
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 11, No. 3, June 2021, pp. 2477~2489

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i3.pp2477-2489 2477

Journal homepage: http://ijece.iaescore.com

Hybrid load balance based on genetic algorithm in cloud

environment

Walaa Saber1, Walid Moussa2, Atef M. Ghuniem3, Rawya Rizk4
1,4Electrical Engineering Department, Port Said University, Port Said, Egypt

2,3Electrical Engineering Department, Suez Canal University, Ismailia, Egypt

Article Info ABSTRACT

Article history:

Received Aug 9, 2020

Revised Dec 18, 2020

Accepted Dec 29, 2020

 Load balancing is an efficient mechanism to distribute loads over cloud

resources in a way that maximizes resource utilization and minimizes

response time. Metaheuristic techniques are powerful techniques for solving

the load balancing problems. However, these techniques suffer from

efficiency degradation in large scale problems. This paper proposes three

main contributions to solve this load balancing problem. First, it proposes a

heterogeneous initialized load balancing (HILB) algorithm to perform a good

task scheduling process that improves the makespan in the case of

homogeneous or heterogeneous resources and provides a direction to reach

optimal load deviation. Second, it proposes a hybrid load balance based on

genetic algorithm (HLBGA) as a combination of HILB and genetic algorithm

(GA). Third, a newly formulated fitness function that minimizes the load

deviation is used for GA. The simulation of the proposed algorithm is

implemented in the cases of homogeneous and heterogeneous resources in

cloud resources. The simulation results show that the proposed hybrid

algorithm outperforms other competitor algorithms in terms of makespan,

resource utilization, and load deviation.

Keywords:

Cloud computing

Genetic algorithm

Load balancing

Load deviation

Metaheuristic

This is an open access article under the CC BY-SA license.

Corresponding Author:

Rawya Rizk

Electrical Engineering Department

Port Said University

Port Said, Egypt

Email: r.rizk@eng.psu.edu.eg

1. INTRODUCTION

Cloud computing technology provides a lot of services to all users over the internet using very large

scalable and virtualized resources. The main objective of the cloud is to provide services all over the world

with minimum cost and high performance [1, 2]. To have the ability to allow all huge number of clients all

over the world to share cloud resources and provide them with high-quality service in a reasonable time, all

client’s requests should be handled in an efficient way that don’t waste time and resources. For that reason,

there is a big need for load balancing techniques which are the master key for the success of any cloud

services provider. Load balancing tries to keep cloud nodes equally loaded to avoid a situation where some of

the resources are overloaded while some others are under loaded which as a result reduce the response time

of the assigned tasks [3-5]. Load balancing is an efficient technique used to distribute workloads over

resources in a way that improve resource utilization and response time. Load balancing tries to keep cloud

resources equally loaded and avoid resources becoming over-loaded or under-loaded [6].

Traditional algorithms [7-11] are used to solve this problem. However, these algorithms have

limitations in the case of complex and large scale problems. Metaheuristic algorithms such as particle swarm

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2478

optimization (PSO) [12], ant colony optimization (ACO) [13], artificial bee colony (ABC) [14], and genetic

algorithm (GA) [15, 16] are popular to solve non-deterministic polynomial-time (NP) complete problems.

The convergence process and speed of metaheuristic algorithms with a complete random population become

worse when increasing the number of jobs that make the problem more complex. Using an efficient

scheduling algorithm that produces good initial solution to the initial population of metaheuristic algorithm

makes use of the computational power of this metaheuristic algorithm and overcomes their drawbacks with

complicated random initialized problems [17, 18].

Genetic algorithm (GA) as an evolutionary algorithm became a very popular algorithm due to its

accuracy in solving complicated non-linear problems. GA has been successfully applied to many non-linear

and non-smooth types of optimization challenges such as query optimization [19], medical science [20],

agriculture [21], management [22], feature selection [23], power flow management [24], and sensor networks [25].

GA is basically designed for the discrete optimization problem where bits of 0’s and 1’s are used to encode

discrete design variables. Unlike bio-inspired algorithms that are designed for continuous problems and can

choose any value to encode design variables, which makes GA more suitable than other algorithms in the

load balancing problem. Choosing good initial population of GA is an important step to generate new better

generations with high-quality solutions within less time [26].

In this paper, a hybrid load balance based on genetic algorithm (HLBGA) is proposed to distribute

the loads overall virtual machines (VMs) in an efficient way. HLBGA is implemented in two phases. In the

first phase, the heterogonous initialized load balancing (HILB) algorithm is proposed. It distributes tasks

overall VMs in an efficient way to avoid overloaded or under loaded VMs. In the second phase, GA is used

to enhance the overall system performance. It is initialized with the output of the HILB algorithm as a good

initial population for GA. This phase uses a newly formulated fitness function for GA that helps the HLBGA

to reach the optimal load deviation.

The rest of this paper is organized as: Section 2 presents the related load balancing algorithms. In

Section 3, the proposed load-balancing algorithm is introduced. In Section 4, the performance evaluation of

the proposed algorithm is presented and compared with the existing load balancing algorithms. Section 5

presents the main conclusions and future work.

2. RELATED WORK

A large area of researches was introduced to solve the load balancing problem to get an optimal

assignment solution. These researches can be categorized into three main types of algorithms: traditional,

metaheuristic, and hybrid algorithms.

2.1. Traditional algorithms

Traditional algorithms are worked based on knowing information about resources and tasks to

calculate their evaluation parameters. Most of them rely on execution time to assign tasks to resources in a

way that minimizes makespan, load deviation, or both. Min-Min algorithm is a well-known algorithm in this

category. Min-Min algorithm is the base of many scheduling algorithms [8]. In this algorithm, the completion

time of all submitted tasks among all VMs is calculated. The task with minimum completion time is assigned

to the corresponding VM. Then the completion time of all other tasks on that machine is updated by adding

the completion time of the assigned task to their completion times. This task is removed from a list of

unassigned tasks, and then this procedure is repeated until all tasks are assigned.

Load balance improved Min-Min (LBIMM) algorithm improves the standard Min-Min algorithm [9]. In

the first step, the Min-Min algorithm is executed to give the initial solution to start the next step. In the next

step, the completion time of the smallest size task from the heaviest loaded resource is calculated on all other

VMs. Makespan is calculated in case that task is removed to the VM with the minimum completion time of

that task and compared with the makespan produced by Min-Min. If it is less than the task, it is reassigned to

the resource that produces it, and the ready time of both resources is updated. The process repeats until no

other reassignments can produce less makespan. Thus the heavy load resources are freed and the light load or

idle resources are more utilized. Although the traditional algorithms are simple to implement and can

improve makespan, some of them don’t take the load deviation in its consideration especially in case of big

difference in resource speed. Also, they can't find the optimal solution especially when the problem becomes

complex or too large [25].

2.2. Metaheuristic algorithms

Metaheuristic algorithms are the most powerful techniques for the optimization of complex non-

linear problems which is the case of most task scheduling and load balancing issues [26]. Metaheuristic

algorithms can be classified into swarm intelligence based algorithms and evolutionary algorithms. Swarm

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2479

intelligence based algorithms such as PSO, ACO, and ABC optimize a certain problem by simulating the

collective behavior of natural swarms. Evolutionary algorithms such as GA are based on the evolutionary

behavior of natural systems.

PSO algorithm is one of the standard algorithms used in load balancing and also in other

applications [27, 28]. It is a swarm intelligent algorithm, inspired by nature for solving nonlinear

optimization problems [10]. PSO is a simulation of the advantages of bird flocks. It starts with initial

individuals called particles representing initial solutions for the problem. During the search process, killing of

any individual is not permitted. In PSO, all individuals remain alive and try to make themselves stronger

throughout the search process. In every generation/iteration, individuals make themselves better. The identity

of the individual does not change over the iterations.

GA is an evolutionary optimization algorithm based on the biological concept of population

generation [13]. A new population is evolved in every generation based on predefined fitness function. GA

works better for vast and complex search space problems. It works based on three main operations which are

selection, crossover, and mutation. The strength of GA is in the parallel nature of its search. The genetic

operators used are the main powerful reason for the success of the search. Crossover is the main genetic

operator, whereas mutation is used less frequently. Crossover attempts to benefit offspring solutions and to

eliminate undesirable components. By restricting the reproduction of weak offsprings, GAs eliminates not

only that solution but also all of its descendants. This makes the algorithm converge towards high-quality

solutions within a few generations. In order to realize powerful crossover and mutation operators, we must

choose good initial population for GA [14].

However metaheuristic algorithms are powerful techniques for optimization, they are inefficient to

handle the load in cloud computing in case of random initial population. Also, they suffer from increasing the

computational cost in the large scale problems [29]. Therefore, hybrid algorithms are introduced to enhance the

performance of both the traditional and metaheuristic algorithms in order to handle their problems.

2.3. Hybrid algorithms

Hybrid task scheduling algorithms are based on combining two scheduling algorithms to make use

of the advantage of both these two algorithms. This paper presents some of the most popular hybrid

algorithms to state the reason for the proposed algorithm. HGA-ACO algorithm [30] combines GA and ACO

algorithms together. Randomly initialized GA is used to produce the initial pheromone for ACO. ACO starts

to iterate in order to give the best solution. The best two solutions from GA and ACO are merged by

crossover to give the global best solution. However, the algorithm focuses on response time, execution time

and throughput, it doesn’t subject to the load balancing problem. GA is not an effective algorithm to give an

initial solution when it is randomly initialized.

Osmotic hybrid artificial bee and ant colony (OH_BAC) algorithm is presented in [31]. It applies the

osmosis technique for providing energy efficient cloud environment. In this algorithm, ABC and ACO

cooperate to select the appropriate VM to be migrated to the most suitable physical machine. In addition, it

makes activation for the most suitable osmotic host among all physical machines in the system to decrease

power consumption.

Moreover, integrating machine learning techniques with load balancing algorithms reinforcement the

learning process and help to improve the performance and the convergence rate of the load balancing process [32].

However, the goal of most of these algorithms is to minimize the overall completion time without looking

into the minimization of the overall load deviation. Most of previous algorithms choose minimizing

makespan as the main goal in scheduling; however this target always chooses faster VMs to perform the

assigned tasks. This results in overloaded VMs with high processing speed that yields to starvation problem

of other VMs with lower processing time. In addition, the experiments of most of related work are limited as

they tested their algorithms on small scale problems [33]. In this paper, a new hybrid HLBGA balancing

algorithm is proposed which combines GA and a new proposed HILB scheduling algorithm which helps

genetics to converge more quickly to better solution by feeding it with good initial population.

3. THE PROPOSED HLBGA

3.1. Architecture overview

In this section, the proposed HLBGA is presented. The main purpose of the proposed algorithm is to

improve the assignment performance for all the submitted tasks on all VMs. It tries to assign tasks to each

VM based on its computing capabilities to make use of all of them which leads at the end to balance the load

among all VMs. Load balance is an optimization problem in which load deviation is the objective function

needed to be minimized. GA is one of the popular algorithms that are used to solve optimization problems.

The proposed algorithm uses GA with a good initial population to get the optimal solution with less time.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2480

The proposed HLBGA is based on two main phases. The first phase is applying the proposed HILB

algorithm that distributes tasks overall VMs based on each resource computing capabilities to ensure that no

single VM is either overloaded or underutilized especially in case of major differences between resources

computing capabilities. The second phase uses the output of the HILB algorithm as an initial population for

the GA which optimizes load deviation objective function to achieve optimum load distribution.

The proposed HLBGA algorithm introduces a new objective function to improve the performance of

the assignment problem even when the problem becomes complex or too large. It implemented in different

environments, homogeneous, heterogeneous-low and heterogonous-high environments. HLBGA also is

implemented on a different number of tasks. It improves resource utilization and it also decreases both the

load deviation and the makespan.

3.2. Load balancing problem analysis

Although cloud computing is dynamic, at any particular instance the load balancing problem can be

formulated as assigning a set of n tasks on a set of m VMs. Assume that the cloud task scheduler receives n

independent tasks 𝑡1 𝑡2 𝑡3 … … . 𝑡𝑛 with different lengths, which are expressed in million instructions (MI)

as (1):

𝑇 = [𝑡1𝑡2𝑡3 … 𝑡𝑖 … . 𝑡𝑛]𝑇 where 𝑡𝑖 is the length of task i and 𝑖 = {1.2. … . 𝑛} (1)

Also, assume that the cloud task scheduler contains information about the m VMs;

𝑣1 𝑣2 𝑣3 …… . 𝑣𝑚 with different processing speeds, which are expressed in million instructions per second

(MIPS(as:

𝑉 = [𝑣1𝑣2𝑣3 … 𝑣𝑗 … . 𝑣𝑚]
T
 (2)

where 𝑣𝑗 is the processor speed of VM 𝑗 and 𝑗 = {1. 2. … .𝑚}

The assignment matrix 𝜃 of tasks over VMs can be represented as:

𝜃 =

[

𝜃11 𝜃1𝑗 𝜃1𝑚

⋮ … ⋮
𝜃𝑖1 𝜃𝑖𝑗 𝜃𝑖𝑚

⋮ ⋮ ⋮
𝜃𝑛1 𝜃𝑛𝑗 𝜃𝑛𝑚]

 (3)

where 𝜃𝑖𝑗 = 1 if task 𝑡𝑖 is assigned to VM 𝑣𝑗 , otherwise 𝜃𝑖𝑗 = 0

Assume also that at any time there will be load matrix X contains information about the current

load of the m VMs 𝑥1 𝑥2 𝑥3 … … . 𝑥𝑚. The VMs loads are defined in the load matrix as:

𝑋 = [𝑥1𝑥2𝑥3 … 𝑥𝑗 … . 𝑥𝑚]
𝑇
 (4)

𝑥𝑗 = ∑
𝜃𝑖𝑗𝑡𝑖

𝑣𝑗

𝑛
𝑖=1 where 𝑥𝑗 is the current load of VM𝑗 and 𝑗 = {1. 2. … .𝑚} (5)

The performance of the assignment solution can be measured using makespan, load deviation (𝜎),

and resource utilization (U). They can be calculated as [23]:

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛 = max(𝑥𝑗) ∀𝑗 where 𝑥𝑗 is the completion time of VMj. (6)

𝜎 = √∑ (𝑥𝑗−𝜇)
2𝑚

𝑗=1

𝑚
 where 𝜇 =

∑ 𝑥𝑗
𝑚
𝑗=1

𝑚
 (7)

𝑈 =
𝜇

𝑀𝑎𝑘𝑒𝑆𝑝𝑎𝑛
 × 100 (8)

3.3. The problem formulation of HLBGA

The goal of the proposed HLBGA algorithm is to optimally assign a set of tasks on a set of VMs

in a way that minimize the load deviation of all VMs. Minimizing load deviation yields to minimize

makespan and maximize resource utilization since it assigns the tasks to all VMs with dif ferent

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2481

computing capabilities. It ensures that all VMs are not overloaded or under loaded. Then it prevents

starvation problem of VMs with low processing speed. Table 1 shows the parameters' notations that are

used in the proposed model.

Table 1. Parameters' notations used in the proposed model
Parameter Meaning

n The number of tasks
m The number of VMs

Tnx1 The task length matrix where ti is the length of ith task in MI
Vmx1 The processor speed matrix where vj is processor speed of jth VM in MIPS
Xmx1 The load Matrix for all VM where xj is load of jth VM
σ2 Load variance
σ Load deviation
μ Load Mean

𝜃𝑛×𝑚 Assignment matrix where θij is a binary bit equals to 1 or 0, which represents assignment state of task i on VM j

The proposed model formulates the objective in terms of the assignment matrix. It tries to get the

assignment matrix that provides the solution with minimum load deviation. The load variance can be

obtained as:

𝜎2 =
∑ (𝑥𝑗−𝜇)

2𝑚
𝑗=1

𝑚
 (9)

assume

𝑋 ̇ = [

𝑥1

𝑥2

..
𝑥𝑚

] − [

1
1
..
1

] 𝜇 = 𝑋 − 1 𝜇 (10)

then

∑ (𝑥𝑗 − 𝜇)
2𝑚

𝑗=1 = �̇�𝑇�̇� (11)

because

∑ 𝑥𝑗
𝑚
𝑗=1 = 1𝑇 𝑋 (12)

then

𝜇 =
1𝑇𝑋

𝑚
 (13)

Substitute (13) in (10)

𝑋 ̇ = (𝐼 –
1 1𝑇

𝑚
) 𝑋 (14)

where I is an identity matrix,

let𝑄 = (𝐼 –
1 1𝑇

𝑚
) then �̇� = 𝑄𝑋 (15)

All the diagonal elements of the Q matrix are
𝑚−1

𝑚
 and its off-diagonal elements are

−1

𝑚
, so Q is an

idempotent matrix [34]. The matrix Q is useful in computing sums of squared deviations.

𝑄 =
1

𝑚
 [

𝑚 − 1 −1
−1 𝑚 − 1

… −1
−1 ⋮

⋮ −1
−1 …

⋱ −1
−1 𝑚 − 1

] (16)

By substituting (11) in (9)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2482

𝜎2 =
�̇�𝑇�̇�

𝑚
=

𝑋𝑇𝑄𝑇𝑄𝑋

𝑚
 where 𝑄𝑇𝑄 = 𝑄, then (17)

𝜎2 =
𝑋𝑇 𝑄 𝑋

𝑚
 (18)

𝑋𝑇 𝑄 𝑋 = ∑ 𝑥𝑘
2𝑞𝑘𝑘

𝑚
𝑘=1 + ∑ ∑ 𝑥𝑧𝑥𝑗𝑞𝑧𝑗

𝑚
𝑗=1
𝑧≠𝑗

𝑚
𝑧=1 (19)

where 𝑞𝑘𝑘 =
𝑚−1

𝑚
 , 𝑘 = 1, 2, … . ,𝑚 and 𝑞 𝑧𝑗

𝑧≠𝑗

= −
1

𝑚
 , 𝑧, 𝑗 = 1,2, … . ,𝑚

𝜎2 =
1

𝑚2 [(𝑚 − 1) ∑ 𝑥𝑘
2 − ∑ ∑ 𝑥𝑧𝑥𝑗

𝑚
𝑗=1
𝑍≠𝑗

𝑚
𝑍=1

𝑚
𝑘=1] (20)

where

𝑥𝑧 = ∑
𝜃𝑖𝑧𝑡𝑖

𝑣𝑧

𝑛
𝑖=1 (21)

𝑥𝑗 = ∑
𝜃𝑙𝑗𝑡𝑙

𝑣𝑗

𝑛
𝑙=1 and (22)

𝑥𝑘
2 = ∑ ∑

𝜃𝑖𝑘𝜃𝑙𝑘 𝑡𝑖 𝑡𝑙

𝑣𝑘
2

𝑛
𝑙=1 𝑛

𝑖=1 (23)

The objective function is concluded by substituting (21), (22), and (23) in (20) that yields (24). As

shown in (25) is the nonlinear objective function of HLBGA where t, v, m, and n are constants for each

problem which represent tasks length, VMs processor speed, number of VMs, and number of tasks need to be

assigned, respectively. While θ contains the assignment variables need to be solved for the optimum solution.

This objective function is subject to three constrains which are formulated in (26-28). As shown in (26)

means that each task should be assigned to only one VM. θ in (27) is a binary variable which can be 1 or 0,

i.e., assigned or not assigned. As shown in (28) states that, the completion time for any VM for optimum

solution should be less than or equal to the makespan of the initial assignment matrix (Makespaninitial).

𝜎2 =
1

𝑚2 [(𝑚 − 1)∑ ∑ ∑
𝜃𝑖𝑘 𝜃𝑙𝑘

𝑣𝑘
2

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑘=1 𝑡𝑖 𝑡𝑙 − ∑ ∑ ∑ ∑

𝜃𝑖𝑧 𝜃𝑙𝑗

𝑣𝑧 𝑣𝑗
 𝑡𝑖 𝑡𝑙

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑗=1

𝑚
𝑧=1

𝑧 ≠ 𝑗
] (24)

𝜎 = √
1

𝑚2 [(𝑚 − 1) ∑ ∑ ∑
𝜃𝑖𝑘 𝜃𝑙𝑘

𝑣𝑘
2

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑘=1 𝑡𝑖 𝑡𝑙 − ∑ ∑ ∑ ∑

𝜃𝑖𝑧 𝜃𝑙𝑗

𝑣𝑧 𝑣𝑗
 𝑡𝑖 𝑡𝑙

𝑛
𝑙=1

𝑛
𝑖=1

𝑚
𝑗=1

𝑚
𝑧=1

𝑧 ≠ 𝑗

] (25)

subject to:

∑ 𝜃𝑖𝑗
𝑚
𝑗=1 = 1 ∀ 𝑖 (26)

𝜃𝑖𝑗𝜖 {0,1} ∀𝑖 ∀𝑗, 𝑖 = 1,2, … . . 𝑛 𝑗 = 1,2, …… .𝑚 (27)

∑
𝜃𝑖𝑗𝑡𝑖

𝑣𝑗

𝑛
𝑖=1 ≤ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∀𝑗 𝑗 = 1,2, … . ,𝑚 (28)

3.4. The HLBGA phases

The proposed HLBGA algorithm has two phases. First, HILB algorithm is proposed as a new

traditional algorithm in order to distribute tasks overall VMs in an efficient way to avoid overloaded or under

loaded VMs. The second phase uses the output as an initial population for GA. Figure 1 shows the main steps

of the two phases of the proposed algorithm. These two phases are implemented as:

3.4.1. Phase I: Initial population phase

In this phase, the HILB algorithm is proposed in order to balance the load and minimize makespan.

Algorithm strategy is based on moving tasks from heavy loaded machines to least loaded ones as:

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2483

Figure 1. Flow structure of the HLBGA algorithm

a. HILB gets an initial assignment solution for all the submitted tasks over all the available resources by

assigning the task with min. completion time to the corresponding machine. Then, it calculates makespan

and load deviation for this initial solution as the current makespan, and load deviation, respectively.

b. HILB calculates the completion time of all the available VMs. It tries to move the shortest task in the

heaviest loaded resource to the least loaded resource. HILB considers two conditions for accepting any

new task movement from one VM to another. It guarantees that each new task movement is a forward

step in enhancing makespan and load deviation. The two conditions are: (1) New Makespan <= Current

Makespan, and (2) New load deviation <= Current load deviation.

HILB makes all the available task movements for the current heaviest loaded VM to any one of the

remaining VMs. HILB repeats these previous operations on all the available resources. It balances the load

overall resources even very slow ones in a way that achieves high load balancing and optimum completion

time. This algorithm avoids starvation problem between VMs.

3.4.2. Phase II: GA phase

HLBGA algorithm relies on GA as a powerful solution for nonlinear programming optimization

NP-complete problems. Genetics in this algorithm relies on three main operations; elite, crossover, and

mutation. In Elite operation, the algorithm chooses the assignment matrices that give the best fitness

functions to pass to the next generation. In crossover and mutation operations, the algorithm reassigns tasks

to different VMs to form new solutions in different ways. Crossover recombines each two assignment

matrices to form two new ones which practically mean reassignment of tasks to form two new solutions. The

recombination must be done on a complete row basis i.e., complete rows are swapped between matrices.

While in mutation, random changes done to a single assignment matrix. Algorithm 1 shows the main

processes of the proposed HLBGA.

Algorithm 1: The proposed HLBGA
Begin

// start Phase I: HILB Algorithm

1. For any submitted task Ti calculate completion time Ctij for Resourcej Rj

Ctij=Etij+rtj;

2. while the non-submitted task list is not empty

3. Find task I with minimum completion time and assign to corresponding Resource

4. Remove the task from non-submitted task list and update resource ready time rtj

5. End

6. Calculate current Makespan Mc and load deviation Lc

7. Add all VMs to Resources list R

8. while list R not empty

9. Find Heaviest loaded VM RH in Resource List

10. Add other Resources to load list L and find least load Resource RL

11. move the shortest task in the heaviest loaded resource to RL

12. a. IF New Makespan Mn <= Mc And New Load Deviation Ln<= Lc

 b. Then Mc= Mn and Lc=Ln And Goto step 9

 c. Else if L is not empty

 d. Then undo step 11 And remove RL from List L And go to step 11

 e. Else remove RH from list R And go to step 8

13. End

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2484

// start Phase II: Applying GA

14. Initialize population by adding the result of phase 1 to random initial population

15. Set initial parameters

 E Elite count fraction, P population size, C Crossover fraction G number of

generations

16. Calculate number of variables V= n×m

17. Set mutation fraction U= 1- (E + C)

18. while termination condition not satisfied

19. Evaluate each chromosome using fitness function

20. Choose (E × P) chromosomes with the best fitness function as elite for the next

generation

21. Select (C × P) chromosomes for crossover operation

22. For k=1 to (C × P)

23. Select two random chromosomes as input for crossover operation

24. Perform crossover operation on selected chromosomes

25. Select the two output chromosomes to the next generation

26. End For

27. Select (U × P) chromosomes for mutation operation

28. For k=1 to (U × P)

29. Select one random chromosome as input for mutation operation

30. Perform Mutation process on the selected chromosome

31. Select the output chromosome to the next generation

32. End For

33. Replace the current population by new generation

34. End

3.5. Complexity of HLBGA

The HLBGA is based on two main phases. In the first phase, it runs the HILB. The time complexity

of this phase is based on the number of the movements that performed to reach the initial population. It can

be computed as: O(n1). In the second phase, the HLBGA runs the GA. The complexity in this phase can be

computed as O(G×N) [35]. Comparing the time complexity of the first phase to the second phase, it was

found that n1<< G×N, so it can be neglected. Therefore, the total complexity of the HLBGA algorithm is:

O(G×N). The initial population that is used in the proposed algorithm helps the genetics to reach a better

solution with less population size and number of generations which decreases the complexity of the

algorithm. Table 2 shows the time complexity of the HLBGA and a description of the complexity parameters.

Table 2. Time complexity of the HLBGA
Algorithm Time complexity Description

Phase I: HILB O(n1) n1: Number of moves to reach the initial population

Phase II: GA

O(G×N) G: Number of generations

N: n × m × P (time overhead of all chromosomes)

where

n × m: Number of variables that represent the number of genes in each chromosome
(time overhead of one chromosome)

P: Population size (number of chromosomes in each generation)

HLBGA O(G×N)

4. PERFORMANCE EVALUATIONS

In this section, the performance of the proposed HLBGA algorithm is evaluated in different

environments and conditions. The proposed algorithm is compared against variant techniques; Min-Min [8]

and LBIMM [9] as traditional algorithms, PSO [10] with two different objective functions as metaheuristic

techniques; PSO1 is the basic PSO algorithm where the objective function is to minimize the makespan while

PSO2 is an updated version of the basic PSO algorithm where the objective function is to minimize the load

deviation, and GA [13] as an evolutionary algorithm which is the original of the proposed algorithm. In

addition, the comparison includes the proposed HILB that represents the initial population of HLBGA. The

evaluation is based on the results of simulation done using CloudSim [35].

4.1. Simulation overview

CloudSim is a simulation tool that simulates the behavior of load balancing algorithms when run on

real data centers. It was used to test the performance of the proposed algorithm and compare the results with

the other algorithms in terms of makespan, resource utilization, and load standard deviation [25]. Table 2

shows the CloudSim configuration for the four simulations used to test the behavior of the proposed

algorithm in different running conditions. Each simulation was run 105 times and the average was considered

in the results. The parameters of GA and PSO are shown in Table 3.

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2485

Table 3. CloudSim configurations
 Simulation_1 Simulation_2

Number of Datacenters 1 1

Number of Hosts 1 1

Number of VMs 4 5
Number of Tasks 10: 150 15

Task length (MI) 200: 3000 150:300

VM Scheduler policy Time shared
Cloudlet Scheduler policy Space shared

GA algorithm

parameter setting

Parameter Value

Crossover 0.8
Elite 0.05

Max. number of generations 200

Population size min.(10×number of genes, 250)
PSO algorithm

parameter setting

Parameter Value

Maximum iterations 200

C1, C2 1.49445
K 5

ωmin, ωmax 0.1, 0.9

Population size 20

4.2. Impact of increasing the workloads with fixed resources

 In this case, the number of tasks is increased while the number of VMs is fixed to check the algorithm's

behavior in different workloads on the same resources. The simulation parameters of Simulation 1 are shown in

Table 3. The number of tasks is varying from 10 to 150. The tasks have different lengths as happen in real-

world workloads. They were generated randomly at the range from 200 to 3000 (MI). Four VMs were

considered for the simulation. The evaluation metrics are makespan, resource utilization, and load deviation.

Figure 2 shows the makespan comparison of the proposed HLBGA with the intended algorithms. It

is shown that HLBGA minimizes the makespan comparing with the other algorithms. The makespan

improvement of HLBGA over HILB and GA is up to 15.7% and 71%; respectively. Figure 3 shows the load

deviation comparison for Simulation 1. It can be seen that the load deviation of the proposed HLBGA is

minimized when compared with the other algorithms. The load deviation improvement of HLBGA over

HILB and GA is 28.5% and 96.1%, respectively in the case of 150 tasks. Figure 4 shows a resource

utilization comparison for Simulation 1. It is shown that the resource utilization of the proposed HLBGA is

maximized when compared with other algorithms. The increase in the utilization of the proposed HLBGA

over HILB and GA is 1.8% and 67.4%, respectively in the case of 150 tasks.

Figure 2. Makespan versus number of tasks

Figure 3. Load deviation versus number of tasks

The results show that the performance of the metaheuristic algorithms such as PSO1, PSO2, and GA

is much lower than the performance of the traditional algorithms at a large number of tasks. With increasing

in the number of tasks, HILB introduces a good performance than the other traditional algorithms so it can be

used to produce an initial population for GA to form the proposed HLBGA. The proposed HLBGA algorithm

as a hybrid technique between HILB and GA outperforms the other algorithms. The makespan, load

deviation, and utilization improvement of HLBGA over HILB and GA are 8% and 48.3%, 34.3% and 85%,

and 3.4% and 40%, respectively.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2486

Figure 4. Resource utilization versus number of tasks

4.3. Implementations in homogeneous and heterogeneous environments

In this case, the simulation is implemented on a fixed number of Cloudlets and VMs but the speed

of VMs are changed to test the performance of the algorithms in Homogeneous (Homog), Heterogonous-high

(Het-high) and Heterogeneous-low (Het-low) processors. The simulation parameters of Simulation 2 are

shown in Table 3. Three simulations were run with different VM speed environments. In Homogenous, all

the VMs have the same speed. In Heterogeneous-low, the speed variation among VMs is low with ratio 1:2.5

between lowest and highest speed VM while in Heterogeneous-high, simulation a high-speed variation

among all VMs with ratio 1:7 is considered.

The target of this experiment is to test the proposed algorithm behavior in the case of workloads

with different lengths in varying environments. Figure 5 shows a makespan comparison of the proposed

HLBGA algorithm with the LBIMM, HILB, standard GA and PSO algorithms while the simulation

environment varies from homogeneous to heterogeneous. It is shown that the makespan improvement of

HLBGA over HILB and GA is up to 2.6% and 42.5%, respectively. Figure 6 shows a load deviation

comparison of Simulation 3. It can be seen that the load deviation of the proposed algorithm is minimized

when compared with the other algorithms. Figure 7 shows the utilization comparison of Simulation 3. It is

clear that the utilization of the proposed algorithm is maximized when compared with the other algorithms.

Figure 5. Makespan in different environments

Figure 6. Load deviation in different environments

Figure 7. Utilization in different environments

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2487

The results show that GA works better than the other metaheuristic algorithms, and also HILB is

more powerful in load balancing than the other traditional algorithms. The proposed HLBGA algorithm

performs better than the other algorithms in all cases especially in Heterogeneous-high which gives the best

results compared to the other algorithms.

5. CONCLUSION AND FUTURE WORK

In this paper, HLBGA algorithm is proposed. It is implemented in two phases. In the first phase,

HILB scheduling algorithm is proposed to perform a good task scheduling process in order to improve the

makespan and produce a good initial population to the second phase. In the second phase, GA as an

evolutionary-based algorithm is used with a newly formulated fitness function in the way of reaching the

optimal load deviation. The proposed algorithm is tested on two simulations. The first simulation tests the

effect of increasing the workloads on the same number of VMs. The simulation results show that the

proposed HLBGA outperforms the other standard and metaheuristic algorithms; Min-Min, LBIMM, GA and

PSO. The second simulation tests the algorithm behavior in the case of distributing tasks of different lengths

on resources that have one of three cases: the same speed (Homogeneous), a slight difference in the speeds

(Heterogeneous-low), and a large variation in the speeds (Heterogeneous-high). The simulation results show

that the proposed HLBGA outperforms all the other algorithms especially in Heterogeneous-high case.

This study focuses on the processor speed of VMs since it is the most effective factor, while other

factors such as memory size and bandwidth of VMs are constants. In future work, the performance of the

proposed algorithm with more other conditions will be investigated. Also, integrating a machine learning

technique with the proposed algorithm adds a new value and can be tested.

REFERENCES
[1] J. Shen, T. Zhou, D. He, Y. Zhang, et al., “Block design-based key agreement for group data sharing in cloud

computing,” IEEE Transactions on Dependable and Secure Computing, vol. 5971, no. c, pp. 1-15, 2017.

[2] H. Nashaat, N. Ashry, and R. Rizk, “Smart elastic scheduling algorithm for virtual machine migration in cloud

computing,” The Journal of Supercomputing, Springer, vol. 75, no. 7, pp. 3842-3865, 2019.

[3] E. Ghomi, A. Rahmani, and N. Qader, “Load-balancing algorithms in cloud computing: A survey,” Journal of

Network and Computer Applications, vol. 88, pp. 50-71, 2017.

[4] M. Gamal, R. Rizk, H. Mahdi, and B. Elhady, “Bio-inspired load balancing algorithm in cloud computing,” in

Proc. The International Conference on Advanced Intelligent Systems and Informatics (AISI), Cairo, Egypt, Chapter

54, 2017, pp. 579-589.

[5] W. Hashem, H. Nashaat, and R. Rizk, “Honey bee based load balancing in cloud computing,” KSII Transactions on

Internet and Information Systems (TIIS), vol. 11, no. 12, pp. 5694-5711, 2017.

[6] M. Ala’Anzy and M. Othman, “Load balancing and server consolidation in cloud computing environments: a meta-

study,” IEEE Access, vol. 7, pp. 141868-141887, 2019.

[7] W. E. Saber, R. Y. Rizk, W. M. Moussa, and A. M. Ghonem, “LBSR: Load balance over slow resources,” in Proc.

IEEE 1st International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi

Arabia, 2018, pp. 1-7.

[8] Y. Shi and K. Qian, “LBMM: A load balancing based task scheduling algorithm for cloud,” in Proc. Information

and Communication Conference, Springer, Cham, 2019, pp. 706-712.

[9] S. Abdolhosseini and M. T. Kheirabadi, “Scheduling independent parallel jobs in cloud computing: A Survey,”

Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 11, no. 3, pp. 11-21, 2019.

[10] H. Saleh, H. Nashaat, W. Saber, and H. Harb, “IPSO Task scheduling algorithm for large scale data in cloud

computing environment,” IEEE Access, vol. 7, pp. 5412-5420, 2018.

[11] X. Liu, Z. Zhan, J. Deng, Y. Li, T. Gu, and J. Zhang, “An energy efficient ant colony system for virtual machine

placement in cloud computing,” IEEE Transactions on Evolutionary Computation, vol. 22, pp. 113-128, 2016.

[12] H. Xing, F. Song, L. Yan, and W. Pan, “A modified artificial bee colony algorithm for load balancing in network-

coding-based multicast,” Soft Computing, vol. 23, no. 15, pp. 6287-6305, 2019.

[13] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A genetic algorithm (GA) based load balancing

strategy for cloud computing,” Procedia Technology, vol. 10, pp. 340-347, 2013.

[14] H. Xue, K. T. Kim, and H. Y. Youn, “Dynamic load balancing of software-defined networking based on genetic-

ant colony optimization,” Sensors, vol. 19, no. 2, p. 311, 2019.

[15] M. Kalra, and S. Singh, “A review of metaheuristic scheduling techniques in cloud computing,” Egyptian

Informatics Journal Cairo University, vol. 16, no. 3, pp. 275-295, 2015.

[16] M. Adhikari, S. Nandy, and T. Amgoth, “Meta heuristic-based task deployment mechanism for load balancing in

IaaS cloud,” Journal of Network and Computer Applications, vol. 128, pp. 64-77, 2019.

[17] M. Sharma, G. Singh, and R. Singh, “Clinical decision support system query optimizer using hybrid Firefly and

controlled Genetic Algorithm,” Journal of King Saud University-Computer and Information Sciences, 2018.

[18] I. K. Gupta, V. Yadav, and S. Kumar, “Medical data clustering based on particle swarm optimisation and genetic

algorithm,” International Journal of Advanced Intelligence Paradigms, vol. 14 no. 3-4, pp. 345-358, 2019.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 11, No. 3, June 2021 : 2477 - 2489

2488

[19] S. K. Roy and D. De, “Genetic algorithm based internet of precision agricultural things (IopaT) for agriculture 4.0,”

Internet of Things, pp. 1-19, 2020.

[20] P. Kaur and M. Sharma, “Diagnosis of human psychological disorders using supervised learning and nature-

inspired computing techniques: A meta-analysis,” Journal of medical systems, vol. 43, no. 7, pp. 1-30, 2019.

[21] S. Sayed, M. Nassef, A. Badr, and I. Farag, “A nested genetic algorithm for feature selection in high-dimensional

cancer microarray datasets,” Expert Systems with Applications, vol. 121, pp. 233-243, 2019.

[22] K. Sureshkumar and V. Ponnusamy, “Power flow management in micro grid through renewable energy sources

using a hybrid modified dragonfly algorithm with bat search algorithm,” Energy, vol. 181, pp. 1166-1178, 2019.

[23] N. T. Hanh, H. T. T. Binh, N. X. Hoai, and M. S. Palaniswami, “An efficient genetic algorithm for maximizing area

coverage in wireless sensor networks,” Information Sciences, vol. 488, pp. 58-75, 2019.

[24] A. M. S. Kumar and M. Venkatesan, “Multi-Objective Task Scheduling Using Hybrid Genetic-Ant Colony

Optimization Algorithm in Cloud Environment,” Wireless Personal Communications, vol. 107, no. 4,

pp. 1835-1848, 2019.

[25] C. V. Raja and D. L. Jayasimman, “A Cost Effective Scalable Scheme for Dynamic Data Service in Heterogeneous

Cloud Environment,” International Journal of Advanced Science and Technology, vol. 28, no. 20, pp. 764-776, 2019.

[26] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: a big picture,” Journal of King Saud

University-Computer and Information Sciences, vol. 32, no. 2, pp. 149-158, 2020.

[27] X. Cheng, D. Ciuonzo, and P. S. Rossi, “Multibit decentralized detection through fusing smart and dumb sensors

based on RAO test,” IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 2, pp. 1391-1405, 2019.

[28] J. G. Jamnani and M. Pandya, “Coordination of SVC and TCSC for management of power flow by particle swarm

optimization,” Energy Procedia, vol. 156, pp. 321-326, 2019.

[29] A. Kaur and B. Kaur, “Load balancing optimization based on hybrid Heuristic-Metaheuristic techniques in cloud

environment,” Journal of King Saud University-Computer and Information Sciences, 2019.

[30] W. Bei and L. Jun, “Load balancing task scheduling based on multi-population genetic algorithm in cloud

computing,” in Proc. the 35th Chinese Control Conference, Chengdu, China, 2016, pp. 27-29.

[31] M. Gamal, R. Rizk, H. Mahdi, and B. E. Elnaghi, “Osmotic bio-inspired load balancing algorithm in cloud

computing,” IEEE Access, vol. 7, pp. 42735-42744, 2019.

[32] U. K. Jena, P. K. Das, and M. R. Kabat, “Hybridization of meta-heuristic algorithm for load balancing in cloud

computing environment,” Journal of King Saud University-Computer and Information Sciences, 2020.

[33] F. Yao et al., “An intelligent scheduling algorithm for complex manufacturing system simulation with frequent

synchronizations in a cloud environment,” Memetic Computing, vol. 11, no. 4, pp. 357-370, 2019.

[34] J. E. Gentle, “Matrix algebra, Theory, Computations, and Applications in Statistics,” Springer-Verlag, New York, 2007.

[35] J. D. Pagare and N. A. Koli, “Design and simulate cloud computing environment using cloudsim,” International

Journal of Computer Technology & Applications, vol. 6, no. 1, pp. 35-42, 2015.

BIOGRAPHIES OF AUTHORS

Walaa Saber is an assistant professor in the Electrical Engineering Department, Port Said University,

Egypt. She received her B.Sc. and M.Sc. degrees in Computer and Control Engineering, Suez Canal

University in 2001 and 2008, respectively. Her Ph.D. degree in computer and control engineering is

taken from Port Said University in 2014. Her research interests are in the area of computer networking,

including cloud computing, clustering, and Internet of Things.

Walid Moussa received the B.Sc. and M.Sc. degrees in Computer Engineering from Suez Canal

University, Ismailia, Egypt, in 2001, and 2019, respectively. From 2001 to 2009, he was a system

engineer in Suez Canal Authority, Ismailia, Egypt. His work includes the administration of vessel

traffic management system. Since 2009, he has been project manager for navigational control projects

with the transit department, Suez Canal Authority, Ismailia, Egypt.

Atef M. Ghuniem is a Professor emirate at Electrical Engineering Department Department, Suez

Canal University, Egypt, He received the B.Sc. and M.Sc. in E. E. from Military Technical College

(MTC), Cairo, Egypt, in 1971 and 1979, respectively. He received the Ph.D. in E.E. (major area:

Electronics and Waves) from George Washington University, Washington, D.C., USA, in 1985. He

joined the staff of the E.E. department in MTC from 1975 till 1996. He was the head of department

during the period 1995-1996. Since 1998 till 2008 he is an associate professor at the E.E. department,

Faculty of engineering, Sues Canal University and from 2008 till now be a professor emirate at the

same department. His research interest is in wireless communications including antennas and wave

propagation, passive and active microwave devices, and microwave communications. Recently, he is

interested in information technology.

Int J Elec & Comp Eng ISSN: 2088-8708

Hybrid load balance based on genetic algorithm in cloud environment (Walaa Saber)

2489

Rawya Rizk is a Professor of Computers and Control in Electrical Engineering Department, Port Said

University, Egypt. She is the Head of Electrical Engineering Department, Port Said University, 2017

till now. She is the Chief Information Officer (CIO) of Port Said University (PSU), 2014 till now. She

received her BSc, MSc and PhD in Computers and Control Engineering from Suez Canal University in

1991, 1996 and 2001, respectively. Her research interest is in computer networking, including mobile

networking, wireless, ATM, Sensor Networks, Ad Hoc Networks, QoS, traffic and congestion control,

handoffs and cloud computing. She is a reviewer in many of international communication and

computer journals such IEEE Access, IET communications, IET sensors, IET Networks, Journal of

Supercomputing, Journal of Network and Computer Applications, Computers & Electrical

Engineering, Telecommunication Systems (TELS), and Mathematical Problems in Engineering.

