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SUMMARY 

This is a combined thesis submitted for MRes in Molecular and Cellular Biology.  

The first project is based on investigating the role of ligand flexibility in the binding of 

myristate to I-FABP. Myristate and palmitate bind the protein I-FABP with affinities orders 

of magnitude higher than similar sized less flexible ligands. This seems to contradict the 

medicinal chemistry textbooks where making a ligand less flexible is an accepted method for 

increasing binding affinity. Here computer simulations were used to investigate myristate 

flexibility and its free energy of binding to I-FABP, to see what role flexibility has in the 

recognition of myristate by I-FABP. 

The second project is based on studying the effect of the bacterial NDK proteins on 

haemapoietic stem cells. Leukaemia patients lack immunity; thus bacterial infections worsen 

leukaemia prognosis. It might be that bacterial invasion can affect leukaemia cells, by 

rendering the latter more aggressive, or even by stimulating cell proliferation. Bacterial and 

eukaryotic NDK proteins are highly conserved indicating that they may also be functionally 

similar. Previously it was shown that additional rNM23-H1 (human NDK protein) indirectly 

promotes leukaemia and healthy stem cell survival and proliferation. Here it was investigated 

if bacterial NDK proteins can show a similar effect. 
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Project 1: 

INVESTIGATING THE ROLE OF LIGAND FLEXIBILITY IN THE 

BINDING OF MYRISTATE TO I-FABP 



 

 

ABSTRACT 

 Myristate and palmitate bind the protein I-FABP with affinities orders of magnitude 

higher than similarly sized less flexible ligands. This seems to contradict the medicinal 

chemistry textbooks where making a ligand less flexible is an accepted method for increasing 

binding affinity. Here computer simulations were used to investigate myristate flexibility and 

its free energy of binding to I-FABP, to see what role flexibility has in the recognition of 

myristate by I-FABP. 

The difference in the binding free energy between palmitate and myristate on binding 

to I-FABP was calculated using thermodynamic integration. The calculated value of -8.8 

kJ/mol differs from the experimental value of approximately -1.5 kJ/mol. It is unclear whether 

this discrepancy represents a deficiency in the force field; too short a simulation time or 

indeed a problem with the experiment. However, the rough qualitative agreement suggests 

that it is still appropriate to use the system as a model to investigate whether flexibility is 

indeed detrimental for the binding of a myristate-type molecule to I-FABP. 

Further simulations show that, for most of the dihedral angles of myristate, there is a 

minimal change between the I-FABP bound and solution forms. However, there is a high 

increase in rigidity and changes in conformational preference, in the head group of myristate. 

An increase of the flexibility at 6
th

 dihedral is also seen. These results will form the basis for 

investigating the effect of conformationally restricting myristate on its binding to I-FABP in 

silico. 
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1 INTRODUCTION 

The text book view of ligand-protein interactions is that rigid ligands lose less entropy 

whilst binding to a protein than flexible ligands do. Since the loss of entropy is related to the 

strength of the binding, then rigid ligands that lose less entropy are expected to bind to 

proteins in a stronger way than flexible ligands all else being equal (Murray and Verdonk, 

2002, Chang et al., 2007, Searle and Williams, 1992, Mann, 2008). Thus, more flexible ligand 

should have a weaker affinity for the target protein. Nevertheless, flexible fatty acids (FA) 

showed a strong affinity for fatty acid binding proteins (FABPs). It has been reported that 

myristate and palmitate binding constants (Ki) to intestinal-FABP (I-FABP) are 0.041 and 

0.024 µM, but the Ki of more rigid ligands, e.g. nitrazepam and bezafibrate are 2000 and 33 

µM (Velkov et al., 2007). A smaller value of Ki indicates stronger ligand-protein interaction, 

thus, the binding strength to I-FABP can be ranked as: nitrazepam < bezafibrate < myristate < 

palmitate.  

 Based on the common dogma a suitable strategy for drug development is a restriction 

of conformational flexibility (Mann, 2008). Thus, the strong binding of flexible FA to FABPs 

is perplexing and suggests that both the common dogma and the binding of palmitate and 

myristate to FABPs are worthy of further consideration. 
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1.1 FLEXIBILITY AND ENTROPY 

1.1.1 Flexibility 

Molecule flexibility is defined by a molecule‟s ability to adopt a number of different 

shapes or conformations. High molecular movements over time describe very flexible 

molecules, while molecules restricted in intra-molecular movements are rigid. Molecular 

motions can be distinguished into translational, rotational and vibrational motions (Bender, 

2003).  

Translational movement of molecules occurs as a whole molecule movement which 

results in a change of position, in a space (Figure 1.1 (a)). Thus, translational molecular 

movements do not contribute to molecule flexibility. Nevertheless, restriction of translational 

motion does cause a loss of entropy (Murray and Verdonk, 2002). 

Molecular rotation is the rotation of the whole molecule around the principal axis of the 

molecule (Figure 1.1 (b)). It does not have any contribution to the molecular flexibility 

whereas intra-molecular motions cause the biggest conformational change. Intra molecular 

rotations in an atom occur when four or more atoms are joined to each other linearly in the 

molecule, e.g. A-B-C-D, the B-C bond forms an axis of rotation, and there is a circular 

movement of atom D and A bond B-C (Figure 1.1 (c)). Thus, the bond B-C is referred to as a 

rotational bond. 

Intra-molecular rotations in a molecule occur freely if the rotatable bond is single. 

When atom B and C are joined by a double bond movement of atom D is limited. If any 

external force induces movement of atom D, the double bond between atom B and C breaks 

(Housecroft and Constable, 2006). An increase in the number of rotatable bonds in a molecule 

increases the overall motions available to that molecule, i.e. - it becomes more flexible. 
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Vibrational motions consist of bond stretching, angle bending, rocking and libration 

(Figure 1.1 (d)). Vibrational movements occur as small movements of the atoms in the 

molecule, they thus have a small contribution to a molecule‟s conformational change and 

flexibility. Bond stretching is based on atomic vibration, which causes a change of the bond 

length during the interaction between two joined atoms. Vibrational motions of a bond occur 

at low amplitude since larger atomic motions cause the bond to break. Larger motions are 

observed for angle bending. When a molecule consists of three atoms, which are joined to 

each other, e.g. A-B-C, the angle bending occurs as the A and C atoms move toward and 

away from each other (Leach, 2001). Rocking, which is also called asymmetric stretching, is 

when at the same time atom A moves from atom B atom C moves towards atom B and vice 

versa (Housecroft and Constable, 2006). Librations occur as motions in atoms A and C, where 

they oscillate slightly backwards and forwards around the x, y or z axes. 

  



MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 14 of 190 

 

(a) 

Translational motions 

 
(b) (c) 

Rotational motions Intra-molecular rotations 

 
 

(d) 

Vibrational motion 

 
 

Figure 1.1 Molecular motions (a) Translational motion, where molecule A-B-C-D move 

from one place in a space to another one (b) Rotational motion around the principal axis of the 

molecule (c) intra-molecular rotations: rotation of atom D around the axis formed by the bond 

B-C (d) Vibrational motions: bond stretching, angle bending, rocking and librating. 

(reproduced from Leach, 1996, Chaplin, 2010) 
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1.1.2 Entropy and flexibility 

Changes in dihedral angles, via rotation of atoms around single bonds, allow structural 

changes in a molecule. Moreover, high structural changes of molecules are characterized by 

their flexibility. Therefore, the number of rotatable bonds in a molecule contribute to the 

entropy change in different processes such as molecular association in solutions and fusion 

(Searle and Williams, 1992) as well as ligand-protein interactions (Searle and Williams, 1992, 

Murray and Verdonk, 2002, Chang et al., 2007).  

During fusion of n-alkanes, n-alkyl carboxylic acids and n-alkyl methyl ketones an 

increase in the number of rotatable bonds increases the fusion entropy of these poly-organic 

compounds. For instance, data for odd n-alkanes fit with the equation ΔS = 15.5 +1.6n (where 

n is the number of rotatable bonds) whereas even n-alkanes fit with the equation ΔS = 10.2 

+3.5n (Searle and Williams, 1992). Therefore, the gain in flexibility contributes to the gain in 

entropy during fusion of poly-organic compounds. Thus, flexible ligands have more entropy 

to lose while binding to a protein. 

1.1.1.1 Ligand flexibility and entropy 

Pharmaceutical drugs act as ligands. They bind to a protein and inhibit or activate cell 

signaling pathways with the aim to cure, treat or prevent a disease. A pharmaceutical drug 

with a low binding affinity to a target protein may be replaced by a competing ligand (Nelson 

and Cox, 2000). Thus, strong protein and ligand binding is relevant in drug design. Therefore, 

drug discovery studies are based on increasing the ligand binding affinity. Ligand binding 

affinity can be improved by making the enthalpy change more negative, the entropy change 

more positive or by a combination of both (Velazquez-Campoy 2001).  

Our project is to investigate why flexible FAs bind strongly to I-FABP. A molecule‟s 

flexibility is based on its ability to adopt a number of conformations. Thus, we are interested 
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in the relation between the conformational entropy change and ligand flexibility. The entropy 

change is based on the changes in solvation entropy and conformational entropy. Thus, an 

increase in the entropy of binding can be provided by an increase in the ligand hydrophobicity 

as well by altering ligand geometry with the aim to minimize the loss of conformational 

entropy upon binding (Velazquez-Campoy 2001). 

Chang et al (2007) studied the relation between the entropy change (-T∆S) and ligand 

flexibility in amprenavir binding to Human immunodeficiency virus (HIV) protease. 

Amprenavir is a flexible ligand and whilst binding to a HIV protease it loses configurational 

entropy (-T∆Sconfig = 26.4 kcal/mol). This loss of entropy is based on the loss of vibrational 

entropy (-T∆Svib = 24.6 kcal/mol) while the loss of conformational entropy (-T∆Sconf) is only 

1.8 kcal/mol. Vibrational entropy includes the entropy associated with rotation and translation 

in space and the motions associated with torsional degrees of freedom, which provides almost 

as much entropy change as the rotation and translational changes while change of 

conformational entropy depends on the number of the stable conformers. 

Chang et al (2007) also calculated the loss of entropy while restricting amprenavir 

bond length and angles. By restricting bond length only the loss of the entropy stayed 

unchanged (-T∆Sconfig = 26.3 kcal/mol) whilst by fixing all bond angles caused it to drop 

down to 24.7 kcal/mol. Conformational restriction of HIV protease strongly affect the loss of 

conformational entropy. The decrease in the loss of total entropy is due the decrease of the 

loss of conformational entropy.   

The common dogma states that rigid ligands that lose less entropy are expected to bind 

to proteins in a stronger way than flexible ligands all else being equal. Thus, ligand binding 

affinity to a protein could be improved by an introduction of the rigidity in the ligand. The 
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introduced rigidity in HIV amprenavir more likely affects the loss of conformational entropy 

not the loss of vibrational entropy. 

It might be that flexible FA loses a negligible amount of conformational and torsional 

entropy upon binding to a FABP. Thus, there is not a large change in the loss of 

conformational entropy between free and artificially restricted FA upon binding to FABP. 

This is what shall be investigated here.  

1.1.1.2 Protein flexibility and entropy 

Proteins are dynamic macromolecules. They may unfold, fold, bind and dissociate 

from a ligand. Entropy change accompanies all of these dynamic processes. Protein and 

ligand binding is usually associated with the loss of their motions. Nevertheless, the complex 

formed may allow for new vibrational modes within it (Boehr et al., 2006). For example the 

dynamics of the ligand-protein topoisomerase I complex are higher than it is for free protein 

(Yu et al., 1996, Boehr et al., 2006). Protein dynamics can stay unchanged as observed in the 

binding of R-lytic protease (Davis and Agard, 1998, Boehr et al., 2006).  

Flexible proteins such as ion channels, nuclear hormones and transporters are able to 

bind a variety of ligands. Thus, protein flexibility may be essential for their functions. 

Moreover, reviewing data about protein and ligand complexes it was found that structurally 

different ligands may bind the same protein in different conformations, e.g. for drug-like 

molecule binding to therapeutically important receptors (Teague, 2003). 

 Flexibility in a protein not only allows the ability to bind a variety of ligands at 

different protein sites, but additionally a protein may be flexible at a binding site. For 

instance, HIV reverse transcriptase can be inhibited by structurally different ligands 

Efavirenz, Nevirapine, UC-781 and Cl-TIBO binding at the same site (Ren et.al, 2000). The 

structure of these ligands is presented in figure 1.2. Thus, it might be that flexibility of a 
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protein is crucial for the strong binding of a rigid ligand, while flexible ligands may better 

adapted for the binding to a rigid protein that do not have the right conformation. 

The hydrogen-bonding network in ileal lipid binding protein (ILBP) is weaker than in 

FABPs indicating that ILBP is more flexible. This unusual flexibility of ILBP allows for the 

binding of the large and rigid bile acid (Lucke et al., 1996). Chemical shifts of protons in the 

ligand and protein complex caused by FA and the more rigid chenodeoxycholic acid binding 

with ILBP were observed using nuclear magnetic resonance (NMR) spectrometry  

A 14% difference in proton chemical shifts was observed when chenodeoxycholic acid 

binds to the protein, but for FA upon its binding to the protein it was just 1%. Bigger chemical 

shifts observed for the chenodeoxycholic acid binding to ILBP may be due to a 

conformational change or due to the presence of ligand atoms next to the protein (Lucke et al., 

1996). Although, the greater interaction between ILBP and chenodeoxycholic acid was 

reported, there was no information on whether it causes stronger binding. However, it might 

be that due to flexibility proteins are likely to bind rigid ligands more strongly than flexible 

ones. 

 



MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 19 of 190 

 

 

 

Figure 1.2 Structures of ligands able bind to HIV reverse transcriptase at the same 

binding site (reproduced from Ren et.al, 2000). 
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1.2 THE ROLE OF FLEXIBILITY IN THE THERMODYNAMICS OF LIGAND 

AND PROTEIN INTERACTIONS 

1.2.1 Evidence supporting ligand flexibility being detrimental to ligand-protein 

interactions 

Common dogma states that rigid ligands bind more strongly to a protein than a 

flexible ligand does. The flexibility of a ligand can be determined by the number of rotatable 

bonds per molecule. Therefore, common dogma emphasizes the importance of rotatable bonds 

in the control of ligand binding affinity, and this is reflected in Medicinal chemistry text 

books e.g., (Mann, 2008). Mann (2008) reports about the introduction of rigidity in such 

ligands as phenylalanine, histamine and milnacipran analogs, and discussed many examples, 

where an increase of ligand rigidity by the removal of rotatable bonds, contributes to an 

increase in binding affinity of ligands. An example is given in figure 1.3. The restriction of 

compound 1 at the benzyl position increases its rigidity, thereby the newly formed compound 

2 has a higher affinity for the Bradykinin receptor B1 (B-B1). The Ki of compounds 1 and 2 

are 520 nM and 380 nM, respectively. Another example is the increasing of rigidity in 

compound 3 to become compound 4 and subsequently compound 5, where the Ki for binding 

to B-B1 is 382 nM, 0.24 nM and 0.77 nM, respectively (Figure 1.3). Therefore, compounds 4 

and 5 have a greater affinity for B-B1 than does compound 3 (Mann, 2008).  

The removal of rotatable bonds often occurs via the introduction of one or more extra 

heavy atoms (non-hydrogen). The increase in heavy atoms of a ligand up to 15 increases the 

free binding energy by on average 1.5 kcal/mol (6.3 kJ/mol) per heavy atom (Kuntz et al., 

1999), increasing the binding affinity of the ligand. The addition of an extra heavy atom in the 

large ligands (> 15 heavy atoms) gives a small increase in free binding energy. Therefore, it is 

not clear if the improved affinity of a compound with restricted torsions is due to extra heavy 
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atoms added to restrict the torsions, or due to the decreased flexibility. Ligand efficiency is 

the free binding energy per heavy atom (Abad-Zapatero, 2007), thus comparing the ligand 

efficiency of different ligands provides a way to control for the variation in the number of 

heavy atoms.  

Binding free energy is calculated using the formula: ∆G=RTlnKi, where R is the 

universal gas constant, T is the temperature and Ki is the inhibitory constant, a measure of 

binding affinity. Ligand efficiency is obtained by dividing the calculated ∆G value by the 

number of heavy atoms. Binding free energy increases with each heavy atom introduced in a 

molecule. Thus, similar ligand efficiencies would mean that ligands bind stronger due to 

heavy atom introduction. While a higher value of ligand efficiency would indicate that an 

increase in ligand binding affinity is not likely to be just due to the introduction of a heavy 

atom, but to some other effect such as the molecule becoming more rigid as well.  

The number of rotatable bonds is decreased by 2 when compound 1 is restricted to 

form compound 2. Nevertheless, compounds 1 and 2 have similar ligand efficiencies 1.24 

kJ/mol and 1.20 kJ/mol, respectively (Figure 1.3). Although, the decrease in the binding 

constant supports the dogma when compound 1 becomes restricted to form compound 2, 

compound 2 may bind more strongly to B-B1 due to an increase in heavy atoms in the 

molecule, not due to the increase in rigidity. Ligand efficiencies for compound 4 and 5 are 

approximately 1.2 times greater than it is for compound 3 (Figure 1.3). Therefore, stronger 

binding of 4 and 5 to B-B1 is likely to be due to the reduction in the number of rotatable 

bonds.  
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Figure 1.3 Drug design making ligands more rigid by the introduction of extra bonds (a) 

Design of new Bradykinin ligands. (b) Calculated Bradykinin ligand efficiencies (Ligand 

structures are reproduced and Ki values are taken from Mann, 2008). 
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A fragment-based drug discovery approach was introduced in the mid-1990s. 

However the technique first time was described earlier by Page and Jenks (1971). This 

technique is based on the joining two fragments which have an affinity to bind a protein in 

different but adjacent binding sites. Two fragment joining result in entropy gain because when 

joined fragment binds to a protein it loses less entropy than individual fragments do. Thus, it 

was reported that the affinity of the joined fragment will usually be greater than the sum of 

two fragment affinities (Murray and Verdonk, 2002). An example is given in figure 1.4; 

compounds 6 and 7 are joined to form compound 8, while compounds 9 and 10 are joined to 

form compound 11. The Ki of joined compounds 8 and 11 is much greater than it is for the 

individual fragments. 
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Compound 6 75 17000 -9.92 5 1.98 2 0.40 

Compound 7 195 20 -26.34 15 1.76 2 0.13 

Compound 8 282 0.025 -42.62 21 22.03 6 0.29 

Compound 9 100 34 -25.05 7 3.58 0 0.00 

Compound 10 116 260 -20.10 8 2.51 4 0.50 

Compound 11 214 0.00000041 -69.45 15 4.63 6 0.40 

 

Figure 1.4 Drug design making ligands more rigid by joining two fragments together (a) 

Joining compound 6 and 7 is formed new ligand – compound 8. Compound 6, 7 and 8 binds 

to stromelysin. (b) Joining compound 9 and 10 is formed new ligand – compound 11. 

Compound 9, 10 and 11 binds to avidin. (c) Calculated ligand efficiencies. (Ligand structures 

are reproduced and Ki are taken from Murray and Verdonk, 2002) 
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1.2.2 Ligand flexibility may be favorable  

Ligand conformational restriction is a basic principle in drug-design. Nevertheless, it 

was reported that ligand flexibility may be favorable as flexible ligand can adapt and bind to 

mutated proteins.  

Protein mutation can cause binding site conformational changes making a protein 

become drug resistant (Cai and Schiffer, 2010). Thus, a mutated protein may not bind a rigid 

ligand that has a high affinity for the wild type protein (Velazquez-Campoy et al., 2001). 

Moreover, multiple mutations often affect the binding of ligands even when the mutations are 

distant from the binding site (Lassila, 2010, Genoni et al., 2010). Therefore, flexible ligands 

are thought to be more favorable as they are able to adapt their conformation so as to bind the 

mutated protein. As an example, KNI-272 has a high affinity for HIV-1 protease. The Ki is 16 

pM. Since KNI-272 is rigid, it is not able to adapt to the protein mutation and the binding 

affinity to the HIV-1 protease mutant V82F/I84V is 550 times smaller. Flexible KNI-764 

ligand has a slightly lower affinity than KNI-272 for HIV-1 protease; the Ki is 36 pM. Due to 

its flexibility it can adapt to the conformational change in the binding site of mutant 

V82F/I84V. The affinity of ligand KNI-764 for V82F/I84V is decreased just 26 times 

(Velazquez-Campoy et al., 2001). KNI-272 and KNI-764 structures are represented in figure 

1.5.  
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Figure 1.5 Structures of ligands able bind to HIV-1 protease (reproduced from Velazquez-

Campoy et al., 2001). 
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1.2.3 Evidence for exceptions, where flexible ligands bind stronger to a protein than 

rigid and larger ligands do 

Common dogma states that larger and more rigid ligands bind more strongly to a 

protein. The evidence supporting the dogma described above showed that it is enough to make 

a ligand larger or more rigid to increase its binding affinity. Thus, drug-design is based on the 

introduction of extra rigidity. Nevertheless, in review Teague (2003) reported that there are a 

large number of flexible ligands used as drugs. For example, flexible zopolrestat and tolrestat 

bind to aldose reductase, while flexible tamoxifen and raloxifen bind to oestrogen receptor. 

It was experimentally determined that flexible FAs bind stronger to I-FABP than 

larger and more rigid ligands do (Velkov et al., 2005, Velkov et al., 2007). The Ki for 

palmitate and myristate are ≥ 1000 times higher than Ki of rigid nitrazepam and bezafibrate. 

Calculated ligand efficiencies for palmitate, myristate, nitrazepam and bezafibrate bound to I-

FABP show that flexible FAs have higher ligand efficiency as well as the count of rotatable 

bonds per heavy atom. Thus, it might be that flexibility of FA is relevant for strong binding to 

I-FABP and it is an exception to the common dogma. 

Palmitate differs from myristate by two extra heavy atoms. Thus, it has extra rotatable 

bonds and is more flexible than myristate. Ki values indicate that flexible palmitate binds 

more strongly to I-FABP than myristate. Nevertheless, the calculated ligand efficiencies show 

that the two additional heavy atoms decrease the free binding energy per heavy atom. 

Therefore, the two additional heavy atoms are likely to be the reason for the palmitate 

stronger binding to I-FABP, not increase in flexibility.  

Another example is the strong binding of oleate to liver-FABP (L-FABP) (Chuang et 

al., 2008). The difference between Ki values for oleate and the more rigid and larger ligands is 

not as significant as it was in the case of myristate and palmitate binding to I-FABP. For 
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example, the Kis of oleate, ibuprofen and fenofibric acid are 0.18 µM, 47.6 µM and 0.334 

µM, respectively.  

Intriguingly there are larger and more rigid ligands that bind to L-FABP stronger than 

oleate. They are progesterone and fenofibrate, whose structures are represented in figure 1.6. 

The calculated ligand efficiencies for oleate, progesterone and fenofibrate are very similar 

while the count of rotatable bonds in oleate is much bigger (Figure 1.7).  
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Figure 1.6 Structures of ligands (reproduced from Chuang et al., 2008). 
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Oleate 0.18 -37.82 20 1.89 15 0.75 

Progesterone 0.027 -42.43 23 1.84 1 0.04 

Fenofibrate 0.024 -42.72 25 1.71 7 0.28 

Fenofibric acid 0.334 -24.23 22 1.15 5 0.23 

Ibuprofen 47.6 -36.31 21 1.65 3 0.14 

 

Figure 1.7 Ligand efficiency (a) Calculated ligand efficiency, when they bind to I-FABP. (b) 

Calculated ligand efficiency, when they bind to L-FABP (Ki are taken from Velkov et al, 

2007, Chuang et al, 2008). 
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1.3 I-FABP: A MODEL SYSTEM FOR EXPLORING THE ROLE OF 

FLEXIBILITY IN LIGAND BINDING 

Common dogma states that rigid ligands have a higher affinity when binding to a 

protein, due to a smaller loss of entropy. Calculated efficiencies for Bradykinin ligands show 

that increase in ligand binding affinity may be due to the increase in the number of heavy 

atoms. Thus, it is questionable if the ligands‟ strong binding is due to their rigidity. Moreover, 

some flexible ligands appear to bind to protein more strongly than rigid ligands, something 

seen in the I-FABP system. Therefore, it is relevant to investigate the role of ligand flexibility 

during the binding of flexible FAs to I-FABP.  

FAs are small size (150-450 Da) structural components of the cell‟s phospholipid 

membrane and undertake an important part in the cell‟s metabolic processes. Nevertheless, 

the presence of free FAs in the cytoplasm is unwanted due to their detergent-like properties 

(Tsfadia et al., 2007, Levin et al., 2010, Levin et al., 2009, Friedman et al., 2006, Woolf and 

Tychko, 1998). Therefore, efficient transfer of free FAs in the cytoplasm to the cell‟s 

structural elements is needed. This is performed by FABPs, which have a high affinity to bind 

FAs. FABPs are classified by their tissue of origin, e.g. I-FABP, L-FABP and muscle-FABP 

(M-FABP) (Friedman et al., 2006, Levin et al., 2009, Tsfadia et al., 2007, Velkov et al., 

2005). 

The most important finding is to be stressed here is that FAs such as myristate and 

palmitate bind more strongly to I-FABPs than more rigid ligands do (Velkov et al., 2005).  

This observation is opposite to the dogma. Palmitate is more flexible than myristate, due to its 

higher number of rotatable bonds. However, the calculated ligand efficiencies show that the 

stronger binding of palmitate is due to the increase in the number of heavy atoms. Thus, it 

seems that flexibility of FA is neither advantage nor disadvantage for their strong binding to 
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FABP. Therefore, it is questionable what kind of role plays FA flexibility in their strong 

binding to I-FABP. 

The effect of ligand flexibility whilst binding to proteins can be determined by an 

investigation of myristate binding to I-FABP by computational modeling of the binding. As 

flexibility is related to the conformational change of a molecule, it is important to observe 

conformational contribution of myristate while binding to I-FABP. It could be true that 

common dogma does not have any exemptions and the strong binding of flexible FAs to 

FABPs is putative. On the other, hand it could be that ligand flexibility is somehow critical 

for binding. 
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1.4 COMPUTATIONAL APPROACH 

Computationally it is possible to change parameters that define the flexibility of a 

molecule without changing the number of heavy atoms or its geometry. A computational 

approach requires the choice of an appropriate force field, one that demonstrates the 

appropriate behavior for the bind of myristate to I-FABP (i.e. similar to the known 

experimental behavior of the system). To determine if the force field is correctly chosen, a 

calculation of the difference between the ∆G of myristate and palmitate (∆∆G) on binding to 

I-FABP can be made and compared to experiment. Further, the conformational preference of 

myristate in solution and bound to I-FABP can be calculated by molecular dynamic (MD) 

simulations. This allows the determination of which myristate rotatable bonds become 

restricted when it binds to I-FABP. Furthermore, by calculating ∆∆G both when myristate is 

flexible and artificially rigid, the effect of flexibility on the binding energy can be quantified.  

1.4.1 Force fields and molecular dynamics 

Molecular dynamic simulation is the computational simulation of atom and molecule 

movements (Alder and Wainwright, 1959). Various protein motions occur over a broad 

timescale (Figure 1.8) (Boehr et al., 2006).. The time to simulate these motions can last from 

hours to several years. For example, whilst simulating ligand and protein binding, it is 

important to take into account the timescale of the molecule‟s vibrational motions (in 

picoseconds (ps) and nanoseconds (ns) time) and larger configurational changes (in 

microseconds (µs) and milliseconds (ms) time). Protein simulations of timescales of µs 

unusual but becoming more common and ms simulations are not currently practical for 

anything but short peptides. According to the computational time used for our project to 

simulate 1 µs of ligand motions on an eight core processor in real time is the equivalent of 0.5 

years, whilst ligand and protein interactions will take around a year of computational time. 
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Nevertheless, MD simulations can be performed for a short computational time and 

subsequently extended in length to check for convergence of the simulated motions or 

thermodynamic properties, e.g. an initial simulation of 10 ns, with the behavior observed in 

this simulation confirmed by extension of the simulation to 20 ns, 50 ns etc... 

To perform MD, a topology, a co-ordinate and a simulation input file are needed. The 

topology file contains information about the atom connectivity in a molecule, their potential 

energy and the interaction forces. The potential energy and interaction forces are defined by 

the force field. The co-ordinate file defines the initial atom positions. It will include the 

position of the solvent atoms if they are present in the system. The simulation input file 

defines simulation parameters such as temperature and pressure. Following minimization of 

the energy of the initial coordinates, to remove high energy strains from the system and an 

initial equilibration only then is the simulation system ready for productive MD. Energy 

minimization allows for the initial structure to adjust to the constrains of the force field, but 

equilibration equilibrates kinetic and potential energies through the simulation system.  

In a molecular modeling context a force field is a mathematical function, which 

evaluates the potential energy of the atoms in the system. Force fields for computational 

simulations are derived from quantum mechanical calculations and from experimental data. 

Based on the required representation and an available amount of computational time, force 

fields can be divided into three categories. Firstly, “all atom” force fields, where energetic 

interactions are represented for all atoms. Secondly, “united atom” force fields, where all 

atoms in a terminal methyl group are represented in the force field as if they were one atom. 

Thirdly, “coarse grained” force fields that provide a much cruder representations, e.g. an 

amino acid represented by a spherical particle for the backbone and a spherical particle for the 
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side chain (Ponder and Case, 2003). Moreover, by simplifying the contribution of some atoms 

this makes the computation of system‟s energy less time-consuming.  

The first force fields for the study of macromolecule dynamics were developed and 

designated as AMBER (Cornell et al., 1995), CHARMM (Brooks et al., 1983) and GROMOS 

(Scott et al., 1999). AMBER force field was originally developed for protein and DNA study. 

CHARMM, besides being used in macromolecule research, was also developed in small 

molecule research. However, GROMOS is used for the study of biomolecular systems and 

has two versions – A and B. The A version is intended for the simulation of aqueous or apolar 

solutions of proteins, nucleotides and sugars. The B version is intended for the simulation of 

isolated molecules in their gas phase. Besides these three, there are many more varieties of 

force field with varied applications, i.e. more or less specific (Ponder and Case, 2003).  
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Figure 1.8 Timescale of typical protein motions A – bond vibration and B – surface side chain rotations (reproduced from Boehr et al., 

2006).
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1.4.2 Calculation of binding free energy  

The calculation of free energy is based on the thermodynamic cycle of the binding of 

proteins and ligands. Computationally we calculate the conversion for the solvated free ligand 

X into the solvated free ligand Y and for the conversion of ligand X into ligand Y while they 

are bound to the solvated protein P. Water is usually used as a solvent for these simulations. 

Computational mutation of the ligand gives two changes of free energy, which are calculated 

for the unbound state (ΔGU) and for the bound state (ΔGB). The difference in free energy of 

the ligands (ΔΔGbind) is calculated by the formula shown in figure 1.9 (Michel et al., 2010). 

For free energy computational calculations, several methods have been presented: free 

energy perturbation (FEP), thermodynamic integration (TI), linear interaction energy (LIE), 

molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics 

generalized Born surface area (MM-GBSA) (reviewed in Michel et al., 2010, Hayes et al., 

2012). Considering about which method to use there is a need to make a choice between 

expenses and accuracy. Such methods as LIE, MM-PBSA and MM-GBSA were reported as 

trade-off and are successfully used. FEP and TI calculation methods are most accurate of 

these methods, although they are time consuming. Of these two TI has the advantage that it is 

easier to parallelize since, as described below, each lambda point used in the calculation is 

completely independent of every other lambda point. 

The computational approach of FEP allows the calculation of the potential energy 

difference UY - UX between two complexes during the conversion of the ligand X into the 

ligand Y. The conversion in the ligands is maintained throughout one or more intermediate 

states defined by a coupling parameter λ. The coupling parameter λ is used for the acquisition 

of free energy from intermediate states. Therefore, λ = 0 represents the ligand X, but λ = 1 

represents the ligand Y. When λ is any value between 0 and 1, it represents an intermediate 
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state of ligand X changing to ligand Y (Michel et al., 2010). A simplified model is present in 

figure 1.9 (b). Stars X and Y represent two structurally different ligands. Those differences 

are illustrated by color changes in the figure. Therefore, stars A to F represent intermediate 

states in the ligand X mutation to Y. Moreover, those intermediate states do not represent any 

different molecule. Depending on λ value, they illustrate whether they are structurally more 

similar to ligand X or Y, but their structure does not have any real physical meaning in the 

calculation of binding free energy. The ΔG calculation is more accurate when a higher 

number of chosen intermediate states are used. Each state gives free energy ΔG, which is an 

averaged value of Uλ-Uλ-1 (where λ – 1 denotes the lambda value before the one under 

consideration) over numerous snapshots for given lambda value). The total value of all ΔG 

gives ΔGB. 

TI has a similar principle for calculating free energy ΔGB, using the intermediate 

states. However, this method integrates the derivate of the potential energy for with respect to 

lambda point in the conversion of the ligand X into Y using equation: 

    ∫ 〈
     

  
〉   

 

 

 

In the equation ΔGB is the total free energy during ligand X conversion into Y for the 

ligand-protein complex, where 〈
     

  
〉  is the ensemble average in the ensemble 

corresponding to U(λ) (formula is adapted from Steinbrecher et al, 2007). TI has the 

advantage over FEP that it is easy to add additional lambda points, since the derivative 

depends only on the lambda value at hand, not on the preceding lambda value, which is the 

case in FEP. 

 FEP and TI are limited in usage due to ligand X cannot be converted into any different 

ligand Y. The ligands need to have similar structures to each other. The most accurate results 
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are obtained when X and Y ligands have small differences, of particular concern is that the 

ligands‟ difference in shape and size can cause different preferred locations at the binding site, 

which would represent very large perturbations to the system. FEP and TI give highly 

accurate results; however obtained results may differ from the experimental data (Michel et 

al., 2010, Steinbrecher et al., 2007, Cai and Schiffer, Michel et al., 2010). This can be 

overcome by altering the force field. 

When investigating the gain or loss of atoms TIs are performed as a three-step 

simulation. In the first, the charge removal from the atoms to be lost is simulated. In the 

second the chosen atoms are transformed, so the ligand X became ligand Y. In the last step 

the new charge is added to the newly formed atoms. This three step procedure avoids the 

possibility that as the van der Waals forces are decreased with lambda, the charges on the 

atoms may become unrealistically close leading to excessively high interaction energies and 

thus problems with the simulation. 
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(a) 

  

 

(b) 

 

 

 

Figure 1.9 TI and free binding energy calculation (a) TI cycle to compute free energies of 

binding. P is a protein, X and Y are two different ligands, ∆GU and ∆GB are free binding 

energies for mutation of ligand at unbound and bound state, respectively. ∆Gbind(X) and 

∆Gbind(Y) are free binding energies for ligand X and Y binding to a protein. ∆∆Gbind is the 

difference between ligand Y and X free binding energy. (b) Representative figure of λ value 

meaning. X and Y are ligands, A, B, C, D, E are intermediate states between ligand X and Y. 

Color difference between two stars identify how different or similar are two intermediate 

states between each other or from ligand X and Y. (Figures are reproduced from Michel et al, 

2010). 
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1.4.3 Clustering  

The conformational states of myristate can be observed by molecular dynamics (MD) 

simulations, which “produce trajectories of atomic positions (and optionally velocities and 

energy) as a function of time” (Shao et al., 2007). Data-mining techniques such as clustering 

sorts and groups the data enclosed in MD trajectories into similar clusters allowing investigate 

the preferable molecule‟s conformations. 

 There exist a couple of different clustering methods. Shao et al (2007) tested and 

compared clustering algorithms for single-stranded DNA molecules or DNA hairpin 

interactions with the minor groove binding drug DB226. The clustering algorithms tested 

include hierarchical, single-linkage edge joining, centroid-linkage, average-linkage, complete-

linkage, centripetal and centripetal-complete, means, Bayesian, self-organizing maps and tree 

(COBWEB). The authors refer to each algorithm as having its own unique clustering abilities 

and none of the algorithms presented all possible abilities. Moreover, each algorithm is based 

on a comparison of different sets of results for the same molecule, but at different simulation 

times. Each algorithm has a different way of comparing the molecule. Therefore, each one 

gives varied result clusters. Shao et al (2007) found that grouping DNA molecules into 5 

clusters to be the best for the observation of conformational change of DNA molecules, due to 

tendency to form single molecule clusters when molecules are grouped into > 5 clusters.  

 The average-linkage and hierarchical algorithms have an advantage as they can be 

used when the number of clusters required is not known. However, the hierarchical algorithm 

is highly sensitive to outliers and the average-linkage algorithm tends to produce small 

clusters. This tendency for the average-linkage algorithm can be minimized by performing 

clustering with different numbers of clusters. Myristate clustering into distinct sets will be 

performed using the average-linkage algorithm. Clustering by the average link algorithm can 
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give some information about the increase in rigidity of myristate while it binds to I-FABP.

 The dihedral angle is the angle or torsion between two planes. Thus, the dihedral angle 

for a sequence A-B-C-D is formed by planes ABCAP and DPBCD, where AP-C is the 

projection of bond A-B and DP-B is the projection of bond D-C (Figure 1.10 (a.1)). The 

dihedral clustering principle is based on dividing a dihedral angle into bins (Case et al., 2010). 

For instance, if grouped in bins of eight, each bin differentiates the position of the atom D per 

40º. Figure 1.10 (a.3) shows that atom D appears in the first bin. Therefore, the dihedral angle 

is between 0º and 40º. 180º is the maximum possible angle between bonds A-B and C-D 

(Figure 1.10 (b)). However, a dihedral angle between 320º and 360º would place it in the 

highest bin, bin 8. This bin is equivalent to 0º to -40º which we use later (Figure 1.10 (b)). 

 In the case of free myristate, it is expected to observe different occupancies of the bins 

representing different angles as myristate is not restricted and can, therefore, freely change its 

conformation. Occupancy of all the bins would represent the potential ability of free myristate 

to access all possible dihedral angle values for every aliphatic carbon torsion. Myristate bound 

to I-FABP might be expected to be more rigid than myristate free in solution. Therefore, 

fewer bins are likely to be occupied i.e. there is a more restricted number of dihedral angle 

values that are observed.  
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(a)   

(a.1) (a.2) (a.3) 

 

  

(b)  

 

 

Figure 1.10 Dihedral angle (a) Dihedral angle and clustering bins, where (a.1) is the 3D 

structure of a chain A-B-C-D, atoms B and C are drawn as circles. The dihedral angle for a 

sequence A-B-C-D is formed by planes ABCAP and DPBCD, where AP-C is A-B bond 

projection and DP-B is D-C bond projection. Dihedral angle is shown as an arrow. (a.2) 

Newman projection for the chain A-B-C-D. Atom C is behind atom B. Dihedral angle is 

shown as an arrow. (a.3) Clustering by dihedral angle into 8 bins (numbered in grey) (b) 

Newman projection of dihedral angles and their values.  
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1.4.4 The investigation system 

Our computational model of myristate binding to I-FABP will be studied using the 

AMBER force field. TI simulations for the myristate change to palmitate will allow the 

calculation of the difference in the protein binding free energy of the two ligands. The data 

recorded during the MD simulation will be used for the comparison of the conformations of 

myristate that exist in its free and protein bound states. The comparison will be performed by 

the clustering of myristate conformational states using average-linkage and also by dihedral 

angle.  

Combining MD simulations with clustering of myristate conformations, it can be 

determined whether myristate possesses any favored conformational state in solution or when 

it is bound to I-FABP. With the information about the conformational state of the free 

myristate and the bound myristate to I-FABP, it can be ascertained which bond torsions show 

changes of behavior upon binding with the protein. Further, using TI simulations, the free 

binding energy of myristate can be calculated, when myristate is both flexible and artificially 

rigid. This will give data to support whether flexibility of myristate plays an important role in 

its stronger binding to I-FABP than it was seen for rigid ligands. 
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1.5 THE AIM OF THE RESEARCH 

 Common dogma predicts that rigid ligands lose less entropy during binding, thus 

binding more strongly to protein than otherwise equivalent flexible ligands do. Nevertheless, 

experimentally it was found that flexible myristate and palmitate bind more strongly to I-

FABP that rigid ligands do. Therefore in our research we examined I-FABP and myristate 

interaction using before described model with the aim of understanding the basis of stronger 

binding between flexible ligands and proteins.  

 An investigation of FABP and FA interactions is necessary as it is not clear is the 

flexibility of FA plays a role in the strong binding of FA and FABP. Moreover, this 

mechanism might work in other biological systems which include a high degree of 

conformational freedom. Thus, the aim of the research is to test if flexibility of myristate 

plays a role in myristate strong binding to I-FABP.  

From a comparison of the calculated ligand efficiencies, it can be assumed that 

flexible palmitate binds stronger to I-FABP than less flexible myristate due to an increase in 

the number of heavy atoms. Therefore, it could be true that common dogma does not have any 

exemptions and flexible FA binding to FABP is just putative. Nevertheless, we are expecting 

that the flexibility of FA has a crucial effect on binding to FABP and their interaction can be 

an entire binding mechanism, which allows for recognition of the ligands by the protein.  
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2 METHODS 

2.1 SETTING UP SIMULATIONS 

 TI and MD simulations where performed using the AMBER suite of programs with 

the amber ff99SBildn force field (Hornak et al., 2010). The I-FABP structure was taken from 

the Protein Data Bank. Palmitate and I-FABP complex was created by superimposing the 

coordinate files of palmitate and I-FABP. The hydrogen bond network of the palmitate and I-

FABP complex, including crystallographic water molecules was optimized and hydrogen 

atoms added with Whatif (Vriend, 1990), and a topology and starting co-ordinate file was 

created with  xleap. The coordinate files of myristate and complex of myristate with I-FABP 

were created manually by deleting extra carbon and hydrogen atoms of palmitate and then by 

adding missing hydrogen atoms. A TIP3P water 12 Å truncated octahedron water box and a 

sodium anion was added to the all coordinate files (Jorgensen et al., 1983).  

The created set of coordinates was used in the replicate study (Durrant, 2012). For the 

current study a different set of coordinates was created by a 100 ps long run of TI simulation 

(van der Waals creation step) of the myristate conversion into palmitate at 310 K, when λ = 

0.6, using soft core potential. The same simulation was done for the complex of myristate and 

I-FABP (complexmyr) conversion into the complex of palmitate and I-FABP (complexpalm). 

The created systems were used in further TI and MD simulation.  
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2.2 THERMODYNAMIC INTEGRATION 

 TI was preformed based on Steinbrecher et al (2007). It consists of three steps. In the 

first step charge from H28 of myristate was removed, in the second step H28 was changed 

into–CH2CH3 group by adding the van der Waals interactions of the atoms C15, H28, H29, 

C16, H30, H31, H32, in the third step charge was added on the created atoms.  

Each of the steps consists of consecutive minimization, equilibration and production 

processes using a non-bonded cutoff of 9 Å, i.e. all non-bonded interactions between atoms 

separated by > 9 Å away are ignored. All steps were performed by using coupling parameters 

λ from 0.1 till 0.9 with difference 0.1 and λ = 0.025 and 0.975, where λ = 0 has the more 

myristate like parameters for the ligand, λ = 1 the more palmitate like parameters. TI 

simulations are run only for the intermediates (0 < λ <1) as the way TI is coded in AMBER 

leads to divide by zero error for λ = 0 and λ = 1. 

All three minimization processes were run for 500 cycles starting with 10 cycles of 

steepest descent minimization followed by conjugate gradient minimization, in constant 

volume. Equilibration and production processes were run in T = 293 K, using Langevin 

dynamics with the collision frequency γ = 5 given by gamma_ln (in the case of equilibration) 

and γ = 2 (in the case of production), pressure was kept constant 1 bar, with pressure 

relaxation time 0.2 ps.  Equilibration processes were run 1 ns long using dt = 0.002 in the first 

(myristate hydrogen‟s charge removal) and third step (palmitate additional atoms charge 

creation) and dt = 0.001 in the second step, while the production process was run as 10 ns, in 

the case of myristate conversion into palmitate in water, and 14 ns, in the case of complexmyr 

conversion into complexpalm, following steps 1 ns long using dt = 0.002 in the first and third 

step and dt = 0.001 in the second step. Convergence of the TI processes was observed by 
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plotting <dU/dλ> against time for the simulation at each lambda value. <dU/dλ> data was 

extracted from TI production steps.  

In the first and third steps in systems during equilibration and production processes 

used the SHAKE algorithm, bonds which involved hydrogen atoms were kept constrained, 

while in the second step systems “shaking” was off.  SHAKE usage limits molecular bond 

stretching, thus it cannot be used in the simulation where atoms are disappearing and 

appearing. Due to the SHAKE usage equilibration and production processes in step 1 and 3 

proceed faster than in step 2. 
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2.3 FREE ENERGY CALCULATIONS 

Calculation of the difference in free energy of binding to I-FABP of palmitate 

compared to myristate (ΔΔGbinding) is based on the thermodynamic cycle of the binding of the 

myristate to I-FABP and of the palmitate binding to I-FABP (Figure 2.1), and it can be 

explained by the equation ΔGsolution + ΔGP = ΔGM + ΔGcomplex, where ΔGP and ΔGM are, 

respectively, the free energy of binding of palmitate and to I-FABP, ΔGsolution and ΔGcomplex 

are, respectively, the free energy for the conversion of myristate into palmitate and 

complexmyr conversion into complexpalm (Figure 2.1). Therefore, the difference between free 

binding energy (ΔΔG) of palmitate and myristate binding to I-FABP can be calculated by the 

equation: ΔΔG = ΔGP – ΔGM = ΔGcomlex – ΔGsolution. 

The free energy difference is the integral of <dU/dλ> with respect to λ, i.e. the area 

under the curve, which is determined using the trapezium rule. Firstly, the <dU/dλ> values for 

λ = 0 and λ = 1 were extrapolated from the other λ values. The graphs of the <dU/dλ> against 

λ value were prepared for myristate changed to palmitate after 10 ns of simulation time per 

lambda value and of the complexmyr conversion into complexpalm after 14 ns of simulation per 

lambda value. The graphs for the <dU/dλ> difference between complexmyr conversion into 

complexpalm and myristate conversion into palmitate was determined by subtracting 

appropriate graphs (see Results). 

Calculation of ΔΔG was done in two ways. For one method, firstly area was calculated 

under the curves of the <dU/dλ> vs λ value plot for the conversion of myristate into palmitate 

and for the conversion of complexmyr into complexpalm. Further, the difference between the 

area for the conversion of complexmyr into complexpalm and conversion of solvated myristate 

into solvated palmitate was calculated by subtraction of these two areas (see Results). In the 
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second method, the curves from the TI simulations for converting myristate into palmitate in 

solution and in the I-FABP complex were subtracted prior to integration (see Results).  

 

 

 

 

 

 

Figure 2.1 Thermodynamic cycle to compute the difference in the free binding energy 

between myristate and palmitate, while they are binding to I-FABP. Complexpalm and 

Complexmyr indicate I-FABP bound respectively to palmitate and myristate, each complex 

being solvated in water 
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2.4 MOLECULAR DYNAMICS 

MD simulations were performed for myristate in the solution and for the complex of 

myristate and I-FABP in the solution with a non-bonded cutoff of 9 Å, the temperature was 

kept at 293 K, with a Langevin thermostat ntt = 3 and collision frequency γ = 5 given by 

gamma_ln = 5, pressure was kept constant 1.0 bar with pressure relaxation time 1.0 ps. MD 

simulations were run for 1ns with dt = 0.002, and were written in output files as 10 

consecutive steps. In total a 10 ns long MD simulation was performed. SHAKE was used to 

keep the positions of hydrogen constrained.  

The atomic coordinates were written to a trajectory file every 0.01 ps creating 100 data 

frames per 1 ns and were used for subsequent analysis of conformations of myristate. In total 

1000 data frames containing the information about the atomic coordinates were obtained from 

10 ns long MD simulation. Each frame has information about the myristate conformational 

state. 
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2.5 CLUSTERING 

Myristate clustering was performed by extracting information written in each frame of 

the trajectory file. Before myristate clustering water molecules and the sodium ion were 

removed. Two methods for the conformation clustering of free and bound myristate were used 

– clustering into by the average link algorithm and clustering by dihedral angles, using the 

program ptraj, supplied with AMBER software. 

2.5.1 Clustering by the average link algorithm 

Myristate conformations were clustered for co-ordinates from both MD trajectories with 1) 

just myristate in solution and 2) myristate in the complex with i-FABP, using average-linkage 

algorithm by comparison of the root mean squared deviation (RMSD) of all atoms myristate 

molecules were grouped by changing number of clusters from 1 to 10. In both cases myristate 

clustering was observed by changing MD simulation time from 1ns to 10 ns. Hierarchic 

arrangement representing the percentage of each cluster was arranged in the figures. 

2.5.2 Analysis of the dihedral angles 

 The value of each distinct dihedral angle of myristate was assigned into one of 36 

bins of 10º each, for each recorded snapshot of the simulation. The results were used for 

calculating the Shannon entropy and also the correlation coefficients comparing the dihedral 

distribution between protein bound and free myristate. 

2.5.2.1 Shannon entropy 

The dihedral clustering results were used to calculate the ratio Shannon entropy/the 

maximum Shannon entropy (H/Hmax) for each dihedral of free and bound myristate. From the 

clustering results the probability of each bin for each dihedral was calculated. Each dihedral 

angle was divided into 36 bins. The maximal entropy is when each bin has equal probability, 

i.e. p(x) for each bin is 1/36. For each dihedral for each bin -p(x)ln(p(x)) was calculated. The 
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sum of -p(x)ln(p(x)) for all 36 bin is the Shannon entropy (H) for a dihedral. The maximum 

Shannon (Hmax) entropy for one bin is -(1/36)ln(1/36). Thus, Hmax entropy for a dihedral is -

ln(1/36). 

2.5.2.2 Correlation coefficient 

For each dihedral angle the correlation between the distributions of values observed 

for the free and bound myristate was calculated. For this purpose data obtained from dihedral 

angle clustering were used. The Pearson correlation coefficient was calculated using the 

equation:  

rx,y = 
∑               

 
   

√∑                
 

In the equation xi and yi are the number of occurrences in that angle bin for the free 

and bound fatty acid and xa and ya are the mean average occurrence in all angle bins for the 

free and bound fatty acid.  
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3 RESULTS 

3.1 THERMODYNAMIC INTEGRATION (TI) SIMULATIONS 

 TI simulations were run for the conversion of sodium myristate into sodium palmitate 

(here sodium myristate and sodium palmitate will be referred to as myristate and palmitate) in 

water and when bound to the solvated I-. Three different steps were taken for both 

conversions. During the first, the charge is removed from the 28
th

 hydrogen of myristate. The 

second step changes the 28
th

 hydrogen of myristate to the ethyl group of palmitate. The third 

step adds a charge on the ethyl group. 

The time required to perform these simulations is unknown, since the simulation 

length depends on the system studied and how long it takes to sample the accessible 

conformations for each intermediate lambda state. Therefore, during the production step for 

each TI simulation, the change in <dU/dλ> over time was followed, i.e. <dU/dλ> needs to 

converge to a constant value. As it was mentioned before λ value shows the degree of 

mutation of the sampled ligand. Thus, λ = 0 has the more myristate like parameters for the 

ligand, λ = 1 the more palmitate like parameters. Within the AMBER force field TI is coded 

to record <dU/dλ>. However, when λ = 0 and λ = 1, the analytical expression for <dU/dλ> in 

the softcore simulations contains a divided by 0 in its implementation in AMBER and thus 

gives an error. Therefore, TI simulations are run only for intermediate λ values between 0 and 

1. 

 At first, TI simulation production steps for myristate conversion into palmitate and 

complexmyr conversion into complexpalm were run as 10 consecutive simulations, each 1ns 

long. Data from TI simulations, where myristate was converted to palmitate show that the 

processes have been run long enough, all curves are observed as almost straight lines (Figure 
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3.1). For the TI simulations, where the charge was removed from the 28
th

 hydrogen of 

myristate, there were no high changes observed in <dU/dλ> for all λ values (Figure 3.1), 

which indicates likely convergence. 

At the beginning of the TI simulations for myristate conversion into palmitate, when 

the 28
th

 hydrogen of myristate was converted into the ethyl group, for some λ values there 

was a fluctuation in <dU/dλ> (Figure 3.1). The most notable change in <dU/dλ> was 

observed for λ = 0.8. Nevertheless, for all expected convergence is observed after 5 ns. 

For TI simulations when a charge was added on the ethyl group, after 2 ns there was observed 

a small fluctuation of <dU/dλ> was observed for some λ values (Figure 3.1). However, 

similar to the TI simulation, when the charge was removed from the 28
th

 hydrogen, all curves 

quickly become almost straight lines. Thus, the TI simulations for the conversion of myristate 

into palmitate in water indicate appropriate convergence within 6 ns or less.   

For TI simulations where the charge was removed from the 28
th

 hydrogen of myristate 

for the conversion of complexmyr into complexpalm high fluctuations of <dU/dλ> were 

observed for all λ values for the first 10 ns (Figure 3.2). Therefore, TI production steps for all 

λ values were continued for a further 4 ns. When TI simulations were continued for the next 4 

ns, a stabilization of <dU/dλ> was observed. Moreover, for λ values except λ = 0.1 <dU/dλ> 

are almost constant after 12 ns of TI simulations. For λ = 0.1 <dU/dλ> is constant from 9 to 

12 ns. When the TI simulation for λ = 0.1 was run for >12 ns another increase in <dU/dλ> 

was observed (Figure 3.2 (a)), suggesting that this simulation should be continued for a longer 

time.  

In the second step of TI simulations for complexmyr conversion into complexpalm, when 

the hydrogen of myristate was mutated into the additional ethyl group found in palmitate, the 

fluctuation of <dU/dλ> is much higher than was observed in the first production step. A small 
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<dU/dλ> fluctuation was observed for λ = 0.4 and 0.9, but for λ = 0.1, 0.8 and 0.975, 

<dU/dλ> remains almost constant (Figure 3.2 (b)) after 10 ns of TI simulations. While some 

of the curves observed in Figure 3.2 (b) show that after 10 ns of TI simulations the fluctuation 

of <dU/dλ> for λ = 0.025, 0.2, 0.3, 0.5, 0.6 and 0.7, is relatively high. Therefore, TI 

production steps for all λ values were continued for a further 4 ns. When TI simulations were 

run for a further 4 ns <dU/dλ> became almost constant for most values of λ. Nevertheless, for 

λ = 0.2, there was observed an increase in <dU/dλ> during the last ns. The curve for λ = 0.3, 

which was observed as a constant from 5 to 9 ns, shows a decrease in <dU/dλ> from 11 to 13 

ns (Figure 3.2 (b)). Therefore, to verify that, in further simulations, there is no significant 

change in <dU/dλ> and to stabilize the change in <dU/dλ> for the processes where λ = 0.2 

and 0.3, all TI simulations should be run for at least 5 ns longer.  

In the third step of TI simulations of complexmyr conversion to complexpalm when a 

charge was added to the ethyl group, fluctuations in <dU/dλ> were seen for λ = 0.025, 0.3, 

0.5, 0.7 and 0.8 for the first 10 ns, but <dU/dλ> converged to a stable value for λ = 0.4, 0.9 

and 0.975 from 8 to 10 ns and for λ = 0.1 and 0.2 from 6 to 10 ns (Figure 3.2 (c)). After a 

further 4 ns of TI simulations the almost constant lines observed for λ = 0.1 and 0.2 indicated 

a convergence in the value of <dU/dλ>, which was also seen from 11ns for λ = 0.025 and 

from 12 ns for λ = 0.5. Nevertheless, <dU/dλ> for λ = 0.4, 0.7, 0.9 and 0.975, which became 

almost constant by 10 ns, slightly decreased when TI was run for a longer time. 

A TI production step of 1 ns for a simulation of a ligand free in solution takes about 30 

hours, but for ligand and protein complex 40-60 hours of computational time. Within the time 

limitations of this project it was not possible to continue the TI simulation for longer and thus 

the results here were used for the calculation of free binding energy, although it is desirable to 

run the simulations for longer.  
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Figure 3.1 The change in <dU/dλ> over time for the conversion of sodium myristate to 

sodium palmitate in water solution. (a) 1
st
 TI step - charge removal from the 28

th
 hydrogen 

atom, (b) 2
nd

 TI step – the hydrogen atom is changed into an ethyl group, (c) 3
rd

 TI step - 

charge add on the ethyl group.   
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Figure 3.2 The change of <dU/dλ> over time for complexmyr conversion to complexpalm in 

water. (a) 1
st
 TI step - charge removal from the 28

th
 hydrogen atom, (b) 2

nd
 TI step – the 

hydrogen atom is changed into an ethyl group, (c) 3
rd

 TI step - charge add on the ethyl group.  
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3.2 CALCULATION OF THE DIFFERENCE BETWEEN THE FREE ENERGY OF 

MYRISTATE AND PALMITATE BIND TO I-FABP 

In the Introduction section it was explained that from TI simulations can be calculated 

only the difference of free binding energy (∆∆G) between two very similar ligands. To 

calculate ∆∆G, graphs of <dU/dλ> with respect to λ were plotted. As mention before, TI 

simulations cannot be run for λ = 0, and 1. Therefore, <dU/dλ> values for λ = 0 and 1 were 

extrapolated from the other λ values. For myristate converted to palmitate in solution, the 

graphs were plotted after 10 ns of TI simulations (Figure 3.3 (a)). In the case of complexmyr 

conversion into complexpalm the graphs were prepared after 14 ns of simulation (Figure 3.3 

(b)). The difference between <dU/dλ> for these two process, i.e. between the conversion of 

complexmyr into complexpalm and the conversion of myristate into palmitate are plotted against 

lambda in figure 3.3 (c) and were calculated by simply subtracting the lines in 3.3 (a) from 3.3 

(b), e.g. figure 3.3 (c) column 1 is a subtraction of figure 3.3 (a) column 1 from figure 3.3 (b) 

column 1.  

The change in <dU/dλ> with respect to λ for the TI simulations where myristate was 

converted into palmitate is smooth (Figure 3.3 (a)). A relatively smooth change in <dU/dλ> 

with respect to λ was also observed in the case of complexmyr changing into complexpalm, 

where a charge was added to the ethyl group (Figure 3.3 (b) column 3). For the removal of the 

charge from the 28
th

 hydrogen of the myristate the change of <dU/dλ> with λ is smooth, 

except λ = 0.1 and 0.7, which deviate from the general trend of the curves (Figure 3.3 (b) 

column 1). For the conversion of complexmyr into complexpalm, when the 28
th

 hydrogen was 

changed into an ethyl group the change in <dU/dλ> with respect to λ does not form a smooth 

curve (Figure 3.3 (b) column 2). The lack of smooth <dU/dλ> versus λ curves could arise due 

to insufficient conformational sampling at a given λ point, i.e. the point is erroneous or from 
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not having enough λ points. Either way it is likely to contribute to errors in the calculation, 

and continuation of this aspect the project should investigate this.  

Comparing graphs plotted for the conversion of myristate into palmitate and 

complexmyr into complexpalm the graphs for similar production steps of the change in <dU/dλ> 

with respect to λ are mapping similar curves. For example, for the charge removal from the 

28
th

 hydrogen of myristate, curves for the conversion of myristate into palmitate and 

complexmyr into complexpalm both have a negative gradient. Therefore, the graphs for the 

subtraction of <dU/dλ> in figure 3.3 (a) from the <dU/dλ> in figure 3.3 (b) are expected to 

form straight lines with slight or no slope. Although, the tendency to form these straight lines 

is observed in plotted graphs (Figure 3.3 (c)), fluctuation of the change in <dU/dλ> with 

respect to λ is observed.  

Both graphs of <dU/dλ> over time and graphs of <dU/dλ> with respect to λ show that 

TI simulations for complexmyr conversion into complexpalm were not run long enough. 

Therefore, two ΔΔG values were calculated, ΔΔG
*
 was calculated from TI simulations of 

myristate conversion into palmitate and from complexmyr conversion to complexpalm run for 10 

ns, and ΔΔG
**

 was calculated, when TI simulations for the conversion of myristate into 

palmitate was run for 10ns, but TI simulation of complexmyr conversion to complexpalm for 14 

ns. Comparison of these values should give some indication of the likely effects on ΔΔG 

arising from possibly not having been able to run the simulations for long enough. 

The ΔΔG calculation is based on integration of <dU/dλ> with respect to λ. An integral 

of <dU/dλ> is determined by calculation of the area under curves in the prepared graphs of 

<dU/dλ> with respect to λ. The area under the curves, thus integral of <dU/dλ> is determined 

using the trapezium rule. 
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Calculation of ΔΔG was done in two ways. For one method, firstly by calculating the 

areas (A) under the curves of <dU/dλ> with respect to λ for myristate change into palmitate 

(Figure 3.3 (a)) and under the curves of <dU/dλ> with respect to λ for complexmyr conversion 

to complexpalm (Figure 3.3 (b)) for all three TI steps. Next, the difference between the areas 

(ΔA) of complexmyr conversion to complexpalm and myristate conversion to palmitate by 

subtraction was calculated, e.g. ΔA1 (the difference between the areas for the first TI step) is a 

subtraction of A (Figure 3.3 (a) column 1) from A (Figure 3.3 (b) column 1). In the same way 

a calculation was made for the difference in area for the second (ΔA2) and third (ΔA3) TI 

simulation step. ΔΔG is a sum of the ΔA1, ΔA2 and ΔA3 (Figure 3.4 (a)). 

The second ΔΔG calculation used only one integration step since the curves for 

simulations in solution and in the I-FABP complex were subtracted prior to integration, e.g. 

<dU/dλi> (Figure 3.3 (c)) = <dU/dλi> (Figure 3.3 (b)) - <dU/dλi> (Figure 3.3 (a)) for λi.  

Our calculated ΔΔG shows that ΔGM > than ΔGP, i.e. palmitate binds the strongest. To 

verify the obtained ΔΔG and how accurate is our simulation system, ΔΔG was calculated 

from experimentally obtained data. Velkov et al. (2005 and 2007) obtained dissociation 

constants (Kd) of palmitate (KdP) and myristate (KdM) during 1-anilinonaphthalene-8-sulfonic 

acid (ANS) displacement by the ligands in the complex of ANS and I-FABP. Velkov et al. 

(2005 and 2007) performed experiments using three different buffers.  The difference of the 

palmitate and myristate binding energy (ΔΔG) was calculated using equation:  

ΔΔG = ΔGP - ΔGM = RTlnKdP - RTlnKdM = RTln(KdP/KdM) 

In the equation Kd = [L][P]/[PL], where [L] is the concentration of the ligand, [P] is 

the concentration of the protein and [PL] is the concentration of the complex. ΔGdissociation = - 

RTlnKd for the reaction PL → P + L. The ΔGbinding goes in the opposite direction so ΔGbinding 

= RTlnKd; ΔGP = RTlnKdP; ΔGM = RTlnKdM. Calculated ΔΔG from experimental data shows 
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that ΔΔG is dependent on the buffer conditions used. Nevertheless, the calculated ΔΔG are 

similar (Figure 3.4 (c)).Comparing our obtained ΔΔG with the ΔΔG calculated from 

experimental data it is clear that our results overestimate the magnitude of the ΔΔG value, 

although the simulations performed here are in “pure water” compared to the different buffer 

conditions used in the experiments and are thus not directly comparable. Nevertheless, ΔΔG 

calculated from experimental data as well as our calculated ΔΔG show that ΔGM > than ΔGP, 

i.e. palmitate binds the strongest.  
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(a) 

Myristate conversion into palmitate 

   
(b) 

Complexmyr conversion into complexpalm 

   
(c) 

Subtraction of <dU/dλ> in (a) graphs from the <dU/dλ> in (b) graphs 

   
λ 

Column 1 Column 2 Column 3 

 

Figure 3.3 The change of <dU/dλ> with respect to λ (a) TI simulations for the conversion 

of myristate into palmitate, (b) TI simulations for the conversion of complexmyr into 

complexpalm, (c) graphs of <dU/dλ> with respect to λ calculated by subtraction of <dU/dλ> in 

(a) graphs from <dU/dλ> in (b) graphs. Column 1 is 1
st
 TI step - charge removal from the 28

th
 

hydrogen atom, column 2 is 2
nd

 TI step - the hydrogen atom change into an ethyl group and 

column 3 is 3
rd

 TI step - charge was added onto the ethyl group. In each graph λ = 0 has the 

more myristate like parameters for the ligand, λ = 1 the more palmitate like parameters.  
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(a) 

 

Obtained ΔΔG from TI simulations 

Method ΔΔG
 *
, kJ/mol ΔΔG

 **
, kJ/mol 

1. -9.080 -8.816 

2. -7.573 -8.795 

 

(b) 

 

Calculated ΔΔG from reported experimental Kd data 

No 
Buffer 

ΔΔG, 

kJ/mol 

1. 50 mM Tris-HCl, 150 mM NaCl, 1 ml dithiothreitol, 0.5 mM EDTA
 

-1.747
 

2. 50 mM Tris-HCl, 150 mM NaCl
 

-1.220
 

3. 20 mM Tris-HCl
 

-1.380
 

 

Figure 3.4 The difference of the myristate and palmitate free binding energy (ΔΔG), 

while they bind to I-FABP. (a) obtained ΔΔG from TI simulations, where ΔΔG
*
 is calculated 

from TI simulations run for 10 ns, ΔΔG
**

 is calculated from TI simulations of myristate 

conversion to palmitate run for 10 ns and from TI simulations of complexmyr conversion to 

complexpalm, run for 14 ns  (b) Calculated ΔΔG from reported experimental Kd data using 

different buffers. Kd for No 1 ΔΔG calculation is taken from Velkov et al. (2005). While for 

Kd for No 2 and 3 ΔΔG calculation is taken from Velkov et al. (2007). 
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3.3 INVESTIGATING THE FLEXIBILITY OF FREE MYRISTATE IN SOLUTION 

AND OF BOUND MYRISTATE TO I-FABP 

MD simulations of myristate in water and complexmyr in water were run as 10 

consecutive steps, each 1ns long with 1000 frames (co-ordinate sets) written to file. Each 

frame has information about the myristate conformational state. Before clustering the 

myristate co-ordinate sets water molecules and the sodium ion was removed. Two methods 

for conformational analysis of free and I-FABP bound myristate data were used – clustering 

by the average link algorithm and classification by the value of the dihedral angles. Clustering 

by the average link algorithm was performed by atom distance comparison using RMSD. 

Classification by dihedral angles was performed to for each dihedral angle, allocating each 

dihedral angle to a given bin for each given simulation frame, dependent upon the value of the 

dihedral angles. 

Myristate consists of 14 carbon atoms as represented in figure 3.5. Thus, the dihedral 

angle for the 1
st
 dihedral is angle between bond O- C1 and C2-C3 in a chain O-C1-C2-C3.  

 

 

 

 

 
 

Figure 3.5 Formula of myristate, with carbons and dihedral angles labeled the latter in red. 
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3.3.1 Clustering by the average link algorithm 

Conformations of free myristate and bound myristate to I-FABP were grouped into 

clusters from one to five according to their structural similarities. Clustering data is presented 

in figure 3.6.  

Free myristate has one dominant conformation, when conformations are grouped into 

two to five clusters. Grouping myristate conformation into five clusters, the dominant cluster 

consists of 65.2%, whilst the second largest of 29.3% from the total count of myristate 

conformations. Moreover, when myristate conformations were grouped into three clusters 

these two clusters were grouped as one. Therefore, the biggest two clusters, when myristate 

conformations are grouped into five clusters, consist of similar myristate conformations 

(Figure 3.6 (a)). The average RMSD distance of all cluster members from the average 

structure of the cluster is set by default as < 0.6 Å indicating that each representative cluster is 

compact.  

Grouping free myristate conformations into two clusters, the dominant cluster consists 

of 96.5%. Clusters from simulations with myristate bound to I-FABP consist of 54.2% and 

45.8% from the total count of myristate conformations. When the number of clusters grouping 

conformations of bound myristate was increased from two to five the percentage of the 

biggest cluster decreases from 54.2% to 32.5%, while the percentage of the second biggest 

cluster stays unchanged – 45.8% (Figure 3.6 (b)). 

Representative structures of clusters, when conformations of free and bound myristate 

are grouped into five clusters, were observed using pymol (Figure 3.7). For both free and 

bound myristate comparing cluster representative structures by their dihedral angles, the high 

similarity between the two biggest clusters was confirmed. The difference in the angle higher 

than 5ᵒ was observed at the 1
st
, 2

nd
, 6

th
 and 7

th
 dihedrals for free myristate - 60ᵒ, 90ᵒ, 100ᵒ and 
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100ᵒ, respectively (Figure 3.7 (a)). For bound myristate the difference in angle higher than 5ᵒ 

was observed for 3
rd

, 4
th

, 6
th

 and 7
th

 dihedrals, it is about 60ᵒ, 30ᵒ, 90ᵒ and 100ᵒ, respectively 

(Figure 3.7 (b) and (c)).  

Comparing cluster representative structures for the biggest clusters of free and bound 

myristate with the third cluster, respectively,  six and seven dihedrals from the total of twelve 

were found to form a similar angle (maximal angle difference is within 5ᵒ). Five dihedrals 

from the total of twelve were found to form a similar angle comparing the biggest cluster of 

free myristate with either the fourth or the fifth cluster of free myristate. In the case of bound 

myristate six dihedrals were found to form a similar angle comparing the biggest cluster with 

either the fourth or the fifth cluster. 

. Therefore, clusters of bound myristate look like being more similar, than free 

myristate clusters are. However, the sum of conformation of two biggest clusters for free and 

bound myristate is 945 and 783 from total 1000 myristate conformations.  

An important observation was that, when the conformations are grouped into five 

clusters, the biggest clusters of free and bound myristate have extremely high structural 

similarity (Figure 3.8), i.e. the dominant conformation myristate found in the I_FABP bound 

structure is almost identical to the dominant conformation found for myristate free in solution. 

A difference was observed only at the 1
st
 and 2

nd
 dihedral angles. 
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(a) 

Free myristate clusters 

 
(b) 

Bound myristate clusters  

 
Figure 3.6 The clustering of myristate into distinct clusters. The clusters were divided 

from the linkage algorithm based on RMSD between structures from 1000 snapshots saved 

from a 10 ns simulation, with the algorithm being set to return from one to five clusters. (a) 

The diagram represents the cluster connection and the percentage of free myristate 

conformations in each cluster. (b) The diagram represents the cluster connection and the 

percentage of bound myristate conformations in each cluster.  
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(a)  

 Myristate in solution 

 

  
(b)  

 Myristate bound to I-FABP (front view) 

 

  
(c)  

 Myristate bound to I-FABP (90º rotation ) 

 

  
Figure 3.7 Representative structures for five clusters that represent the dominant 

conformations in simulations of myristate free in solution and bound to I-FABP. The 

clusters were derived from the linkage algorithm based on RMSD between structures from 

1000 snapshots saved from 10 ns simulations. (a) Conformational clustering of free myristate 

in solution. Myristate is represented in green, red, black, blue and purple respectively consist 

of 65.2%, 29.3%, 3.5%, 1.7% and 0.3% recorded myristate conformations. (b) 

Conformational clustering of bound myristate to I-FABP (front view). Myristate is 

represented in blue, red, green, purple and black respectively consist of 45.8%, 32.5%, 18.3%, 

3.2% and 0.2% recorded myristate conformations. (c) Conformational clustering of bound 

myristate to I-FABP (90º rotation). Myristate is represented in blue, red, green, purple and 

black respectively consist of 45.8%, 32.5%, 18.3%, 3.2% and 0.2% recorded myristate 

conformations. 
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Front view 90º rotation  

  

 

Figure 3.8 Comparison of the representative conformations for the dominant cluster for 

free and bound myristate. Free myristate is represented in green, bound myristate in blue. 

Five clusters were derived from the linkage algorithm based on RMSD between structures 

from 1000 snapshots saved from 10 ns simulations. 

 

.  
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3.3.2 Clustering by dihedral angles 

 Clustering by dihedral angles was performed for free myristate in solution and for 

bound myristate for each dihedral of myristate, using 36 bins. The distribution of the formed 

angles for each dihedral is represented in graphs (Figure 3.9 and 3.10).  

 The angle distribution at the 1
st
 dihedral for free myristate  was observed as four 

preferred angle ranges centered at 80º, 90º, -120º and -80º. Where first two and last two 

overlap forming two broad bands. At the 2
nd

 to 12
th

 dihedrals free myristate has three 

preferred angle ranges centered at 60º, 175º and -70º. The dominantly preferred angle is 

centered at 175º. 

 The angle distribution at the 1
st
 dihedral for bound myristate was observed as two 

preferred angle ranges. The dominantly preferred angle range is centered at -120º, the second 

preferred angle at -70º. The angle distribution at the 2
nd

, 3
rd

 and 5
th

 dihedrals also was 

observed as two preferred angle ranges. The dominantly preferred angle and the second 

preferred angle are centered at 55º and -70º for the 2
nd

 dihedral, at 175º and -100º for the 3
rd

 

dihedral and at 175º and -70º for the 5
th

 dihedral, respectively. At the 4
th

 and 6
th

 to 12
th

 

dihedrals three preferred angle ranges centered at 65º, 175º and -70º was observed, where the 

dominantly preferred angle is centered at 175º. 

Shannon entropy divided by the maximum possible Shannon entropy (H/Hmax) was 

calculated for each dihedral from the data shown in figures 3.9 and 3.10. H/Hmax values for 

each dihedral are shown in figure 3.11 (a). H/Hmax = 1 refers to the maximal dihedral 

flexibility, while H/Hmax = 0 to the maximal rigidity. Dihedrals of free myristate were 

arranged in order with increasing in flexibility: 5
th

 ≈ 9
th

 < 6
th

 = 10
th

 ≈ 7
th

 = 3
rd

 ≈ 8
th

 ≈ 11
th

 ≈
 
4

th
 

= 12
th

 ≈ 2
nd

 < 1
st
, where H/Hmax increases from 0.60 to 0.88. While dihedrals of bound 
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myristate were arranged in order with increasing in flexibility: 10
th

 < 8
th

 ≈ 5
th

 = 2
nd

 = 12
th

 ≈ 9
th

 

= 1
st
 ≈ 3

rd
 < 11

th
 < 7

th
 < 4

th
 < 6

th
. H/Hmax for bound myristate increases from 0.54 to 0.76.  

Comparing H/Hmax values at the same dihedral between free and bound myristate was 

confirmed that myristate became more rigid, when it binds to I-FABP. Dihedrals of myristate 

were arranged in order of the decreasing change of flexibility: 11
th

 ≈ 3
rd

 < 10
th

 = 8
th

 ≈12
th

 ≈ 

2
nd

 < 1
st
. It is intriguing that myristate became more flexible at the 6

th
 dihedral, when it binds 

to I-FABP. No change in flexibility at the 4
th

, 5
th

, 7
th

 and 9
th

 dihedrals was observed as the 

change in H/Hmax ≤ 0.3. 

The correlation coefficient of each dihedral angle was calculated to compare the angle 

distribution between free and bound myristate (Figure 3.11 (b)). The correlation coefficient = 

1 refers to the identical angle distribution. Dihedrals were arranged in order with increasing 

similarity between free and bound myristate angle distribution: 2
nd

 < 1
st
 < 6

th
 < 4

th
 < 3

rd
 ≈ 7

th
 = 

12
th

 ≈ 5
th

 = 8
th

 ≈ 9
th

 = 11
th

 ≈ 10
th

. The smallest correlation coefficient < 0.25 was observed at 

the 1
st
 and 2

nd
 dihedrals. Thus, at this dihedrals angle distribution difference is the highest. 

The correlation coefficient for the 6
th

 dihedral is 0.88, for the 3
rd

 to 5
th

 and 7
th

 to 12
th

 is > 0.90, 

which indicates that free and bound myristate have very similar angle distribution at these 

dihedrals. 
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Figure 3.9 Myristate clustering by dihedral angles using 36 bins of 10º (dihedrals 1
st
 to 6

th
). The angle distribution at dihedrals for free 

myristate is presented in blue, for bound myristate in red.   
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Figure 3.10 Myristate clustering by dihedral angles using 36 bins of 10º (dihedrals 7
th

 to 12
th

). The angle distribution at dihedrals for 

free myristate is presented in blue, for bound myristate in red. 
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(a) 

Dihedral 

number 

H/Hmax 

Myristate in 

solution 

Myristate 

bound to I-

FABP 

Palmitate in 

solution 

Palmitate bound to 

I-FABP 

1
st
 0.88 0.60 0.89 0.47 

2
nd

 0.71 0.58 0.73 0.40 

3
rd

 0.67 0.61 0.61 0.49 

4
th

 0.70 0.73 0.67 0.43 

5
th

 0.60 0.58 0.58 0.60 

6
th

 0.65 0.76 0.58 0.49 

7
th

 0.67 0.70 0.71 0.59 

8
th

 0.68 0.57 0.65 0.64 

9
th

 0.61 0.60 0.67 0.51 

10
th

 0.65 0.54 0.71 0.70 

11
th

 0.69 0.64 0.65 0.51 

12
th

 0.70 0.58 0.62 0.61 

13
th

 - - 0.67 0.63 

14
th

 - - 0.65 0.73 

 

(b) 

Dihedral number 
Correlation coefficient 

Myristate Palmitate 

1
st
 0.24 0.55 

2
nd

 0.11 0.01 

3
rd

 0.94 0.96 

4
th

 0.91 0.90 

5
th

 0.96 0.05 

6
th

 0.88 0.98 

7
th

 0.95 0.85 

8
th

 0.96 0.96 

9
th

 0.98 0.92 

10
th

 0.99 0.77 

11
th

 0.98 0.98 

12
th

 0.95 0.98 

13
th

 - 0.81 

14
th

 - 0.97 

 

Figure 3.11 The determination of the change in myristate and palmitate flexibility, when 

myristate and palmitate binds to I-FABP. (a) Shannon entropy divided by the maximal 

possible Shannon entropy (H/Hmax), where H/Hmax = 1 refers to the maximal possible 

flexibility and H/Hmax = 0 to the minimal possible flexibility (maximal rigidity). (b) The 
correlation coefficient for the angle distribution each dihedral between free and bound 

myristate and palmitate (H/Hmax and correlation coefficient values for palmitate are taken 

from Durrant, 2012).  
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4 DISCUSSION 

4.1 CONVERGENCE OF TI SIMULATIONS 

The graphs recording the change in <dU/dλ> over time for the conversion of myristate 

into palmitate show that the processes for all λ and all production steps have been run long 

enough, all curves are observed as almost straight lines.  

In the case of the conversion of complexmyr into complexpalm, convergence was 

observed only for some λ values after being run for 14 ns. However, for most λ values 

complexmyr has higher energy changes and needs to be simulated for a longer time for the 

energy to converge to a stable value compared to the free myristate simulation. Slow 

convergence of ensemble averages and high energy changes indicate greater conformational 

changes within the system and highlight the importance of protein flexibility. Within the time 

limitations of this project it was not possible to continue the TI simulation for longer and thus 

the results here were used for the calculation of free binding energy, although it is desirable to 

run the simulations for longer. 

The convergence of our TI simulations was compared with a replicate study (Durrant 

2012). Most conditions of TI simulations for both projects were set up as the same. The 

difference between the projects is set up of pressure relaxation time 0.2 ns and 1 ns, in this 

project and Durrant‟s project, respectively.  

Expected convergence of TI simulation for myristate conversion into palmitate was 

observed only for production step 1 and step 3 after 10 ns (Durrant 2012). Despite observed 

convergence, the fluctuation of <dU/dλ> over time is higher than it was observed in our TI 

simulation for the same steps. Moreover, for the conversion of myristate into palmitate when 

the 28
th

 hydrogen was changed into an ethyl group, and for the some step for the conversion 
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of complexmyr into complexpalm, high fluctuation of <dU/dλ> over time after was observed in 

the 10 ns length TI simulations. The change of 28
th

 hydrogen into an ethyl group causes 

higher conformational changes than the removal and addition of charge. Thus, for the TI 

simulation for the conversion of myristate into palmitate, production step 2 requires a longer 

simulation time (Durrant 2012). The fluctuation of <dU/dλ> over time in Durrant‟s project 

was observed as greater in all three TI simulation steps. Thus, stabilization of energy changes 

within the system proceeds faster when a smaller pressure relaxation time is used.  
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4.2 THE DIFFERENCE BETWEEN THE BINDING FREE ENERGY OF 

MYRISTATE AND PALMITATE  

To calculate ∆∆G, graphs of <dU/dλ> with respect to λ were prepared. For the TI 

simulations, where myristate was converted into palmitate, curves for the change in <dU/dλ> 

with respect to λ are smooth. A relatively smooth change in <dU/dλ> with respect to λ was 

observed in the case of the conversion of complexmyr into complexpalm, where a charge was 

added to the ethyl group, the step 3. While the change in <dU/dλ> with respect to λ for the 

removal of the charge from the 28
th

 hydrogen of myristate in the conversion of complexmyr 

into complexpalm is smooth excluding λ values of 0.1 and 0.7. The reason for λ values of 0.1 

and 0.7 not following the rest of the curve could be that there was not appropriate 

convergence to a constant value of the <dU/dλ> over time, or it may indicate that more λ 

points are needed around these values to map the curve properly. For the conversion of 

complexmyr into complexpalm, when the 28
th

 hydrogen was changed into an ethyl group the 

change in <dU/dλ> with respect to λ does not form a smooth curve, therefore, it is likely to 

give a bigger error in the ΔΔG calculation.  

In our study smooth curves of <dU/dλ> with respect to λ were observed for the 

conversion of myristate into palmitate for all three production steps. It is intriguing that TI 

simulations for the conversion of myristate into palmitate for production step 2 do not have 

the expected convergence; nevertheless the change of <dU/dλ> with respect to λ is 

represented as smooth curves. In the Durrant‟s replicate study the change of <dU/dλ> with 

respect to λ for the conversion of complexmyr into complexpalm does not form smooth curves 

(Durrant, 2012). Moreover, the change of <dU/dλ> with respect to λ for the conversion of 

complexmyr into complexpalm in the replicate study is more chaotic than was observed in our 
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study. Therefore, in this study the calculated ΔΔG should be more close to the ΔΔG value that 

could be obtained if the TI simulations could be run for longer.  

Both my study and Durrant‟s study graphs of <dU/dλ> over time and graphs of 

<dU/dλ> with respect to λ show that the TI simulations for the conversion of complexmyr into 

complexpalm were probably not run for long enough. Therefore, two ΔΔG values with the aim 

to predict ΔΔG value, which could be obtained when TI simulations run long enough, were 

calculated. The calculated ΔΔG values using the first method (described on page 61) after 10 

ns and 14 ns TI simulations are -9.090 kJ/mol and -8.816 kJ/mol, respectively. Using the 

second method (described on page 61) ΔΔG values are -7.573 kJ/mol and -8.795 kJ/mol. The 

difference between both methods after 10 ns and 14 ns is about 18.1% and 0.2%, respectively. 

The second method for ΔΔG calculation uses fewer integration steps, thus making it more 

precise. Moreover, in the complexmyr system greater energy changes were observed after 

production step 2 for 10 ns TI simulations. Thus, the first method can have higher calculation 

error and differs more.  

Our results show that ΔΔG is about -9 kJ/mol. Therefore, even whilst the 14 ns long 

TI simulations of complexmyr conversion into complexpalm do not indicate appropriate 

convergence; the calculated ΔΔG values vary little as the simulation is extended. 

In the replicate study, ΔΔG calculated using the second method was -9.164 kJ/mol 

after 10 ns TI simulation. As was mentioned above ΔΔG calculated by Durrant (2012) will a 

have higher uncertainty than our calculated ΔΔG due to higher energy fluctuation. 

Our calculated ΔΔG shows that ΔGM > ΔGP. Thus, palmitate binds stronger to I-FABP 

than myristate does. This was reported by Velkov et al. (2005 and 2007). Therefore, our 

calculated ΔΔG shows that our system is qualitatively comparable with experimental data. 

Nevertheless, ΔΔG is about five to seven times smaller than the ΔΔG calculated from the 
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experimental Kd values. These Kd values were obtained in experiments under varied 

conditions (Velkov et al., 2005, Velkov et al., 2007), resulting in varied experimental ΔΔG 

values. Thus, it could be assumed that the difference between our ΔΔG value and 

experimental ΔΔG values is due to different conditions. However, the difference between 

experimental ΔΔG values is small, while the difference between our calculated and 

experimental ΔΔG is about 5-7 times higher. Thus, it is likely that this difference is due to 

insufficient sampling or inadequate force fields within our simulated system. Therefore, our 

system is not quantitatively adequate and requires optimization. In further research an 

improvement in the system is required so that ΔΔG is close to experimental values.  

When the simulated system is optimized, TI simulations for artificially restricted 

myristate can be run. . The optimized system and TI integration data for genuinely flexible 

and artificially restricted myristate can be further used to calculate ΔΔG. The difference 

between the values can give an idea as to whether flexibility of FAs is important for stronger 

binding to FABP proteins. 
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4.3 INVESTIGATING THE FLEXIBILITY OF FREE MYRISTATE IN SOLUTION 

AND OF MYRISTATE BOUND TO I-FABP 

As our system is qualitatively comparable to the experimental data, MD simulations 

were performed, and conformations of myristate were grouped into clusters. Clustering results 

allowed suggestions to be made about potential bond and angle restrictions that can be used in 

further investigation. 

4.3.1 Clustering by the average link algorithm 

Grouping conformations of myristate by RMSD (set by default as < 0.6 Å) into 

distinct sets from one two five it was observed that myristate free in solution has one 

dominant conformation, while bound myristate forms two large clusters. Grouping myristate 

conformations into five clusters the biggest cluster of free myristate consists of 65.2% while 

two biggest clusters of bound myristate consist of 45.8% and 32.5% from the total count of 

myristate conformations (Figure 3.6). It could be true that the formation of a dominant cluster 

while myristate is free in solution is essential for myristate binding to I-FABP. Moreover, the 

dominant conformation of free myristate was found as highly similar to the myristate 

conformation when it binds to I-FABP (Figure 3.8). Therefore, the formation of a dominant 

conformation might be a driving force for myristate‟s strong binding to I-FABP. 

Although, higher similarity was observed comparing five bound myristate clusters 

between them (described on pages 66 and 67), the sum of conformation of two biggest 

clusters for free myristate is bigger than it is for bound myristate, respectively, 945 and 783 

from total 1000 myristate conformations. From this comparison it is hard to justify whether 

conformations of bound myristate are   more similar than conformations of free myristate. 

Moreover, the higher similarity could suggest, but cannot indicate whether free or bound 

myristate is more rigid, thus clustering by dihedral angles was performed. 
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4.3.2 Clustering by dihedral angles 

Clustering by dihedral angles was performed for each dihedral of free myristate in 

solution and bound myristate, using 36 bins. The angle distribution for each dihedral is 

represented in graphs (Figure 3.9 – 3.10). This dihedral analysis confirms that free myristate 

differs in angle range from bound myristate only at the 1
st
, 2

nd
 and 3

rd
 dihedrals (Figure 3.9 – 

3.10).  The 1
st
, 2

nd
 and 3

rd
 dihedrals are positioned at the head group of myristate. It was 

reported that FAs binds to FABP protein with their head groups while their aliphatic tail 

group moves freely (Woolf and Tychko, 1998). The same was observed in our clustering 

results. 

 The preferred angle range at the 1
st
, 2

nd
 and 3

rd
 dihedrals of myristate becomes more 

concise upon myristate binding to I-FABP indicating that free myristate is more flexible at 

these dihedrals than bound myristate. Important to note that myristate binding to I-FABP as 

well leads to a change in the angle distribution at the 2
nd

 dihedral angle.  

In the replicate study, MD simulations using the same simulation conditions were 

performed for palmitate. Clustering by dihedral angles was performed for each dihedral of 

free palmitate in solution and bound palmitate, using 36 bins (Durrant, 2012). The structure of 

palmitate differs from myristate by an additional ethyl group instead of the myristate‟s 28
th

 

hydrogen.  

Comparing the angle distribution for free myristate and free palmitate (Durrant, 2012) 

no high differences in the preferred angle ranges were observed. However, comparing the 

angle distribution for bound myristate and bound palmitate different preferred angle ranges at 

the 2
nd

, 4
th

 to 6
th

 dihedrals were observed. At the 4
th

 and 6
th

 dihedrals bound palmitate has 

only one preferred angle range while bound myristate has three preferred angle ranges. The 

dominantly preferred angle range for bound myristate and the only angle range for bound 
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palmitate are centred at 175º. The additional angle ranges for bound myristate indicate that at 

the 4
th

 and 6
th

 dihedrals bound myristate is more flexible than bound palmitate.   

At the 2
nd

 and 5
th

 dihedrals the preferred angle ranges are shifted differently for bound 

myristate and bound palmitate. At the 2
nd

 dihedral bound palmitate has only one dominate 

preferred angle range centred  at -70º, while bound myristate forms two, the dominantly 

preferred angle range is centred at 55º and the second preferred angle range at -70º. At the 5
th

 

dihedral, bound palmitate has three preferred angle ranges, the dominant at -75º, and the other 

two at 50º and 180º. While bound myristate forms two preferred angle ranges, the dominant at 

175º and the second at -70º.  

Crystal structures of FA interaction with FABPs show that the crystal structure of the 

protein-ligand complex indicated that FA may penetrate FABP with either aliphatic tail 

(Stewart, 2000, Zimmerman and Veerkamp, 2002, Thompson et al., 1997) or carboxylate 

(Stewart, 2000, Zimmerman and Veerkamp, 2002, Wolfrum and Spener, 2000, Haunerland 

and Spener, 2004, Sacchettini et al., 1989). In the most cases when FA penetrates FABP 

either with aliphatic tail or carboxylate FA are half buried in the FABP, but it can be buried in 

the FABP fully. For example, Tsfadia et al. (2007) showed that palmitate penetrates Toad-

liver FABP with the carboxylate group.  At the first palmitate is half buried into Toad-liver 

FABP, the carboxylate group is interacts only with Q56. Further, the carboxylate penetrates 

deeper into the Toad-liver FABP cavity there it becomes stabilized by Q56 and H58 (Tsfadia 

et al., 2007).  

Palmitate is longer than myristate by an additional ethyl group. As was mentioned 

above there is a difference in preferred dihedral angle ranges for myristate and palmitate. 

Thus, an additional ethyl group in palmitate should play a role in this difference.  It might be 

that due to the additional group the tail of palmitate interacting with the I-FABP and is forced 
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to penetrate I-FABP deeper than myristate does. Although this has not been investigated, 

higher restriction and difference in the angle distribution comparing to myristate might be 

explained by the deeper palmitate penetration into I-FABP. Thus, it could be, due to this 

palmitate binds stronger to I-FABP than myristate does. However, the extra carbon atoms 

should increase the van der Waals interaction and the hydrophobic effect to enhance binding, 

which should improve the binding affinity. Thus, it might be that the bigger flexibility of free 

palmitate in comparison to free myristate does not play a role in the stronger binding to I-

FABP. 

4.3.2.1 The change in myristate flexibility during its binding to I-FABP  

H/Hmax was used as a measure of dihedral flexibility. Dihedrals of free myristate were 

arranged in order with increasing flexibility: 5
th

 ≈ 9
th

 < 6
th

 = 10
th

 ≈ 7
th

 = 3
rd

 ≈ 8
th

 ≈ 11
th

 ≈
 
4

th
 = 

12
th

 ≈ 2
nd

 < 1
st
, while dihedrals of bound myristate were arranged in order with increasing 

flexibility: 10
th

 < 8
th

 ≈ 2
nd

 = 5
th

 = 12
th

 ≈ 1
st
 = 9

th
 ≈ 3

rd
 < 11

th
 < 7

th
 < 4

th
 < 6

th
. H/Hmax for free 

myristate ranges from 0.60 to 0.88 at different dihedrals. Similar H/Hmax values from 0.58 to 

0.89 were calculated for free palmitate in the replicate study (Figure 3.11 (a)); indicating that 

flexibility of myristate at each dihedral is different. The most flexible free myristate and free 

palmitate are at the 1
st
 dihedral. This was expected, as the 1

st
 dihedral angle is formed 

between O-C1 and C2-C3, where C1 is bound to two oxygens which rotate freely around C1-C2 

bond.  

Myristate and palmitate binds to I-FABP with the head group. Thus, it was expected 

the head group will be the most rigid, when FAs binds to I-FABP. However, bound myristate 

is the most rigid at the 10
th

 dihedral, where H/Hmax is 0.54. H/Hmax for the 1
st
 and 2

nd
 and 3

rd
 

dihedrals is just a bit lower than the average H/Hmax = 0.62. In comparison bound palmitate is 
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the most rigid at the first four dihedrals (Figure 3.11 (a)), indicating that palmitate movements 

are restricted at these dihedrals by the interaction with the protein.  

Although, the bound myristate is the most rigid at the 10
th

 dihedral, the decrease in 

flexibility when myristate binds to I-FABP is at the first dihedral. Dihedrals of myristate were 

arranged of the decreasing change of flexibility: 11
th

 ≈ 3
rd

 < 10
th

 = 8
th

 ≈12
th

 ≈ 2
nd

 < 1
st
. It is 

intriguing that when myristate binds to I-FABP it becomes more flexible at the 6
th

 dihedral. 

At the 4
th

, 5
th

, 7
th

 and 9
th

 dihedrals no change in flexibility was observed. In the replicate study 

palmitate had the largest decrease in flexibility at the 1
st
, 2

nd
 and 4

th
 dihedrals, the largest 

increase in flexibility at the 14
th

 and no change was observed at 5
th

, 8
th

, 10
th

, 12
th

 and 13
th

. 

4.3.2.2 Correlation coefficient 

Correlation coefficients for each dihedral angle were calculated to compare the 

similarity of the angle distribution between free and bound myristate. Dihedrals were arranged 

in order of increasing similarity between their free and bound myristate angle distribution is: 

2
nd

 < 1
st
 < 6

th
 < 4

th
 < 3

rd
 ≈ 7

th
 = 12

th
 ≈ 5

th
 = 8

th
 ≈ 9

th
 = 11

th
 ≈ 10

th
. The highest difference 

between the free and bound myristate angle distribution was observed at the 1
st
 and 2

nd
 

dihedrals, with correlation coefficients of 0.24 and 0.11, respectively, reflecting that myristate 

changes its preferred angle range for these dihedrals when it binds to I-FABP. At the other 

dihedrals, high similarity between free and bound myristate angle distribution was observed. 

The correlation coefficient at these dihedrals is > 0.94; except for the 4
th

 and 6
th

 it is 0.91 and 

0.88, respectively.  

During binding to I-FABP myristate adapts to the most energetically favorable 

conformation. An important fact is that the conformation of free myristate is very similar to 

the conformation when it is bound to I-FABP. The biggest differences between the free and 

bound myristate angle distribution and the biggest increase in the flexibility was observed at 
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the 6
th

 dihedral, excepting the 1
st
 and 2

nd
 dihedrals which have already been discussed. The 

correlation coefficients calculated for palmitate dihedrals in the replicate study were reported 

as 0 for the 2
nd

 and 5
th

 and as 0.55 for the 1
st
 indicating that there were no similarities between 

free and bound palmitate angle distribution  at these dihedrals. For the other dihedrals the 

correlation coefficients were < 0.85, except the 10
th

 and 13
th

 dihedrals, where it was 0.77 and 

0.81, respectively (Figure 3.11 (b)).  

Comparing the correlation coefficients for myristate and palmitate, myristate has half 

smaller correlation coefficient at the 1
st
 dihedral, indicating that the 1

st
 dihedral of myristate 

undergoes higher conformational changes than it does in palmitate. The correlation coefficient 

for myristate and palmitate at the 2
nd

 dihedral is 0.11 and 0.01, respectively (Figure 3.11 (b)). 

However, at the 2
nd

 dihedral palmitate has a smaller correlation coefficient, a shift in the 

preferred angle range been observed for both FAs upon their binding to I-FABP. The 

correlation coefficient at the 5
th

 dihedral for myristate indicates that the conformations of 

bound and free myristate are very similar at this dihedral. While the correlation coefficient at 

the 5
th

 dihedral for palmitate indicates that they have no similarities. It might be that the 

changes at the 5
th

 dihedral of palmitate are required to maintain an energetically favorable 

conformation for binding to I-FABP. At the 10
th

 dihedral, the correlation coefficients for 

myristate and palmitate are 0.99 and 0.77, indicating that palmitate undergoes bigger 

conformational changes at this dihedral. However, the changes between conformation of free 

and bound palmitate are small. The correlation coefficients at the other dihedrals of myristate 

and palmitate are similar.  

4.3.2.3 Is flexible FA stronger binding to I-FABP putative?  

Comparing our myristate dihedral clustering and palmitate clustering by Durrant (2012) 

was suggested that  due to two extra carbon atoms palmitate penetrates might penetrate I-
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FABP deeper resulting in the higher torsion restriction and difference in the angle distribution 

Palmitate becomes more rigid at the first four dihedrals, while myristate only at the first two. 

It might be that palmitate restriction at these four dihedrals causes the increase in the rigidity 

in the remaining molecule. As well it might be that the dihedral changes are due to the 

different binding conformations of myristate and palmitate. 

Myristate does not penetrate I-FABP as deep. Thus, the dynamics of the torsions in the 

head group of the bound myristate and bound palmitate might be different causing the 

palmitate to bind stronger to I-FABP. . As well it might be that palmitate binds stronger to I-

FABP due to additional ethyl group allows palmitate to penetrate I-FABP deeper and not due 

to an increase in rotatable bonds. Thus, it might indicate that flexible FA strong binding to I-

FABP is putative. It is assumed that FAs may have the best fit in the I-FABP cavity, which 

allows them to bind stronger to the protein than rigid ligands do. 
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4.4 FURTHER STUDIES 

Our clustering results by dihedral angle show that during myristate binding to I-FABP 

myristate became more rigid at the 1
st
 and 2

nd
 dihedrals and more flexible at the 6

th
. 

Therefore, the restriction of myristate should be considered at these dihedrals for the purpose 

to calculate the free energy effect of restriction. In the further studies TI simulations for 

conversion of artificially rigid myristate into flexible myristate should be performed and the 

difference of the free binding energy between artificially rigid and flexible myristate should 

be calculated (ΔΔGR-F). 

The restriction of free myristate at the 1
st
 dihedral to imitate the dominant 

conformation of bound myristate is expected to affect the loss of entropy. Artificially rigid 

myristate may lose less entropy as common dogma states and thus bind better. Therefore, a 

decrease in ΔΔGR-F would show that introduced rigidity improves myristate binding to I-

FABP. While, a positive ΔΔGR-F value would indicate that genuinely flexible myristate binds 

to I-FABP stronger than artificially rigid myristate does.  

As it was discussed before when myristate binds to I-FABP at most of the dihedrals it 

becomes rigid. However, the bound myristate is more flexible at the 6
th

 dihedral than when it 

is free in solution. Thus, a restriction of bound myristate at the 6
th

 dihedral to imitate the 

dominant conformation of free myristate could show if an increase in the flexibility at this 

dihedral supports bound myristate formed conformation similar to the conformation when it is 

free in solution. The importance of flexibility would be confirmed by a decrease in ΔΔGR-F 

value. 

The 2
nd

 dihedral as well should be considered for a restriction. When myristate binds 

to I-FABP, at this dihedral a shift in the preferred angle range was observed and myristate 

became more rigid around this torsion. . The restriction of bound myristate at this dihedral to 
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imitate the dominant conformation of free myristate by making the 2
nd

 dihedral angle of free 

myristate 180ᵒ big could give us evidence of how the conformation of myristate affects its 

binding to I-FABP. It could be true that the dominant conformation of free myristate is 

important for its interactions with the protein. Nevertheless, the restriction may not lead to 

binding. The binding to I-FABP of the artificially restricted myristate can be simulated even if 

the restriction would not lead to the myristate and I-FABP binding in an experimental system. 

Therefore, the change in ΔΔGR-F would show how big the effect of the conformational 

restriction on the binding of myristate and I-FABP is.  
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4.5 SUMMARY 

TI simulations of the conversion of myristate into palmitate in solution indicate a rapid 

convergence of <dU/dλ>. TI simulations of the conversion of complexmyr into complexpalm 

proceeded with greater conformational changes within the system. Therefore, these TI 

simulations need to continue until the energy of the system becomes constant for all λ. In 

comparison to the Durrant‟s study, where pressure relaxation time was 1 ns, pressure 

relaxation time 0.2 ns used in our studies allows for faster convergence of TI simulations. 

The calculated ΔΔG is around -9 kJ/mol for TI simulations run for 10 ns and 14 ns. 

Although the curves of <dU/dλ> for individual λ do not appear to completely converge, the 

calculated ΔΔG values vary little as the simulation is extended.  Subsequently minimal ΔΔG 

changes are expected after further TI simulations are continuation.  

 Our ΔΔG is quantitatively different from the experimental data (Velkov et.al. 2005, 

Velkov et.al. 2007). This could be due to incomplete sampling (particularly of the slower 

protein motions), due to inadequacies in the force field or indeed inadequacies in the 

conditions used, although the first two reasons are more likely. Nevertheless, the negative 

value of ΔΔG, calculated from both ours and the Velkov et al. (2005 and 2007) data shows 

that palmitate binds to I-FABP stronger than myristate does. Therefore, the system can be 

used as a qualitative model in the investigation of the role of ligand flexibility in the binding 

of myristate to I-FABP. Nevertheless, optimization of the system would be advisable to make 

it match the experimental data more closely. 

 Clustering by the average link algorithm showed that both free myristate and bound 

myristate have a dominant conformation. Whilst binding to I-FABP, myristate becomes more 

rigid close to the head group. Change in conformation was also observed in the head group 

accompanied by a change in conformational preference.  
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At the 6
th

 dihedral bound myristate is the most flexible, but at the 10
th

 dihedral it is the 

most rigid. However, the 1
st
 and 2

nd
 dihedrals experience the biggest decrease in flexibility, 

upon binding I-FABP compared to the others dihedrals.  

It is assumed that the more flexible palmitate may bind stronger to I-FABP due to its 

ability to penetrate I-FABP more than myristate can. Thus, it might indicate that flexible FA 

strong binding to I-FABP is putative. Thus, it might be that the structure of I-FABP and the 

structure of the protein cavity are favorable for FAs penetration and strong binding to I-

FABP. 

The restriction of the rotation around a dihedral in silico will lead to a measurable 

change in ΔΔGR-F. If we work on the assumption that flexibility could somehow be beneficial 

in the thermodynamics of myristate binding to I-FABP, then restricting myristate at the 1
st
 

dihedral should make ΔΔGR-F more negative, but at the 6
th

 dihedral should make ΔΔGR-F less 

negative.  

Thus, the simulations presented here provide a good basis for system optimization to 

qualitatively and quantitatively understand the role of flexibility in myristate binding to I-

FABP, thereby resolving the potential anomaly that was described in the introduction.  
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Project 2:  

STUDYING THE EFFECT OF THE BACTERIAL NDK PROTEINS ON 

HAEMOPOIETIC STEM CELLS 



 

 

ABSTRACT 

Leukaemia patients lack immunity, thus they are more responsive to bacterial 

infections. Moreover, infections are likely to worsen the leukaemia prognosis. It might be that 

bacterial invasion can affect leukaemia cells, by rendering the latter more aggressive, or even 

by stimulating cell proliferation. 

Previous research has indicated that overexpression of NM23-H1 is related with poor 

prognosis of leukaemia patients. Moreover, additional rNM23-H1 is able to bind to more 

mature cells and indirectly promote leukaemia and healthy stem cell survival and 

proliferation. High structural similarity in NDK proteins may lead to functional similarity. 

Thus, additional bacterial NDK protein may indirectly promote leukaemia, healthy stem cell 

survival and proliferation as it was shown using rNM23-H1.  

In our project we optimized purification of CD34
+ve 

reaching 75.8 - 85.7% high purity. 

The positive control (rNM23-H1) failed to work; hence no suggestions can be made about 

rNDK effect on cord blood stem cells. The fail of positive control can be explained by 

possible rNM23-H1 activity loss due to protein aggregation after purification. Furthermore, 

the protocol of cord blood storage used for CB samples from previous studies was altered in 

our study. This change could affect CD34
-ve

 and/or CD34
+ve

 cell activity. Based on the latter, 

our study aimed to explore valuable directions for future research.
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1 INTRODUCTION 

 The immune system is an important biological system which acts with the aim to 

protect the body against infections caused by bacteria, parasites, fungi and viruses. Blood 

cells such as macrophages, neutrophils, mast cells, eosinophils, basophils, and natural killer 

cells are involved in defense of the body (Janeway et al., 2005). 

 Formation of normal haemopoietic cells is disrupted in leukaemia patients; thus 

leukaemia patients lack immunity (Wang and Dick, 2005) and are more responsive to 

bacterial infections (Bucaneve et al., 2007). Moreover, infections are likely to worsen 

leukaemia prognosis. It might be that bacterial invasion can affect leukaemia cells making 

them more aggressive or somehow the bacteria may support leukaemia cell proliferation. 

The nucleoside diphosphate kinase (NDK) protein family includes is highly conserved 

and includes bacterial and eukaryotic proteins such as human non-metastatic protein 23 

(NM23) group. Most of the work on human NDK protein (NM23 protein) in leukaemia has 

been carried out in a recent past by Okabe-Kado and Willems, who focused mainly on 

expression of human non-metastatic protein 23 (NM23) by haemapoietic cells and 

investigated the effect of additional NM23 proteins on healthy haemapoietic and leukemia 

cells. Since then has been shown that overexpression of NM23 homologue 1 (NM23-H1) is 

related with patient poor prognosis (Steeg et al., 1988, Yokoyama et al., 1996, Willems et al., 

1998, Niitsu et al., 2000, Okabe-Kado et al., 2002, Okabe-Kado et al., 2009). Additional 

NM23 proteins can inhibit differentiation of healthy and leukaemia cells (Okabe-Kado et al., 

1988, Okabe-Kado et al., 1992, Okabe-Kado et al., 1995) or alter cytokine induced 

differentiation (Willems et al., 2002), and promote acute myeloid leukaemia (AML) cell 

survival (Okabe-Kado et al., 2009). Lilly et al (2011) showed the most important finding in 

NM23 protein investigation, where additional recombinant (rNM23-H1) protein can bind to 

http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Neutrophil_granulocyte
http://en.wikipedia.org/wiki/Mast_cell
http://en.wikipedia.org/wiki/Eosinophil_granulocyte
http://en.wikipedia.org/wiki/Basophil_granulocyte
http://en.wikipedia.org/wiki/Natural_killer_cell
http://en.wikipedia.org/wiki/Natural_killer_cell
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more mature CD34
lo

/CD11b
+ve

 cells and indirectly promote survival and proliferation of 

healthy and leukaemia stem cells (CD34
+ve

). Because bacterial and eukaryotic NDK proteins 

are highly conserved, we hypothesize that bacterial NDK proteins will act on leukaemia cells 

as it was observed by Lilly et al (2011) using the NM23-H1 protein.  
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1.1 HAEMOPOIESIS 

The process of blood cell formation from haemopoietic stem cells (HSCs) is called 

haemopoiesis. Differentiation of HSCs promotes formation of various blood cell lineages 

(Figure 1.1). Blood cells are divided into red and white cells, where red cells incorporate the 

erythroid lineage. White cells are divided into myeloid and lymphoid cells (Hoffbrand et al., 

2008).  

1.1.1 Haemopoietic stem cells (HSCs) 

HSCs have multipotent stem cell capacity, as they are able to differentiate into 

haemopoietic progenitor cells, which can further differentiate and maturate into various 

haemopoietic cells (Figure 1.1). Moreover, HSCs are capable of self-renewal. Thus, HSCs 

produce transit amplifying cells and then split into differentiated lineages (Hoffman et al., 

2009). Progenitor cells differentiate and forms colony forming units (CFUs) (Figure 1.1). 

Further differentiation lead to mature blood cells. Despite progenitor cell ability to 

differentiate, they and their successors do not have self-renewal potential. Therefore, all blood 

cells can only be derived by HSC differentiation (Hoffbrand et al., 2008).  

In murine bone marrow, the ratio of HSCs to the total amount of blood cells is one in 

10,000 to 100,000. HSCs can be distinguished into long-term and short-term HSCs (LT-HSCs 

and ST-HSCs, respectively). Most of the HSCs are LT-HSCs that are. When LT-HSCs leave 

the steady state they become ST-HSCs that have the potential to differentiate into mature 

blood cells. LT-HSCs have the highest self-renewal potential. Moreover, in vivo studies have 

shown that ST-HSCs have limited self-renewal potential as they disappeared after 4-6 weeks 

(Coulombel, 2004). 
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Figure 1.1 Formation of blood cell lines. LT-HSC and ST-HSC - long term and short term 

haemopoietic stem cells, BFU – burst forming unit, CFU – colony forming unit, Baso – 

basophil, E – erythroid, Eo – eosinophil, G – granulocyte, GEMM – granulocyte, erythroid, 

monocyte and megakaryocyte, GM – granulocyte, monocyte, GMEo – granulocyte, monocyte 

and eosinophil, M – monocyte, Meg – megakaryocyte. (Reproduced from Hoffman et al, 2009 

and Hoffbrand et al, 2006) 



MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 110 of 190 

 

The main site of haemopoiesis in adults is bone marrow. HSCs and progenitor cells 

differentiate here and usually do not leave the bone marrow. Nevertheless, they are able to 

exit the bone marrow as they are found in peripheral blood in low numbers. High migration of 

HSCs occurs in haematological malignancies (Hoffbrand et al., 2008, Hoffman et al., 2009). 

Bone marrow is distinguished into two niches – endosteal and vascular (Figure 1.2). 

The endosteal niche is formed by osteoblasts, stromal fibroblasts and CXCL12-abundant 

reticular cells. These cells are involved in the regulation of HSC number and their function. 

HSCs found in endosteal niche are quiescent. Osteoblasts are maintaining HSC self-renewal. 

Migration of HSCs to a vascular niche leads HSCs to become active. Thus, in the vascular 

niche HSCs proliferate and differentiate (Buske et al., 2002, Wilson and Trumpp, 2006, Lilly, 

2011). 

 

 

 

Figure 1.2 Bone marrow niches. (Reproduced from Wilson and Trumpp, 2006) 
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1.1.2 Leukaemia stem cells (LSCs) 

Mutations within HSCs may lead HSCs to become cancer stem cells called leukaemia 

stem cells (LSCs). The important fact is that any cancer is a heterogenic cell population. Thus, 

within a cancer there are cancer stem cells and more mature cancer cells (Heppner and Miller, 

1993, Dick, 2008). Cytotoxic chemotherapy is one cancer treatment where chemotherapeutic 

agents kill rapidly dividing cells. As quiescent LSCs do not divide, they may survive 

chemotherapy and restore depleted leukaemia cell heterogeneity (Dick, 2008, Sehl et al., 

2009). Bacteria may invade leukaemia patients and can affect LSCs making them more 

aggressive and more resistant to chemotherapeutic agents, thus causing leukaemia to reoccur. 

However, bacteria can invade leukaemia patient after chemotherapy. Thus, bacteria may 

support LSC proliferation and relapse of leukaemia.  

1.1.3 Haemopoietic cell molecular markers  

Cell molecular markers are antigens of which the expression changes with cell 

differentiation (Dick, 2008). Therefore, molecular markers allow us to distinguish 

haemopoietic cells at the various development stages. Unfortunately, there is no unique 

marker for HSCs, progenitor cells or even mature haemopoietic cells. To distinguish these 

cells combination markers can be used (Hoffman et al., 2009).  

Some of the cell molecular markers are expressed only in immature cells, whilst the 

others are found only in the more mature cells. For example, human HSCs and multipotent 

progenitor (MPP) cells express CD34. It is highly expressed in the most immature HSCs, its 

expression lowers with stem cell maturation (Shizuru et al., 2005). While CD38 marker is 

absent in an early stage of heamopoiesis and its expression is observed on common myeloid 

progenitor cells (CMPs) (Wang et al., 2012).   
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Cell molecular markers are species dependent. The markers that are commonly used to 

identify mouse and human HSCs are shown in the Figure 1.3 (a). LSCs, as well as HSCs, 

express CD34 marker and lacks CD38. However, there is a difference in expressed markers 

by LSCs and HSCs (Figure 1.3). LSCs lack CD90 and CD117 cell markers, which are 

expressed by HSCs. Moreover, CD123 known as well as interleukin-3 receptor α (IL-3Rα) is 

expressed only by LSCs (Wang and Dick, 2005). It might be that receptor IL-3Rα is required 

for LSCs abnormal behavior and life cycle maintenance. 

Different types of mature haemopoietic cells may express the same markers such as 

CD11b as well as an individual marker for the cell lineage. CD11b is expressed by monocyte-

macrophage lineage (Grigoriadis et al., 2010) as well by natural killer cells and T-cells 

(Moreau et al., 2009).  

(a) 

 

Mouse haemapoietic cell markers 

HSC/LT-HSC CD34
-ve

 Lin
-ve

 c-Kit
+ve

 Sca1
+ve

 CD150
+ve 

ST-HSC/MPP CD34
+ve

 Lin
-ve

 c-Kit
+ve

 Sca1
lo
 CD150

-ve
 

  

Human haemapoietic cell markers 

HSC CD34
+ve

 CD38
-ve

 Lin
-ve

 CD90
+ve

 CD45RA
-ve

 CD49f
+ve 

MPP CD34
+ve

 CD38
-ve

 Lin
-ve

 CD90
-ve

 CD45RA
-ve

 CD49f
-ve

 

CMP CD34
+ve

 CD38
+ve

 Lin
-ve

 CD45RA
-ve

 CD123
med

 CD135
+ve 

CLP CD34
+ve

 CD7
+ve

 CD10
+ve 

  

(b)  

  

Haemapoietic and leukaemia stem cell markers 
HSC Lin

-ve
 CD34

+ve
 CD38

-ve
 CD90

+ve
 CD117

+ve
 CD123

-ve
 

LSC Lin
-ve

 CD34
+ve

 CD38
-ve

 CD90
-ve

 CD117
-ve

 CD123
+ve

 

 

Figure 1.3 Expression of haemopoietic cell markers, where LT-HSC and ST-HSC - long 

term and short term haemopoietic stem cells, MPP - multipotent progenitors, LSC – 

leukaemia stem cells, CMP = common myeloid progenitor cells and CLP – common 

lymphoid progenitor cells (a) Mouse (adapted from Wognum and Szilvassy (2013)) and 

human haemopoietic cell markers (adapted from Wang et al, 2012 (b) comparison of cell 

markers between LSCs and HSCs (cell molecular markers are adapted from Wang and Dick, 

2005) 
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1.2 LEUKAEMIA 

Leukaemia is cancer of the blood cells, which manifests itself by an increase in 

functionally immature blood cells (Wang and Dick, 2005). Accumulation of the immature 

cells in the bone marrow causes a decrease in the healthy cell development. Thus, leukaemia 

patients are immunocompromised. Moreover, the excess of leukaemia cells may exit the bone 

marrow, and they spread to the other organs.  

There are four main types of leukaemia: acute and chronic lymphocytic leukaemia 

(ALL and CLL, respectively), and acute and chronic myeloid leukaemia (AML and CML, 

respectively). Other rarer leukaemias also exist, e.g. hairy cell leukaemia, T-cell 

prolymphocytic, large granular lymphocytic, adult T-cell leukaemia, etc. (Hoffbrand et al., 

2008). 

1.2.1 Acute myeloid leukaemia (AML) and its treatments  

AML is a cancer of myeloid blood lineages. It proceeds as abnormal white blood cell 

growth. Primary AML occurs in previously healthy patients whilst secondary AML develops 

from myelodysplastic syndromes (MDS) or other haemopoietic diseases. AML patients are 

assigned to the secondary AML group if they had any exposure to carcinogens, radiation or 

they have reoccurring AML (Rowe, 2002). 

Common treatments for leukaemia including AML are chemotherapy, radiotherapy, 

blood transfusion, bone marrow transplants or other drug treatments. Treatment method 

depends on the type of AML as well on the age of a patient (Burnett et al., 1998))  
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1.2.2 Bacterial infections in the AML patients 

Human beings are continuously exposed to harmful microbiological organisms. In a 

healthy person, the immune system controls the extent and duration of the infection. As the 

immune system of AML patients is depleted, they are at a high risk of bacterial, viral or 

fungal infections (Janeway et al., 2005). Moreover, infections are likely to worsen the AML 

prognosis. From clinical data in the period from 1980 until 2005, Buncaneve et al (2007) 

quantified that bacterial infections are responsible for 30-40% of all febrile episodes in acute 

leukaemia and haemopoietic stem cell transplantation (HSCT) patients. Moreover, 30% of all 

infections were caused by infection of the bloodstream (Bucaneve et al., 2007). 

Bacterial infection can be caused by gram-negative and gram-positive bacteria. These 

were accounted as 10% and 15%, respectively, of total febrile episodes in acute leukaemia 

and HSCT patients, respectively. The most common gram-negative bacteria causing an 

infection in leukaemia patients are Escherichia coli (Kern et al., 2005, Gomez et al., 2003, 

Buncaneve et al., 2007), Pseudomonas spp such as Pseudomonas aeruginosa (Kang et al., 

2003), Enterobacter cloacae (Tancrede and Andremont, 1985) and Salmonella typhimurium 

(Helms et al., 2002, Tancrede and Andremont, 1985). Most common gram-positive bacteria 

are Staphylococcus spp such as Staphylococcus aureus (Madani, 2000, Marty et al, 2006, 

Buncaneve et al., 2005) and Streptococcus spp such as Streptococcus pneumonia (Madani, 

2000, Bucaneve et al., 2007). E.coli and Staphylococcus strains such as Staphylococcus 

epidermidis are not pathogenic to healthy humans, yet may cause infection in immune-

suppressed patients.  

Prophylaxis of bacterial infection in the AML patient treatment includes antibiotics, 

antiseptics for bathing, mouthwashes and a “clean diet”. Patients with neutropenia, on anti-

cancer chemotherapy, and severely immunocompromised patients to prevent bacterial and 
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viral infections are usually kept in a reverse-barrier room. The amount of protection required 

varies with the patient (Hoffbrand et al., 2008, Schimpff et al., 1975).  

Prophylaxis is very important, but it does not protect leukaemia patient from bacterial 

infection 100%, and it does not cure leukaemia. Nevertheless, it improves patient prognosis, 

for example, prophylaxis of acute leukaemia and HSCT patients using fluoroquinolone was 

associated with a reduction in mortality of 48% in causes, and a reduction in infection-related 

mortalities of 68% (Bucaneve et al., 2007).  

In conclusion, bacterial infections are likely to occur in leukaemia patients as their 

immune system is suppressed. Bacterial infection prophylaxis using antibiotics has been 

shown to reduce mortality in leukaemia patients. Therefore, a number of questions arise; do 

bacterial infections affect or support the development of leukaemia? Is there a united 

mechanism for different bacterial strains to affect leukaemia?  
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1.3 NUCLEOSIDE DIPHOSPHATE KINASE (NDK) PROTEINS 

NDK proteins are enzymes (phosphotransferases), which reversibly catalyze the 

exchange of terminal phosphate groups between nucleoside diphosphate and nucleoside 

triphosphate (Berg et al., 2002).  

NDK proteins are highly conserved. Human NDK proteins are named as non-

metastatic proteins 23 (NM23) because at their discovery; the time expression of NM23-H1 

protein was found related to the suppression of metastasis (Steeg et al., 1988). Ten 

homologues of NM23 have been identified, and named as NM23-H1, NM23-H2, NM23-H3, 

NM23-H4, NM23-H5, NM23-H6, NM23-H7, NM23-H8, NM23-H9 and NM23-H10 (Bilitou 

et al., 2009). The sequence of NM23 homologues is shown in figures 1.4. The biggest 

sequence similarity (88.2%) is between NM23-H1 and NM-23-H2, while 65.8% and 55.3% of 

the NM23-H1 sequence is identical to the sequence of NM23-H3 and NM23-H4, respectively 

(Figure 1.4).  

Not only human NDK homologues have high sequence identity. Eukaryotic and 

bacterial NDK proteins are also highly conserved. For example, E.coli NDK protein has 57% 

sequence identity with its homologue in Myxococcus xanthus, 45% with Dictyostelium 

discoideum (Hama et al., 1991) and 95% with K.pneumoniae NDK protein (Figure 1.5). 

NM23-H2 possess 45% and 67% sequence identity with Mycobacterium tuberculosis (Chen 

et al., 2002) and Dictyostelium NDK protein (Dumas et al., 1992), respectively. NM23-H1 

has 43%, 44%, 47% and 53% sequence identity with E.coli, K.pneumoniae, S.pneumoniae, 

S.aureus NDK proteins, respectively (Figure 1.5).  

Eukaryotic and bacterial NDK proteins are structurally very similar. The Killer of 

prune (Knp) loop, α helixes and β sheets are distinguished in the NDK protein tertiary 

structure. In figure 1.6, they are matched on to the E.coli, K.pneumoniae, S.pneumoniae, 
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S.aureus NDK protein and NM23-H1 sequences. The most conserved regions are the Knp 

loop, β1 and α5. The Kpn loop has an important role in kinase activity of the NDK protein 

(Bilitou et al., 2009). Thus, structural similarities in-between bacterial and human NDK 

proteins may also mean that bacterial and human NDK proteins have functional similarity. 

Thus, bacteria may affect leukaemia cells in a similar way. 
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                                        1    5       

H3                                        M I C L V L T I    

  10     15     20     25     30     35     40     45     50     55    

H1          M A N C E R T - F I A I K P D G V Q R G L V - G E I I K R F E Q K G F R L V G L K 

H2          • • • L • • • - • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • A M • 
H3 F A N L F P A A C T G A H • • • - • L • V • • • • • • • R • • - • • • V R • • • R • • • K • • ∆ • • 
H4  V R H G S G G P S W T R • • • - L V • ○ • • • • • • • ○ • • - • D V • Q • • • ○ R • • T • • • ∆ • 

H5  M E I S M P P □ Q I Y V • K • - □ A I • • • • I • D K E - - - E • • Q D I I L ○ S • • □ I • Q R R 
H6   M A ◊ I L R S P Q ○ ∆ Q L • - □ ◊ L • • • • A • A H P • I L ◊ A □ H □ Q ◊ ◊ S N K • L ◊ • R ∆ ◊ 

H7          • N H S • • F V • • • E W Y • P N ⌂ S L • R R Y • L L - - • - Y P • D G S • E ∆ H 
H8   ⌂ ⌂ ◊ K K ⌂ E V ⌂ L Q T V I - N N Q S L W • E M L Q N K - - • L T ○ I D V Y • A W C ӿ P C ⌂ A M 
H9   ⌂ ○ ◊ □ # □ L ○ V V D V Q G - W C G P C K P V • S F Q # M ӿ I • □ G L # L ◊ H F A L A E A D ◊ L 

H10 M G C F ○ A # ⌂ R K • D K • S R - P E N ӿ E E R ӿ K • Y S W D Q R • K ○ ◊ P K D ӿ M F S ӿ • K × E T 
  60     65     70     75     80     85     90     95     100     105    

H1 F M Q A S E D L L K E H Y V D L K D R P F F A G L V K Y M H S G P V V A M V W E G L N V V K T G R V 
H2 • L R • • • E H • • Q • • I • • • • • • • • P • • • • • • N • • • • • • • • • • • • • • • • • • • • 
H3 L V • • • • ∆ • • R • • • A E • R E • • • Y G R • • • • • A • • • • • • • • • Q • • D • • R • A • A 

H4 M ∆ • • P • S V • A • • • Q • • ○ R K • • ○ ∆ A • I R • • S • • • • • • • • • • • Y • • • ○ A S • ○ 
H5 K ∆ ∆ L • P ∆ Q C S N F • • ○ K Y G □ M • • ∆ N • T A • • □ • • • L • • • I L A R H K A I S Y W L E 
H6 E ∆ L W R K ∆ D ◊ Q R ◊ • R ○ H E ◊ • F • ○ Q ○ • • E F • ○ • • • I R • Y ◊ ◊ ◊ H K ○ ◊ ◊ Q L ◊ • T 

H7 D ○ K N H R T F • • ⌂ T K Y • N L H I E D L F I G N • V N V F S R Q L V L ◊ D Y • D Q Y T A R Q ◊ G 
H8 Q P ⌂ F ⌂ ⌂ L K N E L N E D ○ I ӿ ӿ F A V A E □ D ӿ I ӿ T L Q P F R D K C E P V F • F S • N G K I I 

H9 ӿ ○ ⌂ E K Y R G K C • P T F L F ◊ A ӿ K ӿ E • L S D ⌂ D E C V ӿ H G K N N G E D E ӿ M • S ◊ E R T C 
H10 V G ∆ ◊ □ G ӿ □ A G ∆ Q - × × # Q • C ӿ N C N ӿ Y □ F × - • • A T V T I D D C T N C I I F L P V K ӿ 

  110     115     120     125     130     135     140     145     150     155    

H1 M L G E T N P A D S - - - K P G T I R G D F C I Q V G R N I I H G S D S V E S A E K E I G L W F H P 
H2 • • • • • • • • • • - - - • • • • • • • • • • • • • • • • • • • • • • • • K • • • • • • S • • • K • 

H3 L I • A • • • • • A - - - P • • • • • • • • • • E • • K • L • • • • • • • • • • R R • • A • • • R A 
H4 • ○ • H • D S • E ○ - - - A • • • • • • • • S V H I S • • V • • A • • • • • G • Q ○ • • Q • • • Q S 
H5 ○ • • P N • □ L V ○ K E T H • D S L • A I Y G T D D L • • A L • • • N D F A A • • ○ • • R F M • P E 

H6 ○ M • ◊ • R V F R ○ R H V □ • ◊ ◊ • • • S • ◊ L T ◊ T • • T T • • • • • • V • • S ○ • • ○ A F • ◊ D 
H7 S R K • K T I • L I - - - • • ◊ A • S K A G E • I E I I • K A G F T I T K L K M M M L S P K E A L ⌂ 
H8 E K I Q G A N • P L - - - V N K K V I N L I D E ○ R K ӿ A ◊ G E M A R P Q Y P E I P ӿ V D S D S E V 

H9 T • A I I K • D A V - - - □ H • # T D E ◊ # M K ӿ Q E A G F E I L ӿ ◊ E E R T ӿ T E A E V R L • Y G 
H10 ӿ V F F R • C R • C - - - • C T L A C Q Q • R □ R ◊ C • K L × V ӿ L C C A T Q P # I • ӿ ∆ # N I ∆ F 
  160     165     170     175     180     185     190     195     200     205    

H1 - - E E L V D Y T S C A Q N W I Y E                                 
H2 - - • • • • • • K • • • H D • V • •                                 

H3 - - D • • L C W E D S • G H • L • •                                 
H4 - - S • • • S ○ A ○ G G • ○ S S I H P A                               
H5 V I V • P I P I G Q A • K ∆ Y ○ N L H I M P T L L E G L T E L C K Q K P A D - P L I W L A D W L L K 

H6 - F □ • Q R W • ○ E E E P Q L R C G ◊ V C Y S P E G ◊ V H Y V A G T G G L G - ◊ A          
H7 - ⌂ H V D H Q S R P F F N E ⌂ • Q F I T T G P I I A M E I L R D D A I C E W K R ◊ ◊ G P ◊ N S G V A 

H8 - - □ • E S ◊ C ○ • V Q E L ◊ □ □ A ӿ ◊ K ◊ D A V I S K K V ◊ E ◊ R ◊ I - T ӿ A G F I I E A E H K I 
H9 - - ӿ K A G E E □ F ⌂ K L V H H M C C G S S H E ◊ # L T # T E G F E D V V # - T W R T V M G P R D D 
H10 - - G C F Q ⌂ • Y ӿ ⌂ L A F Q F K D A × L × I F N N T W S N I H ӿ F T ◊ × S - G E L N W S L L P E × 
  210     215     220     225     230     235     240     245     250     255    

H5 N N P                                                

H6                                                   
H7 R I D A S A S I R A I F G T D G I R N A A H G P D S F A S A A R E M E L F F P S S G G C G P A N T A 
H8 V L T E E Q V V N F Y S R I A D Q C D F E E F V S F M T ӿ G L S Y I L V V S Q G ӿ K H N P ӿ S E E T 

H9 P ◊ V ӿ R R E Q - P E # L R # Q Y G T E M P # N A V H G ӿ R D ӿ ӿ D A D R E L A L L F P S L K F S D 
H10 A V × Q D Y # P I × T T E E L K A V R V S T E A N R S I V P I # R G Q R Q K S ӿ D E S ӿ L V V L F ӿ 

  260                                                 

H5                                                   
H6       265     270     275     280     285     290     295     300     305    

H7 K F T N C T C C I V K P H A V S E G L L G K I L M A I R D A G F E I S A M Q M F N M D R V N V E E F 
H8 E P Q T D ӿ E P N E R S E D Q P ӿ V E A Q V T P G M M N K Q D S L Q E Y L E R Q H L A Q L C D I ӿ E 
H9 ӿ D ӿ E A P Q G E S S T Q P R L K I T D L D                             

H10 G × Y # I A N A R K L I D E M V G K G F F L V Q T K E V S M K A ӿ D A Q R V F R E K # P D F L P L L 
  310     315     320     325     330     335     340     345     350     355    

H7 Y E V Y K G V V T E Y H D M V T E M Y S G P C V A M E I Q Q N N A T K T F R E F C G P A D P E I A R 
H8 D A A N V A K F M D A F F P D F K K M K S M K L E K T L A L L R P N L F H E R K D D V L R I I K D E 
H9                                                   

H10 N K G P # I A L E F N G D G A V ӿ V C Q L I V N # I F N G T K M F V S E S K ӿ T A S G D V D S F Y N 
  360     365     370     375     380     385     390     395     400     405    

H7 H L R P G T L R A I F G K T K I Q N A V H C T D L P E D G L L E V Q Y F F K I L D N         
H8 D F K I L E Q ӿ Q V V L S E ӿ E A Q ӿ L C K E Y E N ӿ ӿ Y F N K L I E N M T S G P S L A L V L L R D 
H9                                                   

H10 F A D # Q M G I                                           
  410     415     420     425     430     435     440     445     450     455    

H8 N G L Q Y W K Q L L G P R T V E E A I E Y F P E S L C A Q F A M D S L P V N Q L Y G S D S L E T A E 

                                                   
  460     465     470     475     480     485     490     495     500     505    

H8 R E I Q H F F P L Q S T L G L I K P H A T S E Q R E Q I L K I V K E A G F D L T Q V K K M F L T P E 
  510     515     520     525     530     535     540     545     550     555    

H8 Q I E K I Y P K V T G K D F Y K D L L E M L S V G P S M V M I L T K W N A V A E W R R L M G P T D P 
  560     565     570     575     580     585     590     595     600     605    

H8 E E A K L L S P D S I R A Q F G I S K L K N I V H G A S N A Y E A K E V V N R L F E D P E E N    
                                                   

     • The same AA as in H1   ○ The same AA as in H3   ◊ The same AA as in H5   ӿ The same AA as in H7   × The same AA as in H9    

     ∆ The same AA as in H2   □ The same AA as in H4   ⌂ The same AA as in H6   # The same AA as in H8        

Figure 1.4 Alignment of NM23 homologous protein sequences, where H1 to H10 are NM23-H1 to NM23-H10, AA – amino acid (Reproduced from Mehus et al., 1999, PubMed protein database)
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 1    5     10     15     20     25     30   

NM23-H1 M A N C E R T F I A I K P D G V Q R G L V G E I I K R F E Q K G 

E.coli ● ● I - ● ● ● ● S I ● ● ● N A ● A K N V I ● N ● F A ● ● ● A A ● 

K.Pneumoniae ● ● ○ - ● ● ● ● ○ ○ ● ● ● ○ ○ ● ○ ○ ○ ○ ○ ● S ● ○ S ● ● ● ○ ○ ● 

S.aureus ● - - - ● ● ● ● L M ● ● ● ● ○ ● ● ● ○ ● ○ ● ● V ● S ● I ● R ● ● 

S.pneumonia ● - - - ● Q ● ● F ○ ● ● ● ● ● ● K ● ● ● ● ● ● V L ● ● I ● ● R ● 

   35  
 

  40   
 

  45  
 

  50  
 

  55  
 

  60    

NM23-H1 F R L V G L K F M - Q A S E D L L K E H Y V D L K D R P F F A G 

E.coli ● K I ● ● T ● - ● L H L T V E Q A R G F ● A E H D G K ● ● ● D ● 

K.Pneumoniae ● ○ - ● ● ○ ● - ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○ E ○ ● ● ● ● ○ ● 

S.aureus L ○ ● ● ● G ● L ● - ● V P M ○ ● ○ E T ● ● G ○ ○ Q ○ ○ ● ● Y N D 

S.pneumonia ● T ○ E K ● E ● R S ● V ● ● ○ ● I D Q ● ● Q ● ● V ○ Q S ● Y P P 

  65     70    
 

75    
 

80    
 

85    
 

90     95 

NM23-H1 L V K Y M H S G P V V A M V W E G L N V V K T G R V M L G E T N 

E.coli ● ● E F ● T ● ● ● I ● V S ● L ● ● E ● A ● Q R H ● D L ● ● A ● ● 

K.Pneumoniae ● ● ○ ● ● ○ ● ● ● ○ ● ○ ○ ● ○ ● ● ○ ● ○ ● ○ ○ ○ ● ○ ○ ● ● ○ ● ● 

S.aureus ● I S ● I ○ ● A ● ● F ● ● ● V ● ● ○ D ○ ● N V S ● H I I ● S ● ● 

S.pneumonia I R ○ ● ● ○ ● ● ● ● L ○ G ● I S ● P K ● I E ● W ● T ● M ● ○ ● R 
     100     105 

 
   110     115 

 
        120   

NM23-H1 P A D S K P G T I R G D F C I Q V G R N - I I - - - - H G S D S 

E.coli ● ● N A L A ● ● L ● A ● Y A D S L T E ● - G T - - - - ● ● ● ● ● 

K.Pneumoniae ● ● ○ ○ ○ ○ ● ● ○ ● ○ ● ○ ○ ○ ○ F ○ ○ ● - ○ ○ - - - - ● ● ● ● ● 

S.aureus ● S E ○ S ● ● S ● ● ● ● L G L T ● ● ● ● - ● ● - - - - ● ● ● ● ● 

S.pneumonia ● E E ○ ○ ● ● T ● ● ● ● ● ○ K A A ● ○ ● E ● ● Q N V V ● ● ● ● ● 

   125    130     135     140     145     150      

NM23-H1 V E S A E K E I G L W F H P E E L V D Y T S C A Q N W I Y E   

E.coli ● ● ● ● A R ● ● A Y F ● G E G ● V C P R ● R           

K.Pneumoniae ● ● ● ● ○ ○ ● ● ○ F ○ ● A ○ ○ ● ○ ○ ○ ○ ● ○           

S.aureus L ● ● ● ● ○ ● ● N ● ● ● N ○ N ● I T S ● A ● P R D A ● L ● ●   

S.pneumonia E ● ● ● K ○ ● ● ○ ● ●                      

                                 

 ●  The same amino acids as in NM23-H1 protein    The same amino acids found in K.Pneumoniae and S.aureus NDK proteins 

                                 

 ○  The same amino acids as in NDK protein from E.coli  
 

 The same amino acids found in S.aureus and S.Pneumoniae NDK proteins 

 

Figure 1.5 Alignment of E.coli, K. pneumoniae, S.pneumonia, S.aureus NDK protein and NM23-H1 sequences.    
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       β1         α0         α1        

NM23-H1 M A N C E R T F I A I K P D G V Q R G L V G E I I K R F E Q K G 

E.coli ● ● I - ● ● ● ● S I ● ● ● N A ● A K N V I ● N ● F A ● ● ● A A ● 

K.Pneumoniae ● ● ○ - ● ● ● ● ○ ○ ● ● ● ○ ○ ● ○ ○ ○ ○ ○ ● S ● ○ S ● ● ● ○ ○ ● 

S.aureus ● - - - ● ● ● ● L M ● ● ● ● ○ ● ● ● ○ ● ○ ● ● V ● S ● I ● R ● ● 

S.pneumonia ● - - - ● Q ● ● F ○ ● ● ● ● ● ● K ● ● ● ● ● ● V L ● ● I ● ● R ● 

    β2                α2           αA  

NM23-H1 F R L V G L K F M - Q A S E D L L K E H Y V D L K D R P F F A G 

E.coli ● K I ● ● T ● - ● L H L T V E Q A R G F ● A E H D G K ● ● ● D ● 

K.Pneumoniae ● ○ - ● ● ○ ● - ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○ ○ E ○ ● ● ● ● ○ ● 

S.aureus L ○ ● ● ● G ● L ● - ● V P M ○ ● ○ E T ● ● G ○ ○ Q ○ ○ ● ● Y N D 

S.pneumonia ● T ○ E K ● E ● R S ● V ● ● ○ ● I D Q ● ● Q ● ● V ○ Q S ● Y P P 

             β3           α3         

NM23-H1 L V K Y M H S G P V V A M V W E G L N V V K T G R V M L G E T N 

E.coli ● ● E F ● T ● ● ● I ● V S ● L ● ● E ● A ● Q R H ● D L ● ● A ● ● 

K.Pneumoniae ● ● ○ ● ● ○ ● ● ● ○ ● ○ ○ ● ○ ● ● ○ ● ○ ● ○ ○ ○ ● ○ ○ ● ● ○ ● ● 

S.aureus ● I S ● I ○ ● A ● ● F ● ● ● V ● ● ○ D ○ ● N V S ● H I I ● S ● ● 

S.pneumonia I R ○ ● ● ○ ● ● ● ● L ○ G ● I S ● P K ● I E ● W ● T ● M ● ○ ● R 
   Knp loop      α4                β4      

NM23-H1 P A D S K P G T I R G D F C I Q V G R N - I I - - - - H G S D S 

E.coli ● ● N A L A ● ● L ● A ● Y A D S L T E ● - G T - - - - ● ● ● ● ● 

K.Pneumoniae ● ● ○ ○ ○ ○ ● ● ○ ● ○ ● ○ ○ ○ ○ F ○ ○ ● - ○ ○ - - - - ● ● ● ● ● 

S.aureus ● S E ○ S ● ● S ● ● ● ● L G L T ● ● ● ● - ● ● - - - - ● ● ● ● ● 

S.pneumonia ● E E ○ ○ ● ● T ● ● ● ● ● ○ K A A ● ○ ● E ● ● Q N V V ● ● ● ● ● 

       α5                          

NM23-H1 V E S A E K E I G L W F H P E E L V D Y T S C A Q N W I Y E   

E.coli ● ● ● ● A R ● ● A Y F ● G E G ● V C P R ● R           

K.Pneumoniae ● ● ● ● ○ ○ ● ● ○ F ○ ● A ○ ○ ● ○ ○ ○ ○ ● ○           

S.aureus L ● ● ● ● ○ ● ● N ● ● ● N ○ N ● I T S ● A ● P R D A ● L ● ●   

S.pneumonia E ● ● ● K ○ ● ● ○ ● ●                      

                                 

 ●  The same amino acids as in NM23-H1 protein    The same amino acids found in K.Pneumoniae and S.aureus NDK proteins 

                                 

 ○  The same amino acids as in NDK protein from E.coli  
 

 The same amino acids found in S.aureus and S.Pneumoniae NDK proteins 

Figure 1.6 α helixes, β sheets and Knp loop matching to the E.coli, K.pneumoniae, S.pneumonia, S.aureus NDK proteins and  

NM23-H1 sequences. 
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1.3.1 Human NDK proteins and their function 

The relationship of NM23-H1 protein expression to the suppression of metastasis 

firstly was reported by Steeg et al (1988). This relationship was found in such cancer types as 

cervical, gastric, breast, melanomas (Okabe-Kado et al., 2009) and hepatocellular carcinoma 

(Yamaguchi et al., 1994). Nevertheless, in some cancer types such as colon cancer (Martinez 

et al., 1995), neuroblastoma (Chang et al., 1994), leukaemia and other haematological 

malignancies (Steeg et al., 1988, Yokoyama et al., 1996, Willems et al., 1998, Niitsu et al., 

2000, Okabe-Kado et al., 2002, Okabe-Kado et al., 2009) and neoplasms (Okabe-Kado et al., 

2009) researchers found a relationship between an overexpression of the NM23-H1 and poor 

prognosis of the patients. Expression levels of NM23-H1 protein in ovarian cancer was 

suggested as contradictory (Okabe-Kado et al., 2009, Mandai et al., 1994). 

NM23-H1 and NM23-H2 protein expressing genes are located near the breast cancer 

susceptibility gene 1 (BRCA1) locus at chromosome 17q21.3. BRCA is associated with 

development of breast and ovarian cancer (Backer et al., 1993, Saha and Robertson, 2011). 

Moreover, NM23-H2 was identified as a transcription factor (TF) PuF, which regulates 

activity of proto-oncogene c-myc (Postel et al., 1993) suggesting that changes in expression 

level or mutation in NM23-H2 may activate or inhibit proto-oncogene c-myc activity (Postel 

and Ferrone, 1994). Overexpression of c-myc plays an important role in cancer development 

(Miller et al., 2011), thus changes in NM23-H2 expression levels may affect cancer 

development. Nevertheless, Yokoyama et al (1996) observed that expression of c-myc 

remains unchanged in AML cells, whereas NM23-H1 and NM23-H2 are elevated.  

The relationship of the other NM23 homologues with cancer development has not 

been reported. They play important roles in other processes and may have some effect in cell 

metastatic activity or its inhibition. For example, NM23-H3 is able to inhibit granulocyte 
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differentiation and induce their apoptosis (Mehus et al., 1999). NM23-H4 possibly is related 

to intramictohondrial GTP metabolism, whilst NM23-H5 may be involved in spermatogenesis 

(Mehus et al., 1999). 

Viral pathogens such as the Epstein-Barr virus (EBV) (Murakami et al., 2009), Human 

Papillomavirus (HPV) (Mileo et al., 2006) and Kaposi‟s sarcoma associated herpesvirus 

(KSHV) (Qin et al., 2011) indirectly interact with NM23-H1 resulting in its suppression. EBV 

nuclear antigens (EBNA) 3C and 1, latency associated nuclear antigen (LANA) and E7 

protein are tumour virus encoded oncoproteins for EBV, KSHV and HPV, respectively. These 

oncoproteins are mediators in the interaction between virus and NM23-H1. The virus triggers 

an expression of the oncoprotein, which binds to NM23-H1 protein, causing its translocation 

from cytoplasm into nucleus where it forms a stable complex with the oncoprotein. Therefore 

the host cell becomes transformed, resulting as a range of human cancers, for example, 

Burkitt‟s lymphoma (from EBV) (Murakami et al., 2009), cervical and ano-genital cancers 

(from HPV) (Mileo et al., 2006) and Kaposi‟s sarcoma (from KSHV) (Qin et al., 2011).  

1.3.1.1 Human NM23 protein role in normal haemopoiesis and leukaemia 

It is important to understand the role of human NM23 proteins in normal haemopoiesis 

and leukaemia. NM23-H1 and NM23-H2 proteins are expressed by normal haemopoietic and 

leukaemia cells. However, in leukaemia patients, the levels of both proteins are elevated. 

Thus, NM23 proteins may play an important role in normal haemopoiesis. Elevated NM23 in 

leukaemia patients may play an extra role.  

Expressed NM23 proteins can be found in the cell cytoplasm, transported to the outer 

cell membrane where they can be secreted. The highest expression of NM23-H1 and NM23-

H2 has been found in bone marrow CD34
+ve

 cells. Expression levels in mature cells are lower. 

Moreover, levels of NM23-H1 and NM23-H2 were lineage dependent. The highest expression 
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levels of NM23-H1 were observed in polymorphonuclear cells, but NM23-H2 was expressed 

more in lymphocytes (Willems et al., 1998). 

In AML patient samples elevated levels of NM23-H1 and NM23-H2 was found 

intracellularly (Yokoyama et al., 1996) and extracellularly (Niitsu et al., 2000). Thus, it was 

suggested that the elevated levels of NM23-H1 and NM23-H2 proteins are related with poor 

patient prognosis.  

Extracellular and intracellular expression of the NM23 protein has been tested in 

various cell lines from different cancers. Lymphoid cell lines such as HSB2, SupT1, Jurkat 

(Willems et al., 1998), MOLT3, MOLT4 (Okabe-Kado et al., 2002, Willems et al., 1998), 

BALL-1, BALM-1, HT, DB, BALM-3, SKW-4, SU-DHL-4, U-698-M, MOLT16 and HPB-

ALL (Okabe-Kado et al., 2002) did not show extracellular expression of the NM23-H1 and 

NM23-H2. Minor extracellular expression of NM23-H1 was observed only in Raji lymphoid 

cells (Okabe-Kado et al., 2002). 

Extracellular expression of NM23-H1 was observed on myeloid cell lines such as 

KG1, U937t (Willems et al., 1998), HL-60 (Okabe-Kado et al., 2002, Willems et al., 1998), 

NB4, HT93, ML-1, THP-1 and U937 (Okabe-Kado et al., 2002). Expression of both of these 

proteins was observed as well on erythroid cell lines such as K562, KU812F, HEL and M6 

(Okabe-Kado et al., 2002). Therefore, extracellular expression of NM23 is dependent on the 

cell type.  

An important observation was the decrease of extracellular NM23 protein after K562, 

HEL and NB4 cell differentiation initiation using All Trans-Retinoic Acid (ATRA) (Okabe-

Kado et al., 2002). Thus, extracellular NM23 levels decreases with cell maturation. Moreover, 

it was shown that targeting NM23 proteins with monoclonal antibody specific for NM23-H1 

(H1-229, immunoglobulin class IgG2a) and NM23-H2 (H2-206, immunoglobulin class IgG2b) 
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HL60 and HEL cell cytolysis can be induced. Therefore, Okabe-Kado et al (2002) suggested 

that NM23 proteins can be a potential target in leukaemia therapy. 

1.3.1.2 Effect of additional NM23 proteins on healthy haemopoietic and leukaemia cells 

NM23-M2 is able to inhibit normal mouse bone marrow growth and maturation in the 

presence of GM-CSF or M-CSF and to induce differentiation of myeloid leukaemia M1 cells 

(Okabe-Kado et al., 1988). Therefore it is also known as inhibitor factor (I-factor). It 

possesses 98% sequence identity with NM23-H2, 91% with NM23-M1 and 89% with NM23-

H1 (Okabe-Kado et al., 1992). Thus, all NM23 family members are potentially involved in 

inhibition of normal haemopoietic cell growth and differentiation.  

Abilities of I-factor to inhibit induced differentiation of in human cell lines such as 

HL-60, ML-1 and K562 and mouse cell line Friend were tested. Cell differentiation in HL-60 

and ML-1 was induced using 12-O-tetradecanoylphorbol-13-acetate and retinoic acid, in 

K562 using hemin, 1-β-D-arabinofuranosylcytosine or sodium butyrate, but in Friend using 

dimethyl sulfoxide or actinomycin D. I-factor did not inhibit initiated differentiation (Okabe-

Kado J. et.al., 1988). In the later study Okabe-Kado et al (1995) tested the inhibition 

properties of human NM23 protein family members. It was found that proteins NM23-H1, 

NM23-H2, NM23-M1 and NM23-M2 (I-factor) inhibit the TGF-β initiated erythroid 

differentiation of HEL, KU812F and K562 cell lines. Moreover, Cys
118

 mutant NM23-H2 and 

truncated at C terminal (has only 60 amino acids) NM23-H2 protein despite of lack of NDK 

activity showed similar inhibition ability as rNM23 proteins. Therefore, NM23 proteins do 

not require NDK activity for inhibition of cell differentiation. It was also suggested that 

inhibition of initiated cell differentiation is cell-line dependent (Okabe-Kado et al., 1995). 

Important to note that only TGF-β initiated differentiation was inhibited by I-factor. It might 
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be that inducing agents: hemin, 1-β-D-arabinofuranosylcytosine or sodium butyrate reduces I-

factor inhibitor. 

Additional NM23 protein effect was studied as well on a specific cell marker sorted 

cells. Normal bone marrow cells were sorted for CD34
+ve

/CD38
-ve

 and CD34
+ve

/CD38
+ve

 

cells. Additional extracellular NM23-H1, NM23-H2 and NM23-H3 did not affect 

CD34
+ve

/CD38
-ve

 primary cell differentiation, whilst more mature CD34
+ve

/CD38
+ve

 cell 

differentiation was altered. In the presence of all NM23 isoforms CD34
+ve

/CD38
+ve

 cells 

differentiation more into BFUE, while differentiation into CFUM was inhibited (Willems et al., 

2002). Thus, it might be that bacterial NDK proteins are also able to alter haemopoietic cell 

differentiation. Moreover, it might be that bacterial NDK proteins affect healthy and 

leukaemia cells in different ways.  

Recombinant NM23-H1 and NM23-H2 proteins promote growth and survival of 

mononuclear AML cells. Moreover, additional rNM23-H1 causes release of GM-CSF, IL-1β, 

IL-6 cytokines in physiologically effective levels. Using anti-TNFα, anti-IL-1β, GM-CSF 

and/or anti-IL-1 antibodies alone or in varied combination, partial inhibition of AML cell 

survival promoted by additional rNM23-H1 could be observed. An important fact is that used 

antibodies inhibits p38 mitogen-activated protein kinase (MAPK) cell signaling pathway. 

Hence, it was proposed that through the cytokine release rNM23-H1 is able activate MAPK 

signaling pathway and promote AML cell survival (Okabe-Kado et al., 2009).  

Lilly et al (2011) and Lilly (2012) showed that additional rNM23-H1 is able to bind to 

the surface of CD34
+ve

 and CD34
lo

/CD11b
+ve

 cells and promote their survival. Although 

rNM23-H1 promoted survival of both populations, rNM23-H1 binds better to more mature 

cells CD34
lo
/CD11b

+ve
 then to immature CD34

+ve
. Lilly et al (2011) suggested that additional 

rNM23-H1 indirectly promotes immature cell survival.  
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Lilly et al (2011) showed for the first time that rNM23-H1 indirectly promotes stem 

cell survival and proliferation. The authors performed an experiment where mononuclear 

AML cells were sorted for CD34
-ve

/CD117
-ve

 and CD34
+ve

/CD117
+ve

 cells. Then recombinant 

NM23-H1 was added to more mature CD34
-ve

/CD117
-ve

 cell population. CD34
-ve

/CD117
-ve

 

cells incubated with additional rNM23-H1 secreted a combination of cytokines, 

predominantly IL1β and IL6. CD34
+ve

/CD117
+ve

 cells were resuspended in CMdep collected 

from CD34
-ve

/CD117
-ve

 treated cell cultures. Hence, it was proposed that cytokines found in 

CM are promoting survival and proliferation of stem cells (CD34
+ve

/CD117
+ve

 cells).  

As mentioned above, expression levels of rNM23-H1 drop with blood cell maturation. 

Moreover, the increased levels of rNM23-H1 were observed in AML patients. Recombinant 

NM23-H1 express by stem cells may bind to more mature cells and promote the release of 

cytokines that stimulate the proliferation of stem cells. LSCs express higher levels of rNM23-

H1. The levels of cytokines released by more mature leukaemia cells may be higher than 

healthy cells release them. Thus, it might be that through the secretion of NM23-H1 LSCs 

affect more mature cells to release LSC survival promoting cytokines. We assume that rNDK 

proteins may act in the same way as rNM23-H1, observed by Lilly et al (2011). It might be 

that leukaemia patient prognosis worsens due to bacterial NDK proteins that indirectly 

promote leukaemia stem cell proliferation.  

1.3.2 Bacterial NDK protein role in bacteria 

Structural similarity between human and bacterial proteins may also mean that 

bacterial NDK proteins play a similar role in healthy and leukaemia patients as NM23-H1 

does. Thus, in this paragraph we will discuss bacterial NDK protein role in host invasion. 
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1.3.2.1 Bacterial NDK secretion  

Zaborina et al (1999) reported that Pseudomonas aeruginosa secretes enzymes 

involved in ATP synthesis, including NDK protein (Zaborina et al., 1999). In later studies, it 

was suggested that DXXX (X is predominantly hydrophobic amino acid) motif in the 

carboxyl-terminal region (C-terminal) of NDK protein is essential for their secretion by the 

type I mechanism (Kamath et al., 2000). For example, the motif in the NDK of P.aeruginosa 

it is DTEV. Secretion of NDK was observed as well in such bacteria as Porphyromonas 

gingivalis (Yilmaz et al., 2008), Leishmania amazonensis (Kolli et al., 2008), M.tuberculosis 

(Zhao et al., 2007), P.aeruginosa (Zaborina et al., 1999), Vibrio cholera, and S.typhimurium 

(Dar et al., 2011). 

No information is available if bacteria can secrete NDK protein. There is a possibility 

that some bacteria do not secrete it. Moreover, the exact mechanism of NDK protein secretion 

in above mentioned bacteria is not determined. It remains uncertain if common bacteria such 

as E.coli (Kern et al., 2005, Gomez et al., 2003, Buncaneve et al., 2007), Pseudomonas 

aeruginosa (Kang et al., 2003), Staphylococcus aureus (Madani, 2000, Marty et al., 2006, 

Buncaneve et al., 2005) and Streptococcus pneumonia (Madani, 2000, Bucaneve et al., 2007) 

invading leukaemia patients are able to secrete NDK proteins. 

1.3.2.2 Bacterial NDK effect on the host cells 

Human beings are continuously exposed to harmful microbiological organisms. The 

largest number of bacterial species is harmless and few species are beneficial or pathogenic. 

Leukaemia patients lack immunity so even bacteria that are harmless to healthy humans may 

invade leukaemia patients (Bucaneve et al., 2007). As varied pathogenic bacteria and host 

interactions are extensively investigated, in this paragraph we will concentrate on pathogenic 

bacteria and their effects on the host cells. 
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The location of pathogenic bacteria in the host determines processes within bacteria 

and their effects on a host. Based on their location, harmful bacteria are divided into 

extracellular and intracellular pathogens. Pathogenic extracellular bacteria do not enter host 

cells; thus they usually promote host cell death. Intracellular bacteria grow and reproduce 

within host cells (Spooner and Yilmaz, 2012, Nazareth et al., 2007, Lau et al., 2007, Martner 

et al., 2008, Lowy, 2000). Such bacteria, like Chlamydophila spp, Ehrlichia spp and 

Rickettsia spp are obligate intracellular parasites (Fritsche et al., 1999), which need to prevent 

host cell induced apoptosis. Bacteria such as P.gingivalis, S.typhimurium, Chlamidia 

trachimatis, Bacillus anthracis, Mycobacteria spp and L. amazonensis are usually 

intracellular (Spooner and Yilmaz, 2012). On the other hand, P.aeruginosa, V.cholerae 

(Spooner and Yilmaz, 2012), E.coli (Nazareth et al., 2007), K.pneumoniae (Lau et al., 2007), 

S.pneumonia (Martner et al., 2008) and S.aureus (Lowy, 2000) are extracellular bacteria. It 

might be that extracellular and intracellular pathogen NDK proteins act in leukaemia patients 

in different ways. We will further observe how these pathogens affect non leukaemia patients, 

and what the role of NDK in the bacterial invasion is. 

Yilmaz et al. (2008) reported that NDK of P.gingivalis prevents host cell apoptosis 

through the inhibition of P2X7 receptor of gingival epithelial cells (GECs). P2X7 receptor 

mediates immune processes such as cell motility and microbial phagocytosis (Bours et al., 

2006) and the release of proinflammatory cytokines such as IL-1β and IL-18 in response to 

microbial invasion (Pedra et al., 2009). P2X7 receptors are found in macrophages, monocytes 

and microglia (Lister et al., 2007). It might be that NDK of intracellular bacteria may affect 

leukaemia cells through the inhibition of P2X7 receptors, causing them to release cytokines 

IL-1β and IL-18. The released cytokines observed in more mature haemapoietic cells treated 

with rNM23-H1 by Lilly et al (2011) may promote leukaemia stem cells to enhance survival 

http://en.wikipedia.org/wiki/Chlamydophila
http://en.wikipedia.org/wiki/Ehrlichia
http://en.wikipedia.org/wiki/Rickettsia
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and proliferation of LSCs. However, P.gingivalis invades GECs, but not blood cells. Bacterial 

NDK proteins can be secreted by bacteria in this case P.gingivalis and transported out of host 

cells. Pedra et al (2009) made a conjecture that NDK protein of P.gingivalis may be 

transported from the invaded GEC to the neighboring cells. The latter suggestion, however, 

remains unproven. 

Dar et al (2011) tested how S.typhimurium and V.cholerae bacteria secretion products 

containing NDK proteins, affect ATP-induced J774 mouse macrophage cell lysis. Through 

sets of experiments, the authors determined that secreted NDK proteins by extracellular and 

intracellular bacteria have similar functional properties. Secretion products of intracellular 

pathogen S.typhimurium containing either own NDK protein or NDK protein of extracellular 

pathogen V.cholerae inhibited ATP-induced J774 cell lysis. Moreover, lack of NDK in the 

secretion products of S.typhimurium did not protect J774 cells against induced cell lysis. 

Secretion products of the extracellular pathogen V.cholerae had a cytotoxic effect on ATP-

non-induced and ATP-induced J774 cells and even when secretion products were collected 

from NDK knockdown V.cholerae strains.  

The functional similarity of NDK proteins of extracellular and intracellular pathogens 

may mean that any bacterial NDK may act in a similar way in leukaemia patients. The 

difference between the pathogen types is that NDK proteins of intracellular pathogens require 

to be secreted by bacteria and transported out of the cell. 
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1.4 THE AIM OF THE RESEARCH 

The main aim of this research is to test if E.coli, K.pneumoniae, S.pneumoniae and 

S.aureus rNDK proteins promote the survival of leukaemia stem cells in the same way as it 

was shown by Lilly et al (2011) using rNM23-H1. We hypothesized that when bacteria invade 

leukaemia patients secreted bacterial NDK proteins indirectly promote survival and 

proliferation of leukaemia stem cell through binding to more mature cells.  

  



 MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 131 of 190 

 

2 METHODS 

2.1 PRODUCTION OF HIS-TAGGED RECOMBINANT NDK (rNDK) PROTEINS 

2.1.1 rNDK protein production system 

Glycerol stocks (available in our laboratory) of E.coli BL21 (DE3) (Bioline, London, 

UK) cultures containing the E.coli, S.aureus, S.pneumoniae or K.pneumoniae rNDK gene 

coded in the pET-15b expression vector (Novagen, Merk Chemicals Ltd, Nottingham, UK) 

were used. The pET-15b expression vector contains an ampicillin resistance marker, T7 

promoter, Lac operator and 6×His-tag sequence coding gene (Figure 2.1). NDK protein 

coding gene is ligated in-between Nde1 and BamH1 restriction sites of pET-15b expression 

vector (Figure 2.1) 

 

 

 

(a) (b) 

pET-15b vector 
pET-15b vector containing NDK protein 

coding gene 

 

Figure 2.1 Commercial pET-15b vector and pET-15b vector containing NDK protein 

coding gene. (a) pET-15b vector purchased from Novagen. (b) pET-15b vector containing 

NDK protein coding gene. 
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2.1.2 rNDK protein expression 

BL21 (DE3) bacteria glycerol stocks were streaked out on LB agar plates supplemented 

with 100 µg/ml ampicillin (see Appendix) and grown overnight at 37°C. Three different 

cultures of BL21 (DE3) for each rNDK were picked and inoculated in 5 ml LB media 

supplemented with 100 µg/ml ampicillin (see Appendix) and incubated overnight at 37°C 

with shaking at 220 rpm. The integrity of overnight cultures was checked by colony PCR. 

Overnight cultures were diluted 1:50 in 150 ml LB media supplemented with 100 µg/ml 

ampicillin and incubated for 4 hours at 37°C with shaking at 220 rpm. After 4 hours 1mM an 

isopropyl β-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich Ltd., Gillingham, UK) was 

added to induce rNDK protein expression. IPTG induced cultures were left incubating for 24 

hours at 37°C with shaking at 220 rpm.  

2.1.3 rNDK protein purification 

After 24 hour incubation IPTG induced cultures were centrifuged at 6000×g at 4°C for 

10 minutes. Supernatant was removed, and wet mass weighed. To lyse bacteria pellets were 

resuspended in 5 ml of BugBuster
TM

 (Novagen) per 1 g of wet weight and 1 μl/ml benzonase 

nuclease (Novagen). Cell lysis was performed at room temperature for 40 minutes, following 

incubation at 4°C for 20 minutes. Lysate was centrifuged at 14000 rpm for 20 min. 

Supernatant was collected, whilst pellets were discarded. rNDK proteins were purified from 

supernatant using the His-Bind Purification kit (Novagen) following manufacturer‟s 

instructions. Each column was filled with 2 ml Ni-NTA His-Bind resin, where resin settled 

bed volume was 1 ml. When liquid stopped dripping, equilibration and charge of the resin was 

performed following 3 steps:  

1) 3 ml sterile dH2O 

2) 5 ml 1×Charge Buffer 



 MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 133 of 190 

 

3) 3 ml 1×Binding Buffer  

Supernatants containing rNDK proteins were loaded onto the columns and allowed to 

drip through. Columns were washed with 10 ml 1×Binding Buffer, then with 6 ml 1×Wash 

buffer. Proteins were eluted with 6 ml 1×Elute Buffer and collected in 6 separate 1 ml 

fractions. 

Protein elution was verified by sodium dodecyl sulphate (SDS) polyacrylamide gel 

staining with Coomassie blue and Western blot analysis. rNDK protein concentration was 

determined for the first three fractions. Only pure fractions were used for further experiments. 

2.2 MEASURING SECRETION OF rNDK PROTEINS FROM BL21 (DE3) 

BACTERIA  

Overnight cultures (described above) were used for the time course experiment. 

Overnight cultures were diluted 1:50 in 10 ml LB media supplemented with 100 µg/ml 

ampicillin and incubated for 4 hours at 37°C with shaking at 220 rpm. After 4 hours, 1mM 

IPTG was added to induce expression of rNDK proteins. IPTG non-induced cultures were 

used as controls. IPTG induced and non-induced cultures were left incubating at 37°C with 

shaking at 220 rpm for the next 6 days. Zero time point samples (1 ml) were collected shortly 

before IPTG induction. The next samples were collected as 1 ml every 24 hours.  

Samples were centrifuged at 14,000 rpm for 5 minutes and pellets were discarded. 

Supernatants were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on 

12.5% gels and stained with Coomassie blue. Secreted rNDK proteins were verified by 

calculation of their masses and comparison to the expected masses. 
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2.3 CELL PURIFICATION AND CELL CULTURE 

Umbilical cord blood (CB) samples were provided by tissue bank under ethical 

approval following informed consent. CB samples were received in plastic bags supplemented 

with anti-coagulants. Cell purification was performed as described in Figure 2.2. 

2.3.1 The purification of mononuclear cells from umbilical cord blood (CB) 

Mononuclear cell separation was performed using 50 ml tubes and spin filter tubes 

(PPA, London, UK). 15 ml Ficoll-Paque
TM

 PLUS (G.E.Healthcare, Amersham, UK) was 

pipette on the top of filter in spin filter tubes. To move the Ficoll-Paque
TM

 PLUS through the 

filter, tubes were centrifuged at 1000×g for 1 minute. Blood samples were diluted 1:3 in 

RPMI 1640 (Gibco, Life Technology, Paisley, UK) supplemented with 1% v/v penicillin and 

streptomycin, and 1% v/v ITS (RPMI 1640 p/s ITS+) and layered on the top of filter. The 

samples were centrifuged at 1000×g for 10 minutes. The mononuclear cell layer is found just 

above the filter in spin filter tubes. Plasma was removed and mononuclear cells were collected 

into a clean 50 ml tube. To wash mononuclear cells, they were resuspended 1:5 in RPMI 1640 

p/s ITS+ and centrifuged at 374×g for 10 minutes. Supernatant was removed. Mononuclear 

cells were resuspended in 5 ml RPMI 1640 p/s ITS+ and centrifuged at 249×g for 10 minutes. 

The last wash step was repeated twice. After the last wash, cells were resuspended in 20 ml 

RPMI 1640 p/s ITS+ and the number of mononuclear cells was counted using a 

haemocytometer. Samples were centrifuged at 1500 rpm for 5 minutes and supernatant was 

removed. 
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Figure 2.2 Cord blood sample processing and CD34
+ve

 sorting, where CMdep is rNDK 

depleted conditioned media. 
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2.3.2 Sorting of CD34
+ve

 cells from primary mononuclear cells 

Mononuclear cells were washed in 5 ml cold (6°C - 12°C) magnetic activated cell 

sorting (MACS) buffer (see Appendix) and centrifuged at 374×g for 5 minutes. CD34
+ve

 cells 

were sorted from mononuclear cells using indirect CD34 Microbead kit (Miltenyi Biotec, 

Surrey, UK) following manufacturer‟s instructions. Briefly, every 10
8
 mononuclear cells were 

resuspended in 300 μl MACS buffer, 100 μl FcR Blocking Reagent and 100 μl CD34 Hapten-

Antibody were added, then mixed and incubated for 15 minutes at 6°C - 12°C. Mononuclear 

cells incubated with CD34 Hapten-Antibody were washed with 10 ml MACS buffer and 

centrifuged at 1500 rpm for 5 minutes. Supernatant was removed and cells were resuspended 

in 400 μl MACS buffer. Anti-Hapten MicroBeads (100 μl) were added, mixed and incubated 

at 6°C - 12°C for 15 minutes. After incubation with Anti-Hapten MicroBeads mononuclear 

cells were washed with 10 ml MACS buffer and centrifuged at 1500 rpm for 5 minutes. 

Supernatant was removed and cells were resuspended in 500 μl MACS buffer. 

CD34
+ve

 cells were sorted using MS column for < 2×10
8
 mononuclear cells or LS 

Column for < 2×10
9
 mononuclear cells. Briefly, MS column was placed into a magnet and 

washed with 500 μl MACs buffer. Mononuclear cells stained with CD34 Hapten-Antibody 

and Anti-Hapten MicroBeads were applied to the MS column and washed with 500 μl MACS 

buffer three times. CD34
-ve

 cells were collected in the unbound fraction. The column was 

removed from the magnet and placed on the top of a clean tube. CD34
+ve

 cells were eluted 

with 1 ml MACS buffer by using the plunger supplied with the column. To increase purity of 

eluted CD34
+ve

 cells collected CD34
+ve

 cell fraction was applied to a new MS column. MS 

column was prepared as described above. CD34
+ve

 cell were eluted with 500 μl MACS buffer. 

CD34
+ve

 and CD34
-ve

 eluted fractions were centrifuged at 1500 rpm for 5 minutes and 

supernatant was removed. CD34
-ve

 cells were resuspended in RPMI 1640 p/s ITS+ as 10
6
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cells per 1 ml. CD34
+ve

 cells were resuspended in 2 ml RPMI 1640 p/s ITS+ and kept at 4°C 

overnight.  

The percentage of CD34
+ve

 cells in mononuclear cell fraction (pre CD34
+ve

 sort 

sample) and the purity of eluted CD34
+ve

 cells were analyzed by flow cytometer. 

2.3.3 CD34
-ve

 cell treatments 

Resuspended CD34
-ve

 cells in RPMI 1640 p/s ITS+ (500 μl) were seeded as 0.5×10
6
 

cells per well into a 48 well plate. For each treatment with each rNDK protein or elution 

buffer (EB) (Novagen) CD34
-ve

 cells were seeded into two wells. Seeded CD34
-ve

 cultures 

were treated with 1 μg/ml or 2 μg/ml rNDK proteins or EB as a negative control. CD34
-ve

 cell 

cultures of CB12 sample were supplemented with 1.25 μg/ml polymyxin B sulfate salt (PMB) 

(Sigma). One of the CD34
-ve

 cultures for the same treatment was incubated for 20 hours, the 

other for seven days. From samples incubated for 20 hours conditioned media (CM) were 

removed and from collected CM rNDK were depleted. Samples of CD34
-ve

 incubated for 

seven days were collected for flow cytometry analysis and Jenner Giemsa staining. 

2.3.4 CD34
+ve

 cell treatments 

Only twice sorted CD34
+ve

 cells were used for treatments. Overnight stored CD34
+ve

 

cells were count using a haemocytometer on the second day after the CD34 sorting. CD34
+ve

 

cells were spin at 2000 rpm for 5 minutes and supernatant was removed. CD34
+ve

 cells were 

resuspended as 1×10
6
 cells per 1 ml in rNDK protein depleted CM (CMdep), seeded as 

0.15×10
6
 or 0.1×10

6
 cells per well into a 96 well plate and incubated for 7 days. On the day 7 

samples of treated CD34
+ve

 cells were collected for flow cytometry analysis and Jenner 

Giemsa staining. 
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2.4 COLONY PCR 

The integrity of bacterial colonies was verified for the overnight cultures by colony 

PCR amplification of the rNDK gene cloned in the pET-15b expression vector using bacterial 

NDK specific primers. PCR using NM23-H1 specific primer was run on all colonies.  

PCR mix (see Appendix) was prepared. Overnight culture (5 μl) was diluted in 5 μl 

dH2O and by heating the mix at 90°C for 10 minutes cDNA was released. 1×PCR mix, 2 μl 

10 μM forward primer (see Appendix) and 2 μl 10 μM reverse primer (see Appendix) was 

added to prepared cDNA. cDNAs were amplified in the PCR cycle: 

94°C for 10 minutes 

94°C for 15 seconds 

56°C for 15 seconds         40 cycles 

72°C for 40 seconds 

72°C for 10 minutes 

 Each PCR product (10 μl) was mixed with 10 μl 5×DNA gel loading buffer (Bioline, 

London, UK). Samples were load on 1% agarose gel (see Appendix) containing 0.3 μg/ml 

ethidium bromide (Sigma). Agarose gel electrophoreses was performed in 1×TBE buffer (see 

Appendix) at 125 V for 1 hour. 

2.5 THE DETERMINATION OF rNDK PROTEIN CONCENTRATION  

The determination of rNDK protein concentration was performed using DC Protein 

Assay kit (BioRad, Hemel Hempstead, UK) following manufacturer‟s instructions. Briefly, 

reagent A‟ was prepared by mixing 20 µl reagent S with 1 ml reagent A. Each purified rNDK 

protein fraction (2 µl) and 2 µl standard at varied concentrations (bovine serum albumin 

(BSA) diluted in RIPA buffer (see Appendix) as 0, 0.6, 1.25, 2.5, 5.0 and 10.0 mg/ml) were 

pipetted into a 98 well plate. Reagent A‟ (25 µl) and 200 µl reagent B was added to each well 



 MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 139 of 190 

 

and left incubating for 15 minutes. The intensity of each well was read using plate reader. 

Measured standard values were used to draw a standard curve. Concentrations of rNDK 

proteins were calculated using standard curve. 

2.6 PROTEIN DEPLETION FROM CM 

Treated CD34
-ve

 cultures were collected in ependorfs as 500 µl after 20 hours 

incubation at 37ºC. Collected cultures were spin at 15,000 rpm for 15 seconds and pellet free 

CMs were collected in new ependorfs. HIS-Select
TM

 Nickel affinity gel (Sigma) is used as 

100 µl per 1 ml of CM to deplete rNDK protein. For example, for rNDK protein depletion 

from 3 ml of CM (6 cultures each 500 µl) 300 µl HIS-Select
TM

 Nickel affinity gel is needed. 

HIS-Select
TM

 Nickel affinity gel (300 µl) was placed in ependorf, spin at 15,000 rpm and 

supernatant was removed. HIS-Select
TM

 Nickel affinity gel was washed with 1 ml dH2O and 

was spin at 15,000 rpm. Supernatant was removed. Then HIS-Select
TM

 Nickel affinity gel was 

resuspend in 1 ml equilibration buffer (see Apendix) and split equally into 6 ependorfs. To 

each ependorf with HIS-Select
TM

 Nickel affinity gel 500 µl CM was added and incubated at 

4°C with shaking for 20 minutes. After incubation CM and gel were spin at 15,000 rpm for 

2.5 minutes. CMdep was removed and filter sterilized.  

2.7 SDS–PAGE 

2.7.1 Sample preparation 

Eluted rNDK protein fractions (Paragraph 2.1.3), supernatants collected from bacteria 

cultures (Paragraph 2.2) CM and CMdep (Paragraph 2.3.3) were diluted 3:4 in 4×gel loading 

buffer (GLB) (see Appendix). For Western blot analysis the second eluted fractions of rNDK 

(Paragraph 2.1.3) were diluted 1:10 in 1×GLB and as 1mg/ml. 
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Prepared samples were boiled for 10 minutes. Each sample (10 μl) was load on to 

SDS-polyacrylamide gel. Coomassie blue staining was performed to check purity of eluted 

rNDK fractions. Western blot was performed to check rNDK depletion in CM and to check 

the second eluted fraction for rNDK proteins. 

2.7.2 SDS – polyacrylamide gel preparation 

Recombinant NDK proteins were separated by SDS–PAGE on 1.5 mm 12.5% SDS–

polyacrylamide gels. SDS–polyacrylamide gel consist of two layers: resolving gel (see 

Appendix) on the bottom and stacking gel (see Appendix) on the top. Resolving gel (8 ml) 

was pipetted in-between glass plates. Water (1 ml) was pipetted on the top of the gel and 

resolving gel was left to polymerize for 30 minutes. Water layer was removed and prepared 

stacking gel was pipetted on the top of resolving gel layer. A 10 well comb was inserted and 

stacking gel was left to polymerize for next 30 minutes.  

Two prepared SDS–polyacrylamide gels were placed into a box. Running buffer (see 

appendix) was added in between two gels and into the box to cover the bottom of both gels. 

Prepared samples and protein ladder were loaded on SDS–polyacrylamide gel. Gels were 

electrophoresed at 120 V for approximately 1 hour. 

2.8 COOMASSIE BLUE STAINING  

After SDS–PAGE gels were stained with Coomassie stain (see Appendix) with 

shaking at 20 rpm for 2 hours. Coomassie stain was removed; gels were placed in Destain (see 

Appendix) and shaken at 20 rpm until gels are transparent. Stained proteins on SDS–

polyacrylamide gels were analyzed using a GeneFlash transluminator (Geneflow, 

Staffordshire, UK).  
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2.9 WESTERN BLOT ANALYSIS 

Polyvinilidene difluoride (PVDF) membrane (Millipore Corp, Bedford, MA, USA) 

was soaked in 100% methanol for 10 seconds, and then washed in transfer buffer (see 

Appendix). Filter papers (12 pieces per gel) were soaked in transfer buffer. Protein transfer 

from SDS-polyacrylamide gel to PVDF membrane was set up as follows: 6 pieces of filter 

paper on the bottom, PVDF membrane, gel and 6 pieces of filter paper on the top. Protein 

transfer was performed at 25 V for 1 hour. 

After transfer PVDF membrane was washed in TBS-T (see Appendix) with shaking at 

60 rpm for 5 minutes, three times. NM23-H1 (C-20) rabbit polyclonal primary antibodies 

(Santa Cruzm, Wembley, UK) were diluted 1:5000 in 10 ml 5% Blotto, but His-probe (H-15) 

rabbit polyclonal primary antibodies (Santa Cruz) were diluted 1:2500 in 10 ml 5% Blotto. 

Anti-rabbit secondary antibodies (Sigma) were diluted 1:1000 in 10 ml 5 % Blotto. To 

prevent non-specific antibody binding PVDF membrane was soaked in 30 ml 5% Blotto (see 

Appendix) with shaking at 20 rpm for 30 minutes. Blotto was poured, off and membrane was 

incubated with diluted primary antibodies at 4°C with shaking at 20 rpm, overnight. The 

excess of primary antibodies was removed by washing PVDF membrane in TBS-T with 

shaking at 60 rpm for 10 minutes, three times. Then PVDF membrane was incubated with 

diluted secondary antibodies with shaking at 20 rpm, for 1 hour. The excess of secondary 

antibodies was removed by washing PVDF membrane in TBS-T with shaking at 60 rpm for 

10 minutes, three times. 

SuperSignal West Pico Chemiluminiscent Substrate or SuperSignal West Dura 

Chemiluminiscent Substrate (Thermo Scientific, Waltham, UK) was used. Stable peroxide 

solution and Luminal/Enhancer solution were mixed as 1:1 in total volume 2 ml for 1 

membrane. PVDF membrane was incubated in 2 ml of the prepared solution for 5 minutes. 
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The excess of solution was drained off. PVDF membrane was wrapped in cling film and taped 

down into a film cassette. Prepared membrane was exposed to a photographic film (Kodak, 

Rochester, NY, USA) for a varied time and developed using AGFA Curix 60 developer 

(AGFA, Mortsel, Belgium).  

2.10 rNDK PROTEIN MASS CALCULATION  

Expected protein masses were calculated from rNDK protein sequences. Secreted 

rNDK protein masses were calculated from photographs of SDS-polyacrylamide gels stained 

with Coomassie blue. Firstly, a curve for protein ladder with respect to protein run distance 

was drawn. Mass of each secreted rNDK protein was determined from the equation of the 

trend line for the drawn curve. 

2.11 FLOW CYTOMETRY 

2.11.1 CD34
+ve

 cell staining 

CD34
+ve

 pre-sorted cells, CD34
+ve

 cells after first and second sort and CD34
+ve

 cells 

incubated in CM were collected as 50 - 100 µl. To the collected samples 5 µl FcR blocking 

reagent (Miltenyi Biotech) and 2 µl CD34 FITC (BD Bioscience, Oxford, UK) or 1 μl CD34 

APC antibody (BD Bioscience) were added. Control samples were stained with the same 

amount of FITC (BD Bioscience) or APC isotype control antibody (BD Bioscience). All 

samples were incubated for 10 minutes, washed with 2 ml PBS (PAA Laboratories, Gmbh, 

Yevil Sommerst, UK) then spin at 1500 rpm for 5 min. Supernatant was removed, and cells 

were resuspended in 200 µl FACS fix (see Appendix). Microbeads (CytoCount
TM

, Alere Ltd., 

Stockport, UK) (10 μl) were added to the samples. Prepared samples were analyzed using BD 

LSRII machine with FACS DIVA software (BD Bioscience), collecting 100,000 viable cells 

for CD34
+ve

 pre-sorted samples and 10,000 viable cells for CD34
+ve

 sorted samples. 
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2.11.2 CD34
-ve

 cell staining 

Treated CD34
-ve

 cells were collected as 100 - 200 µl. To the collected samples 5 µl 

FcR blocking reagent and 1 µl CD34 APC and 2 µl CD11b PE* antibodies (BD Bioscience) 

were added. Control samples were stained with the same amount of APC and PE* isotype 

control antibodies (BD Bioscience). Samples were incubated for 10 minutes, washed in 2 ml 

PBS, then spin at 1500 rpm for 5 min. Supernatant was removed, and cells were resuspended 

in 200 µl FACS fix. Prepared samples were analyzed using BD LSRII machine with FACS 

DIVA software, collecting 20,000 viable cells.  

2.12 JENNER GIEMSA STAINING 

Giemsa Buffer (see Appendix) was diluted 1:25 in dH2O. Jenner stain (RAYMOND A 

LAMB Ltd., Eastbourne, UK) was diluted 1:3 in diluted Giemsa buffer. Giemsa‟s staining 

solution (BDH, VWR International Ltd., Poole, UK) was diluted 1:20 in diluted Giemsa 

buffer. To produce slides 75μl of cell culture were cytospined at 500 rpm for 3 min using 

Cytospin 3 (Shannon, UK). Prepared slides were air dried. Cells on the slides were fixed in 

methanol for 5 minutes and air dried. Slides were stained in diluted Jenner stain for 5 minutes 

then washed with water. Then slides were stained in dilute Giemsa stain for 10 minutes. 

Slides were washed, and air dried. Stained slides were mounted with DePex mounting 

medium (BDH, VWR International Ltd., Poole, UK). Cells were visualized using microscope. 

Photographs were taken at ×400 magnification. 
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3 RESULTS 

3.1 PRODUCTION OF HIS-TAGGED rNDK PROTEINS 

Glycerol stocks of BL21 (DE3) with the pET-15b expression vector containing NDK 

coding gene were streaked out and regrown on LB agar plates. Single colonies were picked 

and cultured overnight. Overnight cultures were diluted, and rNDK protein expression was 

induced with IPTG as described in materials and methods. 

3.1.1 Integrity of the rNDK protein producing system 

The integrity of bacterial colonies was verified for the overnight cultures by colony 

PCR amplification of the NDK gene cloned in the pET-15b expression vector using bacterial 

NDK specific primers. PCR using NM23-H1 specific primers was run on all colonies. PCR 

products were separated by agarose gels electrophoresis. The correct sized PCR products for 

each bacterial NDK strain and no NM23-H1 contamination were observed for all BL21 (DE3) 

colonies (Data not shown due to the suitable image of the gel was not captured) indicating 

that the rNDK colonies contained the correct plasmid sequence. 
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3.1.2 Purification of rNDK proteins 

Recombinant NDK proteins were purified using Ni-NTA His-Bind resin from the 

IPTG induced cultures as described in materials and methods. Briefly, BL21 (DE3) rNDK 

protein producing cells were lysed, and pellets were discarded. Total lysate was added to the 

Ni-NTA His-Bind resin column, and unbound fractions were collected. rNDK proteins were 

eluted in 6 fractions as 1 ml. Purified proteins were separated by SDS-PAGE on 12.5% gels 

and stained with Coomassie blue (Figure 3.1). E.coli and S.pneumoniae rNDK proteins were 

eluted in the second and third fractions. S.aureus rNDK and rNM23-H1 proteins were eluted 

in the first three fractions, whilst K.pneumoniae rNDK was eluted in the first four fractions. 

For the first three fractions protein concentration was determined (Figure 3.2). The highest 

concentration of rNDK proteins is in the second eluted fraction. Therefore, the second 

fractions were diluted in RPMI 1640 p/s ITS+ to a final concentration of 100 µg/ml. 

Verification of rNDK proteins in the second eluted fractions was performed using 

Western blot. There are no commercially available antibodies for bacterial NDK proteins so 

we tested anti-NM23 antibodies for their cross-reactivity against bacterial NDK proteins. In 

the first Western blot analysis NM23-H1 antibody was used (Figure 3.3). Bands were 

observed for rNM23-H1, S.aureus rNDK and their dimers. NM23-H1 antibody is rNM23-H1 

specific, thus when protein fractions are diluted as 1:10 in 1×GLB and loaded on a SDS-

polyacrylamide gel, photo bleaching of rNM23-H1 was observed. Bands of K.pneumoniae 

and E.coli rNDK usually were observed, when membrane was incubated in strong ECL and 

exposed to a film for a longer time. No band for S.pneumoniae rNDK was observed. 

Therefore, alignment of bacterial NDK protein sequences with NM23-H1 was produced 

(Figure 3.4). 
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Figure 3.1 Purification of rNDK proteins. Coomassie blue stained SDS-polyacrylamide gels. For each rNDK protein samples of total 

cell lysate, unbound fraction and six eluted rNDK protein fractions (F#1 –F#6) were loaded on a gel. 
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NM23-H1 antibody binds to the 20 amino acid long C-terminal NM23-H1 

sequence. Sequence similarities between NM23-H1 and E.coli, K.Pneumoniae, 

S.pneumoniae, S.aureus NDK proteins are 15%, 15%, 5% and 8 amino acids 40% 

(Figure 3.3). This explains observed band intensity and absence of S.pneumoniae rNDK 

band. To overcome the problem, in further Western blot analysis His-probe antibody 

was used. 

The second eluted fractions of rNDK proteins were diluted as 1 mg/ml and 

loaded as 10 µl on a SDS-polyacrylamide gel. His-probe antibody binding to all rNDK 

proteins was observed (Figure 3.3). Weak binding of His-probe antibody to 

S.pneumonia rNDK was observed. His-probe antibody binds stronger to E.coli, 

K.Pneumoniae, S.aureus rNDK and rNM23-H1 proteins. For rNM23-H1 and E.coli, 

S.aureus rNDK were observed two bands – mono and dimer form of rNDK.  

 

 

Protein 
Concentration 

of F#1, mg/ml 

Concentration 

of F#2, mg/ml 

Concentration 

of F#3, mg/ml 

rNM23-H1 0.71  2.57  0.69  

E.coli rNDK 0.00  2.30  0.92  

K.pneumonia rNDK 2.35  4.15  2.47  

S.pneumoniae rNDK 0.49  4.30  2.00  

S.aureus rNDK 0.27  3.46  1.13  

 

Figure 3.2 Concentration of rNDK proteins in the first three fractions, where F#1, 

F#2 and F#3 are fractions 1-3.  
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Figure 3.3 Purification of rNDK proteins. Verification of rNDK proteins using 

Western blot. The second eluted fraction of each rNDK protein was diluted 1:10 in 

1×GLB (for PVDF membrane incubation in NM23-H1 antibody) and 1mg/ml in GLB 

(for PVDF membrane incubation in His-probe antibody) and loaded on SDS-

polyacrylamide gel. Proteins separated by SDS-PAGE were transferred from SDS-

polyacrylamide gel onto PVDF membrane and membrane was incubated in NM23-H1 

or His-probe antibody.  
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 ●  The same amino acids as in NM23-H1 protein    The same amino acids found in K.Pneumoniae and S.aureus NDK proteins 

                                 

 ○  The same amino acids as in NDK protein from E.coli  
 

 The same amino acids found in S.aureus and S.Pneumoniae NDK proteins 

 

Figure 3.4 Alignment of NM23-H1 and E.coli, K.Pneumoniae, S.pneumoniae, S.aureus NDK protein sequences. NM23-H1 protein C-

20 amino acid sequence with which NM23-H1 protein binds to NM23-H1 antibody is shown in yellow. Bacterial NDK protein similarity 

with NM23-H1 protein C-20 sequence is shown in grey. 
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3.2 BL21 (DE3) BACTERIA SECRETE rNDK PROTEINS  

To check if BL21 (DE3) bacteria secrete rNDK proteins overnight cultures were 

diluted and rNDK protein expression was induced by IPTG. Samples were collected shortly 

before IPTG induction (zero time point) and every 24 hours for six days. IPTG non-induced 

culture was monitored as a control. Secreted proteins were separated by SDS-PAGE on 12.5% 

gels and stained with Coomassie blue (Figure 3.5). 

For each rNDK protein curves of protein ladder mass with respect to their run distance 

were drawn. Secreted protein masses were determined from the trend line equation of the 

curve (Figure 3.6). Verification of rNDK proteins was performed by calculation of masses for 

observed proteins on Coomassie blue stained SDS-polyacrylamide gels and comparison to the 

predicted masses. Calculated masses were found as similar to predicted ones. 

No rNDK secretion in IPTG non-induced cultures was observed (Data not shown). 

Secretion of rNDK proteins in IPTG induced cultures was observed from the first day (Figure 

3.5). The intensity of observed rNDK protein bands allow to suggest that secretion of 

K.pneumoniae, S.aureus and S.pneumoniae rNDK stays unchanged for 6 days, while secretion 

of rNM23-H1 and E.coli rNDK decreases. Moreover, E.coli rNDK secretion is weak and is 

observed only for the first three days.  
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Figure 3.5 Time course experiment: BL21 (DE3) bacteria secrete rNDK proteins. 

Coomassie blue staining of SDS-polyacrylamide gels. Overnight cultures were diluted 1:50 

and rNDK protein expression was induced by IPTG. Samples were collected before ITPG 

induction (zero time point) and every 24 hours for six days. Prepared samples of supernatants 

were loaded on SDS-PAGE gels. 
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(b) 

Protein Predicted mass, kDa Calculated mass, kDa 

rNM23-H1 19.78 22.26 

E.coli rNDK 18.69 20.92 

K.pneumoniae rNDK 18.72 20.05 

S.pneumoniae rNDK 18.01 19.21 

S.aureus rNDK 19.26 19.94 

 

Figure 3.6 Time course experiment: BL21 (DE3) bacteria secrete rNDK proteins. 
Verification of secreted rNDK proteins. (a) Curves and trend lines of protein ladder mass 

with respect to their run distance (b) rNDK protein masses calculated from trend line equation 

and predicted from protein sequences. 
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3.3 THE OPTIMIZATION OF CD34
+ve

 CELL PURIFICATION 

CB samples were sorted for mononuclear cells (pre CD34
+ve

 sorted cells). Further 

mononuclear cells were sorted for CD34
+ve

 cells as described in materials and methods. Pre 

and post CD34
+ve

 sorted samples were stained with CD34 FITC (CB2-CB11) or CD34 APC 

(CB12) antibodies as described in materials and methods and analysed by flow cytometry.  

An example of flow cytometry data for pre and post CD34
+ve

 sorted cells is shown for 

CB7 sample (Figure 3.7). CB7 sample was double sorted for CD34
+ve

 cells. Flow cytometry 

data for each sample: CD34
+ve

 pre-sorted, CD34
+ve

 after 1
st
 and 2

nd
 sort are shown as two 

plots. The first one compares the forward and side scatter of all collected events (Figure 3.7, 

Column 1). An increase in forward scatter indicates an increase in event size. Whereas an 

increase in side scatter indicates an increase in granulation of cell cytoplasm, thus indicates 

more mature cells. Gate R1 enclose all viable cells, while dead cell and debris are found in the 

bottom left corner. Microbeads form a line in the top left corner. For the pre CD34
+ve

 cell 

sample was collected 100,000 R1 gated events, for the CD34
+ve

 sorted samples 10,000 R1 

gated events. Analysing data of CD34
+ve

 once and twice sorted cells viable cells are situated 

on the bottom of the plot (Figure 3.7, Column 1). Viable cells of pre CD34
+ve

 sorted sample 

are more distribute towards the increase in side scatter. The second plot represents all viable 

cells (R1 gated events) and it compares the side scatter and CD34 FITC stained cells (Figure 

3.7, Column 2). Gate R2 enclose CD34
+ve

 cells. In pre CD34
+ve

 sorted sample amount of 

CD34
+ve

 cells is negligible, it increase with each CD34
+ve

 sort (Figure 3.7, Column 2). 

Amount of CD34
+ve

 cells in pre and post CD34
+ve

 cell sort samples was calculated from 

the ratio between microbeads and R2 gated events (Figure 3.7, Column 2). CD34
+ve

 cells are 

found as 0.5 – 1.7% of mononuclear cells (Figure 3.8a). Percentage of CD34
+ve

 cell for CB2 

and CB3 after single sort is 42.1% and 35.1%, respectively. To increase the purity of CD34
+ve

 

cells temperature (6°C - 12°C) of MACS buffer was monitored and CD34
+ve

 cell purity 
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increased to 47.1 - 65.6% (CB4-CB7). Although, monitoring temperature of MACS buffer an 

increase in purity of CD34
+ve

 cells was observed, the purity of CD34
+ve

 cells is unsatisfactory. 

Therefore, double sort was performed and an increase in CD34
+ve

 purity 75.8 – 88.9% is 

observed (Figure 3.8 b).  

To visualize diversity of sorted cells, Jenner Giemsa staining was performed (Figure 

3.9). Jenner Giemsa stains nuclei blue violet, erythrocytes – weak red, platelets - light pale 

pink, lymphocyte cytoplasm - sky blue, monocyte cytoplasm – greyish blue, granules in 

granulocytes – dark violet and stem cells (CD34
+ve

) – violet. Mononuclear layer consist of 

cells with round nucleus, such as lymphocytes, monocytes or macrophages. In CD34
-ve

 cell 

sample lymphocytes (dark blue nuclei with a narrow rim of cytoplasm), monocytes (greyish 

blue) and stem cells (perfectly round and violet) are distinguished. In CD34
+ve

 cell sample 

most of cells are stem cells (CD34
+ve

) (Figure 3.9).  
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Figure 3.7 CD34
+ve

 cell purification. Flow cytometry data. Pre CD34
+ve

 sorted cells and 

CD34
+ve

 cells after 1
st
 and 2

nd
 sort (CB7). Total collected events are observed in column 1 

plots. Gate R1 enclose viable cells and gate R2 CD34
+
 cells.  



 MRes in Molecular and Cellular Biology 

Inara Liepina 

 

Page 156 of 190 

 

(a) 

P
e
r
ce

n
ta

g
e
 o

f 
C

D
3
4

+
v
e
 c

el
ls

 

 

 Pre CD34
+ve

 sorted cells 

(b) 

P
e
r
ce

n
ta

g
e
 o

f 
C

D
3
4

+
v
e
 c

el
ls

 

 

  1
st
 sort  2

nd
 sort  

Figure 3.8 CD34
+ve

 cell purification. Percentage of CD34
+ve

 cells. (a) Percentage of 

CD34
+ve

cells in pre CD34
+
 sort cells (b) Percentage of CD34

+ve
cells in CD34

+ve
 cells after 1

st
 

and 2
nd

 sort. 
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CD34
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Figure 3.9 CD34
+ve

 cell purification. Post sorted CD34
-ve

 and CD34
+ve

 cell Jenner Giemsa 

staining (CB2). Pictures are taken at ×400 magnification. 
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3.4 VIABILITY OF CD34
-ve

 CELLS TREATED WITH rNDK PROTEINS 

After CD34 sorting CD34
-ve

 cells were diluted as 0.5×10
6
 cells per ml in RPMI 1640 p/s 

ITS+ and seeded as 500 µl in a 48 well plate. CD34
-ve

 cells were treated with 1µg/ml (CB8-

CB10) or 2µg/ml (CB11 and CB12) rNM23-H1 or E.coli, K.Pneumoniae, S.pneumonia, 

S.aureus rNDK protein (rNDK-EC, rNDK-KP, rNDK-SP and rNDK-SA) or EB. CB12 

samples were supplemented with 1.25 µg/ml PMB. Treated CD34
-ve

 cells were incubated at 

37°C for 7 day. Treated cells were stained with CD34 APC and CD11b PE* antibodies as 

described in materials and methods and analysed by flow cytometry.  

An example of flow cytometry data for treated CD34
-ve

 cell cultures incubated for 7 

days is shown for CB11 sample as two plots for each rNDK or EB treatment (Figure 3.10). 

The first plot of side scatter against forward scatter shows all collected events (Figure 3.10, 

Column 1). The gate R1 encloses viable cells. The second plot of CD34 APC against CD11b 

PE
*
 is R1 gated, thus represents all viable cells (Figure 3.10, Column 2). Gate R2 encloses 

CD11b
+ve

 cells, whilst gate R3 encloses CD34
+ve

 cells. Plots in column 2 shows that CD34
+ve

 

and CD11b
+ve

 cells are present in the treated CD34
-ve

 cell cultures. The amount of CD34
+ve

 

cells is 0.1-4.0%, although it was expected to be close to 0. Amount of CD11b
+ve

 cells is 

higher 5.3–40.1% (Figure 3.11). The amount of CD11b
+ve

 cells increases about two times in 

the sample supplemented with PMB (CB12) (Figure 3.11). Otherwise there is no consistency 

in the levels of CD11b
+ve

 and CD34
+ve

 cells in treated CD34
-ve

 cells cultures (Figure 3.11) 

Figure 3.12 represents viability of treated CD34
-ve

 cells. Total concentration of viable 

CD34
-ve

 cells decreases from initial concentration 10
6
 cells per ml (day 0) to 1.83±0.53×10

5
 

(EB), 1.21±0.32×10
5
 (rNM23-H1), 1.10±0.26×10

5
 (rNDK-EC), 1.74±0.38×10

5
 (rNDK-KP), 

0.99±0.20×10
5
 (rNDK-SP), 1.59±0.45×10

5
 (rNDK-SA) cells per  ml. Total cell concentration 
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is higher in EB treated samples (negative control) than in rNM23-H1 treated samples (positive 

control) for all CB samples indicating that positive control failed to work. 

CD34
-ve

 cell differentiation was observed for all treated CB samples. CD34
-ve

 cell 

culture photographs were taken on day 7 (Figure 3.13). CD34
-ve

 cells treated with EB are less 

differentiated, whilst all rNDK proteins promoted macrophage and fibroblast formation. 

Cluster formation in CD34
-ve

 cell cultures treated with rNDK was observed only for CB1 and 

CB11. Cells treated with EB did not form cluster or they were present in smaller amount. 

Presence and absence of clusters in CD34
-ve

 cell cultures treated with rNM23-1 and EB, 

respectively, is shown in photographs of Jenner Giemsa stained CD34
-ve

 cells (Figure 3.14). 
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Figure 3.10 Differentiation of CD34
-ve

 cells. Flow cytometry data. CD34
-ve

 cells were seeded as 0.5×10
6
 cells per well in a 48 well plate 

as 500 µl. Seeded cells were treated with 2 µg/ml rNDK protein or EB and incubated at 37ºC for 7 days (CB11). Gate R1 enclose viable 

cells, gate R2 CD11b
+ve

 cells and gate R3 CD34
+ve

 cells. 
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Figure 3.11 CD34
-ve

 cell differentiation. Percentage of CD34
+ve

 and CD11b
+ve

 in treated 

CD34
-ve

 cell cultures. CD34
-ve

 cells were seeded as 0.5×10
6
 cells per well in a 48 well plate 

as 500 µl. Seeded cells were treated with 1µg/ml (CB8 - CB10) or 2 µg/ml (CB11 and CB12) 

rNDK protein or EB and incubated at 37ºC for 7 days (CB11). CB12 was treated with 1.25 

µg/ml PMB.  
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Figure 3.12 CD34
-ve

 cell viability (CD11b
+ve 

cell concentration per ml is represented in 

red, total cell concentration is sum of blue and red). CD34
-ve

 cells were seeded as 0.5×10
6
 

cells per well in a 48 well plate as 500 µl. Seeded cells were treated with 1µg/ml (CB8 - 

CB10) or 2 µg/ml (CB11 and CB12) rNDK protein or EB and incubated at 37ºC for 7 days 

(CB11). CB12 was treated with 1.25 µg/ml PMB.  
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Figure 3.13 CD34
-ve

 cell viability. CD34
-ve

 cells were seeded as 0.5×10
6
 cells per well in a 48 

well plate as 500 µl. Seeded cells were treated with 2 µg/ml (CB11) rNDK protein or EB and 

incubated at 37ºC (CB11) for 7 days. Photographs were taken at x400 magnification. 
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Figure 3.14 CD34
-ve

 cell viability. Photographs of Jenner Giemsa stained CD34
-ve

 cell 

treated with rNM23-H1 or EB. CD34
-ve

 cells were seeded as 0.5×10
6
 cells per well in a 48 

well plate as 500 µl. Seeded cells were treated with 2 µg/ml (CB1) rNm23-H1 protein or EB 

and incubated at 37ºC for 7 days (CB1). Collected cells were cytospined and stained in Jenner 

Giemsa stain. Photographs were taken at x400 magnification. 
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3.5 VIABILITY OF CD34
+ve

 CELLS TREATED WITH CM 

From CD34
-ve

 cell cultures treated with rNM23-H1 or E.coli, K.Pneumoniae, 

S.pneumonia, S.aureus rNDK protein or EB and incubated for 20 hours CM (CM-NM, CM-

EC, CM-KP, CM-SP, CM-SA or CM-EB) was collected. Recombinant NDK proteins were 

depleted from collected CM as described in materials and methods. Protein depletion was 

verified by Western blot (Figure 3.15). 

CD34
+ve

 sorted cells were left overnight at 4ºC. On the next day CD34
+ve

 cells were 

counted and diluted as 10
6
 cells per ml in CMdep. Resuspended cells were seeded as 150 µl 

(CB8) and as 100 µl (CB9-CB12) in a 96 well plate and incubated at 37ºC for 7 days. Treated 

cells were stained with CD34 FITC (CB8-CB11) or CD34 APC (CB12) antibodies as 

described in materials and methods and analysed by flow cytometry.  

An example of flow cytometry data for treated CD34
+ve

 cell cultures incubated for 7 

days is shown for CB8 sample as two plots for each CMdep-NDK and CMdep-EB treatment 

(Figure 3.16). The first plot of side scatter against forward scatter shows all collected events 

(Figure 3.16, Column 1). Gate R1 encloses viable cells. Amount of viable cells in CD34
+ve

 

resuspended in CMEB (CD34
+ve

/CMdep-EB) is smaller than in CD34
+ve

/CMdep-NM. The 

second plot of side scatter against CD34 FITC is R1 gated, thus all events represents all viable 

cells (Figure 3.16, Column 2). Gate R2 encloses CD34
+ve

 cells. Amount of CD34
+ve

 cells in 

CD34
+ve

/CMdep-EB is smaller than in CD34
+ve

/CMdep-NM (Figure 3.16, Column 2). 

Figure 3.17 represents viability of treated CD34
+ve

 cell cultures. CD34
+ve

 cell culture 

were seeded at total cell concentration 10
6
 cells per ml. CD34

+ve
 cell purity

 
for CB8, CB9, 

CB10, CB11 and CB12 is 82.6%, 85.7%, 85.4%, 75.8% and 83.5%, respectively. Therefore, 

genuine concentration of CD34
+ve

 cells in seeded samples is 8.26×10
5
 (CB8), 8.57×10

5 
(CB9), 

8.54×10
5
(CB10), 7.58×10

5
(CB11) and 8.35×10

5
(CB12) cell per ml. Total concentration of all, 
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including CD34
+ve

 cells, from initial concentration 10
6
 cells per ml decreases to 

1.45±0.52×10
5
 (CMdep-EB), 2.38±0.73×10

5
 (CMdep-NM), 2.46±0.87×10

5
 (CMdep-EC), 

2.18±1.25×10
5
 (CMdep-KP), 4.04±3.64×10

5
 (CMdep-SP) and 2.75±0.68×10

5
 cells per ml 

(CMdep-SA). Whereas concentration of CD34
+ve

 cells only from initial concentration 

8.26±0.16×10
5
 cells per ml decreases to 0.59±0.12×10

5
 (CMdep-EB), 1.16±0.37×10

5
 (CMdep-

NM), 1.18±0.50×10
5
 (CMdep-EC), 1.33±0.78×10

5
 (CMdep-KP), 2.51±1.91×10

5
 (CMdep-SP), 

1.44±0.43×10
5
 (CMdep-SA)   Moreover, percentage of CD34

+ve
 cells in treated cultures 

decreases from 75.8-85.7% to 58.3 - 78.7% (CB8), 45.4 - 50.0% (CB9), 47.3 - 59.0% (CB10), 

19.6 - 27.4% (CB11) and 60.1 - 70.7% (CB12). CD34
+ve

 cell viability is not consistent. 

Comparing viability of CD34
+ve

 cells treated with positive (CMdep-NM) and negative control 

(CMdep-EB) only in samples CB8, CB11 and CB12 CD34
+ve

 cell concentration  is higher in 

CD34
+ve

/CMdep-NM cells. In CB9 sample concentration of CD34
+ve

 cells treated with CMdep-

NM or CMdep-EB are similar, while in sample CB10 CD34
+ve

 cell concentration is higher for 

CMdep-EB. 

Photographs of the treated CD34
+ve

 cell cultures were taken on day 7 (Figure 3.18). In 

CD34
+ve

/CMdep-EB sample there are fewer cells, whilst in CD34
+ve

/CMdep-NDK are more 

cells. CD34
+ve

/CMdep-NDK cells are tending to form clusters, whilst in CD34
+ve

/CMdep-EB no 

cluster or less in comparison to CD34
+ve

/CMdep-NDK is observed. This tendency is observed 

even when amount of the total cells is very small (CB9 and CB10). Lack and presence of 

clusters in CD34
+ve

/CMdep-EB and CD34
+ve

/CMdep-NM is observed in Jenner Giemsa stained 

CD34
+ve

 cell cultures (Figure 3.19). 
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Figure 3.15 Verification of rNDK protein depletion in CM. Western blot analysis 

(CB12). 
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Figure 3.16 CD34
+ve

 cell viability. Flow cytometry data. CD34
+ve

 cells were diluted as 10
6
 cells per ml in 150 µl CMdep-NDK or CMdep-

EB and seeded in a 96 well plate. Treated CD34
+ve

 cell cultures were incubated at 37ºC for 7 days (CB8). Gate R1 enclose viable cells, gate 

R2 CD34
+ve

 cells. 
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Figure 3.17 CD34
+ve

 cell viability (CD34
+ve

 cell concentration per ml is represented in 

blue, total cell concentration is in sum of blue and red). CD34
+ve

 cells were diluted as 10
6
 

cells per ml in 150 µl (CB8) or 100 µl (CB9 – CB12) CMdep-NDK or CMdep-EB and seeded in 

a 96 well plate. Treated CD34
+ve

 cell cultures were incubated at 37ºC for 7 days.  
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CMdep-EC  CMdep-SA 

 

 

 

   

Figure 3.18 CD34
+ve

 cell viability. Photographs of treated CD34
+ve

 cell cultures. CD34
+ve

 

cells were diluted as 10
6
 cells per 1 ml in 100 µl of CMdep-NDK or CMdep-EB and seeded in a 

96 well plate. Treated CD34
+ve

 cell were incubated at 37ºC for 7 days (CB11). Photographs 

were taken at x400 magnification.  
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CMdep-EB 

 

 

CMdep-NM 

 

 

Figure 3.19 Photographs of Jenner Giemsa stained CD34
+ve

 cell treated with CMdep-NM 

or CMdep-EB (CB1). CD34
+ve

 cells were diluted as 10
6
 cells per 1 ml in 200 µl CMdep-NM or 

CMdep-EB and seeded in a 96 well plate. Treated CD34
+ve

 cell cultures were incubated at 37ºC 

(CB11) for 7 days. Collected cells were cytospined and stained in Jenner Giemsa stain. 

Photographs were taken at x400 magnification. 
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4 DISCUSSION 

4.1 BL21 (DE3) BACTERIA SECRETE rNDK PROTEINS 

It is known that several pathogenic bacterial taxa such as P.gingivalis (Yilmaz et al., 

2008), L.amazonensis (Kolli et al., 2008), M. tuberculosis (Zhao et al., 2007), P.aeruginosa 

(Zaborina et al., 1999), V.cholera and S.typhimurium (Dar et al., 2011), secrete NDK proteins. 

The exact mechanism of protein secretion remains hitherto unknown, yet it has been 

suggested that NDK protein secretion is promoted by the type I mechanism (Kamath et al., 

2000). The DXXX (X is predominantly hydrophobic amino acid) motif in the C-terminal 

region of NDK proteins seems to play a crucial role in NDK protein secretion.  

In this project, we could show that E.coli BL21 (DE3) secretes rNM23-H1, E.coli, K. 

pneumoniae, S.pneumoniae and S.aureus rNDK proteins. All these rNDK proteins possess the 

sequences DSVE (rNM23-H1, E.coli and K.pneumoniae), DSLE (S.aureus), DSEE 

(S.pneumoniae) or DYTS (rNM23-H1) in the C-terminal end, which might be responsible for 

their secretion. The secretion mechanism itself was not investigated, as it was not the purpose 

of this study. An important fact here is that rNDK proteins were secreted from the same E.coli 

BL21 (DE3) strain. Thus, it might be that K. pneumoniae, S. pneumonia and S. aureus 

bacteria do secrete NDK proteins expressed by themselves, an observation that should be 

investigated further. 

NM23-H1 and NM23-H2 are secreted by blood cells (Yokoyama et al., 1996, Willems 

et al., 1998, Okado-Kabe et al., 2002), as they are found in both healthy and in AML patient 

plasma (Niitsu et al., 2000, Willems et al., 1998, Okado-Kabe et al., 2002). The levels of 

NM23-H1 and NM23-H2 are increased in leukaemia patients (Niitsu et al., 2000) and 
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elevated levels of NM23-H1 and NM23-H2 might be just a result of the disease. However, 

they may as well play a role in the development of leukaemia.  

Extracellular expression of NM23-H1 was observed for myeloid and some erythroid 

cancer cell lines and was not observed for lymphoid cell lines (Okabe-Kado et al., 2002, 

Willems et al., 1998). Moreover, extracellular levels of NM23-H1 decrease with cell 

differentiation (Okabe-Kado et al., 2002). Thus, it is possible that by expression of NM23-H1, 

immature cells affect the functional activity of more mature cells. 
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4.2 ADDITIONAL rNDK PROTEIN PROMOTES CELL SURVIVAL 

Willems et al. (2002) showed that additional NM23-H1, NM23-H2 and NM23-H3 did 

not affect differentiation of CD34
+ve

/CD38
-ve

 primary cell culture grown in the presence of 

IL-1, IL-3, IL-6, kit-ligand and FL cytokines differentiation. Additional NM23 proteins 

altered differentiation of more mature CD34
+ve

/CD38
+ve

 cells. It is supported by the findings 

where additional rNM23-H1 binds better to more mature cells CD34
lo

/CD11b
+ve

 then to 

immature CD34
+ve

 (Lilly et al., 2011, Lilly, 2012). An observation of this study is that 

additional rNM23-H1 protein promoted the survival of both cell populations, although 

rNM23-H1 predominantly binds to more mature populations. This leads us to suggest that 

additional rNM23-H1 indirectly promotes immature cell survival. The suggestion was 

confirmed by an experiment using AML samples. Recombinant NM23-H1 protein indirectly 

promoted survival of immature CD34
+ve

/CD117
+ve

. 

Bacterial and eukaryotic NDK protein structural similarities (Hama et al., 1991, Chen 

et al., 2002, Dumas et al., 1992) may mean that NDK proteins are functionally similar. E.coli, 

K. pneumoniae, S. pneumoniae and Staphylococcus aureus NDK proteins possess 43 - 53% 

sequence similarity with NM23-H1. Thus, it might be that bacterial NDK proteins promote 

AML stem cell survival and proliferation, as shown for rNM23-H1 (Lilly et al., 2011, Lilly, 

2012). Bacterial NDK proteins may become a potential target to lessen or eliminate AML. 

Therefore, it is relevant to test if rNDK proteins are able to promote survival of healthy and 

cancer blood stem cells. 
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4.2.1 Direct influence of rNDK proteins on CD34
-ve

 cells 

In this part of the project we tested if E.coli, K. pneumoniae, S. pneumoniae, S.aureus 

rNDK proteins promote CD34
-ve

 cell survival. In all experiments, EB was used as a negative 

control and rNM23-H1 as a positive control. Incubated for 7 days CD34
-ve

 cell were seeded at 

concentration 10
6
 cells per 1 ml after incubating for 7 days the concentration decreased to to 

1.83±0.53×10
5
 (EB), 1.21±0.32×10

5
 (rNM23-H1), 1.10±0.26×10

5
 (rNDK-EC), 

1.74±0.38×10
5
 (rNDK-KP), 0.99±0.20×10

5
 (rNDK-SP), 1.59±0.45×10

5
 (rNDK-SA) cells per 

ml. Our positive control treated cells did not survive and did not proliferate, as it was shown 

by Lilly (2012). Moreover, total cell concentration was higher when CD34
-ve

 cultures were 

treated with EB in comparison to treatment with rNM23-H1. Unfortunately, due to a failure of 

our controls, no suggestions can be made about how bacterial rNDK proteins effect CD34
-ve

 

cultures. Flow cytometry analysis shows that treated CD34
-ve

 cultures in the presence of EB 

or rNDK proteins for 7 days have CD34
+ve

 cells (0.1 – 4.0%). The percentage of CD34
+ve

 

cells in the CD34
-ve

 fractions was not determined after CD34 sorting. However, the amount of 

CD34
+ve

 cells in pre CD34
+ve

 sorted cells is about 0.5 – 1.7%. Thus, after CD34 sorting, the 

percentage of CD34
+ve

 cells in CD34
-ve

 cell fractions should be negligible. The percentage of 

CD34
+ve

 cells found in CD34
-ve

 cultures is higher than it was determined in pre CD34
+ve

 sort
 

sample, suggesting that CD34
+ve

 cells have proliferated in treated samples. Nevertheless, the 

CD34
+ve

 cell concentration in treated CD34
-ve

 cultures is just 1.73±0.60×10
3
 (EB), 

1.84±0.71×10
3
 (rNM23-H1), 1.27±0.43×10

3
 (rNDK-EC), 2.04±0.90×10

3
 (rNDK-KP), 

1.87±0.47×10
3
 (rNDK-SP), 3.43±0.24×10

3
 (rNDK-SA) cells per ml indicating that CD34

+ve
 

cells proliferation is putative. It can be assumed that CD34
+ve

 cells left in post sorted CD34
-ve

 

sample survived in treated CD34
-ve

 cultures while CD34
-ve

 cells died.  
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Differentiation of treated CD34
-ve

 cells culture into macrophages and fibroblastic cells 

for all CB samples was observed. Cell differentiation was confirmed by flow cytometry 

analysis. We observed that treated CD34
-ve

 cell cultures possess CD11b
+ve

 cells. CD11b
+ve

 

cells are found as 5.3 – 40.1% of CD34
–ve

 cell cultures. The amount of CD11b
+ve

 cells 

increased about two times when CD34
-ve

 cultures were supplemented with PMB (CB12). 

PMB is used to protect treated cells from bacterial lipopolysaccharides (endotoxins) which 

could be present in purified rNDK protein fractions. It might be assumed that PMB protects 

CD34
-ve

 cells from endotoxins, thus allowing cells to differentiate more than it was seen in 

PMB non-supplemented CB samples. Only one CB sample was supplemented with PMB, so 

it cannot be suggested if the increased amount of CD11b
+ve

 cells is due to individual 

properties of CB sample or due to supplemented PMB.  

4.2.2  Indirect influence of rNDK protein on CD34
+ve

 cells 

Total concentration of all, including CD34
+ve

 cells, from initial concentration 10
6
 cells 

per ml decreases to 1.45±0.52×10
5
 (CMdep-EB), 2.38±0.73×10

5
 (CMdep-NM). Whereas 

concentration of CD34
+ve

 cells only from initial concentration 8.26±0.16×10
5
 cells per ml 

decreases to 0.59±0.12×10
5
 (CMdep-EB), 1.16±0.37×10

5
 (CMdep-NM).Although average 

CD34
+ve

 cells only are higher for the CD34
+ve

/CMdep-NM than it is for CD34
+ve

/CMdep-EB 

cells, for the CB9 sample was observed the opposite. Higher concentrations of 

CD34
+ve

/CMdep-NM than of CD34
+ve

/CMdep-EB was observed for samples CB8, CB11 and 

CB12, whereas for CB10 sample CD34
+ve

/CMdep-EB cells survived just slightly better. 

CD34
+ve

 cell cultures resuspended in CMdep-NM (positive control) and incubated for 

7days do not survive and do not proliferate as it was shown by Lilly et al (2012). Moreover, 

comparing the negative control with the positive control our results are not consistent. . As 

mentioned above our control experiments did not work for CD34
-ve

 cell cultures. CD34
-ve

 cell 
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cultures did not show the expected survival. Therefore, CD34
-ve

 cell cultures may secrete not 

enough active components (cytokines), which could cause the expected CD34
+ve

 cell survival 

and even cell proliferation. 

Lilly (2012) previously showed that rNM23-H1 indirectly promotes healthy and 

leukaemia stem cell (CD34
+ve

) survival. In our experiments, both total cell concentration 

including CD34
+ve

 cells and concentration of CD34
+ve

 cells only decreased, yet also the 

percentage of CD34
+ve

 cell in treated CD34
+ve

 cultures decreased. It was expected that even if 

the total cell concentration decreases, the percentage of CD34
+ve 

cells would stay unchanged 

or even increased. Nevertheless, the percentage of CD34
+ve

 cells in treated CD34
+ve

 cell 

cultures decreased from 82.6% to 58.3 - 78.7% (CB8), from 85.7% to 45.4 - 50.0% (CB9), 

from 85.4% to 47.3 - 59.0% (CB10), from 75.8% to 19.6 - 27.4% (CB11) and from 83.5% to 

60.1 - 70.7% (CB12). The highest decrease in CD34
+ve

 cell percentage was observed for 

CB11. Processed CB11 sample had the smallest purity sorted CD34
+ve

 cells in sorted CD34
+ve

 

fraction. It might be that contamination >20% of non CD34
+ve

 cells in CD34
+ve

 seeded cells 

affected high decrease in CD34
+ve

 cells. 

CD34
+ve

 cells resuspended in CMdep-NM and incubated for 7 days tended to form 

clusters. Treated CD34
+ve

/CMdep-EB cells usually did not form clusters or formed less in 

comparison to treated CD34
+ve

/CMdep-NM. Cluster formation may indicate that cells are 

dividing, but cells might just be sticking together. The amount of total cells is decreased. If 

cells are dividing the speed of new cell formation is much smaller than cell death.  
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4.2.3 Suggestions why our positive control failed to work 

The protocol of cord blood storage used for CB samples by Lilly (2012) was altered in 

our study. This change could affect CD34
-ve

 and/or CD34
+ve

 cell activity. If CD34
-ve

 cell do 

not possess their genuine activity, they are not able to release the same amount of cytokines or 

they may release even different ones.  

The fail of positive control can be explained by possible rNM23-H1 activity loss. 

Aggregation of NDK proteins was observed in the purified NDK protein fractions. It might be 

that the protein aggregation had changed their active form. Thus, even when proteins are 

diluted in RPMI 1640 p/s ITS+ to the final concentration of 100 µg/ml, they do not form their 

native structure. Both suggestions require checking. 
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4.3 FUTHER STUDIES 

Firstly, the reason of the positive control fail requires investigation. When the problem 

is solved, treatments of CD34
-ve

 and CD34
+ve

 cells purified from CB samples can be 

performed. If the effect of bacterial rNDK proteins on the survival of healthy CD34
-ve

 and 

CD34
+ve

 cells has been shown, the bacterial rNDK protein effect on leukaemia stem cells can 

be better understood. 

Lilly et al (2011) reported that CD34
-ve

/CD117
-ve

 cell cultures treated with rNM23-H1 

secrete IL-1β and IL-6 cytokines stronger then CD34
-ve

/CD117
-ve

 cell cultures treated with 

EB. Thus, CD34
+ve

/CD117
+ve

 proliferation can be due to cell response on these cytokines. 

Similar to findings IL-1β promoted CD34
+ve

 cell proliferation (Ezaki et al., 1995) and IL-6 

accompanied with GM-CSF or IL-3 promoted proliferation of normal haemopoietic cell from 

bone marrow and proliferation of leukaemia myeloid cell (Hoang et al., 1988). Therefore, it 

should be further investigated if bacterial rNDK proteins will promote cytokine secretion 

from CD34
-ve

 cell cultures treated with bacterial rNDK proteins and indirect CD34
+ve

 cell 

survival and proliferation. 

If rNDK proteins promote indirect CD34
+ve

 cell survival and proliferation through 

rNDK protein binding to more mature CD34
-ve

 cells, the most intriguing future direction 

would be to target these rNDK proteins with the aim of preventing their binding to leukaemia 

CD34
-ve

 cells, thus preventing cytokine release and leukaemia CD34
+ve

 cell survival. 
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6  APPENDIX 

6.1 BACTERIAL GROWTH MEDIA 

6.1.1 LB 

20 g dissolve in up to 1 liter dH2O 

6.1.2 LB agar  

1.2% agar in 1 liter of LB-Broth 

6.2 PCR 

6.2.1 1×PCR mix (50 μl) contained:  

27 μl dH2O,  

5 μl 10×PCR buffer (Bioline) , 

1.5 μl 50mM MgCl2 (Bioline), 

1 μl Tag polymerase (Bioline), 

1.5 μl 10 mM dNTPs. 

6.2.2 The sequence of the used primers (Sigma):  

5‟TAATACGACTCACTATAGGG3‟ (T7 forward primer),  

5‟GGCCCGTCTTCACCACAT3‟ (NM23-H1 reverse primer),  

5‟GTAGGGATCCTTATTAACGGGTGCGCGGGCACAC3‟ (E.coli rNDK reverse primer),  

„5GTAGGGATCCGATTAGCGAGTGCGGGCAAACC3‟ (K.pneumonia rNDK reverse 

primer),  

5‟GTAGGGATCCCTCTTAAAACCAAAGAGCAATTTC3‟ (S.pneumoniae rNDK reverse 

primer),  

5‟GTAGGGATCCATTTTATTCATATAACCATGCATC3‟ (S.aureus rNDK reverse 

primer).  
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6.3 AGAROSE GEL ELECTROPHORESIS 

6.3.1 1% agarose gel 

1 g agarose dissolve in 100ml 1×TBE buffer heating the mix. When mix cooled add 3 μl 

ethidium bromide 

6.3.2 1×TBE buffer 

10.8 g Tris 

5.5 g Boric acid 

4 ml 5 M EDTA pH 8.0 

Make up to 1 liter H2O 

6.4 SDS-PAGE ELECTROPHORESIS 

6.4.1 10×runing buffer 

30 g Tris (250 mM) 

144 g Glycine (1.92 M) 

10 g SDS (1%)  

Dissolve in up to 1 liter dH2O 

6.4.2 Resolving gel 12.5% (for one gel) 

3.2 ml dH2O 

2.5 ml 1.5 M Tris HCl pH 8.8 

4.2 ml ProtoGel (30% (w/v) acrylamide: 0.8% (w/v) Bis-acrylamide stack solution (37.5:1) 

100 μl 10% SDS 

50 μl 10% Ammonium persulphate 

3.3 μl N,N,N‟,N‟-tetramethyl-ethylenediamine (TEMED) 

6.4.3 Stacking gel (for one gel) 

2.03 ml dH2O 

830 μl 0.5 M Tris HCl pH 6.8 

440 μl ProtoGel (30% (w/v) acrylamide: 0.8% (w/v) Bis-acrylamide stack solution (37.5:1) 

66 μl 10% SDS 

16.7 μl 10% Ammonium persulphate 

1.7 μl TEMED 
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6.4.4 4×GLB 

3.7 ml dH2O 

1.25 ml 0.5 M Tris HCl pH 6.8 (62.5 mM) 

2.5 ml glycerol (40%) 

2.0 ml 10% SDS (2%) 

0.5 ml 2-β-mercaptoethanol 

Brilliant blue 

6.4.5 1.5 M Tris (pH 8.8) 

90.8 g Tris 

Dissolve in 400 ml, adjust pH to 8.8 

Make up to 500 ml in dH2O 

6.4.6 0.5 M Tris (pH 6.8) 

30.3 g Tris 

Dissolve in 400 ml, adjust pH to 6.8 

Make up to 500 ml in dH2O 

6.5 WESTERN BLOT 

6.5.1 Transfer buffer 

7.575 g TRis (25 mM) 

36 g glycine (192 mM) 

500 ml methanol (20%) 

Make up to 2.5 liters with dH2O 

6.5.2 TBS-T 

40 ml 1.0 M tris HCl pH 7.6 

16 g NaCl 

2 ml Tween20 

Make up to 2 liters dH2O 

6.5.3 5% Blotto (one membrane) 

2 g dried skimmed milk (5% w/v) 

40 ml TBS-T 
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6.6 COOMASSIE STAINING 

6.6.1 Coomassie stain: 

50% (v/v) methanol 

10% (v/v) acetic acid 

0.05% (w/v) Coomassie Brilliant blue 

6.6.2 Destain 

7% (v/v) acetic acid 

5% (v/v) methanol 

6.7 OTHERS 

6.7.1 Equilibration buffer 

50mM sodium phosphate (pH8) 

0.3M sodium chloride,  

10mM imidazole in H2O 

6.7.2 FACS Fix 

1% formaldehyde (v/v) 

2% FBS (v/v) 

in 500 ml PBS 

6.7.3 Giemsa buffer 

8 mM KH2PO4 

6 mM Na2HPO4 

Adjust to pH 7.0. 

6.7.4 MACS buffer 

2 mM EDTA 

1% FBS  

in PBS 
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6.7.5 RIPA buffer 

1% v/v NP40 (IGEPAL) 

0.5% w/v sodium deoxycholate 0.5g 

0.1% w/v 10% SDS 1ml 

Make up to 100 ml in dH2O 

 

 


