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Abstract: Terrestrial gross primary production (GPP) is the basis of food production and 24 

vegetation growth globally1, and plays a critical role in regulating atmospheric CO2 through its 25 

impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades 26 

can increase GPP2, low soil water availability, heat stress, and disturbances associated with 27 

droughts could reduce the benefits of such CO2 fertilization. Here we analyzed outputs of 13 28 

Earth System Models (ESMs) to show an increasingly stronger impact on GPP by extreme 29 

droughts than mild and moderate droughts over the 21st century. Due to a dramatic increase in 30 

the frequency of extreme droughts, the magnitude of globally-averaged reductions in GPP 31 

associated with extreme droughts was projected to be nearly tripled by the last quarter of this 32 

century (2075–2099) relative to that of the historical period (1850–1999) under both high and 33 

intermediate greenhouse gas emission scenarios. In contrast, the magnitude of GPP reduction 34 

associated with mild and moderate droughts was not projected to increase substantially. Our 35 

analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric 36 

warming; however, this risk can be potentially mitigated by positive anomalies of GPP 37 

associated with favorable environmental conditions. 38 

  39 
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The terrestrial biosphere absorbed ~30% of anthropogenic carbon emissions from fossil 40 

fuels during 1990–20073, making it a critical component of the global carbon sink that mitigates 41 

fossil fuel CO2 emissions and associated climate warming. GPP is a measure of fixation of CO2 42 

into an ecosystem through photosynthesis and plays a key role in the net carbon balance of the 43 

terrestrial biosphere and the terrestrial CO2 absorption. However, despite our knowledge of CO2 44 

fertilization effects on plant productivity2, the future trend of GPP under elevated CO2 levels 45 

remains highly uncertain due to the impact of many factors such as nutrient limitation4 and 46 

increasing frequency and intensity of drought5. Drought is already the most widespread factor 47 

affecting GPP6 via direct physiological impacts such as water limitation and heat stress7, and 48 

through its indirect impacts on increased frequency and intensity of disturbances such as fire and 49 

insect outbreaks8 that release large amounts of carbon back into the atmosphere. In agreement 50 

with such trends, several modeling studies have showed an increasing risk of a greater frequency 51 

and intensity of droughts in many regions during the 21st century9-12, which could affect the 52 

magnitude of future GPP and lead to high uncertainty in projecting the future of terrestrial 53 

carbon sink. Previous studies have assessed the importance of different climate factors for carbon 54 

flux extremes13,14, but few studies have specifically quantified future drought impacts on GPP at 55 

the global scale. 56 

To better understand how future drought will affect GPP at the global scale, we analyzed 57 

the climate and GPP projections from 13 ESMs in the Coupled Model Intercomparison Project 58 

Phase 5 (CMIP5)15. The models were selected based on the criteria that they reported both soil 59 

water content at different depths and GPP, to quantify the potential impacts of droughts on future 60 

terrestrial GPP. Given that plant responses to water stress depend on their historical climate 61 

conditions16, we defined location (i.e., grid cell for ESMs) and model-specific droughts during 62 
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the historical period of 1850–1999 as months when plant accessible soil water (PASW: vertical 63 

integral of soil water weighted by the fraction of roots in a soil column at different depths) was 64 

less than the 10th percentile for each location. These percentile-defined droughts may not have an 65 

impact on GPP at very wet sites, therefore, we only used the 10th percentile to define droughts if 66 

GPP during these drought months was significantly lower (with a significance level of 0.01) than 67 

that of the non-drought months (see Methods and Extended data Fig. 1 for details). We classified 68 

droughts into extreme, moderate, and mild so that PASW was less than the 2nd percentile during 69 

extreme droughts, between the 5th and 2nd percentiles during moderate droughts, and between the 70 

10th and 5th percentiles during mild droughts. Projected future droughts were sorted into these 71 

categories using the grid-cell-, model-, and month-specific historical simulations. The drought-72 

associated change in GPP was calculated based on the deviations (or anomalies) of GPP from the 73 

mean for each month of a specific location during 1850-2099 (See Methods and Extended data 74 

Fig. 1 for details). Positive deviations from the mean indicate that droughts stimulate GPP and 75 

negative deviations indicate that droughts reduce GPP.  76 

Our analysis showed that drought events defined by low PASW were projected to 77 

become more frequent under future climates (Fig. 1). The frequency of extreme droughts per 78 

year was projected to increase by a factor of ~3.8 (p-value < 0.001) under the high greenhouse 79 

gas emission scenario (RCP 8.515) and by a factor of ~3.1 (p-value < 0.001) under the 80 

intermediate greenhouse gas emission scenario (RCP 4.515) (Fig. 1a, b) during 2075–2099, 81 

compared to the historical period of 1850–1999. The mean frequency of moderate droughts per 82 

year was projected to increase by a factor of ~1.2 (not significant with p-value > 0.2) under 83 

scenario RCP8.5 (Fig. 1d) and by a factor of ~1.5 (p-value < 0.01) under scenario RCP4.5 (Fig. 84 

1c). One reason for the relatively lower increase of moderate drought frequency under scenario 85 
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RCP8.5 in comparison to scenario RCP 4.5 was that drought events became more extreme under 86 

scenario RCP8.5 and thus there was a smaller proportion of moderate drought events under this 87 

scenario (Extended data Fig. 2). These droughts were widely distributed with particularly high 88 

risks for the Amazon, South Africa, Mediterranean Basin, Australia, and southwest USA (Fig. 89 

2). The risk of mild droughts did not change significantly in the future (Fig. 1e, f). The drought 90 

events were typically associated with low humidity (Extended data Fig. 3), low precipitation 91 

(Extended data Fig. 4), high temperature (Extended data Fig. 5), high radiation (Extended data 92 

Fig. 6), and increased carbon release from fire disturbances (Extended data Fig. 7).  93 

The magnitude of annual GPP reductions associated with droughts was also projected to 94 

increase substantially in the future (Fig. 3). In terms of absolute carbon fluxes, the magnitude of 95 

forecasted mean reductions in global GPP associated with droughts will rise from ~2.8 Pg C per 96 

year during 1850–1999 to ~4.5 and ~4.7 Pg C per year (p-value <0.01) during 2075–2099 under 97 

emission scenario RCP8.5 and RCP 4.5, respectively (Extended data Fig. 8). Drought-associated 98 

reductions in GPP (Figs. 3 and 4) can arise in two main ways: 1) via an increased intensity of 99 

droughts (in terms of GPP impact), or 2) via an increased drought frequency. Our analysis 100 

showed that the ensemble mean of absolute GPP reduction per drought event was not projected 101 

to be significantly larger in the future (Extended data Fig. 9). This could result from the effect of 102 

CO2 fertilization for the both drought and non-drought months (see next paragraph for details). 103 

Therefore, the increasing impact of drought upon GPP mainly resulted from the increased 104 

frequency of drought events. Due to the relatively large increase in the frequency of extreme 105 

droughts (Fig. 1), the magnitude of GPP reductions associated with extreme droughts increased 106 

much more than that associated with moderate and mild droughts in the future (Fig. 3). 107 

Specifically, the magnitude of annual GPP reduction associated with extreme droughts during 108 
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2075–2099 was projected to increase by a factor of ~2.9 (p-value < 0.001) and ~2.7 (p-value < 109 

0.001) under emission scenarios of RCP8.5 and RCP4.5, respectively (Fig. 3 a, b), compared to 110 

their historical mean values during 1850–1999. In contrast, no significant increase in the 111 

magnitude of mean GPP reduction was detected for mild and moderate droughts except for the 112 

moderate droughts under RCP4.5 (Fig. 3 c-e). Therefore, the proportion of total GPP reduction 113 

contributed by extreme droughts was projected to increase from ~28% during 1850–1999 to ~56 114 

and 49% during 2075–2099 under emission scenarios RCP 8.5 and RCP4.5, respectively 115 

(Extended data Fig. 10). The projected GPP reductions associated with droughts were correlated 116 

with changes in several environmental drivers including PASW, temperature, humidity and 117 

radiation, and vegetation states with each variable contributing ~10–30% on average 118 

(Supplementary Fig. 1 and Supplementary Fig. 2).  119 

The GPP reduction associated with droughts can be viewed in the context of rising GPP 120 

under future CO2 fertilization, which was included in all selected Earth system model 121 

projections. Due to CO2 fertilization and higher temperature for high latitudes, the globally-122 

averaged mean GPP was projected to be ~50% and ~31% higher for year 2075–2099 compared 123 

to the historical period (1850–1999) under emission scenarios of RCP 8.5 and RCP 4.5, 124 

respectively (Supplementary Fig. 3). Similarly, the GPP in drought periods was also projected to 125 

increase significantly for mild and moderate droughts (p-value < 0.02) but not significantly for 126 

extreme droughts (Supplementary Fig. 4). To better understand the drought impacts in relative 127 

terms, we calculated the impacts of droughts as the percentages reduction in GPP associated with 128 

droughts. The percentage reduction averaged across all models showed no significant change 129 

during 2075–2099 compared to the historical period during 1850–1999 under RCP 8.5 130 

(Supplementary Fig. 5 a). Under the emission scenario of RCP 4.5, percentage reduction of GPP 131 
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by droughts was projected to have a slight increase from ~1.8% per year during 1850–1999 to 132 

~2.3% per year (p-value < 0.01) in 2075–2099 (Supplementary Fig. 5b). Relative to RCP 4.5, the 133 

lower percentage reduction in GPP during 2075–2099 under RCP 8.5 could result from the 134 

beneficial impact of higher CO2 concentrations on plant production during moderate and mild 135 

droughts (e.g., higher photosynthetic rate and increased water use efficiency with lower stomata 136 

conductance2) (Supplementary Fig. 6 c-e). For both mild and moderate droughts, the magnitude 137 

of percentage reduction in GPP decreased except for moderate drought under RCP4.5 138 

(Supplementary Fig. 6 c-e). However, for extreme droughts, the percentage reduction in GPP 139 

was projected to be doubled (p-value < 0.001) under both emission scenario RCP 8.5 and RCP 140 

4.5 (Supplementary Fig. 6 a, b). This suggests that the magnitude of extreme-drought-associated 141 

GPP reduction increases faster than the mean GPP in the future.  142 

There was a large latitudinal variation in the projected impact of drought on GPP. The 143 

drought impacts on GPP for years 2075–2099 (measured by the grid-cell-specific GPP reduction 144 

relative to the historical period of 1850–1999) were much larger in tropical and temperate 145 

regions and smaller at high latitudes (Fig. 4; see Supplementary Fig. 7 for a reference over years 146 

1975–1999). The uncertainty was also relatively lower for tropical and temperate regions as 147 

measured by the relative amount of deviation from the ensemble mean (Supplementary Fig. 8 148 

and Supplementary Fig. 9). The large increase in the magnitude of drought-associated reduction 149 

in GPP projected for tropical and temperate regions (Fig. 4) is in agreement with recent 150 

observations of drought-associated vegetation changes in Europe17, the Amazon basin18, Western 151 

US19,20, and the global assessment of drought-induced plant production reduction during 1999–152 

2009 using remote-sensing-based estimates21. The small impacts of droughts on GPP at high 153 

latitudes could result from their relatively low GPP and beneficial consequences of higher 154 
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temperature (Extended data Fig. 5) and radiation (Extended data Fig. 6) during the drier months 155 

in these colder regions22, where relatively high antecedent soil moisture buffers vegetation 156 

against stress-inducing drought levels despite experiencing statistically dry conditions. However, 157 

this projection of small GPP reductions at high latitudes could be too optimistic given that all the 158 

current ESMs do not explicitly consider insect dynamics, which are influenced by drought and 159 

warming climate and have substantial impacts on regional to global carbon cycles23,24.  Long-160 

term observational data also showed that drought had already led to substantial tree mortality 161 

across Canada from 1963–200825. 162 

The ESMs projected not only an increase of mean GPP in the future due to CO2 163 

fertilization (Supplementary Fig. 3), but also an increase of variability in GPP (Supplementary 164 

Fig.  10). This suggests that magnitude of both positive and negative anomalies around the mean 165 

of GPP will increase in the future14. The GPP reduction associated with drought represents one 166 

of the key drivers of negative abnormalities for the simulated GPP in ESMs; however, at global 167 

scale, these negative anomalies could be mitigated by the positive anomalies of GPP related to 168 

wet conditions, favorable temperature and radiation, and enhanced water use efficiency due to 169 

elevated CO2 concentration2. Zscheischler et al14 pointed out that the dominance of large 170 

negative carbon extremes (e.g., deviation of GPP from the mean) could be changed toward 171 

dominance of large positive carbon extremes in GPP in the 21st century. Thus, it is possible that 172 

the high risk of increasing impact of extreme droughts on GPP could be mitigated by the positive 173 

impacts on GPP in the future under favorable environmental conditions of temperature, soil 174 

moisture and radiation.  175 
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Methods 239 

We selected 13 ESM simulations (Supplementary Table 1) from CMIP5 archive, based 240 

on the criteria that they reported both soil water at different soil depths and GPP.  There are 241 

multiple simulations for each ESM under each specific greenhouse gas emission scenarios. In 242 

this study, we selected only the first reported simulation for each model, given that multiple 243 

inclusions of the same model might lead to its over-representation in our analysis26. We also 244 

collected additional climate variables including precipitation, radiation, temperature and relative 245 

humidity to identify the deviations in climate for drought months from the same CMIP5 archive. 246 

In this study, we only considered two emission scenarios: RCP8.5 and RCP4.5. This was 247 

justified by the fact that these scenarios generally capture the potential range of future 248 

greenhouse gas releases and that fewer simulations are available for other emission scenarios.   249 

There are many ways to define droughts11. Because our goal was to understand impacts 250 

of drought on GPP, we used plant accessible soil water (PASW) as an indicator of drought. 251 

PASW was defined as the sum of soil water weighted by the fractions of plant roots at different 252 

soil depths (see Supplementary Note 1 for details). Because drought tolerance of plants depends 253 

on their historical climate conditions16, we defined droughts based on the site-specific PASW. 254 

Specifically, we defined a month in a specific year as a month of mild, moderate, and extreme 255 

drought if its PASW was less than (or equal to) the 10th but larger than the 5th percentile, less 256 

than (or equal to) the 5th but large than the 2nd percentile, and less than (or equal to) the 2nd 257 

percentile for the same month during 1850–1999, respectively (Extended data Fig. 1a).  These 258 

percentiles were then used to identify months of different levels of droughts during 2000–2099 259 

based on the projected PASW. Even if PASW of a certain month was relatively low (e.g., <10th 260 

percentile) for a specific year, it may not have an impact on plant production if the site was very 261 
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wet. Thus, we used these percentiles to define droughts only if GPP values of a specific month 262 

for the years with PASW less than the10th percentile were significantly lower than the rest of 263 

years during 1850–2099 (see Supplementary Note 1, Supplementary Fig.  11, and Supplementary 264 

Fig.  12 for details).   265 

In most models, each grid cell can contain more than one plant functional type (PFT) 266 

with differing root distributions. Ideally, we could have defined droughts based on whether the 267 

PASW of a PFT had a significant impact on the PFT-specific GPP; however, the CMIP5 268 

database only has a single total GPP for each specific grid cell. In this study, droughts were thus 269 

defined by PASW of different PFTs as long as GPP during the defined drought months was 270 

significantly lower than that during non-drought months (see Supplementary Note 1 for details of 271 

statistical tests). This does not affect our analysis because all the droughts defined by PASW of 272 

different PFTs had a significant impact on the lumped GPP. If a specific month was set as 273 

drought month by PASW of multiple PFTs, however, we defined the drought category based on 274 

the PASW of the PFT that had the most significant impact on GPP (see Supplementary Note 1 275 

for details).  276 

To quantify drought impacts on GPP, we first fitted a smooth spline over noisy 277 

simulations of GPP for a specific month (e.g., May) during 1850–2099 (Extended data Fig. 1b). 278 

See Supplementary Note 2 for details of smooth spline estimations. This spline was then used to 279 

represent the mean GPP for the month of interest. For each drought month, the deviation (or 280 

anomaly) of its GPP from the estimated spline was used to quantify the monthly impact of 281 

drought on GPP (Supplementary Note 3 and Extended data Fig. b). Finally, we summed these 282 

deviations across months and spatial locations to estimate impacts of the drought on GPP at the 283 

global scale. The corresponding standard errors were estimated based on the standard errors of 284 
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the estimated spline (see Supplementary Note 2 for details). Statistical tests were used to test for 285 

significant differences in drought risks and associated GPP reductions (see Supplementary Note 286 

5 for details). Our approach might underestimate drought impacts, because drought-associated 287 

GPP reduction could plausibly extend past the end of the duration of drought defined based on 288 

soil moisture13,27.  Further studies based on specific model experiments are needed to identify 289 

these lag impacts, because it is difficult to confirm if the follow-on reductions in GPP result from 290 

the lag effects of droughts or other environmental condition changes (e.g., low radiation) in the 291 

CMIP5 archive.  292 

It is important to point out that the PASW is only one indicator of drought. The impact of 293 

droughts on GPP can be attributed to different climate variables such as temperature, humidity, 294 

radiation, precipitation, and PASW, and to different vegetation states such as PFT compositions, 295 

height, and leaf area index. To understand the importance of different climate variables and 296 

vegetation states on GPP reductions associated with droughts, we fitted multilinear regressions to 297 

estimated GPP deviations with explanatory variables of PASW, daily temperature, incoming 298 

solar radiation, relative humidity, and mean GPP (as an indicator of overall vegetation status) for 299 

all the drought events for a specific month for the 25-year periods during 1850–2099 (see 300 

Supplementary Note 4 for details).  301 

Data Availability 302 

The ESM output data that support the findings of this study are available from the CMIP5 site 303 

(https://esgf-node.llnl.gov/projects/cmip5/). 304 

Code availability 305 

The processing R codes are available from corresponding author upon request. 306 

 307 
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Figure legends 345 

Fig. 1 Temporal changes in annual drought frequency relative to the historical period of 346 

1850–1999. The relative frequencies were calculated on a model-specific basis, dividing the 347 

projected mean annual drought frequency (drought events/year) for a specific period (e.g., years 348 

2075–2099) by that over the historical period. Values <1 indicate that the drought frequency 349 

decreases while values >1 indicate that the drought frequency increases compared to the 350 

historical period.  The P-values were calculated using the bootstrap sampling (see Supplementary 351 

Note 5.2 for details) to test if the mean frequency across different models during 2075–2099 352 

were significantly higher than the historical period. The gray horizontal line represents the 353 

ensemble mean for 2075–2099. See Supplementary Table 1 for the abbreviations of 13 selected 354 

Earth system models. 355 

Fig. 2 Spatial distribution of drought frequency during 2075–2099 relative to the historical 356 

period of 1850–1999. The relative frequencies were averaged over the ensemble of 13 Earth 357 

system models. They were calculated on a model- and grid-cell-specific basis, dividing the mean 358 

drought frequency per year (drought events/year) during 2075–2099 by that over the historical 359 

period. Values <1 indicate the drought frequency decreases while values >1 indicate that the 360 

drought frequency increases compared to the historical period. The frequencies projected by 361 

different models were interpolated to a reference spatial resolution [1.125 o (longitude) x 0.9375o 362 

(latitude)] for mapping purposes.   363 

Fig. 3 Temporal changes in GPP anomalies associated with droughts relative to the 364 

historical period of 1850–1999.  The relative anomalies were calculated on a model-specific 365 

basis, dividing the mean annual GPP anomaly associated with droughts (kg C/m2/ year) for a 366 

specific period (e.g., years 2075–2099) by that for the historical period (see Methods and 367 
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Supplementary Note 3). They were multiplied by (-1) to indicate that droughts decrease GPP, 368 

with -1 indicating the reference drought-associated GPP anomaly for the historical period. 369 

Hence, values < -1 indicate that the magnitude of GPP reduction becomes larger relative to the 370 

historical period, while values > -1 indicate that the magnitude of GPP reduction becomes 371 

smaller.  The dotted line shows the mean relative anomaly during 2075–2099 across all models. 372 

The P-values were calculated using the bootstrap sampling (see Supplementary Note 5.2 for 373 

details) to test if the mean magnitude of GPP reduction during 2075-2099 across different 374 

models becomes significantly larger than that during the historical period. See Supplementary 375 

Table 1 for the abbreviations of 13 selected Earth system models. 376 

Fig. 4  Spatial distribution of GPP anomalies associated with droughts during 2075–2099 377 

relative to the historical period of 1850–1999. The relative anomalies were averaged over the 378 

ensemble of 13 Earth system models. They were calculated on a model basis, dividing the grid-379 

cell-specific mean annual GPP anomalies (kg C/m2/ year) during 2075–2099 by the global mean 380 

annual GPP reduction (kg C/m2/ year) for the historical period. The relative anomalies were 381 

multiplied by (-1) to indicate that droughts decrease GPP, with -1 indicating the reference global 382 

mean GPP reduction for the historical period. Hence, values < -1 (shades of red) indicate that the 383 

magnitude of GPP reduction was larger than the global mean GPP reduction during the historical 384 

period, while values > -1 (light blue) indicate that the magnitude of GPP reduction was smaller. 385 

The drought-associated changes in GPP projected by different models were interpolated to a 386 

reference spatial resolution [1.125 o (longitude) x 0.9375o (latitude)] for mapping purposes. 387 
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