Locating an Optimal Site for a Controversial Facility

Jean-Baptise Tondji
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/ef_fac
Part of the Finance Commons

Recommended Citation

Tondji, Jean-Baptiste, Locating an Optimal Site for a Controversial Facility (September 14, 2019). Available at SSRN: https://ssrn.com/abstract=3509819 or http://dx.doi.org/10.2139/ssrn. 3509819

This Article is brought to you for free and open access by the Robert C. Vackar College of Business \& Entrepreneurship at ScholarWorks @ UTRGV. It has been accepted for inclusion in Economics and Finance Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

Locating an Optimal Site for a Controversial Facility*

Jean-Baptiste Tondji
Department of Economics and Finance, The University of Texas Rio Grande Valley 1201 W. University Dr., ECOBE 216, Edinburg, Texas, 78539, U.S.A

Abstract

We consider a situation in which policymakers in a local community choose an optimal site for a controversial and essential project in a dynamic setting. Policymakers have either single-dipped or multi-dipped preferences over a Euclidean space of possible locations. We provide two existence results for this issue. Furthermore, we show that two optimal sites (at most) exist if policymakers have single-dipped preferences over a one-dimensional site space.

Keywords: Public bads, Single-dipped (Multi-dipped) preferences, Optimality.
JEL: C70, D72

[^0]
1. Introduction

Scholars and policymakers have demonstrated a growing interest in locating controversial facilities, as surveyed by Aldrich (2010) in his recent book. Governments often face fundamental siting issues as they attempt to build or expand public projects that serve residents' needs but potentially bring negative externalities into their targeted communities. Recent examples include, among others, the Enbridge Northern Gateway Pipelines, and the Trans Mountain Expansion Projects in Canada, and the fracking boom in the United States. States must choose among many possible policy instruments to handle local resistance, ranging from strong-arm tactics of coercion and rigid social control to more peaceful incentives and inducements. Addressing issues on where to locate and how to overcome civil society have significant implications for the design and implementation of public policies towards protecting both environment and human well-being.

In this paper, we look at how residents of a local community interact peacefully in a democratic institution to address the problem of locating a stable and efficient site for a public facility, such as a windmill park, a garbage dumping ground, or a nuclear plant. Such public projects are called public bads: residents agree about their value but typically do not want them in their backyards. We assume that the public bad is either within a one-dimensional space or a multi-dimensional space. In the former, each resident has a single-dipped preference over the set of possible (or feasible) sites: there is the worst point, called the dip, and the resident's satisfaction increases with the Euclidean distance from this dip. In the latter, we assume that each resident may have a multi-dipped preference: a resident may have multiple local dips over the site space. In the community, the Council (a finite group of political representatives, henceforth called legislators) adopts the policy through voting. A vote then consists of reporting one's dip. We assume that legislators are rational, truthful, and vote according to their constituents' preferences. A location for the public bad is adopted if (1) there is an endless cycle of voting: legislators agree on the public bad's site, and (2) the chosen
site is efficient: there is no other site which would be preferred by all legislators to the chosen site. When (1) and (2) are satisfied, the council has chosen an optimal site for the project. The main issue is that legislators may have antagonistic tastes upon locating the public facility, then render uncertain the outcome of this social decision by voting.

Legislators make decisions under a three-stage mechanism, L, described as follows. In the first stage, a majority coalition S can object against the status quo site x by proposing an alternative site y. Otherwise, the status quo remains, and the voting ends, or Nature ends the voting process after S proposes y. In the second stage, each legislator who is not a member of S can oppose y. Otherwise, y becomes the new site, which ends the process. However, if there is any opposition, S has the right to either withdraw or maintain y. If S withdraws y, the status quo x remains in place, and the process ends. However, if S maintains y, then the opposing legislators can invite other legislators to form a majority coalition T to replace y with another site z in the third and final stage. If T succeeds, z is elected, and the process ends. Otherwise, the Council elects y in the final stage.

We use majority rule to allocate decisive power among coalition of legislators. Thus, if n is the size of the council, then any coalition of legislators that consists of more than $n / 2$ is a majority. We say that a given site x is stable if it cannot be overruled by a majority of legislators if it is submitted to a possible reform or amendment under the three-stage mechanism described above. If the decision-making process ends with a site x, and the latter is efficient, then x is optimal and will be adopted for the community. Otherwise, the council adjourns.

We prove that there exists an optimal (stable and efficient) site of the public bad when the location space is one-dimensional (Theorem 1) or multi-dimensional (Theorem 2). In addition, if preferences over a one-dimensional site space are single-dipped, then the council can select at most two optimal sites for the public bad (Theorem 1).

Scholars in social sciences have demonstrated interests in addressing where and how to locate a public bad. Early theory suggests a deep involvement of citizen participation through local referenda allowing residents to vote for or against the public facility (see, for example, Mitchell and Carson (1986)). In his book on siting issues and civil society, Aldrich (2010) debates the patterns by which most controversial projects are sited in France, Japan, and United States, and the policy instruments used by these countries to handle civil opposition when it arises. Other studies assume that individual preferences over the set of possible sites are single-dipped and focus on defining and characterizing collective rules, in which each agent has the incentives to reveal his or her sincere preferences (see, for example, Ehlers (2002), Barberà et al. (2012), Öztürk et al. (2013), Manjunath (2014), Öztürk et al. (2014), Lahiri et al. (2016), and Peters et al. (2017)). In a direct revelation mechanism setting, Yamamura (2016) analyzes the choice of locating a public bad from a coalitional standpoint using the equilibrium concepts of strong Nash equilibrium and coalition proof Nash equilibrium.

Our work contributes to this existing literature. Previous studies, however, have focused mostly on static decision-making mechanisms. While real-life institutions use static mechanisms, most institutions also employ dynamic procedures, wherein a proposed policy generally goes through a sequence of amendments before its final adoption (see, for example, Baron and Ferejohn (1989) and Chwe (1994)). In this paper, we use a dynamic legislative mechanism to determine the existence of an optimal (efficient and stable) site for a controversial facility when legislators are truthful and display specific preferences over the location space. While the result of Theorem 1 is consistent with early works on one-dimensional location space, we extend the analysis on multi-dimensional spaces, and we show that within such domains, the optimality is preserved.

We start by introducing notations and the main definitions in Section 2. In Section 3, we determine the existence of an optimal location for a controversial facility when legislators have either single-dipped or multi-dipped preferences over a Euclidean location
space. Section 4 concludes.

2. Setup

This section provides formal and brief notations of the basic concepts that we use throughout the paper.

2.1. The Council

The council is labeled as $\mathfrak{C}=\left(N, A, \mathcal{M}, L,\left(\succeq_{i}\right)_{i \in N}\right)$, where N is the finite set of legislators (with $|N|=n \geq 2$), A is the Euclidean site space, \mathcal{M} is the majority rule (or the set of majority coalitions), L is the legislative voting mechanism, and $\left(\succeq_{i}\right)_{i \in N}$ is the profile of legislators' preferences over the set A. The site space A represents the set of feasible sites at stake. We assume that A is a one-dimensional or multidimensional space.

2.2. Preferences

For $x, y \in A, y \succeq_{i} x$ indicates that legislator i weakly prefers y to $x ; y \succ_{i} x$ indicates that legislator i prefers y to x; and $y \sim_{i} x$ indicates that legislator i is indifferent between y and x. Given the nature of the site space, we assume that preferences are continuous. Preference continuity is a natural assumption which means that a legislator who prefers a site x over another site y prefers any site close enough to x over any site close enough to y. This implies that a small perturbation of the site space does not radically change preferences. This structure of preferences is generally encountered in economic theory. Formally, the binary relation \succeq_{i} is said to be continuous if for any site $x, y \in A$, such that y is preferred to $x\left(y \succ_{i} x\right)$, there exists a neighborhood $S(x)$ of x and a neighborhood $S(y)$ of y such that site z is preferred to site $t\left(z \succ_{i} t\right)$ for every sites $z \in S(y)$ and $t \in S(x)$. In this paper, we use two classes of continuous preferences: single-dipped and multi-dipped preferences.

2.3. Optimal Sites

The council decides on the choice of a site under the three-stage legislative mechanism, L, that we presented in the Introduction. Below, we describe the rational behavior of legislators within the mechanism.

Let us assume that a status quo site $x \in A$ is at stake in the Council. A group of legislators might gather together in a majority coalition, say S and object to the status quo if there exists another alternative, say y, which they prefer to x, i.e., $y \succ_{S} x$. This condition is a natural requirement that appears in all two-stage bargaining models of rationality in the literature (see, for example, Aumann and Maschler (1964) and all of the subsequent studies inspired by this paper). We can also view the condition as an expression of prudence or ambiguity aversion. It expresses that the majority S considers the presence of Nature in the voting process and cannot fully predict the future of the game after introducing the proposal y.

After the objection (y, S), a legislator i from the remaining group of council ($N \backslash S$) may be worse off at y (i.e., $\operatorname{not}\left(y \succeq_{i} x\right)$), and decides to join another majority coalition T which could propose another site z to the Council, i.e., $z \succ_{T} y$. In that case, a pair $(z, T) \in Z \times \mathcal{M}$ is a counter-objection against the objection (y, S) if $z \succ_{T} y$ and $\operatorname{not}\left(y \succeq_{T} x\right)$. Also, legislators of T have to consider the fact that the first majority coalition S may withdraw their support for the change of the status quo x in case the new proposition z could hurt some of its legislators, i.e., $\operatorname{not}\left(z \succeq_{S} x\right)$. If the latter occurs, then the counter-objection is unfriendly against S. In the Council, a majority S will initiate the first move against the status quo x by proposing a new site y against x if there is no unfriendly counter-objection against (y, S), i.e., $\left(z \succeq_{S} x\right)$; then the objection (y, S) is considered to be justified.

A stable site is an option in A against which no justified objection exists. In other words, a stable site is an alternative such that if it is the status quo, no majority coalition will seek to replace it. More formally, a site, say $y \in A$ defeats another site
x, labeled by $y \gtrdot x$, if there exists a majority coalition $S \in \mathcal{M}\left(y \gtrdot_{S} x\right)$ such that:

1. $y \succ_{S} x$ and;
2. $\forall(z, T) \in A \times \mathcal{M}, S \neq T,\left[z \succ_{T} y\right.$ and $\left.\operatorname{not}\left(y \succeq_{T} x\right)\right]$ implies $\left[z \succeq_{S} x\right]$.

The set of stable sites, denoted by $O(\mathfrak{C})$, contains sites that are not defeated in the council \mathfrak{C}. A decision is adopted if legislators reach an agreement at the end of the legislative procedure, i.e., $O(\mathfrak{C}) \neq \emptyset$, and the outcome of this agreement is efficient. The set $O(\mathfrak{C})$ is also called the reciprocity set in Pongou and Tondji (2018b). By addressing a different question, they prove that the legislative procedure, L, in this study induces legislators to take reciprocal actions. The formalization of rational behavior in the Council follows the traditional blocking approach in coalitional games (see, for example, Harsanyi (1974), Chwe (1994), Dutta et al. (2005), Ray and Vohra (2014), and Dutta and Vohra (2017)). However, following the bargaining approach (see, for example, Nash (1953), Kimya (2020), and Serrano (2020)), the three-stage mechanism also implements the set of optimal outcomes in some subgame perfect Nash equilibrium concept. This additional extension and a comparison of the mechanism to other procedures that follows the blocking approach can be found in Pongou and Tondji (2018a,b). The following result reduces the selection of optimal sites.

Lemma 1 (Pongou and Tondji (2018b)) Let $\mathfrak{C}=\left(N, A, \mathcal{M}, L,\left(\succeq_{i}\right)_{i \in N}\right)$ be a council and $x \in A$ be a site. Assume that $O(\mathfrak{C}) \neq \emptyset$. If $x \in O(\mathfrak{C})$, then x is efficient.

The intuition behind this result follows from the fact that the dynamic mechanism, L, induces legislators to adopt farsighted and reciprocal behaviors. No potential second majority T will react against a first majority S who replaces a status quo site x with an alternative y that Pareto-dominates x. Opposing such a move would cause the majority S to withdraw y, thus allowing x to remain in place and inducing the persistence of a less preferred site by all the legislators.

Lemma 1 shows that any stable site is efficient. It follows that, the optimal decision
of the Council is guaranteed if stability succeeds. Throughout the remaining of the paper, the set $O(\mathfrak{C})$ consists of the optimal sites for the public bad. In the next section, we derive the main results of the paper.

3. Results

We first establish the existence of an optimal site when preferences are single-dipped. A preference relation over a space is said to be single-dipped if; the sites can be ordered as points on a line; the preference relation has a least preferred point-dip or worse point; and, points further away from the least point are more preferred. Formally, assume that all the sites are ordered by a binary relation denoted θ, and all individuals perceive them as being arranged in this order. An individual i of the council has a single-dipped preference \succeq_{i}, if there exists a site x_{i} such that: (1) for any other site $x \neq x_{i}, x \succ_{i} x_{i}$; and (2) for any site $x, y \in A$, it holds that: if $\left(x_{i} \theta y \theta x\right)$ or $\left(x \theta y \theta x_{i}\right)$, then $x \succ_{i} y$.

Theorem 1 Let $\mathfrak{C}=\left(N, A, \mathcal{M}, L,\left(\succeq_{i}\right)_{i \in N}\right)$ be a council where, A is a one-dimension site space, and where preferences are single-dipped. Then, an optimal site exists, and there are at most two optimal sites.

We relegate the proof of Theorem 1 in the appendix.
Theorem 1 is consistent with other studies on the site of a public bad under strategyproof and efficient rules. Strategy-proofness avoids members' improvement of satisfaction or gains by misrepresenting their true preferences, and efficiency ensures that all members' satisfaction cannot improve by changing the chosen site of a public bad. As mentioned above, any stable site under the three-stage mechanism used in the Council is efficient. Manjunath (2014) studies the site of a public bad when agents have singledipped preferences over a closed interval $[0, T]$. He proves that the range of an efficient and strategy-proof rule is the set $\{0, T\}$, the domain's two extremes. In another study, Barberà et al. (2012) proves that the range of strategy-proof rules under single-dipped preferences contains two alternatives at most. These studies focus exclusively on static
decision-making mechanisms. Theorem 1 provides the same characterization in a dynamic voting mechanism. In our setting, each legislator has at most two peak (the most preferred) points and, those sites coincide with the minimum and maximum elements of A. Therefore, these two bounds are the optimal sites when preferences are single-dipped. Below, we illustrate our result in a Council consisting of three ($n=3$) and four $(n=4)$ legislators.

3.1. Illustrations

Let $x \in A$ be a site and define the number $S(x)$ as the number of legislators who have x as a peak point (the most preferred point). If no legislator has x as a peak point, then $S(x)$ takes the value 0 . Let $V\left(q, q^{\prime}\right)$ denote the set of legislators who prefer q against q^{\prime} in a choice between q and $q^{\prime}: V\left(q, q^{\prime}\right)=\left\{i \in N: q \succ_{i} q^{\prime}\right\}$. We differentiate two cases: each legislator has only one peak over the set A, or at least one legislator has two peak sites. In what follows, q_{m} is legislator m 's dip point, $m=1,2,3,4$. Legislators have single-dipped preferences. Therefore, they prefer to vote for sites far away from their dip points.

3.1.1. Illustration I: a 3-legislator Council

We consider two cases and determine the optimal sites.
Case a: $S\left(q_{1}\right)=1, S\left(q_{2}\right)=0$, and $S\left(q_{3}\right)=2$ (see Figure 1).

(a) Preferences

(b) Popularity graph

Figure 1: The Council's size is 3 and each legislator has a unique peak

The popularity graph among sites based on preferences is provided in Figure 1b (the arrows indicate the direction of the popularity relationship; for instance q_{1} is a more
popular site than q_{2} because q_{1} is preferred over q_{2} by the majority coalition $\{2,3\}$). From Figure 1a and Figure 1b, we note that $V\left(q_{1}, q_{2}\right)=\{2,3\}, V\left(q_{3}, q_{1}\right)=\{1,2\}$, and $V\left(q_{3}, q_{2}\right)=\{1,2\}$. It follows that although, $q_{1} \succ_{23} q_{2}$, the site q_{1} does not defeat q_{2} because there exists the alternative q_{3} with $q_{3} \succ_{12} q_{1}, \operatorname{not}\left(q_{1} \succeq_{12} q_{2}\right)$, and $\operatorname{not}\left(q_{3} \succeq_{23} q_{2}\right)$. Given that $q_{3} \succ_{12} q_{1}$, and $q_{3} \succ_{12} q_{2}$, and no other alternative is preferred to q_{3}, it follows that q_{3} defeats q_{1} and q_{2} thanks to coalition $\{1,2\}$, and there is no site which defeats option q_{3}. Hence, $q_{3} \gtrdot_{12} q_{1}, q_{3} \gtrdot_{12} q_{2}$, and $O(\mathfrak{C})=\left\{q_{3}\right\}$.

Case b: $S\left(q_{1}\right)=2, S\left(q_{2}\right)=0$, and $S\left(q_{3}\right)=2$ (see Figure 2).

(b) Popularity graph
(a) Preferences

Figure 2: The Council's size is 3 ; Legislators 1 and 3 have one peak site, while Legislator 2 has two peaks

From Figure 2a and Figure 2b, we have what follows. The majority $\{2,3\}$ prefers q_{1} to $q_{2}\left(q_{1} \succ_{23} q_{2}\right)$, and the majority $\{1,2\}$ prefers q_{3} to $q_{2}\left(q_{3} \succ_{12} q_{2}\right)$. When it comes to the choice between q_{1} and q_{3}, we have : $V\left(q_{1}, q_{3}\right)=\{3\}$ and $V\left(q_{3}, q_{1}\right)=\{1\}$. It is straightforward to note that no other alternative is preferred by a majority to either q_{1} or q_{3}. Therefore, the site q_{2} is defeated by either q_{1} or q_{3} and no site defeats either q_{1} or q_{3}. Hence, $O(\mathfrak{C})=\left\{q_{1}, q_{3}\right\}$.

3.1.2. Illustration II: a 4-legislator Council

As in Section 3.1.1, we assume that legislators admit at most two peak sites.
Case c: Each legislator has only one peak point. We illustrate this case in Figure 3 and Figure 4. We start with the illustration displayed in Figure 3.

Using Figure 3, we get the following results: $V\left(q_{1}, q_{2}\right)=V\left(q_{1}, q_{3}\right)=\{2,3,4\}$ and

$$
q_{2} \xrightarrow{\{2,3,4\}} q_{1} \stackrel{\{2,3,4\}}{\longleftrightarrow} q_{3} \xrightarrow{\{1,2,3\}} q_{4}
$$

(b) Popularity graph
(a) Preferences

Figure 3: The Council's size is 4 and each legislator has a unique peak $\left(S\left(q_{1}\right)=2\right.$, $S\left(q_{2}\right)=S\left(q_{3}\right)=0$, and $S\left(q_{4}\right)=2$)
$V\left(q_{2}, q_{1}\right)=V\left(q_{3}, q_{1}\right)=\{1\}$. Given that there is no other alternative that is preferred to q_{1}, it follows that q_{1} defeats q_{3} and q_{2} with the support of coalition $\{2,3,4\}$. Continuing with the same argument, given that $V\left(q_{3}, q_{4}\right)=\{4\}$ and $V\left(q_{4}, q_{3}\right)=\{1,2,3\}$, it follows that q_{4} defeats q_{3} with the support of majority $\{1,2,3\}$. Note that $V\left(q_{1}, q_{4}\right)=$ $V\left(q_{2}, q_{3}\right)=V\left(q_{2}, q_{4}\right)=\{3,4\}$, and $V\left(q_{4}, q_{1}\right)=V\left(q_{3}, q_{2}\right)=V\left(q_{4}, q_{2}\right)=\{1,2\}$. As result, the only non-defeated sites are the two peak points q_{1} and q_{4}. Hence, $q_{1} \gtrdot_{234} q_{2}$, $q_{1} \gtrdot_{234} q_{3}, q_{4} \gtrdot_{123} q_{3}$, and $O(\mathfrak{C})=\left\{q_{1}, q_{4}\right\}$.

We continue our analysis with the illustration in Figure 4.

(b) Popularity graph
(a) Preferences

Figure 4: The Council's size is 4, each legislator has a unique peak $\left(S\left(q_{1}\right)=2, S\left(q_{2}\right)=\right.$ $S\left(q_{3}\right)=0$, and $S\left(q_{4}\right)=2$), and Legislator 2 is indifferent between sites q_{1} and q_{3}

The main difference from Figure 3 and Figure 4 is that Legislator 2 is indifferent between sites q_{1} and $q_{3}\left(q_{1} \sim_{2} q_{3}\right)$. Therefore, $V\left(q_{1}, q_{3}\right)=\{3,4\}, V\left(q_{3}, q_{1}\right)=\{1\}$, and q_{1} does not defeat q_{3}. However, as in the previous case, $V\left(q_{1}, q_{2}\right)=\{2,3,4\}$, $V\left(q_{2}, q_{1}\right)=\{1\}, V\left(q_{3}, q_{4}\right)=\{4\}$, and $V\left(q_{4}, q_{3}\right)=\{1,2,3\}$. Using Figure 4b, we conclude that q_{1} defeats q_{2} with the support of coalition $\{2,3,4\}$, and q_{4} defeats q_{3}
with the support of majority $\{1,2,3\}$. Given that $V\left(q_{1}, q_{4}\right)=V\left(q_{2}, q_{4}\right)=\{3,4\}$, and $V\left(q_{4}, q_{1}\right)=V\left(q_{4}, q_{2}\right)=\{1,2\}$, it follows that the only non-defeated sites are the two peak points q_{1} and q_{4} so that $O(\mathfrak{C})=\left\{q_{1}, q_{4}\right\}$.

Case d: There exists one legislator who has two peak points. We illustrate this case in Figure 5.

(a) Preferences for $n=4$

(b) Preferences for $n=4$ and $q_{1} \sim_{2} q_{3}$

Figure 5: The Council's size is 4, and Legislator 3 has two peaks

We use the similar argument in Case c to derive the optimal sites. From Figure 5, $V\left(q_{1}, q_{2}\right)=\{2,3,4\}$ and $V\left(q_{2}, q_{1}\right)=\{1\}$, then q_{1} defeats q_{2}. Using Figure 5a, the site q_{1} defeats q_{3}, because $V\left(q_{1}, q_{3}\right)=\{2,3,4\}$ and $V\left(q_{3}, q_{1}\right)=\{1\}$. However, given that, legislator 2 is indifferent between candidates q_{1} and q_{3} in Figure 5b, we have $V\left(q_{1}, q_{3}\right)=\{3,4\}$ and $V\left(q_{3}, q_{1}\right)=\{1\}$, and the latter relationship between q_{1} and q_{3} does not stand. Using Figure 5, $V\left(q_{1}, q_{4}\right)=\{4\}, V\left(q_{4}, q_{1}\right)=\{1,2\}, V\left(q_{3}, q_{4}\right)=\{4\}$ and $V\left(q_{4}, q_{3}\right)=\{1,2,3\}$. It follows that q_{4} defeats q_{3}, and $O(\mathfrak{C})=\left\{q_{1}, q_{4}\right\}$.

3.2. Optimal Sites in a Multi-dimensional Location Space

In real-life situations, legislators may have beliefs (or positions) over social issues that are not always ranked by a one-dimensional spectrum. In that case, the result of Theorem 1 is limited. Therefore, we assume that legislators in the Council may also display multi-dipped continuous preferences over a possibly multi-dimensional site space. In what follows, we assume that the site space A is a compact and convex subset of the k-dimensional Euclidean space $(k<\infty)$. Following previous studies in economies with multi-dimensional spaces (see, for example, Debreu (1969), Hildenbrand (1974)), we
endow the site space A with the topology of closed convergence. We start the analysis with the following definition.

Definition. Let \succeq_{i} be a binary relation over a site space A. An alternative $x \in A$ is a local minimizer of \succeq_{i} if there exists a neighborhood $S(x)$ of x such that $y \succeq_{i} x$, for every $y \in S(x)$.

Denote by $L M\left(\succeq_{i}, A\right)$ the set of all the local minimizers of the relation \succeq_{i}. Note that, if the preference \succeq_{i} is a continuous binary relation over A, then $L M\left(\succeq_{i}, A\right)$ is a non-empty Borel subset of A. The concepts of Borel set and the Lebesgue measure (denoted here by \mathfrak{L}) have proven to be extremely useful in general equilibrium theory. Multi-dipped preferences have one or many local minimizers that form a null set. An interesting subclass of this class of preferences is the set of preferences that have countably many local minimizers. We have the following result.

Theorem 2 Let $\mathfrak{C}=\left(N, A, \mathcal{M}, L,\left(\succeq_{i}\right)_{i \in N}\right)$ be a Council where A is a k-dimensional Euclidean site space $(1 \leq k<\infty)$, and where each preference \succeq_{i} is such that:

$$
\mathfrak{L}\left[L M\left(\succeq_{i}, A\right)\right]=0, \text { for } i=1,2, \ldots, n
$$

Then, an optimal site exists.

We relegate the proof of Theorem 2 in the appendix. Theorem 2 complements the result of Theorem 1, and proved useful by guaranteeing positive results in a framework where legislators may have several worst sites.

4. Conclusion

In this paper, we use a three-stage voting mechanism to derive two possible theorems for enacting an optimal location for a controversial public project when policymakers' preferences over the set of competing sites display specific structures. Specifically, we help a council to site a public bad in a local community where residents have either
single-dipped or multi-dipped preferences over a set of feasible sites. We show that there exists at most two optimal sites if policymakers have single-dipped preferences over a one-dimensional site space.

Appendix A. Proof of Results

Proof (Theorem 1) 1. Assume that n is odd. We distinguish two different cases: each legislator has a unique peak point or there exists at least one legislator who has two peak sites over A.

Case e: consider the situation where each legislator has a unique peak point over A. Assume q_{1}^{*} and q_{3}^{*} to be the two possible peak points (this is possible since A is bounded), then $S\left(q_{1}^{*}\right)+S\left(q_{3}^{*}\right)=n, S\left(q_{1}^{*}\right), S\left(q_{3}^{*}\right) \geq 0$. Without loss of generality, assume that $S\left(q_{1}^{*}\right)>S\left(q_{3}^{*}\right)$, then $S\left(q_{1}^{*}\right)>\frac{n}{2}$. Consider the following graph (Figure A.6) described below.

Figure A.6: The Council's size is odd, and each legislator has a unique peak

In a choice between between peaks q_{1}^{*} and q_{3}^{*} in the Council, the alternative q_{1}^{*} wins, because more than half of the council vote for q_{1}^{*} against q_{3}^{*}, since $S\left(q_{1}^{*}\right)>S\left(q_{3}^{*}\right)$ and $S\left(q_{1}^{*}\right)>\frac{n}{2}$. In a choice between q_{1}^{*} and any site $q \in\left(q_{1}^{*}, q_{3}^{*}\right)$ such that $S(q)=0, q$ loses. Indeed, the number of individuals who have q_{1}^{*} as dip point vote for q. It follows that, at least, $S\left(q_{1}^{*}\right)$ individuals vote for q_{1}^{*} against q. Given that $S\left(q_{1}^{*}\right)>\frac{n}{2}$, then q_{1}^{*} defeats all other sites in A and $O(\mathfrak{C})=\left\{q_{1}^{*}\right\}$.

Case f: Assume that there exists at least one legislator who has two peaks over A. This situation can be illustrated by a graph similar to the one below (Figure A.7).

Figure A.7: The Council's size is odd, and legislator with $\operatorname{dip} q$ has two peaks

Note that any site q between alternative q_{1}^{*} and q_{2}^{*} is defeated by either q_{1}^{*} or q_{2}^{*}. So, the only interesting competition is between the extremes q_{1}^{*} and q_{2}^{*}. The legislator for whom q is a dip point has two peak points q_{1}^{*} and q_{2}^{*}. Thus he or she is indifferent between those peaks during a pairwise opposition when they are candidates. It follows that $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|+\left|V\left(q_{2}^{*}, q_{1}^{*}\right)\right|<n$, while $S\left(q_{1}^{*}\right)+S\left(q_{2}^{*}\right)>n$. In this situation, either $S\left(q_{1}^{*}\right)=S\left(q_{2}^{*}\right)$ (see, for example, Figure A.7a) or $S\left(q_{1}^{*}\right) \neq S\left(q_{2}^{*}\right)$. Without loss of generality, we can assume $S\left(q_{1}^{*}\right)>S\left(q_{2}^{*}\right)$ (see, for example, Figure A.7b). In cases similar to Figure A.7a, the only non-defeated sites are the extreme peaks, and $O(\mathfrak{C})=$ $\left\{q_{1}^{*}, q_{2}^{*}\right\}$. Otherwise, situations in Figure A.7b hold, q_{1}^{*} defeats q_{2}^{*}, and $O(\mathfrak{C})=\left\{q_{1}^{*}\right\}$.
2. Assume that n is even. We study two different situations: each legislator has a unique peak point or there exists at least one legislator who has two peaks over A.

Case g: n is even, and each legislator has a unique peak point. Consider q_{1}^{*} and q_{2}^{*} as the two possible peak points, then $S\left(q_{1}^{*}\right)+S\left(q_{2}^{*}\right)=n$, with $S\left(q_{1}^{*}\right) \geq 0$ and $S\left(q_{2}^{*}\right) \geq 0$.
a) Assume that $S\left(q_{1}^{*}\right)>S\left(q_{2}^{*}\right)$, then $S\left(q_{1}^{*}\right)>\frac{n}{2}$, and $S\left(q_{2}^{*}\right)<\frac{n}{2}$. This item is similar to the situation already demonstrated, where n is odd (see Case a). As we proved previously, $O(\mathfrak{C})=\left\{q_{1}^{*}\right\}$.
b) Suppose that $S\left(q_{1}^{*}\right)=S\left(q_{2}^{*}\right)=\frac{n}{2}$. In an opposition between in the Council q_{1}^{*} and q_{2}^{*}, there is no winner. Let $q \in A$ be a candidate such that $S(q)=0$, and oppose this
site to the peak point q_{1}^{*} in a pairwise opposition. Legislators for whom q_{1}^{*} is a dip point will vote for q and individuals for whom q_{1}^{*} is a peak point will vote for q_{1}^{*}. Also, individuals for whom q is the dip point will vote for q_{1}^{*}, although the latter is not their ideal point. Since $S\left(q_{1}^{*}\right)=\frac{n}{2}$, it follows that $\left|V\left(q_{1}^{*}, q\right)\right|>\frac{n}{2}$, and q_{1}^{*} defeats q. Therefore, all other sites between q_{1}^{*} and q_{2}^{*} are defeated either by q_{1}^{*} or q_{2}^{*}. Consequently, q_{1}^{*} and q_{2}^{*} are the only non-defeated sites, and $O(\mathfrak{C})=\left\{q_{1}^{*}, q_{2}^{*}\right\}$.

Case h: n is even and there exists at least one legislator who has two peaks over A. Then, the one of the following situations hold: (a) $S\left(q_{1}^{*}\right)>S\left(q_{2}^{*}\right)$ (see, for example, Figure A.8a and Figure A.8b); (b) $S\left(q_{1}^{*}\right)<S\left(q_{2}^{*}\right)$ (see, for example, Figure A.8c); and (c) $S\left(q_{1}^{*}\right)=S\left(q_{2}^{*}\right)$ (see, for example, Figure A.8d). Individuals for whom q or q^{\prime} is the dip point have two peak points q_{1}^{*} and q_{2}^{*}, thus there are indifferent between those peaks during a pairwise opposition where they are candidates.

Given a situation in Figure A.8, we have $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|+\left|V\left(q_{2}^{*}, q_{1}^{*}\right)\right|<n$, while $S\left(q_{1}^{*}\right)+$ $S\left(q_{2}^{*}\right)>n$.
i) However, in situations similar to the ones described in Figure A.8a, although, $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|<S\left(q_{1}^{*}\right)$, we have $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|>\frac{n}{2}$, and $\left\lvert\, V\left(q_{2}^{*}, q_{1}^{*}\right)<S\left(q_{2}^{*}\right)<\frac{n}{2}\right.$. Given that there is no other site that is majority-preferred to q_{1}^{*}, it follows that q_{1}^{*} defeats $q_{2}^{*}, O(\mathfrak{C})=\left\{q_{1}^{*}\right\}$.
ii) In situations illustrated in Figure A.8b or Figure A.8c or Figure A.8d, it follows that $O(\mathfrak{C})=\left\{q_{1}^{*}, q_{2}^{*}\right\}$. In fact, in Figure A.8b, $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|<S\left(q_{1}^{*}\right)$ and $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|=\frac{n}{2}$, while $\left|V\left(q_{2}^{*}, q_{1}^{*}\right)\right|<S\left(q_{2}^{*}\right)=\frac{n}{2}$. We have the reverse in Figure A.8c. In Figure A.8d, it holds that $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|<S\left(q_{1}^{*}\right),\left|V\left(q_{2}^{*}, q_{1}^{*}\right)\right|<S\left(q_{2}^{*}\right)$, with $\left|V\left(q_{1}^{*}, q_{2}^{*}\right)\right|<$ $\frac{n}{2}<S\left(q_{1}^{*}\right)$ and $\left|V\left(q_{2}^{*}, q_{1}^{*}\right)\right|<\frac{n}{2}<S\left(q_{2}^{*}\right)$.

Proof (Proof of Theorem 2) For any $x \in A$, we denote $P_{C}(x)=\left\{y \in A: y \succ_{C} x\right\}$, $C \in \mathcal{M}$ and $P(x)=\{y \in A: y \succ x\}$, and $P(x)=\bigcup_{C \in \mathcal{M}} P_{C}(x)$. Consider h the mapping from A to the real numbers, and define $h(x)=\mathfrak{L}(P(x))$, for any $x \in A$, and \mathfrak{L} the Lebesgue measure.

Figure A.8: The Council's size is even, and legislator with $\operatorname{dip} q$ or q^{\prime} has two peaks

1. h is lower semi-continuous.

Let $x_{0} \in A$. Consider a sequence x_{l} which converges to x_{0} when l tends to infinity and show that $\liminf _{l \rightarrow \infty} h\left(x_{l}\right) \geq h\left(x_{0}\right)$. Let $y \in P\left(x_{0}\right)$, then there exists $C \in \mathcal{M}$ such that $y \in P_{C}\left(x_{0}\right) . x_{l}$ converges to x_{0} and P_{C} is continuous, thus for l sufficiently large, $y \in P_{C}\left(x_{l}\right)$. It follows that $y \in \liminf P_{C}\left(x_{l}\right)$ for some $C \in \mathcal{M}$, and then $y \in \liminf P\left(x_{l}\right)$, so $P\left(x_{0}\right) \subseteq \liminf P\left(x_{l}\right)$. Since there exists l_{0} such that $\mathfrak{L}\left(\bigcup_{l \geq l_{0}} P\left(x_{l}\right)\right)<\infty$, then $\mathfrak{L}\left(\liminf _{l \rightarrow \infty} P\left(x_{l}\right)\right) \leq \liminf _{l \rightarrow \infty} \mathfrak{L}\left(P\left(x_{l}\right)\right)$, i.e., $\mathfrak{L}\left(\liminf _{l \rightarrow \infty} P\left(x_{l}\right)\right) \leq \liminf _{l \rightarrow \infty} h\left(x_{l}\right)$, since $h\left(x_{l}\right)=\mathfrak{L}\left(P\left(x_{l}\right)\right)$. Since $P\left(x_{0}\right) \subseteq$ $\lim \inf P\left(x_{l}\right)$, then $\mathfrak{L}\left(P\left(x_{0}\right)\right) \leq \mathfrak{L}\left(\liminf _{l \rightarrow \infty} P\left(x_{l}\right)\right)$ and therefore $h\left(x_{0}\right) \leq \lim _{l \rightarrow \infty} \inf h\left(x_{l}\right)$.
2. h is lower semi-continuous and A compact, then h attains a minimum on A, i.e.,
there exists $a \in A$ such that $h(a)=\inf _{x \in A} h(x)$.
Denote by $S=\left\{a \in A: h(a)=\inf _{x \in A} h(x)\right\}$ and $\overline{L M}=\bigcup_{i=1}^{n}\left[L M\left(\succeq_{i}, A\right)\right]$. Consider the binary relation \gg defined as follows: (1) for $x, y \in A$ and $C \subset N, y \ggg_{C} x$ if $y \succ_{C} x$ and $z \succ_{C} x$ for all $z \notin \overline{L M}$ such that $z \succ y$; and (2) $y \gg x$ if there exists $C \in \mathcal{M}$ such that $y>_{C} x$. Let $\mathcal{V}(\mathfrak{C})=\{x \in A: \operatorname{not}(y \gg x), y \in A\}$.
3. $\mathcal{V}(\mathfrak{C})$ is non-empty.

Assume the contrary and consider an arbitrary site $x_{0} \in S$, and $x_{0} \notin \mathcal{V}(\mathfrak{C})$. There exists an alternative site $x_{1} \in A$ and $C \in \mathcal{M}$ such that $x_{1}>_{C} x_{0}$ i.e., $x_{1} \succ_{C} x_{0}$ and $z \succ_{C} x_{0}$ for any $z \in A$ such that $z \succ x_{1}$ and $z \notin \overline{L M}$. It follows that $P\left(x_{1}\right) \subseteq P\left(x_{0}\right) \cup\left(P\left(x_{1}\right) \cap \overline{L M}\right)$, and $\mathfrak{L}\left(P\left(x_{1}\right)\right) \leq \mathfrak{L}\left(P\left(x_{0}\right)\right)+\mathfrak{L}\left(P\left(x_{1}\right) \cap \overline{L M}\right) \leq$ $\mathfrak{L}\left(P\left(x_{0}\right)\right)+\mathfrak{L}(\overline{L M})$. Since $\overline{L M}=\bigcup_{i=1}^{n}\left[L M\left(\succeq_{i}, A\right)\right]$, then $\mathfrak{L}(\overline{L M}) \leq \sum_{i=1}^{n} \mathfrak{L}\left[L M\left(\succeq_{i}\right.\right.$, $A)]$ and $\mathfrak{L}\left[L M\left(\succeq_{i}, A\right)\right]=0$ for all $i=1, \ldots, n$ by hypothesis, therefore $\mathfrak{L}(\overline{L M})=0$ and $\mathfrak{L}\left(P\left(x_{1}\right)\right) \leq \mathfrak{L}\left(P\left(x_{0}\right)\right)$ i.e., $h\left(x_{1}\right) \leq h\left(x_{0}\right)$. Since $h\left(x_{0}\right)=\inf _{x \in A} h(x)$, then the inequality $h\left(x_{1}\right) \leq h\left(x_{0}\right)$ implies that $h\left(x_{1}\right)=h\left(x_{0}\right)$ and $x_{1} \in S$. We note two different situations described below.

Situation 1: Assume there exists a neighborhood $S\left(x_{1}\right)$ for which there is no $y \in S\left(x_{1}\right)$ satisfying $y \succ x_{1} . x_{1} \succ x_{0}$ and preferences are continuous, then there exists a neighborhood $S^{\prime}\left(x_{1}\right) \subseteq S\left(x_{1}\right)$ such that $y \succ x_{0}$ for all $y \in S^{\prime}\left(x_{1}\right)$. It follows that $S^{\prime}\left(x_{1}\right) \subseteq P\left(x_{0}\right)$ and $S^{\prime}\left(x_{1}\right) \subseteq\left(A-P\left(x_{1}\right)\right)$. Thus, $P\left(x_{1}\right) \subsetneq P\left(x_{0}\right)$ and $h\left(x_{1}\right)<h\left(x_{0}\right)$, which is a contradiction.

Situation 2: For all neighborhood $S\left(x_{1}\right)$ of x_{1}, there exists an alternative $y \in$ $S\left(x_{1}\right)$ such that, $y \succ x_{1}$. Let x_{2} be a site such that $x_{2}>_{C^{\prime}} x_{1}$. As previously, $P\left(x_{2}\right) \subseteq P\left(x_{1}\right) \cup\left(P\left(x_{1} \cap \overline{L M}\right)\right)$ and then $h\left(x_{2}\right)=h\left(x_{1}\right)$. We have $x_{2} \succ x_{1}$ and preferences are continuous, thus there exists a neighborhood $S\left(x_{1}\right)$ such that $x_{2} \succ a$ for any $a \in S\left(x_{1}\right)$. By assumption, there exists $y \in S\left(x_{1}\right)$ such that $y \succ x_{1}$. By continuity of preferences, there exists a neighborhood $S(y)$ of y such that $y^{\prime} \succ x_{1}$ for any $y^{\prime} \in S(y)$. Hence for all $y^{\prime} \in S(y) \cap S\left(x_{1}\right)$, we have
$y^{\prime} \succ x_{1}$ and $x_{2} \succ y^{\prime}$, so $h\left(x_{1}\right)>h\left(y^{\prime}\right)$ and $h\left(y^{\prime}\right)>h\left(x_{2}\right)$, then $h\left(x_{1}\right)>h\left(x_{2}\right)$, a contradiction.

Therefore, $\mathcal{V}(\mathfrak{C})$ is non-empty.
4. Let $x_{0} \in \mathcal{V}(\mathfrak{C})$, prove that $x_{0} \in O(\mathfrak{C})$.

Assume that $x_{0} \notin O(\mathfrak{C})$, then there exists $x_{1} \in A$ and $C \in \mathcal{M}$ such that $x_{1} \gtrdot_{C} x_{0}$. Let $z \notin \overline{L M}$ such that $z \succ_{T} x_{1}$, for $T \in \mathcal{M}$. We would like to demonstrate that $z \succ_{C} x_{0}$. First, note that $z \succ_{T} x_{1}$, and $x_{1} \gtrdot_{C} x_{0}$ implies that $z \succeq_{C} x_{0}$.
a) If $z \succ_{i} x_{0}$ for any $i \in C$, then $z \succ_{C} x_{0}$ and $x_{1} \gg x_{0}$, which is a contradiction.
b) Assume that there exists $i \in C$ such that $z \sim_{i} x_{0} . z \succ_{T} x_{1}$ and preferences are continuous, then there exists a neighborhood $S(z)$ such that $z^{\prime} \succ_{T} x_{1}$ for all $z^{\prime} \in S(z)$. Because $z \notin \overline{L M}$, then $z \notin L M\left(\succeq_{i}, A\right)$ for any $i \in N$. Hence, there exists $z^{\prime} \in S(z)$ such that $z \succ_{i} z^{\prime}$. Since, $z \sim_{i} x_{0}$, then $x_{0} \succ_{i} z^{\prime}$ by transitivity. Also, $z^{\prime} \in S(z)$, therefore $x_{0} \succ_{i} z^{\prime} \succ_{T} x_{1} \succ_{i} x_{0}$ and by transitivity, $x_{0} \succ_{i} x_{0}$ if $i \in C \cap T$. Otherwise, if $i \notin T$, then, given that $T \cap C \neq \emptyset$, there exists $i^{\prime} \in T \cap C$ such that $x_{0} \succ_{i^{\prime}} z^{\prime} \succ_{i^{\prime}} x_{1} \succ_{i^{\prime}} x_{0}$ or $x_{0} \succ_{i^{\prime}} x_{0}$ by transitivity, which is a contradiction and $x_{0} \notin \mathcal{V}(\mathfrak{C})$. In conclusion, $x_{0} \in O(\mathfrak{C})$.

References

Aldrich, D.P., 2010. Site fights: Divisive facilities and civil society in Japan and the West. Cornell University Press.

Aumann, R.J., Maschler, M., 1964. The bargaining set for cooperative games. Advances in Game Theory 52, 443-476.

Barberà, S., Berga, D., Moreno, B., 2012. Domains, ranges and strategy-proofness: the case of single-dipped preferences. Social Choice and Welfare 39, 335-352.

Baron, D.P., Ferejohn, J.A., 1989. Bargaining in legislatures. American Political Science Review 83, 1181-1206.

Chwe, M.S.Y., 1994. Farsighted coalitional stability. Journal of Economic Theory 63, 299-325.

Debreu, G., 1969. Neighboring economic agents. La Décision, Colloques Internationaux du C.N.R.S No. 171, Paris, 85-90.

Dutta, B., Jackson, M.O., Le Breton, M., 2005. The Banks set and the uncovered set in budget allocation problems, in: Social Choice and Strategic Decisions. Springer, pp. 163-199.

Dutta, B., Vohra, R., 2017. Rational expectations and farsighted stability. Theoretical Economics 12, 1191-1227.

Ehlers, L., 2002. Probabilistic allocation rules and single-dipped preferences. Social Choice and Welfare 19, 325-348.

Harsanyi, J.C., 1974. An equilibrium-point interpretation of stable sets and a proposed alternative definition. Management Science 20, 1472-1495.

Hildenbrand, W., 1974. Core and equilibria of a large economy. Press, Princeton, NJ .
Kimya, M., 2020. Equilibrium coalitional behavior. Theoretical Economics 15, 669-714.
Lahiri, A., Peters, H., Storcken, T., 2016. Strategy-proof location of public bads in a two-country model. Mathematical Social Sciences .

Manjunath, V., 2014. Efficient and strategy-proof social choice when preferences are single-dipped. International Journal of Game Theory 43, 579-597.

Mitchell, R.C., Carson, R.T., 1986. Property rights, protest, and the siting of hazardous waste facilities. The American Economic Review 76, 285-290.

Nash, J., 1953. Two-person cooperative games. Econometrica, 128-140.
Öztürk, M., Peters, H., Storcken, T., 2013. Strategy-proof location of a public bad on a disc. Economics Letters 119, 14-16.

Öztürk, M., Peters, H., Storcken, T., 2014. On the location of public bads: strategyproofness under two-dimensional single-dipped preferences. Economic Theory 56, 83-108.

Peters, H., Roy, S., Sadhukhan, S., Storcken, T., 2017. An extreme point characterization of strategy-proof and unanimous probabilistic rules over binary restricted domains. Journal of Mathematical Economics 69, 84-90.

Pongou, R., Tondji, J.B., 2018a. Political design meets policy complexity. Working Paper .

Pongou, R., Tondji, J.B., 2018b. A political reciprocity mechanism. Working Paper .
Ray, D., Vohra, R., 2014. Coalition formation, in: Handbook of Game Theory. North Holland: Elsevier. volume 4 (H. Peyton Young and Shmuel Zamir, eds.), pp. 239-326.

Serrano, R., 2020. Sixty-seven years of the nash program: time for retirement? SERIEs , 1-14.

Yamamura, H., 2016. Coalitional stability in the location problem with single-dipped preferences: An application of the minimax theorem. Journal of Mathematical Economics $65,48-57$.

[^0]: *A special thanks to Roland Pongou for his incredible guidance at each step of this project. I would also like to acknowledge Victoria Barham, Edouard Djeutem, Diego Escobari, Lars Ehlers, Anthony Heyes, Jason Garred, Vikram Manjunath, Zephirin Nganmeni, Roland Pongou, Aggey Semenov, Wilfried Youmbi, and Stanley Winer for their keen insights and useful remarks. I am also grateful to Tatiana Nouya for reading and editing an earlier version of this paper. The author declares that this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
 *Corresponding author
 Email address: jeanbaptiste.tondji@utrgv.edu (Jean-Baptiste Tondji)

