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Locating an Optimal Site for a Controversial Facility?

Jean-Baptiste Tondji

Department of Economics and Finance, The University of Texas Rio Grande Valley
1201 W. University Dr., ECOBE 216, Edinburg, Texas, 78539, U.S.A

Abstract

We consider a situation in which policymakers in a local community choose an optimal

site for a controversial and essential project in a dynamic setting. Policymakers have

either single-dipped or multi-dipped preferences over a Euclidean space of possible

locations. We provide two existence results for this issue. Furthermore, we show that

two optimal sites (at most) exist if policymakers have single-dipped preferences over a

one-dimensional site space.
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1. Introduction

Scholars and policymakers have demonstrated a growing interest in locating contro-

versial facilities, as surveyed by Aldrich (2010) in his recent book. Governments often

face fundamental siting issues as they attempt to build or expand public projects that

serve residents’ needs but potentially bring negative externalities into their targeted

communities. Recent examples include, among others, the Enbridge Northern Gateway

Pipelines, and the Trans Mountain Expansion Projects in Canada, and the fracking

boom in the United States. States must choose among many possible policy instru-

ments to handle local resistance, ranging from strong-arm tactics of coercion and rigid

social control to more peaceful incentives and inducements. Addressing issues on where

to locate and how to overcome civil society have significant implications for the design

and implementation of public policies towards protecting both environment and human

well-being.

In this paper, we look at how residents of a local community interact peacefully in a

democratic institution to address the problem of locating a stable and efficient site

for a public facility, such as a windmill park, a garbage dumping ground, or a nuclear

plant. Such public projects are called public bads : residents agree about their value

but typically do not want them in their backyards. We assume that the public bad

is either within a one-dimensional space or a multi-dimensional space. In the former,

each resident has a single-dipped preference over the set of possible (or feasible) sites:

there is the worst point, called the dip, and the resident’s satisfaction increases with the

Euclidean distance from this dip. In the latter, we assume that each resident may have

a multi-dipped preference: a resident may have multiple local dips over the site space.

In the community, the Council (a finite group of political representatives, henceforth

called legislators) adopts the policy through voting. A vote then consists of reporting

one’s dip. We assume that legislators are rational, truthful, and vote according to their

constituents’ preferences. A location for the public bad is adopted if (1) there is an

endless cycle of voting: legislators agree on the public bad’s site, and (2) the chosen
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site is efficient : there is no other site which would be preferred by all legislators to

the chosen site. When (1) and (2) are satisfied, the council has chosen an optimal site

for the project. The main issue is that legislators may have antagonistic tastes upon

locating the public facility, then render uncertain the outcome of this social decision

by voting.

Legislators make decisions under a three-stage mechanism, L, described as follows.

In the first stage, a majority coalition S can object against the status quo site x by

proposing an alternative site y. Otherwise, the status quo remains, and the voting

ends, or Nature ends the voting process after S proposes y. In the second stage, each

legislator who is not a member of S can oppose y. Otherwise, y becomes the new site,

which ends the process. However, if there is any opposition, S has the right to either

withdraw or maintain y. If S withdraws y, the status quo x remains in place, and

the process ends. However, if S maintains y, then the opposing legislators can invite

other legislators to form a majority coalition T to replace y with another site z in the

third and final stage. If T succeeds, z is elected, and the process ends. Otherwise, the

Council elects y in the final stage.

We use majority rule to allocate decisive power among coalition of legislators. Thus, if

n is the size of the council, then any coalition of legislators that consists of more than

n/2 is a majority. We say that a given site x is stable if it cannot be overruled by a

majority of legislators if it is submitted to a possible reform or amendment under the

three-stage mechanism described above. If the decision-making process ends with a site

x, and the latter is efficient, then x is optimal and will be adopted for the community.

Otherwise, the council adjourns.

We prove that there exists an optimal (stable and efficient) site of the public bad when

the location space is one-dimensional (Theorem 1) or multi-dimensional (Theorem 2).

In addition, if preferences over a one-dimensional site space are single-dipped, then the

council can select at most two optimal sites for the public bad (Theorem 1).

3
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Scholars in social sciences have demonstrated interests in addressing where and how to

locate a public bad. Early theory suggests a deep involvement of citizen participation

through local referenda allowing residents to vote for or against the public facility

(see, for example, Mitchell and Carson (1986)). In his book on siting issues and civil

society, Aldrich (2010) debates the patterns by which most controversial projects are

sited in France, Japan, and United States, and the policy instruments used by these

countries to handle civil opposition when it arises. Other studies assume that individual

preferences over the set of possible sites are single-dipped and focus on defining and

characterizing collective rules, in which each agent has the incentives to reveal his or

her sincere preferences (see, for example, Ehlers (2002), Barberà et al. (2012), Öztürk

et al. (2013), Manjunath (2014), Öztürk et al. (2014), Lahiri et al. (2016), and Peters

et al. (2017)). In a direct revelation mechanism setting, Yamamura (2016) analyzes

the choice of locating a public bad from a coalitional standpoint using the equilibrium

concepts of strong Nash equilibrium and coalition proof Nash equilibrium.

Our work contributes to this existing literature. Previous studies, however, have fo-

cused mostly on static decision-making mechanisms. While real-life institutions use

static mechanisms, most institutions also employ dynamic procedures, wherein a pro-

posed policy generally goes through a sequence of amendments before its final adoption

(see, for example, Baron and Ferejohn (1989) and Chwe (1994)). In this paper, we use

a dynamic legislative mechanism to determine the existence of an optimal (efficient

and stable) site for a controversial facility when legislators are truthful and display

specific preferences over the location space. While the result of Theorem 1 is consis-

tent with early works on one-dimensional location space, we extend the analysis on

multi-dimensional spaces, and we show that within such domains, the optimality is

preserved.

We start by introducing notations and the main definitions in Section 2. In Section 3,

we determine the existence of an optimal location for a controversial facility when leg-

islators have either single-dipped or multi-dipped preferences over a Euclidean location

4
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space. Section 4 concludes.

2. Setup

This section provides formal and brief notations of the basic concepts that we use

throughout the paper.

2.1. The Council

The council is labeled as C = (N,A,M, L, (�i)i∈N), where N is the finite set of legis-

lators (with |N | = n ≥ 2), A is the Euclidean site space, M is the majority rule (or

the set of majority coalitions), L is the legislative voting mechanism, and (�i)i∈N is

the profile of legislators’ preferences over the set A. The site space A represents the set

of feasible sites at stake. We assume that A is a one-dimensional or multidimensional

space.

2.2. Preferences

For x, y ∈ A, y �i x indicates that legislator i weakly prefers y to x; y �i x indicates

that legislator i prefers y to x; and y ∼i x indicates that legislator i is indifferent

between y and x. Given the nature of the site space, we assume that preferences are

continuous. Preference continuity is a natural assumption which means that a legislator

who prefers a site x over another site y prefers any site close enough to x over any site

close enough to y. This implies that a small perturbation of the site space does not

radically change preferences. This structure of preferences is generally encountered in

economic theory. Formally, the binary relation �i is said to be continuous if for any

site x, y ∈ A, such that y is preferred to x (y �i x), there exists a neighborhood S(x)

of x and a neighborhood S(y) of y such that site z is preferred to site t (z �i t) for

every sites z ∈ S(y) and t ∈ S(x). In this paper, we use two classes of continuous

preferences: single-dipped and multi-dipped preferences.

5
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2.3. Optimal Sites

The council decides on the choice of a site under the three-stage legislative mechanism,

L, that we presented in the Introduction. Below, we describe the rational behavior of

legislators within the mechanism.

Let us assume that a status quo site x ∈ A is at stake in the Council. A group of

legislators might gather together in a majority coalition, say S and object to the status

quo if there exists another alternative, say y, which they prefer to x, i.e., y �S x. This

condition is a natural requirement that appears in all two-stage bargaining models of

rationality in the literature (see, for example, Aumann and Maschler (1964) and all

of the subsequent studies inspired by this paper). We can also view the condition as

an expression of prudence or ambiguity aversion. It expresses that the majority S

considers the presence of Nature in the voting process and cannot fully predict the

future of the game after introducing the proposal y.

After the objection (y, S), a legislator i from the remaining group of council (N \ S)

may be worse off at y (i.e., not(y �i x)), and decides to join another majority coalition

T which could propose another site z to the Council, i.e., z �T y. In that case, a

pair (z, T ) ∈ Z ×M is a counter-objection against the objection (y, S) if z �T y and

not(y �T x). Also, legislators of T have to consider the fact that the first majority

coalition S may withdraw their support for the change of the status quo x in case the

new proposition z could hurt some of its legislators, i.e., not(z �S x). If the latter

occurs, then the counter-objection is unfriendly against S. In the Council, a majority

S will initiate the first move against the status quo x by proposing a new site y against

x if there is no unfriendly counter-objection against (y, S), i.e., (z �S x); then the

objection (y, S) is considered to be justified.

A stable site is an option in A against which no justified objection exists. In other

words, a stable site is an alternative such that if it is the status quo, no majority

coalition will seek to replace it. More formally, a site, say y ∈ A defeats another site

6
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x, labeled by y m x, if there exists a majority coalition S ∈M (y mS x) such that:

1. y �S x and;

2. ∀(z, T ) ∈ A×M, S 6= T, [z �T y and not(y �T x)] implies [z �S x].

The set of stable sites, denoted by O(C), contains sites that are not defeated in the

council C. A decision is adopted if legislators reach an agreement at the end of the

legislative procedure, i.e., O(C) 6= ∅, and the outcome of this agreement is efficient. The

set O(C) is also called the reciprocity set in Pongou and Tondji (2018b). By addressing

a different question, they prove that the legislative procedure, L, in this study induces

legislators to take reciprocal actions. The formalization of rational behavior in the

Council follows the traditional blocking approach in coalitional games (see, for example,

Harsanyi (1974), Chwe (1994), Dutta et al. (2005), Ray and Vohra (2014), and Dutta

and Vohra (2017)). However, following the bargaining approach (see, for example, Nash

(1953), Kimya (2020), and Serrano (2020)), the three-stage mechanism also implements

the set of optimal outcomes in some subgame perfect Nash equilibrium concept. This

additional extension and a comparison of the mechanism to other procedures that

follows the blocking approach can be found in Pongou and Tondji (2018a,b). The

following result reduces the selection of optimal sites.

Lemma 1 (Pongou and Tondji (2018b)) Let C = (N,A,M, L, (�i)i∈N) be a coun-

cil and x ∈ A be a site. Assume that O(C) 6= ∅. If x ∈ O(C), then x is efficient. 2

The intuition behind this result follows from the fact that the dynamic mechanism, L,

induces legislators to adopt farsighted and reciprocal behaviors. No potential second

majority T will react against a first majority S who replaces a status quo site x with an

alternative y that Pareto-dominates x. Opposing such a move would cause the majority

S to withdraw y, thus allowing x to remain in place and inducing the persistence of a

less preferred site by all the legislators.

Lemma 1 shows that any stable site is efficient. It follows that, the optimal decision
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of the Council is guaranteed if stability succeeds. Throughout the remaining of the

paper, the set O(C) consists of the optimal sites for the public bad. In the next section,

we derive the main results of the paper.

3. Results

We first establish the existence of an optimal site when preferences are single-dipped. A

preference relation over a space is said to be single-dipped if; the sites can be ordered as

points on a line; the preference relation has a least preferred point–dip or worse point;

and, points further away from the least point are more preferred. Formally, assume

that all the sites are ordered by a binary relation denoted θ, and all individuals perceive

them as being arranged in this order. An individual i of the council has a single-dipped

preference �i, if there exists a site xi such that: (1) for any other site x 6= xi, x �i xi ;

and (2) for any site x, y ∈ A, it holds that: if (xi θ y θ x) or (x θ y θ xi), then x �i y.

Theorem 1 Let C = (N,A,M, L, (�i)i∈N) be a council where, A is a one-dimension

site space, and where preferences are single-dipped. Then, an optimal site exists, and

there are at most two optimal sites. 2

We relegate the proof of Theorem 1 in the appendix.

Theorem 1 is consistent with other studies on the site of a public bad under strategy-

proof and efficient rules. Strategy-proofness avoids members’ improvement of satisfac-

tion or gains by misrepresenting their true preferences, and efficiency ensures that all

members’ satisfaction cannot improve by changing the chosen site of a public bad. As

mentioned above, any stable site under the three-stage mechanism used in the Council

is efficient. Manjunath (2014) studies the site of a public bad when agents have single-

dipped preferences over a closed interval [0, T ]. He proves that the range of an efficient

and strategy-proof rule is the set {0, T}, the domain’s two extremes. In another study,

Barberà et al. (2012) proves that the range of strategy-proof rules under single-dipped

preferences contains two alternatives at most. These studies focus exclusively on static
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decision-making mechanisms. Theorem 1 provides the same characterization in a dy-

namic voting mechanism. In our setting, each legislator has at most two peak (the

most preferred) points and, those sites coincide with the minimum and maximum el-

ements of A. Therefore, these two bounds are the optimal sites when preferences are

single-dipped. Below, we illustrate our result in a Council consisting of three (n = 3)

and four (n = 4) legislators.

3.1. Illustrations

Let x ∈ A be a site and define the number S(x) as the number of legislators who have x

as a peak point (the most preferred point). If no legislator has x as a peak point, then

S(x) takes the value 0. Let V (q, q′) denote the set of legislators who prefer q against q′

in a choice between q and q′: V (q, q′) = {i ∈ N : q �i q
′}. We differentiate two cases:

each legislator has only one peak over the set A, or at least one legislator has two peak

sites. In what follows, qm is legislator m’s dip point, m = 1, 2, 3, 4. Legislators have

single-dipped preferences. Therefore, they prefer to vote for sites far away from their

dip points.

3.1.1. Illustration I: a 3-legislator Council

We consider two cases and determine the optimal sites.

Case a: S(q1) = 1, S(q2) = 0, and S(q3) = 2 (see Figure 1).

q1 q3q2

(a) Preferences

q2 q1
{2, 3}

q3
{1, 2}

{1, 2}

(b) Popularity graph

Figure 1: The Council’s size is 3 and each legislator has a unique peak

The popularity graph among sites based on preferences is provided in Figure 1b (the

arrows indicate the direction of the popularity relationship; for instance q1 is a more

9

Electronic copy available at: https://ssrn.com/abstract=3509819



popular site than q2 because q1 is preferred over q2 by the majority coalition {2, 3}).

From Figure 1a and Figure 1b, we note that V (q1, q2) = {2, 3}, V (q3, q1) = {1, 2}, and

V (q3, q2) = {1, 2}. It follows that although, q1 �23 q2, the site q1 does not defeat q2

because there exists the alternative q3 with q3 �12 q1, not(q1 �12 q2), and not(q3 �23 q2).

Given that q3 �12 q1, and q3 �12 q2, and no other alternative is preferred to q3, it follows

that q3 defeats q1 and q2 thanks to coalition {1, 2}, and there is no site which defeats

option q3. Hence, q3 m12 q1, q3 m12 q2, and O(C) = {q3}.

Case b: S(q1) = 2, S(q2) = 0, and S(q3) = 2 (see Figure 2).

q1 q3q2

(a) Preferences

q2q1
{2, 3}

q3
{1, 2}

(b) Popularity graph

Figure 2: The Council’s size is 3; Legislators 1 and 3 have one peak site, while Legislator
2 has two peaks

From Figure 2a and Figure 2b, we have what follows. The majority {2, 3} prefers q1

to q2 (q1 �23 q2), and the majority {1, 2} prefers q3 to q2 (q3 �12 q2). When it comes

to the choice between q1 and q3, we have : V (q1, q3) = {3} and V (q3, q1) = {1}. It is

straightforward to note that no other alternative is preferred by a majority to either

q1 or q3. Therefore, the site q2 is defeated by either q1 or q3 and no site defeats either

q1 or q3. Hence, O(C) = {q1, q3}.

3.1.2. Illustration II: a 4-legislator Council

As in Section 3.1.1, we assume that legislators admit at most two peak sites.

Case c: Each legislator has only one peak point. We illustrate this case in Figure 3

and Figure 4. We start with the illustration displayed in Figure 3.

Using Figure 3, we get the following results: V (q1, q2) = V (q1, q3) = {2, 3, 4} and
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q1 q4q3q2

(a) Preferences

q2 q1
{2, 3, 4}

q3
{2, 3, 4}

q4
{1, 2, 3}

(b) Popularity graph

Figure 3: The Council’s size is 4 and each legislator has a unique peak (S(q1) = 2,
S(q2) = S(q3) = 0, and S(q4) = 2)

V (q2, q1) = V (q3, q1) = {1}. Given that there is no other alternative that is preferred

to q1, it follows that q1 defeats q3 and q2 with the support of coalition {2, 3, 4}. Contin-

uing with the same argument, given that V (q3, q4) = {4} and V (q4, q3) = {1, 2, 3}, it

follows that q4 defeats q3 with the support of majority {1, 2, 3}. Note that V (q1, q4) =

V (q2, q3) = V (q2, q4) = {3, 4}, and V (q4, q1) = V (q3, q2) = V (q4, q2) = {1, 2}. As re-

sult, the only non-defeated sites are the two peak points q1 and q4. Hence, q1 m234 q2,

q1 m234 q3, q4 m123 q3, and O(C) = {q1, q4}.

We continue our analysis with the illustration in Figure 4.

q1 q4q3q2

(a) Preferences

q2 q1
{2, 3, 4}

q3 q4
{1, 2, 3}

(b) Popularity graph

Figure 4: The Council’s size is 4, each legislator has a unique peak (S(q1) = 2, S(q2) =
S(q3) = 0, and S(q4) = 2), and Legislator 2 is indifferent between sites q1 and q3

The main difference from Figure 3 and Figure 4 is that Legislator 2 is indifferent

between sites q1 and q3 (q1 ∼2 q3). Therefore, V (q1, q3) = {3, 4}, V (q3, q1) = {1},

and q1 does not defeat q3. However, as in the previous case, V (q1, q2) = {2, 3, 4},

V (q2, q1) = {1}, V (q3, q4) = {4}, and V (q4, q3) = {1, 2, 3}. Using Figure 4b, we

conclude that q1 defeats q2 with the support of coalition {2, 3, 4}, and q4 defeats q3
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with the support of majority {1, 2, 3}. Given that V (q1, q4) = V (q2, q4) = {3, 4}, and

V (q4, q1) = V (q4, q2) = {1, 2}, it follows that the only non-defeated sites are the two

peak points q1 and q4 so that O(C) = {q1, q4}.

Case d: There exists one legislator who has two peak points. We illustrate this case

in Figure 5.

q1 q4q3q2

(a) Preferences for n = 4

q1 q4q3q2

(b) Preferences for n = 4 and q1 ∼2 q3

Figure 5: The Council’s size is 4, and Legislator 3 has two peaks

We use the similar argument in Case c to derive the optimal sites. From Figure 5,

V (q1, q2) = {2, 3, 4} and V (q2, q1) = {1}, then q1 defeats q2. Using Figure 5a, the

site q1 defeats q3, because V (q1, q3) = {2, 3, 4} and V (q3, q1) = {1}. However, given

that, legislator 2 is indifferent between candidates q1 and q3 in Figure 5b, we have

V (q1, q3) = {3, 4} and V (q3, q1) = {1}, and the latter relationship between q1 and q3

does not stand. Using Figure 5, V (q1, q4) = {4}, V (q4, q1) = {1, 2}, V (q3, q4) = {4}

and V (q4, q3) = {1, 2, 3}. It follows that q4 defeats q3, and O(C) = {q1, q4}.

3.2. Optimal Sites in a Multi-dimensional Location Space

In real-life situations, legislators may have beliefs (or positions) over social issues that

are not always ranked by a one-dimensional spectrum. In that case, the result of Theo-

rem 1 is limited. Therefore, we assume that legislators in the Council may also display

multi-dipped continuous preferences over a possibly multi-dimensional site space. In

what follows, we assume that the site space A is a compact and convex subset of the

k-dimensional Euclidean space (k <∞). Following previous studies in economies with

multi-dimensional spaces (see, for example, Debreu (1969), Hildenbrand (1974)), we

12
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endow the site space A with the topology of closed convergence. We start the analysis

with the following definition.

Definition. Let �i be a binary relation over a site space A. An alternative x ∈ A is

a local minimizer of �i if there exists a neighborhood S(x) of x such that y �i x, for

every y ∈ S(x).

Denote by LM(�i, A) the set of all the local minimizers of the relation �i. Note that, if

the preference�i is a continuous binary relation over A, then LM(�i, A) is a non-empty

Borel subset of A. The concepts of Borel set and the Lebesgue measure (denoted here

by L) have proven to be extremely useful in general equilibrium theory. Multi-dipped

preferences have one or many local minimizers that form a null set. An interesting

subclass of this class of preferences is the set of preferences that have countably many

local minimizers. We have the following result.

Theorem 2 Let C = (N,A,M, L, (�i)i∈N) be a Council where A is a k-dimensional

Euclidean site space (1 ≤ k <∞), and where each preference �i is such that:

L[LM(�i, A)] = 0, for i = 1, 2, ..., n.

Then, an optimal site exists. 2

We relegate the proof of Theorem 2 in the appendix. Theorem 2 complements the

result of Theorem 1, and proved useful by guaranteeing positive results in a framework

where legislators may have several worst sites.

4. Conclusion

In this paper, we use a three-stage voting mechanism to derive two possible theorems

for enacting an optimal location for a controversial public project when policymakers’

preferences over the set of competing sites display specific structures. Specifically, we

help a council to site a public bad in a local community where residents have either
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single-dipped or multi-dipped preferences over a set of feasible sites. We show that

there exists at most two optimal sites if policymakers have single-dipped preferences

over a one-dimensional site space.

Appendix A. Proof of Results

Proof (Theorem 1) 1. Assume that n is odd. We distinguish two different

cases: each legislator has a unique peak point or there exists at least one legislator who

has two peak sites over A.

Case e: consider the situation where each legislator has a unique peak point over

A. Assume q∗1 and q∗3 to be the two possible peak points (this is possible since A

is bounded), then S(q∗1) + S(q∗3) = n, S(q∗1), S(q∗3) ≥ 0. Without loss of generality,

assume that S(q∗1) > S(q∗3), then S(q∗1) > n
2
. Consider the following graph (Figure A.6)

described below.

q∗1 q∗3q2q

Figure A.6: The Council’s size is odd, and each legislator has a unique peak

In a choice between between peaks q∗1 and q∗3 in the Council, the alternative q∗1 wins,

because more than half of the council vote for q∗1 against q∗3, since S(q∗1) > S(q∗3) and

S(q∗1) > n
2
. In a choice between q∗1 and any site q ∈ (q∗1, q

∗
3) such that S(q) = 0, q loses.

Indeed, the number of individuals who have q∗1 as dip point vote for q. It follows that,

at least, S(q∗1) individuals vote for q∗1 against q. Given that S(q∗1) > n
2
, then q∗1 defeats

all other sites in A and O(C) = {q∗1}.

Case f : Assume that there exists at least one legislator who has two peaks over A.

This situation can be illustrated by a graph similar to the one below (Figure A.7).

14

Electronic copy available at: https://ssrn.com/abstract=3509819



q∗1 q∗2q

(a) S(q∗1) = S(q∗2) = 3

q∗1 q∗2q

(b) S(q∗1) = 4 > 2 = S(q∗2)

Figure A.7: The Council’s size is odd, and legislator with dip q has two peaks

Note that any site q between alternative q∗1 and q∗2 is defeated by either q∗1 or q∗2. So,

the only interesting competition is between the extremes q∗1 and q∗2. The legislator for

whom q is a dip point has two peak points q∗1 and q∗2. Thus he or she is indifferent

between those peaks during a pairwise opposition when they are candidates. It follows

that |V (q∗1, q
∗
2)| + |V (q∗2, q

∗
1)| < n, while S(q∗1) + S(q∗2) > n. In this situation, either

S(q∗1) = S(q∗2) (see, for example, Figure A.7a) or S(q∗1) 6= S(q∗2). Without loss of

generality, we can assume S(q∗1) > S(q∗2) (see, for example, Figure A.7b). In cases

similar to Figure A.7a, the only non-defeated sites are the extreme peaks, and O(C) =

{q∗1, q∗2}. Otherwise, situations in Figure A.7b hold, q∗1 defeats q∗2, and O(C) = {q∗1}.

2. Assume that n is even. We study two different situations: each legislator has a

unique peak point or there exists at least one legislator who has two peaks over A.

Case g: n is even, and each legislator has a unique peak point. Consider q∗1 and q∗2 as

the two possible peak points, then S(q∗1) + S(q∗2) = n, with S(q∗1) ≥ 0 and S(q∗2) ≥ 0.

a) Assume that S(q∗1) > S(q∗2), then S(q∗1) > n
2
, and S(q∗2) < n

2
. This item is similar

to the situation already demonstrated, where n is odd (see Case a). As we proved

previously, O(C) = {q∗1}.

b) Suppose that S(q∗1) = S(q∗2) = n
2
. In an opposition between in the Council q∗1 and

q∗2, there is no winner. Let q ∈ A be a candidate such that S(q) = 0, and oppose this
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site to the peak point q∗1 in a pairwise opposition. Legislators for whom q∗1 is a dip

point will vote for q and individuals for whom q∗1 is a peak point will vote for q∗1. Also,

individuals for whom q is the dip point will vote for q∗1, although the latter is not their

ideal point. Since S(q∗1) = n
2
, it follows that |V (q∗1, q)| > n

2
, and q∗1 defeats q. Therefore,

all other sites between q∗1 and q∗2 are defeated either by q∗1 or q∗2. Consequently, q∗1 and

q∗2 are the only non-defeated sites, and O(C) = {q∗1, q∗2}.

Case h: n is even and there exists at least one legislator who has two peaks over A.

Then, the one of the following situations hold: (a) S(q∗1) > S(q∗2) (see, for example,

Figure A.8a and Figure A.8b); (b) S(q∗1) < S(q∗2) (see, for example, Figure A.8c); and

(c) S(q∗1) = S(q∗2) (see, for example, Figure A.8d). Individuals for whom q or q′ is

the dip point have two peak points q∗1 and q∗2, thus there are indifferent between those

peaks during a pairwise opposition where they are candidates.

Given a situation in Figure A.8, we have |V (q∗1, q
∗
2)| + |V (q∗2, q

∗
1)| < n, while S(q∗1) +

S(q∗2) > n.

i) However, in situations similar to the ones described in Figure A.8a, although,

|V (q∗1, q
∗
2)| < S(q∗1), we have |V (q∗1, q

∗
2)| > n

2
, and |V (q∗2, q

∗
1) < S(q∗2) < n

2
. Given

that there is no other site that is majority-preferred to q∗1, it follows that q∗1

defeats q∗2, O(C) = {q∗1}.

ii) In situations illustrated in Figure A.8b or Figure A.8c or Figure A.8d, it follows that

O(C) = {q∗1, q∗2}. In fact, in Figure A.8b, |V (q∗1, q
∗
2)| < S(q∗1) and |V (q∗1, q

∗
2)| = n

2
,

while |V (q∗2, q
∗
1)| < S(q∗2) = n

2
. We have the reverse in Figure A.8c. In Figure

A.8d, it holds that |V (q∗1, q
∗
2)| < S(q∗1), |V (q∗2, q

∗
1)| < S(q∗2), with |V (q∗1, q

∗
2)| <

n
2
< S(q∗1) and |V (q∗2, q

∗
1)| < n

2
< S(q∗2). �

Proof (Proof of Theorem 2) For any x ∈ A, we denote PC(x) = {y ∈ A : y �C x},

C ∈M and P (x) = {y ∈ A : y � x}, and P (x) =
⋃

C∈M
PC(x). Consider h the mapping

from A to the real numbers, and define h(x) = L(P (x)), for any x ∈ A, and L the

Lebesgue measure.
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(a) S(q∗1) = 5 > 2 = S(q∗2)

q∗1 q∗2q

(b) S(q∗1) = 4 > 3 = S(q∗2)

q∗1 q∗2q

q∗1 q∗2q′

(c) S(q∗1) = 3 < 4 = S(q∗2)

q∗1 q∗2qq′

(d) S(q∗1) = S(q∗2) = 4

Figure A.8: The Council’s size is even, and legislator with dip q or q′ has two peaks

1. h is lower semi-continuous.

Let x0 ∈ A. Consider a sequence xl which converges to x0 when l tends to

infinity and show that lim inf
l→∞

h(xl) ≥ h(x0). Let y ∈ P (x0), then there exists

C ∈ M such that y ∈ PC(x0). xl converges to x0 and PC is continuous, thus

for l sufficiently large, y ∈ PC(xl). It follows that y ∈ lim inf PC(xl) for some

C ∈ M, and then y ∈ lim inf P (xl), so P (x0) ⊆ lim inf P (xl). Since there ex-

ists l0 such that L(
⋃
l≥l0

P (xl)) < ∞, then L(lim inf
l→∞

P (xl)) ≤ lim inf
l→∞

L(P (xl)),

i.e., L(lim inf
l→∞

P (xl)) ≤ lim inf
l→∞

h(xl), since h(xl) = L(P (xl)). Since P (x0) ⊆

lim inf P (xl), then L(P (x0)) ≤ L(lim inf
l→∞

P (xl)) and therefore h(x0) ≤ lim
l→∞

inf h(xl).

2. h is lower semi-continuous and A compact, then h attains a minimum on A, i.e.,
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there exists a ∈ A such that h(a) = inf
x∈A

h(x).

Denote by S =

{
a ∈ A : h(a) = inf

x∈A
h(x)

}
and LM =

n⋃
i=1

[LM(�i, A)]. Consider

the binary relation � defined as follows: (1) for x, y ∈ A and C ⊂ N , y �C x

if y �C x and z �C x for all z /∈ LM such that z � y; and (2) y � x if there

exists C ∈M such that y �C x. Let V(C) = {x ∈ A : not(y � x), y ∈ A}.

3. V(C) is non-empty.

Assume the contrary and consider an arbitrary site x0 ∈ S, and x0 /∈ V(C). There

exists an alternative site x1 ∈ A and C ∈ M such that x1 �C x0 i.e., x1 �C x0

and z �C x0 for any z ∈ A such that z � x1 and z /∈ LM . It follows that

P (x1) ⊆ P (x0) ∪ (P (x1) ∩ LM), and L(P (x1)) ≤ L(P (x0)) + L(P (x1) ∩ LM) ≤

L(P (x0)) + L(LM). Since LM =
n⋃

i=1

[LM(�i, A)], then L(LM) ≤
n∑

i=1

L[LM(�i

, A)] and L[LM(�i, A)] = 0 for all i = 1, ..., n by hypothesis, therefore L(LM) = 0

and L(P (x1)) ≤ L(P (x0)) i.e., h(x1) ≤ h(x0). Since h(x0) = inf
x∈A

h(x), then the

inequality h(x1) ≤ h(x0) implies that h(x1) = h(x0) and x1 ∈ S. We note two

different situations described below.

Situation 1: Assume there exists a neighborhood S(x1) for which there is no

y ∈ S(x1) satisfying y � x1. x1 � x0 and preferences are continuous, then there

exists a neighborhood S ′(x1) ⊆ S(x1) such that y � x0 for all y ∈ S ′(x1). It

follows that S ′(x1) ⊆ P (x0) and S ′(x1) ⊆ (A − P (x1)). Thus, P (x1) ( P (x0)

and h(x1) < h(x0), which is a contradiction.

Situation 2: For all neighborhood S(x1) of x1, there exists an alternative y ∈

S(x1) such that, y � x1. Let x2 be a site such that x2 �C′ x1. As previously,

P (x2) ⊆ P (x1) ∪ (P (x1 ∩ LM)) and then h(x2) = h(x1). We have x2 � x1

and preferences are continuous, thus there exists a neighborhood S(x1) such that

x2 � a for any a ∈ S(x1). By assumption, there exists y ∈ S(x1) such that

y � x1. By continuity of preferences, there exists a neighborhood S(y) of y

such that y′ � x1 for any y′ ∈ S(y). Hence for all y′ ∈ S(y) ∩ S(x1), we have
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y′ � x1 and x2 � y′, so h(x1) > h(y′) and h(y′) > h(x2), then h(x1) > h(x2), a

contradiction.

Therefore, V(C) is non-empty.

4. Let x0 ∈ V(C), prove that x0 ∈ O(C).

Assume that x0 /∈ O(C), then there exists x1 ∈ A and C ∈M such that x1mC x0.

Let z /∈ LM such that z �T x1, for T ∈ M. We would like to demonstrate that

z �C x0. First, note that z �T x1, and x1 mC x0 implies that z �C x0.

a) If z �i x0 for any i ∈ C, then z �C x0 and x1 � x0, which is a contradiction.

b) Assume that there exists i ∈ C such that z ∼i x0. z �T x1 and preferences

are continuous, then there exists a neighborhood S(z) such that z′ �T x1

for all z′ ∈ S(z). Because z /∈ LM , then z /∈ LM(�i, A) for any i ∈ N .

Hence, there exists z′ ∈ S(z) such that z �i z
′. Since, z ∼i x0, then

x0 �i z
′ by transitivity. Also, z′ ∈ S(z), therefore x0 �i z

′ �T x1 �i x0

and by transitivity, x0 �i x0 if i ∈ C ∩ T . Otherwise, if i /∈ T , then, given

that T ∩ C 6= ∅, there exists i′ ∈ T ∩ C such that x0 �i′ z
′ �i′ x1 �i′ x0

or x0 �i′ x0 by transitivity, which is a contradiction and x0 /∈ V(C). In

conclusion, x0 ∈ O(C). �
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Öztürk, M., Peters, H., Storcken, T., 2013. Strategy-proof location of a public bad on

a disc. Economics Letters 119, 14–16.
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