
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 10, No. 5, October 2020, pp. 4671~4678 

ISSN: 2088-8708, DOI: 10.11591/ijece.v10i5.pp4671-4678      4671 

  

Journal homepage: http://ijece.iaescore.com/index.php/IJECE 

An efficient hardware logarithm generator with modified 

quasi-symmetrical approach for digital signal processing  
 

 

Minh Hong Nguyen  
Le Quy Don Technical University, Vietnam 

 

 

Article Info  ABSTRACT  

Article history: 

Received Oct 18, 2019 

Revised Mar 24, 2020 

Accepted Mar 31, 2020 

 

 This paper presents a low-error, low-area FPGA-based hardware logarithm 

generator for digital signal processing systems which require high-speed,  

real time logarithm operations. The proposed logarithm generator employs 

the modified quasi-symmetrical approach for an efficient hardware 

implementation. The error analysis and implementation results are also 

presented and discussed. The achieved results show that the proposed 

approach can reduce the approximation error and hardware area compared 

with traditional methods. Keywords: 

FPGA 

Logarithm generator 

Quasi-symetrical approach 

Copyright © 2020 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Minh Hong Nguyen,  

Le Quy Don Technical University,  

236 Hoang Quoc Viet Str., Hanoi, Vietnam. 

Email: nguyenhaihong2007@yahoo.com.vn 

 

 

1. INTRODUCTION  

Many real-time digital signal processing (DSP) applications such as digital communication systems, 

speech recognition, image processing, etc. require logarithm operations with high speed and moderate 

accuracy. The hardware implementation of the logarithm function has great significance to ensure  

high-speed, low-power logarithm computation so that it can be used for the applications with real-time 

requirements. However, the hardware implementation usually leads to a higher hardware complexity 

compared with the software based implementation. Hence, we have to consider the hardware resource 

efficiency and complexity to archive a good trade-off between them. Since the hardware implementation of 

logarithm function is normally very complex and requires much time while real-time DSP applications do not 

require absolute precision, we often use approximation methods to implement the logarithm generators. 

Moreover, for the systems imploying the logarithmic number system (LNS) or the hybrid number system 

(HNS), it is desired to implement the efficient linear binary to logarithm converters (LOGC) as well as  

the logarithm to linear binary converters (ALOGC: anti-logarithmic converters). For example, as reported  

in [1-4], in the typical implementation of HNS processors dedicated for the 3-D graphic processing, the total 

area of LOGC/ALOGC part is 64% of the chip area. Therefore, many researchers are trying to reduce  

the hardware complexity of these converters. On the other hand, the trend of approximate computing becomes 

popular recently to meet ther requirement of real-time DSP and artificial intelligence applications [5-13].  

The purpose of this research is to find an improved approximation method for the implementation of a low 

complexity, high speed hardware logarithm approximation method which can be applied for real-time DSP 

applications with acceptable computation accuracy.  

The remainder of the paper is organized as follows. Section 2 introduces briefly about the basics of 

logarithm hardware approximation methods. Section 3 presents the proposed method and implementation 

results. Finally, Section 4 concludes of the paper. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 10, No. 5, October 2020 :  4671 - 4678 

4672 

2. BINARY LOGARITHM HARDWARE APPROXIMATION 

Firstly, without lost of generality, we consider an unsigned number N to compute the binary (base-2) 

logarithm and it can be decomposed as: 

 

2 (1 )nN x 
 (1) 

 

where n can be determined by detecting the position of the most significant ‘1’ bit of N in the binary 

representation. Moreover, the range of x, the fraction value, is defined as: 0 1x  . Then, we can rewrite 

the binary logarithm expression as: 

 

2 2log log (1 )N n x  
 (2) 

 

By using (2), to compute the binary logarithm of N, in the first step, we detect the most significant 

‘1’ bit in its binary representation. Then, we can approximate the function log2(1+x) which is the fractional 

part of the result. Here, log2(1 + x) is considered as the fundamental function. Therefore, many researchers 

are trying to find the efficient methods for the fundamental function approximation.  

The simplest method for the fundamental function approximation was proposed by J. N. Mitchell [14] 

with very simple linear approximation as follows: 

 

2log (1 )x x 
 (3) 

 

This approximation approach is simple and leads to very fast and low complexity hardware 

implementation, with the tradeoff of the following absolute error function: 

 

2( ) log (1 )LE x x x  
 (4) 

 

Whose maximum value is 0.08639 resulting in the accuracy of only 3.53 bits which is too low for 

most of DSP applications. Therefore, many methods were developed to find error correction techniques for 

Mitchell’s method. There are three commonly used methods to improve the accuracy of this approximation: 

LUT-based method, piece-wise linear interpolation method and combination method which combines two 

above methods. In the LUT-based method, a LUT (Look-up Table) that stores an approximation of 

the residual error is added to Mitchell’s approximation to reduce Mitchell error. However, the Mitchell error 

function maximum value is very high, this method requires very high table size. Another approach is 

the multipartite method which was presented in [15]. In this method, tables and adders are utilized to reduce 

the table size significantly compared with the direct LUT based method. A method of using a LUT and 

a multiplier-less linear interpolation was proposed by S. Paul et al. [16]. It requires less memory than some 

other LUT-based methods with the same requirement of the accuracy. 

In the approximation methods using piecewise linear approach, the range of x is divided into several 

regions. Then, in each region, EL is approximated by a linear function called a segment which can be 

expressed as: 

 

i iy a x b 
 (5) 

 

Increasing the number of segments can reduce the approximation error but lead to higher hardware 

complexity. Some methods for dividing the range of x into different regions were proposed in [1, 17-24]. 

Papers [17-22] presented the methods with 2, 4 and 6 regions with different values of slopes ai and constants 

bi. These values are chosen by “trial and error” method without detail optimization method. Figure 1 

represents the error function and the linear approximation method using 4 segments and a small error LUT 

proposed in [22]. In [23, 24], authors proposed the quasi-symmetrical method to reduce the hardware 

complexity and approximation error. Moreover, in [1], B.-G. Nam et al. proposed a method with the number 

of segment of 24 for the logarithmic approximation. However, these methods should be improved for 

the high accuracy applications. A method which combines the piecewise linear approximation method and 

LUT-based correction may be the most effective technique for logarithm approximation [21-24]. The basic 

idea is that after using the linear approximation, a LUT which is utilized to store an approximation of 

the error between the fundamental function log2(1+x) and the approximation function is added to linear 

approximation as described in Figure 2. Moreover, R. Gutierrez et al. [22] proposed a method using 4-region 
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linear approximation using a 128×5-bit residual error LUT which outperforms previous methods. However, 

the coefficients used in this method, which were selected by “trial and error”, may be not optimal. Therefore, 

the objective of this research is to find an improved approach by modifying the quasi-symmetrical method 

in [23] with an improved method with a modified optimization algorithm to find optimal coefficients of 

the piece-wise linear approximation. 
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Figure 1. (a) General diagram for the difference method in logarithm approximation and 

(b) the method using 4-region linear approximation together with a small error LUT in [22] 

 

 

 
 

Figure 2. The idea for proposed quasi-symmetrical approach [23] 

 

 

3. PROPOSED APPROXIMATION METHOD AND IMPLMENTATION RESULTS 

Firstly, consider the fundamental function F(x) = log2(1+x) which is represented in Figure 3. 

The graph line, which is slightly curved, is nearly a straight line. Therefore, it would be promisingly efficient 

if we use the piecewise linear approximation method for this function instead of EL. The full range is divided 

into 4 segments to so that a simple selection circuit can be used with an acceptable accuracy. The approximation 

can be expressed as: 

 

2( ) log (1 ) ( ) i iF x x D x a x b    
 (6) 

 

In which i ∈ {1, 2, 3, 4}  

Moreover, the slopes ai are chosen to be sum of power-of-two values (2k) so that we can implement 

the multiplications by simple shifting operations. Then, the error function causing by this approximation 

method can be expressed as: 

 

2( ) ( ) ( ) log (1 ) ( )i iE x F x D x x a x b     
 (7) 
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Figure 3. The fundamental function F(x) = log2(1 + x) 

 

 

An LUT is used to store the optimized values of the error function E(x). Then, the LUT output is 

added to the 4-segment linear approximation function to further reduce the residual error. The higher LUT 

size, the higher accuracy level of the approximation can be achieved. However, it also leads to the higher 

hardware complexity of the approximation circuit. 

In this paper, in order to reduce the final approximation error with the small enough LUT size, 

we use an algorithm to find optimal values of ai and bi. We have to consider the approximation function 

complexity as well as the size of the correction LUT. Therefore, we proposed an improved 2-step 

optimization algorithm based on the one in [23] to achieve a better trade-off of the approximation circuit 

complexity to the correction LUT size. The proposed optimization algorithm aims to find the optimal values 

ai, bi for 4 linear segments and the LUT size can be reduced as much as possible by minimizing 

the maximum value of the absolute error function │E(x)│(MaxError). The optimization algorithm is 

performed by Matlab software. 

In the proposed algorithm, firstly, the range of x is divided into 2 halves and the algorithm for each 

half is proceeded independently. The left half (0 ≤ x ≤ 0.5) is divided into two equal regions (0 ≤ x ≤ 0.25) 

and (0.25 ≤ x ≤ 0.5). Figure 4 describes the optimization algorithm for the left half in which 2 linear segments 

are chosen independently. In step 1, we choose the ranges of offset1 and offset2 in which offset1 and offset2 

represent the values of approximation function when x = 0 and x = 0.5, respectively. The ranges of offset1 

and offset2 are chosen to ensure the acceptable accuracy of approximation results. Then, a comprehensive 

search in the ranges of offset1 and offset2 is performed to find the optimal values of a1 and a2 that minimize 

the MaxError. After that, in step 2, a1 and a2 are re-assigned to the adjacent values which are the sum of 

power-of-two values to simplify the multiplications and one more search is performed to find the optimal 

values of b1 and b2 which minimize MaxError. For the right half (0.5 ≤ x < 1), the optimization algorithm is 

implemented similarly. Figure 5 depicts the 2-step algorithm for the right half range of x. 

Table 1 summarizes the results of optimization achieved by the proposed algorithm in each 

approximation step for log2(1+x). After step 2, MaxError increases a little but the LUT size is not changed 

compared with the results in step 1. Hence, the approximation function can be expressed as (8). 

 
Algorithm 1. The improved 2-step optimization algorithm. 

Step 1: For {offset1L ≤ offset1 ≤ offset1H and 

peak_pointL ≤ peak_point ≤ peak_pointH }: 

Find the optimal values of slope1 and slope2. 

Step 2: Re-assign the optimal slope1 and slope2 values in step 1 to the adjacent power-of-2 

values and find the optimal offset values. 
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Figure 4. The improved 2-step algorithm for the left half range 

 

 

 
 

Figure 5. The improved 2-step algorithm for the right half range 

 

 

Table 1. Optimization results of the improved 2-step optimization algorithm 
Step Step 1 Step 2 

(0 ≤ x ≤ 0.25) a1 1.2905 20 + 2-2 + 2-5 

b1 0.004 0.005 

(0.25 ≤ x ≤ 0.5) a2 1.0316 20 + 2-5 

b2 0.0682 0.0684 
(0.5 ≤ x ≤ 0.75) a3 0.8905 2-1 + 2-2 + 2-3 

b3 0.1418 0.1505 

(0.75 ≤ x < 1) a4 0.7621 2-1 + 2-2 
b4 0.2379 0.248 

MaxError 0.0047 0.005 

 

 

Table 2 shows the results of the error analysis with the proposed method compared with other 

4-segment linear approximation methods. As mention previously, MaxError is the maximum value of 

the absolute error function │E(x)│. MaxError(+) and MaxError(-) represent the maximum positive value 

and the minimum negative values of the error function E(x), respectively. The mean error denotes the mean 

of the absolute error function │E(x)│. It can be seen that the proposed method achieves comparative results 

over other ones. Moreover, Figure 6 shows the approximation error results of the proposed method for two 
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cases: without LUT and with 128×5 bits LUT. Error analysis results of these two cases are presented in 

Table 3. It can be observed from Table 3 that the errors of the case of using 128×5 bits LUT reduce 

significantly compared with the case without LUT. 

 

 

Table 2. Error comparison results 
Method In [23] In [21] Proposed 

MaxError 10.1 × 10-3 8 × 10-3 5 × 10-3 

MaxError(+) 10.1 × 10-3 6.1 × 10-3 4.8 × 10-3 

MaxError(-) -10.1 × 10-3 -8 × 10-3 -5 × 10-3 

Mean error 5.4 × 10-3 2.5 × 10-3 2.5 × 10-3 

 

 

 
(a) (b) 

 

Figure 6. The error of the proposed approximation method in two cases: 

(a) without LUT and (b) with 128×5 bits LUT 

 

 

Table 3. Error analysis results of the proposed method for the cases without LUT and with 128×5 bit LUT 
 MaxError MaxError(+) MaxError(-) Mean Error 

Without LUT 5 × 10-3 4.8 × 10-3 -5 × 10-3 2.5 × 10-3 

With LUT 7.4 × 10-4 7.4 × 10-4 -6 × 10-4 9.8 × 10-5 

 

 

The proposed hardware architecture of a logarithm generator for the 16-bit integer input N with 

the 4-bit integer part and 13-bit fraction part output is shown in Figure 7. The LODE (leading one detector 

and encoder) block generates n from the input N and n is encoded into the binary form. We use the INV 

(inverter) block and a modified barrel shifter to generate the fraction part x as shown in (1). Meanwhile, 

log2(1+x) is approximated by the 4-segment linear approach as described above. The two most significant bits 

of x are used as the selection bits to choose one of the four regions in the linear piecewise approximation. 

The shifters operate the right shift operations of x and 3 multiplexers are used to select the terms of slope ai. 

Coefficients bi is stored in the Coef. LUT. The Error LUT stores the residual error. We can increase the LUT 

size to achieve the better accuracy of the approximation. However, to archive a good tradeoff of the hardware 

complexity with the accuracy, a 128×5-bit LUT is used. Finally, an adder is used to add these 5 components 

to provide the fraction value (F) of the binary logarithm result. For the control purpose, a flag (z) is used to 

indicate the special case of zero input. 

The proposed 16-bit logarithm generator was modeled in VHDL and implemented with Xilinx 

FPGA device (Spartan-3E). The area results of the FPGA implementation in the number of FPGA LUTs used 

is shown in Table 4. It can be seen that the proposed method results in the significant improvements both in 

area and computation delay. 
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Figure 7. Hardware architecture of the 16-bit logarithm generator employing the proposed method 

 

 

Table 4. FPGA hardware implementation results of the 16-bit logarithm generator with different methods 
Method FPGA LUT Count Delay (ns) 

In [22] 163 24.479 

In [25] 162 24.479 
Proposed 147 24.066 

 

 

4. CONCLUSION  

This paper presented an improved approach of modified quasi-symmetrical method to implement 

the low-error, low-area hardware logarithm generator for digital signal processing systems which require 

high-speed, real time logarithm operations. The error analysis and FPGA hardware implementation results 

have clarified that the proposed logarithm generator can be applied for emerging DSP systems. Especially, 

the  proposed approximation method can reduce the approximation error and hardware complexity compared 

with other methods. In the future work, we will apply the proposed method for the implementation of 

completed speech processing system for real time applications. 
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