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 Electricity conservation techniques have gained more importance in recent 

years. Many smart techniques are invented to save electricity with the help of 

assisted devices like sensors. Though it saves electricity, it adds an additional 

sensor cost to the system. This work aims to develop a system that manages 

the electric power supply, only when it is actually needed i.e., the system 

enables the power supply when a human is present in the location and 

disables it otherwise. The system avoids any additional costs by using the 

closed circuit television, which is installed in most of the places for security 

reasons. Human detection is done by a modified-single shot detection with a 

specific hyperparameter tuning method. Further the model is pruned to 

reduce the computational cost of the framework which in turn reduces the 

processing speed of the network drastically. The model yields the output to 

the Arduino micro-controller to enable the power supply in and around the 

location only when a human is detected and disables it when the human exits. 

The model is evaluated on CHOKEPOINT dataset and real-time video 

surveillance footage. Experimental results have shown an average accuracy 

of 85.82% with 2.1 seconds of processing time per frame. 
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1. INTRODUCTION 

Unmanned electric power management system (UEPMS) is one of the challenging tasks that are 

required to save electrical resources in most of the countries. Several researches are going on for UEPMS 

with the help of sensors to detect the presence/absence of humans and to manage the power supply 

accordingly. Usage of sensors incurs an additional cost and hence this work aims to develop a system that 

manages the electrical resource using the existing closed circuit television (CCTV) surveillance camera. The 

surveillance video captured from CCTV cameras is used to detect the human’s presence/absence to 

enable/disable the power supply thereby avoiding additional cost. Human detection in surveillance cameras 

footage has been an interesting [1] and challenging [2] topic in the recent years. The traditional hand-crafted 

methods like local binary pattern (LBP), histogram of oriented gradients (HOG) etc., are time consuming and 

proved to be comparatively inefficient to the recent convolutional neural network (CNN) based algorithms [3]. 

Various object detection algorithms in deep learning (DL) have shown promising results in classifying and 

detecting the location of the objects [4]. The first category of DNN is a two stage approach like RCNN, 

faster-regional CNN (faster R-CNN), region based fully convolutional neural network (R-FCN) [5, 6] etc., 
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which proposes regions by a separate network called region proposal network and the classifier processes 

these regions for classification [7]. The second one is a one stage approach like you only look once (YOLO) 

and single shot multibox detector (SSD) in which both the class probabilities and the bounding boxes are 

produced by the CNN itself [8].  

In this work a system using modified-SSD which is based on visual geometry group (VGG16) is 

used for human detection in surveillance cameras [9]. The CNN based network takes the input from 

CHOKEPOINT dataset, which has frames of a surveillance video. The model is initially trained with the set 

of hyper-parameters obtained from orthogonal array tuning method (OATM). The optimal factors are derived 

from the factor table of the OATM method. Once the model is converged to the minimal loss function, the 

network is pruned to remove the less important parameters of the network. Pruning is a method done to 

reduce the complexity of the network thereby maintaining the accuracy of the model. The identification of 

these less important weights are done by the H-ranking algorithm proposed by Lin et al. After pruning, the 

network is retrained with the set of hyperparameters obtained from the OATM method. The process is 

iterated until the convergence or the error loss function is similar to the one obtained by the model before 

pruning is done. The output of the classifier is fed to an Arduino microcontroller to manage the power 

supply. Arduino enables the power supply only in the location (2.1 metres) in and around where a human is 

detected and disables the power when undetected. The system is also validated on a real-time dataset of a 

surveillance video in an indoor environment of a living room where the footage is converted to frames at the 

rate of 5 per second. The intensely compressed model shows promising results in prediction accuracy with 

reduced training time. 

 

 

2. RELATED WORKS 

Object detection has gained a lot of attraction by the researchers in various applications. From small 

crack detection to human detection, lesion detection [10] to detection from satellite images [11] etc. 

Overcoming the shortfalls of traditional hand-crafted methods, DL has achieved enormous growth in these 

detections. Object detection in surveillance videos is one of the most challenging tasks due to the lack of 

clarity in frames. It all started with the regional convolutional neural network (R-CNN) which uses selective 

search to detect the location of the object with a bounding-box [12]. Approximately 2000 candidate regions 

are extracted in this process which is extensively time consuming. This is overcome by spatial pyramid 

pooling net (SPP-Net) on the feature maps [13] and further by faster-RCNN [14] which uses a separate 

network called region proposal network (RPN) to generate candidate regions. A system for facial expression 

recognition was developed for an emotional audio and video data [15] using faster R-CNN.  

Several modified versions of faster R-CNN were developed to improve the prediction accuracy at 

minimal cost [16]. Though all these techniques have improved the accuracy, it still serves as a time 

consuming task as it requires two stages for prediction. This was overcome by the YOLO model where the 

entire process is carried out by a single neural network that makes optimization quite easier [17]. An 

advanced version of one stage approach is a single SSD system, which is achieving promising results in real-

time surveillance videos [18]. One such application was developed to detect small objects using contextual 

information in SSD at increased speed [19]. When compared to all the above listed detection algorithms, SSD 

has achieved relatively promising results at increased speed by applying prediction filters on every feature 

map produced. Though SSD achieves good results, one of the major challenging tasks of DL is the high 

training time required by the model to learn [20, 21]. Hence the proposed work uses SSD architecture with a 

specific hyper-parameter tuning method to reduce the training time of the network [22]. As the deep network 

designed for any real-time application involves high computational cost, pruning is done in many 

applications to keep the model simple. Data-dependent and data-independent methods are the two techniques 

adopted to evaluate the importance of the weights among which optimal brain damage [23], optimal brain 

surgeon [24], absolute value method [25], LASSO regression method [26] are certain renowned techniques. 

An interesting method by Mingbao Lin et al. has been developed which uses a H-Rank filter pruning method 

to prune the model by calculating the rank of each and every parameter. The technique then re-arranges the 

ranked parameters in decreasing order and finally eliminates the least important parameters.  

One of the important tools in literature to control the power supply is the Arduino micro-controller 

which has its usage in a wide range of applications. A system to quantify the energy of the given load and 

plan appropriate energy conservation policies was also designed [27]. Another application was developed for 

smart home energy management systems (SHEMS) [28] to enable/disable the power supply when a human is 

detected/undetected respectively. All these systems use sensors which incurs additional cost. Hence our 

system uses a modified-SSD to detect humans in existing CCTV surveillance footage with an Arduino micro-

controller to manage the power supply accordingly.  
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3. PROPOSED FRAMEWORK 

A modified SSD is developed in this segment with an orthogonal array based tuning method to 

reduce the training time with the set of obtained factor values. The model is further pruned to reduce the 

complexity of the DNN model which in turn reduces the computation cost intensely. The working model of 

the proposed architecture is given in Figure 1. The output of the model is embedded with an Arduino micro-

controller to manage the power supply of the environment. 

 

 

 
 

Figure 1. Working model of pruned OATM based SSD 

 

 

3.1.  Datasets and data augmentation 

The proposed system is evaluated using standard CHOKEPOINT dataset, consisting 64.204 frames 

of a surveillance video in an indoor environment. The system is also evaluated on a real-time surveillance 

video of a living room which is converted at the rate of 5 frames per second (fps). It consists of 9000 frames 

totally out of which 7420 frames (including augmented frames) are considered for training and the remaining 

3180 are considered for testing. Validation set consists of 371 images to tune the hyper-parameters. 

Augmentation is also done to make the network more robust. Shrinking and cropping of the original training 

images are done. Gamma correction is applied to create variations in intensities and brightness of the frames 

using two sets of values (0.5 and 3.0) and (0.5 and 2.0) for all the three channels individually [29]. Hide and 

seek [30] is finally used to divide the entire image into patches with a division number of 4 to make the 

network learn the fine entities of the patches. The sub patches are hidden with a probability of 0.25. In both 

the cases the positive bounding boxes are the ones with the match score greater than 0.5 with that of its 

ground truth and the remaining are considered negative. All the experiments are conducted in GPU-NVIDIA 

TITAN X 12 GB, RAM-32 GB DDR4. 

 

3.2.  Model construction 

The proposed framework uses a modified SSD technique which is a feed-forward convolutional 

neural network based on VGG16. The structure has a truncated part of VGG 16 with an additional 

convolutional structure attached to its end. It eliminates the need for RPN in faster R-CNN thereby increasing 

the detection speed drastically [31]. Instead of RPN, it uses multi-scale features and default boxes to make its 

prediction accuracy be in par with the average accuracy obtained by faster R-CNN [32]. The entire 

architecture of the proposed system is given in Figure 1. The input is a colour image I which is fed into the 

initial base network consisting of five convolutional layers (𝐿 = 5) as in VGG-16 which detects the edges, 

blobs, texture and object parts. The sixth and seventh dense layers of VGG-16 are replaced with 

convolutional layers while removing the eighth and the other dropout layers. ReLU is the activation function 

used at every convolutional layer except the output layer. 

 

𝑌 = 𝑊1𝐼1 + 𝑊2𝐼2 + ⋯ + 𝑊𝑛𝐼𝑛 (1) 

 

where Y is the feature map, W is the weight associated with input I. Each of these convolutional layers with 

size 𝑥 × 𝑦 and 𝑧 channels produces a feature map on which the prediction layer (classification layer) of size 

3 × 3 × 𝑧 is applied. The values produced are with respect to each location of the feature map thereby 

yielding (𝑐 + 4)𝑥𝑦𝑧 outputs where c represents the class scores with four offsets for z filters. The feature 

map is then subsequently processed by other convolutional layers from till the final layer where for each 
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feature map (𝑐 + 4)𝑥𝑦𝑧 values are produced [33]. Appropriate default boxes are to be selected for better 

prediction and hence the ground truth box is matched with the default box using Jaccard overlap method with 

a threshold value set to 0.5. This yields a large number of negative samples out of which the samples with the 

highest confidence loss is alone selected, thereby making a ratio of 1:3 for positive to negative samples. 

Finally, sigmoid function is used at the output layer to make a binary classification of the frames and the non-

maximum suppressions (NMS) makes object detections. The weights of the network are initialized using the 

“HE” initialization technique based on the formula 

 

𝑉𝑎𝑟(𝑊𝑖) =  
2

𝑓𝑎𝑛_𝑖𝑛
 (2) 

 

where fan_in represents the number of input units. It provides a controlled initialization, thereby increasing 

the convergence rate. Learning rate, momentum, dropout and weight decay are the four hyper-parameters 

considered for tuning and are done by orthogonal array tuning method (OATM) based on Taguchi’s factor 

table. This method yields a certain set of factor values which makes the model’s convergence easier and 

faster. The hyper-parameters are represented as factors, while the corresponding values are defined as levels 

in the table. The orthogonal array table is generated using Weibull++ software with 4 factors that has 9 rows. 

The model is trained with the frames of the training datasets which is divided into 10 batches. The model is 

iterated for 90 epochs with the hyperparameters obtained by the OATM method and the accuracy for each set 

of hyperparameters is estimated. The row with the highest accuracy is considered and the corresponding 

values are the optimal values with which the hyperparameters are tuned. Each and every batch is iterated for 

4 epochs and the average of these four experiments is considered as the accuracy of a selected single set of 

hyperparameters.  

The accuracies and the corresponding values for these selected hyperparameters are presented in 

Table 1. Level 5 in Table 1 obtains the highest accuracy rate and hence the corresponding values are the 

optimal values for this phase of SSD. The specifications of the constructed model like the kernel size, input 

and output dimensions of the feature maps of every layer, the total parameters used in every layer etc are 

given in Table 2. 

 

 

Table 1. Orthogonal array table 
Exp.No Factor 1 Factor 2 Factor 3 Factor 4 Accuracy (%) 

1 0.01 0.999 0.3 0.001 85.21 

2 0.001 0.99 0.25 0.003 84.32 

3 0.01 0.9 0.20 0.005 86.12 
4 0.001 0.999 0.25 0.005 85.72 

5 0.001 0.99 0.20 0.001 87.24 

6 0.001 0.9 0.3 0.003 86.88 
7 0.0001 0.999 0.20 0.003 85.32 

8 0.0001 0.99 0.3 0.005 86.91 

9 0.0001 0.9 0.25 0.001 85.47 

 

 

Table 2. Specifications of the constructed model 
SSD LAYER X Y Kernel size Cin Cout Parameters 

Conv1_1 2400 4000 3 3 64 1.728 

Conv1_2 2400 4000 3 64 64 36.864 
Conv2_1 1200 2000 3 64 128 73.728 

Conv2_2 1200 2000 3 128 128 147.456 
Conv3_1 600 1000 3 128 256 294.912 

Conv3_2 600 1000 3 256 256 589.824 

Conv3_3 600 1000 3 256 256 589.824 
Conv4_1 300 500 3 256 512 1.179.648 

Conv4_2 300 500 3 512 512 2.359.296 

Conv4_3 300 500 3 512 512 2.359.296 
Conv5_3 150 250 3 512 1.024 4.718.592 

Conv5_3 150 250 3 1.024 1.024 9.437.184 

Conv5_3 150 250 3 1.024 1.024 9.437.184 
SSD_Conv6 75 125 1 1.024 2.048 2.097.152 

SSD_Conv7 75 125 1 2.048 4.096 8.388.608 

SSD_Conv8 38 63 2 4.096 8.192 134.217.728 
SSD_Conv9 38 63 2 8.192 16.384 536.870.912 

SSD_Conv10 19 32 2 16.384 32.768 2.147.483.648 

SSD_Conv11 19 32 2 32.768 32.768 4.294.967.296 
Detections 1 1 1 32.768 21 688.128 

NMS 1 1 1 32.768 84 2.752.512 
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The parameters are calculated using the formula; 

 

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒2  ×  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑛 ×  𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑜𝑢𝑡 (3) 

 

where the kernel_size, channelin, and channelout are defined as the kernel size of the weight filter, number of 

input channels, and number of output channels in each convolution layer. X and Y represent the horizontal 

and vertical dimensions of the feature maps in each convolution layer. The amount of computation is directly 

proportional to the number of parameters of the network in each and every layer [34]. Therefore, reducing the 

number of parameters in both convolution and FC layers helps achieve the goal. There are various strategies 

to decrease the model size, such as pruning [35] and quantization [36] etc., out of which pruning is selected 

for our work as it has yielded promising results in various applications [37]. 

 

3.3.  Pruning 

The SSD network exists with a set of N convolutional layers where ith convolutional layer is 

represented by Ni. Pruning is defined as the removal of filters or parameters which are considered to be less 

important. Hence, the entire set of filters is divided into 𝐼𝑁𝑖  and 𝑈𝑁𝑖which represents the important filter and 

less important filter set respectively. The total number of important and less important filters is depicted by K 

and L respectively where K+L=Q representing the total filters. Inspired by [38], we perform pruning in the 

same way where filter pruning in general is formulated as; 

 

𝛿𝑖𝑗  ∑ ∑ 𝛿𝑖𝑗𝑋(𝑤𝑗
𝑖)𝑄

𝑗=1
𝑁
𝑖=1  (4) 

 

such that 

 

 ∑ 𝛿𝑖𝑗 = 𝐿𝑄
𝑗=1  (5) 

 

In (4) where 𝛅ij represents 1 if the weights are labelled as K and 0 otherwise. The importance of the filter is 

measured by 𝑋(𝑤𝑗
𝑖). Hence the objective is to minimize the equation to remove L. As each and every feature 

map of the Ni 
th layer plays different roles, equation 4 has been reformulated as; 

 

𝛿𝑖𝑗 ∑ ∑ 𝛿𝑖𝑗𝐸𝐼−𝐷(𝐼)
𝑄
𝑗=1

𝑁
𝑖=1 [Ẋ (𝑌𝑖

𝑗(𝐼, : , : ))] (6) 

 

where Y represents the feature maps, I is the input image sampled from distribution D(I) such that; 

 

∑ 𝛿𝑖𝑗 = 𝐿𝑄
𝑗=1  (7) 

 

also the evaluation of the filter is defined as; 

 

[Ẋ (𝑌𝑖
𝑗(𝐼, : , : ))] = 𝑅𝑎𝑛𝑘 ( 𝑌𝑖

𝑗(𝐼, : , : )) (8) 

 

single value decomposition is applied where; 

 

𝑌𝑗
𝑖(𝐼, : , : ) = ∑ 𝜎𝑖𝑚𝑖𝑛𝑖𝑇

𝑟
𝑖=1  (9) 

 

such that; 

 

∑ 𝜎𝑖𝑚𝑖𝑛𝑖𝑇 +  ∑ 𝜎𝑖𝑚𝑖𝑛𝑖𝑇
𝑟
𝑖=ѓ+1

ѓ
𝑖=1  (10) 

 

when r’<r, i mi and ni are top, left and right singular values respectively. Thus, the rank of each and every 

parameter is calculated and the technique re-arranges the ranked parameters in decreasing order which finally 

eliminates the least important parameters (bottom most). The model is trained again with the 

hyperparameters obtained by OATM method for all the factor values. The optimal set of hyperparameters 

obtained in this phase is different as the network is actually pruned. The H-Rank algorithm is again 

implemented and the process is iterated until the error function is similar to the one obtained by the model 

without pruning. The entire working model of the pruning methodology is given in Figure 2. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Real-time human detection for electricity conservation using pruned-SSD and arduino (Ushasukhanya S.) 

1515 

 
 

Figure 2. Pruning SSD model  

 

 

3.4. Training and testing process 

The frames are resized to 300×300 to feed it into the modified-SSD network. The dataset is divided 

into a training set and testing set in the ratio of 70:30. The training set consists of 47.299 frames in which the 

validation set is a sub class containing 5% of the training frames (2364 frames) to tune the hyper-parameters 

of the network. This is followed by processing of the testing set (20.271 frames). Initializing the weights of 

the network is done using “HE” initialization technique. The frames of the training set are fed into the 

network and the experiments are run for all the levels of Table 1 (OATM). The model is then pruned by 

removing the less important parameters of the network using the H-rank algorithm. The network is retrained 

with the set of hyperparameters obtained by the OATM method. The process is iterated until the error loss 

function is similar to the one obtained by the model before pruning. A validation set and test set is passed 

after training the network and the experiment is iterated 90 epochs, and the mean average precision (mAP) is 

taken for each level. The highest mAP obtained for the test set is 87.21% before pruning and 85.82% after 

pruning. Compression rate of 42% is achieved by pruning which reduces the testing time to 2.1 seconds from 

4.5 seconds of an un-pruned model.  

 

3.5.  Evaluation 

The predicted values and the ground truth values are represented as 𝑝 = {pcx, pcy, pw, ph} and 

𝑔 = {gcx, gcy, gw, gh} respectively. The loss function is the total loss calculated by summing the classification 

and the regression loss which is denoted by: 

 

𝐿 = (𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑁 
(𝑁𝑐𝑙𝑠(𝑥, 𝑐) + 𝜆𝑥𝐿𝑟𝑒𝑔(𝑝, 𝑔)) (11) 

 

where c represents the centre of the bounding box, p is the predicted value, g is the ground truth of the 

bounding boxes, N is the number of matched default boxes and the regression loss is calculated using the 

formula given by [39, 40]: 

 

𝐿𝑟𝑒𝑔(𝑝, 𝑔) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑝𝑚 − 𝑔𝑚)𝑞𝜖{𝑐𝑥,𝑐𝑦,𝑤,ℎ)  (12) 

 

where 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑧) = { 0.5𝑧2, 𝑖𝑓 |𝑧|<1 and z - 0.5 otherwise. The classification loss based on cross entropy 

is given by 

 

𝐿𝑐𝑙𝑠(𝑥, 𝑐) = −𝑥𝑙𝑜𝑔(𝑐) − (1 − 𝑥)𝑙𝑜𝑔 (1 − 𝑐) (13) 
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mAP and mean F1 index (mF1) are the metrics used to evaluate the detection accuracy of the entire model 

and sub layers respectively. The average precision (AP) is given by the equation 

 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
 (14) 

 

where p and r denotes precision and recall respectively. mF1 is given by the equation; 

 

𝑚𝐹1 =
1

𝑛
∑ 𝐹1𝐼

𝑛
𝑖=1  (15) 

 

where F1 is given by the equation; 

 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (16) 

 

and precision and recall are given by the equations; 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑎𝑛𝑑  𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (17) 

 

TP, FP and FN denotes true positive, false positive and false negative respectively.  

 

3.6. Power supply management 

The output of the pruned SSD is fed to the Arduino microcontroller which is connected to the 

electrical supply of a room or any indoor environment. The controller enables the power supply in and 

around the location (2 mts) where a human is detected and disables it, if the human is undetected. Therefore, 

the electric resource is utilized only when and where it is actually needed and saves the resource efficiently. 

Using the proposed framework, the average monthly consumption of electricity for a residential environment 

is reduced to 72 from 90 units (kWh), which is nearly one quarter of the total electricity consumption.  

 

 

4. RESULTS AND DISCUSSIONS 

The prediction accuracies of the modified-SSD model which is based on OATM technique for both 

the datasets are given in Table 3. The validation and test data accuracies are measured and it is found that the 

prediction accuracy achieved by modified-SSD is very close to that of the original SSD but the training time 

is extensively reduced in modified-SSD, thereby increasing the processing speed drastically. The average 

loss of validation and test data sets by modified-SSD (without pruning) is 13.475% for both the datasets. The 

graphical representation of it is given in Figure 3. SSD with other pruning methods like Sparse structure 

selection and generative adversarial learning (GAL) have also been implemented for our prediction but the 

results of SSD with H-rank pruning tops other techniques. The results of various pruning techniques in terms 

of accuracy, compression rate and floating-point operations (FLOPs) are represented in Table 4. Our model 

out-performs the training speed of the model created by multi-layer pruning framework [41], as the latter 

implements three stages of pruning, only after completely training the network from the scratch. Hence the 

training time increases many folds in this method, whereas the former (our model) trains the network initially 

based on OATM method which reduces the training time drastically. Secondly, our model uses H-rank 

algorithm to focus on low-rank feature maps rather than eliminating the zero weights based on sparsity 

statistics with a negligible loss of 0.83% at 42.01% compression. 

 

 

Table 3. Results of baseline SSD and modified-SSD 
Models Datasets Classes Precision (%) Recall (%) F1 (%) Training time (sec) 

SSD (baseline) CHOKEPOINT Human 89.1 86.7 87.8 58346 
Non-Human 88.9 85.3 87.0 

Real-time Human 87.1 85.6 86.3 21236 

Non-Human 86.9 84.3 85.5 
Modified-SSD CHOKEPOINT Human 88.6 86.4 87.4 5621 

Non-Human 88.8 85.1 87.3 

Real-time Human 87.1 85.1 86.1 1721 
Non-Human 86.5 84.3 85.3 
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(a) 

 
(b) 

 

Figure 3. (a) Loss of CHOKEPOINT dataset, b) loss of real-time dataset 

 

 

As our framework uses, low resolution indoor CCTV images, due to dullness, the accuracy is 

affected on further pruning and hence we stop pruning at this level. Though the results of Pruned-SSD seem 

slightly lesser than the traditional SSD, this difference can be ignored when compared to the processing 

speed of the pruned-SSD which is drastically improved. Pruning reduces the model’s complexity, which 

eventually increases the prediction speed of the test data from 4.4 seconds on an average by un-pruned SSD 

to 2.1 seconds by pruned-SSD. The prediction speed and the loss function of both SSD with and without 

pruning are given in Figure 4. 

 

 

Table 4. Comparison of H-rank pruning with other techniques 
Techniques Map Compression Computation  FLOPs 

SSD (Baseline) 86.65 Nil 100% 343.60 M 

SSD with SSS 83.21% 38.71% 22% 210.16 M 

SSD with GAL 84.91% 40.20% 21.2% 208.02 M 
SSD with H-Rank 85.82% 42.01% 18.9% 144.31 M 

 

 

 
(a) 

 
(b) 

 

Figure 4. (a) Error rate of SSD without and with pruning, (b) detection speed of test data 

 

 

The processing speed of the test data set is compared with various preliminary models and the 

results are presented in Figure 5. Among all the other techniques, the proposed modified-pruned SSD excels 

by yielding the lowest processing speed of 2.2 seconds on an average. The model detects the human along 

with the location represented by a bounding box which is given in Figure 6. This is then processed by the 

controller and the results of the controller are given in Figure 7. As the rotation of the fan (when power enabled) 

will not be clearly visible in an image, we have taken two bulbs, one representing the light and the other 

representing the fan in Figure 7. 
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Figure 5. Processing speeds of various techniques 

 

 

 
(a) 

 
(b) 

 

Figure 6. (a) Location of human detected by pruned SSD, (b) human undetected by pruned SSD 

 

 

 
(a) 

 
(b) 

 

Figure 7. (a) Enabling the resource on human’s presence, (b) disabling the resource when human exits 

 

 

5. CONCLUSION 

UEPMS is one of the most essential services in day to day life due to the depletion of resources. 

Among various existing methods, this system uses the existing CCTV footage to detect humans and enable 

the power supply only in the location (2 mts) where humans are detected. The system uses modified-SSD for 

human detection with a specific hyperparameter tuning to decrease the training time of the model. The model 

is further pruned by the H-rank algorithm to decrease the computational cost thereby increasing the 

processing speed of the network. An Arduino micro-controller is used to manage the power supply of the 

system. The proposed architecture achieves an average prediction accuracy of 85.82% with a much reduced 

compression rate of 42% of the original network. It is evident that the proposed system saves nearly one third 

of the total electricity consumption. As the system is developed only for indoor environments, considering 

larger places like malls or outdoor environments, occlusion handling in these places could be taken as one of 

the future directions. 
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