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RESEARCH ARTICLE Open Access

GWAS and transcriptional analysis prioritize
ITPR1 and CNTN4 for a serum uric acid
3p26 QTL in Mexican Americans
Geetha Chittoor1,2, Jack W. Kent Jr3, Marcio Almeida4, Sobha Puppala3, Vidya S. Farook4, Shelley A. Cole3,
Karin Haack3, Harald H. H. Göring4, Jean W. MacCluer3, Joanne E. Curran4, Melanie A. Carless3,
Matthew P. Johnson4, Eric K. Moses5, Laura Almasy4, Michael C. Mahaney4, Donna M. Lehman6,
Ravindranath Duggirala4, Anthony G. Comuzzie3, John Blangero4 and Venkata Saroja Voruganti1,2*

Abstract

Background: The variation in serum uric acid concentrations is under significant genetic influence. Elevated SUA
concentrations have been linked to increased risk for gout, kidney stones, chronic kidney disease, and cardiovascular
disease whereas reduced serum uric acid concentrations have been linked to multiple sclerosis, Parkinson’s disease
and Alzheimer’s disease. Previously, we identified a novel locus on chromosome 3p26 affecting serum uric
acid concentrations in Mexican Americans from San Antonio Family Heart Study. As a follow up, we examined
genome-wide single nucleotide polymorphism data in an extended cohort of 1281 Mexican Americans from
multigenerational families of the San Antonio Family Heart Study and the San Antonio Family Diabetes/
Gallbladder Study. We used a linear regression-based joint linkage/association test under an additive model of
allelic effect, while accounting for non-independence among family members via a kinship variance component.

Results: Univariate genetic analysis indicated serum uric acid concentrations to be significant heritable (h2 = 0.50 ± 0.05,
p < 4 × 10−35), and linkage analysis of serum uric acid concentrations confirmed our previous finding of a novel locus on
3p26 (LOD = 4.9, p < 1 × 10−5) in the extended sample. Additionally, we observed strong association of serum uric acid
concentrations with variants in following candidate genes in the 3p26 region; inositol 1,4,5-trisphosphate receptor, type 1
(ITPR1), contactin 4 (CNTN4), decapping mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and rho guanine nucleotide
exchange factor (GEF) 26 (ARHGEF26) [p < 3 × 10−7; minor allele frequencies ranged between 0.003 and 0.42] and
evidence of cis-regulation for ITPR1 transcripts.

Conclusion: Our results confirm the importance of the chromosome 3p26 locus and genetic variants in this region in the
regulation of serum uric acid concentrations.

Keywords: Joint linkage/association approach, CNTN4, ITPR1, Family-based study

Background
The end product of purine metabolism in humans and
higher order primates is uric acid, which cannot be further
broken down because of lack of uricase [1]. Elevated
serum uric acid (SUA) levels or hyperuricemia, a metabolic
risk factor for gout and cardio-renal diseases, has been

increasing in prevalence worldwide [2–8]. As other cardio-
vascular and renal disease risk factors, hyperuricemia also
has a strong genetic basis [9–11]. SUA is a complex trait,
and its pattern of inheritance suggests that several genes
may influence it. Numerous genome-wide and candidate
gene studies have found various genes, mostly uric acid
transporters, to be significantly associated with SUA in
several populations, such as solute carrier protein 2 family,
member 9 (SLC2A9) [12–17], solute carrier protein 22
family, member 11 (SLC22A11), solute carrier protein 17
family members 1 and 3 (SLC17A1, SLC17A3), solute
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carrier protein 16 family member 9 (SLC16A9) and
ATP-binding cassette, subfamily G. member 2 (ABCG2)
[18–21].
In a previous linkage study in 632 Mexican Americans

of the San Antonio Family Heart Study, we found strong
evidence of linkage for SUA concentrations on 3p26
(LOD = 4.2) [9] and suggestive evidence of association
with the positional candidate gene contactin 4 (CNTN4)
[22]. Other candidate genes in this region are inositol
1,4,5-trisphosphate receptor, type 1 (ITPR1), decapping
mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and
rho guanine nucleotide exchange factor (GEF) 26 (ARH-
GEF26). The one LOD-confidence interval on 3p26 falls
within the candidate region for 3p deletion syndrome
whose features include developmental delays and mental
retardation [21]. In particular, disruption of CNTN4 and
ITPR1 seem to contribute to the 3p deletion syndrome
phenotype and may have a causal relationship [22, 23].
SUA is also known as a biomarker for neurodegenerative
diseases such as dementia, stroke, Parkinson’s disease
and multiple sclerosis [24–28].
Given that we previously identified 3p26 quantitative trait

locus (QTL) regulating SUA concentrations, a detailed un-
derstanding of the genetic architecture of all candidate
genes/variants within this 3p region and its association with
SUA is crucial. The aim of this study was to assess the asso-
ciation of variants in the chromosome 3p region in an
expanded cohort of 1281 Mexican Americans from the San
Antonio Family Heart Study (SAFHS) and the San Antonio
Family Diabetes/Gallbladder study (SAFDGS).

Results
The mean ± SD of age and SUA levels of participating
individuals (n = 1281) were 46.64 ± 15.8 years and 5.80 ±
1.6 mg/dl, respectively, with men having higher levels of
SUA than women (6.68 ± 1.6 vs. 5.28 ± 1.4) (Table 1).
Significant heritability was detected for SUA levels
(h2 = 0.50 ± 0.05, p = 3.2 × 10−35) with age, sex, and inter-
action between age and sex as covariates.

Genome-wide joint linkage/Association analysis
Prior to genetic analysis, SUA was rank-inverse-normal
transformed and regressed on age, sex, and interaction
between age and sex. Joint linkage analysis (JLA) results
confirmed our previous findings [9] with the strongest

evidence for linkage of SUA on 3p26 (LOD = 4.9, p =
1 × 10−6) (Fig. 1). We observed strong association between
SUA concentrations and SNPs in candidate genes in the
one-LOD confidence interval of 3p26; inositol 1,4,5-tris-
phosphate receptor, type 1 (ITPR1), rs11916691 (A): decap-
ping mRNA 1A (DCP1A), rs1395388 (G): transglutaminase
4 (TGM4), and contactin 4 (CNTN4) (Table 2). The minor
alleles of eight of these SNPs are associated with lower
levels of SUA concentrations. The minor allele frequencies
(MAFs) (range 0.3 to 43 %), and results of association ana-
lysis of these SNPs with SUA are given in Table 2.
Genotypic-specific mean values of SUA for significant and
suggestive associated SNPs are given in Table 3. In addition,
the genome-wide linkage screen localized suggestive evi-
dence of linkage of SUA with QTLs on chromosomes 8, 9,
16, and 20, respectively (LOD ≥ 2.0) (Fig. 2).

Genetic analysis of expression levels of genes in the
chromosome 3p region
As a next step, we performed genetic analysis to esti-
mate heritabilities of gene expression of candidate genes
in chromosome 3p26 region. Significant heritabilities
were observed for ITPR1 (h2 = 0.21 ± 0.5, p = 3 × 10−7).
Previously, transcriptomic analysis in SAFHS [29] identi-
fied several cis-regulated transcripts including ITPR1.
Genome-wide association analysis provided evidence of
association between ITPR1 expression and ITPR1 SNPs,
and sodium channel, voltage gated, type VIII alpha subunit
(SCN8A) genes (p between 10−5 and 10−7). In addition,
ITPR1 showed suggestive associations with SNPs in inter-
genic regions in chromosomes 1, 2, 10 and 12 (Table 4).

Discussion
Our results demonstrate the importance of chromosome
3p26 genetic variants in the regulation of SUA concentra-
tions in Mexican Americans. We identified a QTL with sig-
nificant evidence of linkage on chromosome 3 (LOD= 4.9)
for SUA in an expanded cohort, confirming our previous
linkage of a novel QTL on chromosome 3p26 affecting
SUA and better reflecting pedigree-specific effects. This re-
gion has been reported to harbor positional candidate genes
with potential relevance to cardiovascular disease, hyper-
tension, obesity, and metabolic syndrome [2–5]. CNTN4, a
candidate gene in the linkage region of 3p26, is a member
of the contactin subgroup of cell adhesion molecules of the

Table 1 Descriptive characteristics and heritability estimates of serum uric acid (mg/dl)

Variable Males Females Total Population

N Mean ± SD N Mean ± SD N Mean ± SD h2 ± SE p-value Sig. Covariates

Age (years) 471 46.01 ± 16.21 810 47.00 ± 15.53 1281 46.64 ± 15.78 – – –

Serum uric acid (mg/dl)a 471 6.68 ± 1.64 810 5.28 ± 1.35 1281 5.80 ± 1.61 0.50 ± 0.05 3.2 × 10−35 Age, Sex, Age*Sex
aRank-inverse-normal transformed data used for genetic analyses
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immunoglobulin (Ig) superfamily and plays an important
role in maintenance and plasticity of functional neuronal
networks and central nervous system (CNS) develop-
ment [23]. The variants in this gene are associated
with developmental delays and mental retardation and
may be relevant to autism-related spectrum disorders
[30–32]. Disruption of CNTN4 is also thought to
cause cognitive defects [33]. Our study showed strong

association of SUA concentrations with CNTN4 SNPs.
Specifically, one CNTN4 variant, rs9854606 is notable
with a minor allele frequency (T) of 0.4 %. Although,
SUA has not been associated with autism or related disor-
ders, it has been considered a biomarker for neurological
disorders such as Parkinson’s disease [34], multiple scler-
osis [35] and Alzheimer’s disease [36, 37] and cognitive
defects [38, 39].

Fig. 1 Joint linkage association analysis of serum uric acid on chromosome 3p26 showing a strong signal (LOD = 4.9) in Mexican Americans

Table 2 Joint linkage-association analysis of serum uric acid (mg/dl) on chromosome 3

SNPa Gene Coordinates NCBI36 (bp) JLAb (p-value) MGAc (p-value) Minor allele/frequency

rs17040820 ITPR1d 4531694 1.3 × 10−10 9.4 × 10−10 T/0.003

rs7640752 Intergenic 114123136 8.6 × 10−10 1.9 × 10−10 A/0.005

rs11916691 DCP1Ae 53350244 9.2 × 10−10 2.0 × 10−10 A/0.005

rs1395388 TGM4f 44923678 1.8 × 10−8 4.2 × 10−9 G/0.05

rs449361 ARHGEF26g 155405100 2.8 × 10−8 6.6 × 10−9 T/0.05

rs1014805 CNTN4h 2310471 7.7 × 10−8 9.1 × 10−4 C/0.33

rs2535632 ITIH4i 52839315 1.8 × 10−7 4.3 × 10−8 T/0.03

rs9854606 CNTN4 2380442 1.9 × 10−7 2.9 × 10−3 T/0.004

rs1685456 CNTN4 2321860 2.1 × 10−7 1.8 × 10−3 C/0.43

rs1685447 CNTN4 2313137 2.1 × 10−7 3.4 × 10−3 A/0.27

rs1178487 CNTN4 2315743 2.2 × 10−7 3.0 × 10−3 T/0.41

rs17013501 CNTN4 2396201 2.5 × 10−7 5.0 × 10−3 T/0.22

rs6808240 CNTN4 2397321 3.3 × 10−7 8.8 × 10−3 C/0.27

rs1178492 CNTN4 2318040 3.7 × 10−7 7.7 × 10−3 T/0.27

rs1502582 CNTN4 2326831 3.7 × 10−7 6.7 × 10−3 T/0.24

rs1720201 CNTN4 2313231 4.4 × 10−7 1.1 × 10−2 G/0.27
aSNP: Single Nucleotide Polymorphism; bJLA: Joint Linkage Association Analysis; cMGA: Measured Genotype Analysis; dITPR1: inositol 1,4,5-trisphosphate receptor,
type 1; eDCP1A: decapping mRNA 1A; fTGM4: transglutaminase 4; gARHGEF26: Rho guanine nucleotide exchange factor (GEF) 26; hCNTN4: Contactin 4; iITIH4:
inter-alpha-trypsin inhibitor heavy chain family, member 4
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Other genes in our QTL region, ITPR1, DCP1A and
TGM4, do not seem to have functional relevance to SUA
concentrations. However, all of these genes are located in
or border the ~4.5 Mb region which is associated with a
syndrome known as 3p deletion syndrome. Individuals
with 3p deletion syndrome have a rare genetic disorder
characterized by developmental delay, growth retardation
and dysmorphic features [22]. ITPR1 encodes an intracel-
lular IP3-gated calcium channel involved in calcium sig-
naling [40]. Mutations in this gene have been associated
with spinocerebellar ataxia [41] and platelet signaling
pathways [42], and DCP1A is known to play a role in
mRNA decay and also in prematurely terminating protein
synthesis [43].
As described in the methods, the JLA approach has the

potential to amplify a signal taking into consideration ran-
dom effects of shared sequence identity (linkage) and the
fixed effects of marker genotypes (association), thus maxi-
mizing the information in a sample of related individuals
[12]. With this approach, we had previously found common
SNPs, MAF > 5 %, in SLC2A9 to be significantly associated
with SUA levels in Mexican Americans [12]. Our JLA
approach also has the ability to detect rare variants which
were primarily from the chromosome 3p26 region showing
that rare or low frequency variants are more likely to be
identified by linkage rather than association. Of the top 6
significant SNPs, 5 of them had MAF ≤ 5 %. Family-
based studies provide the best opportunity to identify
these rare variants, with Mendelian transmission from

parent to offspring offering a chance to maximize copies
of rare variants in the pedigree. This was supported by
our analyses when we found that about six families
contributed the most to the LOD score (~4.6). When we
conducted the linkage analysis removing these families,
the LOD score was reduced to zero, whereas, linkage ana-
lysis in just these families increased the LOD score to 5.5.
The association between SUA concentrations and vari-

ants in the chromosome 3p region has not been reported
in any population except a study in an isolated population
in Europe. This study reported epistasis between SLC2A9
and CNTN4 suggesting a link between SUA levels and
autism-related spectrum disorder. Purine metabolism dis-
orders have been reported in autism spectrum disorders
[44, 45] particularly hyperuricosuric autism. Adenosine, a
precursor of uric acid in purine metabolic pathway, is
believed to be neuroprotective and known to promote
sleep and reduce seizures [46] indicating its potential as a
therapeutic agent for autism. Lack of replication of the
associations between SUA and CNTN4 or ITPR1 SNPs by
other studies is a limitation of the study. However, consid-
ering the role of purine metabolic disorders in autism, role
for CNTN4 and ITPR1 in the regulation of SUA seems
plausible and needs to be evaluated further.
To gain further support for the association with the

chromosome 3p26 region, we conducted JLA of cis-reg-
ulated ITPR1 transcript. Our best associations of these
transcript levels were with SNPs in ITPR1 and SCN8A
genes. Cis-regulated transcripts contain genetic variation

Table 3 Genotype-specific phenotype means of serum uric acid (mg/dl) concentrations for significant and suggestive associations

SNPa Genotype-specific phenotype means [Mean (SD)] Effect sizeb (%)

Minor/minor Minor/major Major/major

rs17040820 – 7.15 (1.2) 5.56 (1.5) 5.2

rs7640752 – 5.13 (1.8) 5.57 (1.5) 5.4

rs11916691 – 6.63 (0.8) 5.56 (1.5) 5.4

rs1395388 – 5.74 (1.6) 5.55 (1.5) 4.7

rs449361 4.3 (0.3) 5.76 (1.6) 5.56 (1.5) 4.7

rs1014805 5.82 (1.6) 5.89 (1.6) 5.70 (1.6) 0.6

rs2535632 – 5.27 (1.3) 5.58 (1.5) 4.4

rs9854606 – 6.77 (1.8) 5.53 (1.5) 1.1

rs1685456 5.93 (1.7) 5.83 (1.5) 5.66 (1.6) 0.7

rs1685447 5.30 (1.3) 5.69 (1.5) 5.52 (1.6) 0.8

rs1178487 5.93 (1.6) 5.82 (1.6) 5.70 (1.7) 0.6

rs17013501 5.69 (1.5) 5.65 (1.5) 5.89 (1.7) 0.5

rs6808240 6.00 (1.7) 5.93 (1.7) 5.66 (1.5) 0.4

rs1178492 5.70 (1.7) 5.90 (1.6) 5.73 (1.6) 0.5

rs1502582 5.71 (1.8) 5.91 (1.5) 5.74 (1.6) 0.4

rs1720201 5.77 (1.6) 5.88 (1.6) 5.74 (1.6) 0.4

rs1562692 – 4.92 (1.2) 5.61 (1.5) 3.7
aSNP: Single Nucleotide Polymorphism; bEffect size: Proportion of the residual phenotypic variance that is explained by the minor allele of the SNP
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Table 4 Genome-wide association of ITPR1 transcript levels

SNPa Geneb Chr Coordinates NCBI36 (bp) MGAc (p-value) JLAd (p-value) Effect sizee (%) Minor allele MAFf

rs877850 Intergenic 1 216328255 2.35 × 10−7 9.05 × 10−7 2.61 G 0.12

rs9311419 ITPR1 3 4855671 9.12 × 10−7 3.37 × 10−6 2.58 T 0.14

rs4685832 ITPR1 3 4859817 1.19 × 10−6 4.37 × 10−6 2.50 G 0.16

rs12581731 SCN8A 12 50311004 2.54 × 10−6 8.89 × 10−6 1.97 A 0.12

rs3805034 ITPR1 3 4855266 4.22 × 10−6 1.48 × 10−6 2.31 A 0.12

rs3805035 ITPR1 3 4855300 4.94 × 10−6 1.72 × 10−6 2.30 T 0.13

rs10886848 Intergenic 10 122831260 1.41 × 10−5 3.44 × 10−5 1.73 A 0.46

rs10170245 LOC105373893 2 220897407 1.61 × 10−5 5.36 × 10−5 1.67 A 0.09

rs4561600 Intergenic 2 142915296 1.71 × 10−5 5.70 × 10−5 1.58 G 0.17

rs4553758 Intergenic 2 142914017 1.83 × 10−5 6.07 × 10−5 1.50 A 0.21
aSNP: Single nucleotide polymorphism; bITPR1: inositol 1,4,5-trisphosphate receptor, type 1; SCN8A: sodium channel, voltage gated, type VIII alpha subunit; cMGA:
Measured Genotype Analysis; dJLA: Joint Linkage Association Analysis; eEffect size: Proportion of the residual phenotypic variance that is explained by the minor
allele of the SNP; fMAF: Minor Allele Frequency

Fig. 2 Chromosomal regions linked to serum uric acid in a genome-wide scan with multiopoint LOD scores≥ 1.2
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within their gene and regulatory regions that affect their
abundance [29]. The SCN8A gene encodes a protein that
is important for neuron hyperexcitability [47] and muta-
tions in this gene are known to cause cerebellar ataxia,
which is the similar to that of ITPR1. Given the import-
ance of 3p region in neurological disorders and potential
role of uric acid as biomarker for these disorders, this
region assumes significance.

Conclusion
Our findings demonstrate the importance of variants in
chromosome 3p26 region, particularly SNPs in ITPR1
and CNTN4, in the regulation of SUA concentrations in
our cohort. The results of this study are very promising,
though further work needs to be performed to validate
them.

Methods
Study population
The San Antonio Family Heart Study (SAFHS) and the San
Antonio Family Diabetes/Gallbladder study (SAFDGS): The
recruitment for the SAFHS was initiated in 1991, and
recruitment for SAFDGS was conducted between 1998 and
2001. Details of study recruitment and related material have
been detailed previously [48–51]. Genome-wide associ-
ation, joint linkage/association, and transcriptional analyses
were performed on 1281 individuals, coming from 120
Mexican American families from these two studies, for
whom whole genome-wide SNP data and related pheno-
type data were available.

Phenotyping
For both SAFHS and SAFDGS, several metabolic,
hemodynamic, anthropometric, and demographic vari-
ables were collected using standard procedures [46, 48].
Uric acid was measured in serum by a colorimetric assay
using uricase and peroxidase [52]. A description of the
measurement techniques is given elsewhere [9, 12, 53].
Uric acid levels were rank-inverse-normalized prior to
genetic analysis.

Transcriptional profiling
The transcriptional profiling in the SAFHS was performed
in 1281 individuals. The methodology related to isolation
of lymphocytes from whole blood, isolation of total RNA,
anti-RNA synthesis, amplification and purification and
identification of expressed transcripts is described in detail
in Göring et al., 2007 [29].

SNP genotyping
Genome-wide association (GWAS) analysis was conducted
in the SAFHS/SAFDGS using SNP genotypes obtained
from the Illumina HumanHap550 BeadChip (Illumina,
SanDiego, CA). Our experimental error rate (based on

duplicates) was 2 per 100,000 genotypes. The average
call rate per individual sample was 97 %. Approximately
1 per 1000 genotypes was blanked due to Mendelian
errors. Specific SNPs were removed from analysis if
they had call rates <95 % (about 4000SNPs) or deviated
from Hardy–Weinberg equilibrium at a 5 % false discovery
rate (FDR) (12SNPs). Missing genotypes were imputed
from pedigree data using MERLIN [54]. SNP genotypes
were checked for Mendelian consistency using the program
SimWalk2 [55]. The estimates of the allele frequencies and
their standard errors were obtained using Sequential Oligo-
genic Linkage Analysis Routines (SOLAR) [56].

Heritability analysis
We used a variance components decomposition-based
method in SOLAR to estimate heritability of serum uric
acid and transcript levels of associated genes. Total pheno-
typic variance can be partitioned into its genetic and envir-
onmental components. The fraction of total phenotypic
variance (VP) resulting from additive genetic effects (VG) is
called heritability and is denoted as h2 = VG/VP [56]. All
traits were adjusted for age, sex and their interaction
effects.

Joint linkage/Association analysis
We used a joint linkage/association (JLA) approach for
each SNP, implemented in SOLAR, that tested each satu-
rated model (including linkage and the fixed effect of the
SNP) against a null model in which both effects were
constrained to zero. All SNPs in the GWAS panel were
mapped not only to their physical location but also to their
genetic position, given as the nearest integral centiMorgan,
based on public data [12]. JLA may improve detection
when multiple causal variants are present, as the summed
effects of adjacent variants captured by linkage may amplify
the fixed effect of each measured marker. A subsidiary
measured genotype association analysis (MGA) [57] tested
the additive effect of each SNP genotype conditioned on
the genome-wide genetic similarity of the relatives (i.e., a
standard GWAS corrected for relatedness). The genome-
wide significance threshold p-value was set at p < 3.1 × 10−7

using Bonferroni correction for multiple tests based on the
effective number of independent SNPs given linkage dis-
equilibrium (LD) within the sample [58].

Ethics approval and consent to participate
All participants gave written informed consent. Protocol
for both studies (SAFHS and SAFDGS) were approved by
the Institutional Review Boards at the University of Texas
Health Science Center San Antonio and University of
North Carolina at Chapel Hill
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bin/study.cgi?study_id=phs000462.v1.p1.
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