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Abstract

In the present study, we discuss the electrospinning of medical grade polyurethane (Carbothane™ 

3575A) nanofibers containing multi-walled-carbon-nanotubes (MWCNTs). A simple method that 

does not depend on additional foreign chemicals has been employed to disperse MWCNTs 

through high intensity sonication. Typically, a polymer solution consisting of polymer/MWCNTs 

has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were 

evaluated by SEM, TEM, FT-IR and Raman spectroscopy, confirming nanofibers containing 

MWCNTs. The biocompatibility and cell attachment of the produced nanofiber mats were 

investigated while culturing them in the presence of NIH 3T3 fibroblasts. The results from these 

tests indicated non-toxic behavior of the prepared nanofiber mats and had a significant attachment 

of cells towards nanofibers. The incorporation of MWCNTs into polymeric nanofibers led to an 

improvement in tensile stress from 11.40 ± 0.9 to 51.25 ± 5.5 MPa. Furthermore, complete 

alignment of the nanofibers resulted in an enhancement on tensile stress to 72.78 ± 5.5 MPa. 

Displaying these attributes of high mechanical properties and non-toxic nature of nanofibers are 

recommended for an ideal candidate for future tendon and ligament grafts.
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Introduction

It is regarded that a decrease in size of any material into the nano-scale can dramatically 

increase the surface area, surface roughness and surface area-to-volume ratios, which can 

ultimately lead to superior physiochemical properties of materials. The production of nano-

sized fibers by the electrospinning technique was documented by a series of patents by 

(Formhals and Richard, 1934; Formhals 1939, 1940, 1943 and 1944). After these pioneering 

works, there has been an exponential growth of this technique in different medical and non- 

medical fields (Huang et al., 2003). During the electrospinning process, a high voltage 

power supply is used to create an electrically charged jet or melt into a Taylor cone, which 

further on, evaporates to leave a polymer fiber collected on the opposite electrode (Sheikh et 

al., 2011, 2012). In the past two decades, the electrospinning technique has been attracting a 

tremendous attention due to a resultant web-like matrix that mimics the topology of the 

extracellular matrix (ECM) present in the human body, and these matrices can be used as 

scaf folds in tissue-engineering applications (Bhattarai et al., 2004).

Modification in electrospinning parameters and apparatus generates fibers with a desirable 

nanoscale size, which have been studied in controlled drug release, gene delivery, tissue 

engineering, wound healing and other applications (Yu et al., 2009; Zhang et al., 2011; 

Pham et al., 2006). These nanofibers with desirable properties have been extensively 

investigated in biomedical applications, in particular for tissue engineering aspects 

(Bhattarai et al., 2004). However, electrospun fibers are typically collected in a random 

manner which limits their applications, both in mechanical and in cell spreading. Therefore, 

there have been attempts to align nanofibers so as to grow cells in a guided tissue 

regeneration (GTR) manner (Corey et al., 2007; Meng et al., 2010). It has been reported that 

preparing nanofibers with aligned orientation not only helps cells to grow faster, but also 

improves the mechanical properties of the electrospun mats (Moffat et al., 2009).

Multi-walled-carbon-nanotubes (MWCNTs) are considered to be unique materials due to 

their excellent mechanical, electrical and thermal conductivity along with the high chemical 

stability. These unique promising properties of MWCNTs has permitted their use in a broad 

range of applications (Ma et al., 2010). Recently, it had been noticed that poly(lactic-co-

glycolic acid) (PLGA) nanofibers incubated using simulated body fluid can impart gradient 

mineralization and futuristically help in repair of tendons (Lipner et al., 2014). Fabrication 

of random and aligned nanoyarn-reinforced nanofibers based on silk fibroin and poly (l-

lactide-co-caprolactone) indicated nanoyarn enforced nanfibers have high mechanical 

properties which promisingly suggests its favorable attribute towards manufacture of 

artificial tendon (Yang et al., 2014). With this impression, cell-free and cell-laden fibers are 

reviewed, revealing an introduction of carbon nanotubes can remarkably influence the 

mechanical properties of nanofibers (Tamayol et al., 2013). It was observed that, tensile 

strength of (0.66 and 0.85 MPa) can be obtained from calcium alginate and chitosan-alginate 
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composite nanofibers (Lee, B.R et al., 2011; Lee, G.-S et al., 2011). Moreover, poly(ε-

caprolactone) (PCL) nanofibers with 0.5% of MWCNTs possessed maximum tensile 

strength of 1.42 MPa (Meng et al., 2010). Furthermore, biodegradable poly-DL-lactide 

(PLA) nanofibers with 3% of MWCNTs showed maximum Young’s modulus of (77.8 to 

91.3 MPa), for random and aligned nanofiber composites (Shao et al., 2011). The most 

attractive attribute of MWCNTs is to use these nano-sized fillers as reenforcing materials 

into a polymer matrix, and then use them as a biomaterial where high tensile stresses and 

loads are needed. By introducing small amounts of MWCNTs into a polymer nanofiber, the 

mechanical requirements for artificial tendon and ligament prostheses can be addressed. In 

this direction, there are various reports that deal with the improvement in existing 

mechanical properties of nanofibers through the use of MWCNTs (Meng et al., 2010; Shao 

et al., 2011; Xiao et al., 2010; Xuyen et al., 2009). Further, the degree of dispersion and 

alignment of MWCNTs in the polymer matrix, which finally results in proper re-

enforcement is an important issue (Ma et al., 2010). Generally, a stable and uniform 

suspension of nanotubes in the polymer is required to obtain a fine dispersion in the final 

product, which can be achieved using chemical modification or by the use of surfactants. 

However, these approaches introduce defects and/or residual surfactants can be in 

detrimental to material in terms of toxicity to final product (biomaterials). A perfect strategy 

to introduce MWCNTs in the nnaofibers which have a ECM mimicking factor with reliable 

mechanical properties are having a promising potential in substitution of soft and hard 

tissues; including vasculature, bone, neural, tendon and/or ligament (Sill and von Recum, 

2008).

In this report, we demonstrate the preparation of Carbothane™ 3575A nanofibers with 

MWCNTs embedded within the polymer matrix, without the use of additional chemicals. 

The obtained nanofibers were characterized by various spectroscopic techniques to 

determine the interactions between the polymer matrix and the MWCNTs. The cell 

cytotoxicity, towards NIH 3T3 fibroblast indicated that the nanofibers were non-toxic, while 

the addition of MWCNTs and nanofiber alignment resulted in an improvement on their 

mechanical properties.

Materials and methods

The MWCNTs used in this study were obtained from Bayer Materials and used as received. 

According to the manufacturer specifications, the MWCNTs (Baytubes®C 150 HP) present 

an outer diameter of ~13 nm, inner diameter of ~4 nm and length of ~1 μm. Medical grade 

polyurethane Carbothane™ 3575A was kindly supplied by Lubrizol Advanced Materials. 

Tetrahydrofuran (THF, 99%) and N, N-dimethylformamide (DMF, 99.8%) were purchased 

from Sigma-Aldrich, (USA), and used without further purification. NIH 3T3 mouse 

fibroblast cells were purchased from ATCC, Manassas, VA. Dulbecco’s Modified Eagle 

Medium supplemented with 10% newborn calf serum and Antibiotic-Antimycotic 100x 

were purchased from Gibco® and Invitrogen™. 0.4% Trypan blue was acquired from 

Invitrogen™, MTT reagent and DMSO ≥ 99.9% were acquired from Sigma-Aldrich, (USA), 

and 0.25% Trypsin-EDTA for cell harvest from Gibco® and Invitrogen™. Glycine was 

purchased from BioRad Laboratories to form glycine buffer, which was prepared by taking 

0.1M glycine in 0.1M NaCl, followed by equilibration with 0.1N NaOH to pH=10.5. 
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Treated tissue culture flasks and microplates for cell growth and seeding were purchased 

from Fisher Scientific, (USA).

1.1. Preparation of polymeric solutions for electrospinning

A 15 wt% solution of Carbothane™ 3575A was prepared by dissolving the polymer pellets 

in THF and DMF. Initially, pellets were dissolved overnight in THF, and then DMF was 

added to give the final concentration that contained 15 wt% of polymer in THF:DMF (1:1, 

v/v). In the case of preparing solutions containing MWCNTs, a stepwise methodology was 

adopted. In the first phase, MWCNTs in DMF were agitated by using an ultra-high 

sonicating device. This was achieved by using (Sonics Vibra-cell model VCX 500) 

operating at 20 kHz with an amplitude of 20%. The ultra-sonic agitation was allowed to 

continue for a period of 1 h in the presence of an ice-bath, so as to keep the solution free 

from excessive heat generated due to sonication. Thereafter, samples were viewed as 

homogeneously dispersed and well stable with a dark ink-like appearance without being 

precipitated for several months. Further on, the dispersed MWCNTs in DMF were added to 

the previously dissolved Carbothane™ 3575A solutions in THF, to have final mixtures 

containing 0.06%, 0.33% and 0.66% of MWCNTs.

1.2. Electrospinning process

Polymeric solutions used for electrospinning were injected by using a 10 mL glass syringe 

with a 22 needle gauge (0.7 mm OD × 0.4 mm ID) at a flow rate of 0.01 mL/min, which was 

controlled using a KDS 210 pump (KD Scientific Holliston, Inc., MA). High power supply 

equipment (ES30P-5W and ES30N-5W for positive and negative voltages, respectively) was 

used to eject out the nanofibers from the needle tip; these apparatus were purchased from 

Gamma High Voltage Research (Ormond Beach, FL). The copper wire originating from the 

positive electrode (anode) with an applied voltage of +17 kV was connected to the needle tip 

through an alligator clip, and a negative electrode (cathode) with an applied voltage of −17 

kV was attached to the round metallic collector. The solutions were electrospun with a 15 

cm working distance (the distance between the needle tip and the collector). The as-spun 

nanofibers were dried under vacuum for 24 h in the presence of P2O5 to remove the residual 

moisture. For aligning nanofibers, three different rotation speeds of the collector drum were 

adjusted to produce randomly-obtained, semi-aligned and completely aligned nanofibrous 

morphologies (Meng et al., 2010). To obtain these different morphologies, the rotation 

speeds of the collector were set at 798, 3240 and 5740 rpm, respectively.

1.3. Cell culture studies

To study cell cytotoxicity of the obtained nanofibers, fibroblasts were cultured from a frozen 

ampoule and were allowed to propagate into a 25 cm2 culture flask in DMEM, 

supplemented with 10% newborn calf serum and 1% Antibiotic-Antimycotic 100x in a 

humidified incubator with 5% CO2 environment at 37°C temperature. After achieving 70–

80% of confluent growth, the cell population was carefully sub-cultured to reach 25,000 

cell/mL, cells were counted using a Countess® automated cell counter. For cell seeding on 

nanofibers surfaces, 160 μl of DMEM containing 25,000 cell/mL were added to 

experimental microplate wells and allowed to grow for 24h, to create a favorable 

environment before the nanofibers were introduced. After 24h of incubation of initial cell 
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seeding, the media was taken out and 80μl of fresh media was added into the wells. At this 

point, the samples punched out (6 mm in diameter) nanofibers (which were previously 

sterilized by exposure of Ethanol and UV light to eliminate contaminants) were added to the 

96 well microplates and 80 μL of fresh media was added to each experimental well in order 

to have a final volume of 160 μL. Finally, the microplates were incubated at 37°C with 5% 

of CO2 for a period of (3, 5 and 7 days), during the incubation time exhausted media was 

replenished at the 3 day mark.

1.4. Cell viability test by MTT assay

The MTT assay was performed to check the cell viability after culturing the NIH 3T3 

fibroblasts in the presence of pristine nanofibers and nanofibers modified with MWCNTs 

for a period of (3, 5 and 7 days). The assay monitors the production of reducing 

mitochondrial cell enzymes, which can react with MTT salts to form noted purple color 

formazan dye, giving absorbance under UV spectrophometer. This reaction only occurs 

when reductase enzymes are active therefore, the conversion of one color to another is used 

as a measure of living cells. In order to use this useful tool for cell viability, after the desired 

days of incubation, MTT reagent (5mg/mL) in PBS was prepared, from which a 40 μL 

aliquot was added to each well of microplates and left to incubate for four hours. During the 

incubation period, cells undergo the aforementioned reaction, producing a purple color 

product which can be quantified spectrophotometrically using a (microplate reader Bio-rad 

model 680). After the 4h incubation period, the contents from 96-wells were taken in a 

separate centrifuge tube and centrifuged at 3500 rpm. Existing media was completely 

aspirated and 160 μL of DMSO was added followed by 20 μL of glycine buffer; and the 

plate was kept on a shaker for 5 minutes to allow these solutions to mix properly. Prior to 

obtaining readings, all nanofibers were carefully removed from each well and the contents 

of the wells were determined on a microplate reader at a wavelength of 595 nm using 

DMSO/glycine buffer as control.

Characterization

A scanning electron microscope (SEM) EVO® LS10 (Carl Zeiss SMT., Ltd) was used to 

investigate the morphology of the nanofibers. The samples were coated by using a thin layer 

of silver-palladium for a 180 sec for two consecutive cycles at 45mA with the (Desk II 

Denton Vacuum Cold Sputter) prior to imaging. Then, micrographs from each sample were 

taken at an accelerating voltage of 10.75 KV. Transmission electron microscopy (TEM) 

JEOL JEM 2010 operating at 200 kV, JEOL Ltd., Japan was used to investigate the presence 

and location of the MWCNTs embedded within nanofibers. The samples for investigation 

were obtained by placing the TEM 300-mesh copper grid close to the tip of the syringe 

needle for a few seconds during the electrospinning process, followed by vacuum-drying 

and finally observed under TEM. The thermal stability of the nanofiber mats was carried out 

with a TGA 7 (Perkin Elmer Co., USA) by heating from 30°C to 700°C at a rate of 

10°C/min under a continuous nitrogen purge, having a flow rate of 20 mL/min. The study of 

functional groups in polymer structure and its interactions with the MWCNTs was 

investigated through Fourier-Transform Infrared (FTIR) analysis. The spectra were recorded 

by grinding fiber samples with KBr to subsequently form pellets, which were analyzed using 
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a Bruker (IFS 55) from 4000-700 cm−1 with a 4 cm−1 resolution and 32 scans. Raman 

spectra for samples were obtained at 785 nm laser excitation on a Bruker Optics Raman 

Spectrometer (BX51). The laser power density was kept as 10 mW with 50 integrations, 

having 2 co-additions and 25×100 nm of aperture. Spectra were collected from at least from 

4 different locations, using a microscope with 50X magnification; obtained data was 

averaged to plot final graphs. The mechanical properties of the nanofiber mats was 

investigated by using INSTRON® tensile tester 5943, with a 25 N maximum load cell under 

a crosshead speed of 10 mm/min. Samples were cut in the form of a ‘dog-bone’ shaped via 

die cutting from nonwoven mats with (2.75 mm wide at their narrowest point with a gage 

length of 7.5 mm). At least six specimens were tested for tensile behavior and the average 

values were reported. In order to facilitate the visualization of cell attachment pattern and 

cell survival on the surfaces of nanofibers, chemical fixation of cells was carried out for 

each sample after 7 days of incubation in presence of NIH 3T3 fibroblasts. Nanofiber 

samples in 96-well plates were rinsed twice with phosphate buffer saline (PBS) and 

subsequently fixed in 2.5 vol. % glutaraldehyde for 1h. After cell fixation, samples were 

rinsed with PBS and then serially de-hydrated with graded concentration of ethanol, (i.e., 

20%, 30%, 50%, 70% and 100% vol. ethanol) for 10 min each. To remove the residual 

ethanol, the samples were kept in a vacuum oven for 12 hrs and then observed under SEM. 

Samples were coated and observed under the same conditions as described previously.

Results and discussions

Electrospinning of polymeric solutions containing various amounts of MWCNTs resulted in 

fabrication of defect free and bead-free morphologies (Figure 1). As presented in (Fig. 1a), it 

can be observed that electrospinning of pure Carbothane™ 3575A solutions resulted in 

smooth, uniform, continuous and bead-free nanofibers. Moreover, the morphology of 

nanofibers containing MWCNTs are represented in (Fig. 1b, c and d), providing evidence 

that the nanofibrous morphology was not affected by the addition of MWCNTs. However, it 

can be observed that there is a reasonable decrease in fiber diameters due to the addition of 

MWCNTs. For this reason, the average nanofiber diameters were calculated from randomly 

selected individual fibers (15–20 individual diameters measured per sample) using (Adobe 

Photoshop 6.0). Figure 2 presents the bar graphs for the average nanofiber diameters. The 

pristine nanofibers had an average diameter of 714 ± 196 nm, and the nanofibers modified 

with 0.06%, 0.33% and 0.66% of MWCNTs had diameters of 570 ± 149 nm, 370 ± 196 nm 

and 361 ± 96 nm, respectively. From these results, it can be concluded that a sharp decrease 

in diameters occurred with the incorporation of MWCNTs. These results are in complete 

agreement with the previously reported cases where high charge densities of the polymer jet 

leads to an increase on the stretching of the polymer droplet, which overall helps to decrease 

the fiber diameter (Barakat et al., 2009). In our case, the effect is attributed to the presence 

of highly conductive MWCNTs in the polymeric solution, reducing the diameters of the 

nanofibers during electrospinning (Barakat et al., 2009).

The porosity of nanofibers used for tissue engineering is an important consideration to be 

taken care for efficient cell proliferation. High porosity can help to have frequent flow of 

nutrients to the cells growing in scaffolds and can have an enhanced cell anchoring to the 

pores which can results in plugging of pores after the cells attain the maximum growth. In 
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this connection, the average diameter of nanofibers was calculated from SEM images (30 

individual pore diameters measured per sample) using (Adobe Photoshop 6.0), and it was 

observed that addition of MWCNTs do favorably improve the porosity of nanofibers. For 

instance, pristine nanofibers had least average pore diameters of 136 ± 66 nm. 

Comparatively, for nanofibers with 0.06%, 0.33% and 0.66% of MWCNTs had average 

larger pore diameters of 148 ± 82 nm, 990 ± 483 nm and 1151 ± 561 nm, respectively, 

which is higher than the pristine counterpart. Moreover, same trend was followed with the 

large pore diameter calculation. For instance, for pristine nanofibers large pore diameter was 

calculated to be 320 nm. And, for the nanofibers with 0.06%, 0.33% and 0.66% of 

MWCNTs had higher large pore diameters of 341 nm, 2534 nm and 2455 nm, respectively. 

Furthermore, small pore diameter also showed the same trend for pristine nanofibers of 40 

nm of small pore diameters, and nanofibers modified with 0.06%, 0.33% and 0.66% of 

MWCNTs with larger small pore diameters of 41 nm, 344 nm and 411 nm, respectively. 

Overall, these results indicate that addition of MWCNTs do influence in increasing porosity 

of nanofibers.

To investigate the presence and location of MWCNTs within the nanofibers, TEM was 

utilized. In this regard, Figures 3a and b show the micrographs of the nanofibers with 

MWCNTs, in their low and high magnifications. From these images, a clear presence of 

MWCNTs alongside the nanofiber direction can be observed. Arrows indicated in these 

figures show that MWCNTs are well-dispersed and aligned along the nanofiber direction. 

Furthermore, the high magnification image (Fig. 3b) from the encircled area shows that the 

MWCNTs are perfectly unbundled due to the sonication process followed.

Figure 4 represents the FT-IR spectra of nanofibers. The spectra show minute shifts in the 

functional groups due to the addition of MWCNTs. It can be observed that peaks in pristine 

nanofibers appeared at (2934 cm−1 and 2848 cm−1), which are due to asymmetric or 

symmetric stretching in (C-H) in CH2. In the fingerprint region of the polymer (i.e., 1745 

cm−1 to 957 cm−1), we can see the peak at 1745 cm−1, which is due to the stretching mode 

of (C=O) of the urethane amide I. The peak at 1529 cm−1 appears due to the stretching mode 

in (C-N) and (N-H) of the amide II band. The peaks at 1452 cm−1 and 1403 cm−1 are due to 

bending vibrations in CH2 groups. Also, the peak positioned at 956 cm−1 is attributed to the 

in-plane CH2 bending vibration in CH2 groups (Yang et al., 1999). The peaks at 1745 cm−1, 

1529 cm−1, 1452 cm−1 and 1403 cm−1 in the case of nanofibers containing MWCNTs 

exhibited shifts towards higher frequencies, indicating the interaction between the polymer 

chains and the MWCNTs. These shifts are indicative of proper dispersion and non-specific 

covalent interaction between the σ bond in C-N and the π electrons from MWCNTs 

(Chipara et al., 2013).

It is well know that MWCNTs do have a high thermal stability, therefore do have high on-

set degradation temperatures. Accordingly, it was believed that incorporation of MWCNTs 

will enhance the thermal stability of nanofibers, which can indirectly be co-related with 

appropriate dispersion of MWCNTs among the nanofibers. Also, nanofibers modified with 

MWCNTs will possess an increased on-set temperature than that of pristine nanofibers. To 

prove this hypothesis and highlight the proper dispersion of MWCNTs among the 

nanofibers (Figure 5) presents the TGA results of the obtained nanofiber. It is observed that 
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the pristine nanofibers have on-set decomposition temperature at 296°C, while the 

nanofibers containing the MWCNTs showed higher on-sets temperatures of 310°C, 312°C 

and 319°C, respectively. This increase confirmed the incorporation of MWCNTs, and 

demonstrated the expected higher thermal stability of nanofibers modified with MWCNTs 

when proper dispersion is achieved.

Figure 6 presents the Raman spectra of pure polymer nanofibers, MWCNTs, and the 

nanofibers modified with MWCNTs. In case of pristine nanofibers, the small peaks existing 

in the spectra situated at 1441 cm−1, 1304 cm−1, 1105 cm−1 1066 cm−1 and 1036 cm−1 are 

due to different stretching and vibrational modes from various functional groups present in 

the pure polymeric nanofibers. This figure also presents the spectra of pure MWCNTs, and 

it indicates that mainly two peaks located at the position of 1600 cm−1 and 1306 cm−1. 

Basically, there are mainly two vibrational modes observed for Raman scattering in 

MWNTs, one is the tangential G-band vibrations which falls within range of (1550 cm−1 to 

1605 cm−1) and another vibration mode is due to disordered-induced by D-band at ~1350 

cm−1 (Zheng and Xu, 2010). Accordingly, it can be observed that pure MWCNTs possess 

the peaks at the position of 1600 cm−1 and 1306 cm−1 accounting for the vibration modes in 

the G and D bands which is similar to that of mentioned in references (Liu et al., 2006). The 

spectra of modified nanofibers with MWCNTs, shows that the vibrations induced by the 

tangential G-band can be located at 1607 cm−1, 1607 cm−1 and 1609 cm−1 for 0.06%, 0.33% 

and 0.66% of MWNCNTs in nanofibers, respectively. The D-band can be located at 1308 

cm−1, 1310 cm−1 and 1315 cm−1 in nanofibers with 0.06%, 0.33% and 0.66% of 

MWNCNTs (Zheng and Xu, 2010; Liu et al., 2006). It is observed that up-shifts in the 

tangential G-band and in the D-band occur when MWCNTs are added to the system, and 

that higher concentrations enhance the effect. In fact, the strong attachment of the polymer 

to nanotubes resulting due to hydrophobic and vander Waals attractions between the 

polymer and the graphite sheet increases the energy required for vibrations to occur, which 

is reflected in the higher frequencies observed (Yadav et al., 2011).

Figure 7 shows the data originated from the MTT assay after 1, 3 and 7 days of culturing 

NIH 3T3 fibroblasts. In this figure, we can clearly observe the growth in cell control, which 

follow the same trend as that of pristine and nanofibers containing MWCNTs. These 

observations indicate that fibroblasts cultured in the presence of pristine nanofbers and/or 

nanofibers modified with MWCNTs are normally growing indicating non-toxic in nature of 

used materials. It can also be observed that the growth proceeds in an exponential manner. 

Furthermore, Figure 8 shows the pattern of fibroblast attachment on nanofibers. The cells 

were cultured for 7 days, and then fixed on the nanofibers as described in (Section 2). From 

this data, it is evident that the cells are perfectly attached onto the nanofibers surface with 

clearly observable cytoplasmic extensions. Moreover, the high magnification images from 

the encircled area provide more insight about the pattern of growth on the nanofiber 

surfaces. This confluent growth shown by all combinations of nanofibers coincides with the 

results from the MTT assay in Figure 7. Overall, these results confirm the non-toxic 

behavior of these nanofibers towards the NIH 3T3 fibroblasts.

The results from the stress vs. strain curves on nanofibers (Fig. S2 and S3), indicated that 

there is a gradual increase on the mechanical properties of the nanofibers as MWCNTs were 
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added, except for the maximum loading. The average tensile stress from these curves was 

11.40 ± 0.9 MPa for pristine nanofibers, and the nanofibers with MWCNTs (0.06%, 0.33% 

and 0.66%) presented average tensile stress of (39.60 ± 1.4, 51.25 ± 5.5, and 32.99 ± 0.8 

MPa), respectively. These values are remarkably higher that the PCL-nanofibers modified 

with 0.5% MWCNTs, which had an average tensile stress of 1.42 MPa, and PCL re-

enforced collagen nanofibers had higher tensile stress of 77.8 to 91.3 MPa (Meng et al., 

2010; Bialorucki et al., 2014). It can be seen that in the case of 0.06% and 0.33% addition of 

MWCNTs, a significant improvement in stress was obtained, than the pristine one; however, 

this property was decreased by further addition of MWCNTs. This decrease, which is the 

case for nanofibers containing 0.66% of MWCNTs (i.e., higher concentration), can be 

accounted due to improper dispersion of MWCNTs (Meng et al., 2010). It is well known 

that nano-materials have high surface energy and re-aggregate easily, which can lead to the 

poor dispersion. A good dispersion of MWCNTs in a polymer matrix is needed for more 

uniform stress distribution, which will increase the interfacial area for stress transfer from 

the polymer matrix to the MWCNTs (Moniruzzaman et al., 2007). Also, it is possible that 

the inadequate sonication conditions at the highest MWCNTs concentration can keep them 

in bundled state, which results in a non-uniform dispersion within the nanofibers.

As aforementioned, GTR is gaining much attention because of the preference of growing 

cells in a particular direction which results in filling the gap between damaged tissues at 

faster rates (Corey et al., 2007; Meng et al., 2010). It has been suggested that aligned 

nanofibers can tolerate much stress than the nanofibers with random morphologies, therefore 

giving improved mechanical strength (Corey et al., 2007; Meng et al., 2010). With this 

intention, we designed nanofibers containing 0.33% MWCNTs (i.e., combination with 

highest mechanical properties) with different alignments, which were obtained by varying 

the rotation speeds of the collector (798, 3240 and 5740 rpm). The resultant nanofibers 

membranes were named as random, semi-aligned and completely aligned. The nanofiber 

combination with 0.33% of MWCNTs was ideally selected as represented the highest stress 

bearing capacity of (51.25 ± 5.5 MPa). The SEM results for morphology of nanofibers after 

using three different speeds of collecting drum is presented in Figure 9. This Figure shows 

the random morphology of the nanofibers with MWCNTs at 798 rpm (Fig. 9a), at 3240 rpm 

with a semi-aligned structure (Fig. 9b), and at 5740 rpm with a completely aligned nanofiber 

structure (Fig. 9c). Moreover, the in-set figure in Figure 9c shows the high magnification of 

the completely aligned nanofibers. From these figures, we can observe that as the rotation-

speed of the collector increases, the nanofiber morphology transforms from random to semi-

aligned and further to completely aligned nanofibers. From (Fig. 9c), which shows the 

nanofibers with completely aligned morphology, further enriches the justification (TEM 

results Fig. 3), that MWCNTs can be uniformly packed along the nanofiber direction.

Moreover, results from mechanical properties of these three nanofibers combination 

indicated that the average stress with random, semi-aligned and completely-aligned 

nanofibers was 51.25 ± 5, 51.15 ± 8, and 72.78 ± 5 MPa, respectively (Figs. S4 and S5). In 

case PLA nanofibers, modified with 3% of MWCNTs showed maximum Young’s modulus 

of (77.8 and 91.3 MPa), for random and aligned nanofiber composites (Shao et al., 2011). 

We believe the reason could be proper dispersion caused of MWCNTs and due to high 

solubility PLA, compared to dissolving Carbothane™ 3575A in DMF and THF solvents. 
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Moreover, the obvious increase in the obtained tensile stress for the obtained nanofibers in 

this study while aligning them suggests the use of these nanofibers in artificial tendon and 

ligament prostheses, where high mechanical properties are a prerequisite. Furthermore, a 

complete cell culture study, with aligned and non-aligned nanofibers is ongoing and will be 

reported in future publications.

Conclusion

In conclusion, the artificial ligaments and tendons should represent excellent mechanical 

performance comparable to that of naturally existing one and biocompatibility are the 

primary requirements for these materials before considering for tissue engineering 

application. In this connection, fabrication of nanofibers incorporating MWCNTs was 

achieved, and these nanofibers present enhanced tensile stress and good mechanical 

properties. A simple method using high intensity sonication for MWCNTs in DMF was 

effective in de-bundling nanotubes at low concentrations, and the introduction of the 

MWCNTs in the polymeric solution led to a decrease in the diameter of nanofibers. 

Furthermore, addition of MWCNTs resulted in increased mechanical properties of the 

nanofibers and increase in porosity. TEM was used to investigate the presence and location 

of MWCNTs in the nanofibers, while FTIR revealed the functional groups interacting with 

the MWCNTs. Raman spectroscopy confirmed the interaction between the nano-fillers and 

the polymeric matrix, also indicating that the sonication process afforded de-bundled 

MWCNTs. The cell culture study indicated the non-toxicity of the produced nanofibers, and 

suggests their potential use in biomedical applications. Finally, an additional enhancement to 

the nanofiber construct containing 0.33% MWCNTs, which yielded highest mechanical 

property was obtained through alignment by changing the collector speed, suggesting the 

role of aligned nanofibers with advanced mechanical properties in construction of artificial 

tendon and ligaments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SEM images for the nanofibers that contain different amounts of MWCNTs: (a) 0%, (b) 

0.06%, (c) 0.33% and (d) 0.66% of MWCNTs incorporated.
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Figure 2. 
The average diameters of obtained nanofibers.
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Figure 3. 
TEM micrograph of the nanofibers with MWCNTs, arrows indicating the location of 

MWCNTs (a). The high resolution images of the encircled area of former figure, indicating 

de-bundling of MWCNTs.
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Figure 4. 
The FT-IR spectra of the pristine nanofibers mats and nanofibers incorporated with 

MWCNTs.
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Figure 5. 
The thermogravimetric analyses of the pristine nanofibers and the nanofibers incorporated 

with MWCNTs.
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Figure 6. 
The Raman spectra of the pristine nanofibers, pure MWCNTS and the nanofibers with 

different concentrations of MWCNTs.
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Figure 7. 
Results from the MTT assay for the pristine and the nanofibers with MWCNTs.
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Figure 8. 
SEM images after culturing the NIH 3T3 fibroblasts in presence of nanofibers, after the 7 

day of culture. Nanofibers containing different amounts of MWCNTs: (a) 0%, (b) 0.06%, (c) 

0.33% and (d) 0.66% of MWCNTs in low magnifications. And, the nanofibers with different 

amounts of MWCNTs (e) 0%, (f) 0.06%, (g) 0.33% and (h) 0.66% of MWCNTs in high 

magnification from the encircled areas from the low magnification images.
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Figure 9. 
SEM images for the nanofibers containing 0.33% of MWCNTs, obtained upon increasing 

the rotation speeds of collecting drum: (a) Random, (b) Semi-aligned, (c) Completely 

aligned nanofibers.
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