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 In this paper, we propose an effective and online technique for modeling of 

Li-ion battery and estimation of State of Charge (SoC). Based on Feed 

Forward Neural Networks (FFNN) and Nonlinear Auto Regressive model 

with eXogenous input (NARX). The both Artificial Neural Network (ANN) 

are trained offline using the data collected from the experimental data. 

The NARX network finds the require battery votage in the FFNN network to 

estimate SoC. The proposed method is implemented on a Li-Ion battery cell 

and the results of simulation show a good accuracy and fast convergence of 

the proposed method. 
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1. INTRODUCTION  

The Lithium-Ion Batteries (LiBs) have pulled in consideration in the previous years due to their 

high energy density, long life cycle, and no memory effect [1]. They are used in several applications such as 

renewable energy systems to capture surplus electricity, electrical and hybrid vehicles, and telephone 

communication [2-4]. However, LiBs require exceptional caution to avoid disintegration of battery 

performance and prevent situations that could result in severe damage or explosions. Due to the numerous 

Lithium-ion batteries issues, a Battery Management Systems (BMS) is always used to guarantee safe 

operation [5]. The fundamental challenge of BMS is the knowledge of SoC, which represents the remaining 

capacity in the battery cell as a percentage of the maximum capacity. However, this state is not directly 

measured by any sensors [6].  

For this reason, several methods to estimate SoC was proposed in the literature, depending on the 

choices of battery models. An accurate model representing the characteristics of the battery is essential to 

SoC estimation accuracy. The most used models can be summarized as two categories: the electrochemical 

models [7-10] and the equivalent circuit models [11-23]. The electrochemical models of battery describe the 

behavior of batteries based on chemical processes that happen between the electrodes and the electrolyte, 

there are not desirable for actual BMS [24]. Electrical circuit modeling is another useful model presented by 

many researchers. The simple model composed of constant internal resistance Rin in series with a fixed ideal 

open circuit voltage Voc [11]. The transient behavior of the battery has not been investigated. Therefore this 

model has been modified in [12, 13]. Thevenin battery model is composed of an ideal voltage source E0, 

an internal resistance R, overvoltage resistance R0 and a capacitor C0 [14]. 
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A review of various Thevenin-type battery models is presented in [15, 16]. The major disadvantage 

of the Thevenin model is that all parameter values are assumed to be constant [14]. References [17, 18] 

present a Thevenin model improvement by integration of the effects of high frequency switching and self-

discharge of the battery. Combined electrical circuit-base model proposed in [19] is consists of the voltage 

source (Voc(VSOC)) in series with internal resistance Rseries and RC network (RtandCt), where Ct is the 

battery capacity, Ibat is the battery current, V bat is the battery voltage, and Rself-discharge represents the 

battery discharge. This model offers circuit and system designers the possibility to improve system 

efficiency and prolong battery runtime for portable electronics by predicting but this model is very 

complicated [25]. Generic-based model based on a Shepherd equation presented in [20, 21], composed of a 

controlled voltage source in series with a fixed resistance. The Generic-based model is developed in [22, 23] 

by adding the effect of temperature and life cycle to the open circuit voltage. 

In recent years, researchers on the battery model have become very popular. Due to the necessity of 

battery models in battery management systems and in the state of charge estimation, which represent a big 

problem in BMS. To solve this problem, many researchers have proposed various methods to estimate SoC: 

The first types of methods based on direct measurement. The most common technique for calculating 

the SOC is the Coulomb counting methods, also known as ampere hour counting and current 

integration [26, 27]. This method utilizes battery current readings mathematically integrated over time to 

calculate SOC values. The initial state of charge represent the problems of this methods because is 

unknown. Therefore this method is efficient if the initial state of charge is known. Open Circuit Voltage 

(OCV) method is selected to determine SoC via the relationship between OCV and SoC [28, 29].  

This method is specially used for battery lead acid. Another method is discussed in [30, 31] based 

on the calculates of battery parameters via electrochemical spectroscopies impedance, once the parameters 

of the model are known, the SoC can be estimated, nevertheless this methods it is not suitable for online 

applications. The second type is based on battery state space mathematical models or electrical circuit 

battery models to design an observer for real-time SoC estimation. In [32] a Kalman Filter (KF) was 

proposed for estimate SoC of a lead-acid battery using the linear model. Then an Extended Kalman Filter 

(EKF) was studied in [33], basing on nonlinear battery models. Indeed this filter performs an analytical 

linearizing which causes numerical problems in the Jacobian calculate of the model [34].  

The Jacobian computational problem is solved by Unscented Kalman Filter (UKF) because the 

Jacobian in UKF is calculate using a static linearizing. In the reference [35], a UKF is used to estimate the 

SoC of a Lithium-Ion battery based on a non-linear electrochemical battery model. Later an adaptive 

unscented Kalman filter was developed for online SoC evaluation of a Lithium-Ion battery [36]. The major 

drawback of this approach is that a KF needs a suitable model for battery, however, using the feedbacks in 

this model will require a proper state initializing for the convergence of the model. 

The third category of techniques is based on the black-box battery models [37-41]. It provides the 

best SoC estimates due to the effective ability of computational intelligence to approximate non-linear 

function. Several authors [37, 38] have proposed new methods depending on Artificial Neural Network 

(ANN) approach. As reported in [42], a new Neural Network (NN) model was developed to estimate lead-

acid battery SoC, based on current measurements of discharge and temperature. Another model was 

presented exploiting the radial basis of the neural network function for estimating the SoC of a lead acid 

battery and detect the degraded pile [37]. In [39] also suggested a feed-forward neural network to estimate 

SoC of Ni-MH batteries. Other Artificial intelligent based methods have been investigated to compute the 

SoC of batteries like Fuzzy logic [40], Support Vector Machine [41].  

Recently, hybrid methods were developed to improve the estimation accuracy. a hybrid method for 

SoC estimation based on ANN and UKF was proposed by Wei, He in Reference [43]. The state of charge 

SoC is determined according to the current, voltage, and temperature measured by ANN. The unscented 

Kalman filter is used to reduce ANN errors. Then, Radial basic neural network was used with EKF for the 

SoC estimation in [44]. This combined model delivers the best performance in estimating accuracy which 

error being less than 1% but the EKF performs an analytical linearizing which causes numerical problems in 

the Jacobian calculate of the model. Therefore, in this paper, a battery model of the battery is considered as a 

black box using a NARX model (Nonlinear Auto Regressive model with eXogenous input). Then, we used 

in the second feed-forward neural network to estimate SoC.  

The proposed model is designed and tested on a Lithium-Ion battery. The simulation results show 

good accuracy and quick convergence for estimating the SoC of Li-Ion batteries. This paper is organized as 

follows. Section II describes the theory of neural network. Section III present the experiment data used in 

this paper and ANN design.Section IV details a proposed battery model and SoC estimation methods. 

Section IV presents the simulation results of the proposed model, and section V draws some conclusions and 

gives directions for the future work. 
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2. THEORY OF NEURAL NETWORK 

The Artificial Neural Network is a system motivated by the functioning of biological neurons. It is a 

processing architecture based on the human brain focusing on information representation by its ability to 

learn and adapt. They are applied in particular to solve problems of classification, prediction, categorization, 

and optimization. ANNs are constituted by a mathematical model of biological neuron called perceptron 

arranged in nodes and connected byweighing vectors or simply called weights. ANNs can model any actual 

data variations by constantly changing the weights between the nodes based on information flow through the 

network during the learning phase. ANN is well suited for modeling complex relationships between inputs 

and outputs with an ability to learn and adapt, therefore is at the same time a very powerful tool to model 

nonlinear statistical data. The basic mathematical model of ANNs is shown in Figure 1. 

 

 

 
 

Figure 1. Neurone process 

 

 

The mathematical equation of this neuron can be expressed as in (1):  

 

𝑌 =  𝐹(∑(𝑋𝑖 ∗  𝑊𝑖 +  𝐵𝑖))        (1) 

 

where Xi is the input of this neuron, Wi is the weight of the interconnection between input Xi and neuron, and 

Bi is the bias of this neuron. All the weights and bias are determined after the training phase. 

 

 

3. EXPERIMENT DATA AND ANN DESIGN 

Li-ion batteries are run through two different operational profiles (charge, discharge) at ambient 

temperatures 44 oC. The charging was carried out in a Constant Current / Constant Voltage (CC/CV) mode. 

When the battery is empty the charging started by constant current at 1.5A until the battery voltage arrives at 

4,2V , and the charging continued in a constant voltage (CV) mode until the current dropped to 20mA. 

The load current is fixed at 4A, and the discharge voltage runs were stopped at 2.7V. All experiment database 

used in this paper is downloaded from the NASA prognostic center of excellence website [45]. 

The equipment required for this test is Battery Health Monitoring (BHM), sensors to measure battery 

voltage, current and temperature, load bank, chargers, data acquisition system and a computer for control 

and analysis.  

The NN training can be made more efficient and robust through proper normalization of 

the data [43]. Therefore, before training, the inputs were normalized to the range [-1; 1] by: 

 

𝑋𝑁 =
2(𝑋−𝑋𝑚𝑖𝑛)

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
− 1                         (2) 

 

where Xmin and Xmax are the minimum and maximum in the input vector X of the NN. In the testing step, 

the testing data was scaled using the same Xmin and Xmax used in the training data. 

After building the database passed to the separation of the learning and validation basis. Generally, 

there is no precise rule concerning this separation but in a general way the validation database represents 

from 10% to 25% of the general database. Once the two databases are created, it will be necessary to define 

an architecture of the neural network. We use an FFNN and NARX models trained with the back-

propagation learning algorithm, to its capacity to solve nonlinear problem. The risk of over-learning has 

always existed when we used an artificial neural network. Therefore the optimization is a primary phase in 
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the design of the neural network. The objective of optimization step is to locate the optimal design of the 

neural network, we performed several tests to find the optimal numbers of hidden layer and numbers of 

neuron per layer.  

The performances of the ANN will be measured by Mean Squared Error (MSE). The results of 

neural network performance in the optimization process are presented in Table 1. The optimal architecture is 

with 10 neurons in the first and the second hidden layer.  

 

 

Table 1. Neural network optimisation results 
Neural network architecture PERFORMANCE(MSE) Max error at validation 

[5,5] 1.564e-01 0.56 
[8,8] 6.954e-03 0.23 

[10,10] 2.2249e-04 0.10 

[12,12] 2.212e-04 0.12 
[12,14] 2.18749e-04 0.132 

 

 

4. PROPOSED BATTERY MODEL 

Li-ion battery is a complicated system to modeling due to the nonlinearity of voltage response. 

ANNs, are found to be good universal approximates which approximate any function to desired accuracy. 

The proposed model is designed with two neural networks, the first based on NARX model to find the 

battery voltage at the sampling time k as a function of the voltage, SoC at the sampling time k−1, and the 

current, temperature at the sampling time k. as it is presented in the Figure 2. The second to estimate SoC is 

based on FFNN (Feed-Forward Neural Network). The structure of FFNN is shown in Figure 3, where the 

inputs are the battery voltage at sampling time k−1 and the measurement of current and temperature at 

sampling time k. 

 

 

 
 

Figure 2. NARX Model 

 
 

Figure 3. FFNN for SoC estimation 

 

 

 

From the both models of Fig.2 and 3 we can obtained the relationship of the output Y (k) as a 

function of Input U (k) and previous output Y (k − 1), Y (k − 2) for the NARX model: 

 

𝑌 (𝑘)  =  𝐹(𝑈(𝑘), 𝑈(𝑘 −  1). . . , 𝑈(𝑘 −  𝑑), 𝑌 (𝑘 −  1), . . . 𝑌 (𝑘 −  𝑑))                        (3)  

 

The function F is the hyperbolic tangent, often used in the hidden layer as an activation function and 

linear transfer function in the output layer.  

 

𝐹(𝑢) =
2

1+𝑒𝑥𝑝(−2∗𝑢)
− 1                                           (4) 

 

All parameters of the two neural networks are obtained after the step of neural network training 

using backpropagation algorithms. The battery is modeled using a NARX model, which is trained using the 

data obtained from the battery, and the state of charge is estimated using FFNN. The global proposed system 

is show in Figure 4. 
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Figure 4. Structure of proposed battery model 

 

 

Since the SoC of the battery is one of the inputs to the NN, it is necessary to measure the SoC using 

one of the available methods. For this reason, the ampere-hour counting technique, given in [26, 27], is 

employed for collecting the training data. 

 

 

5. RESULTS AND DISCUSSION 

This paper proposes a new battery model and SoC estimation. The originality of our work lies in the 

fact that battery model is dynamic, take into account the effect of temperature and SoC on the battery models, 

and we are used this model to estimate SoC. The battery was charged from 0% to 100% and discharged from 

100% to 0%, so the integration error was negligible because the current sensor was well calibrated, therefore 

the solid curve is regarded as the experimental SoC [43]. We can see in the next figures four results of SoC 

and voltage shows the complete similarity between the reference and the estimated voltage and SoC during 

the charge and discharge process for a learning and validation data. The Figure 5 shows the comparison 

between the experiment SoC and the output of FFNN for training data, and the Figure 6 for the validation 

data. The Figure 7 present the output of NARX model and experiment battery voltage for training data, and 

the Figure 8 for the validation data. 

 

 

 
 

Figure 5. Experimental and estimated battery SoC (training data) 

 

 

 
 

Figure 6. Experimental and estimated battery SOC (validation data) 
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Figure 7. Experimental and estimated battery voltage (training data) 

 

 

 
 

Figure 8. Experimental and estimated battery voltage (validation data) 

 

 

The maximum error of NARX model is 4% but we can see some error peak after each discharge of 

battery due to the high degree of battery discharge. This peak shows the robustness of our model because the 

curve of our model converges quickly to the experimental curve. For the second model FFNN the maximum 

error is 10%, due to the peak error of battery voltage after each discharge operation, and due to error 

propagation in both neural network.  

 

 

6. CONCLUSION 

A SoC estimator system for Li-Ion batteries using ANN was proposed in this paper. The ANN is of 

NARX and FFNN types. The NARX was trained off-line to find the appropriate model needed in the FFNN, 

which estimates the SoC of the battery. All experiment database used in this paper is downloaded from the 

NASA prognostic center of excellence web site. The simulation results of the proposed estimator showed 

good accuracy and fast convergence to the experimental variable, independent of the charging conditions. 

The proposed model could be used for several rechargeable batteries. Therefore some challenges about the 

proposed model need to discuss here. For applying this model to a battery pack, it is necessary to calculate 

SoC for each cell. The batteries are used in the different environmental condition. Therefore the database 

used in the design of this model needs to contain all the possible operation scenario. For the next work. 
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