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Abstract 

Loss of neurons can have huge implications. A beneficial therapy would be to generate novel 

neurons in vitro for replacement therapies. This requires the expansion of neural stem cell 

(NSC) populations, however accessing NSCs is a dangerous procedure. Other stem cell 

sources can develop neural characteristics when treated in a specific manner. Dental pulp 

stem cells (DPSCs) are neural crest derived and are closely related to NSCs so should readily 

convert when stimulated to do so. This study focused on characterizing the neural induced 

stem cells from three mesenchymal stem cell sources, adipose, bone marrow and dental 

pulp. This was achieved through semi-quantitative PCR analysis and immunofluorescence 

staining. DPSCs were found to show the fewest mesenchymal signs prior to induction, 

however both adipose and bone marrow stem cells showed a reduction in expression of 

markers of mesenchymal origin. Nestin, a NSC marker was not found upregulated in any 

sample however another marker of NSCs, CD133 was found to upregulate slightly. This study 

suggests that CD133 and vimentin (a mesenchymal marker used) could be promising target 

to indicate neural/mesenchymal phenotypes. The data does not clearly suggest one cell 

source is more viable for neural induction due to low sample sizes.
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1 Introduction 

Damage or loss of neurons can result in significant morbidity or mortality. There are 

numerous diseases which can result in the loss or degradation of neurons or neurotoxicity, 

such as Parkinson’s disease, Alzheimer’s disease, as well as any form of trauma to the 

nervous system (Thies and Bleiler 2013, Nussbaum and Ellis 2003, Stoica et al 2014, Li et al 

2008). The social and economic consequences for both the injured individual and society are 

huge (PriebeGM. 2007). Current treatments cannot bring about recovery, but simply focus 

on limiting further damage and improving quality of life.  

A potential therapy would be to generate novel neurons in vitro which can then be 

transplanted in vivo. Additionally, specific in vitro neuron populations could be used to 

investigate the mechanisms of neurodegenerative disease and drug interactions, reducing 

the need for expensive animal models (Zeng et al. 2004) (Phillips et al. 2009). To generate 

novel in vitro neurons, a source of neural stem cells (NSCs) is required. 

1.1 Endogenous neural stem cells 

It was originally believed that the adult mammal CNS did not possess the ability to generate 

any novel neural stem cells. Altman (1962) originally found evidence that after inducing 

electrolytic brain lesions in adult rats, a neuronal subpopulation was able to take up 

radioactive nucleoside thymidine-H3, a marker of mitotic division. Extremely restricted 

neurogenesis is now known to occur in two regions in the adult mammal, the subventricular 

zone surrounding the ventricles and the subgranular zone within the hippocampus (Geuna et 

al 2001). In the subventricular zone, the generated neurons are transported down the rostral 
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migratory stream to the olfactory bulb. Here they mature and rebuild the local population of 

interneurons required for the olfactory process (Alvarez-Buylla and Garcia-Verdugo 2002). 

Subgranular zone novel neurons migrate to the dentate gyrus of the hippocampus where 

they have been suggested to have a role in learning or depression however more conclusive 

data are needed to confirm these findings (Monje et al 2002, Kempermann et al 2004). 

Interestingly, there is also evidence that these cells have the capacity to increase 

regeneration after injury (Jin 2001), as shown by increased BrdU staining after focal 

ischaemia. Despite these sources of NSCs, there has never been any sign of functional 

integration and repair of the CNS following trauma or after neurodegeneration.  

1.1.1 Endogenous neural stem cells for in vitro neural stem cell population generation 

Endogenous neural stem cells would be extremely promising for treating neurodegenerative 

disorders or neurotrauma as they can be sourced from a patients’ own tissue, circumventing 

the risk of immune rejection. The cells are already primed to become the neurons and it has 

arguably been demonstrated that NSCs have an innate ability to repair the damaged CNS 

which fails in vivo (Jin et al 2001). Additionally, it has been shown that treatment with 

epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2) supplements in an 

appropriate growth media is sufficient to induce upregulation of these cells for both murine 

and human populations (Laywell et al  2000, Reynolds and Weiss 1992, Chaichana et al 

2006). 

If a procedure can be developed to induce specific differentiation, then these NSCs could 

have therapeutic benefit. This approach is being investigated by a number of sources for 

treating many neurodegenerative disorders, with mixed results (Kulbatski et al 2005, Cave et 
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al 2014). There are limitations to the use of neural stem cells. As stated earlier, the cells are 

only found within deep structures of the mammalian brain. Invasive surgeries have to be 

used to collect the cells. As a result, there is a high risk of haemorrhage or infection 

associated with collection. 

1.2 Embryonic stem cells 

Another viable stem cell source for generating neural stem cells, are embryonic stem cells 

(ESCs). ESCs are promising because of their pluripotency (Abranches et al 2009). There a 

number of studies which have looked into ESCs ability to convert into neurons with mixed 

results. Zeng et al (2004) were able to generate neuron-like cells which expressed tyrosine 

hydroxylase, an enzyme used in the creation of dopamine, as well as a number of other 

neuronal markers indicating some specific neural differentiation has been induced. However 

it is not clear whether these cells still expressed the phenotype of neural, embryonic or 

other endogenous dopamine producing cells. Low cell survival was observed after 

transplantation into rats raising concerns over the integration. Other studies have also 

shown the presence of neuronal markers in ESC derived cells treated in a neural growth 

protocol, indicating their ease for differentiating down a neural pathway (Zhang et al. 2001). 

ESCs, despite their advantages have a number of limitations. Sourcing the cells remains 

difficult and controversial (Ethics Committee of the American Society for Reproductive 

Medicine 2013, Fox et al 2010). Additionally, it has been suggested that their high 

pluripotency creates an increased risk of tumourgenicity when compared to other stem cell 

sources (Li et al 2008, Zeng et al 2004). Finally, as the cells are not patient specific, there is a 

risk of a detrimental immune response (Krystkowiak et al 2007). 
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1.3 Mesenchymal stem cells 

Another possible exogenous source of developing neural stem cell is to use mesenchymal 

stem cells (MSCs). MSCs are stem cells of stromal origin which have multiple sources, such as 

the adipose, bone marrow, dental pulp and umbilical cord tissue, and are able to 

differentiate into a number of cell types. They are promising for neuroregenerative 

treatments due to ease of growth and differentiation (Forostyak, et al  2013, Caplan 2005). 

MSCs can be obtained easily from a patient, avoiding the need for immunosuppression 

(Anderlini et al 2001). 

1.3.1 Adipose and Bone Marrow stem cells 

Previous studies have shown that both bone marrow and adipose mesenchymal stem cells 

(BMSCs and ADSCs respectively) can increase expression of neural markers, whilst retaining 

markers of pluripotency after neural induction protocols (Heo et al 2013, Safford et al 2002, 

Xu et al2008). Fox et al (2010) have shown that human BMSCs, following a neural conversion 

procedure, produce action potential-like behaviour. The neural-like cells also respond to L-

glutamate with a calcium influx, indicating a neural phenotype. Functional benefit has been 

shown after incorporation of neural induced BMSCs into a site of neuronal injury, however 

the mechanisms behind this are unclear (Heo et al 2013). Additionally, both BMSCs and 

ADSCs are easy to access and replenish endogenously, making them an attractive target for 

therapeutic treatments (Safford et al. 2002). 

1.3.2 Dental Pulp stem cells 

Dental pulp stem cells (DPSCs) are promising MSCs for neural induction. Both DPSCs and 

neural stem cells are neural crest derived, shown by expression of the neural crest marker 
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P75, and appear to follow a similar differentiation pathway (Janebodin et al 2011). Both 

DPSCs and their derivatives show a neural phenotype endogenously. Odontoblast, 

derivatives of DPSCs, express the expected epithelial markers however it has also been 

shown that they also express the neural stem cell marker nestin (Farahani et al 2011). 

Farahani et al (2011) also showed that odontoblasts express the N-methyl-d-aspartate 

(NMDA) receptor and the transient receptor potential vanilloid subfamily member 1 

(TRPV1), two receptors which are primarily in neurons. 

DPSCs express a number of neuronal stem cell and neuron markers such as nestin, Sox2, 

Mushashi1 and βIII-tubulin as well as multiple others (Young et al 2013). Evidence has shown 

that dental pulp stem cells are able to endogenously secrete neurotrophic factors at a 

greater production than other MSC types in vitro (Mead et al. 2013). When stimulated to 

differentiate, previous studies have shown that DPSCs are able to generate neural 

phenotypes, expressing voltage gated channels and appearing to express axonal and 

dendritic-like processes. These cells however did not show action potential-like behaviour 

(Ellis et al 2014).  

Human dental pulp is easily extracted from teeth and upregulated without invasive 

techniques (Kerkis and Caplan 2012). They also show a high degree of pluripotency and have 

(Huang et al 2008). 

1.4 Neurospheres 

The upregulation of neural stem cells has predominantly been through the production of a 

free-floating, heterogenous spheroid structure of the stem cells, known as a neurosphere 
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(figure 1) (Scuteri et al. 2011). These spheres expand in solution and when seeded onto an 

adhesive surface in favourable conditions, differentiate into the three main primary cell 

types within the CNS; neurons, astrocytes and oligodendrocytes. A number of techniques 

have been used to grow neurospheres, especially when using non-neural stem cells, 

(Chaichana et al 2006). Most studies tend to use a combination of 20% (w/v) epidermal 

growth factor (EGF) and basic fibroblast growth factor (FGF-2, Heo et al 2013), although 

there is debate about the requirement of FGF-2 (Abraham et al 2013). Serum has been 

shown to encourage differentiation (Gil-Perotin et al 2013), so supplements have been used 

including Neurobasal medium and B27 supplements. Of the two supplements, B27 appears 

to encourage higher rates of cell survival and aid the sphere generation (Brewer et al 1994). 

 
Figure 1: An example of a neurosphere taken by optical microscopy. Scale bars represent 100 μm 

1.5 Characterising neural spheres 

A number of methods have been used to characterise neural cells in vitro. Some studies have 

shown an ability of NSCs to pass currents, through expression of K+ currents, however this 
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has only been shown in a limited example of human embryonic neural stem cells lines (Cho 

et al 2002) and thus it is not clear how translatable this research is. 

One method that can be used to examine NSCs is looking at the expression profile of 

biomarkers. A number of markers have been proposed. Nestin is the traditional neural stem 

cell marker (Darabi et al 2013, Zwart et al 2008). It is an intermediate filament found in the 

dividing NSCs and has been shown to downregulate and be replaced upon maturation (Lin et 

al 2006). Another potential NSC marker is transmembrane protein CD133. CD133 has been 

reported in a number of cell types, however previous reports indicate that MSCs do not 

endogenously express the marker unless encouraged to convert to a NSC. A weakness with 

this marker is that it has been reported in neural progenitor cells (Li et al. 2013, Vogel et al. 

2003, Yang et al. 2012). A number of other markers of NSCs have been proposed such as 

Mushashi1, neurofilament 68 and GFAP, however there were weaknesses in that these 

markers have also been observed in subpopulations of MSCs or in mature neurons (Darabi et 

al 2013) (Zwart et al 2008). 

MSC markers can also be utilised to show a conversion from a mesenchymal phenotype. 

Possible markers include the transmembrane protein CD146 (Covas et al 2008, Crisan et al 

2008), the intermediate filament vimentin (Mani et al 2008, Satelli and Li 2011) and the 

transmembrane protein endoglin/CD105 (Ninagawa et al 2011), all of which have been 

reported to be absent in NSCs. 
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1.6 Study rationale and hypothesis 

The ethics, difficulty of extraction and risk of tumourgenicity have made the use of NSCs and 

ESCs for in vitro neurosphere generation, impractical and dangerous. We believe that MSCs 

will be more practical for generating neurospheres with the long term goal of generating 

functional neurons. Previous data has shown that MSCs can present a neural phenotype 

when stimulated in a specific manner (Heo et al 2013, Sasaki et al 2008). For these reasons, 

we believe that MSCs will be an efficient source of NSCs and could be used for in vitro 

preparation to treat neuronal loss disorders. It has not been addressed which of these cell 

sources most reliably and readily converts into NSCs. We hypothesise that as dental pulp 

stem cells have a closer lineage to NSCs and present neural stem cell or progenitor markers 

in vivo, the cell line will more readily convert down a neural lineage than other MSC sources. 

ADSC, BMSC and DPSCs spheres were grown to produce spheres and analysed for the 

expression of neuronal markers by semi-quantitative PCR analysis and immunostaining. It is 

believed that the spheroids produced from the neurosphere production protocol with dental 

pulp stem cells will be more similar to those of endogenous neuronal stem cells and as such, 

will present a higher concentration and quantity of neuronal markers than other MSCs 

treated in the same manner. 
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1.7 Aims 

The aims of this investigation were as follows: 

 To culture and characterise spheroids which have been induced from DPSCs and 

determine whether they express a neural phenotype by analysing the expression 

of neural markers; nestin and CD133, mesenchymal markers; CD146, STRO-1, 

vimentin and CD105 and the neural crest marker  P75. 

 To compare DPSCs, BMSCs and ADSCs to determine whether the neural crest 

lineage primes DPSCs for a neural induction. This will be achieved by comparing 

the expression profiles of the previous markers on the MSCs cells before and 

after inducing sphere formation. 
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2 Materials and Methods 

2.1 Animals and solutions 

Primary mesenchymal stem cells were obtained from Male Wistar rats (120-180g). All 

animals were sacrificed and then obtained from Aston University following the UK Home 

Office Animals (Scientific Procedures) Act (ASPA). Sterile conditions were maintained by 

ensuring all treatment of the cells occurred within a laminar flow culture hood (Gelaire, 

Sydney, Australia) after extraction. Primary cells were used as previous evidence suggests 

that cryopreservation induces permanent phenotypical changes (Tan et al 2007, Milosevic et 

al 2005). Cells were grown in either growth media (GM) , made up of α-MEM media 

(Biosera, Sussex, UK) containing 1% penicillin/streptomycin (P/S) (Sigma-Aldrich, Dorset, UK) 

and foetal bovine serum (FBS) (Sigma-Aldrich, Dorset, UK), 20% for passage 0 (P0), 10% FBS 

for P1-2, or in neuronal induction media , made up of DMEM with 50% F12 media (Sigma-

Aldrich, Dorset, UK) containing 20ng/ml epidermal growth factor (EGF) (Peprotech, London, 

UK), 20ng/ml fibroblast growth factor 2 (FGF-2) (Peprotech, London, UK), 2% B27 

supplement (Gibco Life technologies, Paisley, UK) and 1% P/S. 

2.2 Cell Lines and isolation 

2.2.1 Adipose stem cell isolation 

Adipose tissue was dissected from the rats’ hip/abdomen and transported to sterile 

conditions in α-MEM/1% P/S. The tissue was finely minced using a sterile scalpel blade 

(Swann-Morton, Sheffield, UK) and trypsinised in 4ml of trypsin EDTA solution (Sigma-

Aldrich, Dorset, UK) within a MACSmix tube rotator (Miltenyi Biotec, Surrey, UK) for 30 



 

11 
 

minutes. The trypsinisation was quenched with equal volumes of GM. The tissue was then 

filtered through a 70μm nylon mesh filter (Fisher Scientific, Loughborough, UK) and the 

filtrate of extracted cells was centrifuged at 150 xg for 4 minutes. The cell pellet was 

resuspended in 1ml GM and seeded into a T25 flask (Fisher Scientific, Loughborough, UK) 

containing 4ml GM. 

2.2.2 Bone Marrow stem cell isolation 

Femurs were extracted and transported to sterile conditions in α-MEM containing 1% P/S 

media. The condoyle ends of the bone were removed and a hole was made through the 

bone using a BD microlance-3 23 gauge needle (BD Biosciences, Oxford, UK). 5ml of α-MEM 

with 1% P/S was passed through using a 10ml syringe to dissociate the cells. The cellular 

suspension was then centrifuged at 150 xg for 5 minutes. The resultant pellet was 

resuspended in 2ml of GM and seeded into a T75 flask (Fisher Scientific, Loughborough, UK) 

containing 8ml of GM. 

2.2.3 Dental pulp stem cell isolation 

Rat incisors were transferred to sterile conditions in α-MEM containing 1% P/S. The 

posterior end of the incisors was removed using a sterile scalpel blade and the dental pulp 

was extracted. The dental pulp was minced using a sterile scalpel blade. Subsequently, 2 

methods were used to extract the stem cells from the DP. The first method involved 

trypsinising, filtering and seeding the cells as for the adipose stem cell isolation. 

Alternatively, the minced DP tissue was trypsinised following the same protocol as described 

previously, however the whole sample was seeded directly into a T25 flask. 
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2.3 Cell culturing 

2.3.1 Mesenchymal stem cell culturing 

Mesenchymal cells were grown in T25/T75 flasks as and incubated in sterile conditions at 

37oC in 5% CO2 in a RS Biotech CO2 chamber (CM Scientific, West Lothian, UK). Previous work 

in this lab has shown that these conditions are able to encourage stem cell proliferation. A 

mild hypoxic condition would properly mimic the conditions observed in vivo and previous 

data has shown that this encourages the proliferation of neural stem cells (De Filippis & 

Delia, 2011) however this was not possible so normoxic conditions were used. Previous 

studies have shown that these conditions are still viable for the upregulation of 

mesenchymal stem cells (Gil-Perotin et al 2013). Cells were cultured in GM, which was 

replaced every 2-4 days. At ~70% confluency, cells were passaged, split into thirds, each of 

which was resuspended into a new flask. Cells were cultured until ~70% confluency at P2 and 

then taken for analysis (figure 2). 

 
Figure 2: An example of mesenchymal stem cells at 70% confluency. When 70% confluency was met, cells were trypsinised 
and either reseeded at one third of the density or taken for analysis. Scale bars represent 100μm 
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2.3.2 Induction to neural stem cells and subsequent culturing 

Cells were trypsinised, centrifuged and resuspended in the neural induction media at a 

defined cell concentration. The cells were seeded into a HydroCell, low adherence plate 

(Thermo Scientific Nunc, Loughborough, UK) or 60mm bacterial grade plates (Fisher 

Scientific, Loughborough, UK). At day 4, a volume equal to half the original seeding volume 

of neural induction media was added. At day 7-10, optical microscopy images were taken 

with Zeiss Primovert microscope (Zeiss Axiocam, Cambridge, UK). Between day 7-10, the 

cells were taken for imaging.  

2.4 Polymerase chain reaction (PCR) 

2.4.2 Primers 

A list of the primers used in this study is shown below: 

Gene Relevance Sequence Source 
Accession no. 
(product size, 

base pairs) 
CD105 Mesenchymal 

marker 
F-TTC AGC TTT CTC CTC CGT GT R-TGT 
GGT TGG TAC TGC TGC TC 

Invitrogen NM_001010968.2 
(324) 

CD146 Mesenchymal 
marker 

F- CAACTCATTCAGGGCCTCAT R-
AAGCACCATTCTCCCACTTG 

Invitrogen NM_023983.3 (309) 

GAPDH 
(glyceraldehyde-3-
phosphate 
dehydrogenase) 

Housekeeper 
gene 

F- CGA TCC CGC TAA CAT CAA AT R-GGA 
TGC AGG GAT GAT GTT CT 
 

Invitrogen 

(391) 

Vimentin Possible neural/ 
mesenchymal 
marker 

F-AGATCGATGTGGACGTTTCC R- 
GCAGGTCCTGGTATTCACG 
 

Invitrogen 
NM_031140.1 
(395) 

Nestin Neural marker F-CAT TTA GAT GCT CCC CAG GA R-AAT 
CCC CAT CTA CCC CAC TC 

Thermo 
Scientific 

NM_012987.1 
(285) 

P75 Neural crest 
lineage marker 

F- CCTCTGGAGGTGCCAAGGAG  R-  
TTGGATCCTGCTGGGCGCTGTGCTGTC 

Invitrogen 
(275) 

Table 1: PCR primers list and their sources (Invitrogen, Paisley, UK; Thermo Scientific, Loughborough, UK) 

2.4.3 PCR procedure 

Cells were centrifuged at 150 xg for 4 minutes. The pellet was lysed using 350μl RLT buffer 

(Qiagen. Manchester, UK) containing 0.1% mercaptoethanol. RNA was extracted following 
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the manufacturer’s instructions in the RNeasy mini kit (Qiagen, Manchester, UK). Samples 

were treated with 350μl of 70% ethanol and spun once at 9000 xg for 30 seconds. This was 

then repeated with RW1 buffer then RPE buffer and then 500μl RPE buffer at 9000 xg for 2 

minutes. RNA was collected by centrifugation with 50μl of RNAse free water for 1 minute at 

9000 xg. cDNA was created from the samples using a thermal cycling block (Eppendorf, 

Stevenage, UK) using the Bioline Tetro Kit (Bioline, London, UK). 

cDNA was incubated with REDTaq, forward and reverse primers and RNAse free water, 

within a thermal cycling block and run for a maximum of 36 cycles. Cycles included 

denaturing at 94oC, followed by annealing at 55oC and finally allowing extension at 72oC. 

cDNA samples were then loaded onto a 1.5% (w/v) agarose (Sigma-Aldrich, Dorset, UK) gel in 

60ml of Tris-acetate-EDTA (TAE) buffer (Severn Biotech Ltd, Worcestershire, UK) containing 

3μl ethidium bromide (Sigma-Aldrich, Dorset, UK) and run at 110 volts for 30 minutes. The 

PCR products were visualised as bands on the gel under UV and photographed using a G-Box 

gene analyser and the GeneSnap software (Syngene, Cambridge, UK). Traditionally, a ladder 

is used with each investigation to determine that correct bands were made. However, time 

and resource limitations mean that this was not possible in the present study so results have 

to be taken with caution. 

 

 

 

 



 

15 
 

2.5 Immunofluorescence 

2.5.1 Antibodies 

A list of the antibodies used to stain and visualise the cells, is shown below: 

Antibody specificity Stain 
Working 
dilution 

Species source Source 

CD133 Neural 1:300 rabbit abcam 

CD146 MSC 1:250 rabbit abcam 

Nestin Neural 1:250 mouse  BD Biosciences 

P75 Neural crest 1:250 Rabbit/mouse  
Sigma-Aldrich 
/Novocastra 

Stro-1 MSC 1:200 mouse 
R&D 

Biosciences 

Rabbit IgG, 
Alexafluor 488 

- 1:500 goat 
Molecular 

Probes 

Mouse IgG, 
Alexafluor 594 

- 1:500 goat Invitrogen 

Table 2: List of antibodies used and their sources (abcam, Cambridge, UK; Sigma-Aldrich, Dorset, UK; BD Biosciences, 
Oxford, UK; Novocastra, Leica Biosystems, Milton Keynes, UK; R&D Biosciences, Cambridge, UK; Molecular Probes; 
Invitrogen). Concentrations were not supplied of the primary products from the sources so working dilutions of their 
products have been stated instead. 

2.5.2 Immunohistochemistry 

Sagittal sections from decalcified Sprague Dawley rat teeth (supplied by Dr Leadbeater) were 

stained and visualised. 10μm sections were taken using a cryostat microtome (Bright, 

Huntingdon, UK) and mounted onto polarised microscope slides (Thermo Scientific, 

Loughborough, UK). Slides were washed in 10mM Phosphate buffered saline (PBS)  

containing 0.1% Triton-X (Sigma-Aldrich, Dorset, UK). Slides were dried and a hydrophobic 

marker (Vector Laboratories Inc., Peterborough, UK) was drawn around the tissue. 100μl of 

blocker solution: containing PBS/Triton-X solution (PBS-T) with 10% normal goat serum 

(NGS) (Biosera, Sussex, UK) and 3% bovine serum albumin (BSA) (Sigma-Aldrich, Dorset, UK) 

was added to each tissue sample. Slides were incubated for 1 hour in a humidified chamber 

at room temperature before replacing the blocker solution with 100μl of primary antibody 
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solution, made of PBS-T, 3% BSA and the appropriate dilution of primary antibody. Slides 

were incubated in a humidified chamber for 16-18 hours at 4oC before washing in PBS-T for 

3x5 minutes. 100μl of secondary antibody solutions were added and incubated for 1 hour at 

room temperature before washing in PBS for 3x5minutes. Coverslips were mounted onto the 

slides using Vectashield mounting media containing DAPI (Vector Laboratories Inc., 

Peterborough, UK). Slides were then incubated at -4oC until analysed by fluorescence 

microscopy. 

2.5.3 Immunocytochemistry 

2.5.3.1  Immunocytochemistry of mesenchymal stem cells 

Mesenchymal stem cells were reseeded after P2 onto a 0.17mm thick coverslip (Smith 

Scientific Limited, Kent, UK) within a cell culture at its previous concentration and left for 1 

day to adhere. Coverslips were fixed in formalin (Sigma-Aldrich, Dorset, UK) for 10 minutes 

at room temperature before washing in PBS for 3x5 minutes, followed by washing in PBS 

with 3% BSA for 3x5 minutes. Parafilm (Sigma-Aldrich, Dorset, UK) was laid onto a large petri 

dish and 50μl of primary antibody solution was pipetted onto the film. A coverslip was laid 

cell side down onto the drop and then left to incubate at 4oC for 16-18 hours within the 

petridish in a humidified chamber. The coverslip was washed 3x5 minutes in PBS before 

incubation with the secondary antibody for one hour in a darkened humidified chamber at 

room temperature, following the same protocol. Coverslips were washed 3x5minutes in PBS 

and excess fluid removed. Coverslips were then mounted onto a slide (Menzel-Glaser, 

Braunschweig, Germany) using Fluoroshield mounting medium containing DAPI (Sigma-

Aldrich, Dorset, UK) and stored at 4OC. 
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2.5.3.2  Immunocytochemistry of, ‘neurospheres’ 

Spheroids were imaged as described by Sasaki et al 2010 to avoid seeding and differentiation 

(Deleyrolle & Reynolds 2009). Spheroids were transported to a 12 well plate using a wide 

gauge blunt ended needle to prevent damage. The cells were then left for 5 minutes to 

settle. Media was aspirated whilst viewing under an inverted, phase contrast microscope 

(Zeiss Axiocam, Cambridge, UK) to minimise loss of spheres.  

The spheres were fixed to base of the wells with 4% formaldehyde (Sigma-Aldrich, Dorset, 

UK) for 20 minutes before washing in 400μl PBS for 3x5minutes. Spheres were incubated in 

PBS-T for 5 minutes before 3x5minute washes in PBS. 400μl of PBS/3% NGS was added for 

30 minutes. After a subsequent wash, cells were incubated with PBS containing 3% BSA for 

15 minutes. Another wash was performed and 200μl of primary antibody was added and left 

overnight in a humidified chamber at 40C. Spheres were washed in PBS before adding 200μl 

of secondary antibody solution and incubating at room temperature in a darkened 

humidified chamber. A final wash with PBS was performed before addition of DAPI with 

Prolong anti-fade reagent (Life technologies, Paisley, UK). Cells were then stored at 4oC 

before imaging. 

2.6 Analysis 

2.6.1 PCR 

PCR Band intensities were measured with GeneTools software (Syngene, Cambridge, UK) 

and compared to GAPDH bands as described by Shi et al (2001) (figure 3). Where possible 

intensities were compared using a paired or unpaired t-test. Data were checked for 

normality using a Shapiro-Wilk test, however the low sample size meant that non-parametric 
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tests would not have been appropriate. Post-hoc tests and non-parametric tests were not 

used as the low sample size would have meant that no significance could have been found. 

All statistical tests were performed using SPSS statistics version 21 (IBM Corp, New York, 

USA). Graphs were generated of the data using Sigmaplot (Systat Sofware Inc, London, UK). 

 
Figure 3: An example of the PCR data bands. Specified cDNA bands were compared to their corresponding GAPDH band 
intensity to determine a relative level of expression. 

2.6.2 Microscopy 

Bright-field microscopy images were taken of sphere and mesenchymal cultures using an 

inverted bright-field microscope. Fluorescent microscopy images of the dental pulp tissue 

and cell cultures were obtained using a Zeiss Axioplan-2 fluorescent microscope (Carl Zeiss 

Ltd, Herfordshire, UK). Images were taken from within the tissue site and analysed. Images 

of the spheres and mesenchymal stem cells were obtained using a fluorescent inverted 

microscope. Compared images were modified equally to remove background on ImageJ 

(National Department of Health, Maryland, USA) before qualitative analysis. 
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3 Results 

3.1 Seeding density of spheroids 

Prior to the main investigations, a preliminary study was performed to examine the effects 

of different seeding concentrations using bone marrow mesenchymal stem cells. 

Concentrations above 5x10^4 cells/ml showed extensive clustering of cells, which were 

much larger than the expected neurospheres (figure 4). It is likely that due to the high 

concentrations, cells were in such close proximity that they adhered to create a large, 

densely packed cluster of cells. Sufficiently high concentrations were needed to be 

detectable through the cell counting technique and so that sufficient samples could be 

obtained for PCR analysis. Therefore the highest cell concentration where the dense and 

possibly harmful structures did not develop, was used for all following experiments. The 

optimum concentration based on these preliminary observations was 5x104 cells/ml. 

  
Figure 4: A bright-field microscopy images showing an example of different cell densities. (A) cells seeded at 10

6
 cells/ml 

developed large clustering cell structures which were extremely dark in the centre. Small possible neurosphere like cultures 
can be observed however much larger and darker structures indicate improper growth of the cells. Scale bars represent 
100μm. 
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3.2 Neural/mesenchymal marker expression in murine teeth 

Images were obtained from within the dental pulp from the rat teeth incisors slices (figure 

5A). Control images showed a higher fluorescence intensity on areas of the odontoblast 

layer suggesting a significant amount of background staining within this region (figures 4.2 B-

D). It can be observed that there was relatively strong staining of P75 within the dental pulp 

layer. The staining can also be seen to be extremely strong on the odontoblast layer as 

shown by the bright non-specific staining occurring on the edges of control images (figure 

5E). 

The intensity of nestin staining appears to be quite variable. When co-stained with either 

CD146 or CD133, some images show only faint staining, and is potentially background (figure 

5F). Other images however show an increased level of nestin staining, which is clearly 

greater than that seen in the control groups (figure 5G). Artefacts appear to be causing the 

increased signal in some samples which could be creating glare across the observed tissue. 

Because of the variability, it is difficult to determine the nestin staining from the data.  

CD146 staining, like P75 can be found at high levels in the odontoblast layer, however very 

little signal can be observed in the dental pulp layer. Most images show CD146 expression 

surrounding areas which lack DAPI staining suggesting CD146 surrounds nerve tracts or 

blood vessels (figure 5H). CD146 co-staining with nestin showed no co-localisation. 

CD133 staining showed very little staining, however it was more apparent than nestin stains (figure 

5I). Some co-localisation between nestin and CD133 can be observed (figure 5J). 
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Figure 5: Representative images of the stained dental pulp sections are displayed. (A) A larger image showing the anatomy 
of slices which were imaged. Images were taken within the dental pulp layer, with occasional odontoblast layers appearing 
in shot. (B-D) Control images taken of the dental pulp sections. (B) Staining with just the Alexafluor 488 secondary antibody, 
(C) just the Alexafluor 594 secondary antiboday and (D) a merged image of the two secondary antibodies with DAPI 
staining. Note how the brighter DAPI staining occurs on the edges of the image, where the odontoblast layer resided. This 
represented much larger background staining, hence slight corresponding green and red stains can be observed on the 
single control images. (E) An example of the P75 stained tissue. (F-G) Nestin staining from the section, note how although 
the staining is fairly low in both samples, the variation between the absense of staining in sample in F and amount in G is 
quite striking. (H) CD146 staining (green) with DAPI (blue). Note how the green staining appears to surround areas where 
there is a lack of DAPI staining. CD133 images in the dental pulp are shown, (I) CD133 idependently, (J) CD133 with nestin 
stains. Although CD133 appears more apparent, sections of nestin and CD133 can be seen to co-localise at some sites 
within the tissue. Scale bars represent 100μm. 

3.3 Growth patterns of mesenchymal stem cell populations and spheres 

It was observed that the growth pattern for the trypsinised dental pulp tissue was very slow 

and regularly stalled at P2 meaning that insufficient cells were collected (figure 6A). All other 

tissue samples were observed to grow relatively well and reached high levels of confluency 

within one week of seeding (figures 6B-D). 

Figure 7 shows a clear example of the growth of spheres in the neural induction media. It 

has to be noted however that due to availability of the HydroCell plates, different sized wells 

were used. Both 12 well plates and large individual wells showed similar results (figure 7). 

Spheres were developed from all cell types, however DPSC spheres were characteristically 

smaller, rarely exceeding 100μm in diameter, than their ADSC and BMSC counterparts which 

averaged around 150-170μm but could reach 200μm. 
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Figure 6: Light microscopy images of the mesenchymal stem cells one week after reaching P2. (A-B) Images of the different 
dental pulp stem cell treatments. Stem cells which were trypsinised (A) showed low growth rates and did not reach 
confluency at P2, whereas those treated by directly seeding the minced tissue (B) were observed to grow at much faster 
and more reliable rates. (C) ADSCs and (D) BMSCs all both showed rapid growth rates and reached 70% confluency within a 
week of seeding. Scale bars represent 100μm. 

Both Adipose and dental pulp tissue grew into spheroids, however adipose spheres appear 

much larger (figure 7A and B). In BMSC samples there was frequent cell adhesion to the 

HydroCell plates (figure 7C). 

Large clusters of cells with dark, dense centres were observed with the spheres grown in the 

96 well plates (figure 8), similar to those seen when seeding at high densities (figure 4A), 

however there was also signs of smaller, less dense and brighter spheres growing as well 

(figure 8B). 
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Figure 7: Representative images of the spheres generated by the three stem cell types in large HydroCell plates. (A) Adipose 
spheres which have managed to grow relatively large in the treatment period, (B) dental pulp derived spheres and (C) bone 
marrow derived spheres. Some bone marrow stem cells can be seen to have long processes extending from their somas 
indicating that they have adhered and are gaining a fibroblast like expression. Scale bars represent 100μm. 

Latter samples were grown on bacterial grade plates which lacked the anti-adhesive 

properties of HydroCell plates. In these samples, there was a significant increase in the 

number of cells adhering to the plates and presenting fibroblast-like morphologies, with 

finger like extensions from the soma (figure 9). This was most notable in the bone marrow 

stem cell sample, as visible by the large and flat appearing cells which did not show any 

spheroid characteristics. Spheroids that did develop appeared much smaller and less 

frequent (figure 9D). The adipose tissue did not even grow into spheres, however the cells 

were seeded a few days after reaching confluency, so it possible that the cells were 

damaged prior to neural induction (figure 9B). 
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Figure 8: Representative optical microscopy images of spheroids formed by the (A) adipose stem cells and (B) dental pulp 
stem cells within the 96 well plates. Large clusters are seen with dark centres. (B) A, ‘normal,’ sphere can be observed 
adjacent, clearly indicating the variation in the density of the structures. 

Due to the low sample size, all of the data were used in subsequent analysis despite 

variability in the morphology of the spheres within groups. 

3.4 Immunocytochemistry of mesenchymal cells 

It can be observed that there is strong staining for CD146 for the adipose and bone marrow 

samples (figures 10A and C). Staining appears to surround DAPI nuclear stain (not shown) so 

does not locate to the nucleus. There was some correlation between the CD146 staining and 

the nestin staining for both adipose and bone marrow samples, although this is not exclusive 

(figures 10A-D). The nestin staining was quite variable within sample groups, with both high 

levels and low levels being observed. Very low levels of CD146 could be seen on some of the 

cells in the dental pulp group, whereas no nestin staining was observed (figure 10E-F). 

 



 

26 
 

  

  
Figure 9: Light microscopy images showing the spheres formed in the bacterial grade plates. (A) Dental pulp stem cell 
derived sphere with an adhered cell in the background. (B) Adipose stem cells did not form spheroids in the bacterial grade 
plates and instead appeared to dissociate and die. (C) Bone marrow derived spheres as well as (D) large adhering cells 
forming fibroblast-like colonies. 

Low levels of CD133 and Stro-1 are seen consistently throughout the 3 samples prior to 

neural induction (figure 11). The adipose and dental pulp data should be taken with caution 

as only one image was obtained. For the adipose sample, CD133 staining tended to coincide 

with areas where air bubbles could be seen which may have accentuated any signal (figure 

11A). The data suggests a strong co-localisation between the samples, with Stro-1 only 

appearing at sites of high intensity CD133 staining. CD133 staining in the dental pulp seemed 

to correlate almost precisely with the Stro-1 (figure 11E-F). 
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Figure 10: CD146 staining (A,C and E) and Nestin staining (B, D, F) for the stem cell sources prior to neural induction 
treatment. Scale bars represent 100μm. (Insets) Control images for the respective images.  
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Figure 11: CD133 staining (A,C and E) and Stro-1 staining (B, D, F) for the stem cell sources prior to neural induction 
treatment. Scale bars represent 100μm. (Insets) Control images for the respective images. 

Only one sample was obtained for the P75 stains for each MSC source. No P75 staining was 

observed in the ADSCs (figure 12A). Bone marrow showed a low level of staining, however 

the stain co-localised perfectly with CD133 staining, possibly indicating a region of excess 

non-specific staining (figures 12B and C). This unfortunately cannot be confirmed from the 
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data. DPSCs seem to express high levels of filamentous projections surrounding DAPI stained 

nuclei, however only in a certain subpopulation of the cells (figure 12D). 

  

  
Figure 12: P75 images taken of the MSCs prior to neural induction. Blue staining shows DAPI, red shows P75 and stained 
nuclei with (A) ADSCs, (B-C) BMSCs and (D) DPSCs. Green staining in (C) shows the CD133 staining from one example which 
appears to correspond with the P75 stain. Scale bars represent 100μm. (Insets) Control images for the respective images.  

3.5 Immunocytochemistry of neurosphere cultures 

Despite checking the size of spheres prior to imaging, sphere size was not were not always 

consistent after collecting by the method proposed by Sasaki et al (2008),which may have 

affected the expression profile. P75 staining was not successful so has not been included. 
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Figure 13: Representative fluorescent images of the spheres after CD146 and nestin double staining. DAPI counter stain is 
shown in blue. (A,C,E) CD146 stains and (B,D,F) nestin stains are shown with DAPI counter staining in blue. Scale bars 
represent 20μm. (Insets) Control images for the respective images. 

CD146 was observed on both the ADSC and BMSC derived spheres, however the distribution 

was not the same (figures 13A, C and E). ADSC spheres expressed more CD146 in the centre 

whereas BMSC derived spheres expressed CD146 uniformly across the structure (figures 13A 

and C). No expression was observed for the DPSC derived spheres (figure 13E). Only the 
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BMSC derived spheres showed any nestin staining (figure 13B, D and E). Nestin was only 

found in subpopulation of BMSC spheres and was only found in small collections on edges of 

spheres, surrounding DAPI nuclear staining (figure 13D). 

CD133 was found in all MSC derived sphere populations, however ADSC spheres only 

showed a subpopulation which expressed the protein (figures 14A, C, and E). When CD133 

was present on ADSC spheres, it tended to show the strongest signal on the outer layer of 

the spheres, although low levels were still observed within the core (figure 14A). CD133 

varied in intensity on BMSC spheres but always was observed uniformly across the structure 

(figure 14C). A similar observation was found with DPSC spheres, however some did show a 

higher intensity stain on the periphery. Again all stains appeared to surround DAPI nuclear 

staining. Stro-1 staining was not observed on either ADSC or BMSC spheres (figure 14B and 

D). Most DPSC spheres did not show Stro-1 staining however a subpopulation showed low 

levels in the core of the spheres. Weak, possibly background staining showed some co-

localisation between CD133 and Stro-1 in DPSC derived spheres (figure 14E-F). 
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Figure 14: Representative fluorescent images of the spheres after CD133 and Stro-1 double staining. DAPI counter stain is 
shown in blue. (A,C,E) CD133 stains and (B,D,F) Stro-1 stains are shown with DAPI counter staining in blue. Scale bars 
represent 20μm. (Insets) Control images for the respective images. 
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3.6 Semi-quantitative polymerase chain reaction analysis 

From the semi-quantitative analysis of PCR band intensities, Shapiro-Wilk tests were 

performed to test normality. There was no evidence (p>0.05) that any samples showed a 

normal distribution, however the low count restricts the reliability of this test. Some samples 

did not have a sufficient count (n<3) to test normality. Levels of nestin compared to the 

GAPDH do not appear to change after neural induction for all three cell types and no 

significant differences could be observed (P>0.05). All cell types show low levels of nestin 

expression, with the dental pulp stem cells showing the lowest levels of expression, although 

this has not been shown statistically (P>0.05). Vimentin levels appear to drop after neural 

induction, although again this was not shown significantly. A relatively large change was 

observed for both the bone marrow and adipose stem cells (over tenfold for the bone 

marrow) (figures 15, 16 and 17). 

Very low CD105 expression was recorded in all samples (figures 15, 16 and 17). CD146 levels 

also appear very low in both the BMSCs and DPSCs and no change in expression was 

observed between the mesenchymal and neural induction treated cells (figures 16 and 17). 

Qualitatively, there was a reduction in the CD146 expression in the adipose stem cells after 

neural induction however this was not statistically significant (P>0.05) (figure 15). 

Similar to the other markers, no significant change in the mean ratio of P75 against GAPDH 

expression was identified (P>0.05), therefore the data suggests that no changes occur in the 

P75 expression after neural induction. However the mean expression of P75 increases by 

over threefold in the dental pulp stem cell (figure 17) suggesting a potential, statistically 

unrecognised increase. 
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Figure 15: Semi-quantitative PCR analysis for the adipose stems both before and after neural induction treatment. No 
statistical difference was found between the groups. Error bars represent one SEM. 

 
Figure 16: Semi-quantitative PCR analysis for the bone marrow stems both before and after neural induction treatment. No 
statistical difference was found between the groups. Error bars represent one SEM. 

 
Figure 17: Semi-quantitative PCR analysis for the dental pulp stems both before and after neural induction treatment. No 
statistical difference was found between the groups. Error bars represent one SEM. 
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ANOVA tests were used to determine if there was a difference in the means of the primer 

band intensities/GAPDH band intensities for the spheres, between the three stem cell 

sources (figure 18). Statistical analysis could not be performed for the CD105 analysis as the 

count was too low. Significance was not found between any of the groups (P>0.05, nestin 

P=0.47, vimentin P=0.35, P75 P=0.64, CD146 P=0.55), so no evidence was obtained to 

suggest a change in mean expression after neural induction treatment. Despite the lack of 

significance, there appears to be a decrease in the vimentin expression levels for the three 

groups, with bone marrow maintaining the highest level of expression. Nestin levels appear 

slightly higher in the BMSC spheres but then also correspond to a reduced level of P75 

compared to the other stem cell types. The large range in band intensities that was visible 

qualitatively makes these results questionable. 

 
Figure 18: Semi-quantitative PCR analysis of the, ‘neurospheres,’ between the three stem cell sources. No statistical 
difference was found between the groups. Error bars represent one SEM. 
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4 Discussion 

The purpose of this investigation was to characterise the neural potential of spheres 

produced from different mesenchymal stem cells sources. This should provide an indication 

of which source will most readily convert down a neural lineage when stimulated.  

4.1 Sphere formation capabilities 

On a procedural point of view, it appears that the spheres need a large area to expand 

properly. The clustering of cells in small wells of the 96 well plates demonstrates a limitation 

with this method. MSCs appear to require a certain volume, probably so that they can 

maintain a certain distance from surfaces and stay free in solution. The number of spheres 

obtained is significantly lower than the number of cells which were seeded. Either the cells 

must have conjoined, raising the question over whether spheres can form from single cells, 

or extensive cell death occurred after seeding in the HydroCell plates. If there has been cell 

death, it would be interesting to examine which cells are able to form spheres. It is likely that 

a pluripotent subpopulation exists within MSC populations, which has a specific phenotype 

allowing for neural induction. We tried to examine this by comparing the distribution and 

prevalence of certain markers within the population of cells before and after neuronal 

induction treatment. 

BMSCs showed a tendency to adhere to the surface of the plates. It has previously been 

reported that adherence of neural stem cells causes them to differentiate (Deleyrolle and 

Reynolds 2009), thus MSC adherence is likely to interrupt the conversion to NSCs. BMSCS 
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however showed the greatest growth rate prior to neural induction treatment. A higher cell 

population could be created before neuronal induction. 

4.2 Neural phenotypes of MSC derived spheres 

Immunostaining for P75 was not observed in ADSC samples and arguably BMSCs, in 

agreement to previous reports (Caddick et al 2006, Radtke et al 2009). A few of the DPSCs 

appeared to show strong P75 stain prior to neural induction, indicating that a heterogenous 

population must have grown from the original samples. This also raises the question about 

the relative proportion of the DPSCs which posses the neural-crest lineage and thus the 

hypothesised ease of neural induction. P75 staining was not examined in spheres due to 

availability of the antibody. 

Although not shown statistically, it was interesting to observe that DPSCs had lower or equal 

levels of expression of P75 to the ADSC and BMSC populations. It is difficult to explain why 

this may have occurred. Another possibility is that only a subpopulation of DPSCs maintain 

P75 expression after extraction and growth as observed in our immunocytochemistry 

results. P75 levels appear to increase in the DPSC derived spheres. Considering no sources 

indicate that P75 expression is upregulated during neural induction of DPSCs, one could 

argue that P75 expressing DPSCs are preferentially upregulated by the neural induction 

treatment. 

All stem cells sources showed CD133 staining of spheres. Uniformly, the expression was 

highest on the outer layers of the spheres, indicating that a neural stem phenotype is found 

mostly on the surrounding cells. This could possibly be due to cells in the centre of the 
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sphere being starved of nutrients and dying (Gil-Perotin et al 2013). This however goes 

directly against the observations of Xiao et al (2013) and Ilieva & Dufva (2013)  who saw 

signs of proliferation, through immunostaining for the cell proliferation markers 

Ki67/Oct4/Nurr1 (Scholzen and Gerdes 2000, Zeng et al 2004), only within the core of the 

spheres. It would be interesting to examine if co-staining is observed with CD133 and 

markers of proliferation. The high intensity staining in the spheres shows CD133 to be a 

promising marker of a neural converted MSC, however this observation must be taken with 

caution due to the lack of quantitative data. It would have been useful to examine the mRNA 

levels of CD133 to back up this observation. 

Nestin expression profiles showed further difficult results. Variable nestin staining was 

observed within the ADSC and BMSC populations but not the DPSC population, contradictory 

to previous reports (Farahani et al 2011, Young et al 2013). There was no evidence to 

suggest any change in the nestin expression after neural induction treatment in any of the 

cell types possibly suggesting that the procedure does not induce conversion down a neural 

line. 

4.3 Mesenchymal characteristics of MSC derived spheres 

Both the ADSCs and BMSCs showed strong CD146 staining as would be expected of a 

mesenchymal cell population. Oddly the dental pulp only expresses a subpopulation with 

CD146. This again indicates that there is a heterogenous population of stem cells within the 

dental pulp. 
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The huge, although not significant, reduction in the mean vimentin expression levels for all 

MSC sources suggests that the treatment has converted all the cell types away from a MSC 

phenotype. Although all samples show a loss of the mesenchymal markers, it could be 

argued that the lower levels seen in DPSCs prior to neural induction indicate that they are 

not as far differentiated. It could be argued that the massive downregulation of vimentin 

could make vimentin a viable candidate for a FACS marker. It would be interesting to 

examine the cells through flow cytometry to examine the expression profile of individual 

cells within the populations. 

Stro-1 staining appears to be quite questionable as it appears to co-localise perfectly with 

CD133 in the MSC populations. Sample sizes of 1 make the data very questionable and it is 

possible that the strong co-localisation could just be a result of excess background staining. 

Previous unpublished data in this lab suggest that the Stro-1 antibody that was used was 

unreliable. The lack of CD105 expression indicates that too few cycles were used in this 

study, which may have affected results of other markers as well. 

4.4 Limitations 

There were a number of limitations observed within this study. Availability of growth plates 

was a major limitation as we observed different morphologies which likely altered the 

phenotypes of cells. Another concern is the use of serum to quench the trypsin. As serum 

has been shown to prevent the generation of neurospheres (Gil-Perotin et al 2013), it is 

possible that the short term contact may prevented neural conversion. Additionally, we used 

a single protocol to upregulate all MSC types, which may not be appropriate. 
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The immunocytochemistry data from the spheroid was extremely difficult to analyse. This is 

because the sphere diameters, around 150μm, were extremely large compared to the 

structures that are normally examined by conventional fluorescence microscopy (usually 

between 10-20μm in this lab). This would have been improved if sections could have been 

taken, however due to the fragility of the spheres this was not possible (Sasaki et al. 2010). It 

would have been preferable to use a confocal microscope as this would have allowed higher 

resolution images to be obtained, however technical difficulties meant that this was not 

available. A major limitation was availability of certain rat specific antibodies and primers. 

This meant that a number of valid markers of neuronal/mesenchymal stem cells had to be 

excluded. Other markers which have been used include Neurod1 as well as K+ channels, 

however it still needs to be determined which are only found in NSC, not neural progenitors. 

A major concern with the immunofluorescence was the tendency for variable results. This 

indicates that it may be worth trying to develop the protocol to include a more efficient 

blocker, or incubate with blocker solutions for an extended treatment time. Lack of ladders 

meant that it was not possible to be confident with the data. 

A major limitation is that a positive control was not available. To do this would have meant 

developing a technique to extract neural stem cells which was not realistic in the available 

time. Alternatively neurospheres could be derived from a commercially available cell line. 

One such source would be the tumourigenic, neuroendocrine PC12 cells (Tyson et al. 2003). 

These cells have been shown to upregulate when treated with EGF, as used in the neural 

induction protocol for this investigation and so could easily model NSC growth. Additionally, 

they have been shown to readily convert to neurons or neuron-like cells when stimulated in 



 

41 
 

a specific manner (Kimmelman et al 2002). Although PC12 cells have been shown to express 

these characteristics, they have not been shown to form neurospheres.  

4.5 Future directions and implications 

It is well known that the cells within these samples are heterogenous which limits the 

characterisation of the cells within this study. We planned from this study to identify a 

definitive marker which indicates that the cells have entered a neural line, however the 

results are questionable. A specific NSC marker would allow FACS analysis to examine the 

heterogeneity of the spheres. Considering that the conversion between MSC to NSC 

phenotypes will not be instant, flow cytometry would be more appropriate to examine 

changes. Chronological studies would also be useful to compare as this will be a way of 

evaluating the therapeutic benefit. 

Considering the lack of NSC marker upregulation, it would be beneficial to examine other 

growth protocols that may further encourage a NSC induction. Previous studies have shown 

that the use of Noggin has aided conversion of both embryonic and adult fibroblasts to NSC-

like spheres (Wada et al. 2009) (Shofuda et al. 2013) as well as hypoxia being beneficial for 

neural conversion (De Filippis and Delia 2011). It would be interesting to examine the effects 

of these treatments on the ability of the MSCs to convert to NSCs so that a definitive single 

method can be created. Furthermore, it would be beneficial to examine which proteins are 

directly involved in the conversion process. This, as well as markers of NSCs, could be looked 

into by performing a microarray on NSCs. Knockout cell lines could then be develop to 

examine if the cells respond differently to neural induction without certain proteins. This 
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information could allow the development of a more efficient protocol which can directly 

stimulate neural induction of the MSCs. 

It is not clear how translational rat dental pulp will be with human DPSCs. We have observed 

in this lab that human dental grows far more readily that rat dental pulp, which may be due 

to a procedural approach but could indicate that human DPSCs are more pluripotent that 

their rat counterparts. This would be surprising considering that rats have one set of teeth 

which constantly grow throughout their life, whereas humans have a deciduous set and 

adult set of teeth (Kerkis and Caplan 2012). it would be interesting to know whether there is 

a difference between murine teeth and human deciduous/adult teeth to determine which 

would be the optimum source for neural induction. Finally, the integrative capacity of the 

cells still needs to be evaluated due to previous difficulties with NSCs (Young et al. 2000). 

There is no point in developing novel neurons for therapeutic treatments if they cannot be 

integrated into the developed system. 
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5. Conclusions 

It can be concluded that all stem cell types appeared to develop into spheres and lose some 

markers of MSCs. Although the data suggests that DPSCs express the least mesenchymal 

phenotype of the studied MSCs after neural induction, insufficient data was collected to 

confirm that they appeared more like NSC than the other MSC sources. We have indicated 

that vimentin and CD133 are useful markers to detect MSCs or neural converted MSCs 

however limitations such as the time required to grow the cells, infections and possible 

protocol errors resulted in insufficient and questionable data. Further studies need to be 

completed to gain extra data to address the hypotheses as well as addressing the 

translatability of the results. 
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Abstract 

Synaptic plasticity is an extremely important neurophysiological process that is essential for 

proper development and learning. It is believed that the synaptic cleft size will have a major 

role in determining the synaptic efficacy and thus could play a role in endogenous long-term 

potentiation (LTP) processes. Smaller synaptic clefts will allow a more efficient transfer of 

neurotransmitters causing a larger post-synaptic response. Previous investigations into the 

synaptic cleft size have relied on electron microscopy, however this method requires the 

neurons to be fixed. The fixation process alters the synaptic structure creating inaccurate 

and possibly disproportionate results. We used fluorescence resonance energy transfer 

(FRET) microscopy with the lipophilic dyes, DiI and DiO, to indirectly measure synaptic cleft 

size in vitro and examine the changes observed after fixing of the neurons and inducing LTP. 

We have shown that it is possible to use FRET microscopy to examine dynamic changes in 

neuronal populations. Our data suggests that there is enlargement of the synaptic cleft 

following aldehyde fixation. Unexpectedly, the synaptic cleft also appears to enlarge after 

forskolin induced LTP, possibly indicating an enlargement of small synaptic clefts upon LTP 

induction. Limitations mean that further experiments are required to confirm these findings. 
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1 Introduction 

Synaptic plasticity is an important biological process which is essential both during 

development, to create the proper connections in the neural circuits, and in adulthood. In 

the adult mammal, synaptic plasticity is known to be vital for both learning and memory and 

is arguably the most important process involved in how we understand the world around us 

(Lynch 2004, Malenka and Nicoll 1999). 

Although a significant amount of research has been focussed on understanding the 

mechanisms behind long term potentiation (LTP), gaining a better understanding of the 

mechanism behind synaptic plasticity could have huge ramifications. This will lead to the 

discovery of what can go wrong during development, in neurodegenerative disease or simply 

during ageing. This could allow for the development of therapies to help treat abnormal 

conditions and maintain proper neuronal function. 

1.1 Long-term potentiation (LTP) 

Hebb (1949) originally proposed the concept that neurons are able to strengthen their 

connections when they are repeatedly firing together, whether causal or coincidental. This 

theory has led to the discovery of two methods of altering synapses; LTP, increasing synaptic 

efficacy, and long term depression (LTD), decreasing synaptic efficacy (not to be confused 

with the reversal of LTP). Much research has been put into how LTP is able to strengthen 

synapses and the role that this has in neurological processes such as learning and memory. 

LTP is the process where the synapses of two neurons are able to produce stronger 

connections as a result of synchronised firing. This results in the postsynaptic neuron 
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membrane generating an action potential more readily than previous responses (Malenka 

and Nicoll 1999, Moore and Baleja 2012). 

To look into the physiology of LTP, it is important to reliably and reproducibly induce LTP into 

a neuronal sample. Ever since Lomo (1966) showed that providing a test shock could result 

in strengthening of the hippocampal dentate gyrus’ response, indicating the possibility of 

externally induced LTP, multiple methods to bring LTP about have been developed. 

Morgan & Teyler (2000) originally showed that by stimulating a population of ex vivo 

hippocampal neurons with a short-theta burst stimulus, a reproducible LTP response could 

be produced which appears to work through both the N-methyl-D-aspartate receptor 

(NMDA) and voltage dependent calcium channel (VDCC) pathways. This was shown by an 

increased field excitatory postsynaptic potential (fEPSP) being observed in control groups 

compared to the amino-5-phosphonovaleric (APV) and nifedipine, blockers of NMDA and 

VDCC receptors respectively. Numerous studies have since shown that this method can be 

used reproducibly in vivo and in vitro (Grover et al 2009). There are disadvantages with this 

method however, as the electrodes have to placed directly at the sight of interest, which is 

not always possible due to the expense and difficulty of setting up of the equipment. 

Additionally, although an overall tissue LTP is observed, not every neuron is affected. It can 

then be very difficult to locate the precise synapses which have been affected (Otmakhov et 

al 2004). 

Due to difficulties with using electrodes, methods have also been developed to induce LTP 

chemically. High concentration potassium solutions have been shown to induce LTP in rat 

hippocampal slices, again with data suggesting that it works in a calcium and glutamate 
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dependent manner (Fleck et al 1992). Interestingly though, this data is not universal and 

other reports have actually shown that high potassium concentrations can result in a 

significant reduction in the fEPSP, however this was also with a raised glutamate 

concentration (Harrison and Alger 1993). 

Another promising method is through the use of the compound forskolin. Forskolin is an 

adenylate cyclase (AC) activator. increased AC activation leads to an increase in the cyclic 

adenosine monophosphate (cAMP) which can in turn lead to a raised level of active cAMP 

response element binding protein (CREB)/mammalian target of rapamycin (mTOR) which are 

believed to have a role in the transcription and maintenance of proteins involved in 

maintaining LTP, thus producing an observable increase in fEPSP (figure 1) (Otmakhov et al 

2004, Fortin et al 2010, Gobert et al 2008). There is some debate as to how effective 

forskolin is independently, with some reports indicating that it can only induce LTP when in a 

magnesium free solution, however most reports seem to indicate forskolin as a reliable tool 

for chemically inducing LTP. Another advantage of forskolin induced LTP is that data suggests 

that it can be relatively easily reversed. Fortin et al (2010) showed that rapamycin addition 

was able to revert the fEPSP slope produced with forskolin alone, without causing a 

reduction below baseline, which could indicate LTD induction rather than LTP prevention 

(figure 1A). 

1.2 Synaptic cleft size 

Synaptic cleft size is likely to have a role in the amount of activity induced at the 

postsynaptic receptor. This is because a reduced distance between the two membranes will 
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A) 

 
B) 

 
Figure 1: (A) Data showing forskolin treatment causing an increase in the fEPSP of cultured rat hippocampal slices. After 
application of 50mM forskolin for 15 minutes (grey bar), a maintained increase in fEPSP is observed for a 2 hour period. Co-
treatment with rapamycin is shown to prevent the fEPSP being maintained long term and thus prevent LTP. (B) The model 
indicating the methods by which forskolin can induce LTP. Forskolin appears to activate AC leading to an upregulation in 
phosphorylated cAMP. Multiple pathways lead to the activation of mTOR and CREB pathways which causes the 
upregulation of mRNAs involved with dendritic structure. Rapamycin is also believed to inhibit the activity of mTOR, 
leading to reversal of the induced LTP. Both figures were used with permission from (Gobert et al. 2008). 

mean that the neurotransmitters will not have to migrate as far. The concentration of the 

neurotransmitter which reaches the postsynaptic membrane will be increased due to 

decreased diffusion and clearance. This allows more neurotransmitters to bind to the 

postsynaptic membrane, increasing post-synaptic receptor occupancy and eliciting a 
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stronger response (Savtchenko and Rusakov 2007, Wahl et al 1996). There is however no 

direct data to back up this theory. Computer models from this lab and others have been 

developed to analyse this relationship. Following the expected relationship and dynamics of 

the synaptic cleft, significant changes can be observed from subtle changes in the synaptic 

cleft size (figure 2A and B) (Sik, unpublished data, Wahl et al 1996). Based on these data, it is 

expected that in vivo, there is likely to be a method to utilise the synaptic cleft size to control 

signal strengths between neurons.  

A)

  

B) 

 
Figure 2: Models showing the effect of varying cleft sizes on the amount of open receptors on the postsynaptic membrane. 
A) showing a count whilst (Sik unpublished data) (B) shows the proportion that are open (used with permission from Wahl 
et al 1996), with both models indicating that smaller cleft sizes, below 25nm, will cause an increase in the open receptors, 
allowing a greater EPSC to be induced. 

It has long been theorised that the dendritic spines, one of the structures which contain the 

synaptic membranes, react during synaptic plasticity (Ramon y Cajal 1911). Since then 

multiple studies have demonstrated that there is a link between dendritic spine structure 

and LTP (Fortin et al 2010). Bourne et al (2008) reviewed a number of changes in dendritic 

spines, namely that spine enlargement is observed after LTP induction and a corresponding 

shrinkage can be observed during LTD. This has been further shown by an increase in 

rhodamine-phalloidin staining, a specific binder of polymerised actin, in spines which had 

received theta burst stimulation to induce LTP (Lin et al 2005). Additionally LTP in the form 
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of theta bursts causes the phosphorylation of cofilin through p21-activated kinase, resulting 

in inactivation of the cofilin. Cofilin normally functions to depolymerise actin filaments, thus 

LTP should help to maintain the spine structure (Fedulov et al 2007). 

Varying the actin filament build up has been shown synaptic responses after LTP through the 

trafficking of receptors, however it has also been shown that there is an alteration the 

synaptic structure following LTP (Schwechter and Tolias 2013). Synapses going through LTP 

have been shown to develop a perforated structure. A perforated synapse occurs when 

small areas of the postsynaptic membrane receive reduced postsynaptic densities, that is a 

loss of electron dense regions. This corresponds with a loss of receptors and creates a 

doughnut shape, which Geinisman (1993) has shown is able to envelop the presynaptic 

membrane. As a result a greater contact area can be created between the synaptic 

membranes, allowing for an increased response. 

As well as this, LTP can cause a concave synapse to develop (Weeks et al 2003), that is a 

enlarging of the presynaptic membrane. This could aid the enveloping described by 

Geinisman (1993). Concave synapses have been shown to have a build up in calcium binding 

proteins compared to other synapses, indicating a higher calcium concentration and likely to 

lead to an increase in calcium induced vesicle release (Buchs and Muller 1996). Additionally 

computer models suggest that the concave structure is able to draw cause a greater 

diffusion of calcium to the outer membranes on the synapse, which would theoretically 

increase the influx of calcium following activation (Weeks et al 2003). The bulging is also 

likely to cause shrinkage in the synaptic cleft size, supporting the hypothesis that a reduced 

cleft size is induced by LTP. Weeks et al 2003 demonstrated that the structural changes 
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observed through LTP were not observed with ketamine treatment, indicating that a more 

regulated process must be occurring than just over stimulation. 

These data indicate that the synapse actually is able to go through drastic remodelling 

following LTP. Although these mechanisms have not been directly linked to the size of the 

synaptic cleft, it is very likely that the increase in actin filaments and the remodelling of the 

synaptic elements could allow the presynaptic and postsynaptic membranes to grow 

towards each other. The maintenance of these filaments should also be able to prevent the 

membranes from retreating and help maintain the reduced distance between the 

membranes. 

Furthermore, an increase in cell-cell adhesion molecules has been observed after LTP 

induction in hippocampal slices (Calabrese et al 2006). N-cadherins have been shown to be 

able to stabilise the structure of the synapse. After NMDA receptor activation, β-catenin 

phosphorylation has been shown to occur, which prevents the endocytosis of N-cadherins, 

allowing them to maintain connections across the synapse and hold the structure together 

(Tai et al 2007). There is also a link between the ephrin receptors, which hold cell surfaces 

together closely and NMDA receptors at the synapse. Increased NMDA receptor 

concentrations, (seen after LTP) correlate with increased ephrin receptors concentrations, 

leading to stronger cell-cell adhesions. Again, these data have not been directly linked to 

synaptic cleft size, however it is very likely that increased cell-cell adhesions will result in a 

reduced manoeuvrability of the synaptic membranes and help to hold the membranes 

together between nanometre junctions. It should also be noted that all of these previous 
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studies were performed using rat hippocampal neurons, thus it is not clear how translatable 

the results are. 

Active synapses do not tend to be larger than 20nm (Savtchenko and Rusakov 2007), and as 

such are far too small for any changes in the synaptic cleft size to be detected by 

conventional microscopy methods. Electron microscopy can be used to overcome this 

barrier, gaining resolution below the nanometre scale (Erni et al 2009). However using 

electron microscopy has its limitations as cells have to be prepared before they can be 

visualised, which is likely to result in alterations to the microstructure. 

1.3 Effect of tissue preparation on cleft size 

A number of studies have looked at the relationship of the synaptic cleft size, however to 

examine the synaptic cleft, electron microscopy has to be performed. This requires 

preparation of the samples being used. A number of methods have been developed to fix 

the tissue however they all contain flaws. The traditional approach is through fixation with 

aldehyde. Aldehyde works by encouraging cross-linking between proteins via covalent 

bonds. This method however has been shown to dehydrate the cells and lead to tissue 

shrinkage (Hayat 1989). This remodelling and dehydration which will likely pull the synaptic 

cleft open. Experiments using other fixation procedures show a marked difference in the 

aggregation of synaptic components. Furthermore, this method takes around 30 minutes to 

properly fix cell samples, and longer for tissue samples. During this time biological processes, 

especially enzymatic reactions, are still active, and it is very likely that there will be some 

response to the fixation procedure. It is unknown whether this will have a significant effect 

on the synapse morphology (Rostaing et al 2006, Leunissen and Yi 2009). 
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Rosating et al (2006) showed that rapid freezing procedures appear to maintain a more 

endogenous morphology than aldehyde fixation. The conventional cold metal freezing 

procedure can only achieve proper fixation at around 10μm from the surface, which is likely 

to miss a lot of the important elements of the synapse. The high pressure freezing (HPF) 

technique, using between 200-210 MPa, has been far more effective and can achieve 

fixation of depths up to 300μm (Leunissen and Yi 2009). Additionally, this method prevents 

the formation of ice crystals due to the way that the water freezes at the high pressures, 

helping to maintain the original structure (Rostaing et al 2006, Leunissen and Yi 2009). 

Rosating et al (2006) further showed that presynaptic morphology was altered differently in 

aldehyde fixation compared to HPF. Presynaptic terminals appeared to shrink following 

aldehyde preparation, when compared to the HPF method (figure 3). They also observed a 

change in the vesicle localisation, with aldehyde fixation observing homogenous 

distributions rather than clustering in HPF (figure 3). It is not clear which method is more 

similar to live samples, however these results indicate that the preparation alters the 

synapse irreversibly. 

Because of these complications, it is unlikely that synapses will be equally affected by the 

current preparation methods. As a result, the size of the synaptic clefts will not stay in 

proportion to their original sizes and it is impossible to reliably examine synaptic cleft sizes. 

It is for this reason that a different method needs to be utilised to examine cleft size and 

functions. It would be advantageous to use other methods which allow live cells to be 

analysed. Fluorescence resonance energy transfer (FRET) microscopy is an indirect method 
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to measure the co-localisation between molecules which can achieve signals at extremely 

small resolutions (between 0.1-10nm) (Herman et al 2012). 

 

Figure 3: synapses of neurons in the Stratum radiatum. (A and B) treatment with aldehyde compared to (C and D) HPF 
treatment. A much denser area can be seen on the postsynaptic  membrane, the white star (B) of the aldehyde treated 
neurons compared to that of the HPF treated postsynaptic membrane, as seen in the arrows (C and D). Vesicles in the 
terminals of HPF treated appear to be clustered, white asterisk (C and D) compared to the even distribution of aldehyde 
treated vesicles, indicating a difference in response to the fixation treatment. A clear difference can also be observed in the 
synaptic cleft size, however it can be ascertained whether this is due to the treatment or due to natural variation. Used 
with permission from (Rostaing et al 2006). 

1.4 Study rationale and Hypothesis 

It is hypothesised that there will be a simple morphological change in the structure of the 

synapse following LTP, which will lead to the presynaptic and postsynaptic membranes 

becoming physically closer. Treating the neurons with forskolin will cause LTP to be induced 

which will cause an observable shrinkage of the synaptic cleft compared to untreated 

samples. Fixation of the tissue will then result in a reduced signal due to shrinkage pulling 
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the synaptic membranes apart. If the hypothesis is observed, this could add data to support 

that altering synaptic cleft size is in fact a utilised in vivo method of synaptic plasticity. 

1.5 Aims 

The aims of this investigation were as follows: 

 To develop a protocol for investigating the dynamic change of synaptic cleft in vitro. 

 To examine whether aldehyde fixation artificially causes enlargement of the synaptic 

cleft. 

 To examine whether the size of synaptic cleft changes after LTP induction. 
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2 Materials and Methods 

2.1 Animals and Experimental design 

Male BALB/c were used in this investigation, and collected from the Biomedical Services Unit 

(BMSU) at the University of Birmingham between P0-5. 5 animals were used per batch and 

then reduced to 4 once the procedure had been optimised. Once taken, mice were sacrificed 

by decapitation under the Home Office project licences of Professor Attila Sik and Dr 

Caroline Chadwick following the guidelines set by the UK Home Office Animals (Scientific 

Procedures) Act (ASPA) 1986. Before extraction the animals were kept in the BMSU in a 12 

hour light-dark cycle with access to food and water ad libitum. 

2.2 Solutions 

All solutions were sterilised either by autoclaving or passing the ingredients through a 

0.22μm pore (Millipore Ltd, Watford, UK). They are as follows: 

 40x solution: 10ml double distilled water (ddH2O), 10ml 20% w/v glucose (Gibco-Life 

Technologies, Paisley, UK), 20ml 100mM sodium pyruvate (Gibco-Life Technologies, 

Paisley, UK) and 10ml penicillin/streptomycin (P/S) (Gibco-Life Technologies, Paisley, 

UK). 

 Dissection solution: 27ml ddH2O, 300μl  1M HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulphonic acid) (Gibco-Life Technologies, Paisley, UK), 3ml Hank’s 

Balanced Salt Solution (HBSS) 6.67X (Gibco-Life Technologies, Paisley, UK) and 750μl 

40X solution. 
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 Growth media: 10ml Neurobasal media (Gibco-Life Technologies, Paisley, UK), 220μl 

B27 growth supplement (Gibco-Life Technologies, Paisley, UK), 50μl P/S and 25μl 

glutamax solution (Gibco-Life Technologies, Paisley, UK). 

 Trituration media: 19ml Neurobasal media, 130μl 30% (w/v) bovine serum albumen 

(BSA) (Sigma-Aldrich, Dorset, UK), 1ml 40X solution and 270μl 0.15M 

deoxyribonuclease (DNAse) I (Sigma-Aldrich, Dorset, UK). 

 BSA column media: 5ml trituration media, 200μl BSA and 150μl 0.1M sodium 

hydroxide (Sigma-Aldrich, Dorset, UK). 

 Papain solution: 4ml ddH2O, 750μl HBSS 6.67X, 125μl 40x solution, 50μl 50mg/ml L-

cysteine hydrochloride (Sigma-Aldrich, Dorset, UK) and 66μl DNAseI. When used, 

90μl of 12U/ml papain (Worthington Biochemical Corporation, Berkshire, UK) was 

added to 2ml of the solution. 

2.3 Cell extraction and growth 

2.3.1 Isolation of neocortical cells 

All tools were autoclaved prior to use. Dissected heads were stored on ice. The entire 

procedure was carried out within a class II laminar flow hood (Camlab Ltd, Cambridge, UK). 

The skin on the top of the head and the skull were dissected along the midline to expose the 

brain. The brain was then removed and stored in dissection solution on ice. Each brain was 

then dissected individually whilst viewing under a dissection microscope (Leica, London, UK). 

The cerebellum was removed using a sterile scalpel blade (World Precision Instruments, 

Hertfordshire, UK). Dura mater was removed. The ventral surface of the brain was exposed 
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and the brainstem was extracted. The remaining neocortex was resuspended in dissection 

media. Neocortices were finely minced using a sterile scalpel blade and separated into two 

falcon tubes (BD Biosciences, Oxford, UK) containing the papain solution. Solutions were 

incubated at 37oC with 5% CO2 in an incubator (RS biotech, West Lothian, UK). After 15 

minutes, solutions were centrifuged at 400 xg for 15 minutes at 21oC (Beckmann Coulter Ltd, 

High Wycombe, UK). The digestion solution was aspirated and replaced with 2mls of 

trituration solution. Both solutions were then homogenised by triturating through 3 glass 

pipettes with successively smaller tips (Fisher Scientific Ltd , Loughborough, UK). This 

mechanically disrupted the adhering of the cells so that a homogenous solution was made. 

The solutions were passed through a 70μm pore (BD Biosciences, Oxford, UK) before 

centrifugation at 400 xg for 5 minutes at 21oC. Trituration solution was aspirated from both 

solutions and the two solutions were homogenised in 1ml of growth media. 

2.3.2 Cell counting procedure 

30μl of the cell solution was removed and suspended with 30μl of trypan blue (Sigma-

Aldrich, Dorset, UK). The solution was triturated and 10μl of the solution was pipetted onto 

each side of a Burker Chamber (Assistent, Rhön, Germany). Counts were performed in the 4 

corner squares of the device and averaged to obtain a mean cell count, used to calculate the 

overall cell concentration. 

2.3.3 Poly-d-lysine pre-treatment 

Microfluidic devices (MFDs) (Xona Microfluidics LLC, Temecula, U.S.A) adhered onto MatTek 

glass bottom dishes (MatTek corporation, Bratislava, Slovak Republic) or coverslips (VWR 

international, Lutterworth, UK) suspended in 24 well plates (SPL life sciences, Korea) were 
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used for cell suspension. The MFDs or coverslips were coated in poly-d-lysine (PdL) (BD 

Biosciences, Oxford, UK) to aid neuron adhesion. Coverslips were used as a control for proof 

of principle and to determine the effects of culturing in the MFDs. 

Glass coverslips were washed in ddH2O three times, followed by washing three times in 70% 

ethanol (VWR international, Lutterworth, UK) and three times again in ddH2O. The coverslips 

were incubated in 10% nitric acid, overnight at room temperature. Coverslips were washed 

in ddH2O three times and either washed in 70% ethanol. The coverslips were allowed to air 

dry within the fume hood. Once dry, they were washed in 50mg/ml of PdL within a borate 

buffer pH8.5 (Sigma-Aldrich, Dorset, UK) and incubated at 37oC overnight, before being 

washed in ddH2O three times and allowed to air dry within the fume hood. 

MatTek devices were coated in 2ml of the aforementioned PdL solution and incubated at 

37oC overnight. Devices were washed three times in ddH2O and three times in ethanol 

before air drying before use. 

2.3.4 Microfluidic devices 

MFDs were used to separate the neurons into 2 subpopulations which can extend axons 

between each other. The MFDs are made using poly(dimethylsiloxane), a non-toxic and 

transparent polymer. Previous studies have shown the devices to be suitable for neuron 

growth as well as confocal microscopy, making them suitable for high resolution live imaging 

(Park et al 2006, Millet et al 2007, Taylor et al 2005, Taylor and Jeon 2011). 
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Figure 4: (A) A disproportionate representation of the MFDs. Solutions were pipetted into the circular wells where they 
could freely enter the connecting channels and the cells could adhere. The microgrooves between the channels allowed the 
growth of axons but prevented the passage of cell somas. (B) An image of a MFD with media assembled onto the MatTek 
glass bottom dish. (C and D) Fluorescence microscopy image showing two neuron populations stained with different dyes 
and separated by the MFD chambers. (C) Axons can be seen extending between the two subpopulations of neurons. Arrows 
show somas which can be seen to be too large to pass through the channels. (D) Image of two differently stained axons 
dispersing after entering the adjacent channel and appearing to synapse to neurons. Arrows show what appears to be 
boutons on the structures. Scale bars represent, 100 μm for C and D. Images (C) and (D) were adjusted to accent staining 
using ImageJ (National Department of Health, Maryland, USA). 

4 wells are present on the devices. 2 pairs of 2 wells are separated by microgrooves (figure 

4A and B). These grooves then connect to larger channels which pass between the two wells 

(figure 4A and C). Larger channels allow neurons to enter and seed within. Microgrooves 

only allow minute structures to enter, preventing entry of neuron somas, however axons are 

able to extend freely through the grooves (figure 4C) (Park et al 2006). 
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2.3.5 Neuron culturing 

Cells were seeded at 16x106cells/ml following previous unpublished work from this lab 

showing efficient growth and maintenance of BALB/c mice neocortex neurons. 15μl of cell 

solution was used per well pair in the MFDs and 30μl for the coverslips. The suspended cells 

were incubated at 37oC, 5%CO2 for 45 minutes to promote cell adhesion before addition of 

growth media. Small MFDs received 100μl, large MFDs received 130μl and coverslips 

received 1ml of growth media. Excluding during the staining procedure (days 1-4), the cells 

were fed every 2-3 days by aspirating half the overall media per well and replacing with 

equal volumes of fresh growth media. 

2.3.6 Cell staining 

Neurons were labelled with the lipophilic dyes, DiO or/and DiI. The dyes were previously 

dissolved in dimethyl sulphoxide at a concentration of 40mg/ml and 2mg/ml respectively. 

Dyes were diluted to 10μM in growth media for use. Neurons were stained such that one 

subpopulation was stained with the DiI dye and one subpopulation was stained with the DiO 

dye (figure 5A). To optimise the staining procedure, neurons were stained at different time 

points after seeding and the time period of the DiO incubation was varied. An overview is 

presented below. 
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A) 

 

Figure 5: (A) A disproportionate 
representation of the MFD set up, 
indicating the separate dyes. Dyes were 
separated into the neuron 
subpopulations by the microgrooves as 
represented by the different colours. (B) 
Hydrostatic pressures prevented the dye 
from crossing over. Note the reduced 
level of media in the well containing the 
growth media supplemented with dye. 

B) 

 

Growth media was aspirated from one of the subpopulations of cells. One well from that 

subpopulation was then refilled with the dye solution. The dye solution could freely flow to 

the empty well, passing through the channel and displacing the growth media. The volume 

of dye solution was half the volume of growth media in the neighbouring neuron 

subpopulation (figure 5B). Hydrostatic pressures prevented the dye from passing between 

the two subpopulations (Taylor et al 2005). After a predetermined period of time, the dye 

solution was aspirated and replaced with the original volume of growth media. The 

procedure was then repeated for the neighbouring subpopulation of neurons with the other 

dye. 
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2.3.7 Arabinofuranosyl cytidine (Ara-C) treatment 

To prevent the upregulation of glial and stem cell populations, Arabinofuranosyl cytidine 

(Ara-C) (Sigma-Aldrich, Dorset, UK) was added on D2 and removed on D4/5 after suspension. 

This is because previous studies in this lab have shown that excessive upregulation of non-

neuronal cells can block the extension of axons between the neuron populations or 

outcompete the neurons. 5μM Ara-C was added within the DiO solution or within the 

growth media. Ara-C is a DNA synthesis inhibitor, which is believed to incorporate onto the 

primers of DNA strands and prevent the binding of DNA polymerase, stalling the 

upregulation of cells. The cells are still left viable so axonal growth is unaffected (Major et al 

1982). 

2.4 Cell imaging 

Cells were imaged between D7-14 to allow sufficient growth of the axons. Previous studies 

have shown that central nervous system neurons are likely to become unviable if left for 

longer (Taylor et al 2005). Fluorescence imaging was used to examine axonal growth through 

the microgrooves as well as to examine the efficacy of the dyes. This was performed using a 

BX61 automated upright microscope (Olympus, Southend-on-sea, UK). 

2.4.1 Principles of FRET microscopy 

FRET microscopy is able to examine nanometre interactions between proteins (Herman et al 

2012). Two fluorophores are required for this technique, a specific donor and acceptor. The 

donor fluorophore, when excited, loses its excitation through two methods. Firstly, emission 

is observed through conventional fluorescence emission. Alternatively, if the acceptor 

fluorophore is sufficiently close, signal can be passed between the dyes by long range dipole-
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dipole interactions (Padilla-Parra and Tramier 2012, Herman et al 2012). The acceptor 

fluorophore becomes excited and emits fluorescence. Following this theory, the amount of 

emission observed from the acceptor is inversely proportional to the distance between the 

two fluorophores. FRET is dependent on the sixth power of the separation distance, and thus 

is very sensitive to small changes (Sekar and Periasamy 2003). This means that a minute 

dynamic change in the synaptic cleft size will result in an observable change in the intensity 

of the FRET signal.  

 

Figure 6: Graph showing the efficiency of energy 
transfer between FRET probes. The closer the 
probes are, the more efficient the transfer of 
energy, resulting in increased fluorescence by the 
acceptor probe. Beyond 10nm, the signal becomes 
negligible (taken with permission from (Herman et 
al 2012)) 

For this investigation, the FRET pair dyes DiI and DiO were used. This is because the dyes are 

lipophilic so will localise to the membrane of the cells (ABD Bioquest Inc 2008, Sengupta et al 

2007) and are non-toxic (Honig and Hume 1986). The dyes also fluoresce significantly more 

when in a lipid environment, so there should be a reduction in background staining. The DiO 

dye is excited by a laser of 484nm. DiO is then able to transfer its energy to the DiI dye up to 

a distance of around 10nm (figure 6), allowing a signal to be observed in the DiI channel. The 

wavelengths of the lasers were chosen to allow a spectral overlap that is required for the 

long range dipole-dipole interaction to occur, but reduce the amount of co-excitation, to 

prevent excessive background signal. 
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2.4.2 FRET microscopy procedure 

Labelled coverslips and MFDs with clear axonal processes extending between the neuron 

subpopulations, as shown through fluorescence microscopy (figure 4C), were taken for FRET 

analysis using Nikon A1R confocal microscope and software (Nikon, Surrey, UK). Samples 

were originally used to develop an efficient calibration procedure which could be used to 

image the cells and limit the amount of spectral bleed through signal. 

Once the procedure had been finalised, cultured neurons were imaged at three time points. 

The media was then aspirated and replaced with growth media containing 50μM forskolin 

(abcam, Cambridge, UK) to induce LTP. Previous investigations have only incubated with 

forskolin for around 20 minutes and then examined after one hour, however these 

investigations use a run through system, so there is a consistent source of forskolin for this 

time (Otmakhov et al 2004, Gobert et al 2008). Because it was not possible to replicate this 

within the incubating chamber of the confocal microscope and the forskolin will take time to 

diffuse within the channels, neurons were incubated with forskolin for 40 minutes. After this 

time, the forskolin was removed and replaced with growth media. One hour after forskolin 

addition, allowing for LTP induction (Gobert et al 2008, Otmakhov et al 2004, Fortin et al 

2010), images were taken. Neurons were then fixed in 4% formaldehyde for 30 minutes for a 

negative control. The formaldehyde was then aspirated and replaced with growth media for 

imaging. 

Images were taken at multiple depths, 200μm apart, for each time point and examined 

qualitatively to ensure that images at around the same depth were used for comparisons. A 

maximum of 6 images were taken at each time point to minimise the risk of photobleaching. 
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2.5 Analysis 

Surface plots were generated of the high FRET signal to identify sites of synapses using the 

Image-Pro analyzer 3D software (Media cybernetics, Maryland, U.S.A.). Red and green 

channels were examined to identify high (>75%) and medium (25-75%) FRET signals. Graphs 

showing the strength of FRET signal were generated with the data from the Nikon A1R 

software, using Sigmaplot (Systat Software Inc, London, UK). To avoid, bias, areas of FRET 

measurements were examined on all depths and the depth with the greatest signal was 

analysed. Due to limitations and sample loss, insufficient data was acquired to perform a 

statistical analysis. 
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3 Results 

3.1 DiO staining protocols 

Fluorescent images of the stained neurons showed a striking difference between DiI and DiO 

staining characteristics despite both being lipophilic dyes (figure 7). It was observed that DiI 

staining was very prominent and axons were easily visible, however DiO staining only 

showed intracellular vesicles. To overcome this, DiO staining was trialled for different time 

periods. DiI co-staining was trialled alongside to act as a control for the DiO stains. It was 

observed that increasing the staining duration led to an increase in the intensity of staining 

within axons. This was apparent as early as 1 day (figure 7A and C), however a three day 

staining period showed extensive axon staining that was still clear over the background 

stains (figure 7E). As a three day treatment appeared to make the axons of DiO labelled 

axons as apparent as DiI labelled axons, it was decided that a three day staining procedure 

will be used for the remaining experiments. 

The three day treatment was further analysed to examine the visibility of the axons in the 

MFDs. In 30 minute samples, DiO stained axons were not seen passing through the 

microgrooves (data not shown). In the 3 day treated sample, weak DiO positive stains could 

be observed passing into the DiI labelled subpopulations’ channel (figure 8). 
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Figure 7: Representative images showing the varied duration of DiO stains. DiI staining (B, D and F) can be observed to be 
fairly consistent, whereas DiO staining (A, C, E) appears to become more defined over longer treatment periods, with axons 
becoming clearer. Scale bars represent 50μm. Arrows show axonal staining. 
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Figure 8: Arrows show green axons extending from the DiO subpopulation through microgrooves to the DiI stained side of 
the MFDs. Images were adjusted using Image-Pro analyzer 3D software to remove background. 

3.2 Imaging protocol and configurations 

Multiple configurations were trialled on the A1R software to develop the optimum 

conditions for FRET analysis. Earlier trials had a number of issues with observing the stains as 

well receiving an appropriate FRET signal. Details of the settings can be seen in table 1.  

 Wavelength 

 488 561 

Configuration Gain Power Gain Power 

1 75 100 57 100 

2 100 3 92 100 

3 100 10 84 100 

Table 1: Details of the laser gains and powers used in the optimisation of FRET images.  

It was observed that the low gain used for configuration 1 meant that DiI staining was 

difficult to observe. Two alternatives were trialled which both showed clear DiI staining 

however the latter configuration was chosen because a clearer signal was observed when 

viewed in the FRET channel (data not shown). 
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Extensive trails were performed to determine an appropriate setting for the FRET method 

analysis on the Nikon A1R software. A method was eventually determined which was able to 

induce a strong FRET signal in positive controls yet not cause any signal to be observed in 

negative control images (figure 9). 

   
Figure 9: FRET signal intensity images of control MFD seeded neurons. (A) + control with both stains, although not 
extensive, signal was observed. Negative stains were also taken with (C) DiI only and (D) DiO only to show FRET signals were 
not generated by incorrect procedures. FRET scales on the images indicate the intensity of FRET signal recorded. 

It should be noted that in subsequent data, it was observed that DiO stained axons were still 

difficult to observe within the DiI stained subpopulation when viewed under the confocal 

microscope. To overcome this issue, synapses were only examined between DiI stained 

axons in the DiO stained subpopulation. 

3.3 Detection of FRET signals 

Surface plot analysis showed that by using the optimum configuration, there was no high 

intensity FRET signal recorded in any images (figures 10A). This is shown by a lack of any 

peaks on the red light surface plot, which represents around 70-100% FRET signal strength. 

Medium FRET signal was observed in a number of images, as shown by green peaks which 

represent 25-75% FRET signal. 
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Figure 10: An example of a surface plot focussing on the red channel. Blue channel was subtracted from the red channel to 
remove any areas of pink signal, which represented a 0% FRET signal intensity. This resulted in some areas dropping below 
the lowest recorded red signal and may have hidden some weak red signals (around the 75% FRET signal area). This can be 
seen from enlarged section. Signal in the top corner is from the scale bar being incorporated into the image. 

3.4 The effects of fixation on FRET signals 

The effects of fixation treatment alone were examined (figure 11). Areas of FRET signal 

intensity were identified by examining surface plot diagrams. Medium FRET signal was 

observed at two sites on the pre-treated image (figure 11A). A reduction in the actual 

maximum FRET signal percentage of around 7% was observed (figure 11C). 

3.5 FRET microscopy analysis of neurons with LTP induction 

Subsequent analysis was focussed on examining the effects of forskolin followed by fixation 

on the FRET signal. Unfortunately, there were extensive issues with infections and MFD 

adherence leading to sample loss. Results were only obtained from one treatment group 

unless stated, giving a count of 1 for the data. Statistical analysis could not be performed 

because of the low sample size so the results need to be viewed with caution. 
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Figure 11: Analysis of the sample which was only fixed. (A) surface plot of the signal intensity of the pre-treated image. Two 
small sites of signal were observed. (B) Site of medium FRET signal intensity in the pre-treated sample. The arrow correlates 
with the region which was analysed quantitatively to create graphs. Scale bar represents 5μm. FRET scales on the images 
indicate the intensity of FRET signal recorded. (C) Graph showing the changing FRET signal intensity corresponding to the 
arrow. 

Qualitatively, it is clear that the FRET signal reduces with treatment as the images lose 

blue/green signal for pink signal (figure 12). Medium signal was observed in surface plots 

(data not shown), corresponding with blue/green stains on the FRET signal intensity images 

(figures 12A,D,G,J). 
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Before treatment After forskolin treatment After fixing 

   

   

   

   
Figure 12: FRET signal intensity images at the site of signal for obtained samples at the three treatment stages. (A-I) show 3 
synapses from sample 1, (A-C) synapse 1, (D-F) synapse 2, (G-I) synapse 3. (J-L) shows the synapse from sample 2. Arrows 
show the area measured for quantitative analysis. Scale bars represent 5μm. FRET scales on the images indicate the FRET 
signal recorded. 
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This was observed with all samples. Despite a clear reduction in signal intensity, it is difficult 

to be confident that analysis was taken at the same synapse as the staining appeared to 

adjust over time (figure 12).The intensity of FRET signals at the different treatments stages 

has been summarised in table 2. It could be observed that the highest signals were seen in 

untreated synapses. After the addition of forskolin, a huge drop in FRET signal intensity was 

observed, which in some examples led to a complete loss of signal. The mean signal intensity 

suggests that results after forskolin treatment are arguably negligibly small, with a maximum 

signal of 13%. After fixation the results do not appear to change by any identifiable amount. 

Synapse analysed 
(sample-synapse number) 

Pre-treatment maximum 
FRET signal (%) 

Post-forskolin treatment 
maximum FRET signal (%) 

Post-fixation maximum 
FRET signal (%) 

1-1 43.9 13.0 3.1 

1-2 27.6 0 0 

1-3 55.7 0 0 

2-1 25.8 5.8 9.8 

Mean 38.3 4.7 3.2 

Table 2: FRET intensity signals recorded at the synapses of samples. Signals were recorded at sites before treatment, after 
forskolin treatment and after fixing with formaldehyde. FRET signals reduced after forskolin treatment in all groups, 
whereas variable results were seen after fixing of the cells. 

Percentage changes in the raw FRET signal percentage were calculated to try and overcome 

the differences brought in by the different size synapses prior to any LTP induction or fixing. 

There is a consistent observation that FRET signals decreased substantially from any 

treatment, unless all FRET signal has been previously extinguished (table 3). 

Interestingly, there was an area which managed to gain a strong signal after fixation where 

signal had not previously been observed (figure 13A) as indicated by the clear peak in the 

surface plot as well as being clear qualitatively (figure 13A and B). Whereas FRET intensity 
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signal was at 0 at this point before and during the treatment periods, after fixation, the 

signal increased to over 50% (figure 13C). 

Synapse analysed (sample-synapse 
number) 

Actual change in the maximum % 
FRET signal between pre and post-
forskolin treatments [percentage 
change in percentage signals] 

Actual change in the maximum % 
FRET signal between post-forskolin 
treatments and post-fixation 
[percentage change in percentage 
signals] 

1-1 -30.9 [-70.4] -9.9 [-76.4] 

1-2 -27.6 [-100] 0 [0] 

1-3 -55.7 [-100] 0 [0] 

2-1 -20 [-77.5] 4.0 [68.1] 

Mean -33.6 [-87.0] -1.5 [-2.1] 

Table 3: Changes in FRET intensities were examined between the different treatment stages. Actual reductions in the raw 
FRET signal percentage, as produced by the A1R graphs, as well as a percentage change in the raw FRET signal percentages 
are presented. 

To further analyse the effects of forskolin, images were taken before and after sham 

treatment in one sample (figure 14). Qualitatively, it can be observed that there was a 

reduction in the signal, which could also be observed from qualitative analysis of the surface 

plot data. The data showed a drop of about 20% in the raw FRET signal intensity, although 

this cannot be shown statistically (figure 14D). It could be argued that the reduction in signal 

intensity is reduced in sham treatment, only a 46.8% drop compared to the average 87% 

reduction seen in forskolin treated groups. Only one observation was made for the sham 

group so this statement must be viewed with some scepticism. 
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Figure 13: Evidence of an extra FRET signal appearing after fixation in one sample. (A) A medium FRET signal surface plot. 
The area highlighted by the red circle shows a peak which was not observed in the untreated and forskolin treated images. 
(B) The FRET intensity signal can be observed when focussed on qualitatively as well as (C) quantitatively along the arrow in 
(B). The data shows a very strong signal reaching over 50% FRET signal intensity. (B) FRET scales on the images indicate the 
FRET signal recorded. 
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Figure 14: Data showing the effects of sham treatment on FRET signals produced by neuron samples in MFD cultures. FRET 
signals can be observed of the pre-treated (A) and post-sham treated (B) at the same synapse. Scale bars represent 5μm. 
FRET scales on the images indicate the FRET signal recorded. A clear reduction in the signal can be seen which is backed up 
by a drop in the intensity and frequency of peaks on a medium FRET signal (green channel) surface plot of the pre-treatment 
(C) and sham treated (D) samples. Quantitative analysis of the data from the FRET image, taken at the position of the arrows 
(A and B) show that a clear reduction in signal is observed after sham treatment. 
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4 Discussion 

4.1 Synapses can exhibit variable FRET signal with DiI/DiO staining 

Due to a number of limitations, results collected in this study are inconclusive for addressing 

the hypothesis. The low sample size also means that it is difficult to feel too confident with 

any results obtained. From the results it is possible to show that FRET signal can be created 

at the synapses between DiI and DiO stained neurons. This gives a strong indication that the 

synapses can be smaller than 10nm, opposing electron microscopy data stating synapses 

suggesting synapses tend to be within 15-25nm range (Savtchenko and Rusakov 2007). It 

was also possible to observe a decrease in the FRET signal after fixation, agreeing with 

previous reports (Hayat 1989, Leunissen and Yi 2009, Rostaing et al 2006). It is unlikely that 

fixation will induce proportional changes in the synaptic cleft size, thus invalidating the data 

on synaptic cleft sizes from these previous investigations. 

One interesting explanation is that there was a decrease in the FRET signal after LTP 

induction with forskolin, which is debatably larger than the change induced in sham 

treatments. This was unexpected as it was hypothesised that by inducing LTP, the synaptic 

cleft will shrink, aiding neurotransmitter delivery and transmission (Gobert et al 2008, Wahl 

et al 1996). This result may simply be due to loss of fluorescence due to photobleaching, 

however it could be a sign that sufficiently small synaptic clefts actually increase in size upon 

LTP induction. Savtchenko et al (2007) argued that decreasing the cleft size below 12nm 

increases the electrical resistance, causing a decrease in the excitability of the synapse. The 

loss of signal could be a sign that the synapses are enlarging to overcome this electrical 
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resistance. Despite this idea, the limitations in this investigation meant that the data does 

not agree, nor disagree with this hypothesis and further work is required to back up these 

results. 

It is not surprising that there was no sign of high FRET signal in any of the samples. This is 

because for a high FRET signal, the distance between the probes needs to be less than 4nm, 

for which there is no data to suggest that this can occur. It is difficult to explain why one 

sample showed an increase in FRET signal at a lone site after fixation. It could be evidence 

suggesting that some neurons can be brought closer by fixation, however due to the are of 

the signal, the more likely explanation is that a contaminant was able to enter during the 

treatment phases. 

4.2 Limitations and future implications 

There were a number of limitations encountered when performing this investigation. 

Adjustments of the growth, staining and imaging protocols as well as infections, meant that 

a low number of results were collected.  

One of the largest limitations we encountered was with the MFDs. It was observed that after 

repeated use of the MFDs, a crystal/salt deposition built up which led to a decrease in the 

ability of the MFDs to adhere as well physically blocking the microgroove so that axons could 

not extend through. After correspondence with Xona tech support (Xona Microfluidics LLC, 

Temecula, U.S.A), a number of possible methods to counteract these problems were 

postulated. These obstructions could be overcome by treating with boiling water, to help the 

deposits become soluble or by sonication. It has also been reported that hydrochloric acid 
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can clean the devices however this will likely cause further damage to the devices. The 

hydrochloric acid could possibly be absorbed into the compound and result in damage to the 

neurons or alter their behaviour (Toepke and Beebe 2006). The easiest option would be to 

only use the devices once, however due to time constraints and the expense of the MFDs, 

this was not an option in the present study. 

It was observed that extensive cell death occurred in some samples after MFD seeding. This 

is most likely to be caused by the crystal/salt deposition, or from abrasion due to 

detachment of the MFDs, however it is possible that the growth conditions were not 

optimum. It has been recorded that hypoxic conditions, around 9% O2, are more suited for 

neuron survival, as this more closely mimics the conditions found in vivo (Brewer and 

Cotman 1989). Addition of neurotrophic factors may also help to improve the survival rate, 

however there was only a subset of cells where cell loss was observed, and only after the 

salt/crystal debris became visible, suggesting that cell death is not a major limitation. 

Although there has been extensive work with forskolin, all the data has been collected from 

samples that are purely from the rat hippocampus (Gobert et al 2008, Fortin et al 2010, 

Otmakhov et al 2004). It is possible forskolin has no observable effects on the mouse 

neocortex, or that the cAMP upregulation caused by forskolin may have additional effects in 

mice neocortical cells which have not been documented, resulting in the observed loss of 

FRET signal. It would be more likely however that photobleaching has occurred, causing the 

decrease in signal. 

Photobleaching was a significant problem with the data analysis. The results showed a 

considerable decrease in FRET signal even after sham treatment indicating that signal must 



 

37 
 

be lost. We tried to account for this by limiting the number of images taken per treatment, 

thus having larger depth between photos. This increased the chances of taking images at 

slightly different depths which considering the size of synapses, could have serious 

implications on the results. Photobleaching is known to be a major issue for FRET studies, 

especially those involving time lapse images, and thus the, ‘donor-recovery after acceptor 

photobleaching technique has been developed. However, this technique is not suitable for 

live cell imaging (Zal and Gascoigne 2004). Zal et al claim to have developed a technique, 

deemed E-FRET, which can take the photobleaching into account based on a series of 

calculations modelling changes over time. They have shown results which back up their claim 

and theoretically, it could be easy to adjust settings on the previous system to account for 

the technique, however this would be fully dependent on the facilities available. 

Additionally, there is the limitation that this method increases noise signal and thus could 

cause false positive results. Overall, the technique could be beneficial and may be vital to 

allow for progression in this investigation. 

Another approach would be to perform multiple sham tests alongside LTP investigations. 

Provided that some signal is maintained, errors caused by photobleaching at different stages 

could be identified and corrected for. Considering we observed total or near total loss of 

signal in most samples, this approach is likely to be very limited. Additionally, as original 

synaptic cleft size and other factors will be involved, it is unlikely that this method will be 

accurate. 

Changing the dyes or keeping the cells in hypoxic conditions could help prevent 

photobleaching. It is not obvious which dyes could be used due to the requirement to enter 
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the membrane and also be able to able to work as a FRET pair. One such option would be to 

genetically incorporate the FRET pairs, CFP and YFP onto proteins found in the synaptic cleft 

such as ion channels, receptors or transmembrane scaffolds (Shimozono and Miyawaki 

2008). This method could help to remove some of the difficulties associated with retrograde 

transport of markers. For this to be an option there cannot be any interaction between the 

chosen markers outside of the synaptic cleft, limiting the possible candidate markers. 

Previous studies have shown that oxygen accelerates photobleaching (Bernas et al 2004). 

Neurons have also been shown to grow preferentially in hypoxic conditions, as this more 

closely mimics endogenous conditions, so complications are unlikely to occur (Brewer and 

Cotman 1989). It is unlikely that this method could be implemented though as it would be 

very expensive. 

A major limitation is that FRET microscopy is an extremely sensitive approach. It is possible 

that most synapses will be larger than 10nm, and thus signal will not be observed. If 

however, evidence testing the hypothesis is obtained, the model also needs to be tested to 

prove that LTP induction has actually occurred. It theoretically would be possible to take 

electrophysiological recordings to examine the fEPSP of the cells (Dichter 1978), however 

gaining entry to the channels of the MFDs where the examined synapses and neurons reside, 

would be difficult. Other methods could be to use voltage dependent or calcium dependent 

dyes. Voltage dependent dyes would clearly indicate a change in the population fEPSP and 

have been shown to be able to stably examine voltages for up to 8 hours (An et al 2012) 

(Momose-Sato et al 1999). This could be utilised to examine the level of fluorescence as an 

indirect measure of the fEPSP whilst measuring the FRET signal. Calcium sensitive dyes will 
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also be relevant due to the role that calcium has in the onset and maintenance of LTP 

through calcium dependent kinases (Wong et al 1999, Chen et al 2001). 

To take this investigation further, studies need to be performed on specific neuron types. It 

is well documented that different neuronal subclasses use different mechanisms to perform 

LTP (Bashir 2001). Additionally it would be interesting to examine whether this form of LTP 

can be observed to change during the natural ageing process, which could link the data to a 

number of aging or neurodegenerative diseases (Yasuda et al 2002). Once an effective 

procedure has been developed to measure the synaptic cleft size, it would be useful to 

examine what proteins are involved in the process. This could be done by using microarray 

data of cells which are shown to be going through LTP. Proteins with altered expression 

could then be inhibited or knockout models could be used to examine which proteins are 

involved in the process. 
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5 Conclusions 

In conclusion, we have demonstrated that FRET microscopy is a valid technique for 

examining synaptic cleft size, although further optimisation is required. The data suggests 

that treatment with aldehyde causes the synaptic cleft to enlarge, however a similar 

observation was observed after forskolin induced-LTP. Whether this is due to a physiologic 

function or due to photobleaching has yet to be determined. Further work is required to 

prove these results as a low sample size may have altered results. 
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