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Abstract

The standard Bowen (Bowen, 1943) model of political competition with single-peaked preferences

predicts party convergence to the ideal point supported by the median voter, with the number

of equilibrium policies not exceeding two. This fundamental result assumes majority rule and

unidimensional policy space. Relaxing these two assumptions, we extend this model to static and

dynamic political economies where the voting rule is a supermajority rule, and the policy space

is totally ordered, although it may not be unidimensional. Voters’ strategic behavior is captured

by the core in static environments and by the largest consistent set in dynamic environments.

In these settings, we determine the exact number of equilibria and show that it is an increasing

correspondence of the supermajority’s size. This result has implications for the depth of policy

diversity across structurally identical political economies governed by supermajority rules. We

develop an application to immigration policies.
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1. Introduction

The standard Bowen model (Bowen, 1943; Black, 1948; Downs, 1957) of political competition

with single-peaked preferences under majority rule generally predicts party convergence to the

ideal point supported by the median voter. This fundamental result assumes majority rule and a

unidimensional policy space. Relaxing these two assumptions, we extend this model to a spatial

model of political competition between an incumbent policy and an alternative under two different

decision-making environments, one being static and the other being dynamic. For adoption, the

alternative must obtain the support of a supermajority of voters who, by assumption, hold single-

peaked preferences over a totally ordered policy space, which need not be a uni-dimensional

set. In the static setup, we focus on the set of equilibrium policies in the core (Gillies, 1959).

Equilibrium policies are those which, if already the status quo, are never defeated in a pairwise

supermajoritarian election against alternatives in the policy space.4 In the dynamic setup, agents

make amendments sequentially and the game can go on indefinitely. In this setting, we focus on

the set of equilibrium policies in the largest consistent set (Chwe, 1994). This solution concept

assumes that agents are farsighted.5 In both cases, our main finding is to determine the number

of equilibria and show how it depends on the supermajority’s size.6 We discuss implications for

the depth of policy diversity and divergence across structurally identical political economies, and

develop an application to immigration policies.

We consider a voting body, N = {1, 2, ..., n}, composed of a finite number of agents and endowed

with a supermajority rule, Lα, and a non-empty totally ordered policy space, Z. The policy space

Z represents the set of possible policies—the number of points or ideological approaches—to a

given policy problem. We assume that Z is totally ordered by a binary relation denoted ≥Z (i.e,

4The core, like the Nash equilibrium, is regarded as a pioneer solution concept. In fact, it is the equilibrium
concept used in the pioneering works of Bowen (1943), Black (1948), and Downs (1957), although it is not called
as such in these studies. Note, however, that all our results are highly robust to alternative solution concepts (for
example, top cycle, the uncovered set, the Banks set, etcetera). Proofs are available upon request.

5To our knowledge, our paper is the first to examine this question in a dynamic setting where agents are
farsighted.

6While we generalize the Median Voter Theorem as a special case of our result, this is not our main finding.
Our main goal is to count the number of equilibria as a function of the supermajority rule and discuss its empirical
implications.
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≥Z is reflexive, transitive, antisymmetric, and complete), and we denote by >Z the strict part

of this relation. We assume that agents’ preferences are single-peaked with respect to the strict

order >Z on Z. The supermajority rule Lα is a function which maps each coalition C ⊆ N

into 1 or 0. Given a threshold α ∈ [1/2, 1], Lα(C) = 1 when either the coalition C consists of

more than αn members if α < 1, or C consists consists of n members if α = 1; we say such C

is a winning coalition, and it holds power to amend a policy under consideration in the election

process. Coalitions for which Lα(C) = 0 are losing coalitions, and they do not hold the right to

amend policies.

We examine the minimum and the maximum number of equilibrium policies under a pairwise

supermajoritarian election between a status quo policy, z0, chosen by Nature, a lottery or an

agent, and an alternative policy z1 chosen by an agent from the set Z \ {z0}. Agents have equal

probabilities of being selected, by Nature or a lottery, to make proposals against the status quo

z0. If z0 wins, meaning that no winning coalition under Lα chooses z1 over z0, then it remains

in place and the contest ends. If z0 loses (z1 wins), then z1 replaces z0 and the contest ends. An

equilibrium policy is never defeated in the election process. we find that the minimum number

of equilibrium policies is a constant function of the supermajority’s size. However, the maximum

number of equilibria is an increasing function of the supermajority needed to pass legislation and

is a function of the way the incumbent policy is selected. This number represents the depth of

policy diversity across structurally identical political economies under supermajority rules. More

precisely, if Nature randomly selects a legislator to make a proposal, the maximum number of

policies is finite, and it is a non-decreasing function of the supermajority’s size α (Theorem

1).7 It follows that the number of equilibrium policies is a non-decreasing correspondence of the

supermajority’s size needed to pass a policy (see Figure 1). One corollary of this result is the

existence of a unique equilibrium under majority rule (α = 1
2
) when there are an odd number

of voters and the existence of, at most, two equilibria when there are an even number of voters

(Corollary 1). The familiar Median Voter Theorem (MVT) (Black, 1948; Downs, 1957), then, is a

particular case of our result, which extends it to a more general setting. If Nature randomly selects

7The idea of selecting legislators and policymakers by a lottery system, also called “sortition”, is old; it dates
to the fourth century BC and is still practiced today (Manin, 1997; Wantchekon and Neeman, 2002; Procaccia,
2019).
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the incumbent policy from the policy space, the set of equilibrium policies becomes a continuum—

a convex and compact subset of the policy space—and we determine its exact bounds (Theorem

2). These findings are robust, in that they continue to hold when legislators display farsighted

behavior in the dynamic setting (Theorem 3).

A practical implication of our analysis is that economies that are identical in terms of their

policy spaces, voters’ preferences, and voting rule may end up diverging in terms of their policy

choice. Theorems 1, 2, and 3 provide the possibility to quantify the extent of this divergence.

In particular, under majority rule, no divergence is possible, unless the number of voters is even.

Under a supermajority rule, policies can diverge, and the policy gap is an increasing function of

the supermajority’s size. Our results can also be used to determine the number of “competing”

political parties in a given election under supermajority rules. Duverger (1963) was among the

first scholars to examine the relationship between electoral systems and the number of parties in a

political economy. He focused primarily on the plurality rule, whereas our focus is on supermaority

rules. He proposed what are known today as the Duverger’ law and the Duverger’s hypothesis.

The Duverger’s law predicts that two major parties will form under the plurality rule (Duverger,

1963, 217), and the Duverger’s hypothesis states that “the simple-majority system with second

ballot and proportional representation favors multi-partyism” (Duverger, 1963, 239). Our analysis

can be seen as an extension of the Duverger’s ideas to supermajority rules in static and dynamic

models of political competition. We find, in particular, that simple majority rule favours a two-

party system, which offers an anology to Duverger’s law. However, this law fails under larger

majority requirement: the maximum equilibrium number of political parties is a non-decreasing

function of the supermajority’s size.

By focusing on the number of equilibria in a model of spatial political competition, we clearly

depart from the extant literature that has primarily studied the question of equilibrium existence

(see, for example, Feldman and Serrano (2006) for a thorough overview of these findings), but has

completely overlooked the issue of number of equilibria. More generally, supermajority rules have

been studied in terms of their equilibrium properties (see, for instance, Fey (2003), Tchantcho

et al. (2010), Peleg (1978), and Freixas and Kurz (2019)) and as basis for generating more

complex voting rules (see, for example, Taylor and Zwicker (1993), Freixas and Puente (2008),
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and Guemmegne and Pongou (2014)). Our analysis departs from these literatures by focusing

on the number of equilibria instead and deriving implications for the depth of policy diversity

across structurally similar political economies. In so doing, we also extend classical results to an

environment that is more general.

The paper proceeds as follows. In Section 2, we introduce preliminary concepts. Section 3

examines the number and range of equilibrium policies under static and dynamic political settings.

In Section 4, we use our results to explain policy diversity across identical political economies.

We conclude in Section 5.

2. Preliminary Concepts

We model a political economy as a list P = (N,Z, (�i),Lα), where: (a) N = {1, 2, ..., n} is a

voting body, composed of a finite number of agents (we assume that n is at least 2); (b) Z is a

non-empty policy space, which is totally ordered by a binary relation≥Z that is reflexive, transitive,

antisymmetric, and complete (we denote by >Z the strict part of the binary relation ≥Z); (c) �i
denotes agent i’s preference relation over Z and (�i) denotes a preference profile over Z; and

(d) Lα is a supermajority rule (or qualified majority) of size α (α ∈ [1
2
, 1]). A supermajority rule

is a distribution of political decision-making power among the various coalitions of agents eligible

to vote (for simplicity, we assume that each agent can vote). The aggregate function Lα is a

family of voting rules that includes from simple majority rule (α = 1
2
) up to unanimity (α = 1).

For any policies x, y ∈ Z, the intervals [x, y] (and ]x, y[) are subsets of Z defined as: [x, y] =

{z ∈ Z : y ≥Z z ≥Z x} (and ]x, y[= {z ∈ Z : y >Z z >Z x}), respectively. For a given

finite and non-empty set X, we denote by |X|, the cardinality of X (i.e., the number of elements

contained in X), and n the cardinality of N . For x, y ∈ Z, y �i x indicates that agent i weakly

prefers y to x; y �i x indicates that agent i prefers y to x; and y ∼i x indicates that agent i is

indifferent between y and x. Moreover, for S ⊆ N , y �S x indicates that y �i x for each i ∈ S

(we say S prefers y over x); and y �S x indicates that y �i x for some i ∈ S and y ∼j x for

other j ∈ S (we say S weakly prefers y over x).

Following the classical literature on spatial competition (see, for example, Bowen (1943) and

Black (1948)), we assume that the profile (�i) is single-peaked with respect to the strict order
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>Z on Z. It means that each agent has an ideal policy in the policy space Z, and policies that

are further from this ideal policy are preferred less. Formally, for each agent i ∈ N , there exists

a policy zpi ∈ Z such that: (1) for any other policy z 6= zpi , zpi �i z; and (2) for any policy z, z′,

if z >Z z′ >Z zpi , then z′ �i z, and, if zpi >
Z z >Z z′, then z �i z′.

3. Number and Range of Equilibrium Policies

In this section, we examine the existence and the maximum number of equilibrium policies under

one-shot political games (Section 3.1) and dynamic political games (Section 3.2). To perform

the analysis in one-shot games, we distinguish two cases: (i) an agent is randomly chosen to

make a proposal (Section 3.1.1); or (ii) the status quo policy is chosen by Nature (Section 3.1.2).

We assume that agents have equal probabilities of being selected, by Nature or a lottery as an

agenda setter. Controlling for temporal and geographic factors that affect agents’ preferences and

status-quo policies, what is the relationship between a legislative body’s voting rule and policy

stability?

3.1. One-shot Political Games

Political contests occur as follows:

1. At time t = 0, a policy z0 is randomly chosen chosen by Nature, a lottery, or an agent from

the policy space Z.

2. At time t = 1, a contest is organized between z0 (the status quo) and an alternative z1,

chosen exogenously by an agent from the set Z \ {z0}.

a) If z0 wins, meaning that no winning coalition under Lα chooses z1 over z0, then it

remains in place and the contest ends.

b) If z0 loses (z1 wins), then z1 replaces z0 and the contest ends.

The rational behavior in the one-shot political game above is straightforward. Each agent chooses

between the status quo policy and a political alternative. The incentive driving agents to vote

for an opposition policy is the condition that it is preferable to the status quo. Formalizing this

behavior, let �i denote the incentive by which agent i decides to support an opposition policy

z1 over the status quo z0. If agent i prefers z1 over z0 (i.e., z1 �i z0), agent i will vote for z1
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over z0, denoted as z1 �i z0. The policy z1 wins the pairwise supermajoritarian election if there

exists a winning coalition C that supports z1 over z0 (z1 �C z0). We can now introduce the

equilibrium set, defined as follows.

Definition 1 Let P = (N,Z, (�i),Lα) be a political economy and C be a winning coalition.

1. z′ defeats z (or z′ � z) thanks to C (i.e., z′ �C z) if C prefers z′ over z (i.e, z′ �C z).

2. z is defeated if there exists a policy z′ and a winning coalition C ′ such that z′ defeats z

thanks to C ′.

3. The equilibrium set E(P) consists of all undefeated policies. 2

An equilibrium policy is one that, if chosen as the status quo, could not be defeated or replaced

by another policy. In a pairwise contest between two policies, say z and z′, the former receives

votes from agents whose ideal points are closer than z to z′, and vice versa. Each agent’s payoff

depends on the distance between her ideal policy and the winning policy.

3.1.1. Nature Randomly Selects a Proposer

At time t = 0, an agent is randomly selected, by Nature or a lottery, to make a proposal. Agents

are identical with equal probabilities of being selected. The proposer chooses the status quo.

Given single-peakedness and rational behavior, each agent’s best choice is to propose the closest

equilibrium policy ideal to his ideal point as the status quo.8 The following theorem demonstrates

the existence of a policy that cannot be defeated in a pairwise supermajoritarian election and

provides the maximum number of policies that can be implemented. Before enunciating the

result, we introduce the following notation: for any real number x, the value bxc is the largest

integer less than or equal to x.

Theorem 1 Let P = (N,Z, (�i),Lα) be a political economy. Assume that voters are chosen

randomly with positive probability to make a proposal. If voters have single-peaked preferences

8One can trace a similar argument from the work of Downs (1957) and the seminal essay of Riker (1982) and
the references therein. Even if we assume that the proposer is not rational and he or she proposes his or her ideal
point as the status quo, our findings do not change. Throughout the paper, we assume that agents are rational
in their decisions.
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over Z, then there exists at least one equilibrium and the number of equilibria is finite. Formally:

1 ≤ |E(P)| ≤ min{2bαnc+ 2− n, n}.

The maximum number of equilibria in P is n when α = 1, and 2bαnc+2− n when α ∈ [1
2
, 1).2

Let z ∈ Z be a policy and define S(z) as the number of agents for whom z is the peak. A

coalition of agents S has a veto right to amend a given status quo if S is a winning coalition,

i.e., |S| > αn. Consider the functions f and g defined on the policy space Z as follows: for any

policy z′ ∈ Z,

f(z′) =
∑
z≥Zz′

S(z)− αn, and g(z′) =
∑
z′≥Zz

S(z)− αn.

Let define the following sets:

Zf = {z′ ∈ Z : f(z′) > 0} , and Zg = {z′ ∈ Z : g(z′) > 0} .

To prove Theorem 1, the following lemmas proved useful.

Lemma 1 Let P = (N,Z, (�i),Lα) be a political economy, with α ∈ [0, 1). There exist two

peaks z∗1 and z∗2 such that: z∗1 minimizes f over Zf , and z∗2 minimizes g over Zg. 2

Proof (Lemma 1) Notice that neither Zf , nor Zg is empty. In fact, given that zmin and zmax

are respectively the smallest and the greatest peaks of Z, then f(zmin) = n−αn = (1−α)n > 0

and g(zmax) = n−αn = (1−α)n > 0, since α < 1, which implies that zmin ∈ Zf and zmax ∈ Zg,

in turn implying that Zf 6= ∅ and Zg 6= ∅. Given that Zf is finite and f is a strictly decreasing

function, there exists a unique peak z∗1 which minimizes f over Zf . In addition, for any peak

z′ >Z z∗1 , f(z′) ≤ 0, which implies that
∑

z≥Zz′
S(z) ≤ αn. Similarly, given that Zg is finite and

g is a strictly increasing function, there exists a unique peak z∗2 which minimizes g over Zg. In

addition, for any peak z∗2 >
Z z′, g(z′) ≤ 0, which implies that

∑
z′≥Zz

S(z) ≤ αn. �

Lemma 2 Assume that z∗1 = z∗2 = z∗. Then, E(P) = {z∗}. 2
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Proof (Lemma 2) We claim that z∗ is the Condorcet winner. Indeed, let z ∈ Z be a peak.

If z∗ >Z z, by definition of z∗,
∑

z≥Zz′
S(z′) ≤ αn and

∑
z′≥Zz∗

S(z′) > αn, which implies that z∗

defeats z in a pairwise supermajoritarian election. Similarly, if z >Z z∗, we show in the same way

that z∗ defeats z. It follows that z∗ defeats any other peak z. Since there is no other option

which defeats z∗, then E(P) = {z∗}. �

Lemma 3 If z∗1 6= z∗2 , then z∗2 >
Z z∗1 . 2

Proof (Lemma 3) Assume by contradiction that z∗1 >
Z z∗2 . By definition of z∗1 and z∗2 , we

have
∑

z≥Zz∗1

S(z) > αn and
∑

z∗2≥Zz

S(z) > αn, then
∑
z∈Z

S(z) > 2αn. Given that
∑
z∈Z

S(z) = n, it

follows that n > 2αn, meaning that α < 1
2
, a contradiction, since by assumption 1

2
≤ α < 1.

Hence, the only remaining possibility is z∗2 >
Z z∗1 . �

Lemma 4 There exists z∗ ∈]z∗1 , z∗2 [, with S(z∗) 6= 0. 2

Proof (Lemma 4) Assume the contrary. By the definition of policies z∗1 and z∗2 , we have∑
z≥Zz∗1

S(z) > αn and
∑

z∗2≥Zz

S(z) > αn. These imply that
∑

z≥Zz∗1

S(z) +
∑

z∗2≥Zz

S(z) > 2αn or∑
z∈Z

S(z) > 2αn leading to α < 1
2
, which is a contradiction. It follows that there exists a

policy z∗ ∈]z∗1 , z∗2 [, such that S(z∗) 6= 0. Note that, in this case, z∗1 and z∗2 are such that∑
z∗1≥Zz

S(z) < αn, and
∑

z≥Zz∗2

S(z) < αn. �

Lemma 5 If z ∈ Z \ [z∗1 , z∗2 ], then z /∈ E(P). 2

Proof (Lemma 5) Consider z ∈ Z distinct to z∗1 and z∗2 . Assume that z is the closest

peak to the left of z∗1 . In a pairwise supermajoritarian opposition between z and z∗1 , the former

receives at most
∑

z≥Zz′
S(z′) number of votes, while the latter receives at most

∑
z′≥Zz∗1

S(z′). Since,∑
z≥Zz′

S(z′) ≤
∑

z∗1≥Zz′
S(z′) < αn, and

∑
z′≥Zz∗1

S(z′) > αn, then, z∗1 wins. We can also show that

z∗2 defeats any peak z, with z >Z z∗2 . �

Lemma 6 If z ∈ [z∗1 , z
∗
2 ], then z ∈ E(P). 2

Proof (Lemma 6) Consider a peak z ∈ [z∗1 , z
∗
2 ]. Assume that there exists z′ ∈ ]z∗1 , z

∗
2 [ such

that z′ defeats z. Without loss of generality, assume that z′ is the closest peak to z with z >Z z′.
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Policy z′ defeats z implies that
∑

z′≥Zx

S(x) > αn, which is a contradiction, because by definition

of z∗2 , z∗2 >
Z z′ implies that

∑
z′≥Zx

S(x) ≤ αn. Thus, E(P) = [z∗1 , z
∗
2 ]. �

Now, we prove Theorem 1.

Proof (Theorem 1) First, if α = 1, then the only winning coalition is the set N . Given

that individuals make proposals against the status quo z0, then each peak is a predicted outcome

of the game. In fact, the maximum number of votes that an alternative policy z1 (distinct

than z0) in a pairwise supermajoritarian opposition can receive is n − 1. If the supermajority

rule requires n votes to win, then no alternative can be defeated, and the maximum number

of predicted outcomes is the cardinality of N , i.e., n. Second, if n is odd, and α = 1/2, then

the median peak is the unique prediction of the pairwise supermajoritarian game, because it is

the Condorcet winner, i.e., it defeats any other policy in a pairwise supermajoritarian opposition.

Third, from Lemmas 2, 5, and 6, we show that any alternative which is not part of the interval

bounded by the peaks z∗1 and z∗2 can be directly defeated by either z∗1 or z∗2 , and any peak

in this interval cannot be defeated. Therefore, the maximal number of equilibria is equal to

the number of individuals who have a peak between z∗1 and z∗2 . Given that the proportion of

individuals required to form a winning coalition is at least bαnc+1
n

, then the upper bound of E(P)

is n− 2(1− bαnc+1
n

)n = 2bαnc+ 2− n < n. �
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Figure 1: Number of equilibria and the size of supermajority rule in a voting body of 100 agents
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As shown in Figure 1, the minimum number of equilibrium policies is 1 regardless of the super-

majority rule. The maximum number of equilibrium policies is a non-decreasing function of the

supermajority needed to replace them. It follows that, for a fixed size n of voters, the number of

equilibrium policies is a non-decreasing correspondence of the supermajority’s size α. A corollary

of Theorem 1 is the following result, which derives the size of the equilibrium set under majority

rule and thus clarifies the way Theorem 1 extends the MVT when the number of agents is even.

Corollary 1 Let P = (N,Z, (�i),Lα) be a political economy. Assume that voters are chosen

randomly with positive probability to make a proposal. If preferences are single-peaked, and

policies are chosen using majority rule (α = 1
2
), then,

1. There is only one equilibrium if the size of voters is odd.

2. There exists at least one and at most two equilibria if the size of voters is even.

Proof (Corollary 1) From Theorem 1, if α = 1
2
, then the size of equilibrium set E(P)

depends on the size of n. If n is odd, the number bαnc = n−1
2

, therefore 2bαnc + 2 − n =

n− 1+ 2− n = 1, meaning that a unique equilibrium exists. It is, in fact, the ideal policy of the

median voter. If n is even, there exist at most two equilibria since the number bαnc = n
2

and

2bαnc+ 2− n = n+ 2− n = 2. �

3.1.2. Nature Randomly Chooses a Status Quo

Next, suppose that Nature, rather than choosing the proposer in t = 0, instead chooses the

status quo z0 ∈ Z from the set of all policies. Theorem 2 proves the existence of at least one

and possibly an infinite number of equilibrium policies.

Theorem 2 Let P = (N,Z, (�i),Lα) be a political economy and assume that Nature randomly

chooses the status quo. Let z∗1 and z∗2 denote, respectively, the minimal and the maximal equilibria

when Nature randomly selects a proposer. Then, E(P) = [z∗1 , z
∗
2 ]. 2

Proof (Theorem 2) The proof is deduced from the proof of Theorem 1. The status quo,

chosen randomly by Nature, can take any position in spatial space Z. From Theorem 1, any

position between and including z∗1 and z∗2 , is invulnerable to pairwise supermajoritarian opposition.

In this case, the interval bounded by the peaks z∗1 and z∗2 is the equilibrium set, E(P). �
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Under majority rule, the equilibrium set described in Theorem 2 exhibits an interesting property.

When the number of voters is odd and α = 1
2
, z∗1 = z∗2 , and the set [z∗1 , z

∗
2 ] is a singleton,

which is the ideal point of the median voter. If the number of voters is even, however, the set

of equilibria may be infinite. In this sense, Theorem 2 offers a more complete statement of the

MVT compared to Black (1948).

3.2. Dynamic Political Games

In dynamic political games, contrary to one-shot games, agents (or coalitions) may vote indefi-

nitely. Assume that, a status quo z0 is randomly chosen from the set of policies. If no winning

coalition replaces z0, then it remains in place on an indefinite basis and the political opposition

ends. If a winning coalition S replaces z0, say with z1, then z1 becomes the new status quo, and

the process restarts, continuing until a policy has been reached to which no winning coalition

is willing to object. Once that policy has been reached, each agent earns and consumes his or

her payoff and the political contest ends. We illustrate the predictions of such a game with the

largest consistent set (Chwe, 1994), one of the prominent equilibrium concepts in infinite-horizon

political games.

Chwe (1994) defines the largest consistent set, an equilibrium concept for social environments

where agents, acting in public, can freely form coalitions without binding agreements and are

farsighted. Chwe (1994) assumes that agent i holds a strict preference relation �i over Z,

and coalitions of agents may be endowed with the power to replace one policy by some other

policies. If a coalition S ⊆ N has the right to replace z ∈ Z by some z′ ∈ Z, we write

z −→S z
′. Following Chwe’s notations, a social environment is represented by a list (N,Z, {�i

}i∈N , {−→S}S⊂N,S 6=∅). To capture the idea of farsightedness, Chwe (1994) formalizes the notion

of indirect dominance that was formally discussed by Harsanyi (1974) in his criticism of the

von Neumann and Morgenstern (1944)’s solution concept which is based on direct dominance.

For z, z′ ∈ Z, z′ is said to indirectly dominate z, or z′ m z, if there exists a sequence of

policies z0, z1, ..., zm ∈ Z (where z0 = z and zm = z′) and a sequence of winning coalitions

S0, S1, ..., Sm−1 such that zi −→Si
zi+1 and z′ �Si

zi for i = 0, 1, ...,m− 1. The case m = 1

yields the definition of the direct dominance. Chwe (1994, Proposition 2, P. 305) shows that

the largest consistent set is non-empty if Z is finite or countably infinite, and there are no m-
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chains, i.e, an infinite sequences of policies z1, z2, z3,... such that i < j =⇒ zj m zi. Xue

(1997, Theorem, P. 455) extends Chwe (1994, Proposition 2, P. 305)’s non-emptiness result of

the largest consistent set by removing the countability and by weakening the condition that there

is no m-chains. As discussed by Xue (1997, P. 453), such an extension allows one to apply the

largest consistent set to models with continuum of alternatives. Note however, that both Chwe

(1994, Proposition 2, P. 305) and Xue (1997, P. 453) assume that agents have strict preferences

over the policy space Z, a different assumption that we make in this paper.

In this section, we examine Chwe (1994, Proposition 2, P. 305)’s non-emptiness result of the

largest consistent set when the distribution of veto rights among coalitions is given by a super-

majority rule, the policy space Z is totally ordered, and agents have single-peaked preferences

over Z. For z, z′ ∈ Z, z −→S z
′ if and only if S is a winning coalition (i.e., |S| > αn). There-

fore, a social environment (N,Z, {�i}i∈N , {−→S}S⊂N,S 6=∅) is equivalent to a political economy

P = (N,Z, {�i}i∈N ,Lα), where Lα replaces {−→S}S⊂N,S 6=∅. We recall the definition of the

largest consistent set below.

Definition 2 Let P = (N,Z, {�i}i∈N ,Lα) be a political economy, and X be a subset of Z.

1. X is said to be consistent if x ∈ X if and only if ∀y ∈ Z and S ⊂ N such that x −→S y,

there exists z ∈ X, where y = z or z m y, and not(x �S z).

2. The largest consistent set of the political economy P , denoted LCS(P), is the union of

all the consistent sets. 2

The largest consistent set formalizes the notion that a coalition that moves from a status quo to an

alternative policy anticipates the possibility that another coalition might react. A third coalition

might in turn react, and so on, without limit. It is therefore important to act in a way that does

not lead a coalition to ultimately regret its action, i.e., coalitions are “fully farsighted” (Chwe,

1994, 300). In the following result, we show that the largest consistent set is non-empty, and

we derive the maximum number of equilibria in the largest consistent set when Nature randomly

chooses agents with equal probability to propose a status quo.

Theorem 3 Let P = (N,Z, {�i}i∈N ,Lα) be a political economy.

13



1. Assume that Nature randomly proposes the status quo. Then, LCS(P) = [z∗1 , z
∗
2 ].

2. Assume that Nature randomly chooses agents with equal probability to propose a status

quo. Then, 1 ≤ |LCS(P)| ≤ min{2bαnc + 2 − n, n}. Thus, the maximum number of

equilibria in P is n when α = 1, and 2bαnc+ 2− n when α ∈ [1
2
, 1). 2

Proof (Theorem 3) Let P = (N,Z, {�i}i∈N ,Lα) be a political economy.

1. Let z ∈ Z. If z∗1 >
Z z, then z∗1 indirectly dominates z; If z >Z z∗2 , then z∗2 indirectly

dominates z. The only alternatives that are not indirectly dominated belong to the interval

[z∗1 , z
∗
2 ]. A subset X ⊆ Z is consistent if

f(X) =

x ∈ Z : ∀y ∈ Z, ∀S, x −→S y, ∃z ∈ X, where

y = z or z m y and not(x �S z)

 = X.

For each agent i ∈ N , we denote by zi his or her ideal point. By definition of z∗1 and z∗2 ,

the sets S = {i ∈ N : zi ≥Z z∗1} and T = {i ∈ N : z∗2 ≥Z zi} are winning coalitions.

Let z ∈ Z be a proposal: (a) if z∗1 >Z z, then any deviation from z by any winning

coalition to z∗1 is not deterred. Similarly; (b) if z >Z z∗2 , then any deviation from z by any

winning coalition to z∗2 is not deterred. Hence, in these two cases, z /∈ f(Z). However, if

z ∈ [z∗1 , z
∗
2 ], any deviation from z is deterred. Indeed, without loss of generality, assume

x = z∗1 , and consider y ∈ Z and a winning coalition S ′, such that x −→S′ y. (c) If z∗1 >
Z y,

then there exists z = z∗1 , with z∗1my via T , and not(z∗1 �S z∗1); (d) If y ∈]z∗1 , z∗2 [, then, there

exists z = y, such that not(z �S′ z∗1), with |S ′| > αn, because z∗2 >
Z y; (e) If y >Z z∗2 ,

then, there exists z = z∗2 , with z∗2 m y via S, and not(z∗2 �S′ z∗1), with |S ′| > αn. It follows

that f(Z) = [z∗1 , z
∗
2 ]. It is straightforward to check that f(f(Z)) = f(Z); therefore f(Z)

is the largest consistent set, and point 1. of Theorem 3 is proved.

2. First, if α = 1, then the only winning coalition is the set N . Given that agents propose

the status quo z0, the cardinality of the largest coalition than can propose an alternative

policy z1 against z0 is n − 1. If the supermajority rule requires n agents to replace the

status quo, then no alternative can be indirectly dominated, and the maximum number of

predicted outcomes is the cardinality of N , i.e., n. Second, if n is odd, and α = 1/2,
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then the median peak is the unique prediction of the largest consistent set, because it is

the Condorcet winner, i.e., it indirectly dominated any other policy in a the game. Third,

from point. 1 above, we show that LCS(P) = [z∗1 , z
∗
2 ]. Therefore, the maximal number of

equilibria is equal to the number of individuals who have a peak between z∗1 and z∗2 . Given

that the proportion of agents required to form a winning coalition is at least bαnc+1
n

, then

the upper bound of LCS(P) is n− 2(1− bαnc+1
n

)n = 2bαnc+ 2− n < n. �

Having presented Theorems 1, 2, and 3, we now use the results to explain policy diversity

across identical political economies. In Section 4, we propose an illustration which demonstrates

how two countries with identical political, economic, and cultural preferences over immigration

resettlement could implement different policies.

4. Application: Policy Diversity

The government of a country is developing a refugee resettlement program to help asylum seekers.

Suppose that this decision fell to legislators representing the country’s citizens and that the

country derives utility from the number of refugees it admits. The utility can be in terms of

the national and international “warm glow” that it receives, or in terms of the skills or cultural

diversity brought by the refugees. We assume that the net utility received by each legislator i

from z refugees being admitted (z is a positive real number) is Vi(z) = vi ln(z) − z/n, where

1/n is the fraction of the total cost of refugee admission incurred by each constituency (assuming

n constituencies), and vi is legislator i’s valuation of the number of refugees. Suppose nine

legislators (n = 9) collectively choose the number of refugees to be admitted using majority rule.

Observe that Vi is single-peaked, and so voter i’s peak is obtained by solving V ′(zi) = 0, leading

to the solution zpi = 9vi. We assume that vi = i, where i = 1, 2, ..., 9. Then, the legislators’

peaks are: zp1 = 9, zp2 = 18, zp3 = 27, zp4 = 36, zp5 = 45, zp6 = 54, zp7 = 63, zp8 = 72, and zp9 = 81

(see also Figure 2). The legislator with valuation vi = 5 is the median voter. The peak zp5 = 45

defeats all other peaks in a pairwise majoritarian election, and becomes the only peak which is

not defeated. Therefore, under the majority rule, the country grants permanent residency to 45

refugees.

Suppose that the legislators choose the number of refugees using a two-thirds supermajority
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Figure 2: Legislators’ utility functions. The bundle on each curve represents the coordinates of legislator i’s peak.
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Figure 3: Illustration of equilibria for refugee resettlement program, assuming α = 2/3. Equilibrium points are
those between z∗1 = 27 and z∗2 = 63 inclusive. We note that for each policy z′, f(z′) + αn =

∑
z≥Zz′

S(z) and

g(z′) + αn =
∑

z′≥Zz

S(z).

rule (α = 2/3). Any proposal in the set {27, 36, 45, 54, 63} cannot be defeated in a pairwise

supermajoritarian election, because all alternatives will fail to win support from the necessary

supermajoritarian coalition. These proposals are shielded from the possibility of amendment on

the legislative floor. Moreover, any outcome in the set {9, 18, 72, 81} can be defeated by either

z∗1 = 27 or z∗2 = 63 (see Figure 3).
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It follows that two different countries that are identical in terms of the number of voters, voters’

preferences, and voting rule are likely to diverge in policy choice if the voting is the two-thirds

supermajority rule. For example, depending on the random voter that is chosen to make a

proposal, one country may grant permanent residency to only 27 refugees while the other may

grant this privilege to 54 refugees. Under majority rule, both countries will converge in their

policy, and will grant permanent residency to 45 refugees.9

5. Conclusion and Remarks

In this study, we derive the minimum and the maximum number of equilibrium policies in static

and dynamic political games under supermajority rules when agents have single-peaked preferences

over a totally ordered policy space. Voters’ strategic behavior is captured by the core (Black,

1948; Downs, 1957) in static environments, and by the largest consistent set (Chwe, 1994) in

dynamic environments. We fully characterize the relationship between these numbers and a voting

body’s supermajority rule, showing that the minimum number is one regardless of the rule, and the

maximum number increases in a nontrivial manner in the size of the supermajority coalition needed

to change policy. The well-known Median Voter Theorem, which predicts party convergence to

the median voter’s ideal policy, is a particular case of our results. Our findings can explain why

highly divergent policies may persist, even across democracies with identical political preferences

and voting rules. Policy divergence increases as we move further from majority rule. Moreover,

in deriving the minimum and the maximum number of equilibrium policies in a supermajoritarian

setting, our results extend Duverger’s propositions on institutions and political parties. In only

imposing the assumption that voters hold single-peaked preferences over a totally ordered policy

9Beyond explaining policy developments in international negotiations, Theorem 2 is also validated by McGrath
et al. (2018), who conduct a comparative study across US states. Leveraging cross-country variation in state
legislative override requirements, they find that legislatures with higher override requirements demonstrate less
ability to override an executive veto. Mapping the legislative process to our model, state governors first propose
budgets and then legislatures pass their own. The budget is then sent to the governor for approval and, if vetoed,
can only be enacted if a legislative supermajority overrides the veto. The supermajority thresholds used in the
study—which, in this case, are the proportions of the legislature needed to override an executive veto—vary
between 1/2 and 2/3. (Note, however, that three states with a 3/5 or majority veto override were excluded
from some models because they also had supermajority budgetary requirements (McGrath et al., 2018, 165).) In
accordance with our results, budgets passed in states with higher override requirements were substantially closer
to those proposed by the governor, with the strongest effects in states where executives’ preferences diverged
sharply from those of legislative veto players.
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space, our model is quite general and applies to a variety of policies beyond those chosen from a

unidimensional set.

Our theory generalizes dynamics in other theoretical work (Dixit et al., 2000), and its implications

align with voting behavior in institutions ranging from state legislatures (McGrath et al., 2018)

to international institutions (Stone, 2009). Additionally, we contribute to existing social choice

literature. Focusing on supermajority voting rules—a topic that has, to date, received limited

attention—the article raises and answers novel questions. What, precisely, is the relationship

between supermajority thresholds and the number of equilibrium policies? And how does this

relationship manifest in the diversity of policies across institutions with one threshold as opposed

to another?

Our model also offers avenues for future empirical and theoretical research. Further extensions

can consider proposal or amendment costs that vary based on legislators’ ideal points or on the

location of the proposed policy or amendment. The model is also amenable to accommodating

“decision-costs” from policy gridlock (Buchanan and Tullock, 1962) and to introducing uncer-

tainty in legislators’ policy preferences. The latter extension would draw connections between

policy diversity and the extensive literature examining the Condorcet Jury Theorem.10

Empirically, the model offers several testable predictions. Do reductions in amendment thresholds—

such as revisions to the United States Senate requirements to invoke cloture, decrease policy

diversity and increase the extent to which proposers (or political parties) compromise? And,

comparing legislative bodies whose members have similar preferences, do those requiring high

supermajoritarian thresholds to amend proposals generate more diverse policies than those with

low thresholds? And how does the distribution of agenda power mediate the relationship between

policy diversity and voting rules? Despite the challenges in finding variation in voting rules across

otherwise comparable legislative bodies (Cameron, 2009), recent research has employed innova-

tive data to discern such relationships, both globally and domestically (Blake and Payton, 2015;

McGrath et al., 2018; Brutger and Li, 2019).

10The question of choosing the optimal system considering uncertainty was first formulated by Condorcet
(1793). See Nitzan and Paroush (2017) for further details and extensions.
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