
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Earth, Environmental, and Marine Sciences 
Faculty Publications and Presentations College of Sciences 

3-2017 

Diversity of deep-sea fishes of the Easter Island Ecoregion Diversity of deep-sea fishes of the Easter Island Ecoregion 

Erin E. Easton 
The University of Texas Rio Grande Valley, erin.easton@utrgv.edu 

Javier Sellanes 

Carlos F. Gaymer 

Naiti A. Morales 

Matthias Gorny 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac 

 Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Marine Biology 

Commons 

Recommended Citation Recommended Citation 
Easton, E. E., Gaymer, C. F., Sellanes, J., Morales, N., Berkenpas, E., Gorny, M. 2016. Diversity of deep-sea 
fishes of the Easter Island Ecoregion. Deep-sea Research Part II 137, 78–88. http://dx.doi.org/10.1016/
j.dsr2.2016.12.006 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in Earth, Environmental, and Marine Sciences Faculty Publications and Presentations 
by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact 
justin.white@utrgv.edu, william.flores01@utrgv.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarworks@UTRGV Univ. of Texas RioGrande Valley

https://core.ac.uk/display/335268254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/eems_fac
https://scholarworks.utrgv.edu/eems_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/eems_fac?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.utrgv.edu%2Feems_fac%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


Authors Authors 
Erin E. Easton, Javier Sellanes, Carlos F. Gaymer, Naiti A. Morales, Matthias Gorny, and Eric Berkenpas 

This article is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/eems_fac/61 

https://scholarworks.utrgv.edu/eems_fac/61


 

1 

 

Diversity of deep-sea fishes of the Easter Island Ecoregion 1 

Erin E. Eastona,*, Javier Sellanesa,b, Carlos F. Gaymera,b, Naiti Moralesa, Matthias Gornyc, Eric 2 

Berkenpasd 3 

aMillennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), 4 

Universidad Católica del Norte, Coquimbo, Chile 5 

bCentro de Estudios Avanzados en Zonas Áridas (CEAZA) 6 

cOceana Chile, Avenida Condell 520, Santiago, Chile CP 7500875 7 

dNational Geographic Society, Washington, DC, USA 8 

*Corresponding author. 9 

erineeaston@gmail.com 10 

Keywords:  mesophotic, Squalus, Chromis, Tosanoides, Hydrolagus, benthic ecology  11 

mailto:erineeaston@gmail.com


 

2 

 

Abstract 12 

The Easter Island Ecoregion is in the center of the South Pacific gyre and experiences 13 

ultra-oligotrophic conditions that could make it highly susceptible to global change and 14 

anthropogenic activities, so it is imperative that these regions are characterized and studied so 15 

that conservation and sustainable management strategies can be developed.   From the few 16 

studies from the region, we know that the coastal areas are relatively depauperate and have 17 

relatively high rates of endemism.  Here, we present a brief report from the first video 18 

observations from this region of the deep fish fauna from ROV exploration of benthic 19 

communities from 157 to 281 m and baited drop-camera videos from 150 to 1850 m.  We 20 

observed a total of 55 fish species from the ROV and Drop-Cam surveys; nine could not be 21 

assigned family level or lower, 26 were observed in the ROV surveys, 29 were observed in the 22 

Drop-Cam surveys, nine were observed with both survey methods, at least six species are 23 

potentially new to science, and nine species were observed at deeper depths than previously 24 

reported.  These new reports may be indicative of the unique oceanographic conditions in the 25 

area and the relative isolation of the communities that have provided opportunity for the 26 

evolution of new species and favorable conditions for range expansion.  In contrast, these new 27 

reports may be indicative of the severe undersampling in the south Pacific at mesopelagic depths.  28 

The prevalence of potentially new species suggests that the region likely harbors a wealth of 29 

undiscovered biodiversity.  30 
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1.  Introduction 31 

The Easter Island Ecoregion (EIE) consists of Easter Island, Salas y Gómez, and the 32 

nearby seamounts.  These islands and seamounts are part of a ~4,000–km chain of seamounts 33 

(Salas y Gómez and Nazca Ridges) that formed from the movement of the Nazca plate over the 34 

Easter Island hotspot, currently located somewhere between Easter Island and Salas y Gómez 35 

(Ray et al., 2012; Vezzoli and Acocella, 2009).  Easter Island (27°09’ S, 109°22’W) is 36 

considered the most-isolated inhabited island on Earth (Loret and Tanacredi, 2003; Mieth and 37 

Bork, 2005; Santelices and Abbott, 1987), located ~2,000 km east of the nearest inhabited island, 38 

Pitcairn, and ~3,700 km west of continental Chile.  Because of its remoteness, relative isolation, 39 

and limited resources to support scientific studies, knowledge on the diversity of fishes was 40 

limited prior to the mid-1980s.  Studies at Salas y Gómez, which lies 400 km to the east, are even 41 

more limited.  The waters surrounding Salas y Gómez are part of the Motu Motiro Hiva Marine 42 

Park, established by the Chilean government in October 2010.  The area experiences ultra-43 

oligotrophic conditions, but with increased nutrients at Salas y Gómez relative to Easter Island 44 

(Andrade et al., 2014).  Since the 1980s, the known diversity of Easter Island shore and 45 

epipelagic fishes expanded from less than 30 species to 171 species; however, these fauna are 46 

considered depauperate in comparison to other islands, which have ~10-fold more fish species 47 

(Randall and Cea, 2010). 48 

Of the 171 species known from the island (Randall and Cea, 2010), 141 occur at depths 49 

less than 200 m.  Of these fishes, ~26.3% are locally endemic and an additional ~14% are 50 

regionally endemic (Friedlander et al., 2013; Randall and Cea, 2010).  Of those species reported 51 

from depths to 200 m, their reports primarily come from scuba surveys and observations to ~40 52 

m and catches by artisanal fisherman in the coastal and offshore waters (DiSalvo et al., 1988; 53 
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Hubbard and Garcia, 2003; Randall and Cea, 2010; Zylich et al., 2014).  Because offshore 54 

artisanal fisheries focus on top predators (e.g., tunas and jacks) and use a traditional line method 55 

instead of trawls, relatively few species are known from depths greater than 40 m. 56 

The only studies in the area of deep-dwelling fishes were a series of expeditions by 57 

Russian scientists in the 1970s and 1980s to explore the seamount communities of the Nazca 58 

Ridge and eastern Salas y Gómez Ridge (Parin, 1991; Parin et al., 1997).  From the resulting 59 

data, the authors made several preliminary conclusions that require further studies for 60 

verification.  (1) An apparent biogeographic discontinuity occurs at ~83° W and may be 61 

maintained by the Humboldt Current serving as a barrier.  (2) As observed for shallow-water 62 

fishes, a high percentage (~44%) of deep-sea fishes appear to be locally or regionally endemic.  63 

(3) The EIE should be considered a separate ecoregion from the surrounding ones, including the 64 

Nazca and eastern Salas y Gómez Ridges.  (4) The benthopelagic communities studied are more 65 

similar to the west Pacific than to the continental east Pacific despite their relative proximity to 66 

continental Chile. 67 

Because the EIE is near the center of the South Pacific Gyre and is surrounded by ultra-68 

oligotrophic waters that could limit the available energy to support biomass at depth, the region 69 

is more susceptible to climatic and anthropogenic disturbances and likely has a slow recovery 70 

time after disturbances (Andrade et al., 2014).  Susceptibility to disturbances and productivity 71 

may vary at various time scales due to oceanographic and other environmental conditions that 72 

can vary, in turn, intra-annually in association with season and eddies and inter-annually in 73 

association with El Niño Southern Oscillation (ENSO) (Andrade et al., 2014; Mucciarone and 74 

Dunbar, 2003). 75 
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The diversity and abundance of coastal fishes has declined since the 1980s, with some 76 

fishes, including endemics, being rare or not observed in more recent surveys (Friedlander et al., 77 

2013; Randall and Cea, 2010; Wieters et al., 2014).  This decline potentially could be due to 78 

changes in environmental conditions and benthic community structure and the effects of 79 

increased fishing pressure due to increasing tourism and consequent demand for fish (DiSalvo et 80 

al., 1988; Zylich et al., 2014).  Similarly, catch of commercially important fishes has begun to 81 

level off or decline over the last 20 years (Zylich et al., 2014).  Under these changing conditions, 82 

it is important to catalogue the diversity and distribution of species of Easter Island to inform 83 

local and national communities for planning management and conservation strategies.  In 84 

addition, Parin et al. (1997) could not investigate the seamounts and islands within the Chilean 85 

EEZ, so they were unable to determine whether the pattern of apparent trends of longitudinal 86 

transitions in community composition and high levels of endemism continued along the Salas y 87 

Gómez Ridge into the EIE.  To help begin to fill the knowledge gap for the EIE, we report the 88 

biodiversity of benthopelagic fishes observed in videos from a remotely-operated vehicle (ROV) 89 

deployed at 155-280 m of the southwest coast of Easter Island at an ancestral fishing ground, 90 

locally called “Apolo,” as well as those fishes observed in videos from baited drop cameras 91 

deployed in 2011 at 150-1850 m off the coasts of Salas y Gómez and Easter Island and at two 92 

seamounts between these islands.  We then compare our observations to the available literature 93 

on the distributions and depth ranges of the identified species. 94 

2.  Methods 95 

2.1.  Study site 96 

Easter Island is a triangular-shaped island consisting of three volcanoes, Rano Kau, 97 

Terevaka, and Poike, with one located at each of the three corners of the island.  Rano Kau forms 98 
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the southwest corner of the island and has a subsurface peak ~ 13 km offshore at ~ 150-m depth, 99 

where the local rapanui fishermen have a historic fishing ground called Apolo (Fig. 1).  Three 100 

exploratory surveys were performed at Apolo on 1 October 2014 with a ROV Comander MK2 101 

(Mariscope Meerestechnik, Kiel, Germany) equipped with a HD Camcorder (Panasonic SD 909).  102 

Bottom time for each survey varied from 12 to 32 minutes and depths ranged from 157 to 281 m 103 

(Table 1).  The distance between the HD camera and the seafloor varied between several 104 

centimeters and about 1 meter, and the camera was positioned in front of the ROV with a fixed 105 

angle of 15 degrees towards the bottom, with two laser pointers fixed to indicate a distance of 10 106 

cm. 107 

Up to three baited, deep-ocean Drop-Cams (Turchik et al., 2015), developed by the 108 

National Geographic Society, were simultaneously deployed at a total of 20 stations along the 109 

island slopes of Salas y Gómez and Easter Island or the slopes of two seamounts west of Salas y 110 

Gómez at 150 – 1850 m (Table 2, Fig. 2).  These Drop-Cams have a 12-megapixel Sony 111 

Handycam HDR-XR520V encased in a borosilicate glass sphere rated to 12,000 m.  Depending 112 

on the angle of the substrate, the viewing area per frame was 3-6 m2.  Each camera was baited 113 

with frozen fish and deployed for ~5 hours.  For some deployments, the lights, a high-intensity 114 

LED array directed using external reflectors, were not turned on until up to ~4 hours after 115 

deployment.  Depth was measured with an external pressure sensor, and communication with the 116 

sealed cameras was through a waterproof bulkhead connector.  The Drop-Cams were positively 117 

buoyant, resulting in an ascent rate of 0.5 ms-1 and weighted with a 22-kg external weight, 118 

resulting in a descent rate of 1.5 ms-1.  The weight was released by burn wire, activated using 119 

onboard battery voltage, and the Drop-Cams were located for recovery by communication of an 120 



 

7 

 

onboard VHF transmitter and locating antennae, with backup location via communication with 121 

the ARGOS satellite system. 122 

2.2.  Video analyses 123 

 ROV videos were first analyzed frame-by-frame with Adobe Premiere Pro CS5 (Adobe 124 

Systems Incorporated, San Jose, CA) by a single observer and then by the same observer at 0.2 x 125 

speed with GOM Player 2.2 (GOMlab, Gretech Corporated, Seoul, Korea) to quantify the 126 

maximum number (NMax) of individuals of each species per frame for each 3-minute segment 127 

of video, starting when the seafloor became visible. ROV videos were watched a third time by a 128 

2-person team of observers to confirm species identifications and counts of individuals.  Drop-129 

Cam videos were watched by a two-person team at normal speed with GOM Player 2.2 to 130 

quantify the maximum number (NMax) of individuals of each species per frame for each 3-131 

minute segment of video.  Frame grabs of representatives of each species were taken with Adobe 132 

Premiere and GOM Player for archival and identification purposes.  Individuals were identified 133 

to the lowest possible taxonomic level using the Hawaii Underwater Research Laboratory 134 

(HURL) database (HURL, 2013), FishBase (Froese and Pauly, 2011), and regional guides and 135 

reports of trawl data from Salas y Gómez and Nazca Ridge (Dyer and Westneat, 2010; Parin, 136 

1991; Parin et al., 1997; Randall and Cea, 2010). 137 

2.3.  Nomenclature and species assignment  138 

We acknowledge the inherent difficulties in identifying individuals to species level from 139 

video footage and therefore all species assignments are made to the lowest possible taxon in 140 

which we had reasonable confidence.  For this reason, we likely underestimated the number of 141 

species, especially for those morphologically similar taxa that often have overlapping geographic 142 
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ranges (e.g., Macrouridae).  We used information on the known ranges, the original descriptions, 143 

and reports of revisions to aid us in assigning individuals to species and discuss potentially 144 

conflicting data, including differences in color, among reports in Supplementary Material to help 145 

fill gaps in primary literature on biogeographic ranges and color variation within species.  In this 146 

study, we used nomenclature accepted by FishBase (Froese and Pauly, 2011) and accepted 147 

species names were verified using WoRMS (WoRMS Editorial Board, 2016); however, lack of 148 

clarity in several species names warrants discussion.   149 

The following species were reported in Randall and Cea (2010) under synonymous 150 

names: Cheilodactylus plessisi (as Goniistius plessisi), Pseudocaranx dentex (as P. cheilio), and 151 

Etelis carbunculus (as E. marshi).  In the case of Goniistius plessisi, Randall and Cea (2010) 152 

recognized generic-level morphological and genetic differences that have yet to be officially 153 

revised (Burridge and White, 2000; Randall, 1983).  Pseudocaranx cheilio has conflicting 154 

reports on its validity due to differences in gill raker counts of Easter Island specimens relative to 155 

Hawaiian specimens (Randall and Cea, 2007).  The Catalogue of Fishes (Eschmeyer, 2015) 156 

considers it a valid species; however, it is a synonym of P. dentex in WoRMS and Fishbase.  See 157 

Supplemental Material for additional discussion of nomenclature issues for E. marshi and 158 

morphological differences between Antigonia capros, Pristilepis oligolepis, and Priacanthus 159 

nasca and morphologically similar species in the area. 160 

A preliminary report of 21 species from these Drop-Cam videos were reported in 161 

Friedlander et al. (2013); however, many of their preliminary identifications differ from this 162 

report, including Squalus mitsukurii, Congridae, Glossanodon cf. sp., Synodus isolatus, 163 

Coelorinchus sp., Plectranthias parini, Priacanthus nasca, Amphichaetodon melbae (see Table 164 

4a in Friedlander et al. 2013).  Here, we report the list of species observed during this study with 165 
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notes on the differences between the preliminary reports and this brief report.  For S. mitsukurii, 166 

recent work suggests that the species present in our study area is part of the S. mitsukurii species 167 

group, but we have insufficient data to assign it to species or to determine whether it is 168 

potentially a new species (see 3.3.1.).  For Glossanodon cf. sp. (our unidentified species 7, Table 169 

3), we did not assign it to a specific taxon due to the small size of the specimen and poor image 170 

quality.  For Coelorinchus sp., individuals were not sufficiently close to the camera to assign 171 

individuals below the level of family, Macrouridae.  For Plectranthias parini, Priacanthus 172 

nasca, and Amphichaetodon melbae, we assigned them respectively to Tosanoides sp., 173 

Cookeolous japonicus, and Prognathodes sp. on the basis of their morphology.  For example, the 174 

Tosanoides sp. is distinct from P. parini in several aspects, including color pattern, size, and fin 175 

shape.  Finally, it appears that individuals of Halosauridae and Synaphobranchidae were assigned 176 

to either Congridae or Nettastomatidae in the preliminary reports; one unidentified fish at 1099 177 

m could be a Congridae but video quality was insufficient to assign that individual definitively to 178 

family. 179 

3.  Results and discussion 180 

3.1.  Species assignments 181 

We observed a total of 55 fish species from the ROV and Drop-Cam surveys.  Of these 182 

species, nine could not be assigned family level or lower; however, color patterns and general 183 

shape allowed us to determine that they are morphologically distinct from the other 46.  Due to 184 

the uncertainty in assigning those individuals to taxon, we only considered the 46 species we 185 

could assign to family level or lower for the remaining results.  From ~64 minutes of total 186 

bottom recording time from the ROV videos, we assigned individuals to 26 putative taxa.  In ~42 187 

hours (2517 min) of total video time from the Drop-Cams, we assigned individuals to 29 putative 188 
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taxa.  Of the 46 putative taxa, nine were observed with both survey methods, ROV and Drop-189 

Cam (Table 3).  In addition, Beryx splendens and B. cf. splendens were observed respectively in 190 

the Drop-Cam and ROV surveys, and the both taxa could be B. splendens. 191 

At least one species of Rexea was observed from 552-847 m at Salas y Gómez and a 192 

neighboring seamount (Table 3, Fig. 3F).  Species known from the area are R. brevilineata and 193 

R. antefurcata.  Distinguishing characters between these species include the length of the upper 194 

lateral line, squamation patterns, maximum size, and differences in fin coloration patterns 195 

(Nakamura and Parin, 1993).  These features were not sufficiently clear in the videos to 196 

confidently assign individuals to one of these two species; however, the known geographic 197 

range, the apparent size of individuals, and the depth at which they were observed is more 198 

consistent with R. antefurcata (Froese and Pauly, 2011; Nakamura and Parin, 1993; Parin et al., 199 

1997).  For example, the smaller R. brevilineata has only been reported from 81°W to 90°W 200 

(more than 15° east of Salas y Gómez) at depths of 180-440 m, whereas, the generally larger R. 201 

antefurcata has been reported from 83°W to 143°E at depths of 160-920 m. 202 

 Individuals of cf. Synaphobranchus affinis (Fig. 3G) could not be assigned confidently to 203 

species, and even to a genus, as most of their diagnostic characteristics were not visible from 204 

videos and they were notoriously difficult to identify even with specimens in hand (Sulak and 205 

Shcherbachev, 1997).  For those individuals that were close enough to the camera to observe the 206 

morphology of the head, the morphology was consistent with Synaphobranchus (Sulak and 207 

Shcherbachev, 1997).  Therefore, we tentatively assigned all individuals to cf. Synaphobranchus 208 

affinis, which is known from 290-2400 m, with most observations at 500-1500 m (Froese and 209 

Pauly, 2011; Sulak and Shcherbachev, 1997); however, we only observed individuals at depths 210 

greater than 1000 m despite its apparent abundance at 250-750 m at the seamounts to the east 211 
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(Parin et al., 1997).  It is possible that some of the individuals may belong to one of the other two 212 

species of Synaphobranchidae, Ilyphis blachei and Simenchelys parasiticus, which were reported 213 

from the area by Parin et al. (1997). 214 

 Due to the small size of individuals and their generally large distance from the cameras, 215 

we could not assign Macrouridae individuals to any of the known species from the area.  In one 216 

video, we did observe one individual with a different body shape, so at least two species of 217 

Macrouridae were present.  Similarly, we were unable to assign the individuals of 218 

Nettastomatidae and Halosauridae (Fig. 3I) to species due to lack of visible diagnostic 219 

characters.  Other species in these families known from similar depths along the Salas y Gómez 220 

Ridge are Nettastoma falcinaris, Aldrovandia affinis, and A. phalacra (Froese and Pauly, 2011; 221 

Parin et al., 1997). 222 

3.2.  Biodiversity and abundance 223 

 The ~10-fold lower diversity of fishes at Easter Island compared to other oceanic islands 224 

(Randall and Cea, 2010) may be due to its relatively young age (<2 my), its distance from source 225 

populations, and the ultra-oligotrophic conditions.  These same factors may also contribute to the 226 

relatively high percentage of local and regional endemics, which is among the largest 227 

percentages in the world.  With such high rates of endemics, Easter Island harbors unique 228 

biodiversity and may have a limited ability to recover from disturbances due to ultra-oligotrophic 229 

conditions and the limited number of populations and ranges of each species. 230 

This report expands the total number of known shorefishes (found at depths <200 m) 231 

from 141 to 145 and the total number of known species from Easter Island by at least seven, 232 

from 171 to 178, including five deep-sea species observed at depths >200 m.  Therefore, this 233 

report increased the known species for the island by ~4%; which we believe is an underestimate 234 
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as we observed several individuals that we were unable to identify but that were distinct from 235 

species known from the island.  On the basis of these observations, we suggest that Easter Island 236 

and the surrounding seamounts harbor many undiscovered species, especially at depths > 60 m.  237 

Further, with high rates of apparent endemism and, therefore, potentially high rates of speciation, 238 

this area may provide researchers with an ideal environment to study speciation and connectivity 239 

patterns among seamounts that are not strongly influenced by coastal inputs and coastal and 240 

boundary currents. 241 

 Most species observed in the ROV videos had relatively low abundances and were often 242 

observed in a single transect.  Several species were observed in relatively high abundance 243 

(NMax > 10):  Seriola lalandi, Chromis sp. nov., Antigonia capros, and the new species of 244 

Tosanoides.  Of these, only S. lalandi is commercially important (Zylich et al., 2014).  Due to the 245 

noise and lights of the ROV, some species may have been attracted to or frightened away from 246 

the ROV.  Jacks, such as S. lalandi, and A. capros appear to be attracted by the noise or lights of 247 

the ROV, whereas Parapercis sp., Tosanoides sp., and some unidentified fishes would swim 248 

away and hide as the ROV approached.  Therefore, relative abundances could differ by the 249 

sampling location and due to behavioral differences in response to the ROV. 250 

The diversity and abundance of fishes we observed during only ~64 min of video 251 

recording on bottom at “Apolo” were relatively high considering the declining diversity and 252 

abundance of fishes at dive depths over the last 50 years (DiSalvo et al., 1988; Friedlander et al., 253 

2013; Hubbard and Garcia, 2003).  During surveys at 10 stations around Easter Island in the 254 

austral summer of 2011, only 41 species of fishes were recorded in four days of diving (~12 255 

hours of total bottom time) (Friedlander et al. 2013).  Mesophotic reefs have been found to have 256 

higher percentages of endemism (Kane et al., 2014) and relatively few fish species in common 257 
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with adjacent shallow-water communities; however, the prevalence of new depth reports 258 

suggests at least some species dominant in shallow waters also live at mesophotic depths, so 259 

additional studies are necessary to better understand depth patterns (Kahng et al., 2014; Kahng et 260 

al., 2010).  The general trend from the few studies at mesophotic depths is that fish richness and 261 

abundance declines with depth, especially for herbivores, and that higher abundance and richness 262 

are correlated with greater structure associated with steep topography and greater abundance of 263 

crevices and corals (see Kahng et al., 2014; Kahng et al., 2010).  The relatively high diversity 264 

and abundance we observed may, likewise, be associated with structure and abundance of whip 265 

corals, crevices, and rocky structures present.  Further studies are necessary to uncover depth 266 

patterns in the mesophotic waters of Easter Island and how these habitats compare to other 267 

mesophotic habitats. 268 

Compared to the known diversity (>170 species) of the deep, benthopelagic fishes from 269 

22 seamounts of the Nazca and Salas y Gómez Ridges (Parin, 1991; Parin et al., 1997), relatively 270 

few species were identified from the baited Drop-Cams.  The relatively low percentage of 271 

species we identified is not surprising considering the limits of this technology relative to 272 

trawling.  With the exception of six potentially new species (see 3.3), all of the taxa we identified 273 

have been reported from the South Pacific, including from the EIE and the adjacent Salas y 274 

Gómez and Nazca Ridges (see, e.g.,Parin, 1991; Parin et al., 1997).   275 

Like Parin et al. (1997), we found apparent breaks in fish compositions (Table 3).  These 276 

breaks are between 150 m and 550 m and between 850 to 1100 m (Table 3), which are 277 

comparable to those reported in Parin et al. (200-300 m, 500-600 m, and 700-800 m).    In 278 

addition, species-composition changes with longitude led Parin et al. to conclude that the EIE 279 

was separate from that of the surrounding area, including the Nazca Ridge and eastern extent of 280 
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the Salas y Gómez Ridge.  To determine whether these breaks are real or an artifact of limited 281 

sampling and the difference in depth among stations, we will need future studies as we could not 282 

statistically compare communities among islands or with depth because of differences in depth 283 

among survey locations, a lack of replication among similar depths and locations, and 284 

differences in survey methods and the associated biases.  For example, Drop-Cams were baited 285 

and therefore were biased towards scavengers and species associated with structure provided by 286 

the rocky outcrops in some videos, and ROV surveys were biased towards the peak of an area 287 

known to have high productivity.     288 

Of 171 species identified by Parin et al. (1997), 44.4% were new to science and the 289 

largest percentage (42.8%) were related to Indo-Pacific species instead of to eastern Pacific 290 

species.  In comparison, we determined ≥ 15% of the 46 species observed in the ROV and Drop-291 

Cam videos were new reports for the southeast Pacific and potentially new to science.  As we 292 

identified several potentially new species from our relatively limited video footage, we suspect 293 

that the EIE and the Salas y Gómez and Nazca Ridges harbor a substantial amount of 294 

undiscovered biodiversity and therefore future studies should be done in these regions and 295 

adjacent areas in the south Pacific so that we can have a better understanding of the biodiversity 296 

and connectivity among the seamounts in this area. 297 

3.3. New records 298 

3.3.1.  Potentially new species 299 

At least six species are potentially new to science or, at least, have unique color and/or fin 300 

patterns in comparison to the closely related species known from adjacent areas (Fig. 4).   301 

Potentially new species were assigned to the following taxa Tosanoides, Chromis, 302 
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Grammatonotus, Parapercis, Suezichthys, and Prognathodes.  In addition, S. cf. mitsukurii and 303 

Hydrolagus cf. trolli may be new species (Table 3, Fig. 3J-L). 304 

 Although we assigned individuals to potentially new species on consensus of expert 305 

opinions, we acknowledge the difficulty in assigning individuals to a genus or subfamily from 306 

video alone and emphasize that these identifications are tentative until specimens can be 307 

collected to confirm identifications.  Further, determining whether species are truly endemic to 308 

Easter Island or the region requires more extensive sampling.  Due to a lack of sampling in this 309 

area, it is premature to hypothesize whether these potentially new species are endemic or 310 

whether they reflect an overall lack of sampling at mesopelagic and greater depths, especially in 311 

the South Pacific. 312 

 The potentially new species of Tosanoides has a distinct color pattern in comparison to 313 

known Tosanoides species.  We observed two distinct patterns for this species (Fig. 4A and 4B).  314 

The less abundant and larger individuals (likely males) are light pink or purple with bright 315 

yellow fins and two broad, bright yellow strips separated by a thin purple stripe on the dorsal 316 

portion of the head, with the lower yellow stripe extending down towards the pectoral fin.  The 317 

smaller individuals (probably females) are pale pink or purple with pale yellow fins and two 318 

broad orangish bands extending from the midline up into the dorsal fin.  Some individuals with 319 

the orange bands had a yellow and purple banding pattern on the front-dorsal region of their 320 

head, possibly indicating that these individuals are in the process of changing from female to 321 

male as is common in Anthiinae.  Individuals were also observed at Salas y Gómez at 150 m and 322 

were observed hiding in holes at 277-281 m and swimming among whip corals in groups as large 323 

as ~100 individuals at 157-175 m at Easter Island.  Other Anthiines are known to aggregate in 324 
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large numbers, live at similar depths, be sexually dichromatic and dimorphic, and be 325 

protogynous hermaphrodites. 326 

The potential new species of Chromis was also observed at Salas y Gómez Island in 327 

National Geographic Drop-Cam videos at 150 m (Friedlander et al., 2013).  Therefore, this 328 

species has a depth range of at least 150-175 m, which is comparable to several Chromis spp. 329 

with depth maxima of 150-210 m (Froese and Pauly, 2011).  This species has a bright yellow 330 

body and caudal fin and the other fins are lighter yellow to bluish grey (Fig. 4D).  They have one 331 

or two white spots, one bright spot dorsally at the base of the caudal fin and another lighter spot 332 

medially at the base of the dorsal fin.  They were observed in large groups of several dozens, 333 

generally swimming a meter or more above the seafloor.  Along with the potentially new 334 

Tosanoides, this Chromis species is one of the most abundant species observed at ~150 m at 335 

Easter Island and Salas y Gómez (Table 3). 336 

The potential new species of Grammatonotus was observed at 277-281 m, where the 337 

habitat was rocky with an abundance of crevices in which the individuals would hide when the 338 

ROV approached.  This habitat and depth range, the overall body and fin shape, and the relative 339 

size of the eyes are consistent with other species in this genus; however, genus-level diagnostic 340 

characters require specimens to be collected and this genus is believed to need taxonomic 341 

revision (Mundy and Parrish, 2004).  Due to the scarcity of specimens and observations of 342 

species in this genus, living color of many species are unknown and new species reports have 343 

been made from comparisons of video observations to published descriptions and images 344 

(Mundy and Parrish, 2004; Prokofiev, 2006, 2015).  Other species are known to have yellowish 345 

bodies and pink, blue, and /or lavender fins or markings; however, none of the reported color 346 

patterns are consistent with the individuals we observed (Katayama et al., 1982; Mundy and 347 



 

17 

 

Parrish, 2004; Prokofiev, 2006, 2015). This species has a bright yellow body and bright purple 348 

fins, with outer rays of the caudal fin produced into filaments.   349 

The potential new species of Parapercis species was observed at 277-281 m on a rocky 350 

bottom, which is within the known range of congeners.  Due to differences in coloration (Fig. 351 

4F), we could not confidently assign this individual to a known species.  The only known species 352 

from the area is P. dockinsi, which is considered endemic to the Juan Fernandez Archipelago 353 

(Dyer and Westneat, 2010; Froese and Pauly, 2011; Rosa and Rosa, 1997) despite Parin et al. 354 

(1997) reporting specimens from 180-290 m at two seamounts of the Salas y Gómez and Nazca 355 

Ridges.  The specimens we observed have distinct coloration patterns in comparison to P. 356 

dockinsi, and it is unclear whether the specimens from the seamounts explored by Parin et al. 357 

(1997) differed in coloration as well.  Although minor variation in color pattern within species 358 

has been observed (Ho and Causse, 2012; Randall, 2008), this genus is not known to have 359 

substantial within-species color variation, excluding sexual dimorphism (Imamura and Yoshino, 360 

2007), and morphological revision of populations with distinct color patterns has revealed 361 

additional morphometric and meristic differences resulting in revisions of species (Randall, 362 

2008).  Further, two morphotypes of P. sexfasciata were found to be genetically distinct with 363 

variation among morphotypes being consistent with inter-species differences (Kai et al., 2004).  364 

Specimens are necessary to resolve whether coloration differs along the geographic range of this 365 

species and whether observed color patterns are indicative of species-level differences. 366 

The potential new species of Suezichthys was observed at 157-281 m (Fig. 4E), which is 367 

consistent with the depth range of some congeners (Froese and Pauly, 2011).  This genus has not 368 

been reported for Easter Island and the first-ever report of this genus in the eastern Pacific is of 369 

S. rosenblatti, which was found at 10-33 m at Juan Fernandez Archipelago and San Felix Island 370 
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(Russell and Westneat, 2013).  The individuals in this report have a distinct color pattern in 371 

comparison to S. rosenblatti; however, the pattern is similar to the Indo-Pacific coastal species S. 372 

devisi.  The species in this report and S. devisi have two orange lateral stripes in the same 373 

location and a black spot dorsally on the caudal peduncle; however, the spot on the caudal 374 

peduncle is considerably smaller on S. devisi.  The species in this report, unlike S. devisi, has a 375 

small, black spot ventrally on the dorsal fin and a much larger spot posteriorly on the bright 376 

yellow, dorsal fin. 377 

Finally, a potential new species of Prognathodes was observed at 157-175 m (Fig. 4C), 378 

which is within the know range of congeners.  It is similar but distinct from that of the 379 

undescribed Prognathodes sp. “basabei” found along the Hawaiian archipelago.  It is the first 380 

report of this genus at Easter Island. 381 

Recent revisions of Squalus spp., especially those formally considered S. mitsukurii, have 382 

led to the conclusion that S. mitsukurii is likely restricted to the western North Pacific and is not 383 

a circumglobal species with a patchy distribution as previously thought (see Froese and Pauly, 384 

2011; White and Iglésias, 2011).  Further, geographic variability in reproductive and growth 385 

parameters and recent taxonomic work suggest that S. mitsukurii is a species complex and 386 

several populations currently reported as S. mitsukurii are likely new and probably endemic 387 

species in their respective regions (Cotton et al., 2011; Graham, 2005; Last et al., 2007).  388 

Additional taxonomic work is needed to identify the number of species in this complex as well as 389 

their geographic and depth ranges and whether the individuals in this study were the same as the 390 

two individuals of an undescribed new species of Squalus collected 8 mi SW of Easter Island at 391 

200-400 m (Randall and Cea, 2010).  Individuals in this study were observed at 552-644 m, 392 

which is consistent with Squalus cf. mitsukurii species (Graham, 2005). 393 
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Hydrolagus cf. trolli may be a new species as reported by Friedlander et al. (2013); 394 

however, we were unable to eliminate or confirm the identification of the observed individuals as 395 

H. trolli.  Few species of Hydrolagus are known from the eastern South Pacific and only three, 396 

H. macrophthalmus, H. melanophasma, and H. trolli, are known from Chile (Bustamante et al., 397 

2014).  The individuals we observed were distinct in color pattern, lateral line pattern, and fin 398 

shape from the first two species.  The individuals we observed were more similar to H. trolli; 399 

however, we chose not to assign the individuals as we could not see sufficient diagnostic features 400 

and the report of H. trolli was not determined from analysis of a specimen but from reported 401 

morphometrics of a specimen originally assigned to a different species (Bustamante et al., 2012). 402 

3.3.2.  New depth reports 403 

Nine species were observed at deeper depths than previously reported.  Two species with 404 

notably deeper ranges than previously reported are Etelis carbunculus and Polymixia 405 

salagomeziensis. Etelis carbunculus was observed at 638 m, which is deeper than the reported 406 

range of 90-400 m (Froese and Pauly, 2011).  Polymixia salagomeziensis (Fig. 3C), which differs 407 

in several morphological characters, including distinct color patterns from the only other known 408 

species of the genus from the area, P. yuri (Kotlyar, 1982, 1991, 1993), was observed at 644 and 409 

776 m, which is considerably deeper than the previous report of 330 m (Parin et al., 1997) but 410 

similar to maximum depths (550-770 m) for other species in this genus (Froese and Pauly, 2011).  411 

See Supplementary Material for discussion of the depth range expansions for the other seven 412 

species:  Aulostomus chinensis, Cheilodactylus plessisi, Lactoria diaphana, Plectranthias parini, 413 

Bodianus unimaculatus, Sargocentron wilhelmi, and Scorpaena orgila.  In addition to these nine 414 

new depth reports, Evistias acutirostris was recently registered for Easter Island (Hernández et 415 

al., 2015), with this study being one of two documented observations for the island.   416 
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Some of these new depth reports are indicative of the limited sampling efforts below 40 417 

m at Easter Island and general undersampling at mesopelagic depths, especially in the south 418 

Pacific (Kahng et al., 2010).  The prevalence of new depth reports could also be indicative of the 419 

unique oceanographic conditions of the area and depauperate faunal assemblages that allow 420 

species to expand their ranges to take advantage of open niches as well as deeper chlorophyll 421 

maxima and deeper aphotic and disphotic conditions associated with ultra-oligotrophic waters 422 

and local oceanographic regimes (e.g., central-gyre downwelling, eddies, and island- and 423 

seamount-influenced currents).   424 

4.  Conclusion 425 

 These surveys of the deep-dwelling fishes of the EIE revealed apparent breaks in fish 426 

communities between 150 m and 550 m and between 850 to 1100, which are comparable to 427 

breaks in fish communities observed by Parin et al. (1997) for seamounts of the Nazca and 428 

eastern Salas y Gómez Ridges.  Our surveys expanded the known depth ranges of nine species 429 

and the known species for the region by ~4%.  Many of the previously unrecorded fishes, 430 

including six potential new species, were observed at mesopelagic depths (150-280 m).  The 431 

abundance of new reports from this study emphasizes the lack of knowledge available for deep-432 

dwelling fish species, especially for the southeast Pacific, including the EIE.  In addition, these 433 

new reports may be indicative of the relative isolation of the island and/or unique oceanographic 434 

conditions that may have provided favorable conditions for range expansion and the evolution of 435 

new species.  The data obtained from these surveys is the first step in establishing a baseline for 436 

conservation and sustainable management planning, for understanding the effects of natural and 437 

anthropogenic disturbances on these communities, and for testing biogeographical hypotheses, 438 
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including whether latitudinal or longitudinal breaks in species’ ranges exist among similar 439 

communities in the Pacific and the extent and pathway of connectivity among them. 440 
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Table 1.  Location and duration information for the three exploratory ROV transects done at the 578 

Apolo fishing ground on 1 October 2014. 579 

Transect 

name 

Depth 

(m) 

Bottom 

time (min) 

Starting 

latitude 

Starting 

longitude 

Ending 

latitude 

Ending 

longitude 

Apolo-1 171-175 ~ 12 min 27°13'59.9''S 109°29'01.7''W 27°14'05.5''S 109°29'02.0''W 

Apolo-2 277-281 ~ 32 min 27°14'17.0''S 109°29'09.9''W 27°14'17.0''S 109°29'09.9''W 

Apolo-3 157-167 ~20 min 27°14'4.1''S 109°29'02.3''W 27°14'17.6''S 109°28'54.6''W 

  580 
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Table 2.  Station information for the Drop-Cam deployments.  SyG = deployments on the island 581 

slope of Salas y Gómez.  nSyG = deployments along the slope of seamounts near Salas y Gómez.  582 

RN = deployments on the slope of Easter Island (also known as Rapa Nui).  Camera number 583 

indicates which of the three Drop-Cams was used.   584 

Station Location  

Depth 

(m) Latitude Longitude 

Video 

time 

(min) 

Date 

(2011) 

Camera 

number 

SyG150 SyG 150 26°28.66' S 105°24.301' W 300 22-Feb 1 

SyG552 SyG 552 26°31.197' S 105°18.947' W 135 26-Feb 3 

SyG638 SyG 638 26°28.653' S 105°24.71' W 300 22-Feb 3 

SyG640 SyG 640 26°28.772' S 105°24.859' W 300 22-Feb 2 

nSyG644 nSyG 644 26°21.98' S 106°35.48' W 105 28-Feb 2 

SyG776 SyG 776 26°23.4' S 105°19.5' W 105 25-Feb 2 

SyG847 SyG 847 26°25.52' S 105°22.8' W 35 24-Feb 1 

SyG1097 SyG 1097 26°31.912' S 105°18.302' W 35 27-Feb 1 

SyG1099 SyG 1099 26°23.9' S 105°18.75' W 105 25-Feb 3 

RN1113 RN 1113 27°6.799' S 109°27.469' W 76 2-Mar 3 

RN1242 RN 1242 27°8' S 109°28.8' W 105 3-Mar 1 

SyG1312 SyG 1312 26°24.5' S 105°22.94' W 35 24-Feb 2 

SyG1323 SyG 1323 26°32.393' S 105°17.716' W 35 27-Feb 2 

RN1331 RN 1331 27°7.369' S 109°28.402' W 76 2-Mar 2 

SyG1348 SyG 1348 26°31.783' S 105°22.122' W 65 23-Feb 3 

SyG1395 SyG 1395 26°23.15' S 105°20.1' W 105 25-Feb 1 

RN1550 RN 1550 27°6.2' S 109°28.2' W 195 4-Mar 3 

RN1577 RN 1577 27°7' S 109°28.1' W 105 3-Mar 3 

RN1610 RN 1610 27°5.5' S 109°28.1' W 195 4-Mar 2 

nSyg1849 nSyG 1849 26°43.831' S 106°16.87' W 105 28-Feb 1 
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Table 3.  Maximum number per frame (Nmax) of each species of fish per ROV transect and DropCam deployment, with transects and 585 

deployments ordered from the shallowest to the deepest.  Station names include the location and depth of the deployment.  SyG1097 is 586 

excluded from this table because no fishes were observed.  A-1, A-2, and A-3 are ROV transects 1-3 at Apolo. Easter Island endemics 587 

are indicated respectively by (E) after the species name.  See Tables 1 and 2 for station localities and deployment information.  588 

Family Species 

SyG 

150 

A-3 

157 

A-1 

171  

A-2 

277  

SyG 

552 

SyG 

638 

SyG 

640 

nSyG 

644 

SyG 

776 

SyG 

847 

SyG 

1099 

RN 

1113 

RN 

1242 

SyG 

1312 

SyG 

1323 

RN 

1331 

SyG 

1348 

SyG 

1395 

RN 

1550 

RN 

1577 

RN 

1610 

nSyG 

1849 

Hexanchidae Hexanchus griseusa 

    

    

2 

             
Squalidae  Squalus cf. mitsukurii 

    1 1  2               

Chimaeridae Hydrolagus cf. 

trollia,b    

   

                            2   1   

Halosauridae Halosauridae sp.            1 1   1 1 2 2 1   

Muraenidae Gymnothorax 

bathyphilus 2                      

Synaphobranchidae cf. Synaphobranchus 

affinis  

   

        1  2    1  1 2 

Nettastomatidae Nettastomatidae sp.               1        

Sternoptychidae Argyripnus sp.     1 1                 

Synodontidae Synodus cf. isolatus 2 1                     

Polymixiidae  Polymixia 

salagomeziensis  

   

   1 2              

Moridae Laemonema     1                  
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Moridae Antimora rostrata           1  1 1     2    

Macrouridae  Macrouridae sp. 1           4  1   1 2 1     

Macrouridae Macrouridae sp. 2              1         

Holocentridae Pristilepis oligolepis    1                   

Holocentridae Sargocentron 
wilhelmi (E) 

 1d                     

Berycidae Beryx splendensa        1               

Berycidae cf. Beryx splendensa   1                     

Caproidae Antigonia capros    11                   

Aulostomidae Aulostomus chinensis   1d                    

Scorpaenidae Scorpaenoides 
englerti (E) 

 1d                     

Scorpaenidae Scorpaena orgila  1d                     

Serranidae Caprodon longimanus 1 2 8 1                   

Serranidae Plectranthias parini    3d                   

Serranidae Tosanoides sp.a,b 

8 56e 32e 2                   

Callanthiidae cf. Grammatonotus 
sp.a,b 

   4                   

Priacanthidae  Cookeolus japonicus 1                      

Priacanthidae Priacanthus nasca 
(E) 

 1 2                    

Emmelichthyidae Emmelichthyidae sp. 2                      

Lutjanidae Parapristipomoides 

squamimaxillaris 8                      

Lutjanidae  Etelis carbunculus 2   1  1d                 
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Chaetodontidae Prognathodes sp.a,b 1 1 1                    

Pentacerotidae Evistias acutirostris  7                     

Carangidae  Pseudocaranx dentex 1  1                    

Carangidae Seriola lalandi 4 1 12 1                   

Cheilodactylidae Cheilodactylus 
plessisi 

 1d                     

Pomacentridae  Chromis sp.a,b 

2 15 11                    

Labridae Bodianus 

unimaculatus 2 1 3d                    

Labridae Pseudolabrus 

semifasciatus (E) 
 1                     

Labridae Suezichthys sp.a,b  1  2                   

Labridae Unidentified 

Suezichthys sp.a,c 
 1                     

Pinguipedidae Parapercis sp.a,b    2                   

Gempylidae Rexea sp.     1 1 2 2  1             

Gempylidae Ruvettus pretiosus          1             

Gempylidae cf. Rexea             1          

Ostraciidae Lactoria diaphana   1d                    

Unidentified 1 Unidentified 1  1                     

Unidentified 2 Unidentified 2   1                    

Unidentified 3 Unidentified 3   1                    

Unidentified 4 Unidentified 4    1                   

Unidentified 5 Unidentified 5    1                   

Unidentified 6 Unidentified 6 1    

                  
Unidentified 7 Unidentified 7     1 
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aFirst confirmed report from the Easter Island Ecoregion. 589 

bPotentially a new species on the basis of distinct coloration and, in some cases, fin shape in comparison to known species. 590 

cThis potential species could be either the female or male of the above Suezichthys sp. nov. or a separate new species of Suezichthys.  591 

dThis report is a new maximum depth for this species. 592 

eCount may include juveniles of the Chromis species. 593 

Unidentified 8 Unidentified 8     

 

1 

                
Unidentified 9 Unidentified 9           1            
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 595 
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 596 

Fig. 1.  Location of the three ROV transects at Apolo, the subsurface peak off the southwest 597 

coast of Easter Island. 598 
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 599 

Fig. 2.  Location of the Drop-Cam deployments near Salas y Gómez and Easter Island (black 600 

circles) and the seamounts (white triangles) between the islands.  See Table 1 for station 601 

information and deployment details.  ‘File 1 here’ 602 
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 604 

Fig. 3.  Representative images of select fishes from the Drop-Cam videos deployed in the Easter 605 

Island Ecoregion.  (A)  Gymnothorax bathyphilus.  (B) Parapristipomoides squamimaxillaris.  606 

(C) Polymixia salagomeziensis.  (D) Laemonema sp.  (E) Antimora rostrata.  (F) Rexea sp.  (G) 607 

cf. Synaphobranchus affinis.  (H)   cf. Synaphobranchus affinis consuming loose bait.  (I) 608 
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Halosauridae sp.  (J and K) Hydrolagus cf. trolli.  (L) Squalus cf. mitsukurii.  Photo credit:  Eric 609 

Berkenpas, National Geographic.  610 
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611 

 612 

Fig. 4.  Images of potentially new species of fishes observed in the ROV videos from Apolo.  (A) 613 

Female of Tosanoides sp.  (B) Male of Tosanoides sp.  (C) Prognathodes sp. (D) Chromis sp. (E) 614 

Suezichthys sp. (F) Parapercis sp.  Photo credit:  Matthias Gorny, Oceana Chile. 615 
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