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ABSTRACT

In this paper, an appropriate control strategy is proposed to handle the nonlinear dy-
namics of an active magnetic bearing (AMB). The goal of the control design is to drive
the AMB rotor to the origin with improved transient response. In order to achieve this
task, back stepping control technique with a barrier Lyapunov function are employed to
keep the tracking error trajectory inside a predefined zone to avoid possible mechanical
contact between rotor and stator. Besides, a speed observer is also used since informa-
tion about rotor speed is not always available. The stability of the closed-loop system
is proven. The effectiveness of the proposed control strategy is verified by numerical
simulations.

Copyright c© 2018 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Tung Lam Nguyen
School of Electrical Engineering, Hanoi University of Science and Technology
No 1, Dai Co Viet street, Hanoi, Vietnam
+84989998384
lam.nguyentung@hust.edu.vn

1. INTRODUCTION
Active magnetic bearing (AMB) has been developed in recent few decades to replace the conventional

mechanical bearings. The main concept of an AMB is to use an electromagnetic force to support a body with-
out any mechanical contact. In comparison with the traditional mechanical bearings with many drawbacks [1]
and [2], AMB exhibits many advantages such as: frictionless, lubricant-free operation, active vibration control
and unbalance compensation ability. Hence, AMB is a promising solution for high-speed applications such as
high-speed motor [3], flywheel energy storage systems (FESS), .etc. For the proper operation of an AMB, rotor
positioning control is a challenging task due to the inherent instability and nonlinearity of the system as men-
tioned in [4], [5], and [6]. In order to deal with system nonlinearity, authors of [7] propose a linearized AMB
model and employed conventional PID control, similar approach can be found in [8]. In addition to linear control
trend, an off-line tunning technique for centralized and decentralized linear AMB controllers are demonstrated
in [9]. When the variation of the rotor position is small, linearizing the model in a small region around an equi-
librium point in order to use the linear control technique is an appropriate approach to stabilize the AMB system.
However, the performance of the positioning system may degrade significantly when the operating point is far
from the desired equilibrium point. Hence, nonlinear control technique has been studied to further improve the
systems performance.

In order to stabilize rotor when facing with a vibrating base, [10] design a sliding mode scheme for an
AMB system. The closed-loop system exhibits robustness to uncertainties and external disturbances. Based on
Lyapunov’s direct method and the singular perturbation order-reduction technique, the state feedback control is
derived in [11]. Through a set of numerical simulations, the state feedback control shows its strength in compar-
ison with output feedback and deadbeat controls. Inspired by loop shaping properties of H∞ optimization and
disturbances rejection ability of the disturbance observer-based controller, [12] successfully develop a hybrid
controller whose effectiveness are verified via simulations and real-time experiments. By investigating strong
nonlinearity of 3-poles AMB, a feedback linearization law is composed in [13]. Rotor responses also are re-
stricted to a safe distance from stator boundary, however, the requirement of initial conditions might be difficult
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to archive in practice. In a circumstance of the AMB driving rotor with unknown mass imbalance, [14] proposes
an adaptive mechanism to tackle this situation. Taking voltage input saturation into account, a robust fuzzy con-
trol that is able to stabilize the AMB rotor is developed in [15]. Apart from conventional AMB, [16] suggests a
design and decoupling control for axial AMB by combining optimal algorithm and feed-forward control.

The paper proposes an nonlinear control approach to stabilizing AMB rotor problem based on backstep-
ping control. A speed observer is utilized in this research to acquire rotor speed information. Barrier Lyapunov
candidate function is embedded into design process to drive the AMB rotor trajectory inside a defined range.
The stability of the closed-loop system is proven. A set of numerical simulations are given to verify the control
effectiveness.

2. MATHEMATICAL MODEL OF AMB
Figure 1 shows the one degree of freedom (1DOF) AMB system considered in this paper. In this figure,

Figure 1. An AMB system.

Fk, uk and ik are the electromagnetic force, applied input voltage and current of the corresponding coil k,
respectively, with k = 1, 2; Fd is the disturbance force caused by rotor mass and other uncertainties. Suppose
that the displacement x of the rotor from the nominal position x0 caused by the initial voltage and current
(u0, i0). Denote x1 and x2 are the air gaps between the rotor and the left and right side stators, it yields

x1 = x0 − x, x2 = x0 + x (1)
i1 = i0 − i, i2 = i0 + i (2)
u1 = u0 − u, u2 = u0 + u (3)

By using (1)-(3), a fundamental operation gives

dx
dt = υ

dυ
dt = K

4m

(
i1

x0−x

)2
− K

4m

(
i2

x0+x

)2
+ Fd

m

di1
dt = A

[
−Ri1 − K

2(x0−x)υi1 + u1

]
di2
dt = B

[
−Ri2 + K

2(x0+x)
υi2 + u2

] (4)

where,

A =
2(x0 − x)

2Ls(x0 − x) +K
, B =

2(x0 + x)

2Ls(x0 + x) +K
, K = µgN

2Ag (5)

In (5), µg is the permeability of air, N is the number of turns in each coil and Ag is the cross-section area
of the electromagnet. Due to the fact that only the position of the rotor and the two current i1 and i2 of the
corresponding coils are available for measurement, a speed observer is needed to estimate the rotor speed. In
this research, the nonlinear observer proposed in [17] is utilized for speed estimation as follows

υ̂ = η + θλ+ kx+
Fd
m

1

k
(6)
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where,

η̇ = −kη − k2x (7)

λ̇ = −kλ+
i21

(x0 − x)2
− i22

(x0 + x)2
(8)

θ =
K

4m
(9)

where k is a positive constant. Suppose that the initial conditions of the system is

η(0) = 0, λ(0) = 0 (10)

Denote the speed estimation error ε as
ε = υ − υ̂ (11)

Then, by differentiating both side of (11) and based on (4) and (6)-(9), it gives

ε̇ = υ̇ − ˙̂υ

= θ

(
i1

x0 − x

)2

− θ
(

i2
x0 + x

)2

+
Fd
m
− η̇ − θλ̇− kẋ

= k

(
η + θλ+ kx+

1

k

Fd
m
− υ
)

= −kε

(12)

Relation (12) means that the speed estimation error ε exponentially converges to zero and the convergence speed
depends on k. By using the speed observer (6), the state space model of the AMB system can be rewritten as

ˆ̇x = υ̂ + ε

υ̂ = η + θλ+ kx+ 1
k
Fd

m

λ̇ = −kλ+ θ
(

i1
x0−x

)2
− θ

(
i2

x0+x

)2
η̇ = −kη − kx2

i̇1 = A
[
−Ri1 − K

2(x0−x) (υ̂ + ε)i1 + u1

]
i̇2 = B

[
−Ri2 + K

2(x0+x)
(υ̂ + ε)i2 + u2

]
(13)

3. CONTROL DESIGN
It can be observed from (13) that the model of the AMB has the form of a strict-feedback system.

Hence, backstepping control technique is chosen to stabilize the system. The control design is implemented
step-by-step as follows.

Step 1: The goal of the control design in this step is to drive the rotor to a desired position yr with
minimized tracking error. Denote z1 as the position error

z1 = x− yr (14)

Differentiating both side of (14) gives

ż1 = ẋ− ẏr

= η + θλ+ k(z1 + yr) +
g

k
+ ε− ẏr

(15)

Consider the following barrier Lyapunov candidate function

V1 =
1

2
log

(
k2b

k2b − z21

)
+

1

2kd1
ε (16)

with d1 > 0. By using the proposed barrier Lyapunov function, the position error z1 is kept in a region restricted
by (−kb, kb) where kb is a positive number. This means the overshoot of the AMB in transient state can be
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handle by kb. This property is meaningful in practice since the mechanical contact between the rotor and stator
can be avoided. Differentiating both sides of (16), it gives

V̇1 =
z1ż1

k2b − z21
− ε2

d1

=
z1(η + θλ+ kz1 + ε− Ẏr + kYr)

k2b − z21
− ε2

d1

(17)

in order to render V̇1 ≤ 0, the virtual control action λv is selected as

λv =
1

θ

[
−c1z1(k2b − z21)− d1z1

k2b − z21
− k(z1 + Yr) + Ẏr

]
(18)

with c1 > 0.
Step 2: As seen in the previous step, if λ = λv , then V̇1 ≤ 0 which results in ε = 0 and z1 = 0. Hence,

the goal of this step is to guarantee that λ approaches to λv . Denote z2 as

z2 = λ− λv (19)

The candidate Lyapunov function is chosen as

V2 =
1

2
log

(
k2b

k2b − z21

)
+

1

2
z22 +

ε2

2k

(
1

d1
+

1

d2

)
(20)

with d2 > 0. Differentiating both sides of (20) gives

V̇2 =
z1ż1

k2b − z21
+ z2ż2 − ε2

(
1

d1
+

1

d2

)
(21)

Taking λ from (17) and substitute it into (15) give

ż1 = θz2 − c1z1(k2b − z21)− d1z1
k2b − z21

+ ε (22)

Differentiating both sides of (19) gives

ż2 = λ̇− ∂λv
∂z1

v̂ + ε− Ẏr −
∂λv
∂η
− Ÿr

θ
+
kẎr
θ

(23)

in which,

∂λv
∂z1

=
1

θ

[
−k − c1k2b + 3c1z

2
2 −

d1(k2b + z21)

(k2b − z21)2

]
(24)

∂λv
η

= −1

θ
(25)

Then, by substituting (22) and (23) into (21), it results in

V̇2 =− c1z1 − d1
(

z1
k2b − z21

− ε

2d1

)2

− ε2
(

1

d2
+

3

4d1

)
+ z2

(
θz1

k2b − z21
+ λ̇− ∂λv

∂η
η̇ − ∂λv

∂z1
ż1 −

Ÿr
θ

+
kẎr
θ

)
(26)

From (26), to guarantee that V̇2 < 0, the virtual control signal λ̇v is chosen as

λ̇v = −c2z2 +
∂λv
∂η

η̇ +
∂λv
∂z1

(υ̂ − Ẏr)− d2z2
∂λv
∂z1

2

− θz1
k2b − z21

+
Ÿr
θ
− kẎr

θ

with c2 > 0. If
λ̇ = λ̇v (27)
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then V̇2 < 0. However, the solution for (27) can not be obtained since it depends on two variables i1 and i2. In
oder to solve the abovementioned problem and to save the energy, a switching control strategy is employed in
which either i1 or i2 is used. If x < 0, coil 2 is turned off which means i2 = 0, then

λ̇ = −kλ+
i21

(x0 − x)2
(28)

Substitute (28) into (27), the desired current of coil 1 is

i1 = i1,d = x0 − x
√
λ̇d + kλ (29)

Denote α = λ̇d + kλ, it gives

i1 = i1,d = x0 − x
√
α (30)

Similarly, if x ≥ 0, then i1 = 0 and hence

λ̇ = −kλ− i22
(x0 + x)2

(31)

The reference current for coil 2 is

i2 = i2,d = x0 + x
√
−α (32)

Remark: Equations (28), (31), and the definition of α indicate that square root operations in (29) and (32)
always hold.

Step 3: The goal of this final step is to obtain u1 and u2 which drives i1 and i2 to their desired values
i1,d and i2,d, respectively. Case 1: x < 0. Denote z3 as

z3 = i1 − i1,d (33)

Differentiate (33), it gives

ż3 =i̇1 − i̇1,d

=−ARi1 +

[
− AKi1

2(x0 − x)2
− ∂i1,d

∂z1
(v̂ + ε)− Ẏr

]
+Au1 −

∂i1,d
∂λ

λ̇− ∂i1,d

∂Ẏr
Ÿr −

∂i1,d

∂Ÿr

...
Y r −

[
AKi1

2(x0 − x)2
+
∂i1,d
∂Yr

]
Ẏr (34)

in which

∂i1,d
∂z1

= −
√
α+ (x0 − x)

1

2
√
α

∂α

∂z1
(35)

∂i1,d
∂λ

= (x0 − x)
1

2
√
α

∂α

∂λ
(36)

∂i1,d
∂η

= (x0 − x)
1

2
√
α

∂α

∂η
(37)

∂i1,d
∂Yr

= −
√
α+ (x0 − x)

1

2
√
α

∂α

∂Yr
(38)

∂i1,d

∂Ẏr
= (x0 − x)

1

2
√
α

∂α

∂Ẏr
(39)

∂i1,d

∂Ÿr
= (x0 − x)

1

2
√
α

∂α

∂Ÿr
(40)
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with,

∂α

∂η
=−

(
∂λv
∂z1

)2
d2
θ
− c2

θ
+
∂λv
∂z1

+
k

θ
(41)

∂α

∂λ
=−

(
∂λv
∂z1

)2

d2 − c2 + k + θ
∂λv
∂z1

(42)

∂λ

∂Yr
=c2

(
−k
θ

)
+ d2

(
∂λv
∂z1

)2(−k
θ

)
+
∂λv
∂z1

k (43)

∂α

∂Ẏr
=c2

1

θ
+ d2

(
∂λv
∂z1

)2
1

θ
− ∂λv
∂z1
− k

θ
(44)

∂α

∂Ÿr
=

1

θ
(45)

∂α

∂z1
=
∂2λv
∂z21

υ̂ + c2
∂λv
∂z1

+ d2

(
∂λv
∂z3

)3

+ k
∂λv
∂z1

+
k2

θ
+ 2d2(λv − λ)

∂λv
∂z1

∂2λv
∂z2

− θ(k2b + z21)

(k2b − z21)2
(46)

∂2λv
∂z21

=
1

θ

[
6c1z1 −

2z1d1(3k2b + z21)

(k2b − z21)3

]
(47)

The third Lyapunov candidate function is chosen as

V3 = V2 +
1

2
z23 +

ε2

2kd3
(48)

with d3 > 0. The differentiation of (48) is

V̇3 = −c1z21 − c2z22 + z3ż3 − ε2
(

3

4d1
+

3

4d2
+

1

d3

)
− d1

(
z1

k2b − z21
− ε

2d1

)2

− d2
(
z2
∂λv
∂z1
− ε

2d2

)2

(49)

To make V̇3 ≤ 0, ż3 is chose as
ż3 = −c3z3 − d3z3F 2 + εF (50)

where
F = − AKi1

2(x0 − x)2
− ∂i1,d

∂z1
(51)

and c3 > 0. The control signal u1 which stabilizes the AMB system around the equilibrium point x0 in Case 1
can be obtained from (34) and (50) as follows

u1 =
1

A

[
ARi1 − F υ̂ − Ẏr − c3z3 − d3z3F 2 +

∂i1,d
∂λ

λ̇+
∂i1,d
∂η

η̇

]
+

1

A

[(
AKi1

2(x0 − x)2
+
∂i1,d
∂Yr

)
Ẏr +

∂i1,d

Ẏr
Ÿr +

∂i1,d

∂Ÿr

...
Y r

]
(52)

Case 2: In this case,
x > 0, i21 = 0, u1 = 0, 2,d = x0 + x

√
−α (53)

Similar to Case 1, the control action u2 in this case is

u2 =
1

B

[
BRi2 −Gυ̂ − Ẏr − c4z4 − d4z4F 2 +

∂i2,d
∂λ

λ̇

]
+

1

B

[
∂i2,d
∂η

η̇ −
(

BKi2
2(x0 + x)2

− ∂i2,d
∂Yr

)
Ẏr +

∂i2,d

∂Ẏr
Ÿr

]
+

1

B

[
∂i2,d

∂Ÿr

...
Y r

]
(54)

with c4 > 0 and

G =
BKi2

2(x0 + x)2
− ∂i2,d

∂z1
(55)
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4. STABILITY ANALYSIS
Similar to the control design section, the stability analysis of the AMB control system is also divided

into two cases.
Case 1: x < 0 and i2 = 0. The closed-loop system can be described by

ż1 = θz2 − c1z1(k2b − z21)− d1z1
k2b−z

2
1

+ ε

ż2 = −c2z2 − d2z2
(
∂λv

∂z1

2
)
− θz1

k2b−z
2
1
− ∂λv

∂z1
ε

ż3 = i̇1 − i̇1,d

(56)

where,

i̇1 = A

[
−Ri1 −

K(υ̂ + ε)i1
2(x0 − x)2

+ u1

]
(57)

i̇1,d =
∂i1,d
∂z1

ż1 +
∂i1,d
∂λ

λ̇+
∂i1,d
∂η

η̇ +
∂i1,d
∂Yr

Ẏr +
∂i1,d

∂Ẏr
Ÿr +

∂i1,d

∂Ÿr

...
Y r (58)

x = z1 + Yr (59)

The velocity observer in this case is
υ̂ = η + θλ+ kx+

g

k
(60)

with, {
η̇ = −kη − k2x
λ̇ = −kλ− i22

(x0+x)2
(61)

and
∂α

∂η
= −

(
∂λv
∂z1

)2
d2
θ
− c2

θ
+
∂λv
∂z1

+
k

θ
(62)

∂α

∂λ
= −

(
∂λv
∂z1

)2

d2 − c2 + k + θ
∂λv
∂z1

(63)

∂α

∂Yr
= −c2

k

θ
− d2

(
∂λv
∂z1

2) k

θ
+
∂λv
∂z1

k (64)

∂α

∂Ẏr
=
c2
θ

+ d2

(
∂λv
∂z1

)2
1

θ
− ∂λv
∂z1
− k

θ
(65)

∂α

Ÿr
=

1

θ
(66)

∂α

∂z1
=
∂2λv
∂z21

υ̂ + c2
∂λv
∂z1

+ d2

(
∂λv
∂z1

)3

+ k
∂λv
∂z1

+
k2

θ
+ 2d2(λv − λ)

∂λv
∂z1

∂2λv
∂z2

− θ(k2b + z21)

(k2b − z21)2
(67)

∂2λv
∂z21

=
1

θ

[
6c1z1 −

2z1d13k2b + z21
(k2b − z21)3

]
(68)

∂i1,d
∂z1

= −
√
α+ (x0 − x)

1

2
√
α

∂α

∂z1
(69)

∂i1,d
∂λ

= (x0 − x)
1

2
√
α

∂α

∂λ
(70)

∂i1,d
∂η

= (x0 − x)
1

2
√
α

∂α

∂η
(71)

∂i1,d
∂Yr

= −
√
α+ (x0 − x)

1

2
√
α

∂α

∂Yr
(72)
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∂i1,d

∂Ẏr
= (x0 − x)

1

2
√
α

∂α

∂Ẏr
(73)

∂i1,d

∂Ÿr
= (x0 − x)

1

2
√
α

∂α

∂Ÿr
(74)

To show the stability of the AMB system in this case, consider the following candidate Lyapunov function

VC1 =
1

2
log

(
k2b

k2b − z21

)
+

1

2
z22 +

1

2
z23 +

ε2

2k

(
1

d1
+

1

d2
+

1

d3

)
(75)

Differentiate both sides of (75) yields

V̇C1 =− c1z21 − c2z22 − c3z23 − d1
(

z1
k2b − z21

− ε

2d1

)2

− d2
(
∂λv
∂z1
− ε

2d2

)2

− d3
(
z3F −

ε

2d3

)2

−
(

3

4d1
+

3

4d2

3

4d3

)
ε2 (76)

Since c1, c2, c3, d1, d2, d3 are positive constants, then V̇C1 < 0 which means system (56) is stable. Proof of
bounded output is given in [18].

Case 2: x > 0 and i1 = 0. In this case, the stability analysis can be treated in the same manner as in
Case 1.

5. SIMULATION RESULTS
The closed-loop system is numerically tested to verify the ability of the proposed control design. The

AMB used in the numerical simulation has the following parameters:

Parameters Value

Nominal air-gap 0.001m
Number of turns 400
Coil resistance 1Ω

Cross-section area 0.001m2

Rotor mass 2.6Kg
Rotor initial position 0.0004Kg
Air-gap permeability 1.256.10−6

Assume, initially the rotor is at a distance of 0.0004m away from the x0 ie. attached to coil 1. The simulation is
carried out in two scenarios. First, a conventional direct Lyapunov is applied and then Lyapunov function with
appended term to limit system output response is embedded into the system.

Figure 2. Displacement.
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Figure 3. Actual and estimated velocity.

Figure 4. Current.

Figure 5. Control voltage.

It can be seen from the system responses that the rotor displacement has a maximum value of 0.001m.
The phenomenon implies the rotor hits coil 2 during transient period , this is undesirable in practice.
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Figure 6. Displacement.

Figure 7. Actual and estimated velocity.

Figure 8. Current.
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Figure 9. Control voltage.

In order to maintain the rotor position in safe range, the barrier Lyapunov candidate function is em-
ployed instead of the conventional one. System responses indicate better tracking performance. The rotor is
kept in the predefined zone and possible mechanical contact with stator is avoided. In addition, the closed-loop
system dynamics also prove the ability of the speed observer. It is noted that the control current and voltage are
in a practical area.

6. CONCLUSION
This paper presents the positioning control design for an AMB system. To handle the inherent insta-

bility and nonlinearity of the AMB, back stepping control technique is employed. Besides, by introducing a
barrier Lyapunov function in control design, the mechanical contact which may happen in transient response can
be avoided. An nonlinear velocity is also used to reduce the cost of the system. The feasibility and effective-
ness of the proposed control strategy are verified by simulations results. The simulations show good tracking
performances of the system and all control inputs are in applicable values.
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