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ABSTRACT

Experimental results and analyses have shown that significant improvements in coal

grindability (reductions in Relative Work Index) can be achieved by exposing coals to

microwave radiation. Experimental data have indicated that low rank coals are highly

responsive to microwave radiation, possibly due to their higher inherent moisture content.

There is evidence to suggest that gaseous evolution (water vapour and volatile matter)

and localised zones of differential expansion (arising for example from occluded mineral

matter) in coal during heating give rise to crack formation and hence are the probable

causes for the measured increase in coal grindability. The composition of the various

coals treated by microwave radiation remained relatively unaltered and there was no

significant change in coal calorific value or the proximate and ultimate analyses (dry,

mineral matter free basis). Initial (laboratory-scale) microwave trials and pilot-scale test-

work demonstrated an improvement in the grindability of various coals. However, the

gross energy input for these tests were excessively high (220k WhIt) in comparison to that

used mechanically for pulverised coal production (15-20kWhlt).

Improvements in microwave cavity design and increased electric field strengths may

increase the energy efficiency of the process; however, further work would be required.

Additional studies were carried out to evaluate the potential use of microwave technology

for coal desulphurisation. The results were encouraging and show that substantial

improvements in pyrite separation can be achieved with some coals.



Abstract

Fundamental studies have shown that there is significant change in coal flowability

following microwave exposure.
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CHAPTER ONE

MICROW AVE BENEFICIATION OF COAL TO IMPROVE
GRINDABILITY AND HANDLEABILITY

1.1 Introduction-Microwave beneficiation of coal to improve grindability and

handlea bility

The principle objective of this study was to investigate the effect of microwave radiation

on the grindability and subsequent changes to the physico-chemical properties of a range

of UK coals. Additionally, a subsequent aim was to ascertain any other beneficial effects

(physical or chemical) of the microwave pretreatment of coal. In particular some

confirmatory evidence was obtained concerning the use of microwave energy as a method

of coal desulphurisation prior to combustion.

Previous studies have shown some improvements in coal grindability following pre-heat

treatment (Harrison 1997). Changes in structure were attributed to the volumetric

expansion of constituent mineral matter within coal promoting fracture propagation.

Microwave energy can be applied as a source of heat treatment and several mechanisms

can be proposed which may account for the improvements in coal grindability after

microwave exposure. The organic components of coal are relatively poor absorbers of

microwave energy. However, water is a good absorber of microwave energy and coals

naturally contain water to varying degrees depending on their microstructure, geological

location and relative humidity.



Chapter 1 Introduction-Microwave beneficiation of coal to improve grindability and handleability

Water molecules are polar and when exposed to an alternating electric field; the

molecules position themselves in the direction and at the same frequency to that of the

applied field (Hulls, 1992). When a coal is exposed to microwave energy; the water

molecules will undergo heating, change phase and expand creating internal pressures

within the coal matrix, possibly weakening the structure. Similar effects would be

expected from the expansion of some mineral constituents. However, each mineral has a

specific heating rate when exposed to microwave radiation. Hence, the energy is not used

to heat the whole of the material (in contrast to that of convective heating) but only those

constituents which are considered good absorbers. Accordingly, this may improve the

thermal efficiency.

Following the introduction of the principles of dielectric science and topics pertinent to

microwave generation (Chapter 2), the thesis objectives were described, with particular

reference to coal chemistry, applications, the generation and use of pulverised fuel and

associated environmental regulations. A review of the UK coal production and

consumption is presented in Chapter 3. Previous studies concerning comminution theory,

thermally-assisted liberation and microwave-assisted comminution are reported in

Chapter 4. Further cited literature is reviewed concerning the dielectric properties of coal,

microwave pyrolysis, microwave assisted desulphurisation and the effect of microwave

treatment on coal grindability (Chapter 5).

Chapter 6 outlines the fundamental experimental procedure for milling trials and

microwave treatment, whilst Chapter 7 reports on the effect of coal rank on microwave

2



Chapter 1 Introduction-Microwave beneficiation of coal to improve grindability and handleability

treated coal grindability. Dielectric measurements are detailed and used to determine the

penetration depth and heating rates of coals and associated minerals (Chapter 8). A

combination of results (dielectric properties and data from laboratory milling tests) and

fracture mechanics theory is use to hypothesize the possible mechanisms of structural

weakening by microwave heating in Chapter 9. Pilot-scale test results and an economic

evaluation of the microwave process are discussed in Chapter 10. The role of pyrite

desulphurisation is introduced in Chapter 11 in terms of mineralogical analysis and

magnetic separation test work; additional effects on coal following microwave treatment

(pyrolysis and flowability) are also presented. Overall conclusions are given in the final

chapter.

3



CHAPTER TWO

DIELECTRIC HEATING

2.1 Introduction-Dielectric heating

Microwaves are electromagnetic waves of a particular wavelength and frequency range

situated between infrared and radio frequencies within the electromagnetic spectrum

(Figure 2.1). Microwave technology to-date has been most often associated with

domestic food preparation. The original uses in 1921 of high power microwave energy

were for military purposes. In later years, microwave energy has been applied as an

alternative to conventional convective and conductive heating and is used in many

industrial processes. Conventional heating relies upon conductive heat transfer from the

material surface to the interior; often associated with problems of cool centres and hot

surfaces, especially with insulating materials. Microwave heating differs by means of the

in-situ method of heating providing the prospect of uniform temperature distribution and

improved heating efficiencies.

Materials differ in their ability to absorb microwave energy in an applied electric field.

Each material has a particular optimum frequency which can be measured. However, in

practice, for interference reasons the nearest practicable permitted frequency is used.

High frequencies are used for many purposes: broadcasting, communications, navigation,

and specific bands are allocated to industrial, scientific and medical purposes (Table 2.1 ).
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Chapter 2 Dielectric heating

Wavelength (run) Electro-magnetic Spectrum Frequency (Hz)

0.0003 1 x 1021y-rays
0.03 1 x 1019

10 X-rays 3 x 1016

30 Ultraviolet 1 x 1016

400 Visible 8 x 1014

800 4 x 1014

1000 Infrared 3 x 1014

3 x 105 1 x 1012

3 x 107 Microwaves 1 x 1010

3 x 1011 Radio Frequency 1 x 106

3 x 1013 1 x 104

Figure 2.1 The Electro-magnetic Spectrum

Table 2.1 Frequency ranges allocated for industrial, scientific and medical purposes
(Metaxas 1990)

Frequency Frequency Area permitted
(MHz) tolerance ±
433.92 0.2% Austria, Netherlands, Portugal, Switzerland,

Germany
896 10MHz UK
915 13 MHz North and South America
2375 50 MHz Albania, Bulgaria, Czechoslovakia, Hungary,

Romania, CIS
2450 50 MHz Worldwide except where 2375MHz is used
3390 0.6% Netherlands
5800 75MHz Worldwide
6780 0.6% Netherlands
24150 125 MHz Worldwide
40680 - UK
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Chapter 2 Dielectric heating

2.2 Electric field

An electric field or voltage gradient can be simple to generate (connection of two parallel

metal plates to a voltage supply, Figure 2.2). Using a direct current supply, the electric

field strength is related to the applied voltage and distance between the positive and

negative plates (Equation 2.1).

E=VID (2.1)

E
V
D

Electric field strength (v/m)
Voltage (v)
Distance (m)

+ V

+

ID ( I I I I I \

I I I I E I I I I

I I I I I I I I I

~ ':jI ':jI \I( * 1 \I( \I( \I( :f

Figure 2.2 Electric field generator-parallel plates (Von Hippel1954)

An AC voltage can produce an electric field which alternates at the same frequency as the

source. Microwave fields are generated when the frequency of the source (or the field) is

between 300 MHz and 300 Hz producing corresponding wavelengths of 1m and 1mm

respectively (Harrison 1997).
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2.3 Polarisation

When a material is placed within an alternating electric field (radio - microwave

frequencies) the material will polarise depending upon its molecular structure.

Polarisation follows the direction of the electric field and realigns at the same frequency.

This realignment of the molecules or shift of electron matrix produces a frictional in-situ

mode of heating. There are four principal forms of polarisation (dependent on material

properties and the applied electric field) that are affected the most by microwave fields

and are believed to be responsible for microwave heating.

Electron polarisation arises when the material has a positively-charged centre or nuclei

surrounded by a negatively-charged electron cloud. When the material is placed within an

electric field the electrons are displaced producing a temporary dipole movement (metallic

bonded molecules).

Atomic (or Ionic) polarisation occurs due to the distortion of atoms within molecules of

ionic molecular bonds. The applied electromagnetic field acts upon these molecules

causing their charge equilibrium position to change, inducing polarisation.

Orientation polarisation is the realignment, by an applied electromagnetic field, of

molecules already permanently polarised (dipole molecules) due to their chemical bonds

(water molecules). This form of polarisation is most significant at microwave frequencies

(Figure 2.3).
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Electric field

Magnetic field

"
-,

-,

Water molecules

Figure 2.3 Water molecules exposed to microwave radiation (Rowson 1986)

Space charge polarisation is the accumulation of charge and migration of charge under the

influence of an applied electromagnetic field. Whilst the effect is significant at radio

frequencies, it may also occur at microwave frequencies (Hulls 1992).

The sum of these forms of polarisation (Atomic polarisation aa, Electronic polarisation

ae, Orientation polarisation aa, and Space charge polarisation as) is defined as the

resultant polarisation ability (a) of the dielectric material i.e.

(2.2)

2.4 Electric permittivity and dielectric constant

The ability of a dielectric to be polarised is expressed in terms of the' electric

permittivity' ofthe material (Equation 2.3). The real permittivity is defined as the ratio of
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the capacitance C of a cavity filled with the dielectric material to the capacitance (Co) of

the same cavity under vacuum (Chelkowski A 1980) i.e.

(2.3)

Real permittivity (F/m)
Permittivity of free space (F/m)

This would only occur if the realignment of molecules is at the same frequency and in

phase with the applied electric field. Most materials exhibit a difference in phase, in

which the polarisation movement lags behind the alternating electric field frequency and

indicates a loss in conductivity within the material that fills the cavity (relation to currents

within the material out of phase with the electric field). To account for this change in

conductivity, the electric permittivity is described as a complex quantity (Equation 2.4)

with both real and imaginary parts (the imaginary part accounts for the loss in

conductivity in the material):

s· = s' - js' (2.4)

e Imaginary permittivity (F1m)
•e Complex permittivity (F/m)

j ..J-l (imaginary complex number)

The relationship between the real and imaginary parts is expressed as the loss tangent,

this refers to the angle (loss angle) the material is out of phase with the electric field. The

sum of the real and imaginary parts represents the complex permittivity and the loss angle

is that between the electric field and the complex permittivity. The real permittivity is

considered to be in phase with the alternating electric current and the imaginary

9
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permittivity represents the phase lag i.e. the tangent of the angle between the sum of the

two parts (complex permittivity) and the real permittivity is equal to the imaginary part

divided by the real. The loss tangent (tan d) can be used to represent the fraction of stored

energy lost per period of field oscillation:

e"= e'.tand (2.5)

The parameters can be evaluated, the real permittivity can be measured from the

capacitance ratio described in Equation 2.3, and the imaginary permittivity is evaluated

from measurements of the loss angle. However, their magnitudes are generally low

(approximately 10-10 F/m) and the components are usually re-scaled by dividing the

permittivities by that of free space (8.85xlO-12 F/m). The resulting values are termed the

relative real permittivity (or relative dielectric constant) and the relative imaginary

permittivity (or relative loss factor).

2.4.1 Loss factor and dielectric conductivity

The ability or the receptiveness of a material to heating is known as the 'loss factor', the

higher the value of the loss factor the more receptive the material is to electric fields. In

general, materials with relative loss factors greater than 0.02 are considered possibly

candidates for dielectric heating. The ability or receptiveness to microwave heating is

often expressed in terms of the dielectric conductivity (Equation 2.6), which can be

calculated from known values of the loss factor and the applied frequency.
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(2.6)

Dielectric conductivity (s/O)
Angular frequency (S-I)

2.4.2 Power absorption

The power absorbed per unit volume by a given material in a microwave field is related

to the electric field strength, dielectric conductivity and corresponding magnetic field

strength (Equation 2.7). The magnetic field strength is usually considered negligible

unless the material has a high magnetic susceptibility.

(2.7)

Power absorbed (W/m3)
Frequency (Hz)
Relative loss factor or relative imaginary permittivity
Permittivity of free space (F/m)
Magnetic field strength (NIA2)
Permeability of a vacuum (NIA2)
Permeability (NIA2)

p

f
Er"

Substituting into (Equation 2.7) with (Equation 2.6) and assuming that the magnetic

susceptibility effect is negligible, the power per unit volume can be expressed as:

P = 2.1t.f.E 2 .Eo .e ," (2.8)
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It is can be seen from Equation 2.8 that the power absorbed is proportional to the square

of the electric field strength i.e. PocE 2. This indicates that the generation of high electric

field strengths represents a possible method of rapidly accelerating power absorption.

2.4.3 Heating rate

The theoretical heating rate of a specific material within a microwave cavity can be

evaluated providing the dielectric and physical properties of the material and microwave

are known. Using accepted standard theories regarding heating rates i.e.

oQ = M.Cp- (2.9)
t

Q Energy absorbed or produced (W)
M Mass of the body heating (kg)
Cp Specific heat capacity (J/kg)
o Change in temperature eC)
t Change in time (s)

Manipulating this (Equation 2.9) and substituting (Equation 2.8) for the power absorbed a

theoretical heating rate can be expressed in terms of dielectric properties.

(2.10)

p
V

Density of material (kg/m')
Volume of material (m3

)
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2.4.4 Penetration depth

Using dielectric principles, relationships for penetration depth of microwave radiation

have been proposed (Metaxas 1983).

D, Penetration depth of wave (m)
Sr Relative dielectric constant or relative real permittivity
'A. Wavelength (m) 'A.=c/f
c Speed oflight (mls) 3x108 m/s
&," Relative loss factor or relative imaginary permittivity
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2.5 Factors effecting the dielectric field

A number of controlling factors affect a material's ability to absorb microwave radiation

within a dielectric field. In particular these are, the material temperature, chemical

composition and the frequency and strength of the applied electric field.

2.5.1 Variations of dielectric properties with changing temperature

~ Vulcanised rubber

60 80 100 120 140 160 180

Temperature °c

Figure 2.4 Dielectric properties of vulcanised rubber with temperature
(Catala-Civera 1997)

An increase in temperature increases dipole mobility, where in additional energy is

adsorbed and hence frictional heat produced. The dielectric constant also increases with

temperature as shown in Figure 2.4. However, if the material continues to absorb energy

after the 'critical temperature' (unique to a specific material) heating can lead to a

'thermal run away' system i.e. the heating rate increases exponentially until material

deformation (Church et aI1988). Some materials have very low microwave heating

rates, however, at elevated temperatures some materials (ceramics) couple with
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microwaves and absorb microwave energy. Such materials would require initial heating

from another source until the particular temperature is reached for microwave

susceptibility, after which the material is receptive to microwaves and can be further

heated by microwave energy.

2.5.2 Effect of microwave frequency on dielectric properties

Dielectric constant varies with frequency and those for specific minerals may resonate at

a particular frequency. The latter are considered as the optimum value for the material

absorption capability. Resonant frequencies depend upon the dielectric properties of the

material, and hence it's physico-chemical characteristics (composition, moisture content,

mineral matter distribution, crystal structure, particle size, and density/voidage).

2.5.3 Chemical composition and distribution

Natural materials may contain a range of chemical compounds which may vary in their

receptiveness to microwave radiation. Hence, both the chemical composition and

distribution of receptive compounds will affect the overall heating of a material. The

latter can be enhanced by 'doping' (blending) materials which show a poor propensity for

microwave heating with those having more receptive features to improve heating.
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2.5.3.1 Water content

Water is a good absorber of microwave radiation and the drying of wet materials can be

highly efficient by microwave heating; more so than by convective heating and, in

particular, if the material contains inherent moisture and where temperatures exceeding

100°C are required. Similar principles apply with regard to net heating effects (Section

2.5.3).

2.5.3.2 Particle size

Some authors report that loss factors increase linearly with decreased particle size

(Andres 1988, Walkiewicz 1988); other workers claim their heating rates vary according

to material and particle size range. Standish et al (1989) demonstrated the effect of

particle size on heating rates on silica. Heating rates showed an initial decrease with

increasing particle size (O.2-0.5mm) and a subsequently increase with increasing particle

size, peaking at -1.5mm, particle coarser than 1.5mm showed further reductions in

heating rates.

2.6 Microwave technology

The majority of industrial microwave units consist of three components. The generator,

which converts the power supplied into microwave energy, the waveguide which carries

the energy to the applicator from which the radiation is distributed to the product.
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2.6.1 Microwave generator (The Magnetron)

There are various forms of microwave generator including the magnetron, klystron and

solid state devices. The magnetron generally represents the most suitable compromise

between power output, efficiency and cost. The device has an oscillating diode which

produces electrons that are accelerated by an electric field between positive and negative

electrodes. A magnetic field deviates the trajectory of the electrons producing a high

frequency oscillation. An antenna emits the electromagnetic field to the waveguide where

it is then directed to the applicator. A water cooling system protects the magnetron from

reflected energy (Hulls 1992). A typical electric circuit for microwave generation is

shown in Figure 2.5.

Waveguide

Magnetron Coil

DC anode current

AC DC

: High voltage transformer

~- - - - -- - - - - - - - - - - - - --- - - - - - - - - - - - --'

Figure 2.5 Magnetron electric circuit (Hulls 1992)

Magnetrons are usually designed to operate at standard frequencies; their power output

and efficiency vary depending upon the frequency and design. In particular, magnetrons
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with an operating frequency of 2.45GHz have a typical power output between 0.6 to 6kW

and an overall efficiency of50%-60%. A greater efficiency (80%-90%) can be achieved

with magnetrons of a frequency range 896/915MHz, these magnetrons can also provide

higher power outputs (up to 60kW).

2.6.2 Waveguides

The purpose of waveguides is to direct the incident microwave to the load (material

absorbing the microwave energy). Waveguides are generally in the form of rectangularly

shaped truncking fabricated from conducting materials (copper, brass or aluminium);

typically, metals reflect microwaves and absorb little energy.

2.6.3 Incident and reflected power, circulators

If the incident microwave is totally absorbed by the load (i.e. assuming negligible losses

in the waveguide) then the load can be considered as 'matched'. However, if some of the

incident wave is reflected from the load; then reflected radiation may travel back to the

generator and give rise to a mismatched load whereby the incident and reflected waves

interfere and produce standing waves. The latter lead to significant localised increases in

electric field strength that may cause overheating of the generator or give rise to arcing

near the antenna. As reflected microwaves can reduce the operating life of the generator,

industrial applicators are equipped with circulators. The latter redirect the reflected wave

to another absorber (another matched load, usually a water-cooled) to prevent reflected

waves reaching the generator.
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2.6.4 Applicators

An applicator is that part of the Load

microwave equipment whereby the

electromagnetic energy is transferred to

the load. The applicators vary in design

(depending on microwave use) and

Waveguide
applicator

Water cooled
matched load

operating features (size of the load and

whether the process is continuous or Figure 2.6 The progressive waveguide
applicator (Hulls 1992)batch). To prevent leakage of radiation

most applicators have the appearance are

of the form of metallic boxes designed to reflect the electromagnetic energy within them.

The progressive wave applicator (Figure 2.6), mono-mode cavity (Figure 2.7) and multi-

mode cavity (Figure 2.8) are the most common design of applicators. The progressive

wave applicator has a folded rectangular waveguide that the load continuously passes

through absorbing the energy

waveguide applicator, the resonant or Mono-mode
cavity

Similar in design to the progressive

mono-mode applicator (Figure 2.7) also

produces highly homogenous electric

field distributions. The mono-mode

applicator is generally used on poor Waveguide

dielectric heaters as they create localised Figure 2.7 The mono-mode cavity
(Hulls 1992)
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increases in electric field strength within the load.

Domestic microwave cavities are examples of the multi-mode applicator. As shown in

Figure 2.8, the electromagnetic energy is continuously and randomly reflected from the

metallic walls of the applicator. The electric field thereby fills the whole cavity so that the

load will absorb energy wherever it is located. However, due to interference between

multiple reflections, localised increases in electric field strength may lead to uneven

heating. As a means of compensation, turntables and mode stirrers are used to

periodically change the field distribution within the cavity and produce more uniform

heating.

Rotating mode stirrer

- -- .......- .......-!~ -c- ......

~--;' I'"
-- ~ I'"- ,, "--,

Waveguide

" /' ",,>,

-, "-- -,
-,,

-,, ~

, -
_Ar-'<- ,

-,,

Magnetron

Metallic walls

Turntable

Figure 2.8 The domestic (multi-mode) microwave applicator (Hulls 1992)
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CHAPTER THREE

COAL CHARACTERISTICS AND PHYSICAL PROPERTIES

3.1 Introduction-Coal characteristics and physical properties

This section describes those principle physico-chemical properties of coals considered to

affect their structure, heating characteristics and breakage characteristics. A brief

summary of the current UK coal market and prospects are discussed.

3.2 Coal structure

Coal is a complex, heterogeneous, hydrocarbon-based mineral which has been formed

over many years by a succession of changing geological stages. The initial (diagenetic)

stage is represented by an accumulation of active peat and this is followed by a

metamorphic stage arising from changes in the geological features. In particular,

overlaying and geothermal stresses effect the coal physical structure and its chemical

properties (moisture and volatility). The metamorphic process progressively converts the

original accumulated peat to a material of a similar structure to that of graphite.

Coals are ranked according to their extent of metamorphism. Typically, the older the coal

the higher the rank, anthracite and lignite may be designated as high and low rank coals

respectively. The most useful properties of the coal which define its rank are considered

to be the carbon content, volatile matter and moisture content together with the calorific

value (Figure 3.1). Coals are ranked into four main groups of increasing rank:
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(Low rank) Lignite ~Sub-bituminous~Bituminous~Anthracite (High rank)

Low rank ./ High rank
Rank Lignite -+ Sub-bituminous -+ Bituminous -+ Anthracite
Age ..... Increases ....

-:: (Carbon content % ~ Increases ~Volatile matter % ,- Decreases ,-
Moisture content % Decreases .....

-+ Increases,-
Calorific value ..... Increases .....

./ ...

Figure 3.1 Dependency of coal property on rank
(Elliot 1981)

Each of the four main groups of coal rank (Figure 3.1) are split into sub-groups which are

usually defmed according to the physical and chemical properties of the coal. Figure 3.2

shows the variation in coal moisture content, volatile matter content and fixed carbon

(ash-free basis) for a wide range of coals.

100

•
,..10

I.

Coal rank (fixed carbon, mineral-free basis)

Figure 3.2 Coal rank based upon mineral matter free proximate analysis
(Elliot 1981)
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The ash content of coal although a major feature in some coal process utilisation is not

considered as a measure of coal rank. Ash content is a measure of the oxidised products

of the associated mineral matter constituents, these generally include eleven mineral

compounds: pyrite, ankerite, gypsum, dolomite, apatite, calcite, mica, kaolin, quartz,

rutile and siderite.

The calorific value of coal is defmed as its energy release associated with complete

combustion and represents an effective way of expressing the fuel potential of the coal.
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Figure 3.3 Calorific value against coal rank (mineral matter free basis)
(Elliot 1981)

Calorific value generally increases with coal rank (Figure 3.3). Usually the main

components controlling the energy release capabilities are moisture, volatile matter and
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total carbon content. Increasing moisture reduces the calorific value as seen for low rank:

coals; increasing volatile matter tends to increase the calorific value and this leads to the

feature of medium rank: coals having a slightly higher heating value than high rank: coals.
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Figure 3.4 A proposed model of coal structure
(Elliot 1981)

Coal is a heterogeneous material in a transitional phase between peat and graphite. Due to

the diverse conditions under which coals are formed, they can be considered as

individuals in structural terms; furthermore, coal from the same seam can vary

significantly in composition and therefore structure. Whilst a model structure of organic

coal can not truly represent all coals, models have, however, been proposed from

chemical studies and x-ray analyses (Figure 3.4) which identify trends between the

common bonds found within organic coal. Organic coal is composed mainly of aromatic
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and hydroaromatic groups linked by functional hydrocarbons. The functional

hydrocarbon groups are believed to be the structures that break or join aromatic groups

during coal pyrolysis and coalification. Studies have indicated that the number of linked

aromatic groups increase with the rank of coal, the greatest transition being between

bituminous and anthracite coals. This may be one of the reasons why the grindability

increases with medium coal rank (Section 3.4).

3.3 Porosity, Surface area and Density

Fixed Carbon %

Figure 3.5
Coal rank against porosity

(Elliot 1981)

Coals are porous materials. Porosity and its

dependence on rank are significant features in so far

as porosity can affect coal specific gravity, surface

area and the ability to absorb or diffuse gases into or

from the material. Pore diameter can vary from less

than 20A (for micropores) (lA = lOOOJ.lm)to about

200A or more for the larger channels or capillaries

(macropores). Gases of differing molecular weight

are used to determine the surface-areas associated

with the pore classification (i.e. nitrogen at -196°C

is used to measure the macropore volume and

helium, carbon dioxide, methanol, neon or xenon at low temperatures are employed to

determine the total open pore volumes). Studies on American coals have shown that the

porosity of coals of fixed carbon contents less than 75% (dry, mineral matter free basis)

are predominantly due to macropores. The pore structure of coals with fixed carbon
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contents between 75% and 84% are predominantly of micropore and transitional pore

sizes; for coals of a fixed carbon content greater than 85%, the pores are predominantly

of micropore sizes (Elliot 1981). Whilst the total surface areas measured by the use of

different gases are often different, similar trends with coal rank are evident and the

surface area is primarily related to coal porosity. Low rank coals have a high porosity and

high surface area, which decrease as coal rank increases to approximately 85-90% fixed

carbon content; subsequently, porosity and surface area increases with increasing rank

(Figure 3.5).

3.4 Hardgrove Grindability Index

Several methods of determining coal grindability have been proposed, all based on the

use of roll crushers or ball mills. The most frequently used methods are those of Bond

(1961) and Hardgrove (1932). The latter test has become preferred (in view of

mechanical reliability of the mill and the ease of data evaluation) and in, 1951, was

adopted in a standardised form by ASTM Standards Committee (ASTM D409). Inuse, a

sample of coal of specified size range is charged into a captive ring-loaded mill which is

subsequently operated at a constant speed for a given time. The ensuing increase in coal

specific surface area is measured and compared with that of a standard coal

(pennsylvania Upper Kittaning seam) which has an assigned Hardgrove Grindability

Index (HOI) of 100. A coal that can be broken extensively has a high HOI.
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Volatile matter content (dry, mineral matter free basis) %

Figure 3.6 Hardgrove Grindability Index against rank
(Elliot 1981)

The variation of Hardgrove Grindability Index with coal rank (Figure 3.6) indicates some

scatter, particularly for low rank coals. Possibly, the structure of 'younger' coals (Lignite)

may be such that they are difficult to grind by conventional milling methods due to their

moisture content. For fully-formed coals (with the volatile matter between 7-25% dry,

ash free basis) the structure becomes more compact as rank increases and accordingly,

energy requirements for milling become higher.
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3.5 Flowability

This section describes those properties of coal which have a major effect on its bulk flow

characteristics. Particle size and shape are significant, and more generally, assemblies of

large, smooth or spherical particles flow more readily than fine, angular particles (which

can interlock or agglomerate in the presence of moisture or clay). In particular, free

moisture tends to promote agglomeration of fine particles, making the coal cohesive.

Usually, the most adversely affected coals are those oflow rank or with moisture

contents between 20-30%. Furthermore, soft (high HGI) or friable coals can break down

into fines which could collect moisture. Oxidised or weathered coals generally have

higher moisture retention abilities and finer particle sizes, which again lead to poor flow

characteristics. Mineral components may also adversely affect coal flow properties and,

in this respect, clays are significant, particularly the swelling type e.g. bentonite.

Additions of emulsions, dust suppressants and flotation reagents can also have an adverse

affect on the flow characteristics of coals and, in turn, these properties relate to the bulk

handling and storage characteristics of coals. Inparticular increased coal storage time and

consolidation pressure in bunkers and surface characteristics of coals (oxidation etc) can

promote flow problems.

3.6 Coal dependent utilities

Coal remains the principle source of foundry and metallurgical coke used in the

production of iron and steel. Other industries such as cement, brick, fireclay, refractories,

glass and other chemical industries are also consumers. However, the coal consumption

in these industries is far less than that of power generation. Additionally, domestic coal
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combustion has declined in Europe and North America since the introduction of clean air

legislation and the use of other fuels for space heating (gas, oil and electricity).

Within the United Kingdom, the current major market for coal is power generation in

spite of competition from natural gas and oil.

3.7 The current UK coal situation

UK coal production for industrial and domestic coal combustion has declined in response

to demand. In some cases, electricity has been used directly and in others, alternative,

cleaner fuels have been used in compliance with government legislation. Power

generation (pulverised fuel firing-PF) remains the major consumer of UK coal but

tonnage have been reduced (significantly since 1995) because of competition from other

fuels.

New technologies are required to maintain competitiveness. Major outstanding problems

in fine coal combustion (particularly gas emission levels) are receiving much attention

with regard to the use of cleaner coal and/or improved combustion control technologies.

Furthermore, reductions in process energy requirements would also benefit existing

power stations. It should be appreciated that many current PF power stations have

considerable operational life expectancies and new technologies would be most suitable

if they can be integrated into existing plant.
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3.7.1 UK coal production

Coal production has declined since 1970 with a sharp fall following the privatisation of

the National Coal Board in the early 1980's. Imported coal and cheaper mining methods

(e. g. opencast) are now necessary to ensure that coal can compete with other commercial

fuels. In particular, imported coals now provide up to 30% of the coal consumption in the

UK and opencast mining has had sustainable production since 1980 (Table 3.1).

Table 3.1 UK coal production (million tonnes) (D.T.I 1999)

Minin2 method 1970 1980 1990 1996 1997 1998
Deep mined 136.7 112.4 72.9 32.2 30.3 25.0
Opencast 7.9 15.8 181 16.3 16.7 15.0

Total (including slurry) 147.2 130.1 92.8 50.2 48.5 41.4

3.7.2 Coal consumption in the UK

Cleaner and less costly energy sources have replaced coal in many of the former

consuming sectors such as industrial, commercial and domestic combustion. During the

last thirty years, consumption had fallen in these combined sectors from 79.7Mt (1970)

to 14.6Mt (1998) (Table 3.2). The electricity industry is currently the main consumer of

coal within the UK although, with the introduction of natural gas (cleaner, cheaper fuel),

the use of both oil and coal has declined in recent years. Coal consumption within the

power generation industry may have stabilised with the current economic situation for PF

power generation, however it is not expected to increase unless new technologies

improve efficiency.
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Table 3.2 Coal consumption in the UK (million tonnes) (D.T.I 1999)

Sector 1970 1980 1990 1996 1997 1998
Power stations 77.2 89.6 84.0 54.9 47.2 48.3

Domestic 20.2 8.9 4.2 2.7 2.6 2.2
Industry 19.6 7.9 6.3 3.6 3.0 2.7
Services 4.2 1.8 1.2 0.6 0.6 0.3

Other energy industries 35.7 15.3 12.5 9.6 9.6 9.4
Total consumption 156.9 123.5 108.3 71.4 63.1 62.9

3.7.3 Electrical power generation, type of fuel

1990 1998

Oil
7% Natural gas____ 1%

Oil
2%

Coal
66%

2%

Natural gas
32%

Hydro
1%

Other fuels

2%

2% 26%

Figure 3.7 Electricity supplied by fuel type (D.T.I 1999)

Over the last decade, power generation in the UK has dramatical1y changed in preference

to cleaner, cheaper and more thermal efficient fuels (Table 3.3). Oil use in power stations
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has decreased primarily due to its high cost and increased requirements in the automotive

industries (crude oil production and petroleum consumption has increased 133Mt and

78.4Mt respectively) and exports. It is also noted, that proven and estimated offshore

reserves of natural gas and oil at current consumption levels will last an estimated 50

years (D.T.I 1999). Increasing efficiency and advancing technologies have influenced the

increase in nuclear power generation. The introduction ofbiofuels (landfill and sewage

gases, domestic wood, industrial wood, straw and refuse combustion) and other

renewable fuel sources have had an effect on the total energy production. More

significant, however, is the increase in nuclear power. These changes have been

associated with significant reductions in the use of coal (-50% since 1990) and oil (-75%

since 1990) for power generation and consumption (D.T.! 1999).

Table 3.3 Electricity supplied by fuel type and consumption (TWb) (D.T.I 1999)

Fuel type 1980 1990 1996 1997 1998
Coal 190.0 207.9 139.6 114.7 117.1
Oil 33.9 21.1 12.9 7.5 5.3
Gas 1.6 1.6 80.9 106.1 114.0

Nuclear 32.3 58.7 85.8 89.3 91.2
Hydro 7.3 7.9 3.3 4.0 5.1

Other fuels (Biomass etc) - - 5.7 6.0 6.2
Imports - 11.9 16.7 16.6 12.6
Total 265.1 309.0 344.9 344.2 351.5

Total consumption 241.6 284.4 314.3 317.5 324.3
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3.8 Pulverised fuel power generation

Figure 3.8 Coal fired boiler circuit (C.E.G.B. 1971)

The design features of power station boiler plants (Figure 3.8) depend, in part, on the type

of pulverised coal used for firing. For anthracitic coals (of low reactivity and high

ignition temperatures) the 'downshot' (long flame) combustion chamber is preferred in

order to maximise the coal residence (burning) time. A further feature may be the

provision of a refractory arch and delayed secondary air admission to maintain ignition

stability. For bituminous and sub-bituminous coals, front-wall or corner-fired combustion

chambers can be used. The required coal residence time is relatively short (-2 seconds)

and swirl burners can be used (with mixing of the primary and secondary air close to the

nozzle) to promote short flames.

With regards to the milling plant, primary air (at about 80°C) is ducted into the mill

circuit to convey the ground coal to the burners. Part of this air can be used for
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classification purposes i.e. returning oversize coal to the mill for further grinding. Radiant

heat generated by the flames in the combustion chamber is absorbed, in part, by the water

walled (evaporative) surfaces of the combustion chamber and the balance being absorbed

by the radiant superheater (steam) at the chamber outlet. Consequently, exit gas

temperatures are reduced and the subsequent heat transfer to the air-preheater and

economiser are predominantly by forced convection. The exit flue gases are maintained

above 120°C to prevent corrosion i.e. S02 and S03 reacting with moisture producing

sulphuric acid.

3.9 Size distributions for power generation

Typically, power station milling plants are designed for an upper limit of coal size not

exceeding 40-50mm. The majority of UK bituminous coals are milled to a fineness of

70% ~ 75~m, sufficient to ensure complete combustion. The mill power required is about

15-20kWhJt and is usually within acceptable levels (Table 3.4). For the lower volatile

characteristic coals, mills and classifier settings are such as to give a finer product (85%

passing 75~m) necessary for complete combustion. Milling energies are higher (up to

40kWhJt). The product size characteristics of coals from vertical spindle mills are shown

in Table 3.4. Figure 3.9 shows the different product size distributions for two operating

UK coal fired power station boilers (Hill 2000), the average distributions are presented

from 6 ball mills and 8 vertical spindle mills used to feed the separate boilers.
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Table 3.4 Characteristics of Pulverised Fuel, (Spiers 1950)

Type of coal and Grading: % passing British Standards sieve Approximate
degree of (mesh) number. power for
fineness.

44 (355).U11) 60 (250).U11) 100 (l50~m) 200 (75).U11) grinding
kWhit

Bituminous coal
Normal 99 85-88 55-65 12-16
Fine 99.5 88-92 60-70 15-20

Superfine 99.5 95-98 80-90 23-28
Anthracite
Normal 99-99.5 85-90 30-40

Values based on British coals containing 3% moisture (cold air swept), and 10% moisture (hot air swept)

100.00

~~ 80.00
Clc
'iii
IIIca
Cl. 60.00-C
III
~
III
Cl. 40.00
III
>
~:;
E 20.00

=0
0.00

~
~

7
/
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/
V
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Particle size (urn)

""*- Vertical spindle mills Ball mills

Figure 3.9 Average measured product size distributions from 8 vertical spindle mills
and 6 ball mills (Hill 2000)
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3.10 Pulverised fuel (PF) production

Figure 3.10 Tube ball mill (C.E.G.B. 1971)

The majority of mills inUK power stations are of similar design and based on that of the

vertical spindle mill. These are suitable for bituminous coal. For low volatile coals

(generally of higher grindability) a tube ball mill may be more appropriate. This mill

(Figure 3.10) is also suitable for high and abrasive ash-containing coals. However, in

contrast to the vertical spindle mill (Figure 3.12), tube mill performance is more

adversely effected by coal moisture content.

36



Chapter 3 Coal characteristics and physical properties
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Figure 3.1110E Vertical spindle mill (C.E.G.B. 1971)

The particular choice of mill depends on coal type, power consumption, maintenance cost

and plant layout. Tube ball mills can be operated under suction or pressure. However,

exhaust fans (providing induced draught) can suffer from erosion of impeller blades and

lining. Mills operating under pressure require efficient trunnion seals to prevent leakage.

Heated air is supplied to the fans to dry the coal during milling and the majority of fans
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CtASSIFIER
REJECT CONE

Figure 3.12 PHI Vertical spindle mill
(C.E.G.B. 1971)
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are designed to provide sufficient

heat at a rate capable of evaporating

the whole of the surface moisture

and up to half of the inherent

moisture of the wettest specified

coal. Clearly, this feature must be

influenced by the coal charge and

gas residence time within the mill.

The ball charge is usually rotated at

70% of the 'critical speed' for

optimum operation. Tube mills also

have the advantage of on-load

replacement of the grinding media

although, whilst they are usually

more reliable than spindle mills,

their specific power consumption is

often higher than that of the spindle

mills for bituminous coals.

Vertical spindle mills are hot air-

pressure fed (forced draught) and,

accordingly, few problems exist with

fan erosion. However, irrespective
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of the grinding element loading (spring or hydraulic) ball and shell wear rates are

appreciable and otT-line maintenance of these elements is needed. To maintain a

symmetrical flame profile in the combustion chamber of comer-fired boilers, the coal to

each burner is fed from a number of mills located such that, if anyone mill is not in

service the (reduced) coal flow remains evenly distributed amongst the four burners.

3.11 Regulations

Regulations relating to the control of gaseous emission levels can differ between

countries and legislative limits can depend on the age and location of the plant, economic

considerations and on the best available technology.

Currently, the two main international governing bodies monitor sulphur dioxide

emissions are: - (i) The European Communities Legislation which deals with the

limitation of emissions from large combustion plant, and (ii) The United Nations

Economic Commission for Europe (UNECE) convention on long range trans-boundary

air pollution. More than thirty countries are signatories to these conventions, including

most European countries and North America. Other countries have their own standards

and limitations on S02 emissions; however, in some cases, the limits are intended only as

guidelines.
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Table 3.5 European Community sulphur dioxide emission targets (Couch 1995)

Member state S02 SOz emission target Percentage reduction
emissions ktly from 1980

kt/y

1980 1993 1998 2003 1993 1998 2003
Belgium 530 318 212 159 -40 -60 -70
Denmark 323 213 141 106 -34 -56 -67
Germany 2225 1335 890 668 -40 -60 -70
France 1910 1146 764 573 -40 -60 -70
Greece 303 320 320 320 +6 +6 +6
Ireland 99 124 124 124 +25 +25 +25
Italy 2450 1800 1500 900 -27 -39 -63

Luxembourg 3 2 1.5 1.5 -40 -50 -50
Netherlands 299 180 120 90 -40 -60 -70
Portugal 115 232 270 206 +102 +135 +79
Spain 2290 2290 1730 1440 0 -24 -37

United Kingdom 3883 3106 2330 1553 -20 -40 -60
EC Total 14438 11066] 8403 I 6141 -20 I -42 I -57

Table 3.5shows the European Community's predicted targets for the reduction ofS02

emissions from large combustion plant (based on measured emissions in 1980)between
1993 and 2003. The standards differ depending upon whether the coal is indigenous or

imported and the extent of the country's dependence upon coal. The clear implication is

the need to pre-clean (wash) coal prior to combustion and/or incorporate flue gas

cleaning measures following combustion of the coals. In some cases, the cost of

complying with the limitations has led to the use of other fuels. The United Kingdom, for

example, has substantial indigenous coal reserves, yet cheaper imported coals can

currently being used for power generation. In some cases, older generating units have

been replaced by gas burning units. The legislation sets quotas from plant to plant; in

particular, new plants capable of burning high sulphur coals may be required to

incorporate gas clean-up capable of removing more than 90% of the sulphur content.
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Other countries have stricter limits, the United States of America has a maximum level of

8.9MT/y ofS02 of which 5.6MT/y is from heavy industrial units. For comparison

purposes, the UK target level (for 2003) is 1.55MT/y (Table 3.5). The U.S. system sets

allowances with a maximum emission of 3100mglm3 per electrical power station (based

upon the 110 existing plants producing more than llOMW energy). However, those

plants that do not require the full allowance are permitted to share their balance with

other plants. Japan, although not a signatory of either convention, operates what is known

as the K-value control standard and limits the plant emission levels to an extent

dependent on the total air pollution within the localized area.

Regulations are less stringent in China and India where it may be difficult to fund the

modifications and retrofit older coal-fired plants. However, it is anticipated that newer

plant will be required to operate at lower levels of S02. The majority of other developing

countries could generally import coal and hence choose those of low sulphur content

provided they were affordable.

At present, other emissions are subject to few constraints. However, legislation may be

introduced in the future depending on the outcome of research into the effect of other air

toxins. There has already been mounting pressure to reduce NOx emission levels from

power stations by modification of the combustion process e.g. staged air injection into the

boiler. Such modifications would be cheaper and easier to install than those for the

reduction in S02 emissions.
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With regard to discharge from power station plants, strict water run-off constraints are

usually introduced by local sewage and water authorities in order to limit the volume and

concentration of waste effiuents to ground water supplies and rivers. Regulations on solid

residues again are dealt with locally and generally depend on coal ash content. The

common aim is to reduce soil contamination and any possible effects of natural leaching

of heavy metals to ground water.

3.12 Future coal processing technology

Currently, there are three areas of major research worldwide viz methods of producing

clean coal for emission reduction, improving the thermal (cycle) efficiency for coal

combustion in power plant and the use of coal bed gasification.

Emissions control research involves the removal or reduction of toxic byproducts

generated during the combustion of coal. Due to legislation and 'capping' policies

imposed by governments there is a requirement for technologies to control nitrates,

sulphurous compounds and green house gas (water vapour, carbon dioxide, methane and

nitrous oxide) emissions. Current developments in this field include flue gas

desulphurisation by means of a wet-lime or limestone process and low-No, burners

which delay the mixing of air and coal in a manner such that the capabilities of producing

nitrates is reduced.

Currently, coal-fired power station boilers use pulverised fuel for firing and operate at

thermal efficiencies limited by steaming conditions to 41% for the most modem designs
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(the limiting feature arises from the steam to turbine energy transfer rather than heat

transfer efficiency in the boiler). More recent developments are based on supercritical

steam cycles which give increased the thermal efficiencies of up to 45% using high-

pressure superheated steam cycles. The reliability of these plants has been proven and

they are commercially available; plant designs currently in research and development

stages show promise ofthennal efficiencies above 50%. In particular, Integrated

Gasification Combined Cycle (IGCC) power generation is based on the gasification of

coal with the gas expanded subsequently into a gas turbine some 67% of the power is

generated in this way with the remainder being generated by conventional heat transfer

steam generation. Studies of hybrid cycles (gasification and combustion) in the USA,

Germany and the UK are at the research stage. The process uses high-pressure steam and

air for gasification of the coal (-80% of the fuel) and the remaining char is burnt as a

single fuel. Both gas turbine and steam-driven turbines are used.

The development of coal bed gasification is based on the theory of producing methane

from coal beds by direct injection of oxygen and water into the bed (The thermal

efficiency of natural gas is considerably higher-50-56% total efficiency-than that of

pulverised fuel coal combustion). Other advantages include little to no mining, ease of

handleability of the fuel and possible reductions in process energy requirements (milling,

coal processing). This may possibly be utilised on remaining coal commodities in

redundant mines (D.T.!. 1999).
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CHAPTER FOUR

REVIEW OF MICROWAVE STUDIES UPON COMMINUTION

4.1 Introduction-Review of microwave studies upon comminution

This section provides a background to the grindability of materials and conventional

comminution theories. In particular, the effect of heat treatment to reduce the resistance

of a solid material to size reduction and the relative affect of microwave and convective

heating are reviewed.

4.2 Breakage theories

Whatever the reason for size reduction, whether comminution is necessary to liberate

valuable minerals from a host rock or to produce pulverised fuel from coal, the principles

of comminution are similar. Inter-atomic bonds are only effective over small distances

and can only be broken if sufficient energy is available. Many size reduction mechanisms

produce compressive or tensile stresses to generate the required force for breakage.

Breakage however, does not only depend upon the applied stress, each material has

unique structures that resist breakage. Natural materials (e.g. ores) commonly contain a

number of mineral species dispersed as grains of various sizes that are unevenly

distributed. The distribution of the applied force is then dependant upon the individual

mechanical properties of the inherent minerals and upon weaknesses (flaws) within the

matrix. Cracks act as stress concentration points, the stress at such points depending upon

the crack length and beyond a certain distance the force may be sufficient to break the
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atomic structure further. Such ruptures will increase the crack length and subsequently

increase the stress concentration leading to rapid crack propagation and particle fracture

(Wills 1992).

Over the years, common comminution theories have been proposed and material tests

developed in order to further the understanding of material breakage.

4.2.1 Comminution theory

Comminution theory is concerned with the relationship between energy input and the

product particle size madefrom a given feed size (Bond 1961).

In 1867, the first comminution theory (proposed by Von Rittinger) stated that the area of

new surface produced is directly proportional to the useful energy consumed in size

reduction. Rittinger's law is concerned with the relationship between the surface area of

one tonne of particles of uniform diameter <if and the work input per ton, both of which

are considered to be proportional to lid (Bond 1961). Rittinger's law equates to Equation

4.1:

E =K(_l __1 J
Mrgy D D

2 I
(4.1)

Energy Energy input (kWhlt)
K Constant dependent upon material
DJ Initial particle diameter (m)
DJ Final particle diameter (m)
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A second theory of comminution, proposed by Kick (1885), states that the work required

for breakage is proportional to the size reduction of the material. In particular, the

reduction ratio (Rr) of the feed particle size (F) to the product particle size (P) is related

to the work input per tonne (W) as shown in Equation 4.2 (Bond 1952).

W = log Rrilog 2 (4.2)

W
Rr

Work input per tonne (kWh/t)
Reduction ration (FIP)

Both theories are considered as inappropriate as they do not conform to commercial

crushing and grinding practice. The current accepted theory is that of Bond's third theory

of comminution developed in 1951 (Bond 1961). However, it has also been suggested

that, the relationship between the particle size and breakage energy is a composite of the

three theories, a material may comply with all three theories to an extent dependant upon

particle size (Lowiston, 1974). It is reasoned that grinding obeys Kick's law if the particle

is greater than lOmm diameter, Bond's theory is satisfactory if the particle size range is

between 10mm and 100Jlm (considered the size range for conventional rod and ball

milling) and that Rittinger's law is applicable for fine grinding 1mm - lOJlm.

4.2.2 Bond Work Index (Wi)

The Bond Work Index is based on the theory that the work input is proportional to the

new crack tip length produced during breakage taking into consideration the original feed

size of the material. The Work Index is a pammeter that expresses the resistance to

46



Chapter 4 Review of microwave studies upon comminution

grinding of that material and is numerically defined as the specific energy (kWhIt)

required to reduce that material from infinite size to 80% passing 100J.1m.Bond's third

theory is generally expressed in the form:

(4.3)

W Work input (kWhlt)
F 80% passing sizes of the feed (J.1m)
P 80% passing sizes of the product (J.1M)
Wi Bond Work Index (kWhlt)

4.2.3 Relationships between Bond Work Index and Hardgrove Grindability Index

As previously stated (Chapter 3.4), the Hardgrove Gindability Index is a standard test

method used in the coal industry. The Hardgrove Grindability Index, however, is limited

in use and is a determination of the relative grinding behaviour (in a ring ball mill) as a

function of coal rank rather than for scale up design applications, as may be achieved

from a knowledge of the Bond Work Index.

A correlation between Bond Work Index (Wi) and Hardgrove Grindability Index (HGI)

was proposed by Bond in 1954 (Equation 4.4) and subsequently, a revised version was

published in 1961 (Equation 4.5) (Bond 1961).

Wi= 88
HGIo.3 (4.4)

Wi Bond Work Index (kWhlt)
HGI Hardgrove Grindability Index
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wi- 435
HGIo.91 (4.5)

Further work by McIntyre and Plitt (1980) led to an evaluation of the above two

relationships which led to that shown in Equation 4.6 (McIntyre 1980):

Wi::: 1622 For Wi >8.5
HGIl.08

(4.6)

To verify which of these relationships was the most appropriate for correlation between

Bond and Hardgrove indices, both the standard Hardgrove gindability test (BS 1016,

1981) and the Bond Work Index were experimentally determined using a British coal (P-

2 coal). The Hardgrove Grindability Index was determined by the Coal Research

Establishment Group. The measured Hardgrove Grindability Index of this coal (HGI =

53) was correlated to the Bond Work Index from Equation 4.4,4.5, and 4.6 respectively

(Table 4.1).

Table 4.1 Calculated Bond Work Index from the measured value of the
Hardgrove GrindabiJity Index

Proposed by: Equation Formula Wi (kWh/t)
Bond 1954 3.4 Wt = 88/(HG/H) 26.7
Bond 1962 3.5 Wi = 43S/(HGP91) 11.7

McIntyre and Plitt 1980 3.6 Wi = 1622/(HGII.U'6) 22.3

Results (Table 4.1) show considerable variance in Wi from these correlation's. A Bond

test was carried out on a 30kg sample ofP-2 coal as described in Appendix A. The Wi
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was determined at 751lm and 1061lm cut sizes and the standard Bond Work Index

calculated from the composite curve (Figure 4.1).
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Figure 4.1 Determination of Bond Work Index for P-2 coal

Figure 4.1 shows that the experimentally determined Wi (1OOllm) for P-2 coal is 22.3

kWhIt, this is similar to the value derived from the relationship proposed by McIntyre

and Plitt (1980).

If it is then assumed that the correlation expressed in Equation 4.6 is the most suitable,

then interrelationships can be applied on coals of HGI > 160 or Wi <8.5.

4.2.4 The Relative Work Index (RWI)

The Relative Work Index (derived from the Bond Work Index) is simply a method to

compare the 80% passing size of the milled product to that of a reference material.
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Due to the time required to undertake the standard Bond test Berry and Bruce (1966)

developed a comparative method to determine the Work Index of an unknown material.

The method requires the use of a reference material of known Work Index. An identical

weight of both samples are ground within a mill at constant speed so that the power

consumption is equal and can be used as the common term in a derivation of

simultaneous equations (Wr=Wt). If 'r' denotes the reference material and 't' the material

under test, using simultaneous equations as expressed in Equation 4.3, the Work Index of

the test material can be determined (Equation 4.7).

Wr =Wt = 10Wir _IOWi, = 10Wit _IOWit
ffrffrJPiJFi (4.7)

W Work input (kVVbVt)
F 80% passing sizes of the feed (urn)
P 80% passing sizes of the product (um)
Wi Bond Work Index (kVVbVt)
For material 'r' and 'I' respectively.

Rearranging these equations gives the Comparative Work Index (CWI):

10 10
CWI = Wit = Jp; - JFr

Wir 10 10
JPj-JFj

(4.8)

The equation can be converted, exclusive of the Bond Work Index of either material, to

provide a Relative Work Index i.e. relative to the reference material and expressed on a

percentage scale (Equation 4.9). This is similar in methodology to the relative
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grindability scale used by Hardgrove to compare the grindability of coals and represents a

simple way to ascertain whether the grindability of one material is greater than another.

Within the current study, the non-treated coal sample is classed as the reference sample

and the treated samples as the test samples, thus giving a comparison between milled coal

products of both untreated and microwave treated coals.

10 10

RWI = -;r;::;;, - JF;, 100
10 10 x
JMj-JFj

(4.9)

RWI Relative Work Index (%)
Fn 80% passing size of the feed coal, non-treated coal (urn)
Mn 80% passing size of the milled coal, non-treated coal (urn)
Ft 80% passing size of the feed coal, microwave treated coal (J.1m)
Mt 80% passing size of the milled coal, microwave treated coal (urn)

4.3 Affect of heat treatment on grindability

The effect of heat treatment on grindability has been studied since the beginning of the

zo" century. Inparticular, ore grindability has been investigated due to the complex

mixtures of minerals within a host ore body. Fractures have been reported as a result of

heat treatment alone and in some cases, these fractures were responsible for a reduction

in the Work Index and gave improved mineral liberation. The following sections describe

previous research concerning thermally-assisted liberation, microwave properties in

relation to mineral heating and their effect on microwave-assisted comminution.
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4.3.1 Thermal assisted Liberation

Figure 4.2 Intergranular cracking (Young 1997)

Thermally-assisted liberation is concerned with rock fracture characteristics upon

heating. Comminution is the most energy intensive process within mineral processing and

up to 70% of the total energy requirements of some metal extractions is used in grinding

(Walkiewicz 1991). As early as 1918, a study of the application of heat energy to reduce

grinding resistance was carried out with the ultimate aim to reduce comminution energy

(Yates 1918, Holman 1927). Typically, ores contain a number of minerals of different

mechanical and thermal properties. Each mineral has different thermal expansion

properties, which upon heating and cooling create stresses, which may lead to localised

fractures. Intergranular and trans granular fractures can be produced as a result of heat

treatment. Figure 4.2 shows an intergranular fracture within a granite (consisting

primarily of quartz, feldspar and biotite) after heat treatment within a muffle furnace at

650°C. Fractures may have been produced because ofthe a to p phase change of quartz
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at 573°C resulting in a volumetric expansion ofO.86% (Young 1997). Thermally-assisted

liberation research by Fitzgibbon and Veasey (1990) reported significant reductions in

grinding resistance could be achieved. However, the benefits of heat treatment were

uneconomical on tested ore species.

4.4 Microwave assisted comminution

Thermally-assisted liberation to date is generally considered as uneconomical due to the

high energy requirements for bulk heating. However, microwave energy presents an

opportunity to reduce the overall energy requirements of thermally-assisted liberation in

so far as it provides an in-situ method of heating in contrast to conventional heating,

which relies on heat transfer by conduction. Furthermore, since not all materials absorb

microwave energy, differential heating and expansion could be produced without bulk

heating.

Subsequent sections review topics related to microwave-assisted comminution and

include the relationship between dielectric properties, heating rates and their effect on

grindability .

4.4.1 Dielectric heating rates

Early research concerning the effect of microwave energy on natural materials showed

that all materials heat at different rates. As with thermally-assisted liberation of minerals

from ore bodies, expansion rates may induce fracture propagation. Chen et al (1984)

reported the relative transparency of some minerals to microwave radiation with varying
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power at a frequency of2.45GHz. The study concluded by grouping the test minerals, i.e.

group 1 minerals which exhibit poor heating and relative transparency (most silicates,

carbonates, sulphates and some oxides and sulphides) and group 2 minerals which show

good heating characteristics (most sulphides, arsenides, sulphosalts and sulphoarsenides).

Following this study, Walkiewicz et al (1988) produced additional data for mineral

heating at a power of lkW and a frequency of2.45GHz. Results indicated that metal

oxides and sulphides heat rapidly, most metals generally reflect microwave radiation,

most chloride minerals are poor receptors and common gangue minerals (silicates) are

relatively transparent to microwave radiation. The study also showed that intergranular

and trans granular fractures may result in ore bodies when exposed to microwave

radiation. Similar conclusions have been made by other researchers (Dobson 1991,

Womer 1989, Harrison 1995). Further work by McGill et al (1988) indicates that

microwave power has a significant effect upon heating rates, heating rates increase for

receptive minerals. In contrast, low loss minerals showed lower heating rates.

4.4.2 Dielectric properties of minerals

Heating rates are dependent upon the material dielectric properties and those for mineral

species has been reported at frequencies between 300Hz and 1000Hz (Church 1988). The

report showed that minerals with high dielectric constants (and loss factors) have higher

heating rates than minerals of lower dielectric properties. Each mineral tested had unique

dielectric properties. However, in general, oxides, tungstates and some carbonates had

high dielectric constants (25)g'>6), whilst most silicates had much lower values (E'<6).

Nelson et al (1989) carried out a study on metal oxides and silicates at frequencies of 1.0,
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2.45,5.5, 11.7, 22.0GHz and concluded that, whilst dielectric constants decrease with

increasing frequency, a resonance frequency (optimum frequency unique to material)

may exist within the microwave frequency range.

4.4.3 Microwave exposure of minerals and comminution behaviour

As different thermal expansion coefficient exist between different minerals, localised

fractures may be produced upon heating. Thermally-assisted liberation using microwave

energy has been studied by a number of researchers since the first publication

"Microwave Assisted Grinding" by Walkiewicz in 1991. Similar principles apply for

thermally-assisted liberation. However, microwave energy, depending upon the ore body,

may only be absorbed in part by the ore (transparency of some mineral species), reducing

the energy requirements when compared to conventional furnace heated thermally-

assisted liberation.

A reduction in the Bond Work Index of between 10% and 24% was reported by

Walkiewicz et al (1991) after microwave heating (at a power of3kW) of iron ore

samples. Harrison et at (1996) investigated the effect of microwave radiation on the

grindability of a number of different minerals and coals (The effect of microwave

radiation on coal grindability is discussed in Chapter 5). Samples of each mineral were

exposed to microwave radiation at a power ofO.65kW for five minutes. Minerals having

low heating rates exhibited no change in grindability, minerals with medium and high

heating rates showed increases in surface area after microwave exposure and ensuing

improvements in grindability. Minerals such as pyrite and barytes are reported to have
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reductions in Relative Work Index (RWI) of35% to 40% respectively, whilst the

greatest improvements in RWI (more than 70% reduction) were shown for bornite and

chalcopyrite (Table 4.2). Minerals that have the ability to absorb microwave radiation at

high heating rates generally showed subsequent changes in comminution behaviour

(Harrison 1996).

Table 4.2 Microwave grindability and heating rates of selected minerals
(Harrison 1996)

Mineral Measured heating rate Relative Work Index
(O.65kW,2.45GHz) (lOOsirradiation at 0.65kW.

rCfs) 2.45GHz) milled for 45 minutes
(%)

Quartz 0.07 100
Feldspar O.l 99
Barytes 0.09 59
Bornite 2.23 22

Chalcopyrite 2.21 29
Pyrite 1.89 62

Wolframite 0.09 27
Hematite 0.81 47

Thermal expansion and intergranular fracture along the grain boundaries of a single

pyrite particle within a calcite host rock was examined using a finite element numerical

model developed by Salsman et al (1995). The study predicted significant differential

heating using a short pulse microwave source; the associated thermomechanical stresses

suggested a weakening of the host rock and reduction in Work Index (Salsman 1995).

Kingman and Rowson (1996) have considered the effect of microwave energy on a

number of minerals. Reduction in Bond Work Index and Ring-Loaded strength after
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microwave exposure at powers of l.3kW and 2.6kW were reported upon massive

Norwegian ilmenite ore and Palabora carbonatite. Further studies were directed towards

evaluating the potential of microwave energy on the down stream processes- in particular

the leaching of copper and gold ores after irradiation.

Previous research has demonstrated the potential capabilities of improved grindability by

microwave energy upon particular minerals, depending upon their dielectric properties,

their position within an ore structure and the applied microwave field properties. It is

noted, however, that previous publications have considered the economics of such

microwave-assisted grinding unfavourably. Clearly, further research is necessary to

optimise process conditions and to assess the effect of material behaviour upon

microwave exposure.
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CHAPTER FIVE

THE EFFECT OF MICROWAVE RADIATION ON COAL

5.1 Introduction-The effect of microwave radiation on coal

Much research has been carried out into the effect of microwave radiation on coal with

emphasis given to assessing the changes in coal characteristics following irradiation- in

particular, dielectric properties, desulphurisation and grindability.

5.2 Dielectric properties and microwave heating rates of coal

Investigations concerning the dielectric properties of individual minerals found in coals

show significant differences in absorption characteristics and subsequent differential

heating (Florek 1996, Batt 1992, Harrison 1996) (Chapter 4). More specifically the

dielectric properties of coal depend on a range of factors including coal rank, moisture

content, mineral composition, temperature and the frequency of microwave radiation.

The wide range in variables make measurements by various workers difficult to

collaborate (Yang 1987). For example, such studies show that the relative dielectric

constant of Chinese coal from different origins varies from 3.22 to 4.57 at an operating

frequency of2.45GHz. The report also highlights the subsequent change in favour of

microwave heating through dielectric property measurement (increasing dielectric

constants) with additions of caustic solutions.
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Unlike some minerals, the dielectric constant of coal has been shown to decrease with

increasing temperature (Balanius 1981). The workers also determined the dielectric

constants of a range of bituminous coals over the frequency range 8.2GHz to 12.4GHz

and for varying particle sizes. No significant changes were reported in the measured

dielectric constants over the latter frequency range. However, coarser coal particles

showed an increase in the dielectric constants (Balanius 1976). A study of dielectric

properties within the frequency range 0.1 - 6GHz showed decreasing values of dielectric

constant and loss factors from O.lGHz to approximately 4.5GHz (Figure 5.1 and 5.2)

(Harrison 1997).
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, 1.86
Er

1.78

1.74t-__ :-:::-_ ___,,~_,...-=::::=:::::::;;::::::::;=:::;;;:::::::=~
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Figure 5.1 Dielectric constant (Er') of coal between the frequency range 0.1- 6GHz
(Harrison 1997)
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Figure 5.2 Loss factor (Er") of coal between the frequency range 0.1 - 6GHz
(Harrison 1997)

Dielectric measurements show that coals can be rapidly heated within a microwave field

and the heating processes can be to depend on time, input power and frequency. Table 5.1

shows the relative difference between the dielectric constants for a dry coal, pyrite and

ash. It is inferred that pyrite can be heated relatively rapidly due to its associated high

absorbency (Chatterjee 1991).

Table 5.1 Measured dielectric properties utilised in the numerical models
(frequency 2.45GHz) (Chatterjee and Misra 1991)

Relative Dielectric Conductivity
constant &~ o, (S/m)

Dry coal 3.0 0.061
Pyrite 7.0 1.04
Ash 4.6 0.0

To account for the number of variable components within a given coal, mixture models

can be used to determine an average complex permittivity (Masayuki 1995). Such

60



Chapter 5 The effect of microwave radiation on coal

procedures have also been employed to predict the permittivities associated with the

density difference arising from mineral inclusions and measured particle sizes (Nelson

1996, Andrzej 1999).

Knowledge concerning the dielectric constants of low rank coals is limited and it is

possible that such coals may be highly receptive to microwave heating due to their

increased moisture content. Further work is required to identify the most suitable coals

for commercial applications.

5.3 Microwave drying of coal

"Here is a way to put most of the drying energy into where you want it-to the moisture

within the coal particles rather than to the particle's entire body "(Chironis 1986).

Preferential heating of water in coal has led to investigations regarding the use of

microwaves in coal drying applications. The moisture content of fine coal is often high

and can create problems in bulk handling when coal is blended, conveyed or stored; more

over, when coal has a low heating efficiency. Whilst it has been claimed that

conventional thermal drying (by means of hot-air) can be efficient, it may not always be

suitable for fine coals containing a high moisture content. The ensuing coal can often

result in dust problems (Bates 1989). Chironis et al has shown that microwave drying

efficiencies can reach 97% for some coal fines «6.35mm). Similar research by Lindroth

et al (1986) showed drying efficiencies (63%-90%) considerably greater than those

achieved using conventional thermal drying techniques. Standish et al (1987) reported the
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rate of moisture removal by microwave energy in some brown coals was approximately

twice that for conventional drying. Dielectric modeling techniques have been used to

predict heating rates and suggest that at a frequency of2.45GHz and at a power of

O.663kW coal samples can reach elevated temperatures sufficient to remove moisture

(Chatterjee 1991).

Microwave drying techniques can also be used as a method of moisture content

determination comparable to the standard ASTM proximate analysis (Jacobs 1984).

Laboratory and pilot-scale trials have been used to investigate the potential for online

moisture analysis. Many researchers have studied within this field and have claimed

accuracies of± 0.5% on continuous coal flow moisture analysis (Kalinski 1978, Hall

1972, Cutmore 1987).

Research demonstrated that the reduced coal drying times could be achieved without coal

degradation in the form of ignition or volatile matter loss. On-line moisture determination

using microwave energy has also shown to be a rapid and accurate method especially for

medium, high rank coals; however, to date, no commercial on-line system is available.

5.4 Microwave pyrolysis of coal

Research has been carried out to establish whether microwave radiation (as opposed to

conventional heating) can be used for coal pyrolysis (Larry 1986, Gasner 1986).

However, it was concluded that microwave energy was not effective without the use of

plasma initiation. The purpose of the study was to determine if a higher percentage of
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liquid products could be achieved using microwave energy as opposed to heating in a

muffie furnace. Copper wires were employed as the plasma source. Both conventional

and microwave heating generated similar quantities of liquid product. However, low

power microwave radiation yielded products at a much lower residence time and

favoured tar production (Table 5.2).

Table 5.2 Comparison of product yields obtained by microwave and convective
heating processing (Larry et a11986)

Product yield, mass %
Microwave Convection

Gas 17 30
Liquid 14 1
Char 69 69

Monsef-Mirzai et al (1995) reports the difference in tar production using copper oxide,

iron oxide and coke as microwave receptors (plasma initiation source) in Nitrogen flow

microwave pyrolysis. Tar products of up to 49wt% are achieved using CuO, 27wflo with

Fe304 and 20wflo with metallurgical coke. There was ensuing discussion concerning the

possibility of continuous processing using fluidised bed technology with associated rapid

microwave pyrolysis capability.

5.5 Microwave desulphurisation and demineralisation of coal

Various authors (Zavitanos 1981, Kelland 1988, Viswananthan 1990, Butcher 1995) have

suggested the use of microwave radiation for the desulphurisation of coal. Environmental

legislation imposes a limit to the sulphur release into the atmosphere. This has led to the

use of flue gas desulphurisation equipment and expensive removal options such as

63



Chapter 5 The effect of microwave radiation on coal

flotation, it is also a significant factor influencing selective coal blending (reduce total

sulphur content by blending with a low sulphur coal). References suggest that it may be

possible to use microwave energy to remove part of the sulphur bearing material from

some coals prior to combustion. In principle, two routes are possible.

(i) Conversion of pyrite to pyrrohotite followed by magnetic separation.

(ii) Preferential dissolution of sulphur by molten caustic solutions.

Microwave radiation has also been applied to coals wetted in an acid or caustic solution

to dissolve inorganic (mineral) coal components as a means of coal cleaning.

5.5.1 Microwave conversion and separation of pyrite

Considerable research has been carried out concerning the partial oxidation of pyrite to

liberate sulphur from coal. When heated to temperatures of, typically, 300°C Pyrite

(FeS2) can phase to a form similar to that of mineral pyrrohotite (FeS) with the release of

sulphurous gases (predominantly sulphur dioxide and hyrogen sulphide). In particular, as

stated previously (Section 5.2) pyrite in coal heats at a rate of between 2 and 10 times

that of the parent coal (Zavitanos 1981). The properties of oxidised pyrite significantly

change and it is claimed that the magnetic susceptibility greatly increases. Experiments

have demonstrated that, if only 1% of the total mass of pyrite is decomposed, the

magnetic susceptibility can increases of the order of two magnitudes (Bluhm 1980,

Butcher 1995). Butcher (1995) investigated the feasibility of magnetic separation of

enhanced magnetic pyrite and concluded that low intensity magnetic separation and any

wet magnetic separation methods would not be effective due to high calorific value
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losses. Butcher (1995) did, however, suggest that optimum particle size ranges exist

which significantly improve the microwave enhanced magnetic properties of pyrite and

its subsequent liberation. Experiments have shown that up to 80% of the pyritic sulphur

can be removed using a high gradient semi conductor magnetic separator (15T) (Kelland

1988). Other workers (Zavitanos 1981, Viswananthan 1990) provide supporting

experimental evidence using high gradient magnetic separators.

5.5.2 Microwave desulpburisation of coal using caustic solutions

Since 1979, there have been substantial investigations into the role of caustic alkali

solutions (NaOH and KOH) in the microwave desulphurisation of coals. Zavitanos

(1979) referred to the removal of pyritic and organic sulphur from coals using alkali

caustics; such solutions were shown to be good absorbers of microwave radiation. Due to

the selective heating of the caustics in sulphur-rich areas; sulphur-bearing compounds can

readily decompose to water-soluble sulphates and acids that can be easily removed by

washing. Microwave irradiation of coal, in the presence of sodium hydroxide (16%) and

water (10-20%) gave encouraging results with a low loss of volatile matter, a high

reduction in pyritic sulphur (90%) and a reasonable reduction in organic sulphur (Yang

1987). The tests also gave an indication of the problems associated with microwave

energy distribution in so far as only approximately 3% of the total microwave energy was

required for sulphur reduction. Furthermore, an economic evaluation of the results

showed promise in comparison with data provided from other desulphurisation methods.

65



Chapter 5 The effect of microwave radiation on coal

Further research has continued with a variety of aims including whether there is an

optimum particle size for pyrite decomposition, determination of suitable microwave

operating conditions and the use of molten caustics. With the use of a low gradient

magnetic separator, a 70% separation of the total sulphur content was measured after only

one minute of microwave exposure (0.5kW, 2.45GHz) with the addition ofa molten

caustic solution to the test coal (Rowson 1990). Similar work (Butcher 1995) shows that

sulphur reduction can be achieved irrespective of particle size. However, particle sizes

ranging between lmm and 0.5mm irradiated for 60 and 90 seconds produced greatest

reductions (0.65kW, 2.45GHz). Further suggestions were made regarding the presence of

magnetic layers (Fe304) coating the pyritic inclusions that facilitate magnetic separation

(Butcher 1995). Hayashi et al (1990) investigated the potential role of molten caustics in

microwave desulphurisation of coals and showed that substantial differential heating

could be achieved with coals of low Pyrite content. Total sulphur reductions of up to 60%

were achieved and the suggestion was made that the rate-determining feature was mass

transfer from the molten caustic into the coal structure.

Other chemical microwave desulphurisation methods have been suggested based on the

use of acidic solutions (Andres 1996). Hydrochloric acid was used as a desulphurising

agent and, following an appropriate mixing time of twenty minutes, the sulphate and

pyritic sulphur could be completely removed in addition to 70% of the organic sulphur.
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5.5.3 Demineralisation of coals with microwave energy

Strong alkali and acid solutions have been used to dissolve inorganic minerals within

coal. In particular, the application of hydrofluoric acid mixtures have been shown to

produce rapid dissolution of nearly 25 elements including: aluminium, silica, zinc,

calcium and iron using microwave energy (0.65kW at 2.45GHz frequency) (Nadkami

1984).

Butcher and Rowson (1995) carried out tests using sodium hydroxide with encouraging

results (Table 5.3). However, the latter tests were carried out on coal of -500/-lm+ 300/-lm

size range, Nadkami (1990) suggests that the most satisfactory results were achieved with

finer particles «20011m).

Table 5.3 Ash reductions after microwave NaOn pretreatment (Butcher and
Rowson 1995)

Microwave (O.65kW) Feed Magnetic Non- Overall
(2.45GHz) Ash(%) product magnetic reduction

pretreatment time (s) Ash (%) product Ash (%)
Ash_(%l

30 30.47 38.88 21.38 29.18
60 30.47 37.83 25.57 16.07
90 30.47 38.32 26.73 12.27

Even though potential applications of microwave demineralisation are encouraging,

associated corrosion problems with containment may prevent commercialisation.
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5.6 The influence of microwave radiation on coal grinda bility

Comminution is an energy intensive and inefficient process and the major part of the

energy supplied for grinding is absorbed by the mill with only a fraction of the energy

directly utilised in breakage (Herbst 1981). Microwave irradiation has been used to alter

the comminution behaviour of coal. Viswanathan (1990) applied microwave radiation at

a power ofO.5kW and a frequency of2.45GHz to 150g samples ofa UK coking coal and

a non-coking coal each for a duration of one minute. An increase in product size range of

31% and 10% was shown for the microwave treated coking and non-coking coals

respectively, implying a significant improvement in coal grindability due to microwave

exposure.

Harrison (1997) has carried out substantial work using coal supplied from National

Power's West Burton Power Station. The grindability characteristics of three coal blends

were measured before and after microwave exposure. To this end, representative samples

(500g) were prepared and exposed to microwave radiation at a power ofO.65kW and a

frequency of2.45GHz. The average temperatures of these samples were recorded

immediately after irradiation and the samples were ground for 45 minutes in an

appropriately-sized rod mill. The coal size distributions were evaluated after 5,20 and 45

minutes of milling and the data reported as Relative Work indices with regard to that of

the non-treated milled sample (Table 5.4).
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Table S.4 The Relative Work Index of sub-bituminous coals with increasing
microwave exposures (0.6SkW, 2.4SGHz)(Harrison 1997)

Relative Work Index %, ground for:
No2 coal (5 min) (20 min) (45 min)

Non-treated 100 100 100
Exposure 1 min 92 95 93
Exposure 3 min 85 75 91
Exposure S min 84 68 69
Exposure 8 min 81 73 68

NoS coal (S min) (20 min) (45 min)
Non-treated 100 100 100

Exposure 5 min 85 75 83
Exposure 10 min 84 77 81

No6 coal (5 min) (20 min) (45 min)
Non-treated 100 100 100

Exposure 5 min 96 76 88
Exposure 7 min 88 77 71

Results show that significant improvements in grindability were achieved after 5 minutes

exposure. After 8 minutes exposure (N02 coal), 10 minutes (NoS coal) and 7 minutes

exposure (No6 coal) microwave treatment was terminated due to coal ignition. As shown

in Table S.S further work examined the use of an increased microwave power (1.SkW) to

reduce the exposure time; however, localised hot spots were observed and experiments

terminated after 1,2 and 3 minutes exposure for No 2, No 5 and No 6 coal, respectively.

Harrison (1997) claims that comparable grindability improvements could be achieved

with both 0.6SkW and 1.SkW microwave power exposures were it not for the pyritic

inclusions causing ignition. The work also showed that, with an increase in power the

heating rates of both the coal and pyrite are increased. Clearly, pyrite could reach ignition
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temperature rapidly before any appreciable effect on coal comminution characteristics

became apparent.

Table ~.~ The Relative Work Index of sub-bituminous coals with increasing
microwave exposures (1.~kW, 2.4~GHz)(Harrison 1997)

Relative Work Index %, 2round for:
No2 coal (~min ) (20 min) (4~ min)

Non-treated 100 100 100
Exposure 1 min 99 97 95

No s coal 15min_) (20 min) (45 min)
Non-treated 100 100 100

Exposure 2 min 84 78 70

No6 coal 15 min) (20 min) (45 min)
Non-treated 100 100 100

Exposure 3 min 98 80 60

Harrison further suggested that local differential expansion rates and moisture removal

from coal through steam generation may be possible breakage mechanisms insofar as

chemical analyses (Table 5.6) had shown considerable reductions in total moisture

content following microwave treatment.
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Table S.6 Chemical analysis on samples microwaved at O.6SkW (Harrison 1997)

C H N Cl CO2 Moisture Asb Calorific
(%) (%) (0/0) (%) (%) content content Value

(%) _{_o/~ 1_K~
N02 coal

Non-treated 69.1 4.34 0.86 0.51 0.34 5.2 13.5 29040
Exposure 1 min 69.0 4.50 1.54 0.50 0.36 4.4 14.4 28640
Exposure 3 min 69.4 4.65 1.59 0.50 0.41 3.7 13.5 28920
Exposure 5 min 68.9 4.50 1.58 0.50 0.21 2.9 13.9 28740
Exposure 8 min 69.7 4.56 1.56 0.49 0.26 2.1 13.6 28800

NoS coal
Non-treated 67.7 4.26 1.53 0.18 0.40 l.9 19.0 28400

Exposure 5 min 67.7 4.39 1.57 0.19 0.04 1.5 17.6 28680

N06 coal
Non-treated 63.8 3.74 1.37 0.16 0.54 3.4 21.1 26780

Exposure 5 min 62.7 4.06 1.33 0.23 0.46 1.9 22.3 26180
Exposure 7 min 68.0 4.37 1.51 0.24 0.38 1.8 16.1 28460

The analyses also showed slight reductions in calorific value as a consequence of

microwave exposure and suggested that some volatile gas may also be liberated.

Estimates for the microwave energy consumption were made based on 5 minutes

exposure at 0.6SkW. Using Equation 5.1, Harrison estimated that approximately

108kWhlt energy would be necessary to produce the improvements in grindability

(approximately 70% RWI) from microwave energy. However, the milling energy

required to produce pulverised fuel is 15-40kWhlt, depending upon coal rank (Spiers

1952). Hence, a substantial increase in process energy requirements would be needed

with the inclusion of a microwave cavity . However, Harrison (1995) compares this

energy requirements with that for conventional convective drying methods. Based on

muffle furnace heating from ambient temperature to temperatures comparative to 5
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minutes exposure to microwave radiation at 0.65kW (290°C), a total of 94kWhit energy

(assuming 100% heat transfer) would be necessary (Equation 5.2). Whilst microwave-

assisted is more costly than the use of commercial plant alone, one advantage of the

former is the potential for ash and sulphur reduction.

Q =Pt (5.1)

Q = uc.o« (5.2)

Q Energy absorbed or produced (J/s)
M Weight of sample (kg)
Cp Specific heating capacity (kJ/kg)
01t Heating rate eC/s)

5.7 Effect of conventional drying upon coal grindability

Conventional vertical spindle mills producing pulverised fuel are swept with hot transport

air at 80°C. Coal surface moisture is thereby reduced. However at higher temperatures,

inherent moisture can also be removed. Lytle et al (1992) found that by subjecting

medium volatile coals to convective heating at 204°C, grindability could be improved.

Pretreated and non-treated coals were each ground in a steel ball mill for 60 minutes,

results show a relative reduction ratio of 1.4 indicating a significant change in

comminution behaviour due to preheating.

Harrison (1995) heated three-coal blends in a muffle furnace at temperatures above

200°C to compare their grindability with microwave treated samples (Section 5.6). The

coals were ground for 5,20 and 45 minutes in a rod mill and the size distributions

compared using the Relative Work Index (Berry 1966).
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Table 5.7 The Relative Work Index of sub-bttuminous coals after muffle furnace
treatment (Harrison 1997)

Relative Work Index %t 2round for:
No 2 coal (5 min) (20 min) (45 min)

Non-treated 100 100 100
Heated for 1 hour at 220°C 92 79 80

NoS coal (5 min) _f20 min} 145 min}
Non-treated 100 100 100

Heated for 1 hour at 290°C 90 88 80

N06 coal (5 minl (20 min) 145 minl
Non-treated 100 100 100

Heated for 1 hour at 226°C 96 82 65

Results (Table 5.7) are reasonably similar for No5 and No6 coals after microwave

treatment for 5 and 7 minutes respectively at 0.65kW (Table 5.5). However, microwave

treatment further improves the grindability ofN02 coal. The results do show that

conventional drying improves coal grindability and confirms that moisture could be a

major influence on coal comminution behaviour (Harrison 1995).
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5.8 Conclusions-Review of the effect of microwave radiation on coal

Research has shown that improvements with coal drying, grindability, desulphurisation

potential and pyrolysis can occur from the use of microwave technology. The

investigations suggest differential heating and associated differential expansion rates of

coal and mineral inclusions combined with steam generation as significant features of aU

of these processes. Microwave technology has also been applied to on-line moisture

determination (Bates 1989) and as an aid to iron reduction using coal as the reducing

agent (Zhong 1996).

Previous studies have shown great potential for application of microwave technology

within the coal industry i.e. desulphurisation, demineralisation and drying. Despite

substantial work reported in these fields, further research is required to quantify the effect

of microwave radiation on coal processing. In particular, what effect does microwave

radiation have on coals of different rank, under what conditions can higher powers be

used and is there an optimum coal size for microwave exposure with regards to both

desulphuisation and grindability. There is also a need to verify theories on breakage

mechanisms and optimisation of microwave conditions. Most importantly, milling plant

simulation and full economic evaluation of these processes are necessary to realise the

potential for microwave beneficiation of coal.
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CHAPTER SIX

THE EFFECT OF MICROWAVE RADIATION ON COAL
PRELIMINARY STUDY

6.1 Introduction to experimental studies

The initial aim of this study is to quantify any changes occurring in the chemical and

physical properties of coal when it is subjected to microwave radiation.

Preliminary work was conducted using a range of pre-cleaned coals of varying rank

(group 1) and a typical range of sub-bituminous and bituminous coals ( 100% passing

32mm sieve size) to be used as components in a power station blend (group 2).

Table 6.1 Coal reference table

Group 1 Group2
Abbreviation Colliery name Abbreviation CoIl iery name

F-I Cynheidre P-I National power
F-2 TaffMerthyr P-2 Rossington
F-3 Cwmbargoed P-3 Kiverton
F-4 Bentinck An P-4 Harworth
F-5 Ollerton P-5 1S% ash Daw Mill

F-6 DawMill P-6 ECI2
F-7 Kellingley P-7 Welbeck
F-8 Nadins P-8 Gascoigne Wood

Itwas necessary to investigate the effect of microwave radiation on a selection of coals to

determine the factors which influence any changes in coal grindability, handleability and

fuel potential. Group 1 coals have been selected on the basis of their coal rank and low
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ash content. The relationship between microwave grindability and coal rank (group 1) is

discussed in Chapter 7.

Group 2 coals have been selected to determine the effect of microwave exposure on

typical power station blends.

6.2 Preliminary study on microwave grindability

This section reports the preliminary investigation into the effects that microwave

radiation may have upon the grindability of coal. A series of sub-bituminous coals

(typical UK power station feed) have been exposed to microwave radiation at varying

times of exposure, microwave power and sample load at an operating frequency of

2.4SGHz to investigate whether any grindability improvements can be achieved. The

milling capabilities, chemical and physical properties of the coals following their

exposure to microwave radiation are compared to non-treated samples to ascertain the

potential use of microwave heating as a method of reducing pulverised fuel processing

energy requirements.

6.3 Repeatability of proximate analysis

Proximate analyses of group 2 coals have been experimentally determined by the CRE

(Coal Research Establishment) Group and by The University of Birmingham CUB) in

accordance to 8S1016 part 3 (outlined in Appendix A). Results (shown in Appendix B

and Table 6.2) show a sample analysis and demonstrates the accuracy of the test

procedure. The differences are mainly in the moisture and ash contents. The tests were
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carried out at different times of year and therefore surface moisture will change due to

storage and relative humidity. The ash content may vary from sample to sample due to

the heterogeneous nature of the coals. To compensate for sampling errors; the results

shown in Table 6.2 and Table 6.3 are average values from at least five analyses runs per

coal and measured within the same day (Relative Humidity ranged from 42 to 43%).

Table 6.2 Proximate analyses (as-received basis unless stated) repeatability results
of P-3 and P-I coals

Coal sample Moisture Ash Volatile Fixed Volatile
% % matter Carbon matter dnunf

% % %
CREP-I 3.7 18.7 29.8 47.8 38.04
UBP-I 3.7 18.2 29.7 48.4 38.03
CREP-3 4.7 18.3 30.7 48.3 38.80
UBP-3 4.3 19.2 30.3 46.2 39.60

6.4 Proximate analysis of group 2 coals

Group 2 coals differ from those in group 1 in the way they were mined. Group 1 coals

have been specially extracted from the middle of the coal seam and as much have low

mineral matter impurities. Group 2 coals are 'as-received' coal blends extracted using

typical mining methods and subsequently subjected to a preparation process which

removes only part of the gangue 'ash' materials.
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Table 6.3 Proximate analysis (as-received basis unless stated) of group 2 coals

Coal Moisture Ash Volatile matter Fixed Volatile
sample % % % Carbon matter dmmf

% %
P-1 3.73 (0.15) 18.20 (0.02) 29.69 (0.23) 48.39 38.03
P-2 4.42 (0.09) 13.45 (0.06) 32.25 (0.20) 49.88 39.27
P-3 4.31 (0.09) 19.20 (0.01) 30.29 (0.23) 46.20 39.60
P-4 2.26 (0.17) 7.70 (0.54) 34.45 (0.23) 55.60 38.26
P-5 4.09 (0.06) 13.54 (0.01) 34.08 (0.12) 48.29 41.37
P-6 4.41 (0.17) 12.91 (0.06) 30.33 (0.32) 52.35 36.68
P-7 3.56 (0.08) 6.10 (0.02) 34.02 (0.13) 56.32 37.66
P-8 3.17 (0.05) 21.87 (1.31) 26.72 (0.36) 48.24 35.65

Results (based on the mean value of 5 samples for each coal) of the proximate analyses

undertaken on group 2 coals are presented in Table 6.3 and indicate that the coals range

in rank from the lowest ranked coal; P-6 coal to the highest P-5 all being sub-bituminous.

Standard deviations for the analyses are shown (in brackets) in Table 6.3, all values are

within acceptable limits outlined in BSI016.

6.5 Ultimate analysis of group 2 coals

Ultimate analyses in accord with BS1016 (part 6) were determined on group 2 coals.

Results (Table 6.4) show that the coals exhibit a similar pattern. In particular, their

sulphur and nitrogen contents are low and the carbon, hydrogen and oxygen contents are

higher. Ultimate analyses are expressed on a dry mineral matter free basis and only

considers the organic coal component.
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Table 6.4 Ultimate analysis (dry, mineral matter free basis) of group 2 coals

Coal sample Sulphur Carbon Hydrogen Nitrogen Oxygen
% % % % %

P-l 1.95 65.70 4.13 1.44 26.19
P-2 1.68 69.10 4.34 0.86 23.17
P-3 1.83 68.30 4.16 1.14 24.02
P-4 2.82 67.70 4.26 1.53 23.11
P-5 2.18 67.70 4.65 1.30 24.02
P-6 1.55 67.70 3.93 1.19 24.34
P-7 - - - - -
P-8 1.33 84.50 4.90 1.80 6.5

6.6 Ash, forms of sulphur and normative analysis of group 2 coals

The normative (ash) analysis is appropriate to studies of the individual gangue mineral

inclusions within the coal structure. Some inclusions may absorb microwave energy and

hence have a direct effect upon coal structure. The normative analysis is derived from

chemical analyses and assumed molecular balances for associated common minerals. Ash

analysis is used to determine the oxidised mineral constituents produced from total

combustion of the coal. Typically, ash analysis relates to the mass percentage of the most

common eleven inorganic products which result from coal combustion. Group 2 ash

analysis is shown in Table 6.5.
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Table 6.5 Ash analysis (percentage based on ash content) of group 2 coals

Coal P-l P-2 P-3 P-4 P-5 P-6
Na20% 1.1 2.2 0.8 0.7 0.4 0.4
K2O% 3.6 2.9 2.6 3.2 2.0 3.0
CaO% 2.1 2.9 2.6 1.0 7.4 1.8
MgO% 1.5 1.5 1.6 1.2 2.0 0.9
Fe203% 10.8 10.4 12.9 16.9 9.3 12.1
Ah03% 26.7 24.2 24.1 23.5 21.0 26.1
Si02% 51.4 52.7 52.9 51.9 50.9 54.0
S02% 1.3 1.9 1.5 0.2 0.7 1.3
Ti02% 0.8 0.8 0.1 0.1 0.2 0.1
Mn204 % 0.1 0.1 0.1 0.1 0.2 0.1
P20S% OJ 0.2 0.5 0.4 0.7 0.3

Clearly, the major inorganic elements are silica, iron, aluminum and calcium. This

information-combined with the proximate analysis, ultimate analysis (including chlorine

and carbon dioxide) and the forms of sulphur analysis (Table 6.6) help in determining the

original mass of each inherent gangue mineral prior to combustion.

Table 6.6 Forms of sulphur (dry basis) of group 2 coals

Coal P-l P-2 P-3 P-4 P-5 P-6 P-7
S04 0.18 0.05 0.12 0.24 0.06 0.40 0.29

Pyritic 0.67 0.52 0.67 1.14 0.52 2.04 0.66
Organic 1.06 0.90 0.91 1.24 1.23 0.97 1.25
Total 1.91 1.47 1.70 2.62 1.81 3.41 2.20

Table 6.6 also shows that all the coals naturally contain varying quantities and forms of

sulphur, the sulphur being measured as either sulphate or expressed as organic or pyritic

forms. This analysis is required to determine the mineral contents of iron as pyrite; this is

relevant to further chapters concerning sulphur emission technology.
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Appendix B contains information on the normative analysis results for both group 1 and

group 2 coals. The results firstly show that the most common minerals associated with

the group 2 coals are mica, kaolin and quartz. Smaller quantities of dolomite, pyrite and

ankerite are present. Previous studies have suggested that sulphide minerals such as

pyrite are significant receptors of microwave energy whilst the other aforementioned

mineral species are poor absorbers. The preliminary implication is that there may be a

possible source of ignition, i.e. pyrite, which will heat at a faster rate than the bulk of the

coal. Care was taken during microwave experiments and any particles containing

hotspots (observed by the distinctive colour and odour of sulphurous gases) were

removed immediately.

6.7 Standardization of grinda bility studies

As the principle objective of this study is to determine whether microwave irradiation can

affect coal grindability. A test was developed based on the use of a laboratory scale rod

mill in which coal samples (identical apart from the extent of their microwave treatment)

were subjected to a standardised milling treatment. The rod mill was chosen because of

its availability and ease of use. The mill, of mild steel construction, was of internal

dimensions 155mm (diameter) and 280mm (length). Each rod was 270mm (length) and

25mm (diameter); up to 9 rods could be used. Mill operating conditions were selected

from a preliminary evaluation of coal breakage behaviour before and after microwave

treatment. Grindability indices were based on size distribution analyses (made in

accordance with BS410) of the feed and milled coal. The resulting size distribution data

was then expressed in terms ofa Relative Work Index (Chapter 4). However, it was
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accepted that standard grindability tests such as the Bond and Hardgrove indices were not

appropriate due to their sample preparation requirements (required maximum particle size

and sample volume) and milling time.

6.8 Selection of mill operating conditions for grindability studies

6.8.1 Quantity of coal for batch milling

The charge to the mill must be sufficient to represent a true sub-sample of the whole

batch and capable of providing reproducible results after allowing for losses from

sampling and handling. Coal charge quantity effects were examined at three levels: 250g,

500g and 1000g. Samples of the same initial size distribution were used. The mill

operating features were maintained constant; in particular, the speed of rotation was

lOOrpm and the mill contained 7 rods. Tests were confined to one coal (P-I) and the coal

product size distributions were measured after 5 and 45 minutes of milling.
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Figure 6.1 Variation in Dso with mill load

Results (Figure 6.1) show for a given grinding time, the smaller the coal quantity charged

to the mill, the greater the extent of size reduction. After 45 minutes milling, 80% of the

250g and 500g coal charges were below 130j.lID.In contrast, a lkg coal charge gave an

80% passing size in excess of 500j.lm. The implication is that the large particles which

are predominantly broken by impact are reduced in size at a higher rate as the coal charge

quantity decreases. At lower charge loads there are fewer large particles that require

breaking before the major grinding mechanism becomes one of attrition. The results also

suggest that size distribution converges to a point where all the particles will be at a

specific size, the lower the initial sample load the less milling is required to achieve this

point. It is noted that some fme material is lost during sieve analysis. To reduce

experimental errors in handling fine particles and in consideration of the milling time
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necessary to achieve pulverised fuel size (80%<76mm) a 500g coal charge was chosen as

the standard quantity.

6.8.2 Number of rods

Cited literature (Wills 1992) states that, for maximum size reduction, the optimum

volume occupied by the mill charge (grinding media and material being ground) should

be between 40-75% of the internal volume ofthe mill. For coal quantities of 500g, tests

where conducted to determine the relationship between size reduction and the number of

rods used in milling. The speed of rotation was 100rpm and the number of rods used were

5, 7 and 9 respectively. Milling times were 5 and 45 minutes.
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Figure 6.2 Variation in Dso with the number of rods used

Figure 6.2 shows that, for 5 minutes milling, as the number of rods are increased, the

80% passing size of the ground product decreases. This indicates a greater effective
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grinding action. A similar trend is observed for 45 minutes milling (5 and 7 rods)

although this is not sustained when the number of rods is increased from 7 to 9 where

there was little change in grinding characteristics. Accordingly, as final product size

characteristics were achieved using either 7 or 9 rods, the number of rods used in

subsequent tests was set at 7.

6.S.3 Mill speed

In common with other forms of tumbling mills, breakage during rod milling arises from a

combination of impact and attrition. Clearly, the speed of rotation of the mill and number

of rods within the mill have major influences on grinding performance. If the speed of

rotation is too low, then only a cateracting motion is generated and the relatively mild

stresses may have little effect on the breakage of coarser particles. If the speed of rotation

is too high the rods would become 'pinned' to the mill wall (centrifugal force) thereby

impairing both impact and attrition. The speed at which 'pinning' initially influences the

mill performance is defined as the 'critical velocity' and can be evaluated numerically

from Equation 6.l.

v = 42.3
c ~D-d

(6.1)

Vc
D
d

Critical speed (rev/min)
Diameter of the mill (m)
Diameter of the rod (m)
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The critical velocity based upon dimensions of the current mill was 117rpm (Equation

6.1). Test results show that increasing the speed of rotation from 60rpm to 100rpm

increases the product fmeness. Evidently, breakage by impact and attrition has been

enhanced by the increase in mill speed. However, when the mill speed was raised from

100rpm to 120rpm, the product become coarse, although calculations had shown that the

critical velocity had not quite been reached (as indicated by the change in size

distribution) the cascading effect may have been reduced. This would reduce impact

breakage but not attrition. From Figure 6.3 and a consideration of the grinding

performance of other group 2 coals; 1OOrpmwas considered as an approximate optimum

speed.
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6.3 Variation in Dso with speed of rotation
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6.9 The effect of rod milling on coal
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Figure 6.4 Size distribution of P-l coal with increasing milling time

Two (500g) representative samples ofP-1 coal were used to determine if microwave

radiation has any effect on coal grindability and to determine the size distribution effects

produced by rod milling over time. The original size distribution from a batch sample of

approximately 30kg was determined, the two SOOgP-l coal sub-samples were made

representative to the original size distribution. Size distribution measurements were made

after every 10 minutes of milling. Milling conditions were as described previously (7 rods

used at a rotational speed of IOOrpm). Figure 6.4 shows the size distributions of an as-

received P-I coal sample with increasing milling time. Figure 6.4 also shows that initially

the Dso is reduced rapidly over the ftrst five minutes of milling; this is expected due to the

selected impact (and hence breakage) of coarse particles. As attrition become the more
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predominant grinding mechanism, the size distribution converges creating a more closely

sized product. This is consistent with theories on the grindability of materials in rod mills.

The PF size distribution characteristic used in power generation is 100% passing 125urn

with a Dso of 75urn. This characteristic is achieved within 60-70 minutes rod-milling of

P-1 coal. The second P-1 coal sample was retained for microwave exposure prior to

milling.

6.10 The effect of microwave radiation exposure on coal grindability
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Figure 6.5 Size distribution of P-l coal with increasing milling time following
microwave exposure at a power of O.65kWand at a frequency of 2.45GHZ for 8

minutes

A 500g representative coal sample (P-l) was exposed to microwave radiation at a power

ofO.65kW and frequency of2.45GHz for 8 minutes. The sample was then milled for 70

minutes (test conditions as described in Section 6.8), with the product size analysis being

88



Chapter 6 The effect of microwave radiation on coal-Preliminary study

determined at intervals of 10 minutes. The data (Figure 6.5) shows a similar product size

convergence as noted previously (Figure 6.4). However, a Dse of 800).lm was achieved

(with microwave pretreatment) as compared to I050).lm for a untreated sample after five

minutes of milling (Figure 6.4). A product of size characteristic is equivalent to that ofPF

size was attained after 50-60 minutes milling (microwaved sample) compared with 60-70

minutes for the un-treated sample. Clearly, microwave treatment has had a beneficial

effect on coal grindability; in particular, the coarser particles are the most affected.

Following rod milling for 45 minutes, the Relative Work Index (RWI) (Equation 4.9) of

the P-l coal compared with the untreated coal was 85.4%.

10 10

RWI = IMn -Fn 100
10 10 x

Jiji-JFi
(4.9)

RWI Relative Work Index (%)
Fn 80% passing size of the feed coal, non-treated coal (urn)
Mn 80% passing size of the milled coal, non-treated coal (J.1m)
Ft 80% passing size of the feed coal, microwave treated coal (urn)
Mt 80% passing size of the milled coal, microwave treated coal (urn)

6.11 The effect of microwave exposure time on coal grindability

Representative samples were taken from 30kg batches ofP-2, P-3 and P-5 coals using

conventional cone, quartering and riffling techniques. Each sample was of approximatly

500g weight and of similar size distribution. One sample of each coal was milled for 'as-

received' reference purposes and subsequent samples were given 1,3,5 and 8 minutes

exposure time in a microwave cavity operating at 0.65kW power input and a frequency of
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2.45GHz. The average temperatures within the bulk of the coal were recorded

immediately following exposure and measured using a standard thermocouple (K-type).

Size distributions were determined after 5,20 and 45 minutes milling (test conditions

described in Section 6.8) and the results were expressed in the form ofRWI (Table 6.7).

Table 6.7 The effect of microwave exposure time on RWI of sub-bituminous coals
(0.65kW, 2.45GHz)

Relative Work Index %, eround for:
P-5 (5 min) (20 min) (45 min)

Non-treated 100 100 100
Exposure 1 min 99 94 94
Exposure 3 min 88 92 94
Exposure 5 min - - -
Exposure 8 min 82 90 92

P-3 (5 min) (20 min) (45 min)
Non-treated 100 100 100

Exposure 1 min 100 100 100
Exposure 3 min 58 80 80
Exposure 5 min 56 72 49
Exposure 8 min 55 70 49

P-2 (5 min) (20 min) (45 min)
Non-treated 100 100 100

Exposure 1 min 85 93 92
Exposure 3 min 80 85 89
Exposure 5 min 77 89 90
Exposure 8 min 71 - 43

Table 6.7 indicates that some coals are more sensitive to microwave radiation than others.

In particular, after 8 minutes exposure to radiation, the RWI ofP-5, P-3 and P-2 are all

different after 45 minutes milling. It is expected that coal rank may have an influence on

the receptiveness to microwave radiation. However, these coals were of similar rank,

although there were differences in their feed size distributions. Accordingly, it is difficult
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to draw detailed comparisons between coals. This specific issue is addressed in later

sections (Chapter 7).

Results presented in Table 6.7 indicate that the RWI after 5 minutes milling are

significantly lower than those determined after 45 minutes of milling. Accordingly, it is

possible that microwave treatment has more of an influence on impactive modes of

grinding and hence maybe of greater significance for use on coarser particles. Rod

milling generally result in a narrow product size distribution and this convergence may be

responsible for the increase in RWI between 5 and 45 minutes milling.

Results (Table 6.7) show that after a microwave exposure period of 1 minute, there is

relatively little change in RWI and hence little improvement in grindability. After 3

minutes, the RWI shows a more positive reduction, indicating an improvement in

grindability which is broadly sustained for longer grinding periods. Each coal behaves

differently. Whilst P-5 shows little change in grindability for microwave exposure

periods of up to 5 minutes, the RWI ofP-2 coal exhibits a continuous reduction with

increasing exposure times and P-3 indicates that grindability maybe at an optimum

between 3 and 5 minutes microwave exposure time. The 80% passing size (D80) of feed

coals (P-5, P-3 and P-2) introduced into the mill are 10500~m, 13000~m and 16000~m

respectively. It appears that the microwave exposure initially has no or little effect, after a

period of time an effect upon grindability becomes evident that increases with exposure

time. However, this improvement reaches a maximum and any further exposure has no

effect on the grindability, this trend appears to depend upon the initial size distribution of
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the sample i.e. the coarser the feed the longer the exposure which is required and the

greater the improvement in grindability.
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Figure 6.6 Relative Work Index reduction with increased exposure for P-3 coal

To assess the effect of drying on coal grindability, samples ofP-2 and P-3 coals were

heated in a conventional drying oven prior to milling. The fmal temperature in the oven

was controlled such that it was comparable to that reached by the coals (2000e and 2500e
for P-2 and P-3 respectively) following 8 minutes exposure at O.65kW power (Figure

6.11). Table 6.8 indicates the RWI of the two coals following conventional heating for 3

hours at constant temperature with increasing milling times. Significant reductions were

achieved, indicating an improvement to coal grindability. However, the RWI after 45

minutes of milling was not reduced to the same extent of that for samples exposed to

92



Chapter 6 The effect of microwave radiation on coal-Preliminary study

microwave radiation for 8 minutes. This feature suggests that microwave treatment can

further improve coal grindability over conventional heating.

Table 6.8 The Relative Work Index of sub-bituminous coals with conventional
heating after 3 bours

Relative Work Index %, ground for:
P-2 (5 min_) (20 min) (45 min)

Furnace 200°C 77 71 54
P-3 (5 min) (20 min) (45 min)

Furnace 250°C 65 92 81

It is suggested that coal sampling techniques used may effect the validity of the results, it

is understood that this is due to the sensitivity of the microwave treatment and the

differences in feed size distribution. The experiment was repeated using P-2 coal, the

initial size distributions of each individual sample remained identical to that of the

reference sample. The size distribution of a -30kg batch was evaluated using a ..J2 sieve

progression series with a top size of 22mm. The series of 500g representative sub-

samples were prepared from the retained particles of each size class.

Table 6.9 The Relative Work Index of P-2 coals witb increasing microwave
exposures (same initial size distribution)

P-2 coal Relative Work Index %, ground for:
Exposure time 15minl (20 min) (45 min)_
Non-treated 100 100 100
3 minutes 90 96 82
5 minutes 77 90 75
8 minutes 80 81 69
10minutes 72 81 63
12 minutes 63 68 54
15 minutes 64 69 54
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Samples ofP-2 coal were exposed (at a input power ofO.65kW) for 3,5,8, 10, 12 and 15

minutes. Results (Table 6.9) show a similar grindability trend as shown previously

(Figure 6.6). Following this sample preparation procedure, results show an improved

repeatability i.e. two as-received P-2 samples (A and B) were milled for 45 minutes and

size distributions taken after 5, 20 and 45 minutes of milling (Figure 6.7).
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6.12 Observed coal structural changes from microwave heating

Fractures have been observed on microwave-exposed coals. Their dimensions and

features range from small fractures (10-20llm) detected using Scanning Electron

Micrograph imaging (Figure 6.9) to visible cracks (>10mm)(Figure 6.8).

tOmm

tOmm

Figure 6.S Visible fractures produced due to microwave heating (P-S coal)
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Figure 6.9 Scanning Electron Micrograph image of P-3 microwave exposed coal
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The larger cracks were normally associated with the release of sulphurous gas. Previous

research has shown that sulphide minerals are rapidly heated within microwave fields

(Harrison 1997). Normative analysis and forms of sulphur analysis (Appendix B) have

shown the presence of pyrite (FeS2) within these coals which oxidise during heating.

This type of fracture is most probably due to a combination of the release of the

sulphurous gases and the rapid expansion of the mineral pyrite. Since there are stringent

sulphur limits imposed on coal combustion; most of the coals used in this study contain

very small quantities of sulphur bearing minerals (Appendix B). The number of coarse

particles observed releasing sulphur was low (Figure 6.8) and accordingly, the number of

particles exhibiting these large cracks was also low.

Scanning electron microgaph images (Figure 6.9) indicate that much smaller fractures

also occur. Image analysis of microwave treated P-3 coal showed that there small

fractures were more common than the larger cracks. Untreated coals exhibited no such

fractures (Figure 6.10)

The fractures possibly arise from a combination of gaseous release and stresses produced

by the differing expansion rates of gangue minerals within the coal. Pyrite is an extreme

case (high heating rate, oxidation and solid volumetric expansion), providing a number of

mechanisms explaining the probable causes of the significant improvements in

grindability. All minerals heat at different rates within a microwave field and their

expansion characteristics differ depending on the local temperature. In some instances-

and at certain temperatures-the material changes phase due to the pressures generated by
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the associated expansion. These changes in the physical size of the minerals and volume

occupied by gases promote changes in the structure, weakening the whole particle. It

should be noted that cracks may also be initiated upon cooling as this also affects the

volumetric changes in the materials and surrounding structure. It is possible that all

gangue minerals as well as inherent moisture and (to a lesser extent) the release of some

volatile carbon contribute to the production of these smaller fractures. If indeed this is the

main mechanism of embrittlement, then microwave grindability would be expected to

depend upon the type, size, frequency of appearance and location of gangue minerals as

well as specific coal rank.

Figure 6.10 Scanning Electron Micrograph image of P-3 untreated coal
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6.13 Changes in bulk temperature with microwave exposure
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Figure 6.11 Average bulk temperatures of microwave treated coal

The average bulk temperature of the coal was recorded following microwave exposure

with the measurements being made using a type K thermocouple (temperature range

9

between -SO°C to 9S0°C). It was shown that after 8 minutes exposure of SOOgsamples of

P-2, P-3 and P-S coals to a power input ofO.6SkW, the final bulk temperatures reached

200°C, 2S0°C and 17SoC respectively. Whilst the maximum bulk temperatures achieved

were insufficient to maintain combustion, hotspots were measured in excess of 3S0°C on

some coal surfaces. In particular, minerals (Chapter 8, dielectric properties of minerals

and Chapter 11, pyritic oxidation studies) of a high dielectric constant can absorb and

heat more rapidly than coal. These hotspots can present an ignition source, and hence

care was taken when exposing these coals to microwave radiation. Accordingly, the coals

selected for this study did not contain a substantial quantity of iron-bearing minerals

which are known to result in high dielectric heating rates.
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Figure 6.11 indicates that after 1minute exposure the bulk temperatures of the three coals

remained below 100°C. Consequently, it is expected that insignificant quantities of

moisture can be removed from the coal structure. Table 6.7 indicates that little effect on

coal grindability is achieved after 1 minute microwave exposure. However, after 3

minutes exposure, the grindability was improved. This suggests that the drying effect of

the microwaves may be partially responsible for the improvements in coal grindability

and, if this is true, then the total coal moisture content is another variable that must be

considered in accounting for the improved grindability of coals following microwave

treatment.
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6.14 Proximate Analysis of microwave treated coals

A proximate analysis in accordance to British Standards 1016 part 3 was undertaken on

P-2, P-3 and P-5 coal samples used in the grindability experiment to determine if

microwave radiation has an effect on the basic chemical properties of the coals. The

proximate analyses are shown in Appendix 0.3. Table 6.10 shows a summary analysis of

as-received reference samples and those irradiated for 8 minutes.

Table 6.10 Proximate analysis (as-received basis unless stated) of microwave
exposed coal samples

Proximate Analysis P-5 P-3 P-2
Moisture % 4.09 4.70 4.42
Ash% 13.54 16.30 13.45
Volatile Matter (VM) % 34.08 30.73 32.25
Fixed Carbon (FC) % 48.29 48.31 49.88
AshDI'YBull "I. 14.12 17.10 14.07
FCDryBuIl"l. 50.35 50.68 52.18
VMDI'Y.mlneraifree Bull"I. 41.37 38.86 39.27

Proximate analysis for samples exposed to 0.65kW, 2.45GHz for 8 minutes
Moisture 0/0 2.55 2.26 2.32
Ash% 10.74 16.08 15.20
Volatile Matter (VM) % 34.61 28.53 30.78
Fixed Carbon (FC) % 52.10 53.13 51.70
AshDI'YBull% 11.02 16.45 15.56
FCDnBui,"l. 53.47 54.36 52.93
VMDry,mJnerfree Buil% 39.91 34.93 36.53

Table 6.10 shows a significant reduction in moisture content due to microwave exposure,

further suggesting the importance of the coal moisture content on microwave grindability.

The proximate analysis on a dry ash free basis indicates that there is a small reduction in

volatile matter content. Volatile carbon may vaporise at lower temperature than that

required for combustion, the reduction may decrease the coal calorific value that would
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have otherwise been expected to increase due to the drying effect. To determine the

consequences of this reduction in volatile matter the calorific value of the P-3 samples

was measured (Table 6.11).

6.15 Calorific value of microwave exposed coal

The calorific values of the coal samples were measured using a GaUenkamp Automatic

Adiabatic Bomb Calorimeter in accord with British Standard 1016 Part 5. The calorific

value is determined when a known mass of coal is burned in oxygen under pressure in an

adiabatic bomb calorimeter. The gross calorific value is calculated from the temperature

rise of the water in the calorimeter and the effective heat capacity of the system. A mean

of the gross calorific value was calculated from duplicated tests for each coal sample and

reported on a dry and ash-free basis.

Table 6.11 Calorific value of P-3 coal (dry, mineral matter free basis) with
increasing microwave exposure

Microwave exposure time, 0 1 3 5 8
Calorific Valuedmm" (MJIkg) 36.2 35.2 34.6 34.4 34.1
ACV, (MJIkg) 0 -0.97 -1.59 -1.74 -2.05

Table 6.11 shows that the calorific value decreases as microwave exposure time

increases. The total reduction of the calorific value of P-3 coal is approximately 1.75%

after 5 minutes of microwave radiation at a power ofO.65kW. Milling studies indicated

that the improvement in grindability had maximised for P-3 coal after 5 minutes of

microwave exposure and it is therefore accepted that a small reduction in calorific value

may result due to the microwave beneficiation.
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6.16 The effect of increased microwave power (1.3kW) on coal grindability

Similar grindability experiments were carried out on P-5, P-3 and P-2 coals using an

increased microwave power input (1.3kW microwave power instead ofO.6SkW). Results

show that similar improvements in grindability can be achieved within shorter exposure

periods. In accord with results given in Section 6.11, grindability improves with

increasing exposure time.

During the tests, it was noted that the samples did not reach an average bulk temperature

in excess of l30°C. However, localised hotspots resulted in ignition after exposure times

of 2.5 minutes for P-5 and P-2 coals and 3 minutes for P-3 coal. Due to partial

combustion, the tests were terminated and it was not possible to demonstrate the full

beneficial effect of microwave radiation. The results imply that the use of coals

containing materials which are highly absorbent to microwaves is limited by the heating

rates of these materials and not the heating rate of the coal. Pyrite may have been the

source of ignition, reaching elevated temperatures after a relatively short time. Mineral

properties are discussed in subsequent chapters (Chapter 8). However, it is noted that the

heating rates of the mineral components do not increase linearly with increasing

microwave power input. Clearly, the above experiment indicates the problems associated

with the use of increased microwave powers. In particular, ignition may be prevented

with the use of inert gas atmospheres but the loss of volatile matter may not be overcome.
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The experiments were carried out without prior information of the importance of initial

size distribution and hence serves only as an introduction to the problems and advantages

of using increased microwave powers. Furthermore, results shown in Table 6.12 are not

comparable with those for reduced powers (Table 6.7) as the two sets of experiments

were carried out in separate microwave cavities (each of differing volumes and electric

field strength distributions) which may affect microwave absorption and hence efficiency

(Chapter 8).

Table 6.12 The Relative Work indices of sub-bituminous coals with increasing
microwave exposure times (1.3kW, 2.43GHz)

Relative Work Index %, ground for:
P-5 (5 min) (20 min) (45 min)

Non-treated 100 100 100
1 min 96 92 100
2 min 87 98 93
2.5 min 81 74 74

P-J (5 min) (20 min) (45 min)
Non-treated 100 100 100

1 min 74 100 100
2min 72 100 95
3 min 67 92 82

P-2 (5 min) (20 min) (45 min)
Non-treated 100 100 100

1 min 94 100 100
2 min 75 75 79
2.5 min 75 81 71

The major disadvantages to increasing the power are attributed to the localised high

heating rates of the gangue impurities and the associated transfer of heat to the local coal

surfaces which may result in premature ignition. Clearly, partial coal combustion is
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undesirable as it results in a reduction in fuel potential and uncontrollable emission

levels. A positive feature of these results is the reduction in exposure time required to

improve coal grindability for the same energy and coal charge; process time may also be

reduced as a consequence of increasing microwave power which would favour a

continuous process.

6.17 Coal grindability at increased input pewers for a given energy input per unit
weight

Three samples ofP-2 coal were exposed at increasing input power levels from 0.65kW.

1.3kW and 2.6kW for 609s, 305s and 152s respectively. equivalent to 220kWhlt. A

variable power input microwave cavity was used (no change in cavity shape and

dimensions) and the input energy was selected such that the maximum benefits from

grindability tests could be achieved (Section 6.12). The RWI was calculated from the

product size distributions following rod milling times of 5. 20 and 45 minutes. Results

(Table 6.13) showed that the RWI was broadly independent of power input level

providing the energy per unit weight was maintained constant.

Table 6.13 Relative Work indices of P-2 coal with increased power input for a given
energy input per unit weight (220kWh/t, 2.45GHz, ~00g)

Coal Power input Relative Work Index %,~ound for:
(kW) (5 min] (20 min) (45 min)

Non-treated - 100 100 100
Exposure 609s 0.65kW 69 66 54
Exposure 305s 1.3kW 65 73 56
Exposure 152s 2.6kW 70 70 55
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6.18 The effect of batch sample size on power absorption

During preliminary investigations, no attempt was made to optimise the quantity of the

coal within the microwave cavity. The tests detailed below show that the microwave

cavity in current use (dimensions: length 340mm, width 330mm and height 330mm) can

accommodate larger volumes of coal than previously used without affecting coal

grindability efficiency.

In particular, batch loads of2S0g, SOOgand lkg P-l coal were used for this study. The

microwave power input was 0.6SkW. Product size distributions were determined for each

load after 4S minutes milling, the 80% passing size characteristics are shown in Figure

6.12.

Duplicate loads were exposed to microwave radiation for 4,8 and 16 minutes respectively

so that each sample was irradiated with the same energy per unit weight of coal

(173kWhlt). The 80% size characteristics of these (microwave-treated) samples are

shown in Figure 6.12. Results indicate that grindability efficiency increases with sample

volume.

It is noted that the Relative Work indices are dependent upon mill load (mass of coal and

mill medium). The test procedure for RWI calculation was standardised and correlations

were made for the SOOgsamples only (mill load optimum capacity). To calculate RWI for

microwave exposed samples of250g and lkg a duplicate set of samples were exposed for

4 and 16 minutes respectively (173kWhlt). Two independent 250g samples were treated
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(4 minutes at 0.6SkW) before milling as a 500g batch. Similarly, the 1kg sample was

evenly split into two 500g samples for milling. Figure 6.10 shows the 80% passing sizes

for these (SOOg)milled samples. It can be seen that product sizes (and corresponding

RWI) are very similar.
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Figure 6.12 Effect of sample load at constant applied microwave energy (173kWh/t)

There is little change to Relative Work Index as sample load increases. However, as

sample load increases, grinding efficiency also increases with the range of volumes

tested.

107



Chapter 6 The effect of microwave radiation on coal-Preliminary study

6.19 The influence of particle size to improved grindability by microwave radiation
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Figure 6.13 Microwave grindability dependence upon initial particle size

Previous experimental work (Section 6.11) has drawn attention to the importance of

initial coal size distribution on microwave grindability. It is well known that as particle

size decreases, the energy requirements for size reduction increases. It is possible that

larger particles gain many small fractures after microwave exposure, whilst smaller

particles may produce fewer flaws depending upon the quantity, position, size and

distribution of gangue minerals and inherent moisture. In contrast, finer particles are

inherently stronger and there is only a low probability of fmding a crack.

An experiment was designed to determine the effect of initial particle size on microwave

grindability. Samples ofP-l and P-3 coals were separated into size fractions. For each
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coal size fraction, two samples (500g) were prepared for grindability evaluation. Samples

were milled using a rod mill as described previously (Section 6.12) and operated under

constant conditions. The final DSO's product sizes are given in Table 6.14.

Table 6.14 Influence of particle size on microwave enhanced grindability,
80% product passing size

Sample and particle size Reference product size Dso Microwave product size D80

range (mm) (J,l.m) (um)
P-l x>16mm 405 120

P-l 16mm>x>Smm 245 80
P-l 8mm>x>4mm 315 78
P-14mm>x>2mm 355 90
P-12mm>x>lmm 300 92
P-I Imm>x>0.5mm 250 87

P-I 0.5mm>x>O.25mm 215 80
P-I x<0.25mm 73 69

P-316mm>x>8mm 272 94
P-3 2mm>x> l.4mm 290 104

P-3 1.4mm>x>0.71mm 310 108
P-3 0.5mm>x>0.09mm 86 68

After converting the product size distributions into Relative Work indices for both coals

similar reductions in RWI were shown irrespective of particle size. Inspection of data

indicated that for both coals, the fines fractions (X<lmm) have had a slight improvement

in grindability after microwave radiation. However, particles greater than lmm size

exhibit relatively large improvements in grindability. Figure 6.13 shows the changes in

Relative Work indices with the initial Dso particle size. In particular, results show RWI

values are between 40%-50% for size fractions greater than lrnm before milling and

between 80%-90% for size fractions less than 1mm before milling. Even though all coal

particles are affected by microwave radiation, the above results suggest that coal particle
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size of above lrnm may be most suitable for microwave-induced grindability. It is noted

however, that this characteristic may be specific to rod milling.

6.20 Preliminary study conclusions

Laboratory experiments have shown that substantial reductions in Relative Work Index

(RWI) can be achieved by microwave exposure of coals. There is evidence to suggest

that gaseous evolution (water and volatile matter) as well as gangue mineral expansion

are the probable causes for the improvement in coal grindability. The properties of the

various coals treated by microwave radiation remained relatively unaltered. No

significant change in proximate, ultimate analyses or calorific value were reported. Initial

laboratory-scale microwave trials proved successful in weakening the structure of various

coal types. However, fine particles «lmm) were less susceptible to enhanced microwave

grindability. Bulk temperatures of up to 250°C could be reached as a result of microwave

treatment and localised hotspots may be responsible for some losses in volatile matter

content. During preliminary test work no samples were exposed to conditions such as

those for coal ignition or combustion.
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CHAPTER SEVEN

DEPENDENCE OF COAL RANK RESPONSE TO MICROWAVE
TREATMENT

7.1 Introduction-Dependence of coal rank response to microwave treatment

Analyses of results from preliminary studies (Chapter 6) suggest that a combination of

factors influence the effectiveness of microwave pretreatment on coal grindability. In

particular gas release (in the form of steam, volatile matter and sulphur) and differential

expansion of occluded minerals may be controlling features in the propagation of

fractures within the coal structure. Coals vary in moisture content depending on their rank

(inherent moisture) and (independently of rank) their relative humidity (surface

moisture). The gangue mineral content and composition also depend upon the geological

location and age of the coal.

Group 1 coals have been selected to evaluate the dependence of coal rank on their

response to microwave treatment. It is noted that mineral matter content can vary

significantly from coal to coal and even within the same coal seam irrespective of coal

rank. Some minerals may attribute (through volumetric expansion) to fracture

propagation. and for the purpose of this test, low mineral content coal is preferred. The

mineral matter can be minimised by selecting coal samples cut from mid-seam. Group 1

coals refer to such samples (Chapter 6.1) which embrace a wide range of ranks and can

therefore differ in carbon structure, inherent moisture content and grindability. It is noted
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Chapter 7 Dependence of coal rank on coal response to microwave treatment

that all coals have been handled in a similar manner and exposed to the same atmospheric

conditions before sampling to minimise any possible variations due to relative humidity.

7.2 Proximate analysis of group 1 coals

Group 1 coals represent a suite of individual mid-seam coals, which collectively, cover a

wide rank range (lignite F-8 to anthracite F-l). This suite was used to assess the

effectiveness of microwave irradiation on coals of different rank and to identify the rank

properties of importance. Proximate analyses (BSI016 part 3) indicated that the ash

contents of the eight individual coals were below 5% and illustrate the variations in

volatile matter, moisture and fixed carbon contents with rank (Figure 7.1).
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Figure 7.1 Proximate analysis ofF-! to F-8 coals (eRE Group)

Proximate analyses of group 1 coals were determined at CRE Group (Coal Research

Establishment) and The University of Birmingham. Results are shown in Appendix B.

112



Chapter 7 Dependence of coal rank on coal response to microwave treatment

Table 7.1 gives data for two coals of widely different rank and demonstrates the inter-

laboratory agreement between results. Analysis indicates that the high-rank coal is most

homogenous with much less compatible results produced between CRE Group and the

University of Binning ham (UB) for the low-rank coal, particularly with the moisture

content. The analyses show comparable results irrespective of rank on a dry, mineral

matter free basis (Figure 7.1).

Table 7.1 Proximate analyses (as-received basis unless stated) repeatability results
for F-l and F-8 coals

Coal Moisture Ash Volatile Volatile Fixed
% % Matter Matterdmmf Carbon

% % %
CRE F-l 1.6 I.S 4.6 4.S 92
UB r-: 1.5 I.S 6.S 7.0 90
CREF-S 13.3 7.4 34.9 44.0 44.4
UB F-S 1O.S S.2 35.5 43.S 45.4

7.3 Coal rank and group 1 coals

Table 7.2 Classification of F-l to F-8 coals

ASTM classification NCB classification
F-l Anthracite Anthracite
F-2 Semianthracite Bituminous
F-3 Low-volatile bituminous Bituminous
F-4 Medium-volatile bituminous Bituminous
F-5 High-volatile A bituminous Sub-bituminous
F-6 High-volatile A bituminous Sub-bituminous
F-7 High-volatile B bituminous Sub-bituminous
F-8 Sub-bituminous B Lignite

Figure 7.1 shows the proximate analyses as measured by eRE Group. The coal rank can

be expressed by correlating the data shown in Figure 7.1 (dry, mineral free basis) with the

113



Chapter 7 Dependence of coal rank on coal response to microwave treatment

information given in Figure 3.2 (Chapter 3). Table 7.2 compares the rank of group 1 coals

based on the ASTM system with the coal classification system used by the 'National Coal

Board'(NCB) (CRE coal bank 1995).

7.4 Relationship between Hardgrove Grindability Index and coal rank

Properties of coals can be correlated with coal rank, in particular, the Hardgrove

Grindability Index (HGI) (a measure of the grinding propensity of coal) is often

considered to determine the rank of coals and to compare grindabilities between

individual coals (Chapter 3.4).
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Figure 7.2 The Hardgrove Grindability Index of group 1 coals

The Hardgrove Grindability indices of group 1 coals have been measured by CRE Group

in accordance with BS 1016 part 112. Results (Figure 7.2) are of the characteristic form
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(Chapter 3.4) indicating that the high (P-I) and low (F-6 to F-8) rank coals require more

energy for milling (to a given product size) than those of intermediate rank.

7.5 Development of grindability test procedure

During milling, the size distribution of the coal feed may have some influence on its

subsequent breakage behaviour and hence the resultant size distribution. In the current

tests, the coal feed size distribution was maintained constant, irrespective of coal rank

and whether or not the coal had been subjected to microwave treatment. To this end, the

coals were pre-crushed in a jaw crusher to a top size of 32mm, suitable for further

breakage in a rod mill. Jaw crusher feed and product size distributions are shown in

Appendix B. Batches (500g) of the latter were produced by sieving the eight coals (F-l to

F-8), the coals were exposed to ambient atmosphere for twenty four hours before being

sealed within air-tight containers to retain their constant relative humidity equilibrium.

The ensuing microwave treatment was constant for all coals, each being irradiated for 8

minutes at O.65kW power input and at 2.45GHz frequency. This treatment was chosen as

earlier experiments (Chapter 6.11) had shown it gave significant benefits for a medium

rank coal. Previous and current results could also be compared (Harrison 1995)

In the current tests, milling conditions were identical to those used previously (Chapter

6.8) with the exception that the coal batch weight was 450g. Following microwave

treatment, representative sub-samples were taken from each treated coal batch and used

for proximate and ultimate analysis, the quantity taken depending upon that remaining
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after microwave treatment. These samples were placed in vacuum-sealed bags (to prevent

changes in total moisture and allowed to cool to room temperature). The coal size

distributions at 5, 20 and 45 minutes of milling were determined for both the 450g

samples of microwave treated samples and the reference samples in order to determine

the Relative Work Index (Chapter 4.2.4) for each coal.

7.6 The effectiveness of microwave radiation on the grindability of coals of different
rank

Results (Table 7.3) show similar trends to those illustrated in Chapter 6 (section 6.11)

following milling times of 5,20 and 45 minutes. The results also suggest that microwave

radiation has had little effect on the high rank coals (F-l, F-2 and F-3) after a milling time

of 45 minutes. Coals of medium and low ranks appear to be more susceptible to

grindability effects caused by microwave radiation.

Table 7.3 Relative Work Index of group 1 coals after microwave exposure at a
power of O.65kW and a frequency of 2.45GHz for 8 minutes

Relative Work Index %
Coal Grinding time

5 min 20min 45 min
F-l 90 98 97
F-2 91 79 99
F-3 98 76 97
F-4 82 73 88
F-5 74 66 61
F-6 72 74 74
F-7 68 69 61
F-8 60 66 52

The general trend is apparent (Figure 7.3) i.e. the lower the coal rank the more sensitive

the coal to microwave radiation. A possible explanation is that low rank coals contain
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increased high quantities of inherent moisture. As suggested previously (Chapter 6),

inherent moisture would be expected to heat rapidly within a microwave field generating

increased pressures during the liquid-gas phase change. It is assumed that an increase in

inherent moisture content would propagate an increased number of flaws (Figure 7.4)

which would subsequently weaken the coal structure.
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Figure 7.3 Relationship between microwave grindability and coal rank
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F-8 coal prior to microwave treatment.

20mm

F-8 coal after microwave treatment

Figure 7.4 Visible fractures after microwave treatment of a low rank coal

7.7 The effectiveness of microwave irradiation on the propensity of coal for fine
grinding

The measured Hardgrove Grindability indices of group 1 coals (Figure 7.2) conform to

the accepted pattern between grindability and rank in so far as high rank coals

(anthracites) and low rank coals (lignites) are shown to be more difficult to grind than

those of medium rank. Table 7.4 shows the weight percentage of coal product below

75J.!mfor various milling times for the group 1 coals (Chapter 6.8). Coals were pre-

crushed to a limiting top size (32mm) and their individual size distributions show to be

identical before milling tests. As expected medium rank coal could be ground finer

(Table 7.4) than high and low rank coals. After 45 minutes of milling, medium rank coals

(F-2, F-3 and F-4) can produce a typical PF size characteristic (80% passing 75J..UIl).

However, as shown in Table 7.4, increased milling time is necessary for the high and low

rank coals to produce a similar degree of fineness,
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Table 7.4 Degree of fineness after grinding

Coal sample Weight percentag_eof coal _l!_articles<75J!m
Grinding time 0 5 20 45

(min)
F-l 0.1 2.0 S.4 8.7
F-2 0.4 12.7 39.7 80.8
F-3 0.3 19.1 44.0 81.1
F-4 S.3 IS.3 36.4 67.6
F-S 0.4 8.0 26.9 3S.3
F-6 0.8 9.S 20.6 34.7
F-7 0.5 6.8 21.1 38.6
F-8 0.8 8.3 18.9 29.4

Comparison of data in Table 7.5 (microwave treated coals) and Table 7.4 (reference

coals) show that the degree of fineness is increased as a result of microwave treatment

prior to grinding. Microwave conditions are described in Section 7.S. In particular, the

weight percentage of coal less than 7SJ.lm increases after irradiation, (following 4S

minutes grinding time) more so than for low rank coal. However, there is no change in

the weight percentage less than 75J.lm for F-l coal (anthracite) suggesting that microwave

treatment had no effect upon the grindability of this coal.

Table 7.5 The degree of fineness after microwave treatment

Coal sample Weight ~rcenta_ge of coal~articles <75,....m
Grinding time 0 5 20 45

(min)
F-l 0.1 1.2 4.4 8.4
F-2 0.4 15.6 48.9 84.2
F-3 0.3 16.9 69.7 88.7
F-4 5.3 19.5 46.7 83.6
F-S 0.4 13.7 39.4 86.9
F-6 0.8 11.8 34.1 50.4
F-7 0.5 8.1 29.3 66.4
F-8 0.8 14.1 29.0 72.2
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The results also show that, for some medium and low rank coals, the volume of coal;

milled to PF size has doubled in these batch samples (F-S) because of microwave

exposure.

Further work would be necessary to investigate the effect shown by batch rod milling on

fines production with regard to continuous air-swept ring ball mills.

7.8 The influence of microwave radiation on the proximate analysis of coal

Table 7.6 shows the proximate analyses for group I coals before and after microwave

treatment (at O.6SkW power input and a frequency of2.4SGHz for 8 minutes).

Due to the heterogeneous nature of coal the before and after irradiation, ash contents are

all within accepted experimental error range and should not be considered significant.

More specifically, the moisture and volatile contents of the high rank coals (F-I, F-2 and

F-3) were unaffected by irradiation. In contrast, the moisture content has been reduced on

all other microwaved coals-showing evidence of drying which is particularly significant

with low rank coals. Similarly, coal volatile content decreased on microwave treated

coals, with the effect again being particularly marked on the low rank coals. Grindability

studies on group I coals also indicate that low rank coals are particularly sensitive to

microwave radiation. All results given, are mean values and within accepted standard

deviations (Table 7.6, in brackets) as outlined in accord with 8S1016.
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It can be suggested that high-pressure gas release arising from the rapid heating of

inherent moisture and volatile matter may be possible mechanisms for fracture

propagation in the coal. This would be consistent with the fact that low rank coals contain

larger quantities of inherent moisture and volatile matter and exhibit the greatest

improvement in coal grindability following microwave treatment.

Table 7.6 Proximate analysis (as-received basis unless stated) of group 1 coals before
and after microwave exposure

Proximate analysis for reference samples
Coal Moisture Ash Volatile Fixed Volatile

sample % % matter Carbon matter dmrnf

% % %
r-t 1.6 (0.08) 1.8 (0.03) 4.6 (0.30) 92.0 4.8
F-2 0.8 (0.06) 4.0 (0.01) 12.7 (0.74) 82.5 13.4
F-3 1.0 (0.02) 3.8 (0.04) 28.5 (0.65) 67.7 29.8
F-4 5.8 (0.03) 5.2 (0.07) 33.0 (1.65) 56.0 37.6
F-5 6.1 (0.06) 3.4 (0.05) 34.8 (0.24) 55.7 38.7
F-6 6.1 (0.09) 4.4 (0.13) 35.7 (0.40) 53.8 40.4
F-7 4.7 (0.04) 5.0 (0.02) 37.1 (0.54) 53.2 41.6
F-8 13.3 (0.02) 7.4 (0.07) 34.9 (0.07) 44.4 45.1
Proximate analysis for samples exposed to O.65kW, 2.45GHz for 8 minutes

F-l 1.4 (0.09) 1.4(0.25) 4.7 (0.62) 92.5 4.9
F-2 0.7 (0.04) 3.8 (0.11) 10.4 (0.17) 85.1 10.9
F-3 0.6 (0.09) 3.4 (0.01) 25.9 (0.47) 70.1 27.0
F-4 1.2 (0.19) 4.6 (0.10) 32.4 (0.58) 61.8 34.4
F-5 0.8 (0.25) 3.3 (0.06) 30.7 (0.48) 65.2 32.0
F-6 1.0 (0.17) 3.7 (0.06) 34.2 (0.57) 61.1 35.9
F-7 0.7 (0.22) 4.8 (0.00) 34.9 (0.43) 59.6 37.0
F-8 1.7(0.26) 10.2 (0.00) 34.4 (1.24) 53.7 39.0
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7.9 Ultimate analysis of microwave exposed coals

Ultimate analysis (dry, mineral matter free basis) of group 1 coals before and after

microwave treatment have also been compared (Table 7.7). The analyses were expressed

on a dry, mineral matter free basis and specifically determine the major elemental

constituents of the organic coal component Prior to microwave treatment, these coals,

collectively, show that as coal rank decreases the carbon content decreases (90% for F-J

to 63.5% for F-S). Hydrogen and nitrogen remain relatively constant whilst the sulphur

content increases slightly (0.6% for F-l to 2% for F-S). The oxygen content increases

with decreasing coal rank indicating the presence of increasing volatile matter content

with low rank coals.

Table 7.7 Ultimate analysis (dry, mineral matter free basis) of group 1 coals before
and after microwave treatment

Ultimate analysis for reference samples
Coal sample Sulphur% Carbon % Hydrogen % Nitrogen % Oxygen %

F-l 0.57 90.10 2.43 1.10 5.80
F-2 0.66 8S.40 3.66 1.50 5.78
F-3 1.06 83.50 4.60 1.30 9.54
F-4 2.12 73.S0 4.56 1.80 17.72
F-5 1.70 74.80 4.43 1.70 17.37
F-6 1.43 71.70 4.30 1.30 21.27
F-7 1.39 76.00 4.96 1.90 15.75
F-8 1.98 63.50 3.95 1.50 29.07
Ultimate analysis for samples exposed to O.65kW! 1.45GHz for 8 minutes
F-l 0.61 90.40 2.43 1.10 5.46
F-2 0.64 87.80 3.70 1.50 6.36
F-3 1.07 83.00 4.60 1.40 9.93
F-4 2.17 75.00 4.58 1.70 16.55
F-5 1.70 75.80 4.70 1.70 16.10
F-6 1.40 72.60 4.35 1.30 20.35
F-7 1.43 76.10 4.99 1.90 15.58
F-8 2.55 64.50 4.04 1.50 27.41
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Ultimate analyses of the microwave-treated coals show negligible changes between

sulphur, nitrogen and hydrogen. However, some slight differences occur between the

carbon and oxygen content of low rank coal (F-8). The oxygen content has reduced from

29% to 27.5% and a subsequent increase of 1% in carbon content for the microwave

treated coal. Whilst these differences are small, they may reflect the changes possible due

to the reduction of volatile and carbon content following heating as indicated in the

proximate analyses (Table 7.6). The ultimate analyses showed that there was little change

in the coal following microwave treatment; this feature implies that there are properties

of coal (e.g. moisture and mineral content) which may predominantly contribute to the

microwave grindability effect.

7.10 The effect of muffle furnace drying on coal rank grindability

Additional samples ofF-6 and F-7 coals were conventionally heated prior to milling to

examine whether or not the microwave grindability effects (Table 7.3) could be

duplicated by convective thermal drying. These particular coals were chosen in so far as

they showed significant improvements in grindability with microwave exposure. Milling

conditions were identical to those for the microwaved coals (Section 7.6), and before

milling. the coals were exposed to conventional heating for one hour to ensure their bulk

temperature was in equilibrium with the furnace temperature.
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Table 7.8 Relative coal (F-6) grindability effects after muffle furnace and microwave
beating

Coal Relative Work Index %
Grinding time (minutes) 5 20 45

F-6 non-treated 100 100 100
F-6 (muffle furnace) 1000e 69 60 66
F-6 (muffle furnace) 2000e 69 72 63

F-6 microwave treated (O.65kW 8 min) 72 74 74

Table 7.9 Relative coal (F-7) grindability effects after muffle furnace and microwave
beating

Coal Relative Work Index %
Grindin2 time (minutes) 5 20 45

F-7 non-treated 100 100 100
F-7 (muffle furnace) 1000e 69 78 64
F-7 (muftle furnace) 2000e 49 60 57

F-7 microwave treated (O.65kW 8 min) 68 69 61

The coals were heated at furnace temperatures of 1000e and 2000e and the size

distributions following milling were expressed in terms of the Relative Work Index. The

results (Table 7.8, Table 7.9) show that conventional heating also increases the

grindability of these sub-bituminous coals. Similar results can be seen for both the F-6

furnace heated samples, suggesting the main mechanism responsible for improved

grindability may be effected at lower temperatures for this particular coal. The

grindability of F-7 samples increases above 2000e implying that, if the inherent moisture

is responsible for this improvement, then temperatures above 1000e may be required for

maximum beneficiation. The results also indicate as to what the temperatures achieved by

microwave treatment where and also suggest that improvements may be increased by

maintaining elevated temperatures for longer than was allowed for microwave treatment.
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7.11 The effect of microwave exposure on coal rank calorific value

The calorific values of group 1 coals (reference and microwave treated samples) were

determined in accordance with BS 1016 part 5 (Appendix A). Results (Table 7.10) are

mean average values taken from a series of measurements on each coal. Table 7.10

shows, as expected, a decrease in calorific value with decreasing coal rank.

Table 7.10 Effect of microwave radiation upon the calorific value (dry, mineral
matter free basis) of group 1 coals

Coal Calorific Value (MJIk2)dmmf Percentage
Non-treated coal Microwave treated chao2e(%)

F-l 36.5 36.0 1.35
F-2 37.l 36.9 0.65
F-3 36.9 36.9 0.0
F-4 34.9 34.4 1.58
F-5 33.8 33.2 1.60
F-6 32.2 32.1 0.40
F-7 35.3 35.2 0.45
F-8 31.6 30.5 3.32

Table 7.10 also shows that microwave exposure has reduced the coal calorific value.

However, the reduction in calorific value is small and possibly of significance only for

F-8 coal. The loss in calorific value (dry, mineral free basis) probably occurs because of

part of the volatile matter loss due to the relatively high temperaturse reached during

microwave treatment. The calorific value was measured for a selected number of furnace-

heated group 1 coals (F-6 and F-7) (Table 7.11). Results show, that at temperatures up to

100°C there is relatively no change in calorific value; however, at temperatures up to

200°C there is a small but significant reduction «1 %). It is noted that the calorific value

of both F-7 and F-6 microwave-treated show only small changes, less than the samples

conventionally-heated at 200°C. The implication is, that if microwave treatment is
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Chapter 7 Dependence of coal rank on coal response to microwave treatment

optimised, coal grindability can be improved with no change to calorific value of some

coals.

Table 7.11 Effect of muffle furnace and microwave heating on coal calorific value
(dry, mineral matter free basis)

Calorific Value (MJ/q)dmmf
Coal F-6 F-7

Non-treated 32.2 35.3
Furnace-heated, 100°C 32.8 35.3
Furnace-heated, 200°C 32.1 34.7

Microwave-heated (0.65kW, 8 min) 32.1 35.2

7.12 The effect of microwave-beating on coal specific surface

The specific surface (surface area per unit weight) of twelve coals (six group 1 coals and

their corresponding microwave-treated equivalents) were determined using a

'Micromeritics Flow Sorb II 2300 surface area system'. Surface area measurements are

made upon the nitrogen absorption technique. Each coal sample (SOOg)was pre-crushed

to <0.2mm and size distributions maintained for standardisation of measurements (reduce

particle shape irregularities). The sample was vacuum de-watered and purged with a

measured volume of (30% nitrogen in helium) gas.

Table 7.12 The effect of microwave heating on coal specific surface

Specific Surface Area m.l/g Percentage
Coal sample Non-treated Microwave-heated change (%)

F-2 3.39 3.72 + 9.7
F-3 2.74 3.22 + 17.5
F-4 3.87 4.22 + 9.0
F-5 5.35 5.94 + 11.0
F-6 2.33 2.86 + 22.7
F-8 4.69 6.08 + 29.6
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Results (Table 7.12) show an increase in coal specific surface following microwave

heating (O.65kW applied power input for 8 minutes). The increase in surface area after

microwave treatment becomes most marketable on low rank coal. It is suggested that the

increase in specific surface is related to fractures (Figure 7.4) caused by microwave

heating (expansion of mineral inclusions and steam generation from inherent moisture).

7.13 Microwave grindability with coal rank conclusions

Following microwave treatment, grindability is most effective on low rank coal. One

possible explanation for the results is that inherent moisture in the coal (which increases

with reducing coal rank) may contribute (following steam generation) to weaknesses in

the coal structure. A further feature is that flaws may also be produced from differential

expansion of mineral inclusions (coals were chosen due to there low mineral content, to

examine the effect of microwaves on the grindability of different rank coals). This could

be beneficial as lignite coals are relatively difficult to grind in comparison to medium

rank coal (Section 7.4). It was also noted that grindability was affected as a result of

thermal heating and is not specific to microwave treatment. However, microwave

treatment may improve grindability further depending upon the heating conditions and

coal constitution (mineral inclusions and moisture content).
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CHAPTER EIGHT

DIELECTRIC PROPERTIES OF COAL

8.1 Introduction-Dielectric properties of coal

Microwave transparency

Microwave reflectance

Microwave absorption

Microwave absorption
and reflection

Figure 8.1 Behaviour of material within a microwave field (Church 1988)

Materials differ in their ability to absorb microwave radiation, some materials readily

absorb microwaves whilst others appear transparent to or reflect microwaves (Figure

8.1). The aim of the study described below is to investigate to what extent coal is capable

of absorbing microwave radiation. Preliminary studies (Chapter 6) have already

demonstrated that (i) microwave radiation can improve the grindability of coal, and (ii)

increased exposure to microwave radiation increases the overall bulk temperature of the
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Chapter 8 Dielectric properties of coal

coal. However, as the aim is to beneficially treat the coal, microwave exposure was

limited such that a maximum sample temperature of between 200°C-250°C (to prevent

de-volatilisation and ignition) was not exceeded

8.1 Measuring theory

Whilst a number of techniques exist for dielectric measurement (permittivity at a specific

frequency), the circular resonant cavity method (as used in this study) is regarded as the

most suitable for frequencies above lOOMHz (Greenache 1996). More generally,

frequencies above 600MHz are considered simpler to measure due to practical cavity size

limitations i.e. at lower frequencies, the cavity diameter must be increased to

accommodate resonant frequencies. The method used for dielectric measurement is based

upon standard theoretical dielectric principles and measurements of the change in quality

factor (Q-factor, Equation 8.1) and resonant frequency when the sample is inserted.

Measurements of specific resonant frequencies can be detected using a network analyser,

in which measurements of the frequencies and their corresponding bandwidths are

recorded. A quality factor, Q-factor is defined as:

Q = OJ energy stored in the resonator dielectric
power loss in theresonator (dielctric and cavity wdls)

(8.1)

It is possible to eliminate the effect of the loss through the walls with the equation:

1 I power loss in the dielectric
---=
QJ Qo ta x energy stored in the dielectric

(8.2)
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In which, Qo the quality factor for the air-filled cavity and QI is that for the material

inserted into the cavity. The Q-factor is simply determined as the ratio of the resonant

centre frequency to the resonant bandwidth.

This method can be used as a means of calibrating the dielectric properties of the inserted

sample to the measured properties (due to air, cavity walls and sample holder) prior to the

sample insertion. The left-hand side of Equation 8.2 is, by definition, equal to the loss

tangent (Chapter 2) and can be optimally used to determine the imaginary part of the

complex permittivity.

The real permittivity is evaluated from measurements of the change in resonant frequency

following the sample introduction into the cavity and depends upon the sample to cavity

volume ratio. The classical perturbation equation for the real component is given by

Equation 8.3 (Greenache 1996).

(8.3)

Where.

&'
Vcavity

Vsample

fo
of
J/( function)
(x/,m)

Real permittivity (F1m)
Volume of cavity (m2)

Volume of sample (m')
Resonant centre frequency (air filled) (Hz)
Change in centre frequency when sample is inserted (Hz)
First order Bessel function (Perry 1984)
Function of the air filled cavity equated by Equation 7.4 (Greenache 1996)
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(8.4)

Tcavity Radius of the resonant cavity (m)

The classical perturbation equation for the imaginary component is given by Equation 8.5

(Greenache 1996).

n_J2( )( 1 1 ) ~avityc- 1 X1,m -----
Q1 o, Vsample

Where.

(8.5)

c" Imaginary permittivity (F/m)

8.3 Dielectric measuring method

Cavity

Furnace Network
analyser

Furnace
controller

Cavity to
furnace
movement

Sample holder
(Glass tube)

Robotic-arm
Computer

Figure 8.2 Diagrammatic representation of the dielectric measuring system
(Greenache 1996)

131



Chapter 8 Dielectric properties of coal

A resonant cavity method was employed to measure the dielectric properties of coal. The

experimental system (Figure 8.2) consists of two main components (i) a resonant cavity

constructed of an appropriate material (copper) and of specific dimensions to produce

resonant frequencies and (ii) a furnace to heat the sample to desired temperatures. The

use of copper (as opposed to aluminium) cavity manufacture is considered to provide the

most accurate measurements compared to theoretical resonant frequencies (Table 8.1)

(Greenache 1996). The specific resonant frequencies produced depend upon both the

cavity dimensions and the material of construction. The dimensions of the cavity in

current use are shown in Figure 8.3 and the cavity resonant frequencies are shown in

Table 8.1. A 'Hewlett Packard 8753C' vector network analyser, capable of operating

between the frequency range 300kHz to 6GHz was used to transmit electromagnetic

wave transmission and the detection of frequency shift.
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Furnace --+--

Transmission port

-----------,
I
I
: Internal biegbt
I (Cavity) 37.3mm
I
I---------------'Microwave cavity

Silica glass tube attached
to robotic arm

I
I
I
I
I
I
I
I
I
I
I

I I I :
I I I Ir--------- L__~------------4
Internal diameter : :
(Cavity) 373mm L_J

Internal diameter
(Glass tube) 5mm

Microwave detector,
linked to network analyser

Figure 8.3 Microwave resonant cavity test equipment

A 'Carbolite' tube furnace capable of operating at I800°C maximum temperature was

used to maintain the temperature within the sample. Silica tube sample holders are

mounted on a computer-operated stepper motion controller, the time the sample spends

outside the furnace is a sum ofthe travelling time «Is) and the response time of the

network analyser «15s). The silica holders (approximately transparent to microwaves)

have been calibrated and this feature is incorporated into the computer-automated

program. A water cooling system is attached between the furnace and resonant cavity to

prevent cavity distortion at elevated temperatures. A 'Visual Basic' program, customised

by the University of Nottingham ultimately controls the system.
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Table 8.1 Measured and theoretical resonant frequencies of the dielectric
measurement system (Greenache 1996)

Standard Aluminium cavity Copper cavity Theoretical
resonant resonant frequency resonant frequency resonant frequency
Mode (GHz) (GHz) (GHz)
TMOI0 0.6091 0.6154 0.6152
TM020 1.3987 1.4127 1.4122
TM030 2.1938 2.2160 2.2139

A compressed pellet of coal powder, encased within a silica glass tube was injected into

the microwave resonance cavity. Dielectric properties at room temperature where first

measured by a computerised network analyser at three different frequencies (0.615, 1.413

and 2.2160Hz) selected as they are resonant frequencies close to the working frequencies

(650MHz and 2,450MHz) currently used in most domestic and industrial microwave

units. The Bessel function (Equation 8.6) for the air-filled cavity at these frequencies are

given in Table 8.2.

Table 8.2 Calculated first-order Bessel function for dielectric measurement

Standard Copper cavity Xl,,,, h(Xl",J
resonant resonant frequency (Equation 7.4)
Mode (GHz)
TMOI0 0.6154 2.40483 0.51915
TM020 1.4127 5.52008 -0.34026
TM030 2.2160 8.65373 0.27145

The coal sample was then mechanically positioned within the furnace above the cavity

and the furnace temperature was increased at a rate of 1°C per minute. The temperature

was maintained for 5 minutes to stabilise the temperature field within the coal pellet
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before the dielectric measurements were taken. The dielectric permittivities of the coal

samples were measured between 40°C to 180°C at 20°C intervals.

(
x)P 00 (-1)k~r

J/x) = - L---..:......;=---
2 k=O k!(k + p)!

(8.6)

Bessel function for integer values of' P' (Perry 1984)
p denotes the order of the function (in this application P = 1)

8.4 The variation in dielectric properties of coal with increasing temperatures
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Figure 8.4 Importance of temperature and moisture content to coal (P-3) dielectric
properties
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The dielectric properties of both group 1 and group 2 coals were measured within the

temperature range (40°C-180°C) similar to those reached in previous microwave heating

trials (Chapter 6). Measurements were recorded at 20°C intervals during both the heating

and cooling cycles. Figure 8.4 shows the dielectric constant variation with temperature;

the corresponding loss factors (Appendix E.1) exhibit a similar trend upon heating and

cooling. A substantial decrease in the dielectric constant is evident between 80°C and

180°C (heating cycle); in contrast, the dielectric constant remains relatively constant

during the cooling cycle. This would suggest that, whatever accounts for the decrease in

dielectric constant; upon heating, is either removed or irreversibly altered as a result of

the temperature increase. The decrease in dielectric constant appears to correspond to the

temperature range associated with the drying of coal. Coal moisture would decrease over

such a temperature range. This would account for the subsequent reduction in both the

dielectric constant and loss factor and would not be detected during the cooling cycle. All

coals tested have shown the same behavioural characteristics, to varying degrees,

irrespective of frequency.
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Figure 8.5 High temperature coal (F-l) dielectric measurement

The moisture reduction (drying) would affect the volume, voidage and bulk density of the

test coal. However, as the moisture content represents a small fraction of the coal, the

changes in sample condition (structure) at temperatures of up to approximately 180°C are

believed to have little significance on the accuracy of the measurements. At higher

temperatures coal de-volatilisation would be expected to have a marked effect upon the

bulk density of the sample and this may subsequently reduce the accuracy of the

measurement. To minimise any potential inaccuracies due to gaseous release, high

temperature dielectric measurement was only attempted on a low-volatile coal (F-I).

Measurements were made on two samples of this coal, the first being heated to 180°C and

allowed to cool, the second heated to 400°C. The initial stages of heating produced

similar results (40°C-180°C) to those previously observed with other coals. However, a
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relatively large increase in dielectric constant (and loss factor) was measured between

1800C and 200°C followed by further increases in dielectric properties with temperature.

This may be as a result of changes in coal bulk density. However, the results indicate that

a ability of a dry coal to absorb microwave radiation may increase with temperature.

8.5 Dielectric properties of coal at selected frequencies
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Figure 8.6 Coal dielectric constant dependence on frequency

Dielectric measurements carried out at three different frequencies (Figure 8.6) show that

there are no common changes in dielectric properties with frequency. Other workers

(Harrison 1997) have shown that the dielectric properties of coal can vary with

frequency. However, the current results show that the change is small and hence not

considered a major factor influencing the microwave absorption capability of the coal.
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The variation in frequency may be affected by coal chemistry, particularly rank and

mineral matter composition and content.

8.6 The variation of dielectric constant with coal rank
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Figure 8.7 Variation of dielectric constant with coal rank

The chemical composition of the coal will ultimately affect its capability to absorb

microwave radiation. Moisture, volatile matter and fixed carbon content vary according

to rank, however, the mineral matter content and composition depends upon geological

age of the coal and its proximity to seam boundaries. To determine the dielectric

properties on coal rank, group 1 coals of various ranks were selected. All coals exhibit

low mineral matter contents.
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The dielectric properties of group 1 coals before and after drying are shown in Figure 8.7.

Prior to drying the highest dielectric constants and therefore the greatest absorption

capabilities are attributable to low (F-8 to F-6) and high (F-l to F-3) rank coals. Medium

ranked coals exhibit lower dielectric constant values. After drying, the low rank coals

exhibit the lowest dielectric constant and account for the greatest change in dielectric

property due to moisture removal. Medium rank coals show relatively similar dielectric

constant values whilst high ranking coals show the least change due to drying and the

highest values. This implies that the moisture content significantly increases the coals

dielectric constant and microwave absorption ability, however, dielectric constants and

loss factor increase with increasing rank on a dry basis. This suggests that dielectric

properties are influenced by coal structure, higher absorption capabilities with increased

fixed carbon to volatile matter contents.

In contrast, group 2 coals exhibit no common dielectric characteristics with relation to

carbon content (rank). A possible explanation is that the significant variations are due to

the coal mineral matter content and composition, which mask the coal rank effect.

8.7 Penetration depth of microwave radiation

The penetration depth is defined as the distance from the surface of the material at which

the power reduces to the number eol from the value at the surface. The penetration depth

has been derived from Maxwell's wave equation of the electromagnetic field in the z

direction (Figure 8.8, Von Hippell954).
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For simplicity, some penetration depth approximations, in particular Equation 2.11

assumes negligible changes due to the magnetic part of the wave equation. Accordingly,

the complex permittivity and field electrical properties have a controlled effect on the

penetration depth.

x
~,,,,

""""""",,,,,,,,,,,,,,,,,,,
"",

',,,~Emax,,,
"""~--"""

Figure 8.8 Propagation of a plane wave in a lossy material (z direction)
(Metaxas 1983)

For low loss materials (e''le' <1) the penetration depth can be approximated (Equation

2.11, Metaxas 1983).

(2.11)

JJer

Penetration depth of wave (m)
Relative dielectric constant or relative real permittivity
Wavelength (m) A=c/f
Relative loss factor or relative imaginary permittivity
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In addition to penetration depth, skin depth is defined as that distance from the surface

were the field absorbed decreases to e-I.Derivations of the skin depth have previously

been reported based upon the wave equation (Equation 8.7, Florek 1995).

(8.7)

c Speed of light (mls) 3x108 mls

The measured penetration and corresponding skin depths of group 1 coals (Equation 2.11

and 8.7 respectively) are given at a frequency of2.216GHz in Tables 8.3 and 8.4

respectively.

Table 8.3 Microwave penetration depth for group 1 coals (Metaxas 1983)

Coal Dielectric constant Loss factor Penetration depth
.(dimensionless) (dimensionles~ (m)

Er' ° Er'I80oC Er" ° Er" ° Dp60 °c o, 180°C60C 60C ISO C
F-l 2.93 2.70 0.1657 0.1661 0.223 0.213
F-2 2.49 2.46 0.0539 0.0406 0.631 0.833
F-3 2.34 2.27 0.0818 0.0696 0.403 0.467
F-4 2.77 2.32 0.2087 0.0634 0.172 0.518
F-5 2.32 1.97 0.1389 0.0346 0.236 0.875
F-6 2.86 2.29 0.1564 0.0579 0.233 0.564
F-7 2.45 2.26 0.1252 0.0618 0.270 0.525
F-8 3.51 1.06 0.3153 0.0037 0.128 6.001
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Table 8.4 Microwave skin depth for group 1 coals (Florek 1995)

Coal Dielectric constant Loss factor Skin depth (m)
(dimensionless) (dimensionless)

Er' ° Er'lsooC Er" ° Er" 180°C Ds60 °c o, ISO °c60C 60C
F-l 2.93 2.70 0.1657 0.1661 0.446 0.427
F-2 2.49 2.46 0.0539 0.0406 1.263 1.666
F-3 2.34 2.27 0.0818 0.0696 0.807 0.934
F-4 2.77 2.32 0.2087 0.0634 0.344 1.036
F-5 2.32 1.97 0.1389 0.0346 0.473 1.750
F-6 2.86 2.29 0.1564 0.0579 0.467 1.127
F-7 2.45 2.26 0.1252 0.0618 0.539 1.049
F-8 3.51 1.06 0.3153 0.0037 0.257 12.002

From Tables 8.3 and 8.4 it is apparent that the penetration depth is approximately half

that of the skin depth, this is an indication of the consistency of Equations 2.11 and 8.7

with the wave equation (Cross 2000). Assuming no change in power absorption due to

the magnetic component of the wave equation, the power absorbed by a material is

derived from Equation 2.7. Power absorbed is proportional to (electric field strength)',

and it is therefore expected that as part of the derivation (81x2 =2x), skin depth is

approximately equal to 2(penetration depth). Accordingly, it is evident that any trend

observed with penetration depth will also be observed upon the skin depth. For this

reason, further discussion concerns the penetration depth only.

From Equation 2.11, it is seen that the penetration depth varies with rank and moisture

content (temperature). With the exception of F-I coal, penetration depth decreases from

0.6m (medium rank) to O.lm (low rank). However, data for dry coals at ISO°C show that
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low rank coal exhibits the greatest penetration whilst there is little change in the high

rank coals.

The penetration depth generally increases at higher temperatures (Table 8.3) and it is

expected that the coal would be moisture free at 180°C. Water has a penetration depth of

approximately 25mm at 60°C, and the depth increases with temperature (Metaxas 1983).

Hence, coal penetration depth will depend upon both the moisture content and

temperature. Figure 8.9 shows that the penetration depth increases with temperature upon

the heating cycle, but remains relatively constant on the cooling cycle. This could occur

as a result of steam generation and evolution (moisture removal).
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Figure 8.9 Variation of microwave penetration depth with temperature for F-8 coal

Penetration depth is significantly affected by frequency and decreases with increase in

frequency (Figure 8.10). This is due to the change in wavelength (corresponding to the

frequency change) as detailed in to Equation 2.11.
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It is noted that Figure 8.9 and Figure 8.10 were based upon Equation 2.11 only, as the

characteristics depend upon dielectric properties, similar trends would be observed using

Equation 8.7.
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Figure 8.10 Variation of microwave penetration depth with applied microwave
frequency

8.8 Coefficient of absorption and conductivity

8.8.1 Coefficient of absorption

The coefficient of absorption (A) is defmed as the ability of a material to absorb

microwave radiation and can be derived from the wave equation (Florek 1995, Equation

8.8).

" 2
A = f 8 .E insitu

E2
(8.8)
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Where.

A Coefficient of absorption (F/m2)
E" Imaginary permittivity (F/m)
E Electric field strength (vim)
Einsitu Electric field strength inside material (vim)

EmsinIEby definition is the coefficient of reflection (derivation of' Snell's law and

Fresnel's equations) (Von Hippe11954), and represents the relationship between the

electric field absorbed by the material to that of the cavity. The coefficient of reflection is

unique to a given material and is used for theoretical heating rate calculations, which are

discussed in further detail in subsequent sections. There have been many approximations

for the relationship between cavity and material electric field strength i.e. Equation 8.9

(Mayer 1983).

E

3E .
(8.9)E insitu

Er' Dielectric constant
E Electric field strength (vim)
Einsitu Electric field strength within the material (average) (vim)
re Coefficient of reflection

However, Equation 8.9 is considered a crude approximation (Mayer 1983) and a more

accurate method of deriving the coefficient of absorption (Equation 8.10) incorporates the

particle size and shape (assumed spherical). The coefficient of absorption is by definition

the fraction of incident energy not reflected, as such, the coefficient of absorption is (1-

coefficient of reflection). It is claimed the most accurate relationship is that given by

Equation 8.10 (Metaxas 1983).

A = (1- e-2rID, ) (8.10)
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r
Ds
A
e

Radius of particle (m)
Skin depth (m)
Coefficient of absorption (F/m2)
Napierian logarithm base approximately equal to 2.7182818285 (LOdp)

Table 8.5 Change of coefficient of absorption with coal rank (untreated coals)

Coal Dielectric constant Loss factor Coefficient of
(dimensionless) (dimensionless) absor.l!_tioniFIm1_

Er' ° , ° Er" ° " ° A 60°C A 180°C60 C &r 180 C 60C &r 180 C
F-l 2.93 2.70 0.1657 0.1661 0.049 0.040
F-2 2.49 2.46 0.0539 0.0406 0.017 0.012
F-3 2.34 2.27 0.0818 0.0696 0.027 0.021
F-4 2.77 2.32 0.2087 0.0634 0.062 0.019
F-5 2.32 1.97 0.1389 0.0346 0.046 0.011
F-6 2.86 2.29 0.1564 0.0579 0.046 0.018
F-7 2.45 2.26 0.1252 0.0618 0.040 0.019
F-8 3.51 1.06 0.3153 0.0037 0.083 0.002

The coefficient of absorption generally decreases with coal rank on a dry basis, however,

no specific trend can be seen for the 'as-received' coal (Table 8.5). Clearly, there is a

relationship between the penetration depth (which increases with the removal of

moisture) and the coefficient of absorption which decreases with moisture removal. It is

noted that no relationship can be observed between those coals that are affected the most

in terms of grindability improvements and the absorption ability. All values of the

coefficient of absorption given in Table 8.5 are for spherical particles of 0.0 1m diameter.
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Figure 8.11 Variation of coefficient of absorption with microwave frequency

The coefficient of absorption also depends upon applied microwave frequency (Figure

8.11) and it is apparent that the shorter the wavelength, the greater the energy absorbed

within a given material and hence, the greater the absorption capability.

8.8.2 Dielectric conductivity

The dielectric conductivity is considered relevant to dielectric heating because it is

proportional to the power absorbed by the material (Equation 2.7).

(2.6)

Dielectric conductivity (Sin)
Angular frequency (s-l)
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P Power absorbed (W/m3)
Einsitu Electric field strength within material (vim)

The dielectric conductivity can be evaluated from knowledge of the imaginary

permittivity and the applied frequency of the radiation (Equation 8.11).

f Frequency (Hz)
Er" Relative loss factor or relative imaginary permittivity
60 Permittivity of free space 8.85x 10-12 (F/m)

Table 8.6 Relationship between dielectric conductivity and coal rank at 60°C

Coal Loss factor at 60°C Dielectric Conductivity
(dimensionless) (Cl-Im-I)

Frequency Er" 615MHz Er" 1413MHz Er" 2216MHz O;615MHz o, 1413MHz O:2216MHz

F-l 0.1630 0.1433 0.1657 0.005574 0.011259 0.020418
F-2 0.0443 0.0402 0.0539 0.001515 0.003159 0.006642
F-3 0.0543 0.0534 0.0818 0.001857 0.004196 0.010080
F-4 0.1951 0.1810 0.2087 0.006672 0.014221 0.025717
F-5 0.1381 0.1317 0.1389 0.004723 0.010348 0.017116
F-6 0.1494 0.1489 0.l564 0.005109 0.011699 0.019272
F-7 0.1150 0.1188 0.1252 0.003933 0.009334 0.015428
F-8 0.3792 0.3191 0.3153 0.012968 0.025072 0.038852
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Table 8.7 Relationship between dielectric conductivity and coal rank at 180°C

Coal Loss factor at 180°C Dielectric Conductivity
(dimensionless) (n-1m-l)

Frequency Er" 61SMHz Er" 1413MHz Er" 2216MHz Oc61SMHz Oc 1413MHz Oc2216MHz

F-l 0.1934 0.1537 0.1661 0.006614 0.012076 0.020467
F-2 0.0336 0.0321 0.0406 0.001149 0.002522 0.005003
F-3 0.0375 0.0435 0.0696 0.001282 0.003418 0.008576
F-4 0.0387 0.0351 0.0634 0.001323 0.002758 0.007812
F-5 0.0259 0.0278 0.0346 0.000886 0.002184 0.004264
F-6 0.0484 0.0483 0.0579 0.001655 0.003795 0.007135
F-7 0.0496 0.0526 0.0618 0.001696 0.004133 0.007615
F-8 0.0035 - 0.0037 0.000120 - 0.000456

As both the coefficient of absorption and dielectric conductivity indicate the ability of a

material to absorb microwave energy, it is expected the two parameters will show the

same common trends in relation to frequency dependence, moisture and rank.

Furthermore the power absorbed also mirrors this behaviour to some extent depending

upon the applied electric field strength.
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8.9 Dielectric properties of microwave treated P-3 coal

The dielectric properties of microwave treated (P-3) coal was measured. Coals (SOOg)of

3, Sand 8 minutes irradiation at O.6SkW power (2.4SGHz frequency) (Chapter 6.11)

were sub-sampled after milling.
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Figure 8.12 Effect of microwave treatment on the dielectric constant of P-3 coals

For non-treated coals (Section 8.4), Figure 8.12 and Table 8.8 show a reduction in the

dielectric constant and loss factor during the heating cycle, followed by constant values

on the cooling cycle (Section 8.4). Moisture removal between 80°C and 180°C is the most

reasonable explanation (denoted by 'A' on Figure 8.12). However, the initial values of

dielectric constant (60°C), decrease with increasing microwave exposure times (Figure

8.12). This could be explained by previous steam generation due to microwave exposure,

the moisture content reducing as microwave exposure times increase (Table 8.8).
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Table 8.8 Dielectric properties, moisture and volatile matter contents of P-3
microwave exposed coals

Coal exposure Dielectric Loss factor Moisture Volatile Matter
time (minutes) constant (dimensionless) content Content tImmf

(dimensionless) (%}_ (%)

P-3 coal &r' 60 Qc s,' 180 Qc S" Q &r" 180
0
c M VMdmmfr 60 C

0 2.84 2.49 0.1684 0.0639 4.70 38.86
3 2.78 2.49 0.1313 0.0576 2.98 41.67
5 2.52 2.35 0.0996 0.0491 2.98 40.68
8 2.49 2.34 0.0912 0.0453 2.26 34.93

It is also apparent that, after 5 minutes of exposure the cooling cycle values (constant) are

lower than those determined for the non-treated and 3 minutes exposed coals (denoted by

'8' on Figure 8.12). This may be due to a reduction in the volatile matter content of the

coals exposed for 5 minutes and above (Table 8.8). In contrast, results discussed in

Section 8.6, show that as volatile matter decreases (with moisture, in this case) the fixed

carbon and mineral matter content (weight percentages) would increase, and hence the

dielectric constant may be expected to increase. However, the mineral matter content of

P-3 coal is 19.2%, (much higher than coals discussed in Section 8.6) and the mineral

matter is predominately silicates and clay minerals which have a low microwave

absorption ability. It is possible that, as the ratio of mineral matter content increases

relative to the decrease in volatile matter, the dielectric constant values may decrease on a

dry basis.
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8.10 Dielectric properties of selected minerals and water

The dielectric properties of some selected (commonly coal associated) minerals were

measured. Table 8.9 shows that, quartz and mica are relatively transparent to microwave

radiation with relatively low coefficient of absorption and a high corresponding

penetration depth. Calcite, dolomite and kaolin also exhibit low absorption and high

penetration characteristics. Pyrite shows high absorption and low penetration, much

higher absorption capabilities than any tested coal. Results (Table 8.9) show that each

mineral has a unique heating behaviour upon microwave heating. The majority of

minerals show a decreased coefficient of absorption value (possibly due to moisture).

However, pyrite and (to a lesser extent) quartz give an increased coefficient of

absorption.

Table 8.9 Dielectric properties of common coal associated minerals

Dielectric properties of selected minerals
Mineral Pyrite Quartz Dolomite Kaolin Mica Calcite
Er' ° 7.07 l.85 2.89 2.68 2.85 3.0660C
, ° 7.58 l.99 2.97 2.56 2.83 -Er ISO C

Er" ° 1.0625 0.0493 0.0465 0.1638 0.0403 0.054460C
e/'I80 °c 1.2353 0.0695 0.0224 0.0104 0.0232 -

Dp60 °c (m) 0.054 0.595 0.788 0.216 0.903 0.693
n, ISO°c (m) 0.048 0.438 1.659 3.318 l.564 -

A 60°C 0.185 0.019 0.014 0.050 0.012 0.016
(F/m2)
A 180°C 0.l88 0.023 0.006 0.003 0.006 -
(F/m2)

The dielectric properties are an indication of the heating characteristics of the selected

minerals. All minerals tested (with the exception of pyrite) are expected to have a lower

heating rate than a medium-ranked coal, pyrite is expected to heat at a much higher rate.
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The cavity method was employed at the University of Nottingham to determine of the

dielectric properties of water at different frequencies

(Greenache 1996).

Table 8.10 Dielectric properties or Water (Greenacbe 1996)

Frequency Er' 25"c " ° n, 25°C A 25°CBr 25 C
(GHz) (dimensionless) (dimensionless) (m) (F/m2)
0.615 78.0 2.51 0.076 0.123
1.413 77.5 5.71 0.033 0.260
2.216 77.0 8.46 0.022 0.360

Similar trends were evident with regard to penetration depth and absorption (Table 8.10)

and it is also noted that the dielectric constant and corresponding loss factor were much

greater than those of the minerals tested. Penetration depths were also reduced and

absorption ability was appreciably increased. The physical (gas-liquid-solid) phase

undoubtedly has an effect upon the dielectric properties of materials. Liquids may exhibit

much higher values of dielectric constant and loss factor than if they are present in the

solid state i.e. ice at -l2oe has a dielectric constant of 3.2 at a frequency of 3GHz

(Von HippeI1954).

8.11 Dielectric properties or dry, mineral free coal

Coals, by their nature, contain a variety of components-in the simplest sense inherent

moisture, associated mineral matter (of different forms) and the organic coal substance.

All of these constituents affect the dielectric properties of coals. Dielectric measurement

on a dry, mineral matter free basis would depend upon de-mineralisation (without change

to the organic coal component) and moisture removal. An alternative method of
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evaluating the organic coal (carbon content) dielectric properties is to use dielectric

mixture equations.

The preferred mixture-equation (Masayuki 1995) for microwave frequency bandwidth is

the Landau-Lifshifz formula (Equation 8.12):

(8.12)

Px
P
E!*

Mass fraction of component x
Density of component x (kg/m')
Mean density of mixture (kg/m")
Complex permittivity (replaced by the dielectric constant and loss factor
respectively)

The formula can be presented for mixtures of more than two constituents providing the

sum of the mass fractions is equal to unity.

(8.13)

Given that the density of the individual minerals and organic coal component are known

the bulk density can be evaluated (Equation 8.14, Nelson 1996).

I mA mB me--=-+-+-
Pbul/c PA Pe Pc

(8.14)
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8.11.1 Evaluation of dry, mineral free coal dielectric properties using the Landau-
Lifshifz mixture equation
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Figure 8.13 Helium density of various coals (dry, mineral matter free basis)
(Elliot 1981)

The Landau-Lifshifz formula relates the dielectric properties of the components-and their

proportions in the mixture-to the dielectric property of the mixture. The dielectric

properties of the six most common minerals were measured using the resonant cavity

method (Table 8.9). The corresponding densities of these minerals are shown in Table

8.14. The dielectric properties of water at a frequency of2.216GHz are reported in Table

8.10; for these calculations, the density of water is assumed to be 1000kglm3
. The

densities of the organic coal components (carbon content, dry, mineral matter free basis)

of group 1 and 2 coals were approximated according to their measured volatile matter
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content (dry mineral matter free basis) and the corresponding density as given in Figure

8.13.

Most of the minerals have similar densities and dielectric properties and, for simplicity,

these minerals have been grouped together with an assumed common density of

approximately 2700kglm3. Exceptions were made for pyrite which has significantly

different dielectric properties and a higher density (5000kglm3) and kaolin due to the high

concentration and marked difference in dielectric properties. Results for both group 1 and

2 coals are shown in Table 8.11.

Table 8.11 Dielectric properties of coal on a dry, mineral matter free basis

Coal Bulk coal Relative Mineral and moisture Volatile Organic coal (dry
Complex Permittivity content based on matter mineral matter free)

e*==s'-je" Normalative analysis Relative Complex
(dimensionless) (Appendix B) (dmmf) Permittivity

OJ. % e*==s':ie"
, ° Er" ° Mineral Moisture Er' 600C Er" 0Er 60 C 60 C 60C

content

F-I 2.93 0.1657 2.01 1.6 4.8 2.52 0.1351
F-2 2.49 0.0539 4.55 0.8 13.4 2.43 0.0470
F-3 2.34 0.0818 3.18 1.0 29.8 2.22 0.0725
F-4 2.77 0.2087 6.62 5.8 37.6 1.64 0.1121
F-5 2.32 0.1389 4.28 6.1 38.7 1.21 0.0580
F-6 2.86 0.1564 5.61 6.1 40.4 1.63 0.0702
F-7 2.45 0.1252 6.11 4.7 41.6 1.58 0.0656
F-8 3.51 0.3153 9.59 13.3 45.1 0.74 0.0598
P-l 2.87 0.1848 21.48 3.7 38.0 2.22 0.1349
P-2 1.30 0.0772 15.48 5.2 39.3 0.93 0.0306
P-3 2.84 0.1684 19.60 4.7 39.6 1.79 0.1168
P-4 2.28 0.0658 22.22 1.9 38.3 1.52 0.0239
P-5 2.69 0.1274 17.73 5.0 41.4 2.02 0.0764
P-6 2.44 0.0914 18.78 2.3 36.4 1.67 0.0410
P·7 2.58 0.0906 6.10 3.6 37.7 1.65 0.0410
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The results show (Table 8.11) that the relative loss factor (s") for dry, mineral free coal

generally increases with increasing coal rank. The relative dielectric constant (as

evaluated from the mixture-equation) also increases with coal rank (Figure 8.14).

Dielectric constants evaluated from the mixture-equation exhibit a change in trend

reported by the measured dielectric constants for these coals (as-received). Both low and

high rank coals have relatively higher measured dielectric constants than medium rank

coals (Figure 8.14).
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Figure 8.14 Calculated dielectric constants for the organic component of group 1
and 2 coals using the Landau-Lifshitz formula (dry, mineral matter free basis)

Low rank coals generally contain greater quantities of inherent moisture, group 1 and 2

low rank coals also exhibit the highest mineral matter content (up to 20%, in the case of

158



Chapter 8 Dielectric properties of coal

group 2 coals). The increase in moisture and mineral matter in low rank coals increases

the dielectric constant value and the evaluated dry, mineral free coal dielectric constants

are shown to decrease with decreasing rank. Similar measured results were reported from

(moisture-free) group 1 coals at lS0°C (Figure S.7) indicating that the moisture content

may be a major contributing factor to measured and calculated (by mixture equation)

dielectric constant variation.

8.12 Theoretical heating rate and dependence on electric field strength

Through the manipulation of standard dielectric and physical equations both the

theoretical heating rate and the electric field strength can be estimated with a knowledge

of a particular material's dielectric and physical properties (Florek 1995). The power

absorbed by a material is expressed in (terms of dielectric properties) Equation 2.8, and

the power absorbed per unit volume can be evaluated by Equation 8.15.

(2.S)

(S.15)

p Power absorbed (W/m3)
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The energy lost or gained by a material with changes in temperature (heat energy) can be

expressed as:

Q = m.C p .08 (8.16)

M Mass of the body heating (kg)
Cp Specific heat capacity (Jzkg)
8 Change in temperature (QC)
r Change in time (s)
Q Energy absorbed or produced (W)

The power absorbed is therefore (Q. ~):

m.C .se
p =-~-

a Of
(8.17)

Power absorbed (W)
Mass of the body heating (kg)
Specific heat capacity (J/kg)
Change in temperature (lC)
Change in time (s)

Combining Equation 8. 15 and 8.17 gives an expression for the heating rate within a

microwave field (Harrison 1997):

2 .K .f .E insitu 2'&0'&; .V
-= «c,
08
or

(8.18)

Rearranging Equation 8.18, making the electric field strength inside the material the

subject:
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E insitu = (8.19)

However, this assumes no gain or loss of energy from conduction or convection and

uniform heating. Previous studies imply that, if a small load is heated within a cavity and

the skin depth is high, dielectric heating is the predominant mode of heating and

conduction may be negligible (Ishii 1995).

Assuming the density (1000kglm3) and specific heat capacity (4200J/kgK) for water do

not change significantly over a temperature range 25<T<75°C, and assuming that the loss

factor for water between this temperature range equates to (3201T) (T is in Celcius)

(Metaxas 1983). Then by measuring the heating rate of water within a microwave cavity,

the electric field strength inside the water can be approximated. Equation 8. 19 can be

summarised as the following assuming no evaporation of water:

E insitu =
27r x 2.45 x 10 9'&0 »; .at

1000 x 4200 so (8.19)

It is known that the electric field strength may vary within a multi-mode cavity, with the

use of a silica glass container, and maintaining the water volume, the cavity electric field

strength can be estimated upon measurements of the heating rate and relationships

between the electric field strength inside the water and the external field. A grid was

marked out on the base of a 0.65kW power microwave cavity (2.45GHz frequency). The

heating rate was measured at various positions within the cavity and the average electric
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field strength was determined for each grid sectional area. Figure 8.15 shows the

variation in the heating rate of water within such a cavity.

Final Te"1l9ratures alter lOs

Figure 8.15 Changes in the heating rate of water with position within a O.6SkW
multi-mode microwave cavity

The average heating rate of water was 1.1°C/s and the calculated average electric field

strength (root mean square basis) inside the water was 1990v/m. Attempts have been

made by previous workers (Metaxas 1983) to predict the external electric field strength

from a water load (Equation 8.20).
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(8.20)

Eext Electric field strength of microwave cavity (vIm)
P Power absorbed (W/m3)
c Speed oflight (mls) 3x108 mls
Eo Permittivity of free space 8.85 x l 0-12 (F1m)
'[' Constant approximated as 0.25
A Coefficient of absorption (F/m2) given by Equation 8.10

A = (1- e-2rID.) (8.10)

r
Ds
e

Radius of particle (m)
Skin depth (m)
Napierian logarithm base approximately equal to 2.7182818285 (10dp)

Following this procedure and applying Equation 8.20, the average cavity electric field

strength was 9980v/m. Assuming the cavity electric field strength is constant, theoretical

heating rates (within this cavity) for other materials can be derived from a combination of

Equation 8.20 (material's internal electric field strength) and Equation 8.18 (heating rate)

providing the density, specific heat capacity and particle size are known.
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S.12.1 Theoretical heating rates of coal

Table S.12 Theoretical heating rates of group 1 coal (60°C)

Particle size-O.Olmdiameter spherical particles
Coal E' xlO-12 E" xlO-ll A P E....1fu aa/at

(F/m) (F/m) (F/ml) (kg/ml) (vIm) _rC/s_}
F-l 25.93 1.47 0.049 1530 5920 0.41
F-2 22.04 0.48 0.017 1420 6220 0.16
F-3 20.71 0.72 0.027 1300 6300 0.27
F-4 24.51 1.85 0.062 1300 5986 0.63
F-5 20.53 1.23 0.046 1310 6280 0.46
F-6 25.31 1.38 0.046 1310 5960 0.46
F-7 21.68 1.11 0.040 1320 6210 0.40
F-S 31.06 2.79 0.083 1330 5610 0.81. .

Densities approximated from FIgure 8.13 (Elhot 1981) .
Specific heating capacity ofcoal taken as an average value (1254.sJlkgK), (Clark S P 1966).

The theoretical heating rates of group 1 coals were calculated (Table 8.12) assuming the

coal particle shape is spherical and the particle diameter is 0.01m. The densities of all

coals were estimated from Figure 8.13. Heating rates may increase in low rank coals due

to their increased moisture content.

The theoretical and measured bulk heating rates of microwave treated coals (8 minutes

exposure time, 0.65kW, 2.45GHz) are given in Table 8.13, measured heating rates were

taken immediately after microwave treatment (Chapter 6.13).
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Table 8.13 Theoretical and measured heating rates of microwave heated coal (60°C)

Theoretical heating rate-O.Olm diameter spherical particles Measured
heating rate

Coal &' xlO-12 s" xlO·u A p 80/8t 80/8t
(F/m) (F/m) (F/m2) (kg/m3) (OC/s) rC/s)

P-l 14.20 0.68 0.031 1310 0.31 0.42
P-3 25.11 1.49 0.050 1310 0.49 0.52
P-~ 23.83 1.12 0.039 1320 0.38 0.38

Similarities can be drawn between the measured heating rates and the theoretical heating

rate, particularly for P-3 and P-5 coals. Some tolerance would be expected, the dielectric

properties were measured at 2.216GHz frequency and the sample size and shape differ

from assumption made for theoretical calculation (coal pellet samples, cylindrical shape,

diameter O.Olm). The measured heating rates were recorded following microwave

heating at 2.45GHz from samples of rod mill feed size characteristics (100% passing

0.05m sieve aperture size).

8.12.2 Theoretical heating rates of selected minerals

The theoretical heating rates of selected minerals common to coal are given in Table 8.14

(calculated via Equation 8.20 and Equation 8.18), measured heating rates of these

minerals have been included for comparison. Measured heating rates were taken on 50g

samples of particle sizes <125J..lmdiameter at a power ofO.65kW and at an operating

frequency of2.45GHz (Harrison 1997).

165



Chapter 8 Dielectric properties of coal

Table 8.14 Theoretical and measured heating rates of selected minerals (60°C)

Theoretical heating rate-O.Olm diameter spherical particles
Pyrite Quartz Dolomite Kaolin Mica Calcite

&' xl0·12 (F/m) 62.57 16.37 25.58 23.72 25.22 27.08
e" xl0·12 (F/m) 9.40 0.44 0.41 1.45 0.36 0.48

A (F/mz) 0.185 0.019 0.014 0.050 0.012 0.016
P (kg/m3) 5200 2650 2850 2630 2830musc 2710
c, (JIkgK) 525 765 840 1048 870 860
Elnl1tu (vIm) 4580 6700 6000 6060 6020 5910
t,{)/at rC/s) 1.11 0.16 0.09 0.30 0.08 0.11
Measured heating rate-l00% passing 125J.1msieve aperture (Harrison 1997)

Pyrite Quartz Dolomite Kaolin Mica Calcite
oS/otrCfs) 1.00 0.08 0.12 - 0.08 0.08..Densities taken from (Clark S P 1966), (Mica approximated as Muscovite).

Kaolin density taken from (Roberts et al1989),
Specific heating capacity taken from (Knache et alI991).
Specific heating capacity of Mica (Muscovite) taken from (Moses A J 1921),

The data provided illustrates the minerals expected to heat to the greatest extent, pyrite

has a heating rate approximately twice that of most coals, kaolin has a similar heating rate

whilst all other minerals tested exhibit lower heating rates to organic coals (2.45GHz,

0.65kW).
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8.13 Dielectric properties of coal conclusions

Through dielectric measurement of these coals and a selection of associated minerals, the

principle heating sources were identified as pyrite and water.

Dielectric properties (dielectric constant and loss factor) are affected by both coal

temperature and microwave frequency. The latter exhibits no specific trend, however, the

dielectric properties do change but not to any appreciable extent with frequency.

Substantial reductions in coal dielectric constant and loss factor values occur between 80-

180°C and are attributed to moisture removal. The dielectric properties of coal are

dependent on coal rank, both high and low rank as-received coals exhibiting the greatest

values of dielectric constant and loss factor. These properties decrease with low rank

coals on a dry, mineral matter free basis (calculated dielectric properties from Landau-

Liftshifz mixture equation). Hence, the increase in permittivities of low rank as-received

coal is due to the increase in moisture of low rank coals. Microwave treated samples

result in reductions in the permittivites with increased microwave exposure time, similar

reduced values are presented following drying.

The penetration depth of the microwave (which decreases with increase frequency) field

ranged from O.2m to O.Sm depending on coal properties (independent of rank) and

substantially increased, particularly for low rank coals on a dry basis.

High and low rank as-received coals exhibit the greatest values of dielectric conductivity

and coefficient of absorption, and as such are considered to absorb (as opposed to
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reflection and transmission) microwave energy to the greatest extent. Absorption

capability increases with rank on a dry basis.

From the selection of minerals and measured dielectric properties of water, pyrite and

water show substantial absorption capabilities (greater than coal), however, as a result

have much shorter penetration depth values. Both water and pyrite heat at twice or more

than the heating rate of coal (range between 0.2 to 0.8°C/s). Quartz, mica, dolomite,

kaolin and calcite heat at a lower rate (approximately O.l°C/s) and are expected to

transmit microwave radiation.

Dielectric properties provide a basis for preliminary grindability theories (Chapter 6),

(expansion of specific minerals and associated stress development from steam

production) in so much that steam production would clearly occur following prolonged

exposure and coal components would expand at different rates depending upon their

heating rates. Results from this investigation show that the heating rates of coal are

relatively low within a 0.65kW power input multi-mode cavity. Clearly the heating rate

would increase with increasing microwave power input, but the most substantial affect to

heating rates may occur at higher cavity electric field strengths.
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CHAPTER NINE

MECHANISMS FOR MICROWAVE ENHANCED COAL
GRINDABILITY

9.1 Introduction-Mechanisms for microwave enhanced coal grindability

This section discusses the possible mechanisms accounting for the changes in coal

grindability upon heating. Analyses of microwave and muffle furnace heating data has

shown reductions in coal moisture and volatile matter content after heating (Chapter 6

and 7). In particular, there is evidence to suggest that coals of a high mineral matter and

moisture content exhibit the most significant improvement in grindability when heated.

Accordingly, it is possible that these two features may control the changes in coal

grindability following microwave treatment.

9.2 Mechanisms for improved coal grindability

The bulk temperature of microwave treated coals were measured (Chapter 6.13) at

temperatures up to 250°C and an analysis of theoretical heating rates suggest that the

temperatures of some inherent minerals (in particular, pyrite) may exceed the coal bulk

temperature. As discussed (Chapter 8), the constituents of a coal heat at different rates

within a microwave field. They may expand or contract with temperature as each material

has a unique expansion coefficient rate with temperature. The volumetric expansion of a

solid is related to material specific properties (Coefficient of thermal expansion) and

temperature by Equation 9.1.
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(9.1)

Coefficient of volumetric expansion (Ko)
Original volume (m")
Final volume (m')
Original temperature (OC)
Final temperature (OC)

Table 9.1 shows the coefficient of volumetric expansion of those minerals generally

associated with coal.

Table 9.1 Volumetric expansion of common minerals associated with coal
(Clark 1966)

Coefficient of volumetric expansion for selected minerals at increasing
temperature (J("t)

Temperature Pyrite Quartz Dolomite Kaolin Mica Calcite
rC) (x 104) (x 104) (x 104) (x 104) (x 10"') (x 10"')
20 - 34.0 11.4 - 8.5 -
100 21.9 36.2 - - 8.5 10.5
200 52.9 78.l - - - 28.5
400 129.1 189.4 - - - 76.5
600 - 452.3 - - - 139.5
800 - 442.4 - - - -.. ..

Data for Dolomite-Handbook of Physical Quantities (Meilikhov 1997)
Data for Mica-Smithsonian Physical Tables (Forsythe 1954)

Pyrite and calcite decompose at high temperatures (e.g. pyrite oxidises at approximately

300°C). Generally, the expansion coefficient increases (expansion rate) with increasing

temperature. This can also be observed with quartz up to 600°C. Quartz undergoes a

phase conversion at S73°C, the transition between (I and 13 quartz accounting for the

significant increase in coefficient of expansion followed by the decrease in coefficient of

expansion at higher temperatures. Furthermore, the coefficient of volumetric expansion

for water at constant pressure increases (from 45.6x 10-8for ice at -SO°C, 182x 10-6 for
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water at 20°C and 4187xl0~ for steam at 120°C, Meilikhov 1997, Forsythe 1954) to a

greater extent than most mineral inclusions over the temperature range 20°C-120°C.

The reductions in total moisture and volatile matter content (Chapter 6) of treated coals

suggest that there is steam generation and volatile gas production with increasing

temperature. There may be associated changes in coal structure and internal pressures

may be generated as a result of gas and steam evolution from within the structure. In

particular, once a gas is produced, it can be assumed that internal stresses would increase

from increasing gas pressure with temperature. If the gas is confined i.e. no volume

change, and assuming ideal gas laws (Equation 9.2), as temperature increases the

pressure increases linearly. The pressure will continue to increase until either the heating

ceases or the volume increases. Internal structural stress would increase as a result of the

increasing pressure and may initiate crack propagation.

PgVg = nRTg (9.2)

Pg Pressure of gas (N/m2)
Vg Volume of gas (m')
Tg Temperature of gas (K)
n Number of moles in fluid (kmol)
R Universal gas constant (S.314kJ/kmol K)

There is evidence to show cracks are produced when coal is heated, possibly as a result of

internal stresses generated by the volumetric expansion of both solid and gas components

in the coal.
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Previous results (Chapter 6) have shown improvements in coal grindability with heat

treatment, volumetric expansion would also produce internal stresses as the coal

temperature is reduced. To demonstrate this, two (500g) representative P-7 coal samples

were prepared for cryogenic treatment, one of the samples was enclosed within an

insulation flask surrounded by ice at a temperature of -1°C. The second sample was

enclosed within an insulation flask and covered with liquid nitrogen (-196°C), the

samples were removed after 1 hour of exposure. The two samples and a further non-

treated sample (reference) were milled (Chapter 6.8, 100rpm speed of rotation, 7 rods

used as grinding media) and size distribution determined after 5,20 and 45 minutes of

milling.

tOmm

Figure 9.1 Visible crack formation following microwave heating
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Table 9.2 Effect of reduced temperatures on coal grindability

Relative Work Index %
Coal Grinding time

5min 20 min 45 min
Reference (20°C) 100 100 100
As-received (_1°C) 89 85 99

As-received (- -200°C) 71 62 90

Results show (Table 9.2) no change in coal grindability; after 45 minutes of milling, for

the sample exposed to _1°C. However, the sample covered in liquid nitrogen showed a

10% reduction in RWI after 45 minutes of milling, possibly because of the significant

temperature reduction and the subsequent effect of the differences in contraction between

the minerals, water and coal. The expansion rates for most minerals associated with coal

and water increase with temperature. The coefficient of expansion for ice is significantly

lower than that of water. Hence, the extent of the effect upon grindability may not be as

significant as that produced from heat treatment.

The behaviour of the material to which the stress is applied will alter according to the

chemical and physical properties of the material (composition, size and location of

composites i.e. mineral matter content and inherent moisture content). If the force is

sufficiently rapid, intensive or extensive duration, some breakage of the structure will

result (Hookes law). The in-situ method of heating from microwave radiation may

promote an increased rate of applied force due to increased heating rates of some inherent

composites. Expansion forces may be low and insignificant, not sufficient to deform the

bulk of the structure. However, they may be sufficient to extend existing imperfections or
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discontinuities in the material i.e. cracks and pores, which are considered points of

weakness or stress concentration points (Brown 1958).

9.2.1 Points of structural weakness

Crack

.r---------i--I> Direction of
force (Tension)

,/
/'

/

Stress concentration at the end of the crack

Figure 9.2 Effect of crack length and radius of curvature on stress concentration

Stress concentrates at non-uniform structural points. Any cracks, pores, joints and

boundaries between mixtures may act as stress concentration points. Considering an

existing crack within a uniform body, the maximum stress acts at the point of maximum

concentration i.e. the crack tip (Figure 9.2). Assuming the crack is elliptical in shape the

maximum stress can be related to the crack dimensions (Equation 9.3, Lowrison 1974).

(
length of major axis of crack JCrack stress =Average stress x 1+ 2

2 x radius of curvature at tip of crack
(9.3)

The stress increases as the length of the crack increases, additionally, as the length

increases the radius of curvature decreases. Once the stress is sufficient to initiate crack
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elongation (crack tip stress = crack initiation stress) and provided that the stress is then

maintained throughout the body, the crack will be self-propagating. However, a particular

crack requires a minimum energy for elongation initiation. This may be measured

assuming the crack initiation stress is related to the potential energy of the crack

(Equation 9.4, Lowrison 1974).

C k initi . ~2.G.rrae tnmanon stress = -1- (9.4)

G
I
y

Young's modulus (N/m2
)

length of crack (m)
Surface energy per unit surface area (J/m2)

The crack initiation is related to the crack length, if the crack length is very small then the

crack stress initiation can be larger than the stress required to deform the bulk material

(phase change as an extreme). The minimum crack length is considered to be that to

which Van Der Waal's forces no longer effectively act (Lowrison 1974). Hence, cracks

or pores below the minimum length are not generally considered points of weakness.

In natural heterogeneous materials, the stress throughout the body is non-uniform and

cracks may propagate and cease before catastrophic structural failure (breakage) as the

crack interacts with other cracks, pores or inclusions that act as 'crack stoppers' (Brown

1958).

Cracks and pores are considered the major source of material fracture points and as such

their importance is unquestionable. Particle size is considered an influencing factor on

grindability, smaller particles may not produce cracks to the same extent as larger
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particles and as such resist grinding more effectively i.e. the smaller the particle the

greater the resistance to grindability (Lowrison 1974).

To this end, grindability will be improved providing the heat treatment supplies sufficient

energy (to the rate and intensity of the force from expansion) to propagate crack

formation. The location, size and quantity of such cracks and their propagation depend

upon the inherent constituents and there affect as a consequence to heat treatment and

volumetric expansion.

9.3 Improved microwave grindability

Results (Chapter 6 and 7) indicate that microwave enhanced grindability improves with

decreasing coal rank and increasing mineral matter content. The most significant

improvements in coal grindability have been measured on low rank coal (Chapter 7),

which may result from the high inherent moisture content of such coals. The question

may be asked: could the grindability be improved further by increasing the inherent

moisture content ofa coal? Clearly it would be impractical to increase the mineral matter

content of a coal as the benefits from heat treatment require the minerals to be enclosed

within or attached to coal particles.

9.3.1 Potential to increase inherent moisture content

All coals contain both surface moisture and inherent moisture. The surface moisture

would originate from exposure to the atmosphere (Relative Humidity); this type of

moisture would absorb microwave radiation, rapidly heat, change phase and evaporate
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from the surface with presumably little effect on the coal structure. Inherent moisture

originates from the coalification process and as such is part of the internal structure. This

form of moisture would also rapidly heat, however, due to confinement may change

phase under increased pressures that may propagate micro-cracks. Coals are naturally

porous (Chapter 3.3), it is possible that inherent moisture may be located within or near

to existing pores or micro cracks. The average pore-opening diameter of coal is less than

200A (O.2J..Lm)(Figure9.3). Hence it is expected that any inherent moisture within the

pores would significantly weaken the structure.

Figure 9.3 Scanning Electron Micrograph image of coal pores (Harris 1976)

However, it is believed that, increasing microwave grindability benefits from an

increased moisture content would be impractical with simple additions of water under
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atmospheric conditions as the pore opening would be too small to allow water

penetration.

9.3.2 Microwave grindability of P-2 and P-7 coals with increased moisture content

Representative (500g) samples ofP-2 and P-7 coals were prepared in a similar method to

that described in Chapter 7.5, size distributions range between -50mm +500J..lm.Both

coals were of medium rank, P-2 is a typical power station feed coal whilst P-7 was

chosen because of its low ash content which may affect heat treatment results. The coals

were exposed to ambient atmosphere for twenty four hours before being enclosed within

air-tight containers to retain their constant relative humidity equilibrium.

Two of the samples from each coal were submerged in 400ml of distilled water for 48

hours, the samples were irradiated following excess water drainage. The ensuing

microwave treatment was constant for all coals (samples exposed to microwave radiation

for 8 minutes at 0.65kW power input and at 2.45GHz frequency). Microwave conditions

were selected to produce reasonable grindability improvements for medium rank coals

(Chapter 6.11).

A sample from each coal tested was heated within a muffle furnace maintained at 110°C

for 180 minutes to ascertain the effect of drying upon coal grindability. A further sample

from each coat was treated by both the furnace and by microwave heating methods to

compare grindability effects after subsequent milling tests (comparison between furnace

and microwave treatment).
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Following heat treatment, representative sub-samples were taken for proximate analysis.

The quantity of coal taken for proximate analysis depended upon that remaining after

heat treatment, 450g of each coal remained for grindability tests. Subsequent laboratory

rod milling (Chapter 6.10) was carried out to determine any improvements in

grindability. Results are expressed in terms of the Relative Work Index.

Table 9.3 Relative Work Index of P-2 coal after microwave and furnace treatments

Relative Work Index %
Coal Grinding time

5 min 20min 45 min
Reference 100 100 100
Furnace 82 79 58

Furnace + Microwave 78 67 47
Microwave 81 85 67

H2~ + Microwave ~l 78 79 51
H2~ + Microwave ~ 81 92 73

Results for tests carried out with P-2 coal (Table 9.3), show that furnace treatment can

produce greater improvements in grindability with comparison to microwave treatment.

Combining furnace and microwave heating produced the greatest reduction in Relative

Work Index (greatest improvement in grindability). Repeatable results were not obtained

with coals that had been subjected to water additions. Proximate analysis results (Table

9.4) may be used to rationalise these inconsistencies. The moisture content for all treated

coals was reduced, the inconsistent values ofRWI may be a result of the variation in

mineral matter content between samples. The coals with the greatest reductions in

Relative Work Index also correspond to the greatest ash content. As there are significant
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variations in each coal sample ash content, comparisons between heating methods and

increased moisture contents are difficult to evaluate from these results.

Table 9.4 Proximate analysis (as-received basis unless stated) of P-2 coal after
microwave and furnace treatments

Moisture Ash Volatile matter Fixed Volatile
Coal % % % Carbon matter dmmf

% %
Reference 4.49 12.37 31.55 51.59 37.95
Furnace 1.84 17.47 28.86 51.84 35.76

Furnace + Microwave 1.31 13.51 29.48 55.70 34.61
Microwave 2.26 12.31 30.51 54.93 35.71

H20J + Microwave ~1 2.48 15.50 29.31 52.71 35.74
H20} + Microwave ~2 2.93 13.52 31.26 52.28 37.42

P-7 coal was chosen due to the reasonably low ash mineral content (less than 5%).

Results (Table 9.5) following heat treatment and milling show improvements in

grindability i.e. reductions in RWI. However, the RWI values are uniform irrespective of

water additions (85% after 45 minutes of milling) and repeatable results could be

obtained. This suggests that additions of water have had no effect on the grindability, any

increase in total moisture prior to microwave treatment represents surface moisture only

(moisture content of 8.2% was measured for samples subjected to water addition prior to

microwave treatment).
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Table 9.5 Relative Work Index of P-7 coal after microwave and furnace treatments

Relative Work Index %
Coal Grinding_time

5min 20min 45min
Reference 100 100 100
Furnace 77 68 90

Furnace +Microwave 80 64 84
Microwave 73 67 84

H20} +Microwave ~1 77 68 85
H201 +Microwave ~2 75 69 85

Surface liquid moisture is believed to have no penetration capabilities into the coal

structure and as such no effect on grinding resistance after steam generation. The 5%

difference in RWI between microwave treated coals and furnace treated coal may result

from the increase in temperature and subsequent effect on the volumetric expansion

between heating methods. The furnace was maintained at a temperature of 110°C and as

such, there is expected to be some effect by the volumetric expansion of coal mineral

constituents on coal grindability. However, the bulk temperatures during microwave

treated coals reached a temperature of 180°C (K-type thermocouple measurement) which

may have a greater effect on volumetric expansion. Additionally, proximate analysis

(Table 9.6) shows that the total moisture content of microwave treated samples are

reduced further than the furnace treated coal, which may account for the difference in

RWI via stearn generation.

181



Chapter 9 Mechanisms for microwave enhanced coal grindability

Table 9.6 Proximate analysis (as-received basis unless stated) ofP-7 coal after
microwave and furnace treatments

Moisture Ash Volatile matter Fixed Volatile
Coal % % % Carbon matter dmmf

% %
Reference 3.71 4.46 35.54 56.30 36.56
Furnace 2.60 4.64 33.03 59.73 35.61

Furnace + Microwave 1.41 4.57 34.59 59.43 37.15
Microwave 1.86 4.96 34.21 58.98 36.71

H20) + Microwave ~1 2.26 4.24 34.20 59.29 36.58
H20) + Microwave ~2 1.75 5.72 32.96 59.57 35.62

9.3.3 Steam liberation restriction

Similar tests were carried out (P-7 coal only) to ascertain whether the use of surface

agents could be used to prevent or slow inherent steam liberation. Coal samples were

prepared as described in Section 9.3.2, samples were submerged in 400ml distilled water-

surfactant (50g) solution (Calgon - brand name, 15% polycarboxylates, 30% Zeolites,

typical detergents contain -15% surfactants). Microwave irradiation commenced

following excess solution drainage. Microwave and milling conditions were as described

previously (Section 9.3.2).

Table 9.7 Relative Work Index ofP-7 coal with surfactant pretreatment addition
after microwave exposure (8 minutes, O.6SkW at a frequency of 2.4SGHz)

Relative Work Index %
Coal Grinding time

5 min 20min 45 min
Reference 100 100 100

H20 + Surfactant 71 62 84
+Microwave ~1
H20 + Surfactant 71 62 83
+Microwave m

182



Chapter 9 Mechanisms for microwave enhanced coal grindability

Results (Table 9.7) are similar to those obtained in Section 9.3.2 indicating no effect by

the surfactant upon microwave grindability. Proximate analysis (Table 9.8) shows similar

reductions in moisture content as reported for P-7 coal exposed to microwave radiation

irrespective ofwaterlsurfactant addition, indicating that the surfactant did not restrict or

enhance steam liberation.

Table 9.8 Proximate analysis (as-received basis unless stated) of P-7 coal with
surfactant pretreatment addition after microwave exposure (8 minutes, O.65kWat a

frequency of 2.45GHz)

Moisture Ash Volatile matter Fixed Volatile
Coal % % % Carbon matter dmmf

% %
Reference 3.71 4.46 35.54 56.30 36.56

H20 + Surfactant 1.99 4.03 32.65 6l.33 34.74
+Microwave ~1
H20 + Surfactant 1.74 6.55 32.96 58.75 35.94
+Microwave ~2

9.3.4 Enhanced microwave grindability of P-7 coal with the addition of steam to
increase the inherent moisture content.

Tests were carried out (P-7 coal) to determine whether the inherent moisture content

could be increased with the addition of steam. Samples were prepared as described in

Section 9.3.2. Samples were contained and exposed to a constant flow of steam for 1

hour. A sample was milled (Chapter 6.11) immediately after steam addition and two

further steam treated samples (to demonstrate repeatability) were exposed to microwave

radiation (8 minutes, 0.65kW, 2.45GHz) prior to milling. Size distribution data following

5,20 and 45 minutes milling is expressed in terms of the RWI (Table 9.9).
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Table 9.9 Relative Work Index of P-7 coal following the addition of steam and
microwave treatment

Relative Work Index %
Coal Grinding time

5min 20min 45 min
Reference 100 100 100

As-received+Hgx, 71 62 95
Microwave + H200 ~1 71 58 84
Microwave + H200 ~2 71 58 84

Microwave treated samples (Table 9.9) show a similar size distribution. hence similar

RWI as previous microwave treated P-7 coal samples; indicating that steam addition had

no further effect on coal grindability. Results from the as-received. steam treated sample

show little reduction in RWI after 45 minutes of milling. This may be the result of the

increase in bulk temperature and associated expansion of mineral inclusions rather than

any increase in the inherent moisture content. Proximate analysis results (Table 9.10)

show no increase in the as-received steam treated sample suggesting the moisture content

could not be increased by means of steam addition. Microwave treated samples show

similar reductions in total moisture content as previously reported (Section 9.3.2).

Table 9.10 Proximate analysis (as-received basis unless stated) of P-7 coal with the
addition of steam before and after microwave exposure

(8 minutes, 0.65kW at a frequency of 2.45GHz)

Moisture Ash Volatile matter Fixed Volatile
Coal % % % Carbon matter dmmf

% %
Reference (20°C) 3.71 4.46 35.54 56.30 36.56
As-received+Hso., 3.62 3.66 35.02 57.70 37.77
Microwave + H200 2.44 3.75 33.82 59.99 36.05

N"l
Microwave + H200 2.02 3.92 33.94 60.10 36.09

N"2
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9.4 Conclusions-Mechanisms for microwave enhanced coal grindability

The expansion of inherent minerals and moisture are believed to promote fracture

propagation upon coal heating. Results (Chapter 6, 7 and 9) have shown that both

microwave and convective heating may improve grindability as a result of different

thermal expansion rates of coal inclusions. Microwave heating can induce a weakening of

the coal structure to a greater and a lesser extent to that of convective heating depending

upon the mineral composition and associated heating rates. Microwave irradiation may

promote high heating rates from within the coal structure that is not dependent upon

conduction. The extent of the reduction to grinding resistance depends upon the quantity,

grain size, proximity and heating rate of the inclusion. Hence, high heating rates and

increasing quantities of mineral matter and moisture content may promote the most

significant change to coal grindability. Clearly it is not feasible to increase the inherent

mineral matter content. Furthermore, results (Chapter 9) suggest that it is impractical to

increase the inherent moisture content. Accordingly, when employing microwave

radiation as a method of pretreatment, the choice of coal is vital in achieving significant

improvements in grindability. Further investigation would be necessary to determine the

specific minerals that promote the greatest structural defects and their optimum grain size

with relation to coal particle size and grindability.
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CHAPTER TEN

PILOT-SCALE CONSIDERATIONS

10.1 Introduction-Pilot-scale considerations
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Figure 10.1 Schematic diagram of continuous 0.1-6.6kW microwave cavity
(MEB Technology Centre)

As described previously (Chapters 6, 7 and 9), preliminary work has been carried out

using of small quantities of coals to determine the changes in coal grindability following

microwave treatment. Pilot-scale trials have also been conducted to demonstrate that

186



Chapter 10 Pilot-scale considerations

sizeable quantities of coal could be irradiated and to (i) identify any scale-up problems

and (ii) provide a basis for a feasibility analysis.

To this end, a microwave cavity capable of operating at both batch and continuous

process modes and at power levels between O.lkW-6.6kW, was used for pilot-scale trials

(Figure 10.1). The operating frequency of the cavity was fixed at 2.45GHz.

10.2 Process considerations

The basis of the microwave pilot-scale trials was to demonstrate the potential applications

within the coal industry for microwave technology. Industrial PF production for power

generating plant would require a continuous microwave process between feed storage and

mills, prior to boiler entry. Such a process would maintain a constant throughput (without

sustained coal ignition) and produce uniform heating characteristics and associated

improved grindability. Any gases released as a by-product of microwave treatment would

be removed for cleaning. A batch process may prove impractical as industrial PF

production for power generation relatively high feed rates of coal; this feature may limit

batch cavity dimensions, in principle, high loads may result in non-uniform heating

(localised heating) and difficulties with handling and storage.

To provide flexibility, the current cavity allows for both continuous (conveyor belt)

operation and batch (turntable operation) processing. Cavity ventilation could remove all

emissions and reduce hot-air congregation.
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10.3 Microwave treatment conditions

The purpose of the current study was to demonstrate that preliminary work can be carried

out on sizeable quantities of coal and to assess the variables which need to be considered

for industrial-scale microwave treatment. The pilot-scale tests were conducted in two

stages, the first being concerned with investigating the practical range of experimental

parameters and operating conditions and the second stage with a study of the effect of

microwave radiation on an appropriate quantity (0.5 tonne) of coal. Cavity optimisation

was primarily concerned with defining the most practical balance between coal quantity,

power input and microwave exposure time for the energy required for maximum

grindability improvement. Cavity conditions were based on the use of a batch process and

it was assumed that a continuous feed could be represented as a succession of batches.

10.3.1 Microwave energy requirements

Each microwave cavity has a unique electric field strength distribution and, in particular,

the cavity dimensions (shape) will affect the power absorption efficiency. Accordingly,

energy requirements can be expected to differ between cavities for a given reduction in

RWI (Relative Work Index) of a coal. Furthermore, coals differ in their composition and

structure and each coal will have a different energy requirement for achieving maximum

reduction in RWI (Chapter 6.11). Preliminary work (Chapter 6) has also demonstrated

that the coal feed size distribution (which clearly would not be uniform for a continuous

process) would affect the grindability change arising from microwave treatment. For

these reasons, microwave energy per unit weight of coal was not optimised, but energy

input was more than sufficient to show considerable improvement in coal grindability.
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The final bulk temperature of the coal has been shown to be an indication of the

maximum improvement in grindability (Chapter 6.13) and preliminary studies have

shown that the maximum reduction in RWI occurred at bulk coal temperatures within the

range of 160°C-200°C. A group of samples were irradiated at various power input levels

and sample loads. The bulk temperature of the coal (following microwave treatment) was

measured using a K-type thermocouple (temperature range -50°C-900°C). For all coals

tested (P-5, P-6 and P-8), a power input of approximately 220kWhlt was required to

produce temperatures consistently ranging from 160°C-200°C, independent of sample

load and input power. On this basis, all subsequent tests were carried out at constant

energy input (220kWhlt).

10.3.2 Variation of grindability with increased power input at constant load

Batch (lkg) samples ofP-5 coal were exposed to microwave radiation to investigate the

effect of increased microwave power input on coal grindability. All samples were of

uniform feed size distribution and exposed at constant energy per unit weight

(220kWhlt). The microwave power input was set at levels 1.1,3.3 and 6.6kW

corresponding to exposure times of 8,4 and 2 minutes respectively. Sub-samples (500g)

from the three microwave-treated samples and a non-treated sample were prepared and

subjected to RWI grindability tests (Chapter 6.11).

Results (Table 10.1) show that the RWl decreased by 30-40% (45 minutes of milling)

following microwave treatment. Furthermore, grindability improved with increasing

input power from 1.1kW to 3.3kW with similar effects exhibited for the 3.3kW and
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6.6kW treated coals. There was no evidence of coal ignition occurred during these pilot-

scale tests.

Proximate analyses (Table 10.2) show significant (and similar) reduction in the moisture

content of all microwave-treated coals; minor reductions in volatile matter (which reduce

with increasing microwave power input) are also noted.

Table 10.1 Relationship between Relative Work Index and microwave input power
at constant energy per unit weight (lkg P-5 coal samples, at 2.45GHz frequency)

Coal Power input Relative Work Index %, e;round for:
(kW) (5 min) (20 min) (45 min)

Non-treated - 100 100 100
Exposure 8 min 1.1 79.1 79.3 67.1
Exposure 4 min 3.3 72.2 75.7 59.0
Exposure 2 min 6.6 69.4 74.1 59.0

Table to.2 Proximate analysis (as-received basis unless stated) ofP-5 coals exposed
to microwave radiation at constant wiegbt (tkg)

Coal Moisture Ash Volatile Fixed Volatile
% oAt matter Carbon matter daunt

0/0 % 1If.

Non-treated 3.41 13.48 34.18 48.93 41.13
Exposure 1.1kW 1.65 11.72 36.33 49.80 42.51
Exposure 3.3kW 1.80 14.14 33.55 50.51 39.92
Exposure 6.6kW 1.49 11.26 32.62 S4.63 37.39

10.3.3 Grindability variation with increased load at constant power input

A similar set of (P-5) coals of different quantities (1,2 and 3 kg loads) were irradiated at

constant microwave power input (3.3kW) for 4,8 and 16 minutes respectively (constant

energy per unit weight) to determine if batch size affects microwave enhanced-

grindability. A sub-sample (SOOgrod mill feed of uniform size distribution) of each coal

was taken and the RWI determined (Chapter 6.11).
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Results (Table 10.3) show that following 45 minutes milling, the RWI reduces with

decreasing coal quantity. As the energy and power input are constant, the major

dependant parameter is the sample volume. In particular, this implies that increased

sample volumes may be approaching the matched load for the cavity; additionally the

coal sample height increases with increased load (sample area maintained), and

accordingly, penetration depth may become a factor influencing grindability at increased

volumes.

Table 10.3 Relationship between Relative Work Index and coal quantity at constant
microwave input power (3.3kW) and at constant energy per unit weight

(P-5 coal, 2.45GHz frequency)

Coal Sample load Relative Work Index %,_g_round for:
(kg) (5 min) .(20 min) J45 min)

Non-treated 1 100 100 100
Exposure 4 min 1 72.2 75.7 59.0
Exposure 8 min 2 75.1 77.7 62.6
Exposure 12 min 3 80.5 81.9 65.0

Table 10.4 Proximate analysis (as-received basis unless stated)of P-5 coals exposed
at constant microwave power input (3.3kW) and constant energy per unit weight

(220kWhlt)

Coal Moisture Ash Volatile Fixed Volatile
e;. % matter Carbon matter.._,.

0/0 I/o %
Non-treated 3.41 13.48 34.18 48.93 41.13

lkg 1.80 14.14 33.55 50.51 39.92
2kg 1.56 11.22 33.47 53.75 38.38
3kg 1.96 10.29 34.03 53.71 38.79

Proximate analyses (Table 10.4) show significant (and similar) reduction in the moisture

content of all microwave treated coals; small reductions in volatile matter are also

exhibited.
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10.3.4 Operating conditions used in scale-up tests

At a constant energy per unit weight of 220kWhlt, results (Tables 10.1 and 10.2) suggest

that the input power could be operated above 3.3kW with little variation and imply that

low coal bed heights may result in the greatest reductions to RWI. Clearly, during

continuous operation a short residence time is preferable and accordingly the maximum

power input (6.6kW) is most practical. However, conveyor speed is a limiting factor for

this particular design of this machine. The conveyor was currently capable of sustaining

speeds ranging from 0.0011m1s (minimum) to 0.2Smls (maximum). For this reason, the

feed rate of coal was maintained at 30kglhour corresponding to a conveyor belt speed of

0.002m1s at an input power of6.6kW. A maximum of3kg coal was presented to the

microwave field at any given time and the bed height maintained below 50mm (top size

of the coal), corresponding to the width of the belt.

10.4 Coal selection for pilot-scale study

Three power station coals of sub-bituminous rank (P-S, P-6 and P-8) were selected for

pilot-scale tests. P-S coal was used exclusively in preliminary tests relating to cavity

operating conditions (Section 10.3). P-S coal was chosen because of its similar Hardgrove

Grindability Index (58) to those of the other two coals and because it had a similar pyritic

sulphur content to that ofP-8 coal (0.52%). Preliminary studies (Chapters 6-9) indicated

that inherent moisture and high mineral matter contents may promote RWI reduction

following microwave exposure. Proximate analyses of these coals are given in Table

10.5. All coals had a total moisture content greater than 3% and mineral matter contents

within the range 12.9% and 21.9%.
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Table 10.5 Proximate analysis (as-received basis unless stated) of reference coals

Coal Moisture Ash Volatile Fixed Volatile
% % matter Carbon matter obamI

% 0/0 0/.
P-5 3.41 13.48 34.18 48.93 41.13
P-6 4.41 12.91 30.33 52.35 36.68
P-8 3.17 21.87 26.72 48.24 35.65

Approximately 200kg of P-6 coal was prepared for microwave irradiation and a further

quantity was prepared for grinding within a suitably sized pin mill. The coal was pre-

crushed (100% passing 3mm screen aperture size) to conform to mill feeder tolerance

limits.

The P-8 coal (100% passing 50mm screen aperture size) was of power station mill feed

size characteristics prior to comminution (Chapter 3.9) and as such, an appropriately

sized mill was chosen for size reduction. Approximately 500kg ofP-8 coal was fed into a

pilot-scale continuously fed Autogenous Barmac™ Rock-On-Rock VSI crusher operating

at speeds of 3000rpm and 5000rpm. A similar quantity was retained for pilot-scale

microwave treatment.

10.4.1 Laboratory-scale (P-6, P-8) microwave treated coal grindability tests

Prior to pilot-scale tests, samples ofP-6 coal were exposed to microwave radiation to

ascertain the extent of the reduction in RWI. The energy per unit weight was equivalent

to that for pilot-scale operating conditions. Whilst the laboratory and pilot-scale tests

were not comparable (because of differences in cavity design) consideration was given to
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the extent of the treatment upon grindability (degree of reduction in RWI after laboratory

milling).

Two (P-6) coal samples-for laboratory scale (500g) microwave tests-were prepared using

cone, quartering and riming methods. Each coal was subjected to milling within a

laboratory-sized rod mill (Chapter 6.8) and size distributions were measured following 5,

20 and 45 minutes milling. A sample was irradiated at an input power ofO.65kW

(2.45GHz frequency) for 609s (equivalent to 220kWhlt) prior to milling. The RWI of the

microwave treated coal is given in Table 10.6.

Table 10.6 Relative Work Index of -3mm P-6 coal following microwave treatment
(0.6SkW, 220kWhlt, 2.45GHz, SOOg)

Coal Exposure Relative Work Index 0/0, a:round for:
Time (s) (S min) (20 min) (45 min)

Non-treated - 100 100 100
Exposure 0.65kW 609 86.5 78.0 88.7

Following 45 minutes milling, only a small reduction in RWI was achieved as a result of

microwave treatment.

Similarly, samples ofP-8 coal were prepared and subjected to microwave exposure in

two separate cavities; input powers ofO.65kW and 2.6kW were used at exposure times of

609s and 152s respectively (220kWhlt at 2.45Ghz frequency). Following microwave

treatment and 45 minutes milling, results (Table 10.7) show reductions of up to 80%

RWI. Furthermore, both microwave treated coals gave similar product size distributions
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(Figure 10.2) implying that. for this particular coal, the increase in power input and cavity

differences were not issues affecting grindability.

Table 10.7 Relative Work Index ofP-8 coal following microwave treatment
(2.6kW, 220kWhlt, 2.45GHz, 500g)

Coal Exposure Relative Work Index %, e:round for:
Time (s) (5 min) (20 min) -(45 min j

Non-treated - 100 100 100
Exposure 0.65kW 609 8.5 14.3 19.0
Exposure 2.6kW 152 8.3 14.4 19.0

Proximate analyses (Table 10.8) of the exposed (P-8) coals showed substantial reductions

in the moisture content. Volatile matter content for both microwave treated coals

appeared unchanged.

Table 10.8 Proximate analysis (as-received basis unless stated) of P-8 coals exposed
to microwave radiation

Coal Moisture Ash Volatile Fixed Volatile
% % matter Carbon matter dmml

% % 0/0
Non-treated 3.17 21.87 26.72 48.24 35.65

Exposure 0.65kW 0.48 22.57 27.14 49.82 35.26
Exposure 2.6kW 0.40 24.43 26.45 48.72 35.19

Despite the fact that the microwave treated coals were not milled to PF size, it is inferred

(Tables 9.6 and 9.7) that P-8 coal would show the greater benefit from pilot-scale

microwave exposure.
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Figure 10.2 Size distributions of microwave treated (2.6kW, 2.45GHz, 220kWh/t)
and as-received P-8 coal following 45 minutes milling (500g batch mill load)

10.5 Microwave affect on grindability (pilot-scale)

Following microwave treatment, 500kg ofP-8 coal was fed into a pilot-scale

continuously-fed Autogenous Barmac™ Rock-On-Rock VSI crusher operating at speeds

of3000rpm and 5000rpm. Samples for size distribution analyses were taken after an

appropriate time had elapsed (5 minutes) to allow the machine to reach milling

equilibrium. Neither the microwave-treated or as-received samples at either operating

speed gave products of PF size characteristics. However, results using operating speeds

of3000rpm and 5000rpm (Figures 9.3 and 9.4) show some preferential breakage

(particularly at higher rotor speeds, Figure 10.4) between 5 to 0.5mm for the microwave

treated coal, with a reduction in fines production.
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The Barmac mill trials demonstrated that microwave treatment can be applied as a

method of aiding milling on significant quantities of coal. However, the reduction in

grinding resistance of the pilot-scale coal appears to be less than that of laboratory rod

mill tests (Figure 10.4). A possible explanation is that the Barmac mill supplies enough

energy to a particle (by impacting upon the mill wall or other particles) to split the

particle at their weakest points, generating two large particles and a quantity of fines from

the impact region. It is speculated that microwave treatment produces or propagates flaws

within the structure, increasing the number of weakness points within the structure.

Hence, upon impact, particles may produce fewer fines and more similar-sized coarser

particles of intermediate size range.
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Clearly the method of size reduction (impact, attrition, compression etc.) significantly

affect any comparison between as-received and microwave treated coal. Rod milling is

attributed to both impact and attrition milling and results imply that P-8 coal grindability

is considerably improved with prior microwave treatment (Figure 10.2). The Barmac

crusher relies upon particle on particle impact and pilot-scale results show some selective

improvements in P-8 coal grindability. Further tests have been carried out upon

microwave treated and as-received P-8 coal by the University of Nottingham using a

(Dodge) jaw crusher and roll crusher with product discharge limited to 2.36mm and 5mm

respectively. Size distributions were taken for -1kg representative batch samples

following comminution. A finer product was achieved with samples presented to both

crushers with discharge setting of2.36mm irrespective of microwave treatment. Results

(Figure 10.5) show that microwave treatment had little effect upon the grindability ofP-8

coal within a jaw crusher with similar size distributions to as-received coal. Similarly,

results (Figure 10.6) also show little difference between the product size distributions of

microwave treated and as-received samples following comminution in a roll crusher.

However, results from both jaw and roll crushers show slight reduction in fines

production from microwave treated samples. Both machines utilise compression for size

reduction. Clearly the type of mill or crusher used is of significant importance to an

economic feasibility study and further work would be required upon a more suitable PF

generating mill i.e. vertical spindle or lopulco mill.
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10.6 Economic considerations

The Bannac mill is not used for PF production in power stations and the use of a PF

generating mill i.e. vertical spindle mill, would clearly be a more accurate comparison of

the feasibility of microwave treated coal grindability. However, despite the fact that

neither the microwave cavity or the mill were operated entirely under optimum

conditions, the energy required for microwave treatment was 220kWhlt, far greater

(milling energy estimated as 22kWhlt) than that required to produce PF size

characteristics from the milling of as-received coal. Furthermore, the microwave

treatment energy was based upon power input to load (6.6kW) and not from power draw.

The power draw of the pilot-scale cavity corresponding to pilot-scale operating

conditions was measured at 12.4kW using a LEM HEME Ltd LHI050 ACIDC Clamp-

On Power Meter. The total energy consumption in the microwave stage equates to

414kWhlt. Preliminary work (Chapter 6.11) showed that a reduction in RWI of50% for

the microwave treated sample corresponded to half the batch milling time required to that

ofa as-received sample (to PF size characteristic). Assuming that RWI can be applied to

Bond Work Index (Chapter 4) and using laboratory rod mill results (Table 10.7), 5kWhlt

energy would be required at the milling stage. Hence, the total energy requirements for

the microwave treated milled coal product is approximately 420kWhlt.

10.7 Pilot-scale conclusions

Pilot-scale testwork was carried out to give a better understanding of scale-up criteria and

a more accurate energy balance. The study has demonstrated that microwave processing

of coal could be scaled-up. The input power distribution and exposure time for a given
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load are suggested as being the major limiting factors for the current pilot-scale

microwave cavity. Penetration depth is not considered an influencing factor as coal bed

depth was maintained less than 0.005m (penetration depth of coals range from 0.2 to

0.6m, Chapter 8.7). The current laboratory and pilot-scale data indicates that the

microwave energy required to reduce the resistance to grinding of the coal to any

significant degree (i.e. 20% RWI for P-8 coal) far outweighs any energy saving in a

subsequent mechanical milling system.

Improvements in cavity design (with regard to energy transfer efficiency and the

arrangement of high electric field strength) may reduce the energy requirement

considerably. However, it is considered that the use of microwave energy as a means of

weakening the coal prior to milling may not prove an economically viable proposition.
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CHAPTER ELEVEN

MISCELLANIOUS BENEFITS FOR COAL MICROWAVE
TREATMENT

11.1 Introduction-Miscellaneous benefits (or coal microwave treatment

Previous workers (Chapter 5) have reported the application of microwave radiation as a

potential method of coal desulphurisation and rapid coal pyrolysis. These applications

and microwave treated-coal flow results are presented within this study.

11.2 Microwave desulphurisation o( coal

The heating rate of pyrite was measured and calculated from dielectric measurements

(Chapter 8) at approximately I°C/s at 0.65kW input power (2.45GHz). Clearly, during

preliminary coal microwave heating tests (Chapter 6,7,9 and 10) inherent pyrite would

reach temperatures above that required for oxidation (300°C)(Figure 11.1). As shown

(Figure 11.1), gaseous sulphur may be released prior to overall coal combustion (all coals

tested remain below 250°C), after 8 minutes microwave exposure and providing the

heating rate remains constant (l°C/s at O.6SkW input power, Chapter 8), discrete pyrite

particles may reach temperature exceeding 480°C. Pyrite changes phase releasing

sulphurous gas and reducing the total sulphur content of the coal. Previous work

(Zavitanos 1981, Butcher 1995, Bluhm 1980) has demonstrated that this 'alteredpyrite

has an increased magnetic susceptibility (in the order of two magnitudes greater) and

could be reduced by low gradient magnetic separation.
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Figure 11.1 Sulphur release from coal prior to combustion within a microwave field

Initial experiments were carried out to give a better understanding of the nature and

occurrence of pyrite in the coal samples and to determine the occurrence of pyrite phase

change during microwave heating. Further consideration is presented on the effect of

microwave treatment and magnetic separation of the sulphur content of coal.

11.2.1 The nature and mode of occurrence of pyrite in coal

A sample ofP-8 coal was examined by Rio Tinto Technology Development to ascertain

the occurrence and morphology of pyrite inclusions in coal.
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Figure 11.2 Reflected light photomicrograph illustrating pyritic framboids in coal
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Relatively few fragments of macroscopic pyrite particles (greater than Imm) were

observed with the aid of binocular microscope. However, microscopic examination

shows the presence of a small quantity of pyritic inclusions that rarely exceed 15-20J.1m.

With the use of reflected light microscopy and photomicrographs the microscopic pyrite

can be shown to be present in two forms.

One variety of pyrite is present in the form offramboids (spherical bodies) consisting of

micrometre-sided bodies of pyrite that are closely packed together to form the larger

spherical body (Figure 11.2a). The framboids were found to occur as discrete bodies or

small clusters that are widely disseminated throughout the coal. Polyframboid chains

(Figure 11.2b) were also present consisting of a number of individual framboids attached

together. The area between framboid structures appears to have been filled at a later

geological stage by pyrite precipitate. There was a highly variable degree of abundance of

this form of pyrite within the P-8 coal tested with the framboids being most abundant

along certain bedding planes. These types of pyrite develop by in-situ growth and may

have formed at low temperatures by reactions between iron solutions and H2S gas that

could have been generated by decomposing organic debris under reducing conditions.

The other major form of pyrite found within the P-8 coal was associated with the filling

of voids within the coal structure with pyrite precipitate (Figure 11.3). The pyrite

precipitate structures are of more massive and structureless variation deposited between

collapsed wall structures. It can also be seen that the cellular structures in some areas

have completely collapsed and contain cell walls fragments only (Figure 11.3b).
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Figure 11.3 Reflected light photomicrograph illustrating coal in which some
collapsed cells have been partially filled by pyrite
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This form of pyrite also presumably forms under relatively low temperatures and

becomes precipitated within open spaces within the cells of the coal. The pyrite is

assumed to have formed in a similar manner to that of the framboidal pyrite with

variations in depositional conditions accounting for the different morphology

(Reynolds 2000).

The overall abundance of pyrite precipitates is highly variable and is completely absent in

some coal particles. In other cases this form of pyrite was found to occur near framboidal

pyrite and can be relatively abundant locally (Figure 11.4).

The investigation shows that this coal contains a relatively small quantity of pyrite and

the pyrite is typically present in extremely fine grains usually in localised areas and

bedding planes.
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Approximate $Cole

Figure 11.4 False colour, backscattered electron images illustrating the appearance
of pyrite that has been precipitated within former openings in coal
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11.2.2 Pyrite phase change mechanism

Three 50g «2mm) 99% pyrite samples were exposed to microwave radiation at 1.5kW

for 30s, 120s and 120s (covered in fine particulate feldspar) respectively. The samples

were subsequently tested by means of false coloured scanning electron micrograph image

analysis to determine the effect of microwave exposure and any oxidation reactions

(Reynolds 2000) during heating. The bulk of the pyrite samples appear relatively

unaltered indicating that most of the microwave energy is reflected from the pyrite

surface. To compensate for this and to simulate inclusion distribution within the coal, a

sample was covered with microwave transparent feldspar. In consequence, oxidation

appeared to be more extensive than that for the uncovered samples.

Previous studies have concluded that the earlier stages of heating (300°C) result in a

decomposition of mineral pyrite (FeS2) to form pyrrohotite (Fel-l:S) as expressed in

Equation 11.1. Further heating in the presence of oxygen result in total oxidation as

expressed in Equation 11.2.

2FeSz + 20z ~ 2FeS + 2S0z (11.1)

(11.2)
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Figure 11.5 Pyritic oxidation (Pyrite under atmospheric conditions, 30s microwave
exposure at 1.5kW, 2.45GHz mono-mode cavity)
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Figure 11.6 Pyritic oxidation, x-ray dot imaging (Pyrite under atmospheric
conditions, 30s microwave exposure at 1.5kW, 2.45GHz mono-mode cavity)

The uncovered microwave exposed samples shows iron-oxide predominantly as opposed

to an FeS phase suggesting rapid oxidation (Figures 11.5 and 11.6). It would also appear

that the Fe-oxide diffuses into the pyrite particle whilst sulphur diffuses toward the

surface, as illustrated in Figure 11.7.
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Fe-S Phase

Figure 11.7 Pyritic oxidation (Pyrite under atmospheric conditions, 120s microwave
exposure at 1.5kW, 2.45GHz mono-mode cavity)
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Figure 11.8 Pyritic oxidation (Pyrite covered in sand under atmospheric conditions,
120s microwave exposure at 1.5kW, 2.45GHz mono-mode cavity)

214



Chapter 11 Miscellaneous benefits for coal microwave treatment

The degree of alteration appears marginally more extensive with the feldspar covered

sample. Furthermore; Fe-oxide-the dominant product in previous samples-is absent and

the particle surface consists primarily ofFeS (Figure 11.8). The fine-grained feldspar has

had some effect on the ability of the sample to oxidise, possible restricting the availability

of oxygen and may lower the heating rate. This situation is probable with regard to pyrite

inclusions within coal and suggests the possibility of preferential desulphurisation prior

to combustion with microwave radiation.

11.2.3 Sulphur reduction by magnetic separation of microwave treated coal

Three coals (prepared using cone, quartering and riming methods) were used in a

microwave desulphurisation feasibility study; coal sulphur contents are given in Table

11.1. Samples were irradiated (0.65kW, 2.45GHz) for 5 minutes and provided that the

heating rate of pyrite remained relatively constant with increasing temperature, the final

temperature of the pyrite would be in the range between 300°C to 350°C.

Table 11.1 Forms of sulphur, feed samples (dry basis)

Sample Pyritic Sulphate Organic Total
sulphur sulphur sulphur sulphur
(%) (%) (%1 (%)

P-3 0.67 0.12 0.82 1.71
P-6 2.04 0.40 0.97 3.41
P-2 0.52 0.05 0.90 1.47

The coarse sub-samples (SOOg)were tested using a 1.2Tesla magnetic field strength,

Boxmag Rapid dry high intensity Magna roll separator. Fine coal samples (1OOg)of <200

um particles were separated using a Boxmag Rapid wet high intensity magnetic separator

(1.6 Tesla magnetic field strength).

215



Chapter 11 Miscellaneous benefits for coal microwave treatment

Forms of sulphur analyses (coarse samples only) show that the greatest quantities of

pyritic sulphur content were detected in the magnetic product from the tests irrespective

of microwave exposure (Tables 11.2 and 11.3). Analysis of microwave treated magnetic

product shows substantially less pyritic sulphur than the as-received samples suggesting

some gaseous sulphur loss has occurred.

Table 11.2 Forms of sulphur, as-received samples after dry Magna Roll magnetic
separation (dry basis)

Sample Pyritic Sulphate Organic Total
sulphur sulphur sulphur sulphur
(%) (%) (%) (%)

P-3, non-magnetic 0.26 0.08 1.31 1.65
P-3, magnetic 2.27 0.1 0.09 2.46

P-6, non-magnetic 1.86 0.33 0.63 2.82
P-6, magnetic 2.94 0.31 0.78 4.03

P-2, non-magnetic 0.14 0.05 1.18 1.37
P-2, magnetic 1.95 0.09 0.55 2.59

Table 11.3 Forms of sulphur, microwave treated (O.6SkW, 1.4SGHz) samples after
dry Magna Roll magnetic separation (dry basis)

Sample Pyritic Sulphate Organic Total
sulphur sulphur sulphur sulphur
(%) (%} (%) (%)

P-3, non-magnetic 0.25 0.06 1.13 1.44
P-3, magnetic 0.2 0.05 1.44 1.69

P-6, non-magnetic 0.58 0.1 0.8 1.48
P-6, magnetic 1.08 0.12 0.71 1.91

P-2, non-magnetic 0.14 0.04 1.01 1.19
P-2, magnetic 1.28 0.12 0.56 1.96

The results for coarse coal samples separated using a Dry Magna Roll separator (Boxmag

Rapid) are summarized in Table 11.4 (as-received samples) and Table 11.5 (microwave

treated samples).
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Table 11.4 Magnetic separation (Dry Magna Roll Separator) as-received coals
(Boxmag Rapid)

Sample Mass retained Mass retained Ash content
(g) (%) (%)

P-3, original 583.8 - -
P-3, non-magnetic 450.5 87.5 13.1

P-3, magnetic 64.1 12.5 17.3
P-6, original 514.6 - -

P-6, non-magnetic 415.7 71.2 8.3
P-6, magnetic 168.1 28.8 28.4
P-2, original 499.5 - -

P-2, non-magnetic 452.0 90.5 14.0
P-2, magnetic 47.5 9.5 35.9

Table 11.5 Magnetic separation (Dry Magna Roll separator) microwave treated
(O.6SkW,2.4SGHz, l08kWhlt) (Boxmag Rapid)

Sample Mass retained Mass retained Ash content
(2) (%) (%)

P-3, original 486.7 - -
P-3, non-magnetic 385.6 81.6 17.4

P-3, magnetic 87.0 18.4 17.2
P-6, original 472.6 - -

P-6, non-magnetic 369.4 75.9 16.2
P-6. magnetic 117.3 24.1 25.1
P-2, original 490.4 - -

P-2, non-magnetic 445.2 90.8 14.2
P-2, magnetic 45.2 9.2 33.6

The mass retained for as-received and microwave treated coals for both magnetic and

non-magnetic concentrates are given in Tables 11.4 and 11.5. There was little change in

mass percentage recovery following microwave treatment and due to the particle size and

the nature of pyrite phase change it is difficult to access the extent of microwave

treatment on desulphurisation. The mineral ash components (ankerite, apatite and

siderite) are paramagnetic and may also be present in the magnetic concentrate. This may
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account for the increase in ash mineral content of the magnetic concentrate. However,

results (Tables 11.2 too 11.5) show that magnetic separation reduces the pyritic content

of coal irrespective of microwave treatment.

Subsequent tests were carried out with samples of fine size characteristics (-212mm). For

coals and products separated using a (1.6 Tesla magnetic field strength) Boxmag Rapid

wet high intensity separation technique, all the products were subsequently filtered and

dried. The total sulphur content of the samples was measured using a 'LECO SC-132

Sulphur Determination Unit'.

Table 11.6 High Intensity Wet Magnetic separation (Expanded Metal Matrix)
as-received coals (Boxmag Rapid)

Sample Mass Mass Ash content Total
retained retained (0/0) sulphur

CId (%) (%)
P-3. original 88.6 - - 1.94

P-3, non-magnetic 82.0 90.3 10.8 1.79
P-3, magnetic 8.6 9.7 39.6 2.65
P-6, original 97.6 - - 3.88

P-6, non-magnetic 76.7 78.6 13.8 3.12
P-6, magnetic 20.9 21.4 20.2 4.66
P-2. original 99.5 - - 1.62

P-2, non-magnetic 92.2 92.7 7.7 2.79
P-2. magnetic 7.3 7.3 25.2 1.43

Results (Table 11.6) for the as-received coals following magnetic separation indicate that

some pyrite can be removed by wet separation. Furthermore. there was some evidence of

increased mineral matter content in the magnetic concentrates suggesting a possible

method of de-mineralisation.
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Table 11.7 High Intensity Wet Magnetic separation (Expanded Metal Matrix)
microwave treated (O.65kW,2.45GHz, l08kWh/t) (Boxmag Rapid)

Sample Mass Mass Ash content Total sulphur
retained retained (%) (%)

(ad (%)
P-3. original 68.7 - - 1.86

P-3, non-magnetic 62.1 90.4 13.0 1.56
P-3, magnetic 6.6 9.6 53.4 1.88
P-6. original 91.0 - - 1.81

P-6. non-magnetic 68.4 75.2 6.6 1.55
P-6, magnetic 22.6 24.8 13.5 2.06
P-2, original 107.6 - - 1.45

P-2, non-magnetic 86.5 80.4 8.71 1.27
P-2, magnetic 21.1 19.6 25.64 2.00

Following microwave exposure (0.65kW, 2.45GHz for 5 minutes) and subsequent

magnetic separation, results (Table 11.7) confirmed increased mineral matter contents in

magnetic concentrates in comparison to those values for as-received coals. This may be

due to paramagnetic and ferromagnetic inclusions. The total sulphur content decreases in

non-magnetic concentrates as a result of microwave treatment for the coals tested and

there is evidence that some sulphur is removed as a gas prior to magnetic separation

(Table 11.6 and 11.7). Clearly, not all pyrite would change phase to FeS, some pyrite

may oxidise further (iron oxides) and some may not oxidse and report to the magnetic

concentrate. Furthermore, initial tests show that not all the pyrite changes phase, (Figure

11.8) particles may report to the magnetic concentrate with enhanced magnetic properties

from partial surface (FeS) phase change. Results indicate that each coal may respond

differently to magnetic separation and, in some cases, microwave treatment may improve

pyrite separation. Further work is required to fully access the limitations and feasibility of

this method of desulphurisation.
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11.3 Rapid coal pyrolysis

Figure 11.9 Coal pyrolysis after microwave heating

During this study no attempt was made to quantify or investigate microwave coal

pyrolysis applications. However, in the microwave heating of some coals there is

evidence of coal pyrolysis (Figure 11.9). This is usually associated with pyrite inclusions

within the proximity of the affected coal and is possibly the result of locally high

temperatures during heating. During the current study, bulk coal temperatures did not

reach those required for coal pyrolysis (500-700°C) and the technique may prove to be

uneconomical due to the poor dielectric heating rate of coal (Chapter 8). However,

further work is required to investigate whether doping the coal (within an inert

atmosphere) with a material of high dielectric heating rate may initiate coal pyrolysis at

lower energy requirements.
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11.4 Microwave treated coal flowability

The effect of microwave treatment on coal flowability was studied on P-l and P-6 coals.

Representative samples of both coals were exposed to microwave radiation (173kWhlt)

and allowed to cool to ambient temperature before containment. As-received and

microwave-treated coal flowability was evaluated using the Johanson Indicizer test at

eRE Group. In particular, the 20° Arching Index for as-received and microwave treated

samples were determined at increasing coal moisture contents (Figure 11.10).
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Figure 11.10 Johanson Indicizer tests for as-received and microwave treated P-l
and P-6 coals

Analysis suggests that microwave pretreatment may alter the flowability of coal. The

maximum 20° Arcing indices for microwave-treated coal samples were achieved at

moisture levels of 12% and 13.5% for P-6 and P-l coals respectively. Maximum 20°

Arching indices for the as-received samples were not evident at moisture contents below

15%. The Johanson test shows similar results for microwave and as-received P-l coal
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initially with as-received samples exhibiting a higher 200 Arching Index at increased

moisture levels due to the microwaved sample reaching a maximum. In contrast,

microwave treated P-6 coal exhibited an increasing 20° Arching Index at lower moisture

levels compared to as-received P-6 coal. Results (Figure 11.10) for P-6 coal also shows

that P-6 microwaved coal exhibited a lower 20° Arching Index at moisture levels greater

than 14%. A possible explanation may be associated to particle surface area which

increases following microwave exposure (Chapter 7). The generation of surface cracks on

coal by microwave radiation may affect particle flowability as the particles may be

capable of retaining greater quantities of moisture; forming 'bridges' to other particles.

Hence, the microwave treated coal would become 'sticky' at lower moisture levels than

as-received coal. The effect of microwave treatment on coal flowability would therefore

depend on the generation of cracks produced by the heat treatment. It would be expected

that the greater the quantity of surface cracks produced by pretreatment the more

significant the deviation in flowability characteristics from the as-received coal.

11.5 Conclusion- Microwave beneficiation to improve handleability

Experimental work has shown that the use of microwave treatment may have some use in

partial desulphurisation of coals with high pyrite contents. In particular, the potential

mechanism for partial oxidation has been discussed and shows that not all the pyrite

inclusion need be oxidised for magnetic separation. Mineralogical analysis has indicated

that not all coal particles contain pyritic inclusions and shows the average grain size of

pyrite inclusion were between 20-40J.lm for the tested coal. Further work would be

needed with selecting suitable coals, which may benefit from microwave pyritic
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reduction and the optimisation of a microwave enhanced magnetic separation process. In

particular the feed size, pyrite particle size, microwave operating conditions and magnetic

separation conditions require further investigation to gain a better understanding of this

method of desulphurisation.

Fundamental studies have shown that there is a significant change in the flow

characteristics of coals following microwave exposure. The possibility may exist for

improved coal flow and further work is necessary to access the viability of such a

process.

Coal pyrolysis has been observed during microwave tests, previous work has suggested

the use of microwave energy as a method of rapid coal pyrolysis (Monsef-Mirzai 1995)

and may present a method of coal removal from shale tailings.
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CHAPTER TWELVE

CONCLUSION AND RECOMMENDATIONS FOR FURTHER
WORK

12.1 Conclusions and recommendations for further work

Experimental results (Chapter 6 and 7) have shown that microwave irradiation can

significantly affect the grindability of coals. Results have shown a 40-50% reduction in

Relative Work Index, particularly for low rank coals (Chapter 7). Fundamental studies

indicate that each individual coal has an optimum microwave energy requirement for

maximum improvement in coal grindability. Analysis (Chapter 6 and 7) suggest that coal

composition, in particular, mineral matter and inherent moisture contribute to the

mechanisms responsible for producing the weaknesses within the coal structure during

microwave exposure. The differential heating rates and associated expansion rate of the

constituent mineral matter in coal is believed to be the principle mechanism for

microwave-improved grindability (Chapter 9). Results (Chapter 6) have also shown that

microwave grindability also depends upon initial particle size and feed size distribution;

but factors may effect mill performance. Microwave input power, sample load and

exposure time may be varied with little change in the reduction in RWI at constant

energy per unit mass (Chapter 10).

Dielectric measurement (Chapter 8) has shown that electric permittivity decreases with

coal rank (dry, mineral free basis). However, the moisture and mineral matter content

may increase the bulk electric permittivity of the coal. Permittivity is relatively high for
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low rank coals as a result of the increased inherent moisture levels for such coals. The

relative real permittivity of coal is greater than that of many of the mineral matter forms

associated with coals. However, one exception is pyrite which if present in sufficient

quantity, may increase the bulk permittivity of coal. Dielectric properties and

mineralogical composition could be used to indicate how a coal would respond to

microwave treatment i.e. in terms of heating rate and changes in grindability.

Pilot-scale tests demonstrated that the microwave treatment process could be scaled up

providing a better understanding of the process. Results (Chapter 10) showed some

improvement between the 5 to O.5mm size range and generated less fines during Barmac

Rock on Rock tests. Mill performance varied depending upon the predominant breakage

mode in the different mills and the extent of microwave treatment of the coals. Any

further tests should take into consideration the mill design and operating features. An

economic evaluation based upon the pilot-scale data and rod mill grindability tests

indicated that a gross energy input of 420kWhlt was required for the microwave

treatment. This current economic balance is not favourable in comparison to mill energy

requirements of 20-40kWhlt for PF generating mills in industry (Spiers 1950). However,

the microwave treatment process has not been optimised and further work is necessary in

this field.

The current tests were carried out using multi-mode microwave cavity units which

exhibit low electrical to microwave power conversion efficiencies. In particular, the pilot-

scale microwave unit required 12.4kW power draw to supply 6.6kW to the cavity. Higher
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efficiencies (80-90%) may be possible using mono-mode cavity designs and tests are

needed to determine if grindability improvements can be duplicated or enhanced within

such cavities. The factors which influence the microwave power absorption include, (i)

the choice of a coal with a high loss factor and (ii) increased electric field strength

distribution possibly at lower applied frequencies. For current tests. the applied frequency

was 2.4SGHz. dielectric measurements (Chapter 8) show little variation of the dielectric

properties of coal with increased frequency. However. penetration depth decreases with

increasing frequency and appropriate sample presentation may become necessary. Cavity

design has a significant influence on power absorption and a specification meeting the

requirements of coal treatment may result in an improvement in the efficiency of coal

microwave processing and reduce capital and operating costs.

The current study has also demonstrated the potential use of microwave energy as a

method of coal desulphurisation. Further work is required to investigate the feasibility

and optimisation of this technique for the desulphurisation and demineralisation of coal.
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NOMENCLATURE

A
<Xv

C

c,
d
D
Dp
Ds
D
DJ
DJ
Sf
e
E
Einsitu
Eext

Energy

Eo•e
e
e
Sr
Srn

f
/0
F
Fn
Ft
G
'(
H
HOI
j
J/( function)
I
A.
mx
M
Mn
Mt

Coefficient of absorption (F1m2)
Coefficient of volumetric expansion (K" 1)
Speed of light (mls) 3x108 mls
Specific heat capacity (J/kg)
Diameter of the rod (m)
Distance (m)
Penetration depth of wave (m)
Skin depth (m)
Diameter of the mill (m)
Initial particle diameter (m)
Final particle diameter (m)
Change in centre frequency when sample is inserted (Hz)
Napierian logarithm base (dimensionless) 2.7182818285 (1Odp)
Electric field strength (vim)
Electric field strength within the material (average) (vim)
Electric field strength of microwave cavity (vim)
Energy input (kWhlt)
Permittivity of free space (F/m)
Complex permittivity (F1m)
Real permittivity (F/m)
Imaginary permittivity (F/m)
Relative dielectric constant or relative real permittivity (dimensionless)
Relative loss factor or relative imaginary permittivity (dimensionless)
Frequency (Hz)
Resonant centre frequency (air filled) (Hz)
80% passing sizes of the feed (J.UIl)
80% passing size of the feed coal, non-treated coal (J.UIl)
80% passing size of the feed coal, microwave treated coal (J.U1l)
Young's modulus (N/m2)

Surface energy per unit surface area (J/m2)
Magnetic field strength (NIA2)
Hardgrove Grindability Index (dimensionless)
R (imaginary complex number) (dimensionless)
First order Bessel function (Perry 1984) (dimensionless)
length of crack (m)
Wavelength (m) A.=c/f
Mass fraction of component x
Mass of the body heating (kg)
80% passing size of the milled coal, non-treated coal (J.1m)
80% passing size of the milled coal, microwave treated coal (J.1m)
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Nomenclature

J.1o Permeability of a vacuum (NIA2)
J.l" Permeability (N/A2)
N Number of moles in fluid (kmol)
Qc Dielectric conductivity (Sin)
P 80% passing sizes of the product (urn)
P Power absorbed (W/m3)
Po Power absorbed (W)
Pg Pressure of gas (N/m2)
Q Energy absorbed or produced (W)
91 Original temperature (OC)
92 Final temperature eC)
() Change in temperature (DC)
R Universal gas constant (8.314kJlkmol K)
RWl Relative Work Index (%)
r Radius of particle (m)
rcavity Radius of the resonant cavity (m)
re Coefficient of reflection (dimensionless)
Rr Reduction ration (FIP)
p Density of material (kg/m')
Px Density of component x (kg/m')
t Change in time (s)
Tg Temperature of gas (K)
t' Constant approximated as 0.25 (dimensionless)
V Voltage (v)
Vg Volume of gas (m')
VI Original volume (m')
V2 Final volume (rrr')
V Volume of material (nr')
Vc Critical speed (rev/min)
Vcavity Volume of cavity (m')
V"ample Volume of sample (m2)

W Work input per tonne (kWhlt)
Wi Bond Work Index (kWhlt)
(J) Angular frequency (s -1)
(Xl,m) Function of the air filled cavity (dimensionless)
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Appendix A

Proximate analysis (BS 1016 part 3)

Proximate analysis evaluates a coal in terms of moisture, ash minerals, volatile matter

and fixed carbon content of the coal. The coal sample used for proximate analysis is

prepared in accord with BS 1017 (particle size less than 212J.1m).

There are three methods described in BS 1016 for determination of the moisture content

of a coal: Direct gravitational method, drying in nitrogen and drying in a vacuum, the

drying in a vacuum method is described here as the method used within this study.

A sample (lg±O.OIg measured to 4 dpi) is heated between IOSoCand 110°C within a

vacuum. The temperature is maintained for over 40 minutes before the mass of the

sample and container are evaluated (note the sample weight is measured while the

temperature is maintained at IOSoC). The moisture content is derived from the mass

balance given in Equation Al :

(AI)

Mad Percentage of moisture in the analysis sample.
MJ Weight of the sample vessel.
M] Weight of the sample plus the sample vessel before heating.
M3 Weight of the sample plus the sample vessel after heating.

The volatile matter is defined as the percentage of gaseous product; not inclusive of

moisture, during heating under air free-controlled conditions. The volatile matter
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component takes into consideration the weakly bonded molecules (containing carbon,

hydrogen and oxygen) that readily devolatilise during heating.

A pre-weighed sample (-lg±O.Olg) is enclosed within a crucible and heated in a muffle

furnace at a temperature of 900°C±5°C for exactly 7 minutes. After the heating period the

sample is allowed to cool for no longer than S minutes at which time it is to be introduced

into a desiccator until cool enough to reweigh. The percentage of volatile matter is

calculated using the mass balance shown (Equation A2):

(A2)

Mvol Percentage of volatile matter in the analysis sample.

The ash component is derived by introducing the a sample (-I g±0. 01g) into a muffle

furnace at a temperature of 8ISoC± 10°C for 90-120 minutes. The sample is removed and

allowed to cool for no more than S minutes before being moved to a desiccator until cool

enough to weigh. The ash content is determined using Equation A3:

(A3)

MAsh Percentage of gangue ash minerals in the analysis sample.

The fixed carbon content component represents the relative percentage of the strongly

bonded carbon based molecules within the coal. The fixed carbon content is calculated as
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the remaining part of the coal minus the moisture, ash mineral and volatile matter

components:

M FC = 100-(Mad +MvoI +MAsh)

MFC Percentage of fixed carbon content in the analysis sample.

(A.4)

Calorific value (BS 1016 part 5)

The calorific value is defined as the number of heat units measured when a unit quantity

of fuel is burned in an oxygen rich environment within a bomb under standard conditions.

The preferred method of experimental measurement uses an adiabatic bomb calorimeter

due to it's simplicity and accuracy, the reader is advised to consult BS 10 16 part 5 for

further details on other methods of determination. The gross calorific value is calculated

from relationships between the temperature rise and the mean effective heat capacity of

the system immediately before and after total combustion. The crucible, cotton

connecting wire and coal sample (-Ig±O.Olg) are weighed (4dpi) and introduced into the

bomb (cotton wire is connected to the firing wire of measured length). The bomb is

assembled and purged with oxygen to a pressure of30bar, the initial temperature of the

water within the bomb is measured allowing sufficient time for the stirrer and pump to

stabilise the adiabatic conditions within the calorimeter. It must be noted that the initial

temperature should be approximately 25°C and recorded to O.OOIK.The bomb is fired

and final temperature recorded as the maximum increase or after a pre-determined period

of time has elapsed. The calorific value is calculated using Equation A.5:
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(A5)

Qgr.v Gross calorific value at constant volume (kJ/kg)
Cp5 Mean effective heat capacity of the calorimeter (J/K)
~8 Change in temperature (K)
m Mass of coal (g)
et Correction for the heat of combustion of the cotton (J)
e2 Correction for the heat of combustion of the firing wire (J)
es Correction for the heat offonnation of sulphuric acid (J)
e4 Correction for the heat of formation of nitric acid (J)

Ultimate analysis (BS 1016 part 6)

The ultimate analysis or some times referred to as elemental analysis is an analysis of the

coal in terms of the carbon, hydrogen, nitrogen and sulphur content (usually carbon

dioxide content is reported as well as the elemental constituents). The analysis technique

takes into consideration both the organic coal material as well as the inorganic material

deposited with the coal. The nitrogen is assumed to be part of the organic coal substance,

the total sulphur includes both organic sulphur as well as inorganic sulphates and

minerals. The carbon content includes the presence of mineral carbonates as well as in

the coal, the hydrogen content includes the hydrogen present in hydrocarbon chains and

rings as well as within the moisture and mineral components.

A brief description of the experimental process is described here and the reader is advised

to consult as 10 16 part 6 for further details.

The carbon and hydrogen contents are measured simultaneously. The coal sample (0.2-

0.3g) is combusted at 800°C in an oxygen atmosphere for over 2 hours and the gas is
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passed over copper oxide. It is assumed that this converts all of the carbon to carbon

dioxide and hydrogen to water vapour. The moisture content is assessed simultaneously

in accordance to BS 1016 part 3. Oxides of sulphur and chlorine are retained in the

combustion tube by lead chromate and silver gauze. The water vapour is adsorbed by

manganese dioxide, the carbon dioxide by soda asbestos, their relative content is

evaluated by a mass balance over the procedure.

The nitrogen content is determined by heating O.lg of sample with sulphuric acid in the

presence of a catalyst to destroy the organic material and convert the nitrogen to

ammonium sulphate. The ammonia is removed by the addition of sodium hydroxide and

steam distillation with boric acid. The ammonia solution is directly titrated with O.OIN

sulphuric acid.

The total sulphur is determined by a high temperature method. The coal sample (O.5g) is

combusted at 1350°C in a high current of oxygen, this converts all the sulphur to its

oxides which is adsorbed in hydrogen peroxide to form sulphuric acid. The total acidity is

determined by titration and content evaluated.

The carbon dioxide content is determined by a process of desolving a sample of coal in

hydrochloric acid and adsorbing the carbon dioxide in benzylamine solution. The salt

formed is titrated with potassium methoxide in toluene using thymol blue as an indicator.
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Forms of sulphur analysis (BS 1016 part 11)

The total sulphur content of a coal is determined as described by BS 1016 part 6. The

reader is advised that the following is a brief summary of the experimental procedures

and should consult BS 10 16 part 11 for further details.

The sulphate sulphur is determined by desolving -Sg±O.Olg of coal (prepared in

accordance to BS 10 17) in 60ml hydrochloric acid just below boiling. The filtered extract

is made alkaline to precipitate the non-pyritic iron. Once filtered the sulphate sulphur is

precipitated with barium sulphate and determined gravimetrically.

Similarly the pyritic sulphur content is evaluated by desolving -1 g of the coal sample in

l Sml hydrochloric acid just below boiling. After the non-pyritic iron is removed the

filtered extract is titrated against ammonia to determine the pyritic sulphur content.

The organic sulphur is mathematically determined from the total sulphur minus the

sulphate and pyritic sulphur contents.
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Ash analysis (BS 1016 part 15)

Coal ash analysis (or ash 11 analysis) is a technique used to evaluate the residue

remaining after high temperature combustion under an ambient atmosphere. Coal ash

consists mainly of oxides and sulphates the products of the inorganic material oxidation

(note that this is not the same as mineral matter i.e. pyrite, quartz, calcite, clays etc, but

the high temperature products of these species). The reader is referred to BS 10 16 part 15

for experimental methods relating to the determination of coal ash components.

Normative analysis

The Normative analysis is an approximate evaluation of the mineral matter quantity and

composition of a coal. The evaluation derives the mineral matter from Forms of sulphur

and Ash analyses and assumed molecular oxidation formula from the most common

associated mineral matter. Pyrite and Gypsum quantities are approximated from a

molecular balance based upon the Forms of sulphur analysis whilst the remaining

selected minerals are derived from a molecular balance based upon the Ash analysis.

Mineral Formula Oxidation product formula
Pyrite FeS2 S02, Fe203
Gypsum CaS04.2H20 CaO S02 H2O
Ankerite Ca(Fe, Mg, Mn)(C03)2 Mn304, Fe203, MgO, CaO, CO2

Apatite Cas(P04)3(F,CL,OH) CaO, P20s H20, HCI HF
Mica Muscovite-KAh( AIShOlO)(F ,0H)2 Si02, Ah03, K20, HF, H2O,

Biotite-K(F e,Mg)3AIShOlO(F ,OH)2 Li02, CaO, NaOH, BaO, MgO
Lepidolite-Kli-Alt AI,Si)301o(F ,0Hh

Kaolin Kaolinite-AhShOs(OH)4 Ah03 Si02, H2O
_Quartz Si02 Si02
Rutile Ti02 Ti02
Siderite FeC03 Fe203, CO2
Dolomite CaMg(C03)2 CaD. MgO, CO2
Calcite CaC03 CaOz CO~
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The molecular phase change balance (Ash analysis) is assumed as the most likely original

state prior to total combustion.

The number of moles of each mineral have been derived from the following assumptions:

Pyrite = Number of moles of pyritic sulphur/2
Gypsum Number of moles of sulphate sulphur
Ankerite = Number of moles ofMn304 x 28.6
Apatite = Number of moles ofPzOs x 2/3
Mica = Number of moles ofK2O
Kaolin = Number of moles of Ah03 - number of moles of mica
Quartz Number of moles of Si02 - number of moles of

(mica x 6) - number of moles of (kaolin x 2)
Rutile = Number of moles of Ti02
Siderite = Number of moles of(2 x Fe203) - number of moles of

(pyrite) - number of moles of (ankerite)
Dolomite = Number of moles of remaining from MgO after ankerite
Calcite = Number of moles of remaining after apatite, gypsum, dolomite and

ankerite
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APPENDIXB

ANALYSIS OF REFERENCE COAL

Proximate analysis (as-received basis unless stated in accord with BSI016) of B-3
group 1 coals (University of Birmingham)

Proximate analysis (as-received basis unless stated in accord with BSI016) of B-3
group 1 coals (CRE Group)

Ultimate analysis (dry, mineral matter free basis) of group 1coals (CRE Group) B-3

Ash analysis (percentage based on ash content) of group 1coals (CRE Group) B-4

Forms of sulphur (dry basis) of group 1coals (CRE Group) B-4

Normative analysis (percentage based on mineral matter content) of B-4
group 1 coals

Proximate analysis (as-received basis unless stated in accord with BSI016) of B-5
group 2 coals (University of Birmingham)

Proximate analysis (as-received basis unless stated in accord with BSI016) of B-5
group 2 coals (CRE Group)

Ultimate analysis (dry, mineral matter free basis) of group 2 coals (CRE Group) B-5

Ash analysis (percentage based on ash content) of group 2 coals (CRE Group) B-6

Forms of sulphur (dry basis) of group 2 coals (CRE Group) B-6

Normative analysis (percentage based on mineral matter content) of B-6
group 2 coals

Calorific value (dry, mineral free basis) and Hardgrove Grindability Index B-7
of group 1 coals

Calorific value (dry, mineral free basis) and Hardgrove Grindability Index B-7
of group 2 coals

As-received bulk size distribution of group 1 coal (wieght %) B-8
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Jaw Crusher product size distribution of group 1 coal (wieght %)

As-received bulk size distribution of group 2 coal (wieght %)

Bond test on P-2 coal, Jaw crusher (-2.8mm) product size distribution

Bond test on P-2 coal, equilibrium condition product undersize
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Proximate analysis (as-received basis unless stated in accord with BSI016) of group
1 coals (University of Birmingham)

Coal Moisture Ash Volatile matter Fixed Volatile
sample % % % Carbon matter dmmf

% %
F-I 1.6 (0.08) 1.8 (0.03) 4.6 (0.30) 92.0 4.8
F-2 0.8 (0.06) 4.0 (0.01) 12.7 (0.74) 82.5 13.4
F-3 1.0 (0.02) 3.8 (0.04) 28.5 (0.65) 67.7 29.8
F-4 5.S (0.03) 5.2 (0.07) 33.0 (1.65) 56.0 37.6
F-5 6.1(0.06) 3.4 (0.05) 34.8 (0.24) 55.7 3S.7
F-6 6.1 (0.09) 4.4 (0.13) 35.7 (0.40) 53.8 40.4
F-7 4.7 (0.04) 5.0 (0.02) 37.1 (0.54) 53.2 41.6
F-S 13.3 (0.02) 7.4 (0.07) 34.9 (0.07) 44.4 45.1..Mean value given from 5 tnals, Standard deviations given In brackets

Proximate analysis (as-received basis unless stated in accord with BSI016) of group
1 coals (CRE Group)

Coal Moisture Ash Volatile matter Fixed Volatile
sample % % % Carbon matter dmmf

% %
F-I 1.6 1.8 4.6 92.0 4.S
F-2 0.8 4.0 12.7 82.5 13.4
F-3 1.0 2.8 28.5 67.7 29.8
F-4 5.6 5.2 33.0 56.0 37.6
F-5 6.1 3.4 34.8 55.7 38.7
F-6 6.1 4.4 35.7 53.8 40.4
F-7 4.7 5.0 37.1 53.2 41.6
F-8 13.3 7.4 34.9 44.4 45.1

Ultimate analysis (dry, mineral matter free basis) o( group 1 coals (CRE Group)

Coal sample Sulphur Carbon Hydrogen Nitrogen Oxygen
% % % % %

F-I 0.57 90.10 2.43 1.10 5.80
F-2 0.66 88.40 3.66 1.50 5.78
F-3 1.06 83.50 4.60 1.30 9.54
F-4 2.12 73.80 4.56 1.80 17.72
F-5 1.70 74.80 4.43 1.70 17.37
F-6 1.43 71.70 4.30 1.30 21.27
F-7 1.39 76.00 4.96 1.90 15.75
F-S 1.98 63.50 3.95 1.50 29.07
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Ash analysis (percentage based on ash content) of group 1 coals (CRE Group)

Coal F-l F-2 F-J F-4 F-5 F-6 F-7 F-8
Na20% 3.7 2.9 0.6 2.8 6.1 1.5 4.2 0.3
K2O% 0.3 0.4 0.4 1.3 1.4 0.5 1.5 2.4
CaO% 3.6 3.9 2.7 2.3 5.0 12.0 12.5 8.7
MgO% 2.0 1.0 0.4 0.8 0.7 2.5 0.6 2.8
Fe203% 15.1 3.7 3.5 25.l 16.5 11.2 23.2 27.5
Ah03% 31.0 39.5 38.0 26.5 29.1 23.9 17.6 17.1
Si02% 39.1 39.2 36.3 39.3 39.3 36.8 31.4 31.5
S02% 3.4 2.6 0.8 2.1 3.4 12.9 2.6 7.1
Ti02% 0.4 0.6 1.2 0.9 1.3 1.1 0.6 0.6
Mn204% 0.2 0.1 0.1 O.l 0.1 0.4 1.1 0.4
P2OS% 0.2 5.2 10.2 0.2 0.3 0.3 6.6 0.8

Forms of sulphur (dry basis) of group 1 coals (CRE Group)

Coal F-l F-2 F-J F-4 F-5 F-6 F-7 F-8
S04 0.02 0.02 0 <0.05 <O.l <0.1 <0.1 0.08

Pyritic 0.02 0.03 0.03 1.1 0.4 0.28 0.73 1.34
Organic 0.59 0.67 0.84 1.11 1.1 1.12 0.84 0.82
Total 0.63 0.72 0.87 2.21 1.5 1.4 1.57 2.24

Normative analysis (percentage based on mineral matter content) of group 1 coals

Coal F-l F-2 F-3 F-4 F-5 F-6 F-7 F-8
Pyrite 1.7 1.1 1.5 1.5 16.6 9.5 14.9 27.0
Gypsum 1.6 0.7 0.0 0.0 4.0 3.2 2.0 1.5
Ankerite 10.0 2.4 4.8 4.8 4.8 20.5 38.6 20.5
Dolomite 3.5 2.6 0.0 0.0 0.7 1.8 0.0 2.9
Apatite 0.4 9.3 18.1 18.1 0.5 0.6 8.5 1.5
Calcite 0.0 0.0 0.0 0.0 1.6 5.7 0.0 0.5
Mica 2.0 2.6 2.6 2.6 9.0 3.4 7.0 16.3
Kaolin 58.8 73.3 69.8 69.8 46.7 44.8 17.6 18.7
Quartz 2.0 0.0 0.0 0.0 3.8 6.9 5.8 9.1
Rutile OJ 0.5 0.9 0.9 1.0 0.9 0.3 0.5
Siderite 13.l 2.5 1.3 1.3 0.9 0.0 0.0 1.0
Na2S04 6.6 5.0 1.0 1.0 10.5 2.7 5J 0.5
Mineral 2.0 4.6 3.2 6.6 4.3 5.6 6.1 9.6
content %
Mmeral matter content given as a percentage of the coal content
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Proximate analysis (as-received basis unless stated in accord with BSI016) of group
2 coals (University of Birmingham)

Coal Moisture Ash Volatile matter Fixed Volatile
sample % % % Carbon matter dmmf

% %
P-l 3.73 (0.15) 18.20 (0.02) 29.69 (0.23) 48.39 38.03
P-2 4.42 (0.09) 13.45 (0.06) 32.25 (0.20) 49.88 39.27
P-3 4.31 (0.09) 19.20 (0.01) 30.29 (0.23) 46.20 39.60
P-4 2.26 (0.17) 7.70 (0.54) 34.45 (0.23) 55.60 38.26
P-5 4.09 (0.06) 13.54 (0.01) 34.08 (0.12) 48.29 41.37
P-6 4.41 (0.17) 12.91 (0.06) 30.33 (0.32) 52.35 36.68
P-7 3.56 (0.08) 6.10 (0.02) 34.02 (0.13) 56.32 37.66
P-8 3.17 (0.05) 21.87 (1.31) 26.72 (0.36) 48.24 35.65

..
Mean value given from 5 tnals, Standard deviations given In brackets

Proximate analysis (as-received basis unless stated in accord with BSI016) of group
2 coals (CRE Group)

Coal Moisture Ash Volatile matter Fixed Volatile
sample % % % Carbon matter dmmf

% %
P-l 3.7 18.7 29.8 47.8 38.4
P-2 5.2 13.5 32.5 48.8 39.9
P-3 4.7 16.3 30.7 48.3 38.8
P-4 1.9 19.0 29.7 49.4 37.5
P-5 2.3 15.7 30.2 51.8 36.8
P-6 5.0 14.8 32.7 47.6 40.7
P-7 - - - - -
P-8 3.8 20.4 28.3 47.5 38.7

Ultimate analysis (dry, mineral matter free basis) of group 2 coals (CRE Group)

Coal sample Sulphur Carbon Hydrogen Nitrogen Oxygen
% % % % %

P-l 1.95 65.70 4.13 1.44 26.19
P-2 1.68 69.10 4.34 0.86 23.17
P-3 1.83 68.30 4.16 1.14 24.02
P-4 2.82 67.70 4.26 1.53 23.11
P-5 2.18 67.70 4.65 1.30 24.02
P-6 1.55 67.70 3.93 1.19 24.34
P-7 - - - - -
P-8 1.33 84.50 4.90 1.80 6.5
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Ash analysis (percentage based on ash content) of group 2 coals (CRE Group)

Coal P-l P-2 P-3 P-4 P-5 P-6 P-7 P-8
Na20% 1.1 2.2 0.8 0.7 0.4 0.4 - 1.6
K2O% 3.6 2.9 2.6 3.2 2.0 3.0 - 4.0
CaO% 2.1 2.9 2.6 1.0 7.4 1.8 - 2.5
MgO% 1.5 1.5 1.6 1.2 2.0 0.9 - 1.6
Fe203% 10.8 10.4 12.9 16.9 9.3 12.1 - 7.2
Ah03% 26.7 24.2 24.1 23.5 21.0 26.1 - 24.9
Si02% 51.4 52.7 52.9 51.9 50.9 54.0 - 55.4
S02% 1.3 1.9 1.5 0.2 0.7 1.3 - 2.1
Ti02% 0.8 0.8 0.1 0.1 0.2 0.1 - 0.9
Mn204 % 0.1 0.1 0.1 0.1 0.2 0.1 - 0.1
P20S% 0.3 0.2 0.5 0.4 0.7 0.3 - 0.2

Forms of sulphur (dry basis) of group 2 coals (CRE Group)

Coal P-l P-2 P-3 P-4 P-5 P-6 P-7 P-8
S04 0.18 0.05 0.12 0.24 0.06 0.40 0.29 0.10

Pyritic 0.67 0.52 0.67 1.14 0.52 2.04 0.66 0.56
Organic 1.06 0.90 0.91 1.24 1.23 0.97 1.25 0.76
Total 1.91 1.47 1.70 2.62 1.81 3.41 2.20 1.42

Normative analysis (percentage based on mineral matter content) of group 2 coals

Coal P-l P-2 P-3 P-4 P-5 P-6 P-7 P-8
Pyrite 5.6 6.1 6.4 9.1 5.7 18.7 - 3.9

Gypsum 1.4 0.6 1.1 1.8 0.11 3.5 - 5.1
Ankerite 5.4 5.4 5.3 5.2 11.1 4.9 - 4.9
Dolomite 3.8 3.9 4.2 2.6 3.9 1.4 - 3.8
Apatite 0.6 0.4 1.0 0.8 1.4 0.5 - 0.4
Calcite 0.0 0.0 0.0 0.0 3.2 0.0 - 0.0
Mica 25.6 20.9 18.4 22.1 14.7 19.6 - 26.1
Kaolin 31.7 31.6 32.9 26.9 31.6 31.7 - 23.0
Quartz 16.7 20.5 20.4 19.7 22.6 17.9 - 20.0
Rutile 0.7 0.7 0.7 0.6 0.7 1.0 - 6.9
Siderite 6.4 5.6 8.2 9.9 3.6 0.0 - 3.1
Na2S04 2.1 4.3 1.5 1.3 0.14 0.7 - 2.8
Mineral 21.5 15.5 18.8 22.2 17.7 18.8 - 23.2
content%
Mineral matter content given as a percentage of the coal content
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Calorific value (dry, mineral free basis) and Hardgrove Grindability Index of
group 1 coals

Coal F-l F-2 F-3 F-4 F-5 F-6 F-7 F-8
Calorific 36.00 36.79 36.45 34.52 34.44 32.57 34.98 31.72
Value
(MJlkg)

HGI 23 73 85 56 50 44 42 43

Calorific value (dry, mineral free basis) and Hardgrove Grindability Index of
group 2 coals

Coal P-l P-2 P-3 P-4 P-5 P-6 P-7 P-8
Calorific 34.45 34.42 34.72 35.30 34.10 35.80 36.21 33.80
Value
(MJlkg)

HGI 65 53 59 64 58 59 - 58
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Appendix B

As-received bulk size distribution of group 1 coal (wiegbt %)

Size range r-r F-2 F-3 F-4 F-5 F-6 F-7 F-8

>16.0 mm 97.4 99.2 9S.2 42.3 96.3 29.7 95.8 26.4
16.0-13.2 mm 0.6 0.0 0.3 8.7 0.6 18.9 0.7 6.6
13.2-11.2 mm 0.4 0.0 0.2 7.6 0.5 16.9 0.9 7.6
11.2-8.0 mm 0.6 0.0 0.5 13.5 0.7 17.4 1.0 14.3
8.0-5.6 mm 0.4 0.1 0.5 8.1 0.4 6.8 O.S 10.7
5.6-4.0 mm 0.2 0.1 0.5 3.8 0.2 2.7 0.2 7.0
4.0-2.8 mm 0.1 0.1 0.5 2.2 0.2 1.6 0.2 6.0
2.8-2.0 mm 0.1 0.1 0.4 1.4 0.2 0.9 0.1 4.3
2.0-1.4 mm 0.1 0.1 0.4 1.2 0.2 0.6 0.1 3.7
1.4-1.0 mm 0.0 0.1 0.2 0.7 0.1 0.4 0.1 2.4
1.0-0.71 mm 0.0 0.1 0.2 0.7 0.1 0.4 0.1 2.1
710-500 J.lm 0.0 0.1 0.3 0.5 0.1 0.2 0.1 1.8
500-355 J.lm 0.0 0.0 0.1 0.6 0.1 0.3 0.0 1.2
355-250 J.lm 0.0 0.0 0.2 0.7 0.1 0.3 0.1 1.1

250-180 J.lm 0.0 0.0 0.1 0.8 0.1 0.3 0.1 0.9
..-

180-125 J.lm 0.0 0.0 0.1 1.0 0.0 0.4 0.1 0.7
125-90 J.lm 0.0 0.0 0.0 1.0 0.0 0.4 0.1 0.6
90-75 J.lm 0.0 0.0 0.0 1.2 0.0 0.4 0.0 0.5
75-63 J.lm 0.0 0.0 0.0 0.7 0.0 0.6 0.0 0.4
63-45 f.lm 0.0 0.0 0.0 2.0 0.0 0.4 0.0 0.6
45-38 J.lm 0.0 0.0 0.0 0.7 0.0 0.2 0.0 0.6
<38 J.lm 0.0 0.0 0.0 0.6 0.0 0.1 0.0 0.5

Total 100 100 100 100 100 100 100 100
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Appendix B

Jaw Crusher product size distribution of group 1 coal (wiegbt %)

Size range r-r F-2 F-3 F-4 F-5 F-6 F-7 F-8

>16.0 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16.0-13.2 mm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
13.2-11.2 mm 22.8 5.9 6.2 15.6 9.6 22.9 13.1 15.7
11.2-8.0 mm 32.2 17.4 20.8 26.6 23.8 31.1 26.5 23.4
8.0-5.6 mm 16.4 15.7 17.0 17.9 18.2 16.6 18.1 16.5
5.6-4.0 mm 9.0 11.5 11.8 9.1 11.3 8.3 11.2 9.9
4.0-2.8 mm 6.0 10.7 10.5 6.1 9.5 5.4 8.0 8.1
2.8-2.0 mm 4.1 9.1 8.6 4.5 7.0 3.7 5.6 5.7
2.0-1.4 mm 3.0 7.9 6.7 3.4 5.6 2.8 5.0 4.8
1.4-1.0 mm 1.9 6.0 4.8 2.0 3.5 1.6 2.9 3.0
1.0-0.71 mm 1.3 4.4 3.7 1.9 3.1 1.4 2.5 2.6
710-500 J..lm 1.2 4.2 3.2 1.7 2.6 1.2 2.2 2.3
500-355 J..lm 0.7 2.1 1.8 1.1 1.4 0.7 1.3 1.5
355-250 urn 0.4 1.7 1.5 1.1 1.2 0.7 1.0 1.2
250-180 J..lm 0.3 1.0 1.1 1.1 0.9 0.6 0.7 1.0
180-125 um 0.3 0.9 0.6 1.2 0.7 0.6 0.7 0.8
125-90 J..lm 0.1 0.4 0.5 1.2 0.4 0.5 0.5 0.7
90-75 J..lm 0.1 0.3 0.3 1.2 0.2 0.4 0.2 0.5
75-63 urn 0.0 0.1 0.2 0.9 0.2 0.7 0.1 0.4
63-45 J..lm 0.0 0.2 OJ 2.1 0.3 0.5 0.2 0.7
45-38 J..lm 0.0 OJ 0.3 0.8 0.4 0.2 0.3 0.6
<38 J..lm 0.1 0.2 0.1 0.6 0.1 0.1 0.2 0.5

Total 100 100 100 100 100 100 100 100
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AppendixB

As-received bulk size distribution of group 2 coal (wieght %)

Size range P-l P-2 P-3 P-4 P-5 P-6 P-7

>32.0 mm 0.00 0.34 0.00 0.00 0.00 1.32 0.00

32.0-22.0 mm 0.16 0.15 1.51 31.51 0.00 0.63 0.00

22.0-16.0 mm 8.60 19.51 16.10 54.95 1.80 16.03 54.66

16.0-11.3 mm 7.91 12.98 14.91 6.10 15.63 12.33 23.88

11.3-8.0 mm 10.11 11.96 16.29 1.94 36.22 12.82 6.98

8.0-5.6 mm 10.58 11.02 12.26 0.98 21.02 11.94 3.69

5.6-4.0 mm 10.03 8.65 7.78 0.70 5.33 11.81 2.41

4.0-2.8 mm 10.58 7.93 6.09 0.56 3.44 10.49 1.91

2.8-2.0 mm 8.93 6.06 4.29 0.44 2.52 14.57 1.29

2.0-1.4 mm 8.50 4.96 3.86 0.45 2.72 5.85 1.10

1.4-1.0 mm 4.56 3.18 2.49 0.32 1.49 1.70 0.58

1.0-0.71 mm 4.69 2.78 3.34 0.31 1.60 0.30 0.58

710-500 J..lm 3.40 2.32 2.00 0.27 1.29 0.18 0.54

500-355 J..lm 2.73 1.79 1.61 0.24 1.16 0.03 0.48

355-250 J..lm 2.49 1.71 1.54 0.26 1.24 0.00 0.91

250-180 urn 1.91 1.32 1.58 0.24 1.02 0.00 0.60

180-125 J..lm 1.87 1.05 1.58 0.21 0.93 0.00 0.29

125-90 J,.lm 1.55 1.17 1.59 0.31 1.29 0.00 0.07

90-63 J..lm 0.49 0.59 1.11 0.18 0.36 0.00 0.02

63-38 J..lm 0.85 0.49 0.07 0.03 0.86 0.00 0.01

<38 J..lm 0.06 0.04 0.00 0.00 0.08 0.00 0.00

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

B-IO



~~ ------r---
§. r-.

'"~~ r-,~
QC) <,Q

l\.
\..

"\....

1\
.'\
\

1\
.\..

"••\•

8- o
If"\

a-n

8-

o-o



·~.~ rh

m<,
<. 11"1

r-
0

r-, 0
.~<, rh

<, ~
~

~
r-, +t <,

~
~

.§Ii ~ rh
::1

~a \~ sII
0 ........ 0= .~

~~

1-

r-.<, \
~ -. \

IC " \IC

~
if~

~~

~ 1\ \III
0\
'If \ \•..
~

\ 1\

\ \- ...

8 o
00

o
\0

o
11"1

o.....

B-12

o-

8

0
00

I
.~
'"~
.st
1::
~

0
r-

o



APPENDIXC

ROD MILL OPTIMISATION

P-I coal. rod mill, number ofrods-7, operating speed-IOOrpm,
sample load-500g, As-received coal

e-2

P-l coal, rod mill, number ofrods-7, operating speed-IOOrpm,
sample load-250g, As-received coal

e-a

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,
sample load-lOOOg, As-received coal

e-4

P-l coal, rod mill, number ofrods-5, operating speed-IOtlrpm,
sample load-500g, As-received coal

c.s

P-I coal, rod mill, number ofrods-9, operating speed-lOOrpm,
sample load-500g, As-received coal

c-s

P-l coal, rod mill, number ofrods-7, operating speed-l20rpm,
sample load-500g, As-received coal

e-7

P-l coal, rod mill, number ofrods-7, operating speed-60rpm,
sample load-500g, As-received coal

c-s

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,
sample load-500g, As-received coal
(distribution after consecutive 10 minute intervals)

e-9

P-I coal, rod mill, number of rods-7, operating speed-lOOrpm, e-IO
sample load-500g, microwave input power-O.65kW, applied frequency-2.45GHz,
exposure time-S minutes, (distribution after consecutive 10 minute intervals)

C-l
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APPENDIXDI

MICROWAVE TREATED (O.6SKW) COAL ROD MILL SIZE
DISTRIBUTIONS

P-5 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 01-3
As-received coal

P-5 coal, rod mill, number of rods-Z, operating speed-IOOrpm, load-500g, 01-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I minute

P-5 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, DI-S
Microwave input power-O.65kW, frequency-2.4SGHz, exposure time-3 minutes

P-5 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 01-6
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

P-3 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 01-7
As-received coal

P-3 coal, rod mill, number of rods-Z, operating speed-IOOrpm, load-500g, 01-8
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-l minute

P-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, Dl-9
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minutes

P-3 coal, rod mill, number of rods-7, operating speed-I OOrpm, load-500g, 0 1-10
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

P-3 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 01-11
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-8 minutes

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 01-12
As-received coal

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, 01-13
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I minute

P-2 coal, rod mill, number of rods-7, operating speed-I OOrpm, load-500g, 01-14
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

01-1



Appendix D1

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm,load-500g, DI-15
Microwave input power-O.65kW,frequency-2.45GHz, exposure time-S minutes

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, Dl-16
Microwave input power-O.65kW,frequency-2.45GHz, exposure time-8 minutes

P-3 coal, rod mill, number of rods-7, operating speed-IOOrpm,load-500g, D1-17
Muffle furnace temperature-250°C, exposed for Ihr

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm,load-500g, DI-18
Muffie furnace temperature-200°C, exposed for Ihr

Dl-2
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APPENDIXD2

MICROWA VE TREATED (O.65KW) P-2 COAL ROD MILL SIZE
DISTRIBUTIONS (UNIFORM FEED CHARACTERISTICS)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-2
Size distribution of two as-received samples (uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-3
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute
(uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute
(uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, 10ad-SOOg, 02-5
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-8 minute
(uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-6
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-IO minute
(uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-7
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I2 minute
(uniform initial size distribution)

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 02-8
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-IS minute
(uniform initial size distribution)
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APPENDIXD3

PROXIMA TE ANALYSIS OF MICROWAVE TREATED COALS

Proximate analysis (as-received basis unless stated in accord with BS1016) of D3-2
Microwave treated P-S coal, Microwave input power-0.6SkW,
applied frequency-2.4SGHz

Proximate analysis (as-received basis unless stated in accord with BSI016) of D3-2
Microwave treated P-3 coal, Microwave input power-0.65kW,
applied frequency-2.45GHz

Proximate analysis (as-received basis unless stated in accord with BS1016) of D3-2
Microwave treated P-2 coal, Microwave input power-O.6SkW,
applied frequency-2.4SGHz

D3-1



Appendix D3

Proximate analysis (as-received basis unless stated in accord with BSI016) of
Microwave treated P-5 coal

Microwave input power-0.65kW, applied frequency-l.45GHz

Exposure Moisture Ash Volatile matter Fixed Volatile
time % % % Carbon matter drnmf

(minutes) % %
1 3.7 13.1 34.2 48.9 41.2
3 3.5 10.2 35.0 51.3 40.5
5 3.2 9.3 35.8 51.7 40.9
8 2.6 10.7 34.6 52.1 39.9

Mean value given from 5 trials, Standard deviations given in brackets

Proximate analysis (as-received basis unless stated in accord with BSI016) of
Microwave treated P-3 coal

Microwave input power-0.65kW, applied frequency-l.45GHz

Exposure Moisture Ash Volatile matter Fixed Volatile
time % % % Carbon matter drnmf

(minutes) % %
1 4.1 15.1 34.6 46.2 43.3
3 3.0 16.0 34.2 46.8 42.1
5 3.0 16.1 33.0 47.9 40.8
8 2.3 16.1 28.5 53.1 34.9

Mean value given from 5 trials, Standard deviations given in brackets

Proximate analysis (as-received basis unless stated in accord with BSI016) of
Microwave treated P-l coal

Microwave input power-0.65kW, applied frequency-l.45GHz

Exposure Moisture Ash Volatile matter Fixed Volatile
time % % % Carbon matter drnmf

(minutes) % %
1 4.4 14.0 31.6 50.0 38.7
3 4.1 11.4 30.9 53.6 36.6
5 3.9 10.9 31.0 54.2 36.4
8 2.3 15.2 30.8 51.7 37.3

Mean value given from 5 trials, Standard deviations given in brackets

D3-2



APPENDIXD4

MICROWAVE TREATED (1.3KW) COAL ROD MILL SIZE
DISTRIBUTIONS

P-S coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-2
Microwave input power-l.3kW, frequency-2.4SGHz. exposure time-l minute

P-S coal, rod mill. number ofrods-7, operating speed-lOOrpm, load-500g, D4-3
Microwave input power-l.3kW, frequency-2.4SGHz. exposure time-2 minutes

P-S coal, rod mill, number of rods-Z, operating speed-lOOrpm, 10ad-SOOg, D4-4
Microwave input power-1.3kW. frequency-2.45GHz, exposure time-2.5 minutes

P-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-S
Microwave input power-1.3kW, frequency-2.4SGHz, exposure time-l minute

P-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-6
Microwave input power-l.3kW, frequency-2.4SGHz, exposure time-2 minutes

P-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-7
Microwave input power-l.3kW, frequency-2.4SGHz. exposure time-3 minutes

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-SOOg, D4-8
Microwave input power-l.3kW, frequency-2.4SGHz, exposure time-I minute

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-9
Microwave input power-l.3kW, frequency-2.45GHz, exposure time-2 minutes

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D4-1O
Microwave input power-1.3kW. frequency-2.45GHz, exposure time-3 minutes
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APPENDIXD5

MICROWAVE TREATED COAL AT CONSTANT ENERGY INPUT-
VARYING POWER AND EXPOSURE TIME
ROD MILL SIZE DISTRIBUTIONS

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, D5-2
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-609s, 220kWhlt

P-2 coal, rod mill, number of rods-7, operating speed-l OOrpm, load-500g, D5-3
Microwave input power-l.3kW, frequency-2.45GHz, exposure time-305s, 220kWhlt

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, D5-4
Microwave input power-2.6kW, frequency-2.45GHz, exposure time-l 52s, 220kWh/t

D5-1
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APPENDIXD6

MICROWAVE TREATED COAL AT CONSTANT ENERGY INPUT
VARYING SAMPLE LOAD

ROD MILL SIZE DISTRIBUTIONS

P-l coal, rod mill, number of rods-7, operating speed-lOOrpm, load-500g, D6-2
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes,
173kWhlt, milled as 500g

P-l coal, rod mill, number of rods-7, operating speed-I OOrpm, load-250g, D6-3
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-4 minutes,
173kWhlt, milled as 250g

P-l coal, rod mill, number of rods-7, operating speed-I OOrpm, load-lOOOg, D6-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-16 minutes,
173kWhlt, milled as lOOOg

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-250g, 06-5
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-4 minutes,
173kWhlt, 2 samples milled as 500g

P-l coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-IOOOg, D6-6
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-If minutes,
173kWhlt, sample divided by 2, milled as 500g

D6-1
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APPENDIXD7

MICROWAVE TREATED COAL AT CONSTANT ENERGY INPUT
PARTICLE SIZE RANGE TESTS

ROD MILL SIZE DISTRIBUTIONS

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, 07-4
As-received, size range> 16mm

P-I coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, D7-5
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-S minutes,
size range> 16mm

P-l coal, rod mill, number of rods-7, operating speed-IOOrpm,load-500g, 07-6
As-received, size range -16 +8mm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, 07-7
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-8 minutes,
size range -16 +8mm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, 07-8
As-received, size range -8 +4mm

P-I coal, rod mill, number ofrods-7, operating speed-IOOrpm,load-SOOg, 07-9
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-8 minutes,
size range -8 +4mm

P-I coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, 07-10
As-received, size range -4 +2mm

P-I coal, rod mill, number of rods-Z,operating speed-IOOrpm,load-500g, 07-11
Microwave input power-O.65kW,frequency-2.45GHz, exposure time-8 minutes,
size range -4 +2mm

P-l coal, rod mm, number ofrods-7, operating speed-lOOrpm,load-SOOg, 07-12
As-received, size range -2 +lmm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, 07-13
Microwave input power-O.65kW,frequency-2.45GHz, exposure time-8 minutes,
size range -2 +Imm

07-1



Appendix D7

P-I coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 07-14
As-received, size range -I +O.5mm

P-I coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, D7-15
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes,
size range -I +O.5mm

P-I coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, 07-16
As-received, size range -0.5 +O.25mm

P-I coal, rod mill, number ofrods-7, operating speed-l00rpm, load-500g, 07-17
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes,
size range -0.5 +O.25mm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, 07-18
As-received, size range -O.2Smm

P-l coal, rod mill, number ofrods-7, operating speed-IOOrpm, 10ad-SOOg, D7-19
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-8 minutes,
size range -O.2Smm

P-3 coal, rod mill, number ofrods-7, operating speed-IOOrpm, 10ad-SOOg, D7-20
As-received, size range -16 +8mm

P-3 coal, rod mill, number ofrods-7, operating speed-l00rpm, load-SOOg, 07-21
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-8 minutes,
size range -16 +8mm

P-l coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-SOOg, D7-22
As-received, size range -2.8 +2mm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, D7-23
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-8 minutes,
size range -2.8 +2mm

P-l coal, rod mill, number ofrods-7, operating speed-lOOrpm, 10ad-SOOg, D7-24
As-received, size range -1.4 +O.71mm

P-l coal, rod mill, number ofrods-7, operating speed-l00rpm, load-SOOg, 07-25
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes,
size range -1.4 +O.71mm

D7-2



Appendix D7

P-I coal, rod mill, number ofrods-7, operating speed-lOOrpm,load-500g, D7-26
As-received, size range -0.5 +O.09mm

P-I coal, rod mill, number ofrods-7, operating speed-IOOrpm,load-500g, D7-27
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-S minutes,
size range -0.5 +0.09mm

D7-3
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APPENDIXD8

MICROWA VE TREATED GROUP 1 COALS
COAL RANK TESTS

ROD MILL SIZE DISTRIBUTIONS

F-l coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-3
As-received coal

F-I coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, DS-5
As-received coal

F-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-6
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-7
As-received coal

F-3 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, D8-8
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-4 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, D8-9
As-received coal

F-4 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, DS-IO
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-5 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-Il
As-received coal

F-5 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, D8-12
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-6 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, D8-13
As-received coal

F-6 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, D8-14
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

D8-1
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F-7 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-15
As-received coal

F-7 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, DS-16
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-8 minute

F-8 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-17
As-received coal

F-8 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, DS-IS
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minute

F-6 coal, rod mill, number of rods-7, operating speed-IOOrpm, load-500g, D8-19
Muffle furnace temperature-l OO°C,exposure time-l hour

F-6 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-SOOg, DS-20
Muffle furnace temperature-200°C, exposure time-I hour

F-7 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-SOOg, DS-21
Muffle furnace temperature-100°C, exposure time-l hour

F-7 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-SOOg, DS-22
Muffle furnace temperature-200°C, exposure time-l hour

D8-2
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APPENDIXD9

MICROW AVE TREATED COALS AT CONSTANT ENERGY INPUT
MOISTURE ADDITION TESTS

ROD MILL SIZE DISTRIBUTIONS

P-7 coal, rod mill, number ofrods-7, operating speed-l00rpm, load-500g, 09-3
As-received coal

P-7 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, 09-4
As-received coal covered in ice for 1 hour

P-7 coal, rod mill, number of rods-7, operating speed-l00rpm, load-500g, 09-5
As-received coal, addition of liquid N2 for 1 hour

P-7 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-500g, 09-6
As-received coal, addition of steam for 1 hour

P-7 coal sample A, rod mill, number ofrods-7, operating speed-IOOrpm, 09-7
load-500g, addition of steam for 1 hour
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

P-7 coal sample B, rod mill, number ofrods-7, operating speed-IOOrpm, 09-8
load-500g, addition of steam for 1 hour
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-S minutes

P-7 coal, rod mill, number of rods-7, operating speed-I OOrpm, load-SOOg, 09-9
Muffle furnace temperature-l lOaC, exposure time-3 hours

P-7 coal, rod mill, numberofrods-7, operating speed-IOOrpm, load-500g, 09-10
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-S minutes

P-7 coal sample A, rod mill, number ofrods-7, operating speed-IOOrpm, 09-11
load-500g, addition of 400ml water
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

P-7 coal sample B, rod mill, number of rods-7, operating speed-I OOrpm, 09-12
load-SOOg, addition of 400ml water
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

D9-1



Appendix 09

P-7 coal, rod mill, number ofrods-7, operating speed-iOOrpm, load-SOOg, 09-13
Muffle furnace temperature-110°C, exposure time-3 hours
Microwave input power-0.6SkW, frequency-2.4SGHz, exposure time-S minutes

P-7 coal sample A, rod mill, number ofrods-7, operating speed-l00rpm, 09-14
load-SOOg, addition of 400ml water 50g Calgon solution
Microwave input power-O.65kW, frequency-2.4SGHz, exposure time-8 minutes

P-7 coal sample B, rod mill, number of rods-7, operating speed-l OOrpm, 09-15
load-500g, addition of 400ml water 50g Calgon solution
Microwave input power-0.6SkW, frequency-2.45GHz, exposure time-8 minutes

P-2 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-SOOg, 09-16
As-received coal

P-2 coal, rod mill, number of rods-7, operating speed-l OOrpm. load-500g, 09-17
Muflle furnace temperature-110°C, exposure time-S hours

P-2 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, 09-18
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-S minutes

P-2 coal sample A, rod mill, number of rods-7, operating speed-l00rpm, 09-19
load-500g, addition of 400ml water
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-S minutes

P-2 coal sample B, rod mill, number ofrods-7, operating speed-IOOrpm, 09-20
load-500g, addition of 400ml water
Microwave input power-0.65kW, frequency-2.45GHz, exposure time-8 minutes

P-2 coal, rod mill, number of rods-7, operating speed-l OOrpm, load-500g, 09-21
Muflle furnace temperature-l l O''C, exposure time-3 hours
Microwave input power-0.65kW, frequency-2.45GHz. exposure time-8 minutes

09-2
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APPENDIX DI0

MICROW AVE TREATED COALS
PILOT -SCALE PRELIMINARY TESTS
ROD MILL SIZE DISTRIBUTIONS

P-S coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g, DlO-3
As-received coal

P-5 coal, rod mill, number ofrods-7, operating speed-iOOrpm, load-500g, DIO-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-l Ominutes,
220kWhlt

P-5 coal, rod mill, number of rods-7, operating speed-I OOrpm, load-500g, D! 0-5
Microwave input power-2.6kW, frequency-2.45GHz, exposure time-IS2s, 220kWhlt

P-6 coal (-3mm), rod mill, number ofrods-7, operating speed-100rpm,
load-500g, As-received coal

010-6

P-6 coal (-3mm), rod mill, number ofrods-7, operating speed-IOOrpm,
load-500g, microwave input power-O.65kW, frequency-2.45GHz
exposure time-I 0 minutes, 220kWhlt

010-7

P-5 coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-500g,
As-received coal (Pilot-scale)

DIO-8

P-5 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-Ikg, 010-9
Microwave input power-l.lkW, frequency-2.45GHz, exposure time-S minutes, 220kWhit
Milled as SOOgsub-sample

P-S coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-Ikg, 010-10
Microwave input power-3.3kW, frequency-2.45GHz, exposure time-4 minutes, 220kWhlt
Milled as SOOgsub-sample

P-S coal, rod mill, number ofrods-7, operating speed-IOOrpm, load-Ikg, DIO-11
Microwave input power-6.6kW, frequency-2.45GHz, exposure time-2 minutes, 220kWhlt
Milled as 500g sub-sample

P-5 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-2kg, 010-12
Microwave input power-3.3kW, frequency-2.45GHz, exposure time-8 minutes, 220kWhlt
Milled as 500g sub-sample

010-1



Appendix D 10

P-5 coal, rod mill, number ofrods-7, operating speed-lOOrpm, load-3kg, DIO-13
Microwave input power-3.3kW, frequency-2.45GHz, exposure time-12 minutes,
220kWhlt, milled as 500g sub-sample

010-2
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APPENDIX Dll

MICROWAVE TREATED COAL PILOT -SCALE TESTS
BARMAC MILL, JAW AND ROLL CRUSHER SIZE

DISTRIBUTIONS

P-8 coal, Barmac Rock on Rock crusher, as-received and microwave treated DII-2
Samples, operating speed-3000rpm, sample load-250kg
Microwave input power-6.6kW, frequency-2.45GHz, 220kwhit

P-8 coal, Barmac Rock on Rock crusher, as-received and microwave treated DII-3
Samples, operating speed-5000rpm, sample load-250kg
Microwave input power-6.6kW, frequency-2.45GHz, 220kwhit

P-8 coal, Jaw crusher, as-received and microwave treated samples (l kg load) Dll-4
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-If minutes

P-8 coal, Roll crusher, as-received and microwave treated samples (lkg load) D11-5
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-IS minutes

Dll-l
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APPENDIXEl

DIELECTRIC PROPERTIES OF GROUP 1 AND 2 COALS

SUBMITTED ON CD ROM

F-I coal Dielectric Constant with temperature at O.615GHz

F-I coal Loss Factor with temperature at O.615GHz

F-I coal Dielectric Constant with temperature at 1.413GHz

F-I coal Loss Factor with temperature at 1.413GHz

F-I coal Dielectric Constant with temperature at 2.216GHz

F-I coal Loss Factor with temperature at 2.216GHz

F-2 coal Dielectric Constant with temperature at O.615GHz

F-2 coal Loss Factor with temperature at O.615GHz

F-2 coal Dielectric Constant with temperature at 1.413GHz

F-2 coal Loss Factor with temperature at 1.413GHz

F-2 coal Dielectric Constant with temperature at 2.216GHz

F-2 coal Loss Factor with temperature at 2.216GHz

F-3 coal Dielectric Constant with temperature at O.615GHz

F-3 coal Loss Factor with temperature at O.615GHz

F-3 coal Dielectric Constant with temperature at 1.413GHz

F-3 coal Loss Factor with temperature at 1.413GHz

F-3 coal Dielectric Constant with temperature at 2.216GHz

F-3 coal Loss Factor with temperature at 2.216GHz

El-6

El-7

El-8

EI-9

EI-lO

EI-l1

El-12

EI-13

El·14

EI-I5

EI-16

El-17

EI·18

EI-19

EI·20

EI-21

EI-22

EI-23

E1-1



Submitted on CD ROM Appendix El

F-4 coal Dielectric Constant with temperature at O.615GHz

F-4 coal Loss Factor with temperature at O.615GHz

F-4 coal Dielectric Constant with temperature at 1.413GHz

F-4 coal Loss Factor with temperature at 1.413GHz

F-4 coal Dielectric Constant with temperature at 2.216GHz

F-4 coal Loss Factor with temperature at 2.216GHz

F-5 coal Dielectric Constant with temperature at O.615GHz

F-5 coal Loss Factor with temperature at O.615GHz

F-5 coal Dielectric Constant with temperature at 1.413GHz

F-5 coal Loss Factor with temperature at 1.413GHz

F-5 coal Dielectric Constant with temperature at 2.216GHz

F-5 coal Loss Factor with temperature at 2.216GHz

F-6 coal Dielectric Constant with temperature at O.615GHz

F-6 coal Loss Factor with temperature at O.615GHz

F-6 coal Dielectric Constant with temperature at 1.413GHz

F-6 coal Loss Factor with temperature at 1.413GHz

F-6 coal Dielectric Constant with temperature at 2.216GHz

F-6 coal Loss Factor with temperature at 2.216GHz

F-7 coal Dielectric Constant with temperature at O.615GHz

F-7 coal Loss Factor with temperature at O.615GHz

F-7 coal Dielectric Constant with temperature at 1.413GHz

F-7 coal Loss Factor with temperature at 1.413GHz

F-7 coal Dielectric Constant with temperature at 2.216GHz

El-24

El-25

El-26

El-27

EI-28

El-29

El-30

El-31

El-32

El-33

El-34

El-35

El-36

El-37

El-38

El-39

El-40

El-41

El-42

El-43

El-44

El-45

El-46

EI-2



Submitted on CD ROM Appendix El

F-7 coal Loss Factor with temperature at 2.2160Hz

F-8 coal Dielectric Constant with temperature at O.6150Hz

F-8 coal Loss Factor with temperature at O.615GHz

F-8 coal Dielectric Constant with temperature at 1.413GHz

F-8 coal Loss Factor with temperature at 1.413GHz

F-8 coal Dielectric Constant with temperature at 2.216GHz

F-8 coal Loss Factor with temperature at 2.2160Hz

P-l coal Dielectric Constant with temperature at O.615GHz

P-l coal Loss Factor with temperature at O.615GHz

P-l coal Dielectric Constant with temperature at 1.413GHz

P-l coal Loss Factor with temperature at 1.413GHz

P-l coal Dielectric Constant with temperature at 2.216GHz

P-I coal Loss Factor with temperature at 2.2160Hz

P-2 coal Dielectric Constant with temperature at O.615GHz

P-2 coal Loss Factor with temperature at O.615GHz

P-2 coal Dielectric Constant with temperature at 1.413GHz

P-2 coal Loss Factor with temperature at 1.413GHz

P-2 coal Dielectric Constant with temperature at 2.216GHz

P-2 coal Loss Factor with temperature at 2.2160Hz

P-3 coal Dielectric Constant with temperature at O.615GHz

P-3 coal Loss Factor with temperature at O.615GHz

P-3 coal Dielectric Constant with temperature at 1.413GHz

P-3 coal Loss Factor with temperature at 1.413GHz

EI-47

EI-48

EI-49

El-50

El-51

El-52

El-53

EI·54

El-55

El-56

El-57

El-58

El-59

EI-60

EI·61

EI-62

EI-63

EI-64

EI-65

EI-66

EI-67

EI-68

EI-69

EI-3



Submitted on CD ROM Appendix El

P-3 coal Dielectric Constant with temperature at 2.2160Hz

P-3 coal Loss Factor with temperature at 2.2160Hz

P-4 coal Dielectric Constant with temperature at O.6150Hz

P-4 coal Loss Factor with temperature at O.6150Hz

P-4 coal Dielectric Constant with temperature at 1.4130Hz

P-4 coal Loss Factor with temperature at I.4130Hz

P-4 coal Dielectric Constant with temperature at 2.2160Hz

P-4 coal Loss Factor with temperature at 2.2160Hz

P-5 coal Dielectric Constant with temperature at O.6150Hz

P-5 coal Loss Factor with temperature at O.6150Hz

P-5 coal Dielectric Constant with temperature at 1.4130Hz

P-5 coal Loss Factor with temperature at 1.4130Hz

P-5 coal Dielectric Constant with temperature at 2.2160Hz

P-5 coal Loss Factor with temperature at 2.2160Hz

P-6 coal Dielectric Constant with temperature at O.6150Hz

P-6 coal Loss Factor with temperature at O.6150Hz

P-6 coal Dielectric Constant with temperature at 1.4130Hz

P-6 coal Loss Factor with temperature at 1.4130Hz

P-6 coal Dielectric Constant with temperature at 2.2160Hz

P-6 coal Loss Factor with temperature at 2.2160Hz

P-7 coal Dielectric Constant with temperature at O.6150Hz

P-7 coal Loss Factor with temperature at O.6150Hz

P-7 coal Dielectric Constant with temperature at I.4130Hz

EI-70

EI-71

El-72

El-73

EI-74

EI-75

El-76

El-77

El-78

EI-79

EI-80

EI-81

El-82

EI-83

El-84

EI-85

EI-86

EI-87

EI-88

EI-89

EI-90

EI-9}

EI-92

El-4



Submitted on CD ROM Appendix El

P-7 coal Loss Factor with temperature at 1.413GHz

P-7 coal Dielectric Constant with temperature at 2.216GHz

P-7 coal Loss Factor with temperature at 2.216GHz

El-93

El-94

El-95

EI-5



APPENDIXE2

HIGH TEMPERATURE DIELECTRIC PROPERTIES OF F-l COAL

SUBMITTED ON CD ROM

F-I coal Dielectric Constant with a temperature range of200-400°C

F-I coal Loss Factor with a temperature range of200-400°C

E2-2

E2-3

E2-1



APPENDIXE3

DIELECTRIC PROPERTIES OF MICROWAVE TREATED
P..3 COAL

SUBMITTED ON CD ROM

P-3 coal Dielectric Constant with temperature at O.6ISGHz E3-3
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-I minute

P-3 coal Loss Factor with temperature at O.615GHz E3-4
Microwave input power-O.65kW, frequency-2.4SGHz, exposure time-t minute

P-3 coal Dielectric Constant with temperature at 1.413GHz E3-5
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-l minute

P-3 coal Loss Factor with temperature at 1.413GHz E3-6
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I minute

P-3 coal Dielectric Constant with temperature at 2.216GHz E3-7
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I minute

P-3 coal Loss Factor with temperature at 2.216GHz E3-8
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-I minute

P-3 coal Dielectric Constant with temperature at O.615GHz E3-9
Microwave input power-O.65kW, frequency-2.4SGHz, exposure time-s minute

P-3 coal Loss Factor with temperature at O.6ISGHz E3-IO
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute

P-3 coal Dielectric Constant with temperature at 1.413GHz E3-II
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute

P-3 coal Loss Factor with temperature at 1.413GHz E3-12
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute

P-3 coal Dielectric Constant with temperature at 2.216GHz E3-13
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute

P-3 coal Loss Factor with temperature at 2.216GHz E3-14
Microwave input power-O.65kW, frequency-2.45GHz, exposure time-3 minute

E3-1



Submitted on CD ROM Appendix E3

P-3 coal Dielectric Constant with temperature at O.615GHz E3-I5
Microwave input power-O.65kW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Loss Factor with temperature at O.6ISGHz E3-16
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Dielectric Constant with temperature at I.4I3GHz E3-17
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Loss Factor with temperature at 1.413GHz E3-I8
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Dielectric Constant with temperature at 2.2I6GHz E3-I9
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Loss Factor with temperature at 2.216GHz E3-20
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-S minute

P-3 coal Dielectric Constant with temperature at O.61SGHz E3-21
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-8 minute

P-3 coal Loss Factor with temperature at O.615GHz E3-22
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-S minute

P-3 coal Dielectric Constant with temperature at 1.413GHz E3-23
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-S minute

P-3 coal Loss Factor with temperature at 1.413GHz E3-24
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-8 minute

P-3 coal Dielectric Constant with temperature at 2.2I6GHz E3-2S
Microwave input power-O.6SkW, frequency-2.4SGHz, exposure time-8 minute

P-3 coal Loss Factor with temperature at 2.216GHz E3-26
Microwave input power-O.6SkW, frequency-2.45GHz, exposure time-8 minute

E3-2



APPENDIXE4

DIELECTRIC PROPERTIES OF SELECTED MINERALS

SUBMITTED ON CD ROM

Dolomite Dielectric Constant with temperature at O.615GHz

Dolomite Loss Factor with temperature at O.615GHz

Dolomite Dielectric Constant with temperature at 1.413GHz

Dolomite Loss Factor with temperature at 1.413GHz

Dolomite Dielectric Constant with temperature at 2.216GHz

Dolomite Loss Factor with temperature at 2.216GHz

Kaolin Dielectric Constant with temperature at O.615GHz

Kaolin Loss Factor with temperature at O.615GHz

Kaolin Dielectric Constant with temperature at 1.413GHz

Kaolin Loss Factor with temperature at 1.413GHz

Kaolin Dielectric Constant with temperature at 2.216GHz

Kaolin Loss Factor with temperature at 2.216GHz

Mica Dielectric Constant with temperature at O.615GHz

Mica Loss Factor with temperature at O.615GHz

Mica Dielectric Constant with temperature at 1.4130Hz

Mica Loss Factor with temperature at 1.413GHz

Mica Dielectric Constant with temperature at 2.216GHz

Mica Loss Factor with temperature at 2.216GHz

E4-3

E4-4

E4-5

E4-6

E4-7

E4-8

E4-9

E4-10

E4-11

E4-12

E4-13

E4-14

E4-15

E4-16

E4-17

E4-18

E4-19

E4-20

E4-J



Submitted on CD ROM Appendix E4

Pyrite Dielectric Constant with temperature at O.615GHz

Pyrite Loss Factor with temperature at O.615GHz

Pyrite Dielectric Constant with temperature at 1.413GHz

Pyrite Loss Factor with temperature at IA 13GHz

Pyrite Dielectric Constant with temperature at 2.216GHz

Pyrite Loss Factor with temperature at 2.216GHz

Quartz Dielectric Constant with temperature at O.615GHz

Quartz Loss Factor with temperature at O.6150Hz

Quartz Dielectric Constant with temperature at IA 130Hz

Quartz Loss Factor with temperature at 1.4130Hz

Quartz Dielectric Constant with temperature at 2.2160Hz

Quartz Loss Factor with temperature at 2.2160Hz

E4-21

E4-22

E4-23

E4-24

E4-25

E4-26

E4-27

E4-28

E4-29

E4-30

E4-31

E4-32

E4-2
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