
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 11, No. 3, June 2021, pp. 2477~2489 

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i3.pp2477-2489      2477 

  

Journal homepage: http://ijece.iaescore.com 

Hybrid load balance based on genetic algorithm in cloud 

environment 
 

 

Walaa Saber1, Walid Moussa2, Atef M. Ghuniem3, Rawya Rizk4 
1,4Electrical Engineering Department, Port Said University, Port Said, Egypt 

2,3Electrical Engineering Department, Suez Canal University, Ismailia, Egypt 

 

 

Article Info  ABSTRACT  

Article history: 

Received Aug 9, 2020 

Revised Dec 18, 2020 

Accepted Dec 29, 2020 

 

 Load balancing is an efficient mechanism to distribute loads over cloud 

resources in a way that maximizes resource utilization and minimizes 

response time. Metaheuristic techniques are powerful techniques for solving 

the load balancing problems. However, these techniques suffer from 

efficiency degradation in large scale problems. This paper proposes three 

main contributions to solve this load balancing problem. First, it proposes a 

heterogeneous initialized load balancing (HILB) algorithm to perform a good 

task scheduling process that improves the makespan in the case of 

homogeneous or heterogeneous resources and provides a direction to reach 

optimal load deviation. Second, it proposes a hybrid load balance based on 

genetic algorithm (HLBGA) as a combination of HILB and genetic algorithm 

(GA). Third, a newly formulated fitness function that minimizes the load 

deviation is used for GA. The simulation of the proposed algorithm is 

implemented in the cases of homogeneous and heterogeneous resources in 

cloud resources. The simulation results show that the proposed hybrid 

algorithm outperforms other competitor algorithms in terms of makespan, 

resource utilization, and load deviation. 
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1. INTRODUCTION  

Cloud computing technology provides a lot of services to all users over the internet using very large 

scalable and virtualized resources. The main objective of the cloud is to provide services all over the world 

with minimum cost and high performance [1, 2]. To have the ability to allow all huge number of clients all 

over the world to share cloud resources and provide them with high-quality service in a reasonable time, all 

client’s requests should be handled in an efficient way that don’t waste time and resources. For that reason, 

there is a big need for load balancing techniques which are the master key for the success of any cloud 

services provider. Load balancing tries to keep cloud nodes equally loaded to avoid a situation where some of 

the resources are overloaded while some others are under loaded which as a result reduce the response time 

of the assigned tasks [3-5]. Load balancing is an efficient technique used to distribute workloads over 

resources in a way that improve resource utilization and response time. Load balancing tries to keep cloud 

resources equally loaded and avoid resources becoming over-loaded or under-loaded [6].  

Traditional algorithms [7-11] are used to solve this problem. However, these algorithms have 

limitations in the case of complex and large scale problems. Metaheuristic algorithms such as particle swarm 

https://creativecommons.org/licenses/by-sa/4.0/
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optimization (PSO) [12], ant colony optimization (ACO) [13], artificial bee colony (ABC) [14], and genetic 

algorithm (GA) [15, 16] are popular to solve non-deterministic polynomial-time (NP) complete problems. 

The convergence process and speed of metaheuristic algorithms with a complete random population become 

worse when increasing the number of jobs that make the problem more complex. Using an efficient 

scheduling algorithm that produces good initial solution to the initial population of metaheuristic algorithm 

makes use of the computational power of this metaheuristic algorithm and overcomes their drawbacks with 

complicated random initialized problems [17, 18]. 

Genetic algorithm (GA) as an evolutionary algorithm became a very popular algorithm due to its 

accuracy in solving complicated non-linear problems. GA has been successfully applied to many non-linear 

and non-smooth types of optimization challenges such as query optimization [19], medical science [20], 

agriculture [21], management [22], feature selection [23], power flow management [24], and sensor networks [25]. 

GA is basically designed for the discrete optimization problem where bits of 0’s and 1’s are used to encode 

discrete design variables. Unlike bio-inspired algorithms that are designed for continuous problems and can 

choose any value to encode design variables, which makes GA more suitable than other algorithms in the 

load balancing problem. Choosing good initial population of GA is an important step to generate new better 

generations with high-quality solutions within less time [26]. 

In this paper, a hybrid load balance based on genetic algorithm (HLBGA) is proposed to distribute 

the loads overall virtual machines (VMs) in an efficient way. HLBGA is implemented in two phases. In the 

first phase, the heterogonous initialized load balancing (HILB) algorithm is proposed. It distributes tasks 

overall VMs in an efficient way to avoid overloaded or under loaded VMs. In the second phase, GA is used 

to enhance the overall system performance. It is initialized with the output of the HILB algorithm as a good 

initial population for GA. This phase uses a newly formulated fitness function for GA that helps the HLBGA 

to reach the optimal load deviation. 

The rest of this paper is organized as: Section 2 presents the related load balancing algorithms. In 

Section 3, the proposed load-balancing algorithm is introduced. In Section 4, the performance evaluation of 

the proposed algorithm is presented and compared with the existing load balancing algorithms. Section 5 

presents the main conclusions and future work. 

 

 

2. RELATED WORK 

A large area of researches was introduced to solve the load balancing problem to get an optimal 

assignment solution. These researches can be categorized into three main types of algorithms: traditional, 

metaheuristic, and hybrid algorithms.  

 

2.1.  Traditional algorithms 

Traditional algorithms are worked based on knowing information about resources and tasks to 

calculate their evaluation parameters. Most of them rely on execution time to assign tasks to resources in a 

way that minimizes makespan, load deviation, or both. Min-Min algorithm is a well-known algorithm in this 

category. Min-Min algorithm is the base of many scheduling algorithms [8]. In this algorithm, the completion 

time of all submitted tasks among all VMs is calculated. The task with minimum completion time is assigned 

to the corresponding VM. Then the completion time of all other tasks on that machine is updated by adding 

the completion time of the assigned task to their completion times. This task is removed from a list of 

unassigned tasks, and then this procedure is repeated until all tasks are assigned. 

Load balance improved Min-Min (LBIMM) algorithm improves the standard Min-Min algorithm [9]. In 

the first step, the Min-Min algorithm is executed to give the initial solution to start the next step. In the next 

step, the completion time of the smallest size task from the heaviest loaded resource is calculated on all other 

VMs. Makespan is calculated in case that task is removed to the VM with the minimum completion time of 

that task and compared with the makespan produced by Min-Min. If it is less than the task, it is reassigned to 

the resource that produces it, and the ready time of both resources is updated. The process repeats until no 

other reassignments can produce less makespan. Thus the heavy load resources are freed and the light load or 

idle resources are more utilized. Although the traditional algorithms are simple to implement and can 

improve makespan, some of them don’t take the load deviation in its consideration especially in case of big 

difference in resource speed. Also, they can't find the optimal solution especially when the problem becomes 

complex or too large [25]. 

 

2.2.  Metaheuristic algorithms 

Metaheuristic algorithms are the most powerful techniques for the optimization of complex non-

linear problems which is the case of most task scheduling and load balancing issues [26]. Metaheuristic 

algorithms can be classified into swarm intelligence based algorithms and evolutionary algorithms. Swarm 
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intelligence based algorithms such as PSO, ACO, and ABC optimize a certain problem by simulating the 

collective behavior of natural swarms. Evolutionary algorithms such as GA are based on the evolutionary 

behavior of natural systems.   

PSO algorithm is one of the standard algorithms used in load balancing and also in other 

applications [27, 28]. It is a swarm intelligent algorithm, inspired by nature for solving nonlinear 

optimization problems [10]. PSO is a simulation of the advantages of bird flocks. It starts with initial 

individuals called particles representing initial solutions for the problem. During the search process, killing of 

any individual is not permitted. In PSO, all individuals remain alive and try to make themselves stronger 

throughout the search process. In every generation/iteration, individuals make themselves better. The identity 

of the individual does not change over the iterations. 

GA is an evolutionary optimization algorithm based on the biological concept of population 

generation [13]. A new population is evolved in every generation based on predefined fitness function. GA 

works better for vast and complex search space problems. It works based on three main operations which are 

selection, crossover, and mutation. The strength of GA is in the parallel nature of its search. The genetic 

operators used are the main powerful reason for the success of the search. Crossover is the main genetic 

operator, whereas mutation is used less frequently. Crossover attempts to benefit offspring solutions and to 

eliminate undesirable components. By restricting the reproduction of weak offsprings, GAs eliminates not 

only that solution but also all of its descendants. This makes the algorithm converge towards high-quality 

solutions within a few generations. In order to realize powerful crossover and mutation operators, we must 

choose good initial population for GA [14]. 

However metaheuristic algorithms are powerful techniques for optimization, they are inefficient to 

handle the load in cloud computing in case of random initial population. Also, they suffer from increasing the 

computational cost in the large scale problems [29]. Therefore, hybrid algorithms are introduced to enhance the 

performance of both the traditional and metaheuristic algorithms in order to handle their problems. 

 

2.3.  Hybrid algorithms 

Hybrid task scheduling algorithms are based on combining two scheduling algorithms to make use 

of the advantage of both these two algorithms. This paper presents some of the most popular hybrid 

algorithms to state the reason for the proposed algorithm. HGA-ACO algorithm [30] combines GA and ACO 

algorithms together. Randomly initialized GA is used to produce the initial pheromone for ACO. ACO starts 

to iterate in order to give the best solution. The best two solutions from GA and ACO are merged by 

crossover to give the global best solution. However, the algorithm focuses on response time, execution time 

and throughput, it doesn’t subject to the load balancing problem. GA is not an effective algorithm to give an 

initial solution when it is randomly initialized. 

Osmotic hybrid artificial bee and ant colony (OH_BAC) algorithm is presented in [31]. It applies the 

osmosis technique for providing energy efficient cloud environment. In this algorithm, ABC and ACO 

cooperate to select the appropriate VM to be migrated to the most suitable physical machine. In addition, it 

makes activation for the most suitable osmotic host among all physical machines in the system to decrease 

power consumption. 

Moreover, integrating machine learning techniques with load balancing algorithms reinforcement the 

learning process and help to improve the performance and the convergence rate of the load balancing process [32]. 

However, the goal of most of these algorithms is to minimize the overall completion time without looking 

into the minimization of the overall load deviation. Most of previous algorithms choose minimizing 

makespan as the main goal in scheduling; however this target always chooses faster VMs to perform the 

assigned tasks. This results in overloaded VMs with high processing speed that yields to starvation problem 

of other VMs with lower processing time. In addition, the experiments of most of related work are limited as 

they tested their algorithms on small scale problems [33]. In this paper, a new hybrid HLBGA balancing 

algorithm is proposed which combines GA and a new proposed HILB scheduling algorithm which helps 

genetics to converge more quickly to better solution by feeding it with good initial population. 

 

 

3. THE PROPOSED HLBGA 

3.1.  Architecture overview 

In this section, the proposed HLBGA is presented. The main purpose of the proposed algorithm is to 

improve the assignment performance for all the submitted tasks on all VMs. It tries to assign tasks to each 

VM based on its computing capabilities to make use of all of them which leads at the end to balance the load 

among all VMs. Load balance is an optimization problem in which load deviation is the objective function 

needed to be minimized. GA is one of the popular algorithms that are used to solve optimization problems. 

The proposed algorithm uses GA with a good initial population to get the optimal solution with less time.  
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The proposed HLBGA is based on two main phases. The first phase is applying the proposed HILB 

algorithm that distributes tasks overall VMs based on each resource computing capabilities to ensure that no 

single VM is either overloaded or underutilized especially in case of major differences between resources 

computing capabilities. The second phase uses the output of the HILB algorithm as an initial population for 

the GA which optimizes load deviation objective function to achieve optimum load distribution. 

The proposed HLBGA algorithm introduces a new objective function to improve the performance of 

the assignment problem even when the problem becomes complex or too large. It implemented in different 

environments, homogeneous, heterogeneous-low and heterogonous-high environments. HLBGA also is 

implemented on a different number of tasks. It improves resource utilization and it also decreases both the 

load deviation and the makespan. 

 

3.2.  Load balancing problem analysis 

Although cloud computing is dynamic, at any particular instance the load balancing problem can be 

formulated as assigning a set of n tasks on a set of m VMs. Assume that the cloud task scheduler receives n 

independent tasks 𝑡1 𝑡2 𝑡3  … … . 𝑡𝑛 with different lengths, which are expressed in million instructions (MI) 

as (1): 
 

𝑇 =  [𝑡1𝑡2𝑡3  … 𝑡𝑖 … . 𝑡𝑛]𝑇 where 𝑡𝑖 is the length of task i and  𝑖 = {1.2. … . 𝑛} (1) 

 

Also, assume that the cloud task scheduler contains information about the m VMs; 

𝑣1 𝑣2 𝑣3 …… . 𝑣𝑚  with different processing speeds, which are expressed in million instructions per second 

(MIPS( as: 

 

𝑉 = [𝑣1𝑣2𝑣3 … 𝑣𝑗 … . 𝑣𝑚]
T
   (2) 

 

where 𝑣𝑗  is the processor speed of VM 𝑗 and 𝑗 = {1. 2. … .𝑚} 

The assignment matrix 𝜃 of tasks over VMs can be represented as: 

 

𝜃 =

[
 
 
 
 
𝜃11 𝜃1𝑗 𝜃1𝑚

⋮ … ⋮
𝜃𝑖1 𝜃𝑖𝑗 𝜃𝑖𝑚

⋮ ⋮ ⋮
𝜃𝑛1 𝜃𝑛𝑗 𝜃𝑛𝑚]

 
 
 
 

  (3) 

 

where  𝜃𝑖𝑗 = 1 if task 𝑡𝑖 is assigned to VM 𝑣𝑗  , otherwise  𝜃𝑖𝑗 = 0 

Assume also that at any time there will be load matrix X contains information about the current 

load of the m VMs 𝑥1 𝑥2 𝑥3 … … . 𝑥𝑚. The VMs loads are defined in the load matrix as: 
 

𝑋 = [𝑥1𝑥2𝑥3 … 𝑥𝑗 … . 𝑥𝑚]
𝑇
 (4) 

 

𝑥𝑗 = ∑
𝜃𝑖𝑗𝑡𝑖

𝑣𝑗

𝑛
𝑖=1       where 𝑥𝑗  is the current load of VM𝑗 and 𝑗 = {1. 2. … .𝑚} (5) 

 

The performance of the assignment solution can be measured using makespan, load deviation (𝜎), 

and resource utilization (U). They can be calculated as [23]: 
 

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = max(𝑥𝑗)   ∀𝑗 where 𝑥𝑗 is the completion time of VMj. (6) 

 

𝜎 = √∑ (𝑥𝑗−𝜇)
2𝑚

𝑗=1

𝑚
  where 𝜇 =

∑ 𝑥𝑗
𝑚
𝑗=1

𝑚
 (7) 

 

𝑈 =   
𝜇

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛
  × 100   (8) 

 

3.3.  The problem formulation of HLBGA 

The goal of the proposed HLBGA algorithm is to optimally assign a set of tasks on a set of VMs 

in a way that minimize the load deviation of all VMs. Minimizing load deviation yields to minimize 

makespan and maximize resource utilization since it assigns the tasks to all VMs with dif ferent 
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computing capabilities. It ensures that all VMs are not overloaded or under loaded. Then it prevents 

starvation problem of VMs with low processing speed. Table 1 shows the parameters' notations that are 

used in the proposed model. 

 

 

Table 1. Parameters' notations used in the proposed model 
Parameter Meaning 

n The number of tasks 
m The number of VMs 

Tnx1 The task length matrix where ti  is the length of  ith task  in MI 
Vmx1 The processor speed matrix where vj is processor speed of  jth VM in MIPS 
Xmx1 The load Matrix for all VM where xj is load of jth VM 
σ2 Load variance 
σ Load deviation 
μ Load Mean 

𝜃𝑛×𝑚 Assignment matrix where θij is a binary bit equals to 1 or 0, which represents assignment state of task i on VM j 

 

 

The proposed model formulates the objective in terms of the assignment matrix. It tries to get the 

assignment matrix that provides the solution with minimum load deviation. The load variance can be 

obtained as: 

 

𝜎2 =
∑ (𝑥𝑗−𝜇)

2𝑚
𝑗=1

𝑚
  (9) 

 

assume 
 

𝑋 ̇ = [

𝑥1

𝑥2

..
𝑥𝑚

] − [

1
1
..
1

] 𝜇 = 𝑋 − 1 𝜇 (10) 

 

then 

 

∑ (𝑥𝑗 − 𝜇)
2𝑚

𝑗=1 = �̇�𝑇�̇� (11) 

 

because 
 

∑ 𝑥𝑗
𝑚
𝑗=1 = 1𝑇 𝑋 (12) 

 

then 
 

𝜇 =
1𝑇𝑋

𝑚
 (13) 

 

Substitute (13) in (10) 
 

𝑋 ̇  =  (𝐼 – 
1 1𝑇 

𝑚
) 𝑋 (14) 

 

where I is an identity matrix, 

 

let𝑄 = (𝐼 – 
1 1𝑇 

𝑚
) then �̇� = 𝑄𝑋 (15) 

 

All the diagonal elements of the Q matrix are  
𝑚−1

𝑚
 and its off-diagonal elements are 

−1

𝑚
, so Q is an 

idempotent matrix [34]. The matrix Q is useful in computing sums of squared deviations. 

 

𝑄 =
1

𝑚
 [

𝑚 − 1 −1
−1 𝑚 − 1

… −1
−1 ⋮

⋮ −1
−1 …

⋱ −1
−1 𝑚 − 1

] (16) 

 

By substituting (11) in (9) 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 :  2477 - 2489 

2482 

𝜎2 =
�̇�𝑇�̇�

𝑚
= 

𝑋𝑇𝑄𝑇𝑄𝑋

𝑚
      where 𝑄𝑇𝑄 = 𝑄, then (17) 

 

𝜎2 =
𝑋𝑇  𝑄 𝑋

𝑚
 (18) 

 

𝑋𝑇  𝑄 𝑋 =   ∑ 𝑥𝑘
2𝑞𝑘𝑘 

𝑚
𝑘=1 + ∑ ∑ 𝑥𝑧𝑥𝑗𝑞𝑧𝑗

𝑚
𝑗=1
𝑧≠𝑗

𝑚
𝑧=1  (19) 

 

where   𝑞𝑘𝑘 =
𝑚−1

𝑚
 , 𝑘 = 1, 2, … . ,𝑚  and 𝑞 𝑧𝑗

𝑧≠𝑗

= −
1

𝑚
   , 𝑧, 𝑗 = 1,2, … . ,𝑚  

 

𝜎2 =
1

𝑚2 [(𝑚 − 1) ∑ 𝑥𝑘
2 − ∑ ∑ 𝑥𝑧𝑥𝑗

𝑚
𝑗=1
𝑍≠𝑗

𝑚
𝑍=1

𝑚
𝑘=1 ] (20) 

 

where 

 

𝑥𝑧 = ∑
𝜃𝑖𝑧𝑡𝑖

𝑣𝑧

𝑛
𝑖=1  (21) 

 

𝑥𝑗 = ∑
𝜃𝑙𝑗𝑡𝑙

𝑣𝑗

𝑛
𝑙=1  and (22) 

 

𝑥𝑘
2 = ∑ ∑

𝜃𝑖𝑘𝜃𝑙𝑘 𝑡𝑖 𝑡𝑙

𝑣𝑘
2

𝑛
𝑙=1  𝑛

𝑖=1  (23) 

 

The objective function is concluded by substituting (21), (22), and (23) in (20) that yields (24). As 

shown in (25) is the nonlinear objective function of HLBGA where t, v, m, and n are constants for each 

problem which represent tasks length, VMs processor speed, number of VMs, and number of tasks need to be 

assigned, respectively. While θ contains the assignment variables need to be solved for the optimum solution.  

This objective function is subject to three constrains which are formulated in (26-28). As shown in (26) 

means that each task should be assigned to only one VM. θ in (27) is a binary variable which can be 1 or 0, 

i.e., assigned or not assigned. As shown in (28) states that, the completion time for any VM for optimum 

solution should be less than or equal to the makespan of the initial assignment matrix (Makespaninitial). 

 

𝜎2 = 
1

𝑚2 [ (𝑚 − 1)∑ ∑ ∑
𝜃𝑖𝑘 𝜃𝑙𝑘

𝑣𝑘
2

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑘=1  𝑡𝑖 𝑡𝑙 − ∑ ∑ ∑ ∑

𝜃𝑖𝑧 𝜃𝑙𝑗  

𝑣𝑧 𝑣𝑗
 𝑡𝑖 𝑡𝑙

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑗=1

𝑚
𝑧=1

𝑧  ≠   𝑗
  ] (24) 

 

𝜎 = √
1

𝑚2 [ (𝑚 − 1) ∑ ∑ ∑
𝜃𝑖𝑘 𝜃𝑙𝑘

𝑣𝑘
2

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑘=1  𝑡𝑖  𝑡𝑙   −  ∑ ∑ ∑ ∑

𝜃𝑖𝑧 𝜃𝑙𝑗  

𝑣𝑧 𝑣𝑗
 𝑡𝑖  𝑡𝑙

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑗=1

𝑚
𝑧=1

𝑧  ≠   𝑗

  ] (25) 

 

subject to: 

 

∑ 𝜃𝑖𝑗
𝑚
𝑗=1 = 1 ∀ 𝑖 (26) 

 

𝜃𝑖𝑗𝜖 {0,1} ∀𝑖 ∀𝑗,    𝑖 = 1,2, … . . 𝑛   𝑗 = 1,2, …… .𝑚 (27) 

 

∑
𝜃𝑖𝑗𝑡𝑖

𝑣𝑗

𝑛
𝑖=1  ≤ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙  ∀𝑗    𝑗 = 1,2, … . ,𝑚   (28) 

 

3.4. The HLBGA phases 

The proposed HLBGA algorithm has two phases. First, HILB algorithm is proposed as a new 

traditional algorithm in order to distribute tasks overall VMs in an efficient way to avoid overloaded or under 

loaded VMs. The second phase uses the output as an initial population for GA. Figure 1 shows the main steps 

of the two phases of the proposed algorithm. These two phases are implemented as: 
 

3.4.1. Phase I: Initial population phase 

In this phase, the HILB algorithm is proposed in order to balance the load and minimize makespan. 

Algorithm strategy is based on moving tasks from heavy loaded machines to least loaded ones as:   
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Figure 1. Flow structure of the HLBGA algorithm 

 

 

a. HILB gets an initial assignment solution for all the submitted tasks over all the available resources by 

assigning the task with min. completion time to the corresponding machine. Then, it calculates makespan 

and load deviation for this initial solution as the current makespan, and load deviation, respectively. 

b. HILB calculates the completion time of all the available VMs. It tries to move the shortest task in the 

heaviest loaded resource to the least loaded resource. HILB considers two conditions for accepting any 

new task movement from one VM to another. It guarantees that each new task movement is a forward 

step in enhancing makespan and load deviation. The two conditions are: (1) New Makespan <= Current 

Makespan, and (2) New load deviation <= Current load deviation. 

HILB makes all the available task movements for the current heaviest loaded VM to any one of the 

remaining VMs. HILB repeats these previous operations on all the available resources. It balances the load 

overall resources even very slow ones in a way that achieves high load balancing and optimum completion 

time. This algorithm avoids starvation problem between VMs.  

 

3.4.2. Phase II: GA phase 

HLBGA algorithm relies on GA as a powerful solution for nonlinear programming optimization 

NP-complete problems. Genetics in this algorithm relies on three main operations; elite, crossover, and 

mutation. In Elite operation, the algorithm chooses the assignment matrices that give the best fitness 

functions to pass to the next generation. In crossover and mutation operations, the algorithm reassigns tasks 

to different VMs to form new solutions in different ways. Crossover recombines each two assignment 

matrices to form two new ones which practically mean reassignment of tasks to form two new solutions. The 

recombination must be done on a complete row basis i.e., complete rows are swapped between matrices. 

While in mutation, random changes done to a single assignment matrix. Algorithm 1 shows the main 

processes of the proposed HLBGA. 

 

Algorithm 1: The proposed HLBGA 
Begin 

// start Phase I: HILB Algorithm   

1. For  any submitted task Ti calculate completion time Ctij for Resourcej Rj 

Ctij=Etij+rtj;   

2. while the non-submitted task list is not empty 

3.    Find task I with minimum completion time and assign to corresponding Resource 

4.    Remove the task from non-submitted task list  and update resource ready time rtj   

5. End  

6. Calculate current Makespan Mc and load deviation Lc  

7. Add all VMs to Resources list   R 

8. while list R not empty 

9.   Find Heaviest loaded VM RH in Resource List 

10.   Add other Resources to load list L and find least load Resource RL 

11.   move the shortest task in the heaviest loaded resource to  RL 

12.   a. IF New Makespan Mn  <= Mc  And New  Load Deviation Ln<= Lc   

      b. Then Mc= Mn and Lc=Ln  And Goto step  9 

      c. Else if L is not empty  

      d. Then undo step 11  And remove RL from List L  And go to step 11  

      e. Else remove RH  from list R   And go to step 8 

13. End 
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// start  Phase II: Applying GA  

14. Initialize population by adding the result of phase 1 to random initial population 

15. Set initial parameters 

      E Elite count fraction, P population size, C Crossover fraction G number of 

generations 

16. Calculate number of variables V= n×m 

17. Set mutation fraction U= 1- ( E + C ) 

18. while termination condition not satisfied 

19.    Evaluate  each chromosome using fitness function 

20.    Choose (E × P) chromosomes with the best fitness function as elite for the next   

generation 

21.    Select (C × P) chromosomes for  crossover operation 

22.    For k=1 to ( C × P) 

23.        Select two random chromosomes as input for crossover operation 

24.        Perform crossover operation on selected chromosomes 

25.        Select  the two output chromosomes to the next generation 

26.   End For 

27.    Select ( U × P )  chromosomes for  mutation operation 

28.      For k=1 to ( U × P) 

29.     Select one random chromosome as input for mutation operation 

30.       Perform Mutation process on  the selected chromosome 

31.      Select  the  output chromosome  to the next generation  

32.   End For 

33.    Replace the current population by new generation 

34. End 

 

3.5.  Complexity of HLBGA 

The HLBGA is based on two main phases. In the first phase, it runs the HILB. The time complexity 

of this phase is based on the number of the movements that performed to reach the initial population. It can 

be computed as: O(n1). In the second phase, the HLBGA runs the GA.  The complexity in this phase can be 

computed as O(G×N) [35]. Comparing the time complexity of the first phase to the second phase, it was 

found that n1<< G×N, so it can be neglected. Therefore, the total complexity of the HLBGA algorithm is: 

O(G×N). The initial population that is used in the proposed algorithm helps the genetics to reach a better 

solution with less population size and number of generations which decreases the complexity of the 

algorithm. Table 2 shows the time complexity of the HLBGA and a description of the complexity parameters. 

 

 

Table 2. Time complexity of the HLBGA 
Algorithm Time complexity Description 

Phase I: HILB O(n1) n1: Number of moves to reach the initial population 

Phase II: GA 
 

O(G×N) G: Number of generations 

N: n × m × P  (time overhead of all chromosomes) 

where 

n × m: Number of variables that represent the number of genes in each chromosome 
(time overhead of one chromosome) 

P: Population size  (number of chromosomes in each generation) 

HLBGA O(G×N)  

 

 

4. PERFORMANCE EVALUATIONS 

In this section, the performance of the proposed HLBGA algorithm is evaluated in different 

environments and conditions. The proposed algorithm is compared against variant techniques; Min-Min [8] 

and LBIMM [9] as traditional algorithms, PSO [10] with two different objective functions as metaheuristic 

techniques; PSO1 is the basic PSO algorithm where the objective function is to minimize the makespan while 

PSO2 is an updated version of the basic PSO algorithm where the objective function is to minimize the load 

deviation, and GA [13] as an evolutionary algorithm which is the original of the proposed algorithm. In 

addition, the comparison includes the proposed HILB that represents the initial population of HLBGA. The 

evaluation is based on the results of simulation done using CloudSim [35]. 

 

4.1.  Simulation overview 

CloudSim is a simulation tool that simulates the behavior of load balancing algorithms when run on 

real data centers. It was used to test the performance of the proposed algorithm and compare the results with 

the other algorithms in terms of makespan, resource utilization, and load standard deviation [25]. Table 2 

shows the CloudSim configuration for the four simulations used to test the behavior of the proposed 

algorithm in different running conditions. Each simulation was run 105 times and the average was considered 

in the results. The parameters of GA and PSO are shown in Table 3. 
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Table 3. CloudSim configurations 
 Simulation_1 Simulation_2 

Number of Datacenters  1 1 

Number of Hosts 1 1 

Number of VMs 4 5 
Number  of Tasks  10: 150 15 

Task length (MI) 200: 3000 150:300 

VM Scheduler policy Time shared 
Cloudlet Scheduler policy Space shared 

GA algorithm  

parameter setting 

Parameter Value 

Crossover 0.8 
Elite 0.05 

Max. number of generations 200 

Population size min.(10×number of genes, 250)  
PSO algorithm 

parameter setting  

Parameter Value 

Maximum iterations 200 

C1, C2 1.49445 
K 5 

ωmin, ωmax  0.1, 0.9 

Population size 20 

 

 

4.2.  Impact of increasing the workloads with fixed resources  

 In this case, the number of tasks is increased while the number of VMs is fixed to check the algorithm's 

behavior in different workloads on the same resources. The simulation parameters of Simulation 1 are shown in 

Table 3. The number of tasks is varying from 10 to 150. The tasks have different lengths as happen in real-

world workloads. They were generated randomly at the range from 200 to 3000 (MI). Four VMs were 

considered for the simulation. The evaluation metrics are makespan, resource utilization, and load deviation.  

Figure 2 shows the makespan comparison of the proposed HLBGA with the intended algorithms. It 

is shown that HLBGA minimizes the makespan comparing with the other algorithms. The makespan 

improvement of HLBGA over HILB and GA is up to 15.7% and 71%; respectively. Figure 3 shows the load 

deviation comparison for Simulation 1. It can be seen that the load deviation of the proposed HLBGA is 

minimized when compared with the other algorithms. The load deviation improvement of HLBGA over 

HILB and GA is 28.5% and 96.1%, respectively in the case of 150 tasks. Figure 4 shows a resource 

utilization comparison for Simulation 1. It is shown that the resource utilization of the proposed HLBGA is 

maximized when compared with other algorithms. The increase in the utilization of the proposed HLBGA 

over HILB and GA is 1.8% and 67.4%, respectively in the case of 150 tasks. 

 

 

 
 

Figure 2. Makespan versus number of tasks 

 
 

Figure 3. Load deviation versus number of tasks 

 

 

The results show that the performance of the metaheuristic algorithms such as PSO1, PSO2, and GA 

is much lower than the performance of the traditional algorithms at a large number of tasks. With increasing 

in the number of tasks, HILB introduces a good performance than the other traditional algorithms so it can be 

used to produce an initial population for GA to form the proposed HLBGA. The proposed HLBGA algorithm 

as a hybrid technique between HILB and GA outperforms the other algorithms. The makespan, load 

deviation, and utilization improvement of HLBGA over HILB and GA are 8% and 48.3%, 34.3% and 85%, 

and 3.4% and 40%, respectively. 
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Figure 4. Resource utilization versus number of tasks 

 

 

4.3.  Implementations in homogeneous and heterogeneous environments 

In this case, the simulation is implemented on a fixed number of Cloudlets and VMs but the speed 

of VMs are changed to test the performance of the algorithms in Homogeneous (Homog), Heterogonous-high 

(Het-high) and Heterogeneous-low (Het-low) processors. The simulation parameters of Simulation 2 are 

shown in Table 3. Three simulations were run with different VM speed environments. In Homogenous, all 

the VMs have the same speed. In Heterogeneous-low, the speed variation among VMs is low with ratio 1:2.5 

between lowest and highest speed VM while in Heterogeneous-high, simulation a high-speed variation 

among all VMs with ratio 1:7 is considered. 

The target of this experiment is to test the proposed algorithm behavior in the case of workloads 

with different lengths in varying environments. Figure 5 shows a makespan comparison of the proposed 

HLBGA algorithm with the LBIMM, HILB, standard GA and PSO algorithms while the simulation 

environment varies from homogeneous to heterogeneous. It is shown that the makespan improvement of 

HLBGA over HILB and GA is up to 2.6% and 42.5%, respectively. Figure 6 shows a load deviation 

comparison of Simulation 3. It can be seen that the load deviation of the proposed algorithm is minimized 

when compared with the other algorithms. Figure 7 shows the utilization comparison of Simulation 3. It is 

clear that the utilization of the proposed algorithm is maximized when compared with the other algorithms.  

 

 

 
 

Figure 5. Makespan in different environments 

 
 

Figure 6. Load deviation in different environments 
 

 

 
 

Figure 7. Utilization in different environments 
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The results show that GA works better than the other metaheuristic algorithms, and also HILB is 

more powerful in load balancing than the other traditional algorithms. The proposed HLBGA algorithm 

performs better than the other algorithms in all cases especially in Heterogeneous-high which gives the best 

results compared to the other algorithms.  

 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, HLBGA algorithm is proposed. It is implemented in two phases. In the first phase, 

HILB scheduling algorithm is proposed to perform a good task scheduling process in order to improve the 

makespan and produce a good initial population to the second phase.  In the second phase, GA as an 

evolutionary-based algorithm is used with a newly formulated fitness function in the way of reaching the 

optimal load deviation. The proposed algorithm is tested on two simulations. The first simulation tests the 

effect of increasing the workloads on the same number of VMs. The simulation results show that the 

proposed HLBGA outperforms the other standard and metaheuristic algorithms; Min-Min, LBIMM, GA and 

PSO. The second simulation tests the algorithm behavior in the case of distributing tasks of different lengths 

on resources that have one of three cases: the same speed (Homogeneous), a slight difference in the speeds 

(Heterogeneous-low), and a large variation in the speeds (Heterogeneous-high). The simulation results show 

that the proposed HLBGA outperforms all the other algorithms especially in Heterogeneous-high case. 

This study focuses on the processor speed of VMs since it is the most effective factor, while other 

factors such as memory size and bandwidth of VMs are constants. In future work, the performance of the 

proposed algorithm with more other conditions will be investigated. Also, integrating a machine learning 

technique with the proposed algorithm adds a new value and can be tested. 
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