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Neurobiology of Disease

Epigenetic Age Acceleration Assessed with Human
White-Matter Images

Karen Hodgson,' Melanie A. Carless,> Hemant Kulkarni,’ Joanne E. Curran,’ Emma Sprooten,* Emma E. Knowles,'
Samuel Mathias,! Harald H.H. Goring,® Nailin Yao,' “Rene L. Olvera,’ Peter T. Fox,° Laura Almasy,’ Ravi Duggirala,’
John Blangero,’ and “David C. Glahn'’
"Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, 2Department of Genetics, Texas Biomedical Research
Institute, San Antonio, Texas 78227, 3South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville,
Texas 78530, “Department of Psychiatry, Icahn Medical Institute, New York, New York 10029, *Department of Psychiatry, University of Texas Health
Science Center San Antonio, San Antonio, Texas 78229, “Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio,
Texas 78229, and 7Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut 06106

The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age
predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to
both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between
epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual
variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample (n = 628; age =
23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion
tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was
investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally consid-
ered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ppneno =
—0.119, p = 0.028), with evidence of shared genetic (py, = —0.463, p = 0.013) but not environmental influences. Negative phenotypic
and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative
phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age
in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the
neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging.
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(s )

Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative
to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased
biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts
within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families.
Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also
share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging. /
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46.2 million to 98 million (Mather et al., 2015). An aging popu-
lation brings with it an increasing urgency to understand the
processes that lead to normal age-related decline in both physical
and mental abilities as well as in age-associated illness. Given
individual differences in the rate of age-related changes, the iden-
tification of biomarkers for vulnerability to deleterious aging ef-
fects and improved understanding of the mechanisms involved in
healthy aging is invaluable. Among the more successful age-
related biomarkers to date are indices based upon epigenetic vari-
ation (Fraga et al., 2005; Horvath et al., 2012; Hannum et al,,
2013; Horvath, 2013; Teschendorff et al., 2013; Weidner et al.,
2014; Jones et al., 2015), particularly the pan-tissue “epigenetic
clock” developed by Horvath (2013). This clock is highly accurate
in predicting age across a large number of different tissues, can be
applied to data obtained for both the 27K and 450K Illumina
Methylation BeadChips and has been shown to be predictive of a
number of age-associated phenotypes (Horvath and Ritz, 2015;
Marioni et al., 2015a, b).

The brain is of particular interest in aging, as cognitive decline
is one of the greatest health threats of old age (van Boxtel et al.,
1998). Additionally, the brain indirectly regulates aging re-
sponses in various organs (Bishop et al., 2010). Among in vivo
measures of brain aging, white matter tract integrity (as indexed
by fractional anisotropy [FA] from diffusion weighted MR im-
ages) is highly sensitive to both healthy and pathological aging
(Moseley, 2002; Sullivan and Pfefferbaum, 2006; Giorgio et al.,
2010; Teipel et al., 2010; Cox et al., 2016). Although FA measures
are heritable (Jahanshad et al., 2013; Sprooten et al., 2014; Koc-
hunov et al., 2015) and known to decline with age, Glahn et al.
(2013) showed that genetic influences on white matter do not
vary as a factor of age (no evidence for a gene by age interaction
was found), in contrast with analyses for cognitive traits. Addi-
tionally, the specific biological mechanisms that influence white
matter integrity are not yet known.

To determine whether variation in white matter integrity is
associated with acceleration in epigenetic age, we analyzed their
interrelationship in large, randomly ascertained pedigrees. Spe-
cifically, we calculated an estimator of epigenetic age for each
subject, using a weighted average across 353 CpG sites (after Hor-
vath) captured from blood samples. We then determined
whether variation in this epigenetic age was correlated with vari-
ation in tract-based FA measures while controlling familial rela-
tionships (and after accounting for covariates of age, sex, and
blood cell composition effects on epigenetic profiles). By using a
family-based cohort, we considered not only phenotypic rela-
tionships, but also any underlying genetic correlations between
these two heritable traits. We observed that accelerated epigenetic
age was associated with reduced white matter integrity both glob-
ally and in a number of specific brain regions. This relationship
was underpinned by shared genetic influences. We additionally
investigated the relationship between epigenetic age acceleration
and white matter hyperintensities, to consider the specificity of
the relationship with FA.

Materials and Methods

Subjects. The Genetics of Brain Structure and Function study includes
individuals recruited from large multigeneration Mexican-American
families within San Antonio, Texas (Olvera et al., 2011). This is a subset
of the San Antonio Family Study cohort, which was recruited pseudo-
randomly with the constraints that participants must live within the San
Antonio region, be Mexican-American in ancestry, and have at least six
first-degree relatives (Mitchell et al., 1996; Puppala et al., 2006). In this
study, we considered the 628 individuals with epigenetic age estimates,
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from 38 families (containing between 2-72 subjects, mean pedigree
size = 14.25) and an additional 14 genetically unrelated spouses. Of these
628 subjects with epigenetic age estimates, 376 had diffusion tensor im-
aging (DTT) data also available. DTI scans were obtained on average 3.77
years (SD 1.61 years) after blood samples were drawn for the assessment
of epigenetic methylation profiles. In all cases, the chronological age used
is age at blood draw, but results are not substantially altered if this is
substituted for age at DTI scan. Numbers reflect final totals after any
individuals were removed during QC steps.

Epigenetic measures. Full details of methylation assays and preprocess-
ing were described previously (Kulkarni et al., 2015). Briefly, peripheral
blood samples were used to obtain 500 ng of DNA. Bisulfite conversion
was performed; then methylation profiling was undertaken using the
Infinium HumanMethylation450 BeadChip assay (Illumina). At each
CpG site, methylation was quantified on a scale from 0 (fully unmethyl-
ated) to 1 (fully methylated). Probes that were located on the sex chro-
mosomes (1 = 11,648), in non-CpG loci (n = 2994), or contained SNPs
(n = 65) were excluded.

Calculating epigenetic age and age acceleration. The method developed
by Horvath (2013) was used to calculate epigenetic age for each individ-
ual using the available online age calculator (https://dnamage.genetics.
ucla.edu). This approach uses DNA methylation levels of 353 age-
predictive CpG sites (originally identified by Horvath, 2013, using an
elastic net penalized regression model). This method has been shown to
generate a predicted epigenetic age (labeled “DNAmAge” within the soft-
ware) that correlates highly with chronological age and is accurate across a
wide range of different cell and tissue types (Horvath, 2013), as well as being
predictive of a number of age-associated phenotypes (Horvath and Ritz,
2015; Marioni et al.,, 2015a, b). Thus, epigenetic age, as captured with this
method, is proposed to indicate the methylation-based age of a tissue.

In each model, the covariates of age, sex, age X sex, age 2 age2 X sex,
and the cell count estimates described below were applied to the epige-
netic age (“DNAmAge”) variable. Throughout the manuscript, we de-
scribe the variation in the epigenetic age that remains after accounting for
these covariates as epigenetic age acceleration. Increased epigenetic age
acceleration indicates that the individual is epigenetically older than
would be expected given their chronological age and other covariates.

The epigenetic age calculator also calculated the predicted sex of each
sample; 5 samples were excluded because of inconsistencies in reported
and epigenetically predicted sex.

Estimating cell composition of whole blood samples. To consider the cell
composition of the whole blood samples, previously developed methods
for estimated cell counts (Houseman et al., 2012; Horvath, 2013) were
used within the epigenetic calculator software, as recommended by Hor-
vath (2013). Estimates of CD8 "CD28 “CD45RA ~ T cells, naive CD8 T
cells, CD4 T cells, plasmablasts, natural killer cells, monocytes, and gran-
ulocytes were obtained and included as covariates when calculating epi-
genetic age acceleration.

Neuroimaging measures. White matter integrity was assessed using
DTI. Scanning was performed using a multichannel head coil and Trio
3T system (Siemens) at the Research Imaging Institute, University of
Texas Health Science Center (San Antonio, TX). The DTI acquisition
protocol used a single-shot spin-echo, EPI sequence with a spatial reso-
lution of 1.7 X 1.7 mm (repetition time/echo time = 8000/87 ms, FOV
200 mm, 55 nonparallel gradient directions b = 700 s/mm? and three
non-—diffusion-weighted images b = 0).

DTI scans were preprocessed using standard FSL pipelines (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FDT). The resulting FA images were processed
with tract-based spatial statistics (Smith et al., 2006). Images were non-
linearly registered to standard space, then averaged, and skeletonized to
create a study-specific tract-based spatial statistics template (binarized at
FA > 0.2). Next, the maximum nearby FA voxel was projected onto the
skeleton, resulting in one skeleton image per subject, reflecting FA values
of the centers of the white matter structure for that individual. The mean
FA from the whole white matter skeleton was extracted for each individ-
ual to give a global measure of white matter integrity. In addition, for
each subject, mean FA values were extracted from each region and aver-
aged across hemispheres for 16 specific tracts as defined by the Johns
Hopkins White Matter Atlas (Mori et al., 2008).
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Fluid Attenuated Inversion Recovery images were obtained using the
following parameters: TR/TE/T1/flip angle/ETL = 55/353 ms/1.8 s/180°/
221. Preprocessing involved the removable of nonbrain tissue, registra-
tion to the Talairach frame, and RF inhomogeneity correction. Then, an
experienced neuroanatomist used in-house software (http://ric.uthscsa.
edu/mango) to manually delineate white matter hyperintensities. This
was completed with high (r > 0.9) test-retest reliability. These methods
have been previously described in detail (Kochunov et al., 2010). Whole
brain white matter hyperintensity volumes were used.

Statistical analysis. Using SOLAR (Sequential Oligogenic Linkage
Analysis Routines), first the heritability of epigenetic age acceleration and
each DTI trait was calculated. As the global measure of white matter
integrity includes FA estimates across the brain, including more periph-
eral FA not captured by the 16 specific Johns Hopkins White Matter Atlas
tracts, our primary outcome was the phenotypic correlation between
epigenetic age acceleration and global white matter tract integrity, as
determined within a bivariate model. This phenotypic relationship was
decomposed to give genetic and environmental correlations. To assess
neuroanatomical specificity, we then examined the relationship between
epigenetic age acceleration and each of the 16 specific DTT tracts. Pheno-
typic correlations where p << 0.05 were considered suggestive, and we applied
a false discovery rate (FDR) correction (Benjamini and Hochberg, 1995)
across the 16 specific tracts to account for multiple hypothesis testing (phe-
notypic correlations where FDR < 0.05 was considered significant). All phe-
notypic correlations reaching at least suggestive significance were
decomposed into genetic and environmental components.

Covariates in each model were age, sex, age X sex, age 2 and ::1ge2 X
sex. Additionally, for epigenetic age acceleration, covariates of cell
marker abundance were also applied (given the effect of cell heterogene-
ity on methylation data from whole blood).

Results

Epigenetic age

The estimated epigenetic age (“DNAmAge”) of the sample
ranged between 20.42 and 86.48 years (mean * SD, 48.12 =
11.49 years). At the time of blood draw, the chronological age of
the sample ranged between 23.28 and 93.11 years (45.45 * 13.30
years). These two variables show a high correlation (p,peno =
0.932, p = 1.82 X 10 ~?*%), as depicted in Figure 1A. The average
difference between epigenetic and chronological age is 2.67 years
(so epigenetic age is typically higher than chronological age in this
sample) When we consider females and males separately, the
average difference between epigenetic and chronological age is
2.47 years in females and 3.04 years in males; but this difference
does not reach significance in our sample (previous findings sug-
gest the epigenetic aging rate of men is significantly higher than
for women) (Horvath et al., 2016a). For the whole sample, the
median absolute difference between epigenetic and chronologi-
cal age is 3.68 years, indicating that epigenetic and chronological
age differs by <3.68 years for 50% of the subjects. However, for
some individuals, differences between epigenetic and chronolog-
ical age were substantial; 7.00% of the sample have an absolute
difference of >10 years, and the maximum absolute difference
between epigenetic and chronological age is 15.96 years.

Epigenetic age acceleration index

As detailed in Materials and Methods, the epigenetic age acceler-
ation measure captures variation in epigenetic age (“DNAm-
Age”) estimates, after accounting for covariates of chronological
age, sex, age X sex, age”, and age” X sex, and cell composition in
the blood. Positive values for epigenetic age acceleration indicate
that an individual is epigenetically older than would be expected
given these covariates, whereas negative values for epigenetic age
acceleration indicate that an individual is epigenetically younger
than expected. The measure is (by definition) uncorrelated with
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age. The distribution of epigenetic age acceleration within the
sample is shown in Figure 1B, and the trait heritability estimate
(n=628,h?=0.374,p = 6.00 X 10 ~7,SE = 0.097) is in line with
previous findings (Horvath, 2013; Marioni et al., 2015a; Lu et al.,
2016). The proportion of variance accounted for by covariates in
this model was 0.864. We note that, in our sample, sex is not a
significant covariate (p = 0.305) but is retained in the model
nonetheless.

White matter integrity and chronological age

As has been previously shown, global white matter tract integrity
was heritable in the sample (h* = 0.506, p = 1.65 X 10 ~°). There
was no evidence of sex differences in white matter tract integrity
(sex is not a significant covariate in the model, p = 0.597), but we
did observe a strong age effect; age was a significant covariate in
the heritability model (p = 2.75 X 10 ~'?) and there was a signif-
icant negative phenotypic correlation between global white mat-
ter integrity and age (Fig. 2). For the specific white matter tracts,
all were heritable and all, except the cingulum (hippocampus),
showed a significant negative phenotypic correlation with age.
Statistics are shown in Table 1.

Global white matter integrity and epigenetic age acceleration
Given that the integrity of white matter is correlated across the
brain and the global measure of white matter integrity includes
peripheral FA estimates not captured in specific tracts, we used
the global measure as an omnibus test, before examining specific
tract-based variation. The global index was negatively phenotyp-
ically correlated (p,peno, = —0.119, p = 0.028) with the blood-
based epigenetic index of age acceleration, showing that
individuals with blood samples that are epigenetically older than
expected have reduced global FA in the brain. We decomposed
this phenotypic correlation into genetic and environmental in-
fluences, finding evidence for common genetic (pge,. = —0.460,
p = 0.014), but not environmental (p,,, = 0.222, p = 0.174),
factors. As the genetic correlation was negative, it suggests that
the genes that increase epigenetic age acceleration in blood are
also associated with reduced white matter integrity in brain.

Both diabetes and hypertension are age-linked traits that have
been associated with changes in white matter tract integrity. We
confirmed that the relationship between epigenetic age accelera-
tion and global white matter tract integrity remained significant
when covarying for either diabetes (p,pen, = —0.112, p = 0.038)
or hypertension (pppeno = —0.116, p = 0.031).

Specific tract-based white matter integrity and epigenetic
age acceleration
To determine neuroanatomic specificity of this effect, we next
examined FA in individual tracts. Seven of the 16 tracts were
phenotypically correlated with epigenetic age acceleration where
p < 0.05 (the anterior and posterior corona radiata, the genu,
body and splenium of the corpus callosum, the posterior tha-
lamic radiation, and the superior frontal-occiptal fasciculus).
Three of these (the posterior corona radiata and the body and
splenium of the corpus callosum) remain significant when using
an FDR correction of <0.05 across all 16 tracts. Results are shown
in Table 1. In all cases, the phenotypic relationship between age
acceleration and white matter integrity is negative, matching the
direction of effects observed with the global white matter measure.
For the seven tracts where the phenotypic correlation with
epigenetic age acceleration reached the nominal significance
threshold of p < 0.05, we decomposed the correlations into
genetic and environmental influences. Five tracts gave genetic
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correlations where p < 0.05 (i.e., all traits except the posterior
thalamic radiation and superior frontal-occipital fasciculus). In
each case, the genetic correlation was negative, as with the global
FA measure.

Only the anterior corona radiata shows evidence of shared
environmental influences with age acceleration (p.,yiron = 0.428,
p = 0.013), but in this case the relationship is positive, indicating
that environments that are linked to increased epigenetic age
acceleration are also associated with increased white matter in-
tegrity in this tract.

White matter hyperintensity

There is evidence that white matter hyperintensity lesions may
also track with age. However, in our sample, there was not a linear
relationship with age across adulthood; instead, we observed that
larger hyperintensity volumes only appear beyond the fifth de-
cade of life (Fig. 3), in line with previous findings (Habes et al.,
2016). Reflecting this, the phenotypic correlation with age, while
still highly significant (p peno = 0.426,p = 1.12 X 10 ~ %), is lower
for white matter hyperintensity volume than for white matter
integrity. Reflecting this weaker relationship with age across
adulthood, the phenotypic correlation between white matter hy-

Relationship between chronological age and global white matter integrity. Light gray represents females. Dark gray represents males.

perintensity volume and epigenetic age acceleration is not signif-
icant (p,peno = 0.097, p = 0.063).

Cell count estimates

In light of a previous study, which observed that both epigenetic
age acceleration and granulocyte cell counts are related to Parkin-
son’s disease (Horvath and Ritz, 2015), we undertook a second-
ary analysis examining the relationship between cell count
estimates and our phenotypes of interest (Table 2).

Briefly, we find that the phenotypic correlations between
cell counts and epigenetic age acceleration broadly reflect
those seen with age in this sample. When considering cell
counts in relation to global white matter tract integrity, the
strongest phenotypic correlation that we see is with granulo-
cyte count, which is negative in direction (pppeno = —0.170,
p = 1.29 X 10 %), The effect appears to be independent of any
age- or epigenetic age acceleration-related effects.

Discussion

Both epigenetic age acceleration and white matter tract integrity
traits are heritable in this sample, with estimates aligning closely
with previous findings (Horvath, 2013; Jahanshad et al., 2013;
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Table 1. White matter integrity measures and correlations with chronological age and epigenetic age acceleration’

Chronological age

Epigenetic age acceleration

Environmental
Heritability Phenotypic correlation Phenotypic correlation Genetic correlation correlation

DTl trait h2 p FDR p p FDR p p FDR p p p p
Global white-matter tract integrity ~ 0.506*  1.65E-05*  NA —0.542* 5.13E-32* NA —0.119* 0.028* NA —0.463* 0.013* 0213 0223
Corpus callosum (body) 0.502*  1.12E-05*  2.24E-05* —0.464* 1.06E-22* 3.39E-22* —0.167* 0.002* 0.011* —0.571* 1.35E-03* 0.243  0.102
Corona radiata (posterior) 0.470*  6.70E-06*  1.53E-05* —0.458* 6.94E-22* 1.23E-21* —0.166* 0.002* 0.011* —0.512* 4.67E-03* 0.153  0.307
Corpus callosum (splenium) 0.652* 2.00E-07* 1.60E-06* —0.429* 491E-20% 7.86E-20* —0.164* 0.002* 0.011* —0452* 7.21E-03* 0219 0.279
Corona radiata (anterior) 0.563* 2.00E-06* 6.40E-06* —0.505* 3.98E-27* 3.18E-26* —0.118* 0.029* 0.091* —0.588* 6.89E-04* 0.428* 0.013*
Corpus callosum (genu) 0.666* 4.00E-07*  2.13E-06* —0.459* 2.61E-22* 6.13E-22* —0.112*% 0.037* 0.091* —0.453* 7.32E-03* 0375 0.072
Posterior thalamic radiation 0.450* 5.49E-05* 7.99E-05* —0.502* 2.41E-26* 1.29E-25% —0.114* 0.036* 0.091* —0329  0.107 0.009  0.703
Superior frontal-occipital fasciculus  0.521*  6.00E-07*  2.40E-06* —0.393* 1.77E-15* 2.18E-15* —0.109* 0.04*  0.097* —0333  0.072 0.086  0.561
Corona radiata (superior) 0.634* 1.00E-07* 1.60E-06* —0.398* 1.38E-15% 1.84E-15% —0.064 0226 0278 — — — —
Sagittal stratum 0.378* 1.26E-03* 1.44E-03* —0.464* 2.68E-22% 6.13E-22* —0.091 0.097 0162 — — — —
Internal capsule (retrolenticular) 0.410*  6.61E-04* 8.14E-04* —0.434* 5.74E-19* 8.35E-19* —0.096 0.082 0162 — — — —
Internal capsule (anterior limb) 0.473* 3.90E-04* 5.20E-04* —0379* 831E-15% 9.50E-15% —0.088 0.101 0162 — — — —
Cingulum (cingulate gyrus) 0.526*  1.45E-05* 2.58E-05* —0.457* 3.25E-22% 6.50E-22* —0.08 0.143 0208 — — — —
Cingulum (hippocampus) 0.374* 3.39E-03* 3.62E-03* —0.058  0.270 0.270 —0.061 0223 0278 — — — —
Superior longitudinal fasciculus 0.496*  2.87E-05* 4.59E-05* —0.514* 7.09E-29* 1.13E-27* —0.049 0406 0.6 — — — —
External capsule 0.583*  3.70E-06* 9.87E-06* —0.544* 2.47E-25* 9.88E-25* —0.048 0.431 0.46 — — — —
Internal capsule (posterior limb) 0.331* 9.77E-03* 9.77E-03* —0.308* 1.06E-09* 1.13E-09* —0.022 0.63 0.63 — — — —

“The primary outcome was global white matter tract integrity. Further investigation was then undertaken to look at the 16 specific DTl tracts available; an FDR threshold was applied across these 16 traits. Decomposition of phenotypic
correlations with epigenetic age acceleration into genetic and environmental influences is shown for all traits where phenotypic correlations p << 0.05. No decomposition was undertaken for phenotypic correlations with chronological age

as this is not heritable.
*n < 0.05.

Kochunov et al., 2015; Marioni et al., 2015a). We observe nega-
tive phenotypic correlations between these two traits both glob-
ally and within a number of specific white matter tracts in the
brain. Decomposition of each of these phenotypic correlations
reveals negative genetic correlations between epigenetic age ac-
celeration and white matter integrity. Only one white matter tract
(anterior corona radiata) showed significant (positive) environ-
mental correlation with epigenetic age acceleration. Therefore,
our results show that, when epigenetic age estimates in blood are
older than would be expected, this is associated with reduced
white matter tract integrity, and there are common genetic influ-
ences acting on both phenotypes.

While the relationship between age acceleration and tract in-
tegrity did not reach significance for a number specific white
matter tracts tested, all showed the same pattern of negative phe-
notypic correlations with epigenetic age acceleration, suggesting
that further examination in larger samples with greater statistical
power would be of interest to establish whether the observed
relationship with epigenetic age acceleration is global or focused
in specific brain tracts.

In either case, these phenotypic and genetic correlations pro-
vide an interesting window into the neurobiology of aging pro-
cesses within the brain. While the observed pleiotropic influences
provide a causal genetic anchor linking epigenetic age accelera-
tion with white matter integrity, evidence of genetic correlation is
not sufficient to determine the processes that link these two traits,
there are number of possible causal models that could be underlie
this shared genetic etiology. Further work is necessary to deter-
mine the biological pathways linking these two processes and lead
toward the delineation of the mechanisms involved in normal
and pathological brain aging. Identification of the specific genes
involved offers a useful starting point.

In terms of the biological meaning of the epigenetic age esti-
mation, Horvath (2013) suggests that, as the measure seems to be
distinct from cellular senescence and mitotic age, the epigenetic

clock captures work done by an epigenetic maintenance system,
which works to maintain epigenetic stability. Further work also
shows that telomere length changes are also independent of
changes in the epigenetic clock (Breitling et al., 2016; Lowe et al.,
2016; Marioni et al., 2016).

Looking beyond cellular processes, epigenetic age acceleration
has also been indicated as a biomarker for a number of other
age-related traits; for example, among older individuals, relation-
ships between accelerated epigenetic aging in blood and physical
fitness, cognitive fitness, Parkinson’s disease, and all-cause mor-
tality have been reported (Horvath and Ritz, 2015; Marioni et al.,
2015a, b; Chen et al., 2016). In samples that span adulthood,
associations between epigenetic age acceleration in the blood and
stress exposure and post-traumatic stress disorder have also been
found (Boks et al., 2015; Zannas et al., 2015).

In this study, we also assess epigenetic aging in the blood with
reference to brain-based traits. There have been several studies
looking at different disorders linked to accelerated aging (includ-
ing Huntingdon’s disease, Down’s syndrome, and HIV infection)
that have shown the relationship to increased epigenetic aging
can be seen in both blood and brain tissue samples (Horvath and
Levine, 2015; Horvath et al., 2015a, 2016b). When multiple sam-
ples from the same individual have been available for compari-
son, there has been good consistency between epigenetic age
estimates from different tissues, including blood and brain (Hor-
vath, 2013; Horvath et al., 2015b). Additionally, evidence indi-
cates that there is high convergence between epigenetic profiles in
different tissues from the same individual, and correlations be-
tween blood and brain methylation levels are notably higher than
those observed for gene expression (Horvath et al., 2012; Hor-
vath, 2013).

Nevertheless, there are also examples of tissue-specific acceler-
ated aging processes (Horvath et al., 2014). The phenotypic correla-
tions reported here are modest; their magnitude is comparable with
that previously reported between epigenetic age acceleration as mea-
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Figure3. Relationship between chronological age and white matter hyperintensity volume. Light gray represents females. Dark gray represents males.
Table 2. Cell abundance estimations and correlations with traits of interest”
Epigenetic age acceleration Global white-matter tract integrity
Chronological age K K - -
Genetic Environmental Genetic Environmental
Heritability Phenotypic correlation Phenotypic correlation correlation correlation Phenotypic correlation correlation correlation
Cell types h? p FDR p p FDOR p p FDOR p p p p p p FDR p p p p
Naive(D8T  0.628* 5.45E-15* 191E-14* —0.580* 4.43E-67* 3.10E-66* —0.146* 9.17E-04* 2.14E-03*  0.010 0.950 —0.312* 0.014*  0.091 0.111 0.155 — —_ - —
4T 0.359% 2.80E-06* 2.80E-06* —0.117* 3.27E-03* 5.72E-03* —0.164* 1.05E-04* 7.35E-04* —0.059 0.780 —0.219* 0.029*  0.105* 0.043* 0.086 0.135 0521  0.085 0.565
Granulocytes 0.519* 1.61E-11* 2.82E-11*  0.015 0712 0.712 0.010 0.814 0.814 — — - — —0.170* 1.29€-03* 9.03E-03* —0.292 0.125 —0.049 0.758
Monocytes  0.394* 6.00E-07* 7.00E-07*  0.072 0.072 0.101 0.046  0.274 0.320 — —_- — — —0.024 0.658 0.658 — — — —
Natural killer 0.656* 3.27E-24* 2.29E-23*  0.342* 1.49E-23* 5.22E-23*  0.053 0.214 0.300 — — - — 0.116* 0.026* 0.086* 0.214 0.160 —0.010 0.952
Plasmablast 0.512% 1.97E-12* 4.60E-12*  0.016 0.683 0.712 0.066 0.124 0.217 — —_- — — —0.108* 0.049* 0.086* —0.264 0.168  0.044 0.780
(D8 + 0.410* 1.00E-07* 1.40E-07*  0.306* 9.06E-15* 2.11E-14*  0.149* 4.02E-04* 1.41E-03*  0.193 0339 0125 0206 —0.045 0.398 0.464 —_ _ - —_
(D28-
(D45RA-T

“An FDR correction was applied across the 7 cell types considered. Phenotypic correlations between cell abundances and epigenetic age acceleration or global white matter tract integrity were decomposed into genetic and environmental
influences when phenotypic correlations p << 0.05. No decomposition was undertaken for phenotypic correlations with chronological age as this is not heritable.

*p < 0.05.

sured in dorsolateral prefrontal cortex tissue and neuropathological
measures associated with Alzheimer’s disease (Levine et al., 2015).
Given examples of tissue-specific accelerated aging, it could be spec-
ulated that stronger associations between epigenetic age acceleration
and white matter integrity might be observed if age acceleration was

measured using brain tissue rather than blood. However, there is a
distinct advantage in being able to use an easily accessible tissue, such
as blood, for this potential biomarker of healthy and pathological
brain aging, including that the biomarker can be assessed at multiple
points throughout the lifespan.
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The evidence to date suggests that, although there may be
some pathological processes leading to tissue-specific age accel-
eration, in general blood can serve as a useful surrogate tissue for
the development of aging biomarkers, particularly when the most
relevant tissue is not easily accessible, as is the case when looking
at brain traits.

We also performed a secondary analysis examining cell count
estimates in the blood and how these relate to both age and white
matter integrity. We find a negative correlation between granu-
locytes and white matter integrity that is independent of age-
related effects. This pattern of results echoes the relationship
observed previously in Parkinson’s disease using similar meth-
ods, whereby patients were observed to not only show increased
epigenetic accelerated aging but also have more granulocytes
than controls (Horvath and Ritz, 2015). Although we are unable
to distinguish between granulocyte subtypes, given that neutro-
phils are far more prevalent than eosinophils or basophils (ac-
counting for 60%-70%, 2%—4%, and 0.5%-1% of white blood
cells, respectively), it is likely that they are driving the observed
association. But clearly, further work is needed to understand this
relationship with white matter integrity. As we are using indi-
rectly estimating relative cell abundance measures from epige-
netic data, replication with direct measurements of cell types is
also needed.

In conclusion, acceleration in epigenetic aging shows negative
phenotypic and genetic correlations with white matter integrity
both globally and within a number of specific tracts within the
brain. This suggests that the epigenetic clock may prove a useful
biomarker of normal and pathological brain aging across the
adult lifespan. The shared genetic influences on these two traits
offer a method by which researchers can begin to unpick the
neurobiological processes underpinning variation in age-related
changes in the brain.
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