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Intoxication With Endogenous
Angiotensin II: A COVID-19
Hypothesis
Adonis Sfera 1*†, Carolina Osorio 2†, Nyla Jafri 1†, Eddie Lee Diaz 1† and

Jose E. Campo Maldonado 3†

1 Patton State Hospital, San Bernardino, CA, United States, 2Department of Psychiatry, Loma Linda University, Loma Linda,

CA, United States, 3Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States

Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the

globe. However, despite its high pathogenicity and transmissibility, the severity of the

associated disease, COVID-19, varies widely. While the prognosis is favorable in most

patients, critical illness, manifested by respiratory distress, thromboembolism, shock,

and multi-organ failure, has been reported in about 5% of cases. Several studies have

associated poor COVID-19 outcomes with the exhaustion of natural killer cells and

cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article,

we propose a common pathophysiological denominator for these negative prognostic

markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza,

the outlook of COVID-19 is negatively correlated with the intracellular accumulation of

angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In

this model, upregulated angiotensin II causes premature vascular senescence, leading

to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II

blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with

critical illness by reversing both the clotting and immune defects (Graphical Abstract).

Keywords: SARS-CoV-2, cellular senescence, angiotensin II, prognosis, critical illness, immune checkpoint

inhibitors

INTRODUCTION

High transmissibility, asymptomatic carriers, and the absence of herd immunity have contributed
to the rapid worldwide spread of COVID-19 disease (1, 2). Although up to 50% of the affected
individuals are free of clinical manifestations, about 5% of patients display serious complications,
consisting of acute respiratory distress syndrome (ARDS), thromboembolism, sepsis, and multi-
organ failure, often leading to death (3, 4).

COVID-19 disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which is genetically related to SARS-CoV-1, known for engendering the 2002–2003 SARS
epidemic. Several studies at the time have connected this virus to severe lymphopenia, involving
cytotoxic T-cells (CTCs), and natural killer (NK) cells, which are indispensable for antiviral
immunity (5, 6). In addition, faulty coagulation, associated with deep venous thrombosis (DVT)
and pulmonary embolism (PE), has further complicated the management of this syndrome (7).
These prior findings have been replicated in relation to SARS-CoV-2 and seem to precede the
development of critical illness, suggesting that defective immunity may play a major role in this
disease (8–10). Indeed, as in avian influenza, the upregulation of NK cell, and CTC exhaustion
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GRAPHICAL ABSTRACT | The SARS-CoV-2 virus engages the angiotensin-converting enzyme-2 (ACE-2) protein, displacing its physiological ligand. As a result,

angiotensin II (ANG II) accumulates in endothelial cells (ECs), inducing vascular senescence with upregulation of interleukin-6 (IL-6) and reactive oxygen species (ROS),

impairing both innate and adaptive immunity. These changes engender dysfunctional coagulation (not shown) and the expression of exhausting markers (EM). In

return, these immune defects disrupt viral clearance, engendering a vicious cycle and poor COVID-19 prognosis.

markers (EMs) has been observed (11). This is somewhat
surprising, as these molecules are uncommon in acute viral
infections and characterize cancer and viruses associated
with chronic illness, such as human immunodeficiency virus
(HIV), hepatitis C virus (HCV), or cytomegalovirus (CMV)
(12). In oncology, lowering EMs with immune checkpoint
inhibitors (ICIs) is an established anti-tumor therapy aimed at
reinvigorating host immunity, a modality with potential benefits
in COVID-19 (13).

Under normal circumstances, EMs lower immune reactions to
prevent autoimmunity. However, chronic inflammation can also
elicit this response by prolonged stimulation of T cell receptors
(TCRs) (14). Many viruses, likely including SARS-CoV-2, exploit
EM pathways to avert detection. For example, SARS-CoV-2 gains
access to host cells via angiotensin-converting enzyme-2 (ACE-
2) associated with the renin-angiotensin system (RAS), which,
aside from regulating arterial blood pressure, plays a major
role in immunity (15). In this respect, SARS-CoV-2 appears to
act like avian influenza viruses H5N1 and H7N9, elevating the
serum levels of angiotensin II (ANG II), interleukin-6 (IL-6), and
EMs (16–20).

As viral replication is more efficient in senescent cells,
many viruses, including CMV and probably SARS-CoV-
2, promote this phenotype in host cells to facilitate
invasion (19, 21, 22). Senescent cells are characterized by
proliferation arrest and a specific secretome, senescence-
associated secretory phenotype (SASP). This is marked by
upregulated IL-6 and reactive oxygen species (ROS), which
were also detected in COVID-19 disease (23). Indeed, SARS-
CoV-2 has been associated with upregulation of ANG II,
a molecule previously shown to promote senescence in
vascular smooth muscle cells (VSMCs) and endothelial cells
(ECs) (24–26).

We hypothesize that vascular senescence-mediated
upregulation of IL-6 and ROS is responsible for both
coagulation and immune dysfunction. Furthermore,
this pathology, evidenced by the elevated plasma
levels of EMs and D-dimer, heralds a poor COVID-19
prognosis (27). We further hypothesize that ICIs and
angiotensin II blockers may help critically ill COVID-
19 patients by reversing the virus-induced premature
vascular senescence.
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A BRIEF PATHOPHYSIOLOGY OF
COVID-19 DISEASE

The SARS-CoV-2 virus gains access to host cells by engaging
ACE-2 proteins, which are abundantly expressed in many tissues,
including alveolar epithelial cells type II (AEC II), intestinal
epithelial cells (IECs), and ECs (26, 28, 29). Interestingly,
these cells function as “non-professional” antigen-presenting
cells (APCs), so viral invasion directly affects their immune
function. It has been established that viruses often evade
detection by exploiting immunity-related host receptors. For
example, the human poliovirus enters host cells via CD155,
which is a receptor for T-cell immunoglobulin and ITIM
domains (TIGIT) and an EM associated with functional
downregulation of the CTCs and NK cells (30). Human
immunodeficiency virus (HIV) upregulates EMs by maintaining
a constant low-grade inflammation that repeatedly stimulates
TCRs, “desensitizing” them (31). Other examples of virus-
induced cellular senescence or EM upregulation are hepatitis C
virus (HCV) and cytomegalovirus (CMV) (21, 32).

ACE-2 Downregulation and Critical Illness
In SARS-CoV-1 or SARS-CoV-2 infection, unfavorable prognosis
has been associated with ACE-2 downregulation (33). This is
a surprising and counterintuitive finding, as fewer viral entry
portals should improve the clinical outcome. However, novel
studies have shown that decreased levels of ACE-2 proteins
cause higher illness severity and more end-organ damage (34)
(Figure 1).

On closer scrutiny, ACE-2 downregulation takes place as
these proteins are shed (along with the attached virus) from
the cell membranes and are spread by circulation throughout
the body. This occurs as SARS-CoV-2 spike (S) protein engages
ACE-2 by usurping two host proteases: type II transmembrane
serine protease (TMPRSS2), which facilitates viral ingress (by
cleaving the S antigen into S1, the active binding site), and
ADAM17, which downregulates ACE-2 proteins (by shedding
them together with the attached virus) (33–37). For this reason,
the latter, responsible for COVID-19 complications and end-
organ damage, may be more harmful to the host (Figure 1).
Indeed, since the origination of this pandemic, the research focus
has been on blocking TMPRSS2 to prevent viral entry, rather than
ADAM17 inhibition to avert critical illness (26).

SARS-CoV-2 and Cellular Senescence
Under normal circumstances, ACE-2 terminates the action of
angiotensin (ANG I), and ANG II by cleaving these peptides into
ANG 1-9 and ANG 1-7, respectively (Figure 2). In the absence of
ACE-2 (due to viral blockade and downregulation), both ANG
I and ANG II accumulate. However, as ACE-1 is not engaged
by the virus, the conversion of ANG I to ANG II continues
unabated, leading to the unopposed accumulation of ANG II.
Excess ANG II has been associated with mitochondrial oxidative
damage and ROS and IL-6 upregulation, impairing both
coagulation and immunity (38) (Figure 2). SARS-CoV-2 may
induce vascular aging and EC senescence by two mechanisms:
ADAM-17 activation and NO depletion (27, 39) (Figure 2).

FIGURE 1 | TMPRSS2 and ADAM17 are two virus-usurped host proteases.

The former primes the spike (S) protein into S1, the active receptor binding site,

promoting viral ingress. The latter, ADAM17, sheds the ACE-2 ectodomain,

downregulating these proteins. The shed virus-ACE-2 complexes are soluble

and readily spread by the circulation, causing end-organ damage, and critical

illness. Some protease inhibitors may downregulate both TMPRSS2 and

ADAM17, providing added therapeutic benefit for COVID-19 patients.

Indeed, preclinical studies have shown that ANG II-infused
rodents demonstrated mitochondrial loss and muscle atrophy,
suggesting that ANG II acts as a mitochondrial toxin (40). Taken
together, SARS-CoV-2 triggers premature cellular senescence and
possibly organismal aging by damaging mitochondria (41, 42).

To ARB or Not To ARB?
A controversy involving two antihypertensive drug categories,
angiotensin receptor blockers (ARBs), and angiotensin
converting enzyme inhibitors (ACEi), arose as a recent paper
opined that these agents might upregulate ACE-2, increasing
the likelihood of viral infiltration (43). However, others have
found these agents not to be harmful to COVID-19 patients and
possibly to be beneficial, supporting the hypothesis presented
here (44–46).

Taken together, the S1/ACE-2 attachment occupies and
downregulates ACE-2 proteins, rendering them incapable of
cleaving ANG II, contributing to its accumulation (Figure 2).
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FIGURE 2 | Engagement of ACE-2 by the SARS-CoV-2 virus blocks and downregulates these proteins, impairing the degradation of both ANG I and ANG II.

However, since ACE-1 is not affected by the virus, ANG I conversion to ANG II continues unabated, contributing to its accumulation. ANG II excess damages

mitochondria, upregulating both IL-6 and ROSs. These molecules induce EC senescence, dysfunctional immunity, and coagulation by upregulating both the

exhaustion markers (EM) and D-dimer.

ENDOTHELIAL SENESCENCE:
ANGIOTENSIN II AND SARS-CoV-2
CRITICAL ILLNESS

Under normal circumstances, ECs are facultative APCs that
synthesize tissue factors and thrombin inhibitors, maintaining
both coagulation and immune homeostasis (27, 47). Although
SARS-CoV-2 primarily targets AEC II in the lower respiratory
tract, these cells are in close proximity to the underlying
endothelium, which is likely to be infected (48). Indeed, body-
wide EC damage has been reported in COVID-19, suggesting
that the spread of this disease outside the respiratory system is
a common occurrence (49). In addition, in COVID-19, like in
HIV infection, the elevated serum D-dimer levels were found to
herald a highermortality rate, linking disease severity to impaired
endothelia and coagulation (50, 51). Moreover, a recent COVID-
19 study found a negative correlation between D-dimer and
the number of CTCs and NK cells, connecting dysfunctional
coagulation with lymphopenia (52–54).

SARS-CoV-2 and Mitochondrial Damage
Viral replication is more effective in senescent cells, and many
viruses, including influenza, have been shown to promote
this phenotype in their hosts (19, 22). Indeed, the H7N9
Influenza virus induces host vascular senescence by upregulating
ANG II and its signaling via AT-1Rs, causing NO depletion

(19, 35, 55–59) (Figure 3). As SARS-CoV-2 is believed to utilize
the same mechanism, AT-1R blockers, including losartan,
are currently in COVID-19 clinical trials (NCT04335123,
NCT04312009, and NCT04311177) (Figure 3).

Several viruses, including polio, HIV, and SARS-CoV-1,
induce senescence in host cells by inflicting mitochondrial
damage (60–62). For example, the avian influenza H5N1 virus
was demonstrated to impair mitochondrial antiviral signaling
(MAVS) protein, inhibiting interferon release (63, 64). Since
MAVS is indispensable for NK cell and CTC maturation and
metabolism, disabling these proteins translates into impaired
immunity (65, 66). Aside from altering MAVS, viruses can
also lower host immunity by interfering with mitochondrial
metabolism. Because NK and CTCs undergo metabolic rewiring
to support clonal expansion and effector function upon antigen
contact, viral interference with this process impairs immune
responses (67). Moreover, ROSs released by the virus-damaged
mitochondria not only impair NO synthesis but also activate
ADAM 17, causing EC senescence by two distinct mechanisms
(27, 39, 68, 69). For this reason, ADAM17 inhibitors, deemed
effective against SARS-CoV-1, should be investigated against
SARS-CoV-2 (35).

Angiotensin II, a Mitochondrial Toxin
In COVID-19 patients, elevated serum levels of ANG II were
found to be directly correlated with viral load and the severity of
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FIGURE 3 | SARS-CoV-2 engagement of ACE-2 blocks ANG II breakdown into ANG 1-7, increasing intracellular ANG II. ANG II signaling via angiotensin 1 receptors

(AT-1Rs) (inhibited by ARBs), induces EC senescence and upregulates IL-6 and ROS, causing immune, and coagulation dysfunction. When ACE-2 is bound by the

virus, the SARS-CoV-2/ACE-2 complexes enter host cells by endocytosis. Complexes that are not endocytosed are shed by ADAM17, contributing to critical illness.

lung injuries (70, 71). Moreover, ACE-2 downregulation has been
directly linked to the critical pulmonary pathology, suggesting
that unopposed ANG II acts as an endogenous toxin (72). On
the other hand, a recombinant human ACE-2 (rhACE-2) was
found beneficial in a small cohort of SARS-CoV-1 patients and
is currently in COVID-19 clinical trials (clinical trial identifier
NCT04335136) (73, 74).

Taking this evidence together, intracellular ANG II is
an endogenous mitochondrial poison, causing premature
endothelial senescence that damages end organs, impairing
COVID-19 prognosis.

Hypothesis- Putting It All Together
In light of the above discussion, we hypothesize the following:

1. ANG II is a mitochondrial toxin that, under normal

circumstances, is rapidly removed by ACE-2, which

converts it into ANG 1-7.

In favor of this statement, we point to several studies showing
that in the absence of hydrolyzing enzyme, ACE-2, ANG II
accumulates intracellularly, inducing mitochondrial elimination
or damage throughout the body endothelia (36, 75–77).

2. ACE-2 proteins are both occupied and downregulated

by the SARS-CoV-2 virus and are therefore incapable of

hydrolyzing ANG II.

In favor of this assertion, we cite studies reporting that the SARS-
CoV-2 receptor-binding domain (RBD) exhibits significantly
higher affinity for ACE-2 and a higher degree of ACE-2
downregulation compared to the related SARS-CoV-1 (78, 79).

3. The attachment of SARS-CoV-2 to ACE-2 is positively

correlated with ANG II accumulation and negatively

correlated with ACE-2 levels.

In favor of this statement are novel findings showing that ANG II
serum levels are positively correlated with both the SARS-CoV-2
viral load and lung injuries (70, 71). In addition, the density of
ACE-2 protein has been found to be negatively correlated with
COVID-19 critical illness (72).

4. Excess ANG II promotes premature EC senescence along

with dysfunctional coagulation and immunity.

Several COVID-19 studies have associated poor disease
prognosis with ANG II-induced endothelial dysfunction,
impaired coagulation, and the overexpression of EMs
(8, 27, 78, 80).

5. SARS-CoV-2-mediated ANG II accumulation causes IL-6

and ROS upregulation, damaging the endothelia.

Novel studies have associated SARS-CoV-2 infection with
elevation of IL-6, a cytokine that inhibits endothelial NO
synthesis, causing senescence (81, 82). On the other hand, IL-6-
blocking antibodies are currently in clinical trials for COVID-
19 (clinical trial identifier NCT04322773). Moreover, ROSs
upregulate ADAM17 and lower NO, triggering vascular aging
(27, 39, 68, 69). Conversely, ROS scavengers, including camostat
mesylate and anti-inflammatory/antioxidant supplements, are
currently in COVID-19 clinical trials (clinical trial identifiers
NCT04321096 and NCT04323228).

6. Immune checkpoint inhibitors and ANG II blockers

may help critically ill COVID-19 patients by

reversing premature vascular senescence, restoring

immune homeostasis.

We base this assertion on novel studies showing beneficial
effects of rhACE-2 and ARBs, including losartan, in SARS-
CoV-2 patients. Losartan and rhACE-2 clinical trials are listed
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above (83, 84). Moreover, cancer patients with SARS-CoV-2 who
were undergoing immunotherapy were found to have a better
COVID-19 prognosis than those on chemotherapy, suggesting
that ICIs may be helpful against SARS-CoV-2 (85). Furthermore,
the clinical trial “Personalized Immunotherapy for SARS-CoV-
2 (COVID-19) Associated with Organ Dysfunction (ESCAPE)”
(clinical trial identifier NCT04339712) is currently assessing the
potential benefit of these agents against COVID-19.

In the remaining sections of this article, we look through
the prism of this pathophysiological hypothesis, attempting to
identify new target molecules, or pathways that might emerge
from this model (Table 1). We also point to the neuropsychiatric
manifestations of COVID-19 that, as demonstrated by prior
pandemics, are often delayed and involve both movement and
neurodegenerative disorders.

TABLE 1 | Potential COVID-19 therapies based on the presented hypothesis.

Drug category Mechanism References/clinical

trials

ADAM17 inhibitors Blocks ACE-2

downregulation

(39)

Modified polio vaccine Lowers CD155 and TIGIT (86)

Aspirin Lowers TIGIT (87)

Anti-TIGIT antibodies Lower TIGIT (88)

Cariprazine Reinvigorate immunity None

IL-6 antibodies Lower chronic

inflammation

NCT04322773

ROS scavengers Lower chronic

inflammation

NCT04321096 and

NCT04323228

BCG vaccine Activates M1

macrophages

NCT04328441 and

NCT04327206

TIGIT: IN THE EYE OF THE “CYTOKINE
STORMS”

COVID-19 patients may present with a wide variety of immune
and inflammatory responses, ranging from hyperinflammation
or “cytokine storms” to immune suppression or exhaustion (89,
90). This has raised a clinical dilemma: should immunity be
augmented or lowered in COVID-19 patients? Indeed, it appears
that some individuals require anti-inflammatory drugs, while
others are in need of immune activators (91, 92). Along these
lines, bothNK cells and anti-inflammatory agents are currently in
COVID-19 clinical trials, indicating that both categories may be
called upon due to the fact that individual immune responses to
this virus can be highly variable (NCT04375176, NCT04329650).
On the one hand, the SARS-CoV-2 virus likely averts detection
by inducing immune disruption, while on the other, the host
may unleash excessive inflammation to limit viral infection.
Since human CTCs and NK cells possess a functional RAS,
the virus-induced immune impairments may be mediated by
this system (93). Indeed, preclinical studies have found that
ARBs, including losartan, can prevent COVID-19 pulmonary
injuries, suggesting that ANG II/AT-1R signaling drives the
immune defects associated with SARS-CoV-2 (70). Moreover,
as the TIGIT pathway has been found to promote immune
dysregulation in response to many viral infections, it is likely that
SARS-CoV-2 may manipulate this EM to evade detection (10).
Indeed, elevated levels of IL-10, a TIGIT-signaling cytokine, have
been documented in COVID-19 patients, suggesting that SARS-
CoV-2 exploits these proteins to cover its molecular signatures
(Figure 4) (94).

Viruses often bind to cell membrane receptors associated with
immune suppression or senescence to achieve both host cell entry
and a progeny-permissive microenvironment. For example, the

FIGURE 4 | CD155 can be engaged by TIGIT, leading to immune exhaustion or by the competing molecule, CD 226, augmenting immunity. In individuals with a

degree of immune senescence, TIGIT may be more likely to engage CD155, while in persons more prone to autoimmunity, CD226 may bind CD155, generating

hyperinflammation, or “cytokine storms.” CD112 expression in CTCs and NK cells triggers antiviral responses by interferon release. CD112R upregulation lowers

immune function as this protein, like TIGIT, functions as an EM. Viruses also exploit the CD95 pathway to induce CTC apoptosis (mimicking infection resolution).

Aspirin and anti-TIGIT antibodies may decrease TIGIT, IL-10, and EMs, potentially benefiting COVID-19 patients. Attenuated polio vaccine may have similar effects by

inhibiting the CD155–TIGIT axis.
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human poliovirus attaches to CD155, the TIGIT receptor, to
upregulate this EM and inhibit host immunity (95) (Figure 4).
As CD155 is associated with other immune-suppressing proteins,
including CD95 and CD112 and its receptor (CD112R), it is likely
that an immune inhibitory network exists around CD155 that
can be exploited by viral agents to avert detection (Figure 4).
For example, alpha herpesvirus targets CD112, which controls
the expression of interferon gamma (IFNγ), while influenza
virus induces CTC apoptosis via CD95 (96, 97) (Figure 4).
Moreover, recent studies have reported that CD112R functions
as a human EMs, suggesting that along with TIGIT, it may be
responsible for many viral infections, including SARS-CoV-2
(98). On the other hand, TIGIT competes for CD155 binding
with CD226, a receptor associated with the hyperinflammation of
autoimmune disorders, suggesting the existence of a host-driven
“cytokine storms” axis opposed to the virally induced immune
suppressant, TIGIT (30, 99) (Figure 4). Indeed, it was recently
reported that individuals expressing the CD226G allele (which
binds to CD155 with higher affinity) exhibited severe influenza
symptoms, linking this gene to critical COVID-19 illness (100).

Taken together, the TIGIT–CD155–CD226 axis likely
comprises a major immune switch usurped by many viruses,
likely including SARS-CoV-2, to avert host detection (30, 99). As
elevated serum levels of TIGIT and IL-10 have been documented
in SARS-CoV-2 infection, the attenuated polio vaccine may
be beneficial against COVID-19, as it inhibits CD155 and its
immunosuppressive network (Figure 4).

Older Individuals and COVID-19 Critical
Illness
The COVID-19 pandemic appears to affect the elderly more than
children or younger adults, suggesting that immune senescence
may play a role in its pathogenesis (101–103). Since ANG
II/AT-1R signaling triggers immune exhaustion, older COVID-
19 patients may present with more complex immune defects
engendered by the simultaneous expression of exhaustion and
senescence markers (104). Indeed, novel preclinical studies have
demonstrated that TIGIT knockdown can reverse premature
cellular and immune aging, suggesting that downregulation of
this molecule may benefit COVID-19 patients (105).

Aside from older individuals, persons with higher levels of
pro-inflammatory cytokines, including those with obesity and
diabetes, may be at higher risk of TIGIT overexpression and
COVID-19 complications. Indeed, SARS-CoV-2 critical illness is
more prevalent in individuals with these conditions, as reported
by the Louisiana Department of Health Update from 3/27/2020
(106) (http://ldh.la.gov/index.cfm/newsroom/detail/5517).

It is therefore possible that in individuals predisposed to
autoimmunity, such as those expressing the CD226G allele,
SARS-CoV-2 may tilt the immune balance toward CD155–
CD226 interaction, generating “cytokine storms.” On the other
hand, in persons with preexisting immune defects, such as
immune senescence, the CD155–TIGIT interaction may be
enabled, engenderingmore profound immune deficits (by adding
immune exhaustion to the previously aged CTCs and NK cells)
(107, 108). Indeed, immune senescence appears to be the likely

cause of the lower prevalence of autoimmune diseases and poorer
response to vaccines in the elderly population (109, 110). For this
reason, we surmise that the unfavorable COVID-19 prognosis
is directly correlated with plasma TIGIT levels and that anti-
TIGIT monoclonal antibodies could be salutary for COVID-
19 patients (Figures 4, 5). Furthermore, as recombinant polio
vaccines were reported to provide suitable vector systems for
antigen attachment, connecting viral S protein to this vector may
expedite the development of a SARS-CoV-2 vaccine (111).

THE VIRUS, THE RAS, AND THE DAS

Aside from expressing an RAS, immune cells, including
dendritic cells (DC), CTCs, and NK cells, also possess a viable
dopaminergic system (DAS) that plays a major role in the
crosstalk between immunity and the brain (112). While the
central nervous system (CNS) DAS is adequately elucidated, the
role of dopamine (DA) in peripheral immunity has been less
emphasized. Moreover, although a local RAS with a role in aging
and cognition has previously been described in the brain, its
interaction with DAS is an emerging topic in neurodegeneration,
especially Parkinson’s disease (PD) (113).

Nearly 40% of COVID-19 patients present with
neuropsychiatric symptoms, suggesting that this virus, like
many previous pandemic-related viruses, may be neurotropic
(114). Indeed, delirium, seizures, impaired consciousness, and
acute cerebrovascular disease have already been described in
COVID-19 patients, suggesting that SARS-CoV-2 possesses the
capability of altering brain functions (114, 115). Interestingly,
previous studies have associated elevated D-dimer levels with
strokes and delirium, indicating that, aside from the peripheral
involvement, this molecule may be the herald of unfavorable
neuropsychiatric outcome in COVID-19 patients (116, 118).

Aside from entering the CNS via ANG II/AT-1Rs-related
senescent endothelia, SARS-CoV-2 may access the brain directly
via the cribriform plate, possibly explaining the anosmia
symptom described by many COVID-19 patients (119). In
addition, as influenza A virus utilizes the same entry portal
and lowers local immunity by inducing the nasal expression of
indoleamine 2,3-dioxygenase (IDO), SARS-CoV-2 may employ
a similar mechanism (120). Furthermore, IDO inhibitors,
an emerging cancer therapy, may be beneficial for the
neuropsychiatric manifestations of SARS-CoV-2.

Upon CNS arrival, the virus likely blocks astrocytic and
neuronal ACE-2, elevating ANG II levels. In this regard, several
studies have linked excessive brain ANG II to premature
neuronal aging and Alzheimer’s disease (AD) (120). Conversely,
longevity was associated with the suppression of this molecule
(121). Indeed, ARBs and ACEi were found to be protective
against both PD and AD, indicating that RAS may play a
key role in neurodegeneration (122–124). Moreover, in 2017,
the US Food and Drug Administration approved a synthetic
form of human angiotensin II, Giapreza, for the treatment of
septic shock. The listed adverse effects of this compound include
delirium, thrombotic events, and infection, resembling the
central SARS-CoV-2 manifestations. Since ANG II accumulation
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FIGURE 5 | Potential anti-SARS-CoV-2 therapeutics and their action sites. ADAM17 blockers prevent ACE-2 downregulation and critical illness. Losartan blocks

AT-1Rs, counteracting vascular senescence. Antioxidants and IL-6 antibodies work downstream, downregulating EM, and reinvigorating immunity. BCG activates

innate immunity, improving antigen presentation to CTCs. EMs may also be lowered by cariprazine (not shown) and IDO inhibitors. Modified polio vaccine and immune

checkpoint inhibitors, including anti-TIGIT antibodies, may be helpful by lowering EMs.

may be essential for COVID-19 pathogenesis, Giapreza should
probably be avoided in SARS-CoV-2-associated septic shock
(113, 117, 125).

A growing body of evidence has demonstrated that DA
mediates the crosstalk between immunity and the CNS,
suggesting that RAS, and DAS signaling may be responsible for
both peripheral and central COVID-19 manifestations. Indeed,
since, at the body periphery, DA alters the activation of CTCs
and NK cells, it is not surprising that DA blockers are capable
of inhibiting the replication of several viruses (126–129). For
example, the antiviral properties of chlorpromazine have been
well-documented, as this compound protects against viral entry,
preventing the exploitation of immune cells (130, 131). For
these reasons, we believe that patients taking antipsychotic
medications may be, at least partially, protected against COVID-
19, as suggested by the emerging data on forensic inpatients
(unpublished research). Moreover, as reinvigoration of CTCs can
be achieved by blocking dopamine D3 receptors in DCs, selective
D3 partial agonists, such as cariprazine, should be assessed for
COVID-19 efficacy (132). Finally, the link between excessive DA
and immune defects is further substantiated by the fact that
methamphetamine (METH) users with chronically elevated DA

levels often present with lymphopenia as well as CTC and NK
cell dysfunction (133–135). For these reasons, METH users are
probably at high risk of developing SARS-CoV-2 complications.
Moreover, METH was found to augment brain ANG II/AT-1R
signaling, promoting neuronal senescence, and neurocognitive
deficits, further emphasizing the connection between RAS and
DAS in both neurodegenerative and addictive disorders (136,
137). Conversely, ARBs are currently being tested for METH
addiction, as preclinical studies have reported decreased self-
administration of this stimulant in candesartan-treated rodents
(138). This points to the fact that a better understanding
of COVID-19 may have unintended consequences: improved
treatment of addictions.

Taken together, the synergistic actions of ANG II and METH
illustrate the intertwined role of RAS and DAS in both COVID-
19 and substance use disorders, suggesting that candesartan may
be the treatment of choice for COVID-19 in METH users.

CONCLUSIONS

SARS-CoV-2 infection has spread around the world in a short
time interval, but its prognosis is variable. Since the onset of this
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pandemic, there has been an overemphasis on the virus itself and
less attention on host immunity.

It has been said that Nature plays a cruel game of chess in
which the host and pathogen can only thrive by outmaneuvering
each other. Like influenza viruses, cancer, and chronic viral
infections, SARS-CoV-2 evades detection by disguising itself as
an ACE-2 ligand. The host responds by mobilizing its innate
and adaptive immunity to eliminate the virus, but the latter
proceeds to downregulate host immune defenses by augmenting
EMs. In a desperate move, the host unleashes “cytokine storms”
to reinvigorate its suppressed immune cells and overcome the
virus. However, this extreme maneuver sacrifices the vulnerable
individuals, such as those with chronic inflammation, damaged
endothelia, and defective immunity. But Nature has rarely been
fair to the weak, as their demise contributes to herd immunity.

And the life-death cycles go on and on, moves and countermoves,
hosts and pathogens. Indeed, it has been said that man can come
up with better and better mousetraps, but Nature can always
build better mice.
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