and Lee 2010). 

 

Some species which produces indole have been shown not to degrade it, but it is known that other bacterial 

species can.  Many non-indole producing bacteria use dioxygenases and monoxygenases to metabolise indole, 

e.g. toluene-O-monoxygenase decreases levels of indole.  This results in oxidised indole derivatives that affect 

biofilm formation, cell motility and the gene expression of pathogenic E. coli O157:H7 (Lee and Lee 2010). 
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Three permeases, Mtr, TnaB and AroP are thought to have a role in indole transport in different conditions: in 

addition indole can diffuse freely through the cell membrane.  Mtr is thought to be primarily responsible for 

indole transport into the cell and TnaB is thought to mainly transport  tryptophan (Lee and Lee 2010).  Mtr is a 

high affinity tryptophan permease, however Pinero-Fernandez et al. (2011) found that loss of the Mtr transporter 

only made a cell slightly more sensitive to indole which is contradictory.  They believed that Mtr could play a 

role in scavenging indole when the medium has low concentrations of indole (Pinero-Fernandez et al. 2011). 

 

Indole is believed to be partly exported by multidrug exporter AcrEF, as deletion of the exporter results in an 

increase of the intracellular concentration.  Several multidrug exporters may be involved as transcription of their 

genes increases on indole exposure.  Indole import and export have been found to be very rapid (Zhang et al. 

2007, Pinero-Fernandez et al. 2011): cells can export up to 0.6mM of indole within a rich medium (Lee and Lee 

2010). 

 

To determine the extent of indole diffusion, Pinero-Fernandez et al. 2011 used an artificial lipid membrane to 

see how well indole could move through an E. coli membrane unaided and found uniform movement in and out 

without protein transporters.  However this diffusion of indole through the lipid membrane does alter the 

physical structure of the membrane (Pinero-Fernandez et al. 2011). 

 

Indole is an intracellular signal for E. coli and  is important to cell physiology and the transition of the cell into 

stationary phase.  It is known to promote resistance to toxins due to its ability to induce xenobiotic exporters.  

Indole is also involved in preventing plasmid instability and is associated with accumulation of plasmid 

multimers.  Indole has a role in biofilm formation, expression of virulence factors and interspecies signalling 

(Pinero-Fernandez et al. 2011, Lee and Lee 2010). 

 

Indole acts upon sensor kinases BaeSR and CpxAR through their induction of mdtEF to increase drug resistance 

through, xenobiotic exporter genes, as well as interacting with GadX to control drug resistance (Lee and Lee 

2010).  Other genes it regulates are gabT, astD, cysK and tnaB when cell produced indole accumulates (Zhang et 

al. 2007, Lee and Lee 2010). 
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Indole has a role in biofilm formation through its ability to control groups of cells resulting in coordinated 

behaviour and it decreases biofilms by reducing motility, thought to be through interference to cell division, 

repressing acid resistance and reducing attachment (Lee and Lee 2010). 

 

When indole is added to the growth medium at 1-6mM there is no increase in cell density due to toxicity.  High 

concentrations of indole above 2mM decrease cell growth, possibly through blocking cell division, disruption of 

the cell envelope or oxidant toxicity.  High doses affect cell metabolism and lead to a pleiotropic effect (Lee and 

Lee 2010). 

 

Indole is also hypothesized to act as a signal for a non specific export response that could aid in cell survival 

through induction of multiple stress responses (Pinero-Fernandez et al. 2011). 

 

1.6.1.3.  SdiA 

SdiA is an E. coli LuxR protein homologue that is a QS protein.  It detects Acylated Homoserine Lactones 

(AHLs) which E. coli can sense but not generate and is required for indole sensing, but there is no proof of 

direct binding.  SdiA variants have been shown to have a reduced ability at forming biofilms and indole has no 

effect on them (Lee and Lee 2010, Wood et al. 2011). 

 

1.7.  c-di-GMP as a master regulator of biofilm formation 

Cyclic-di-GMP (c-di-GMP) regulates the transition between motile and sessile bacteria lifestyles based on 

environmental factors; it is part of QS signalling and other global signalling networks (Figure 4).  Knowledge of 

c-di-GMP signalling is ill-defined but is thought to be regulated spatially and temporally by enzymes and 

downstream effectors at the transcription, translation and post-translation levels (Jenal and Malone 2006).   
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1.7.1.  Production 

C-di-GMP is formed from two GTP molecules condensed by diguanylate cyclase (DGC) activity found in 

GGDEF domains.  C-di-GMP is degraded to GMP with a transition of pGpG by phosphodiesterase (PDE) 

activity in EAL and HD-GYP domains.  These domains are found within many bacteria and their activity 

controls intracellular concentration of c-di-GMP, which acts as a bacterial secondary messenger (Jenal and 

Malone 2006). 

 

The balance of EAL and GGDEF domains is dependent on growth phase, cell cycle stage and adaption to 

surface growth.  This controls the levels of c-di-GMP which controls flagellar motility through control of gene 

expression, motor function and organelle assembly (Figure 4) (Jenal and Malone 2006). 

 

Proteins involved in the biosynthesis and turnover of c-di-GMP are expressed in higher numbers in Gram 

negative bacteria (Tagliabue et al. 2010). 

 

C-di-GMP is important in biofilm formation in stimulating production of EPS and adhesion factors such as curli 

and cellulose (Tagliabue et al.. 2010) and c-di-GMP levels are inversely related to the amount of eDNA which 

is a component of the EPS (Wood et al.. 2011).  Chemical and physical stress is known to increase biofilm 

formation and it has been found that in Gram negative bacteria this changes the concentration of intracellular c-

Figure 1.4:   How c-di-GMP affects cell mobility 
GTP is condensed by the enzyme diguanylate cyclase (DGC) to c-di-GMP which is then degraded to pGpG 
by the enzyme phosphodiesterase (PDE).  The EAL holds the activity of PDE enzymes and is activated by 
GTP molecules, whereas the GGDEF domain holds the activity DGC enzymes and is inhibited by c-di-
GMP (Jenal and Malone 2006). 
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di-GMP.  During biofilm formation, there is low motility and a high intracellular concentration of c-di-GMP, 

partly the result of inactivated DGCs (YeaI, YedQ and YfiN in E. coli).  Conversely, low intracellular c-di-GMP 

concentrations result in increased motility and surface detachment.  Thus high concentrations of c-di-GMP are 

required for biofilm formation and low concentrations occur later for the maturation and dispersal stages (Wood 

et al. 2011). 

 

1.7.2. DGC activities in biofilm formation 

Most GGDEF domains are associated, or are thought to be associated, with a signal input domain so they act in 

response to environmental stimuli (Jenal and Malone 2006).  Many DGCs are expressed at growth temperatures 

below 30°C.  DGCs act to increase production of c-di-GMP, but their relationship is not proportional (Tagliabue 

et al. 2010).   

 

Many DGCs are important for biofilm formation.   AdrA is a protein with an active GGDEF domain, 

synthesised in the presence of c-di-GMP and is involved in the biosynthesis of cellulose, a part of the EPS 

(Brombacher et al. 2006).  AdrA stimulates production of cellulose through allosteric activation of the cellulose 

synthase protein machinery (Tagliabue et al. 2010). 

 

YddV is one of the most highly expressed DGCs in E. coli, with its GGDEF domain in the C terminal, and helps 

regulate the curli operons, but YddV can also stimulate biofilm formation independently of curli.  YddV 

activates of the csgBA operon in curli production in response to c-di-GMP levels (Tagliabue et al. 2010). 

 

Several other E. coli DGCs are thought to be involved in biofilm regulation.  YcdT is co-regulated with Poly-N-

acetylglucosamine (PNAG) biosynthesis genes, another part of the EPS.  Overexpression of YcdT results in a 

higher intracellular concentration of c-di-GMP affecting cell motility and colony size.  YdaM is required for 

synthesis of curli and controls expression of cellulose through the expression of csgD.  These DGC activities 

result in a reduction in cell motility (Tagliabue et al. 2010). 

 

c-di-GMP can regulate gene expression through direct binding to riboswitch elements in mRNA (Tagliabue et 

al. 2010). 
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1.7.3.  Modulation of c-di-GMP 

The yddV-dos operon is the most expressed of the RpoS dependent genes related to c-di-GMP metabolism.  Dos 

is a direct oxygen sensor protein with a heme prosthetic group and YddV is a heme binding oxygen sensor.  

Both YddV and Dos interact to form a stable protein complex which is highly expressed and possesses both 

DGC and PDE activity and YddV overexpression can stimulate biofilm formation.  Dos has been found to have 

a negative role on curli production, its overexpression results in decreased biofilm production and a possible role 

in dispersal.  YddV and Dos control curli production, biofilm formation and dispersal via modulation of 

intracellular c-di-GMP concentration (Tagliabue et al. 2010). 

 

1.8.  Industrial relevance of biofilms 

Biocatalysis reactions can utilise enzymes and cells to catalyse reactions of high specificity under certain 

conditions that are more environmentally friendly than industrial chemical processes.  For biocatalysis a whole 

cell can be used or the enzyme of interest can be immobilised.  When a series of reactions are to be performed, 

this can be done within a microbe, however this is normally performed in batch or fed-batch reactors that are 

limited in how long they can be used.  Use of immobilised enzymes is also limited by immobilisation as enzyme 

immobilisation is intricate and there are no universal ways to perform it (Rosche et al. 2009).  Biofilms could 

provide an answer as they are cells immobilised in a self produced matrix and the community of bacteria could 

be engineered to perform the reactions required. 

 

Biofilms have been successfully used in industry before, the first engineered biofilm was a consortium grown to 

prevent biocorrosion (Wood et al. 2011).  They have been used in industry where substrates or reaction products 

affect cell viability such as in the conversion of agricultural products to alcohols or organic acids.  In the food 

industry biofilms are used in production of vinegar using acetic acid bacteria.  (Rosche et al. 2009). 

Other interests for industry are due to the resistance provided by the physical barrier that the secreted EPS 

provides, the heterogeneity in the biofilm, the concentration of gradients found, mutations and the 

environmentally induced changes in gene expression (Wood et al.. 2011). 

 

1.9.  Requirements of engineered biofilms 

Biofilms are used in reactors resulting in low cost operation, due to their robust and self immobilising nature, 

but they are little understood and complex due to intricacies in cell-cell communication and control.  For use in 



21 
 

industry a biofilm species is required that can be easily genetically manipulated for the desired biocatalysis.  

This would have to be a non pathogenic species which is genetically well defined that would easily form a 

biofilm in a controllable way.  The biofilm should be able to grow in a cheap medium and any cofactors 

required should be readily available or engineered to be produced by the bacteria.  Further work is required to 

assess the cost benefit and efficiency of running long term continuous biofilm reactors.  Other relevant work 

would be to look at the extracellular secretion of enzymes by biofilms for catalysis such as hydrolases for the 

production of biofuels from agricultural products and their use to produce pharmaceuticals so an enzyme 

cascade can be used to produce chiral compounds.  (Rosche et al. 2009). 

 

Further considerations for industry would be the production of a biofilms EPS, which would have to be 

controlled and monitored as overproduction would affect diffusion of substrates and products, reduce the 

amount of active cells for the reaction or could produce problems downstream.  There is a possibility that there 

would be limitations with biofilms as well due to the different growth states of cells, as some will be 

metabolically inactive, slowing product production (Rosche et al.. 2009). 

 

Biofilms could be controlled if there was a fuller knowledge of their genetics.  Knowing this it would possible to 

engineer secretion of QS signals and compounds to affect biofilm phenotype, control biofilm formation and 

improve recombinant protein production (Wood et al.. 2011, Tsao et al.. 2011, Ma et al. 2011).   

 

A problem with use in industry is the amount of time for a biofilm to form a certain amount of mass per volume 

for production.  Previous biofilm reactors including fluidised bed biofilm reactors and packed bed reactors have 

suffered from this.  The use of spin coated engineered biocatalysts (SCEBs) described in Tsoligkas et al. (2012), 

have overcome the time for initial attachment and monolayer formation, and allow the biofilm to go straight to 

maturation and formation of a 3D structure.  Tsoligkas et al. (2012) used an E. coli K12 strain PHL644 which 

has a hyperadhesion phenotype due to a mutation in the gene encoding the osmolarity response regulator ompR 

which results in an increase in CsgD expression thus activating expression of curli genes csgBA generating curli.  

These factors allowed for extensive, heterogeneous EPS by day 6 with a transition period to this at days 5-7 to 

form the biofilm (Tsoligkas et al. 2012). 
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1.10.  Genetics and Reaction 

To produce a useful engineered biofilm biocatalyst, gene expression in formation, structure and function of the 

engineered biofilm must be understood, so they can be manipulated for efficient biocatalysis.  This work 

initially focuses on E. coli K-12 strains with an ompR234 mutation which upregulates curli, and the 

biotransformation of haloindoles and serine to L-halotryptophans using TrpBA expressed from plasmid pSTB7.  

Understanding the cells’ gene expression in the biofilm and biotransformation will enable design of conditions 

to optimise the processes. 

 

The protein OmpR responds to changes in envelope pressure due to osmolarity changes detected by EnvZ, a 

sensor kinase.  Curli is a protein component of EPS, a bacterial amyloid that promotes adherence, and thus 

biofilm formation and OmpR is involved in curli expression through positively regulating csgD (Barnhart and 

Chapman 2006).  Importantly curli production has been linked to synthesis of cellulose, another component of 

EPS, leading to the formation of a biofilm EPS with tight cell-cell and cell-surface interactions (Brombacher et 

al. 2006). 

 

The plasmid pSTB7 is a high copy number plasmid which produces tryptophan synthase from Salmonella 

enteric sv Typhimurium (Kawasaki et al. 1987).  In this project TrpBA is being used for the biotransformation 

reaction of haloindoles and serine to L-halotryptophans, which are starting compound for the synthesis of 

bioactive products, such as the anticancer agents rebeccamycin and diazonamide (Tsoligkas et al. 2012). 

 

Indole is the normal substrate of TrpBA and is known to affect E. coli cells by acting as an interspecies quorum 

sensing (QS) signal, with effects on biofilm formation (Zhang et al. 2007).  Indole is synthesised in stationary 

phase, transported by AcrEF and Mtr, and has a role in the control of biofilms virulence, plasmid stability and 

drug resistance, leading to the robust and resistant nature of a biofilm.  Other effects include acting as a chemo 

repellent, decreasing cell motility and cell adherence to epithelial cells (Lee and Lee 2010).  It will be seen if 

halo-indoles have similar effects upon cells. 

 

The pT7-CsgD plasmid is also used in this work, which expresses csgD and results in increased surface 

attachment (Brombacher et al. 2006).  Expression of CsgD from the plasmid pT7-CsgD results in a functional 
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curli phenotype that is independent of activation of the csgDEFG promoter (Brombacher et al. 2006), thereby 

offering two pathways to enhanced curli production: ompR234; and csgD overproduction. 
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1.11.  Objectives: 

The project aims to use engineered biofilm catalysts for biotransformations due to their robust nature.  The 

biotransformation currently investigated is L-haloindoles to L-halotryptophans, starting compounds in the 

synthesis of some anticancer agents, using the enzyme TrpBA.  To optimise the use of a biofilm as a biocatalyst, 

gene expression of biofilms will be examined so conditions can be designed to increase the speed of biofilm 

formation and efficiency of the biotransformation. 

 

This will be performed through: 

 Continuing the work from Tsoligkas et al. (2012) to understand the reaction in an engineered biofilm as 

a biocatalyst and why it works better than cells in a planktonic state. 

 Understanding the biofilms performs differently to planktonic cells in the biotransformation reaction. 

 Tailoring conditions to optimise formation, maturation and biotransformation within the biofilm. 
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Chapter 2.  Materials and Methods 

 

Methods used to study viability of cells were flow cytometry, a laser based technology where a stream of cells 

in liquid is passed through a laser and scatter and fluorescence detection can be used  to work out physical 

characteristics, such as forward scatter created by cells correlates with cell size and side scatter correlates with 

cell granularity  Use of the dyes bis-oxanol (BOX) which binds to cells with a depolarised membrane potential 

and propidium iodide (PI) which binds to DNA allows estimations on population health so dead and injured 

cells can be detected.  This was checked by performing colony forming units (CFU) to see how well cells could 

proliferate. 

 

The Hoechst assay was also used to look at efflux of cells performing the biotransformation where the dye 

Hoechst is incubated with cells and its fluorescence is detected over a time period.  Hoechst fluoresces when it 

binds with DNA and is a substrate for efflux pumps so fluorescence decreases as efflux increases. 

 

2.1.  Media and Strains 

Four strains of E. coli were used: 

 PHL628 (MG1655 malA-kan ompR234) which has a mutation in the ompR gene, a substitution at position 

43 from leucine to arginine giving the ompR234 allele (Vidal et al. 1998), resulting in the strains ability to 

form a biofilm. 

 PHL565R (MG1655), the paternal strain of PHL628 without the ompR234 allele which does not readily 

form a biofilm (Vidal et al. 1998). 

 MC4100 (araD139 D(argF-lac)U169 rpsL150 relA1 flbB5301 deoC1 ptsF25 rbsR) (Vidal et al. 1998). 

 PHL644 (MC4100 malA-kan ompR234) comprising of MC4100  with the ompR234 allele (Vidal et al. 

1998). 

 

Strains were transformed using the heat shock method (Froger and Hall 2007) Three plasmid were used: 

 pT7-csgD (Brombacher et al. 2006) a plasmid which over produces CsgD under the control of the T7 

promoter to improve biofilm formation.  Encodes ampicillin resistance. 

  pT7-7 (Brombacher et al. 2006)  an empty control plasmid.  Encodes ampicillin resistance. 



26 
 

 pSTB7 containing the Salmonella enterica serovar Typhimurium TB1533 trpA and trpB genes under the 

control of the trp promoter containing a deletion eliminating tryptophan repression and encoding 

ampicillin resistance (Kawasaki et al., 1987). 

 

The different strains were grown in Luria-Bertani (LB) broth (10gL-1 tryptone, 5gL-1 yeast extract, 10gL-1 NaCl) 

or half LB (5gL-1 tryptone, 2.5gL-1 yeast extract, 5gL-1 NaCl). 

 

Biofilms were matured in M63 medium (100 mM KH2PO4, 15 mM (NH4)2SO4, 0.8 mM MgSO4.7H2O, 9 mM 

FeSO4.2H2O, 17 mM K-succinate, 1 mM glucose, adjusted to pH 7.0) 

 

2.2.  Biofilm 

All strains were grown as spin coated biofilms as described in Tsoligkas et al. (2012).  The biofilms were 

formed on VWR glass slides 75mm by 25mm which had been coated with 4 ml of 0.1% Poly-L-lysine (Sigma) 

and dried for 24 hours in a 60°C oven.  200ml of ½ LB was inoculated with the appropriate strain and incubated 

for 24 hours in an orbital shaker at 30°C, 180rpm and with a throw of 19mm.  The cultures were then transferred 

to 750ml polypropylene centrifuge bottles (Beckman Coulter UK Ltd) with the poly-L-lysine coated glass slides 

supported on glass beads at the bottom.  This was then centrifuged for 10 minutes at 1811g to form a layer of 

cells on the slides.  The slides were then aseptically transferred to 500ml wide necked conical flasks containing 

70ml of M63 medium (100 mM KH2PO4, 15 mM (NH4)2SO4, 0.8 mM MgSO4.7H2O, 9 mM FeSO4.2H2O, 17 

mM K-succinate, 1 mM glucose, adjusted to pH 7.0) and left to mature for one week incubated in an orbital 

shaker at 30°C, at 70rpm with a throw of 19mm (figure 2.1.). 

 

 

 

 

 

Figure 2.1: Diagrammatic Representation of Producing an Engineered Biofilm Biocatalyst 
Strain were grown in a 200ml of ½ LB in a conical flask before being transferred to a centrifuge tube with a poly-L-lysine 
coated slide at the bottom.  This was then centrifuged for 10 minutes at 180rpm to form a cell layer of the slide.  This was 
then incubated in M63 to mature for a week. 
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2.3.  Biotransformation 

 

Figure 2.2:  The biotransformation performed by tryptophan synthase from the plasmid pSTB7. 
Schematic representation of the biotransformation of 5-haloindole (1) and serine (2) to 5-halotryptophan by tryptophan 
synthase as performed in the planktonic and biofilm reaction (Tsoligkas et al. 2012). 
 

To investigate the different variables within the biotransformation of L-haloindoles to L-halotryptophans (figure 

2.2.), the various strains were grown in 150ml of LB to OD650 >1, centrifuged for 10 minutes at 1811g and 

resuspended in PBS (tablets from Sigma-Aldrich) or biotransformation reaction buffer (0.1 M KH2PO4, 7 mM 

Serine, 0.1 mM PLP, adjusted to pH 7.0) supplemented with 5% DMSO and 2mM chloroindole (for 

chlorotryptophan) or 2mM indole (for tryptophan).  Biotransformation reactions were incubated at 30°C and 

shaken at 2g. 

 

Samples were taken after 0, 1, 2 and 24 hours:  the number of viable cells was determined using CFU by   

performing serial dilutions of samples with PBS to get approximately 100-150 colonies per nutrient agar plate 

after incubation at 37°C overnight.  Live/dead staining with flow cytometry to check was also performed. 

 

2.4.  Flow Cytometry 

To determine the viability of cells in biofilms, they were detached from the glass slides, either by using an 

aseptic scraper or by using a pipette to agitate liquid on the biofilm and forcing the cells off, and resuspended in 

5ml of PBS.  Resuspended cells were analysed by flow cytometry (Accuri C6) using bis-oxanol (BOX) and 

propidium iodide (PI) stains. 

 

Propidium iodide (PI) and Bis (1,3-dibarbituric acid) trimethine oxanol (BOX) were obtained from Sigma 

Aldrich.  PI was made in water to a stock concentration of 200µg ml-1 and filtered and stored at 4°C and used at 

a working concentration of 5 µg ml-1. BOX was made in DMSO to a stock concentration of 10mg ml-1, 5µl of 
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this stock was added to 4765µl of filter-sterilised PBS and 200µl of 0.1M EDTA and thus used at a final 

concentration of 100ng ml-1. 

 

For flow cytometry cells were diluted in 500µl of PBS to get a flow rate of 1000-2500 events per second. PI was 

used at 5 µg ml-1 to stain DNA of bacteria cells which have lost membrane integrity to show dead cells and 

BOX was used at 100ng ml-1 to stain cells with a collapsed membrane potential to show cells which were viable 

but injured. Red and green fluorescence was recorded as well as forward and side scatter. 

 

Cells were killed to act as a dead control: cells from 500µl of culture were harvested by centrifugation and 

resuspended in 1 ml of 70% ethanol for 10 minutes, then pelleted and resuspended in 500µl of PBS to be run on 

the flow cytometer. 

 

2.5.  The Hoechst Assay 

The Hoechst assay was used to try to establish the influx and efflux of the molecules involved in the 

biotransformation.  This was adapted from Webber and Coldham (2010) and performed by comparing the 

fluorescence intensity of the efflux substrate 2.5M Hoechst H33342 by different E. coli strains suspended in 

PBS, reaction buffer and  reaction buffer in the absence or presence of, 5%DMSO and indole, 5-chloroindole, 5-

bromoindole or 5-fluoroindole.  Hoechst H33342 is a substrate for major efflux pumps (e.g. AcrAB-TolC) and 

its fluorescence increases when bound to DNA (excitation maximum 350nm, emission maximum 461nm).  

Therefore if there is more efflux from the cell as a result of environmental conditions then the fluorescence of 

Hoechst will decrease more quickly over time. 

 

PHL644 and PHL644 pSTB7 were grown in triplicate in 5ml of LB overnight.  The next day 2ml of this was 

added to 50ml of LB and grown at 30°C in a 250ml conical flask to mid log phase.  From each culture 3ml was 

harvested by centrifugation and resuspended in PBS to act as a control.  1ml of each culture was harvested by 

centrifugation and resuspended in 70% ethanol to act as a dead cell control.  The remaining 47ml was harvested 

by centrifugation and resuspended in 47ml of reaction buffer and the OD600 adjusted to approximately 0.1 using 

reaction buffer.  5ml aliquots of cells suspended in reaction buffer were added to 5ml of each of the following: 

 Reaction buffer 

 Reaction buffer plus 5% DMSO 



29 
 

 Reaction buffer, 5% DMSO plus 2mM indole 

 Reaction buffer, 5% DMSO plus 2mM chloroindole 

 Reaction buffer, 5% DMSO plus 2mM bromoindole 

 Reaction buffer, 5% DMSO plus 2mM fluoroindole 

 

200µl of each suspension, dead control cells and control cells in PBS were added in triplicate to wells of a black 

plastic 96 well plate to act as control.  180µl of each suspension was added to wells as “test” samples which 

would have the Hoechst added.  The assay was started by adding 20µl of 25µM Hoechst to the test suspensions 

before the plate was inserted into the Fluorstar plate reader which incubated the samples at 30°C and measured 

fluorescence (゚ex 355nm and ゚em 465nm) every minute for 30 minutes.  The data were then transferred to a 

Microsoft excel sheet, the triplicate values of fluorescence averaged and plotted against time to show the 

accumulation of Hoechst. 
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Chapter 3.  Results and Discussion 

 

3.1.  Biotransformation 

The biotransformation used in this study was tryptophan synthase converting 5-chloroindole plus serine to L-

chlorotryptophan.  For the reaction to take place in the biofilms formed, the plasmid pSTB7 (encoding 

tryptophan synthase) was transformed into E. coli cells using the heat shock method.  To examine the effects the 

biotransformation has on the cells in the engineered biofilms as biocatalysts, planktonic counterparts were used 

and prepared as described in Tsoligkas et al. (2012) but at 50ml, a tenth of the volume of that in the referenced 

study. 

 

Whether haloindoles have the same effect as indole on cells has bearing on the biotransformation, so the 

biotransformation reaction buffer with chloroindole was used to test its effect on cells and to try to optimise 

reaction conditions.  Different variables of the biotransformation were identified and investigated to start 

understanding gene expression and start optimisation.  The behaviour of cells with and without plasmid was 

looked at using PHL628 pT7-7, PHL644 and PHL644 pSTB7.  The metabolic burden of a plasmid was 

investigated to see whether this leaves the cell susceptible to different conditions using PHL644 and PHL644 

pSTB7.  The metabolic burden of carrying out the biotransformation using PHL644 pSTB7 was investigated.  

Growth phase was investigated to see if this affected the biotransformation or the cells using early stationary and 

late stationary phase.  The reaction buffer was looked at to see if the serine component is required for cell 

survival.  Viability was investigated to find out what was affecting viability, the indole or halogen component of 

the molecule. 

 

Previous studies showed the importance of the ompR234 allele for increasing curli production and thereby 

increasing biofilm formation.  Since ompR234 increases curli production via activating synthesis of the CsgD 

regulator protein, the effect of overproduction of CsgD from plasmid pT7-csgD was tested in strains PHL565R 

(wild type ompR+) and PHL628 (the isogenic ompR234 strain). 

 

3.2.  Growth Curve 

To test if the plasmids used in this study exerted a metabolic strain affecting the growth of E. coli, absorbance at 

650nm was measured every hour for cultures of PHL628 pT7-7 (an empty vector), PHL628 pT7-csgD (the same 
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vector but containing the csgD gene), PHL565R pT7-7 and PHL565R pT7-csgD grown in LB.  There was no 

noticeable difference in growth between different strains, so no strain is at a disadvantage in these growth 

conditions. 

 

3.3  Initial Biofilm Tests 

To test the ability of strains PHL565R and PHL628 transformed with either pT7-7 (empty vector) or pT7-csgD 

(overproducing the regulator of biofilm formation CsgD) to form biofilms, the method of Tsoligkas et al. (2012) 

was used to centrifugally attach the bacteria to glass slides.  The glass slides were matured for a week in M63 

medium at 30°C and 100rpm, and then the biomass attached to the glass slide and accumulated in the maturation 

medium were estimated using absorbance at 650nm, assuming that 1ml of culture with an OD650 of 1 is equal to 

approximately 0.4mg of dry mass (Figure 3.1.).  The biofilm biomass per unit area (Figure 3.1.A.) and biomass 

of planktonic and biofilm cells per culture (Figure 3.1.B.)  were calculated. 

 

PHL628 pT7-7 biofilm had an average biomass of 0.041 mg cm-2, slightly higher than the PHL628 pT7-csgD 

biofilms with an average biomass of 0.036 mg cm-2 (Figure 3.1A). PHL565R pT7-7 had a biomass per area of 

less than 0.001 mg cm-2, demonstrating that without the ompR234 allele, biofilm generation is very poor.  

PHL565R pT7--csgD had a much higher average biofilm biomass of 0.047 mg cm-2, demonstrating that 

overproduction of CsgD can improve biofilm production in a similar manner to the ompR234 mutation. The 

similar biomass per area of biofilms of  PHL628 pT7-7 and PHL628 pT7-csgD demonstrate that the effects of 

the ompR234 allele and CsgD overproduction are not additive, probably since they both regulate biofilm 

production via the same regulatory pathway.  In the M63 maturation medium, PHL628 transformed with each 

plasmid showed similar planktonic biomass, but PHL565R strains showed more, PHL565R + pT7-7 showing 

the most at 6.28mg average.  All strains had greater biomass in the planktonic phase than in the biofilm (Figure 

3.1.B). 
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Figure 3.1. Biomass per unit biofilm area (A) and per culture (B) for strains PHL628 and PHL565R transformed with either 
pT7-7 or pT7-csgD. 
Biofilms were generated using the spin-down method and matured for 7 days in M63 medium.  Biomass was determined by 
scraping the biofilm from the glass slide and resuspending it in 5ml of PBS, drying 1ml of the suspension at 60°C for 48 
hours (in duplicate) and measuring the resultant mass. 
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Figure 3.2. Plasmid retention (A) and flow cytometric determination of viability (B) for planktonic and biofilm cells. 
Calculated through CFU and replica plating in duplicate. 
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CFU determination and replica plating were performed to test the plasmid retention of biofilm and planktonic 

cells (Figure 3.2.A).  All strains showed a high percentage of plasmid retention in both biofilms (>90%) and 

planktonically (>89% Figure 3.2.A).  Flow cytometry was used to determine the viability of bacteria from both 

biofilm and planktonic cells (Figure 3.2.B). Over 87% of biofilm and planktonic cells were alive after their 

week-long incubation, but PHL628 pT7-csgD biofilm showed the largest proportion of injured cells in a biofilm 

at 8% of cells, however this group also had the most error.  Also noted from forward scatter data was that 

PHL628 cells were smaller than PHL565R.  In the medium there appeared to be little difference in cell viability.   

 

These results tally with initial observations of the slides that showed that PHL565R pT7-7 produced no biofilm 

and remained as planktonic cells in the medium, whereas all other strains produced a biofilm on the glass slides. 

 

For biofilms to be used in industry they would need to have a low cost of operation, use a non-pathogenic 

species which can generate biofilms in a controllable way, be genetically manipulated for the desired 

biocatalysis and grow in a cheap medium with readily available cofactors (Rosche et al. 2009).  The E. coli used 

here is a good choice as it is a good genetic model, however laboratory strains do not readily form biofilms.  

Previously, Tsoligkas et al. (2012) used E. coli K-12 strain PHL644, resulting in heterogeneous EPS formation 

by day 6 and biofilm formation during days 5-7, due to increases in csgD expression caused by the ompR234 

allele (Tsoligkas et al. 2012).  E. coli PHL628 was obtained, which also has the ompR234 mutation.  The 

OmpR234 mutation increases transcription from the csgD promoter and increased levels of CsgD increasing 

curli and cellulose biosynthesis for biofilm formation.  On the pT7-csgD plasmid expression of csgD results in a 

functional curli phenotype that is independent of the csgDEFG promoter, resulting in increased surface 

attachment (Brombacher et al. 2006).  So both ompR234 allele and pT7-csgD should increase biofilm formation, 

which corresponds with the results of biofilm testing (Figure 3.1).  So for a biofilm to form in an E. coli K12 

strain, either the plasmid pT7-csgD had to be present or the strain requires an ompR234 mutation (PHL628) as 

PHL565R failed to produce a biofilm when it had an empty plasmid (pT7-7) but formed one with pT7-csgD. 

 

This demonstrates the importance of CsgD as a regulator for biofilm formation, as without an increase in 

cellular concentration, E. coli cells failed to attach.  Other studies have found that E. coli biofilm attachment and 

adherence normally requires flagella, type I pili and curli fimbriae.  In attachment flagellar mediated motility is 

required to create primary cell surface contacts then type I pili are used to stabilise these (May and Okabe 2011, 
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Jackson et al. 2001, Danese et al. 2000).  However this data and others suggests that the formation of curli could 

be the most important determinant (Barnhart and Chapman 2006, Zhang et al. 2007). 

 

3.4 Flow cytometry analysis of bacterial viability during planktonic biotransformations 

How cells respond to the biotransformation conditions required for the synthesis of 5-chlorotryptophan from 5-

chloroindole was investigated by measuring the viability of planktonic cells during biotransformation reactions.  

Cell viability was assessed using flow cytometry live/dead staining and CFU determinations.  E. coli strain 

PHL628 was initially used, grown in duplicate overnight in 3 ml of LB at 37°C and 2g, then 0.5ml of each 

overnight culture was added to 50ml LB and incubated at 37°C and 2g until the OD650 was greater than 1. The 

viability was measured following incubation in PBS, PBS with 5% DMSO or PBS, 5% DMSO and 2mM 5-

chloroindole.  Flow cytometry data could not be used due to an error in dye dilution, but CFU analysis showed 

that the number of viable cells was fairly constant after 0, 1 and 2 hours (data not shown) at approximately 1-2 

x1010 CFU ml-1. 

 

Strain PHL628 pT7-7 was incubated under the same three conditions as those used to determine whether the 

metabolic burden of a plasmid would make cells less viable.  After 1 or 2 hours incubation, over 90% of cells 

were alive according to flow cytometry, but after 26 hours the cultures incubated in PBS plus 5% DMSO and 5-

chloroindole contained a significant percentage of injured or dead cells (an average of 39.3% Figure 3.3.A-C) 

but with no measurements between 2 and 26 hours it is not known when death started to occur.  The CFU data 

shows a fairly similar CFU ml-1 for 0, 1 and 2 hours for samples incubated without 5-chloroindole, but with 5-

chloroindole there is a slightly larger decrease in CFU ml-1 after 2 hours incubation (Figure 3.3.D).  These data 

indicate that the plasmid does put a metabolic burden on the cell and carrying the plasmid leaves it more 

susceptible to damage and death under the conditions of the biotransformation.   

 

There was a change from using E. coli PHL628 to PHL644, which was shown through crystal violet staining 

and AFM data to be more robust in coping with the conditions of the biotransformation and able to form 

biofilms better than PHL628.  PHL644 was grown in duplicate overnight in 3 ml of LB incubated at 30°C and 

2g, then 0.5ml of each overnight culture was added to 50ml of LB and incubated at 30°C and 2g until an OD650 

greater than 1 was reached.  This was centrifuged at 1811g for 10 minutes and resuspended and  
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Figure 3.3. Determination of viability of exponential phase PHL628 pT7-7 in biotransformation conditions  
E. coli strain PHL628 with plasmid pT7-7 were incubated in either PBS (A), PBS plus 5% DMSO (B) or PBS, 5% DMSO and 2 mM 5-chloroindole (C) and viability was determined using flow 
cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed using determination of colony forming units on nutrient agar plus 100µg ml-1 ampicillin plates (D).  Data 
plotted are the mean of 2 independent experiments, error bars indicate standard deviation. 
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Figure 3.4. Determination of viability of exponential phase PHL644 in biotransformation conditions with chloroindole. 
E. coli strain PHL644 was incubated in either biotransformation reaction buffer (A), reaction buffer plus 5% DMSO (B) or reaction buffer supplemented with 5% DMSO and 2 mM 5-
chloroindole (C) and viability was determined using flow cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed using determination of colony forming units on 
nutrient agar plus 100µg ml-1 ampicillin plates (D).  Data plotted are the mean of 2 independent experiments, error bars indicate standard deviation. 
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incubated in 3 different conditions: biotransformation reaction buffer; reaction buffer plus 5%DMSO, and 

reaction buffer supplemented with 5% DMSO and 2mM 5-chloroindole (Figure 3.4).  The initial experiment 

determined the viability of PHL644 cells incubated at 30°C in the 3 different conditions.  Even after 25 hours, 

flow cytometry showed little difference in the number of dead and injured cells in the three conditions, with the 

majority of cells still being healthy (Figure 3.4.A- C).  CFU data also showed little difference between 0, 1, 2 

and 25 hours except cells treated with chloroindole had a larger decrease after 2 hours (Figure 3.4.D).  These 

data indicate that PHL644 is robust enough to tolerate the conditions required for the biotransformation. 

 

PHL644 pSTB7 was used in similar reaction conditions to check the metabolic burden of the plasmid and the 

biotransformation of 5-chloroindole to 5-chlrorotryptophan (Figure 3.5).  Flow cytometry, shown in Figure 

3.5.A-C, demonstrates that at 0 hours approximately 90% of cells were alive under all conditions, but at 1 hour 

cells in just reaction buffer or reaction buffer and DMSO, over 93% of cells were alive, and in reaction buffer, 

DMSO and 5-chloroindole there was an average of 9.40% dead and injured cells.  The same is true at 2 hours 

with the majority of cells without 5-chloroindole being viable but cells exposed to 5-chloroindole showed 

significant proportions of injured and dead cells.  At 28 hours the majority of cells exposed to 5-chloroindole 

were dead (approximately 75% dead, 1.5% injured and 11% alive).  With reaction buffer and reaction buffer and 

DMSO over 95% were still alive (Figure 3.5.A-B).  CFU showed a dramatic decreased viability in cells exposed 

to 5-chloroindole with far fewer CFU ml-1 at 0 hour compared to the other conditions and at time points after 

that <1 x107 CFU (Figure 3.5.D).   

 

The same experiment was performed using cells grown until late stationary phase (OD650 >4) which have a 

lower metabolic rate and higher tolerance to stress.  Flow cytometry and CFU data (Figure 3.6.A-D) showed 

cells were viable at 0, 1 and 2 and 28 hours with flow cytometry showing 98% live cells at these times under all 

incubation conditions.  Plasmid retention was also tested at 0 and 28 hours (Figure 3.6.E): at 0 hours in just 

reaction buffer 99% of cells were plasmid positive, cells with reaction buffer and DMSO 92% plasmid positive 

and cells with reaction buffer, DMSO and 5-chloroindole 87% plasmid positive.  At 28 hours both the cells in 

reaction buffer and reaction buffer plus DMSO had dropped their plasmid retention to approximately 82% 

whereas the cells exposed to 5-chloroindole had a similar retention to 0 hours of 86%. 
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Figure 3.5. Determination of viability of exponential phase PHL644 pSTB7 in biotransformation conditions with chloroindole. 
E. coli strain PHL644 pSTB7 was incubated in either biotransformation reaction buffer (A), reaction buffer plus 5% DMSO (B) or reaction buffer supplemented with 5% DMSO and 2 mM 5-  
chloroindole (C) and viability was determined using flow cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed using determination of colony forming units on 
nutrient agar plus 100µg ml-1 ampicillin plates (D).  Data plotted are the mean of 2 independent experiments, error bars indicate standard deviation. 
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Figure 3.6. Determination of viability of PHL644 pSTB7 grown to stationary phase in biotransformation conditions with chloroindole. 
E. coli strain PHL644 pSTB7 was grown to late stationary phase and was then incubated in either biotransformation reaction buffer (A), reaction buffer plus 5% DMSO (B) or reaction buffer 
supplemented with 5% DMSO and 2 mM 5-chloroindole (C) and viability was determined using flow cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed 
using determination of colony forming units on nutrient agar plus 100µg ml-1 ampicillin plates (D).  Plasmid retention was determined in the biotransformation through replica plating from 
nutrient agar plates to nutrient agar plus 100µg ml-1 ampicillin plates (E). Data plotted are the mean of 2 independent experiments, error bars indicate standard deviation. 
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From looking at the planktonic data, 5-chloroindole has shown to have a toxic effect on exponential phase E. 

coli PHL644 pSTB7 which decreases their viability over 24 hours; this would be likely to decrease their ability 

to perform the biotransformation.  The same toxicity is not seen with just PHL644 suggesting the 

biotransformation products are toxic, or the extra metabolic burden is leaving the cells susceptible to the toxicity 

of chloroindole.  This may tie in with indole causing toxicity when added to growth medium at 1-6mM resulting 

in no increase in cell density (Lee and Lee 2010), so chloroindole may be producing the same effect.  High 

concentrations of indole, above 2mM, the concentration being used here, decrease cell growth, possibly through 

blocking cell division, disruption of the cell envelope or oxidant toxicity and affect cell metabolism leading to a 

pleiotropic effect (Lee and Lee 2010).  So to optimise the biotransformation, the source of chloroindole toxicity 

should be found to minimise its effect.  The fact that stationary phase cells do not appear to be affected by 

chloroindole (Figure 3.6) suggests that viability is most affected when cells are most actively metabolising and 

toxicity occurs when chloroindole is metabolised. 

 

Reaction buffer components may also affect cell viability during the biotransformation.  In all experiments the 

addition of 5% DMSO showed little difference to cell viability (Figure 3.3.B-3.7.B), so DMSO concentration 

could potentially be increased to increase haloindole solubility without interfering with cell viability and 

preventing haloindole being a limiting factor. 

 

If the serine present in the biotransformation reaction is respired by the cells it may affect viability during the 

biotransformation.  To test this, the reaction buffer was made with serine omitted.  PHL644 pSTB7 was 

incubated in 3 different conditions: reaction buffer without serine; reaction buffer without serine plus 5% 

DMSO; and reaction buffer without serine supplemented with 5% DMSO and 2mM 5-chloroindole.  CFU and 

flow cytometry showed very similar results at 0, 1 and 2 hours (Figure 3.7.A-D) to the same experiment with 

serine (Figure 3.6), so the cells were still able to respire and react.  These results are similar to ones with serine, 

indicating that serine is not used as a major energy source for respiration and is not required for cell survival but 

is probably just used in the biotransformation reaction. 
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Figure 3.7. Determination of viability of PHL644 pSTB7 grown to stationary phase in biotransformation conditions without serine and with chloroindole. 
E. coli strain PHL644 pSTB7 was incubated in either biotransformation reaction buffer without serine (A), reaction buffer without serine plus 5% DMSO (B) or reaction buffer without serine 
supplemented with 5% DMSO and 2 mM 5-chloroindole (C) and viability was determined using flow cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed 
using determination of colony forming units on nutrient agar plus 100µg ml-1 ampicillin plates (D).  Data plotted are the mean of 2 independent experiments, error bars indicate standard 
deviation. 
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To determine whether chloroindole is more toxic than indole, the same biotransformation experiment was 

performed with stationary phase cells treated with 5-chloroindole or indole in the reaction buffer in the presence 

of DMSO (Figure 3.8).  Cells treated with indole flow cytometry showed little loss of viability over the first 2 

hours with approximately 98% alive but at 22 hours there was a small loss of viability with an average of 91% 

of cells alive (Figure 3.8.A).  Cells treated with 5-chloroindole (Figure 3.8.B) showed a decrease in live cells 

over the first 2 hours with a drop from approximately 98% to 95% live cells from 0- 2 hours, with a further 

decrease at 25 hours to approximately 71% live cells.  CFU data in Figure 3.8.C, mirrored flow cytometry data 

with declines in magnitude in CFU for 5-chloroindole over 2 hours, unfortunately the 25 hour CFU data was 

contaminated, but a CFU ml-1  of around 1x1010 for indole. This correlates with indole not having the same 

effect on viability as chloroindole, indicating the halogen part of the molecule increases the toxicity.  It could be 

that a combination of chlorotryptophan and chloroindole is causing the toxicity or chloroindole becoming 

trapped in the membrane of the cells and blocking transporters due to its size or chlorotryptophan being 

produced than incorporated into proteins resulting in misfolded proteins.  Another possibility is that 

chloroindole is causing oxidant toxicity. 

 

To investigate all biotransformations flow cytometry was performed on stationary phase planktonic cells under 

all conditions; PBS; biotransformation reaction buffer; reaction buffer plus 5% DMSO; reaction buffer 

supplemented with 5% DMSO and 2mM indole; reaction buffer supplemented with 5% DMSO and 2mM 5-

chloroindole; reaction buffer supplemented with 5% DMSO and 2mM 5-bromoindole; and reaction buffer 

supplemented with 5% DMSO and 2mM 5-fluroindole (Figure 3.9 and 3.10) all the possible haloindoles that 

could be used in the biotransformation.  After both 2 and 24 hours the majority of cells under all possible 

biotransformation conditions (indole, chloroindole, bromoindole and fluoroindole) were alive, this suggests that 

as stationary phase cells show high viability in the biotransformation that biofilms would also display this high 

viability. 

 

To test this, flow cytometry was used to determine the viability of PHL644 pSTB7 biofilm cells that had been 

incubated at 30°C at 70rpm in biotransformation reaction buffers with or without the addition of DMSO, indole 

and haloindoles for 24 hours then shaken free and resuspended in PBS (Figure 3.11).  The flow cytometric data 

after 24 hours shows that approximately 90% of cells were alive under all conditions, so they should be able to  
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Figure 3.8. Determination of viability of stationary phase PHL644 pSTB7 in biotransformation conditions with chloroindole or indole. 
E. coli strain PHL644 pSTB7 was incubated in either biotransformation reaction buffer supplemented with 5% DMSO and 2 mM indole (A), or reaction buffer supplemented with 5% DMSO 
and 2 mM 5-chloroindole (B) and viability was determined using flow cytometry with dual propidium iodide – bisoxanol staining. Viability was also assessed using determination of colony 
forming units on nutrient agar plus 100µg ml-1 ampicillin plates (C).  Data plotted are the mean of 2 independent experiments, error bars indicate standard deviation. 
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Figure 3.9.  Flow cytometric determination of viability for stationary phase PHL644 pSTB7planktonic cells under all reaction conditions after 2 hours. 
E. coli strain PHL644 pSTB7 was incubated in either PBS, biotransformation reaction buffer, reaction buffer supplemented with 5% DMSO, reaction buffer supplemented with 5% DMSO and 2 
mM indole, reaction buffer supplemented with 5% DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5- bromoindole, reaction buffer supplemented 
with 5% DMSO and 2 mM 5-fluoroindole and viability was determined after 2 hours using flow cytometry with dual propidium iodide – bisoxanol staining.  Data plotted are the mean of 2 
independent experiments, error bars indicate standard deviation. 
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Figure 3.10.  Flow cytometric determination of viability for stationary phase PHL644 pSTB7planktonic cells under all reaction conditions after 24 hours. 
E. coli strain PHL644 pSTB7 was incubated in either PBS, biotransformation reaction buffer, reaction buffer supplemented with 5% DMSO, reaction buffer supplemented with 5% DMSO and 2 
mM indole, reaction buffer supplemented with 5% DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5- bromoindole, reaction buffer supplemented 
with 5% DMSO and 2 mM 5-fluoroindole and viability was determined after 24 hours using flow cytometry with dual propidium iodide – bisoxanol staining.  Data plotted are the mean of 2 
independent experiments, error bars indicate standard deviation. 
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Figure 3.11.  Flow cytometric determination of viability for PHL644 pSTB7biofilm under all reaction conditions after 24 hours. 
E. coli strain PHL644 pSTB7 biofilm was incubated in either PBS, biotransformation reaction buffer, reaction buffer supplemented with 5% DMSO, reaction buffer supplemented with 5% 
DMSO and 2 mM indole, reaction buffer supplemented with 5% DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5- bromoindole, reaction buffer 
supplemented with 5% DMSO and 2 mM 5-fluoroindole and viability was determined after 24 hours using flow cytometry with dual propidium iodide – bisoxanol staining.  Data plotted are the 
mean of 2 independent experiments, error bars indicate standard deviation. 
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perform the biotransformation.  The slightly higher proportion  of dead cells in the biofilm than the stationary 

could be due to the effect of removing the biofilms from the slide and putting them into suspension.  A better 

test for biofilm viability would be staining a biofilm directly with PI and BOX and viewing them under a 

confocal microscope, this will be an aim of future work. 

 

3.5.  Determination of rates of efflux using the Hoechst assay 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12:  Flow cytometric chart of PHL644 pSTB7 
The diagram shows the fluorescence of PHL644 pSTB7 cells in all four quadrants: live, in the lower left quadrant unable to 
take up PI or BOX; injured in the upper left quadrant able to take up BOX due to their collapsed membrane potential; dead 
cells in the upper right quadrant able to take up both BOX and PI due to their ruptured membrane; and the unknown lower 
right quadrant, theoretically impossible, since PI positive cells with ruptured membranes cannot have a membrane potential 
and thus be BOX negative. 
 

During flow cytometry analysis it was noted that cells were present in all four quadrants of the PI/BOX plots 

(Figure 3.12): lower left (live cells, unable to take up PI or BOX); upper left (injured cells, able to take up BOX 

due to their collapsed membrane potential); upper right (dead cells, able to take up both BOX and PI due to their 

ruptured membrane); and lower right (theoretically impossible, since PI positive cells with ruptured membranes 

cannot have a membrane potential and thus be BOX negative).  It was hypothesised that the cells in the lower 

right quadrant could have altered efflux properties that led to them effluxing the Hoechst dye, resulting in their 

unusual fluorescence properties.  Efflux and influx are also important properties of the cells since the 

biotransformation reaction would be impeded if the reactants were rapidly effluxed from the cells in particular, 

indole is known to be an efflux substrate in E. coli (Lee and Lee 2010).  To test the efflux properties of the cells 

in biotransformation conditions, the Hoechst efflux assay was used to monitor cells under different reaction 

3.12. 



49 
 

conditions and how they efflux the Hoechst dye which fluoresces when bound to DNA.  Increased rates of 

efflux lead to a decrease in observed Hoechst fluorescence. 

 

The first Hoechst experiment performed was on mid log phase planktonic PHL644 pSTB7 cells under different 

reaction conditions.  5ml Overnight culture were grown in triplicate at 30°C and 150 rpm, from each of these 

2ml was added to 50 ml of fresh LB and grown to mid log phase.  3ml of each resultant culture was taken for a 

dead cell control by being centrifuged at 1811g for 10 minutes to be resuspended in 70% ethanol for 10 minutes 

then centrifuged at 1811g for 10 minutes then resuspended in 3ml of PBS.  Another 3 ml was centrifuged at 

1811g for 10 minutes resuspended in 3ml of PBS as a live cell control.  The rest of the culture was also 

centrifuged at 1811g for 10 minutes and was resuspended in reaction buffer, before being diluted so the OD650 

was approximately 0.2.  This was then divided into the different reaction conditions: reaction buffer; reaction 

buffer plus 5% DMSO; reaction buffer supplemented with 5% DMSO and 2 mM indole; reaction buffer 

supplemented with 5% DMSO and 2 mM 5-chloroindole; reaction buffer supplemented with 5% DMSO and 2 

mM 5-bromoindole; and reaction buffer supplemented with 5% DMSO and 2 mM 5-fluoroindole.  The reaction 

was started with the addition of 20µl of Hoechst and the fluorescence (Ȝex=350 nm, Ȝem=460 nm) measured 

every minute (Figure 3.13).  It was found that dead cells had the highest fluorescence, caused by their inability 

to efflux the Hoechst dye, which is an ATP requiring process.  The fluorescence gradually decreased over time, 

which may be caused by DNA degradation. 

 

The live cells had lower fluorescence than the dead cells, indicating ATP-dependent efflux of Hoechst.  Cells 

incubated in reaction buffer had similar fluorescence profiles to that of dead cells, with equilibrium fluorescence 

values in the order 5-chloroindole > 5-bromoindole > 5-fluoroindole. Cells incubated with indole, reaction 

buffer only or reaction buffer supplemented with DMSO had equivalent, low, fluorescence values.  Cells 

suspended in PBS showed a slower initial increase in fluorescence so were difficult to compare to reaction 

buffer incubated cells. 

 

The Hoechst assay was also performed with  E. coli PHL644 without the pSTB7 biotransformation plasmid to 

determine whether the biotransformation of haloindole to halotryptophans was affecting the rates of efflux 

(Figure 3.14).  Comparable fluorescence versus time curves was found in PHL644 (Figure 3.14.) compared to 
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PHL644 pSTB7 (Figure 3.13.) these data indicate that the biotransformation is not causing a difference in 

efflux. 

 

Since the curves for PHL644 pSTB7 in the various reaction buffers had a similar shape to the dead cells, repeats 

of this assay were performed with the addition of flow cytometric analysis of the cells’ viability (Figure 3.15).  

This showed that the majority of cells incubated with chloroindole and bromoindole were dead, explaining why 

curves in Figures 3.13. and 3.14 look very similar to the dead cell controls.  It can be inferred that the cells 

grown for the Hoechst assay were more susceptible to the toxic effects of chloroindole and bromoindole due to 

only being grown to mid log phase.  However the comparable level of dead cells in reactions containing reaction 

buffer supplemented with DMSO, indole and fluoroindole suggests that these data may be compared. 
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Figure 3.13:  Accumulation of Hoechst by PHL 644 pSTB7 incubated in different reaction conditions over time. 
Planktonic E. coli strain PHL644 pSTB7 was incubated in either PBS, reaction buffer, reaction buffer plus 5% DMSO, reaction buffer supplemented with 5% DMSO and 2 mM indole, reaction 
buffer supplemented with 5% DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5-bromoindole, and reaction buffer supplemented with 5% DMSO and 
2 mM 5-fluoroindole and efflux and influx were examined by monitoring the fluorescence of level of Hoechst dye (Ȝex=350 nm, Ȝem=460 nm) over time.  Data plotted are the mean of 2 
independent experiments performed in triplicate, error bars indicate standard deviation. 
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Figure 3.14:  Accumulation of Hoechst by PHL644 incubated in different reaction conditions over time. 
Planktonic E. coli strain PHL644 was incubated in either PBS, reaction buffer, reaction buffer plus 5% DMSO, reaction buffer supplemented with 5% DMSO and 2 mM indole, reaction buffer 
supplemented with 5% DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5-bromoindole, and reaction buffer supplemented with 5% DMSO and 2 mM 
5-fluoroindole and efflux and influx were examined by monitoring the fluorescence of level of Hoechst dye (Ȝex=350 nm, Ȝem=460 nm) over time.  Data plotted are the mean of 2 independent 
experiments performed in triplicate, error bars indicate standard deviation. 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

0 5 10 15 20 25 30 35 40 45 

F
lu

o
re

sc
en

ce
 (

3
5

0
, 4

6
0

) 

Cycle 

3.14. 

Average PHL644 Dead + Hoechst 

Average PHL644, PBS + Hoechst 

Average PHL644, Reaction Buffer + Hoechst 

Average PHL644, Reaction Buffer, 5% DMSO + 
Hoechst 

Average PHL644 , Reaction Buffer, 5% DMSO, 
2mM Indole + Hoechst 

Average PHL644, Reaction Buffer, 5% DMSO, 
2mM Chloroindole + Hoechst 

Average PHL644, Reaction Buffer, 5% DMSO, 
2mM Bromoindole + Hoechst 

Average PHL644, Reaction Buffer, 5% DMSO, 
2mM Fluoroindole + Hoechst 



53 
 

Figure 3.15.:  Flow cytometric analysis of PHL644(a)and PHL 644 pSTB7 (b) incubated in different reaction conditions for 
the Hoechst assay 
Planktonic E. coli strain PHL644 (a) or PHL644 pSTB7 (b) were incubated in either PBS, reaction buffer, reaction buffer 
plus 5% DMSO, reaction buffer supplemented with 5% DMSO and 2 mM indole, reaction buffer supplemented with 5% 
DMSO and 2 mM 5-chloroindole, reaction buffer supplemented with 5% DMSO and 2 mM 5-bromoindole, or reaction 
buffer supplemented with 5% DMSO and 2 mM 5-fluoroindole for the Hoechst assay.  Viability was determined using flow 
cytometry with dual propidium iodide – bisoxanol staining. 
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To test for any difference in efflux abilities in each condition the Hoechst assay with PHL644 and PHL644 

pSTB7 were performed in triplicate as above with the addition of the efflux pump inhibitor (EPI) carbonyl 

cyanide m-chlorophenylhydrazone (CCCP) at a final concentration of 100µM.  CCCP acts by dissipating the 

proton motive force to prevent efflux of Hoechst so that it accumulates more within the cells, which should 

result in a larger fluorescence that increases over time. 

 

The profiles for reaction buffer supplemented with 5% DMSO and 2 mM 5-chloroindole or 2 mM 5-

bromoindole with and without CCCP have been discounted as these cells were dead as shown in Figure 3.15.  

Cells incubated in all other conditions were mainly alive as determined by flow cytometry. 

 

Adding CCCP to each of these reactions had an effect on their efflux (Figure 3.16).  For E. coli PHL644 and 

PHL644 pSTB7 there is a dramatic increase in fluorescence in the cells treated with CCCP.  These data indicate 

that under these conditions PHL644 and PHL644 pSTB7 are able to efflux normally. 

 

There is also only a slight difference in the accumulation of Hoechst between PHL644 and PHL644 pSTB7 

(Figure 3.16) which indicates that the plasmid and thus the ability to perform the biotransformation has no 

negative effect on efflux. 

 

Comparing PHL644 and PHL644 pSTB7 in PBS (Figure 3.16.A.) and reaction buffer (Figure 3.16.B.) without 

the addition of the EPI the curves have a slightly different shape as seen in previous Hoechst assays (Figure 3.13 

and 3.14.) showing the cells incubated in PBS either have decreased influx of the Hoechst or have increased 

efflux compared to cells incubated in reaction buffer.  However when the EPI is added the curves become very 

similar.  The cells incubated in PBS (Figure 3.16.A.) do reach a higher fluorescence than the cells incubated in 

reaction buffer (Figure 3.16.B.) showing that efflux and influx are different between these conditions with more 

Hoechst being brought into the cells incubated in PBS. 

 

DMSO is used primarily to increase the solubility of the haloindoles but might also increase the solubility of 

Hoechst, making it easier for the cells to import it and giving higher fluorescence, which can be checked by 

performing the same experiments but without DMSO.  Comparing PHL644 and PHL644 pSTB7 incubated in 

reaction buffer (Figure3.16.B.) and reaction buffer plus 5% DMSO (Figure 3.16.C.) there appears to be little 
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difference in the curves both with and without EPI suggesting that DMSO has little effect on efflux and likely 

does not increase Hoechst’s solubility.  Again when the EPI is added the cells incubated in reaction buffer plus 

5% DMSO act as expected with an increase in fluorescence. 

 

When 2mM indole is added to reaction buffer plus 5% DMSO (Figure 3.16.D.) there is a slight increase in 

fluorescence compared to reaction buffer plus 5% DMSO (Figure 3.16.C.) suggesting that either the influx is 

increasing or the efflux is decreasing in the presence of indole; either of these scenarios is advantageous for the 

biotransformation.  Studies have been done looking at indole transport into and out of the cell; it is exported by 

AcrEF, a multi drug exporter and its efflux and influx have been found to be rapid through the diffusion through 

the cell membrane and transported in by Mtr (Zhang et al. 2007, Pinero-Fernandez et al. 2011).  So when the 

EPI is added with cells incubated with indole there should be rapid transport into the cell still but no export out, 

which may explain the slightly higher fluorescence. 

 

When the cells are incubated with reaction buffer plus 5% DMSO and 2mM 5-fluoroindole (Figure 3.16.E.), in 

the absence of EPI the fluorescence is significantly higher compared to reaction buffer plus 5% DMSO and 

2mM indole.  This indicates that either fluoroindole is increasing influx or decreasing efflux of Hoechst.  When 

the EPI is added the fluorescence becomes similar, indicating that fluoroindole is inhibiting the efflux of 

Hoechst rather than the increasing influx.  It is possible that the fluoride on the indole is difficult for the cells to 

efflux and is competing with Hoechst for efflux pump activity. 

 

The next stage was to see if biofilm cells act in the same as planktonic PHL644 and PHL644 pSTB7.  Biofilms 

were generated using the spin-down method and matured for 7 days in 70ml ofM63 medium in wide necked 

conical flasks.  The M63 was removed and the flask and biofilms each washed with reaction buffer before being 

submerged in 70ml of either: PBS; reaction buffer; reaction buffer plus 5% DMSO; reaction buffer 

supplemented with 5% DMSO and 2 mM indole; reaction buffer supplemented with 5% DMSO and 2 mM 5-

chloroindole; reaction buffer supplemented with 5% DMSO and 2 mM 5-bromoindole; or reaction buffer 

supplemented with 5% DMSO and 2 mM 5-fluoroindole for and incubated at 30°C at 70 rpm for 2 hours.  The 

biofilms were then removed through vigorous shaking or pipetting the reaction buffer at the slide.  The OD650 

was measured for each and adjusted with reaction buffer to give an OD650 of approximately 0.2 and this was 

used in triplicate for the Hoechst assay.  Unfortunately no replicable results were produced from these 
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experiments, possibly due to the cells in a biofilm not being able to take up Hoechst well enough, due to EPS or 

the physical state of the cells 
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Figure 3.16:  Accumulation of Hoechst by PHL644 and PHL644 pSTB7 incubated in different reaction conditions over time 
with the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone. 
Planktonic E. coli strains  PHL644 and  PHL644 pSTB7 were incubated in either PBS (A), reaction buffer (B), reaction 
buffer plus 5% DMSO (C), reaction buffer supplemented with 5% DMSO and 2 mM indole (D), or reaction buffer 
supplemented with 5% DMSO and 2 mM fluoroindole (E) and efflux and influx were examined by monitoring the 
fluorescence of level of Hoechst dye (Ȝex=350 nm, Ȝem=460 nm) over time.  An efflux pump inhibitor (EPI) carbonyl cyanide 
m-chlorophenylhydrazone (CCCP) was added to half or the reactions as indicated.. 
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3.6. Conclusions and future work 

For a laboratory E. coli K12 strain to form a biofilm for use in industry as self-immobilising cells for 

biocatalysis, either the plasmid pT7-csgD is required or the strain needs an ompR234 mutation.  This gives a 

hyperadhesive phenotype so cells produce an extensive EPS, with curli being upregulated, leaving cells 

immobilised to a surface to be immersed in reaction conditions for biocatalysis. 

 

For the biocatalysis of converting haloindoles to halotryptophans, the plasmid pSTB7 is required for the 

expression of tryptophan synthase.  It has been found that 5-chloroindole has a toxic effect, decreasing the 

viability of PHL644 pSTB7 over 24 hours and their ability to perform the biotransformation.  The toxicity could 

be caused by reaction products or chloroindole being metabolised or the halotryptophans produced could be 

incorporated into cellular proteins.  There is also indication that the toxicity is increased by the presence of the 

chloro group. 

 

The results indicate that the concentration of serine and DMSO have little effect on the cells viability but other 

parts of the reaction buffer require testing to see if it affects the reaction. 

 

Other results indicate that when in stationary phase or as a biofilm PHL644 pSTB7 in not affected by the 

toxicity of haloindoles and so should be able to perform the biotransformations without this being limiting. 

 

The Hoechst experiments require more work so that live cells incubated with chloroindole and bromoindole can 

be tested to see if there is any difference in efflux compared to the other reactions and the same experiments 

needs to be done with biofilms.  The results so far indicate that efflux may be decreased when cells are 

incubated with fluoroindole, an advantage for biotransformation. 

 

Future work consists of investigating why planktonic E. coli dies when performing the biotransformation of 5-

chloroindole to 5-chlorotryptophan whereas the engineered biofilm performs the conversion for over 30 hours 

(Tsoligkas et al. 2012).  To do this continued investigation on the toxicity of 5-chloroindole will be performed 

through:  using chloramphenicol to stop protein synthesis to see if toxicity still occurs.  If the toxicity does not 

occur, it may be caused from 5-chloroindole being incorporated into proteins rather than inhibiting cells which 

can be checked by looking at the mass of the proteins produced; changing DMSO concentration in the 
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biotransformation to see its effect and if larger concentrations of haloindoles can be used; and performing the 

reactions with empty plasmids in PHL644 to see if the biotransformation products are causing toxicity or if the 

metabolic burden of a plasmid leads to susceptibility to toxicity.  Experiments in future will have samples taken 

for HPLC measurement to find out the conversion rate of the biotransformation, which is previously not done.  

Planktonic E. coli will also be used to find out what the rate limiting step in the biotransformation is and 

confirm that planktonic cells are less robust than a biofilm. 

 

Other future work includes more work on biofilms.  With continuing with the Hoechst assay to get replicable 

data of biofilms performing the biotransformation to investigate whether cells in a biofilm are effluxing the 

haloindoles and/or halotryptophans rapidly differently to planktonic cells.  Biofilm viability will also be 

investigated in-situ, confocal microscopy will measure fluorescence of PI and BOX (Live/dead) staining.  This 

would be compared with flow cytometry, OD and CFU results; gene regulation in biofilm development will be 

investigated through plasmids with biofilm regulator promoter-GFP fusions to see when and where the 

regulators are expressed in the biofilm with particular interest in CsgD. 

 

Further investigations on optimising the biotransformation will be performed by looking at different cell 

transporters, such as Mtr, an indole and tryptophan transporter and TdcC, a serine import transporter, to see if 

down or up-regulation by changing components of the growth media alters reaction rates. 
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1
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2 Optimisation of engineered Escherichia coli
3 biofilms for enzymatic biosynthesis of
4 L-halotryptophans
5 Stefano Perni1, Louise Hackett1, Rebecca JM Goss2, Mark J Simmons1 and Tim W Overton1*67

8 Abstract

9 Engineered biofilms comprising a single recombinant species have demonstrated remarkable activity as novel

10 biocatalysts for a range of applications. In this work, we focused on the biotransformation of 5-haloindole into

11 5-halotryptophan, a pharmaceutical intermediate, using Escherichia coli expressing a recombinant tryptophan synthase

12 enzyme encoded by plasmid pSTB7. To optimise the reaction we compared two E. coli K-12 strains (MC4100 and

13 MG1655) and their ompR234 mutants, which overproduce the adhesin curli (PHL644 and PHL628). The ompR234

14 mutation increased the quantity of biofilm in both MG1655 and MC4100 backgrounds. In all cases, no conversion of

15 5-haloindoles was observed using cells without the pSTB7 plasmid. Engineered biofilms of strains PHL628 pSTB7 and

16 PHL644 pSTB7 generated more 5-halotryptophan than their corresponding planktonic cells. Flow cytometry revealed

17 that the vast majority of cells were alive after 24 hour biotransformation reactions, both in planktonic and biofilm forms,

18 suggesting that cell viability was not a major factor in the greater performance of biofilm reactions. Monitoring

19 5-haloindole depletion, 5-halotryptophan synthesis and the percentage conversion of the biotransformation reaction

20 suggested that there were inherent differences between strains MG1655 and MC4100, and between planktonic

21 and biofilm cells, in terms of tryptophan and indole metabolism and transport. The study has reinforced the need

22 to thoroughly investigate bacterial physiology and make informed strain selections when developing

23 biotransformation reactions.

24
Keywords: E. coli; Biofilm; Biotransformation; Haloindole; Halotryptophan

25 Introduction
26 Bacterial biofilms are renowned for their enhanced resist-

27 ance to environmental and chemical stresses such as anti-

28 biotics, metal ions and organic solvents when compared

29 to planktonic bacteria. This property of biofilms is a cause

30 of clinical concern, especially with implantable medical de-

31 vices (such as catheters), since biofilm-mediated infections

32 are frequently harder to treat than those caused by plank-

33 tonic bacteria (Smith and Hunter, 2008). However, the in-

34 creased robustness of biofilms can be exploited in

35 bioprocesses where cells are exposed to harsh reaction

36 conditions (Winn et al., 2012). Biofilms, generally multi-

37 species, have been used for waste water treatment (biofil-

38 ters) (Purswani et al., 2011; Iwamoto and Nasu, 2001;

39Cortes-Lorenzo et al., 2012), air filters (Rene et al., 2009)

40and in soil bioremediation (Zhang et al., 1995; Singh and

41Cameotra, 2004). Most recently, single species biofilms

42have found applications in microbial fuel cells (Yuan et al.,

432011a; Yuan et al., 2011b) and for specific biocatalytic re-

44actions (Tsoligkas et al., 2011; Gross et al., 2010; Kunduru

45and Pometto, 1996). Recent examples of biotransforma-

46tions catalysed by single-species biofilm include the con-

47version of benzaldehyde to benzyl alcohol (Zymomonas

48mobilis; Li et al., 2006), ethanol production (Z. mobilis

49and Saccharomyces cerevisiae; Kunduru and Pometto,

501996), production of (S)-styrene oxide (Pseudomonas sp.;

51Halan et al., 2011; Halan et al., 2010) and dihydroxyacet-

52one production (Gluconobacter oxydans; Hekmat et al.,

532007; Hu et al., 2011).
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54 When compared to biotransformation reactions cata-

55 lysed by purified enzymes, whole cell biocatalysis permits

56 protection of the enzyme within the cell and also produc-

57 tion of new enzyme molecules. Furthermore, it does not

58 require the extraction, purification and immobilisation in-

59 volved in the use of enzymes, often making it a more cost-

60 effective approach, particularly upon scale-up (Winn

61 et al., 2012). Biofilm-mediated reactions extend these ben-

62 efits by increasing protection of enzymes against harsh re-

63 action conditions (such as extremes of pH or organic

64 solvents) and offering simplified downstream processing

65 since the bacteria are immobilised and do not require sep-

66 arating from reaction products. These factors often result

67 in higher conversions when biotransformations are carried

68 out using biofilms when compared to purified enzymes

69 (Winn et al., 2012; Halan et al., 2012; Gross et al., 2012).

70 To generate a biofilm biocatalyst, bacteria must be de-

71 posited on a substrate, either by natural or artificial means,

72 then allowed to mature into a biofilm. Deposition and

73 maturation determine the structure of the biofilm and

74 thus the mass transfer of chemical species through the

75 biofilm extracellular matrix, therefore defining its overall

76 performance as a biocatalyst (Tsoligkas et al., 2011; 2012).

77 We have recently developed methods to generate engi-

78 neered biofilms, utilising centrifugation of recombinant E.

79 coli onto poly-L-lysine coated glass supports instead of

80 waiting for natural attachment to occur (Tsoligkas et al.,

81 2011; 2012). These biofilms were used to catalyse the

82 biotransformation of 5-haloindole plus serine to 5-

83 halotryptophan (FigureF1 1a), an important class of

84 pharmaceutical intermediates; this reaction is catalysed

85 by a recombinant tryptophan synthase TrpBA expressed

86 constitutively from plasmid pSTB7 (Tsoligkas et al.,

87 2011; 2012; Kawasaki et al. 1987). We previously dem-

88 onstrated that these engineered biofilms are more effi-

89 cient in converting haloindole to halotryptophan than

90either immobilised TrpBA enzyme or planktonic cells

91expressing recombinant TrpBA (Tsoligkas et al., 2011).

92In this study, we further optimised this biotransform-

93ation system by investigating the effect of using different

94strains to generate engineered biofilms and perform the

95biotransformation of 5-haloindoles to 5-halotryptophans.

96Engineered biofilm generation was tested for four E. coli

97strains: wild type K-12 strains MG1655 and MC4100; and

98their isogenic ompR234 mutants, which overproduce curli

99(adhesive protein filaments) and thus accelerate biofilm for-

100mation (Vidal et al. 1998). Biofilms were generated using

101each strain with and without pSTB7 to assess whether the

102plasmid is required for these biotransformations as E. coli

103naturally produces a tryptophan synthase. The viability of

104bacteria during biotransformation reactions was monitored

105using flow cytometry. We also studied the biotransform-

106ation reaction with regard to substrate utilisation, product

107synthesis and conversion efficiency to allow optimisation of

108conversion and yield. This constitutes an essential step for-

109ward which will provide knowledge to future practitioners

110wishing to scale up this reaction.

111Materials and Methods
112Strains, biofilm generation and maturation

113pSTB7, a pBR322-based plasmid containing the Salmon-

114ella enterica serovar Typhimurium TB1533 trpBA genes

115and encoding ampicillin resistance (Kawasaki et al., 1987),

116was purchased from the American Type Culture Collec-

117tion (ATCC 37845). E. coli K-12 strains MG1655 (λ − F −

118prototroph), PHL628 (MG1655 malA-kan ompR234; Vidal

119et al. 1998), MC4100 (araD139Δ(argF-lac)U169 rpsL150

120relA1 flbB5301 deoC1 ptsF25 rbsR) and PHL644 (MC4100

121malA-kan ompR234; Vidal et al. 1998) were employed in

122this study. All E. coli strains were transformed with pSTB7

123using the heat-shock method. Transformants were se-

124lected on Luria-Bertani-agar (10 g L-1 tryptone, 5 g L-1

Figure 1 Formation and breakdown of 5-halotryptophan in E. coli. (a) Reaction scheme for biocatalytic conversion of 5-haloindole and serine

to 5-halotryptophan, catalysed by tryptophan synthase TrpBA. (b) Reaction scheme for the reverse reaction, catalysed by tryptophanase TnaA.
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125 yeast extract, 10 g L-1 NaCl, 15 g L-1 Bacteriological Agar;

126 Sigma, UK) supplemented with ampicillin (100 μg mL-1).

127 All E. coli strains were grown in 200 mL half strength

128 Luria-Bertani (LB) broth (5 g L-1 tryptone, 2.5 g L-1 yeast

129 extract, 5 g L-1 NaCl; Sigma, UK), supplemented with

130 ampicillin (100 μg mL-1) for pSTB7 transformants, in an

131 orbital shaker at 30°C, 70 rpm with a throw of 19 mm for

132 24 hours. Engineered biofilms were generated using the

133 spin-down method described by Tsoligkas et al. (2011)

134 and available in Additional file 1.

135 Biotransformations

136 Biotransformation reactions were carried out as previ-

137 ously described (Tsoligkas et al., 2011; full details in

138 Additional file 1) using either planktonic cells or engi-

139 neered biofilms in a potassium phosphate reaction

140 buffer (0.1 M KH2PO4, 7 mM Serine, 0.1 mM Pyridoxal

141 5′-phosphate (PLP), adjusted to pH 7.0) supplemented

142 with 5% (v/v) DMSO and either 2 mM 5-fluoroindole

143 (270 mg L-1), 2 mM 5-chloroindone (303 mg L-1), or

144 2 mM 5-bromoindole (392 mg L-1). 5-chloroindole and

145 5-bromoindole are less soluble than 5-fluoroindole, so

146 lower concentrations were present in the reaction buf-

147 fer; around 0.7 mM for 5-chloroindole and 0.4 mM for

148 5-bromoindole (Additional file 1: Table S1). In each case,

149 reaction buffer was made with an initial quantity of

150 haloindole equivalent to 2 mM and decanted into bio-

151 transformation vessels, preventing any undissolved haloin-

152 dole from entering the biotransformation. No attempt

153 has been made to carry out the reactions at the same start-

154 ing concentrations since an in-depth kinetic analysis

155 was not the focus of this study. All biotransformations,

156 irrespectively of the cells’ physiological state, were con-

157 ducted on two or three independent cultures. Since 5-

158 fluoroindole biotransformations were the most active,

159 biotransformations were performed with all strain com-

160 binations. Biotransformations with 5-chloroindole and

161 5-bromoindole were performed with selected strains to

162 generate indicative data.

163 HPLC analysis

164 Haloindole and halotryptophan concentrations were mea-

165 sured in biotransformation samples by HPLC using a Shi-

166 madzu HPLC with a ZORBAX (SB-C18 4.6 mm × 15 cm)

167 column resolved with methanol versus water at a rate of

168 0.7 mL min-1; a UV detector at 280 nm was used through-

169 out the analysis (Additional file 1: Figure S1). Both sol-

170 vents were acidified with 0.1% formic acid and run using

171 the gradient described in the supplementary data. Linear

172 standard curves (Additional file 1: Figure S2; peak area

173 versus concentration) were generated for 5-fluoro-, 5-

174 chloro- and 5-bromoindole and each corresponding 5-

175 halotryptophan using standards of known concentration

176 (0.125 mM to 2 mM) in triplicate and used to correlate

177sample peak area to concentration. Biotransformation data

178are presented as three percentages of halotryptophan yield

179(Y), haloindole depletion (D) and selectivity of conversion

180(S) for each timepoint:

Y ¼
halotryptophan concentration

initial haloindole concentration
" 100 ð1Þ

D ¼
initial haloindole concentration‐haloindole concentration

initial haloindole concentration
" 100

ð2Þ

S ¼
Y

D
" 100 ð3Þ

181Quantification of the dry cell biomass and Crystal

182Violet staining

183The total biofilm biomass was determined for 5 slides that

184had been coated with E. coli biofilms and matured for

1857 days. The glass slides were washed twice in phosphate

186buffer. In a pre-weighed centrifuge tube kept at 100°C

187overnight, the biofilm was disrupted in sterile water using

188a vortex mixer for 30 minutes; the glass slide was removed

189and the cells centrifuged at 1851 g for 10 minutes. The

190supernatant was removed and the biomass dried at 100°C

191for at least 24 hrs. The dry biomass was determined when

192the mass stopped decreasing.

193The quantification of dry cell biomass of planktonic cells

194was performed directly on 10 mL of three independent

195cell suspensions in pre-weighed centrifuge tubes kept at

196100°C overnight. Following centrifugation (1851 g for

19710 minutes) and washing in sterile water, the cells were

198centrifuged again (1851 g for 10 minutes) and, after re-

199moving the liquid, allowed to dry at 100°C for at least

20024 hours until a constant mass was reached.

201Biofilms on glass slides were also quantified using Crys-

202tal Violet staining; after washing in sterile phosphate buf-

203fer the slides were coated with 1 mL of Crystal Violet

204solution (0.1% (w/v) for 15 min. The slides were washed in

205water three times and placed in Duran bottles with 20 mL

206of ethanol. The crystal violet on the glass slides was allow

207to dissolve for 1 hour and the optical density of the etha-

208nol solution determined at 570 nm using a UV–vis

209spectrophotometer.

210Flow cytometry

211Cell membrane potential and membrane integrity were

212analysed by flow cytometry after 2 and 24 hours in each re-

213action condition using staining with 5 μg mL-1 propidium

214iodide (PI, which enters cells with compromised membrane

215integrity) and 0.1 mg mL-1 Bis (1,3-dibarbituric acid) tri-

216methine oxanol (BOX, which enters cells with depolarised

217membranes) as previously described by Whitehead et al.

218(2011). Cells were analysed using an Accuri C6 flow cyt-

219ometer (BD, UK) as described in the Additional file 1.
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220 Results
221 Biofilm formation by different E. coli strains

222 Crystal Violet staining was used to compare the bio-

223 mass within biofilms generated using the spin-down

224 method with four E. coli strains: MG1655 and MC4100;

225 and their ompR234 derivatives PHL628 and PHL644

226 (FigureF2 2). MG1655 generated more biofilm than MC4100,

227 and the ompR234 mutation increased the amount of

228 biofilm formed by both strains. The presence of pSTB7

229 decreased biofilm formation by PHL628 but did not

230 significantly affect biofilm formation by the other

231 strains. The corresponding dry mass of each biofilm

232 was 1.5 ± 0.2 mg for PHL644 pSTB7 and 2.3 ± 0.3 mg

233 for PHL628 pSTB7.

234Biotransformation by planktonic cells

235The ability of planktonic cells to convert 5-haloindoles to

2365-halotryptophans was assessed by measuring 5-haloindole

237depletion, 5-halotryptophan synthesis and the selectivity of

238conversion of 5-haloindole to 5-halotryptophan as defined

239in equations 1–3. These three measurements are required

240since, although the conversion of haloindole plus serine

241to halotryptophan is catalysed by the TrpBA enzyme,

242halotryptophan is a potential substrate for tryptophanase

243(TnaA) which would convert it to haloindole, pyruvate and

244ammonium (Figure 1b). Alternatively, halotryptophans

245could be sequestered for protein synthesis (Crowley et al.,

2462012). Thus, selectivity of conversion to halotryptophan is a

247critical parameter for the reaction to be considered as a

Figure 2 Crystal Violet staining of E. coli engineered biofilms. Biofilms were generated from strains MG1655 and PHL628 (a) or MC4100 and

PHL644 (b) with and without pSTB7 using the spin-down method, matured for 7 days in M63 medium and biomass was estimated using crystal

violet staining.
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248 viable route for production of these compounds. Neither

249 depletion of haloindole nor production of halotryptophan

250 was detected when biotransformations were performed

251 using bacteria without the pSTB7 plasmid, either planktoni-

252 cally or in biofilms, confirming that the constitutively

253 expressed recombinant tryptophan synthase is required for

254 the reaction (data not shown).

255 FigureF3 3a shows that the concentrations of 5-

256 fluorotryptophan increased over the reaction period

257 with the rate of generation decreasing as the reaction

258 proceeded. No significant difference was noticed in

259synthesis rate or overall yield between MG1655 pSTB7 and

260PHL628 pSTB7; the rate and yield were higher for MC4100

261pSTB7, and higher still for PHL644 pSTB7. The profile of

2625-fluoroindole depletion (Figure 3b) appeared similar to

263that of 5-fluorotryptophan generation in strains MG1655

264pSTB7 and PHL628 pSTB7, but displayed a rapid increase

265(to nearly 20%) in MC4100 pSTB7 and PHL644 pSTB7 in

266the first hour of the reaction. This suggests that indole ef-

267flux is much more rapid in MC4100 than in MG1655, and

268reflects an inherent difference between the strains. Selectiv-

269ity of conversion of 5-fluoroindole to 5-fluorotryptophan

270increased rapidly in PHL628 pSTB7, PHL644 pSTB7 and

271MG1655 pSTB7, although MG1655 pSTB7 selectivity was

272highest after 8 hours (Figure 3c). Planktonic biotransform-

273ation reactions (in 10 mL of culture volume) contained a

274dry mass of 1.1 ± 0.1 mg for PHL644 pSTB7 and 1.2 ±

2750.2 mg for PHL628 pSTB7.

276The same parameters are shown for the biotransform-

277ation of 5-chloroindole to 5-chlorotryptophan in Figure F44.

278Unlike the 5-fluoroindole reaction, strains PHL628, PHL644

279and MG1655 showed similar overall percentage chloro-

280tryptophan yields. As with the fluoroindole reactions

281(Figure 3), strains MC4100 pSTB7 and PHL644 pSTB7

282both showed rapid chloroindole depletion in the first

283hour of the reaction whereas MG1655 pSTB7 and PHL628

284pSTB7 displayed more gradual depletion. As a result, the

285selectivity of the reaction was initially higher in MG1655

286pSTB7 and PHL628 pSTB7, peaking at around 75% at

2874 hours, although the selectivity of these two strains de-

288creased to around 50% over the course of the reaction.

289PHL644 pSTB7 selectivity increased over time to around

29050% after 25 hours. As with the fluoroindole reaction, the

291selectivity of MC4100 pSTB7 was lowest throughout.

292Planktonic biotransformations yielded extremely low pro-

293duction of 5-bromotryptophan (>10%; Additional file 1:

294Figure S3). 5-bromoindole was depleted in these biotrans-

295formation reactions (although not to the same extent as

296fluorindole and chloroindole), but the rate of conversion to

2975-bromotryptophan was very low. As with the 5-

298fluoroindole and 5-chloroindole reactions, 5-bromoindole

299was rapidly taken up by strains PHL644 and MC4100.

300Biofilm-mediated biotransformation

301Results for the biotransformation of 5-fluoroindole to 5-

302fluorotryptophan using engineered biofilms that had been

303matured for 7 days in M63 medium are shown in Figure F55.

304Biofilm-mediated reactions were dramatically different to

305planktonic reactions, both in terms of each strain’s relative

306activity but also in overall reaction kinetics. The rapid im-

307port of haloindole observed in planktonic MC4100 strains

308(Figures 3 and 4) was not observed in biofilm reactions,

309probably a consequence of the changes in indole transport

310and metabolism upon biofilm formation (Lee & Lee,

3112010). Strains containing the ompR234 mutation were all
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Figure 3 Biotransformation of 5-fluoroindole to

5-fluorotryptophan using planktonic cells of four strains.

Concentrations of 5-fluorotryptophan and 5-fluoroindole were

measured using HPLC and percentage 5-fluorotryptophan accu-

mulation (a), percentage 5-fluoroindole depletion (b) and the

selectivity of the 5-fluoroindole to 5-fluorotryptophan reaction

(c) were plotted against time.
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312 more catalytically active than their wild type counterparts;

313 this is probably due in part to the lower entrapment of

314 wild type cells (Figure 1). Unlike reactions performed with

315 the cells in the planktonic state, the PHL628 pSTB7 bio-

316 film outperformed PHL644 pSTB7 in terms of overall

317 fluorotryptophan yield, rate of conversion and selectivity.

318 MG1655 pSTB7 and MC4100 pSTB7 displayed minimal

319 conversion of metabolised fluoroindole to fluorotrypto-

320 phan until after 24 hours incubation (Figure 5c).

321 For the biofilm-mediated conversion of 5-chloroindole to

322 5-chlorotryptophan (FigureF6 6), PHL628 pSTB7 displayed

323rapid 5-chloroindole import (similar to MC4100 planktonic

324cells). Conversion was higher in PHL644 pSTB7 than

325PHL628 pSTB7, probably a consequence of the earlier ex-

326haustion of 5-chloroindole in the latter strain. As with the

327planktonic 5-bromotryptophan reactions, the yields of

328biofilm-catalysed 5-bromotryptophan biotransformations

329were very low; 5-bromoindole was taken up by cells,

330but converted to 5-bromotryptophan at a very low rate

331(Additional file 1: Figure S4).

332In order to compare the biotransformation reaction

333on an equivalent basis between different strains and
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Figure 4 Biotransformation of 5-chloroindole to 5-

chlorotryptophan using planktonic cells of four strains.

Concentrations of 5-chlorotryptophan and 5-chloroindole were mea-

sured using HPLC and percentage 5-chlorotryptophan accumulation

(a), percentage 5-chloroindole depletion (b) and the selectivity of

the 5-chloroindole to 5-chlorotryptophan reaction (c) were plotted

against time.
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Figure 5 Biotransformation of 5-fluoroindole to 5-

fluorotryptophan using engineered biofilms comprising four

strains. Concentrations of 5-fluorotryptophan and 5-fluoroindole

were measured using HPLC and percentage 5-fluorotryptophan ac-

cumulation (a), percentage 5-fluoroindole depletion (b) and the se-

lectivity of the 5-fluoroindole to 5-fluorotryptophan reaction (c) were

plotted against time.
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334 haloindoles, initial reaction rate data normalised by cell dry

335 mass (expressed in units of μmol halotryptophan (mg

336 dry cells)-1 h-1) are presented in TableT1 1. As previously ob-

337 served (Tsoligkas et al., 2011), reaction rates followed the

338 trend fluoroindole > chloroindole > bromoindole. Biofilms

339 and planktonic cells had very similar initial reaction rates

340 except for MG1655 pSTB7 and PHL628 pSTB7 for fluor-

341 oindole when the initial conversion rate using biofilms was

342 three to four times that of planktonic cells. It should be

343 noted that initial rates do not necessarily relate to overall

344reaction yields, and these data should be consulted in con-

345junction with Figures 3, 4, 5 and 6.

346Cell physiology during biotransformation reactions

347To eliminate the possibility that differences in biotrans-

348formation yields were due to changes in bacterial viability

349or physiology, flow cytometry was used to determine the

350proportion of PHL644 pSTB7 cells with membrane poten-

351tial and membrane integrity (i.e. live cells) after 2 and

35224 hours of biotransformation reactions (Table T22). In all

353conditions, the vast majority of the cell population were live

354cells. Neither the presence of DMSO or any 5-haloindole

355had any detrimental effect on cell viability in planktonic

356biotransformations, even after 24 hours (p < 0.05). The

357presence of 5-haloindoles did not have a statistically signifi-

358cant effect on the percentage of biofilm cells alive after ei-

359ther 2 or 24 hours (p < 0.05); however, the proportion of

360live biofilm cells decreased between 2 and 24 hours (p <

3610.05). Examples of plots obtained through flow cytometry

362are shown in Additional file 1: Figure S5.

363Discussion
364Biofilm formation

365Biofilm formation is a complex process governed by many

366environmental cues, detected and coordinated through a

367complex regulatory network (Beloin et al., 2008). The

368osmolarity-sensing two component regulatory system

369EnvZ-OmpR is crucial to the regulation of biofilm forma-

370tion in E. coli (Shala et al., 2011; Vidal et al., 1998). OmpR

371transcriptionally activates the csgDEFG operon; CsgD in

372turn activates transcription of the csgBAC operon, encod-

373ing the curli structural proteins which enable initial at-

374tachment of bacteria to surfaces (Prigent-Combaret et al.,

3752001; Ogasawara et al., 2010; Brombacher et al., 2003). In

376addition, CsgD also activates transcription of adrA, encod-

377ing a putative diguanylate cyclase which is predicted to

378generate c-di-GMP and thus activate cellulose production

379(Bhowmick et al., 2011). The ompR234 mutation carried

380in strains PHL628 and PHL644 comprises a point muta-

381tion (L43R) located within the receiver domain, which en-

382hances activation of csgDEFG (Prigent-Combaret et al.,

3832001; Prigent-Combaret et al., 1999; Vidal et al. 1998). It

384was, therefore, expected that the ompR234 strains would

385form biofilm more readily than MC4100 and MG1655

386(Figure 2).

387Indole has previously been shown capable of enhancing

388biofilm formation (Chu et al., 2012; Pinero-Fernandez

389et al., 2011), whereas tryptophan has been shown to de-

390crease biofilm formation (Shimazaki et al., 2012). Therefore

391the presence of pSTB7 could result in decreased biofilm

392formation since tryptophan concentrations (both intracellu-

393lar and extracellular) could be predicted to be higher in

394cells containing pSTB7. E. coli MC4100 and MG1655 did

395not form substantial biofilms, hence the presence of pSTB7
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Figure 6 Biotransformation of 5-chloroindole to 5-

chlorotryptophan using engineered biofilms comprising two

strains. Concentrations of 5-chlorotryptophan and 5-chloroindole

were measured using HPLC and percentage 5-chlorotryptophan ac-

cumulation (a), percentage 5-chloroindole depletion (b) and the se-

lectivity of the 5-chloroindole to 5-chlorotryptophan reaction (c)

were plotted against time.
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396 did not have a significant effect on these strains (Figure 2).

397 pSTB7 decreased the biomass of PHL628 biofilms, al-

398 though it did not decrease biofilm formation in PHL644.

399 This was possibly a consequence of the higher activity of

400 tryptophan synthase in biofilms of PHL628 pSTB7 com-

401 pared to PHL644 pSTB7 (Table 1), which would deplete

402 intracellular indole.

403 Biotransformation rates and efficiencies

404 As previously noted (Tsoligkas et al., 2011), the initial

405 rate of biotransformation reactions followed the trend 5-

406 fluorotryptophan > 5-chlorotryptophan > 5-bromotrypto-

407 phan, irrespective of strain (Table 1); this has been

408 ascribed to steric hindrance of the TrpBA enzyme by

409 bulky halogen adducts (Goss and Newill, 2006). The se-

410 lectivity of the haloindole to halotryptophan reaction

411 was not 100% in any of the cases studied. In most cases,

412 the reaction stopped due to haloindole depletion. Since,

413 in the absence of pSTB7, haloindole concentrations did

414 not decrease over the course of 30-hour biotransform-

415 ation reactions, it can be concluded that all haloindole

416 consumed by pSTB7 transformants was initially con-

417 verted to halotryptophan by the recombinant TrpBA,

418 and that haloindole influx into cells was driven by this

419 conversion. Indole is thought to predominantly enter

420 bacteria via diffusion through the membrane, a process

421 which would probably be aided by the presence of

422 DMSO in the reaction buffer (Pinero-Fernandez et al.,

423 2011). Haloindole utilisation data (Figures 3b and 4b) re-

424 veal that MC4100 and its ompR234 derivative PHL644

425 display an extremely rapid initial influx of haloindole

426 within the first hour of planktonic reactions. This is not

427observed in planktonic reactions with MG1655 or PHL628,

428where indole influx is steadier. Initial halotryptophan pro-

429duction rates reflect these data (Table 1). Biofilm reactions

430display a different trend; rapid indole influx is only seen in

431PHL628 chloroindole reactions (Figure 6b), and indole in-

432flux is slower in PHL644 than PHL628. Again, this is prob-

433ably due to the higher rate of halotryptophan production in

434biofilms of PHL628 than PHL644 (Table 1), driving haloin-

435dole influx via diffusion.

436Since halotryptophan concentrations were measured

437here by HPLC in the cell-free extracellular buffer, all mea-

438sured halotryptophan must have been released from the

439bacteria, either by active or passive processes. Therefore,

440conversion ratios of less than 100% must derive either

441from failure of halotryptophan to leave bacteria or alterna-

442tive halotryptophan utilisation; the latter could be due to

443incorporation into proteins (Crowley et al., 2012) or deg-

444radation to haloindole, pyruvate and ammonia mediated

445by tryptophanase TnaA (Figure 1). Although regenerating

446haloindole, allowing the TrpBA-catalysed reaction to

447proceed again, this reaction would effectively deplete

448serine in the reaction buffer and so potentially limit total

449conversion. The concentration of serine could not be

450monitored and it was not possible to determine the influ-

451ence of this reverse reaction. Deletion of tnaA would re-

452move the reverse reaction, but since TnaA is required for

453biofilm production (Shimazaki et al., 2012) this would un-

454fortunately also eliminate biofilm formation so is not a

455remedy in this system.

456Synthesis of TnaA is induced by tryptophan, which

457could explain the decrease in conversion selectivity over

458time observed in planktonic MG1655 and PHL628

t2:1 Table 2 Percentage (mean ± S.D.) of E. coli PHL644 pSTB7 cells that were alive determined using flow cytometry

t2:2 during biotransformations performed with planktonic cells or biofilms

t2:3 Reaction conditions Cell type and time of sampling

t2:4 Planktonic Planktonic Biofilm Biofilm

t2:5 2 hours 24 hours 2 hours 24 hours

t2:6 Reaction Buffer, 5% DMSO 99.52 ± 0.14 99.32 ± 0.40 95.73 ± 2.98 92.34 ± 0.10

t2:7 Reaction Buffer, 5% DMSO, 2 mM 5-fluoroindole 99.38 ± 0.60 99.24 ± 0.80 96.44 ± 1.51 90.73 ± 0.35

t2:8 Reaction Buffer, 5% DMSO, 2 mM 5-chloroindole 99.27 ± 0.33 99.33 ± 0.20 95.98 ± 2.64 91.69 ± 3.09

t2:9 Reaction Buffer, 5% DMSO, 2 mM 5-bromoindole 99.50 ± 0.18 99.33 ± 0.20 96.15 ± 1.94 91.17 ± 2.19

t1:1 Table 1 Summary of the initial rate of halotryptophan production expressed as μmol halotryptophan (mg dry cells)-1 h-1

t1:2 Strain 5-fluoroindole 5-chloroindole 5-bromoindole

t1:3 Planktonic Biofilm Planktonic Biofilm Planktonic Biofilm

t1:4 MG1655 pSTB7 0.26 0.72 0.17 ND 0.13 ND

t1:5 PHL628 pSTB7 0.28 1.08 0.19 0.16 0.08 0.05

t1:6 MC4100 pSTB7 0.35 0.33 0.25 ND 0.05 ND

t1:7 PHL644 pSTB7 0.73 0.65 0.43 0.37 0.06 0.07

t1:8 ND, Not determined.
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459 chlorotryptophan reactions (Figure 4c); chlorotryptophan

460 synthesis could potentially induce TnaA production and

461 thus increase the rate of the reverse reaction. In other re-

462 actions, selectivity gradually increased over time to a plat-

463 eau, suggesting that initial rates of halotryptophan

464 synthesis and export were slower than that of conversion

465 back to haloindole.

466 Taken together, these observations are likely due to

467 underlying differences between strains MG1655 and

468 MC4100 and between planktonic and biofilm cells in

469 terms of: indole and tryptophan metabolism, mediated by

470 TrpBA and TnaA; cell wall permeability to indole; and

471 transport of tryptophan, which is imported and exported

472 from the cell by means of transport proteins whose ex-

473 pression is regulated by several environmental stimuli.

474 They underline the requirement to assess biotransform-

475 ation effectiveness, both in terms of substrate utilisation

476 and product formation, in multiple strains, in order that

477 the optimal strain might be selected.

478 We had previously hypothesised that biofilms were better

479 catalysts than planktonic cells for this reaction due to their

480 enhanced viability in these reaction conditions, allowing the

481 reaction to proceed for longer; however, flow cytometry re-

482 veals this to be untrue. Therefore, the reasons for extended

483 reaction times in biofilms as compared to planktonic cells

484 must be more complicated. A second possible reason for

485 such behaviour could the higher plasmid retention of bio-

486 film cells (O’Connell et al., 2007) that could allow greater

487 trpBA expression and thus more enzyme in biofilm cells.

488 However, the initial rate of halotryptophan production per

489 mass of dry cells were very similar in most of the cases

490 apart from PHL628 pSTB7 and MG1655 pSTB7 for fluor-

491 oindole; therefore it appears that such hypothesis could be

492 disregarded. Furthermore the similarity between the initial

493 conversion rates between the two physiological states (bio-

494 films and planktonic) suggests that mass transfer of haloin-

495 dole through the biofilm was not the limiting step in the

496 biotransformation because, if this was the case, lower initial

497 conversion rates would have been found for biofilm reac-

498 tions. Future studies will focus on the increased longevity

499 of the reaction in biofilms when compared to planktonic

500 cells, and the differences in tryptophan and indole metabol-

501 ism in biofilms and planktonic cells.

502 In conclusion, in order to be used as engineered biofilms

503 E. coli strains need to be able to readily generate biofilms,

504 which can be achieved through the use of ompR234 mu-

505 tants. Despite the presence of native tryptophan synthase

506 in E. coli, a plasmid carrying the trpBA genes under the

507 control of a non tryptophan-repressed promoter was re-

508 quired to achieve detectable conversions of 5-haloindole

509 to 5-halotryptophan. PHL644 pSTB7 returned the highest

510 conversion when planktonic cells were employed in bio-

511 transformations but PHL628 pSTB7 gave the highest pro-

512 duction of halotryptophan when biofilms were used.

513Higher viability is not the reason for biofilms’ greater per-

514formance than planktonic cells; complex differences in

515indole and tryptophan metabolism and halotryptophan

516transport in biofilm and planktonic cells probably deter-

517mine reaction efficiency. The results underline that bio-

518transformation reactions need to be optimised in terms of

519host strain choice, recombinant enzyme production and

520method of growth for the chosen biocatalyst.
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