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Abstract 

In the post-genomic era the availability of genome-wide datasets has revealed an unexpected 

complexity of transcriptional regulation. In this context, where most enhancer predictions are 

based on computational analyses, functional validations are lacking. This thesis investigated the 

utility of the transgenic zebrafish embryo as an in vivo vertebrate model to study the function of 

candidate human enhancers, and detect subtle changes in enhancer function caused by disease-

associated variants. Our functional validations indicated that despite the evolutionary distance 

between human and fish, 60% of the conserved enhancers predicted by a combination of 

chromatin signatures, TF binding events and bidirectional transcription, lead to reporter 

expression that recapitulates the patterns of either zebrafish or human genes. To improve the 

reliability of zebrafish transgenesis, a targeted integration system mediated by PhiC31 integrase 

was validated for enhancer testing. I demonstrated that this method overcomes position effect 

variation commonly found in transposon-based assays. However, enhancer-driven expression 

could not be detected when I attempted to quantitate TCF7L2-associated enhancer variants, 

indicating the need for further studies to understand the limitations of the zebrafish model. Taken 

together, my results provide strong support for zebrafish as a valuable in vivo model to study the 

function of mammalian transcriptional regulatory elements. 
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Chapter One: GENERAL INTRODUCTION 

1.1 Transcriptional regulation mediated by RNA Polymerase II: overview 

The faithful execution of all biological processes in a cell including proliferation, differentiation 

and homeostasis, relies on the proper temporal and spatial control of gene expression. In 

eukaryotes protein-coding genes are transcribed by RNA Polymerase II (aka PolII, Weil 1979), 

whose activity is regulated through the integrated action of DNA binding proteins, including the 

general transcriptional machinery, DNA-specific transcription factors, activators and co-activators; 

and cis-regulatory elements, including promoters, enhancers, silencers and insulators, in response 

to developmental and environmental signals (Levine et al., 2014). 

Transcription mediated by PolII is divided into three stages: initiation, when the initiation complex 

is recruited to the promoter and mRNA synthesis begins, elongation, when the mRNA transcript is 

extended and termination, when both the transcript and PolII are released. It is traditionally 

believed that the most stringent regulation of gene expression occurs during transcriptional 

initiation, although there is a growing body of evidence suggesting that elongation is a limiting 

step as well (Nechaev and Adelman, 2011). 

Transcription is initiated when the highly conserved General or basal transcription factors (GTFs) 

that include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH bind sequentially to the core promoter to 

assemble the Pre Initiation Complex (PIC), which will bring RNA PolII to the Transcriptional Start 

Site (TSS) of the target gene (Orphanides et al., 1996; Roeder, 1996). In the traditional multi-step 

model of PIC assembly TFIID, a protein complex that comprises the TATA-box binding protein 

(TBP) and TBP-associated factors (TAFs), binds through its different subunits to core promoter 

elements. Subsequently TFIIB is recruited, followed by TFIIF-PolII complex and the binding of TFIIE 

and TFIIH, completing the formation of the PIC. Following PIC assembly TFIIH, which has ATPase, 
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kinase and helicase activities, will unwind the double helix of DNA and position PolII polymerase 

to start transcription (Goodrich and Tjian, 1994; Douziech et al., 2000). This early-elongating PolII 

will clear the core promoter facilitated by the phosphorylation of Serine-5 residue on its C-

terminal domain by a kinase subunit of TFIIH (Komarnitsky et al., 2000; Hirose and Ohkuma, 

2007). When the nascent mRNA transcript reaches 25-50 nucleotides, most of the GTFs are 

released, the elongation complex is established and PolII pauses (Rougvie and Lis, 1988; Marshall 

and Price, 1992; Liu et al., 2013). Phosphorylation of the Ser2 residue of PolII by P-TEFb kinase 

favours processive transcription and is required to recruit factors that are important for 

transcription elongation, termination and mRNA processing (Marshall and Price, 1995; Marshall et 

al., 1996; Ni et al., 2004; Hirose and Ohkuma, 2007). After this, the Polymerase is released and 

ready to reinitiate another transcription cycle. 

This textbook view of transcription, which portrays a universal and common mechanism of 

transcriptional initiation where PIC and the core promoter are static elements, has been 

challenged at different levels over the past years: i) even though GTFs were identified in TATA-box 

containing genes, they are actually a minority and core promoter elements are diverse (Cooper et 

al., 2006; Juven-Gershon et al., 2006; Kadonaga, 2012); ii) there are alternative functional TBP-

related factors in metazoa that can recognize TATA-box element (Dantonel et al., 1999); iii) apart 

from TBP some other TAFs, TFIIB and variant paralogs can generate alternative promoter 

recognition complexes (Verrijzer et al., 1995; Burke and Kadonaga, 1996; Burke and Kadonaga, 

1997; Lagrange et al., 1998); iv) TFIID is not ubiquitous, in fact there are tissue-specific subunits of 

TAFs in tissues like testis and ovary (Freiman et al., 2001; Pointud et al., 2003; Falender et al., 

2005); v) during muscle differentiation TFIID complex is rapidly degraded and replaced by a novel 

TRF3/TAF3 complex (Deato and Tjian, 2007). The existence of alternative initiation complexes that 

can assemble at distinct sets of promoters during different developmental times suggests an 
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unexpected complexity of transcriptional initiation (Goodrich and Tjian, 2010; Muller et al., 2010; 

Muller and Tora, 2014). Several aspects of such diversity will be discussed below. 

1.2 Cis-Regulatory Elements 

There are two main classes of cis-regulatory elements controlling genes transcribed by PolII: 

proximal elements, including the core promoter and proximal promoter and distal regulatory 

regions, including enhancers, silencers and insulators (Figure 1.1). All these cis-regulatory 

elements contain binding sites for trans-regulatory proteins (general transcription factors, 

activators or co-activators (Maston et al., 2006). 

 

Figure 1.1 Overview of transcriptional regulation. 
Schematic representation of proximal and distal cis-regulatory elements (CRE) and the integration 
of regulatory input in the core promoter region, encompassing the TSS of a gene (black arrow). 
Transcription factors bind to CREs by transcription factor binding sites (TFBS). Reproduced from 
(Lenhard et al., 2012). 

1.2.1 Core promoters 

The core promoter is a region in the immediate vicinity of the TSS of a gene, which contains 

multiple motifs, or core promoter elements (CPEs), for docking the PIC (Sandelin et al., 2007). 
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However, the core-promoter does not only serve this role, it integrates the total regulatory input 

from transcription factors (TF) binding to proximal and distal elements such as enhancer or 

repressors, and translates it into a refined and regulated rate of transcriptional initiation (Lenhard 

et al., 2012). Core promoter elements are diverse: there is no element present in all promoters 

and most likely more CPEs remain yet to be discovered (Figure 1.2, reviewed in (Kadonaga, 

2012)). 

- The TATA-box was the first element to be discovered and is the best characterized 

position-dependent core promoter motif. It is located about 30 nt upstream of the TSS  and it is 

predominantly bound by the TBP (TATA-box Binding Protein) subunit of the TFIID complex (Lifton 

et al., 1978). Both the TATA box and TBP are conserved from archaebacteria to humans. However, 

TATA-containing promoters are a minority compared to TATA-less ones (Juven-Gershon et al., 

2006). This element can also be recognised in metazoans by other members of the TBP family 

including TRF1, specific to Drosophila, TRF3, described in vertebrates and TBP2, described in 

zebrafish (Crowley et al., 1993; Hansen et al., 1997; Dantonel et al., 1999; Persengiev et al., 2003; 

Bartfai et al., 2004). 

 

Figure 1.2 Relative positioning of CPEs with roles in PolII-mediated transcription. 
All elements depicted in the image are approximately drawn to scale and their position relative to 
the dominant TSS of the gene (black arrow, +1). Importantly, promoters only exhibit a subset of 
these CPEs and there is no universal CPE present in all promoters. Adapted from (Kadonaga, 2012) 
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- The Initiator motif is a pyrimidine-rich 17 bp element that encompasses the TSS, thus 

located at +1, and can be found both in TATA-containing or TATA-less promoters (Smale and 

Baltimore, 1989). It can be recognized by the TAFI and TAFII subunits of the TFIID complex 

(Chalkley and Verrijzer, 1999). 

- The DPE (or Downstream Promoter Element) is a 7 bp motif highly conserved from 

Drosophila to humans located 30 nt downstream of TSS, mostly in TATA-less promoters. It is 

bound by TBP-associated factor TAF6 and TAF9 subunits of TFIID, but not by TBP (Burke and 

Kadonaga, 1996; Burke and Kadonaga, 1997). 

- The MTE (or Motif Ten Element) is located between +18 and +27 nt relative to the 

initiator, immediately downstream of the DPE. It can promote transcription independently of the 

TATA box and DPE but requires the initiator motif for its function (Lim et al., 2004). 

- BREs (or TFIIB Recognition Elements) are 7 bp elements located immediately upstream 

(BREu) or downstream (BREd) of the TATA element and act in conjunction with it. BRE motifs are 

recognised by TFIIB and it is believed that binding stabilizes the TFIID-DNA complex (Lagrange et 

al., 1998). 

- The TCT or polypyrimidine initiator is a recently described novel CPE that resembles the 

initiator motif and is specifically required for the transcription of ribosomal genes in Drosophila 

and mammals. It spans from -2 to +6, encompassing the TSS (Parry et al., 2010). 

1.2.1.1 Classification of core promoters 

The development of high-throughput technologies that permits mapping of the 5' end of mRNAs 

with single base pair resolution, such as CAGE (Shiraki et al., 2003), has shown that metazoan 

promoters are heterogeneous and exhibit a differential architecture. Based on the TSS 

distribution, core promoters in mammals can be divided into two classes (Carninci et al., 2006). A 

minority of promoters is considered “sharp”, as they have a single TSS. Sharp promoters often 

contain a TATA box and are associated with tissue-specific expression. On the contrary, “broad” 
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promoters typically contain a cluster of TSS and can start transcription in a range of 100 bp, 

generating mRNAs of different lengths but with the same coding content. These promoters are 

TATA-less, enriched in CpG islands, and usually correlate with ubiquitous or developmentally 

regulated expressed genes (Sandelin et al., 2007). These observations have recently been 

confirmed by the FANTOM5 Consortium, where 573 human and 128 mouse primary cell samples 

were analysed by single molecule CAGE (FANTOM Consortium, 2014). Additionally, due to the 

high depth coverage of the sequencing data, they were also able to determine the preferred TSS 

in broad promoters (FANTOM Consortium, 2014). A global description of TSS usage during the 

development of the zebrafish embryo has unveiled that zebrafish also contains "sharp" and 

"broad" promoters and interestingly, the usage of broad promoters increased after zygotic gene 

activation (Nepal et al., 2013). 

This dichotomy of promoters has been challenged since it has been shown in mammals that some 

"sharp" promoters overlap CpG islands and some "broad" promoters are not enriched in CpG 

nucleotides (Ponjavic et al., 2006). It has been proposed therefore to use a tripartition to 

distinguish mammalian promoter types (Rach et al., 2011; Lenhard et al., 2012). Type I promoters 

are TATA-enriched, have a low CpG content, and are associated with tissue-specific expression of 

genes. Type II promoters usually contain a short CpG island overlapping with the TSS and correlate 

with ubiquitously expressed genes. Type III promoters contain CpG islands that extend onto the 

gene body and are characteristic of developmentally regulated genes (Lenhard et al., 2012). 

1.2.2 Proximal promoter 

The proximal promoter is the region extending upstream of the core promoter (generally up to 

200 and 250 nt upstream of the TSS) and contains multiple binding sites for activators (Butler and 

Kadonaga, 2002). Proximal promoters might also contain tethering elements to recruit specific 

distal enhancers through homotypic binding of transcription factors (Calhoun et al., 2002). 
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Functional dissection of the proximal promoter area has revealed that the region from -300 to -50 

relative to the TSS contributes positively to core promoter activity, while there is often a negative 

regulatory region from -1000 to -500 (Cooper et al., 2006). 

1.2.3 Silencers 

Silencers are cis-regulatory elements that act by silencing or repressing the transcription of a 

gene. They were originally identified in yeast, and defined as elements that could switch off 

heterologous promoters in an orientation-independent manner and with relative independence 

to the position of the target promoter (Brand et al., 1985). These classical silencer elements are 

located upstream of the TSS and are bound by repressors that can interfere with PIC assembly 

(Maston et al., 2006). Examples of classical silencers include the distal element of the zen gene in 

Drosophila. It is located between -1.4 Kb and -1.2 Kb of the TSS and can actively repress 

transcription of the gene in the ventral region of the embryo (Doyle et al., 1989) through binding 

of the DSP1 repressor, which recruits TBP, displacing TFIIA and impeding PIC formation (Kirov et 

al., 1996). There is a second class of silencers that are also known as Negative Regulatory 

Elements (NRE). These silencers are position dependent and can passively repress transcriptional 

regulation by preventing the binding of TFs to their regulatory motifs, or by interfering with 

signals controlling splicing, polyadenylation or elongation (Ogbourne and Antalis, 1998).  

1.2.4 Insulators 

Insulators are boundary elements that limit the action of regulatory modules to certain genomic 

domains, protecting genes from neighbouring effects (Maston et al., 2006). They are usually short 

pieces of DNA between 0,5-3Kb in size that act in an orientation-independent but position 

dependent manner, reviewed in (Heger and Wiehe, 2014). They have two main properties: they 

can directionally block enhancer-promoter interactions, i.e. only if the insulator is located 

between them (Geyer and Corces, 1992); or they can prevent or limit the spread of 
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heterochromatin, acting as a barrier (Sun and Elgin, 1999). There are several DNA sequences that 

can function as insulators in the Drosophila genome. The first insulators to be identified were scs 

and scs´ flanking the proximal and distal ends of the hsp70 locus (Udvardy et al., 1985), which are 

bound by Zw5 and BEAF proteins respectively (Hart et al., 1997; Gaszner et al., 1999). Another 

well-known enhancer-blocking insulator is gypsy, a retrotransposable element responsible for 

multiple mutations in Drosophila, whose interaction with su(Hw) protein is essential for its 

function (Parkhurst et al., 1988; Geyer and Corces, 1992; Kuhn et al., 2003). However, in 

vertebrates all enhancer-blocking insulators identified so far contain binding sites for CCCTC-

binding factor (CTCF) (Heger and Wiehe, 2014). CTCF is an 11-zinc finger DNA binding protein, 

which is highly conserved in vertebrates (Filippova et al., 1996). Computational prediction of CTCF 

binding sites has revealed that they are spread throughout the genome and particularly enriched 

in conserved non-coding regions (Xie et al., 2007). Furthermore, CTCF-binding sites showing 

enhancer-blocking properties in vivo are evolutionarily conserved and syntenic between human 

and chicken (Martin et al., 2011). These sites act as barriers that define regulatory domains and 

flank transcription factor encoding genes, whose disruption could potentially affect development 

and lead to disease. Consistent with this idea, CTCF was also found enriched in the boundaries of 

the "topological domains" defined by genome-wide maps of tridimensional interactions (see 

section 1.3.4, (Dixon et al., 2012)).  

1.3 Enhancers 

Enhancers were originally described thirty years ago as regulatory elements acting in cis, capable 

of enhancing transcription in an orientation and distance independent manner (Banerji et al., 

1981). Enhancers can regulate gene expression with high spatio-temporal precision and are 

essential for vertebrate development. They serve as platforms for the binding of multiple TFs 

through 6-12 bp binding sites (Istrail and Davidson, 2005). When appropriate occupancy of TFs 
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occurs, transcriptional co-factors and chromatin remodelers are recruited, which then facilitates 

enhancer-promoter interaction, and ultimately activates transcription (Visel et al., 2009b). 

Enhancers are commonly found in intergenic regions or in the introns or exons of the genes they 

regulate or of neighbouring genes (Abbasi et al., 2007; Birnbaum et al., 2012; Ritter et al., 2012; 

Sanyal et al., 2012). Enhancers can also be clustered forming "super-enhancers" with crucial roles 

in regulating cell identity (Hnisz et al., 2013; Loven et al., 2013; Whyte et al., 2013) or spread at 

high frequencies along Genomic Regulatory Blocks (GRB), i.e. syntenic chromosomal segments 

conserved among vertebrates that contain their developmental target genes and unrelated 

"bystander genes" (Kikuta et al., 2007; Akalin et al., 2009). Enhancers can be very far away from 

their target gene: an extreme example is the limb enhancer of Shh, which resides 1 Mb away in 

the fifth intron of Lmbr1 (Lettice et al., 2003), highlighting the difficulty in predicting the distance 

of regulatory interactions and the challenges in assigning a target gene to an annotated enhancer. 

Approximately 80,000 putative enhancers have been identified in the human genome using 

multiple cell lines and a combination of genome-wide methods including DNase I hypersensitivity, 

TF binding and chromatin marks (Bernstein et al., 2012; Thurman et al., 2012). The importance of 

annotating enhancers has been underscored by the fact that enhancers have been shown to 

contribute to disease and that SNPs linked to human disorders by GWAS are enriched in non-

coding functional elements (Bernstein et al., 2012). 

1.3.1 Modularity and redundancy of enhancers 

An important characteristic of enhancers is their modular nature: complex patterns of gene 

expression across tissues result from the combined activity of multiple independent elements, 

each contributing to a sub-pattern of the complete activity (Visel et al., 2007). The apolipoprotein 

E (APOE) gene serves as a good example to explain this property. Human APOE gene is located in 

a gene cluster on chromosome 19 spanning 45 Kb. It encodes for a structural protein that is a 
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major component of mammalian lipoproteins, whose role is the re-distribution of cholesterol 

between the liver and peripheral tissues (Simonet et al., 1991). Tissue specificity is controlled by 

multiple independent cis-regulatory elements: a proximal region is responsible for expression in 

the kidney (Simonet et al., 1991), two enhancers located a few kb downstream the TSS drive 

expression in the liver (Simonet et al., 1993; Allan et al., 1995), one enhancer in an intergenic 

region is active in the skin (Simonet et al., 1991), two distal enhancers specify expression in 

macrophages and adipocytes (Shih et al., 2000), two distal enhancers control the production of 

apoE in astrocytes (Grehan et al., 2001) and a highly conserved enhancer was demonstrated to 

act in the brain (Zheng et al., 2004). 

Certain genes can also be regulated by several "redundant enhancers" driving very similar or 

overlapping expression patterns. This is the case of enhancers regulating Shh expression in 

mouse: while expression in the midbrain and diencephalon areas is controlled by unique 

elements, redundant enhancers regulate Shh expression in hindbrain, ventral spinal cord and 

telencephalic regions (Jeong et al., 2006). Similarly, a study mapping the occupancy of several TFs 

involved in dorso-ventral patterning in Drosophila embryos revealed two enhancers regulating the 

vnd locus, which were several kb away and directed very similar spatio-temporal expression 

patterns (Zeitlinger et al., 2007). This observation was extended to approximately half of the 

genes involved in dorso-ventral patterning in Drosophila, where a distant secondary enhancer 

directing overlapping activities with the primary enhancer was termed "shadow enhancer", in 

contrast to the primary enhancer that was close to the TSS of the target gene (Hong et al., 2008). 

It has been suggested that these apparently "redundant" enhancers confer phenotypic robustness 

against environmental and genetic fluctuations, thus although they might have a minimal 

contribution under laboratory conditions, they are maintained over long periods of time (Frankel 

et al., 2010). 
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Enhancers can also function in synergy. Prominent examples are the LT and M enhancers of Dll, 

which are involved in leg patterning in Drosophila (Estella et al., 2008). Neither element on its 

own can activate Dll expression pattern in the leg discs, but combined in a single construct, they 

recapitulate Dll activity, suggesting a synergistic mode of action (Estella et al., 2008). Similarly, the 

proximal and distal early stripe elements (PESE and DESE) in Drosophila on their own direct an 

incomplete activity but when combined in a composite construct they can fully recapitulate the 

pattern of their target gene slp1 (Prazak et al., 2010). 

1.3.2 Transcription factors and enhancer function 

Transcription factors are sequence specific DNA-binding proteins that bind to CREs by recognising 

small degenerate DNA sequences that will ultimately bring the transcriptional apparatus to the 

TSS of the gene leading to gene-specific transcriptional activation, as reviewed in (Levine, 2010; 

Todeschini et al., 2014). There are around 1,500 TFs in the human genome grouped into families 

that share similar properties (Vaquerizas et al., 2009). TFs have a modular structure typically 

composed of a DNA binding domain linked to one or more activating or repressing modules 

(Triezenberg, 1995; Ptashne and Gann, 1997) that can establish contacts with chromatin 

remodelers, histone modifiers or the basal transcriptional apparatus (Lee and Young, 2000).  

TFs bound to enhancers mediate the recruitment of a wide range of co-activator complexes 

(Kadonaga, 2004; Taatjes et al., 2004). Among these co-regulators there are complexes that serve 

as a "bridge" between the basal transcriptional machinery and the activators and facilitate the 

assembly of the PIC, such as the evolutionarily conserved Mediator (Flanagan et al., 1991; Malik 

and Roeder, 2010). Other co-regulators include chromatin remodeling complexes that mediate 

nucleosome eviction, such as the ATP-dependent SWI-SNI complex (Schwabish and Struhl, 2007); 

and enzymes that catalyze covalent histone modifications, such as p300/CBP or SAGA histone-

acetyl transferases (Figure 1.3). 
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Figure 1.3 Transcriptional initiation mediated by co-factors and PIC 
Activators assembled at distal enhancers (CRE) can recruit co-activator complexes, including 
Mediator, chromatin remodelling complexes (SWI/SNF or ISWI) and histone acetyl transferases 
(HAT). Together they create an accessible chromatin environment for the assembly and binding of 
PIC and PolII to the core promoter elements. Adapted from (Taatjes et al., 2004). 

Several studies using FISH (Fluorescent In Situ Hybridization) techniques and electron microscopy 

have suggested that active PolII and nascent mRNA might be concentrated at nuclear foci termed 

"transcription factories", where many units of PolII are pre-assembled and anchored, as reviewed 

in (Sutherland and Bickmore, 2009). This model suggests it is the loci that move to the factories, 

rather than the other way around (Iborra et al., 1996), which is consistent with the idea that 

active distal foci physically co-localize during transcription (Osborne et al., 2004). 

1.3.2.1 Binding of sequence-specific TFs to enhancers 

Enhancers need to integrate information coming from signalling cascades and TFs present in the 

cellular context and respond accordingly. TFs bind to enhancers by recognising small degenerate 

DNA sequences that usually cluster within them, creating a combinatorial code that results in 

tissue-specific expression patterns (Dynan, 1989), but how is this binding regulated? 

Several studies have demonstrated that TFs bind to hundreds of TFBS in a certain cell at a certain 

time (Walter et al., 1994; Farnham, 2009; Fisher et al., 2012). It has been proposed that the large 

size of eukaryote genomes coupled with the degenerate nature of binding sites leads to 
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widespread non-functional unspecific binding at several hundred binding sites at a time 

(Wunderlich and Mirny, 2009). Functional specificity is then achieved by clustering several binding 

sites, for example within an enhancer. We refer to "additive binding" when the transcriptional 

response of the enhancer is directly correlated with the concentration of the TFs, as 

demonstrated for genes regulated by NF-κB (Giorgetti et al., 2010). When increasing 

concentrations of TFs translates into an on/off binary response we refer to "cooperative binding", 

which is facilitated by protein-protein interactions between TFs bound adjacently or by another TF 

already bound to the DNA (Adams and Workman, 1995; Senger et al., 2004). This type of binding 

is common during development, leading to sharp expression patterns, such as with Bicoid target 

gene regulation in Drosophila (Lebrecht et al., 2005). 

1.3.2.2 Enhancer architecture: models of TF recruitment 

The orientation, order, and spacing of TFBS are often referred to as the enhancer's "grammar" or 

enhancer architecture (Figure 1.4). Depending on the enhancer´s grammar three types of TF 

recruitment can be distinguished. 

The "enhanceosome" model of action assumes that only the perfect formation of a TF complex 

following a rigid grammar would activate transcription of the target gene, generating a binary 

on/off type of response (Merika and Thanos, 2001). It entails the formation of a very stable 

nucleoprotein complex (enhanceosome), where specific binding of multiple TFs to the enhancer 

region through protein-protein interactions, triggers a transcriptional response. One of the best 

examples is the case of the interferon β (INF-β) gene (Thanos and Maniatis, 1995). INF-β is 

normally silenced, but following a viral infection it can be induced at very high levels. This 

induction is caused by an enhancer located between -110 and -45 bp relative to the TSS of the 

gene, which contains, among others, 4 binding sites for the high mobility group protein HMG I(Y). 

Upon binding of HMG I(Y) to the DNA, and through multiple protein-protein interactions requiring 
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a very strict spacing of binding sites, the "enhanceosome" is assembled (Thanos and Maniatis, 

1992; Thanos and Maniatis, 1995; Merika and Thanos, 2001). 

The "billboard" or "TF display" model implies an inherent flexibility of the enhancer where the TFs 

are more flexibly disposed and the bound TFs do not function as a single unit (Arnosti and 

Kulkarni, 2005). This model was exemplified by an experiment performed in vivo in Drosophila 

embryos, in which compact constructs containing different combinations of activators and 

repressors linked to a reporter gene were built. It was shown that the basal transcriptional 

 

 

Figure 1.4 Current models of enhancer action. 
In the enhanceosome model the DNA acts as a scaffold for the binding of several transcription 
factors that operate as a single unit. Disruption of a single binding site renders the enhancer 
inactive. In the billboard model the architecture is more flexible; the enhancer contains multiple 
binding sites that can interact independently with their targets and activate gene expression. The 
TF collective mode of action implies that subset of TFs can act in different enhancers, occupying 
each in a different manner. Adapted from (Spitz and Furlong, 2012). 

machinery "samples" activating and repressing binding sites within the enhancer, which would 

ultimately dictate the transcriptional output (Kulkarni and Arnosti, 2003). This model allows for a 

more flexible order of occupancy of TFBS, where TF can bind cooperatively or additively (Spitz and 

Furlong, 2012). 
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Contrary to these models, the "TF collective" model, described for a set of 5 cardiac TFs in 

Drosophila (Junion et al., 2012), proposes that certain enhancers function by recruiting several 

transcription factors as a collective unit in the absence of grammar, to the extent that not all the 

TFBS need to be present. This model proposes that some TFs bind with high-affinity to their sites 

while the others are recruited through protein-protein interactions or through co-factors such as 

CBP/p300 (Junion et al., 2012). 

1.3.2.3 Pioneer factors during development 

Chromatin environment also determines the efficiency of binding of TFs to their cognate TFBS. 

While most TFs cannot access their binding sites in compacted chromatin, "pioneer" factors are a 

special class that can access TFBS at developmental enhancers by actively mediating chromatin 

decompaction or passively acting as a landmark to recruit additional TFs (Zaret and Carroll, 2011). 

Members of the Forkhead Box (Fox) and GATA families of TFs are considered "pioneer" factors 

since they are thought to scan the chromatin fibre and bind to regulatory elements before there is 

active gene expression or lineage commitment (Bossard and Zaret, 1998; Zaret, 1999). 

The albumin gene enhancer Alb1 in mouse liver has been extensively studied in this regard. In 

non-liver tissues where the albumin gene is silent, the enhancer is not occupied by TFs and the 

chromatin is highly compact with nucleosomes randomly positioned over the enhancer 

(McPherson et al., 1993). However, in liver precursor cells, binding of FOXA1 and GATA4 mediates 

chromatin decompaction and creates a new region of DNase hypersensitivity (McPherson et al., 

1993; Cirillo et al., 2002). This renders the enhancer active and competent for further binding, 

which is essential to trigger liver developmental program (Lee et al., 2005). FOX factors have been 

shown to be more efficient than GATA factors in binding condensed chromatin (Cirillo et al., 

2002). It is thought that the structural similarity between their "winged-helix" DNA binding 

domain and the globular domain of linker histone H1 might explain this ability, since it allows 
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them to bind simultaneously to the minor and major groove of DNA while still being able to 

recruit TFs on the other side (Clark et al., 1993; Zaret et al., 2010). 

1.3.3 Enhancer-promoter specificity 

Enhancers can be very far away from their target promoters, as reviewed in (Krivega and Dean, 

2012), and scattered in large syntenic chromosomal regions containing "bystander genes" that 

they are not regulating (Kikuta et al., 2007), however, enhancers appear to selectively interact 

with core promoters. 

Early observations of lack of enhancer-promoter specificity emerged from studies in Drosophila, 

where enhancers could not interact with heterologous promoters of non-cognate genes (Li and 

Noll, 1994; Merli et al., 1996). In the case of neighbouring gsb and gsbn genes that are divergently 

transcribed, enhancers located in a common upstream region could not activate non-target genes 

because of an incompatible interaction (Li and Noll, 1994) that was unrelated to the presence of 

insulator elements (Merli et al., 1996). It was soon demonstrated that enhancer-promoter-

specificity was greatly determined by the presence of different CPEs (Ogbourne and Antalis, 1998; 

Butler and Kadonaga, 2001). Ohtsuki and colleagues used transgenesis assays in Drosophila to test 

the effect of TATA-box CPE in heterologous promoters and its capacity to interact with various 

developmental enhancers. They showed that AE1 and IAB5 enhancers preferentially interact with 

a TATA-containing promoter compared with a TATA-less one, while the enhancer NEE does not 

discriminate(Ohtsuki et al., 1998). Furthermore, Butler and Kadonaga, used transgenic lines 

containing DPE or TATA promoters in the same chromosomal location to demonstrate in vivo that 

transcriptional enhancers are specific for promoters and that the specificity depends, at least 

partly, on CPE composition (Butler and Kadonaga, 2001). Similarly, Caudal TF was shown to 

activate transcription in Hox genes with a higher preference for DPE-containing CREs, relative to 

TATA-box (Juven-Gershon et al., 2008).  
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In zebrafish, a high-throughput analysis of 202 enhancer-promoter combinations coupled with 

automated imaging software that could annotate tissue-specific reporter activity showed that 

promoters interact with enhancers with variable degrees of efficiency (Gehrig et al., 2009). This 

analysis identified a subset of heterologous promoters (krt4, hsp70 and eng2b) with a broad 

ability to interact with enhancers, which provides a useful resource for transgenesis studies in 

zebrafish and underlines the importance of enhancer-promoter specificity. 

1.3.4 Enhancer-promoter interactions 

Packaging DNA inside the nucleus imposes tremendous organisational challenges. Furthermore, 

given the evidence supporting long-range promoter-enhancer interactions, it is expected that 

tridimensional nuclear architecture is crucial for the regulation of gene expression in the cell. The 

mechanism by which enhancers establish a selective interaction with their target promoters is still 

under debate. The tracking or scanning theory suggests that activators bound to enhancers can 

move along the chromatin fibre until they find their target promoter (Blackwood and Kadonaga, 

1998). The looping theory postulates a direct interaction between enhancers and promoters 

through the looping of the DNA strand (Rippe et al., 1995). Specific protein-protein interactions 

between the activators that bind the enhancer and the transcription factors binding the promoter 

ensure the activation of the correct gene. These interactions have been shown experimentally 

using chromosome conformation capture technologies (3C) and its derivatives 4C (circularized 3C) 

and 5C (carbon-copy 3C) (reviewed in (de Wit and de Laat, 2012), Figure 1.5). 

3C-derived technologies use fixation with formaldehyde, so that all potentially distant physical 

contacts between DNA and proteins are cross-linked. While 3C Technology quantifies the 

frequency of interactions between 2 loci (Dekker et al., 2002), Chromosome conformation 

Capture-on-Chip or 4C technology is known as the "one versus all" strategy, since this method 
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screens the genome for all the sequences that interact with a selected genomic site (Simonis et 

al., 2006). 

Application of this methodology has shown how the β-globin locus interacts with a completely 

different set of genomic sites in a tissue where it is active (foetal liver) versus a tissue where it is 

inactive (brain), and how interactions are preferentially established with transcriptionally active 

loci (Simonis et al., 2006). On the contrary, when examining a housekeeping gene in the same 

tissues, the contacts are very similar, suggesting a differential nuclear architecture between active 

and inactive chromatin (de Laat and Duboule, 2013). 

An interesting question arising from these studies is how local and long-range interactions are 

established and whether transcription itself could help to re-shape the genome. It appears that in 

mammals, the DNA contacts established by the β-globin locus are not changed after drug-induced 

transcription inhibition (Palstra et al., 2008), suggesting that transcription is unnecessary for the 

formation of enhancer-promoter loops. However, loops are necessary for transcription, as 

demonstrated by experiments with engineered enhancer-promoter loops in the β-globin locus 

(Deng et al., 2012).  

5C Technology or Chromosome Conformation Capture Carbon Copy is a 3C-based method that 

allows to study interactions occurring between multiple loci, that is why it is also known as the 

"many to many "strategy (de Wit and de Laat, 2012). It requires the creation of a 3C library, to 

which oligonucleotides are ligated, and multiplex amplification; followed by analysis using 

microarrays or quantitative PCR (Dostie et al., 2006). The main limitation of this technique is the 

high number of oligos that would be needed to evaluate the entire genome (Dostie and Bickmore, 

2012). Hi-C technology overcomes this limitation, since it measures three-dimensional 
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interactions of whole genomes ("all to all" strategy), at a resolution of 1 Mb in mammalian 

systems (Lieberman-Aiden et al., 2009) 

 

 

Figure 1.5 Overview of 3C-derived methodologies. 
Top panel indicates processes that are common for all technologies (crosslinking of chromatin, 
digestion, ligation and reverse crosslinking); while the vertical panels show the specific steps for 
each technique. Reproduced from (Noordermeer and Duboule, 2013).  
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The analysis of the human and mouse genomes using Hi-C showed that it is pervasively 

segmented in megabase-size portions named "topological domains" (Dixon et al., 2012). Such 

organization seems to be a property of the genomes, since it is very well conserved between 

human and mouse, and stable between cell types, although the regions within each domain can 

be dynamic, potentially representing cell-type specific regulatory events. High levels of 

transcription might be involved in the creation of topological boundaries, since they are enriched 

in CTCF insulator, housekeeping genes and TSS, while enhancer or chromatin marks (H3K4me1 or 

H3K9me3) were depleted. (Dixon et al., 2012). A study focusing on X-chromosome inactivation in 

Drosophila embryos also showed a similar partitioning of the genome into discrete units at the 

sub-megabase scale, which they termed "Topologically Associated Domains" or TADs, the 

disruption of which results in long-range misregulation (Nora et al., 2012). 

ChIA-PET (or chromatin interaction analysis with paired-end tag sequencing) has been introduced 

as a technique that combines chromatin immunoprecipitation (ChIP) with 3C analysis, enabling 

the unbiased study of genome-wide long-range chromatin interactions bound to a certain protein 

or histone modification mark (Fullwood et al., 2009; Li et al., 2010a). The main limitation is that 

ChIA-PET can only analyse contacts bound by the selected factor. 

Overall, the chromosome capture technologies indicate that a physical contact is not equivalent 

to a functional interaction. It will be interesting to couple 3C-based technologies with high-

resolution single-cell live imaging, to measure cell-to-cell variations and investigate whether there 

is a connection between function and structure. 

1.4 Genome-wide strategies for enhancer prediction 

Contrary to promoters, which can be located by sequencing the 5’ end of its mRNA, the lack of 

distinguishing features in enhancers makes them inherently difficult to identify. Traditionally, non-
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coding regulatory regions were identified using arduous serial deletion assays (promoter bashing), 

whereby the function of the resulting fragments was tested in reporter gene assays (Arnosti et al., 

1996; Muller et al., 1999; Heckman et al., 2003). In the post-genomic era, genome-wide 

computational and experimental strategies for enhancer prediction have used various analyses of 

the DNA sequence and chromatin structure, as reviewed in (Wang et al., 2013). International 

Research Consortia including the FANTOM and ENCODE Projects set out to assign a function to all 

the elements in the mouse and human genomes, respectively. In parallel, the modENCODE 

project's aim was to annotate the genomes of two model organisms: Drosophila melanogaster 

and Caenorhabditis elegans. The release of the ENCODE data, with a pilot phase covering 1% of 

the genome (Birney et al., 2007) and a final report consisting of more than 40 papers in 2012, has 

unloaded an impressive amount of data on distinct functional elements and shed light on 

strategies for CRE prediction. 

1.4.1 Comparative genomics as a tool for the identification of non-coding 
functional elements 

The comparison of sequences across different species with the aim of identifying conserved 

elements that could be potential regulatory regions has been termed phylogenetic footprinting 

(Zhang and Gerstein, 2003). Cross-species sequence comparison methods rely on the principle 

that functionally relevant sequences are under purifying selection, i.e. conserved across long 

evolutionary periods, whereas non-functional regions evolve neutrally and eventually diverge 

beyond recognition (Ahituv et al., 2004). Interestingly non-coding conserved elements tend to 

cluster around genes coding for transcription factors involved in embryonic developmental 

processes shared by vertebrates, suggesting that they are CREs controlling gene expression during 

development (Sandelin et al., 2004; Woolfe et al., 2005)  
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Selecting the species to be used in comparative genomics usually represents a compromise. 

Comparing closely related species often obscures the identification of functional elements, due to 

the high degree of similarities between the two genomes. On the other hand, comparing distantly 

related species (e.g. human with a non-primate mammal or with a non-mammal vertebrate) 

might impair the discovery of lineage-specific elements; or elements might not be readily 

identifiable because they will have diverged too much (Boffelli et al., 2004; Nobrega and 

Pennacchio, 2004). In order to overcome these limitations and balance evolutionary distances, 

multiple species comparisons have been used to identify functional non-coding regions (Dubchak 

et al., 2000; Frazer et al., 2001; Gottgens et al., 2002; Nobrega et al., 2003; Santagati et al., 2003; 

Dermitzakis et al., 2004). 

Identification of human enhancers has been performed based solely on human-mouse sequence 

comparisons (Hardison et al., 1997; Wasserman et al., 2000; Dermitzakis et al., 2002; Patwardhan 

et al., 2012). Even though alignment of the human and mouse genomes, which diverged around 

75 million years ago, revealed a similarity of almost 40% at the nucleotide level (Schwartz et al., 

2003), their divergence is sufficient to identify functional elements.  

Distant species comparisons such as human-fish comparisons have also proven to be effective 

tools. Given the extensive divergence time between fish and human (around 450 million years 

ago, (Kumar and Hedges, 1998)) and inherent biological differences, it is possible that conserved 

sequences will represent CREs that are essential for common developmental processes and would 

have the most dramatic biological effect if disrupted. Nobel laureate Sydney Brenner proposed in 

1993 that the Tetraodontoid fish Fugu rubripes (pufferfish), with a compact genome of 400 Mb, 

which is 7.5 times smaller than the human genome, would represent an ideal model for 

deciphering the human genome, as it has all the specialized functions of higher vertebrates 

(Brenner et al., 1993). Not only have pufferfish-human comparisons allowed the identification of 
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around 1000 novel human genes (Aparicio et al., 2002) but also a pioneering study carried out 

years before the human genome sequence was available showed how these comparisons could 

be used to unveil non-coding functional elements (Marshall et al., 1994). Multiple studies have 

efficiently identified functional human enhancers using human-fish comparisons as the only filter 

(Miles et al., 1998; Bagheri-Fam et al., 2001; Nobrega et al., 2003; Woolfe et al., 2005; Allende et 

al., 2006; Pennacchio et al., 2006). Based on some of these reports, an arbitrary threshold was 

established for the identification of human-fish conserved elements, requiring 70% of 

conservation over 100 bp (Ahituv et al., 2004).  

Another approach to the identification of functional elements is to increase the stringency of 

conservation alignments between two closely related species (Bejerano et al., 2004; Visel et al., 

2008; McBride et al., 2011). Bejerano et al identified ultraconserved elements (100% sequence 

identity for at least 200bp) between human, mouse and rat, and found 481 conserved regions 

located in exons of genes involved in RNA processing, or in intergenic regions and introns of genes 

implicated in transcriptional regulation and embryonic development. Interestingly, some of these 

segments were also conserved in fish (Bejerano et al., 2004). This and other studies validate the 

use of both ancient human-fish conservation and human-mouse-rat ultraconservation parameters 

for the identification of functional non-coding elements that behave as enhancers in vivo.  

While these studies assume that a high level of sequence conservation is indicative of 

functionality there is evidence that some non-conserved fragments can maintain their regulatory 

function and direct transgene specific expression in several species (Fisher et al., 2006a; Hare et 

al., 2008; McGaughey et al., 2009; Swanson et al., 2010; Chatterjee et al., 2011). In zebrafish 

Fisher and colleagues tested discrete regulatory sequences of the human RET locus, a gene 

encoding a receptor tyrosine kinase, and their data suggested that functional conservation in fish 

was possible without sequence similarity (Fisher et al., 2006a). There are also studies showing 
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that TFBSs in cis-regulatory elements may be rapidly gained or lost during evolution. Schmidt et al 

showed that the majority of TF binding events in adult livers of 5 vertebrates are species-specific, 

while ultraconserved events are very rare (Schmidt et al., 2010). Recent reports have also 

proposed that the level of conservation may vary depending on the tissue type. Blow and 

colleagues demonstrated that heart enhancers are three times less well conserved than other 

tissue-specific enhancers in vertebrate evolution, such as forebrain enhancers (Blow et al., 2010). 

This suggests that the use of sequence conservation for enhancer identification should be 

complemented with other strategies. 

1.4.2 Open chromatin sites as indicators of CRE regions 

Packaging of histones into DNA normally prevents the binding of non-histone proteins (Luger et 

al., 1997). For stable binding the displacement or disruption of nucleosomes is necessary. Thus, 

open chromatin sites or nucleosome-depleted regions are good indicators of the presence of 

concentrated TFs and chromatin remodelling complexes, and therefore of regulatory elements 

(Workman, 2006).  

Disruption of chromatin structure can be experimentally identified by hypersensitivity to DNase I 

digestion (Galas and Schmitz, 1978; Wu, 1980). DNase I footprinting is a protection assay where 

cleavage of double-stranded DNA is inhibited by the specific binding of a ligand. Protected 

fragments will be indicated by a "gap" or footprint on a gel where the digestion products are 

resolved (Fox, 1997; Hampshire et al., 2007). Dnase I hypersensitive assays coupled to next-

generation sequencing have been used to predict CREs in cell lines (Mito et al., 2007; Li et al., 

2011; Song et al., 2011). Identification of DNase I hypersensitive Sites (DHS) in 6 human cell lines 

encompassing 1% of the human genome revealed that 22% of DHSs are shared among all cell 

types and mostly overlap with promoters or insulator elements, whereas cell type-specific DHSs 

correlate with known enhancer elements (Xi et al., 2007). The second phase of the ENCODE 

Project has mapped 2.89 million unique DNase I hypersensitive sites in 125 cell types by DNase I-
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Seq, most of which are distal to TSS, with an average of 205,109 sites per cell type (Bernstein et 

al., 2012; Thurman et al., 2012). Although DNase I analyses have so far only been applied to cell 

lines, the data can be used to identify functional developmental enhancers in embryos, as 

demonstrated by the identification of novel Pax6 enhancers in mouse that lacked evolutionary 

conservation (Kleinjan et al., 2001; McBride et al., 2011). 

A more recent technique called FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) 

has also been successfully used to map open chromatin sites (Giresi et al., 2007). FAIRE detects 

regions depleted of nucleosomes that strongly correlate with DNase I hypersensitive sites, 

allowing an effective identification of regulatory regions (Gaulton et al., 2010; Song et al., 2011). 

Nevertheless, the open chromatin sites detected by both techniques seem to differ slightly. While 

DNase I enzyme captures chromatin structures that are close to TSS, FAIRE tends to detect distal 

CREs that DNase I cannot cut (Song et al., 2011). 

1.4.3 Combinatorial binding of transcription factors define enhancers 

Because combinatorial binding of TFs is required for enhancer function, effort has been devoted 

to the computational and experimental prediction and mapping of TF binding sites. 

Computationally, motif clustering of TFBS has been used to predict the location of CREs, as 

reviewed in (Aerts, 2012). Experimentally, chromatin immunoprecipitation (ChIP) has been the 

primary method used to identify protein-DNA interactions, as reviewed in (Furey, 2012). It has 

been demonstrated that combinatorial binding predicts the location of enhancers (Hallikas et al., 

2006; Zinzen et al., 2009; He et al., 2011; Stefflova et al., 2013). Zinzen and colleagues profiled the 

genome-wide occupancy of 5 TFs involved in Drosophila mesoderm differentiation at multiple 

developmental times using ChIP-Chip, and used the observed profiles to computationally predict 

spatio-temporal patterns, which were very accurately matched in vivo in transgenic embryos 

(Zinzen et al., 2009). However, unlike approaches such as DNase I hypersensitivity, ChIP requires 
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prior knowledge about the factors to be tested, and each factor needs to be evaluated separately. 

Furthermore, ChIP-grade antibodies are not always available, hindering the systematic 

identification of enhancers. Currently, therefore, information derived from TFBS is coupled with 

other approaches such as sequence conservation, binding of general transcriptional co-factors or/ 

and histone modification marks, in order to predict more accurately transcriptional enhancers. 

1.4.4 Binding of general transcriptional co-factors: CBP/p300 mark enhancers 

Binding of general transcriptional co-factors has also been shown to help locate developmental 

enhancers (Visel et al., 2009a; Blow et al., 2010; Rada-Iglesias et al., 2011; Xu et al., 2011; May et 

al., 2012; Rada-Iglesias et al., 2012). CBP and p300 were originally identified as proteins binding 

cAMP-responsive transcription factor CREB (Chrivia et al., 1993) or the adenovirus E1A 

oncoprotein (Eckner et al., 1994), respectively. Both proteins exhibit adaptor properties and have 

high homology at the sequence level, which is why they are considered functional homologs and 

usually referred to as CBP/p300 (Eckner et al., 1996). CBP and p300 also contains intrinsic HAT 

activity (Bannister and Kouzarides, 1996; Ogryzko et al., 1996) mostly for H3K27 residue (Tie et al., 

2009). 

Heintzman and colleagues demonstrated that distal p300 binding sites displayed many enhancer-

like features, such as overlap with DHSs and contained evolutionarily conserved motifs 

(Heintzman et al., 2007). Subsequently, it was demonstrated in vivo that mapping of p300 binding 

sites by ChIP could be used to accurately predict active enhancers in numerous cell lines, in mouse 

embryonic forebrain, midbrain and limb tissues (Visel et al., 2009a), in flies (Negre et al., 2011), 

and human embryonic stem cells (hESC) (Rada-Iglesias et al., 2011; Rada-Iglesias et al., 2012; 

Rada-Iglesias et al., 2013) among others. Nevertheless, there are subsets of enhancers that lack 

p300 binding (Heintzman et al., 2007; Heintzman et al., 2009; He et al., 2011), so mapping of p300 
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is usually complemented with other strategies such as the profiling of tissue-specific TFs or 

histone modification marks. 

1.4.5 Histone modification marks as predictors of enhancers 

Histones serve a role beyond packaging DNA (Li et al., 2007). Initial evidence for the existence of a 

complex structure between histones and the double helix of DNA came from electron microscopy 

studies, X-ray crystallographic observations, and nucleosome digestions in the 1970s, as reviewed 

in (Kornberg, 1977). The nucleosome core contains two copies of H2A, H2B, H3 and H4 histone 

proteins assembled into an octamer with 145-147 bp of DNA wrapped around it. These core 

particles are further stabilised by linker histone H1 and linker DNA (Luger et al., 1997). 

Nucleosome arrays are folded like "beads on a string" into a 30nm diameter fibre (Finch and Klug, 

1976; Widom and Klug, 1985; Graziano et al., 1994). This chromatin fibre is further condensed in 

the form of metaphase chromosomes, where DNA is compacted 10,000 fold (Belmont et al., 1987; 

Woodcock and Ghosh, 2010). Nucleosomes are highly dynamic, both in terms of positioning and 

in terms of biochemical modifications. The NH2 terminus of the histones (or histone tails) 

protrude from the centre of the nucleosome core and are amenable to a wide-array of post-

translational modifications such as phosphorylation, methylation, acetylation, ubiquitilation etc., 

as reviewed in (Kouzarides, 2007). 

Recently, some modifications have been associated with different states of transcription, or have 

even been used to predict the location of cis-regulatory modules such as promoters or enhancers. 

Whether the presence of these marks is a cause or a consequence of enhancer function or TF 

occupancy remains unknown (Spitz and Furlong, 2012). The first indication that enhancers could 

be marked by histone modification marks came from the pilot ENCODE project and Bing Ren's lab. 

Ren and colleagues succeeded in identifying chromatin features that could distinguish promoters 

from enhancers (Heintzman et al., 2007). They showed that active promoters are enriched in tri-
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methylation of histone H3 lysine 4 (H3K4me3), lack mono-methylation of H3 lysine 4 (H3K4me1) 

and are marked by a nucleosome-free region near the TSS. In contrast, enhancers bound by the 

co-activator p300 are enriched in H3K4me1, lack H3K4me3, and usually lie on DNase I 

hypersensitivity sites and in evolutionary conserved regions. Furthermore, enhancers show cell-

type specific histone modifications that correlate strongly with gene expression, in contrast to the 

invariant pattern of chromatin state in promoters (Heintzman et al., 2009). These initial 

observations in cell lines were quickly confirmed in several genome-wide studies using different 

embryo model systems such as Drosophila (Negre et al., 2011), zebrafish (Aday et al., 2011) and 

mouse (Visel et al., 2009a). In Drosophila H3K9ac, H3K27ac and H3K4me1 were also found in 

promoters and H3K4me1 plus CBP-p300 was a common signature of enhancers (Negre et al., 

2011). In zebrafish it was also demonstrated that the 5' end of expressed genes were enriched in 

H3K4me3 (Wardle et al., 2006) and H3K4me1 (Aday et al., 2011) and that this association 

correlated well with the level of gene expression. It was also shown that H3K4me3 and H3K27ac 

modification marks were present in developmental genes, at the onset of zygotic transcription 

irrespective of their transcriptional activation (Vastenhouw et al., 2010), and that enhancers were 

enriched in H3K4me1 (Aday et al., 2011).  

Furthermore, it was shown that developmental enhancers in mouse and human ESC could exist in 

two different states: poised and active (Figure 1.6), which may be distinguished by the presence 

of H3K27ac mark (Creyghton et al., 2010; Rada-Iglesias et al., 2011). In both states, enhancer 

regions are marked by H3K4me1, bound by the co-activator p300, display low nucleosomal 

density and are depleted of H3K4me3 modification. In hESCs an association was found between 

“active enhancers” and H3K27ac enrichment, absence of H3K27me3 and a high level of 

transcription; while "poised enhancers” are enriched in H3K27me3, lack H3K27ac and are poorly 

expressed. Upon hESC differentiation poised enhancers acquire H3K27ac and can recruit RNA 
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PolII. More importantly, when tested in zebrafish, these elements can drive cell and stage specific 

expression, and function as developmental enhancers (Rada-Iglesias et al., 2011). This 

classification could explain why some previous studies had found H3K4me1 associated with non-

active enhancers (Heintzman et al., 2009; Rada-Iglesias et al., 2011). In mESC however, poised 

enhancers do not display any modification in the K27 residue of H3 (Creyghton et al., 2010) and 

the repressive mark H3K9me3 may also be distinctive of this category (Zentner et al., 2011). 

 

 

Figure 1.6 Chromatin signatures at active and poised developmental enhancers in hESCs. 
Both enhancers lie on DNase I hypersensitive sites, are bound by co-activator p300 and several 
transcription factors (TF1 and TF2), and are marked by H3K4me1. Active enhancers are also 
bound by PolII, which produces eRNA bidirectionally. Poised enhancers recruit Polycomb 
Repressive Complex 2 (PRC2) and are marked by H3K27me3 repressive mark. Bottom panels are 
Genome Browser screenshots of POU5F1/OCT4 distal and proximal active enhancers (DE and PE 
respectively), and EOMES poised enhancer, and their enrichment in p300, SMAD3, NANOG and 
OCT4 binding as well as enrichment in several histone modifications marks (H3K4me1, H3K27ac, 
H3K27me3). Reproduced from (Calo and Wysocka, 2013). 
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There are additional histone modification marks that have been associated with enhancers. In 

mESC, active enhancers were shown to produce RNA transcripts, so phosphorylation of Ser2-5 of 

PolII and H3K36me3, which are associated with transcript elongation (Kouzarides, 2007; 

Kolasinska-Zwierz et al., 2009), can be considered predictive marks (Zentner et al., 2011). In 

addition to that, H4K16ac modification has been shown to overlap with a subset of active 

enhancers in mESC that are not bound by p300 or enriched in H3K27ac mark, suggesting that it 

may be a novel mark for p300-independent regulatory regions (Taylor et al., 2013). 

Recently a computational method has been developed to predict enhancers on a genome-wide 

scale based on histone modification marks (Rajagopal et al., 2013). By integrating information 

from 24 histone modification profiles, DNase I hypersensitive sites and p300 binding sites in mESC 

and lung fibroblasts, the new algorithm can measure the relative importance of each modification 

mark in defining an enhancer and demonstrated that H3K4me1, H3K4me2 and H3K4me3 are the 

minimal marks required for robust enhancer prediction across cell lines and replicates, leading to 

a more accurate prediction of enhancers in different tissues. 

1.4.6 H2AZ histone variant correlates with nucleosome-free regions 

H2AZ is a highly conserved histone variant that diverges from the canonical H2A histone in terms 

of length and sequence of the C-terminal domain (Kamakaka and Biggins, 2005). In yeast, H2AZ 

prevents the spread of heterochromatin and is preferentially enriched in promoter regions, 

specifically on the nucleosomes that are displaced during transcriptional initiation (Raisner et al., 

2005; Zhang et al., 2005). A similar pattern has been found in humans, where H2AZ is found 

upstream and downstream of the TSS and also in nucleosome-free regions of enhancers and 

insulators (Barski et al., 2007). It has been suggested that nucleosomes containing the H2AZ 

histone variant are less stable and more easily displaced (Placek et al., 2005; Zhang et al., 2005). 

Consistent with this idea, the H3.3/H2AZ histone combination is preferentially located at 
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nucleosome-free regions and correlates well with cis-regulatory elements including promoters, 

silencers and enhancers (Jin et al., 2009). Thus, H2AZ has been successfully used as a marker for 

open chromatin in order to identify enhancers (Pham et al., 2012). 

1.4.7 Transcription from enhancers is pervasive and might aid in enhancer detection 

Even though most recent approaches to identify regulatory regions have been based on the 

analysis of chromatin marks, complementary strategies have been implemented. Although 

initially surprising, transcription from enhancers is now well documented across cell types and 

seems to be an additional feature of this type of CREs (Kim et al., 2010; Melgar et al., 2011; Wang 

et al., 2011a; Djebali et al., 2012). The transcripts produced by enhancers have been named eRNA 

(enhancer RNAs) and unlike protein-coding transcripts they are not marked by H3K4me3 and 

H3K36me3 along their length (Mikkelsen et al., 2007; De Santa et al., 2010). The exploitation of 

bidirectional transcription from enhancers as a prediction tool will be discussed in more depth in 

Chapter 5. 

Overall, in terms of predictive approaches, the integration of multiple layers of genomic 

information, such as sequence conservation, enrichment of key epigenetic marks, general co-

factor and transcription factors binding events, and possibly bidirectional transcription, will 

potentially yield the most comprehensive method for identifying active developmental enhancers. 

1.5 Cis-regulation and disease 

Over the past decades, thousands of mutations causing monogenic disorders have been identified 

in coding regions. By contrast, the number of disease-causing mutations in distal CREs and other 

non-coding CREs has been minimal, mainly because of the difficulties in identifying regulatory 

elements (Visel et al., 2009b). Nevertheless, variations in any component of the transcriptional 

machinery including transcription factors, co-factors, chromatin regulators or in regulatory 
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regions and non-coding RNAs are often associated with human disorders and can increase 

susceptibility to multifactorial diseases such as cancer, autoimmune diseases, diabetes, 

schizophrenia or obesity among others, as reviewed in (Lee and Young, 2013).  

Diseases can be caused by the removal or repositioning of distal regulatory elements leading to 

altered gene expression (Kleinjan and Lettice, 2008). Classic examples include some cases of 

thalassemias, where deletions or chromosome rearrangements reposition enhancers needed for 

normal β-globin gene expression (Kioussis et al., 1983; Semenza et al., 1984). In these cases the 

coding region of the gene was not disrupted but its transcriptional regulation was. Since their 

discovery, the term "position effect" is used to refer to changes in the level of gene expression 

when the location of the regulatory regions is changed in the chromosome, usually by 

translocation (Kleinjan and Lettice, 2008). 

There are also examples of human diseases caused by single-nucleotide changes in cis-regulatory 

regions. Preaxial polydactyly is among the most commonly observed human limb malformations 

and includes a broad range of digit abnormalities in hands and feet. Studies in transgenic mice 

have shown that Preaxial polydactyly is caused by mutations in the highly conserved limb-specific 

enhancer ZRS of Sonic Hedgehog (Shh), which lies 1 Mb away from the target gene within the 

intron of the neighbouring gene Lmbr1 (Lettice et al., 2002; Lettice et al., 2003). These single-

point mutations cause ectopic Shh expression and subsequently supernumerary digits and were 

also found in four families affected of PDD (Lettice et al., 2003; Lettice et al., 2008). Because there 

are several single point changes found throughout the length of ZRS, it is unlikely that PDD arises 

from the disruption of a single TFBS (Kleinjan and Lettice, 2008). 

Not only mutations in enhancers, but also mutations in proteins regulating enhancer function can 

lead to disease, as reviewed in (Smith and Shilatifard, 2014). For example, mutations in CBP/p300 
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HAT can lead to Rubinstein-Taybe syndrome (Roelfsema et al., 2005). Missense and non-sense 

mutations in MLL complexes, histone methyl transferases responsible for catalysing H3K4me1 in 

enhancers (Hu et al., 2013), have been associated with Kabuki syndrome (Ng et al., 2010). Also, 

mutations in pioneer transcription factors can lead to anemia or cancer (Zheng and Blobel, 2010). 

Common variants located in CREs can increase the susceptibility to certain multifactorial diseases. 

Hirschsprung disease (HSCR), or congenital aganglionosis with megacolon, is a multigenic disease 

in which RET proto-oncogen is the main gene implicated (Emison et al., 2005). A highly conserved 

region in the first intron of RET was found to be an enhancer by in vitro and in vivo transgenesis 

assays (Grice et al., 2005). This enhancer contains 3 SNPs that are in linkage disequilibrium (LD) 

with HSCR, one of which can explain a 10 to 20-fold greater susceptibility to the disease (Emison 

et al., 2005). Fuelled by the power of Genome-Wide Association Studies (GWAS) a growing 

number of single nucleotide polymorphisms (SNPs) located in non-coding regions have been 

linked to human diseases (Bernstein et al., 2012; Maurano et al., 2012), such as T2D (Dupuis et al., 

2010; Stitzel et al., 2010). Interestingly, so far validation of disease-associated enhancers has not 

been quantified in vivo, and in vitro analyses have revealed very subtle effects (Gaulton et al., 

2010; Stitzel et al., 2010; Rada-Iglesias et al., 2013). 

1.6 Zebrafish as a model organism 

Zebrafish (Danio rerio) is a tropical, freshwater bony fish of the Cyprinidae family. There are 

around 44 species of Danio distributed throughout East and South-East Asia, with the highest 

diversity in North-East India, Bangladesh and Myanmar, reviewed in (Spence et al., 2008). They 

are distinguished by their small size (usually < 120 mm) in adulthood and their distinctive pattern 

of alternative dark and white horizontal stripes.  
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Within the class of bony fishes or Teleostei there are three other fish model organisms worth 

mentioning. Medaka (Oryzias latipes), which has also been used as a model for developmental 

genetics and to functionally validate regulatory elements (Wittbrodt et al., 2002) and two 

pufferfish species, the Japanese pufferfish Takifugu rubripes (also known as Fugu rubripes) and 

the green spotted pufferfish or Tetraodon nigroviridis. The genome sequence of these three 

species is publicly available (Aparicio et al., 2002; Jaillon et al., 2004; Kasahara et al., 2007). The 

pufferfish species own the most compact genome known of all vertebrates, while maintaining the 

specialized functions of higher vertebrates. Therefore, pufferfish was proposed as a valuable 

model in the identification of conserved cis-regulatory elements through comparative genomic 

studies (Brenner et al., 1993; Aparicio et al., 2002). However, Fugu rubripes cannot be bred or 

kept in laboratory conditions, and the breeding and biology of Tetraodon nigroviridis is mostly 

unknown, hindering their use as a model system beyond comparative genomics (Muller et al., 

2002). The inability to carry out functional work with pufferfish has further contributed to widen 

the use of zebrafish, and Medaka to a lesser extent, as a developmental model among the 

scientific community. 

1.6.1 General characteristics 

Multiple features have resulted in zebrafish becoming a widely used vertebrate model system. 

Adult zebrafish can breed all year round in laboratory conditions and are easy and relatively cheap 

to maintain in the laboratory. A single female can spawn clutches of several hundreds of eggs and 

generation time is short, which makes it a high-throughput model when compared to rodents. 

Zebrafish present the additional advantage of embryo transparency, which allows for observation 

of internal organs and imaging using fluorescent marker proteins. Moreover zebrafish fertilization 

is external, which eases manipulation of the embryos. They exhibit a rapid development, with 

primary organ systems present between 36 hpf and 72 hpf, and all embryonic stages have been 
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described in detail and can be easily identified under the dissecting microscope (Kimmel et al., 

1995). 

1.6.2 Resources and tools available to the zebrafish community 

Zebrafish is increasingly being used to model human diseases, which requires a high quality 

sequenced genome. The zebrafish reference genome sequence was recently published (Howe et 

al., 2013b). However, the initial shotgun draft has been available and accessible to users since 

2002. There are 26,206 genes annotated in the zebrafish genome, 69% of which have an 

orthologous in human. Reciprocally 71.4% of human genes have an orthologous zebrafish gene 

(Howe et al., 2013b). Compared to humans and mice, the higher number of genes displayed by 

zebrafish is most likely a result of an ancient whole-genome duplication process specific to 

teleosts (Meyer and Schartl, 1999). 

In addition to the availability of the reference genome sequence, all mutant and transgenic lines 

available, morpholinos, antibodies, anatomical structures, phenotypes, publications and 

expression data are systematically curated and incorporated onto ZFIN website (Zebrafish Model 

Organism Database, http://zfin.org), which is a highly valuable resource for the zebrafish research 

community (Howe et al., 2013a). 

Zebrafish has become one of the most prominent vertebrate model systems used to study 

development, disease and regulatory mechanisms. The first studies using Danio rerio as a model 

organism for genetics began in 1981 (Streisinger et al., 1981). Since then, a large number of tools 

for forward and reverse genetics have been developed. Forward genetic approaches seek to 

identify genes and pathways involved in different developmental processes through the screening 

of populations of individuals displaying phenotypes induced by random mutations in their 

genome. Classical genetic screens have been successfully carried out using chemical mutagens 
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such as N-ethyl-N-nitrosourea (Driever et al., 1996) or retroviral insertions (Amsterdam et al., 

1999). All these approaches have identified thousands of mutations in genes that affect 

embryonic development. The small size of zebrafish larvae, fitting inside wells of a standard 96-

well plate), and the availability of large number of embryos are essential features for the 

automation and high-throughput scale needed for these screens. 

Reverse genetics seek to elucidate the function of known genes by knock-out and knock-down 

approaches. Methods for reverse genetics include morpholino oligonucleotides and engineered 

nucleases. Morpholinos are short antisense oligonucleotides (18-25 bp) that can effectively bind a 

target mRNA and function through an RNase-H independent mechanism as efficient translational 

inhibitors in vivo (Nasevicius and Ekker, 2000). When injected into zebrafish one-cell stage 

embryos, morpholinos mediate knock-down of a target gene, generating phenotypes that 

resemble loss-of-function mutants (Nasevicius and Ekker, 2000). However, they have some 

limitations: they are transient in nature, only are completely penetrant during the first 48 hpf and 

there are common off-target effects caused by non-specific binding (Dahm and Geisler, 2006). An 

additional reverse genomic tool is TILLINGS (Targeting Induced Local Lesions IN Genomes), which 

relies on the screen of mutagenized populations, generally produced by ENU, and subsequent 

analysis by sequencing of induced mutations (Wienholds et al., 2003). This approach has recently 

been able to identify mutations in 3,188 zebrafish genes that are orthologous to some of the 

5,494 human genes currently associated with human diseases (Kettleborough et al., 2013). 

More recently a wide array of engineered nucleases including ZFN (Zinc Finger Nucleases), TALENs 

(Transcription Activator-Like Effector Nucleases) and CRISPR-Cas (Clustered Regulatory 

Interspaced Short Palindromic Repeats) have emerged as more refined tools for genome-editing 

in zebrafish (Maeder et al., 2008; Sander et al., 2011; Hwang et al., 2013). These tools contain a 

specific DNA binding domain fused to a non-specific DNA cleavage domain that induces double-
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strand breaks (DBS), stimulating NHEJ (Non-Homologous End Joining) DNA repair mechanisms in 

the cell and promoting introduction of deletions, insertions or substitutions at target loci, as 

reviewed in (Gaj et al., 2013). ZFNickases (Zinc Finger Nickases) have been introduced as powerful 

alternatives to avoid unwanted indels caused by error-prone NHEJ repair of DBS (Kim et al., 2012; 

Ramirez et al., 2012). They create single-strand breaks or nicks and trigger DNA repair by the 

homologous directed repair pathway, reducing the mutagenesis rate of classical ZFNs. The 

application of these tools to the field of transcriptional regulation could be revolutionary, as it will 

allow dissection of the structure of CREs by disrupting potentially relevant motifs with high 

precision. Along these lines, a recent study has proven that a cancer-associated enhancer lost its 

function following deletion of a 7-bp motif using TALEN nucleases (Webster et al., 2014). As a 

result of the genetic lesion, the MET gene enhancer could no longer interact with its cognate 

promoter and gene regulation was altered, demonstrating the importance of a single TFBS.  

1.7 Transgenesis in zebrafish for the study of transcriptional regulation 

Transgenesis is the most effective method for assess the potential of putative regulatory elements 

in vivo. In these assays constructs containing the region to be tested are linked to a reporter gene, 

the activity of which can be accurately measured when introduced into the cells of the animal 

model. If the element to be tested is an enhancer, a construct is produced so that the enhancer is 

placed upstream of a weak promoter and a reporter gene, typically fluorescent proteins, as 

reviewed in (Narlikar and Ovcharenko, 2009). Transgenesis techniques have been described in 

several animal models such as mouse, Xenopus and zebrafish (Stuart et al., 1990; Khokha and 

Loots, 2005; Fisher et al., 2006b; Pennacchio et al., 2006). These methods require the injection of 

the vector into fertilized eggs. The vector is randomly integrated in the host genome and tissue 

specific activity is evaluated by assessing the in vivo expression pattern of the injected embryos. 
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Zebrafish has proven to be unique in its capacity for transgenesis screens due to the low cost of 

transgenesis and the availability of high throughput approaches. The production of around two 

hundred eggs per female per week makes it an ideal model for the injection and screening of 

large number of transient transgenic embryos. In addition to this, the short generation time (3 

months) permits generation of stable transgenic lines. Establishment of transgenic lines is more 

time-consuming and lower-throughput. Although transient transgenics allow for high-throughput 

screens, one main limitation is the high mosaicism between embryos. Mosaicism complicates the 

identification and analysis of transgene activities in small tissue domains (Pashos et al., 2008). 

Nevertheless, transient transgenic embryos can be used, where each injected embryo represents 

a different integration site. Thus, position effects can be statistically eliminated by observing 

common patterns in a large number of embryos (Muller et al., 1997; Muller et al., 1999; Dickmeis 

et al., 2004; Gehrig et al., 2009). In transgenesis assays it is also common to find that reporter 

constructs drive expression in unexpected cells or tissues, referred to as “ectopic expression” 

(Summerbell et al., 2000; Adachi et al., 2003; Chao et al., 2010) or at a stage that does not match 

temporally that of the tested gene, known as “heterochronic expression” (Lin et al., 2010), 

hindering the analysis of the CRE of interest.  

1.7.1 Zebrafish tests of human cis-regulatory elements 

Zebrafish has been successfully used to test fish and human candidate regulatory regions using 

transient and stable transgenic assays (de la Calle-Mustienes et al., 2005; Woolfe et al., 2005; 

Abbasi et al., 2007; Navratilova et al., 2009; Li et al., 2010b; Narlikar et al., 2010; Ritter et al., 

2010; Rada-Iglesias et al., 2011; Gorkin et al., 2012; Ritter et al., 2012; Bhatia et al., 2013; Ravi et 

al., 2013). Most of these studies tested conserved non-coding regulatory regions among 

evolutionary distant species, such as human and zebrafish or Fugu, and confirmed that CNEs are 

good indicators of putative enhancers that function in vivo. Although some studies have 

addressed in detail how well enhancer function is conserved across species, particularly between 
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human and zebrafish (Navratilova et al., 2009; Ritter et al., 2010), the test of enhancers predicted 

in a tissue-specific fashion by novel genome-wide methods has not been explored in depth. 

1.7.2 Transgenesis methods in zebrafish 

Several protocols exist for the creation of stable transgenic lines in zebrafish, but two basic 

approaches have been employed to analyse CREs by transgenesis: naked DNA microinjections and 

transposon-mediated transgenesis. 

The first experiments to create transgenic zebrafish embryos used linearized plasmid DNA 

containing cis-regulatory elements (Stuart et al., 1988; Stuart et al., 1990; Westerfield et al., 

1992). The injected linear plasmid is first replicated during cleavage stages before being mostly 

degraded during gastrulation. The vast majority of replicated DNA is not stably integrated but 

lives in an extra-chromosomal state, which results in a highly mosaic individual. The mosaicism is 

most likely caused both by late integration into the genomic DNA (prompted by the rapid 15-

minutes cleavages), uneven distribution of the exogenous DNA in the embryo, and/or tissue-

specific activation of the transgene (Stuart et al., 1988; Stuart et al., 1990; Westerfield et al., 

1992). These and other experiments proved that mosaic analysis of transient transgenic zebrafish 

provides a rapid method for the dissection of the activity of cis-regulatory elements, either by 

injecting promoters alone or by co-injecting enhancer and promoter fragments (Muller et al., 

1997; Woolfe et al., 2005; Allende et al., 2006). Only about 5% of the mosaic injected fish in these 

experiments carry germline integration of the transgene (Stuart et al., 1988; Stuart et al., 1990; 

Amsterdam et al., 1999) Nevertheless, germline transmission rates can be improved with the use 

of transposons.  
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1.7.3 Use of transposons for random integration of transgenes 

Transposons or DNA-based transposable elements are mobile DNA segments. In their simplest 

form they consist of a genetic sequence flanked by short terminal repeats and the encoded 

transposase enzyme, which triggers the replicative spread through the genome by recognising 

target DNA sequences and mediating integration by cutting, exchanging and fusing DNA strands 

(Plasterk, 1993). Autonomous transposons carry the transposase gene whilst non-autonomous 

transposons depend on an external enzyme for their mobilization in the genome (Cui et al., 2002). 

Transposon-mediated transgenesis represents an advantage over naked DNA microinjection, as 

reviewed in (Kawakami, 2005), particularly with regards to germline transmission rates, which 

increase from around 5% to 12.5%, or even 50% (Kawakami et al., 2000; Kawakami et al., 2004).  

1.7.3.1 Sleeping Beauty 

Sleeping Beauty (SB) is a synthetic transposon generated from a consensus sequence of the 

salmonoid Tc1-like elements. The system consists of a synthetic gene encoding the transposase 

and a cloned Tc1-like element containing the inverted repeats needed for transposition (Ivics et 

al., 1997). It is very active in higher vertebrates (including fish, mouse and human) and 

preferentially integrates one copy in sequences flanking TA dinucleotides (Ivics et al., 1997). In 

zebrafish, SB is a valuable tool for transgenesis: it enhances the expression rates of transgenes 

from 5% to 31% over standard plasmid injection and exhibits a germline transmission efficiency of 

around 10% of multiple single-copies of transgenes (Davidson et al., 2003). However, this two-

component system has a limited cargo carrying capacity (up to 7Kb for efficient transposition 

rates in human cells) and lowered transposition activity at high SB doses (Geurts et al., 2003; 

Balciunas et al., 2006).  
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1.7.3.2 Tol2 transposon 

Tol2 belongs to the hAT family of transposons and was isolated from the tyrosinase gene locus of 

the Medaka fish Oryzias latipes (Koga et al., 1996). Koga and collaborators identified a 4.7 Kb 

insertion on the 5th exon of i4 allele displaying "cut and paste" transposon features: it was present 

in multiple copies in the host genome and was flanked by short inverted terminal repeats (Koga et 

al., 1996). In order to determine whether the Tol2 element was autonomous and active in 

zebrafish, a construct harbouring the Tol2 element was injected into zebrafish eggs. Analysis by 

PCR of the injected embryos showed that Tol2 was excised from the plasmid leaving small 

deletions and insertions at the excision sites, which is characteristic of transposons (Kawakami et 

al., 1998). In addition, when mRNA transcribed in vitro was injected in embryos, Tol2 produced a 

functional transposase capable of catalysing transposition in the zebrafish germline (Kawakami et 

al., 2000). These results indicated that Tol2 was an autonomous element and, more importantly, 

that it was active in zebrafish. 

The minimal sequence required for transposition was identified from the Tol2 element, indicating 

that 200 bp from the left end and 150 bp from the right end were sufficient for Tol2-mediated 

transposition (Urasaki et al., 2006). Subsequently, constructs containing miniTol2 versions were 

designed (Balciunas et al., 2006; Urasaki et al., 2006). These vectors offered the additional 

advantage of being able to carry efficiently DNA elements larger than 10 Kb between the left and 

right Tol2 ends (Balciunas et al., 2006; Urasaki et al., 2006), and even Bacterial Artificial 

Chromosome (BAC) transgenes (Suster et al., 2009). 

Several features such as high rates of germline transmission (around 50%), single copy transgene 

insertions, an average of 5-6 insertions, clean integrations in the genome, and the passage of 

transgenes through generations make Tol2 an ideal system for creating transgenic zebrafish 

(Kawakami et al., 2000; Kawakami et al., 2004). 
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1.7.4 Zebrafish as a model for studying cis-regulation of vertebrate pancreas 
development and function 

1.7.4.1 Zebrafish shares a common pancreas structure and function with mammals 

In this thesis, pancreas specific human enhancers will be tested by transgenesis in zebrafish. 

Zebrafish has become a popular model for studying development and the fact that the zebrafish 

pancreas shares a common basic structure and cellular composition with mammals, implies that 

the lessons we can learn from zebrafish will be broadly applicable (Kinkel and Prince, 2009). 

Pancreas is a vital organ controlling glucose homeostasis, food digestion and nutrition, and 

consists of both endocrine and exocrine compartments. In adult mammals the endocrine 

pancreas represents 1-2% of the total mass of the organ and is embedded within the exocrine 

pancreas, as reviewed in (Slack, 1995).The exocrine component is a lobulated gland consisting of 

acinar and ductal cells. Acinar cells are arranged into spherical structures called acini that produce 

and secrete digestive enzymes (zymogens) from their apical surface including proteases, 

amylases, lipases and nucleases. Ductal cells form a network that allows the transport of 

zymogens into the intestine (Wang et al., 2011b). The endocrine pancreas consists of islets that 

contain four different cell types secreting hormones into the bloodstream: insulin producing β-

cells, glucagon producing α-cells, somatostatin producing δ-cells, and pancreatic polypeptide 

producing PP-cells. The pancreatic islet is organized in a mantle-core structure, with the most 

abundant β-cells in a central core surrounded by non β-cells at the periphery (Montague, 1983). It 

has been shown in most species that during development and early post-natal period there is a 

unique fifth type of endocrine cells: ghrelin producing ε-cells (Heller, 2010). In humans, the islets 

of Langerhans are organized as several mantle-core subunits. The adult endocrine pancreas 

contains approximately one million islets of Langerhans embedded in exocrine tissue (Li et al., 

2009). This description of the human pancreas is broadly applicable to reptiles, amphibia, birds 

and some fishes. 
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1.7.4.2 Zebrafish pancreas development 

At early larval stages, the zebrafish pancreas consists of exocrine tissue surrounding a single 

principal islet. The islet is composed of a core of β-cells, enclosed by an outer layer of δ-, α- and ε-

cells. Whether PP-cells form part of the zebrafish embryonic islet remains unclear, with some 

authors claiming that PP cells can only be detected in the adult pancreas (Argenton et al., 1999). 

The endocrine and exocrine compartments originate from two contiguous areas in the gut that 

bud at two different times during development (Figure 1.7): the anteroventral bud will give rise to 

the endocrine pancreas, while the posterodorsal bud will form the exocrine pancreas and a supply 

of endocrine cells (Field et al., 2003).  

The first pancreatic bud forms from two sets of endodermal cells that originate at both sides of 

the gastrula and merge at the midline by the 12-somite stage. These cells express pdx1, a 

pancreatic and duodenal homeobox gene, which is an early pancreatic and gut marker (Biemar et 

al., 2001). These cells bud off dorsally from the gut before 24 hpf. The posterodorsal bud gives 

rise to endocrine tissue expressing the main pancreatic hormones. Due to the rotation of the gut 

between 24-48 hpf, the dorsal bud is dislocated to the right side of the gut.  

 

Figure 1.7 Schematic diagram of the development of zebrafish pancreas. 
Relevant genes in pancreas morphogenesis are labelled in green, blue and magenta. L=liver, 
G=gut, S=swim bladder. All images are dorsal view with anterior at the top. Adapted from (Tiso et 
al., 2009) 



44 

 

By 48 hpf the first islet can be detected and it is organized like a mammalian one with a core of β-

cells surrounded by α- and δ-cells (Tiso et al., 2009). Ghrelin cells are not detected in the zebrafish 

pancreas, but have been found in catfish (Heller, 2010). The anteroventral bud emerges at 40 hpf 

from the ventral portion of the gut, anterior to the first islet. It can be detected by the expression 

of the exocrine marker ptf1a (Lin et al., 2004). This second bud will grow towards the posterior 

end of the gut, enveloping the islet. By 5 dpf the pancreas lies on the right side of the gut and 

consists of a head, where the principal islet and nkx2.2 -expressing extra-pancreatic ducts are, and 

a tail, which is posterior to the head and consists of exocrine pancreas (Parsons et al., 2009). The 

exocrine pancreas of a 5 dpf larvae contains approximately 260 cells (Jiang et al., 2008). 

While the embryonic and larval zebrafish pancreas consists of a single principal islet, the pancreas 

in the adult zebrafish is organized as a large principal islet located at the head of the pancreas and 

several secondary islets within the tail of the pancreas (Tiso et al., 2009). The cells that form the 

secondary islets do not appear during the first 6 days of development, but are established during 

the first three weeks of larval life and are embedded in exocrine tissue and scattered along the 

gut (Parsons et al., 2009). Their formation can be explained by two alternative hypothetical 

models. The first implies the replication and migration along the gut tube of existing β-cells from 

the primary islet. The second model proposes the differentiation of nkx2.2a-expressing ductal 

precursor cells. A paper published by (Wang et al., 2011b) confirmed this second hypothesis. 

There are two differentiated cell populations in the anteroventral bud: a ptf1a expressing domain 

and a Notch-responsive domain. The Notch responsive pluripotent cells align along the ducts and 

differentiate during development to form ductal and centroacinar cells and the insulin producing 

cells that will eventually form the secondary islets. 
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1.8 Aims of this thesis 

In the post-genomic era, international efforts have been devoted to design strategies that can 

identify CREs on a genome-wide scale. However, the vast majority of the putative enhancers have 

not been experimentally characterized in vivo and their contribution to disease is unclear. 

Therefore there is a demand for an animal model that can be used in validation assays with the 

capacity to be upscaled. Zebrafish has been used to study transcriptional regulation before but its 

relevance as an evolutionarily distant model for the functional test of mammalian cis-regulatory 

elements remains poorly understood. Therefore, I aimed to investigate the utility of the 

transgenic zebrafish embryo to study the function of candidate human enhancers identified by 

several prediction methods. I also aimed to develop a robust transgenesis method that would 

permit the detection of subtle quantitative changes in enhancer function caused by disease-

associated SNPs. 
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Chapter Two: MATERIAL AND METHODS 

2.1 Materials 

All the chemicals used were molecular biology quality grade. Some commonly used chemicals, 

consumables and equipment are not listed here. 

2.1.1 Antibiotics 

Ampicillin sodium salt A9518 Sigma-Aldrich, UK 
Gentamicin sulfate BPE918-1 Fisher Bioreagents, UK 
Kanamycin sulfate from Streptomyces 
kanamyceticus 

K1377 Sigma-Aldrich, UK 

 

2.1.2 Bacterial strains 

Alpha-Select Silver Efficiency chemically competent 
cells 

BIO-85026 Bioline Ltd., UK 

Alpha-Select Bronze Efficiency chemically 
competent cells 

BIO-85025 Bioline Ltd., UK 

Alpha-Select Silver Efficiency electrocompetent cells BIO-85028 Bioline Ltd., UK 
Stellar™ Competent Cells 636763 Clontech, UK 

 

2.1.3 Chemical Reagents 

Agarose BIO-41025 Bioline Ltd., UK 
Albumin from bovine serum, further purified 
fraction V, 99% pure (BSA) 

A3059 Sigma-Aldrich, UK 

5-Bromo 4-chloro 3 indolyl phosphate (BCIP) 11383221001 Roche Diagnostics, UK 
Chloroform C2432 Sigma-Aldrich, UK 
CTP alpha-32P BLU008H001MC Perkin Elmer, UK 
Denhardt's Solution (50X) 750018 Invitrogen, UK 
Deoxyribonucleic acid from calf thymus D4522-1MG Sigma-Aldrich, UK 
dNTPs 10mM R0192 Thermo Scientific, UK 
Dynabeads® M-280 Streptavidin 11205D Invitrogen, UK 
Ethyl-3-aminobenzoate methanesulfonate 98% 
(MESAB/E-222/Tricaine) 

E10521 Sigma-Aldrich, UK 

Formamide (deionized) AM9342 Ambion, UK 
Gel Loading Dye, Blue 6X B7021S NEB, UK 
Glycerol G6279 Sigma-Aldrich, UK 
Heparin sodium salt H3393 Sigma-Aldrich, UK 
Human genomic DNA G3041 Promega, UK 
LB (Luria Bertani) Agar L2897 Sigma-Aldrich, UK 
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LB (Luria Bertani)Broth L3022 Sigma-Aldrich, UK 
New Born Calf Serum N4637 Sigma-Aldrich, UK 
N-Phenylthiourea Grade I (PTU) P7629 Sigma-Aldrich, UK 
Nitro blue tetrazolium (NBT) 11383213001 Roche Diagnostics, UK 
Paraformaldehyde (PFA) P6148 Sigma-Aldrich, UK 
Phenol:Chloroform 5:1, pH 4.7 P1944 Sigma-Aldrich, UK 
Phenol:Chloroform:Isoamyl Alcohol 25:24:1 
Saturated with 10 mM Tris, pH 8.0, 1 mM EDTA 

P3803 Sigma-Aldrich, UK 

Phenol solution Equilibrated with 10 mM Tris HCl, 
pH 8.0, 1 mM EDTA 

P4557 Sigma-Aldrich, UK 

Phenol red solution P0290 Sigma-Aldrich, UK 
Ready-To-Go DNA Labelling Beads (-dCTP) 27924001 GE Life Sciences, UK 
SSC buffer substance 85639 Sigma-Aldrich, UK 
Sheep anti-digoxigenin-AP Fab fragments 1093274 Roche Diagnostics, UK 
Sheep serum 013000121 Interchim, US 
tRNA from wheat germ type V, lyophilized powder R7876 Sigma-Aldrich, UK 
Tween-20 P1379 Sigma-Aldrich, UK 
UltraPure™ 1M Tris-HCI, pH 8.0 15568-025 Invitrogen, UK 
1 kb DNA Ladder N3232S NEB, UK 
100 bp DNA Ladder N3231S NEB, UK 
 

2.1.4 Consumables 

Borosilicate glass capillaries (OD 1mm, ID 0.78mm) BF100-7810 Warner Instruments, USA 
Electroporation cuvettes 1 mm EP-01 Geneflow, UK 
GeneScreen Plus transfer membrane NEF987001PK Perkin Elmer, US 
Illustra MicroSpin G25 Columns 27532501 GE Life Sciences, UK 
Illustra ProbeQuant G-50 Micro Columns 28903408 GE Life Sciences, UK 
MicroAmp Optical 96-well Reaction Plates N8010560 Applied Biosystems, UK 
Microcon-30kDa Centrifugal Filter Unit with 
Ultracel-30 membrane 

MRCF0R030 Millipore, UK 

 

2.1.5 Enzymes 

Cloned Pfu DNA Polymerase 600353 Agilent Technologies, UK 
Gateway BP Clonase™ II Enzyme Mix 11789-100 Invitrogen, UK 
Gateway LR Clonase™ II Enzyme Mix 11791-020 Invitrogen, UK 
GoTaq® Hot Start Polymerase M5006 Promega, UK 
Herculase Hotstart DNA Polymerase 600310 Agilent Technologies, UK 
In-Fusion® HD Cloning Kit 639643 Clontech, UK 
PCR Extender System 2200500 5Prime, UK 
Protease from Streptomyces griseus Type XIV 
(Pronase) 

P5147 Sigma-Aldrich, UK 

Proteinase K from Tritirachium album P4850 Sigma-Aldrich, UK 
Ribonuclease A from bovine pancreas (RNase) R4642 Sigma-Aldrich, UK 
Restriction Enzymes various NEB, UK 
T4 DNA ligase M1801 Promega, UK 
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2.1.6 Kits 

DAB Peroxidase Substrate Kit SK4100 Vector Laboratories, UK 
DIG RNA Labelling Kit SP6/T7 11175025910 Roche Diagnostics, UK 
NucleoSpin Gel and PCR Clean-up Kit NZ74060950 Macherey-Nagel, UK 
NucleoSpin Plasmid Kit NZ74058850 Macherey-Nagel, UK 
NucleoBond Xtra Midi Kit NZ74041010 Macherey-Nagel, UK 
mMESSAGE mMACHINE® Kit AM1340 Ambion, UK 
 

2.1.7 Oligonucleotides 

All oligonucleotides described in this thesis were designed with Primer 3 software version 4.0 

(Untergasser et al., 2012) and were purchased from Sigma-Aldrich, UK. 

2.1.8 Buffers and solutions 

-2X BW Buffer: 2M NaCl, 10mM Tris-HCl (pH 7.5), 1 mM EDTA  

- 4% Paraformaldehyde (PFA): PFA was dissolved in sterile PBS at 60° with constant stirring. 

- E3 Medium: 0.5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4. 

- Mammalian lysis buffer: 10 mM Tris-HCI (pH 8.0), 0.1 M EDTA (pH 8.0), 0.5% (w/v) SDS, 20 μg/ml 

of DNase-free Ribonuclease A from bovine pancreas. 

-PBST: PBS, 0.1% Tween-20. 

-Southern Blot hybridization buffer: 6× SSC, 0.5% SDS, 5× Denhardt's solution, 10 mg/ml of 

denatured calf thymus genomic DNA  

-WISH Blocking Solution: 1x PBST, 2% sheep serum (vol/vol), 2 mg/ml BSA 

-WISH Hybridization Buffer (+):50% deionized formamide, 5X SSC, 0.1% Tween-20, 50 μg/ml of 

heparin bile salts, 500 μg/ml of extracted RNase-free tRNA adjusted to pH 6.0 by adding citric acid 

(460 μl of 1 M citric acid solution per 50 ml of hybridization buffer). 

WISH Hybridization Buffer (-):50% deionized formamide, 5X SSC, 0.1% Tween-20 

-WISH Staining Buffer: 1 M Tris-HCl, adjusted to pH9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% Tween-

20. 
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-WISH Staining Solution: Dilute 225 μl of 50 mg/ml NBT and 175μl of 50 mg/ml BCIP with 50 ml of 

WISH Staining Buffer (Light sensitive). 

-WISH Stop solution: PBS pH 5.5, 1 mM EDTA, 0.1% Tween-20. 

-Antibody staining blocking buffer: 10% NBCS in PBST. 

2.1.9 Zebrafish strains 

Wild-type embryos used are derived from AB and AB* strains. For pancreas co-localization 

experiments the following stable transgenic lines were used: Tg (ins-mCherry)jh2 (Pisharath et al., 

2007). 

2.1.10 Equipment 

Digital microINJECTOR System MINJ-1 Tritech Research, US 

Flaming Brown micropipette puller P-97 Sutter Instruments, USA 

Heraeus Function line incubator B6 Thermo Scientific, UK 

Leica TCS LSI zoom confocal microscope LSI6000 Leica, UK 

MicroPulser Electroporation Apparatus 165-2000 BIO-RAD, UK 

NanoDrop ND-1000 Spectophotometer ND-1000 NanoDrop Technologies 

Scan^R High-Content Screening Station for Life 

Science 

scan^r Olympus, Germany 

Sensoquest Thermocycler 613-3908 GeneFlow, UK 

Stereoscopic Zoom microscope  SMZ1500 Nikon, UK 

Storage Phosphor Screen 28956474 GE Life Sciences, UK 

Stratalinker UV crosslinker 400075 Stratagene, US 

Stuart Scientific tube rotator SB3 VWR, UK 

Typhoon 9200 Variable Mode Imager 375-635 GE Life Sciences, UK 

Zoom stereomicroscope SMZ645 Nikon, UK 

6-Tube Magnetic Separation Rack S1506S New England Biolabs, UK 
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2.2 Molecular Biology Methods 

2.2.1 Phenol-chloroform extraction of nucleic acids 

Phenol-chloroform extraction is a widely used molecular biology method designed for the 

purification of nucleic acids (Chomczynski and Sacchi, 1987). One volume of Tris-HCl buffer 

saturated-phenol was added to the aqueous solution containing nucleic acid and proteins, 

forming two immiscible layers: an upper aqueous phase and a heavy phenolic phase. The two 

phases were mixed and separated by centrifugation at 10,000 rpm for 10 minutes at room 

temperature (RT). The upper aqueous phase containing nucleic acids was transferred to a fresh 

tube. One volume of chloroform was added, mixed briefly and centrifuged at 10,000 rpm for 10 

minutes at RT. The aqueous phase was transferred to a fresh tube for precipitation. 

2.2.2 Precipitation of nucleic acids 

DNA was precipitated by adding 0.2 volumes of 3M Na-acetate and 2 volumes of 100% ethanol. 

RNA was precipitated by adding one volume of isopropanol and 1/10 volumes of 10M ammonium 

acetate. Solutions were incubated at least for 1 hour at -20°C and centrifuged at 4°C for at least 

30 minutes. The precipitate was washed with 70-80% ethanol and pelleted at 10,000 rpm for 5-10 

minutes. The pellet was air-dried and resuspended in nuclease-free water. DNA was stored at -

20°C.  

2.2.3 Isolation of plasmid DNA 

Isolation of plasmid DNA was carried out using commercially available kits from Macherey Nagel, 

UK. These kits are based on the alkaline lysis extraction protocol described by (Birnboim and Doly, 

1979). Bacteria from liquid cultures are harvested by centrifugation and plasmid DNA liberated by 

alkaline-SDS lysis. The lysate is neutralised and plasmid DNA containing solution is applied to silica 

or anion-exchange membrane column. Genomic DNA, proteins and cell debris are removed by 

centrifugation. Other contaminants, like salts and metabolites, are removed by washing with 
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ethanolic buffers. Purified plasmid DNA is eluted under low ionic strength conditions with alkaline 

TE buffer or nuclease-free water. 

2.2.3.1 Miniprep of plasmid DNA 

Bacterial plasmids were purified using NucleoSpin Plasmid Kit (Macherey-Nagel, UK) following 

manufacturer’s instructions, which are described briefly below. Firstly, 5 ml LB cultures 

supplemented with the appropriate antibiotic were inoculated with a single colony picked from 

streaked agar plates and were incubated with constant shaking (200-250 rpm) overnight at 37°C. 

Cells were pelleted in a standard benchtop microcentrifuge for 30 seconds at 11,000 g. After 

discarding the supernatant, 250 µl of A1 Buffer supplemented with RNase A was added to 

resuspend the cell pellet. 250 µl of A2 Buffer was then added to lyse the cells and the tube was 

inverted 6-8 times carefully to avoid shearing of bacterial genomic DNA. After 5 minutes of 

incubation of the lysate, 300 µl of A3 Buffer were added to neutralize the reaction. The lysate was 

clarified by centrifugation at 11,000 g for 5 minutes. The supernatant was loaded onto a 

NucleoSpin Plasmid QuickPure Column and was centrifuged for 1 min at 11,000 g so that the DNA 

could bind to the silica membrane of the column. 450 µl of A4 Buffer supplemented with 100% 

ethanol were added to wash the column and after 1 minute of centrifugation at 11,000 g the 

flow-through was carefully discarded. An additional centrifugation step at 11,000 g for 2 minutes 

was performed to ensure that the silica membrane was dry. The bacterial plasmid was eluted by 

adding 30 µl of nuclease-free water to the column, incubating for 1 min and centrifuging for 1 min 

at 11,000 g. The flow-through was collected in a fresh tube. 

2.2.3.2 Midiprep of plasmid DNA 

High-quality bacterial plasmid DNA was prepared using NucleoBond Xtra Midi (Macherey-Nagel, 

UK) following manufacturer’s instructions, which are described briefly below. A 200 ml LB culture 

containing the appropriate selective antibiotic was grown overnight at 37°C and 200 rpm. Cells 
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were harvested by centrifugation at 6,000 g for 10 min at 4°C. After discarding the supernatant, 

the cell pellet was resuspended with 8 ml of Resuspension Buffer supplemented with RNase A. 

Then 8 ml of Lysis Buffer were added to the suspension, which was inverted 5 times carefully and 

incubated for 5 minutes at RT. The reaction was neutralised by adding 8 ml of Neutralization 

Buffer. The tube was inverted 10 times and the lysate was loaded into a NucleoBond Xtra Column 

filter previously equilibrated with 12 ml of Equilibration Buffer. After allowing the column to 

empty by gravity flow, 5 ml of Equilibration Buffer was added to the column to wash out the 

remaining lysate from the filter. The column filter was discarded and the column was washed with 

8 ml of Wash Buffer. Plasmid DNA was eluted with 5 ml of Elution Buffer and collected in a fresh 

50 ml centrifuge tube. To precipitate the DNA, 3.5 ml of isopropanol at RT were added to the 

tube. After vortexing, the precipitate was centrifuged at 10,000 g for 30 minutes at 4°C. The 

supernatant was removed and the pellet washed with 2 ml of 70% room-temperature ethanol by 

centrifuging at 15,000 g for 5 min. The DNA pellet was dried at RT and reconstituted with 100-300 

µl of nuclease-free water. 

2.2.3.3 Isolation of high molecular weight genomic DNA 

Genomic DNA was isolated according to the standard protocol described by (Sambrook and 

Russell, 2006). Snap-frozen zebrafish embryos were thawed on ice and homogenised using a clean 

pestle. One ml of Mammalian Cell Lysis Buffer (recipe in section 2.1.8 above) was added to the 

samples, and the solution was incubated for 1 hour at 37°C. Proteinase K was added to the lysate 

to a final concentration of 100 μg/ml and the mixture was incubated from 3h to overnight in a 

water bath at 50°C at 50-60 rpm. After cooling the solution at RT, phenol extraction was carried 

out twice. Phases were mixed by rotating the tubes in an end-over-end rotator at 2 rpm for 1 hour 

and separated by centrifugation at low speed to avoid breaking the DNA molecule (5,000 g for 20 

minutes at RT). A wide-bore pipette was used to transfer the viscous aqueous phase to a fresh 

centrifuge tube and a phenol-chloroform-isoamylalcohol (25:24:1) extraction was performed. 
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DNA was precipitated by adding 0.2 volumes of 10 M ammonium acetate and 2 volumes of 100% 

ethanol at RT. The sample was rotated for 15 minutes in an end-over-end rotor at 2 rpm. The 

precipitated DNA was removed in one piece with a sterile crook and transferred to a solution of 

70% ethanol. DNA was washed again in 70% ethanol and was dried at RT on a crook. When the 

precipitated DNA turned transparent, it was resuspended in 300 μl of Tris- buffer (pH 8.0) and was 

dissolved by gently rotating the solution overnight. 

2.2.4 Quantification of nucleic acids 

Nucleic acids yield and purity were assessed by UV spectrophotometry using a NanoDrop ND 1000 

Spectrophotometer (Thermo Scientific, UK). The concentration (ng/µl) is based on the 260λ 

absorbance. The purity of DNA and RNA was assessed by evaluating the 260/280λ ratio of the 

sample’s absorbance. A ratio of 1.8 was accepted as pure for DNA and a ratio of 2.0 was accepted 

as pure for RNA. The 260/230λ absorbance ratio was used as a second measurement of the 

nucleic acids purity (absence of co-purified contaminants). A ratio in the range of 1.8 – 2-2 was 

considered as pure. 

2.2.5 Polymerase Chain Reaction (PCR) 

Amplification of DNA sequences was performed by PCR using a Sensoquest Thermocycler 

(GeneFlow, UK). For cloning purposes, the proofreading PCR Extender System (Primer5, UK) for 

high fidelity amplifications was used. This system combines a blend of highly thermostable DNA 

Polymerases with high processivity that enable amplification of fragments up to 40 kb with 

minimal error rate. When high-fidelity was not needed, ie, when testing colonies after ligation 

reactions, a Taq Polymerase without proofreading capability was used (GoTaq® Hot Start 

Polymerase, Promega, UK). Reactions were assembled following manufacturer’s instructions. 

Annealing temperatures and extension times were adjusted depending on primer and template 

conditions. Typically, a standard PCR cycle consists on a hot-start step of 95°C for 5 minutes, 
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followed by 35-40 cycles of denaturing, annealing and extension, and a final extension step at 72 

°C for 7 minutes. 

2.2.6 Agarose Gel electrophoresis 

The size and specificity of PCR products, or digested DNA was assessed in agarose gels by 

electrophoresis. Gels were prepared by dissolving agarose in Tris-borate-EDTA (TBE) buffer to a 

final concentration ranging from 0.8 to 1.5% depending on the fragment size. To allow 

visualization of DNA under UV light 10ng/ml of ethidium bromide was added to the gels. The 

ladders commonly used were either 100 bp DNA Ladder or 1 Kb DNA Ladder from NEB UK, 

depending on the size of the fragments to be analyzed. Gels were run in TBE 1X electrophoresis 

buffer at 90 V for a minimum of 40 minutes or until proper separation of the bands was achieved. 

2.2.7 Purification of DNA from agarose gels 

PCR products were purified to remove remaining primers and other PCR components for 

downstream procedures. Also DNA products were excised and extracted from agarose gels when 

unspecific bands were present. Digested plasmid DNA was purified in order to ensure a higher 

quality for further procedures (usually ligation or recombination reactions) using the NucleoSpin 

Gel and PCR Clean-up Kit from Macherey-Nagel, UK. 

Gel purification was carried out by loading DNA samples into an agarose gel and the fragment of 

interest was excised using a clean scalpel under UV light. UV exposure was minimized to avoid 

damaging the DNA. The gel slice was purified following manufacturer’s instructions. For each 100 

mg of agarose 200 µl of NT Buffer was added. The sample was incubated at 50°C for 10 minutes. 

In the case of PCR clean-up, the volume of the PCR reaction was adjusted to 100 µl and 200 µl of 

Buffer NT were added. The sample was loaded into a NucleoSpin Column attached to a collection 

tube and centrifuged at 11,000 g for 1 minute. The flow-through was discarded and 700 µl of NT3 
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Buffer supplemented with ethanol were added to wash the silica membrane of the column. This 

was centrifuged for 1 minute at 11,000 g and after removal of the flow-through the column was 

centrifuged again for 2 minutes at maximum speed to remove residual ethanol. DNA was eluted 

by adding 15-50 µl of nuclease-free water into the column and centrifuging for 1 minute at 11,000 

g. The eluate was collected into a fresh tube. 

2.2.8 Molecular cloning 

Molecular cloning refers to the construction of plasmids made by directional ligation of DNA 

fragments flanked by complementary cohesive ends created by endonuclease restriction digest. 

Inserts coming from PCR products were amplified using primers containing restriction sites.  

2.2.8.1 Restriction digest of DNA 

Around 10 µg of vector and insert DNA were digested using appropriate Restriction Endonuclease 

enzymes from New England Biolabs, UK. Reactions were set up in a total volume of either 50 or 20 

µl, by adding suitable amounts of DNA, 2 to 10-fold excess of restriction enzyme (2-10 units per 

µg of DNA), appropriate NEBuffer (10X) and BSA to a final concentration of 100 ng/µl. Unless 

stated by the manufacturer, the reaction was incubated at 37°C for 2-3h.  

2.2.8.2 Ligation of DNA fragments 

T4 DNA ligase was chosen to catalyze the ligation of DNA fragments containing cohesive ends 

generated by restriction digest. Ligation reactions were assembled using a 1:3 vector:insert molar 

ratio, 1 μL of T4 DNA ligase and 2 μL of 10X Ligase Buffer in a total volume of 20 μL. The reaction 

was incubated at RT overnight and then 10 µl of this reaction was used to transform an aliquot of 

50µl of DH5α cells as described in section 2.3.1 below. 
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2.2.9 Gateway Cloning  

Expression vectors containing a human putative enhancer linked to a zebrafish promoter and 

fluorescent reporter gene were cloned using the Multisite Gateway Cloning System by Invitrogen, 

UK. The Gateway strategy is based on phage lambda site-specific recombination in vitro between 

PCR products and vectors containing attB and attP recombination sites (Roure et al., 2007). 

Expression Vectors are created through two recombination steps. The BP reaction is a 

recombination reaction between an attB-site flanked PCR product (either a human enhancer or 

zebrafish promoter PCR product) and a donor vector that generates a “shuttle vector” or Entry 

Vector. These entry vectors are recombined with a variety of Destination Vectors to create a final 

Expression (Figure 2.1). 

 

 

Figure 2.1. Schematic representacion of Gateway Cloning Technology: from attB-flanked PCR 
products to the generation of an Expression Clone.  
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2.2.9.1 Production of attB-flanked PCR products 

Human enhancers and zebrafish promoters were amplified using the proofreading PCR Extender 

System for high fidelity amplifications. Human genomic DNA containing disease-linked SNPs or 

mutations for amplification was provided by our collaborators. 

Two rounds of PCR were carried out to produce a final product flanked by attB recombination 

sites (29bp). In the first round the 12bp most 3’-prime to the gene-specific sequence was added 

by the adaptor primers. In the second round, the whole 29 bp attB tail was reconstructed by 

primers containing the complete attB site (Table 2.1): attB3 and attB5 sites were used to flank 

enhancers while attB1 and attB2 sites were flanking promoters.  

Table 2.1 Primers used to amplify attB-flanked products for Gateway Cloning 

Oligo Name Sequence (5' to 3') 

attB1-primer ggggacaagtttgtacaAAAAAGCAGGCT 

attB2-primer ggggaccactttgtacaAGAAAGCTGGGT 

attB3-primer ggggacaagtttgtataATAAAGTAGGCT 

attB5 –primer ggggaccactttgtataCAAAAGTTGGGT 

After assembling a high-fidelity PCR reaction (section 2.2.5 above) and assessing the size and 

specificity of the PCR product by electrophoresis, the PCR product was cleaned-up or gel 

extracted as described in section 2.2.7 above. Purification of the PCR product was carried out to 

remove attB primers and any attB primer-dimers, which could clone efficiently into the Entry 

Vector. 

2.2.9.2 Creation of Entry Clones via BP Reaction 

By the BP reaction attB-flanked PCR products were transferred as a unit into a Donor Vector 

(pDONR221) to create Entry Clones. Two separate BP reactions were needed to create promoter 

and enhancer containing Entry Clones.   
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The BP Reaction was assembled at room temperature as follows: 

 Negative Control Sample 
Component Tube 1 Tube 2 
attB PCR product (use 50 fmol*) ---- 1-10 µl 
pDONR221 Vector (150 ng/ml) 2 µl 2 µl 
BP Clonase Enzyme Mix 2 µl 2 µl 
TE buffer 10 µl To 10 µl 

 

The BP reaction was incubated at 25°C for 1 hour. To stop the reaction 2 µl of Proteinase K were 

added and incubated for 15 minutes at 37°C. Five µl of BP Reaction were transformed into an 

aliquot of 50 µl DH5α chemically competent cells, as described in section 2.3.1. The next day, 

single colonies were picked from LB Agar plates and colony PCR using M13 forward and reverse 

primers (flanking recombination sites) were used for testing positive Entry Clones. Positive Entry 

Clones were isolated by minipreps (see section 2.2.3.1 above) and sent for sequencing (see 

section 2.2.11 below). 

2.2.9.3 Creating Expression Vectors via LR Reaction 

From the Entry Clones, the non-coding sequences were shuttled by LR recombination to the 

Gateway Destination Vector pSP1.72BSSPE-R3-R5-RFA-Venus Tol2 (Roure et al., 2007). This vector 

contains two Tol2 arms which are recognized by Tol2 transposase, enabling single copy 

integration of the construct into the genome by co-injection with Tol2 mRNA. LR Reactions were 

assembled at room temperature as follows: 

Component  Negative Control Sample 
Enhancer containing Entry Clones  ---- 100 femtomoles 
Promoter containing Entry Clone  100 femtomoles 
Destination Vector 100 femtomoles 100 femtomoles 
LR Clonase Enzyme Mix 2 µl 2 µl 
TE Up to 10 µl Up to 10 µl 
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The LR reaction was incubated overnight at RT. To stop the reaction 2 µl of Proteinase K was 

added and incubated for 15 minutes at 37°C. For multisite LR cloning, 10 µl of the LR Reaction was 

transformed into 40 µl electrocompetent E. coli DH5α cells by electroporation, as described in 

section 2.3.2. To screen for positive colonies attB3 forward primer and the Venus reverse primers 

(5’-AACTCCAGCAGGACCATGT-3’) were used. Positive Expression Clones were isolated using 

NucleoBond Xtra Midi Kit, as per manufacturer’s instructions. All final Expression vectors were 

sent for sequencing. 

2.2.10 In-fusion cloning 

In-Fusion® HD Cloning Kit system allows directional cloning of one or many DNA fragments into a 

vector, using only one restriction site. Clontech´s In-fusion enzyme can efficiently fuse DNA 

fragments that share a 15 bp homology region at both ends. This technology was used when only 

one restriction site was available within a vector, and directional cloning of the insert was 

required. Manufacturer´s instructions were followed. 

2.2.10.1 Design of primers for PCR 

Primers were designed so that the 5’end would contain a 15 bp fragment overlapping with the 

end of the linearized vector where it was going to be cloned, and the 3´end would contain 18 to 

25 bp specific to the target gene. The 3´end region of the oligonucleotide was designed using 

Primer3 software. For the final primer design an online tool by Clontech was used: 

http://bioinfo.clontech.com/infusion/. 

2.2.10.2 Preparation of linearized vector and insert 

The vector was linearized using one or two restriction enzymes as described and it was gel 

extracted using Macherey Nagel Gel and PCR Clean-up Kit. The PCR fragment was amplified using 

the proofreading hot-start Polymerase provided by the Kit: CloneAmp™ HiFi PCR Premix.   

http://bioinfo.clontech.com/infusion/
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The PCR reaction was assembled as follows: 

Component Volume 
CloneAmp™ HiFi PCR Premix 0.2 μL (1 unit) 
Template DNA 30-100 ng 
dNTPs (10 mM) 0.4 µl  
Primers containing 15 bp tail (10 μM) 0.5 µl/each 
Nuclease-free water up to 20 μL 

The specificity and size of the amplified fragment was checked by agarose gel electrophoresis and 

then the PCR fragment was purified by gel extraction. 

2.2.10.3 In-fusion cloning reaction 

Following manufacturer´s recommendations between 50-200 ng of both insert and vector were 

used to obtain good cloning efficiencies. For inserts smaller than 0.5 Kb, less than 50 ng were used 

and for vectors larger than 10 Kb more than 200 ng were used. The cloning reaction was 

assembled as follows: 

Component  Negative Control Sample 
Purified PCR fragment (insert) ---- 10-200 ng 
Linearized vector 50-200 ng 50-200 ng 
5X Fusion HD Enzyme Premix 2 µl 2 µl 
Nuclease-free water Up to 10 µl Up to 10 µl 

This reaction was incubated at 50°C for 15 minutes and then placed on ice. Then 2.5 µl of the 

reaction was used for transformation. 

2.2.10.4 Transformation using Stellar™ Competent Cells 

An aliquot of 50 µl of Stellar™ Competent Cells was used to transform 2.5 µl of the cloning 

reaction. After thawing the cells, the mixture was incubated on ice for 30 minutes. Then, the cells 

were heat-shocked for 45 seconds in a 42°C water bath and placed on ice for 3 minutes. Cells 

were diluted in 500 µl of pre-warmed SOC Medium and then recovered for one hour at 37°C in a 

shaker at ~250 rpm. 1/10th, 1/25th and the remaining transformation volume were used to streak 
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LB Agar plates containing the appropriate selective antibiotic. Colony PCR was performed the next 

day to screen for positive colonies. 

2.2.11 Sequencing 

To ensure no mutations were introduced during PCR reactions or after cloning, all plasmids 

produced and critical PCR products were sequenced by an external service (Beckman Coulter 

Genomics, UK). For each sequencing reaction, 1.5µg of each plasmid DNA or 250 ng of a purified 

PCR product together with 10 µl of appropriate primers (5 mM) were barcoded and sent for Quick 

Lane Express Sequencing to Beckman Coulter Genomics (Takeley, UK). 

2.2.12 Site-directed mutagenesis 

Site-directed mutagenesis by PCR was used in order to generate a PROX1 putative human 

enhancer carrying the non-common variant of rs3242786 SNP (G>A). This point mutation was 

generated following Higuchi's method (Higuchi et al., 1988) using PROX1 element Entry Clone as a 

template. Higuchi's method is based on two PCR rounds: in the first round two overlapping DNA 

fragments carrying the desired mutation are produced (Figure 2.2) using primers specified in 

Table 2.2. Mutations are introduced via primer mismatch. Then, products from the first round 

serve as a template for the second round and produce a duplex fragment that can be extended by 

a standard DNA polymerase after denaturation and renaturation.  

Table 2.2 Primers used to create a single site mutation in PROX1 element 

Primer name Sequence (5’ to 3’)  PCR Round 
PROX1-pF1 GCAAAAATGAACTTGAGAAATCC First round: PCR product A PROX1-G>A-pR TGATTACAAAGATGATAATTTATGACTGACATAC 
PROX1-G>A-pF TCATAAATTATCATCTTTGTAATCATTAAGGATC First round: PCR product B PROX1-pR1 CATTCCCTTTAATATCCCATGC 
PROX1-pF2 GCAAAAATGAACTTGAGAAATCC Second round PROX1-pR2 CATTCCCTTTAATATCCCATGC 
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For the first round of PCR, the following conditions were used: 

95°C 95°C 60°C 72°C 95°C 65°C 72°C 72°C 
2 min 20s 20s 30s 30s 15s 30s 5 min 

 Repeat 10 times Repeat 20 times  

Products A and B from the first round were purified from an agarose gel as described above. For 

the second round of PCR 7.5 µl of the purified A and B products were mixed and serve as template 

after denaturalization for 95 ºC for 10 minutes. The following conditions were used: 

95°C 95°C 50°C 72°C 95°C 65°C 72°C 72°C 
2 min 30s 30s 50s 30s 10s 30s 5 min 
 Repeat 10 times Repeat 20 times  

The final PCR product bearing the mutation was sequenced and was used to create a Gateway 

Expression Vector following the protocol detailed in section 2.2.9.3 above. 

 

Figure 2.2. Schematic representation of Higuchi´s Method used for site-directed mutagenesis. 
Adapted from (Hadzhiev, 2007)  
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2.2.13 Extension primer tag selection linker-mediated PCR (EPTS-LMPCR) 

In order to map the genomic insertion site of a transgene in several zebrafish transgenic lines 

generated in the lab, I used a modified linker-mediated PCR protocol adapted from (Yergeau et 

al., 2007). In standard linker-mediated PCR (LMPCR) protocols, genomic DNA is digested by 

restriction enzymes and linkers are ligated to the DNA fragments. PCR is then carried out using 

primers specific to the adaptors and to the terminal ends of the transposon. A variation of LMPCR 

is Extension Primer Tag Selection (EPTS)-LMPCR, where the fragmented genomic DNA regions 

containing the transgene are purified from the rest of genomic DNA fragments using a 

biotinylated primer specific to the transposon arms (Figure 2.3). Briefly, genomic DNA is digested 

with a restriction enzyme that does not cut in the transposon terminal end. A transposon-specific 

biotinylated primer is added and DNA is extended using a DNA polymerase that generated 

biotinylated products, which can be specifically purified by streptavidin beads. Genomic DNA 

fragments that do not contain the transposon are therefore removed. Through several steps, 

excess adaptors are washed away and the purified biotinylated product is used as a template for 

one or two rounds of PCR that used transposon and linker specific primers. The resultant 

product(s) are sequenced or subcloned in order to identify the genomic DNA sequences flanking 

the transposon integration site. 

The following protocol was followed: two μg of high-quality genomic DNA from the zebrafish 

transgenic lines of interest were digested at 37°C overnight with either AluI (for mapping the 3' 

end of Tol2 transgene) or DpnII (to map the 5'end). 1/10th of 3M sodium acetate and 3 volumes of 

100% ethanol were added and the samples were incubated on dry ice for 30 minutes. Samples 

were centrifuged at 16,000g for 10 minutes at RT and all liquid was removed and DNA pellet was 

air-dried. 
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Figure 2.3. Overview of EPTS-LMPCR protocol. 
After digesting genomic DNA with restriction enzymes (RE), a biotinylated primer (black circle) 
annealing the Tol2 inverse repeats (TIR) is used to extend DNA fragments containing the 
transgene insertion. These products are purified using streptavidin beads (red circle), adaptors are 
linked (grey lines), and amplification using oligos specific to TIRs and linkers takes place (black 
triangles). Resultant PCR products are either sequenced or subcloned to identify the genomic 
sequence flanking the transposon integration site. Figure adapted from (Yergeau et al., 2007).  
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The primer extension reaction was set up on ice as follows: 

Component Volume 
10X Pfu DNA Polymerase reaction buffer 5 µL 
dNTPs (10 mM) 1 µL 
Biotinylated Tol2 primer (0.125 µM) 2 µL (250 µM) 
Cloned Pfu DNA Polymerase  1 µL (2.5 units) 
Nuclease-free water 41 µL 

DNA pellet was resuspended in 50 μl of primer extension mix and carefully mixed. Each DNA and 

primer extension mix was transferred to a thin-walled 200 μl PCR tube and it was incubated in a 

thermocycler using the following parameters: 98°C for 3 minutes, 68°C for 30 minutes and 72°C 

for 30 minutes. 450 μl of nuclease-free water was added to each tube and the extended products 

were purified using a Millipore Microcon-30 spin column. Briefly, samples were spun for 12 

minutes at 12,000 g at RT to remove excess of primers and enzymes. In the elution step, the 

column insert was inverted and inserted in a fresh tube. A small concentrated volume ranging 

from 5 to 20 μl was visible after spinning for 3 minutes at 1,000 g at RT. Forty μl of nuclease-free 

water were added to each sample and they were kept at RT while streptavidin beads were 

processed. 

For each reaction 200 μg of beads were used. The amount of beads required to process all 

reactions was transferred to a fresh 1.5 ml eppendorf tube and it was placed on a magnetic 

holder for 1 minute. All liquid was removed with a pipette tip and the tubes were removed from 

the magnet holder. An equal volume of 2X BW buffer was added, mixed and placed in the 

magnet. Beads were washed this way for a total of 3 times. After the third was, beads were 

resuspended at a concentration of 200 μg per 40 μl of 2X BW buffer. 

Forty μl of streptavidin beads (Dynabeads® M-280) were mixed with 40 μl of the primer extension 

product and the mixture was rotated in an end-to-end rotator for at least 30 minutes at RT, 

followed by 30 minutes of shaking at approximately 200 rpm. 
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The beads were washed twice with 100 μl of nuclease-free water using the magnetic holder in 

order to remove genomic DNA fragments not containing the transgene, and therefore, were not 

bound by streptavidin beads. After the second wash, beads were resuspended in 10 μl of ligation 

mix, which was prepared as follows: 

Component Volume 
10X T4 DNA ligase buffer 1 µL 
50 pmol/l of annealed linker cassette 2 µL 
T4 DNA ligase  2 µL (6 units) 
Nuclease-free water 5 µL (final volume of 10 µL) 

Ligation reaction was incubated overnight at 16°C. The following morning beads were washed 

twice with 100 µL of nuclease-free water using magnetic holder as described. After the second 

wash, magnetic beads were resuspended in 10 µL of nuclease-free water and the first round of 

PCR was set up as follows: 

Component Volume 
Resuspended magnetic beads 1 µL 
dNTPs (10 mM) 1 µL 
OCI primer 2 µL (500 mM) 
Tol2 5N1 primer 2 µL (500 mM) 
10X Herculase Hot Start Polymerase buffer 5 µL 
Herculase Hot Start Polymerase  0.5 µL (2.5 units) 
Nuclease-free water 38.5 µL 

The following thermocyler program was used to amplify the product: 

Cycle number Denature Anneal Extend 
1 92°C for 2 min --- --- 
2-11 94°C for 30 sec 50°C for 30 sec 72°C for 2 min 
12-31 94°C for 30 sec 50°C for 30 sec 72°C for 2 min plus 10 sec per cycle 
32   72°C for 5 min 
 

After amplification 15 µL were run on a 1.25% agarose gel in 1X TAE. If products were visible, all 

bands from each sample were purified, as described above. If no products were visible or present 

at very low concentrations, a nested PCR was carried out using the following components: 
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Component Volume 
Primary PCR product 1 µL 
dNTPs (10 mM) 1 µL 
OCII primer 2 µL (500 mM) 
Tol2 5N2 primer 2 µL (500 mM) 
10X Herculase Hot Start Polymerase buffer 5 µL 
Herculase Hot Start Polymerase  0.5 µL (2.5 units) 
Nuclease-free water 38.5 µL 

Nested PCR was carried out using the following thermocyler program: 

Cycle number Denature Anneal Extend 
1 92°C for 2 min --- --- 
2-11 94°C for 30 sec 48°C for 30 sec 72°C for 2 min 
12-31 94°C for 30 sec 48°C for 30 sec 72°C for 2 min plus 10 sec per cycle 
32   72°C for 5 min 

The oligonucleotides used in this protocol are listed in Table 2.3. 
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Table 2.3 Primers used in EPTS-LMPCR protocol. 

Oligo name Sequence (5´-3´) Modification Description 

BIO-Tol2-3'end AAACTGGGCATCAGCGCAATTCAAT 5´ biotinylation Used for primer extension reaction of Tol2 3'end 
BIO-Tol2-5'end ATTCCATGGATATCAAGCTTAAACA 5´ biotinylation Used for primer extension reaction of Tol2 5'end 

NZ117 GACCCGGGAGATCTGAATTCAGTGGCACAGCAGTTAG
G None Linker primer 

NZ118-P CCTAACTGCTGTGCCACTGAATTCAGATCTCCC 5´phosphorylation Linker primer phosphorylated on the 5'end to 
ligate extended fragments 

Tol2-N1-3'end CGCAATTCAATTGGTTTGG None Primer specific to Tol2 5'end (used in primary PCR) 
Tol2-N3-5'end aAGCTTAAACAAGAATCTC None Primer specific to Tol2 3'end (used in primary PCR) 

OCI GACCCGGGAGATCTGAATTC None Primer specific to linker sequence (used in primary 
PCR) 

Tol2-N2-3'end-nested GCAAGGGAAAATAGAATGAAG None Primer specific to Tol2 5'end (used in nested PCR) 
Tol2-N4-5'end-nested TCTTTCTTGCTTTTACTTTTA None Primer specific to Tol2 3'end (used in nested PCR) 

OCII-nested AGTGGCACAGCAGTTAGG None Primer specific to linker sequence (used in nested 
PCR) 
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2.2.14 Capped mRNA in vitro transcription 

Tol2, CFP and PhiC31 integrase mRNA for microinjections were in vitro transcribed from pCS2+-

Tol2, pCS2+-CFP and pCS2+PhiC31 plasmids respectively using mMESSAGE mMACHINE® Kit from 

Ambion, UK. Linearized plasmid DNA was used as a template for transcription. Digestion of pCS2+ 

plasmids was carried out with an appropriate digestion enzyme cutting downstream of the polyA 

of the insert to be transcribed (NotI). After linearization the plasmid DNA was purified using 

phenol-chloroform extraction, as described in section 2.2.1 above), and precipitated with 3M Na 

acetate and ethanol and resuspended in nuclease-free water. The capped transcription reaction 

was assembled at room temperature as follows: 

Component Volume 
2X NTP/CAP 10 µl 
10X Reaction Buffer 2 μl 
Purified linear plasmid DNA 100ng-1 μg 
Enzyme Mix 2 μL 
Nuclease-free water up to 20 μL 

The reaction was mixed thoroughly and incubated for 2-4 hours at 37°C. To remove plasmid DNA 

template, 1 µl of Turbo DNase was added and it was incubated for 15 minutes at 37°C. To remove 

the enzymes as well as unincorporated nucleotides, transcribed RNA was further purified by 

phenol-chloroform extraction, as described. First, 115 µl of nuclease-free water and 15 µl of 

Ammonium Acetate Stop Solution were added to the reaction and were thoroughly mixed. RNA 

was extracted with 1 volume of 5:1 phenol: chloroform equilibrated with citric acid (pH= 3.8). RNA 

was precipitated by adding isopropanol and RNA was eluted in nuclease-free water. RNA correct 

size and purity was checked by agarose electrophoresis and spectophotometry. 
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2.3 General microbiological methods 

2.3.1 Transformation using chemically competent cells 

Retransformation of existing plasmids was performed using an aliquot of 30 µl Alpha-Select 

Bronze Efficiency DH5α chemically competent cells. Transformation of ligation reactions was 

performed using an aliquot of 50μl of Alpha -Select Silver Efficiency DH5α chemically competent 

cells or 100μl of Stellar™ Competent Cells following manufacturer’s instructions. 

Between 10 and 50 ng of DNA or 2.5-10 μl of ligation reactions were incubated on ice for 30 

minutes, heat-shocked in a 42°C water bath for 45 seconds and placed on ice for 3 minutes. Cells 

were recovered with 1 ml of LB Broth 1X and incubated at 37°C for at least 1 hour in a shaker at 

approximately 300 rpm. 100-500 µl of cell transformation mixture was plated by spreading on 

fresh LB Agar plates containing the appropriate selective antibiotic. Plates were incubated 

overnight at 37°C. 

2.3.2 Transformation of electrocompetent cells 

For multisite LR cloning DH5α electrocompetent cells were used. Ten µl of the LR Reaction were 

transformed into an aliquot of 40 µl cells. The mixture was incubated on ice for 15 minutes in a 

0.1 cm cuvette and was electroporated using a voltage of 1.8kV in a BIO-RAD Micropulser. Cells 

were recovered with 1 ml of LB Broth 1X and incubated at 37°C for at least 1 hour in a shaker at 

~200 rpm. All the cells were plated by spreading onto fresh LB Agar plates the appropriate 

selective antibiotic. Plates were incubated overnight at 37°C. 

2.4 Fish husbandry and embryo methods 

2.4.1 Zebrafish husbandry 

Zebrafish were kept in the BMSU according to Home Office Regulations. Seven to fifteen pairs of 

adult zebrafish were maintained in 3.5 litre polycarbonate tanks in a ZebTEC recirculating housing 
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system (Tecniplast, UK) on a regular light-dark cycle, with 14 hours of light and 10 hours of 

darkness. Water temperature was kept at 26°C. Adults were fed three times a day combining ZM 

Medium Premium Granular dry food and hatched brine shrimp cysts (ZMSystems, UK). 

2.4.2 Production of zebrafish embryos and eggs 

Crosses of adult zebrafish were carried out in 1 litre breeding cages containing an inlay with a 

bottom mesh, which allowed for embryo collection and prevented the adult fish from eating their 

eggs. In the evening, one female and one male were placed in a crossing cage separated by a 

divider and left overnight. Fertilized eggs were collected by filtering the water in each crossing 

cage with a net. 

2.4.3 Raising zebrafish larvae 

Zebrafish embryos were kept in 90 cm Petri dishes in E3 Medium supplemented with gentamicin 

(0,01%) in an incubator at 28.5 ºC for 5 days after fertilization (Westerfield, 1993). Medium was 

changed every day and dead embryos were removed to avoid bacterial infections. PTU was added 

to E3 Medium (0, 03%) in embryos older than 24 hpf, when removal of pigment was necessary to 

allow visualisation. 

2.4.4 Dechorionation 

Embryos were dechorionated before 48 hpf by adding 1 ml of Pronase stock solution (10 mg/ml) 

to 10 ml of E3 medium. After swirling the plate, the enzymatic reaction was carefully controlled 

under the microscope. When 2/3 of the embryos were out of the chorion, they were washed at 

least three times with fish water to remove all traces of the enzyme and placed in fresh plates 

with E3 Medium supplemented with gentamicin. Alternatively, embryos older than 24 hpf were 

dechorionated manually using fine and sharp forceps. 
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2.4.5 Microinjections 

Fertilized embryos were microinjected using an analogue pressure-controlled microinjector from 

Tritech Research, US. Needles for microinjection were pulled using a Flaming Brown needle puller. 

Microinjection solutions contained 15 ng/µl of high-quality plasmid DNA, 30 ng/µl of CFP mRNA 

(when appropriate), 15 ng/µl of Tol2 mRNA or 15 ng/µl of PhiC31 integrase mRNA (unless 

otherwise indicated), filtered phenol red solution (0,2%) and nuclease-free water up to 10 µl. 

Embryos within 10 minutes of fertilization were collected in Petri dishes and water was removed, 

so that just a fine layer of water was covering the eggs. Under the control of the 

stereomicroscope eggs were injected through the chorion with approximately 1 nl of 

microinjection solution. Successful microinjections were visible due to phenol red solution. 

Immediately after injections, embryos were transferred to a dish containing E3 Medium and 

gentamicin and were incubated at 28,5 ºC for a maximum of 5 days. Embryos expressing high 

levels of CFP mRNA at 24 hpf were considered correctly injected and further analyzed. 

2.4.6 Generation of stable transgenic lines 

Injected embryos were returned to the fish facility and raised as a stock to screen for germline 

transmission of the transgenes. Approximately 100 embryos injected with each construct were 

raised to create stable transgenic lines. Larvae and young adults were maintained in breeding 

cages for the first 3 weeks and fed at least three times a day with fry diets (ZM-000, ZM-100 and 

ZM-200; ZMSystems, UK), in combination with live food (paramecia, ZMSystems, UK). After three 

weeks, fish were moved to regular 3.5 tanks in a regular recirculating housing system (ZebTEC, 

Tecniplast). 
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2.5 Whole-mount in situ hybridization (WISH) 

Whole-mount in situ hybridization (WISH) is a widely used technique to describe the pattern of 

expression of developmental genes in preserved organisms (Herrmann, 1991; Schulte-Merker et 

al., 1992). It allows the detection of mRNA in whole embryos by using an antisense RNA probe, 

which is synthesized in vitro and labelled with digoxygenin-UTP. After permeabilization of the 

embryos and hybridization of the probe, the transcript of interest is visualized by an anti-

digoxygenin antibody conjugated to alkaline phosphatase, which catalyzes a chromogenic 

reaction. WISH was carried out following the protocol described by (Thisse and Thisse, 2008). 

2.5.1 WISH RNA probe synthesis 

Antisense RNA probes were labelled with digoxigenin-UTP by in vitro transcription with SP6 or T7 

polymerases using a DIG RNA labelling kit from Roche Diagnostics. As a template, constructs that 

contained SP6 or T7 promoters downstream the DNA to be transcribed were used. Vectors were 

linearized with a suitable enzyme and the RNA polymerases were used to produce a run-off 

transcript. Labelling reaction was assembled as follows: 

Component Volume 
10X dNTP labelling mixture 2μl 
10X transcription buffer 2μl 
RNase inhibitor 1μl 
SP6/T7 RNA Polymerases 2μl 
Linearized purified DNA template 1 μg 
 

These components were mixed and incubated at 37 °C for 2 hours. DNA template was removed by 

incubating the sample with 2 μl of RNase-free DNase I for 15 min at 37 °C. This reaction was 

stopped by adding 2 μl of 0.2 M EDTA (pH 8.0). The DIG-labelled probe was further purified by 

filtering it through resin based Illustra MicroSpin G25 Columns. Probes were quantified and their 

size and quality were checked by agarose electrophoresis. 
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2.5.2 Fixation of embryos 

Dechorionated embryos of the appropriate developmental stages were fixed in 4% 

paraformaldehyde diluted in PBS overnight at 4°C. The next day, embryos were dehydrated by 

replacing PBS with methanol. Washes of 75%, 50% and 25% PBS-Methanol were performed for 5 

minutes each. Embryos were washed twice in 100% methanol and stored at -20°C. 

2.5.3 Permeabilization of embryos 

Embryos were rehydrated in successive dilutions of methanol in PBST (75%, 50%, 25% methanol-

PBST). Washes were performed at RT for 5 minutes each with gentle agitation (40 rpm). Embryos 

were washed 4 times in PBST, 5 minutes per wash. Embryos were permeabilized by digestion with 

proteinase K (10 μg/ml) at RT for 10 minutes if they were 24 hpf and for 30 minutes if they were 

older than 24 hpf. 

2.5.4 Hybridization of embryos 

Digestion was stopped by incubating the embryos for 20 minutes in 4% PFA. Residual fixative was 

removed by washing 4 times in PBST. Embryos were pre-hybridized in 700 μl of hybridization 

buffer for 2-5 h in a 70°C water bath. Embryos were hybridized overnight at 70°C, in 200 μl of 

hybridization mix containing 50-100 ng of DIG-labelled RNA probe (for recipe see section 2.1.8 

above). 

2.5.5 Washes and incubation with anti-DIG antibody 

The next day, hybridization buffer was replaced with 2X SSC through a series of 10 minutes 

washes at 70°C with hybridization buffer (-) diluted in 2X SSC with gentle agitation (for recipe see 

section 2.1.8 above). Embryos were washed twice in 0.2X SSC at 70°C for 30 minutes. Next, 0.2 X 

SSC was replaced with PBST through a series of 10 minutes washes at RT with 0.2X SSC diluted in 

PBST. In order to prevent non-specific binding of the antibody, embryos were incubated in 
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blocking buffer for 3-4 hours at RT with gentle agitation. Anti-DIG antibody was diluted at 1:4000 

with blocking buffer and incubated overnight at 4°C on a horizontal orbital shaker. 

2.5.6 Washes and staining 

The antibody solution was discarded and embryos washed with gentle agitation in PBST 4 times, 

for 30 minutes each wash. Embryos were washed twice with staining buffer for 5 minutes. In 

order to stain the embryos, they were transferred to a 24-well plate and staining buffer was 

replaced with 1 ml of fresh staining solution. The colorimetric reaction was monitored closely 

under the microscope and embryos were kept in the dark between checks.  

When the staining intensity and pattern desired was reached, the reaction was stopped by adding 

stop solution for 3 minutes. Embryos were washed 3 times in PBST and then fixed in PFA 4% for 

30 minutes at 4°C and dehydrated through a series of washes with methanol diluted in PBST. 

2.5.7 Embryo mounting 

Dehydrated embryos were mounted in 100% glycerol. Methanol was replaced with glycerol 

through a series of washes with glycerol diluted in water. Washes were performed at RT for 10 

minutes with gentle agitation. For imaging, embryos were placed in a small glycerol drop on glass 

slide, covered with a glass coverslip and oriented accordingly.  

2.6 Antibody staining 

Embryos were fixed, dehydrated and permeabilized as described above. After proteinase K 

digestion, embryos were washed 4 times in PBST for 30 minutes with gentle agitation and then 

embryos were blocked for at least 1 hour in blocking buffer (for recipe see section 2.1.8 above). 

The primary antibody was added and incubated overnight at 4°C with gentle agitation. For vasa 

staining 1:500 dilution of anti-vasa antibody was used, a kind gift of Holger Knaut (Knaut et al., 
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2000). The following day, the primary antibody was removed and embryos were washed 4 times 

in PBST for 30 minutes with gentle agitation. Embryos were blocked for at least 1 hour in blocking 

buffer, and then incubated at 4°C with the secondary antibody overnight. The embryos were 

washed 4 times in PBST for 30 minutes. For secondary antibodies conjugated with HRP, detection 

was carried out with DAB Staining Kit, following manufacturer’s instructions. Embryos were briefly 

incubated in DAB staining solution in the dark. The reaction was carefully monitored under the 

brightfield microscope and was stopped by washing the embryos twice with PBST. For long-term 

storage, embryos were then fixed in PFA 4% and dehydrated in methanol as described above. 

2.7 Southern blotting  

Southern blot was carried out with invaluable technical help of Elizabeth Marsh (University of 

Birmingham, UK) following the protocol described in (Wilson et al., 2007). Briefly, 5 µg of high-

quality genomic DNA from clutches of GFP-positive and GFP-negative 5 dpf embryos from an F3 

outcross of F3 Tg(Xla.crygc:attP-GFP)uobL6 and Tg(Xla.crygc:attP-GFP)uobL12 lines were digested 

with an excess of the appropriate enzymes at 37°C overnight. To control for copy number 

integration, the plasmid used to generate these lines: pTol2/Xla.crygc:attP-GFP (pDB896) vector 

(Roberts et al., 2014) was spiked in WT genomic DNA and digested in parallel to the samples. 

Digested DNA was separated on 0.8% agarose gel at 45 V overnight and visualized quickly the 

morning after. The gel was then washed twice for 20 minutes in 0.25M HCl, and twice for 30 

minutes in 0.4 M of NaOH with gentle shaking. DNA was transferred to a GeneScreen™ nylon 

membrane (PerkinElmer, MA) by capillarity overnight in 0.4 NaOH solution. The membrane was 

washed twice in 2X SSC and DNA was crosslinked to the nylon membrane using a Stratalinker® UV 

crosslinker (Stratagene, US). The membrane was blocked with 5 ml of hybridization buffer (recipe 

in section 2.1.8 above) containing 10 mg/ml of denatured calf thymus genomic DNA for a 

minimum of 60 minutes in a rotating oven at 42°C. 
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The probe containing attP-GFP and Tol2 3’arm was generated by digesting pTol2/Xla.crygc:attP-

GFP (pDB896) vector with ApaI and BamHI enzymes and purified as described in section 2.2.7. 

Fifty ng of the probe was labelled with [α-32P]-CTP (Perkin Elmer, UK) using Ready-To-Go DNA 

Labelling Beads (GE Life Sciences, UK) and purified using Illustra ProbeQuant G-50 Micro Columns 

(GE Life Sciences, UK). The labelled probe was denatured and added to the hybridization buffer. 

The membrane was incubated with the radiolabelled probe at 42°C overnight. The following 

morning, it was washed at RT for 15 minutes in 2X SSC/0.1% SDS and then with 0.1X SSC/0.1%  to 

remove excess background. Finally, it was wrapped in plastic film and exposed to autoradiograph 

film for at least 16 hours. To analyze the copy number of the transgenic recipient lines, the nylon 

membrane was blocked by light for 30 minutes and transferred to a Storage Phosphor Screen 

(Molecular Dynamics, UK). It was scanned on a Typhoon 9200 Variable Mode Imager (Amersham 

Biosciences, UK) with Typhoon Scanner Control software (v5.0) and analyzed using ImageQuant 

5.1. 

2.8 Fluorescence imaging methods 

Injected embryos were individually screened for transgenic expression using a Nikon SMZ1500 

epifluorescence microscope. Agarose coated plates were used for orienting anaesthetised 

embryos. Relevant expression patterns were documented using NIS Elements imaging software.  

For high resolution imaging of mosaic or stable transgenic expression Olympus ScanR high content 

screening microscope was used. A brass template adapted for 96-well plate was employed to 

orient and image 24-72 hpf embryos (Peravali et al., 2011). 96-well plates were coated by 60 µl of 

1.5% liquid agarose. The level was made even by adding 20 µl of 100% ethanol. The brass 

template was placed and agarose was allowed to set for around 30 minutes. After cooling down, 

template was removed and ethanol was washed away by rinsing the plate several times with tap 

water. Individual anesthetized embryos in 0.03% MESAB were then pipetted into each well with a 
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cut yellow tip in a volume of 100 µl of medium. They were oriented with a bent 19 G hypodermic 

needle attached to a plastic Pasteur pipette under the stereomicroscope. 

Stacks containing 100 slices of 4 µm thickness were taken in both fluorescence and brightfield 

channels. For fluorescence channels, out of focus slices were manually removed and maximum 

projections were made using an extended depth of field plug-in for ImageJ software (Forster et 

al., 2004). Brightfield images were processed using Photoshop CS6 (Adobe). For high resolution 

imaging of whole embryos six overlapping stacks were taken. Each stack was processed separately 

and afterwards reconstructed using a "Grid and Stitch" plug-in for Image J software (Preibisch et 

al., 2009). Contrast and brightness was adjusted linearly afterwards using Photoshop CS6 (Adobe). 

2.9 Statistical analysis 

Statistical analyses were carried out using GraphPad Instat Software version 3.05 for Windows 

(GraphPad Software, US). Chi-square test or Fisher’s exact test where used to compare rates of 

expression patterns between injection groups. P values smaller than 0.05 were considered to be 

statistically significant. 
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Chapter Three: FUNCTION OF ISLET-SPECIFIC HUMAN CANDIDATE 
ENHANCERS IN ZEBRAFISH 

Foreword:  

The results presented in this chapter have been partially published in (Pasquali et al., 2014). 

This project is the result of a collaboration with Lorenzo Pasquali and Jorge Ferrer, affiliated to 

IDIBAPS (Spain) and Imperial College London (UK), and was funded by Marie Curie BOLD ITN. 

The computational analysis was carried out by Lorenzo Pasquali. 
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3.1 INTRODUCTION 

3.1.1 Type-two diabetes as a disease model  

Type 2 diabetes (T2D) is a complex metabolic disorder that accounts for approximately 90% of all 

cases of diabetes and affects hundreds of millions of people worldwide (Stitzel et al., 2010). It is 

characterized by hyperglycaemia (elevated blood sugar) and insulin resistance. Insulin is the key 

hormone for regulation of blood glucose levels. It is secreted by β-cells of the pancreatic islets, 

which take glucose from blood and metabolize it to produce energy (Figure 3.1, (Stumvoll et al., 

2005)). Normally, the pancreatic β-cells can adapt to changes in insulin by up-regulating the levels 

of secretion. However, when the insulin production by β-cells is unable to meet the metabolic 

demand of peripheral tissues diabetes occurs (Oliver-Krasinski and Stoffers, 2008). Type-one 

diabetes is characterized by the autoimmune attack of beta cells by auto-reactive T cells, resulting 

in deficient insulin production and a severely reduced β-cell mass (Stankov et al., 2013). Type-two 

diabetes on the other hand is characterized by insulin resistance, which implies a reduced ability 

 
Figure 3.1 Regulation of insulin secretion in a pancreatic beta cell.  
Beta cells sense concentration of glucose and regulate insulin secretion. In the resting state, the 
ATP-sensitive KATP channel is open, the beta-cell membrane is hyperpolarized and the voltage-
gated calcium channel is closed. Upon ingestion of food, the serum glucose levels are elevated 
and glucose enters the beta cell through a non-insulin dependent GLUT2 transporter and 
becomes phosphorylated by the glucokinase enzyme. Further glucose metabolism in the 
mitochondria produces ATP, which is involved in membrane depolarisation and closure of the 
potassium channel. The change in ADP/ATP ratio induces the closure of the K+ channel. This 
depolarizes the beta-cell membrane, opening the Calcium channel, and triggering the exocytosis 
of insulin. Image adapted from (Sperling, 2005).  
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of the beta cells to respond to insulin, and which leads to disruption of function and to a modest 

beta cell mass loss (Mastracci and Sussel, 2012). 

3.1.2 Type 2 diabetes as a disease model to unravel cis-regulatory networks 

Unravelling the mechanisms that govern tissue-specific cis-regulation is essential to understand 

development and disease. In the case of endocrine pancreas and beta cell function, the 

motivation is underlined by the fact that epidemic diabetes is becoming a global health challenge. 

The prevalence of diabetes mellitus has more than doubled over the last 30 years, accounting in 

2010 for more than 285 million affected people worldwide, 90% of whom suffer from type-two 

diabetes (Chen et al., 2012). Type-two diabetes (T2D) is a complex multifactorial metabolic 

disorder that results from the interplay between genetic, environmental and behavioural factors, 

such as smoking, obesity, sleeping disorders and depression (Chen et al., 2012). Around 60 T2D 

susceptibility loci have been identified so far (Morris et al., 2012), however it is calculated that 

this susceptibility can only explain between 5 and 10% of the risk (Bramswig and Kaestner, 2014). 

3.1.3 Transcriptional regulation in the pancreatic islet 

There are several key transcription factors that control both pancreas development and β-cell 

specification. Some of them, including PDX1, PTF1A, PAX6, and NKX2.2 are also conserved in 

zebrafish (Biemar et al., 2001). PDX1 or Pancreas Duodenum Homeobox-1 is a marker of 

pancreatic progenitors essential for pancreas development and β-cell differentiation and it is 

conserved from human to zebrafish (Milewski et al., 1998). Pdx1 regulates the expression of 

several key genes in the beta-cell such as insulin and glucagon by binding directly to their 

promoters (Leonard et al., 1993; Petersen et al., 1994). Deletion of Pdx1 in mouse causes 

pancreatic agenesis (Jonsson et al., 1994) and heterozygous or homozygous mutations in PDX1 

gene can lead to permanent neonatal diabetes (Stoffers et al., 1997b; Schwitzgebel et al., 2003; 

Thomas et al., 2009) or monogenic diabetes (MODY, maturity-onset diabetes of the young, 
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(Stoffers et al., 1997a). Pdx1 is initially expressed in the pancreatic progenitors and later restricted 

to the insulin producing β-cells and more scarcely in somatostatin-producing δ cells (Ohlsson et 

al., 1993). Precisely, it is the combined expression of Pdx1 and Ptf1a (Pancreas-specific 

Transcription Factor) that specifies pancreatic commitment from multipotent progenitors cells, 

which can give rise to endocrine, exocrine or ductal lineages (Kawaguchi et al., 2002; Burlison et 

al., 2008). Other important transcription factors involved in pancreas development are FoxA gene 

family. It has been shown that Foxa1 and Foxa2 can regulate Pdx1 expression by specifically 

binding to conserved enhancer sequences located around 6 kb upstream of Pdx1 TSS. Moreover, 

deletion of Foxa1 and Foxa2 in mice causes pancreatic hypoplasia and loss of Pdx1 expression. 

(Gao et al., 2008). 

Nk homeodomain factors Nkx2.2 and Nkx6.1 are also essential for pancreas development and β-

cell differentiation. Both TFs are expressed in the pancreatic buds but Nkx6.1 becomes restricted 

to the β-cells in adults, similarly to Pdx1, while Nkx2.2 is expressed in α, β and PP cells of the 

mature pancreas (Sussel et al., 1998). In mice lacking Nkx2.2 TF β-cells fail to differentiate, they 

develop severe hyperglycaemia and die shortly after birth (Sussel et al., 1998). Interestingly, the 

phenotypes displayed by Nkx6.1/Nkx2.2 double mutant mice is identical to the Nkx2.2 mouse, 

implying that Nkx6.1 is downstream of Nkx2.2 in β-cell differentiation pathway (Sander et al., 

2000). 

3.1.4 Chromatin profiling in the pancreatic islet: how much do we know 

Despite the fast development in the field of epigenetics and the global prevalence of diabetes, the 

pancreas epigenome has not been systematically assessed. The first attempt to map genome wide 

regulatory regions in purified human islets used a technique called FAIRE-Seq, that is, 

Formaldehyde-Assisted Isolation of Regulatory Elements, coupled with NGS (Gaulton et al., 2010). 

The authors found that open chromatin sites defined by FAIRE were not isolated, but clustered in 
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the genome in what they termed COREs (Clusters of Regulatory Elements). These clusters are in 

average 25 kb in size and are usually linked to single islet-specific genes such as PDX1 or NKX6.1 

(Gaulton et al., 2010). The first study that profiled chromatin in human pancreatic islets mapped 

several histone modification marks by ChIP-Seq (H3K4me1-3 and H3K27me3). They found that 

insulin and glucagon promoters were sparsely enriched in H3K4 methylation and also made global 

predictions of which described T2D-associated polymorphisms were overlapping with H3K4me1 

enriched regions and therefore could be functional (Bhandare et al., 2010). However, this study 

lacked functional validations. Following a similar strategy, around 18,000 putative promoters and 

34,000 distal elements were found when profiling chromatin in pancreatic islets by a combination 

of DNase I-Seq and ChIP-Seq on CTCF and H3K4me3, H3K4me1 and H3K79me2 (Stitzel et al., 

2010). Upon validation of some of the putative enhancers in a murine islet cell line they found 

that 4 out of the 12 enhancers that worked in vitro harboured T2D-associated SNPs (Stitzel et al., 

2010). Other studies have focused on master regulators of the pancreas. Khoo and colleagues 

investigated PDX1 occupancy and targets both in human and mouse islets to find that binding 

sites are not generally conserved; whereas in mouse islets PDX1 is enriched in promoter regions, 

in humans it is preferentially bound to intragenic regions (Khoo et al., 2012). Nevertheless, what 

most of these studies have in common is the lack of functional validation of predicted CREs in the 

context of a complex organism. 

3.1.5 Preliminary data leading to the project 

In an effort to elucidate the linkage between transcriptional regulation and epigenetics, our 

collaborators decided to profile islet-specific transcription factor binding sites and several key 

regulatory histone modification marks, which together with expression data would help to 

understand pancreas cis-regulation in humans.  
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Genome-wide integrated maps of key pancreatic transcription factors, including PDX1, NKX6.1, 

NKX2.2, FOXA2 and MAFB and active chromatin marks including H3K4me1, H3K4me3 and H327ac, 

were generated by Lorenzo Pasquali (IDIBAPS, Barcelona) using purified human islets as starting 

material. Bioinformatic analysis revealed ~95,000 “open” chromatin regions in human islets 

marked either by FAIRE-Seq or by H2A.Z enrichment. Among these sites, discrete subclasses of 

open chromatin regions can be distinguished that correlate with distinct CRE categories (Figure 

3.2). The cluster termed “C1” contained ~14,000 regions that showed strong H3K4me3-

enrichment, a typical promoter chromatin signature. ”C2“ regions (~30,000) resembled inactive or 

“poised” enhancers (unimodal H3K4me1-enrichment lacking H3K27ac (Creyghton et al., 2010; 

Rada-Iglesias et al., 2011), and “C3” regions (~31,000) had a typical active transcriptional 

enhancer signature (strong bimodal enrichment in H3K4me1 and H3K27ac but not H3K4me3. 

Among remaining open chromatin sites, ~8,900 (C4) were enriched in CCCTC-binding factor, while 

~9,600 (C5) lacked active histone modifications. 

 

Figure 3.2 Clustering of~95,000 open chromatin regions based on active histone modifications 
revealed 5 distinct epigenetic classes. 

Clusters of open chromatin sites (C1-C5) defined by H2AZ or FAIRE (top). Transcription factor 
distribution in each cluster is depicted (bottom). Figure adapted from (Pasquali et al., 2014).  
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3.1.6 Aims: 

These initial observations led to the hypothesis that regions within C3 cluster could act as 

developmental islet enhancers, since they were open chromatin sites enriched in H3K27ac and 

H3K4me1. Harnessing the advantages of zebrafish as an effective transgenesis model, we 

proposed the use of zebrafish as a tool to test pancreatic-specific CREs. Our main motivations 

included the exploitation of easy transgenesis screens, the conservation of the expression and 

function of pancreas-specific transcriptional network between mammals and zebrafish and a 

shared anatomical structure of the pancreas. 

In order to test the function of putative CREs, several candidate regions conserved at the 

sequence level between human and fish were selected for transgenesis assays. In addition, 

regions within C2 and C5 clusters were used as control regions to evaluate the accuracy of the 

enhancer selection process. Within this global aim, several specific objectives were set: 

• To test the potential of these regions to direct tissue-specific activity in the transient 

transgenic zebrafish embryo. 

• To verify autonomous independent activity of the human candidate enhancers. 

• To verify whether the transient patterns were valid in stable transgenic lines and to 

evaluate how faithful are transient transgenic assays to fully recapitulate the expression 

pattern of a human CRE. 
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3.2 METHODS 

Putative human elements were cloned into 2 different contexts: linked to hsp70 zebrafish 

promoter using Multisite Gateway Cloning, and linked to gata2 promoter using T4 ligation-

mediated cloning.  

3.2.1 Multisite-Gateway Cloning of Entry Clones and Expression Vectors 

Expression vectors containing a human putative enhancer linked to hsp70 zebrafish promoter and 

reporter gene (Venus fluorescent protein) were cloned using the Multisite Gateway Cloning 

System by Invitrogen, following manufacturer’s instructions. Selected human putative enhancers 

were amplified from human genomic DNA provided by our collaborators using the primers listed 

in Table 3.1. In order to control zebrafish promoter functionality, a non-conserved region from 

Fugu rubripes showing no regulatory activity (fr2(assembly 2004) chrUn:54,537,362-54,537,937) 

was used (Sanges et al., 2006). As additional negative controls, two genomic regions from C2 and 

C5 clusters were also cloned (Table 3.1). Final expression vectors were generated through LR 

recombination reactions between Entry Clones and pSP1.72BSSPE-R3-R5-hsp70-Venus 

Destination Vector, as described (Roure et al., 2007). These vectors contained Tol2 transposase 

arms to facilitate single-copy genome integration of the construct into the host genome by co- 

injection with Tol2 transposase mRNA (Figure 3.3). 

3.2.2 Molecular cloning of putative human enhancers in a different construct 

In order to test the autonomous capacity of candidate enhancers to drive tissue-specific 

expression, the pDB896-hsp70-mCherry vector available in the lab, a kind gift from Darius 

Balciunas (Balciunas et al., 2006), was modified to contain a multicloning site where the human 

element of interest, zebrafish gata2 promoter and a reporter protein (YFP) could be inserted 

using T4 ligation-mediated cloning. The three elements were flanked by restriction sites, which 

allows for an easy exchange of both reporter genes and cis-regulatory elements. The resulting 
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vector was named pDB896-gata2-YFP. Zebrafish promoters can be cloned using AgeI and XhoI 

sites, and the reporter proteins using XhoI and SnaBI sites. The putative elements were cloned 

using the primers described in Table 3.1 adding EcoRV and SpeI tails to the forward and reverse 

primers respectively. 

 

 

 

 

Figure 3.3 Schematic representation of the vectors cloned for each human element. 
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Table 3.1 Primers used to amplify human putative enhancers and zebrafish promoters from genomic DNA 

CRE  Genomic coordinates 
(Hg18 or Zv9) Forward primer (5’-3’) Reverse primer (5’-3’) Product size 

(bp) 
C3-1 chr4:85339334-85339883 TGCAGTCACATGCACAAAG AGAAACTAGGGCTGTGTTTA 550 

C3-3 chr5:51786984-51788169 TTAAGGTCCCTCTGCCATGT AACTCTTCCCAAGCCTCATT 1186 

C3-4 chr1:212242123-212243697 AATTTTCTTCCTCCGCTTTC CATTCCCTTTAATATCCCATGC 1575 

C3-5 chr19:6066434-6067353 GAAAAGCGCTCCAGAAATTG AGTTCCCTTTGCACTTGTT 920 

C3-6 chr10:114736989-114737824 CCAAGGCTTGAAAATGGATG AGAGCTTTTTCTAGGCCTCC 836 

C2-11 chr1:244375378-244375874 AGGCATCTGAGCTTCACTGG AGTCAGACAGACCTGGAATA 491 

C5-14 chr4:139712081-139712568 ACGCATATGGTCGGATATGA AAGGCCTGTAGAGAAAGAAT 488 

hsp70 zebrafish promoter chr3:26911324-26911472 TTGATTGGTCGAACATGCTGG CAGTCCGCTCGCTGTCTCGCT 149 

gata2 zebrafish promoter chr11:3,922,100-3,923,130 ATTCATTAATAGAATAGAGGCATT CTCAAGTGTCCGCGCTTA 1031 
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3.3 RESULTS 

3.3.1 Selection of candidate islet-specific human enhancers based on epigenetic marks 
and sequence conservation analysis 

Based on the epigenetic clusters uncovered by our collaborators, we decided to test whether 

human putative enhancers, predicted by the presence of a strong bimodal enrichment in 

H3K4me1 and H3K27ac in the human islet, could function as developmental enhancers in the 

zebrafish pancreas. We selected 5 enhancer candidates from cluster C3 based on human-

zebrafish conservation (>70% sequence identity over 100 nt, hg18 vs DanRer7). Tested fragments 

were around 1 kb in size around the central point of FAIRE or H2AZ. Element boundaries were 

determined manually by examining epigenetic enrichment profiles. In parallel, we also checked as 

a proof of principle two additional regions that belonged to C2 cluster, resembling inactive 

enhancers and C5 cluster lacking histone modification marks (Table 3.1). 

3.3.2 Functional testing of putative islet-specific developmental enhancers using the 
zebrafish embryo 

Zebrafish transient transgenesis assays have been successfully applied in the past to functionally 

uncover long-range acting cis-regulatory elements (Muller et al., 1997; Muller et al., 1999; 

Dickmeis et al., 2004; Woolfe et al., 2005). To investigate the function of human putative 

enhancers in vivo, selected candidates were linked to zebrafish hsp70 promoter and YFP reporter 

gene and were injected in zebrafish embryos as described (Gehrig et al., 2009). Reporter gene 

expression pattern was assessed during the first 5 days of development and all tissues of 

expression from at least three experimental replicates were annotated (Table 3.2). 

Representative patterns of expression were documented at 72 hpf, as the zebrafish pancreas has 

developed completely at this stage (Tiso et al., 2009). As a control a Fugu region with no enhancer 

activity linked to hsp70 minimal promoter was used (Sanges et al., 2006). 
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Table 3.2 Frequency of transgene expression in 3 dpf injected zebrafish embryos. 

 

 

Tested 
CRE 

Nearby gene upstream 
(kb from TSS) 

Nearby gene 
downstream (kb from 

TSS) 

Domains of expression at 72 hpf (%) No of 
injected 
embryos 

No of 
replicates  Lens Pancreatic 

islet Neurons Hindbrain Floor plate Pronephric 
duct 

C3-1 AGPAT9 (663) NKX6-1 (299) 49.9  0.0 18.6  0.0 0.0  0.0  746 4 

C3-3 ISL1 (1,108) PELO (296) 94.9  38.3  0.0  0.0  0.0  0.0 352 3 

C3-4 PROX1 (14) SMYD2 (277) 0.0 28.7  0.0 0.0 0.0 0.0 230 3 

C3-5 LOC100128568 (88) RFX2 (43) 0.0 32.9 0.0 94.7  86.8  44.7 228 3 

C3-6 TCF7L2 (27) HABP2 (573) 41.3 0.0 46.6 0.0 0.0  0.0 496 4 

C2-11 KIF26B (990) SMYD3 (271) 0.0 0.0 0.0 0.0 0.0 0.0 466 4 

C5-14 LINC00499 (481) CCRN4L (224) 0.0 0.0 0.0 0.0  0.0 0.0  407 4 

Fugu n/a n/a 0.0 0.0 0.0  0.0 0.0 0.0 217 3 
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Figure 3.4 C3 human active enhancer regions drove tissue-specific transient expression patterns 
in zebrafish.  
A. Merged images of YFP and brightfield channels for zebrafish embryos injected with C3 
candidate enhancers or a control construct containing the zebrafish hsp70 promoter linked to a 
region lacking enhancer function. B. Representative embryos injected with C2 and C5 regions. YFP 
expression is observed in the pancreatic islet (pi), neurons (ne), lens (lens), and floor plate (fp). 
Expression in the lens is ectopic activity from the hsp70 promoter (Blechinger et al., 2002). All 
embryos are 72 hpf, oriented dorsally anterior to the right. Scale bar indicates 100 µm. 
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The enhancer-less control and C2 and C5 sequences showed no YFP activity. In contrast, 5 

conserved elements tested from C3 cluster behaved as enhancers, as they were able to direct 

tissue-specific expression; and three of them, C3-3, C3-4 and C3-5, were active in the pancreatic 

islet (Figure 3.4, Table 3.2).  

3.3.2.1 C3-3 candidate enhancer 

C3-3 element contained a 1,185 bp fragment located in an intergenic region that is 1.1 Mb 

downstream of ISL1 and 300 kb upstream of PELO. It was in an open chromatin site, bound by 

PDX1, NKX6.1, FOXA2 and NKX2.2 TFs and showed a significant enrichment for H3K27ac and 

H3K4me1 epigenetic marks (Figure 3.5A). In transient transgenic assays C3-3 element linked to 

zebrafish hsp70 promoter could drive islet-specific expression in 38.4% of the injected embryos in 

all replicates (total number of injected embryos n=352). In contrast, none of the embryos injected 

with the control region could reproduce the pancreas expression pattern (n=217). Lens activity 

was shown by 94.9% (n=352) of the expressing embryos. Lens ectopic expression was caused by 

the endogenous promoter itself and not by the human element linked to it (Blechinger et al., 

2002). Islet-specific activity in transient transgenic assays was verified by injecting the putative 

enhancer-containing constructs into Tg(ins-mCherry)jh2 transgenic line (a kind gift from Elke Ober), 

which labels insulin-producing beta cells in red (Figure 3.5B). Co-localization experiments verified 

that C3-3-driven activity was specific to the endocrine pancreas. 

Given that enhancers can be very far away from their regulatory target, it is challenging to identify 

target genes (Krivega and Dean, 2012). Both in mammals and zebrafish, ISL1 gene is essential for 

the development of endocrine cells (Ahlgren et al., 1997; Wilfinger et al., 2013), while PELO gene 

is unrelated to pancreas or endodermal development (Shamsadin et al., 2000). Interestingly, 

chromosome capture conformation experiments carried out elsewhere demonstrated that there   
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Figure 3.5 Intergenic enhancer located 1 Mb downstream of ISL1 can direct islet-specific 
expression in the zebrafish embryo. 
A. UCSC genome browser screenshot of C3-3 putative enhancer location and epigenomic 
landscape. Note that C3-3 (black rectangle) is in an open chromatin region 1.1 Mb downstream of 
ISL1 and 300 kb upstream of PELO. It is bound by NKX2.2, PDX1, NKX6.1 and FOXA2 TFs and shows 
a bimodal enrichment of H3K4me1 and H3K27ac, which are considered typical enhancer marks. B. 
C3-3 can drive robust expression in the pancreatic islet as demonstrated by co-localization assays 
in Tg(ins-mCherry)jh2 line. Embryos are 72 hpf oriented dorsally anterior to the right. Scale bar 
indicates 100 μm.  
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was a direct interaction between C3-3 tested enhancer and ISL1 promoter, which is located > 1 

Mb away (Pasquali et al., 2014), supporting the pancreas-specific activity. 

3.3.2.2 C3-4 candidate enhancer 

CRE3-4 is located on the second intron of PROX1 (1,574 bp) and could also drive pancreas-specific 

reporter expression in 28.7% (n=230) of the injected embryos. This region was also shown to be 

bound by pancreas-specific TFs, including NKX6.1, FOXA2, MAFB, NKX2.2. 

3.3.2.3 C3-1 and C3-6 candidate enhancers 

In contrast to the previous elements, which were active in the endocrine pancreas, neither a 

region of 835 bp in the second intron of TCF7L2 gene (C3-6) nor a 549 bp fragment upstream of 

the NKX6.1 gene (C3-1) showed islet-specific activity in four experimental replicates (Table 3.2). 

Both elements behaved as weak and broad neuronal enhancers in the zebrafish embryo (Figure 

3.4). 

3.3.2.4 C3-5 candidate enhancer 

A very interesting example among the elements tested is C3-5, a 919 bp region from the second 

intron of the RFX2 gene. When C3-5 was cloned upstream of the zebrafish hsp70 promoter, it 

could drive hindbrain, floor plate and pronephric duct expression at 3 dpf, recapitulating almost 

completely the endogenous pattern of rfx2 zebrafish gene (Figure 3.6) consistently among the 

experimental replicates. 
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Figure 3.6 C3-5 candidate human enhancer recapitulates activity domains of zebrafish rfx2 
gene.  
Zebrafish mosaic embryos injected with C3-5 human enhancer linked to hsp70 promoter and YFP 
reporter gene protein (right panels) recapitulated broadly zebrafish rfx2 endogenous expression 
patterns as demonstrated by rfx2 WISH (left panels, taken from www.zfin.org). Expression 
domains include forebrain, dorsal hindbrain, cerebellum, cephalic floor plate and pronephric 
ducts. Lens expression is driven by hsp70 promoter. Scale bar indicates 100 µm. 
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3.3.2.5 Validation of control regions 

In order to test the hypothesis that only regions showing enhancer-associated epigenetic marks 

would be able to drive tissue-specific activity, two regions from C2 and C5 clusters (Figure 3.2), 

bound by PDX1 but devoid of active epigenetic marks were tested by transient transgenesis. 

These regions could not direct tissue-specific expression on zebrafish embryos during the first 

days of development (Table 3.2, Figure 3.4), suggesting that epigenetic marks are indeed 

predictive of enhancer function. 

3.3.3 Enhancer-promoter interactions in vivo. 

In order to test whether C3 candidate enhancers were autonomously capable of driving 

expression in the endocrine pancreas, C3 candidates were tested with a second independent 

minimal promoter and compared their activity to hsp70 promoter. Candidates were cloned into a 

pD896 vector containing mini Tol2 arms (Balciunas et al., 2006), YFP reporter gene and gata2 

promoter, which had been successfully used to validate enhancers in zebrafish (Bessa et al., 2009; 

Navratilova et al., 2009; Royo et al., 2012). 

All human enhancers from cluster C3 could activate gata2 promoter with similar frequencies and 

patterns except for C3-5. Interestingly, when C3-5 (located on the second intron of RFX2 gene) 

was linked to gata2 zebrafish promoter, it was able to activate reporter expression in the 

endocrine pancreas as an additional expression domain (Figure 3.7) in 32.9% of injected embryos 

(n=228, Table 3.2). This domain had not been detected in embryos injected with hsp70-containing 

construct (n= 278, Figure 3.6) and underlined the importance of selecting an appropriate 

promoter for validations as well as the specificity enhancer-promoter interactions occurring in 

vitro. These differences were also prevalent in the transgenic lines established from both 

constructs, which will be discussed below. 
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Figure 3.7 Specificity of enhancer promoter interactions in vivo using C3-5 human enhancer. 
Representative images of 72 hpf embryos injected with constructs containing C3-5 human enhancer linked to zebrafish gata2 promoter (C3-5:gata2:YFP, 
top) or C3-5 enhancer linked to hsp70 promoter (C3-5:hsp70:YFP, bottom). Note how gata2 promoter is overall more sensitive to regulatory input from 
the enhancer and can drive an additional domain of expression in the pancreatic islet. Scale bar indicates 250 µm. 
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3.3.4 Verification of enhancer activity detected in mosaic transient transgenics by the 
establishment of stable transgenic lines 

In order to verify the pancreas-specific activity shown by transient transgenic embryos I decided 

to establish transgenic lines for all the enhancers that were active in the pancreatic islet (C3-3, C3-

4 and C3-5). Injected embryos showing reporter gene expression were raised to sexual maturity 

and outcrossed with wild type fish. The offspring of these outcrosses was screened during the first 

3 dpf (Table 3.3). The expression patterns of the transgenic lines were documented using 

Olympus ScanR microscope and representative images are shown in Figure 3.8 and Figure 3.9.  

I identified three adult founders containing C3-3 CRE linked to hsp70 promoter whose offspring 

was positive for reporter gene expression (Table 3.3). Two of them displayed specific expression 

in the pancreatic islet and the third one showed an additional domain of expression, the spinal 

cord, which had not been seen in transient transgenic assays but is a sub-expression domain of 

the isl1 gene (Figure 3.5). Expression in the lens was considered as ectopic activity from the hsp70 

promoter (Blechinger et al., 2002). One positive founder containing C3-4 candidate enhancer gave 

rise to positive progeny expressing in the pancreatic islet and in a specific group of midbrain 

neurons, reproducing the specific expression in the islet cells seen in transient embryos. Because 

different activities were displayed by C3-5 human enhancer when linked to different zebrafish 

promoters, I decided to establish transgenic lines using both constructs. Two lines established 

using C3-5 linked to hsp70 promoter (C3-5 L1 and L2) showed expression in forebrain, hindbrain, 

spinal cord and pronephric duct, reproducing endogenous pattern of rfx2 and the activity seen in 

transient transgenic assays (Figure 3.9). In contrast, the 3 lines established with a construct 

containing C3-5 linked to gata2 promoter (C3-5 L3, L4 and L5) were active in all of the 

aforementioned rfx2 endogenous domains plus the pancreatic islet (Figure 3.8). It is interesting to 

note how transgenic lines containing C3-5 and hsp70 minimal promoter failed to activate the 

pancreas domain, resembling mosaic injected embryos. Slight differences between C3-5 lines 
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might be attributed to position effects caused by Tol2-mediated transgenesis. Nevertheless, it 

needs to be noted that the additional domains, namely olfactory bulb and ventricular zone, are 

also rfx2 endogenous domains. 

Islet-specific expression of the transgenic lines was verified by out-crossing the adult transgenic 

founders with individuals from the Tg (ins-mCherry)jh2 line (Figure 3.10), confirming activity in the 

zebrafish endocrine pancreas. Taken together these results suggest that the transgenic lines 

validate the tissue-specific patterns seen in the transient transgenic embryos. 
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Table 3.3 Analysis of the offspring of C3 human enhancer-derived transgenic lines 

  

Transgenic line name 
No. of 

screened 
founders 

No. of 
positive 
founders 

Germline 
transmission 

rate (%) 
Line ID Domains of expression 

No. of 
embryos 
analysed 

Transmission 
rate per 

pattern (%) 

Tg(hs-PELO-0.1dr-hsp70-pr:YFP) 8 2 25.0 
C3-3-L1 Pancreatic islet, lens 107 57.9 
C3-3-L2 Pancreatic islet, lens 

173 
75.7 

C3-3-L3 Pancreatic islet, floor plate, lens 24.3 
Tg(1.5hs-PROX1-0.1dr-hsp70-pr:YFP) 10 1 10.0 C3-4-L1 Pancreatic islet, midbrain neurons  63 34.9 

Tg(hs-RFX2-0.1dr-hsp70-pr:YFP) 4 2 50.0 

C3-5-L1 
Forebrain, dorsal hindbrain, cephalic 
floor plate, hindbrain, pronephric 
duct, lens 

252 45.2 

C3-5-L2 
Forebrain, dorsal hindbrain, cephalic 
floor plate, hindbrain, pronephric 
duct, lens 

190 42.1 

Tg(hs-RFX2-1.0dr-gata2-pr:YFP) 7 3 42.9 

C3-5-L3 Olfactory bulb, hindbrain, floor plate,  
pronephric duct, islet 378 3.9 

C3-5-L4 Forebrain, hindbrain, floor plate, 
pronephric duct, islet 51 23.5 

C3-5-L5 Forebrain, hindbrain, floor plate, 
pronephros, islet 153 47.1 
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Figure 3.8 Stable transgenic lines derived from predicted enhancers recapitulate transient patterns.  
Three stable transgenic lines derived from C3-3 element (C3-3 L1-3), one line derived from C3-4 (C3-4 L1) and three lines derived from C3-5 (C3-5 L1-3) 
confirm pancreas specific activity (arrow) displayed by mosaic transgenic embryos. Additional domains of expression include lens, fp=floor plate, 
pro=pronephros, hin=hindbrain, ne=neurons, ob=olfactory bulb, ven=ventricular zone All embryos are 72 hpf oriented anterior to the right. One dorsal 
and one lateral brightfield and YFP images are shown.  
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Figure 3.9 Transgenic lines from C3-5 element linked to hsp70 promoter fail to activate the islet. 
Two transgenic lines established with a construct containing C3-5 human enhancer linked to 
hsp70 promoter displayed expression domains that broadly overlap rfx2 endogenous pattern, 
similarly to our observations in transient transgenic assays (Figure 3.6). YFP domains include 
hin=hindbrain, lens, tel=telencephalon and ven=ventricular zone. Embryos are 72 hpf oriented 
anterior to the right. Scale bar is 100 µm.  
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Figure 3.10 C3-3,4,5 derived stable transgenic lines show pancreas-specific activity when 
outcrossed with Tg(ins-mCherry)jh2 line. 
One representative founder is shown per CRE tested. Note the overlap between insulin producing 
beta cells in red and enhancer driven activity in green. Additional domains of expression include 
cfp=cephalic floor plate, hin=hindbrain, ne=neurons, ob=olfactory bulb and pro=pronephros. All 
embryos are 72 hpf oriented anterior to the left. 
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3.4 DISCUSSION 

In this chapter, I studied the function of several human putative enhancers selected through a 

combination of transcription factor binding events and the presence of key epigenetic marks to 

address the utility of the zebrafish as a validation model for human enhancers. I demonstrated 

that all 5 human predicted human enhancers can drive tissue-specific reporter activity in zebrafish 

embryo. From these elements, 3 are active in the zebrafish embryonic islet (C3-3, C3-4 and C3-5), 

while the remaining 2 were broad neuronal enhancers (C3-1 and C3-6). Additionally, two control 

regions devoid of epigenetic marks failed to drive any tissue-specific expression. These results 

were verified not only in transient transgenesis assays, where a high percentage of injected 

mosaic embryos were displaying very reproducible and specific patterns beyond background, but 

also in stable transgenic lines. Taking into account the negligible background level of our 

enhancer-less construct we can conclude that the specific expression patterns are attributable to 

the human elements tested. This argues for the specificity of the enhancer selection process and 

leaves 3 out of 5 enhancers behaving as predicted by their epigenetic marks.  

A challenge in enhancer tests is the unambiguous identification of the target gene. In the case of 

the three tested human enhancers active in the pancreatic islet, the expression patterns 

reproduced broadly the endogenous activity of the predicted target gene. As a general rule, we 

associated the enhancer to the closest coding gene. C3-4 which was located on an intronic region 

of PROX1 proved to be a very specific pancreatic enhancer in zebrafish, and indeed the endocrine 

pancreas is included among the expression domains of PROX1, a master regulator during 

embryogenesis (Sosa-Pineda et al., 2000; Burke and Oliver, 2002; Wang et al., 2005; Pistocchi et 

al., 2008). C3-5 located in the second intron of RFX2 reproduced most of the endogenous domains 

of activity of zebrafish rfx2, including ventral floor plate, dorsal hindbrain and pronephric duct. 

Interestingly, only when C3-5 was paired with gata2 endogenous promoter an additional domain 
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in the pancreatic islet was active. This result, which was consistent, both in transient and stable 

transgenic assays, argues for in vivo evidence of enhancer-promoter interactions and underlines 

the importance of promoter choice in enhancer validation assays. In the case of C3-3, an element 

located in an intergenic region 1Mb away from ISL1 and 400 Mb away from PELO, it was 

demonstrated a very strong and reproducible expression in the endocrine pancreas, which is an 

active domain of ISL1 gene in human and zebrafish. Additionally, 4C experiments carried out 

elsewhere demonstrated that the tested enhancer was directly interacting with ISL1 promoter 

(Pasquali et al., 2014).  

Even though a higher number of tested elements would be necessary to establish a statistically 

significant correlation, in our hands 60% of the predicted human islet enhancers showing 

sequence conservation with zebrafish were interpreted accurately by the zebrafish embryo. This 

figure is similar to the rates shown in the literature of conserved human elements directing tissue-

specific expression in fish: 58% out of 24 candidate enhancers (Ritter et al., 2012), 34.5% out of 

113 sequences tested (Royo et al., 2011), 47% out of 34 enhancers tested (Punnamoottil et al., 

2010) and 77% out of 31 tested candidates (Ritter et al., 2010), among others. 

It is difficult to predict why some of these human enhancers could not drive specific enhancer 

activity in the pancreas, despite showing similar levels of sequence conservation, strength and 

enrichment of histone modification marks and transcription factor occupancy. Statistical analysis 

on any of these parameters would require a higher number of elements to be tested in vivo, 

however, imposing the sequence conservation filter drastically reduces the number of human 

candidates that can be validated. Nevertheless, it needs to be noted that the neuronal expression 

pattern displayed by some candidates is not completely unexpected. The neuroendocrine nature 

of islet cells has been recognized: endocrine cells are electrically excitable and share the 

expression of a large battery of genes with neurons (Atouf et al., 1997). In fact, the expression 
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profile of pancreatic endocrine cells is more similar to ectoderm-derived neuronal tissues than to 

tissues such as liver or lung, which share a common endodermal origin (van Arensbergen et al., 

2010). 

Recently, several studies have highlighted the benefits of applying the knowledge derived from 

genome-wide analyses of epigenetic marks to the vertebrate embryo (Rada-Iglesias et al., 2011; 

Bernstein et al., 2012). Nevertheless, this is the first study where an isolated tissue from human 

donors was interrogated and predicted pancreas enhancers were tested using an embryonic 

model. Most publications have based their validations on cell lines, which cannot reproduce the 

complexity of an organism (Gaulton et al., 2010; Stitzel et al., 2010). A recent study based on the 

profiling of the chromatin and transcriptome in human islets, has also identified chromatin states 

that could overlap with enhancers, promoters and insulators (Parker et al., 2013). Based on this 

chromatin segmentation, 2 predicted enhancers were tested in vivo, demonstrating tissue-specific 

activity in the pancreas primordium of mouse embryos (Parker et al., 2013). Interestingly, the 

predicted pancreatic enhancers appear clustered contiguously along regions larger than 3 kb, 

what was termed “stretch enhancers”, similarly to the clustered C3 elements described by 

(Pasquali et al., 2014). 

Our set of validations, together with previous studies testing human pancreas-specific enhancers 

in zebrafish (Ragvin et al., 2010) argue that despite over 460 million years of evolutionary 

divergence between human and teleosts (Meyer and Schartl, 1999), the zebrafish can interpret 

functionally certain conserved pancreatic enhancers maintaining the tissue-specificity; 

demonstrating conserved regulatory codes acting in vertebrate endocrine pancreas during 

development.  
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Chapter Four: ANALYSIS OF NON-CODING SEQUENCE VARIANTS 
DOWNSTREAM OF PTF1A RELATED TO PANCREAS AGENESIS 

FOREWORD 

Within the BOLD Network, we initiated a collaboration with Andrew Hattersley and Michael 

Weedon, from the University of Exeter Medical School (UK), with the common aim of testing 

disease-associated variants in human enhancers. This led to the design of functional experiments 

in zebrafish where I tested the function of a candidate enhancer associated with pancreas 

agenesis.  
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4.1 INTRODUCTION 

4.1.1 Genetic basis of pancreatic agenesis 

Pancreatic agenesis is a rare condition resulting from a developmental abnormality of the 

pancreas that causes permanent neonatal diabetes mellitus and exocrine insufficiency (Winter et 

al., 1986). There are 2 forms of neonatal diabetes mellitus: transient and permanent. Transient 

neonatal diabetes mellitus (TND) is resolved by 18 months of age and predisposes to adult T2D 

(Greeley et al., 2011). The main cause for TND is abnormalities chromosome 6q24 including 

overexpression of paternally imprinted genes, methylation defects or uniparental chromosome 

disomy (Temple et al., 1996; Gardner et al., 2000; Temple et al., 2000; Mackay et al., 2008). The 

permanent form of neonatal diabetes mellitus (PND) is mainly caused by activating mutations of 

the KATP channel (KCNJ11 gene) or heterozygous mutations in the insulin gene (INS) but can also 

be caused by pancreas agenesis or hypoplasia (Gloyn et al., 2004). There are less than 50 

examples of permanent neonatal diabetes mellitus caused by pancreatic agenesis described in the 

literature and the genetic basis is mostly unknown; only in a few cases mutations in the coding 

regions of pancreas-specific transcription factors, such as PDX1, PTF1A or GATA6 have been found 

(Stoffers et al., 1997b; Schwitzgebel et al., 2003; Sellick et al., 2004; Thomas et al., 2009; Al-

Shammari et al., 2011; Allen et al., 2012; De Franco et al., 2013). 

Stoffers and colleagues showed a case of pancreatic agenesis caused by a homozygous single 

point deletion within codon 63 of the PDX1 gene. This mutation caused a frame shift in the C-

terminal end of the PDX1 protein, which leads to the translation of 59 novel codons before 

termination, altering the transactivation domain of PDX1 that is essential for DNA-binding 

(Stoffers et al., 1997b). Another case of neonatal diabetes caused by a homozygous mutation of 

the same gene was also described recently by (Thomas et al., 2009). In the case reported by 

(Schwitzgebel et al., 2003) a compound heterozygous mutation in two highly conserved sites of 
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helix 1 and 2 of PDX1 homeodomain caused a decreased half-life form of PDX1 protein, which 

subsequently led to pancreas agenesis and neonatal diabetes mellitus. Several other studies also 

identified a couple of mutations (705insG and C886T) and a homozygous deletion (c.437-460del) 

in PTF1A transcription factor gene in patients presenting permanent neonatal diabetes mellitus 

accompanied by pancreatic and cerebellar agenesis (Sellick et al., 2004; Al-Shammari et al., 2011). 

More recently, Allen and colleagues showed that GATA6 was a common cause of syndromic 

pancreatic agenesis (Allen et al., 2012), which was later confirmed in a larger cohort of 795 

individuals (De Franco et al., 2013). 

However, in around 30% of described cases of PND caused by pancreatic agenesis, the genetic 

cause remains to be elucidated (Greeley et al., 2011). Interestingly, most papers that could not 

find a genetic cause excluded the presence of mutations in the coding sequence of several TFs 

involved in pancreas development or differentiation, such as PDX1, PTF1A, SOX9, SOX17, HNF6 or 

HLXB9 (Chen et al., 2008; Balasubramanian et al., 2010; Salina et al., 2010). Indeed, in all of the 

PND case reports described above the causal mutations were affecting the coding gene sequence 

or intron-exon boundaries. However, there is now ample evidence describing human disorders 

caused by non-coding sequence variations (Kleinjan and van Heyningen, 2005; Epstein, 2009; Lee 

and Young, 2013). Suspecting that non-coding variants could be responsible for several cases of 

pancreatic agenesis, we established a collaboration with Michael Weedon and Andrew Hattersley, 

partners of the BOLD Network, in order to carry out some functional analysis of a potential cis-

regulatory element. 

4.1.2 Preliminary data leading to the project 

Weedon and colleagues had found 6 subjects with isolated non-syndromic pancreatic agenesis 

coming from 3 unrelated consanguineous families. Initially they performed whole-genome 

sequencing and linkage analysis to look for causative homozygous mutations. Homozygosity 
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mapping in the families revealed an inherited 25-100 Mb region in chromosome 10, which 

included PTF1A candidate gene. However, coding mutations in PTF1A and 24 other genes from 

this region were excluded by Sanger Sequencing. Whole-exome sequencing did not reveal either a 

potential causative homozygous coding mutation. After filtering common variants, they found 7 

variants overlapping with putative regulatory elements and particularly 1 variant that was shared 

by 2 consanguineous and unrelated individuals, overlapped with the shared region on chr10 

previously identified by homozygosity mapping. This conserved region comprised 485 bp, was 

located 25 Kb downstream of the PTF1A gene and was conserved between human and zebra 

finch, but not with zebrafish.  

4.1.3 PTF1A transcription factor has a conserved role in specification of pancreatic fate 

PTF1A (previously called PTF1-p48) encodes for a pancreas-specific basic helix-loop-helix DNA-

binding subunit of the Pancreas Transcription Factor-1 PTF1 complex (Krapp et al., 1996). In adults 

it is restricted to the acinar compartment of the exocrine pancreas (Rose et al., 2001) but during 

development Ptf1a is essential for both endocrine and exocrine pancreas formation: lineage-

tracing experiments indicate that Ptf1a is expressed in the progenitors of acinar, endocrine and 

exocrine cells, contributing to acquisition of lineage identity (Kawaguchi et al., 2002). Consistent 

with this role in cell commitment, in Ptf1a-/- embryos the exocrine pancreas is absent and cells 

with endocrine functions relocate to the spleen (Krapp et al., 1998). Additionally Ptf1a contributes 

to neurogenesis: Ptf1a mRNA can be detected in E9.5 in neural tube and myelencephalon, and is 

further expressed in the central nervous system including medulla oblongata, cerebellum and the 

spinal cord until E12.5 (Obata et al., 2001).  

In zebrafish ptf1a is an early marker of the anteroventral bud that will give rise to the exocrine 

pancreas (Zecchin et al., 2004). Its mRNA is first detected at 12-somite stage, when it is expressed 

in the developing hindbrain (Zecchin et al., 2004) and by 32 hpf it is already expressed in the 
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ventrolateral endoderm sharing the domain of Pdx1 positive cells (Lin et al., 2004). The neural 

expression pattern peaks at 2 dpf in the hindbrain, retinal anlagen and the rhombic lip and is 

undetectable by 72 hpf, mimicking the transient neural pattern observed in mice (Obata et al., 

2001). At 48 hpf ptf1a is additionally expressed in the exocrine bud surrounding insulin positive 

cells, where it will be restricted to from this moment on in development, reproducing the 

distribution of exocrine tissue (Biemar et al., 2001). While Ptf1a is essential for the formation of 

the endocrine pancreas in mouse (Krapp 1998), morpholino knock-down experiments in zebrafish 

cause the loss of exocrine pancreas but do not affect the formation or the spatial organization of 

the endocrine islet (Lin et al., 2004). 

4.1.4 Aims: 

Given the conserved evolutionary role of PTF1A in human and zebrafish pancreas development 

and suspecting that the inherited region downstream of PTF1A in patients with pancreas agenesis 

could be a long-range acting cis-regulatory element, I set out to use the zebrafish embryo to 

determine whether this human putative regulatory region located 25 kb downstream of PTF1A 

gene held regulatory potential. Also, I wanted to investigate whether the genomic variants found 

in the consanguineous probands suffering from pancreatic agenesis could affect the regulatory 

activity of PTF1A putative enhancer by transient transgenesis assays.  
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4.2 METHODS 

Genomic DNA from patients containing recessive mutations in homozygosis in the putative 

enhancer element was provided by our collaborators at the University of Exeter: alongside with 

the wild-type gDNA, one sample containing a homozygous g.23508363A>G mutation and a third 

sample containing a homozygous g.23508305A>G mutation were used for all experiments. 

A short 485pb region from chromosome 10 encompassing the variants from the three patients 

(Table 4.1) was cloned into a Gateway multisite destination vector provided by Darius Balciunas 

that contained miniTol2 arms (Balciunas et al., 2006), hsp70 zebrafish promoter and mCherry 

reporter gene (pDB896_GWB3B5_HSP70-PRM_mCherry).  

A large region encompassing a vertebrate conservation block of 1445 bp was also amplified from 

the patient gDNA using oligos described in Table 4.1. Due to technical problems previously 

encountered when trying to clone enhancer fragments larger than 1 Kb using Gateway 

Technology, two additional Tol2-based constructs containing zebrafish hsp70 or gata2 promoters 

linked to mCherry were also designed, where the enhancer and its variants could be introduced 

by cloning. For this purpose, mCherry reporter gene was purified from pCS2+-mCherry and cloned 

into pDB896_HSP70-PRM_YFP construct (Chapter 3) using XhoI and SnaBI sites. The resulting 

vector was named pDB896_HSP70-PRM_mCherry. Zebrafish gata2 promoter was amplified from 

zebrafish genomic DNA and cloned into this vector using AgeI and XhoI sites. The resulting vector 

was named pDB896_GATA2-PRM_mCherry. In order to control zebrafish promoter functionality, a 

non-conserved region from Fugu rubripes showing no regulatory activity (fr2(assembly 2004) 

chrUn:54,537,362-54,537,937) was used (Sanges et al., 2006), as discussed in Chapter 3. A total of 

9 vectors containing variations of the putative human enhancer and minimal promoters and two 

additional control-containing constructs were sequenced and subsequently used for functional 

validations (Table 4.1). 
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Table 4.1 Constructs generated to test PTF1A enhancer variants in zebrafish transgenesis assays 

Construct 
Putative 
enhancer 
size (bp) 

Putative enhancer 
coordinates (hg19) Forward primer (5' to 3') Reverse primer (5' to 3') Tails used 

for cloning 
gDNA sample 

used 
Zebrafish 
Promoter 

pDB896_Hs.PTF1A-short-WT:Dr.hsp70:mCherry 

485bp chr10:23,508,102-23,508,586 ATCACCCCCTGGATGATTCT GGTGCATGCAACATAGAAAG attB3/attB5  

WT 

hsp70 pDB896_Hs.PTF1A-short-305:Dr.hsp70:mCherry 23508305A>G 

pDB896_Hs.PTF1A-large-363:Dr.hsp70:mCherry 23508363A>G 

pDB896_Hs.PTF1A-large-WT-:Dr.hsp70:mCherry 

1445bp chr10:23,507,374-23,508,818 GCCCCAGGTTTTAATTTATCA CAGCCTCCTCTGCTTCTTTA 

EcoRV/SpeI WT 

hsp70 pDB896_Hs.PTF1A-large-305:Dr.hsp70:mCherry HindIII/EcoRI  23508305A>G 

pDB896_Hs.PTF1A-large-363:Dr.hsp70:mCherry HindIII/EcoRI 23508363A>G 

pDB896-PTF1A-large-WT:Dr.gata2:mCherry 

1445bp chr10:23,507,374-23,508,818 GCCCCAGGTTTTAATTTATCA CAGCCTCCTCTGCTTCTTTA 

EcoRV/SpeI WT 

gata2 pDB896-PTF1A-large-305:Dr.gata2:mCherry HindIII/EcoRI  23508305A>G 

pDB896-PTF1A-large-363:Dr.gata2:mCherry HindIII/EcoRI 23508363A>G 

pDB896_Fugu-control:Dr.hsp70:mCherry n/a chrUn:54,537,362-
54,537,937 

GTGTGTCATCCTCATCCACG 
 

CCATGATGGTGCTCTGCC 
 

attB3/attB5 
Fugu gDNA 

hsp70 

pDB896-Fugu-control:Dr.gata2:mCherry n/a EcoRV/SpeI gata2 
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4.3 RESULTS 

4.3.1 Transient transgenesis assays to test PTF1A putative human enhancer 

In order to test the regulatory potential of the non-conserved element located 25 Kb 

downstream of PTF1A, I initially verified the pattern of ptf1a gene in zebrafish and whether it 

was also expressed in the pancreas. The endogenous pattern of ptf1a in zebrafish is very 

similar to mouse (Obata et al., 2001), being expressed temporally in the central nervous 

system, in the pancreas primordium and later in the acini of the exocrine pancreas (Lin et al., 

2004; Zecchin et al., 2004). The Tg(ptf1a:EGFP)jh1, a transgenic line created by replacing the 

coding sequence of ptf1a gene by eGFP in a genomic BAC (kindly provided by Elke Ober) 

reproduced ptf1a expression pattern and provided an appropriate anatomical marker and 

potential co-localization tool (Godinho et al., 2005). 

In order to determine whether PTF1A putative enhancer could function as a regulatory 

element in zebrafish and whether the variants found in patients could affect the regulatory 

potential of this element, the 485bp conserved region from chromosome 10 and its mutations 

(Figure 4.1A) were tested in Tol2-based transient transgenesis assays in zebrafish embryos. 

For functional tests, two promoters that had previously worked in combination with human 

enhancers were chosen: hsp70 and gata2 promoter. Zebrafish hsp70 promoter was chosen 

because it drove minimal background and had a general capacity of interacting with 

enhancers (Gehrig et al., 2009); zebrafish gata2 promoter was selected because it was highly 

sensitive in recapitulating expression in the pancreas driven by human enhancers (see 

Chapter 3). As a control region, a non-conserved region from Fugu rubripes showing no 

regulatory activity was used (Sanges et al., 2006). These elements were placed upstream of a 

red fluorescent protein (mCherry) that would potentially allow for co-localization studies 

using Tg(ptf1a:EGFP)jh1 transgenic line.  



 

115 

 

Initially three vectors containing the WT sequence and two mutated variants of the inherited 

485 bp region from human chromosome 10 linked to zebrafish hsp70 minimal promoter were 

tested in transient transgenic assays; but no tissue-specific activity was detected during the 

first 5 dpf. The putative pathogenic variants did not show any reporter expression either, 

being comparable to the WT sequence or to the control construct (Table 4.2).  

Given the lack of activity shown by the 485 bp candidate enhancer I decided to amplify a 

region of 1,445 bp encompassing the vertebrate conservation block between human and 

zebra finch (Figure 4.1B), with the expectation that a larger fragment could represent the full 

functional element required for autonomous enhancer activity, and thus could be easily 

interpreted by our evolutionarily distant model despite the lack of sequence conservation. 

This large fragment containing variants was cloned upstream of the hsp70 minimal promoter 

and the more sensitive gata2 promoter and injected in zebrafish embryos (Table 4.1). 

However, no regulatory activity driven by the candidate enhancer could be detected when we 

compared embryos injected with the enhancer-containing constructs and promoter only 

controls (Table 4.2). Taken together, the above results showed that neither variant nor the 

WT candidate PTF1A enhancer could direct detectable activity in the transient transgenic 

zebrafish embryo when linked to two zebrafish promoters, suggesting lack of functionality in 

zebrafish. 
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Figure 4.1 USCS screenshot showing the location of putative PTF1A regulatory region. 
A. The region of 485 bp identified by whole exome sequencing is located 25 Kb downstream of 
the PTF1A coding gene (red ellipse). B. Putative enhancer regions used for zebrafish transgenesis 
assays are depicted by black rectangles. The large PTF1A putative element encompassing 1,445 bp 
and the vertebrate conservation block is labelled with a dashed red rectangle. 
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Table 4.2 Summary of transient transgenesis assays performed using PTF1A putative human enhancers 

Construct Variant tested Putative 
enhancer size 

Number of 
injected embryos  

Number of 
expressing embryos 

(%) 

Number of 
replicates 

pDB896_Hs.PTF1A-short-WT:Dr.hsp70:mCherry WT 
485 bp 

310 0 (0) 2 
pDB896_Hs.PTF1A-short-305:Dr.hsp70:mCherry 23508305A>G 419 0 (0) 2 
pDB896_Hs.PTF1A-large-363:Dr.hsp70:mCherry 23508363A>G 183 0 (0) 2 
pDB896_Hs.PTF1A-large-WT-:Dr.hsp70:mCherry WT 

1445 bp 
253 0 (0) 2 

pDB896_Hs.PTF1A-large-305:Dr.hsp70:mCherry 23508305A>G 212 0 (0) 2 
pDB896_Hs.PTF1A-large-363:Dr.hsp70:mCherry 23508363A>G 182 0 (0) 2 

pDB896-PTF1A-large-WT:Dr.gata2:mCherry WT 
1445 bp 

184 0 (0) 2 
pDB896-PTF1A-large-305:Dr.gata2:mCherry 23508305A>G 228 0 (0) 2 
pDB896-PTF1A-large-363:Dr.gata2:mCherry 23508363A>G 230 0 (0) 2 

pDB896_Fugu-control:Dr.hsp70:mCherry 
Fugu gDNA n/a 

217 0 (0) 2 
pDB896-Fugu-control:Dr.gata2:mCherry 205 0 (0) 2 
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4.4 DISCUSSION 

In this chapter, I aimed to test the regulatory potential of a region downstream of PTF1A 

containing variants inherited in unrelated patients suffering from pancreatic agenesis by zebrafish 

transient transgenesis assays. However, none of the nine constructs made to test the candidate 

enhancer with various combinations of length, linked to two different minimal promoters could 

show enhancer effect in zebrafish. Moreover, neither the wild type sequence nor the element 

containing potentially pathogenic variants could drive any tissue-specific activity in transient 

transgenic assays.  

The role of cis-regulatory variants in disease is still not very well understood and finding the 

functional causing variant is still a challenge. We and others have proposed to use the zebrafish 

model as a tool to validate the function of human enhancers (Ishibashi et al., 2013), and the 

variants within. Because sequencing of all these constructs was carried out before the reporter 

expression assays took place, we can exclude the possibility that mutations introduced during 

cloning are responsible for the lack of activity. In the same line, both the Gateway Expression 

Vectors and the classical screening vectors used to validate PTF1A putative enhancers had been 

previously used by us to test the activity of human enhancers (as discussed in Chapters 3 and 5), 

with reliable detection of function. 

From these results we can propose that either lack of sufficient degree of sequence conservation, 

lack of enhancer-promoter interaction, or lack of enhancer function in vivo, could be the reason 

for the lack of reporter activity in zebrafish. 3C analysis showed that the candidate enhancer is 

interacting with PTF1A promoter in human pancreatic progenitor cells (Weedon et al., 2014). To 

test in zebrafish whether the specificity of the enhancer-promoter interaction is the reason for 

the lack of function, the human putative enhancer would have to be cloned upstream of the 

endogenous ptf1a zebrafish promoter. Nevertheless, the promoters used for the assays: hsp70 
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and gata2, have been shown to have a general ability to interact with enhancers (Gehrig et al., 

2009) and had been active in combination with several pancreas-specific human enhancers before 

(as discussed in Chapter 3). Moreover, zebrafish gata2 promoter has been routinely used by us 

and others in similar enhancer tests and has proven very sensitive to unravel the full regulatory 

potential of human CREs (Bessa et al., 2009; Navratilova et al., 2009; Ragvin et al., 2010; Royo et 

al., 2012). 

Despite evidence demonstrating that zebrafish can recapitulate regulatory function in the lack of 

sequence conservation (Fisher et al., 2006a; McGaughey et al., 2009), our experience with testing 

a limited set is that non-conserved elements are less likely to work than conserved elements. 

PTF1A putative enhancer shares no sequence similarity to the zebrafish genome (0% sequence 

alignment), therefore we could attribute the lack of activity to the lack of conservation. 

One piece of evidence that suggests that the negative results from zebrafish assays might not be 

necessarily due to the large evolutionary distance between human and zebrafish, is provided by 

additional functional assays carried out with human cells lines and mouse embryos. In parallel to 

the zebrafish assays, Jorge Ferrer´s lab tested the functionality of PTF1A element using luciferase 

assays in progenitor and adult pancreas cell lines. Their results, which have been published in 

(Weedon et al., 2014), argue that the 485 bp element is active at low levels in pancreatic 

progenitor cells (not in adult exocrine cell lines) and that the 23508363A>G variant abolishes 

enhancer activity through the disruption of a FOXA2 binding site, while the 23508305A>G variant 

disrupts the binding of a non-identified protein as demonstrated by EMSA (Electrophoretic 

Mobility Shift Assay). Furthermore, the putative PTF1A enhancer region is enriched in typical 

enhancer marks such as H3K27ac or H3K4me1 in hESCs derived from pancreatic progenitors, 

although at very low levels (Weedon et al., 2014). 
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In zebrafish, pancreatic progenitors giving rise to the anteroventral and dorsolateral buds appear 

at the 12-somite stage, express pdx1 and are located at both sides of the midline (Argenton et al., 

1999; Biemar et al., 2001), while ptf1a expressing cells appear first at 32 hpf (Lin et al., 2004). We 

could therefore argue that our Tol2-based transgenesis system was not sensitive enough to 

detect such small cell numbers or even the stage at which embryos were analysed might not have 

been suitable.  

Interestingly, when Weedon’s collaborators tested PTF1A putative enhancer in vivo by 

transgenesis assays in mice using a construct where PTF1A enhancer was linked to a minimal viral 

promoter and GFP, E9.5-E.10-5 embryos did not show enhancer-driven reporter gene expression; 

not even when they tried to amplify the signal using immunofluorescence techniques (Inês 

Cebola, personal communication).  

Conflicting results between in vitro and in vivo data in two species could be attributed to a 

suboptimal genomic environment of the isolated enhancer. The fact that certain isolated 

enhancer sequences can function in transgenesis assays does not mean that all are able to 

function independently outside of their regulatory context; and therefore, might require 

interactions with other cis-regulatory elements to regulate transcription (Frankel, 2012). Such 

physical interactions have been described during digit development in mouse, where several 

enhancer elements spread in a gene desert forming a "regulatory archipelago" contribute 

quantitatively or qualitatively to full transcriptional response of HoxD genes (Montavon et al., 

2011). 

Epigenetic silencing of the transgene might also be a potential cause for lack of in vivo function. 

The lab of Mary Goll has reported transgenerational epigenetic silencing of integrated transgenes 

mediated by DNA methylation, where transgene reactivation was possible but occurred in a cell-
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specific manner (Goll et al., 2009). We could hypothesize that instead of transgenerational 

inactivation, our transgene is being silenced through cell differentiation, which could point to an 

inherent property of certain enhancers. Testing the enhancer in its endogenous regulatory 

context would require the development of more elaborate loss of function assays mediated by 

genome editing tools such as CRISPR (Shen et al., 2014).  

Attributing the lack of PTF1A activity in zebrafish to lack of enhancer function is thus partially 

refuted by the work of Weedon and colleagues. On one hand the region is enriched in typical 

enhancer marks such as H3K27ac or H3K4me1 in hESCs derived from pancreatic progenitors, 

although at very low levels. The putative CRE acts as a developmental enhancer in cell culture 

assays but does not function in vivo either in mouse or in zebrafish transgenesis experiments. 

Taken together, conflicting functional results suggest that this enhancer could be very stage-

specific and possibly have a very weak transcriptional effect. We can conclude that the lack of 

activity of this region could be explained by either lack of enhancer conservation at the sequence 

level, by lack of enhancer-promoter interaction, by the lack of a sensitive transgenesis system able 

to detect subtle activity in early development affecting a few number of cells; or because it is not 

an autonomous enhancer and it is only able to function on transient cell culture assays in a 

context dependent fashion. 
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Chapter Five: VALIDATION OF BIDIRECTIONALLY TRANSCRIBED 
HUMAN ENHANCERS 

FOREWORD 

The results presented in this chapter have been partially published in (Andersson et al., 2014). 

This project is the result of a collaboration between our lab and Robin Andersson and Albin 

Sandelin from the University of Copenhagen (Denmark), members of the FANTOM5 International 

Consortium. They provided all the computational data presented in this chapter, which formed 

the basis of in vivo functional analysis of predicted human enhancers.  
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5.1 INTRODUCTION 

5.1.1 Limitations of current approaches for enhancer prediction 

Genome-wide strategies for enhancer prediction have been based on the use of multiple layers of 

information that include comparative genomics, searching for open chromatin sites and/or 

profiling of tissue-specific TFs, general co-factors and histone modification marks (Visel et al., 

2009a; Zinzen et al., 2009; Rada-Iglesias et al., 2011; Bernstein et al., 2012; Rada-Iglesias et al., 

2012). Nevertheless, there are limitations to all of these approaches. Conservation is not always 

indicative of function and there are subsets of functional enhancers that are not bound by general 

co-factors. Furthermore, ChIP-Seq, which is frequently used to map protein-DNA interactions, has 

technical limitations (Furey, 2012). Restrictions include the lack of appropriate antibodies 

(particularly in zebrafish) and the large numbers of cells required per experiment (in the order of 

tens of millions); factors that represent a challenge when dealing with small cell-numbered 

organisms or cells isolated from a tissue. Therefore, there is an opportunity for the 

implementation of a complementary strategy to predict enhancers. 

5.1.2 Enhancers produce transcripts 

Multiple lines of evidence have recently indicated that transcription from enhancers is a general 

property (Kim et al., 2010; Melgar et al., 2011; Wang et al., 2011a; Djebali et al., 2012). Initial 

studies demonstrated that mouse neuronal enhancers marked by H3K4me1 and CBP co-activator 

binding can recruit PolII and transcribe bidirectionally a novel class of RNA, which was then 

termed enhancer RNA (eRNA, (Kim et al., 2010)). Subsequent RNA-Seq analysis excluded the 

possibility that PolII was in fact associated to the promoter and had been crosslinked to the 

enhancer during ChIP experiments, and it clearly revealed bidirectional transcription towards 

H3K4me1 enriched nucleosomes (Kim et al., 2010). This reported phenomenon was then used for 

modelling a strategy to predict enhancer-associated bidirectional expression of short transcripts 
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in a single cell line (Melgar et al., 2011). This study showed that there is widespread bidirectional 

transcription not associated with promoters and co-occurring in open chromatin regions enriched 

in H3K27ac and H3K18ac (potentially marking active enhancers), while lacking H3K27me3 and 

H3K9me3 repressive marks. These observations allowed the authors to use the bidirectional 

signature of transcription as a genome-wide enhancer predictive tool (Melgar et al., 2011). Global 

run-on sequence analysis (GRO-Seq, which maps the position, amount and orientation of 

transcriptionally engaged PolII genome-wide, (Core et al., 2008) also confirmed that active 

enhancers in human prostate adenocarcinoma cells produce non-coding eRNAs (Wang et al., 

2011a). 

The fact that both gene-rich and gene-poor regions are pervasively transcribed was already hinted 

by the first phase of the ENCODE Project, which analysed 1% of the human genome (Birney et al., 

2007). The second phase of the Project interrogated the human transcriptome genome-wide and 

showed that in one of their cell lines there was a significant overlap of CAGE tags with ENCODE-

predicted enhancers (Djebali et al., 2012). These tags extended a few kb and could be seen in 

both polyadenylated and non-polyadeylated RNA fractions. The enhancer regions showing 

transcription also displayed a different chromatin signature than non-transcribed enhancers, 

consisting of a high enrichment of H3K4 methylation, H3K27 acetylation as well as high levels of 

PolII recruitment (Djebali et al., 2012). What these studies left unanswered is whether 

bidirectional transcription could be used as a novel enhancer predictive tool and whether 

predicted enhancers would be functional in the context of a vertebrate organism. 

5.1.3 Preliminary data leading to the project 

FANTOM (Functional ANnoTation Of the Mammalian genome) is an international consortium 

established by Dr. Hayashizaki at RIKEN (Japan) that aims to assign functional annotations to 

mammalian genomes. FANTOM5 Project has aimed to generate a map of human promoters and 
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enhancers through the generation of a TSS atlas that includes 432 human primary cell types and 

135 human tissue samples (FANTOM Consortium, 2014) using single molecule CAGE (Kanamori-

Katayama et al., 2011). 

Andersson and colleagues found that there was bidirectional transcription of short RNAs at 

enhancer locations and they used this signature to systematically predict active enhancers and 

characterize their usage across the FANTOM5 tissue atlas, which covers the majority of human 

cell types and tissues. Enhancer locations were defined by the co-occurrence of P300, H3K27ac 

and H3K4me1 marks. When this data was overlaid with CAGE tags, they could identify a genome-

wide bidirectional transcription pattern where tags would extends away from the enhancer 

centre, flanked by H3K27ac and H3K4me1 ChIP signals (Figure 5.1).  

These initial observations proved to be valid with well-known enhancers from VISTA and were 

confirmed as a general feature across the FANTOM5 CAGE atlas, proceeding to identify more than 

43,000 enhancer candidates in 808 human CAGE libraries. The RNA produced by enhancers is 

approximately 350 bp in length, capped, unspliced, contains termination sequences and is rapidly 

targeted by the exosome. Most of the transcripts are nuclear and non-polyadenylated. In 

contrast, mRNA produced from promoters are in average 1246 bp in size, are biased towards the 

sense direction and contain splice sites. 
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Figure 5.1 Bidirectional transcription is a signature of active enhancers across the human body. 
Overlay of enhancer sites identified by the presence of H3K4me1 and H3K27ac (bottom), with 
CAGE tags showing a bimodal distribution relative to the P300 centre point (top). This figure was 
produced by Robin Andersson and has been adapted from (Andersson et al., 2014). 
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5.1.4 Aims: 

To address whether candidate enhancers predicted by the presence of bidirectional transcription 

were able to drive tissue-specific expression in the complexity of the whole organism, I decided to 

carry out transient and stable transgenic assays using the zebrafish embryo. Within this global 

aim, the following objectives were also set: 

• To investigate whether bidirectionally transcribed sequences, predicted as enhancers, are 

active in zebrafish. 

• Determine whether enhancers recapitulate human or zebrafish endogenous expression 

patterns. 

• Evaluate if ubiquitously transcribed candidate enhancers show activity in the zebrafish 

embryo. 
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5.2 RESULTS 

5.2.1 Selection of bidirectionally transcribed human putative enhancers based on 
sequence conservation. 

To ask whether human enhancers could function in a living organism, we selected bidirectionally 

transcribed enhancers that were only expressed in a subset of tissues or cells from the FANTOM5 

CAGE Atlas. Selection was based on human-zebrafish conservation (>70% sequence identity over 

100 nt, hg19 vs DanRer7), in order to take into account the large evolutionary separation between 

the two species. We prioritized candidates that had zebrafish orthologous target genes with 

known endogenous patterns (www.zfin.org), so as to be able to compare potential reporter 

activity to both human and zebrafish patterns. Enhancer candidates that were active in human 

tissues with no zebrafish correspondence, such as lungs or trachea, were excluded. Epigenetic 

marks including histone modifications or DHS sites were not taken into consideration during the 

selection process, so as to rely only on the prediction power of the transcriptional mark. Three 

control regions were also chosen randomly from the human genome with the following 

constraints: low sequence conservation with zebrafish and no other enhancer-selective feature, 

that is, no DNase hypersensitivity, no H3K4me1 or H3K27ac signals and CAGE signal only at noise 

levels. The enhancer candidates selected for zebrafish validations are listed in Table 5.1. 

5.2.2 Transient transgenesis assays of bidirectionally transcribed human enhancers 

To test if candidate enhancers could drive tissue-specific expression in the complexity of the 

whole organism, I tested evolutionarily conserved CAGE-defined human enhancers by Tol2-

mediated transgenesis in zebrafish embryos. I cloned ~1kb regions surrounding the cis-regulatory 

element centre point into a pDB896 vector containing gata2 zebrafish promoter and YFP reporter 

gene (Table 5.2). Zebrafish gata2 promoter was used because previous enhancer screens carried 

out in the lab showed that it is more sensitive than core promoters such as hsp70 (see Chapter 3).  
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Table 5.1 Tissue specificity of selected human enhancers  and control regions based on CAGE expression atlas and zebrafish counterparts 

Cis-regulatory 
element ID 

Nearest human coding 
gene(s) 

Human tissue expression 
(FANTOM 5 Atlas) 

Zebrafish orthologous gene expression  
(www.zfin.org) 

CRE1 TMEM161b and MEF2C Fetal brain, neurons, optic nerve Branchial arches, myotome boundaries, pectoral fin muscles, 
posterior hypaxial muscles 

CRE2 POU3F2 Brain specific Central nervous system 

CRE3 SOX7 Endothelial cells, salivary gland, pineal 
gland and aorta  Vasculature, endoderm, ysl, rhombomeres 

CRE4 PAX6 and RCN1 Retina, heart and brain Retina, pancreas and brain 
CRE5 DLX1 and DLX2 Brain  Brain 
CRE6 HNF1B Liver Liver 
CRE7 TBR1 and PSMD14 Brain specific Olfactory bulb and telencephalon 
CRE8 PTPRN2 Brain specific Central nervous system 
Control region 1 C11orf74 No expression Not spatially restricted 
Control region 2 DSCAM No expression Central nervous system and eye 
Control region 3 PBX1 No expression Central nervous system and posterior branchial arches 
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Table 5.2. Selected human Cis-Regulatory Elements (CRE) and control regions used in zebrafish transient reporter assays. 

 

Cis-regulatory element ID Nearest human gene(s) Coordinates (Hg19 or Zv7) Size (bp) Forward primer (5' to 3') Reverse primer (5' to 3') 5' Tail  3' Tail  

CRE5 DLX1 and DLX2 chr2:172958266-172959477 1211 CCAGACCCATCCTCCTATCTTGA GCGGTAGAGACAAAAGAAGAGCC HindIII  EcoRI 

CRE4 PAX6 and RCN1 chr11:31840987-31842070 1083 AGAAAAGAGGTTTCTTTCCCGCT GGGAGCTTTGGCTGAGAAGTTT EcoRV SpeI 

CRE3 SOX7 chr8:10573085-10574291 1206 CTTTGCTCTCATGCTGCTTGTCT AAGATGACACTGAAAAGGGGGAG EcoRV SpeI 

CRE2 POU3F2 chr6:99275060-99276226 1166 GTTTTCCCCTCACTCTTCTGAGC CTAGTACTTCGGTCTGGGGTGCT EcoRV SpeI 

CRE1 TMEM161b and MEF2C chr5:87692532-87693408 877 CCCAAGGGAAGTCACGTAAA TGAGCCTTGGGTTTTTGTTT EcoRV SpeI 

Control region 1 C11orf74 chr11:38087624-38088486 863 CATGGCAATCACCACTTCTG CCGACTGGGATGATTGATCT HindIII  EcoRI 

Control region 2 DSCAM chr21:41847729-41848678 950 GCCTGGGCAACAGAGTAAGA ATTTTTGAGCCCTTCCCATC EcoRV SpeI 

Control region 3 PBX1 chr1:163991571-163992470 900 CAGGCCTCAACCCATTTCTA AACAGGTGGCACTCCTATGG EcoRV SpeI 

Zebrafish gata2 promoter n/a chr11:3922100-3923130  1031 ATTCATTAATAGAATAGAGGCATT CTCAAGTGTCCGCGCTTA AgeI XhoI 



 

131 

 

CRE6-8 overlapped with highly repetitive genomic regions and could not be amplified, therefore, 

only 5 conserved elements (CRE1-5) were used for transgenesis assays. Additionally, three control 

regions were also cloned and analysed to check the specificity of the enhancer selection process. 

Constructs were injected at one-cell stage and reporter expression patterns were analysed at 

long-pec stage (48 hpf) by fluorescent microscopy (Table 5.3). The levels of expression are 

depicted as a percentage between the number of expressing embryos versus the total number of 

injected embryos. In order to control for overall background activity from the construct (i.e., 

promoter, backbone) an empty pDB896 vector containing the zebrafish gata2 promoter linked to 

YFP reporter gene but lacking an enhancer sequence was injected and analysed in parallel. Any 

tissue-specific enrichment shown by enhancer-containing vectors over the activity shown by the 

empty control vector (ectopic expression or background) was considered enhancer-specific. 

I observed tissue-specific enhancer activity with 3 out of 5 human CREs, which corresponded to 

the human enhancer tissue expression (Table 5.1). CRE1, which is located in an intronic region of 

the TMEM161b gene and is 450 Kb downstream of the MEF2C gene, was robustly expressed in 

the central nervous system (CNS) including the forebrain, midbrain, hindbrain and spinal cord 

regions, reproducing the activity found with the human enhancer in fetal brain and neurons 

(Figure 5.2A). Around 82% (n=202) of the expressing embryos showed this neural-specific 

expression pattern, with minimal background in the yolk syncytial layer (ysl, Table 5.3). 

CRE2, which is 7 Kb upstream of POU3F2 was weakly expressed in the floor plate of the zebrafish 

embryo, that is, the ventral section of the neural tube. The neuronal pattern matched the tissue-

specificity found in the human CAGE expression atlas, as it was active in human neuronal stem 

cells (Figure 5.2B). The resolution of this experiment did not allow us to address whether these 

are the same sets of neurons.  
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(See next page for figure legend)  
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Figure 5.2. Validations of in vivo activity of CAGE-defined human enhancers CRE1-3 in zebrafish 
embryos at long-pec stage. 
Representative YFP and brightfield images of embryos injected with human enhancer-containing 
constructs are shown. UCSC browser left sub-panels depict the human genomic landscape 
(including USCS gene track) around the validated enhancer (red arrow). Right sub-panels 
represent CAGE expression in human tissues or cell types for the enhancer, measured in 
Transcripts Per Million (TPM). Note the correspondence between zebrafish and human enhancer 
expression patterns. A. CRE1, ~230kb upstream of the MEFC2 gene, drives highly robust 
expression in the brain (brain) and neural tube (nt). Right panel shows zoom-in overlay image 
showing expression in the forebrain (fb), midbrain (mid), hindbrain (hin) and spinal cord (sp). B. 
CRE2, 5kb upstream of the POU3F2 gene, is active in the floor plate (fp). Right panel is a zoom-in 
overlay image. C. CRE3, 10kb upstream of the SOX7 gene TSS, shows specific expression in the 
vasculature, including intersegmental vessels (iv), dorsal vein (dv) and dorsal aorta (da). Detail is 
shown on the right panel. Muscle (mu) and yolk syncytial layer (ysl) activities are background 
expression coming from the gata2 promoter-containing reporter construct (Table 5.3). All 
embryos are 48 hpf oriented laterally with the head to the left.  
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Table 5.3 Quantitation of transient expression displayed by long-pec zebrafish embryos injected with selected human Cis-Regulatory Elements (CRE) 
and control regions. 

 

*Table legend: Transgene-driven reporter expression at 48 hpf is depicted as a ratio between the number of embryos showing tissue-specific activity 
versus the total number of embryos injected with the enhancer-containing construct or “enhancer-less” gata2 promoter-containing control vector. 
Merged numbers from 3 independent injection experiments are shown. Ectopic expression (background) includes all expression domains displayed by 
the control vector. Enhancer-specific expression includes tissue-specific enrichment beyond the activity shown by the control vector. 

CRE ID 

No. of 
injected 
embryo

s 

Ectopic expression (background, %) 

 
Enhancer driven specific 

expression (%) Total % of 
expressing 
embryos 

Unspecific 
expression 

(%) 

Specific 
expression 

(%) 

Non-
expressing 
embryos 

(%) Muscle  YSL Heart  Ubiquitous Combination 
of tissues 

 CNS Floor plate Vasculature 

CRE5 218 14.7 4.6 0.0 18.3 9.2  0.0 0.0 0.0 46.8 46.8 0.0 53.2 

CRE4 234 24.8 6.8 0.8 7.3 5. 6  0.0 0.0 0.0 45.3 45.3 0.0 54.7 

CRE3 162 0.0 17.5 0.0 0.0 25.0  0.0 0.0 12.5 55.0 42.5 12.5 45.0 

CRE2 160 10.0 6.2 0.0 0.0 5.6  0.0 7.5 0.0 29.4 21.9 7.5 70.6 

CRE1 202 0.0 0.5 0.0 0.0 0.0  81.2 0.0 0.0 81.7 0.5 81.2 18.3 

Control 1 198 19.7 14.1 0.0 4.5 3.5  0.0 0.0 0.0 41.9 41.9 0.0 58.1 

Control 2 187 17.7 9.6 0.0 5.5 7.5  0.0 0.0 0.0 40.1 40.1 0.0 59.9 

Control 3 205 25.4 6.8 0.5 5.4 4.9  0.0 0.0 0.0 42.9 42.9 0.0 57.1 
Promoter 

control 156 23.7 8.9 2.5 8.3 13.5  0.0 0.0 0.0 57.0 57.0 0.0 42.9 
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CRE3, which is 8Kb downstream of the 3´ end of the SOX7 gene, acted as a weak enhancer in the 

zebrafish vasculature, with expression in the intersegmental vessels, dorsal vein and dorsal aorta. 

This expression pattern partially resembled the human activity, since CRE3 showed expression in 

salivary gland and blood vessels in human tissues (Figure 5.2C). Notably, moderate to high levels 

of background in tissues such as ysl, muscle, heart (or a combination of them) were found in 

embryos injected with CRE2 and CRE3 (Table 5.3). Thus, we considered CRE2 and CRE3 to be weak 

enhancers, since there was tissue enrichment over the activity shown by the empty control 

vectors (7.5% (n=160) and 12.5% (n=162), respectively) but also ectopic background. This is 

depicted graphically in (Figure 5.3). 

CRE4 and CRE5 could not direct tissue-specific expression. Similarly, none of three control 

fragments without CAGE signal activated the gata2 promoter (Table 5.3). Taken together the 

above results showed that 3 candidate enhancers reproduced the activity displayed in the CAGE 

human tissue atlas, suggesting that bidirectional transcription could be used as a predictive 

enhancer tool. 

 

Figure 5.3 Tissue specificity of enhancer activity in mosaic transgenic zebrafish embryos  
Percentage of zebrafish injected embryos at 48 hpf showing tissue specific expression (driven by 
human CRE1-3, green bars) and unspecific expression coming from the enhancer-less gata2 
promoter containing vector (lilac bars). For detailed expression patterns refer to Table 5.3. 
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It has been reported that SINE B2 sequences in mice could actively repress cis-regulatory activity 

by harbouring CTCF binding sites that act as insulators (Schmidt et al., 2012). Although a genome-

wide enrichment of CTCF sites was not found in human SINE sequences, taking into account that 

CTCF binding events are more conserved than tissue-specific TFs, we wanted to test whether 

repetitive sequences were responsible for the weak activity of two of our enhancers. Thus, we 

decided to scan the candidate CREs and remove any SINE sequences, if found. Among CRE1-5, 

only CRE3 contained 168 bp SINE repetitive region on its 5´end (Figure 5.4) and was bound by 

CTCF in several ENCODE lines. Thus, the CRE3 element excluding the repetitive fragment was re-

amplified and its activity was re-evaluated in Tol2-based transient zebrafish assays. I found that in 

three experimental replicates where both the original element and the shortened CRE were 

injected in parallel under the same conditions, 6.6% (n=389) and 8.2% (n=365) of the total 

injected embryos respectively were active in the vasculature. Thus, reporter assays with the 

shortened 911 bp fragment did not show any statistically significant change in terms of either 

expression pattern or frequencies (p= 0.4876), suggesting that the low activity of this enhancer 

was not directly related to the presence of the SINE fragment and that the SINE element was not 

required either for autonomous activity of the enhancer. 
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Figure 5.4 UCSC screenshot depicting genomic location of CRE3 putative enhancer and SINE region 
CRE3 (depicted as a black horizontal bar) contained a SINE region located on the 5´end (labelled by a dashed red rectangle). A new fragment of 911 bp 
that excludes this repetitive region was tested (chr8:10,573,380-10,574,291). 
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5.2.3 Validation of transient transgenesis results by establishing stable transgenic lines 

In order to verify whether the patterns seen in transient transgenic embryos were confirmed in 

stable lines, I decided to grow up embryos injected with CRE1-3-containing constructs. Adults 

were bred to WT fish and analysis of their offspring led to the identification of 5 different 

transgenic lines containing CRE1 candidate enhancer (Table 5.4). All transgenic lines displayed a 

similar pattern to that seen in transient transgenic embryos (Figure 5.5). No positive founders 

containing CRE2 candidate enhancer could be identified, despite screening a comparable number 

of fish. The 2 founders with CRE3 displayed expression patterns that were not similar to the 

enhancer activity seen in transient transgenic embryos or that could be related to the zebrafish 

orthologous gene expression pattern, suggesting enhancer traps events (Figure 5.6). Taken 

together, stable transgenic lines allowed us to verify the activity of CRE1. More transgenic lines 

would be needed to conclude on the activity of CRE2 and CRE3 candidate enhancers. 
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Table 5.4 Analysis of the offspring of CRE1-3 containing founders 

Transgenic line name 
No. of 

screened 
founders 

No. of 
positive 
founders 

Germline 
transmission 

rate (%) 
Line ID No. of embryos 

analysed 

Transmission 
rate per 

pattern (%)  
Expression pattern 

Tg(hs-TMEM161-1.0dr-gata2-pr:YFP) 8 5 62.5 

CRE1-L1 57 26.3 Brain, neural tube 
CRE1-L2 106 3.8 Brain, neural tube 
CRE1-L3 275 8.7 Brain, neural tube 

CRE1-L10 140 8.6 Brain, neural tube 
CRE1-L30 68 17.6 Brain, neural tube 

Tg(hs-POU3F2-0.1dr-hsp70-pr:YFP) 22 0 0.0 n/a n/a n/a n/a 

 20 1 5.0 
CRE3-L1 

120 
10.8 Lens, tectum, 

neural tube, jaws 
Tg(hs-SOX7-0.1dr-hsp70-pr:YFP) CRE3-L2 5.8 Lens, neurons 
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Figure 5.5 Stable lines containing CRE1 recapitulated faithfully the expression pattern seen in 
transient transgenic zebrafish embryos 
A. Embryos injected transiently with CRE1 (left panel) displayed a very similar expression pattern 
to the established transgenic lines (right panel), recapitulating human tissue activity. B. Full 
expression pattern driven by CRE1-containing transgenic lines. All embryos are 48 hpf anterior to 
the left.  
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Figure 5.6 Stable lines containing CRE3 showed expression patterns not relevant to the human 
or zebrafish activities. 
Two transgenic lines displayed different expression patterns to one another that are not related 
to the human or zebrafish expected activities, suggesting position effects. Embryos are 42-48 hpf 
oriented anterior to the left. Scale bar indicates 100 µm.  



 

142 

 

5.2.4 Test of in vivo function of ubiquitously expressed candidate enhancers 

Aside from enhancer candidates that were expressed in specific human tissues or cell types, 

Andersson and colleagues identified sequences that were transcriptionally active in the majority 

of tissues and cell lines encompassing the CAGE-expression atlas. We asked whether these 

elements would be able to drive any expression in the zebrafish embryo. In a proof of principle 

experiment, we selected 3 candidates that were bidirectionally transcribed, conserved between 

human and fish and also had enhancer-associated histone modification marks, overlapped DHs 

and were bound by transcription factors (Table 5.5). I cloned the three candidates upstream of 

the zebrafish gata2 promoter linked to YFP, and co-injected the constructs with Tol2 mRNA in 

zebrafish one-cell stage embryos (Table 5.6). Analysis of the expression pattern during the first 5 

days of development showed that these elements were not active or tissue-specific, as they were 

not able to control any tissue-specific activity beyond promoter background (Table 5.7). 

 

Table 5.5 Tissue specificity of selected ubi-enhancers based on CAGE expression atlas and 
zebrafish counterparts 

CRE 
ID 

Nearest human 
coding gene(s) 

Human tissue 
expression (FANTOM 5 

Atlas) 

Zebrafish orthologous gene expression 
(www.zfin.org) 

ubi1 GTF2A Ubiquitous not spatially restricted 
ubi2 GPR84 Ubiquitous not spatially restricted 

ubi3 ZBTB16 Ubiquitous central nervous system, branchial arches, 
pectoral fin, pronephric ducts 
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 Table 5.6 Selected candidate enhancers ubiquitously expressed in human CAGE atlas. 

 

 

Table 5.7 Quantitation of transient expression displayed by high-pec zebrafish embryos injected with ubiquitously expressed candidate enhancers. 

CRE ID 
No. of 

injected 
embryos 

Ectopic expression (background, %) Enhancer- 
driven 

expression (%) 

Total % of 
expressing 
embryos 

Unspecific 
expression (%) 

Specific 
expression (%) 

Non-
expressing 

embryos (%) Muscle  YSL Heart  Ubiquitous Combination 
of tissues 

ubi1 253 14.2 5.5 2.8 7.9 9.9 0.0 40.3 40.3 0.0 59.7 

ubi2 257 16.7 4.3 1.9 9.7 8.6 0.0 41.2 41.2 0.0 58.8 

ubi3 273 17.6 6.6 2.9 11.0 11.7 0.0 49.8 49.8 0.0 50.2 
Promoter 

control 156 23.7 9.0 2.6 8.3 13.5 0.0 57.1 57.1 0.0 42.9 

 

Cis-regulatory element ID Coordinates (Hg19) Size (bp) Forward primer (5' to 3') Reverse primer (5' to 3') 5' Tail  3' Tail  

ubi1 chr14:81685343-81686243 901 ACCAAAACCAAGTCCTCTGC CAGTTCCTTCCGAATGGGTA HindIII  EcoRI 
ubi2 chr12:54752583-54753476 854 TGCCTTCCTTCTCTCCTCAA TCTCGGGATGTGTGTGTGTT HindIII  EcoRI 
ubi3 chr11:114033182-114034045 864 AGATGGCTTCCCCTCATCTT GTGAATCAGCAGCAGGGTTT HindIII  EcoRI 
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5.3 DISCUSSION 

In this study I tested whether predicted bidirectionally transcribed candidate enhancers were 

active in the context of a vertebrate embryo, based on the observations made by the FANTOM5 

Consortium. Out of 5 evolutionary conserved human enhancers, I observed tissue-specific activity 

driven by 3 CREs in zebrafish transient transgenesis assays, whereas none of the three control 

fragments without CAGE signal could function as enhancers, suggesting that bidirectional 

transcription is predictive of active enhancers. In contrast, none of the ubiquitously expressed 

enhancers displayed any activity in the zebrafish transgenic embryo, suggesting lack of 

functionality in zebrafish. 

Interestingly, the tissue-specific pattern displayed by the zebrafish embryos injected with the 3 

functional CREs corresponded to the human tissues where the putative enhancers were shown to 

be active in vitro and not to the zebrafish endogenous patterns (Table 5.1). However, the 

relatively small set of tested enhancers hindered a meaningful statistical analysis of this 

correlation.  

Recently, the prediction of enhancers has been based on the analysis of histone modification 

marks, nucleosome-depleted regions, the presence of transcription factor binding sites or a 

combination of these approaches (Rada-Iglesias et al., 2011; Djebali et al., 2012; Rada-Iglesias et 

al., 2012). However, although several studies had reported that enhancers could effectively bind 

to PolII and produce non-coding transcripts (Kim et al., 2010; Melgar et al., 2011), bidirectional 

transcription had never been used as a signature to predict active enhancers throughout the 

human body and to our knowledge this is the first study where bidirectionally transcribed 

enhancers has been functionally tested in vivo. 
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We decided to use transient transgenesis as these type of analyses have proven successful in the 

past to validate CREs (Navratilova et al., 2009; Narlikar et al., 2010), among others, arguing that 

reproducible expression patterns seen in hundreds of injected embryos can indicate enhancer 

function. The establishment of stable transgenic lines on the other hand has been used here to 

validate the expression patterns seen in transient transgenic assays. In this study, however, I 

could distinguish between two categories among the 3 functional human CREs. Transient 

transgenic assays demonstrated that CRE1 was a strong enhancer in the central nervous system of 

the zebrafish embryo and the expression pattern was validated in 5 independent transgenic lines. 

These lines showed an almost identical pattern to each other and to the injected embryos. In 

opposition to that, CRE2 and CRE3 could drive tissue-specific expression, in the floor plate and in 

the vasculature respectively, but also displayed ectopic expression domains in yolk syncytial layer, 

muscle, and other tissues that were present in embryos injected with the enhancer-less gata2 

promoter only. Consistent with this, we were unable to confirm these patterns in stable 

transgenic lines, obtaining offspring that exhibited activity in tissues that were irrelevant to 

activities expected from the human and zebrafish potential target genes. These results suggested 

position effects, which are caused by the random integration in the host genome of the transgene 

flanked by the transposase arms (Wilson et al., 1990; Rossant et al., 2011). Both position effects 

and partial recapitulation of the expression pattern displayed in transient transgenesis hindered 

the unambiguous identification of a CRE regulatory potential. In order to conclude better, a higher 

number of founders would have to be established. Nevertheless, a comparable number of adults 

were screened for all 3 elements, which suggests that an unknown inherent property of these 

weak enhancers might be responsible for the lack of reproducible gene expression. 

In order to investigate whether the presence of repetitive SINE sequences were responsible for 

the weak activity of CRE, a “SINE-less” CRE3 was cloned and tested. Nevertheless, the percentage 
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of tissue-specific activity obtained with the “SINE-less” fragment was not significantly different 

from the whole region, suggesting that this region was not related to the low activity of the 

human enhancer. As an alternative, lack of enhancer-promoter specificity could also be 

responsible for weak activity displayed by CRE2 and CRE3, which underlines the often 

underestimated importance of promoter selection in validation assays. 

Overall, although we have demonstrated that human enhancers recapitulate expression patterns 

relevant to the human activity in 3 tissue-specific CREs, higher-throughput analysis would be 

desirable to conclude statistically on the validation rates in zebrafish. Using sequence 

conservation as a filter significantly reduced the number of enhancer candidates suitable for 

zebrafish assays. As I will discuss throughout the Thesis, in our experience non-conserved human 

enhancers are not functional in zebrafish, so we believe that this filter, although restrictive is 

backed up by our results.  
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Chapter Six: DETECTION OF QUANTITATIVE DIFFERENCES CAUSED 
BY ENHANCER VARIANTS  

FOREWORD 

For my studies on developing a method to detect quantitative differences between enhancer 

variants we established a collaboration with Lorenzo Pasquali and Jorge Ferrer, affiliated to 

IDIBAPS (Spain) and Imperial College London (UK), and members of the Marie Curie BOLD 

Network.  

The computational analysis of epigenetic marks and selection of appropriate T2D-associated SNPs 

was carried out by Lorenzo Pasquali. 
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6.1 INTRODUCTION 

6.1.1 Genome-wide association studies as a source of non-coding variability 

Several publications have recently confirmed that functional cis-regulatory elements, particularly 

enhancers marked by DNase I hypersensitivity and histone modification marks, are enriched in 

disease-associated SNPs (Hindorff et al., 2009; Bernstein et al., 2012; Maurano et al., 2012; Lee 

and Young, 2013; Trynka et al., 2013).  

In the last ten years, the capacity to identify common variants has increased enormously thanks 

to Genome Wide Association Studies (GWAS), which nurtured from the sequencing of the Human 

Genome (Human Genome Sequencing Consortium, 2004) and from HapMap and 1000 Genomes 

Projects (HapMap Consortium, 2005; Frazer et al., 2007; Altshuler et al., 2010; Abecasis et al., 

2012). GWAS allow for millions of independent SNP association tests with a trait of interest 

without considering candidate genes, aiming to identify multiple variants that contribute with a 

small effect to the phenotype (Prokopenko et al., 2008). In contrast, linkage analysis and 

candidate gene approaches find rare loci that strongly influence a disease (Billings and Florez, 

2010).  

It is estimated that there are around 10 million common SNPs in the human genome, around one 

SNP every 300 nt, where the frequency of allelic variants is above 1% (HapMap Consortium, 

2003). Their analysis is facilitated by the presence of block-like structures of variants that are in 

linkage disequilibrium (LD). Two allelic variants are in LD when their genotypes are correlated and 

one SNP allele can predict the genotype of a closely positioned second variant (Mohlke and Scott, 

2012). The particular combination of allelic variants on a chromosome region that is co-inherited 

is termed haplotype (HapMap Consortium, 2005). LD is commonly measured by 2 parameters: 

D´and r2. D´ is a measure of the frequency of the haplotype and ranges from 0 (no LD) to 1 (LD is 

100%). New haplotypes can be generated by the occurrence of new mutations or by 
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chromosomal recombination events (HapMap Consortium, 2003), thus, the rate of recombination 

between the 2 allelic variants will directly influence the decrease of D´ value. The statistic r2 

measures the correlation coefficient between 2 SNPs, and ranges from 0 to 1, being 1 when the 

association between the two is not disrupted by recombination (HapMap Consortium, 2005). 

Although GWAS are a source of disease-associated SNPs, they usually point to associations with 

other correlated variants with which they are in LD but are not powerful enough to identify the 

variant that is causing the phenotype or disease (Cooper et al., 2010; Schaub et al., 2012). 

6.1.2 Common variants associated to disease lie on functional regulatory regions 

Several reports have confirmed that single base pair nucleotide variation in cis-regulatory regions 

can have phenotypic effects and increase the susceptibility to human disorders, mostly through 

the disruption or creation of TFBS (Pomerantz et al., 2009; Musunuru et al., 2010; Harismendy et 

al., 2011; Smemo et al., 2014). For example, the risk allele of a SNP present in the enhancer of 

Interferon Regulatory Factor 6 disrupts an AF2-α binding site and confers a higher risk to Van der 

Woude syndrome (Rahimov et al., 2008). A similar study has demonstrated that the SNP 

rs6983267, which has been strongly associated to colorectal cancer, lies on an intergenic region 

that behaves as an enhancer in vitro. Interestingly, the risk variant displays differential enhancer 

activity, and an increased capacity for TCF7L2 TF binding; uncovering a possible molecular 

mechanism for the increased risk to cancer pathogenesis (Pomerantz et al., 2009). Another 

example of a disease-associated SNP with clinical relevance is rs12740374, located on a 

chromosomal region linked to myocardial infarction in humans (Musunuru et al., 2010). The 

infrequent allelic variant of rs12740374 creates a novel binding site for the liver-specific TF CBPEA, 

influencing the expression of SORT1 in the liver. This in turn modulates hepatic secretion of low-

density lipoproteins and contributes to the altered phenotype (Musunuru et al., 2010).  
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Although most of these publications have not used in vivo models, a study has recently utilized 

zebrafish transgenesis to demonstrate differential activity of a SNP linked to Restless Leg 

Syndrome (Spieler et al., 2014). The authors showed that the risk allele, located in a highly 

conserved non-coding region within MEIS1 locus, could reduce significantly the enhancer activity 

in the brain and spinal cord (Spieler et al., 2014), demonstrating the utility of zebrafish in this type 

of assays. 

6.1.3 Type two diabetes associated polymorphisms identified by GWAS 

T2D is a complex disease caused by both genetic and environmental factors. The genetic basis of 

T2D has been widely studied through linkage analysis and association methods, reviewed in (Pal 

and McCarthy, 2013). GWAS have made progress towards understanding the inherited base of 

T2D by detecting more than 60 disease-associated DNA variants in European and Asian 

populations (Morris et al., 2012). Interestingly, out of the 18 most strongly T2D-associated SNPs, 

only 3 are mis-sense variants, while the rest are non-coding (Prokopenko 2008).  

One of the most interesting non-coding variants lies in TCF7L2, where the SNP rs7903146 has the 

strongest link effect to T2D demonstrated so far, in most, but not all ethnicities (Grant et al., 

2006; Cauchi et al., 2007; Guo et al., 2007; Helgason et al., 2007; Dupuis et al., 2010; Morris et al., 

2012). TCF7L2 encodes a high-mobility group TF involved in Wnt signalling pathway. Gaulton and 

colleagues demonstrated that the risk allele of the SNP s7903146 (C>T) showed greater enhancer 

activity in vitro than the common allelic variant (Gaulton et al., 2010). Nevertheless, only a subtle 

effect could be detected, and the question remained of whether it could lead to an alteration in 

the spatio-temporal control of gene expression in vivo. 
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6.1.4 Aims 

In this project, I asked whether quantitative differences in expression driven by candidate 

enhancer variants associated with T2D could be detected using zebrafish. Given that most studies 

to date had used luciferase assay in cell lines to show functionality (Gaulton et al., 2010; Stitzel et 

al., 2010), we argued that differential enhancer activity had to be verified in the context of a 

vertebrate organism that shared a common pancreas-specific transcriptional regulatory network 

and anatomical structure with humans, such as zebrafish. The following objectives were set: 

- To test in vivo the functionality candidate enhancers associated with T2D using Tol2-

based zebrafish transgenesis assays. 

- To develop a proof of principle method able to quantitate in vivo allelic differences from 

enhancer variants associated with T2D. 

 

6.2 METHODS 

Selected human putative enhancers with T2D-associated SNPs were amplified from human 

genomic DNA provided by our collaborators using the primers listed in Table 6.1. Due to the 

unavailability of human genomic DNA carrying the infrequent allelic variant of T2D-associated SNP 

rs3242786 on PROX1 intronic region, a point mutation was generated following Higuchi method 

(see Chapter 2 for primers and a detailed protocol). In order to control zebrafish promoter 

functionality, a non-conserved region from Fugu rubripes showing no regulatory activity 

(fr2(assembly 2004) chrUn:54,537,362-54,537,937) was used (Sanges et al., 2006). Final 

expression vectors were generated using pSP1.72BSSPE-R3-R5-R1-R2-Venus Destination Vector 

(Roure et al., 2007). These vectors contained Tol2 transposase arms to facilitate single-copy 

genome integration of the construct into the host genome by co-injection with Tol2 transposase 

mRNA. 
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Table 6.1 Primers used to amplify human putative enhancers and zebrafish promoters from genomic DNA 

CRE  
Genomic coordinates 

Forward primer (5’-3’) Reverse primer (5’-3’) Product size (bp) 
(Hg18 or Zv9) 

PROX1 chr1:212242977-212243697 GCAAAAATGAACTTGAGAAATCC CATTCCCTTTAATATCCCATGC 721 
TCF7L2 chr10:114748248-114748506 AATTCATGGGCTTTCTCTGC GTGAAGTGCCCAAGCTTCTC 239 
DGKB-TMEM195 chr7:15030251-15031281 AGTCTAATACCTCTCAGTGGATA TGGTTGATTGACAGAATTCATT 1031 
ADCY5 chr3:124547851-124549052 GATTCAGCCAGGGGCAGCCTT GAAGCAACACCAGCCGCTTTG 1202 
Zebrafish prox1 promoter chr17:33071557-33071979 TCCGCACAGAGAACGTATTG TGAGCTTCTTCGCGATAGTG 423 
Zebrafish tcf7l2 promoter chr12:32790190-32790830 TCAGCCTCTTCTGTTTTGAGCAG TTTAAGTTTAGGGACTCGCAGTGG 641 
Zebrafish hsp70 promoter chr3:26911324-26911472 TTGATTGGTCGAACATGCTGG CAGTCCGCTCGCTGTCTCGCT 149 
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6.3 RESULTS 

6.3.1 Selection of putative enhancers associated with T2D  

To ask whether T2D-associated variants were active in zebrafish, we initially selected four T2D-

associated SNPs uncovered by a global meta-analysis (Table 6.2, (Dupuis et al., 2010). The SNPs 

were located in or near ADCY5, PROX1, TCF7L2 and DGKB-TMEM195 loci and were significantly 

associated with elevated fasting glucose in non-diabetic individuals, which increased the risk to 

T2D (Dupuis et al., 2010). Next, candidate enhancer sequences harbouring these T2D-associated 

SNPs were identified by Lorenzo Pasquali. Candidate enhancers for in vivo assays were defined by 

the presence of open chromatin sites and/or enhancer-associated marks, including H3K4me1 or 

H3K27ac (Pasquali et al., 2014), and were approximately 1 kb in length (Table 6.1). 

Table 6.2 List of T2D SNPs selected for in vivo assays. 

T2D-associated SNP T2D-associated locus Location Allelic variants GWAS Reference 

rs4282786 PROX1 Intronic G>A (Dupuis et al., 2010) 
rs7903146 TCF7L2 Intronic C>T (Cauchi et al., 2007) 
rs2191349 DGKB-TMEM195 Intergenic G>T (Dupuis et al., 2010) 

rs11708067 ADCY5 Intronic A>G (Dupuis et al., 2010) 
 

6.3.2 Identification of zebrafish endogenous promoter using a CAGE dataset 

For reporter assays, we decided to use zebrafish endogenous promoters, as well as the 

heterologous hsp70 promoter. In order to identify the endogenous promoters of prox1 and tcf7l2 

genes in zebrafish, a CAGE dataset was utilized, which predicts promoters at a single nucleotide 

resolution in several embryonic developmental stages (Nepal et al., 2013).  

The transcription start site (TSS) of genes was determined by CAGE tag cluster distribution 

(depicted as blue peaks in Figure 6.1), where the peak represents the 5’ end position of aligned 

CAGE reads and its height is indicative of the enrichment of the aligned segments. 
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A region of 423 bp in length, surrounding the TSS of prox1 gene was identified as the minimal 

promoter and was amplified for cloning (Figure 6.1A) Approximately 50 bp downstream and 400 

bp upstream of the dominant CAGE-predicted TSS were used.  

Zebrafish tcf7l2 promoter was identified as a broad promoter due to the presence of two 

enrichment peaks (Figure 6.1B). The CAGE peak overlapping with the reference TSS was chosen as 

the main promoter as it was consistently supported by the highest number of tags at the zygotic 

stages of development. A region of 641 bp around the main TSS was used for cloning (Table 6.1). 

 

 

 

Figure 6.1 Identification of zebrafish prox1 and tcf7l2 endogenous promoters.  
UCSC Genome Browser screenshot displaying custom tracks of the fragments cloned, RefSeq 
genes, full length mRNAs, spliced EST and CAGE tag data for 24 hpf and 33 hpf developmental 
stages. The solid black box with arrowheads, which point the direction of transcription, in the 
"promoter fragment" track represents the region cloned for reporter assays. A. Identification of 
prox1 minimal promoter (423 bp around the main CAGE TSS). B. Identification of tcf7l2 minimal 
promoter (641 bp) around the main CAGE TSS.  
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6.3.3 In vivo testing of T2D-associated candidate enhancers by Tol2-based transient 
transgenic assays in zebrafish 

To determine whether predicted regulatory elements could function as enhancers, and whether 

disease-associated SNPs could result in differential enhancer activities in a vertebrate embryo 

model, Tol2-based transient transgenesis assays were carried out. For each T2D-associated locus 

three constructs were produced by linking the human enhancer variants to a zebrafish promoter 

and a reporter gene. In order to control zebrafish promoter functionality, a non-conserved region 

from Fugu rubripes showing no regulatory activity was used (as described in Chapter 3, see also 

Figure 3.3). These three expression vectors were injected in parallel into WT zebrafish fertilized 

eggs and reporter expression was assessed at protruding mouth stage (72 hpf) using fluorescence 

microscopy. All tissues of expression from three experimental replicates were annotated 

following the criteria set in previous chapters and representative patterns of expression were 

documented. The time point chosen was 72 hpf because the zebrafish pancreas has developed 

completely at this stage (Tiso et al., 2009). 

6.3.3.1 Validation of PROX1 putative human enhancer containing SNP rs4282786 

GWAS revealed that SNP rs340874, which was located 2kb upstream of PROX1 TSS, was 

significantly associated to T2D (Dupuis et al., 2010). However, rs340874 was neither conserved in 

zebrafish nor enriched in chromatin marks typically associated with enhancers. In contrast, 

intronic SNP rs4282786 (G>A) was in LD with T2D-associated rs340874, and was located in an 

evolutionary conserved region of PROX1 gene. Additionally, it was enriched in H3K4me1 and 

H3K27ac histone modification marks, suggesting that it could be a developmental enhancer 

(Figure 6.2A). Thus, we selected a 721 bp region harbouring SNP rs4282786 for functional analysis 

in zebrafish. Due to the unavailability of human genomic DNA carrying the infrequent variant in 

homozygosis, I used site directed mutagenesis by PCR to generate the infrequent A allele carried 

by the candidate enhancer associated to T2D (Figure 6.2B).  
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(See next page for figure legend)  
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Figure 6.2 Chromatin landscape and activity of putative human regulatory element PROX1.  
A. UCSC Genome Browser screenshot displaying custom tracks of FAIRE-Seq data, histone 
modifications and DNA sequence conservation. PROX1 putative element is depicted by a black 
solid line box. Screenshot is courtesy of Lorenzo Pasquali. B. Sequencing chromatograms of 
rs4282786 SNP within PROX1 putative element. Left panel shows the wild type sequence 
containing the common variant (G). Right panel shows the site-directed introduced mutation to 
mimic the infrequent allelic variant of the SNP (A). C. Transient expression pattern driven by 
PROX1 candidate enhancer. Representative dorsal and lateral view images of embryos injected 
with G (top) and A (bottom) variants of SNP rs4282786 are displayed. All embryos are 72 hpf 
oriented with anterior to the right. Scale bar indicates 100 µm.  
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In order to test the functionality of the conserved PROX1 putative regulatory element in zebrafish, 

this region was linked to the zebrafish prox1 endogenous minimal promoter (Figure 6.1) and 

Venus reporter gene and domains of expression were annotated at 3 dpf (Table 6.3, Figure 6.3). 

Constructs containing PROX1 putative enhancer variants could drive reporter gene expression in 

the pancreatic islet, yolk syncytial layer (ysl), muscle, heart and neurons (Figure 6.2C, Figure 6.3). 

However, no statistically significant differences could be detected between the A and G alleles in 

terms of frequency of expression domains (Table 6.3). Interestingly, none of the embryos injected 

with the Fugu control region linked to prox1 zebrafish promoter led to detectable expression in 

the pancreas (n=246), suggesting that the human PROX1 candidate enhancer was responsible for 

this activity. Constructs containing PROX1 candidate also showed a significant enrichment in 

tissues such as heart and neurons, when compared to the Fugu control, which suggests that these 

domains are attributable to the candidate enhancer (Table 6.3). 

In order to find out whether PROX1 was autonomously capable of driving expression in the 

pancreas, and to determine whether heart and neuronal expression patterns were an artefact 

from the construct used, both enhancer variants and the Fugu control region were cloned into a 

different context: upstream of a heterologous minimal promoter (hsp70) in a pDB896 vector 

containing short Tol2 arms. Three experimental replicates confirmed that both G and A allelic 

variants could drive pancreas specific expression in 2.7% (n=298) and 1.85% (n=334) of the 

injected embryos respectively, whereas reporter gene expression was not detectable in this 

domain with the control vector (n=215). These results suggested that PROX1 human enhancer, 

and not the zebrafish prox1 promoter, was responsible for the activity in the endocrine pancreas. 

Ectopic lens expression driven by hsp70 zebrafish promoter (Blechinger et al., 2002) was detected 

in embryos injected with PROX1 putative enhancer variants, although surprisingly it was not 

shown by the Fugu region linked to the promoter only. On average, the frequency of heart 
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expression was reduced 12% in embryos injected with PROX1 variants (Figure 6.3B), suggesting 

that either a cryptic vector sequence from the Gateway vector, the Tol2 arms or a specific 

interaction between PROX1 candidate enhancer and prox1 promoter were responsible for the 

enhanced expression in this domain. 

 

 

Figure 6.3 Rates of tissue expression driven by PROX1 human element constructs linked to 
zebrafish prox1 and hsp70 zebrafish promoters.  
Percentage of 72 hpf zebrafish injected embryos showing reporter gene expression driven by 
PROX1 candidate enhancer variants and the Fugu control region linked to prox1 promoter (top) 
and hsp70 promoter (bottom). Reporter expression could be detected in muscle, yolk syncytial 
layer (ysl), heart, neurons and endocrine islet when PROX1 candidate enhancer was linked to 
prox1 promoter. When PROX1 is linked to hsp70 promoter, the candidate enhancer is 
autonomously capable of driving reporter gene expression in the ysl, heart, neurons and 
pancreatic. Expression in the lens is ectopic activity from hsp70 core promoter (Blechinger et 
al., 2002). For detailed expression frequencies refer to Table 6.3. 
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 Table 6.3 Quantitation of reporter gene expression driven by PROX1 putative enhancer in protruding-mouth embryos. 

 

Table legend: Transgene-driven reporter expression at 72 hpf is depicted as a ratio between the number of embryos showing tissue-specific activity 
versus the total number of embryos injected with the enhancer-containing construct or Fugu region and promoter-containing control vector. Merged 
numbers from 3 independent injection experiments are shown. YSL= yolk syncytial layer.  

 

Tested CRE 
Zebrafish 
promoter 

used 

No. of 
injected 
embryos 

Reporter gene expression (%)   Percentage of 
expressing 
embryos 

No. of 
replicates  

Muscle  YSL Heart  Neurons Pancreatic 
islet Lens 

PROX1-G allele prox1  284 4.2 3.5 16.9 13.0 2.1 0.0 35.9 3 
PROX1-A allele prox1  352 2.8 2.8 15.3 17.3 2.0 0.0 50.9 3 

Fugu control region prox1  246 2.0 8.9 3.3 4.5 0.0 0.0 44.7 3 
PROX1-G allele hsp70 298 0.0 1.0 3.7 7.4 2.7 6.7 19.8 3 
PROX1-A allele hsp70 334 0.0 1.2 3.6 9.0 1.8 6.0 28.7 3 

Fugu control region hsp70 215 0.0 0.0 0.0 0.0 0.0 0.0 0.9 3 
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6.3.3.2 Verification of pancreatic islet specific activity of PROX1 candidate enhancer by 
co-localization analysis with Tg(ins-mCherry) jh2 line 

In order to confirm the pancreatic islet-specific activity attributed to PROX1 candidate enhancer 

as well as to attempt to quantitate differences between PROX1 allelic variants, I carried out an 

additional reporter analysis thereby I compared PROX1 driven Venus reporter activity to embryos 

from the Tg(ins:mCherry)jh2 line, which accurately label insulin-producing β-cells in red (Pisharath 

et al., 2007). To this end, vectors containing PROX1 allelic variants linked to a prox1 endogenous 

promoter (namely pTol2/Hs.PROX1(G)-Dr.prox1:Venus and pTol2/Hs.PROX1(A)-Dr.prox1:Venus) 

were injected into heterozygous embryos of the Tg(ins:mCherry)jh2 line, and co-localization of the 

two fluorescence reporters was evaluated at 3 dpf (Table 6.4, Figure 6.4). 

Table 6.4 Summary of co-localization events with PROX1 set of constructs 

Construct 
No. of 

injected 
embryos 

No. of 
expressing 
embryos 

No. of embryos 
with co-

localization 

Co-localization 
frequency (%) 

pTol2/Hs.PROX1(G)-Dr.prox1:Venus 230 82 15 18,3 
pTol2/Hs.PROX1(A)-Dr.prox1:Venus 196 68 10 14,7 
pTol2/Fugu:Dr.prox1:Venus 205 72 0 0,0 

Co-localization between PROX1 enhancer-driven reporter expression and insulin-driven reporter 

in the endocrine pancreas was found in 18.3% of embryos (n=230) injected with the common 

rs4282786 allele (G) and in 14.7% embryos (n=196) injected with the infrequent variant (A). None 

of the embryos injected with the Fugu control region linked to prox1 promoter 

(pTol2/Fugu:Dr.prox1:Venus vector) showed co-localization events (Table 6.4). However, there 

was no statistically significant difference in the frequency of co-localization events between the 

two alleles (P=0.6617), suggesting that rs4282786 SNP was not essential for the regulation of the 

pancreas-specific activity.  



 

162 

 

 
Figure 6.4 Co-localization events between PROX1 candidate enhancer (green) and pancreatic 
islet specific transgenic line (red).  
Reporter expression (YFP), insulin transgenic expression (mCherry), brightfield image and an 
overlay of channels are shown for representative embryos injected with PROX1-containing 
variants linked to prox1 zebrafish promoter. All zebrafish embryos are 72 hpf oriented with 
anterior to the right. Scale bar indicates 250 µm.  
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6.3.3.3 Validation of TCF7L2 putative human enhancer containing SNP rs7903146 

In order to test whether the 239 bp open chromatin region evaluated by Gaulton and colleagues 

was active in zebrafish, and whether the allelic variants of SNP rs7903146 (C>T) could lead to a 

differential enhancer activity, TCF7L2 candidate enhancer was cloned upstream of the zebrafish 

tcf7l2 endogenous minimal promoter (Figure 6.1) and Venus reporter gene, and its activity 

analysed in transgenesis assays. This region was not conserved at a sequence level with zebrafish 

and was enriched in H3K4me1, H3K27ac and H2AZ histone variant (Figure 6.5A). 

Fluorescent microscopy analysis of reporter expression during the first five days of embryo 

development revealed that TCF7L2 enhancer variants could not drive any tissue specific activity 

that differed from the Fugu control vector in three experimental batches of independently 

injected embryos (n=878). Because the lack of activity could have been caused by the limited 

sensitivity of the stereo-fluorescence microscope used, we decided to increase the transgene 

detection sensitivity. Thus, we carried out three additional experiments where 72 hpf injected 

embryos were plated and imaged by the ScanR high-throughput imaging station (Liebel et al., 

2003). Twenty images from each embryo group were overlaid using the Adobe Photoshop CS6 

software to create an overview of mosaic expression patterns (Figure 6.5B). A diversity of ectopic 

expression was found (mainly in the yolk syncytial layer) but neither pancreas specific expression 

nor diencephalic expression (which is relevant to the expression of the zebrafish tcf7l2 gene) was 

detected, suggesting that there was no specific reporter activity driven by TCF7L2 human putative 

enhancer (Figure 6.5B).  
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Figure 6.5 Chromatin landscape and activity of putative human regulatory element TCF7L2.  
A. UCSC Genome Browser screenshot, courtesy of Lorenzo Pasquali, displaying custom tracks of 
FAIRE-Seq data, histone modifications, RNA Seq and DNA sequence conservation. The solid line 
box contains the cloned element. B. Composite overviews of in vivo Venus expression data from 
20 individual zebrafish embryos. All embryos are 72 hpf oriented dorsally. Yolk syncytial layer (ysl) 
ectopic expression was detected in embryos injected with TCF7L2 human element. Scale bar 
indicates 100 µm.  
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6.3.3.4 Validation of DGKB-TMEM195 putative human enhancer and SNP rs2191349 

SNP rs2191349 (G>T), which is located on a gene desert between DGKB and TMEM195, was also 

significantly associated to T2D by GWAS (Dupuis et al., 2010). DGKB encodes a catalytic domain of 

diacylglycerol kinase and TMEM195 encodes a transmembrane protein expressed in liver. A 

region of 1,031 bp surrounding the lead SNP rs2191349 that overlapped with an open chromatin 

site and was enriched in H3K4me1 and H3K27ac marks, was used for in vivo tests in zebrafish 

(Figure 6.6A). 

In order to test the functionality of this SNP, both allelic variants were cloned upstream of the 

zebrafish hsp70 minimal promoter and injected in zebrafish WT embryos. Pancreas specific 

activity was not detected in embryos injected with any of the constructs (total number of injected 

embryos n=979, three experimental repeats). Only lens activity was detected in 71.7% (n=211) of 

embryos injected with the common allele variant and by 63.8% (n=232) of embryos injected with 

the T2D-associated variant (Figure 6.6B). Zebrafish hsp70 minimal promoter can drive 

autonomously expression in the lens (Blechinger et al., 2002), suggesting that the lens reporter 

activity seen in embryos injected with constructs containing the enhancer variants was due to the 

hsp70 promoter itself and that the candidate enhancer could not drive any tissue-specific activity 

in injected embryos. 
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Figure 6.6 Chromatin landscape and activity of putative human regulatory element DGKB-
TMEM195.  
A. UCSC Genome Browser screenshot (courtesy of Lorenzo Pasquali) displaying custom tracks of 
FAIRE-Seq data, histone modifications, RNA Seq and DNA sequence conservation. The solid line 
box contains the cloned element. B. Transient expression pattern driven by DGKB-DMEM195 
candidate enhancer. Representative dorsal and lateral view images of 72 hpf embryos injected 
with G (top) and T (bottom) variants of SNP rs2191349 are shown. Scale bar indicates 100 µm.  
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6.3.3.5 Validation of ADCY5 putative human enhancer and SNP rs11708067 

T2D-associated SNP rs11708067 (A>G) is located on an intronic region of ADCY5, which encodes 

Adenylate Cyclase-5 (Dupuis et al., 2010). This enzyme catalyses the generation of cAMP, a 

signalling molecule in beta cells of the pancreatic islet. An open chromatin site enriched in 

H3K4me1 and H3K27ac marks of 1,200 bp in length, was identified as a putative regulatory 

enhancer and used in reporter assays (Figure 6.7A). This region was cloned upstream of the hsp70 

minimal promoter and tested, as described before. No tissue-specific expression pattern could be 

detected with either the common or the disease-associated variant across three experimental 

replicates (total number of injected embryos n=379 and n=408, respectively, Figure 6.7B), 

suggesting that human ADCY5 putative element was not able to direct tissue specific activity in 

zebrafish. 

6.3.4 Establishing Tol2-based stable transgenic lines in order to detect differences  

To ask whether enhancer-specific reporter function could have been missed by the potentially low 

resolution and sensitivity of transient transgenic assays, around 200 embryos were injected with 

each construct to generate stable transgenic lines. The injected embryos were grown up in the 

animal facility to study transmission of transgenes to the next generations. We reasoned that by 

avoiding the mosaicism typical of transient transgenic embryos, the analysis of the stable 

transgenic lines could potentially reveal more faithfully the expression pattern driven by the 

candidate enhancers. Adult founders were outcrossed with WT fish and the F1 progeny were 

screened for potential enhancer-driven Venus expression. For each founder at least 100 or more 

offspring embryos were analysed before deemed to be negative for transgene activity. 
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Figure 6.7 Chromatin landscape and activity of putative human regulatory element ADCY5.  
A. UCSC Genome Browser screenshot displaying custom tracks of FAIRE-Seq data, histone 
modifications, RNA Seq and DNA sequence conservation. The solid line box contains the cloned 
candidate enhancer. This screenshot is courtesy of Lorenzo Pasquali. B. Transient expression 
pattern driven by ADCY5 human candidate enhancer. Representative embryo injected with the 
common variant of SNP rs11708067 (left) and with the infrequent variant (right). Representative 
dorsal and lateral view images of 72 hpf embryos are shown. Scale bar indicates 100 µm. 
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6.3.4.1 Analysis of PROX1 candidate enhancer-containing stable transgenic lines 

Four stable transgenic lines with PROX1 rs4282786 common G allele (named Tg(Hs.PROX1(G):-

0.4Dr.prox1:Venus G1-G7) and 3 transgenic lines with the disease-associated A allele (named 

Tg(Hs.PROX1 (A):-0.4Dr.prox1:Venus A1-A12) were identified by reporter gene expression (Table 

6.5). Furthermore, 3 lines were generated with the Fugu control region linked to the prox1 

promoter (named Tg(Fr.ek:-0.4Dr.prox1:Venus) L1-5), which served as a control for the 

background activity expected without the enhancer (Figure 6.8, Figure 6.9, Figure 6.10). In order 

to dissect which domains of reporter activity were driven by the candidate human enhancer and 

distinguish them from position effects, we identified all the expression domains in enhancer-

containing transgenic lines and evaluated their reproducibility in comparison to the promoter only 

control transgenic lines, and to publicly available WISH data of the zebrafish orthologous gene 

patterns (Table 6.6). From 17 patterns identified among all transgenic lines, trigeminal and lateral 

line ganglia (#4 and #5) and spinal cord neurons (#6) expression domains were shared between 

the enhancer-less control lines and the PROX1-containing lines, and therefore could be attributed 

to prox1 promoter function. The pancreatic islet (#13), which is an expression domain of prox1 

gene, was only present in one of the lines containing the human enhancer, but not in the 

promoter-only lines. Although the presence of a single line being active in the pancreas might not 

allow us to draw a significant correlation with the candidate enhancer, together with the transient 

transgenic data, it suggested that it could be driven by the PROX1 putative enhancer. Reporter 

expression in midbrain neurons (#15) and heart (#16) domains were only present in PROX1 

containing lines, which suggested that they were driven by the human enhancer. This is supported 

by their presence in transient transgenesis. Nevertheless, there were other ectopic expression 

domains that could not be attributed to the enhancer unambiguously. This variation of patterns is 

commonly seen in Tol2-based transgenesis, a system prone to position effects due to the random 

integration of the transgene into the host genome. 
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Table 6.5 Summary of transgenic lines established using PROX1 human element and T2D-associated SNP rs4282786 

  

Transgenic Line 
No of 

screened 
founders 

No of 
positive 
founders 

Germline 
transmission 

rate (%) 

Line 
ID Domains of expression 

No. of 
embryos 
analysed 

Transmission 
rate per 

pattern (%) 

Tg(Hs.PROX1 (G):-
0.4Dr.prox1:Venus) 20 4 20.0 

G1 Pan neuronal 120 12.5 

G2 Pancreatic islet 154 11.0 

G3 Forebrain, Midbrain, Hindbrain neurons 70 30.0 

G7 Hindbrain neurons 98 39.8 

Tg(Hs.PROX1 (A):-
0.4Dr.prox1:Venus) 14 3 21.4 

A1 Forebrain,  
90 

7.8 

A4 Forebrain, tectum, midbrain-hindbrain  boundary, 
pericardium 8.9 

A5 Tectum, hindbrain 150 13.3 

A12 Tectum, tegmentum, hindbrain, pericardium 70 14.3 

Tg(Fr.ek:-0.4Dr.prox1:Venus) 15 3 20.0 

L1 Central nervous system 240 23.3 

L3 Cranial ganglia 50 10.0 

L5 Retina, optic tectum 82 19.5 
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Table 6.6 Analysis of the domains of Venus reporter expression and their distribution among PROX1-containing Tol2 transgenic lines. 

Domains of reporter gene 
expression 

Zebrafish prox1 
expression 

pattern 

Tol2-based stable transgenic lines 

Tg(Fr.ek:-
0.4Dr.prox1:Venus) Tg(Hs.PROX1 (G):-0.4Dr.prox1:Venus) Tg(Hs.PROX1 (A):-0.4Dr.prox1:Venus) 

L1 L3 L5 G1 G2 G3 G7 A1 A4 A5 A12 

  Habenula                         

  Liver                         
1 Retina                         
2 Diencephalon                         
3 Dorsal hindbrain                         
4 Trigeminal ganglia                         
5 Lateral line ganglia                         
6 Spinal cord neurons                         
7 Telencephalon                         
8 Ventral midbrain                         
9 Tegmentum                         

10 Optic tectum                         
11 Lens                         
12 Yolk syncytial layer                         
13 Pancreatic islet                         
14 Forebrain neurons                         
15 Midbrain neurons                         
16 Heart                         

17 Midbrain-Hindbrain 
boundary                         
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Figure 6.8 Tol2-based transgenic lines established with PROX1 containing rs4282786 G allele 
Expression patterns shown by Tol2 transgenic lines injected with Hs.PROX1(G):Dr.prox1:Venus 
construct. Tol2 patterns are numbered from 1 to 17 as described in Table 6.6. Dorsal and lateral 
views of YFP and brightfield channels are shown. Larvae are protruding mouth stage 
(approximately 3 dpf ) with anterior to the left. Scale bar indicates 100 μm. 
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Figure 6.9 Tol2-based transgenic lines established with PROX1-containing rs4282786A allele 
Expression patterns shown by Tol2 transgenic lines injected with Hs.PROX1(A):Dr.prox1:Venus 
construct. Tol2 patterns are numbered from 1 to 17 as described in Table 6.6. Dorsal and lateral 
views of YFP and brightfield channels are shown. Larvae are protruding mouth stage 
(approximately 3 dpf ) with anterior to the left. Scale bar indicates 100 μm. 
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Figure 6.10 Tol2-based transgenic lines established with zebrafish prox1 endogenous promoter 
Expression patterns shown by Tol2 transgenic lines injected with pTol2/Fr.ek:Dr.prox1:Venus 
construct. Tol2 patterns are numbered from 1 to 17 as described in Table 6.6. Dorsal and lateral 
views of YFP and brightfield channels are shown. Larvae are protruding mouth stage 
(approximately 3 dpf ) with anterior to the left. Scale bar indicates 100 μm. 
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6.3.4.2 Analysis of TCF7L2 candidate enhancer-containing transgenic lines 

In order to analyse the expression patterns attributable to TCF7L2 human putative enhancer we 

undertook the same approach described for PROX1 human enhancer candidate. One line carrying 

the tcf7l2 zebrafish promote only (named Tg(Fr.ek:-0.6Dr.tcf7l2:Venus) L1) , and 6 lines containing 

TCF7L2 human enhancer variants (named Tg(Hs.TCF7L2(C):-0.6Dr.tcf7l2:Venus) C1-5 and 

Tg(Hs.TCF7L2(T):-0.6Dr.tcf7l2:Venus) L1) were identified (Table 6.7, Figure 6.11, Figure 6.12). 

There was a lack of overlap in reporter expression patterns among the transgenic lines established 

with the enhancer-containing constructs, as well as between these lines and the zebrafish tcf7l2 

gene endogenous pattern, suggesting strong position effect variability, and the lack of identifiable 

tissue-specificity attributed to TC7FL2 candidate enhancer (Table 6.8). Because a reduced number 

of cells specify endocrine pancreas fate, the presence of islet activity in C4 transgenic line (Table 

6.7) suggested enhancer-driven activity. However, lack of reproducibility in other enhancer-

containing lines prevented us from making accurate conclusions on this. 
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Table 6.7 Summary of transgenic lines established using TCF7L2 human element and T2D-associated SNP rs7903146. 

Transgenic Line 
No. of 

screened 
founders 

No. of 
positive 
founders 

Germline 
transmission 

rate (%) 
Line ID Domains of expression 

N of 
embryos 
analysed 

Transmission 
rate per pattern 

(%) 

Tg(Hs.TCF7L2(C):-0.6Dr.tcf7l2:Venus) 10 2 20.0 

C1 Diencephalon 

97 

10.3 

C2 Diencephalon + hindbrain 7.2 

C3 Neural tube 15.5 

C4 Pancreatic islet, trigeminal ganglia 
155 

43.9 

C5 Diencephalon 13.5 

Tg(Hs.TCF7L2(T):-0.6Dr.tcf7l2:Venus) 15 1 6.7 T1 Midbrain-Hindbrain boundary, pericardium, cranial 
ganglia 96 8.3 

Tg(Fr.ek:-0.6Dr.tcf7l2:Venus) 15 1 6.7 L1 Hindbrain, jaw 100 10.0 
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Figure 6.11 Tol2-based transgenic lines established with TCF7L2 common C allele 
Expression patterns shown by Tol2 transgenic lines injected with pTol2/Hs.TCF7L2(C):Dr.tcf7l2:Venus construct. Expression patterns are numbered 
from 1 to 15 as described in Table 6.8. 
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Figure 6.12 Tol2-based transgenic lines established with TCF7L2 infrequent T allele and zebrafish 
tcf7l2 promoter only. 
Expression patterns shown by Tol2 transgenic lines injected with 
pTol2/Hs.TCF7L2(C):Dr.tcf7l2:Venus construct. Expression patterns are numbered from 1 to 15 as 
described in Table 6.8). Dorsal and lateral views of YFP and brightfield channels are shown. Larvae 
are protruding mouth stage (approximately 3 dpf ) with anterior to the left. Scale bar indicates 
100 μm.  
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Table 6.8 Analysis of the domains of Venus reporter expression and their distribution among 
TCF7L2 enhancer candidate containing Tol2 transgenic lines compared to endogenous patterns. 
 

Domains of expression 

Zebrafish 
tcf7l2 

expression 
pattern 

Tol2-based stable transgenic lines 

Tg(Fr.ek:-
0.6Dr.tcf7l2:Venus) 

Tg(Hs.TCF7L2(C):-
0.6Dr.tcf7l2:Venus) 

Tg(Hs.TCF7L2(T):-
0.6Dr.tcf7l2:Venus) 

L1 C1 C2 C3 C4 C5 T1 

1 Dorsal diencephalon         
2 Midbrain         
3 Rostral hindbrain         
4 Brachial arches         
5 Ventral telencephalon         
6 Tectum         
7 Cranial ganglia         
8 Heart         
9 Telencephalon         
1
0 Optic stalks         
1
1 Retina         
1
2 Central nervous system         
1
3 Dorsal hindbrain         
1
4 

Midbrain-Hindbrain 
boundary         

1
5 Pancreatic islet         
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6.3.5 Analysis of DGKB-TMEM195 and ADCY5 candidate enhancer containing- 
transgenic lines 

Despite screening an equivalent number of adult founder fish injected with constructs containing 

DGKB-TMEM and ADCY5 enhancer variants, I could not identify any founder whose offspring was 

positive for reporter gene expression (Table 6.9). This result combined with the lack of activity in 

transient transgenic experiments argued for these candidate enhancers not functioning as 

transcriptional enhancers in zebrafish. 

 

Table 6.9 Summary of transgenic lines established using DGKB-TMEM195 and ADCY5 putative 
enhancers. 

Line No. of screened 
founders 

No. of Venus 
positive 
founders 

Germline 
transmission rate 

(%) 

Tg(Hs.DGKB-TMEM195 (G):Dr.hsp70:Venus) 25 0 0.0 
Tg(Hs.DGKB-TMEM195 (G):Dr.hsp70:Venus) 21 0 0.0 
Tg(Hs.ADCY5 (A):Dr.hsp70:Venus) 22 0 0.0 
Tg(Hs.ADCY5 (G):Dr.hsp70:Venus) 16 0 0.0 
Tg(Fr.ek:Dr.hsp70:Venus) 20 0 0.0 
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6.4 DISCUSSION 

In this chapter I aimed to establish a method to detect in vivo quantitative differences between 

T2D-associated allelic variants using Tol2-based transient and stable transgenesis assays in 

zebrafish embryos. Functional test of 4 candidate human enhancers with T2D-associated SNPs 

(Dupuis et al., 2010) revealed that only a conserved region in PROX1 human gene could drive 

reporter gene expression in the developing endocrine pancreas consistently in transient and 

stable transgenesis experiments. However, no differential expression patterns caused by the 

allelic variants could be detected with our approaches so far. The lack of detectable reporter gene 

expression with DGKB-TMEM195 and ADCY5 candidate enhancers argued that neither the 

putative CRE nor the allelic variants were functional in the zebrafish embryo or that these regions 

lacked enhancer function. Additionally, despite previous evidence suggesting that TCF7L2 

candidate enhancer was active in pancreas-specific cell lines (Gaulton et al., 2010), the lack of 

detectable reporter gene activity in transient transgenesis experiments and the lack of 

reproducibility in stable transgenic lines prevented us to conclude accurately on TCF7L2 function. 

6.4.1 Utilizing Tol2-based transient transgenesis assays for allele quantification 

Transient transgenesis assays in zebrafish allow the generation of hundreds of injected embryos, 

with a mosaic reporter gene expression, where typically each embryo displays reporter gene 

activity in a few cells (Pashos et al., 2008). Nevertheless, because each injected embryo 

represents a different transgene integration event, the position effects might be statistically 

eliminated by observing reproducible patterns in large numbers of embryos (Muller et al., 1997; 

Muller et al., 1999; Dickmeis et al., 2004; Gehrig et al., 2009; Rada-Iglesias and Wysocka, 2011; 

Taher et al., 2011). Mosaicism could however hinder the analysis of the activity of certain CREs in 

small tissues, such as the endocrine pancreas, which has approximately 20 β-cells at 3 dpf 

(Parsons et al., 2009). Our transient reporter assays with PROX1 candidate enhancer revealed that 
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on average 2% of the injected embryos were showing a pancreatic-specific signal. It could be 

argued that pancreas expression was not specific, and that it was a result of the random cell 

targeting of an otherwise non-tissue specific element. However, when PROX1 candidate enhancer 

was linked to a minimal hsp70 promoter, the pancreas activity was still reproducible, suggesting 

that PROX1 could autonomously drive expression in the pancreatic islet. 

Interestingly, PROX1 reporter gene expression was not restricted to this domain. The rest of the 

expressing embryos showed reporter activity in tissues such as muscle, neurons and heart. From 

these domains, only expression in the neurons and in the heart was reproducible when two 

different zebrafish promoters were tested, suggesting that the activity in neurons and heart was 

attributable to the PROX1 enhancer. Consistent with this, zebrafish prox1 gene expression is 

detected in the pancreas, liver, otic and lens placodes, lateral line and central nervous system 

(Pistocchi et al., 2008), and has proven to be essential for liver organogenesis, neuronal 

development and functionality of the lateral line (Pistocchi et al., 2009). 

Overall, the analysis of transient transgenic data did not reveal statistically significant differences 

between the candidate enhancer variants. And even when the co-localization approach increased 

our accuracy in detecting pancreatic specific expression, the mosaicism of the embryos could have 

hindered the detection of expression differences, suggesting that an alternative approach was 

required. 

6.4.2 Establishing Tol2-based stable transgenic lines to quantitate allelic variants  

The establishment of stable transgenic lines can be advantageous in order to detect weak 

enhancer function by avoiding the mosaicism of injected embryos and could thus be used to 

validate expression patterns detected by transient transgenic assays. Nevertheless, we observed a 

high variability of expression patterns among PROX1 and TCF7L2 candidate enhancer containing 
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transgenic lines. The variability of expression patterns caused by Tol2-based transgenesis is larger 

than the subtle changes expected by the SNPs, which hindered our attempt to quantify subtle 

differences caused by disease-associated SNPs. 

A BAC enhancer-trap study established that regulatory variation within Tcf7l2 was leading to over-

expression of the gene, which could be the underlying cause of T2D. However, this work also 

failed to detect allele-specific differences in vivo (Savic et al., 2011). Conflicting observations 

between in vivo and in vitro models may also be explained because the interaction of the region 

of interest outside the pancreas cannot be reproduced, as it is when using an animal model. In 

fact, when Savic and colleagues tested the same 239 bp region in a variety of cell lines, they 

detected enhancer activity in beta-pancreatic, as well as in neuron, bone and myoblast cell lines 

(Savic et al., 2013). Certainly, an experimental design where allelic specific differences can be 

measured will be difficult to achieve using transgenesis assays due to position effect, copy 

number variation and mosaicism. This is why the preferred approach in most studies relies on the 

use of cell lines. 

6.4.3 Alternative approaches for quantitation of variant enhancer activity 

Since differences in tissue specificity between allelic variants could not be detected by manual 

inspection of mosaic transgenic embryos, it could be argued that the use of an high-throughput 

automated measurement of the number of cells and intensity of fluorescence in embryos may 

provide a more accurate and unbiased spatial detection of the reporter activity (Gehrig et al., 

2009). Nevertheless, the published pipeline was developed for the analysis of 36-42 hpf embryos 

and re-designing the existing software required computational and engineering support that was 

not available during this project.  
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An alternative approach would be to use BAC transgenesis to improve synergistic enhancer 

function detection (Balciunas et al., 2006; Suster et al., 2009). The use of BACs is more 

advantageous than the use of smaller vectors because their large size can include regulatory 

elements that are scattered in long distances (Yang et al., 2006). Besides, it permits to control the 

genomic context. Although these results have not been shown in this chapter, I created a 

modified human BAC containing PROX1 human locus and followed an enhancer trap strategy to 

replace the 5´end of the second intron, where the candidate enhancer was located, with hsp70 

minimal promoter and eGFP reporter gene. However, the injection of the modified BAC of PROX1 

human gene did not drive any specific tissue-specific expression in the zebrafish embryos. This 

could be explained by the BAC itself, by the enhancer trap approach or by weakness of the 

pattern. Due to the lack of activity, we decided not to proceed with this time-consuming method 

and decided to investigate alternative approaches for allelic quantification. 

6.4.4 Site-directed transgenesis as an alternative to Tol2-based transgenesis 

Random transgene integration and position effects are a major drawback of Tol2-based 

transgenesis. As I have shown in this chapter, it often leads to the creation of a large number of 

transgenic lines per construct, among which there is substantial variation of expression patterns 

that hinders the analysis of function. A promising alternative to aid the screening of CREs by 

reducing the position effect variation would be the development of a transgenesis system 

mediated by site-specific recombinases. The validation of a targeted integration system for 

enhancer testing will be discussed in the next chapter. 
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Chapter Seven: DEVELOPMENT OF PHIC31 TARGETED 
INTEGRATION SYSTEM FOR SNP QUANTITATION 

FOREWORD 

The results presented in this chapter have been partially published in (Roberts et al., 2014). 

The site-specific integration system mediated by PhiC31 integrase in zebrafish was designed by a 

collaboration between the labs of Ferenc Müller and Darius Balciunas (Temple University, US). 

Jennifer Roberts (former PhD student from the lab) initiated the development of this system as 

her PhD project (Roberts, 2013) until November 2012. I decided to extend this preliminary work 

with the final aim of using this system to quantitate SNP variants. I also carried out a series of 

experiments aiming to validate the targeting system for enhancer testing and to prove that the 

system was indeed capable of eliminating position effect variation. 

• All the plasmids used for EL161 enhancer testing were made by Jennifer Roberts, as well 

as the docking transgenic lines Tg(Xla.crygc:attP-GFP)uobL6 and uobL12. 

• The plasmid pCS2+PhiC31o-nos1-3’UTR was a kind gift from Shannon Fisher 

• The plasmid pTol2/Xla.crygc:attP-GFP (pDB896) was made by Darius Balciunas 

 

Information about the construction of these and other plasmids is presented in (Roberts et al., 

2014). 
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7.1 INTRODUCTION 

7.1.1 Site-specific recombination systems used in transgenesis 

Functional analysis in zebrafish usually involves the injection of constructs containing predicted 

cis-regulatory elements placed upstream of a minimal promoter linked to a fluorescent reporter 

gene. The expression of fluorescent reporter gene in the injected embryos is then used as readout 

for CRE activity. In most cases, Tol2 transposase-based transgenesis is used to facilitate the 

integration of the transgene into the host genome (Kawakami, 2005; Fisher et al., 2006b). 

However, one of the main limitations of Tol2-based transgenesis is position effect variation 

caused by the random integration of the transgene into the genome. The term "position effect" 

describes alterations of expression pattern and subsequent variation among individuals injected 

with the same transgene, due to the influence of the genomic context where the construct was 

integrated (Jaenisch et al., 1981; Wilson et al., 1990; Rossant et al., 2011). As a consequence of 

position effects, stable lines generated from the same construct usually display different 

expression patterns that hinder the assessment of the function of the tested CRE, besides forcing 

the generation of many stable transgenic lines to conclude on the correct expression pattern of an 

element. 

Position effect variation can be reduced by the use of site-specific recombinases (SSR). They 

function by recognizing target DNA sequences, bringing them together in a synapse and 

exchanging DNA strands after cleavage (Stark et al., 1992). There are two main families of SSR 

with different mechanisms of action. Cre from Bacteriophage P1 and Flp recombinase from S. 

cerevisiae belong to the λ family of integrases and can recombine DNA without accessory co-

factors (Bischof and Basler, 2008). They recognize loxP and FRT target sites respectively that 

consist of two identical 13 bp palindromic repeats separated by an asymmetric 8 bp core (Hoess 

et al., 1982; McLeod et al., 1986). Depending on the directionality of these target sites, the 
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recombination process can result in excision, inversion or integration of DNA fragments. A main 

limitation of Cre/lox and Flp/FRT systems is the bidirectional and reversible nature of the 

recombination reaction, which makes integration particularly unstable (Sauer and Henderson, 

1990). In contrast, PhiC31 integrase from Streptomyces phage Φ31, a member of the resolvase 

family of SRR, can catalyse directional or irreversible recombination of heterotypic attP and attB 

sites autonomously (Thorpe and Smith, 1998). The resultant attL and attR hybrid sites cannot be 

used as a substrate by the integrase, which is advantageous when integration is the only goal 

(Thorpe et al., 2000). The natural function of PhiC31 integrase is to facilitate the integration of the 

phage genome into the bacterial host genome by binding to two recognition sites, attP and attB, 

cleaving four DNA strands in a synaptic complex, rotating 180° one pair of half sites and ligating 

DNA strands (Smith et al., 2004). PhiC31 integrase has been shown to be active and efficient in 

mediating site-specific integration in several animal systems that include human cells (Groth et al., 

2000), mice (Belteki et al., 2003), flies (Olivares et al., 2002; Groth et al., 2004) and frogs (Allen 

and Weeks, 2005). 

7.1.2 PhiC31 integrase-based systems in zebrafish 

In zebrafish the first reports of PhiC31 integrase being active in somatic cells and the germline 

used a cassette-excision based strategy (Lister, 2010; Lu et al., 2011). This system´s design allowed 

them to monitor the rate of PhiC31-mediated intramolecular recombination by flanking a GFP 

fluorescent reporter gene with attP and attB sites, which would be excised if recombination 

happened (Lister, 2010). They also proved that the mouse-codon optimized version of the PhiC31 

integrase was twice as efficient in zebrafish than the native one (Raymond and Soriano, 2007).  

PhiC31 also allows for recombination-based cassette exchange, as demonstrated by (Hu et al., 

2011). This strategy, which is also functional in Drosophila (Bateman et al., 2006), was employed 

to exchange a reporter gene on targeted transgenes that had been incorporated into the 
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zebrafish germline through Tol2-based experiments. They also tested PhiC31 integrase fused with 

3´UTR of a primordial germ cell-specific nanos1 gene and concluded that it was significantly 

increasing the rate of recombination events in the germline (Hu et al., 2011). 

The great potential of PhiC31 integrase-based technology is the creation of attB/attP containing 

docking sites in the host genome, where site-directed recombination is possible, using either 

cassette exchange or integration approaches. This method would circumvent the need to create 

multiple transgenic lines and reduce significantly the position effects variation derived from the 

random integration of the transgenes in the genome. More importantly, a robust targeted 

integration system would aid in the exploitation of the transgenic zebrafish model for the 

functional analysis of SNP variants in CREs identified in large numbers by genome wide disease 

association studies (Maurano et al., 2012), particularly on those cases where the SNP was 

expected to cause only subtle, quantitative changes in gene expression (Gaulton et al., 2010; 

Rada-Iglesias et al., 2013), that would not be detected with a conventional technology prone to 

position effects, such as the commonly used Tol2-based transgenesis. 

7.1.3 Aims: 

In order to be able to quantitate expression differences caused by enhancer variants, we decided 

to develop a PhiC31-based method for transgene integration in zebrafish. We hypothesized that 

PhiC31 integrase-mediated transgenesis could reduce the variability to allow for a sensitive 

system that could detect subtle variations in expression patterns, such as those caused by 

disease-linked SNP variants. Within this global aim we set the following specific objectives: 

• To identify a single-copy recipient transgenic line that allows for robust enhancer tests. 

• To examine PhiC31-mediated recombination frequency and test the toxicity of the two 

PhiC31 integrase mRNA variants described in the literature. 
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• To use PhiC31 mediated transgenesis to quantitate subtle differences caused by disease-
associated SNP variants within enhancers. 

 

7.2 Preliminary data leading to the project: Development of PhiC31-based 
transgenesis system in the zebrafish embryo 

In collaboration with Darius Balciunas (Temple University, US), Ferenc Müller and Jennifer Roberts 

designed a site-specific integration system mediated by PhiC31 integrase in zebrafish. This system 

consists of two components: a "recipient transgenic line" containing a docking attP site in the 

genome and a targeting plasmid containing a donor attB site. To facilitate the screening of site-

specific integrations, a phenotypic selection tool based on fluorescent reporter colour change in 

the lens was designed (Figure 7.1A). 

Recipient transgenic lines Tg(Xla.crygc:attP-GFP) contained a lens-specific promoter (gamma-

crystallin from Xenopus laevis (Davidson et al., 2003), and attP site located upstream of GFP. The 

crygc:attP-GFP cassette drives green fluorescent expression in the lens. When the recipient 

transgenic line is injected with a targeting vector (pJET-attB-mCherry, (Roberts et al., 2014)) 

containing attB site upstream of a red fluorescent reporter gene (mCherry) and integrase mRNA, 

PhiC31 mediated integration is expected to produce crygc:attR-mCherry recombinant site, which 

can be scored by green to red colour change in the lens (Figure 7.1B). 
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Figure 7.1 In vivo detection system for targeted integration of reporter constructs in zebrafish.  
A. Schematic of PhiC31 targeted integration system. Transgenic embryo containing attP docking 
site shows green lens activity due to crystalline promoter driving GFP reporter gene. ITR labels 
Tol2 recognition sequences. Injection of a circular plasmid with attB and red reporter (targeting 
vector) leads to eye colour change upon PhiC31 targeted integration B. Detection of eye colour 
change upon PhiC31 mediated integration in the transgenic recipient Tg(Xla.crygc:attP-GFP)uobL6 
line. Top row shows a 5 dpf transgenic larva where PhiC31 legitimate recombination of attB-
mCherry cassette into the attP-GFP docking site has taken place. Bottom row shows an embryo 
where recombination did not occur. Side views of larvae with anterior to the left are shown. Scale 
bar indicates 100 µm. 
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7.3 RESULTS 

7.3.1 Analysis of the zygosity of zebrafish recipient transgenic lines 

In order to study changes in gene expression due to enhancer SNPs by targeted transgenesis, the 

transgenic recipient lines must carry a single and stable landing site, that is, only one copy of the 

Xla.crygc:attP-GFP transgene in the genome. Tol2-based Tg(Xla.crygc:attP-GFP)uobL6 and 

Tg(Xla.crygc:attP-GFP)uobL12 recipient transgenic lines (aka uobL6 and uobL12 for short) had 

been established by Jennifer Roberts by injecting WT embryos with pTol2/Xla.crygc:attP-GFP 

(pDB896) vector and growing up lens-GFP positive embryos, as described in (Roberts et al., 2014). 

To establish that the recipient line contained only a single copy of the attP site, I studied the 

germline transmission rates of multiple individuals from different generations of the recipient 

lines available at that time in the lab (uobL6F2 and F3 and uobL12 F2) in order to assess whether 

they approached Mendelian rates. Transgenic adults were bred to wild-type fish (1:1 crosses) and 

the offspring was analysed for green lens expression at 5 dpf. On average, transmission rates 

were close to 50% (Table 7.1) for individuals from uobL6 and uobL12, suggesting that there was 

only one integration site in the genome. I also identified two adult females from Tg(Xla.crygc:attP-

GFP)uobL6 F2 that produced 100% of GFP positive embryos, indicating that they were 

homozygous and had resulted from an incross of uobL6F1 individuals. 

Table 7.1. Germline transmission rate of existing transgenic recipient lines 

Transgenic line ID Generation 
Number of 
individuals 
outcrossed 

Total number of 
embryos analysed 

at 5 dpf 

Germline 
transmission, 
average (%) 

Tg(pTol2/Xla.Cryg-attP:GFP)uobL6  
 F3 8 648 51.4 
F2  2 269 100.0 

Tg(pTol2/Xla.Cryg-attP:GFP)uobL12  F2 15 2764 49.8 
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7.3.2 Molecular characterization of location, integrity and copy number of integration 
events in transgenic recipient lines 

As a first step towards the potential generation of a library of attP-containing recipient transgenic 

lines, I characterized molecularly the transgene integration events of the uncharacterized lines 

existing in the lab. In order to map the genomic locus harbouring the Xla.crygc:attP-GFP transgene 

in uobL6 and uobL12 recipient lines, extension primer tag selection linker-mediated PCR (EPTS-

LMPCR) was carried out on GFP+ clutches of outcrossed embryos from uobL12 F2, uobL6 F2 and 

F3 transgenic recipient lines. EPTS-LMPCR is a variation of LMPCR where genomic DNA fragments 

containing the transgene(s) are purified using a biotinylated primer that anneals to the Tol2 

terminal arms, therefore only allowing the mapping of transposon-mediated integration events. 

High-quality genomic DNA was extracted from 5 dpf embryo clutches and EPTS-LMPCR was 

carried out following a protocol described for Xenopus (Yergeau et al., 2007).  

By EPTS-LMPCR I could map in uobL6F2 and F3 lines a single Tol2-mediated transgene insertion in 

an intergenic region of chromosome 18 (Figure 7.2), 40 Kb away from the nearest coding gene. 

This integration site was further verified by PCR using primers specific to the zebrafish genome 

(not shown). However, backbone sequence from pTol2/Xla.crygc:attP-GFP (pDB896) were found 

flanking the transposon integration sites in the uobL12 F2 line, suggesting that there had been an 

illegitimate insertion of Tol2, where not only the Tol2-flanked cassette but also plasmid backbone 

had been integrated. Inverse PCR carried out by Jorune Balciunene and Darius Balciunas could 

map the integration site of uobL12 to an intergenic region of chromosome 1 (Roberts et al., 2014). 

In order to verify the transgene copy number in both lines, I performed Southern blotting of 5 dpf 

lens-GFP+ and GFP- clutches of embryos coming from uobL6 F2 homozygous and uobL12 F2 

heterozygous outcrosses (Figure 7.2B,C). We reasoned that if uobL6 homozygous recipient line 

contained one integration site in homozygosis, 100% of its offspring would be harbouring the 
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docking Xla.crygc:attP-GFP cassette and therefore could be used for efficient SNP testing. Two 

sets of enzymes had to be used to be able to confirm copy numbers: SacI with BamHI, which cut 

once in the construct backbone and once upstream attP site, respectively and BamHI and ApaI, 

cutting twice in the transgene (Figure 7.2D). Southern blot analyses confirmed that uobL12 

carried a Tol2-mediated multimer integration of the transgene with an approximate copy number 

of 11.6 (Figure 7.2B, C, D). Surprisingly, the Southern blot and Phosphoimager quantification also 

indicated that uobL6 homozygous individuals carried two independent copies of the 

Xla.crygc:attP-GFP transgene, one of them potentially being an insertion of the whole 

(pTol2/Xla.crygc:attP-GFP (pDB896) vector plasmid (Figure 7.2B).  

Because uobL6 F1 had been incrossed to produce F2, we hypothesized that there might have 

been a mixed population of transgenic fish in F1, where some fish were carrying the legitimate 

Tol2-mediated chr18 insertion identified by LMPCR, and some others were carrying the latter plus 

a full plasmid copy, which was located on a different chromosome and could therefore segregate. 

In order to test this hypothesis, regular PCRs were carried out with oligos present in the backbone 

of the pTol2/Xla.crygc:attP-GFP (pDB896) vector using genomic DNA from different uobL6 F2 and 

F3 individuals (Figure 7.3). PCR results indicated that the extra plasmid insertion was only present 

in F2 homozygous female 3 (uobL6F2.3) and therefore could segregate. These PCR results 

together with Southern blot carried out on uobL6 heterozygous fish by collaborator Darius 

Balciunas, showed that uobL6 F3 individuals did not carry the extra copy, and were therefore used 

for further experiments and to establish the next generation of uobL6. 
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Figure 7.2 Molecular analysis of uobL6 and uobL12 transgenic recipient lines by EPTS-LMPCR 
and Southern blot. 
A. USCS screenshots displaying the genomic context of transgene integration in uobL6 recipient 
line (grey vertical rectangle). The insertion site is 40 kb downstream of si:dkeyp-86e4.1 and 65 kb 
upstream of the nucb2b gene. B. Southern blot analysis of uobL6 and uobL12 recipient transgenic 
lines. Genomic DNA from batches of GFP-positive and GFP-negative embryos was digested with 
BamHI and ApaI, cutting once in the transgene and once in the backbone. Southern hybridization 
was performed with a radioactively labelled attP:GFP:Tol2 1.3 Kb probe (depicted in D). C. Copy 
number analysis of uobL12 was performed by digesting genomic DNA with BamHI and ApaI, which 
cuts in the backbone of pTol2/Xla.crygc:attP-GFP (pDB896) vector producing an expected band of 
1.3 Kb. Phosphoimager analysis suggests uobL12 carries 11.6 copies. D. Schematic of 
pTol2/Xla.crygc:attP-GFP (pDB896) vector including restriction sites used for Southern blot 
analysis and distances between them. Probe sequence is depicted by a dashed red rectangle.  
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Figure 7.3 Diagnostic PCR to evaluate the presence of plasmid backbone in the uobL6 F2 
homozygous fish 
Two sets of primers annealing in the Xla.crygc:attP-GFP transgene (GFP and X. laevis gamma-
crystallin promoter) and in pTol2/Xla.crygc:attP-GFP (pDB896) backbone construct (Ampicillin 
promoter reverse) were used to test whether the two homozygous individuals from uobL6 
(uobL6F2.2 and uobL6F2.3), and heterozygous individuals from uobL6F3 (F3.1, F3.4, F3.6), carried 
a plasmid integration non-mediated by Tol2 that could explain the double bands found at the 
Southern blot (Figure 5.3). Black arrow points at the expected band produced by a successful 
amplification of pTol2/Xla.crygc:attP-GFP (pDB896) backbone. L indicates 100 bp DNA Ladder 
from New England Biolabs.  
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7.3.3 Analysis of position effect variability in Tol2 and PhiC31-mediated transgenesis 

A common obstacle in transgenesis assays aiming to characterize enhancer function is position 

effect variability derived from the random integration of the transgene into the host genome, as 

discussed in Chapter 6. In order to test whether site-directed transgenesis mediated by PhiC31 

would help to reduce the position effect variability of expression patterns, we decided to evaluate 

enhancer activity driven by a highly conserved zebrafish element after integration in the genome 

by Tol2 or PhiC31-based transgenesis. The selected candidate enhancer, named EL161, showed 

more than 80% sequence identity with humans and was identified by collaborator Remo Sanges 

(Stazione Zoologica Anton Dohrn, Italy) as described in (Roberts et al., 2014). It is located on the 

last intron of esrrga zebrafish gene (Bardet et al., 2004; Thisse et al., 2004) and was postulated to 

regulate esrrga expression. In a preliminary study carried out in the lab, EL161 was cloned 

upstream of the krt4 gene minimal promoter, which shows minimal transcriptional activity 

(Gehrig et al., 2009), and tested in a Tol2-based transient assay in zebrafish. EL161 was shown to 

be active in the brain, however the expression was highly variable due to position effects (Yavor 

Hadzhiev, unpublished data).  

The same Tol2-based cassette containing EL161 element linked to krt4 promoter and Venus 

(Tol2/EL161-krt4:Venus) was cloned and tested by both Tol2 and PhiC31 transgenesis. The 

resulting vectors, namely pTol2/EL161-krt4:Venus and pattB-mCherry,Tol2/EL161-krt4:Venus, 

were injected in WT or uobL6/L12 embryos, respectively, as described in (Roberts et al., 2014). 

Tol2-mediated transgenesis is expected to integrate only the Tol2/EL161-krt4:Venus cassette into 

the genome (Figure 7.4A top), while PhiC31-mediated transgenesis integrates the whole vector, 

including Tol2/EL161-krt4:Venus and attB:mCherry cassettes (Figure 7.4B top). When injected 

embryos reached adulthood, founders were screened for positive offspring. Among 20 adults 

injected with Tol2 construct, 4 positive founders were identified (TF1-4, Table 7.2), where ten 
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different enhancer-driven complex expression patterns were recovered (numbered TP1-10, Table 

7.3, Figure 7.5). These results suggest multiple integration sites and that Tol2/EL161-krt4:Venus is 

highly susceptible to position effects (Figure 7.4A). Screening the offspring of all 29 surviving adult 

founders from uobL6 and uobL12 injected with PhiC31 integrase mRNA resulted in the 

identification of 4 positive founders (Table 7.2). Their offspring showed eye colour change during 

larval development together with EL161-driven YFP expression pattern, indicating site-specific 

integration events (Figure 7.4B, Figure 7.6). Notably, the 3 founders with targeted integration into 

the uobL6 line showed remarkable similarity in their expression patterns, in contrast to Tol2 

mediated transgene integrations, which were characterized by widely varying patterns (Figure 

7.4). 

 

 

 

 

 

Figure 7.4 Variability of position effects is sharply reduced among PhiC31-mediated transgenic 
lines when compared to Tol2 transgenesis 
A. Schematic of pTol2/EL161-krt4:Venus construct co-injected with Tol2 transposase mRNA. 
Below examples of expression patterns of transgenic F1 larvae (3 dpf). TP indicates Tol2 mediated 
expression patterns. Venus expression domains are labelled as in Figure 7.7B.  B. Schematic 
drawing on top indicates the recombination of the targeting plasmid pattB-mCherry,Tol2/EL161-
krt4:Venus into the attP docking site of transgenic recipient line Tg(Xla.crygc:attP-GFP)uobL6. 
Larvae from three different founders (IF1, IF2, IF8) targeted with PhiC31 integrase are shown. 
Venus expression domains are labelled as in Figure 7.7B. Lens activity driven by mCherry (arrows 
in bottom row) demonstrates PhiC31-mediated integration. Insert in bottom right shows bright 
field representation of the head region imaged. Arrows in red channel indicate auto-fluorescence 
of the yolk syncytial layer. Dorsal views of larvae head are shown. Scale bar is 100µm. 
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(See previous page for figure legend)   
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Figure 7.5 Tol2 transgenic founders show variable position effects on EL161 driven reporter 
activity. 
All of the different expression patterns shown by Tol2 transgenic lines injected with pTol2/EL161-
krt4: Venus construct. Tol2 patterns (TP) are numbered from 1 to 10. Dorsal and lateral views of 
YFP and brightfield channels are shown and annotated domains correspond to the expression 
domains described in Figure 7.7. Larvae are protruding mouth stage (approximately 3 dpf) with 
anterior to the left. Scale bar indicates 100 μm. 
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Table 7.2 Survival and transmission rates of PhiC31 and Tol2 founders 

Strain injected Method of 
transgenesis Targeting vector Number of screened 

individuals Transmission rates % (n) 

AB*WT  Tol2 transposase pTol2/EL161-krt4:Venus 20 20 (4) 
Tg(pTol2/Xla.Cryg-attP:GFP)uobL6 PhiC31 integrase pattB-mCherry,Tol2/EL161-krt4:Venus 25 12.0 (3) 

Tg(pTol2/Xla.Cryg-attP:GFP)uobL12  PhiC31 integrase pattB-mCherry,Tol2/EL161-krt4:Venus 4 25.0 (1) 
 

 

Table 7.3 Analysis of the offspring of Tol2 founders 

Founder ID 
Total number 

of embryos 
analysed 

Transmission rates (%) Tol2 patterns Transmission rate per 
pattern (%) 

Tol2 founder 1 (TF1) 246 15.0 

TP1 2.8 
TP2 2.0 
TP3 3.3 
TP4 5.7 
TP5 1.2 

Tol2 founder 2 (TF2) 109 5.5 
TP6 4.0 
TP7 6.7 

Tol2 founder 3 (TF3) 236 10.7 
TP8 4.7 
TP9 0.8 

Tol2 founder 4 (TF4) 150 12.6 TP10 12.6 
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Table 7.4 Analysis of the offspring of integrase founders 

  

Founder ID 
Total number 
of F1 embryos 

analysed 

Percentage of 
green lens 

embryos (n) 

Percentage of red lens 
embryos with YFP pattern 

(n) 

Percentage of 
embryos with YFP 

pattern only (n) 

Percentage of 
embryos with green 

and red lenses(n) 

Percentage of 
negative 

embryos (n) 

uobL6- Founder1 (IF1) 228 35.2 (81) 11.7 (27) 0.0 (0) 0.0 (0) 52.6 (120) 
uobL6- Founder 2 (IF2) 116  36.2 (42) 6.0 (7) 0.0 (0) 0.0 (0) 57.8 (67) 
uobL6- Founder8 (IF8) 372 43.0 (160) 11.0 (41)  0.0 (0) 0.0 (0) 51.1 (190) 

uobL12- Founder1 (IF1) 100 22.0 (22) 15.0 (15) 0.0 (0) 21.0 (21) 42.0 (42) 
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Figure 7.6 PhiC31-mediated transgenic founders show highly reproducible expression patterns. 
Neuronal expression patterns obtained in integrase injected founders uobL6 IF1, uobL6 IF2, uobL6 IF8 and uobL12 IF1. Red lens indicates legitimate 
PhiC31-mediated integration into the Xla.crygc:attP-GFP cassette from either Tg(Xla.crygc:attP-GFP)uobL6 or Tg(Xla.crygc:attP-GFP)uobL12. Auto-
fluorescent yolk syncytial layer (ysl) is marked by arrows in mCherry images. YFP channel shows EL161-driven expression patterns are listed in Figure 7.7. 
Larvae are at protruding mouth stage (3 dpf) with anterior to the left. Scale bar indicates 100 μm.  
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7.3.4 Evaluation of EL161 enhancer function using PhiC31-mediated transgenesis 

To evaluate the specific reporter activity driven by EL161 element and to dissect enhancer driven 

activity from position effects, we identified distinct expression domains and analysed the 

frequency of their occurrence in targeted and random transgene integration loci. A total of 20 

domains of activity labelled 1-20 were identified (Figure 7.7). PhiC31 integrase-mediated activity 

was present in 7 distinguishable expression domains in the neural tube (Figure 7.4B, Figure 7.6), 

six out of which were shared between the 3 integrase lines with targeting events in the same 

uobL6 docking site. Only one additional domain (Domain 7) was registered in one of these lines 

(uobL6 IF1) indicating mild variation (Figure 7.7B) that was not due to mutations of the integrated 

transgene. In contrast, Tol2 lines showed a total of 21 expression domains with a variation 

between 7-12 domains per pattern, which included a variety of tissues such as somatic muscle, 

pectoral fins and heart besides neural tube activity (Figure 7.7, Figure 7.5). This result indicated 

that integrase-mediated targeting of a single locus (in uobL6) led to reduced variability of 

expression patterns induced by a neural enhancer among transgenic lines. 

The expression domains 1-6 were shared among uobL6 and uobL12 integrase founders and were 

present in 8 out of 10 Tol2-mediated patterns, which together suggested autonomous enhancer 

activity in these neural domains. This result demonstrated that the shared expression patterns 

were unlikely to be due to position effect at the uobL6 locus and were an autonomous property of 

the targeting transgene (Figure 7.7). Notably, these 6 shared expression domains including 

epiphysis, diencephalic and hindbrain nuclei and tegmentum, overlapped with expression 

domains of the esrrga gene (Figure 7.8, www.zfin.org, (Bardet et al., 2004) suggesting that EL161 

may contribute to the activity of esrrga in these neural subdomains. Low level of variability was 

still observed in the integrase transgenic lines, at least in part explained by variation in focal 

planes of imaging as well as by potential differences in developmental stage of the individuals 
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imaged. For stage-dependent variation of transgene activity see Figure 7.9. Nevertheless, the 

variability of expression patterns among PhiC31-mediated targeted integrants was significantly 

lower than those found among Tol2-mediated transgene integrants (Likelihood Ratio = 15.0, DF = 

1, p = 0.0001). Taken together, the low variability of transgene activity observed in PhiC31 

targeted integration events demonstrated superior reproducibility and robustness of enhancer 

driven expression patterns as compared to that obtained by transposase mediated integration. 

These experiments demonstrated that PhiC31-mediated system could limit if not completely 

overcome position effect variability, and therefore represented a refined alternative for SNP 

quantitation. 
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Figure 7.7 Reproducible Venus expression patterns upon targeted integration of EL161 enhancer 
construct demonstrate cis-regulatory function in the brain 
A. Brain-specific enhancer effect of a transgene inserted in different integration sites. Domains of 
Venus activity are specified in panel B. Dorsal (top) and lateral (bottom) views onto the head of 3 
dpf F1 transgenic larvae. Scale bar is 100 µm. B. Domains of Venus reporter expression and their 
distribution among targeted (PhiC31 integrase) and randomly (Tol2 transposase) transgenic lines. 
Abbreviations: IF- integrase injected founders, IP- integrase mediated expression patterns, TF- 
Tol2 injected founders and TP-Tol2 mediated expression patterns. Blue depicts expression 
domains overlapping with esrrga activity, whereas red colour indicates additional domains. Light 
blue indicates weak expression. 
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Figure 7.8 Tissue-specific activity driven by EL161 element overlaps with endogenous expression domains of endogenous esrrga gene. 
60 hpf embryos probed with esrrga (left) share 5 expression domains with integrant founders from uobL6 (right) probed with Venus. Dorsal and lateral 
images are shown. Expression domains are labelled as listed in Figure 7.7. Note that esrrga domain 1 (epiphysis) is weakly expressed at this stage, but 
shows a strong expression earlier in development. Lens from bottom left embryo was removed to allow visualization of inner brain domains. Scale bar 
indicates 100 μm. 
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Figure 7.9 EL161 putative enhancer from essrga locus drives a complex and dynamic neuronal 
pattern. 
Complexity and dynamic pattern of pattB-mCherry,Tol2/EL161-krt4:Venus construct integrated in 
uobL6 IF1 are shown from 60 hpf to 96 hpf. Red lens indicates PhiC31-mediated legitimate 
integration. YFP channel shows the dynamic expression pattern driven by the injected construct. 
Domains of expression are listed in Figure 7.7. All larvae are oriented anterior to the left. Scale bar 
indicates 100 μm.  
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7.3.5 Analysis of the effect of PhiC31 integrase mRNA on embryo and PGC survival 

It was recently demonstrated that PhiC31-nos1-3’UTR to PhiC31 mRNA lead to improved embryo 

survival and germline transmission of recombination events in zebrafish (Hu et al., 2011). We 

reasoned that the usage of an integrase variant that led to higher survival and similar germline 

transmission rates could be advantageous for our SNP experiments, where large numbers of 

transgenic lines would be needed in order to quantify predictably subtle differences in expression 

pattern and/or intensity. Therefore, I injected uobL6 F3 embryos (the recipient line carrying one 

single integration site) with both the WT and PhiC31-nos1-3’UTR version of PhiC31 integrase 

mRNA and analysed the survival rates over 72 hpf (Table 7.5). 

In accordance with previous findings (Hu et al., 2011), we observed that PhiC31 mRNA in vitro 

transcribed from pCS2+ vector was highly toxic to zebrafish embryos using as little as 15 pg of 

integrase (Table 7.5). We also consistently observed improved survival upon PhiC31-nos1-3’UTR 

injection when compared to PhiC31 wild type version, while the red lens conversion efficiency 

remained similar (8.52% n=171 embryos using PhiC31-nos1-3’UTR versus 5.74%, n=100 using the 

regular PhiC31 mRNA). 

Table 7.5: PhiC31 integrase mRNA toxicity rates and embryo survival analysis 

Injection solution 
Total number 

of injected 
embryos 

Survival rate 
at 72 hpf 

(average % ± 
st dev) 

Number 
of 

replicates 

15 ng/μL pCS2+PhiC31 integrase RNA 465 25.8 ± 0.15 3 
30 ng/μL pCS2+PhiC31 integrase RNA 422 13.8 ± 0.05 3 
15 ng/μL pCS2+PhiC31-nos1-3'UTR integrase RNA 385 85.8 ± 0.03 3 
30 ng/μL pCS2+PhiC31-nos1-3'UTR integrase RNA 395 74.8 ± 0.03 3 
 

Although the mechanism by which PhiC31 exerts its actions is not known, we thought that if 

PhiC31-nos1-3’UTR mRNA was differentially more stable in the primordial germ cells (PGCs, 



 

209 

 

(Koprunner et al., 2001)), its toxicity could potentially deplete them and produce a high level of 

sterility among adults, even though previous studies with PhiC31-nos1-3’UTR had not reported it 

(Hu et al., 2011). In order to test the viability of PGCs, uobL6 F3 embryos were injected with 

PhiC31 and PhiC31o-nos1-3’UTR mRNA (15 and 30 ng/µl) and PGCs were stained using anti-vasa 

antibody (kind gift from Holger Knaut). Vasa protein is restricted to the germ line (Knaut et al., 

2000) and therefore it is a suitable marker for the assessment of PGC number and viability. Our 

results showed that injection of PhiC31-nos1-3’UTR mRNA did not substantially reduce the 

viability of primordial germ cells (Table 7.6, Figure 7.10), and therefore there was no indication 

against using PhiC31o-nos1-3’UTR for further experiments. 

Table 7.6 Primordial germ cells survival rates upon PhiC31 integrase injections. 

Injection solution Total number of 
embryos analysed 

Number of PGCs 
at 24 hpf 

(average ± st 
dev) 

15 ng/μL pCS2+PhiC31 integrase RNA 21 19.4 ± 4.19 
30 ng/μL pCS2+PhiC31 integrase RNA 17 18.5 ± 4.77 
15 ng/μL pCS2+PhiC31-nos1-3'UTR integrase RNA 25 19.2 ± 5.55 
30 ng/μL pCS2+PhiC31-nos1-3'UTR integrase RNA 12 19.6 ± 5.13 
Uninjected group 30 20.3 ± 5.22 
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Figure 7.10 Analysis of PGC survival in embryos injected with PhiC31 mRNA 
Lateral view of 24 hpf embryo (anterior to the left) stained with anti-vasa antibody (kind gift from 
Holger Knaut). Magnified view of the genital ridge area (bottom right insert) showing stained 
PGCs (arrow). 
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7.3.6 Design of an attB-containing vector to harbour enhancers and measure allelic 
differences  

In order to facilitate the test of multiple enhancers and promoters, a vector containing a 

multicloning site upstream attB-mCherry targeting cassette in pJET-attB-mCherry plasmid 

(Roberts et al., 2014) was designed, where cis-regulatory elements of interest could be easily 

exchanged using cloning (Figure 7.11A). 

A multicloning site was placed upstream attB targeting site and as a reporter gene YFP was 

chosen, so that there was no spectrum overlap with mCherry reporter gene. This design allows for 

the insertion of promoters using AgeI/XhoI sites and the cloning of enhancers using EcoRI, EcoRV, 

SpeI or HindIII sites. For enhancers, in-fusion cloning (see Chapter 2) is the preferred option, since 

only one restriction site from the vector is needed. The expectation is that when this construct 

containing an enhancer:promoter:YFP cassette upstream attB-mCherry transgene is co-injected 

with nanos-Phic31 mRNA in uobL6 transgenic recipient line and PhiC31-mediated recombination 

happens, transgenic fish will exhibit red lens in approximately 8-9% of the cases (see above) 

together with enhancer pattern driven YFP expression (Figure 7.11B). Previous experience testing 

this system with wild-type version of PhiC31 mRNA and the zebrafish EL161 enhancer indicated 

that random integration of the targeting vector in the genome was extremely unlikely to result in 

red lens co-occurring with enhancer-driven YFP pattern.  
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Figure 7.11 Overview of PhiC31 transgenesis system for the detection of SNP variants. 
A. Map of the construct designed to test enhancer containing SNP variants using PhiC31-mediated 
transgenesis system. A vector containing attB-mCherry targeting site, was modified to contain a 
putative enhancer linked to a promoter and YFP reporter gene. In this example TCF7L2 putative 
enhancer (Gaulton et al., 2010) containing the C common variant of SNP rs7903146 was cloned 
upstream endogenous zebrafish tcf7l2 promoter. B. Schematic drawing of the targeting plasmid 
pJETattB-mCherry,TCF7L2:tfc7l2:YFP co-injected with PhiC31 mRNA into the docking site of 
Tg(Xla.crygc:attP-GFP) transgenic recipient line and the resultant genomic recombination 
occurring in injected embryos.  
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7.3.7 Selection of SNP-containing enhancers to be tested by PhiC31-mediated 
transgenesis 

To test whether PhiC31-mediated transgenesis system could be used for the quantitative analysis 

of SNP variants, human enhancers containing disease-associated SNPs were cloned into our 

customised attB-containing construct and the system efficiency was evaluated by establishing 

transgenic lines. In order to test the system, four sets of human enhancers associated with 

disease were selected (Table 7.7). These putative enhancers contained SNPs linked to type-two 

diabetes (T2D) and for all of them there is in vitro evidence that the SNP variant was causing a 

significant difference in the enhancer activity by luciferase assays in pancreas cell lines (Gaulton et 

al., 2010; Pasquali et al., 2014). 

Table 7.7. Type-2-diabetes associated putative enhancers selected for SNP quantitation assays 

Human Cis-
regulatory 
element 

Genomic coordinates 
(Hg18) 

Disease-
associated 

SNP 

Allelic 
variants GWAS Reference 

Zebrafish 
promoter 

used in assays 

TCF7L2 chr10:114748258-
114748496 rs7903146 C>T (Cauchi et al., 2007) tcf7l2 

ZFAND3 chr6:37883254-37883831 rs58692659 C>T (Cho et al., 2012) hsp70 
C2CD4A chr15:60178441-60179347 rs7163757 C>T (Schaub et al., 2012) hsp70 
PROX1 chr1:212242977-212243697 rs4282786 G>A (Stitzel et al., 2010)  prox1 

 

The selection of an appropriate promoter is important for testing enhancer function, as it has 

been discussed throughout this thesis (Chapters 3, 4 and 6). In the case of putative enhancers 

located in introns (PROX1 and TCF7L2), we decided to take the minimal promoter of the 

endogenous gene harbouring the enhancer candidates. In the case of putative enhancers located 

in gene deserts (12 kb upstream the closest coding gene in the case of ZFAND3 enhancer and 

27kb downstream the closest coding gene for C2CD4A enhancer), we decided to use a minimal 

promoter hsp70, which had been shown to give a minimal to non-existing background in previous 

analyses (Gehrig et al., 2009; Pasquali et al., 2014). 
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7.3.8 Transient analyses of attB containing enhancer constructs injected in uobL6 

For each tested putative human enhancer tested in vivo three constructs were made: two vectors 

contained the enhancer carrying either the common or the non-common allelic variant of the 

T2D-associated SNP, linked to the zebrafish promoter and YFP fluorescent protein. Moreover, an 

enhancer-less (promoter only) control was used to assess the regulatory activity originating from 

the zebrafish gene promoter (Table 7.8). 

These constructs were co-injected with 15 ng/µl PhiC31o-nos1-3’UTR mRNA in embryos resulting 

from outcrosses between uobL6 F3 individuals and AB* WT zebrafish adults. YFP-driven 

expression pattern and GFP to mCherry lens colour switch was monitored and at 5 dpf, all 

transgenic fish were grown up (Table 7.9). The lack of enhancer driven-YFP expression was initially 

attributed to the lack of expression shown by this element when tested in Tol2-mediated 

transgenesis (as discussed in the previous chapter) and due to the PGCs-specific targeting driven 

by PhiC31o-nos1-3’UTR. 
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Table 7.8 Primers used to clone human putative enhancers and zebrafish promoters into attB containing vector 

Cis regulatory element 
Forward primer (5’-3’) Reverse primer(5’-3’) Element size 

  (Hg18 or Zv9) 

TCF7L2 TTTTGATATCAATTCATGGGCTTTCTCTGC AAAAACTAGTGTGAAGTGCCCAAGCTTCTC 239 bp 

ZFAND3 CATGGAATTCACTAGTTCATGTTTCCCCCGTATGT AGGCGCCAAAACTAGTCCTGCCCCAAGTTGCACAG 578 bp 

C2CD4A CATGGAATTCACTAGTACATCCCTTACCCTTACTGGA AGGCGCCAAAACTAGTGGCAATGCGGGCTCTTTTT 907 bp 

PROX1 CATGGAATTCACTAGTGCAAAAATGAACTTGAGAAATCC AGGCGCCAAAACTAGCATTCCCTTTAATATCCCATGC 721 bp 
hsp70 zebrafish 

promoter AAAAAACCGGTTTGATTGGTCGAACATGCTGG AAAAACTCGAGCAGTCCGCTCGCTGTCTCGCT 149 bp 

prox1 zebrafish promoter AAAAACCGGTTCCGCACAGAGAACGTATTG AAAAGTCGACTGAGCTTCTTCGCGATAGTG 423 bp 

tcf7l2 zebrafish promoter CCCCACCGGTTCAGCCTCTTCTGTTTTGAGCAG TTTTCTCGAGTTTAAGTTTAGGGACTCGCAGTGG 641 bp 
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7.3.9 Analysis of T2D-associated TCF7L2 enhancer using PhiC31-mediated transgenesis 

Due to time constraints only TCF7L2 enhancer was tested and included in this thesis. TCF7L2 

putative enhancer was one of the most interesting examples, since regulatory variation within 

SNP rs7903146 has the strongest link effect to T2D demonstrated so far (Cauchi et al 2007). In 

order to determine whether we could effectively use PhiC31-based transgenesis in zebrafish to 

quantitate small differences in either intensity or pattern coming from TCF7L2, we decided to 

analyse the offspring of sexually mature injected founders outcrossed with WT fish. We found at 

least three transgenic founders per injected construct (Table 7.9) giving mosaic offspring with red 

lens during development (Table 7.10), indicating that PhiC31-mediated integration had occurred 

and that PhiC31o-nos1-3’UTR mRNA variant could efficiently mediate site-specific integration. 

However, the progeny did not show any enhancer-driven YFP tissue-specific expression (Figure 

7.12). Suspecting YFP translational problems, we decided to fix 96 hpf embryos showing red-lens 

conversion and performed WISH using a DIG-labelled YFP antisense probe (Figure 7.13), but none 

of the embryos showed any enhancer driven expression, whilst sibling negative embryos probed 

with esrrga transcription factor showed a clear neuronal pattern that matched the expected 

endogenous gene activity. These negative results could be attributed to an extreme weakness of 

the YFP signal caused by the presence of a single copy in the genome. Alternative explanations 

include that the docking site in uobL6 might not provide the right genomic environment for this 

enhancer or that zebrafish cells cannot interpret functionally this non-conserved human element; 

or that this element does not hold regulatory potential. 
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Table 7.9 Germline transmission rates of PhiC31 founders 

Line Number of lens-GFP + 
embryos grown up (5 dpf) 

Number of screened 
individuals 

Number of red lens 
positive founders 

Germline 
transmission 
rates % (n) 

Tg(γcry:ATTR-mCherry,Hs.TCF7L2-C-tcf7l2:YFP-ATTR-GFP) 164 54 5 9.3 (5) 
Tg(γcry:ATTR-mCherry,Hs.TCF7L2-T-tcf7l2:YFP-ATTR-GFP) 179 22 3 13.6 (3) 
Tg(γcrya:ATTR-mCherry,tcf7l2:YFP-ATTR-GFP) 134 40 3 7.5 (3) 
 

 

Table 7.10 Analysis of the offspring of integrase founders 

Line Founder 
ID 

Total number of F1 
embryos analysed 

Percentage of red lens 
embryos %,(n) 

Percentage of embryos with 
enhancer YFP pattern %,(n) 

Tg(γcry:ATTR-mCherry,Hs.TCF7L2-C-tcf7l2:YFP-ATTR-GFP) 

C9 69 13.0 (9) 0.0 (0) 
C11 108 1.8 (2) 0.0 (0) 
C12 21 4.8 (1) 0.0 (0) 
C18 126 15.9 (20) 0.0 (0) 
C19 58 29.3 (17) 0.0 (0) 

Tg(γcry:ATTR-mCherry,Hs.TCF7L2-T-tcf7l2:YFP-ATTR-GFP) 
T1 120 5.8 (7) 0.0 (0) 
T3 348 10.9 (38) 0.0 (0) 

T28 126 20.6 (26) 0.0 (0) 

Tg(γcrya:ATTR-mCherry,tcf7l2:YFP-ATTR-GFP) 
ek1 225 13.3 (30) 0.0 (0) 

ek13 98 16.3 (16) 0.0 (0) 
ek31 234 23.1 (54) 0.0 (0)) 
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Figure 7.12 PhiC31-mediated integration detected by conversion of reporter expression in 
TCF7L2-containing transgenic lines  
96 hpf representative embryos from TCF7L2 containing transgenic lines. Lens activity driven by 
mCherry demonstrates PhiC31-mediated integration. Transgenic founders are named as in Table 
7.10. Arrows in green and red channels indicate auto-fluorescence of the yolk syncytial layer. 
Lateral views of larvae head to the left are shown. Scale bar represents 100µm.  
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Figure 7.13 Absence of TCF7L2 enhancer-driven pattern demonstrated by WISH 
Representative embryos from each transgenic line probed with DIG-labelled YFP antisense probe. 
None of the embryos showed any tissue-specific activity despite PhiC31-mediated integration 
evidenced by red lens conversion. Technical control embryos of Tg(ARE:hsp70:YFP) transgenic line 
probed with YFP showed the expected jaw-specific expression pattern (bottom left panel). TCF7L2 
transgenic founders are named as in Table 7.10. All embryos are 96 hpf, oriented laterally, 
anterior to the left. Scale bar represents 100µm.  
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7.3.10 Establishment of new transgenic recipient lines  

Due to the finding that uobL12 contained a Tol2-mediated multimer integration, which 

contradicted previous literature of Tol2 transposon only mediating a single insertion site into the 

genome (Kawakami et al., 2000), I decided to establish new transgenic recipient lines, widening 

the choice of landing sites for enhancer testing. 

Wild-type embryos were co-injected with 15 ng/µl of pTol2/Xla.crygc:attP-GFP (pDB896) and Tol2 

mRNA and positive embryos were grown up to sexual maturity. Then, adults were outcrossed 

with wild type fish and the offspring was screened for green lens. Out of 10 individuals screened 2 

positive founders were identified. EPTS-LMPCR results from one of the lines suggest that there is a 

single integration site on an intergenic region on chromosome 17 (coordinates for Zv9 are 

chr17:38,691,215). It is 215 kb downstream mbip and 50 kb upstream sptb coding genes and 

could potentially be used for further enhancer assays. 

7.3.11 Further perspectives 

At the time this thesis was prepared, founder fish injected with ZFAND3, PROX1 and C2CD4A 

enhancers associated with T2D had reached sexual maturity. Outcrosses will be carried out, as 

described in this chapter for TCF7L2 and the co-occurrence of YFP enhancer expression and red 

lens will be used as indicators of PhiC31 mediated integration into the germline. Expectations are 

that if these human elements can be interpreted by the zebrafish embryo, SNP differences will be 

quantified by fluoresce imaging, WISH and quantitative PCR of the reporter gene. 
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7.4 DISCUSSION 

In this chapter we report the design of a site-directed integration system mediated by PhiC31 

integrase in zebrafish, where docking transgenic lines containing attP sites in known genomic 

locations can be targeted by attB containing donor vectors that include CREs of interest. By using 

site-specific transgenesis, we expect to reduce position effect variation and therefore create a 

more robust system for the detection of subtle differences coming from SNP variants in CREs. 

There are examples in the literature of SSR functioning in zebrafish (Boniface et al., 2009) but 

PhiC31 is particularly efficient because of its directional recombination between heterotypic attB 

and attP target sites (Thorpe et al., 2000). Using this system reproducible expression pattern 

driven by EL161 predicted transcriptional enhancer was found, where the observed expression 

domains appeared to match broadly the endogenous activity of esrrga, the predicted target gene. 

Given that enhancers can act at distances as far as 1 Mb, reviewed by (Krivega and Dean, 2012), 

unambiguous identification of target genes remains challenging. Nevertheless, several esrrga 

expression domains with reproducible activity in independent genomic integration sites could be 

identified. Tol2 transgenics also showed several of the enhancer-specific patterns but were mostly 

coupled to a variety of additional ectopic patterns.  

In concordance with previous reports, PhiC31 integrase mRNA can be highly toxic in zebrafish 

embryos (Hu et al., 2011). We have shown that the use of PhiC31 fused with 3´UTR of nanos1 can 

significantly reduce the toxicity after injection (Table 7.5), without affecting the recombination 

rate measured by red lens colour change or the viability of the PGCs. We have also demonstrated 

germline transmission of site-specific integration of around 15% in adult founders, which is higher 

than our previous work with codon-optimized PhiC31 integrase (Roberts et al., 2014).  
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For TCF7L2 enhancer test we chose uobL6, a well characterised landing line that had proven to be 

an excellent docking site for the analysis of esrrga zebrafish enhancer. An additional advantage of 

a site-directed transgenesis system based on the creation of attP landing sites is that it allows for 

evaluation of the genomic landscape the transgene was integrated into. However, careful 

molecular analysis of the docking lines is required to ensure that a single attP containing 

transgene is harboured. Our transgenic docking lines were created by Tol2 transgenesis and 

despite having been described to integrate a single copy of Tol2 arms-flanked transgenes 

(Kawakami et al., 2000), Tol2 independent integration events of full plasmid or fragments are not 

unheard of and are actually expected to happen in low frequency via NHEJ. 

Similar complications during the selection of recipient transgenic lines have been reported by 

Mosimann and colleagues, who designed a similar site-specific approach in zebrafish based on the 

creation of several transgenic lines harbouring attP landing sites targeted by attB containing 

donor Gateway constructs (Mosimann et al., 2013). They characterized three functional Tol2 

transgenic lines carrying a single attP site that allows for attB flanked transgene integration. 

However, the authors encountered difficulties during the characterization process, since one of 

the lines was defective and another one showed ectopic transgene expression, attributed to 

enhancer trapping of the attP containing Tol2 transgene (Mosimann et al., 2013). 

Nevertheless, such systems provide the basis for creating a library of transgenic docking sites 

where optimal genomic environments for CREs can be identified and where the effect of genomic 

locations on different enhancers or enhancer-promoter combinations could be tested. Such 

efforts have started in Drosophila, where around 100 attP transgenic lines have been 

characterized (Groth et al., 2004; Bateman et al., 2006; Bischof and Basler, 2008; Venken and 

Bellen, 2012) and attempts to measure position effects in various loci have led to the conclusion 

that an attP docking site that permits optimal transgene expression in one tissue might not be as 
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effective in another, and that the perfect attP site might not even exist in any vertebrate genome 

(Markstein et al., 2008). 

Despite describing a readily available system consisting of fully characterized transgenic lines 

carrying single functional attP sites, custom-made attB containing donor vectors that allow easy 

cloning of enhancers and promoters and highly efficient PhiC31 mRNA, we have not been able to 

prove TCF7L2 human enhancer function using this system or have been able to quantitate 

differences coming from SNP variants within this CRE. We can possibly attribute the negative 

enhancer results to a suboptimal genomic location of the landing site or to the fact that this non-

conserved enhancer does not actually harbour regulatory potential in zebrafish. As discussed in 

the previous chapter, we have obtained inconclusive results regarding TCF7L2 enhancer specificity 

with Tol2-based transgenesis. Although mosaic transient transgenic experiments showed no 

reporter activity, the fact that islet-specific expression was found among the expression patterns 

displayed by stable transgenic lines, suggested that this activity was enhancer driven. The fact 

that SNP rs7903146 is the strongest link to T2D so far also underlines the relevance of this 

experiment. 

To identify optimal sites for CREs, more docking lines need to be created and molecularly 

characterized, which is both laborious and time consuming. A short term improvement in the 

current recombination efficiency would require the creation of homozygous attP adult fish, where 

100% of the offspring would be bearing the docking site and therefore would double the number 

of recombinants per injected clutch and reduce labour time by skipping the selection of positive 

transgenic embryos after injections. Future experiments should also include testing a known 

human enhancer that is functional in zebrafish and that includes a disease associated SNP. 

Breeding of the fish already injected with human enhancers associated with T2D (Table 7.7) 

should shed light on the feasibility of this system. Additionally, the application of recent genome 



 

224 

 

editing tools such as TALENs or CRISPRs opens the future to engineered attP site-containing 

transgenic recipient lines, which would circumvent drawbacks derived from the random 

integration mediated by commonly used transposons and provide a higher flexibility in choosing 

the genomic landscape of landing sites. 
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Chapter Eight: GENERAL DISCUSSION AND PRESPECTIVES 

8.1 Using zebrafish transgenics to validate human enhancers 

The identification of cis-regulatory elements remains a challenging task due to the lack of 

distinguishing signatures at the sequence level and our poor understanding of CRE structure and 

genomic distribution. Recently, the combination of approaches based on cross-species sequence 

conservation, genome-wide maps of epigenetic marks, binding data of transcriptional co-factors 

and open chromatin sites, have proven successful in predicting regulatory regions (Visel et al., 

2009a; Rada-Iglesias et al., 2011; Djebali et al., 2012). However, computational predictions have 

led to the identification of large numbers of candidate CREs with unknown function. Thus, the 

main objective of this thesis was to evaluate the utility of the transgenic zebrafish embryo for 

detecting the functionality of human regulatory regions predicted by various genome-wide 

strategies  

I studied the function of 5 evolutionarily conserved candidate enhancers defined in human 

isolated islets by the presence of pancreas-specific TF binding events and active histone 

modification marks, including H3K4me1 and H3K27ac (Chapter 3). Rapid transient transgenesis 

assays demonstrated that all of the tested candidates were active in the zebrafish embryo, 

whereas control regions devoid of epigenetic marks failed to drive any tissue-specific expression, 

arguing for the specificity of the enhancer selection process. Three of the tested CREs showed 

reproducible reporter expression in the endocrine pancreas, both in transient and stable lines, 

and two of them in neuronal tissues, broadly reproducing the expression pattern of the predicted 

zebrafish candidate genes. Overall, these results suggest that there are conserved regulatory 

codes acting in vertebrate pancreas development, indicating that zebrafish would be a valuable 

tool to study pancreas cis-regulation in humans. 
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Interestingly, these experiments also showed that enhancers behave differently when coupled to 

different promoters in vivo. Functional test of CRE3-5, which is located in the second intron of 

RFX2, revealed that the gata2 promoter was more sensitive to regulatory input from the 

candidate enhancer than hsp70 and could activate an additional expression pattern in the 

pancreatic islet of zebrafish; confirming the findings of other studies that have tested putative 

enhancers with several promoters (Allende et al., 2006; Bessa et al., 2009; Gehrig et al., 2009; 

Navratilova et al., 2009). In fact, there is a wide variety of promoters used for enhancer tests in 

the literature, ranging from heterologous minimal promoters, such as EB1 (Li et al., 2010b; Ritter 

et al., 2010; Ritter et al., 2012) or hsp70 (Rada-Iglesias et al., 2011), to large gene promoters such 

as cardiac myosin (Shin et al., 2005) or gata2 promoters (Bessa et al., 2009; Navratilova et al., 

2009; Royo et al., 2011; Royo et al., 2012; Bhatia et al., 2013). Our results and others mentioned 

here highlight the importance of enhancer-promoter interactions in vivo and argue that the 

promoter choice will influence our capacity to detect enhancer function. 

In Chapter 5 we tested whether bidirectional transcription, detected at enhancer locations by the 

FANTOM5 Consortium, could be used as a novel enhancer predictive tool, and whether predicted 

enhancers would be functional in the context of an organism. Transient transgenesis assays 

demonstrated that 3 out of 5 bidirectionally transcribed enhancers were active in zebrafish, 

recapitulating the tissue-specificity shown by the human sequences in vitro. These results 

suggested that bidirectional transcription is predictive of active enhancers and that the zebrafish 

could interpret 60% of the enhancers showing sequence homology. The limited set of enhancers 

tested prevented us from establishing statistical correlations between sequence conservation and 

conserved expression. However, there are a few studies in the literature that have analysed this in 

detail by testing the same candidate enhancer in more than one model and orthologous 

enhancers in the same species (Navratilova et al., 2009; Ritter et al., 2010). To distinguish 
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between cis- and trans-regulatory changes Ritter and colleagues analysed human CREs tested in 

zebrafish (HZ), human CREs tested in mouse (HM) and orthologous conserved zebrafish CREs 

tested in zebrafish (ZZ). Their results indicated that cis-regulatory changes, which are caused 

when function was discordant between HZ and ZZ tests, are two times more frequent than trans-

regulatory changes, which happen when function was disparate between HZ and HM experiments 

(Ritter et al., 2010). 

We also used the zebrafish embryo to test whether an inherited region downstream of PTF1A in 

patients with pancreas agenesis could act as a long-range CRE, and whether the potentially 

pathogenic variants found in the probands could affect the regulatory activity of the candidate 

enhancer (Chapter 4). Transient transgenesis assays were unable to detect any tissue-specific 

activity in the zebrafish embryo, suggesting that either lack of sequence homology, enhancer-

promoter interaction, or enhancer function in vivo, could be the reason for the lack of reporter 

activity in zebrafish. Similarly negative results were obtained when we tested T2D-associated 

enhancers that were not conserved at a sequence level in zebrafish but were enriched in key 

histone modification marks and bound by pancreas-specific TFs (Chapter 6), suggesting that 

prediction tools require further refinement and that further studies are needed to understand the 

limitations of zebrafish to test human enhancers. 

8.2 Correlation between enhancer structure and predicted function 

There are several characteristics that could aid in predicting enhancer activity, such as the degree 

of sequence conservation, their length, the strength of the predictors used in the computational 

analyses or the presence of TFBS.  

The length of the elements tested in this thesis was on average 1 kb, in accordance with similar 

studies in the literature (Shin et al., 2005; Abbasi et al., 2007; Ritter et al., 2010; Rada-Iglesias et 
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al., 2011; Ritter et al., 2012). We argued that longer sequences could represent the full functional 

element required for autonomous activity. In agreement with this, recent studies using bimodal 

enrichment of H3K27ac and H3K4me1 histone tails as a predictive tool indicated that enhancers 

are in average 3 nucleosomes in length, that is, approximately 600 bp (Figure 5.1, (Bernstein et 

al., 2012). However, despite the candidate enhancers tested had comparable lengths, not all of 

them were able to modulate reporter gene expression, suggesting that the chosen length may not 

reflect the true size of the enhancer. 

The strength of predictors used, such as enrichment in histone modification marks and 

bidirectional transcription, were comparable within groups, as demonstrated by the robust 

computational analysis performed by our collaborators. It could be argued that TFBS composition 

could correlate with enhancer function; however, it was out of the scope of this thesis to perform 

an in-depth analysis of TFBS in the tested candidate enhancers. Due to the lack of appropriate 

zebrafish antibodies there is limited experimental ChIP-Seq data on the specific binding of TFs of 

interest. In addition to that, certain computational predictions of TFs have been shown to be 

poorly correlated with in vivo measurements (Kaplan et al., 2011), and discerning whether 

predicted binding is functional is not trivial, suggesting that this approach would be unreliable. 

Interestingly, sequence conservation seems to be strongly correlated with enhancer function in 

our dataset (Table 8.1). In this study, the activity of 27 predicted enhancers and enhancer variants 

was evaluated, along with 5 control regions. Among the candidate enhancers, 15 were conserved 

at the sequence level (using as criteria 70% of conservation over 100 bp, Chapters 3, 5, 6) and 12 

were not conserved (Chapter 4, Chapter 6). Our transient transgenic analyses showed 

reproducible reporter expression in 10 out of the 15 the conserved enhancers, whereas none of 

the 12 non-conserved enhancer variants could drive tissue-specific activity (Table 8.1). These 

results suggest that sequence conservation has a strong influence on functionality, in keeping   
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Table 8.1 Overview of human candidate enhancers tested in this thesis 

Human enhancer 
ID 

Closest coding 
gene(s) 

Conserved 
with 

zebrafish 

Reproducible enhancer-
driven pattern 

Enriched 
in 

H3K4me1 
and/or 

H3K27ac 

Bidirectionally 
transcribed Transient 

assays 
Transgenic 

lines 

C3-1 AGPAT9 and NKX6-1  Yes Yes - Yes - 
C3-3 ISL1 and PELO  Yes Yes 3/3 Yes - 
C3-4 PROX1 and SMYD2 Yes Yes 1/1 Yes - 
C3-5 LOC100128568 and RFX2 Yes Yes 5/5 Yes - 
C3-6 TCF7L2 and HABP2 Yes Yes - Yes - 

C2-11 KIF26B and SMYD3 No No - No - 

C5-14 LINC00499 and 
CCRN4L No No - No - 

PROX1- A  PROX1 Yes Yes 0/4 Yes - 
PROX1-G  PROX1 Yes Yes 0/4 Yes - 
TCF7L2- C TCF7L2  No No 0/5 Yes - 
TCF7L2-T  TCF7L2  No No 0/1 Yes - 

DGKB-TMEM195-G  DGKB and TMEM195 No No - Yes - 
DGKB-TMEM195-T  DGKB and TMEM195 No No - Yes - 

ADCY5-A  ADCY5 No No - Yes - 
ADCY5-G  ADCY5 No No - Yes - 

PTF1A-short-WT PTF1A No No - Yes - 
PTF1A-short-363G PTF1A No No - Yes - 
PTF1A-short-305G PTF1A No No - Yes - 

PTF1A-long-WT PTF1A No No - Yes - 
PTF1A-long-363G PTF1A No No - Yes - 
PTF1A-long-305G PTF1A No No - Yes - 

CRE1 TMEM161b and 
MEF2C Yes Yes 5/5 n/a Yes 

CRE2 POU3F2 Yes Yes - n/a Yes 
CRE3 SOX7 Yes Yes 0/2 n/a Yes 
CRE4 PAX6 and RCN1 Yes No - n/a Yes 
CRE5 DLX1 and DLX2 Yes No - n/a Yes 
ubi1 GTF2A Yes No - Yes Yes 
ubi2 GPR84 Yes No - Yes Yes 
ubi3 ZBTB16 Yes No - Yes Yes 

Control region 1 C11orf74 No No - No No 
Control region 2 DSCAM No No - No No 
Control region 3 PBX1 No No - No No 
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with studies that have argued that sequence conservation is relevant to enhancer function (de la 

Calle-Mustienes et al., 2005; Shin et al., 2005; Woolfe et al., 2005; Abbasi et al., 2007; Navratilova 

et al., 2009; Li et al., 2010b; Punnamoottil et al., 2010; Ritter et al., 2010; Chatterjee et al., 2011; 

Ritter et al., 2012). Nevertheless, our observations contrast with other publications where non-

conserved human CREs maintained functionality in zebrafish (Fisher et al., 2006a; Rada-Iglesias et 

al., 2011); and with reports that found a comparable level of sequence conservation between 

enhancers that showed specific activity and those that did not (Li et al., 2010b). Along these lines, 

Ritter and colleagues concluded that a higher degree of conservation is not a better indicator of 

conserved function, whereas TFBS distribution is (Ritter et al., 2010). 

8.3 Using zebrafish transgenesis to quantitate enhancer variants 

Several studies have demonstrated that common SNP variants can lead to phenotypical 

consequences and increased susceptibility to human disorders (Lettice et al., 2003; Rahimov et al., 

2008; Pomerantz et al., 2009; Musunuru et al., 2010; Harismendy et al., 2011; Smemo et al., 

2014). Nevertheless, most studies have revealed subtle expression differences between enhancer 

variants in vitro (Gaulton et al., 2010; Stitzel et al., 2010; Rada-Iglesias et al., 2013), and it 

remained largely unexplored whether these variants would elicit detectable changes in the spatial 

or temporal activity of enhancers in vivo. Therefore, a second aim of this thesis was to investigate 

if zebrafish transgenesis could be used to detect change in enhancer function caused by sequence 

variation. Thus, we attempted to quantitate T2D-associated enhancer allelic variants in vivo using 

Tol2 transgenesis (Chapter 6). Our results showed that two non-conserved candidate enhancers 

were not functional in zebrafish. Furthermore, it was not possible to determine unambiguously 

the function of TCF7L2 enhancer variants, due to the lack of activity in transient transgenic assays 

and lack of reproducibility in transgenic lines (Table 8.1). Along these lines, the variability of 

position effects in the transgenic lines containing PROX1 enhancer hindered quantitation of 
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enhancer variants using transposon-based transgenesis (Chapter 6). These results contrast with a 

recent study that has used Tol2 transgenesis to demonstrate that a risk SNP can alter enhancer 

function substantially (Spieler et al., 2014), suggesting that certain enhancer might be more prone 

to position effects and their activity may only be detected in a system that controls the genomic 

environment of the integration site. 

In order to improve the reliability of zebrafish transgenesis, I contributed significantly to the 

development of a more refined site-directed transgenesis system mediated by PhiC31 integrase. 

This technology was validated for enhancer testing (Chapter 7) and proved to reduce position 

effect variation commonly found in conventional, transposon-based transgenesis experiments. 

Nevertheless, when the system was used to quantify TCF7L2-associated enhancer variants, 

enhancer-driven expression pattern could not be detected. These negative results may be 

explained by lack of sequence homology, by a suboptimal genomic or epigenomic environment of 

the integration site, because the tested element does not represent the full autonomous 

enhancer, or because it is not transcriptionally active in zebrafish. Genomic influence cannot be 

completely avoided using PhiC31-based transgenesis, since the recipient transgenic lines are 

created by randomly integrating the attP containing transgene into the genome. However, the 

creation of libraries of recipient lines represents the first step towards a more robust transgenesis 

system for enhancer tests. These results also indicate the need for further studies to understand 

the limitations of zebrafish model in functional analysis of human enhancers.  

Overall, by utilizing zebrafish in novel projects of enhancer prediction and aiding in the 

development of a site-directed transgenesis method that can reduce position effect variability, 

the results presented in this thesis contribute to the establishment of the zebrafish embryo as a 

valuable model to test the function of predicted human enhancers.  
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