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Abstract
Land-use practices impact soil microbial functionality and biodiversity, with reports

suggesting that anthropogenic activities potentially result in reduced microbial func-

tions and loss of species. The objective of this study was to assess the effect of long-

term (>50 yr) land use (natural forest and grassland, and agricultural land) on soil

bacterial community structure. A high-throughput sequencing-by-synthesis approach

of the 16S rRNA gene was used to study bacterial community and predicted func-

tional profiles of Alfisols, as affected by variables including land-use (forest, grass,

agricultural) and soil/crop management (rotation and tillage) in long-term experimen-

tal plots in Hoytville, OH. The distribution of the abundant phyla was different across

samples. No-till soils showed higher diversity indices than the plow-till (PT) soils.

Ordinations across locations suggested that no-till soils had distinctly different com-

munity structure compared with plow-till soils, while crop rotation within the no-till

plot had highest number of taxa. Overall land use (forest, grass, agronomic treatment)

and tillage (within agricultural soils) were found to be significant when evaluating

bacterial community dissimilarity. Predictive functional profiles showed that the for-

est soil had greatest proportion of PICRUSt-assignable gene functions followed by

the no-till and grassland soils whereas plow-till soils had the lowest predicted gene

abundances across all samples. The results provide a view of soil bacterial diversity

and predictive functional capacity in long-term land-use and soil/crop management

practices, with a potential to inform future experiments to increase our understanding

of long-term impacts of land use on microbial community structure and function.

Abbreviations: CC, continuous corn; CS, corn–soybean; DNA,
deoxyribonucleic acid; FOR, forest; GRA, grassland; NT, no-till; PCR,
polymerase chain reaction; PICRUSt, Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States; PT, plow-till; RNA,
ribonucleic acid.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2020 The Authors. Agrosystems, Geosciences & Environment published by Wiley Periodicals, Inc. on behalf of Crop Science Society of America and American Society of Agronomy

1 INTRODUCTION

Soil microorganisms contribute to crucial ecological pro-
cesses like decomposition of organic matter, regulation of
greenhouse gas fluxes, breakdown of xenobiotic compounds,
biogeochemical cycling of nutrients, plant disease suppres-
sion, and plant growth (Garbeva, van Veen, & van Elsas,
2004; Nannipieri et al., 2003). Activities in the soil sur-
ficial layer such as tillage-dependent fragmentation of soil
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structure (Babujia, Silva, Nogueira, & Hungria, 2014;
Potthoff et al., 2006), crop residue accumulation from no-
tillage (Ceja-Navarro et al., 2010; Mathew, Feng, Githinji,
Ankumah, & Balkcom, 2012), leaf litter decomposition from
forests (Chapman, Newman, Hart, Schweitzer, & Koch, 2013;
Purahong et al., 2014), and biomass accumulated on sur-
face of grasslands (Garbeva, Postma, van Veen, & van Elsas,
2006; Lienhard et al., 2012; McCaig, Glover, & Prosser,
2001; Singh, Munro, Potts, & Millard, 2007) affect soil
microbial community structure, diversity, biomass, and activ-
ity. Reports suggest that anthropogenic activities potentially
result in reduced microbial species and function (Brown,
Hungria, Oliviera, Bunning, & Montanez, 2002; Smith, 1995;
The Royal Society of Chemistry, 2011). Therefore, it is critical
to evaluate the impacts of land-use practices on soil microbial
diversity and function.

Globally, implementation of soil conservation practices
in agriculture has become crucial. Studies estimate that
land-use and land-management practices account for 20–24%
of total anthropogenic greenhouse gas emissions (Smith,
Bustamante, Ahammad, Clark, & Dong, 2014). Conventional
agriculture practices involve plowing and sowing, whereas
conservation practices like no-tillage are characterized by
sowing directly into the soil, while maintaining 30% crop
residue present on the surface (Claasen, Bowman, McFadden,
Smith, & Wallander, 2018). Worldwide, no-tillage systems
account for 117 million ha with about 27 million ha of
no-tillage farming in the United States in 2007 (Huggins
& Reganold, 2008). Based on estimates reported in 2012,
about 40% of the total cropland (1.8 million ha) in Ohio is
continuous no-tillage (Lessiter Media, 2014).

Long-term, no-till practices lead to increased soil organic
matter content, improved soil physical properties, and opti-
mum soil moisture levels (Campbell, Chen, Dygert, & Dick,
2014; Triplett & Dick, 2008) whereas conventional tillage
over time reduces soil organic matter content, increases soil
compaction due to use of heavy machinery, and disrupts pock-
ets of microbial metabolic activity (Triplett & Dick, 2008).
There are conflicting reports on microbial diversity in soils
under different management practices. Comparisons between
agricultural and grassland soils showed decreased microbial
species richness in agricultural soils (Steenwerth et al., 2014).
In other agricultural soils, Rodrigues et al., 2013 reported
that conversion of the Amazon rainforest in South America to
cultivation resulted in an increase in microbial alpha diversity
but resulted in the loss of beta diversity. Within agricultural
practices, alpha and beta diversity may be differentially as
seen in decreased beta diversity in soybean monoculture
when compared with crop rotation management (Figuerola
et al., 2012). Other studies have indicated that tilled soil may
or may not contain greater bacterial diversity than no-tilled
soil (Ferreira et al., 2000; Torsvik & Øvreås, 2002; Upchurch
et al., 2008), but the Frey, Elliott, & Paustian (1999) study

Core Ideas
• Long-term land-use practices impact soil micro-

bial functionality and biodiversity.
• Forest, grassland, and continuously maintained till

and no-till soils were evaluated.
• Land use and tillage drove soil bacterial dissimi-

larity.
• Predictive functional-gene abundances were

higher in no-till than plow-till soils.

reported no consistent effects on bacterial abundance or
biomass in a 30-yr tillage practice. Although diversity indices
may not be ideal for deciphering ecological drivers of micro-
bial community patterns (Shade, 2017), evaluating diversity
patterns in response to environmental changes helps generate
ecologically relevant follow-up hypotheses and experimenta-
tion that may collectively contribute to deciphering long-term
impacts of environmental changes. A lack of consensus on
how long-term land-use/management impacts soil microbial
diversity signatures therefore presents a necessity to examine
impact of long-term land-use/management on soil microbial
diversity in greater detail.

To the best of our knowledge, only a handful of studies have
attempted to study the effect of long-term agricultural prac-
tices and land use change on soil microbiomes using high-
throughput 16S rRNA sequencing. These include investiga-
tions of soil microbiome in Argentinean pampas (Carbonetto,
Rascovan, Álvarez, Mentaberry, & Vázquez, 2014; Figuerola
et al., 2012), soil microbial diversity and composition stud-
ies of a long-term agricultural experiment field in southern
Brazil (Dorr de Quadros et al., 2012), a comparison of micro-
bial diversity and composition following grassland to arable
conversion (French, Tkacz, & Turnbull, 2017), effect of land
use intensification on the diversity of soil bacteria in the
Brazilian Amazon (de Carvalho, da C. Jesus, Barlow, Gard-
ner, & Soares, 2016), and a pilot study of soil bacterial com-
munity in long-term till and no-till plots in Ohio (Sengupta &
Dick, 2015).

The 2015 pilot study that we conducted (Sengupta & Dick,
2015) focused on just two treatments, was a proof of concept
for our research objectives, and was conducted using the 454
pyrosequencing platform known to have lower sequencing
depth and higher error rates compared with the Illumina plat-
form (Loman et al., 2012). This study is unique as it evaluates
the impact of long-term land-use and soil-management prac-
tices on soil bacterial diversity across six treatments, includ-
ing the longest maintained tilled and no-tilled plots (> 52 yr)
in the world. Very few places in the world have no-tillage crop-
ping been continuously maintained for such a long time. Thus,
the treatments are firmly established and the results from this
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study are considered representative of a well-established bac-
terial community as impacted by land management.

All practices were established on a Hoytville clay loam
(fine, illitic, mesic Mollic Epiaqualfs) Alfisol soil with plots
located near Hoytville, OH. We hypothesized that soil bac-
terial diversity in these soils would differ significantly with
respect to their long-term land-use and soil/crop-management
practices. Categorical variables such as crop rotation, tillage,
and land use were tested for their influence on community
structure and diversity. Additionally, we employed an in sil-
ico tool, PICRUSt (Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States)(Langille et al.,
2013), to predict functional potential of the soil microbial
communities in response to long-term land-use management.
Results showed that land management followed by tillage
practices significantly affected bacterial community structure,
and functionally, forest soil followed by no-till soils had high-
est predicted gene abundances across the most abundant pre-
dicted functions.

2 MATERIAL AND METHODS

2.1 Description of the field sites, and soil
sampling and processing

Soil samples were collected from long-term experimental
field sites, at the Northwest Agricultural Research Station
of the Ohio Agricultural Research and Development Center
(OARDC) located near Hoytville, OH. Detailed site informa-
tion and plot treatments are provided in Sengupta and Dick
(2017). Briefly, the following treatments were studied: (a) no-
till continuous corn (Zea mays L.; NTCC); (b) no-till corn–
soybean [Glycine max (L.) Merr., NTCS]; (c) plow-till con-
tinuous corn (PTCC); (d) plow-till corn–soybean (PTCS);
(e) grassland (GRA); and (f) forest, FOR. The plots of the
corn–soybean rotation had corn growing in the previous sea-
son. Rotation plots were selected to maintain uniformity in
the crop planted in the previous growing season (in this case
corn). Since the plots have been maintained for >50 yr, we
expect microbial community characteristic to be a cumulative
reflection of the corn–soybean rotation in the rotation plots.
Adjacent grass and forest sites within meters accompany the
agricultural plots were also sampled in this study. Samples
were collected from three replicated plots per treatment in
spring 2013, before the planting season. Three sub-samples
(0–10 cm) were collected using a hand-held soil auger (35-
mm i.d.) from each replicated treatment. A composite soil
sample was prepared for each replicate plot by pooling the
sub-samples. After thorough mixing, each replicate sample
was split in half to be used for chemical analyses after passing
the soil through a 2-mm sieve, and the other half was used for
microbial DNA extraction.

Genomic DNA of 18 samples was extracted from approxi-
mately 0.25 g of field-moist soil immediately after sampling
by using an UltraClean Soil DNA Isolation Kit (MO BIO Lab-
oratories, Inc.) following the manufacturer’s instructions. The
extracted DNA was quantified using a Nanodrop ND-1000
spectrophotometer (Nanodrop Technologies) and quality con-
firmed on 1% agarose gel with 1× TAE buffer (40 mM Tris,
20 mM acetic acid, 1 mM EDTA, pH 8.0). The DNA extracted
from the replicates were pooled together to obtain six samples
representing six treatments.

2.2 Illumina library generation
and sequencing

Sample preparation was performed according to an in-house
two-step PCR (polymerase chain reaction) amplification
protocol targeting partial region of the 16S rRNA gene, with
sample depth coverage being ∼180 bp (V3 region), following
protocol presented in Sengupta and Dick (2017). Briefly,
the first round of PCR reaction was conducted using mod-
ified primers 341F (5ʹ-TCGTCGGCAGCGTCAGATGTG
TATAAGAGACAG-CCTACGGGAGGCAGCAG-3ʹ) and
518R (5ʹ-GTCTCGTGGGCTCGG AGATGTGTATAA
GAGACAG-ATTACCGCGGCTGCTGG -3ʹ) as per Lynch,
Bartram, & Neufeld (2012) with PCR conditions involving
an initial denaturation step at 94 ◦C for 1 min followed by
20 cycles of denaturation at 94 ◦C for 30 sec, annealing at
55 ◦C for 1 min, and extension at 72 ◦C for 1 min, with a
final extension step at 72 ◦C for 5 min in a Bio-Rad C1000
Touch Thermocycler (Hercules, CA).

The second PCR step was identical to description provided
in Sengupta and Dick (2017), and involved attaching comple-
mentary primers to the Illumina forward, reverse, and multi-
plex sequencing primers with the forward and reverse primer
also containing a unique 8-bp read index allowing for multi-
plexing (detailed barcode information provided in Sengupta
& Dick, 2017). Amplified samples were pooled and loaded
onto 1.5% agarose Pippin Prep (Sage Science) instrument
for targeted size selection of the pooled fragment (180 bp).
The pooled sample was extracted and quantified again using
Qubit Fluorometer and submitted to Molecular and Cellular
Imaging Center (MCIC) housed at OARDC for sequencing.
Sequencing was performed using the Illumina MiSeq instru-
ment with MiSeq Reagent Kit v3 and MiSeq Control Soft-
ware and Reporter v2.4.1 (Illumina, Inc.). The pooled sam-
ple was sequenced as 2 × 150 paired-end reads and two 8 bp
index reads. Data obtained from sequencing were processed
with an in-house data analysis pipeline as described below.
Sequence data is archived at NCBI’s Sequence Read Archive
(SRP129028, Bioproject PRJNA429691).

Initial quality filtering steps were like those discussed in
Sengupta and Dick (2017), with exception that TrimGalore

http://PRJNA429691
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parameters included: min length = 150. The rest of the steps
outlined below were performed on the Linux terminal using
Mothur v.1.33.3 (Schloss et al., 2009). The quality trimmed
reads were joined using default parameters of ‘make.contigs’
into a single fasta file containing sample-wise merged
sequences. The sequences were screened to ensure stringent
quality using the following parameters: minlength = 150,
maxlength = 180, maxambig = 0, and maxhomop = 10. The
sequences were then split sample-wise to obtain individual
sample fasta files for further downstream analysis.

2.3 Sequence classification and operational
taxonomic unit picking

The Quantitative Insights Into Microbial Ecology (QIIME)
software suit (Caporaso, Kuczynski, Stombaugh, Bittinger,
& Bushman, 2010) was used for sequence processing.
Briefly, the pick_open_reference.py operational taxonomic
unit (OTU) picking protocol in QIIME was used with 97%
sequence similarity against the reference database for OTU
assignment. Taxonomy was assigned to all OTUs using the
RDP classifier within QIIME using the Greengenes database
(DeSantis et al., 2006). Chimeric sequences were checked
and filtered out using parallel_identify_chimeric_seqs.py and
filter_fasta.py. The sequences were then aligned, followed
by generation of phylogenetic tree using make_phylogeny.py.
The sequences that failed to align were filtered out,
followed by generation of a new OTU table used for
downstream analysis.

2.4 Data analysis for open reference
operational taxonomic unit picking

Multiple rarefactions were performed (multiple_rarefy.py)
to determine alpha-diversity at different depths followed
by collating the multiple rarefactions using collate-alpha.py
to give average alpha diversity metrics including number
of observed phylotypes and Shannon’s Hʹ index were cal-
culated. The results were then imported into JMP (v11.0,
SAS, Cary NC; SAS Institute, 2013) and were subjected
to analyses of variance using the general linear model in
JMP. All subsequent analyses were performed in R (R Core
Team, 2014) using output files generated in QIIME. The
OTU table containing read counts for each OTU in each
sample, taxonomy information for each OTU, sample meta-
data, representative sequences, and representative tree were
exported from QIIME, and imported into R using Phyloseq
(McMurdie & Holmes, 2013). Sequences observed with very
low frequency, that is OTUs representing <0.001% of the
total number of sequences, were removed. Absolute OTU
abundances were normalized by transforming to fractional

abundance, where fraction of OTU = [OTU/sum(all OTUs)]
(McMurdie & Holmes, 2013). After the normalization step,
relative abundances of the OTUs at each taxonomic rank and
in each sample were studied to determine community dissim-
ilarity of samples.

To explore whether bacterial community composition clus-
tered according to land use, non-metric multidimensional
scaling (NMDS) of the Bray-Curtis dissimilarity index was
used. These results were further evaluated with adonis (Per-
mutation Multivariate Analysis of Variance using Distance
Matrices) using Vegan package (Oksanen, Blanchet, Kindt,
Legendre, & Minchin, 2015) in R. Relationship between
community composition and categorical variables (rotation,
tillage, land use) were analyzed. Raw OTU tables were
grouped based on abundant rank orders and formatted for the
DESeq2 package in R (Love, Anders, & Huber, 2014). Dif-
ferential abundance of OTUs by sample type was determined
using DESeq2, using forest (FOR) and grassland (GRA) sam-
ples (served as controls) vs. agricultural samples (NTCC,
NTCS, PTCC, PTCS) as treatment.

2.5 PICRUSt data analysis

Quality filtered sequences from Step 2.3 were used for
closed reference OTU picking in QIIME. Briefly, the
closed-reference OTU picking involved clustering to obtain
OTUs (UCLUST) (Edgar, 2010), sequence alignment with
PyNAST (Caporaso et al., 2010), removal of chimeric
sequences using ChimeraSlayer (Haas et al., 2011) and
taxonomy assignment using UCLUST with 99% sequence
similarity to the Greengenes database. The OTUs with
known Greengenes IDs from the previous step were run
through the PICRUSt workflow (copy number prediction,
normalization, and metagenome prediction). Detailed infor-
mation on gene counts for each OTU were obtained using the
“metagenome_contributions.py” script. Genes were mapped
to their protein products using the KEGG pathway database.
Output of the KEGG database mapping was classified into
functional categories such as energy metabolism, amino
acid metabolism, hydrocarbon degradation, transcription
and translation, replication and repair, membrane transport,
signal transduction, cell motility, etc. Predictive functional
comparisons were made between the treatments followed
by confidence estimation of these predictions using Near-
est Sequenced Taxon Index (NSTI), which is the sum of
phylogenetic distances for each organism in the OTU table
to its nearest relatives with a sequenced reference genome,
measured in terms of substitutions per site in the 16S rRNA
gene and weighted by the frequency of that organism in the
OTU table (Langille et al., 2013). Additionally, a Welch’s
t-test was conducted to evaluate the differences produced by
tillage and crop rotation on the predicted functional potential
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T A B L E 1 Number of sequences after processing, observed
operational taxonomic units (OTUs) (richness estimator), and
Shannon’s Hʹ (diversity estimator) for soil samples

Samples
Sequences after
processing

Observed
OTUs Shannon’s Hʹ

NTCC 233,706 13,788 7.5

NTCS 367,053 18,145 7.5

PTCC 240,512 14,169 7.3

PTCS 180,487 11,978 7.2

GRA 364,930 15,326 7.0

FOR 275,705 13,764 7.3

Note. NTCC, no-till continuous corn; NTCS, no-till corn–soybean; PTCC, plow-
till continuous corn; PTCS, plow-till corn–soybean; GRA, grassland, FOR, forest.

of the no-till vs. tilled soils. Here, “predicted functional
potential” was quantified as the sum of predicted gene
abundances for each enzyme (identified through its gene) in
that particular sample, which included contributions from
all OTUs in that sample which would have the potential to
produce that enzyme. Data files detailing output of PICRUSt
can be accessed at https://doi.org/10.5281/zenodo.1161547.

3 RESULTS AND DISCUSSION

3.1 Soil chemical properties

Chemical properties of these soils including pH and per-
centage organic matter is provided in detail in another study
evaluating methanotrophic bacterial characteristic of the soils
(Sengupta & Dick, 2017) with significant differences
(p < .005) observed as a result of land use. Briefly, the pH of
the soils was in the acidic range (4.9–5.8). The NTCC, NTCS,
and GRA soils (5.3, 5.4, and 5.3, respectively) were signifi-
cantly different from the forest soil (4.9) as were the PTCC and
PTCS soils (5.8 and 5.6, respectively). The percentage organic
matter content was higher for the non-agricultural soils,
FOR = 5.7 and GRA = 5.0. Within the agricultural soils, no-
till soils had higher percentage organic matter (NTCC = 4.8,
NTCS = 4.1) compared with the PT soils (PTCC = 3.5,
PTCS = 3.3).

3.2 Observed richness and diversity trends

Pre-processing of sequences resulted in 1.7 million sequences
from 2.1 million combined reads. A total of 30,517 OTUs
were obtained with OTUs ranging from 11,978 to 18,145 per
sample (Table 1). The original library size of the samples was
preserved by not performing rarefactions, as has been recom-
mended in recent studies (Debenport et al., 2015; McMurdie
& Holmes, 2014) to avoid losing sparse OTUs. Rarefaction

is not an ideal normalization method (Weiss et al., 2017) as
it leads to losing rare OTUs, but researchers also acknowl-
edge that alternatives to rarefying have not been sufficiently
developed. The NTCC and NTCS had highest alpha diversity
whereas GRA exhibited lowest Shannon diversity. Since bio-
logical replicates were pooled, the results must be treated with
caution but, nonetheless, provide preliminary information on
the impact of land-use and land-management practices on soil
microbial diversity.

Shannon’s diversity index diversity accounts for both rich-
ness (the number of members) and evenness (how evenly
those members are distributed) of a community (Gosselin,
2006; Wilsey & Stirling, 2007). Thus, even though a com-
munity might have higher number of species, the diver-
sity may be low if those species are distributed less evenly.
No-till soils, irrespective of rotation, showed highest diver-
sity among all samples in agreement with other studies as
has been reported in multiple studies (Carbonetto et al.,
2014; Lienhard et al., 2012; Schmidt, Gravuer, Bossange,
Mitchell, & Scow, 2018) where no-till soils were found to
have significantly higher diversity than tilled soils. How-
ever, NTCC showed lower richness estimates compared with
NTCS. With respect to rotation as well, no-till (NTCS) had
higher diversity and richness compared with plow-till (PTCS)
in contrast to studies that show periodic disturbances like
plowing provide dynamic habitats for soil microorganisms
and therefore may be expected to exhibit higher diversity
(Souza, Cantão, Vasconcelos, Nogueira, & Hungria, 2013;
Szoboszlay, Dohrmann, Poeplau, Don, & Tebbe, 2017).
Therefore, crop rotation with a no-till approach appeared to
increase both diversity and richness of microbial communi-
ties. Grassland had the lowest diversity despite second high-
est observed OTUs in the dataset, which may be due to a more
evenly distributed community of many members.

3.3 Bacterial community composition and
ecological significance

Overall, 80% of all reads could be assigned to phylotypes with
a total of 44 bacterial phyla identified. The dominant phylum
was Proteobacteria (∼25% in NTCC, NTCS, PTCC, PTCS,
and FOR) followed by Actinobacteria (∼30% in GRA), as
are commonly present in most soils (Fierer et al., 2012). The
10 most abundant phyla represented about 95% of the total
distribution in each sample (Figure 1), with agricultural soils
(NTCC, NTCS, PTCC, PTCS) representing a similar relative
abundance distribution when compared with the grass and for-
est soils. For example, Verrucomicrobia and Planctomycetes
were higher in abundance in FOR than the other treatments.
These lignocellulolytic phyla are known to be commonly
found in deciduous forest soils, and are slow-growing, serving
to degrade cellulose and hemicellulosic inputs in forest soils

https://doi.org/10.5281/zenodo.1161547
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F I G U R E 1 Relative percent abundance of top 10 phyla. Sample
nomenclature: NTCC (no-till continuous corn), NTCS (no-till
corn–soybean), PTCC (plow-till continuous corn), PTCS (plow-till
corn–soybean), GRA (grassland), FOR (forest)

(López-Mondéjar, Voříšková, Větrovský, & Baldrian, 2015;
Wilhelm, Singh, Eltis, & Mohn, 2019). Although Chloroflexi
has also been identified to have cellulose-degrading capa-
bility, the phylum was lower in abundance in FOR than the
other treatments where the abundance (∼5%) suggested that
residue inputs can drive selection of different phyla with sim-
ilar function. Acidobacteria was lower in abundance in FOR
and GRA compared with agricultural soils. This phyla is dom-
inant in soil environments and is considered to be correlated
to pH (Jones et al., 2009), in contrast to the pattern observed
in our results and which reported some acidobacterial sub-
groups did not occur in low pH soils (Barns, Takala, & Kuske,
1999), thereby suggesting broad metabolic and physiologi-
cal adaptations. Gemmatimonadetes abundance was highest in
PT soils (∼10%), followed by NT soils and GRA (∼5%), and
very low abundance in FOR soil (∼0.5%), a pattern consis-
tent with another study reported by DeBruyn, Nixon, Fawaz,
Johnson, and Radosevich (2011)). This phyla has been sug-
gested to be adapted to low moisture conditions (DeBruyn
et al., 2011), which aligns with their prevalence in conven-
tionally tilled soils, which are known to contain less mois-
ture compared with other conservation tillage and naturally
managed land.

It has been reported that members of Actinobacteria
are among the most important litter decomposers in soil
(Kopecky et al., 2011) as observed with relatively high per-
centage in GRA, FOR, and NTCS soils. Actinobacteria are
particularly critical to soil health since they play an impor-
tant role in biogeochemical cycling of nutrients, improve the
availability of nutrients, enhance the production of metabo-
lites, and promote plant growth promoters (Bhatti, Haq, &
Bhat, 2017; Zhang et al., 2019). Plow-till soils evidently had
low abundance of Actinobacteria (∼10%, Figure 1), likely due
to low residue-input compared with grassland and forest soils
while also suggesting that within NT soils, crop rotation (and

F I G U R E 2 Heatmap showing relative percent abundance of top
10 genera

therefore variation in residue input) increases the abundance
of this phylum.

In the next taxonomic level, 144 classes were identified,
with an average of ∼60% phylotypes represented by the 10
most abundant classes. The lower ranks included 307 orders,
477 families, and 758 genus classifications. A consistent trend
observed was with agricultural soils (NTCC, NTCS, PTCC,
and PTCS) representing greater percentage of sequences
unclassified compared with forest and grassland soils (e.g.,
about 40% of reads represented in agricultural soils whereas
GRA had 60% and FOR had 50% of reads represented by
the 10 most abundant orders). The genus Rhodoplanes was
higher in FOR and NTCS than others (Figure 2). This genus
is known to be affiliated with plant growth-promoting bacte-
ria (Gkarmiri et al., 2017), which likely explains their higher
relative abundance in soils with diverse aboveground vege-
tation. The PT soils had the highest abundance of unclassi-
fied genera, which could be an outcome of diverse microhab-
itats introduced by plowing leading to diverse organisms with
no cultured representatives. Differential abundance of gen-
era showed that 7 out of the top 10 identified genera were
significantly differentially abundant in the agricultural soils
compared with forest and grass (alpha = .05) (Figure 3).
These included Steroidibacter, Sphingomonas, Skermanella,
Rhodoplanes, Pseudonocardia, Pedomicrobium, and DA 101.
These may represent core microbial taxa for these agricultural
soils, as has been suggested in studies (Hartman et al., 2018;
Jiao, Xu, Zhang, Hao, & Lu, 2019; Pérez-Jaramillo et al.,
2019) that show development and/or presence of core micro-
biota dependent on land-use and land-management practices.
Interestingly, out of the total 29 that were differentially abun-
dant, more than 20 did not feature in the 10 abundant genera,
and yet recorded significantly different log2fold changes in
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F I G U R E 3 Differential abundance of genera across samples, where forest (FOR) and grassland (GRA) communities served as the control (0)
against which cumulative counts of agronomic soils taxa (treatment) were evaluated to be either differentially more abundant in the treatment
(positive log2fold change) or less abundant than the control (negative log2fold change)

their count abundance. Since Deseq2 uses log-normalization
approach, differential abundance of low abundant genera
is clearer to observe and not masked by highly abundant
groups. Indeed, it may be likely that rare OTUs dispropor-
tionately impact community richness and evenness and lead
to variation in community structure than abundant groups,
which may be less likely to change in response to environ-
mental changes (Karpinets et al., 2018; Skopina, Vasileva,
Pershina, & Pinevich, 2016). This suggests that even at low
abundances, OTUs are differentially abundant as a function of
land use.

3.4 Similarity and differences in community
structure between samples

Overall similarities and differences in community structure
between soil samples was visualized by calculating pairwise
Bray-Curtis dissimilarity, and ordinating the matrix in two-
dimensional nonmetric multidimensional scaling (NMDS)
plot (Figure 4). Predominantly, samples were grouped accord-
ing to the land use and land-management with GRA and FOR
samples distinctly separated from agricultural soils. Plow-till
soils (PTCC and PTCS) were clustered closely together. The
relative abundance of phyla (Figure 1) support this obser-
vation. The abundance of phyla Proteobacteria (∼25%),
Acidobacteria (∼20%), Actinobacteria and Gemmatimon-
adetes (∼10%), Chloroflexi (∼8%), and other low abundance
phyla were similar in the PT soils. Although dominant phyla
in NTCC were more similar in abundance to the PT soils than
the NTCS sample (Figure 1), NTCC was distinctly separate

in beta-diversity. This suggests that more than abundance,
the evenness of the communities in NTCC may be driving
the beta diversity shift. The distinct separation of GRA and
FOR soils from the agriculture soils shows that these soils
are highly dissimilar compared with the agricultural ones,
therefore proving that long-term land-management practices
strongly drive soil microbial diversity.

3.5 Distance measure of operational
taxonomic units with respect to variables

Ordinations in Figure 4 suggest that bacterial community
structure differed with respect to land use and land manage-
ment. The distance matrix was analyzed using Permutation
Multivariate Analysis of Variance using Distance Matrices
(also called as “adonis” in Vegan package in R). The Bray-
Curtis measure of dissimilarity showed land use had a signif-
icant effect (P < .05) on the measure of distance between the
communities. Within the agricultural soils, tillage was signif-
icant (P = .001) but not rotation (P = .06).

Multivariate analyses of the treatment variables, along
with NMDS plots in Figure 4, therefore indicates that
land use was significantly impacting community patterns
composition followed by soil management in terms of
tillage practices employed. Secondly, crop rotations did not
appear to have a significant effect on the distribution of
bacterial community. However, in the absence of replicates,
the low-resolution of this study needs to be taken into
consideration, especially with literature evidence show-
ing crop rotation does impact soil microbial community
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F I G U R E 4 Nonmetric multidimensional scaling (NMDS) plots derived from pairwise Bray-Curtis dissimilarity measure of bacterial
community composition of Hoytville soils

composition (Ashworth, DeBruyn, Allen, Radosevich, &
Owens, 2017; D’Acunto, Andrade, Poggio, & Semmartin,
2018; Maarastawi, Frindte, Linnartz, & Knief, 2018). Fur-
thermore, the long-term impact of crop rotation and tillage
practices on microbial community composition may be
different from short-term adaption strategies exhibited by soil
microbes to the management practices, and therefore need to
be monitored.

3.6 Predictive functional profiling

Closed reference OTU picking resulted in 13,214 OTUs,
which were classified into various predictive functional
categories. The most abundant of these predicted functions
were mapped to membrane transport, DNA repair and
recombination, signal transduction, purine metabolism,
translation-related protein processing, oxidative phospho-
rylation, and bacterial motility protein secretion (top five
functions shown in Figure 5). Most of these functions
are related to maintenance of cell function and structure,
and therefore would be performed by every species in the
community. The forest soil had highest predicted gene abun-
dances across the top five most abundant functions, aligning
with studies reporting high microbial metabolic potential in
secondary forest soil (Zhang et al., 2014), followed by the
NTCS, and NTCC and GRA samples (Figure 5). Both PT
soils showed the lowest predicted gene abundances across all
samples (overall and by individual function). These results
followed the pattern soil organic matter percentages, which
therefore suggests that soils with higher organic matter may
have higher functional potential compared with soils with
low organic matter. The predictive abundances indicate
that functionally, forest soil, and crop rotation on a no-till
management had highest gene abundances. Within PT,

F I G U R E 5 Predicted functional categories of the top
five functions

continuous corn (PTCC) practice had higher predictive gene
abundances than the crop rotation regime (PTCS). PICRUSt
predicted NSTI (Nearest Sequenced Taxon Index) values
between 0.17 and 0.20 for the soil samples, a range similar to
soil test datasets in Langille et al. (Langille et al., 2013) and
the NSTI values obtained in a previous study by our group
(0.17–0.19) (Hariharan, Sengupta, Grewal, & Dick, 2017).
The FOR soil had the lowest NSTI, whereas NTCS, PTCS,
and GRA had the highest values. Welch’s t-test revealed
significant pairwise differences for C metabolism predictions
(p < .05) between (a) GRA and three agricultural samples
(NTCC, PTCS, and PTCC), (b) NTCS and the agricultural
soils (NTCC, PTCS, and PTCC), and (c) between FOR
and PTCS soils. Additionally, significant difference was
observed for xenobiotic degradation for pairwise compar-
isons between PTCS and GRA, and PTCS and NTCS.
Therefore, the agricultural soils primarily appeared to differ
from each other functionally with respect to C metabolism.
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Nitrogen, S, and methane metabolism did not show any
significant differences in the predicted functions between
the samples.

As noted in Hariharan et al. (Hariharan et al., 2017), a
large proportion of the PICRUSt functional predictions were
found to be unclassified (around 13% of the reference OTUs
were not mapped to any protein/function). Given that a high
percentage of OTUs remained unclassified at the Family
and Genus level, which in turn were dropped from PICRUSt
evaluations, it is difficult to accurately estimate bacterial
functional capacity of the soils. Since PICRUSt is a pre-
dictive estimate, does not consider horizontal gene transfer,
is representative of only those species whose genome have
completely been sequenced, and drops unclassified sequences
from the analysis, the results must be treated with caution.
However, these results do provide a platform to generate new
hypotheses regarding microbial functional dynamics under
different land-use and land-management practices, which
in turn can be tested through targeted gene abundance and
expression analyses including functional gene-specific qPCR
and metatranscriptomics. For example, high predicted gene
abundances across the top five most abundant functions in
the FOR soil may be related to diverse leaf-litter character-
istics when compared with agricultural soils whereas the
lowest predicted gene abundances associated with PT soils,
irrespective of rotation practices, may indicate that plowing
reduces soil microbial functional potential.

This study evaluates influences of long-term land-use and
management practices on soil bacterial community diversity.
The novelty of the study lies in the experimental set-up where
soils from long-term practices (>52 yr) were accessed and
sampled for bacterial community composition trends and
predictive functional potential capacity. The legacy impact
of long-term management practices influences strategies for
long-term soil conservation and management practices, in
addition to informing plant productivity and resiliency to
global climate change scenarios (Hartmann, Frey, Mayer,
Mäder, & Widmer, 2015; Webb, Marshall, Stringer, Reed,
& Chappell, 2017) The vast body of literature on this
topic suggests variability in trends associated with land-use
and land-management impacts on soil microbial diversity
(Szoboszlay et al., 2017), therefore suggesting a need for
evaluating additional sites/location/practices, with the goal
of advancing site-, time-, and intensity-specific land-use and
land-management practices (Liebig et al., 2017). However,
it is evident that land use history is predominant and more
important than aboveground vegetation and soil proper-
ties in influencing soil microbial community composition
(Jangid et al., 2011). The results from the current study
add to that knowledge base; but due to lack of replica-
tion, should be treated as preliminary and used to develop
informed hypotheses.

4 CONCLUSION

Phylogenetic approaches coupled with functional poten-
tial highlighted the effect of long-term land-use and soil-
management practices on microbial communities. We found
that bacterial communities in agricultural soils, forest, and
grass areas were diverse and impacted by long-term land use,
despite the soil types being similar across all the land use prac-
tices. Differences in community composition were attributed
to land use. Within the agricultural soils no-till soils showed
higher diversity compared with PT soils. The results are in
accordance with vast previous research that show land-use
impacts soil microbial diversity. In light of the long-term
experimental set-up, these results provide critical preliminary
information about impact of agricultural land-management
practices and seem to suggest that physical disturbance to
the soil (tillage vs. no-tillage) may influence soil microbial
community dynamics more than residue-type (continuous-
corn vs. corn–soybean). The choice of tillage and rotation
for an area often depends on the climate, type of soil, and
crop (Kumar, Kadono, Lal, & Dick, 2012). Based on pub-
lished research, it is widely accepted that tillage destroys the
soil structure and reduces concentrations of soil organic mat-
ter when practiced long term, leading to deterioration in soil
health. We found that for the soils evaluated in this study, crop
rotation combined, with a no-till soil- management approach,
appeared to represent the highest bacterial diversity and pre-
dictive functional capacity under long-term agricultural use.
Moreover, soil microbial functional potential overall may be
lost when forest lands are converted to agricultural fields.
Finally, the effect of land-use history on soil microbial com-
munities needs to be assessed both from microbial diversity
and functional potential signatures and may likely be influ-
ential than aboveground vegetation and soil-properties on a
long-term scale.
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