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Soil microbiology is frequently limited by our ability to predict micro-
bial ecosystem functions, especially for low diversity taxa. The exploration 
of microbial function is particularly important when considering the soil’s 

nutrient cycles under legacy, or long-term, management systems. Agricultural 
ecosystems that are under long-term management studies are invaluable tools 
to understand how soil microbes affect various ecosystem services. One even-
tual goal of such studies is to provide predictive models of microbe-dependent 
ecosystem processes (Treseder et al., 2011; Krause et al., 2014).

Among different land management practices, tillage is known to alter many 
soil physicochemical properties, thereby influencing nutrient availability to 
microbes (Dick, 1984; Van Doren et al., 1984; Kumar et al., 2012). Varying 
results have been reported with regard to differences in microbial community 
composition between tillage treatments (Linn and Doran, 1984; Frey et al., 
1999; van Capelle et al., 2012; Navarro-Noya et al., 2013; Sengupta and Dick, 
2015). Ohio contains two of the longest, continuously maintained comparisons 
between plow (inversion) tillage and no-tillage in the world (Dick et al., 1991). 
At the time of sampling, this comparison had been in place for more than 50 
yr. Thus, each plot has been replicated in time for the entire duration of the 
experiment (50-plus yr). Microbial community dynamics (i.e., diversity and 
functionality), as affected by tillage, are thus considered to be firmly established 
here because of legacy land use.

Increasingly, omics-based tools are being used to assess the phylogenetic 
composition of soil microbial communities. One such bioinformatics tool that 
allows prediction of functional profiles based on phylogenetic composition of 
communities is PICRUSt (Langille et al., 2013; Oh et al., 2016; Jiménez et al., 
2014; Lopes et al., 2016). The objective of this study was to use this tool to 

Functional Predictions of Microbial 
Communities in Soil as Affected  
by Long-term Tillage Practices

Janani Hariharan, Aditi Sengupta, Parwinder Grewal,  
and Warren A. Dick*

Copyright © American Society of Agronomy, Crop 
Science Society of America, and Soil Science Society of 
America. 5585 Guilford Rd., Madison, WI 53711 USA.
This is an open access article distributed under the 
terms of the CC BY-NC-ND license (http://creativecom-
mons.org/licenses/by-nc-nd/4.0/) 
Agric. Environ. Lett. 2:170031 (2017) 
doi:10.2134/ael2017.09.0031
 
Received 15 Sep. 2017. 
Accepted 13 Nov. 2017. 
*Corresponding author (dick.5@osu.edu).

Agricultural &  
Environmental  
Letters

Research Letter

Abstract: Soil microbial communities affect the soil’s biological, chemical, and 
physical properties, but there is still a knowledge gap regarding the long-term 
impact of tillage practices on soil microbial dynamics. Additionally, the accurate 
identification of belowground microbial functions is a topic of active interest. In this 
study, microbial community profiles and functions in soil from a 50-plus-year-old 
experiment in Ohio, representing one of the world’s longest running comparisons 
of a plow-tillage system and a continuous no-tillage system, were compared. The 
Phylogenetic Investigation of Communities  by Reconstruction of Unobserved States 
(PICRUSt) algorithm was used to predict associated functional traits from 16S rRNA 
gene sequences. Analysis of the sequences revealed a large number of unidentified 
operational taxonomic units (67%), which is consistent with expectations of the soil 
ecosystem. Next, we investigated gene and enzyme predictions for nitrogen, sulfur, 
and methane metabolism and hydrocarbon degradation in soil. Results indicated 
that no-tillage was functionally enriched for most nutrient cycles. This study has 
allowed us to predict distinct functional profiles as a result of legacy land uses. 
It serves as an example of improved analysis of the functional differences in soil 
managed by long-term tillage versus no-till.
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Core Ideas

•	 Microbial function is important but difficult to 
assess in soil.

•	 An omics-driven tool, PICRUSt, was used 
to characterize functions of soil microbial 
communities.

•	 No-tillage compared with plow tillage was 
functionally enriched for most nutrient cycles.

•	 Many other functions integral to soil health can 
be explored by the PICRUSt omics approach.

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; NSTI, Nearest Sequenced 
Taxon Index; NT, no-till; OTU, operational taxonomic unit; PICRUSt, Phylogenetic Investigation 
of Communities  by Reconstruction of Unobserved States; PT, plow-till; QIIME, Quantitative 
Insights into Microbial Ecology.
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examine the predicted functional capabilities of the soil bac-
terial community under two different tillage systems, long-
term plow tillage and long-term no-till.

Materials and Methods
Soil samples were collected from the Triplett–Van Doren 

long-term research site located near Wooster, OH. Treatment 
descriptions and the randomized experimental design are 
provided in Dick et al. (1991). The two treatments sampled 
for this study were plow-till (PT) and no-till (NT). The PT 
plots are characterized by spring moldboard (inversion) 
plowing to a depth of 20 to 25 cm, while the NT plots have 
had no tillage other than that accomplished by the planter. 
Other management practices, such as planting dates, liming, 
fertilizer and pesticide applications, are the same for both 
treatments.

Soil Sample Collection and Processing
Three subsamples (0–10 cm) were collected in June 2014 

from three replicates of the continuous corn (Zea mays L.)–
NT treatment and the continuous corn–PT treatment. This 
created a total of 18 subsamples (2 tillage treatments × 3 plot 
replicates × 3 cores per plot replicate). Subsamples from the 
NT and PT replicates were pooled together treatment-wise to 
make two composite samples. Composite soil samples have 
been used for other, similar studies (Acosta-Martínez et al., 
2008). In our case, we have replication of tillage treatments 
over 50 yr to capture the legacy effects of these tillage prac-
tices. The composite samples were immediately prepared by 
passing the soil through a 2-mm sieve.

Microbial DNA was extracted from 1 g of soil using 
MoBio’s Ultra-CleanSoil DNA Isolation Kit (MO BIO 
Laboratories, Inc.) following the manufacturer’s instructions. 
The V1 to  V3 regions (~600 bp) of the bacterial 16S rRNA 
gene were targeted, and the amplicons were sequenced on 
a pyrosequencing platform using the 454 GS FLX Titanium 
system (454 Life Science, Roche) by ChunLab, Inc. Details of 
the primers, polymerase chain reaction conditions used for 
16S rRNA gene amplification, and soil chemical characteris-
tics were described in an earlier study (Sengupta and Dick, 
2015). Sequence data for these samples were submitted to 
the Sequence Read Archive (SRA) under accession numbers 
SRR1610991 and SRR1610992.

Sequencing Data Analysis
Raw standard flowgram format (SFF) reads from the 

sequencing facility were denoised using the Denoiser (Reeder 
and Knight, 2010) program in Quantitative Insights into 
Microbial Ecology (QIIME) (Caporaso et al., 2010). Reads 
with lengths <200 bp and quality scores <25 were removed. 
Open reference operational taxonomic unit (OTU) pick-
ing was done using the QIIME (v. 1.8) pipeline against the 
Greengenes database (2013 version) (DeSantis et al., 2006) at 
99% sequence similarity. Chimeric sequences were removed 
using Chimera Slayer (Haas et al., 2011) before construction 
of the OTU table. PICRUSt was then used to predict gene 
content (gene names and abundances for each OTU) from 
each sample’s 16S rRNA sequence data, functionally annotate 

the data, and identify functional pathways predicted by using 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(Kanehisa and Goto, 2000).

The final output of this workflow was quantified in terms 
of predicted gene abundances per sample per OTU. To com-
pare differences between the two treatments (NT and PT 
soil), we used a NT/PT ratio calculated by dividing the total 
predicted gene abundance for all contributing OTUs in the 
NT sample by the total predicted gene abundance for all con-
tributing OTUs in the PT sample. A ratio >1 suggests the 
function predicted by the gene being analyzed is greater in 
NT compared with PT. A ratio <1 would imply the inverse. 
Welch’s t test was used for significance testing between the 
functions predicted for NT and PT soil, with the threshold 
set at 0.05. It is, of course, possible that greater gene abun-
dance need not translate to increased function under that 
treatment. The process of protein expression and function is 
complex and mediated by a number of factors, of which gene 
abundance is only one.

Results
Community Composition and Diversity

Of 7040 total sequences (after denoising), 4093 sequences 
were derived from the NT sample and 2947 from PT. At a 
sequence similarity of 99%, 506 OTUs (324 from NT and 259 
from PT) were identified (Table 1).

At the phylum level, NT soil had greater diversity than PT, 
although exceptions were noted in the case of some classes of 
Proteobacteria, Gemmatimonadetes and Chlorobi. Bacterial 
diversity is generally higher under NT than PT (Adl et al., 
2006; Lupwayi et al., 2012; van Capelle et al., 2012), but other 
studies have found no differences between tillage treatments 
(Jiang et al., 2011; Hartmann et al., 2014). Thus, there is still 
no clear consensus on the overall effect of tillage on bacterial 
diversity. However, our results come from a long-term study 
in which the effect of tillage is firmly established. They cor-
respond with those studies showing an increase in bacterial 
diversity caused by NT.

The Nearest Sequenced Taxon Index (NSTI) is an indi-
cation of the phylogenetic distance between the OTUs in 
our samples and the reference genomes they are compared 
against for functional predictions. It is an indirect estimate of 
the confidence of PICRUSt predictions. For our soil samples, 
PICRUSt predicted an NSTI value of 0.17 for NT and 0.15 for 
PT, similar to those obtained for the soil datasets in Langille 
et al. (2013). These values do not indicate high availability 
of reference genomes for annotation, suggesting that there 

Table 1. Statistics of sequence and operational taxonomic unit (OTU) 
distribution across samples.

Sample Raw 
sequences†

Sequences with 
hits in GG‡

Number of 
OTUs

OTUs with 
hits in GG 

No-till 4093 (2486) 2486 877 324
Plow-till 2947 (1528) 1528 441 259
Total 7040 (4014) 4014 1318 506

† Numbers in brackets indicate the sequences that passed all filters and 
were used for eventual analyses.

‡ GG = Greengenes database.
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remains a large portion of the soil microbiome that is yet 
to be sequenced and classified. Indeed, a closer look at the 
OTUs indicates that a substantial portion of them is unclas-
sified, and this is reflected in the functional predictions as 
well. Thus, it is important to allow for an adequate margin 
of error in any such predictions made with incomplete refer-
ence databases.

To provide a frame of reference, the average NT/PT gene 
abundance ratio of four major soil microbial processes is 
displayed in Fig. 1. The genes with the highest predicted 
abundances and genes thought to be functionally critical are 
not the same. This suggests the most ubiquitous or abundant 
proteins may not be the most functionally relevant ones, and 
vice versa.

We next predicted the functional features of the bacterial 
community in both samples. Although any number of func-
tional features can be investigated with the PICRUSt soft-
ware, as examples we describe two nutrient cycling functions 
in brief—nitrogen metabolism and methane metabolism. A 
detailed description of all the components examined can be 
found in Hariharan (2015).

Nitrogen Metabolism
Forty-two genes from the KEGG database were predicted 

to be involved in nitrogen metabolism. Genes with highest 
predicted abundances are listed in Table 2, along with their 
associated proteins and related OTU information. Genes 
encoding the reversible reactions of ammonia to organic 
nitrogen had higher predicted abundances under NT, sug-
gesting a larger metabolizable nitrogen pool size in NT. 
This would suggest that long-term NT soil, compared with 
PT soil, has a greater microbial capacity to mineralize and 
supply nitrogen to crops during the growing season.

Nitrification is catalyzed by the amo genes, all of which 
were predicted in very low abundance (four gene counts 
per OTU per sample). These genes were almost exclusively 
mapped to the Nitrosomonadaceae family and did not 
show any differences between the tillage treatments. The PT 
sample of the amoC gene did, however, indicate that Bacillus 
sp. and Bradyrhizobium sp. OTUs could also contribute to 

nitrifying activity. This link between the amo genes and 
ammonia-oxidizing bacteria like the Nitrosomonadaceae 
and Bradyrhizobium has been observed in previous findings 
(Rotthauwe et al., 1997; Purkhold et al., 2000; Francis et al., 
2003). Many genes related to dissimilatory nitrate reduction 
(including the nar and nir genes) had NT/PT gene abundance 
ratios >1, suggesting that NT may exhibit greater potential 
for denitrification and production of N2O than does PT.

Methane Metabolism
Carbon metabolism as a whole, including but not limited 

to the Wood–Ljungdahl pathway, Arnon–Buchanan cycle, 
Crassulacean acid metabolism (CAM) pathway, and Calvin 
cycle, was analyzed. PICRUSt predicted about 71 genes, of 
which the majority had NT/PT gene abundance ratios <1. 
Owing to the complexity and interlinked nature of carbon 
cycling, we focused on the cycling of methane, an important 
greenhouse gas that has a radiative forcing potential 23 times 
higher than that of carbon dioxide. Methanotrophic diversity 
in soils has also been previously studied (Sengupta and Dick, 
2017).

Approximately 30 enzymes were connected with methane 
metabolism by soil microbes. Genes with the highest pre-
dicted abundances, along with their associated protein prod-
ucts and related OTU information are listed in Table 2. The 
NT/PT gene abundance ratio of 2.4 (Fig. 1) was lowest for 

Fig. 1. Average no-till/plow-till (NT/PT) gene abundance ratios 
of four major soil microbial processes.

Table 2. Top five enzymes (by predicted gene abundances) for nitrogen and methane metabolism.

Enzyme Function Gene NT/PT† Associated OTUs‡
Nitrogen metabolism

Carbonic anhydrase Cyanate degradation cynT, can 2.54 54, 41
Glutamine synthetase Ammonia degradation glnA 2.22 61, 44
Glutamate synthase small chain Glutamate formation gltD 2.18 59, 43
Glutamate synthase large chain Glutamate formation gltB 2.43 59, 47
Nitronate monooxygenase Nitrite synthesis ncd2, npd 2.29 44, 31

Methane metabolism
Formate dehydrogenase major subunit CO2 formation fdoG, fdfH 2.42 60, 39
Formate dehydrogenase iron-sulfur subunit CO2 formation fdoH 2.64 43, 29
Formate dehydrogenase alpha subunit CO2 formation fdhA1 2.99 5, 2
Formylmethanofuran dehydrogenase subunit E Formate synthesis fwdE, fmdE 2.899 27, 17
Formate dehydrogenase subunit gamma CO2 formation fdoI 1.627 22, 16

† NT/PT = no-till/plow-till gene abundance ratio.
‡ OTU = operational taxonomic unit. First number is number of OTUs observed for that enzyme in the no-till sample; second number is number of 

OTUs observed in the plow-till sample.



Page 4 of 5	 AGRICULTURAL & ENVIRONMENTAL LETTERS

methane metabolism relative to the other functional catego-
ries we studied. This may not necessarily be reflective of the 
methane metabolizing potential of either soil but is possibly 
due to the rarity of methanogenic microbes in the top stra-
tum of soil (i.e., the 0- to 10-cm soil layer). In fact, Jacinthe 
et al. (2014) found that PT soils were a source of methane 
whereas long-term NT soils were a sink.

The pmo set of genes (closely related to the amo genes) 
were predicted to be the major contributors to methane 
catabolism, followed by cytochrome c-associated methanol 
dehydrogenase enzymes (mdh1, mdh2). An interesting find-
ing was that the methanol dehydrogenase-encoding genes 
were predicted for the PT sample alone at very low abun-
dances (in Hyphomicrobium sp.). This is a rare instance 
wherein genes encoding an enzyme were predicted exclu-
sively for the PT sample.

Discussion
This study evaluates in silico the genes contributing to 

nutrient cycling and other processes in the context of legacy 
(approximately 50 yr) soil tillage practices. Our results sug-
gest NT soils harbor more diverse soil bacterial communities 
(quantified at the phylum level) with higher predicted gene 
content, although exceptions were noted in the case of some 
classes of Proteobacteria, Gemmatimonadetes, and Chlorobi. 
Bacterial diversity is generally reported to be higher under 
NT than PT (Lupwayi et al., 2012; van Capelle et al., 2012; 
Adl et al., 2006). Thus, there is still no clear consensus on the 
overall effect of tillage on bacterial diversity. However, our 
results come from a long-term study in which the effect of 
tillage is firmly established, and they correspond with studies 
showing an increase in bacterial diversity caused by NT.

Long-term land management practices shape the compo-
sition and function of soil microbial communities, and con-
tinuously maintained NT seems to be associated with better 
nitrogen and methane metabolizing capabilities, based on 
the 16S rRNA gene sequences and predicted metagenome 
analyses performed. The unique description of the bacterial 
players in the long-term tillage plots also suggests maintain-
ing NT practice for long periods of time may provide diverse 
benefits to agroecosystems.

Myriad biological and physicochemical factors control 
specific biological functions in terrestrial ecosystems, espe-
cially related to nutrient cycling. Quantifying such functions 
in the laboratory setting is difficult due to issues in cultur-
ing of many soil microbes as well as the extensive number of 
functions that would need to be tested. Enzyme assays and 
measurements of soil nutrient concentrations done at the 
time of sampling could improve functional interpretations. 
However, an in silico analysis is extremely useful for predict-
ing the putative roles of all observed OTUs in a soil sample 
and formulating hypotheses that could then be functionally 
validated. Although these studies are not meant to replace 
bench experiments and functional validation, using such 
tools can help develop hypotheses for large-scale microbial 
ecology studies. In the larger context of functional path-
ways, in silico analyses could also pinpoint key rate-limiting 
steps as well as critical microorganisms performing unique 

functions in the soil. Predictive functional tools could also be 
of use in the identification of candidate microorganisms for 
commercially important genes.

Conclusions
The temporal stability offered by the long-term no-

tillage plots used in this study provides unique ecologi-
cal significance to our results. Linking PICRUSt, as a 
prediction tool, to 454 pyrosequencing data revealed the 
utility of this approach to predict functional differences 
as affected by land management, in this case, long-term 
tillage practices. The functional categories studied here 
represent only a small portion of soil microbial processes. 
There are a multitude of other functions that are integral 
to the maintenance of soil health that can be studied. As 
more and better tools and technologies are developed 
to open the proverbial microbial “black box,” we should 
revise our understanding of microbial contributions to 
biogeochemical processes.
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