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Optimally Targeting Interventions in Networks during a Pandemic:

Theory and Evidence from the Networks of Nursing Homes in the

United States∗

Roland Pongou Guy Tchuente Jean-Baptiste Tondji

October 22, 2021

Abstract

This study develops an economic model for a social planner who prioritizes health over short-

term wealth accumulation during a pandemic. Agents are connected through a weighted undirected

network of contacts, and the planner’s objective is to determine the policy that contains the spread

of infection below a tolerable incidence level, and that maximizes the present discounted value of real

income, in that order of priority. The optimal unique policy depends both on the configuration of the

contact network and the tolerable infection incidence. Comparative statics analyses are conducted:

(i) they reveal the tradeoff between the economic cost of the pandemic and the infection incidence

allowed; and (ii) they suggest a correlation between different measures of network centrality and

individual lockdown probability with the correlation increasing with the tolerable infection incidence

level. Using unique data on the networks of nursing and long-term homes in the U.S., we calibrate

our model at the state level and estimate the tolerable COVID-19 infection incidence level. We

find that laissez-faire (more tolerance to the virus spread) pandemic policy is associated with an

increased number of deaths in nursing homes and higher state GDP growth. In terms of the death

count, laissez-faire is more harmful to nursing homes than more peripheral in the networks, those

located in deprived counties, and those who work for a profit. We also find that U.S. states with a

Republican governor have a higher level of tolerable incidence, but policies tend to converge with

high death count.

Keywords: COVID-19, health-vs-wealth prioritization, economic cost, weighted networks, network

centrality, nursing homes, optimally targeted lockdown policy.
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1 Introduction

In this study, we develop an economic theory that addresses the problem of finding the optimal

lockdown policy during a pandemic that spreads through networks of physical contacts, for a social

planner who prioritizes health over short-term wealth accumulation. We apply this theory to the

current coronavirus pandemic, and uncover new results on the effects of network configuration,

network centrality, and health policies. Using unique data on the networks of nursing and long-

term care homes in the United States, we calibrate our model and empirically validate its key

predictions.

The application of our model to the spread of the novel coronavirus disease (COVID-19) is

timely and fitting. COVID-19 has affected millions of individuals and claimed many lives globally.

Two common strategies to counteracting the epidemic spread are eradication and suppression.

Governments around the world are implementing a variety of strategies to contain this pandemic:

prescriptions of social distancing and hygiene measures, extensive production of personal pro-

tection equipment (PPE), expansion of testing and hospital capacities, use of face masks and

contact tracing, and vaccines. These objectives resulted in the enforcement of social distancing

policies that led to the cumulative lockdown of over half of the world population (Buchholz,

2020). While this approach for mitigating the contagion has shown some positive results, the

associated economic costs are considerable (Kochańczyk & Lipniacki, 2021). The Gross Domestic

Product in both advanced and developing countries has decreased significantly as a result of the

COVID-19 pandemic (IMF, 2020). In a situation where only a small fraction of jobs can be done

remotely (Dingel & Neiman, 2020), such mitigation measures may not be economically viable

in the long run. The significant economic and social costs implied by quasi-complete lockdown

have forced governments and policymakers to think about less costly alternatives that might con-

sist of imposing quarantine measures only on certain individuals while letting others go back to

work. The natural question that arises is: how do we design optimally targeted lockdown policies

that account for social network structure, and how do these policies affect health and economic

dynamics?

We address this question in a society that prioritizes health over short-term wealth accumu-

lation.1 We describe our model and state the social planner’s objective problem:

1We view our main question as a planning problem, and our assumption that health is prioritized over short-

term economic gains is consistent with several recent observations (John, 2020; Heap et al., 2020; Aiello, 2020;

Baccini & Brodeur, 2021). For instance, Stiglitz wrote that: “There can be no economic recovery until the virus

is contained, so addressing the health emergency is the top priority for policymakers.” (Stiglitz, 2020, n.d).
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A: Agents (including individuals and social infrastructures) are connected through a weighted

undirected network of physical contacts through which the virus is likely to spread. The

weighted nature of the contact network implies that the intensity of interactions between

agents is not necessarily binary, and it is likely to vary across relationships.2

B: At any point in time, an agent is in one of the following four compartments: susceptible,

infected, recovered, or dead. At time zero, all agents are susceptible. Susceptible agents

can become infected, while infected agents can recover or die. Susceptible, infected and

recovered agents can all be sent into lockdown. The dynamics of infection, recovery, and

death follow a model that generalizes the classical SIR model (Kermack & McKendrick,

1927, 1932) in two ways. First, whereas the classical model assumes a random matching

technology, our model assumes any arbitrary network structure, and agents can only be

infected through connections in the prevailing contact network if they have not been sent to

lockdown. Second, whereas the classical model assumes three compartments (susceptible,

infected, recovered), our model incorporates an additional compartment (death), and the

lockdown variable. The lockdown variable is a key choice variable for the social planner,

who uses it to modify the structure of the prevailing social network in order to slow the

spread of contagion.

C: The social planner’s objective is to determine the lockdown policy that contains the spread

of the infection below a tolerable infection incidence level, and that maximizes the present

discounted value of real income (or alternatively, that minimizes the economic cost of the

pandemic), in that order of priority. In other words, the social planner can allocate the

“work-from-home” rights to achieve these goals. An appeal of this approach to the social

planner’s problem is that it does not force us to assign a precise monetary value to health

or to life.3 Rather, it allows some flexibility in how to design policies, with clear health and

economic goals in mind. For instance, the social planner could set an infection incidence

level that allows to keep the number of infected individuals below hospitals’ capacities, or

they could set an incidence level that is high enough if they prioritize short-term economic

gains over health.

2Our model allows the interpretation of a contact network to be broad. At the micro-level, agents are individuals

and the infrastructures (for example, nursing homes) they interact with daily. At the macro-level, agents can be

viewed as spatial entities such as countries or cities. Moreover, network configuration is arbitrary, making sense

given that social structure varies across societies. For instance, some societies are individualistic, while others are

organized around extended family and ethnic networks (Deji, 2011; Pongou, 2010).
3See Pindyck (2020) and Bosi et al. (2021) for the expression of a similar concern.
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We apply our theoretical model to analyze: (1) the effect of network structure on the dynam-

ics of optimal lockdown, infection, recovery, death, and economic costs; (2) the tradeoff between

public health and the economic cost of the pandemic; and (3) how different measures of network

centrality affect the probability of being sent to lockdown. In order to solve the planner’s problem,

we first characterize the dynamics of infection, recovery, and death rates in our N-SIRD epidemi-

ological model with lockdown, and then we obtain a unique solution under classical conditions.

Proposition 1 shows that the rates of infection, recovery and death at any given time is a func-

tion of the lockdown variable and the initial network of contacts that captures social structure.

Furthermore, we analyze the N-SIRD model using stability theory of differential equation, and

we derive the basic reproduction number, R0, from the largest eigenvalue of the next-generation

matrix (Diekmann et al., 1990; Van den Driessche & Watmough, 2002). Then, Proposition 2

provides conditions for the local stability of disease-free equilibria, and Proposition 3 generates

the final size of the pandemic, both in terms of the basic reproduction number (Diekmann &

Heesterbeek, 2000; Wallinga et al., 2006; Andreasen, 2011).

The planner’s objective is achieved in two ordered steps. The first step consists of identifying

the set of lockdown policies that contain the epidemic spread (as dictated by the solution of

the N-SIRD above) below a tolerable infection incidence threshold, and the second step consists

of choosing among those contagion-minimizing policies the one which maximizes the discounted

stream of economic surpluses. Proposition 4 shows that the planner’s problem admits a unique

solution, and this solution depends on both the infection incidence level tolerated by the planner

and the prevailing network of physical contacts that characterizes the society. Proposition 4 also

shows that the tolerable infection incidence level and the prevailing network of physical contacts

determine the dynamics of infection, recovery, death, and economic costs.

We develop several comparative statics analyses of our theoretical findings using simulations

that rely on realistic data on COVID-19 transmission rates.4 Figure 1 illustrates how the tolerable

infection incidence level and the prevailing network of physical contacts determine the dynamics

4In our simulation analyses, we assume that networks are represented by binary adjacent matrices A = (Aij),

where Aij = 1 if agents i and j are connected, and Aij = 0, otherwise. In our empirical analysis in Section

5, the network of nursing homes in each United States (U.S.) state is not necessarily binary since Aij ranges

from 1 to 832 contacts, where i and j represent two distinct nursing homes. Since our empirical findings appear

to be consistent with the simulation results, we believe that the binary nature of the network structure does

not affect the quality of our findings. In our study, although we choose the values of the parameters of the

production function to match as possible the data from the U.S. nursing and long-term care homes (Chen et al.,

2021), we select other parameters in the planning problem for illustration purposes. Thus, one should interpret

the quantitative outcomes of our model with caution. Nevertheless, in the empirical application in Section 5, we

choose the economic parameters to match each U.S. state’s reality as possible.
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of lockdown (Figure 1a), infection (Figure 1b), death (Figure 1d), and economic losses (Figure

1c). Our result shows how the tolerable infection incidence affects the lockdown dynamics as

well as the economic cost of the pandemic. We find that a higher tolerable incidence level

results in lower lockdown rates and economic surplus loss. While this result illustrates the health-

vs-wealth tradeoff the social planner faces, it does not prescribe any resolution because the

planning decision depends on how society values population health over short-term economic

gains. Second, we illustrate how lattice, small-world, random, and scale-free network structures

affect optimal lockdown probabilities and the disease dynamics, respectively. Our simulation

results in Figure 3 show that the cumulative proportion of the population sent into lockdown is

always higher in random and small-world network configurations compared to lattice and scale-free

structures. These lockdown policies translate to different epidemic and economic costs dynamics

for each network. We extend our analysis to examine the potential impact of network density

(or the interconnections between agents in a network) in our N-SIRD model for a small-world

network. Our simulations (Figure 4) show that optimal lockdown probabilities increase with

network density (Figure 4a).5 Third, we illustrate how measures of network centrality affect

optimal lockdown probabilities and the disease dynamics. In Table 1, we provide the correlations

between four network metrics—degree, eigenvector, betweenness, and closeness—and average

lockdown probabilities in a small-world network. Our simulation results suggest that individuals

that are more central in such a network are more likely to be sent into lockdown. We provide

a discussion of the robustness of these findings in Section 4.3. Overall, our simulation results

confirm the intuition that not all agents should be into complete lockdown under the optimal

policy (Acemoglu et al., 2020; Gollier, 2020a,b; Ip, 2020; Bosi et al., 2021; Chang et al., 2021;

Farsalinos et al., 2021). This planning decision is justified since the goal in the N-SIRD model is

to disconnect the prevailing contact network while maintaining economic activities, contrary to a

pure epidemiological model.

We calibrate our model and test some of its key predictions using unique data from the

networks of nursing and long-term care homes in the United States (U.S.). The senior population

in the U.S. accounts for a significant share of COVID-19 deaths (National Center for Health

Statistics, 2020; Freed et al., 2020; Conlen et al., 2021). The surge of COVID-19 cases and

deaths in U.S. nursing and long-term care homes led the American federal government to instate

a ban to nursing home visits on March 13, 2020. This restriction enabled researchers from the

“Protect Nursing Homes” project to construct a U.S. nursing homes network, using smartphone

5Our series of robustness checks conjecture that the simulation results with lattice, random, and scale-free

networks are qualitatively consistent with those obtained with the small-world network.
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data (Chen et al., 2021).6 We use this unique network data in conjunction with nursing homes

and U.S. state level data to calibrate the N-SIRD model. In the calibration exercise, we consider

each nursing home as a node in the transmission network. Two nursing homes are connected if

the same smartphone signal is recorded in both homes’ locations. The number of distinct signals

recorded gives a weight to the link between two nursing homes. The data shows that the weight

ranges from 1 to 832. Data on nursing homes contain the number of COVID-19 cases and deaths.

We also collect information from the Senior Living project to complement the COVID-19 fatalities

in the network data. We retrieve U.S. state level data from the Bureau of Labor Statistics.7

The calibration allows us to estimate the value of the tolerable infection incidence level, for 26

U.S. states. Following the calibration, the tolerable infection incidence level (λ) is estimated using

a simulated minimum-distance estimator (Gertler & Waldman, 1992; Smith Jr, 1993; Forneron

& Ng, 2018). The tolerable infection incidence level represents the tradeoff between population

health and short-term economic gains. So, a higher value of tolerable infection incidence level

describes a policy that tends more towards a “laissez-faire” regime (Gollier, 2020a), indicating a

planner’s inclination to maximize short-term economic gains even if this results in more infections

and deaths. We find that the tolerable infection incidence level varies significantly across U.S.

states, making it possible to test some predictions of our N-SIRD epidemiological model.

Using regression-based analyses, we find that a laissez-faire policy is associated with more

deaths, consistent with our results from the simulations. We also find that a nursing home

that is more central in the network experiences more COVID-19 deaths. However, laissez-faire

reduces the death difference between central nodes (or nursing homes with more connections)

and those that are more peripheral. It follows that the vulnerability to the virus among peripheral

nursing homes increases more under a laissez-faire regime relative to the expected increase under

a more restrictive pandemic regime. We also find that laissez-faire increases COVID-19 fatalities

of nursing homes located in more deprived counties. A laisser-faire policy also increases the

vulnerability of for-profit nursing homes. Our regressions are robust, controlling for an array of

variables at the nursing home and state levels, such as overall quality and county fixed-effects.

In another empirical test of the N-SIRD model with lockdown, we investigate the relationship

between the tolerable infection incidence level of COVID-19 and U.S. state GDP growth for the

year 2020. We find that laissez-faire is associated with higher GDP growth, consistent with the

6We are grateful to Chen et al. (2021) and all team members of the Protect Nursing Homes project (https:

//www.protectnursinghomes.org/) to generously share the nursing network data.
7We gathered additional data from the website: https://www.seniorliving.org/nursing-homes/costs/

consulted on September 9, 2021. We obtained the calibration of the epidemiological parameters from Statista:

https://www.statista.com/.
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model’s prediction. The empirical estimation equation controls several factors, including the party

affiliation and the gender of the U.S. state’s governor. Interestingly, we find that the positive

economic effect of laissez-faire is reduced for U.S. states whose governor is a Democrat.

Finally, in an attempt to validate our calibration results using external information, we in-

vestigate the political origins of laissez-faire policies during the early period of the COVID-19

pandemic in the U.S.. We find that Republican governors are more likely to tolerate the pan-

demic. These results mirror the pro-market tendency of the republican party. However, these

policy differences are minimized for U.S. states with a high death count in nursing homes. We

also find that U.S. southern states are more prone to laissez-faire than states in other regions.

These findings complement other studies showing an association between the political affiliation

of a U.S. state governor and COVID-19 cases and deaths (Neelon et al., 2021; Frankel & Kotti,

2021; Chen & Karim, 2021). These findings validate our calibration exercise, especially since the

empirical framework doesn’t use political variables.

Our work is related to several recent studies on virus spread in an undirected network. There

is a substantial wealth of studies on the topic as surveyed by Pastor-Satorras et al. (2015). This

literature includes a class of mean-field models (Kephart & White, 1992; Barabási et al., 1999;

Green et al., 2006) and N -intertwined models via Markov theory in discrete time (Ganesh et al.,

2005; Wang et al., 2003) and continuous time (Van Mieghem et al., 2008). Asavathiratham

(2001) and Garetto et al. (2003) review other general models for virus spread in networks based

on Markov theory.8

In the economics literature on COVID-19, the canonical SIR model has been generalized in

several directions to address a variety of problems. Recent generalizations include among others,

Acemoglu et al. (2020) who propose a multi-risk SIR model, Bethune & Korinek (2020) who study

externalities of health interventions for infectious diseases in SIS and SIR models, Karaivanov

(2020) who examines the transmission of COVID-19 through a dynamic social-network model

embedding the SIR model onto a graph of network contacts, Alvarez et al. (2020), Bandyopadhyay

et al. (2020), Federico & Ferrari (2020), Eichenbaum et al. (2020), Gollier (2020b), Berger

et al. (2020), Prem et al. (2020), Bisin & Moro (2021), and Ma et al. (2021) who analyze

8The N -intertwined models investigate the influence of the network topology on the spread of viruses, whose

dynamics are described by different epidemiological models, including SIS and SIR. In these models, each node in

the network is a Markov chain with the number of compartments corresponding to the selected epidemiological

model. Independent Poisson processes describe the transition of the state of each node in the network. Then,

scholars use mean-field approximations to capture the effect of neighbors on the total expected infection. Contrary

to this growing literature, we examine the impact of network structure and reversible lockdown state in a SIRD

model in continuous time with heterogeneous agents. One can use a Markov chain approach to extend our study.
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optimal non-pharmaceutical controls in SIR models, Chang et al. (2021) who use Google mobility

network and metapopulation susceptible–exposed–infectious–removed (SEIR) models to explain

differences in COVID-19 fatalities and inform reopening in ten of the largest U.S. metropolitan

areas, and Kuchler et al. (2020) and Harris (2020) who document the importance of social

media networks (for example, Facebook) in the selection of targeted lockdown policies. While

our model contains some of the ingredients of these other approaches, it differs in incorporating

into the classical model two key elements, namely a lockdown variable and a weighted network

of contacts that is not necessarily random, and where agents are heterogeneous with respect

to their degree of connections and individual characteristics. Most importantly, we introduce a

lexicographic approach to the planning problem, whereby the social planner’s goal is to determine

the lockdown policy that contains the spread of the infection below an acceptable incidence level,

and that minimizes the economic cost of the pandemic, in that order of priority. An appeal of

this approach is to help avoid the difficult problem of assigning a precise monetary value to health

and life, which allows a great deal of flexibility and clarity in how to design optimal lockdown

policies, with precise health and economic goals in mind. It also enables a transparent analysis of

the tradeoff between public health and short-term economic prosperity.

In this study, our goal is to provide a dynamic lockdown rate that allows the planner to save

lives at the minimum economic costs. To contain the contagion, Bosi et al. (2021) assume that

the planner imposes a lockdown, which will stay constant over time. Contrary to Bosi et al.

(2021), our lockdown is reversible, and more in line with Alvarez et al. (2020), Acemoglu et al.

(2020), and Gollier (2020a).9 Assuming irreversible lockdown under a tractable epidemiological

model enables the researcher to derive a closed-form solution while establishing the convexity

of the problem with second-order conditions (Seierstad & Sydsaeter, 1986; Bosi et al., 2021).

As in Alvarez et al. (2020), the interactions between our N-SIRD epidemiological model with a

dynamic lockdown may make the problem non-convex. Therefore, we cannot verify the second-

order condition given a lockdown profile candidate as an optimal solution. In other words, it would

not be possible to prove that our optimal lockdown policy is indeed minimizing the economic costs

of lockdown. Though we don’t address the convexity issue, we follow Alvarez et al. (2020) and

Acemoglu et al. (2020) and use simulations to illustrate comparative analyses of our framework.

In addition, we provide an empirical application of the simulation results.

Our study is also connected to the economic literature on the design of interventions on

networks and of the diffusion of knowledge or contagion via a network. Ballester et al. (2006),

and Banerjee et al. (2013) examine the optimal targeting of the optimal player in a network, while

9We thank an anonymous referee for bringing this issue to our attention.
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Galeotti et al. (2020) analyze an optimal intervention of a social planner acting on individual

incentives. The choice of the optimal lockdown in the social planner problem differentiates our

model from these studies by being an intervention on the network structure. The lockdown

operates to control the diffusion of the infection. Thus, it relates our work to those of Young

(2009), and Young (2011) who investigate the diffusion of innovations through a network. Our

work is also connected to the social learning dynamics as in Buechel et al. (2015), and Battiston

& Stanca (2015) with the difference that the infection diffusion is exogenous. Our epidemiological

model also complements and extends Peng et al. (2020), by allowing a diffusion dynamics similar

to Lloyd et al. (2006). Additionally, since our network structure is not necessarily random, we are

able to develop new applications. Although we only apply our model to the current COVID-19

crisis, we believe that our theory has implications for other infections that spread through physical

contacts.

The remainder of this study is organized as follows: Section 2 presents the N-SIRD model with

lockdown and a weighted network structure. Section 3 describes and solves the social planner’s

problem. Section 4 uses simulations to provide comparative statics analyses of our theoretical

findings. Section 5 provides an empirical application of the N-SIRD model with lockdown. Section

6 discusses some policy implications and offers concluding remarks. The Supplemental Materials

contain complementary information of our N-SIRD model and additional simulation and empirical

results.

2 N-SIRD Model with the Lockdown

Our Network N-SIRD model with the lockdown (or simply N-SIRD model) is an individual-based

probabilistic epidemiological framework set in continuous time t ∈ [0,∞). We assume there is

no vital dynamics so that a community of size N is constant through time: N(t) = N for all

t. At any period in time t, individuals are subdivided into those susceptible S(t), those infected

I(t), those recovered R(t) and those deceased D(t): S(t) + I(t) + R(t) + D(t) = N . For

simplicity, we drop the time subscript of different compartments. Each individual i is in each of

the four different compartments with the following probabilities: si = P (i ∈ S), xi = P (i ∈ I),

ri = P (i ∈ R), and di = P (i ∈ D), with si + xi + ri + di = 1. Individuals move from

susceptible to infected, then either recover or die. Susceptible people may become infected by

coming into contact with infected individuals. We assume that physical contacts take place

through an undirected weighted network, A. The social network structure A is symmetric and it

is represented by the adjacency matrix (Ai,j), where Aij = Aji ∈ [0,∞) represents the weight

8



or intensity (or connection strength) at which individuals i and j are connected in the network

A, with Aij = 0 if i = j. One can interpret the intensity of the relationship between two

individuals as the degree or frequency of interactions between these individuals. The intensity of

connections is the primary source of heterogeneity between agents in the social network structure

A. Some studies exploring virus spread in networks consider that agents with the same number

of connections are similar. Then, a node in a network is a representative agent, and nodes differ

by their number of connections. This literature includes a class of mean-field models and N -

intertwined models via Markov theory in discrete and continuous times. Complementary to this

literature, we consider that other characteristics may differentiate agents with the same number

of connections. In Section 5, in which we apply our theory to U.S. nursing and long-term care

homes (Chen et al., 2021), a node is a nursing home that can be either for-profit or not-for-profit,

and nursing homes have different surplus functions.10

Following the canonical SIR (Kermack & McKendrick, 1927, 1932) and SIRD epidemiological

models11, we assume that agents contact other individuals in the community at a constant

(passing or transmission) rate β > 0. In our model, absent lockdowns, the probability of an

individual i being infected depends on the probability that he or she is susceptible (si), multiplied

with the probability that a neighbor j is infected (xj > 0) scaled by the connection weight

(Aij > 0), and that he or she tries to infect the individual i at the rate β. Infected individuals

recover at rate γ > 0 or die at rate κ > 0. Therefore, the infinitesimal change in infection

probabilities over time of an individual i in the community is:

ẋi = βsi
∑
j∈N

(Aijxj)− (γ + κ)xi.

Lockdown. We now incorporate a lockdown variable into the N-SIRD model to capture

the fact that a social planner might decide to reduce the spread of the infection by enforcing

a lockdown policy that modifies the structure of the existing social network. Let L denote

the lockdown state that is controlled by the social planner, and li = P (i ∈ L) denote the

10One can follow Acemoglu et al. (2020) and Hashem Pesaran & Yang (2021) and extend our framework by

considering other individual characteristics such as age, gender, race, health status, socio-economic status, and

geographical location. This formal exercise is potential avenue for future research.
11Hethcote (2000) and a recent textbook by Brauer et al. (2012) present an overview of the class of SIRD

models and some of their theoretical features in epidemiology. Anastassopoulou et al. (2020) and Fernández-

Villaverde & Jones (2020) apply these models to analyze the possible outcomes of the COVID-19 pandemic. In

our framework, we assume that the contact rate β is fixed. However, we note that other studies examine optimal

non-pharmaceutical interventions to fight the COVID-19 pandemic with time-varying contact rates, including

lockdown policies (Gollier, 2020b), and social distancing policies (Hashem Pesaran & Yang, 2021; Chudik et al.,

2021).
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probability that a random individual i is sent into lockdown, with li = 1 designating complete or

full lockdown and li = 0 no lockdown. Intermediate values of li ∈ (0, 1) represent less extreme

cases. We assume that the lockdown policy is fully effective in curbing the contagion, i.e.,

complete lockdown is similar to quarantine or self-isolation. An individual in complete lockdown

is disconnected from all their contacts. Thus, susceptible individuals in complete lockdown in

period t remain susceptible in the next period t + ε, ε positive and very small. Therefore, with

lockdown, the probability of an individual i being infected depends on the probability that he

or she is susceptible (si) and is not sent in complete lockdown (1 − li > 0), multiplied with

the probability that a neighbor j is not sent in complete lockdown (1 − lj > 0) and is infected

(xj > 0) scaled by the connection intensity (Aij > 0), and that he or she tries to infect the

individual i with the rate β. It follows that the infinitesimal change in infection probabilities over

time of an individual i in the N-SIRD model with lockdown is:12

ẋi = βsi(1− li)
∑
j∈N

Aij(1− lj)xj − (γ + κ)xi. (1)

Disease Dynamics. The equation generated by ẋi describes the law of motion of the infection

probabilities for individual i in the community. The lockdown variable only modifies the structure

of the existing network in our model. It is not a compartment variable that excludes being in other

compartments. Any individual can be sent into lockdown regardless of whether the individual is

susceptible, infected or recovered. An infected individual in complete lockdown can not transmit

the virus through his or her social networks. For each i ∈ N , let Xi = (xi, si, ri, di)
T denote

agent i’s health characteristics in the population, where T means“transpose”. We summarize the

laws of motion of the variable of interests given the lockdown profile l = (li)i∈N by the following

nonlinear system of ordinary differential equations:

(ODE) :



ẋi = βsi(1− li)
∑
j∈N

[Aij(1− lj)xj]− (γ + κ)xi

ṡi = −βsi(1− li)
∑
j∈N

[Aij(1− lj)xj]

ṙi = γxi

ḋi = κxi

si + xi + ri + di = 1

12Our assumption of full effectiveness is contrary to Alvarez et al. (2020) who consider that the lockdown is

only partially effective in eliminating the transmission of the virus. Alvarez et al. justify this limitation by the

fact that people can still interact in complete lockdown. We assume that being in complete lockdown sever the

agent’s contacts with all neighbors in the prevailing network.
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with the initial value point (xi(0), si(0), ri(0), di(0)) such that

xi(0) ≥ 0, si(0) ≥ 0, ri(0) ≥ 0, di(0) ≥ 0, and xi(0) + si(0) + ri(0) + di(0) = 1.

We use the N-SIRD model with lockdown (ODE) to obtain qualitative insight into the trans-

mission dynamics of disease in a community. Before using the model to simulate disease dynamics

and evaluate control strategies in the Sections 4 and 5, it is instructive to explore its basic quali-

tative properties. First, Proposition 1 shows the existence of a solution for the system (ODE).

Proposition 1. The system (ODE) admits a unique solution S∗ = S∗(l, A, β, γ, κ).

Proof. Given that si = 1− xi − ri − di, for each i ∈ N , we can rewrite (ODE) as:

(ODE) :



ẋi = β(1− xi − ri − di)(1− li)
∑
j∈N

[Aij(1− lj)xj]− (γ + κ)xi

ṡi = −β(1− xi − ri − di)(1− li)
∑
j∈N

[Aij(1− lj)xj]

ṙi = γxi

ḋi = κxi

Consider the vector-valued function fi(t,Xi) = (fi1(t,Xi), fi2(t,Xi), fi3(t,Xi), fi4(t,Xi))
T , where

fi1(t,Xi) = β(1− xi − ri − di)(1− li)
∑
j∈N

[Aij(1− lj)xj]− (γ + κ)xi

fi2(t,Xi) = −β(1− xi − ri − di)(1− li)
∑
j∈N

[Aij(1− lj)xj]

fi3(t,Xi) = γxi and

fi4(t,Xi) = κxi.

The function fi is a continuously differentiable function, for each i ∈ N . Consequently, the ODE

admits a unique solution, S∗(l, A, β, γ, κ,X0), thanks to the theorem of existence and uniqueness

of a solution for first-order general ordinary differential equations, where l = (li)i∈N ∈ [0, 1]n is a

vector of individual lockdown probabilities.

Next, we carry our analysis of the N-SIRD model in the feasible domain:

Ω = {((xi)i∈N , (si)i∈N , (ri)i∈N , (di)i∈N) ∈ [0, 1]4n : xi + si + ri + di ≤ 1, 1 ≤ i ≤ n}

The domain Ω is positively invariant (i.e., solutions that start in Ω remain in Ω for all t ≥ 0).

Hence, we can confirm that the system (ODE) is mathematically and epidemiologically well posed

in Ω (Hethcote, 2000).
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Equilibria and the basic reproduction number. To find equilibria of system (ODE), we

set each expression on the left-hand side of equations in (ODE) equal zero. It follows that any

equilibrium point constitutes a disease free equilibrium point (DFE) in which the probability of

infection is zero, i.e., xi = 0 for all i ∈ N . For simplicity, we analyse the disease dynamics

at the DFE E0 = (0, ..., 0, 1, ..., 1, 0, ...0, ..., 0) in a completely susceptible population. One of

the most fundamental concepts in epidemiology is the basic reproduction number R0, i.e., the

expected number of secondary cases produced by a typical infected individual during its entire

period of infectiousness in a completely susceptible population. Following Diekmann et al. (1990)

and Van den Driessche & Watmough (2002), only the infected compartments I are involved

in the calculation of R0, and the latter can be calculated using the method of next-generation

matrix. Formally, R0 is defined as the spectral radius of the next generation matrix FV −1, where

F is the matrix of the rate of generation of new infections, and V is the matrix of transfer of

individuals among the four health compartments. Following the notations in Van den Driessche

& Watmough (2002), from the system (ODE), we can write:

ẋi = Fi − Vi, where

Fi = β(1− xi − ri − di)(1− li)
∑
j∈N

[Aij(1− lj)xj], and Vi = (γ + κ)xi.

F is the Jacobian matrix, and it is given by F = [∂Fi

∂xj
= Fij]E0 , and V = [ ∂Vi

∂xj
= Vij]E0 ,

where x = (xj) = (x1, x2, ..., xn). We have Fii = −β(1 − li)
∑
j∈N

[Aij(1 − lj)xj] and Fij =

βAij(1 − xi − ri − di)(1 − li)(1 − lj) for j 6= i. At the equilibrium point E0, it holds that

Fii(E0) = 0 and Fij(E0) = βAij(1− li)(1− lj) for j 6= i. Since, Aii = 0, we can write

Fij(E0) = βAij(1− li)(1− lj), for 1 ≤ i, j ≤ n.

It is direct to have Vij(E0) = (γ + κ)δij, where δij = 1 if i = j, and 0 otherwise. It follows that

Vii = γ + κ and V −1ii = 1
γ+κ

, for all 1 ≤ i ≤ n such that

V = diag(V11, ..., Vii, ..., Vnn) and V −1 = diag(V −111 , ..., V
−1
ii , ..., V −1nn ).

Therefore, FV −1 ≡M = [Mij]1≤i,j≤n, where Mij = β
γ+κ

Aij(1− li)(1− lj), and R0 which is the

spectral radius of M is:

R0 = ρ(M) := max{|e| : e is an eigenvalue of M}.

In a fully homogeneous connected society (for example, a lattice network), it holds that Aij = 1 for

all agents i and j, and without any non-pharmaceutical intervention such as lockdown, R0 = β
γ+κ

,

12



the standard SIRD basic reproduction number in a model with no vital dynamics. Given that

the social network structure A is undirected, it holds that Aij = Aji, so that Mij = Mji, for

all i and j. Additionally, since all the values Aij, 1 − li, and 1 − lj are real and non-negative,

it follows that FV −1 is a non-negative symmetric real matrix. Therefore, all of its eigenvalues

and eigenvectors are real. Since the diagonal of FV −1 consists of zero, it holds that the trace

of FV −1 is zero (recall that the trace of FV −1 is the sum of its eigenvalues). Given that the

determinant of FV −1, which is the product of its eigenvalues, is not necessarily zero, it follows

that R0 is positive. The following result from Van den Driessche & Watmough (2002, Theorem

2, p. 33) provides the asymptotic stability analysis of continuum of the disease-free equilibrium

E0.

Proposition 2. The continuum of DFE E0 of system (ODE) is locally-asymptotically stable if

R0 < 1, but unstable if R0 > 1.

The proof of Proposition 2 is similar to the demonstration provided by Van den Driessche &

Watmough (2002, Theorem 2, p. 33) and is therefore omitted. Following the epidemiological

literature, Proposition 2 implies that a small invasion of virus-infected agents will not generate an

epidemic outbreak in society when the basic reproduction number is below 1. When R0 < 1, the

disease rapidly dies out if the number of infected agents in a completely susceptible population is

in the region of attraction of the continuum of the disease free equilibrium E0. However, when

R0 > 1, the epidemic rises to a peak and then eventually declines to zero.

The final size of the pandemic. To reflect the impact of the epidemic in a totally “virgin”

or susceptible population, we set si(0) ≈ 1 and assume following Andreasen (2011) that xi(0) is

positive with xi(0) ≈ 0 for all i ∈ N . One can prove that xi(t) → 0 when t → ∞, while there

exists some real number si(∞) such that si(t)→ si(∞) when t→∞ (see, for instance, Brauer

(2008)). The first two equations in the system (ODE) can be rewritten as:
ẋi = βsi

∑
j∈N

[Aij(1− li)(1− lj)xj]− (γ + κ)xi

ṡi = −βsi
∑
j∈N

[Aij(1− li)(1− lj)xj].

We may determine the value of si(∞) by integration of the first two equations in the system

(ODE) over the entire epidemic period, which entails

log si(∞)− log si(0) = −β
∑
j∈N

[Aij(1− li)(1− lj)
∞∫
0

xjdt], (2)
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si(∞)− si(0) =

∞∫
0

(ẋi + ṡi)dt = −(γ + κ)

∞∫
0

xidt. (3)

We can derive the outcome of the epidemic in terms of the ratio σi = si(∞)
si(0)

, which is approximately

the probability of being susceptible and remaining uninfected at the end of the epidemic, si(∞),

given that si(0) ≈ 1. We can use the column vector σ = (σ1, ..., σn)T to express the size of the

epidemic since the infected rate for agent i is zi = 1 − σi, and the final size of the epidemic in

the whole population is
∑
j∈N

zjN . For each agent i, the attack rate zi also equals ri(∞) +di(∞),

since xi(t) → 0 when t → ∞. Noting that (1 − σi)si(0) = si(0) − si(∞), and substituting

Eq.(3) into Eq.(2) yields the size of epidemic σ as a solution of the coupled implicit equations:

0 = log σi +
∑
j∈N

[
β

γ + κ
Aij(1− li)(1− lj)sj(0)](1− σj) = Hi(σ), i = 1, 2..., n. (4)

Recall that Mij, which is the (i, j)-entry in the next generation matrix is β
γ+κ

Aij(1− li)(1− lj).

With si(0) ≈ 1 for all i, the final size equation (4) can be written in matrix notation with the next

generation matrix M , the coordinate-wise log-function, and the column null vector 0 = (0, ..., 0)T

as:

0 = log σ +M(1− σ) = H(σ). (5)

Now, taking the coordinate-wise exp of equation (5) entails the alternative version of the final

size equation in z = 1− σ, with 1 = (1, ..., 1)T :

z = 1− exp(−Mz) (6)

Following Diekmann & Heesterbeek (2000), Wallinga et al. (2006), and Andreasen (2011), we

can interpret equation (6) as a probabilistic identity as zi is the probability that agent i becomes

infected during the epidemic while exp(−
∑
j∈N

Mijzj) gives the probability of remaining susceptible

during the entire epidemic. The question that remains is whether the final size equation (5) admits

a solution. It is unambiguous to show that the column vector σ0 = (1, ..., 1)T , which corresponds

to the disease free equilibrium E0, yields H(σ0) = 0, meaning that σ0 is a solution to the

problem (5). However, more solutions might exist to the final size equation. Using the result

from Andreasen (2011, Theorem 2, p. 2313), we provide the adapted following proposition that

specifies conditions for solutions to Eq.(5).

Proposition 3. Let v1, ..., vn denote the set of eigenvectors and generalized eigenvectors of the

next generation matrix M and u1, ..., un the set of these vectors squared coordinate-wise. If each

uk is linearly independent of the set of all eigenvectors and generalized eigenvectors excluding vk,
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then the final size equation (5) has a single solution in the open unit (0, 1)n if R0 > 1 and none

if R0 < 1.

The proof of Proposition 3 follows the same reasoning as the one provided by Andreasen

(2011, Theorem 2, p. 2313) and is therefore omitted. Next, we exploit the system (ODE) to

provide an optimal non-pharmaceutical intervention against virus spread in the population.

3 The Planning Problem: Optimal Lockdown

The unique solution of the nonlinear system (ODE) in Section 2 depends on both the social

network A and the lockdown variable l. The planning problem consists of choosing the pol-

icy instrument l optimally since this enable the planner to influence the disease dynamics (or

state variables). As mentioned in the Introduction, the first approach to containing the spread

of COVID-19 in many countries was to enforce a quasi-complete lockdown policy. While this

approach has proved to slow the spread of the virus, its economic costs have been significant.

Governments around the world have been implementing less costly alternatives consisting of send-

ing only certain individuals into lockdown while letting others go back to work. This raises the

question of whether an optimal lockdown policy exists, and, if it does, whether it is unique.

In this section, we answer this question for a social planner that prioritizes health over short-

term wealth accumulation, and we show that, under minimal conditions, there exists a unique

optimally targeted lockdown policy. More formally, we assume that the social planner’s problem

consists of choosing the lockdown policy l that:

1. contains the infection incidence level (or the relative number of new infections) below a

tolerable threshold λ; and

2. minimizes the economic costs of the infection to the entire society, in this order of priority.

This lexicographic objective problem is formalized below.

Containing the spread of infection. Using ẋi in the system (ODE), the first objective of

the planner is to select a lockdown policy l such that:

ẋi ≡ ẋi(l) ≤ λ, where λ is a non-negative parameter. (7)

Note that the system (ODE) together with Eq.(7) admits at least one solution. In fact, consider

the policy l where each individual is sent into complete lockdown, i.e, li(t) = 1 for all i ∈ N and

t. Then, ẋi(l) = −(γ+κ)xi. Therefore, given any λ ≥ 0, it follows that ẋi(l) ≤ λ. However, this

15



extreme solution induces significant social costs. In practice, the upper bound of the parameter

λ could be equal to the basic reproduction number without any lockdown policy, Rv
0 = ρ(M v),

where M v = [ β
γ+κ

Aij]1≤i,j≤n. Given that lockdown implies a reduction of economic activities,

an economic-focus planner might tolerate a value of λ close to Rv
0. In contrast, a cautious (or

prudent) planner who prioritizes health over short-term wealth accumulation during a pandemic

may only tolerate infection incidences λ that fall behind the basic reproduction number R0.

Minimizing the economic costs of lockdown. The planner’s second-order objective is to

minimize the economic costs of lockdown by choosing from the set of policies that satisfy the

first objective, i.e., the system (ODE) together with Eq.(7), the one that maximizes the present

discounted value of aggregate wealth or surplus. To assess the economic effects of lockdown in

the population during a pandemic, we consider a simple production economy that we describe as

follows.

At any given period t, each individual i possesses a capital level ki, and a labor supply hi. We

assume, as in most SIR models, that individuals who recover from the infection are immune to the

virus and must be released to the workforce. It follows that individuals in compartments S, I, and

R are the only potential workers in the economy. The individual labor supply depends on individ-

uals’ health compartments and probability of being into the lockdown: hi = hi(si, xi, ri, di, li),

with hi assumed to be continuous and differentiable in each of its input variables. We assume that

individual economic productivity is non-decreasing with being in susceptible and recovery com-

partments: ∂hi
∂si
≥ 0, and ∂hi

∂ri
≥ 0. In contrast, labor supply is non-increasing with illness, death,

and being in lockdown: ∂hi
∂xi
≤ 0, ∂hi

∂di
≤ 0, and ∂hi

∂li
≤ 0. Naturally, an individual who is working

despite being infected and sick produces less compared to when this individual is healthy. Without

loss of generality, we assume that capital is constant over time (ki(t) = ki, for each t), and labor

is a variable input in the production. A combination of capital and labor supply generates output

yi according to the following production function: yi = yi(ki, hi) = yi(ki, si, xi, ri, di, li). We

assume that yi is continuous and differentiable in each of its input variables. Moreover we make

the following natural assumptions: ∂yi
∂ki
≥ 0, ∂yi

∂si
≥ 0, ∂yi

∂xi
≤ 0, ∂yi

∂ri
≥ 0, ∂yi

∂di
≤ 0, ∂yi

∂li
≤ 0, and

∂y2i
∂2v
≤ 0, for each v ∈ {ki, si, xi, ri, di, li}. Other important variables of the problem include: the

individual cost of one unit of labor (wi), the price per unit of output (pi), and the social planner’s

discount rate (δ). With the above information, agent i’s surplus function, Wi, is given as:

Wi(ki, si, xi, ri, di, li) = piyi(ki, si, xi, ri, di, li)− wihi(si, xi, ri, di, li).

The planner chooses the lockdown profile l = (li)i∈N ∈ [0, 1]n to maximize the present discounted
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value of aggregate surplus:

W (k, s, x, r, d, l) : =

∞∫
0

e−δt

{∑
i∈N

Wi(ki, si, xi, ri, di, li)

}
dt

=
∑
i∈N


∞∫
0

e−δt (piyi(ki, si, xi, ri, di, li)− wihi(si, xi, ri, di, li)) dt


The social planner’s problem. Recall Xi = (xi, si, ri, di)

T agent i’s health characteristics

in the population. Given a tolerable infection incidence λ, the planner’s task is to choose the

optimal admissible lockdown path l∗i (t), for each agent i ∈ N , in period t, which along with the

associated optimal admissible state path X∗i (t), will maximize the objective functional W . Using

optimal control theory, we can formalize the social planner’s problem as:

Maximize
(li)i∈N

∞∫
0

e−δt
∑
i∈N

{piyi(ki, si, xi, ri, di, li)− wihi(si, xi, ri, di, li)} dt

subject to (ODE) and ẋi ≤ λ, i ∈ N

and li(t) ∈ [0, 1] for all i ∈ N and t.

(8)

We have the following result.

Proposition 4. The social planner’s problem (8) has a unique solution.

Proof. We denote fi(ki, si, xi, ri, di, li) ≡ fi(ki, xi, ri, di, li) = β[1−xi−ri−di](1−li)
∑
j∈N

[Aij(1−

lj)xj]−(γ+κ)xi, and Wi(ki, si, xi, ri, di, li) = piyi(ki, si, xi, ri, di, li)−wihi(si, xi, ri, di, li). The

function li : t −→ li(t) ∈ [0, 1] is continuous. The function Wi, and the objective function in (8)

are continuous and differentiable. Moreover, fi and the right-hand sides of the laws of motion in

(8) are all continuous and differentiable. It follows that the problem (8) admits a unique optimal

path {l∗(t)} of the control variable (and the states {x∗(t), r∗(t), d∗(t), s∗(t)}, given the initial

conditions X0 and the laws of motion).

Proposition 4 states the existence and uniqueness of a solution to the social planner’s problem.

In what follows, we extend the analysis of problem (8) that proves useful in showing how we obtain

our simulated results. The current Hamiltonian of problem (8) is given as:

Hc(l, x, r, d, s, µ
1, µ2, µ3, µ4) =

∑
i∈N

Wi(ki, si, xi, ri, di, li) +
∑
i∈N

µ1
i fi + γ

∑
i∈N

µ2
ixi + κ

∑
i∈N

µ3
ixi

+
∑
i∈N

µ4
i [−fi − (γ + κ)xi],
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where µji (j = 1, .., 6), for each i ∈ N , are the costate variables. Given the inequality constraints

ẋi ≤ λ, and the constraints li(t) ∈ [0, 1], we can augment the current Hamiltonian Hc into the

current Lagrangian function:

Lc(l, x, r, d, s, µ1, µ2, µ3, µ4, θ1, θ2, θ3) =
∑
i∈N

Wi(ki, si, xi, ri, di, li)+
∑
i∈N

µ1
i fi+γ

∑
i∈N

µ2
ixi+κ

∑
i∈N

µ3
ixi

+
∑
i∈N

µ4
i [−fi − (γ + κ)xi] +

∑
i∈N

θ1i (λ− fi) +
∑
i∈N

θ2i li +
∑
i∈N

θ3i (1− li),

where the parameters θj, j = 1, 2, 3, are Lagrange multipliers. We can also rewrite Lc as:

Lc(l, x, r, d, s, µ1, µ2, µ3, µ4, θ1, θ2, θ3) =
∑
i∈N

Wi(ki, si, xi, ri, di, li)+
∑
i∈N

(µ1
i−µ4

i−θ1i )fi+γ
∑
i∈N

µ2
ixi

+ κ
∑
i∈N

µ3
ixi − (γ + κ)

∑
i∈N

µ4
ixi + λ

∑
i∈N

θ1i +
∑
i∈N

θ2i li +
∑
i∈N

θ3i (1− li).

The first-order conditions for maximizing Lc call for, assuming interior solutions,

∂Lc
∂lk

= 0, k ∈ N, (9)

as well as for each k ∈ N :

∂Lc
∂θ1k

= λ− ẋk ≥ 0, θ1k ≥ 0, θ1k
∂Lc
∂θ1k

= θ1k(λ− ẋk) = 0, (10)

∂Lc
∂θ2k

= lk ≥ 0, θ2k ≥ 0, θ2k
∂Lc
∂θ2k

= θ2klk = 0, and (11)

∂Lc
∂θ3k

= 1− lk ≥ 0, θ3k ≥ 0, θ3k
∂Lc
∂θ3k

= θ3k(1− lk) = 0. (12)

Finally, the other maximum-principle conditions that include the dynamics for state and co-

state variables are, for k ∈ N :

ẋk =
∂Lc
∂µ1

k

ṙk =
∂Lc
∂µ2

k

ḋk =
∂L
∂µ3

k

ṡk =
∂Lc
∂µ4

k

, and

µ̇1
k = δµ1

k −
∂Lc
∂xk

µ̇2
k = δµ2

k −
∂Lc
∂rk

µ̇3
k = δµ3

k −
∂Lc
∂dk

µ̇4
k = δµ4

k −
∂Lc
∂sk

(13)

Recall that fi(xi, ri, di, li) = β(1− xi− ri− di)(1− li)
∑
j 6=i

[Aij(1− lj)xj]− (γ + κ)xi. Then,

∂fi
∂lk

=


−β(1− xi − ri − di)

∑
j 6=i

[Aij(1− lj)xj] if k = i

−β(1− xi − ri − di)(1− li)Aikxk if k 6= i

∂fi
∂xk

=


−β(1− li)

∑
j 6=i

[Aij(1− lj)xj]− (γ + κ) if k = i

β(1− xi − ri − di)(1− li)(1− lk)Aik if k 6= i

∂fi
∂rk

=
∂fi
∂dk

=


−β(1− li)

∑
j 6=i

[Aij(1− lj)xj] if k = i

0 if k 6= i
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We also recall that Wi(ki, si, xi, ri, di, li) = piyi(ki, si, xi, ri, di, li) − wihi(si, xi, ri, di, li).

Therefore, for each i and k, and for each u ∈ {sk, xk, rk, dk, lk}, it holds that

∂Wi

∂u
=

pi
∂yi
∂u
− wi ∂hi∂u

if k = i

0 if k 6= i
(14)

Therefore, for each k ∈ N , we can write ∂Lc
∂lk

as:

∂Lc
∂lk

=
∑
i∈N

∂Wi

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂lk
− θ2k − θ3k

=
∂Wk

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂lk
− θ2k − θ3k using (14)

= pk
∂yk
∂lk
− wk

∂hk
∂lk

+
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂lk
− θ2k − θ3k

(15)

Hence, using the first-order conditions (9), equation (15) becomes:

0 = pk
∂yk
∂lk
− wk

∂hk
∂lk

+
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂lk
− θ2k − θ3k.

Using the other conditions from (13) and using (14):

µ̇1
k = δµ1

k−
∂Lc
∂xk

= δµ1
k−p

∂yk
∂xk

+wk
∂hk
∂xk
−γµ2

k−κµ3
k+(γ+κ)µ4

k−
∑
i∈N

(µ1
i −µ4

i −θ1i )
∂fi
∂xk

. (16)

Similarly, using (13), we get:

µ̇2
k = δµ2

k −
∂Lc
∂rk

= δµ2
k − p

∂yk
∂rk

+ wk
∂hk
∂rk
−
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂rk

using (14), (17)

µ̇3
k = δµ3

k −
∂Lc
∂dk

= δµ3
k − p

∂yk
∂dk

+ wk
∂hk
∂dk
−
∑
i∈N

(µ1
i − µ4

i − θ1i )
∂fi
∂dk

using (14), (18)

and

µ̇4
k = δµ4

k −
∂Lc
∂sk

= δµ4
k − p

∂yk
∂sk

+ wk
∂hk
∂sk

. (19)

Note that determining a closed-form solution of the planning problem (8) is intractable. This

is justified by the complexity and the stochastic nature of the system (ODE) that characterizes

our N-SIRD model. To gain some insight into the optimal lockdown policy and the resulting

disease and costs dynamics , we follow Alvarez et al. (2020), Acemoglu et al. (2020), and Gollier

(2020a), and resort to simulations in Section 4. First, in Section 4.1, we vary the tolerable
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infection incidence λ to illustrate the tradeoff between health and wealth. Contrary to Bosi et al.

(2021) who propose a constant optimal lockdown policy to curve the contagion, our lockdown is

dynamic, and more in line with Alvarez et al. (2020), Acemoglu et al. (2020), and Gollier (2020a).

We differ from Alvarez et al. (2020) and Acemoglu et al. (2020) by not constraining the lockdown

probability by an upper bound less than one, which situates our study more in line with Bosi et al.

(2021). A planner could lock down all the society if they found it optimal. Though this case

corresponds to a pure epidemiological model, our findings illustrate that complete lockdown is

not an optimal solution. Second, in Section 4.2, by changing the nature of the network structure

A, we illustrate how network configuration affects the disease dynamics and their impact on the

economy. Similarly, we also illustrate in Section 4.3 the effects of network centrality on individual

lockdown probabilities.

4 Comparative Statics: A Simulation Analysis

We choose the N-SIRD model’s parameters to match the dynamics of the infection and early

studies on the COVID-19 pandemic and the period in which the researchers at the Protect Nursing

Homes gathered the data on U.S. nursing homes. Following Alvarez et al. (2020), we use data

from the World Health Organization (WHO) made public through the Johns Hopkins University

Center for Systems Science and Engineering (JHU CCSE). The parameter β, the probability that

an infected individual transmits the virus to a susceptible individual in their network is assumed to

be 0.2. The lifetime duration of the virus is assumed to be 18 days (see, for example, Acemoglu

et al. (2020) and the references therein). Given the information from JHU CCSE access on May

5, 2020, the proportion of recovered closed cases was around 70% for the U.S., 93% for Germany,

and 86% for Spain. Thus, we assume that the parameter governing the recovery of an infected

patient is given by γ = 0.8
18

, and the parameter governing the death dynamics is given by κ = 0.2
18

.

We also consider the following functional form for the labour function (h) and the production

function (Y ):

hi(si, xi, ri, di, li) = (1 + φisiri(1− xi)(1− di))(1− ϕili), (φi, ϕi) ∈ [0, 1]2 (20)

yi(ki, si, xi, ri, di, li) = kαi
i h

1−αi
i , (21)

where φi determines the direct effect in the rate of change in labor supply when individual i is in

one of the natural health compartments, S, I, R or D, and ϕi represents the direct effect in the

decrease in labor supply when individual i is in lockdown. When di = P (i ∈ D) = 1, we should

have li = 0 so that hi(si, xi, ri, 1, 0) = 0. In Eq. (21), αi is the elasticity of output with respect
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to the capital, and 1 − αi is the elasticity of output with respect to labor. The functions hi in

Eq. (20) and yi in Eq. (21) satisfy the standard conditions that we mention in Section 3.

Our choice of the Cobb-Douglas function as a parametric estimate of the production function

is motivated by our empirical analyses in Section 5. Our consideration is also more in line with

several studies that argue that the Cobb-Douglas function is a standard parameterization of

production function in the literature (Douglas, 1976), and especially in primary care (Wichmann

& Wichmann, 2020), and nursing homes (Reyes-Sant́ıas et al., 2020). Using the recent data

collected by Chen et al. (2021) on U.S. nursing homes, we approximate a typical nursing home’s

production function as yi = kαi
i h

1−αi
i , where yi is the total number of residents (proxies the

nursing home’s output) who receive care, ki is the total number of beds (proxies the capital),

and hi is the number of occupied beds (proxies the labor supply).13

In all the simulations, we consider φi = 0, and ϕi = 1 such that hi(si, xi, ri, di, li) ≈ (1− li)
and we have a stationary working population. In the context of nursing and long-term care homes,

we can justify the labor supply’s approximation, hi = 1− li. The connection between two nursing

homes is determined by at least one signal received from a smartphone in both houses. Given

the structure of U.S. nursing homes staffing practices and regulation as documented by Chen

et al. (2021), most of the workers in nursing homes would not be able to work remotely if the

nursing home is in complete lockdown, i.e., hi = 0 when li = 1. Then, the choice hi = 1− li is a

good candidate since it satisfies all the standard conditions mentioned above and allows a smooth

computational time process during our simulation analyses. As for the surplus function, we assume

that αi = 1
3
, pi = 1.2, wi = 1

3
pi, for each agent i, and the level of capital is the same for all

agents at all time period and normalized to ki = 1. The annual interest rate is assumed to be

equal to 5%. For simplicity, in our simulation analyses, we assume that networks are represented

by binary adjacent matrices A = (Aij), where Aij = 1 if agents i and j are connected, and

Aij = 0, otherwise. Though we choose the values of the parameters of the production function

to match as possible the data from the U.S. nursing and long-term care homes (Chen et al.,

2021), we select other parameters in the planning problem for illustration purposes. Thus, one

should interpret the quantitative outcomes of our N-SIRD model with caution. Nevertheless, in

the empirical application, we choose the economic parameters to match each U.S. state’s reality

as possible.

13For more details on our estimation approach of a nursing home’s production function, we refer to our Sup-

plemental Material.
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4.1 Infection Incidence Control and Optimal Lockdown Policy—The

Health-vs-Wealth Tradeoff

In our first comparative statics analysis, we illustrate the effect of varying the tolerable infection

incidence level on the optimal lockdown policy and describe the tradeoff between the desired

level of population health and short-term economic gains. To achieve that goal, we consider an

economy of n = 1000 agents connected through a small-world network (Watts & Strogatz, 1998)

with 2 × n edges (A is fixed), and we vary the tolerable infection incidence, λ: 0.01, 0.05, and

0.1, in the planning problem. Figure 1 represents the simulation results.

Figure 1a illustrates that the optimal cumulative lockdown rate increases with lower infection

incidence level. This rate varies from around 6 percent for an incidence level equal to 0.1 to

9 percent for an incidence level of 0.05 to 12 percent for an incidence level of 0.01. What

emerges from these numbers is that the relationship between the tolerable incidence level and

the ultimate proportion of the population sent into lockdown is not linear. As the tolerable

infection incidence level decreases, the fraction of the population sent into lockdown increases

in a proportion that is lower than the decrease. The optimal lockdown policy resulting from

a given tolerable infection incidence level translates into a corresponding dynamics of infection,

death and economic cost. In particular, Figure 1b shows that a lower tolerable incidence level

results in a lower infection and death rate (see Figure 1b and Figure 1d). Figure 1c illustrates

the tradeoff between population health and the well-being of the economy. A lower tolerable

infection incidence level induces a greater economic cost of the pandemic. Indeed, if the tolerable

infection incidence level is low, more individuals must be sent into lockdown. Then, with a

decrease in individuals’ productiveness in the economy, the loss in terms of economic surplus is

significant. For instance, when the tolerable incidence decreases from 0.1 to 0.05, the fraction

of the economic surplus lost to the pandemic increases from around 3 percent to over 5 percent;

and a further decrease of the tolerable incidence level to 0.01 induces an economic surplus loss of

around 6 percent. It follows that a greater level of health is achieved at the expense of short-term

economic gains.
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(a) Dynamics of Lockdown (b) Dynamics of Infection

(c) Dynamics of Economic Cost (d) Dynamics of Death

Figure 1: Health versus Wealth tradeoff in a small-world network. We perform three sets of

simulations with three different values of the tolerable infection incidence λ: 0.01, 0.05, and 0.1. The

results are displayed in a two-dimensional graphic, with days in the horizontal axis, and the percentage

of population affected for the variable (infection, lockdown, or death) illustrated on the vertical axis.

In each period, a point in the graphic represents the average value of individual probabilities. For the

economic cost, the vertical axis represents the percentage of economic (or surplus) lost relative to the

economy without the pandemic. Each graph shows three curves corresponding to three dynamics for a

single variable of interest for a given value of λ. All variability within each curve in each graph is a result

of the stochastic nature of transmission and not variation in the network nor λ. In the Supplemental

Materials, we replicate the simulation results in Figure 1 for scale-free, random, and lattice networks,

in Figures 1, 2, and 3, respectively. We also replicate Figure 1 using recent epidemiological data of the

COVID-19 Delta variant (see Figure 4 in the Supplement Materials). We find that all these additional

simulation results are qualitatively consistent with the lockdown, disease, and economic costs dynamics

in Figure 1.
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4.2 The Role of Network Configuration

In Section 4.2, we fix the tolerable infection incidence λ to 0.01, and we vary the structure of

network configuration, A, in the planning problem. For the sake of concreteness, we contrast four

idealized network configurations (Keeling & Eames, 2005), namely a lattice network (Figure 2a),

a small-world network (Figure 2b), a random network (Figure 2c) and a scale-free network (Figure

2d). These networks belong to the range of the most popular network types studied in the context

of disease transmission (see, for example, Keeling & Eames (2005) and the references therein for

a review of these networks). According to Keeling & Eames, “Each of these idealized networks

can be defined in terms of how individuals are distributed in space (which may be geographical

or social) and how connections are formed, thereby simplifying and making explicit the many

and complex processes involved in network formation within real populations”(Keeling & Eames,

2005, p. 299). Following this viewpoint, the networks in Figure 5 represent four societies of 1000

agents each that are identical in all ways except the configuration of their contact network. The

four network configurations differ in both clustering of connections and path lengths between

nodes, two essential factors in disease spread.
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(a) Lattices Network (b) Small-World Network

(c) Random Network (d) Scale-Free Network

Figure 2: Simple network structures. Four distinct network types containing 1000 agents. Random

networks display homogeneity of agent-level network properties and low clustering. Lattices are homoge-

neous at the agent level, and they show high clustering. Lattice networks also exhibit long path lengths,

i.e., it takes many steps to move between two randomly selected agents, whereas random networks have

short path lengths. Small-world networks display high clustering and short path lengths. Scale-free

networks capture different levels of heterogeneity (for example, super-spreaders) in populations. In all

four graphs, the average number of contacts per agent is 2. In each network, we represent agents with

high contacts by larger dots, and we shade each node according to its number of direct contacts using

the scale beside each graph.

We represent the simulation results in the idealized networks in Figure 3.
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(a) Dynamics of Lockdown (b) Dynamics of Infection

(c) Dynamics of Economic Cost (d) Dynamics of Death

Figure 3: Optimal Disease and Economic Costs Dynamics in Networks. N-SIRD epidemics,

lockdown, and economic cost dynamics on the four network types shown in Figure 5. Each graph shows

four curves corresponding to four networks for a single variable of interest. All variability within each

curve in each graph is a result of the stochastic nature of transmission and not variation in the network.

In the simulation, we assume that the tolerable infection incidence λ = 0.01. The results are displayed

in a two-dimensional graphic, with days in the horizontal axis, and the percentage of population affected

for the variable (infection, lockdown, or death) illustrated on the vertical axis. In each day, a point in the

graphic represents the average value of individual probabilities. For the economic cost, the vertical axis

represents the percentage of economic (or surplus) loss relative to the economy without the pandemic.

Based on the simulation results (Figure 4 in the Supplemental Materials) that we obtain by replicating

Figure 1 with the COVID-19 Delta variant in the small-world network, we conjecture that a replication

of Figure 3 would yield qualitatively consistent results.
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A direct observation is that the epidemic dynamics and the variation in economic costs are

different for each society. However, the illustrations in the random network are pretty similar to

those in the small-world network. We can explain this similarity by the fact that short path lengths

characterize both small-world and random networks. We illustrate the respective optimal lock-

down policies in Figure 3a for these four societies. The cumulative proportion of the population

sent into lockdown peaks and flattened much earlier in the scale-free network society than in the

lattice and small-world networks. At the onset of the pandemic, the lockdown is slightly stricter

in the scale-free network compared to the lattice network. However, lockdown is always higher in

random and small-world network configurations compared to lattice and scale-free structures.

The lockdown dynamics in Figure 3a respond to the disease dynamics that we illustrate

in Figure 3b for infection, and Figure 3d for deaths. We observe that the reduction in initial

growth in infection is stronger in lattice networks compared with other networks because high

spatial clustering of connections drives a more rapid saturation of local environment (Keeling

& Eames, 2005). In addition, findings from theoretical models of disease spread through scale-

free-network societies show that the infection is generally concentrated among agents with the

highest number of connections (Pastor-Satorras & Vespignani, 2001; Newman, 2002; Chang

et al., 2021). Therefore, sending these potential super-spreaders into lockdown can significantly

reduce the contagion. Our optimal lockdown policy is consistent with these recommendations by

suggesting isolating hubs or super-spreaders. Once they are in lockdown in the scale-free network,

the speed of infection from one individual to another is reduced (a simple example is a situation

in which agents are connected through a star network). The situation is different in the small-

world and random network societies, where short path lengths suggest a rapid spatial spread

of disease. Then, containing the contagion below a chosen infection incidence level requires

drastic lockdown measures. As the epidemic continues, the dynamics of surplus loss that we

represent in Figure 3c, due to the pandemic, are different across the four societies, with random

and small-world networks suffering the most from the lack of economic activities resulting from

significant lockdown. However, the lowest lockdown in scale-free network (Figure 3a) results in

more infection and deaths in the long run (Figure 3d).14

Following the comparative statics analyses on network topology described in Figure 3, one

might be interested in knowing how network density could affect the optimal lockdown policy, and

therefore, the disease dynamics. To address this concern, we consider a society, Ak, consisting

of n = 1000 agents connected through a small-world network (Watts & Strogatz, 1998) with

14Based on the simulation results (Figure 4 in the Supplemental Materials) that we obtain by replicating Figure

1 with the COVID-19 Delta variant updated information, we conjecture that a similar exercise with the lattice,

random, and scale-free network structures would yield consistent results.
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k×n edges, where k represents the average number of connections per agent in the society. The

density d(Ak) of the network Ak measures how many ties between agents exist compared to how

many ties between agents are possible, given the number of nodes, n, and the number of edges,

k × n. Since Ak is an undirected network, d(Ak) = 2k
n−1 , and the network is dense (i.e., there

is a lot of interconnections between agents) as k increases. Figure 4 represents the simulation

results in society Ak, when k ∈ {2, 3, 4, 5}. The optimal lockdown dynamics displayed in Figure

4a illustrate that lockdown probabilities increase with network density. The social planner justifies

the latter decision by the fact that the infection rate is slightly high in more dense societies at

the onset of the pandemic, as portrayed in Figure 4b. As the pandemic evolves, strict lockdown

is effective in containing the infection so that in the long run, less dense societies bear a higher

number of deaths relative to more dense societies in Figure 4c. Similar to Figure 3, fewer economic

transactions as a result of rigid lockdown in more dense networks induce significant surplus loss

as displayed in Figure 4c.
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(a) Dynamics of Lockdown (b) Dynamics of Infection

(c) Dynamics of Economic Cost (d) Dynamics of Death

Figure 4: Optimal Disease and Costs Dynamics in a Small World Networks with Different

Densities. In our simulations, we assume that λ = 0.01. The results are displayed in a two-dimensional

graphic, with days in the horizontal axis, and the percentage of population affected for the variable

(infection, lockdown, or death) illustrated on the vertical axis. In each period, a point in the graphic

represents the average value of individual probabilities. For the economic cost, the vertical axis represents

the percentage of economic (or surplus) lost relative to the economy without the pandemic. The density

of network Ak is d(Ak) =
2k
n−1 , where the parameter k represents the average number of connections

per agent in network Ak, and n the number of nodes. Based on the simulation results (Figure 4 in the

Supplemental Materials) that we obtain by replicating Figure 1 with the COVID-19 Delta variant in the

small-world network, we conjecture that a replication of Figure 4 would yield qualitatively consistent

results.

Our simple experiment in Section 4.2 sufficiently highlights the fact that network configuration
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should be a key factor in designing optimal lockdown policies during a pandemic like COVID-19,

and this has implications for health dynamics and economic costs. Indeed, our illustrations are

consistent with other studies showing that network configuration plays an essential role in the level

of infection spread and information diffusion (see, for example, Keeling & Eames (2005), Pongou

& Serrano (2013), Pongou & Serrano (2016), and recently, Kuchler et al. (2020), Harris (2020),

Chang et al. (2021), and Bubar et al. (2021), among others). The numerical analysis also suggests

that the wide range of variation in COVID-19 outcomes observed across countries and across

communities within countries could be explained by differences in their network configuration.

Several studies analyze the differences in COVID-19 outcomes between countries worldwide and

communities within countries or regions. For comparisons among countries, we can cite among

others, Balmford et al. (2020), Banik et al. (2020), Sorci et al. (2020), Abu Hammad et al.

(2020), Schellekens & Sourrouille (2020), Karanikolos & McKee (2020), and Rice et al. (2021).

For cross-communities comparisons in COVID-19 outcomes in the United States, see for example,

Wadhera et al. (2020), Adhikari et al. (2020), Chang et al. (2021), and Hong et al. (2021).

4.3 Network Centrality and Optimally Targeted Lockdown

Our third comparative statics analysis highlights how lockdown policies can be optimally

targeted at individuals based on their characteristics. The individual characteristic we consider

is centrality in the contact network. In general, in a networked economy, certain agents occupy

more central positions than others in the prevailing contact network (Albert et al., 1999; Barabási

& Albert, 1999; Jeong et al., 2000; Liljeros et al., 2001; Chang et al., 2021). This can be due to

a variety of reasons, including the distinct social and economic roles played by each individual.

It is argued that individuals who occupy more central positions in networks are more likely to

be infected and to spread an infection (Anderson & May, 1992; Pastor-Satorras & Vespignani,

2001; Newman, 2002; Hethcote & Yorke, 2014; Pongou & Tondji, 2018; Rodrigues, 2019). This

suggests that an optimal lockdown policy should be targeted at more central agents in a network.

However, various measures of network centrality exist, and it is not clear which of these measures

are more predictive in the context of a pandemic like COVID-19.

To address this issue, we consider four popular network metrics: degree centrality, eigenvector

centrality, betweenness centrality, and closeness centrality. For clarity, we briefly define these four

network centrality measures. 15 We recall that the network A is a symmetric n × n weighted

adjacent matrix (Aij). An agent’s degree centrality χi equals the total number of other agents

15We should stress that network centrality is not an element in the planning problem’s optimization. We provide

the analysis to illustrate additional features of our N-SIRD model.
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directly connected to agent i (i.e., the number of agent i’s neighbors):

χi =
n∑
j=1

Aij.

Eigenvector centrality νi measures the extent to which agent i is connected to other highly

connected agents in the network A:

νi =
1

e

n∑
j=1

Aijνj.

The eigenvector centrality is computed using the principal eigenvector e of the adjacent matrix

A, that we can write in matrix notation as Aν = eν, where ν is a column vector with n entries.

The eigenvector centrality reflects the notion that connections to high connected agents are more

important. Agent i’s betweenness centrality, bi, measures the fraction of shortest paths passing

through agent i:

bi =
∑
j,k

σijk
σjk

,

where σjk is the total number of shortest paths from agents j to k, and σijk is the number of

those paths that pass through agent i. Agent i’s closeness centrality, ci, measures how close is

the agent to all other agents in the network A:

ci =
1∑

j

d(i, j)
,

where d(i, j) is the distance (or shortest path) between agents i and j. It follows from these

definitions that the degree centrality is less based on network configuration than the other cen-

trality measures. To answer the question of how each of the aforementioned network metrics

predicts the probability of lockdown, we consider a society in which agents are connected through

a small-world network with 2 × n edges. They occupy very distinct positions in this network,

resulting in some agents being more central than others. For robustness, our simulation analysis

assumes three different values for the tolerable infection incidence λ: 0.01, 0.05, and 0.1.

Table 1 reports the correlation between each of our network metrics and the average optimal

lockdown probabilities for different values of the tolerable infection incidence, λ, in a small-world

network. Our simulation results in Table 1 suggest that the four centrality measures positively

correlate to the likelihood of lockdown under the optimal lockdown policy. This correlation is

statistically significant, as implied by the different p-value statistics. Moreover, the predictive

force of lockdown obtained for each centrality measure increases with larger values of λ.
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λ Degree (χi) Closeness (ci) Betweness (bi) Eigenvector (νi)

corr p-value corr p-value corr p-value corr p-value

0.1 0.36 8e-33 0.34 9e-29 0.33 3e-27 0.29 1e-20

0.05 0.25 5e-16 0.21 1e-11 0.21 6e-12 0.17 1e-07

0.01 0.26 1e-16 0.18 4e-09 0.18 3e-09 0.13 4e-05

Table 1: Correlation between measures of centrality and average optimal lockdown

probability in a small-world network. In the Supplemental Materials (see Table 4), we replicate

Table 1 for scale-free, random, and lattice networks. We also replicate Table 1 using recent epidemio-

logical data of the COVID-19 Delta variant (see Table 5 in the Supplement Materials). We find that the

simulation results in Table 3 are qualitatively consistent with the findings in Table 1. We conjecture that

a similar replication of Table 1 with updated COVID-19 information in lattice, random, and scale-free

network would yield consistent qualitative results as in Table 4. The p-value for each centrality measure

is for the test of the hypothesis H0 ρ = 0 vs H1 ρ 6= 0.

In Table 4 in the Supplemental Materials, we provide for robustness check other correlations

between the four network metrics and average optimal lockdown probabilities for lattice, random,

and scale-free networks. We observe that all other centrality measures are positively correlated

with the average optimal lockdown probabilities apart from the lattice network. Also, in line with

the small-world network, the degree centrality appears to have a stronger correlation with the

lockdown in the random and scale-free networks. Though the correlation between the network

metrics and optimal lockdown probabilities becomes stronger as the tolerable infection incidence

increases in small-world and scale-free networks, the direction of the changes is non-monotonic

in lattice and random networks. The latter simulation results suggest that we should be cautious

about making any conclusions about the sign and the direction of the relationship between

the tolerable infection incidence, λ, the network centrality measures, and the optimal lockdown

probabilities. Nevertheless, the simulation results in Table 1 and in the Supplement Materials

(Tables 4 and 5) imply that in a society organized as either a small-world network or a scale-free

network, with a higher level of tolerance for the virus, more central individuals will suffer fewer

death as a result of being more severely locked. In Section 5, we use data from the network

of U.S. nursing and long-term care homes (Chen et al., 2021) to test some of these simulation

results.

Intuitively, though a complete lockdown might be a solution in a pure epidemiological model,

it cannot be optimal in our N-SIRD model because the goal is to disconnect the contact network
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while maintaining economic activities. It follows that under our optimal lockdown policy, not

all agents would be in the lockdown. This analysis highlights the limitations of quasi-universal

lockdown policies such as those implemented in several countries worldwide in the early period of

COVID-19. Our policy recommendation is consistent with studies and reports suggesting shutting

down only particular sectors in society during a pandemic like COVID-19 (Acemoglu et al., 2020;

Ip, 2020; Bosi et al., 2021; Chang et al., 2021; Farsalinos et al., 2021). These are social and

economic hubs, sectors that attract large numbers of individuals, such as large shopping centers,

airports and other public transportation infrastructures, schools, certain government buildings,

entertainment fields, parks, and beaches, among others.

5 Empirical Application: Estimation of State Level Tolerable COVID-

19 Infection Incidence using U.S Nursing and Long-Term Care Homes

Network

In this section, we calibrate our N-SIRD model, estimate U.S. state level tolerable COVID-19

infection incidence, and test some of the model predictions using unique data from the networks

of the U.S. nursing and long-term care facilities. The senior population (adults 65 and older)

accounts for a significant share of COVID-19 deaths in the U.S. As of September 24, 2021,

seniors account for 16% of the U.S. population but 77.9% of U.S. COVID-19 deaths in the U.S.

(Yang, 2021). Nursing and long-term care facilities have been at the center of many COVID-19

outbreak, and this situation led the U.S. federal government to instate a ban to nursing home

visits on March 13, 2020. This restriction has enabled researchers from the “Protect Nursing

Home Project” to construct a U.S. nursing homes network, using device-level geolocation data

for 501,503 smartphones in at least one of the 15,307 nursing homes. We first use these unique

network data in conjunction with nursing home and U.S. state level information to calibrate the

N-SIRD model proposed in Sections 2 and 3. The main constraint introduced in our model, the

tolerable infection incidence level, λ, is estimated for each U.S. state using a simulated minimum

distance estimator (Forneron & Ng, 2018; Smith Jr, 1993; Gertler & Waldman, 1992). The

parameter λ reveals the extent to which policymakers in different U.S. states are willing to curb

the spread of SARSCOV-2, the virus that causes COVID-19. In order words, λ captures the

planner’s tradeoff between health and wealth. A high value for λ is equivalent to a “laissez-faire”

situation, indicating a planner’s inclination to maximize economic gains even if this theoretically

results in more infections and deaths.

In a cross-sectional model, we estimate the values of λ for each U.S state. Using these values,
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we test some predictions of the N-SIRD model. Precisely, we explore whether the simulation

results are consistent with reality. For instance, we examine whether “laissez-faire” leads to more

deaths. We also investigate the effects of network centrality and the tolerable infection incidence

on death rates in nursing facilities. Furthermore, given that COVID-19 responses have been

highly politicized in the U.S., we investigate how political ideology (measured by the party of

the governor) determines λ. In a recent study, Neelon et al. (2021) suggest that there is an

association between a governor’s party affiliation and COVID-19 infections and deaths (see, for

example, Baccini & Brodeur (2021), Frankel & Kotti (2021), and Chen & Karim (2021) for

additional evidence linking political party of leaders and COVID-19 fatalities). We complement

these findings by investigating the association between the estimated tolerable infection incidence

and the governor’s party affiliation.

5.1 Data, Calibration and Estimation of the Tolerable Infection Inci-

dence (λ)

To calibrate our parameter of interest, we use data from the Bureau of Labor Statistics, the Senior

Living project16, and the cross-sectional nursing and long-term care homes data provided by Chen

et al. (2021) for the economic parameters. We obtain the calibration of the epidemiological

parameters from Statista.17 Using economic and epidemiological data for each U.S. state, we

consider each nursing home as a node in our transmission network. Two nursing homes are

connected if the same smartphone signal is recorded in both homes’ locations. The number of

distinct signals recorded gives a weight to the connection or link between two nursing homes.

Nursing and long-term care facilities display a wide range of connectedness with other facilities.

Chen et al. (2021) use different network metrics to predict COVID-19 in nursing homes. In this

empirical application of our N-SIRD model, we focus on the eigenvector centrality, νi, which

measures the extent to which a nursing home i in a U.S. state is connected to other highly

connected nursing homes in the network of nursing facilities in the state.18 To illustrate how

the eigenvector centrality measure differs across nursing homes, we present network graphs for a

subset of homes in six states as depicted in Figure 5 and summarized in Table 3 in the Supplement

16We gather the information from the website: https://www.seniorliving.org/nursing-homes/costs/

consulted on 9/9/2021.
17The data are available on the web page https://www.statista.com. The data include the rate of infection

or cases, death of COVID-19 among nursing home residents in each U.S. state in September 2020. The page also

provides an estimation of the reproduction number of COVID-19 by U.S. state.
18In the Supplement Materials (see Table 6), we show that our main empirical results are robust when replacing

eigenvector centrality by the degree centrality.
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Materials.19 More-connected nursing facilities are generally toward the center of each graph, and

facilities with fewer contacts are on the periphery. Table 2 summarizes the descriptive statistics

of U.S. nursing and long-term care facilities. We refer to Chen et al. (2021) for additional details

on nursing homes characteristics and network centrality measures in these care facilities.

19We use the algorithm by Fruchterman & Reingold (1991) and the igraph R package (Csardi et al., 2006) to

plot our selected six network structures.
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Figure 5: Network structure of selected nursing home facilities in South Dakota (A),

Connecticut (B), Louisiana (C), Colorado (D), Oklahoma (E), and Missouri (F). Details for each

network structure are provided in Table 3 in the Supplement Materials.
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Variable State Reporting Facilities

Number of Nursing Homes 15277

COVID-19 information

Cases 84.47 (237)

Death 1.84 (5.94)

Network metrics

Home Degree 6.21 (7.83)

Home Eigenvector Centrality 0.08 (0.18)

Regulatory measures

For Profit, % 70.3

Number of Beds 105.61 (59.04)

Number of Beds Occupied 76.97 (48.01)

CMS quality rating (1-5) 3.69 (1.24)

County SSA 391.39 (273.53)

Table 2: Descriptive statistics of nursing homes from Chen et al. (2021)’s Replication

data. Binary variables are percent of nursing homes; continuous variables are mean values, with

standard deviations in parentheses. In our regression-based analysis, we only use the information on the

nursing homes in the 26 U.S. states in which we estimate the tolerable COVID-19 infection incidence.

This sample consists of 6478 observations, which is still a sufficiently large sample for our empirical

exercise.

The parameters of the model that we propose in Sections 2 and 3 are obtained for each U.S.

state by following the calibration method that we described in Table 3.
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After calibration, for each U.S. state, there is a parameter remaining, λ, the parameter mea-

suring the governor’s tolerable infection incidence. We estimate λ using a simulated minimum

distance estimator. Indeed, for each potential value of λ, the planner’s problem is solved and

the dynamics of death of the model over 77 days is compared with the raw data of elderly death

dynamics provided by the New York Times death count from May 31 to August 16, 2020. The

value of λ that will minimize the distance between the two dynamics will be the estimate of the

tolerable infection incidence level of the U.S. state’s social planner.

The procedure is carried-out for 49 U.S. states present in our data set. Out of the 49, 26

U.S. states deliver estimates of the tolerable infection incidence level by the policymakers that are

significantly different from zero.21 The estimated tolerable infection incidence level range from

0.0006 for the state of Missouri (MO) to 0.45 for Alabama (AL). The average value of λ is 0.12

and the standard deviation is 0.13 indicating a substantial level of dispersion.

Figure 6: U.S. state’s Tolerable Infection Incidence Level λ. The parameter λ estimates the

tolerable COVID-19 infection incidence of the U.S. state governor from May 31 to August 16, 2020.

Using the data and the N-SIRD model with lockdown, we estimate λ for 26 U.S. states. The estimates

range from 0.0006 for Missouri (MO) to 0.45 for Alabama (AL). The average value of estimates is 0.12

and the standard deviation is 0.13.

21For the remaining U.S. states, the parameter λ is not identified as the procedure always return the initial

value, suggesting a flat objective function. Indeed, the simulated minimum distance estimator in our sample does

not guarantee the identification of λ as the raw data (New York Times death count) is not collected exactly on

the nursing homes. Moreover, there are conditions on the network matrix necessary to solve the planner’s problem

that may not be satisfied in some U.S. states.
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5.2 Testing Some N-SIRD Model’s Predictions

Our data sample has the total number of COVID-19 deaths in each nursing home throughout the

study (May 31 to August 16, 2020). We estimate the following simple linear model.

covid deathijs = a0λs + a1Eig Centijs + a2County ssajs + a3D Profitijs (22)

+ b1λs × Eig Centijs + b2λs × County ssajs + b3λs ×D Profitijs

+ c′Xijs + θj + εijs,

where covid deathijs is a variable counting the total number of COVID-19 deaths in the nursing

home i, in County j and U.S. state s, λs is the tolerable infection incidence in U.S. state s,

Eig Centijs is the eigenvector centrality index for the nursing home, County ssajs is the county

j’s average socio-economic status, D Profitijs is an indicator for whether the nursing home is

for profit or not (1 if for-profit, and 0 otherwise), Xijs represents other exogenous characteristics

of the nursing home including the constant, and θj is the county fixed effect.22 The parameters

of interest are a0 to a3 and b1 to b3. The estimated values of these parameters can be found in

Table 4.

Estimating the tolerable infection incidence level in each U.S. state allows us to verify some of

the model predictions. Figure 1d in Section 4.1 illustrates the relationship between the tolerable

infection incidence level of the epidemic and the death dynamics. This static comparative implies

that a more significant value for λ is associated with more COVID-19 deaths. The OLS estimation

results in Table 4 suggest that there is a negative association between the tolerable infection

incidence level and the total number of COVID-19 deaths in a nursing home. A five standard-

deviation increase in the tolerable infection incidence is expected to lead approximately to one

additional death in a nursing home everything else being equal. This means that more “laissez-

faire” will result in more COVID-19 deaths. This result is robust to controlling for county fixed-

effects, the level of income of the resident proxied by the county average socio-economic status,

the quality of care provided, and whether the nursing home is or not for profit.

22The choice of the total number of COVID-19 deaths rather than cases, as the outcome variable, is motivated

by two reasons. First, the number of COVID-19 cases contains both asymptomatic patients and those who will

later recover, so it cannot be an appropriate measure of the human cost of the pandemic. Second, as represented

in Figure 1b, depending on the point in time during the pandemic, there may be no difference in the number

of infected individuals as a function of the tolerable infection incidence. On the contrary, the total number of

deaths displays an unambiguous dynamics which makes the theoretical predictions of the N-SIRD model easier to

test. In addition, the total number of deaths is, without doubt, a proxy of the estimate of the human cost of the

pandemic.
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(1) (2) (3) (4) (5)

λ 0.713∗∗ 1.063∗∗∗ 2.127∗∗∗ -0.105 1.573∗∗

(2.04) (3.19) (3.25) (-0.21) (2.12)

Eig Cent 1.006∗∗∗ 1.482∗∗∗ 1.026∗∗∗ 1.011∗∗∗ 1.533∗∗∗

(3.27) (3.98) (3.35) (3.29) (4.11)

County ssa -0.000780 -0.000824 -0.000521 -0.000793 -0.000584

(-1.09) (-1.15) (-0.72) (-1.11) (-0.81)

D Profit 0.266∗∗ 0.268∗∗ 0.269∗∗ 0.101 0.0836

(2.28) (2.29) (2.30) (0.73) (0.60)

λ× Eig Cent -3.944∗∗ -4.157∗∗

(-1.97) (-2.08)

λ× County ssa -0.00446∗∗ -0.00445∗∗

(-2.47) (-2.48)

λ× D Profit 1.231∗∗ 1.387∗∗

(1.97) (2.20)

Overall Rating -0.207∗∗∗ -0.207∗∗∗ -0.207∗∗∗ -0.210∗∗∗ -0.210∗∗∗

(-5.07) (-5.07) (-5.06) (-5.13) (-5.12)

County FE Yes Yes Yes Yes Yes

Observations 6478 6478 6478 6478 6478

R2 0.072 0.073 0.073 0.073 0.074

Table 4: Estimation of the “laissez-faire” Effect: the Dependant variable is the Total

Number of COVID-19 Deaths in the Nursing Home. Table 4 summarizes the estimation

of the effects of U.S. state’s tolerable COVID-19 infection incidence level (λ) on the total number of

COVID-19 death in U.S. nursing homes. Standard errors are robust to heteroscedasticity of unknown

form. t statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. In the Supplement Materials (see Table

6), we show that our main empirical results in Table 4 are robust when replacing eigenvector centrality by the

degree centrality.
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The simulation results uncovered in Section 4 suggest that the level of network centrality

plays a pivotal role in the optimal lockdown and diffusion of the epidemic. The optimal lockdown

policy targets more central individuals with a higher probability. Table 1 in Section 4.3 suggests

that higher values of tolerable infection incidence levels are associated with a higher likelihood

of lockdown of central agents in the network structure. Therefore, our simulation would predict

that more“laissez-faire”(i.e., increase in λ) will attenuate the impact of network centrality on the

number of COVID-19 deaths because more central individuals will be lockdown. In other words,

under a laissez-faire policy, the difference in the number of deaths between central and peripheral

nursing homes is reduced. The regression results in Table 4 test this prediction. Column (1) shows

that being more central is associated with more COVID-19 deaths in the nursing homes. Column

(2) shows the interaction between eigenvector centrality and the tolerable infection incidence.

The interaction term has a negative and statistically significant effect on total COVID-19 deaths.

An increase in the level of the tolerable infection incidence reduces the relative death toll of more

central nursing homes. Columns (2) and (5) of Table 4 show the robustness of this result to

the introduction of several controls. We also verify another prediction of our model’s simulation

in the sample under investigation. Our results complement Chen et al. (2021) by showing that

while the level of eigenvector centrality matters in the propagation of the epidemic and death

count, there exists heterogeneity in the extent of its relevance. More precisely, we show that the

social planner’s tolerable infection incidence affects the relationship between the level of centrality

and the number of COVID-19 deaths. This relationship is less pronounced under a laissez-faire

regime.

We also assess how “laissez-faire” affects the relationship between the COVID-19 death toll

and economic conditions and type of nursing home (for a profit or not). Column (5) in Table 4

shows that laisser-faire more negatively affects nursing homes in economically deprived counties.

Next, we analyze the impact of the nursing home type on the total number of death. Our

estimations suggest that for-profit nursing homes have seen 27% more deaths compared to not-

for-profit ones (see Columns (1) to (3) in Table 4). Moreover, our results show that the type of

the nursing home and the tolerable infection incidence are the main drivers of the difference in

COVID deaths in nursing homes. Indeed, when we introduce the interaction term between λ and

for-profit (D Profit) in Column (4), both λ and the for-profit indicator (D Profit) become smaller

in absolute value and non-statistically significant; only the interaction term has a positive and

statistically significant coefficient. We also note that better rated nursing homes have significantly

less deaths.

The simulations in Section 4 also show the relationship between the tolerable incidence and
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(1) (2) (3) (4) (5)

λ 3.812∗∗ 4.290∗∗ 5.401∗∗

(2.57) (2.15) (2.35)

Democrat Governor 0.0554 0.845 -2.040∗∗

(0.08) (1.02) (-2.22)

Female Governor -0.513 -0.765 -0.593

(-0.91) (-1.31) (-0.96)

South -1.083∗ -1.124∗ -1.261∗

(-1.78) (-1.92) (-2.06)

Democrat × λ -10.15∗

(-1.95)

log(λ) 0.169 0.420∗∗

(1.47) (2.25)

Democrat × log(λ) -0.540∗∗

(-2.38)

Constant -4.100∗∗∗ -3.674∗∗∗ -3.804∗∗∗ -3.088∗∗∗ -1.700∗

(-11.87) (-5.16) (-5.32) (-6.57) (-2.05)

Observations 26 26 26 26 26

R2 0.165 0.307 0.382 0.057 0.320

Table 5: Estimation of the “laissez-faire” Effect on U.S. state’s GDP Growth in 2020.

Standard errors are robust to heteroscedasticity of unknown form. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01,

t statistics are in parentheses. In Table 7 in the Supplemental Materials, we present the descriptive

statistics of GDP and U.S. states’ governorship political affiliation and gender in 2020.
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the economic performance. Figure 1c suggests that more “laissez-faire” is associated with lower

total economic cost. The estimation results in Table 5 put that prediction to a test by estimating

the effect of the U.S. state’s tolerable COVID-19 infection incidence on the level of GDP growth

in 2020. In accordance with the theoretical simulations, our estimation results suggest a positive

relationship between λ and the GDP growth. The effect of the tolerable infection incidence on

economic growth is larger for republican governors. These results are robust to the controls for

regional differences and for the gender of the governor.

In summary, the findings of Table 5 validate some essential predictions of the N-SIRD model

using data from the U.S. nursing homes networks. Indeed, we provide evidence suggesting that a

higher tolerable infection incidence is associated with more COVID-19 death. Moreover, centrality

plays a pivotal role in optimal lockdown, and more “laissez-faire” exacerbates its effects. We also

show that the tolerable infection incidence seems to mediate the impact of economic variables

on the human cost of the pandemic. The existence of a positive correlation between tolerable

infection incidence and the economic performance is tested and validated in our sample.

In previous sections, we assume that policymakers decide the optimal lockdown policy accord-

ing to their desirable tolerable infection incidence levels, λ. Given its importance in controlling

the disease and economic dynamics, investigating the sources of its heterogeneity as described in

Figure 6 is of interest. We perform this exercise in Section 5.3.

5.3 Political Origins of the Tolerable Infection Incidence Heterogeneity

Whether it is about public health, economic lockdown, mask mandate, or COVID-19 vaccine, the

public debates on COVID-19 have been divided along political lines (Adolph et al., 2021; Neelon

et al., 2021). The extent to which this division has affected the COVID-19 pandemic is at the heart

of a new and growing literature. We contribute to this literature by examining whether the party

affiliation of the U.S. state’s governor predicts the tolerable COVID-19 infection incidence. We

regress the tolerable infection incidence level on the party affiliation of the incumbent governor

in the period covered by the sample (May 31 to August 16, 2020) and other controls. The

regression elucidates the most critical determinant of the U.S. state’s choice of the tolerable

COVID-19 infection incidence level.

Democrat governors have 8% lower tolerable infection incidence, as shown by the estimation

results in Table 6. Thus, Republican governors are more inclined to implement a “laissez-faire”

policy, which mirrors the traditional pro-market position of the party.23 The result is robust to

23This statement is more in line with the position of Texas Republican Lieutenant Governor Dan Patrick

suggesting that seniors are willing to die to keep the economy afloat“Those of us who are 70 plus, we’ll take care
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(1) (2) (3) (4)

Republican Governor 0.0973∗∗∗ 0.104∗∗∗ 0.0999∗∗∗ 0.0756∗∗∗

(33.06) (33.28) (31.93) (20.59)

Republican × Covid Death -0.00293∗∗∗ -0.00376∗∗∗ -0.00351∗∗∗

(-5.72) (-7.12) (-6.84)

Covid Death 0.00280∗∗∗ 0.00291∗∗∗ 0.00289∗∗∗

(11.00) (10.48) (9.61)

Female Governor 0.0536∗∗∗ 0.0693∗∗∗

(11.15) (14.17)

South 0.0514∗∗∗

(12.61)

Constant 0.174∗∗∗ 0.0718∗∗∗ 0.0656∗∗∗ 0.0553∗∗∗

(63.55) (63.14) (49.25) (33.09)

Observations 6985 6564 6564 6564

R2 0.128 0.138 0.158 0.183

Table 6: Estimation of the Governor Party Affiliation Effect: The Dependent variable

is the U.S. state’s Tolerable COVID-19 infection Incidence. Standard errors are robust to

heteroscedasticity of unknown form. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, t statistics are in parentheses.

controlling for geographical U.S. state characteristics, the severity of the epidemic, and the gender

of the state’s governor.

Not surprisingly, there is a positive association between the number of deaths in the nurs-

ing home and the U.S. state’s tolerable COVID-19 infection incidence level. Quite surprisingly,

however, more deaths in the nursing home seems to reduce the gap in the tolerable infection

incidence between Republican and Democrat governors, as illustrated by estimates in Columns

(2) to (4) of Table 6. Governors from different parties therefore tend to converge in their policies

of ourselves. But don’t sacrifice the country”(Knodel, 2020, n.d). Similarly, in a recent study, Baccini & Brodeur

(2021) find consistent results about the role of political ideology on the responses to the COVID-19 pandemic. For

instance, their results suggest that during the early COVID-19 epidemic, Democratic governors emphasized health

and safety and were significantly more likely to implement a statewide order. In contrast, Republican governors

were particularly concerned about the economic costs of stay-at-home measures.
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when faced with a high death count. The estimation results also suggest that the gender of the

governor determines the tolerable infection incidence level, with this level being higher in female

governors by about 7%. Moreover, being located in the South increases the tolerable infection

incidence level by 5%.

Our analysis suggests that ideological reasons and the severity of the epidemic impact the

choice of the tolerable infection incidence. The U.S. state governor’s gender and party affiliation

and the state’s geographical location are essential determinants of the tolerable infection incidence

level.

6 Policy Implications and Concluding Remarks

This paper poses the problem of finding the optimal lockdown and reopening policy during a

pandemic like COVID-19, for a social planner who prioritizes health over short-term economic

gains. Agents are connected through a weighted network of contacts, and the planner’s objective

is to determine the policy that contains the spread of infection below a tolerable incidence level

and that maximizes the present discounted value of real income, in that order of priority. We

show theoretically that the planner’s problem has a unique solution. The optimal policy depends

both on the configuration of the contact network and the tolerable infection incidence level.

Simulation-based comparative statics analyses highlight the crucial role of network structure in

infection spread and quantify the tradeoff between the tolerable infection level and human losses

on the one hand, and the economic losses due to the pandemic on the other hand. The simulation

exercises also show how different measures of network centrality correlate with the likelihood of

being sent into lockdown and how that correlation varies with the tolerable infection incidence

level.

We use unique data on the networks of nursing and long-term homes in the United States and

from several other sources to calibrate our model. We uncover the tolerable COVID-19 infection

incidence level, λ, for 26 U.S. states. A higher value of λ indicates a preference for“laissez-faire”,

short-term economic gains are maximized at the expense of population health. Using this param-

eter to test the model’s predictions, we find that a “laissez-faire” pandemic policy is associated

with an increased number of deaths in nursing homes, while increasing U.S. state GDP growth.

We also find significant interactions between λ and other important variables. In particular, we

find that “laissez-faire” is more harmful to nursing homes that more peripheral in the networks

compared to those that are more central. Given that network centrality is associated with more

deaths, this means that “laissez-faire” tends to decrease the importance of this network variable
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by increasing the vulnerability of peripheral nodes. “Laissez-faire” is also more harmful to nursing

that are located in deprived counties, and to those that work for a profit. This latter finding

is important in the sense that our theoretical model is more valid for organizations that seek to

maximize economic profit. Finally, in an attempt to validate our calibration exercise from external

information, we examine the association between political variables and λ, finding that U.S. states

with a Republican governor, southern states, and states with a female governor are more likely

to tolerate the pandemic. However, the behaviors of Republican and Democratic governors tend

to converge when faced with a high death count in nursing homes.
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