
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 2, April 2021, pp. 1578~1590

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i2.pp1578-1590 1578

Journal homepage: http://ijece.iaescore.com

New method for summative evaluation of UML class diagrams

based on graph similarities

Outair Anas, Tanana Mariam, Lyhyaoui Abdelouahid
National School of Applied Science, Innovative Technology Laboratory, Morocco

Article Info ABSTRACT

Article history:

Received Feb 20, 2020

Revised Aug 26, 2020

Accepted Oct 16, 2020

 This paper deals with the problem of the evaluation of the student's

productions during the construction of a UML class diagram from textual

speciations, which can be a tedious task for teachers. The main objective is to

propose a method of summative and semi-automatic evaluation of the class

diagrams produced by the students, in order to provide an educational

reaction on the learning process, and to reduce the evaluation work for the

teachers. To achieve this objective, we must analyze these productions and

study the transformation, matching, similarity measurement and comparison

of several UML graphs. From this study, we adopted a method based on the

comparison and matching of the components of several UML diagrams. This

proposal is applied to evaluate UML class diagrams and focuses on the

structural and semantic aspects of the UML graph produced by students

compared to several solutions proposed by the teacher.

Keywords:

Graphe matching

Learner assessment

Similarity measure

UML class diagram

This is an open access article under the CC BY-SA license.

Corresponding Author:

Outair Anas

Innovative Technology Laboratory

National School of Applied Science

E.N.S.A Route Achakar, BP 1818 Principal Tangier, Morocco

Email: anas.outair@gmail.com

1. INTRODUCTION

The evaluation of learners occupies a very important place in teaching. The knowledge acquired by

the students can be tested by the teacher in the form form of a summative/certification evaluation, if the

objective is to validate for example a unit of value, a course, a year or a diploma [1]. Indeed, evaluation is the

process by which people make value judgments on a particular subject. In the learning process, this operation

being already complicated at the base, takes on even more oversized proportions. In a teaching and learning

community, the most effective assessment is one that encourages and rewards effective teaching practices

based on learning outcomes [2, 3].

The assessment of learning allows the learner to identify his own strengths and weaknesses, and to

determine the types of information he needs, to essentially correct his shortcomings [4]. When this

assessment is used correctly, students learn that it is possible to start a self-assessment, in order to improve

their performance throughout their lives [5]. In all existing education systems, assessment remains the only

educational tool, which validates the achievements of students in order to access the following learning

subject [6]. Although the evaluation process is very complicated at the outset, this operation becomes even

more tedious for the teacher when it comes to evaluating the learner's know-how in complex systems [7]. The

difficulty of this task increases further when the number of students increases, which is always the case in

higher education.

In this context, this article is a contribution to research efforts on improving the evaluation process

for both the teacher and the students. The problem posed is how can we facilitate the task of correction

https://creativecommons.org/licenses/by-sa/4.0/
mailto:anas.outair@gmail.com

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1579

related to learning complicated subjects, for example, UML diagrams. Thus we have made a semi-automatic

evaluation system for comparing the diagrams generated by the students with any diagrams from the teacher.

We have reformulated this problem by setting the following scientific objectives:

− Represent class diagrams in metamodel

− Propose a new formalism through the improvement of the metamodel

− Add new elements to the metamodel in order to be able to use all the properties of the case studies

− Identify any similarities between UML diagrams and graphs

− Develop a new similarity calculation method to evaluate the graphs.

2. RELATED WORK

2.1. Evaluation of student productions in general

There are several approaches and literature research that work in the area of evaluation. The

assessment of artificial intelligence learners describes the design of an open learning environment designed to

monitor students' understanding, evaluate their prior knowledge, build individual learner profiles, provide

personalized assistance and finally evaluate their performance [8]. Janicic and Maria’s research (2014)

presents two methods that can be used to improve the automated evaluation of C language programs

produced by students [9]. They are based on the software verification and the measure of similarity between

the students' productions and the teacher's solution (s). Both techniques can be used to provide useful

feedback to students and to improve automated rating for teachers [10].

Tanana's research (2009) sought to propose a formative evaluation method of the learner's

knowledge based on the use of supervised classification algorithms. They have chosen digital electronics as

their field of application. This method was intended to facilitate the assessment of learners to the teacher.

This is more a “help with correction” than an automatic evaluation [11].

2.2. Environments used for teaching and evaluating UML language learning

Several object-oriented modeling courses adopt UML to teach analysis and design techniques. It is

recognized that appropriate UML modeling tools should be used in conjunction with the taught subject in

order for students to gain practical experience [12]. UML professional tools tend to be too complex and lack

educational functionality [13].

Some UML language environments have been developed for professional use by experienced

people. They are not suitable for pedagogical use and have many functionalities that could increase and brake

learning in the learner [14]. Other environments can be used for learner teaching, but do not have assessment

tools. Subsquently, we provide examples of UML language teaching environments focusing on their purpose,

operation, advantages and disadvantages.

2.2.1. StudentUML

StudentUML is a simple but efficient educational tool that supports the construction of consistent

UML diagrams. The goal of StudentUML is to provide students with a tool that meets their learning needs

without diverting them from the learning process [15]. The most important educational feature of

StudentUML is its ability to check the consistency of diagrams. Students construct diagrams that could be

correct when they are examined independently, but erroneous when compared to other diagrams in the same

project. These consistency errors do not allow students to correctly implement their models. StudentUML

provides avility to automatically check the consistency between existing diagrams [16]. StudentUML is an

open learning environment allows for the construction of UML diagrams, validate them and check their

consistency, but it does not specify the semantic difference to other diagrams, and does not provide options

for automatic correction [17].

2.2.2. KERMIT

KERMIT is an intelligent, knowledge-based entity-relationship modeling environment, designed for

university students who are learning conceptual database modeling. The system presents the requirements for

a database for which the student must design an entity-relationship (ER) diagram [18]. KERMIT is based on

constraint-based modelling (CBM), a student modeling approach proposed by Ohlsson. This is a very

effective approach that focuses on the key to individualized knowledge-based education. KERMIT is an open

learning environment for database modeling, would prove very useful for practice. Moreover, the

semantically rich feedback generated by the system and its ability to refine an individual student makes it an

invaluable resource for students [19].

KERMIT is an open learning environment for database modeling that provides individual

monotoring in the form of educational feedback to learners during the modeling activity [20]. Each feedback

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1580

is built here from the violation of a constraint (a mistake made by the learner). This environment has the

advantage of allowing the text of the problem to be manipulated throughout the activity, but it forces the the

elements to be edited against the statement. Indeed, the learner has no real opportunity to represent elements

not explicitly specified in the statement. The teacher can add new exercises by defining the statement and an

ideal solution corresponding in a dedicated teacher interface. The use of the environment is restricted to

novices, and the authors advocate not to introduce implicit elements into the statement and to adapt the

statements to contain as little ambiguity as possible.

2.2.3. Diagram

The diagram environment is designed to lead the learner, through interaction, to mobilize the three

functions of metacognitive regulation and thus to facilitate the acquisition of the concepts of object-oriented

modeling by generating the emergence of instrumented action schemes to perform effectively the prescribed

task [21]. The Diagram environment includes a subset of the features of the traditional UML editors. It

provides only the graphical elements needed to build an UML class diagram and simplifies editing of the

different elements characteristics. In addition, Diagram provides the opportunity to work simultaneously with

the statement (describing the specifications of the exercise to be modeled) and with the UML class diagram,

which facilitates visual control of the modeling. This feature provides greater opportunities for interaction

because the learner can select elements of the statement and change its visual aspect [22].

Diagram offers three types of modeling scenarios: The first is to build a complete diagram from a

statement (this is the activity that is of particular interested to us). The other two scenarios consist of

completing a partial diagram and correcting an erroneous diagram. This environment does not correct the

learner‘s errors and is not intended to replace the teacher during the UML diagram construction. A diagram

assists the learner in his work by encouraging self-correction. The teacher remains present during the

modeling activity (conducted in practical work sessions) to provide advice to the learner.

2.3. Graph transformation of UML diagram

Otherwise, different approaches to graphic transformation can be found in the literature. We have

studied the existing approaches relating to the transformation of a class diagram into a graph [23]. The

transformation of graphs can easily model the graphical structure. It has become a modeling tool often used

in the case of complex systems like the class diagram. The example below represents a transformation of a

class diagram into a directed and labeled graph where the edges are oriented and multiple between the

vertices which are either classes or attributes. The vertices and the edges have many characteristics. The

advantage of this representation is to consider a class diagram in its simplest expression.

The representation in the form of a metamodel [24], as that defined by Holcher's studies very

precisely describes all the elements of class diagram and the semantics of these elements. It also allows to

clearly exposing its structure. For example, the Figure 1 shows an UML metamodel, the classes, attributes,

operations and association ends are more specialized named elements. A class can contain attributes and

operations which themselves can contain types. It has an association end that defines the role of the linked

class as well as a multiplicity. An association can have two association ends. The advantage of this

metamodel is that it is adapted to the OMG standard. For the disadvantage, necessary elements are not

presented such as visibility, association class, type of association.

Figure 1. An attributed graph in two different notations

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1581

Based on the extract from the UML metamodel [25], we can transform a class diagram into a graph

as shown in Figure 2. A class is a vertex has an edge towards the attribute, which is also a vertex and which

can be typed. A class also has an association end, it is a vertex which contains several labels such as the type

of relation and the multiplicity. This relation is named, it is linked by an aggregation with the other class. The

inheritance relationship is represented by a labeled edge. This representation clearly expresses the links

maintained in terms of their elements and their characteristics. They are made explicit using vertices and

edges [26].

Figure 2. Improving metamodel class diagram

3. MEASURING SIMILARITY AND MATCHING UML GRAPHS

Our domain of application is the UML class diagrams. We will define a similarity measure between

class diagrams transformed into a UML graph. We saw in the previous section that a class diagram can be

represented by a UML graph. Our main objective is to compare the class diagrams produced by the students

which are transformed into a UML graph with the diagrams of the teacher. For this we wish to define a

similarity function which must be able to produce the correspondence, the difference and the detection of

errors between these graphs [27]. To meet these different objectives, we studied the comparison of graphs

using graph matching techniques and measures of node similarity. We will therefore build on our existing

work on graph similarity measures to build our own method.

3.1. Matching approaches to graphs

Different matching approaches have been defined and applied as graph isomorphism [28] which

allows to check if two graphs are structurally identical. The subgraphs [29] which allows you to check if a

graph is included in another graph. The search for a larger common subgraph [30] and the calculation of the

graph editing distance [31]. The problem of these matching was considered a complete NP and difficult NP

problem. With the exception of graph isomorphism, complexity is not clearly defined. We have studied

another technique, which consists in implementing a similarity measure and looking for matching [32].

We focused on vertice and edge level approaches [33]. The comparison of several elements of the

graphs is based in particular on the evaluation of their similarity or their differences, then it consists in

identifying and qualifying their common points. This study proposes a comparison of two graphs, for each

vertex and edge of a graph are paired with several vertices and egdes of the other graph. The matching of the

vertices will be defined thanks to the calculation of the similarity measure. The couples that have maximum

similarity will be selected and stored in a correspondence matrix as shown in Figure 3.

Figure 3. Example of a graph matching

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1582

We have defined our method as a matching system that follows three sequential steps. The first is a

step of preprocessing the input diagrams, each class diagram will be transformed into a graph. The second is

the matching process, it allows you to calculate similarities to each pair of elements. And the third returns as

a formative evaluation of their paired elements with a list of differences and errors, and a summative

evaluation to classify the compared diagrams.

3.2. Similarity measure

The comparison of two graphs is the task of identifying the semantic correspondences between the

elements of two graphs [34]. This correspondence can be quantified in terms of similarity scores, which

indicate the proximity of the two graphs. Therefore, their similarities and differences must be precisely

quantified to have an exact match. The task takes time because comparing two graphs to assess their

similarity is a kind of combinatorial problem generally called graph matching problem [35]. Therefore, an

efficient comparison algorithm is necessary to avoid the complexity of the method and to provide an

acceptable solution. Indeed, we improve this comparison by introducing one more metric and by revisiting

the definitions of existing ones. Each time the couple is compared, a similarity measure is calculated, and is

stored in the similarity matrix [36]. Finally, a mapping is determined and extracts the correspondences and

the differences resulting from the comparison of the two diagrams as well as the proposal of the corrections

of the errors committed by the students.

The properties which are relevant for the similarity of two nodes of the same type are either given

by their attributes (for example the names), or by other nodes in the neighborhood of these nodes. We use a

set of comparison functions to determine the similarity between two nodes. These functions compare two

properties of the same type belonging to different nodes. They return a value between 0 and 1, a value of 0

means no similarity between the nodes, a value of 1 expresses equality [37].

Obviously, some properties are more relevant to the similarity of nodes than others. Therefore,

weights and thresholds, which are external resources used by the matching process, must be assigned to each

property. They are all configurable and can be adapted as required. The weights and thresholds should be

chosen based on the semantics of the UML graph type and based on what users see as a significant change.

For each specific type of UML graph, a configuration file describes the similarity properties relevant

of UML graph elements. Two elements of the same type are compared using a comparison function which

returns a value between 0 and 1. The comparison function can be defined criteria for each type of element.

The criteria take into account some parts of the elements depending on the types, and the actual structure of

the compared UML graphs. The values of the different criteria are weighted, and the similarity value is

calculated by addition, as can be seen in the following formula [38]:

𝑆𝑖𝑚 (𝑒1, 𝑒2) = ∑ sc × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑐(𝑒1, 𝑒2)c ϵ C

where :

e1 and e2 are the elements to compare;

C is the set of criteria;

sc is the threshold for criteria c;

comparec is the comparison function for criteria c.

The total similarity of two elements is assessed according to the elements they contain. If the

elements admit relationships with each other, the evaluation of their similarities can be taken into account

during calculation. The weight values are assigned and weighted by the user. Total similarity is calculated by

the following formula:

𝑆𝑖𝑚𝑡𝑜𝑡𝑎𝑙(𝑒1, 𝑒2) = ∑ pi × 𝑠𝑖𝑚𝑖(𝑒1, 𝑒2)i ϵ TS

where: TS is the set of similarity types; pi is the weight of the similarity types i.

Table 1 presents an example of the assignments of thresholds and weights by the user to have a

syntactic, structural and semantic comparison.

− x, y and z are the weights values, such that x + y + z = 1

− Let x = 0.5, y = 0.25 and z = 0.25, the syntactic similarity measure has a high weight compared to

structural and semantic similarity

− a, b and c are the thresholds values of name, visibility and abstraction, such as a + b + c = 1

− e, f and g are the thethresholds values of the name, type and visibility, such that e + f + g = 1

− k, l and m are the thethresholds values of the association, the association end, and the inheritance

− such that k + l + m = 1.

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1583

Table 1. Comparison criteria
Type of node Weight Criterion Threshold

Class x

Similarity of the name attribute a

Equal value of the visibility attribute b
Equal value of the isAbstract attribute c

Attribute & Operation y

Similarity of the name attribute e

Equal value of the type attribute f
Equal value of the visibility attribute g

Association z

Class element neighbor similarity k

Association end element neighbor similarity l
Inheritance element neighbor similarity m

4. COMPARISON FUNCTIONS FOR SYNTACTIC, STRUCTURAL AND SEMANTIC

SIMILARITY

The similarity assessment tool has a set of comparison rules, which have different aspects so that

their matches and differences are better assessed [39]. Indeed, the comparison rules are expressed as follows:

− Syntactic similarities functions are used to measure the lexical similarity (names of classes, names of

attributes, etc.) between compared elements

− Structural similarity functions are used to measure the similarity of properties (characteristics of attributes

and operations, etc.) of the compared elements

− Semantic similarity functions are used to measure the similarity of the relations of the compared elements

with their neighbors.

In the three types of comparisons, the concepts (class names, attribute names, operation names, and

names of relationships between classes) are compared according to their syntactic similarity between two

strings using their editing distance, and the domain of ontology, as well as other resources such as

dictionaries (synonyms and hyponyms) [40]. This comparison is appropriate for measuring the similarity

between the strings which may contain typos, acronyms, misspellings, etc. [41].

There are a number of measures proposed in the literature to measure the semantic similarity

between two concepts. Some of these measures are based on the notion of information content (Resnik,

1995), while others are based on the length of the path [42]. These measures are simple and their success

consists simply in measuring the conceptual distance between two concepts in the hierarchy of concepts [43].

4.1. Syntactic comparison functions

The syntactic similarity measure identifies the syntactic identity of two elements (classes, attributes,

operations and relationships). Consequently, our evaluation of syntactic similarity is based both on a

comparison of named elements similar to those defined in [44], by invoking a comparator of character strings

for each pair of names to be compared. It searches for common substrings between two strings of two

elements. It calculates the editing distance for each pair and returns a maximum similarity value [45]. Special

characters and separators are ignored. Each comparator memorizes the elements it compares. The calculated

similarity measures are identified in correspondence matrices to avoid recalculating them when comparing

other auxiliary elements [46]. If the syntactic similarity measure of these elements has already been

compared and they participate in other similarity measure then the existing comparator of these elements is

consulted. The syntactic similarity measure is quantified using a set of similarity metrics defined as follows

[47]:

a. Similarity measure between the names of two classes C1 and C2 and according to their visibility and their

abstraction:

𝐶𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝐶1, 𝐶2) = snc × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑛𝑐(𝐶1, 𝐶2) + sv × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑣(𝐶1, 𝐶2) +

sa × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑎(𝐶1, 𝐶2) (1)

− snc, sv represent arbitrary thresholds assigned to the similarity of classes names, visibilities and

abstractions, respectively.

− comparernc(C1,C2), comparev(C1,C2) and comparea(C1,C2) represent the comparison functions assigned

to the similarity measure of the classes names, visibilities and abstractions, respectively.

b. Similarity measure between the names of two attributes A1 and A2, according to their visibility and their

abstraction:

𝐴𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝐴1, 𝐴2) = sna × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑛𝑎(𝐴1, 𝐴2) + sv × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑣(𝐴1, 𝐴2) +

st × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑡(𝐴1, 𝐴2) (2)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1584

− sna, sv and st represent arbitrary thresholds assigned to the similarity of the names of the attributes,

visibilities and types, respectively.

− comparerna(A1,A2), comparev(A1,A2) and comparet(A1,A2) represent the comparison functions assigned

to the similarity measure of the attributes names, visibilities and type, respectively.

c. Similarity measure the between the names of two operations O1 and O2, according to their visibility and

their type:

𝑂𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝑂1, 𝑂2) = sno × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑛𝑜(𝑂1, 𝑂2) + sv × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑣(𝑂1, 𝑂2) +

st × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑡(𝑂1, 𝑂2) (3)

− sno, sv and st represent arbitrary thresholds assigned to the similarity of the names of the operations,

visibilities and types, respectively.

− comparerno(O1,O2), comparev(O1,O2) and comparet(O1,O2) represent the comparison functions

assigned to the measure similarity of operations names, visibilities and abstractions, respectively.

4.2. Structural comparison functions

Structural similarity measure that we propose focuses on syntactic similarity measure of all named

elements between class diagrams. Indeed, structural similarity calculus uses the comparator of the classes

names, attributes and operations of these classes. The result of the calculation will be qualified using a set of

similarity metrics defined as follows:

− Similarity measure between the names of two classes C1 and C2, according to their visibility and their

abstraction as determined by (1).

− Similarity attribute measure between two classes C1 and C2 is similarity measure between two sets of

attributes, A1 and A2, respectively, defined as follows:

𝑆𝑖𝑚𝑎𝑡𝑡(𝐶1, 𝐶2) =
max[∑ 𝐴𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝑎𝑘,𝑏𝑙)

|𝐴1|
𝑘=1]

|𝐴2|
 (4)

ak ∈ A1 and bl ∈ A2, |A1| ≤ |A2|. Similarity syntactic ASimsyntax(ak , bl) between two attributes ak and bl is

calculated on the basis of their syntactic similarity as defined in (2).

− Similarity operation measure between two classes C1 and C2 is similarity measure between two sets of

operations, O1 and O2, respectively, defined as follows:

𝑆𝑖𝑚𝑜𝑝(𝐶1, 𝐶2) =
max[∑ 𝑂𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝑜𝑘,𝑝𝑙)

|𝑂1|
𝑘=1]

|𝑂2|
 (5)

ok ∈ O1 and pl ∈ O2, |O1|| ≤ |O2|. Similarity syntactic OSimsyntax(ok , pl) between two operations ok and pl

is calculated on the basis of their syntactic similarity as defined in (3).

In abstract form, the calculation of structural similarity measure (C1,C2) is carried: pc, pa and po

represent arbitrary weights assigned to the similarity measure of the classes names, attributes and operations,

respectively.

𝑆𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡(𝐶1, 𝐶2) = pc × 𝐶𝑆𝑖𝑚𝑠𝑦𝑛𝑡𝑎𝑥(𝐶1, 𝐶2) + pa × 𝐶𝑆𝑖𝑚𝑎𝑡𝑡(𝐶1, 𝐶2) +

po × 𝐶𝑆𝑖𝑚𝑜𝑝(𝐶1, 𝐶2) (6)

The calculus of the structural similarity measure of two classes C1 and C2, is the sum of the syntactic

similarity of the classes names, syntactic similarity of their attributes and syntactic similarity of their

operations, respectively CSimsyntax(C1,C2), Simatt(C1,C2) and Simop(C1,C2). For example, the linked classes

names are compared and matched to each other and the class attributes in a class diagram are compared and

matched with the class attributes in the other diagram, etc.

4.3. Semantic comparison functions

Semantic similarity measure is determined by analyzing the direction in the elements and structure

of diagrams. The relation of two classes implies the properties propagation from class mother to the child

classes. A change in the direction of a relation between two classes, or replacement of relation type by

another type, strongly modifies the semantics of the diagram [48]. We propose the calculation of the semantic

similarity measure using three measures:

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1585

− The neighbor similarity measure which takes into account the comparison of the neighboring classes

invokes a comparator of its structural similarity which was taken into account in the calculation phase for

the matching of the structural similarity measure as defined in (2)

− The relationships similarity measure which takes into account the relationship name, the relationship type,

the multiplicity, and the meaning of directed relationships

− The measure of similarity of inheritances which takes into account more particularly their numbers of

roots, leaves, classes inheriting in a multiple way.

The semantic similarity measure is quantified using a set of similarity metrics defined as follows:

− The neighborhood similarity measure calculates the neighborhood similarity of two classes C1 and C2,

having the two sets of neighbors V1 and V2, respectively, as follows:

𝑆𝑖𝑚𝑣𝑜𝑖𝑠𝑖𝑛(𝐶1, 𝐶2) =
𝑚𝑎𝑥[∑ 𝑆𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡(𝑚𝑘,𝑛𝑙)

|𝑉1|
𝑘=1]

|𝑉2|
 (7)

mk ∈ V1 et nl ∈ V2, |V1| ≤ |V2|. The Simstruct similarity Simstruct(mk , nl) between two neighborhoods mk

and nl is calculated on the basis of their structural similarity.

− Relation similarity measure between the compared classes and their neighbors Simrelation (C1,C2) is

measured as weighted similarity of the comparison function of the association end type, the comparison

function of the association name and the comparison function of the multiplicity. The relationship

similarity measure is defined as follows:

𝑆𝑖𝑚𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝐶1, 𝐶2) = 𝑠𝑟𝑡 × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑟𝑡(𝑚𝑘 , 𝑛𝑙) + 𝑠𝑟𝑛 × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑠𝑟(𝑚𝑘, 𝑛𝑙) +
𝑠𝑟𝑚 × 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑠𝑚(𝑚𝑘, 𝑛𝑙) (8)

where srt, srn and srm represent arbitrary thresholds assigned to the types similarity of the association end,

the names of the associations and multiplicities of the association end, respectively. comparert(mk, nl),

comparern(mk, nl) and comparerm(mk,nl) represent the comparison functions assigned to the names of

associations, the types and multiplicities of association end similarity measure, respectively. Semantic

similarity measure measures the similarity of two classes C1 and C2, as similarity weighted by user-

defined weights, is the sum of the neighborhood similarity measure, relationship similarity measure, and

similarity measure inheritance [49]. The semantic similarity measure is defined as follows:

𝑆𝑖𝑚𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝐶1, 𝐶2) = pv × 𝑆𝑖𝑚𝑣𝑜𝑖𝑠𝑖𝑛(𝐶1, 𝐶2) + pr × 𝑆𝑖𝑚𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐶1, 𝐶2) + ph ×
 𝑆𝑖𝑚ℎé𝑟𝑖𝑡𝑎𝑔𝑒(𝐶1, 𝐶2) (9)

where pv, pr and ph represent arbitrary weights assigned to the neighborhood similarity measure,

relationship similarity measure and inheritance similarity measure, respectively.

− The inheritance similarity measure is defined as follows:

𝑆𝑖𝑚 ℎé𝑟𝑖𝑡𝑎𝑔𝑒(𝐶1, 𝐶2) =
max[∑ 𝑆𝑖𝑚𝑠𝑡𝑟𝑢𝑐𝑡(𝑔𝑘,ℎ𝑙)

|𝐻1|
𝑘=1]

|𝐻2|
 (10)

gk ∈ H1 and hl ∈ H2, |H1| ≤ |H2|. The similarity Siminheritance(gk , hl) between two neighborhoods gk and hl is

calculated on the basis of their structural similarity.

4.4. Weight setting

Our goal is to select the most appropriate weights automatically to detect matches, so that each class

in a given class diagram corresponds to the most similar class in the other class diagram, based on the value

of similarity. Indeed, we have carried out a series of experiments for collaboration in matters of weight. Each

compared element must be assigned a weight which allows it to capture the similarity between these

elements. The weight assignments of the constituents of the similarity measure are crucial for the accuracy of

the metric. In this context, we consider that all close pairs with certain weights are similar, and that all less

similar pairs are not a like. The weights of the similarity measures composed of n constituents are assigned

values from 0 to 1 updated by 0.05, such as, 𝑤𝑥1 + 𝑤 𝑥2+ . . . + 𝑤𝑥𝑛 = 1. The weights are then assigned in

the same way illustrated by the above pseudo-code [50]:

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1586

Algorithma 1: Evaluation of the semantic similarity measure
for pv = 0:0 ≤1 do

 for pr = 0:0 ≤ 1 − pv do
 for pg = 0:0 ≤ 1 − (pv + pr) do
 find 𝑆𝑖𝑚𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 between UML graph classes G1 and G2

evaluate the matching between the UML graph classes of G1 and G2

 end for

 end for

end for

A pair of class diagrams was chosen at random. The weights are then assigned in the same way as

the pseudo-code above. For each weight assignment, the similarity measure for each pair of classes in the two

diagrams is calculated and added to the correspondence matrix. Each class in the unmatched class diagram in

the other diagram is found. The weight setting that gives the best match result is used to match the other pairs

in the diagram.

5. RESULTS AND DISCUSSIONS

In the previous section, we adapted the similarity measure between UML graphs to our own

educational context. We have shown how our matching method is applied for the comparison of UML graphs

and how its results are used to provide automatic corrections. We will now detail the actual implementation,

put in order the different functionalities of our method and assess the quality of the results produced.

This matching method was developed for the needs of standardizing the formalism of the diagrams

to be compared, syntactic validation, experimentation and reuse. We have chosen a representation of class

diagrams in the UML meta model. This method is thus capable of measuring the similarities between several

UML class diagrams, detecting differences, correcting errors and matching class diagrams. The results

obtained (lists of syntactic and structural errors, identified differences, errors) in the form of a textual report,

enabled us to carry out a summative evaluation starting from the sole achievement of the learner.

5.1. Assessment of class diagrams

The class diagrams modeled by learners were imported into our learning base, over three different

exercises. Each exercise took place during a 1.5-hour continuous monitoring session on students second year

Engineering computer science. The objective of these control sessions is to model class diagrams

theoretically from a textual statement describing the speciations to be represented. The UML class diagrams

constructed by the learners were corrected by the teacher for further analysis. We thus have at our disposal

sixty-four class diagrams. Some diagrams, products may appear incomplete because some students have just

had time to start the exercise or learners have not had enough time to do all the exercises requested during the

control session.

We evaluated the relevance and the quality of the results produced by our method on a corpus of

hundred class diagrams produced by the learners. From this corpus of diagrams, and a reference diagram for

each exercise, we have chosen three exercises to configure and evaluate the system offline. We first

improved the criteria involved in the calculation of the similarity functions and the general functioning from

UML class diagrams constructed by the learners for the first exercise. Then, we tested and optimized the

method on the second group of class diagrams from the second exercise. Some inconsistencies were

identified and corrected, taking care not to degrade the quality of matching of the first test. Finally, the third

group served to validate the method without any modification of the criteria.

5.2. Offline assessment

In this subsection, we present the results of the offline assessment in the form of histograms for the

three exercises. The diagrams are numbered at the level of the abscissa axes. To study the intensity of the link

that may exist between results of matching similarity obtained by a method score and the scores assigned by

the teacher; we will study the linear correlation between these two variables. The linear correlation is then

measured by calculating the linear correlation coefficient. This coefficient is equal to the ratio of their

covariance and the not null product of their standard deviations.

To be able to measure the quality and relevance of the matching produced by the system, we

compared the results found with those it actually finds. For the first exercise, we have found a correlation

coefficient equal to 0.83. We note in Figure 4 some production does not conform to the results provided by

the teacher. For the second exercise in Figure 5, we found a correlation coefficient equal to 0.98 and 0.96 for

the third exercise as shown in Figure 6.

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1587

Figure 4. First exercise graph matching

Figure 5. Second exercise graph matching

Figure 6. Third exercise graph matching

5.3. Experimental results and analysis

The application of the three quality measures to the results of all three exercises is shown in Table 2.

The indicative calculation times of the system were performed on an Intel Xeon server with the Linux

operating system and a processor clocked at 2.4 GHz. The results of the system show that on all compared

diagrams, more than 80% of the matching provided conform to those expected whatever the diagrams

compared. For 90% of the diagrams processed, the efforts required to correct the matching are minimal

(Overall value greater than 0.85). The quality of the diagnosis is relatively good on simple and average

problems (diagrams of the first second exercises). It can however be corrected and improved for more

complex problems (diagrams of the third exercise). In particular, more than 85% of the results on average are

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1588

in line with those expected for more than 75% of the diagrams compared for the last exercice. The efforts

required to correct errors and omissions in our method are greater in the last exercise, for just under 40% of

matching diagrams, the Overall is greater than 0.85. However, for 85% of the diagrams, the Overall value is

greater than 0.7 (a result which is still very acceptable in the field of diagram matching).

Table 2. offline evaluation result

Quality measure
Exercice 1

42 diagrams

Exercice 2

25 diagrams

Exercice 3

30 diagrams

Precision = 1 41 25 16

0.85 ≤ Precision < 1 1 0 20

0.7 ≤ Precision < 0.85 0 0 6
Recall = 1 41 20 5

0.85 ≤ Recall <1 0 2 22

0.7 ≤ Recall < 0.85 1 0 16
Overall = 1 41 20 5

0.85 ≤ Overall < 1 0 20 5

0.7 ≤ Overall < 0.85 0 0 22

0.55 ≤ Overall < 0.7 1 0 8

Times (min-max) 0,1 - 0,4 s 0,6 - 0,8 s 0,3 - 0,5 s

6. CONCLUSION

The problem to which we have tried to provide a solution relates to the summative evaluation of

UML diagrams by a semi-automatic method. Indeed, although several systems have already tried to

overcome this problem, they could not detect the errors made by the students, especially since the

comparison is made only with a single solution, or a diagram of class can certainly be represented by several

models. The objective of this paper then, was to develop a semi-automatic system, capable of correcting class

diagrams through a comparison which is carried out thanks to the measurement of syntactic, structural and

semantic similarity in order to find differences and specially to detect errors made by students. We have

focused on the different methods of transforming UML diagrams into graphs, while having recourse to the

different existing formalisms, and which we have been able to adapt to the problem linked to this article. We

started with a study of evaluation as being a fundamental process in the validation of student achievement. At

the end of this study, it was clear to us that the formative evaluation remains the best suited for the problem

to which we are trying to provide a solution.

The results of the system show that 70% of the matches provided are in line with those expected on

all diagrams compared. For 80% of the diagrams processed, the effort required to correct the matching is

minimal (overall value greater than 0.85). The quality of the diagnosis is relatively good on simple and

medium problems (diagrams of the first and the second exercises). In particular, more than 85% of the results

on average are consistent with those expected for more than 75% of the graphs compared for the last

exercice. The efforts required to correct errors is greater in the last exercice: for slightly less than 40% of the

matched diagrams, the overall is greater than 0.85. However, for 85% of the diagrams, the overall value is

greater than 0.7.

For research perspectives, one aspect to consider is that of the classification algorithm with an

automatically generated learning base. This allowed us to carry out a summative and normative evaluation of

the learners' productions. Generally speaking, we will divide the learning base into two main categories, class

diagrams which are correct and class diagrams which are incorrect. Each diagram, of each category, is

labeled according to its status and its degree of simplification. It is this same label which will allow us to

carry out a summative evaluation of the learners' productions. Indeed, a learner's class diagram at a measure

of maximum similarity of a labeled reference diagram will most likely belong to this class of diagrams.

Another perspective is to apply our method to other types of structured models where formalism is defined.

In particular, the method could be reused "directly" on other static models such as models have

characteristics very close to UML class diagrams and can be considered as a subset of UML class diagrams.

REFERENCES
[1] S. Brau-Antony and C. Jourdain, “Évaluer la formation initiale des enseignants,” Évaluer pour former, Outils,

dispositifs et acteurs, p. 191, 2008.

[2] N. S. Shapiro, J. H. Levine, “Creating Learning Communities: A Practical Guide to Winning Support, Organizing

for Change, and Implementing Programs,” Jossey-Bass Higher and Adult Education Series, ERIC, 1999.

[3] J. A. Gottfried, et al., “Appetitive and aversive olfactory learning in humans studied using event-related functional

magnetic resonance imaging,” Journal of Neuroscience, vol. 22, no. 24, pp. 10829-10837, 2002.

Int J Elec & Comp Eng ISSN: 2088-8708

New method for summative evaluation of UML class diagrams based on graph similarities (Outair Anas)

1589

[4] L. Suskie, “Assessing student learning: A common sense guide,” John Wiley & Sons, 2018.

[5] C. M. Chen and Y. L. Li, “Personalised context-aware ubiquitous learning system for supporting effective English

vocabulary learning,” Interactive Learning Environments, vol. 18, no. 4, pp. 341-364, 2010.

[6] A. L. Powers, “An evaluation of four place-based education programs,” The Journal of Environmental Education,

vol. 35, no. 4, pp. 17-32, 2004.

[7] R. D. Crick, et al., “Evaluating the wider outcomes of schools: Complex systems modelling for leadership

decisioning,” Educational Management Administration & Leadership, vol. 45, no. 4, pp. 719-743, 2017.

[8] Y. Xiao and J. Hu, “Assessment of optimal pedagogical factors for Canadian ESL learners’ reading literacy through

artificial intelligence algorithms,” International Journal of English Linguistics, vol. 9, no. 4, pp. 1-14, 2019.

[9] M. Samarakou, et al., “An Open Learning Environment for the Diagnosis, Assistance and Evaluation of Students

Based on Artificial Intelligence,” International Journal of Emerging Technologies in Learning, vol. 9, no. 3,

pp. 36-44, 2014.

[10] M. M. Patchan, et al., “Accountability in peer assessment: examining the effects of reviewing grades on peer

ratings and peer feedback,” Studies in Higher Education, vol. 43, no. 12, pp. 2263-2278, 2018.

[11] M. Tanana, “Evaluation formative du savoir-faire des apprenants à l'aide d'algorithmes de classification: application

à l'électronique numérique,” Thèse de doctorat, INSA de Rouen, 2009.

[12] J. C. Muñoz-Carpio, et al., “Framework to Enhance Teaching and Learning in System Analysis and Unified

Modelling Language,” in 2018 IEEE International Conference on Teaching, Assessment, and Learning for

Engineering (TALE), 2018, pp. 91-98.

[13] C. Larman, “Applying UML and patterns: an introduction to object oriented analysis and design and interative

development,” Pearson Education India, 2012.

[14] N. Medvidovic, et al., “Modeling software architectures in the Unified Modeling Language,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 11, no. 1, pp. 2-57, 2002.

[15] D. Dranidis, “Evaluation of StudentUML: an Educational Tool for Consistent Modelling with UML,” in

Proceedings of the Informatics Education Europe II Conference, 2007, pp. 248-256.

[16] E. Ramollari and D. Dranidis, “StudentUML: An educational tool supporting object-oriented analysis and design,”

in Proceedings of the 11th Panhellenic Conference on Informatics, 2007, pp. 363-373.

[17] D. Dranidis, et al., “Learning and Practicing Systems Analysis and Design with StudentUML,” in Proceedings of

the 7th Balkan Conference on Informatics Conference, 2015, pp. 1-8.

[18] P. Suraweera and A. Mitrovic, “An intelligent tutoring system for entity relationship modelling,” International

Journal of Artificial Intelligence in Education, vol. 14, no. 3, pp. 375-417, 2004.

[19] S. Ohlsson, “Constraint-based student modeling,” in Student modelling: the key to individualized knowledge-based

instruction, pp. 167-189, 1994.

[20] P. Suraweera and A. Mitrovic, “KERMIT: A constraint-based tutor for database modeling,” in International

Conference on Intelligent Tutoring Systems, pp. 377-387, 2002.

[21] L. Auxepaules, et al., “A diagnosis method that matches class diagrams in a learning environment for object-

oriented modeling,” in 2008 Eighth IEEE International Conference on Advanced Learning Technologies, 2008,

pp. 26-30.

[22] Dominique P. Y., et al., “Diagram, a learning environment for initiation to object-oriented modeling with uml class

diagrams,” Journal of Interactive Learning Research, vol. 24, no. 4, pp. 425-446, 2013.

[23] F. Drewes, et al., “Graph transformation modules and their composition,” in International Workshop on

Applications of Graph Transformations with Industrial Relevance, 1999, pp. 15-30.

[24] K. Hölscher, et al., “On translating UML models into graph transformation systems,” Journal of Visual Languages

& Computing, vol. 17, no. 1, pp. 78-105, 2006.

[25] A. Outair, et al., “Towards a semi automatic assessment of UML diagrams by graph transformation,” 2014

International Conference on Multimedia Computing and Systems (ICMCS), 2014, pp. 668-673.

[26] A. Outair, et al., “Towards an automatic evaluation of UML class diagrams by graph transformation,” International

Journal of Computer Applications, vol. 95, no. 21, pp. 36-41, 2014.

[27] A. Outair, et al., “Towards an Automatic Evaluation of UML Class Diagrams by Measuring Graph Similarity,”

Journal of Theoretical and Applied Information Technology, vol. 95, no. 4, pp. 928-935, 2017.

[28] G. L. Miller, “Graph isomorphism, general remarks,” Journal of Computer and System Sciences, vol. 18, no. 2,

pp. 128-142, 1979.

[29] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM symposium

on Theory of computing, 1971, pp. 151-158.

[30] S. Jouili and S. Tabbone, “Graph matching based on node signatures,” in International Workshop on Graph-Based

Representations in Pattern Recognition, 2009, pp. 154-163.

[31] M. Zaslavskiy, et al., “A path following algorithm for the graph matching problem,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2227-2242, 2008.

[32] P. Manuel and S. Klavzar, “A general position problem in graph theory,” Bulletin of the Australian Mathematical

Society, vol. 98, no. 2, pp. 177-187, 2018.

[33] Z. Wang, et al., “Key technology research on user identity resolution across multi-social media,” in 2015

International Conference on Cloud Computing and Big Data (CCBD), 2015, pp. 358-361.

[34] M. Al-Rhman Al-Khiaty and M. Ahmed, “UML class diagrams: Similarity aspects and matching,” Lecture Notes

on Software Engineering, vol. 4, no. 1, pp. 41-47, 2016.

[35] T. I. Lin, et al., “Robust mixture modeling using the skew t distribution,” Statistics and computing, vol. 17, no. 2,

pp. 81-92, 2007.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 2, April 2021 : 1578 - 1590

1590

[36] D. Kuang, et al., “SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering,”

Journal of Global Optimization, vol. 62, no. 3, pp. 545-574, 2015.

[37] Q. Zhang, et al., “Measure the structure similarity of nodes in complex networks based on relative entropy,”

Physica A: Statistical Mechanics and its Applications, vol. 491, pp. 749-763, 2018.

[38] J. Wehren, “Ein XMI-basiertes Differenzwerkzeug für UML-Diagramme,” Dissertation Diplomarbeit, FG PI,

FB12, University of Siegen, 2004.

[39] Y. Tsong, et al., “Development of statistical methods for analytical similarity assessment,” Journal of

biopharmaceutical statistics, vol. 27, no. 2, pp. 197-205, 2017.

[40] S. B. Chaouni, et al., “MDA based-approach for UML Models Complete Comparison,” arXiv preprint

arXiv: 1105.6128, 2011.

[41] M. Keshavarz and Y. H. Lee, “Ontology matching by using ConceptNet,” Proceedings of the Asia Pacific

Industrial Engineering & Management Systems Conference, 2012, pp. 1917-1925.

[42] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” Proceedings of the 32nd annual meeting on

Association for Computational Linguistics. Association for Computational Linguistics, 1994, pp. 133-138.

[43] R. Fauzan, et al., “Class Diagram Similarity Measurement: A Different Approach,” in 2018 3rd International

Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), 2018,

pp. 215-219.

[44] W. W. Cohen, et al., “A comparison of string metrics for matching names and records,” Kdd workshop on data

cleaning and object consolidation, pp. 1-6, 2003.

[45] X. Gou, et al., “Multiple criteria decision making based on distance and similarity measures under double hierarchy

hesitant fuzzy linguistic environment,” Computers & Industrial Engineering, vol. 126, pp. 516-530, 2018.

[46] X. Yuan, et al., “Multi‐similarity measurement driven ensemble just‐in‐time learning for soft sensing of industrial

processes,” Journal of Chemometrics, vol. 32, no. 9, 2018.

[47] N. A. Lester, et al., “You can take a noun out of syntax...: Syntactic similarity effects in lexical priming,” in

Cognitive Science, pp. 2537-2542, 2017.

[48] S. Patwardhan, “Incorporating dictionary and corpus information into a context vector measure of semantic

relatedness,” Dissertation, University of Minnesota, Duluth, 2003.

[49] M. Al-Rhman Al-Khiaty and M. Ahmed, “Similarity assessment of UML class diagrams using a greedy

algorithm,” 2014 International Computer Science and Engineering Conference (ICSEC), 2014, pp. 228-233.

[50] M. Al-Rhman Al-Khiaty and M. Ahmed, “Matching UML class diagrams using a Hybridized Greedy-Genetic

algorithm,” 2017 12th International Scientific and Technical Conference on Computer Sciences and Information

Technologies (CSIT), 2017, pp. 161-166.

BIOGRAPHIES OF AUTHORS

Anas Outair received the engineer degree in computer science and engineering at Abdelmalek

Essaadi University, Morocco. He received his master of telecommunication and system. He

obtained his bachelor of computer science (BS) degree with honors in mathematics and

computer from Sciences and technologies Faculty, Tangier Morocco, in June 2002. His research

interests include learning assessment, UML class diagram metrics, software reuse, and soft

computing.

Mariam Tanana received the engineer degree in computer science from the ENSI engineer

school of Caen (France), in 1990. She received the Ph.D. in computer science from the INSA

engineer school of Rouen (France), in 2009. Currently, she is a professor at the ENSA engineer

school of Tangier (Morocco), UAE University. His research interests include the learner’s

assessment in eLearning.

Lyhyaoui Abdelouahid received the bachelor's degree in electrical engineering from Université

Abdelmalek Essaâdi, Tetouan, Morocco, in 1992, the master degree signal system and radio-

communication from Escuela Técnica Superior de Telecomunicaciones, Universidad Politécnica

of Madrid, in 1996, and the Ph.D. degree from Universidad Carlos III de Madrid, Spain, in 1999.

Between 2000 and 2003 he was a Visiting Professor in Signal Theory and Communications at

Universidad Carlos III de Madrid, Spain. Currently, he is a professor at Ecole Nationale des

Sciences Appliquées of Tangier, Abdelmalek Essaâdi University. His main research interests

include statistical learning theory, neural networks and their applications in multimedia signal

processing and education.

