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On the Dynamic Analysis of Cournot-Bertrand Equilibria∗

Aggey Semenov† and Jean-Baptiste Tondji

July 14, 2019

Abstract

We consider a setting where firms in the first stage invest in cost-reducing R&D. In

the market stage, one firm sets a quantity, and another sets a price. We prove that the

quantity-setting firm invests more in R&D, has a lower price, and produces higher quan-

tity than the price-setting firm. We also consider welfare implications.

JEL: D43, L13, O32

Keywords: Cournot-Bertrand model, Product differentiation, R&D, Welfare.

1 Introduction

Static models of product differentiation mostly focus on quantity (Cournot) and price (Bertrand)

types of competition. However, there are sectors where firms engage in mixed (Cournot-

Bertrand) competition; some firms offer quantity contracts to customers, and other firms offer

price contracts. Tremblay et al. (2013) and Tremblay & Tremblay (2011) give an example of

the market for small cars, where Honda and Subaru set the quantities and Saturn and Scion

set prices. Flath (2012) shows that for 30 out of 70 Japanese industries companies use some

form of mixed competition. In the Japanese home electronics industry, Panasonic (formerly

known as Matsushita) uses quantity competition while Sanyo employs pricing strategies (Sato

(1996)). Klemperer & Meyer (1986) argue that in international consulting firms the manage-

ment consulting division operates in a quantity-setting fashion, whereas the auditing division

sets a strictly defined fee per hour.

Vives (2001) and Singh & Vives (1984) study the choice of contracts in a differentiated

duopoly with linear demands. They show that with symmetric costs, firms prefer Cournot game

to the Bertrand and mixed settings when products are substitutes. Several studies have also

shown that firms often compete against each other by investing in R&D to reduce production

cost (see, for instance, Qiu (1997) and the references therein). Such a dynamic framework

changes the post-innovation demand and cost structures of the firms and might affect the

market competition.

∗Corresponding author : Jean-Baptiste Tondji, address: The University of Texas Rio Grande Valley, College

of Business and Entrepreneurship, Department of Economics and Finance, 1201 West University Dr., ECOBE

216, Edinburg, TX 78539, telephone number: +1 (956)-309-9080, e-mail: jeanbaptiste.tondji@utrgv.edu
†Department of Economics, University of Ottawa, Aggey.Semenov@uottawa.ca
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2 THE MODEL

In this paper, we consider a duopoly model, where in the first stage firms invest in cost-

reducing R&D. In the second stage, firms engage in mixed competition. We provide new findings

that the quantity-setting firm may undertake more investments than the Cournot firm, and sets

a price which is lower than the price-setting firm’s price. We show that mixed competition yields

greater consumer surplus and social welfare than Cournot competition, and for close substitutes,

there is over-production for the quantity setting firm.

2 The model

Consider a sector of an economy with two firms i = 1, 2 producing differentiated goods q1

and q2 respectively. A representative consumer’s utility function is: U(q1, q2) = α(q1 + q2) −
(q2

1 + 2βq1q2 + q2
2)/2, α > 0, β ∈ [0, 1]. The parameter β measures the degree of product

differentiation, with differentiation increasing as β is close to zero. The inverse market demands

are linear: pi = α− qi − βqj, i, j = 1, 2; i 6= j.

Firms may invest in cost-reducing R&D. The pre-innovation costs for the two firms are

ci = c < α. If firm i engages in R&D, then by spending V (xi) on R&D, it lowers its marginal

cost by xi: ci = c− xi. We assume that V (xi) = v
x2i
2

, where v relates to the productivity of the

R&D technology (higher v means lower productivity).

Timing is the following. In the first stage, firms 1 and 2 simultaneously invest the amounts

xi, i = 1, 2 respectively in R&D. Firms observe the amount invested by their rivals. In the

second stage, firms compete in the market. Firm 1 chooses an output q1, while firm 2 chooses

a price p2.

We consider the subgame perfect Nash equilibrium. In the second stage, firms market profits

are π1(q1, p2;x1) = p1 (q1, p2) q1− (c−x1)q1 and π2(q1, p2;x2) = p2q2 (q1, p2)− (c−x2)q2 (q1, p2).

The equilibrium in the market subgame is

q1(x1, x2) =
(2− β)(α− c) + 2x1 − βx2

4− 3β2
and (1)

p2(x1, x2) =
α (1− β) (2 + β2) + c(2 + β − 2β2)− βx1 − 2(1− β2)x2

4− 3β2
. (2)

The equilibrium of the game (x∗1, x
∗
2, q
∗
1, p
∗
2) is described by best responses of each firm i

given the outcome of the induced market game

x∗i ∈ arg max
xi

Πi(xi, x
∗
j) = πi(q1(xi, x

∗
j), p2(xi, x

∗
j);xi)−

1

2
vx2

i ,

and q∗1 = q1 (x∗1, x
∗
2) , p∗2 = p2 (x∗1, x

∗
2) . Denote by v = 4(1+β)

(2+β)(4−3β2)
and v = 2(2−β2)

(2−β)(4−3β2)
. Note

that v > v . The equilibrium R&D levels are

x1 =
χ

∆

v − v
v

, and x2 =
χ

∆

v − v
v

, (3)

where ∆ ≡ 8(1− β2)(2− β2)− 2(4− 3β2)(8− 8β2 + β4)v + (4− 3β2)3v2 and χ = 8(α− c)(1−
β2)(2− β2).

Assumption 1: v > 3α
c

.
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2 THE MODEL

This assumption guarantees positive investments in R&D for both firms and positive post-

innovation costs. Also, Assumption 1 is needed for the second-order and stability conditions.

If R&D investments are very productive, the firms will invest more to gain a competitive

advantage in the market game which will lead to zero and even negative post-innovation costs.

Throughout the remaining of the paper, we assume that Assumption 1 holds.1

Using (1) - (3), we obtain the equilibrium prices and quantities

q1 = q0
1 +

χ

(4− 3β2) ∆

(
2
v − v
v
− β v − v

v

)
, (4)

p1 = p0
1 −

χ

(4− 3β2) ∆

((
2− β2

) v − v
v

+
(
1− β2

)
β
v − v
v

)
, (5)

q2 = q0
2 +

χ

(4− 3β2) ∆

((
2− β2

) v − v
v
− β v − v

v

)
, and (6)

p2 = p0
2 −

χ

(4− 3β2) ∆

(
β
v − v
v

+ 2(1− β2)
v − v
v

)
, (7)

where p0
i and q0

i are equilibrium prices and quantities in the game without R&D. The equilibrium

profits are

Π1 =
χ2v

2∆2

(
(4− 3β2)2v

8(1− β2)
− 1

)(
v − v
v

)2

and Π2 =
χ2v

4∆2

(
(4− 3β2)2v

(2− β2)2
− 2

)(
v − v
v

)2

. (8)

Comparisons based on (3) - (8) yield the following proposition.

Proposition 1. For any β ∈ (0, 1)

a) x1 > x2 > 0,

b) q1 > q2 and p1 < p2,

c) Π1 > Π2 > 0.

Both firms use R&D to minimize costs when products are differentiated. Firm 1 invests more

in R&D than firm 2. Consider the incentives of firms to invest in R&D. Using the first-order

conditions and the Envelope Theorem we have

∂Π1

∂x1

=
∂π1

∂p2

∂p2

∂x1︸ ︷︷ ︸
strategic effect

+ q1︸︷︷︸
size effect

−V ′(x1)︸ ︷︷ ︸
cost effect

, and
∂Π2

∂x2

=
∂π2

∂q1

∂q1

∂x2︸ ︷︷ ︸
strategic effect

+ q2︸︷︷︸
size effect

−V ′(x2)︸ ︷︷ ︸
cost effect

.

The strategic effect reflects the fact that a firm’s R&D reduces its production cost, and

consequently affects the competitor’s strategic choice. Investing x1 in R&D has a negative

effect on p2, ∂p2
∂x1

< 0. Because goods are substitutes, the effect of p2 on firm 1’s profit is

positive: ∂π1
∂p2

= q1
∂p1
∂p2

> 0. It follows that the strategic effect is negative for firm 1. For firm

2, an increase in x2 induces firm 1 to decrease q1,
∂q1
∂x2

< 0. The effect of q1 on firm 2’s profit is

negative, ∂π2
∂q1

= (p2− (c− x2)) ∂q2
∂q1

< 0. Thus, the strategic effect is positive for firm 2. Next,

1Note that Qiu (1997) uses a weaker assumption for Cournot competition, v > α
c , and a stronger assumption

(9) for Bertrand competition.
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2 THE MODEL

a firm’s R&D reduces its unit cost of production. Therefore, ceteris paribus, the larger is the

production, the higher is the size effect. Finally, investing in R&D is costly, i.e., the cost effect

is negative for both firms.

Proposition 1 states that firm 1’s size effect is stronger than the firm’s 2 size effect. Moreover,

the size effect dominates the negative strategic effect. To see the intuition, we note that the

residual demands for firms 1 and 2 are q1 = 1
1−β2 (α (1− β)− p1 + βp2) and q2 = α− p2 − βq1

respectively. Firms choose price or quantity from the residual demands, which are defined by

the competitor’s strategy choice. Note that the residual demand for firm 1 is more elastic

than for firm 2. In the first case, the absolute value of the slope is 1
1−β2 , and in the second

case, it is 1. Note also that investments in innovations have the opposite effect on residual

demands. Investment x1 lowers costs for firm 1 and thus lowers p2. This shifts the residual

demand for firm 1 downwards. Investment x2 has a decreasing effect on q1 and, therefore,

increases the residual demand for firm 2. Prices and quantities are defined by intersections

of corresponding post-innovation costs c − xi with marginal residual revenues. Consider an

increase in x1. Even though the strategic considerations shift the residual demand downwards,

because it is sufficiently elastic, this increase in x1 has a large positive effect on q1. Thus, the

size effect is strong. Similarly, because the residual demand for firm 2 is relatively inelastic, an

increase in x2 has a smaller size effect.

Without innovations, we have p0
1 > p0

2.2 With innovations, the price p1 is lower than p2

because of two factors. First, firm 1 invests more in cost reduction than firm 2. Second, the

residual demand curve is more elastic for firm 1 than for firm 2. Thus, firm 1 has greater

incentives to lower the price. Finally, firm 1 is more efficient than firm 2 which leads to the

ranking of profits.

In Propositions 2 and 3, we compare mixed competition with Bertrand and Cournot. In

these comparisons, we assume that condition (9) below is satisfied to guarantee the regularity

conditions for respective equilibria (see also Qiu (1997)).3

v >
2 (2− β2)

2

(1− β2) (4− β2)2 . (9)

Denoting by C and B the outcomes in Bertrand and Cournot games with R&D, the optimal

R&D investments, prices, and quantities are

xB =
2(2− β2)(α− c)

∆B

, xC =
4(α− c)

∆C

, pB =
(2− β)(1 + β)(2 + β)(α(1− β) + c)v − 2α(2− β2)

∆B

,

(10)

pC =
(4− β2)(α + c+ βc)v − 4α

∆C

, qB =
(4− β2)(α− c)v

∆B

, and qC =
(4− β2)(α− c)v

∆C

, (11)

where ∆C = v(2 + β)2(2 − β) − 4, and ∆B = (2 − β)2(1 + β)(2 + β)v − 2(2 − β2). From (10)

and (11), we immediately obtain xC > xB, qC < qB, and pC > pB.

2See also Tremblay & Tremblay (2011).
3Note that condition (9) is involved only when we consider comparisons with Bertrand model.
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3 CONSUMER SURPLUS, PROFITS, AND WELFARE

Proposition 2. For any β ∈ (0, 1)

a) x2 < xB < xC,

b) there exist 0 < β2 < β1 < 1 such that x1 > xC for β ∈ (0, β2) , xB ≤ x1 ≤ xC for

β ∈ [β2, β1] and x1 < xB for β ∈ (β1, 1),

c) pB < p1 < p2 < pC, and q2 < qC < qB < q1.

In Bertrand and Cournot models, the strategic effect is negative and positive respectively.

The residual demands for Cournot competition are more inelastic than for Bertrand competi-

tion. Thus, the size effect is stronger for Bertrand competition than in Cournot competition.

However, the size effect is not enough to overcome the differences in strategic effects (see Qiu

(1997)). Thus, we have xC > xB. The relative importance of the positive strategic effect

compared to the size effect for firm 2 leads to x2 < xB. The ranking of investment by firm

1 depends on the level of substitutability of goods. When β increases, the negative strategic

effect becomes stronger (it may be even stronger than for Bertrand competition). This drives

x1 down compared to xC , and for large β, x1 is below xB. However, these differences in levels

of innovations are not enough to change the ranking of prices and quantities.

It is clear that the consumer surplus under Bertrand competition is greater than under

Cournot competition. Comparisons with the mixed competition are more intricate. Prices for

the mixed competition are between prices for Cournot and Bertrand. However, the gap between

quantities q2 and q1 is quite large. We consider welfare implications in the next section.

3 Consumer Surplus, Profits, and Welfare

The Bertrand and Cournot consumer surpluses and profits with R&D are

CSB =
(α− c)2v2

∆2
B

(1 + β)(4− β2)2, ΠB =
(α− c)2v

∆2
B

(
(4− β2)2(1− β2)v − 2(2− β2)2

)
,

CSC =
(α− c)2v2

∆2
C

(1 + β)(4− β2)2, ΠC =
(α− c)2v

∆2
C

(
(4− β2)2v − 8

)
,

respectively. We have

Proposition 3. For any β ∈ (0, 1)

a) CSC < CS < CSB,

b) Π2 < ΠB < ΠC, and there exists a unique v1 = v1(β) such that

Π1 − ΠC =

{
≥ 0 if v ≤ v1

< 0 if v > v1

,

c) WC < W < WB.

Vives (2001) and Singh & Vives (1984) show that without R&D, consumer surplus is the

largest for Bertrand competition. Qiu (1997) finds the same result with cost-reducing R&D. We

confirm the robustness of this result. Prices are still lower in the case of Bertrand competition.

High quantity and low price for firm 1 are not enough to overcome the inefficiency generated by
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3 CONSUMER SURPLUS, PROFITS, AND WELFARE

firm 2. Singh & Vives (1984) establish that without R&D, Cournot competition leads to higher

profits than Bertrand and mixed competition when products are substitutes. We show that

this is not always the case when firms may invest in R&D. In the case of sufficiently productive

innovations, firm 1’s profit dominates the Cournot’s profit. In this case, firm 1 invests more

in cost-reducing innovation. Finally, Qiu (1997) shows that WB > WC ; Bertrand competition

is always more efficient than Cournot. We find that mixed competition leads to intermediate

welfare.

Social Planner

The social planner’s problem is

max
x1,x2,q1,q2

WS = U(q1, q2)−
2∑
i=1

(c− xi)qi −
1

2
v

2∑
i=1

x2
i .

Assumption 2: v > 1
1−β .

Assumption 2 ensures that the second-order condition for the social planner’s problem is

satisfied. Assumption 1 guarantees hat optimal post-innovation costs are positive. The social

planner’s optimal decision is symmetric and given by

xi = xS =
α− c

(1 + β)v − 1
, qi = qS =

(α− c)v
(1 + β)v − 1

. (12)

Proposition 4. Assume Assumptions 1 and 2 hold. Then,

a) for any given β ∈ (0, 1) xS > x1 > x2,

b) for any given β ∈ (0, 1), qS > q2,

c) if β ∈
(

0,
√

17−1
4

)
, then qS > q1,

d) there exist β3 ∈
(√

17−1
4

, 1
)
and a unique v2(β) such that qS < q1 whenever β ∈ [β3, 1) or

[β < β3 and v > v2(β)].

In the social planner’s model, the strategic effect vanishes. Even though firm 1 invests

more than firm 2, it never overinvests. Interestingly, for close substitute products, firm 1 may

produce more than the social optimum.4 In this case, the negative strategic effect is strong and

to overcome it, in equilibrium, firm 1 produces more than the socially optimal quantity.

Acknowledgments

We are grateful to Roland Pongou, Elena Quercioli and especially Gamal Atallah for their

insightful comments and useful discussions. We also acknowledge the editor and anonymous

referee for their thoughtful suggestions.

4Qiu (1997) finds that qS is always greater than qB .
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3 CONSUMER SURPLUS, PROFITS, AND WELFARE

Proofs

Proof of Proposition 1. a) x1

x2
= v−v

v−v
v
v > 1, since v > v, and v > v. b) q1 − q2 = q0

1 − q0
2 +

χ
(4−3β2)∆

{
(2 + β)(v−vv −

v−v
v ) + β2 v−v

v

}
and p1−p2 = p0

1−p0
2−

χ
(4−3β2)∆

{
(1− β)

(
2 + β2

) v−v
v + (2 + β)(1− β2) v−vv

}
.

Given that q0
1 − q0

2 > 0, and p0
1 − p0

2 < 0, it follows that q1 > q2, and p1 < p2. c) Since v−v
v > v−v

v ,

Π1 −Π2 >
χ2(4−3β2)v2

32∆2
CB(1−β2)(2−β2)2

( v−vv )2g(β), with g(β) = 2(2− β2)2 − 8(1− β2) ≥ 0.

Proof of Proposition 2. a) x2 − xB = 2β4v(2−β2)(α−c)
∆∆B

A(v;β), with A(v;β) = a1 + a2v, where a1 =

−2(2 − β − 2β2), and a2 = −β2(4 − 3β2) < 0. Let a = −a1a2 , a is an increasing function with a(1) = 2,

and a ≥ 0 if β ≥ (
√

17 − 1)/4. For any β, A(v;β) < 0 if v > a. For any v we have v > a. Therefore,

A(v;β) < 0, and x2 < xB , because sign (x2 − xB) = sign (A(v;β)). Following that approach, we prove that

x2 < xC . It is immediate that xB < xC . b) x1 − xB = 2β3v(2−β2)(α−c)
∆∆B

B(v;β), where B(v;β) = b1 + b2v, with

b1 = −16 + 8β + 24β2 − 8β3 − 8β4 + 2β5, and b2 = 32− 16β − 64β2 + 24β3 + 38β4 − 9β5 − 6β6. We have sign

(x1 − xB) = sign (B(v;β)). Then, given any v, there exists an unique β1—the root of order 4 of a polynomial

of degree 6—, such that B(v;β) ≥ 0 if 0 < β ≤ β1 and B(v : β) < 0 if β1 < β < 1. Similarly, we compare x1

and xC , and items in c).

Proof of Proposition 3. a) CS−CSC = (α−c)2v2
2∆2∆2

C
C(v;β), where G(v;β) = −2(1+β)(4−β2)2(8(2−3β2 +

β4)+2(−4+3β2)(8−8β2+β4)v−(−4+3β2)3v2)2+(4−3β2)2(4(8+β(8+β(2+β)(−6+β(−3+4β))))∆2
C+4(−4+

3β2)∆2. Using Mathematica (Wolfram Research Inc. (2019)), we can write C(v;β) = c0+c1v+c2v
2+c3v

3+c4v
4,

where each ci is a function of β. For any β, there are two real solutions to C = 0, which are c(β) and c(β),

with c > c. The latter is a decreasing function whereas the former is an increasing function with c(1) = 4/3.

Moreover for any v > c, C(v;β) > 0. Since v > c, then, for any β ∈ (0, 1), CS > CSC . Using the same

approach, we prove that CS < CSB , and it is immediate that CSB > CSC .

b) It is also immediate that under (9), ΠB − ΠC < 0. Now, we write Π2 − ΠC = (α−c)2v
∆2∆2

C
D(v;β), where

D(v;β) = (1− β)2[−2(2− β2)2 + (4− 3β2)2v][4(1 + β)− (2 + β)(4− 3β2)v]2∆2
C + (8− (4− β2)v)∆, and sign

(Π2−ΠC)= sign (D(v;β)). Simplification and term collection yield D(v;β) = v(d1 +d2v+d3v
2 +d4v

3 +d5v
4),

where each di is a function of β. Given any β, there exist four real solutions to D = 0, which we denote

by di(β), i = 1, 2, 3, 4. It can be shown that d1 is a decreasing function with d1(0) = 0.5, d2, d3, and d4 are

increasing functions with d2(1) = 8/9, and d3(1) = d4(1) = 2. Therefore, for any β ∈ (0, 1), D(v;β) < 0 if

0 < v < d1 or d2 < v < d3 or v > d4, and D(v;β) > 0 if d1 < v < d2 or d3 < v < d4. We have v > d4(β)

for any β ∈ (0, 1), and the result follows. We use the same reasoning to compare Π1 and ΠC , and prove that

Π2 −ΠB < 0.

c) W −WB = (α−c)2v
2∆2∆2

B
E(v;β), where E(v;β) = e0 + e1v + e2v

2 + e3v
3 + e4v

4 + e5v
5, with each ei as a

function of β. Under (9), there are two real solutions to E = 0, which we denote e(β), and e(β), with e > e.

The inequality v < e contradicts Assumption 1. Moreover, there exists a positive number s < β, such that

E(v;β) < 0 for any v > e and β < s. Also, if β ≥ s, and v > e, we can’t have E(v;β) ≥ 0. However, if β ≥ s,

then E(v;β) < 0 if v > 3 and β < 1. Since v > 3, we conclude that E(v;β) < 0, and W < WB . Using the

same reasoning, we prove that W > WC .

Proof of Proposition 4. Part a) is straightforward.

b) We write, q2−qS = v(α−c)
∆∆S

F (v;β), where ∆S = (1+β)v−1, F (v;β) = f0+f1v+f2v
2, with f0 = −4β2(1−

β2) < 0, f1 = 16−20β2 +4β3 +2β4−3β5 +3β6 > 0, f2 = −32+16β+64β2−40β3−42β4 +33β5 +9β6−9β7 < 0,

and sign (q2 − qS) = sign (F (v;β). Since the second derivative is Fvv = 2f2 < 0, F is strictly concave in v.

Note that f2
1 − 4f0f2 > 0 for all β ∈ (0, 1). Thus, given any β, there are two solutions to F = 0, which are,
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f(β) =
−f1−

√
f2
1−4f2f0

2f2
, and f(β) =

−f1+
√
f2
1−4f2d0

2f2
, with f < f . Therefore, F (v;β) ≥ 0 if f ≤ v ≤ f , and

F (v;β) < 0 if 0 < v < f or v > f . It can be shown that f is an increasing function with f(1) = 2. Under

Assumption 1, v > f for any given β. Therefore, for any β, F (v;β) < 0, and q2 < qS .

c) q1 − qS = v(α−c)
∆S∆ G(v;β), where G(v;β) = g0 + g1v+ g2v

2, with g0 = 2β2(2− β2) > 0, g1 = (4− 3β2)[4 +

β2(−8 + β(−1 + 2β))], g2 = (4 − 3β2)2(−2 + β + 2β2), and sign (q1 − qS) = sign (G(v;β). Note that for

any given β, there are two real solutions to G = 0, which we denote g(β) and g(β), with g(β) < 0 for any β.

Moreover, g2(β) ≥ 0 if β ∈ (0,
√

17−1
4 ], and g2(β) < 0 if β ∈ (

√
17−1
4 , 1). Assume that β ∈ (0,

√
17−1
4 ]. Then, the

second derivative Gvv = 2g2 ≥ 0, and G is concave in v. Hence, for any given v, G(v;β) ≥ 0 if 0 < v ≤ g, and

G(v;β) < 0 if v > g. Under Assumption 1, G is always negative, and this happens only if v > g. Given α > c,

then v > 3. Hence, if v ≤ 2.5(5 +
√

17), we have G < 0. Otherwise, v > 2.5(5 +
√

17), then we need β <
√

17−1
4

to have G < 0, which is satisfied. It follows that for any β ≤
√

17−1
4 , G(v;β) < 0, and q1 ≤ qS .

d) Assume that β ∈ (
√

17−1
4 , 1). Then, the second derivative Gvv = 2g2 > 0, and G is strictly convex in

v. Hence, for any given v which satisfies Assumption 2, G(v;β) ≥ 0 if v ≥ g, and G(v;β) < 0 if g < v < g.

Consider β3 the root of degree 3 of the polynomial −16 + 40x2 + 8x3 − 28x4 − 16x5 + 7x6 + 6x7. Given any

β ≥ β3, and any v that satisfies Assumptions 1 and 2, then v > g. Therefore, G(v;β) > 0, and q1 − qS > 0. If

β < β3, then G(v;β) > 0 whenever v > g. Take v2 = g, and q1 > qS .
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