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 Recently, the internet of things (IoT) has become an important concept which 

has changed the vision of the Internet with the appearance of IPv6 over low 

power and lossy networks (6LoWPAN). However, these 6LoWPANs have 

many drawbacks because of the use of many devices with limited resources; 

therefore, suitable protocols such as the routing protocol for low power and 

lossy networks (RPL) were developed, and one of RPL's main components is 

the trickle timer algorithm, used to control and maintain the routing traffic 

frequency caused by a set of control messages. However, the trickle timer 

suffered from the short-listen problem which was handled by adding the 

listen-only period mechanism. This addition increased the delay in 

propagating transmissions and resolving the inconsistency in the network. 

However, to solve this problem we proposed the history based consistency 

algorithm (HBC), which eliminates the listen-only period based on the 

consistency period of the network. The proposed algorithm showed very 

good results. We measured the performance of HBC trickle in terms of 

convergence time; which was mainly affected, the power consumption and 

the packet delivery ratio (PDR). We made a comparison between the original 

trickle timer, the E-Trickle, the optimized trickle and our HBC trickle 

algorithm. The PDR and the power consumption showed in some cases better 

results under the HBC trickle compared to other trickle timers and in other 

cases the results were very close to the original trickle indicating the 

efficiency of the proposed trickle in choosing optimal routes when sending 

messages. 
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1. INTRODUCTION 

Recently, IoT has become one of the most important fields emerging in the area of wireless sensor 

networks (WSNs). IoT also called the internet of everything or the industrial internet can be thought of as a 

variety of "things" or "objects" such as sensors, actuators, devices, and mobile phones, which by using 

unique addressing schemes, are able to interact with each other and with the end-users to reach common goals; 

creating a new form of communication between objects and people and between objects themselves [1]. This 

concept has been extended to cover a wide range of fields and applications such as transport applications, 

healthcare applications, utility applications, and most importantly Industrial applications [2]. The term, IoT 

was first released in 1999 by Kevin Ashton, who worked in radio frequency identification (RFID) and 

emerging sensing technology field, at Auto-ID center at the Massachusetts Institute of Technology (MIT) [3, 4]. 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:faalbalas@just.edu.jo
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WSNs represent a major factor in constructing the framework of IoT [5]. In WSNs, the sensor nodes 

exchange the data with a base station, which collects and manipulates the received data. These nodes have 

constrained processing abilities, constrained memory capabilities, and restricted power capabilities. These 

constraints make the network design and energy consumption very important challenges of the WSNs, 

therefore, to enable these devices to participate in the IoT standardization and to be fully integrated into the 

overall Internet; organizations and the research community have defined many architectures and protocols 

that are efficient in resource management and usage of constraint devices [6]. 

Hence, the concept of 6LoWPAN emerged, standing for the IPv6 over low power wireless personal 

area network. The 6LoWPAN protocol [7] is used to enable IPv6 packets to be sent to and received from 

over the standard (IEEE 802.15.4) which is universally recognized [8, 10]. 

Routing protocol for low-power and lossy networks (RPL) [11, 12] has many advantages in 

enhancing the overall network lifetime, one of the techniques used in RPL is the trickle algorithm [13]. The 

deployment of the trickle algorithm in IPv6, RPL along with other routing protocols makes it a good 

mechanism in controlling and maintaining the routing traffic frequency caused by a set of ICMPv6 control 

messages, such as DODAG information object (DIO), DODAG information solicitation (DIS), and the 

DODAG destination advertisement object (DAO), which are distributed among the nodes to deliver the right 

information to each node to make them work efficiently within the whole network [13]. 

The trickle timer's ability to control the flow of the RPL messages makes it a good mechanism in 

saving the power consumption of the network. Trickle's main problem was the short-listen problem, where 

the nodes have no time to hear each other sufficiently. This was later solved by adding the listen-only period 

mechanism. Such a period enables trickle to robustly solve the short-listen problem at the expense of 

increasing the latency of the network [14]. In this paper, we introduce a new mechanism as an optimization to 

the trickle timer algorithm that can decrease the latency with no additional overhead. 

The rest of the paper is organized as: Section 2 presents a background to RPL. In section 3, we 

present the related work. Section 4, presents the methodology of the proposed algorithm and the experimental 

design. Section 5, discusses the results. Finally, Section 6 has the concluding remarks and the future work. 

 

 

2. BACKGROUND AND RELATED WORK 

Since RPL routing protocol is mostly used for LLNs, a lot of research has been done on it, and 

mainly on the trickle timer algorithm as an important component of the RPL protocol that controls the 

transmission of the control messages and saves energy [14-17]. An optimized trickle was proposed by 

Djamaa et al. [14], which only focused on the inconsistent state in its modification. The idea was to choose 

random time t, from the interval [0, Imin) rather than the interval [I/2, I). Therefore, it eliminates the listen-

only period from the first interval until reaching a consistent state in the node, while the consistent state will 

choose t from the interval [I/2, I). 

Ghaleb et al. [15] proposed another trickle algorithm called "E-Trickle" in which they show that the 

reason behind minimizing the suppression mechanism is not mainly the absence of the listen-only period, but 

it exists when the nodes ignore to receive control messages from the randomly chosen time t until the end of 

the interval. Therefore, they proposed a new solution for the short listen problem without using the listen-

only period in the trickle algorithm by suggesting three modifications. The first modification was on the 

random time t that was in the standard trickle randomly chosen from the interval [I/2, I] and will be chosen 

from [0, I]. The second modification was the value of counter c that will be set to zero only at the beginning 

of the first interval Imin rather than at the beginning of each interval. However, this will set unequal intervals 

among the nodes, therefore, some nodes will send more messages than others. As a solution they used a 

formula for the value of the redundancy factor k, which will be set depending on the interval size, since the 

interval with short length will have priority to transmit more than the long intervals in case of unequal nodes 

intervals. However, the unfairness will still appear since the formula will be applied rarely. The results 

showed that the convergence time decreased under a different number of nodes, loss rates and different 

values of k. However, they did not notice any change in power consumption or packet delivery ratio (PDR) 

under a different number of nodes, loss rates or different values of k. 

The trickle timer suffers from two main problems, it might consume high power to form a network 

in a short time, or it takes long convergence time with low power consumption. Therefore, Ghaleb et al. [16] 

suggested a new algorithm called trickle-plus. Their goal was to build a network with low power 

consumption and short convergence time. To handle the previous problem another version of trickle was 

proposed in [17], called the "New elastic trickle". The goal of his study was to improve the convergence time 

and the latency of the network. The researchers noticed a relation between the number of neighbors and the 

listen-only period, and came out with the result that when there are small numbers of neighbors the listen-

only period becomes shorter and when the neighbors increase the period increases as well. In Table 1, we 
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summarize the recent related work on the trickle timer showing their methodology, the parameters they take 

into consideration, the strength of their proposed algorithm and the drawbacks. We will explain the proposed 

algorithm in more detail in the next section. 

 

 

Table 1. Summary for some recent related works 
Name of the 
Trickle 

Algorithm 

Idea of the trickle 
Performance 

Measurements 
Strength of the Algorithm 

Drawback of the 

Algorithm 

Optimized 

trickle [14] 
- Choose random time t, from the 

interval  

- [0, Imin) rather than the interval 

[I/2, I) only for inconsistent state 

- Power consumption 

- convergence time 

- PDR 

- Better convergence time than 

the standard trickle 

- No additional overhead 

- PDR not affected. 

- Consumes energy 

 

 
E-Trickle 

[15] 
- Chose random t from [0, I]. 

- Set c to zero only at the 

beginning of the first interval 

Imin 

- Use a formula for the value of 

the redundancy factor k 

- Power consumption 

- convergence time 

- PDR  

 

- Convergence time decreased 

under different number of 

nodes, loss rates and different 
values of k 

- Less consumed power because 

of reduction in the probability 

of collisions. 

- PDR not affected. 

- Set unequal 

intervals among 

the nodes, 
therefore, some 

nodes will send 

messages more 
than others 

Trickle-plus 

[16] 
- Permit the algorithm to start 

from min time, move ahead to a 

specific interval needed to be 
reached without moving during 

unnecessary intervals 

 

- Power consumption 

- convergence time 

- Load balancing 

- Less convergence time 

 

 

- Load balancing 

and high traffic 

overhead problems 

Elastic 

Trickle [17] 
- They noticed a relation between 

the number of neighbors and the 

listen only period 

- Convergence time 

- Traffic overhead 

- Power consumption 

- Better convergence time - Increase in the 

traffic overhead 

- Increase in power 

consumption 

Trickle-F 

[18] 
- Added the priority factor s to the 

original algorithm that gives 

higher priority of transmission 

for nodes who spend a long time 
waiting to transmit in the 

previous interval. 

- Power consumption 

- convergence time 

- Load balancing 

- Better routes were discovered 

with less number of nodes and 

the same average of power 

consumption. 

- Solved the load balance 

problem 

- Long Convergence 

time 

Adaptive 

Trickle [19] 
- Make a dynamic trickle timer 

parameter that meets the needs 

when the power is very low and 
in safe mode 

- Power consumption 

- convergence time 

- Small values of Imin cause 

high power consumption and 

sending rates with low 
convergence 

- Higher values of Imin found 

better in terms of convergence 

- When the k value increases 

the convergence time 

decreases and the power 

consumption increases 

- Used test bed 

methods with high 

cost 

FL- Trickle 

[20] 
- The flexible trickle algorithm 

(FL-trickle) based on the 

transmission time and the 

intervals that specify the period 
of data delivery.  

- Convergence time 

- Overhead 

- Energy consumption 

- Network lifetime. 

- fixed transmission time to I/2 

- decrease the delay of control 

messages transmission and to 

make the algorithm faster in 
terms of convergence time 

- Short simulation 

time 

- Minimum number 

of nodes used 

 

 

3. METHODOLOGY AND EXPERIMANTAL DESIGN  

In this work, an optimized algorithm for the trickle timer was proposed called "history-based 

consistency (HBC) algorithm for the trickle-timer with low-power and lossy networks". The HBC algorithm 

was proposed to solve some of the problems that the standard trickle timer suffers from, in our case the 

listen-only period mechanism problem. The listen-only period in the standard trickle timer is the first half 

time of the interval where nodes keep listening and receiving messages from their neighbors having no ability 

to transmit, during the second half of the interval the nodes begin to transmit. However, using the listen-only 

period mechanism as a solution for the short-listen problem comes at the expense of increased delay in 

resolving the inconsistency. This will also affect the convergence time of the network [21]. In our proposed 

algorithm, we try to overcome this problem, by eliminating the time the node takes to wait until it can transmit 

which means we eliminate the listen-only period, however, this elimination is based on some conditions. 
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To understand the history-based consistency (HBC) algorithm we will explain how it works: 

 First, it starts by setting the interval (I) of a node uniformly to a random value within the range [Imin, 

Imax], usually it sets the first interval to a value of (Imin). 

 At the beginning of the interval (I), trickle resets the counter (c) to 0 for each node, which is used to keep 

track of the number of receiving consistent messages within the current interval (I). 

 Then it assigns a random value to the time (t) within the range [I/2, I]. 

 Whenever a new consistent or redundant message is received, the counter (c) is incremented by one and the 

node is in a consistent state, and a new variable "hC" is incremented by one to count the number of 

consistent states of the node, and a variable called the "history_Counter" is also incremented by one to 

count the number of consistent and inconsistent states. 

 Else if the message is old or new to the node's data, then the node will be in an inconsistent state, and a 

variable "hInc" is incremented by one to count the number of inconsistent states, and the "history_Counter" 

variable is also incremented by one. Then the interval (I) is reset to (Imin), and a new interval starts from 

step 2. 

 In time (t), if the counter (c) is greater than or equal to the redundant constant (k), trickle suppresses the 

transmission; otherwise the message will be transmitted. 

 When the interval (I) expires, trickle doubles the size of the interval (I = I*2), if the size exceeds the 

maximum interval (Imax), trickle sets (I) to (Imax) and re-executes the steps from step 2. 

 All the above steps are repeated for each node until the variable "history_Counter" reaches the value of 

"10", therefore, the above steps are repeated for ten times. We have experienced more than one value (5, 7, 

10, 15, 20), and based on experience the value ten gave us the best results.  

 When reaching step 2 after the tenth time, the trickle resets the counter (c) to 0. 

 Then trickle checks if the value of (hC) is greater than the value of (hInc) then the node was mostly in a 

consistent state, and so the time (t) will be chosen randomly from the range [0,I], so we eliminate the 

listen-only period and the node will transmit immediately without listening. 

 However, if the value (hC) is smaller than the value (hInc) then the node was mostly in an inconsistent 

state, therefore, the time (t) will be chosen randomly within the range [I/2, I]. Hence, to keep track of the 

inconsistent messages we keep the listen-only period of the first half of the interval. 

The flow of the HBC algorithm is shown in Figure 1. We modified the standard trickle timer 

algorithm where "+" means a new code was added to the standard algorithm, and each "-" means the old code 

was eliminated from the standard algorithm. 
 

 

 
 

Figure 1. History-based consistency (HBC) algorithm 
 

 

In our experiments we used the Cooja [22, 23] simulator, it provides a real environment to build our 

WSN with different types of motes, such as Tmote Sky, MicaZ and others, different sizes of networks could 

be implemented, and it also allows to upload the code to any mote to make it function different than other 

motes in the same network. The experiments consisted of 25, 50, 80, 100, 120 nodes, classified as sparse, 

moderate and dense network respectively. The nodes were placed in a random topology under (100 m*100 m) 

dimensions. Random topology means that the nodes are placed randomly with different distances between them. 
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The simulation for each experiment lasted 900 seconds (15 minutes) and each experiment was 

repeated 3 times with different seeds to get accurate results of the performance measurements as used in [16]. 

The transmission (TX range) and interference ranges (INF range) of each node were 50 m. The transmission 

success ratio (TX ratio) was 100% with different loss rate (RX ratio) values (0%, 20%, 40%, 60% and 80%). 

The RX value gives an indication of the loss rate of the sent messages, therefore, if we need to study the 

network under 60% loss rate, for example, the RX value must be 40%, because 100% − 60% = 40%. The 

objective function used was the default the minimum rank with hysteresis objective function (MRHOF) in 

selecting the preferred parent to build routes of high quality links. These configuration parameters of the 

simulation are clarified in Table 2. 

 

 

Table 2. COOJA simulation parameters [16] 
Parameters Values 

Operating system CONTIKI 3.0 [24] 
Simulator COOJA 

Nodes type Tmote Sky 
MAC/adaptation layer ContikiMAC/6LowPAN 

Routing protocol RPL 
Radio environment Unit disk graph medium (UDGM) 
Number of nodes 25, 50, 80, 100, 120 
Simulation duration 900 seconds (15 minutes) 

Data packet rate 60 seconds 
Transmitting success ratio (TX) 100% 

Simulator speed limit Unlimited 

Imin/Imax 212/220 
Network topology Random/Grid 
Objective function MRHOF 

 

 

We used different topologies in our work, in these topologies, the network nodes are positioned in 

fully random topologies to analyze the convergence time, energy consumption and PDR in each of them, in 

order to evaluate the performance of the proposed trickle from different aspects:  

 

3.1.  Convergence time 

The convergence time is the most important metric in our study, it indicates the time when the last 

node joins the network, and it is measured in seconds (s) or milliseconds (ms) and achieved once all the 

routing protocol information has been distributed to all the nodes participating in the network. 

 

3.2.  Power consumption 

The power consumption represents the consumed energy of the nodes within some period of time to 

accomplish a specific task [25]. It is measured in (MW). The lower the consumed power is, the better the 

performance of the network. Figure 2 (in Appendix) shows the simulation scenarios. 

 

 

4. RESULTS AND DISCUSSION  

In our experiments, we compared the proposed algorithm (HBC) with three exited algorithms, 

which are the original trickle timer [14], the E-Trickle [15], and the optimized trickle [16]. In Figure 3 shows 

comparison between the four trickle algorithms has been made, but using the grid topology for the nodes. We 

can notice that here also the original trickle timer has the highest convergence time, and therefore it is the 

slowest in building up the DODAG. The lowest convergence time was given by our proposed HBC trickle 

algorithm with an average improvement of 48.38% compared to the original trickle algorithm, and the  

E-Trickle gave better results than the optimized for all the node densities. 

In Figure 4 we did the same experiments, but for random topology, and it is clear that the Power 

consumption for all trickle algorithms was very similar to the original trickle. As explained before, the 

similarity in power consumption indicates the efficiency of the proposed trickle algorithms in choosing 

optimal routes just as the original trickle but in less time. We also notice that for 80 nodes the HBC trickle 

gave slightly better results. It is also clear that increasing the number of nodes increases the average energy 

consumption; this is resulted by the increment of node neighbors, which increases the traffic overhead and 

the probability of collisions, which as a result increases the power consumption by retransmission. 

In Figure 5 we show a comparison between the four algorithms: the original, the optimized, the  

E-Trickle and our proposed HBC algorithm, in terms of Power consumption in a grid topology. It was 

noticed that for 50 and 25 nodes the power consumption was very similar to the original trickle. The fact that 
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they are identical in terms of power consumption indicates that the proposed algorithms were very efficient in 

choosing optimal routes just as the original trickle but in less time. We also noticed that for 80, 100 and 120 

nodes the HBC trickle consumes slightly less energy. This is because when the number of nodes increases in 

the same area size, the communication becomes faster and the same message is sent from more than one 

neighbor, causing the counter c value to become more than the value of k in a faster time. It is also clear that 

increasing the number of nodes increases the average energy consumption; this is resulted by the increment 

of node neighbors, which increases the traffic overhead and the probability of collisions, which as a result 

increases the power consumption by retransmission. 

In Figure 6, we did the same experiments but for random topology, and it is clear that the Power 

consumption for all trickle algorithms was very similar to the original trickle. As explained before, the 

similarity in power consumption indicates the efficiency of the proposed trickle algorithms in choosing 

optimal routes just as the original trickle but in less time. We also notice that for 80 nodes the HBC trickle 

gave slightly better results. It is also clear that increasing the number of nodes increases the average energy 

consumption; this is resulted by the increment of node neighbors, which increases the traffic overhead and 

the probability of collisions, which as a result increases the power consumption by retransmission. 

 

 

 
 

Figure 3. A comparison of the convergence time for (25, 50, 80, 100 and 120) nodes, between the original 

trickle, the optimized trickle, the E-Trickle and the HBC trickle, for the random topology. 

 

 

 
 

Figure 4. A comparison of the power consumption of (25, 50, 80, 100 and 120) nodes, between the original 

trickle, the optimized trickle, the E-Trickle and the HBC trickle, for random topology 

 

 

 
 

Figure 5. A comparison of the power consumption for (25, 50, 80, 100 and 120) nodes, between the original 

trickle, the optimized trickle, the E-Trickle and the HBC trickle, for the grid topology 
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Figure 6. A comparison of the power consumption for (25, 50, 80, 100 and 120) nodes, between the original 

trickle, the optimized trickle, the E-Trickle and the HBC trickle, for random topology 

 

 

5. CONCLUSION  

In our work, we proposed an optimized trickle timer algorithm (HBC). And it mainly focused on 

handling the listen-only period based on the consistency and inconsistency of the network. We tested the 

algorithm under three measurement metrics which are the convergence time of the network and the power 

consumption. We compared our work with the original trickle, the optimized trickle and the E-Trickle 

algorithms, the simulation result showed that our proposed algorithm gave better results in terms of the 

convergence time of the network with an average improvement of 48.38% for random topologies. As for the 

power consumption the proposed algorithm gave the same results as the original algorithm for medium 

density networks, but for high density networks it even gave slightly better results 

The same experiments and comparison for grid topology for different loss rates. The best 

performance was always gained when the loss rate was low. In terms of convergence time, the HBC gave an 

average improvement of 49.14%. In terms of power consumption, the results were in most cases better for the 

proposed trickle.  

 

 

APPENDIX 

 

 

   
(a) (b) (c) 

   

  
(d) (e) 

 

Figure 2. Simulation scenarios, (a) Random topology with 25 nodes, (b) random topology with 50 nodes,  

(c) random topology with 80 nodes, (d) random topology with 100 nodes, (e) random topology with 120 nodes 
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