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A B S T R A C T

Introduction: Pulmonary emphysema characterized by alveolar wall destruction is resultant of persistent chronic
inflammation. All-trans retinoic acid (ATRA) has been reported to reverse elastase-induced emphysema in rats.
However, the underlying molecular mechanisms are so far unknown.
Objective: To investigate the therapeutic potential effect of ATRA via the amelioration of the ERK/JAK-STAT
pathways in the lungs of emphysematous rats.
Methods: In silico analysis was done to find the binding efficiency of ATRA with receptor and ligands of ERK &
JAK-STAT pathway. Emphysema was induced by porcine pancreatic elastase in Sprague-Dawley rats and ATRA
was supplemented as therapy. Lungs were harvested for histopathological, genomics and proteomics analysis.
Results and Discussion: In silico docking, analysis confirms that ATRA interferes with the normal binding of
ligands (TNF-α, IL6ST) and receptors (TNFR1, IL6) of ERK/JAK-STAT pathways respectively. ATRA restored the
histology, proteases/antiproteases balance, levels of inflammatory markers, antioxidants, expression of candi-
date genes of ERK and JAK-STAT pathways in the therapy group.
Conclusion: ATRA ameliorates ERK/JAK-STAT pathway in emphysema condition, resulting in alveolar epithe-
lium regeneration. Hence, ATRA may prove to be a potential drug in the treatment of emphysema.

1. Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is characterized
by long-term poor airflow due to persistent lung inflammation that
strengthens disease progression. COPD comprises two pathological
conditions i.e. chronic bronchitis and emphysema. Pulmonary emphy-
sema is characterized by the destruction of alveolar septa, decreased
pulmonary elastic recoil, thus forming large airspace which leads to
shortness of breath, accumulation of mucus, long-term fatigue and
cough [1,2]. The pathogenesis of emphysema chiefly involves chronic
inflammation, which arises due to the continuous exposure to cigarette
smoke or to long-term exposure to toxic gases and particles, due to
which a rapid up-regulation of innate immunity could occur. Such
conditions in the lung may recruit a large influx of neutrophils into the
airways, which further may increase the levels of oxidant-antioxidant

imbalance, protease-antiprotease imbalance, ineffective repair, and
apoptosis, leading to tissue remodeling [3].

The increased inflammatory response may be mediated indirectly
through the activation of signal transduction pathways such as mi-
togen-activated protein (MAP) kinase [4] and extracellular regulated
kinases (ERK) pathways that are involved in regulating the expression
of many inflammatory genes [5]. ERK pathway is chiefly involved in
processes like cell growth and proliferation; however, it is also involved
in several inflammatory processes [6,7]. ERK pathway may be activated
by proinflammatory cytokine i.e. TNF-α, and its subsequent activation
plays an important role in innate immunity and inflammation [8].
Several reports have been suggested that the ERK pathway was dereg-
ulating in emphysema condition [9,10].

The other pathway widely known to be involved in the inflamma-
tion process is Janus kinase (JAK)–signal transducer and activator of
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transcription (STAT) pathway (JAK-STAT) [11,12]. The JAK-STAT
pathway is a classical signal transduction pathway for numerous cyto-
kines and growth factors. The binding of ligands to their receptors leads
to JAK activation, which in turn phosphorylates and activates STATs. It
has been reported that JAK-STAT pathway, is activated by proin-
flammatory cytokines TNF-α and IL6 [13], thus regulates inflammation,
apoptosis, protease expression, which is critical processes and are as-
sociated with the airways injury and lung tissue destruction [14]. JAK-
STAT pathway is found to be activated in tissues of COPD patients [15]
and in acute lung injury [16]. JAK’s are activated in response to IL6 via
IL6ST, which further activates STAT3 [11]. STAT3 is chiefly involved in
processes like chronic inflammation and apoptosis [17,18]. STAT3 in-
hibition leads to reduced inflammation in acute lung injury model &
acute respiratory distress syndrome patients via inhibition of macro-
phage and inflammatory cell infiltration [19]. All these findings suggest
that JAK- STAT pathway activation is believed to be a central factor in
the induction of airways inflammatory response. There is a possible
cross-talk between the pathways as TNF-α is the common activator of
both the pathways. TNF-α induces IL6 (interleukin 6) [20] which fur-
ther activates STAT3, via the activation of the JAK-STAT pathway. Si-
milarly, TNF-α activates ERK pathway which is known to be involved in
the inflammation process [8]. The same has been validated by us using
in silico approach (Fig. 1).

Nevertheless, the precious role of other target genes involved in
above-mentioned pathways is needed to be traced out for a better un-
derstanding of emphysema pathogenesis and subsequently for its im-
provement. The current treatment options for emphysema aim at easing
and preventing the disease, but none of them work towards the reversal
of disease to normal. Therefore there is an urgent requirement for such
a therapy option which would target towards the regeneration of the
lost alveolar septa as well in reducing the inflammation by the ameli-
oration of ERK & JAK-STAT pathways, thus easing as well as curing the
disease.

All-trans-retinoic acid (ATRA) is the biologically active metabolite
of vitamin A and possesses anti-inflammatory property [21]. Other than

having an anti-inflammatory property, ATRA has been found to involve
in a variety of processes such as proliferation, differentiation, survival,
and apoptosis [22]. ATRA works as an anti-inflammatory molecule via
the repression of inflammatory molecules such as IL6, TNF-α etc [23].
Interestingly, ATRA supplementation reversed the deleterious effects of
elastase-induced emphysema in an animal model [24]. Massaro and
Massaro for the first time analyzed the potential and promising effects
of exogenous application of ATRA to promote alveolarisation in the
elastase-induced experimental model (rat) of emphysema [25]. After
Massaro and Massaro, various other research groups have shown the
beneficial effects of ATRA in elastase or dexamethasone models of lung
damage [26,27]. In a study conducted by Paiva et al., exogenously
supplemented vitamin A has been found to improve pulmonary func-
tion in patients with moderate to severe emphysema [28]. Also, ATRA
has been found to attenuate the protease/anti protease imbalance in the
bronchoalveolar lavage (BAL) cells from patients with COPD and pa-
tients with other lung diseases [29].

Although potential mechanisms underlying the beneficial effects of
ATRA in dexamethasone-induced impairment of alveolarisation have
been suggested [26,30–32], only little is known about the molecular
mechanisms contributing to its potential regenerative effects in smoke-
or elastase-induced emphysema [25,33]. Hence, in this current study
we have addressed a question i.e. does ATRA have a tendency to
minimize the ongoing inflammation in elastase induced emphysema in
rat lungs and eventually its potential role in alveolar epithelium re-
generation? To validate this hypothesis, we have investigated the po-
tential effect of ATRA via amelioration of the ERK/JAK-STAT pathways.
Nevertheless, the potential of ATRA was further evaluated using in vivo
model for emphysema.

2. Material & methods

2.1. Gene interaction

An online tool, GeneMANIA was used to predict the gene

Fig. 1. A: Schematic representation of induction of JAK-STAT pathway and ERK pathway by TNF-α. 1B: gene interaction network for candidate genes of ERK as well
as JAK-STAT pathway as obtained from GeneMANIA showing involvement of TNFα and IL6 in inflammation.
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interaction. Candidate genes of ERK and JAK-STAT were given as input
and their interactions were predicted by GeneMANIA on the basis of co-
expression, predicted, pathway, physical interactions, shared protein
domains and co-localization. Functions such as acute inflammatory
response and regulation of inflammatory response were selected and
the genes involved were highlighted with yellow and purple colour
respectively.

2.2. In silico analysis

AutoDock version 4.0 suite was used for the docking studies of
ATRA with all target proteins (IL6, IL6ST, TNF α1 & TNFR1) [34].
PatchDock (geometry based molecular docking algorithm tool) was
used to execute protein–protein interaction simulation study [35]. IL6
& TNFR1 were docked with IL6ST & TNFalpha1, as well as IL6ST+
ATRA & TNFalpha1+ATRA complex which were the resultant of the
AutoDock execution. IL6ST & IL6ST+ATRA complex pdb file was
docked with IL6 & TNFalpha1. At last TNFalpha1+ATRA complex was
docked with TNFR1. After whole protein-protein interactions by
PatchDock, refinement process was done for the better and improved
results of protein–protein interaction by FireDock server [36] which
was in build refinement option of PatchDock.

2.3. Preparation of animal models

All experimental models were prepared according to the procedure
described by Seifart C et al. [27] and were in compliance with National
and International guidelines approved by the regional government
(IAEC, Ministry of Environment and Forests, India. INM/IAEC/2012/
05). The models were prepared at Institute of Nuclear Medicine and
Allied Sciences, DRDO, New Delhi under the supervision of Dr. Amit
Tyagi. Pathogen-free eight weeks old male, Sprague Dawley rats (ap-
proximately 150 g body weight) were randomly assigned to four dif-
ferent experimental models (n=6 per group), i.e. control (SS), Em-
physema (ES), ATRA therapy (EA) and therapy control (SA). Details
regarding the preparation of experimental rat models were summarized
in Table 1. Rats were maintained under anesthesia by isoflurane and
were given either elastase/saline oropharyngeally or ATRA/olive oil
intraperitoneally. Animals were sacrificed on day 38 by cervical dis-
location. Blood was removed by performing ventilation/perfusion with
sterile PBS. Before harvesting the lungs bronchoalveolar lavage fluid
(BALF) was collected by injecting 1ml of PBS twice per injection into
the lungs. Alveolar macrophage (AM) cells were collected from the
BALF by centrifugation of the same at 1500 rpm for 20min. at 4 °C.
Lungs were harvested from each rat. For molecular analysis purpose,
the left lung from each rat was stored at −80 °C until analyzed and the
right lung from each rat was stored in paraformaldehyde for histo-
pathological analysis.

2.4. Elastase activity assay

EnzChek Elastase Assay Kit (Molecular Probes, New Delhi, India)
was used to estimate the elastase activity in lung tissue. The kit worked

on the principle of digestion of non-fluorescent elastin substrate
(BODIPY® FL conjugated with DQ™ elastin) to highly fluorescent frag-
ments by elastase. The fluorescent products are then measured by using
a fluorescence microplate reader (Synergy H1 Hybrid Multi-Mode
Microplate Reader; BioTek Instruments, Inc., Mumbai, India). Lung
tissue homogenates were mixed with DQ-elastin labeled with BODIPY
FL dye in the presence or absence of 30mM of the selective inhibitor
(MeOsuc-Ala-Ala-Pro-Val-chloromethyl ketone). Fluorescence intensity
was measured following incubation of the reaction in the dark for 1 h at
room temperature at excitation/emission of 485/530 nm. Inhibitor
helps in confirming the identity of the protease responsible for substrate
digestion [37,38].

2.5. Lung fixation & histopathology

Lung tissues were fixed in 6% phosphate-buffered paraformalde-
hyde and stored in the refrigerator. Tissue processing was carried out in
accordance to the standard protocols followed by preparation of tissue
blocks using molten paraffin which was allowed to cool and solidify
before making tissue sections. 5–10 μm thin tissue sections were cut
using a microtome (Spencers rotary microtome, India). Subsequently,
tissue sections were deparaffinized three times by Xylene, rehydrated
with different concentrations of ethanol and stained with hematoxylin
and eosin (H&E) stain.

2.6. Destructive index

The destructive index was calculated by counting the points over-
lapping alveolar and duct spaces as described by Muyal et al. [39].
From each lung specimen (total 6), 3 sections were taken (top, middle &
lower), from each section, 3 non overlapping sections were selected.
The stained sections were printed on A4 size sheet, which was over-
lapped by a transparent sheet with 80 counting points. The percentage
of all points falling in destroyed/ normal air spaces were computed to
obtain Destructive Index, using the formula [D/(D+N)] x100%, where
D=destroyed, and N=normal. Differences in DI of emphysema and
therapy groups were calculated with respect to control (100%).

2.7. Total RNA isolation and cDNA synthesis

To determine the relative mRNA expression in lung tissue, total
RNA was extracted using RNeasy Mini Kit (Qiagen, New Delhi, India).
The quantity and purity of total RNA were determined with Nanodrop
spectrophotometer (Thermo Scientific, New Delhi, India) while the
quality of total RNA integrity was assessed by analyzing 18S and 28S
ribosomal RNA on 1.2% ethidium bromide stained agarose gel elec-
trophoresis. First-strand cDNA was synthesized by introducing equal
amounts of RNA (300 ng) from each sample in a total reaction volume
of 20ml using an Oligo dT primer (Qiagen, New Delhi, India) and
Omniscript RT Kit (Qiagen, New Delhi, India) and their respective
protocol. The reaction was incubated at 37 °C for 1 h in Thermoblock
TB2 (Biometra, New Delhi, India).

2.8. Relative mRNA expression

The expression of key gene transcripts (see Table 2) were examined
by quantitative RT-PCR using the biorad kit as per the manufacturer’s
protocol. The thermal cycle conditions used for all reactions were as
follows: Step 1: 95 °C for 15min; a 30 cycles of Step 2 (95 °C for 45 s),
Step 3 (sequence-specific oligonucleotide primer’s annealing tempera-
ture for 35 s) and Step 4 (72 °C for 45 s), followed by one time of step 5:
72 °C, 5min. The quantitative real time PCR for determining the am-
plification factor of the target genes were performed via a Bio-Rad
CFX96™ instrument (Bio-Rad Laboratories Inc., New Delhi, India) using
the manufacturer's guidelines. The expressions of test genes were nor-
malized by using endogenous control that is GAPDH.

Table 1
Animal model preparation.

S.No Group At Day 0 & 10 From Day 26 to 37

1. SS (control) Saline (180ul/day) Olive oil (300 μl/kg
b.w./day)

2. ES (emphysema) Elastase (25 U/kg b.w./
day)

Olive oil (300 μl/kg
b.w./day)

3. EA (therapy) Elastase (25 U/kg b.w./
day)

ATRA (500 μg/kg b.w./
day)

4. SA (therapy control) Saline (180ul/day) ATRA (500 μg/kg b.w./
day)
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2.9. Zymography and reverse zymography for estimation of protease-
antiprotease imbalance

Cell-free bronchiolavage fluid (BALF) was concentrated (10X) and
used for Gelatin zymography and reverse zymography. The concentrate
of BALF was prepared by using Amicon Ultra-4 Centrifugal Filter Unit
with Ultracel-10 membrane columns (Merck Life Science Private
Limited, Mumbai, India) with a molecular cut-off at 10 kDa.
Zymography and reverse zymography was carried out as per the pro-
tocol described by Seifart C et al. [27].

Negative images of the zymograms and reverse zymograms were
analyzed by Image J (image processing program) (www.rsbweb.nih.
gov/ij/). Densitometry was performed on the bands obtained and the
differences in optical density of bands were calculated with respect to
control (100%),

2.10. Biochemical analysis for catalase and glutathione peroxidase

Lung tissue was homogenized in phosphate buffer (pH 7.4) and
centrifuged at 12,000 × g at 4 °C for 30min to get tissue homogenates
which were further used for antioxidant activity determination. Tissue
antioxidant status was determined by estimation of antioxidant activ-
ities of catalase (CAT) and Glutathione peroxidase (GPx) as described
by Maehly et al. and Mohandas et al. respectively [40,41].

2.11. Western blotting

Lung tissue homogenate was prepared from 100mg tissue (from
each rat of the group, n=6), from which total protein was extracted by
total protein extraction kit (Biochem Life Sciences, New Delhi, India) as
per the manufacturer’s protocol. The isolated proteins were pooled

together to eradicate biological variations within a group. 50 μg protein
from each group, in duplicates, was resolved on SDS–PAGE and trans-
ferred onto nitrocellulose membrane. The membrane was blocked by
5% skimmed milk solution in PBST (Phosphate-buffered
saline+ Tween 20) for 3 h.

Membrane was incubated in corresponding primary antibody (listed
in Table 3) (Neo Scientific, Neo Biolabs, Cambridge, MA, USA ; Merck
Life Science Private Limited, Mumbai, India) at 4 °C for overnight fol-
lowed by washing (with PBST) and incubation with an alkaline phos-
phatase (ALP)-labeled secondary antibody (Bio-Rad Laboratories India
Pvt. Ltd., Gurgaon, India) for 1.5 h at 4 °C. The membrane was washed
with PBST and incubated with substrate (BCIP/NBT) for 15–20min. at

Table 2
Genes for mRNA expression.

S.No Gene Forward primer Reverse primer Amplicon size (bp)

1. TNFR1 CTGTTGCCCCTGGTTATCTT CCAGCCTTCTCCTCTTTGAC 143
2. RAS GATGGTTTTCAGGGCCACTA TTCCACTGGACTGTGCTCTG 130
3. ERK1 CAGTCTCTGCCCTCGAAAAC CCTCTACTGTGATGCGCTTG 124
4. ERK2 CCCAAATGCTGACTCCAAAG GTCGTCCAACTCCATGTCAA 175
5. ELK1 GCACGTATATGCCGAGACCT CCGCCTCCTCTTCTTTATCC 151
6. c-MYC CAACGTCTTGGAACGTCAGA TCGTCTGCTTGAATGGACAG 153
7. TNF-α ACGTCGTAGCAAACCACCAA AAGGTACAACCCATCGGCTG 128
8. IL-10 TCAGCCAGGTGAAGACTTTC CTGGATCATTTCCGATAAGG 122
9. MMP2 ATGCCATCCCTGATAACCTG CCCAGCCAGTCTGATTTGAT 145
10. MMP7 ATCAGTGGGAACAGGCTCAG TCCATGATGTAGGGGGAGAG 151
11. MMP8 AGGGAGAAGCAGACATCAAC GCATCTCCTCCAATACCTTG 124
12. MMP9 CTGGACAGCCAGACACTAAG CTCGCGGCAAGTCTTCAGAG 145
13. MMP12 CTGCTCCCATGAATGACAGTG AGTTGCTTCTAGCCCAAAGAAC 158
14. TIMP1 ATCTGGCATCCTCTTGTTGC GGGAACCCATGAATTTAGCC 125
15. TIMP2 AAGCAGTGAGCGAGAAGGAG GGGGGCCGTGTAGATAAACT 137
16. A1AT GGAATCACAGAGGAAAATGC GGGCATAGACATAGGAACCA 129
17. GAPDH AATGGTGAAGGTCGGTGTGAAC GAAGATGGTGATGGGCTTCC 226
18. CRP GGGTCAAGGGTTTAGTATTGC GAGATAGCACAAAGTCCCACAT 296
19. IL6 ATACCACCCACAACAGACCA TCCAGAAGACCAGAGCAGATT 244
20. IL6ST AAGGAGAATGGGAAGGGCTA TGCGAAACTGACTTGGACTG 227
21. JAK2 CAGATTCCGCAGGTTCATTC CCTTATGTTTCCCTCTTGACCA 221
22. PTK2B GAATCTTGACCACCCTCACA GACACAGTTGATGCTCTCCA 202
23. STAT3 AAGGAAGGAGGGGTCACTTT TCGGGGCGACAATACTTT 227
24. PTPN11 ATGATGTTGGTGGAGGAGAG GCCCTGTTTGACTTTATCTGTG 203
25. SOCS3 CAAGAACCTACGCATCCAGT CGGTGGTAAAGAAAAGGAAG 151
26. ABL1 TTCATCCACAGAGACCTTGCT ATACTCCAAATGCCCAGACG 208
27. PIAS3 GGTTTGAGGAAGCCCACTTT ATTCTTGGTTGGAGGGAGGT 233
28. PTPase CACCTGCCTCTTTCCTCAAT GCATCTCCAACAGCACTTTCT 201

RAS=Rat sarcoma; ERK=Extracellular Signal Regulated Kinase; ELK1=E twenty-six (ETS)-like transcription factor 1; c-MYC=myelocytomatosis viral oncogene;
TNFα= Tumor Necrosis Factor α; IL10=Interleukin 10; MMP=Matrix Metalloproteinase; TIMP=Tissue Inhibitor of Metallo-Protease; A1AT=Alpha 1 Anti
Trypsin; GAPDH=Glyceraldehyde 3-phosphate dehydrogenase; CRP=C reactive protein; IL6= Interleukin 6; IL6ST= Interleukin 6 signal transducer; JAK2=
Janus kinase 2; PTK2B=protein tyrosine kinase 2 beta; STAT3= signal transducer and activator of transcription 3; PTPN11= protein tyrosine phosphatase, non-
receptor type 11; SOCS3= suppressor of cytokine signaling 3; ABL1=ABL proto-oncogene 1, non-receptor tyrosine kinase; PIAS3= protein inhibitor of activated
STAT3; PTPase= protein-tyrosine-phospatase.

Table 3
List of primary antibodies used for protein expression study.

S.No Antibody Brand

1. TNF-α Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
2. CRP Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
3. GSTA Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
4. MMP2 Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
5. MMP7 Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
6. MMP8 Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
7. CTSE Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
8. SERPINA1 Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
9. TIMP4 Neo Scientific, Neo Biolabs, Cambridge, MA, USA.
10. GAPDH Merck Life Science Private Limited, Mumbai, India.
11. ERK1/ERK2 Sigma-Aldrich, India (kind gift by Dr. Amit Kumar Tyagi)

TNFα= Tumor Necrosis Factor α; CRP=C-Reactive Protein;
GSTA=Glutathione S Transferase Alpha; MMP=Matrix Metalloproteinase;
CTSE=Cathepsin E; SERPINA1= Serpin Peptidase Inhibitor, Clade A;
TIMP=Tissue Inhibitor of Metallo- Protease; GAPDH=Glyceraldehyde 3-
phosphate dehydrogenase.
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RT. The obtained bands were analyzed by densitometry using Image J
(image processing program) (www.rsbweb.nih.gov/ij/).

2.12. Immunohistochemistry

Formalin fixed tissues were embedded in paraffin and blocks were
prepared. Fine tissue sections were deparaffinized with xylene. 95%,
70%, and 50% alcohol (3 min each) gradient were used to rehydrate
tissue. Sections were washed with phosphate-buffered saline (PBS) and
immersed in 3% hydrogen peroxide in methanol for 20min to block
endogenous peroxidase activity. Sections were washed twice with PBS
and incubated with 5% bovine serum albumin (BSA) in PBS for 1 h at
room temperature to block non-specific binding sites followed by
overnight incubation with primary antibodies (0.5% bovine serum al-
bumin in PBS) at 4 °C. Sections were washed twice with PBS followed
by incubation with secondary HRP-conjugated antibodies for 1 h at
room temperature. After washing DAB (0.05% 3,3′-diaminobenzidine
tetrahydrochloride and 0.015% hydrogen peroxide) stain was applied
on tissue sections for 5–10min followed by counterstain with Mayer's
hematoxylin (Sigma-Aldrich, New Delhi, India). Sections were mounted
with DPX mountant (Himedia, Delhi, India) and covered by coverslips.
Slides were visualized using a light microscope and images were cap-
tured & analyzed by using ImageJ (www.rsbweb.nih.gov/ij/) as per
described by Jensen EC et al [42].

2.13. Statistical analysis

mRNA levels of target genes were determined relative to the en-
dogenous control GAPDH, according to the formula 2 to the power of
delta cycle threshold (2ΔCt), where ΔCt=Ct, reference gene – Ct, test
gene. Differences between experimental groups were tested for sig-
nificance using Student’s unpaired t-test used to determine the level of
significance of differences between control versus emphysema and
emphysema versus ATRA therapy, respectively using GraphPad Prism
version 5, San Diego, USA. Levels of significance are indicated by * =
p < 0.05; ** = p < 0.01; ***= p< =0.001. The same statistical
analysis was also used to evaluate the results of elastase assay, lipid
estimation, and western blotting.

3. Results

3.1. Gene interactions by GeneMANIA

The results obtained from GeneMANIA show the interactions be-
tween candidate genes of ERK and JAK-STAT pathway. IL6 and TNF are
commonly involved in inflammatory response as well as in its regula-
tion (Fig. 1B).

3.2. Effect on the binding of ligand and receptor of ERK & JAK-STAT
pathway in presence of ATRA

Prior to testing the proposed hypothesis, we have checked the po-
tential of ATRA using in-silico approach. The comparative optimization
was carried out to find the best-docked pose and the energy of all target
proteins (IL6, IL6ST, TNF-α & TNFR1) with ATRA. The best 10 docked
poses were identified and analyzed. Figures were generated using
program DS Visualizer. Fig. 2 illustrates best docked pose of IL6, IL6ST,
TNF-α & TNFR1 with ATRA that possessed binding energy or ΔG of
-3.55, -4.78, -6.17 & -5.96 Kcal/Mol & Ki value 2.51mM, 315.24 μM,
30.09 μM & 42.58 μM respectively (Table 4). In protein-protein inter-
action study, the FireDock dock score of, IL6ST with IL6 was -4.90,
IL6ST+ATRA with IL6 was -0.95 and TNFR1 with TNF-α was -51.16 &
TNFR1 with TNF-α +ATRA was -37.21 (Table 5).

3.3. Effects of elastase and ATRA on elastase activity

The elastase treated lungs show a significant induction of en-
dogenous elastase activity in emphysema group (ES) as compared to
control group (SS) (Fig. 3). Interestingly, in the therapy group (EA), the
endogenous elastase activity was significantly reduced and was com-
parable to control group (SS), while, no changes were noticed in the
control lungs instilled only with ATRA (SA) than a control group (SS).
The assay of elastase in the presence of varying concentrations of its
selective inhibitor (MeOsuc-Ala-Ala-Pro-Val-chloromethyl ketone)
confirmed the proteolytic activity of elastase.

3.4. Effects of elastase and ATRA on tissue architecture

Oropharyngeal instillation of 2.25mg PPE/kg b.w. on two occasions
(Days 0, 10) resulted in severe pulmonary emphysema, as shown in
Fig. 4A (ES) of photomicrograph generated from histopathology study.
However, the photomicrograph for ATRA treated emphysematous lungs
markedly depicted the recovery of lost alveolar septa in therapy group
(EA, Fig. 4A) and was well comparable to control group (SS, Fig. 4A).
Upon determination of destructive index (DI) of tissue slices from all
four animal models (Fig. 4A), emphysematous mice model showed
significantly higher DI values than a control group. However, the DI
was significantly reduced in the case of therapy group (EA) (Fig. 4B).

3.5. Effects of elastase and ATRA on mRNA, protein expression and
immunohistochemistry of inflammatory/ anti-inflammatory markers

The expression of TNF-α, CRP and IL10 was studied using whole
lung tissue (WLT) and Alveolar macrophage cells (AMC). TNF-α was
also studied at tissue level by IHC. The mRNA expression of TNF-α and
CRP from WLT and AMC showed a significant up-regulation in lungs
treated with elastase group (ES) as compared to the control group (SS).
Here, again ATRA has shown its anti-inflammatory effect by reducing
the expression of TNF-α and CRP in the therapy group (EA) than ES
group. However, there are no changes in the mRNA expression of TNF-
α and CRP in lungs received only ATRA (SA) than SS group. However,
mRNA expression pattern for IL-10 from WLT and AMC was opposite to
that of TNF-α and CRP as it is anti-inflammatory in nature. The mRNA
expression of IL-10 was significantly down-regulated in emphysema
group (ES) as compared to control group (SS) while, it was significantly
up-regulated in therapy group (EA). In the control group with ATRA
(SA) the mRNA expressions were similar to the control group (Fig. 5A,
B). Interestingly upon validation on the protein level, the protein ex-
pression result of TNF-α, CRP and IL-10 also show a similar trend as
shown for mRNA expression of TNF-α, CRP and IL-10 (Fig. 5C). Simi-
larly, IHC results of TNF-α also complied with its mRNA and western
blot result (Fig. 5D).

3.6. Effects of elastase and ATRA on ERK and JAK-STAT signalling
pathways

mRNA expressions of genes involved in two signaling pathways, i.e.
ERK and JAK-STAT, have been evaluated to examine their involvement
during inflammation process in elastase treated group. The mRNA ex-
pressions of candidate genes (Fig. 6A) of overall ERK pathway i.e.
TNFR1, RAS, ERK1, ERK2, ELK1 and c-MYC were significantly up-
regulated in emphysema group (ES) as compared to control group (SS),
while, they were significantly down-regulated in therapy group (EA). In
the control group with ATRA (SA), the mRNA expressions of these
genes were similar to that of the control group (SS). Further, validation
of mRNA results on protein level was determined for ERK1 and ERK2.
Our western blotting result confirms the potential effect of ATRA by
reducing the expression of ERK1 and ERK2 in emphysematous lungs,
which was induced due to elastase effect (Fig. 6B). Similarly, the mRNA
expressions of candidate genes (Fig. 6C) of JAK/STAT pathway i.e. IL6,
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IL6ST, JAK2, PTK2B, ABL1 and STAT3 were significantly up-regulated
in elastase group (ES) as compared to control group (SS). Interestingly,
here, we have again found a potential role of ATRA (i.e. its anti-in-
flammatory property). The genes which were up regulated due to the
elastase treatment were significantly down-regulated after supple-
mentation of ATRA in the therapy group (EA). However, no change in
the expression of these genes was obtained in the control group re-
ceived ATRA (SA) alone. Nevertheless, the mRNA expressions of the
inhibitors of STAT3 phosphorylation (PTPN11 & SOCS3) and the in-
hibitors of activated STAT3 (PIAS3 & PTPase) were found to be sig-
nificantly down regulated in elastase treated group (ES) than control

group (SS), while, the same were up-regulated in the therapy group
(EA).

3.7. Effects of elastase and ATRA on antioxidant activity

Changes in lung activities of antioxidant enzymes (i.e. CAT and
GPx) in all the experimental groups of the rat were noticed.
Administration of elastase significantly depleted the activities of CAT
and GPx in elastase group (ES) as compared to the control group (SS).
Treatment with ATRA markedly alleviated the effects of elastase and
restored the activities of CAT and GPx in the therapy group (EA). In the
control group with ATRA (SA) the levels of these antioxidants were
similar to that of the control group (SS) (Fig. 7A). Furthermore, the
mRNA expression and western blot analysis revealed that the expres-
sion of GSTA1 (provides protection against oxidative stress), was sig-
nificantly down-regulated in elastase group (ES) than to control group
(SS). However, it was significantly up-regulated in therapy group (EA),
and no change was noticed between control group with ATRA (SA) and
control group (SS) (Fig. 7B).

3.8. Effects of elastase and ATRA on mRNA expression of proteases and
anti-proteases

Using WLT and AMC, the mRNA expressions of proteases (MMP2,
MMP7, MMP8, MMP9, MMP12) and anti-proteases (TIMP1, TIMP2,
A1AT) were studied. The mRNA expression of proteases was sig-
nificantly up-regulated in elastase treated group (ES) as compared to
control group (SS), while they were significantly down-regulated in
therapy group (EA), due to the effect of ATRA. However, no changes in
mRNA expressions of these genes were noticed between control lungs
supplemented with ATRA (SA) to that of control group (SS) (Fig. 8A, B).

However, the mRNA expressions of anti-proteases (TIMP1, TIMP2,
A1AT) were significantly reduced in elastase treated group (ES) as
compared to control group (SS), while, their mRNA expressions were
significantly up-regulated in elastase treated lungs received ATRA

Fig. 2. In silico analysis: (A) interaction between ATRA and IL6ST (B) protein-protein interaction between IL6ST and IL6 in presence of ATRA (C) interaction between
ATRA and TNF-α (D) protein-protein interaction between TNF-α and TNFR1 in presence of ATRA.

Table 4
Interaction of ATRA with IL6, IL6ST, TNFR1 & TNF-α.

S.No Receptor Ligand Binding
Energy
(Kcal/Mol)

Ki (Inhibition
constant)

1. Interleukin-6 (IL6) ATRA −3.55 2.51mM
2. Interleukin-6 Signal

Transducer (IL6ST)
ATRA −4.78 315.24μM

3. TNFR1 ATRA −5.96 42.58 μM
4. TNF-α ATRA −6.17 30.09 μM

Table 5
Protein-Protein interaction in absence and presence of ATRA.

S. No. Receptor Ligand Fire Dock
Binding Score

1. Interleukin-6
(IL6)

Interleukin-6 Signal Transducer
(IL6ST)

−4.90

2. Interleukin-6
(IL6)

Interleukin-6 Signal
Transducer+ATRA
(IL6ST+ATRA)

−0.95

3. TNFR1 TNF-α −51.16
4. TNFR1 TNF-α +ATRA −37.21
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group (EA), and with no change in mRNA expressions of anti-proteases
between healthy lungs received ATRA (SA) and control group (SS)
(Fig. 8A, B).

3.9. Effects of elastase and ATRA on protein expression of proteases and
anti-proteases

The western blot analysis of proteases (MMP2, MMP7, MMP8,
CTSE) reveals that their protein expressions were remarkably induced
in elastase treated group (ES) as compared to control group (SS).
Nevertheless, ATRA treatment brought their expressions down to the
normal in therapy (EA) group than elastase treated group (ES). While
no changes in protein expressions were noticed between control group
with ATRA (SA) and control group (SS) (Fig. 9).

The western blot analysis of anti-proteases (SERPINA1, TIMP4) re-
vealed that their expressions were significantly down-regulated in
emphysema group (ES) as compared to control group (SS), while, they

were significantly up-regulated in therapy group (EA). In the control
group with ATRA (SA) the expressions were similar to that of a control
group (SS) (Fig. 9).

3.10. Effects of elastase and ATRA on enzymatic activity of MMP-2 and
TIMP-1 in BAL fluid

In BAL fluid, enzymatic activity was detectable for MMP‐2
(MW‐72 kD) by zymography (Gel 1) and TIMP‐1 (MW‐23 kD) by reverse
zymography (Gel 2), respectively (Fig. 10A, B). Densitometry based
quantitative analysis of gels revealed that the activity of MMP-2 (Graph
1) was significantly increased and activity of TIMP-1 (Graph 2) was
significantly reduced in emphysematous group (ES) when compared to
control group (SS). However, significantly reduced activity of MMP-2
and significantly increased the activity of TIMP-1 was observed in
therapy group (EA) when compared to emphysematous group (ES). In
the control group with ATRA (SA) the enzyme activities were

Fig. 3. Elastase activity assay: Elastase treat-
ment significantly induced the endogenous
elastase activity in ES group as compared to SS
group. ATRA has shown its potential effect in
reducing endogenous elastase activity in elas-
tase treated group supplemented with ATRA
and is well comparable to SS. While no change
in the activity of elastase was seen between SA
and SS (Fig. 3A). The inhibition assay in the
presence of varying concentrations of its se-
lective inhibitor confirms the proteolytic ac-
tivity is due to elastase (Fig. 3B). Re-
presentative graphs of pooled tissue
homogenate samples (n= 6) from each group
in triplicates. Data were analyzed by means of

unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01; ***p < 0.001.

Fig. 4. (I) Histopathology of lung tissue and destruction index analysis: Hematoxylin and Eosin staining of lung tissue sections show normal histology in control
group (SS), rarefaction of alveolar septa with dilated airspaces in ES group. Increased number of airspaces with thickened alveolar septa in the therapy group (EA)
normal lungs treated with ATRA (SA) alone shows normal histology. All micrographs were captured at identical magnification. From each lung specimen (total 6), an
average of 3 different sections was used, and in the sections generally, 3 representative non-overlapping fields were selected. (II) Statistical analysis of the DI.
Destructive Index was calculated by laying a transparent sheet over the printed digitised image of an HE-stained section and marking 80 equally distributed points
onto it. In comparison to the control group (SS), a significant increase in percentage DI was observed in the group of elastase treated lungs, while the same was
reduced upon supplementation of ATRA in ES treated lungs. No change in DI was seen in the control group received ATRA alone. Graphs indicate mean values with
standard deviation. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 5. A, B: Relative mRNA expression of TNF-α, CRP and IL-10: In WLT and AM cells: The mRNA expression of inflammatory marker TNF-α and CRP was up-
regulated and anti-inflammatory molecule IL-10 was down regulated in ES group as compared to SS group. The expression of TNF-α and CRP was down-regulated,
while for IL10 it was increased, in therapy group (EA) than ES group and were comparable to the SS group. In the SA group, the mRNA expressions of these genes
were similar to the SS group. Representative graphs of pooled cDNA samples (n= 6) from each group in triplicates. Graphs indicate mean values with standard
deviation. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01; ***p < 0.001. C (I) SDS
page loaded with equal (50ug) amount of protein and stained by coomassie blue stain. (II) Protein expression of TNF-α and CRP in WLT: The western blot analysis
represents a significant increase in the protein expression of TNF-α and CRP in ES group as compared to the SS group. However, in the EA group, a significant
decrease in the protein levels of TNF-α and CRP was noticed. Representative blots of pooled protein samples (n=6) from each group in duplicates. Graphs indicate
mean values with standard deviation. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05;
**p < 0.01; ***p < 0.001. D. Immuno-histochemistry: The immunohistochemistry revealed induced DAB positive staining for TNFα in the alveolar epithelium in
emphysema group when compared to control group. ATRA supplementation reduced the expression of TNFα in the alveolar epithelium in the therapy group. No
significant changes were observed in the group receiving ATRA only. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase,
respectively. *p < 0.05; **p < 0.01; ***p < 0.001.

Fig. 6. A: Relative mRNA expression of key gene transcripts of ERK pathway: The mRNA expression of TNFR1, RAS, ERK1, ERK2, ELK1 and c-MYC were up-regulated
in ES group compared to SS group. The expressions of these genes were down-regulated in EA group and were comparable to SS group. In SA group, the mRNA
expression of these genes was almost similar to SS group lungs. Graphs indicate mean values with standard deviation. Representative graphs of pooled cDNA samples
(n=6) from each group in triplicates. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05;
**p < 0.01; ***p < 0.001. B: Protein expression of ERK1/ERK2: The western blot analysis represents a significant increase in the expression of ERK1/ERK2 in ES
group than the SS group. In EA group, a significant decrease in the protein expression level was noticed. Graphs indicate mean values with standard deviation.
Representative blots of pooled protein samples (n= 6) from each group in duplicates. Representative graphs of pooled tissue homogenate samples (n= 6) from each
group in duplicates. Data were analysed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01; ***p < 0.001.
Protein was normalized with GAPDH. C: Relative mRNA expression of key gene transcripts of the JAK-STAT pathway: The mRNA expression of IL6, IL6ST, JAK2,
PTK2B, ABL1, and STAT3 were increased in ES group compared to SS group, and the same were decreased in EA group and were comparable to SS group. While, the
mRNA expression of inhibitors (PTPN11, SOCS3, PIAS3 & PTPase) were down-regulated in the ES group compared to SS group and were up-regulated in EA group
and were comparable to the SS group. Graphs indicate mean values with standard deviation. Representative graphs of pooled cDNA samples (n=6) from each group
in triplicates. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01; ***p < 0.001.
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comparable to control group (SS).

4. Discussion

To investigate the anti-inflammatory and regenerative potential of
ATRA, emphysema and ATRA therapy models were developed. Our in-
silico results (Fig. 2), provided us the first clue regarding the potential
binding of ATRA with those possible receptors, which are essential for
triggering signaling mechanisms of ERK and JAK-STAT pathways. In
silico analysis revealed that ATRA binds to both to the receptor (TNF-α,
IL6ST) and ligand (TNFR1, IL6) for both the pathways, ERK and JAK-
STAT respectively. However, ATRA shows more binding efficiency to-
wards TNF-α and IL6ST. Also, it was evident from the in silico analysis
that ATRA interferes between the normal binding of a ligand with the
receptor (TNF-α with TNFR1 & IL6 with IL6ST) as the binding energy
got reduced in presence of ATRA. Thus suggesting that ATRA has the
potential to hinder these pathways at the initial steps and regulate the
entire pathway. To validate our in silico findings, we further elucidated
ATRA’s potential role in ERK and JAK-STAT signaling pathways as

these pathways are involved in initiating inflammation [8,13], using
emphysema’s animal models.

Here, emphysema was developed in the lungs of rats by the or-
opharyngeal instillation of porcine pancreatic elastase (PPE), which is a
low-cost approach and its single administration may rapidly result in
histological and morphological characteristics compatible with those of
panacinar emphysema [43,44]. In the current study, the foremost step
is to confirm the efficacy of PPE towards elastolytic damage in the
lungs. Using lungs tissue homogenate, an elastase assay was performed.
The result of elastase activity assay reveals an increased elastase ac-
tivity in the ES group as compared to the SS group. We have reported
similar findings in the lungs of eight weeks old C57BL/6 male mice
[39]. However, the important finding here is that ATRA reduces the
elastase activity in EA group, which might be due to the potential of
ATRA to prevent neutrophil influx into the lungs, thus preventing the
elastolytic damage in lungs [45,46]. Nevertheless, a study conducted by
Frankenberger et al., ATRA supplementation has been found to reduce
the levels of elastase in the sputum of patients with severe emphysema
[47]. Along with elastase assay, an inhibition assay was carried out

Fig. 6. (continued)
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using a selective inhibitor of elastase to confirm that the elastase ac-
tivity was due to elastase and not any other protease.

The inflammatory responses are involved in triggering proteases in
emphysema condition. Our results are in accordance with the general
perception theory of proteases/anti-protease imbalance in emphysema
condition. The proteases levels were induced while antiproteases levels
were reduced in elastase treated lungs. Interestingly, ATRA has shown
its potential towards reciprocation of proteases and antiproteases im-
balance. MMP2, MMP7, MMP9, and MMP12 are the chief metallopro-
teases involved in the pathogenesis of emphysema [48]. Protease in-
hibitors (TIMP1 & TIMP2) maintains the levels of proteases [49],
however, due to increased protease burden, the antiproteases are neu-
tralized leading to the protease- antiprotease imbalance, while A1AT is
a potent inhibitor of neutrophil elastase. When the levels of A1AT de-
crease significantly, it fails to protect the lower respiratory tissue from
neutrophil elastases, leading to alveolar destruction and ultimately
emphysema [50]. Here, the mRNA and protein levels of A1AT were
decreased in elastase treated lungs as compared with the control ones.
In a study conducted by Zhang et al., increased expression of CTSE, a
protease was found to promote emphysema in the lung tissue of COPD
patients and upon inhibition of CTSE, emphysema was also inhibited
[51]. Similarly in our study elevated level of CTSE was found in em-
physema group which was reduced in the ATRA supplemented group.

The potential anti inflammatory role of ATRA has been further
studied in TNF-α, CRP and IL-10 expressions. TNF-α is an inflammatory
cytokine is predominately produced by and involved in the upregula-
tion of inflammatory reactions. CRP is associated with emphysema and
is known to activate pro-inflammatory cytokines such as TNF-α [52].
We found expressions of TNF-α and CRP upregulated in elastase treated

lungs while ATRA has shown its positive signature by reducing the
expression of TNF-α and CRP & brought it to the normal level. On the
other hand, mRNA and protein expression of IL-10, which an important
anti-inflammatory molecule, found to be reduced in elastase treated
lungs than healthy lungs. The expression of IL-10 has been reported
significantly reduced in COPD patients [53]. Here, such a reduction in
the mRNA and protein expression of IL-10 due to elastase treatment has
been induced by ATRA supplementation. This result further suggests us
that ATRA has a potential characteristic through which the expressions
of these genes were ameliorated and were comparable to our normal
group. Wu J et al. have previously also shown in their study that ATRA
treatment moderately increased the mRNA levels of IL-10 as well as
attenuating the airway inflammation in experimental allergic asthmatic
BALB/c mice [54].

During inflammation, there is activation of leukocytes and neu-
trophils that release reactive oxygen species (ROS) which ultimately
leads to oxidative stress. Oxidative stress is a well recognized feature of
COPD [55]. Anti-oxidants play a crucial role in protecting the tissues
from the oxidative damage. Glutathione peroxidase (GPx) and catalase
(CAT) present in the epithelium lining of lungs and alveolar cells pro-
tect the lung tissue from oxidative damage [56]. To evaluate the oxi-
dative stress we performed biochemical assays for glutathione and
catalase activity. Our results suggested a depleted activity of GPx as
well as of CAT in the elastase treated group when compared to the
control group. Reduced GPx activity is in direct proportion to the se-
verity of COPD [57]. Catalase activity has also been reported to be
reduced in COPD patients [58]. However, after ATRA supplementation
the activities of GPx and CAT increased significantly in ATRA supple-
mented group as compared to the emphysematous group. Glutathione S

Fig. 7. A: Effects of elastase and ATRA on an-
tioxidant level: Significant depleted levels of
CAT and GPx can be seen in ES group in con-
trast to SS group. Upon ATRA supplementation
a rise of CAT and GPx levels can be observed in
EA group, which are well comparable to SS
group. The CAT and GPx activity levels in SA
group were similar to SS group. Graphs in-
dicate mean values with standard deviation.
Representative graphs of pooled tissue homo-
genate samples (n=6) from each group in
triplicates. Data were analysed by means of
unpaired t-test to test for the effect of ATRA
and elastase, respectively. *p < 0.05;
**p < 0.01; ***p < 0.001. B: mRNA and
protein expression of GSTA1: The western blot
analysis and mRNA expression represents a
significant decrease in the expression of anti-
oxidant marker GSTA1 in ES group than SS
group. In EA group, significant increase in the
protein expression level was noticed. Graphs
indicate mean values with standard deviation.
Representative blots of pooled protein samples
(n=6) from each group in duplicates.
Representative graphs of pooled tissue homo-
genate samples (n=6) from each group in
duplicates. Data were analysed by means of
unpaired t-test to test for the effect of ATRA
and elastase, respectively. *p < 0.05;
**p < 0.01; ***p < 0.001. Protein was nor-
malized with GAPDH.
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Transferase (GSTA) belongs to an enzyme family which is crucial in
protecting the lungs from oxidative injury and is studied as a marker of
oxidative stress [59]. Our study reveals the reduced protein expression
of GSTA1 in emphysematous lungs as compared to the control group
lungs. GSTA1 has been reported to be downregulated in COPD patients
[60]. However, after ATRA supplementation the levels of GSTA1 were
significantly upregulated in the therapy group as compared to the
emphysematous group. ATRA has previously shown to upregulate the
levels of GSTA in lungs [61]. The possible reason might be that after
ATRA supplementation the alveolar wall was regenerated (which is
evident from histopathology result, Fig. 4) and the production of anti-
oxidants was restored which was hindered due to alveolar wall de-
struction in the emphysematous condition. The above findings support
the anti-oxidative property of ATRA [62].

Our above-mentioned findings made us believe that exogenous
supplemented elastase has resulted in lung inflammation. Therefore, we
further studied its effect on the molecular pathways which are known to
be involved in the inflammation process underlying emphysema and
the potential role of ATRA in ameliorating these pathways. ERK and
JAK-STAT pathways were studied as they have been already reported to
be involved in the inflammation process in various tissues [6,7,12].

Interestingly, our findings suggested that the ERK and JAK-STAT
pathways might be associated with inflammation underlying emphy-
sema. The candidate genes of these pathways were upregulated in ES
group, but upon ATRA supplementation the pathways were down-
regulated as compared to ES group. ERK pathway is known to be up-
regulated in inflammatory conditions and is regulated by proin-
flammatory cytokine such as TNF-α [6,8]. Similarly, the JAK-STAT
pathway is also activated by TNF-α and IL-6. The levels of IL-6 are
known to be high in the sputum as well as in the lung tissue of COPD
patients which in turn activates STAT3 [63–65]. Moreover, the JAK-
STAT pathway is found to be elevated in lung parenchyma tissue of
COPD patients [15]. Our study reveals the upregulation of TNF-α (at
mRNA as well as at protein level) and IL-6 (at mRNA level) due to
elastase treatment. Therefore, the upregulation of the candidate genes
of ERK and JAK-STAT pathways might be due to their activation by the
enhanced levels of TNF-α and IL-6. However, the anti-inflammatory
response of ATRA [66,67] supplementation was able to significantly
down-regulate the levels of TNF-α & IL-6 as well as overall ERK & JAK-
STAT pathways in elastase induced emphysema. ATRA has been found
to inhibit the production of TNF-α from macrophages and inhibits the
production of IL-6 via inhibition of ERK pathway [68,69]. Such findings

Fig. 8. Relative mRNA expression of proteases and anti-proteases: In WLT (A) and AMC (B), the mRNA expression of proteases MMP2, MMP7, MMP8, MMP9 and
MMP12 were significantly up-regulated and anti-proteases TIMP1, TIMP2 and A1AT were significantly down-regulated in ES group as compared to SS group. In
therapy group (EA), the mRNA expression of MMP2, MMP7, MMP8, MMP9 and MMP12 were down-regulated and TIMP1, TIMP2 and A1AT were up-regulated than
ES group. In SA group, the mRNA expressions of these genes were similar to that of SS group. Graphs indicate mean values with standard deviation. Representative
graphs of pooled cDNA samples (n= 6) from each group in triplicates. Data were analyzed by means of unpaired t-test to test for the effect of ATRA and elastase,
respectively. *p < 0.05; **p < 0.01; ***p < 0.001.
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regarding the involvement of ATRA in the regulation of ERK pathway
may confirm our findings as we also obtained a significant down-
regulation of ERK pathway due to ATRA supplementation. Further-
more, on the basis of above findings, it is also evident that there is a
crosstalk between the ERK and JAK-STAT pathways as TNF-α is a
common activator of both the pathways and downregulation of IL-6
expression is dependent on ERK inhibition by ATRA (Fig. 1). ERK and
JAK-STAT pathways are also involved in oxidant anti-oxidant im-
balance and protease-antiprotease imbalance along with inflammation.
Cigarette smoke is one of the causative agents for induction of COPD.
ERK pathway is activated by smoke derived oxidants [70]. Similarly,
the JAK-STAT (JAK2/STAT3) pathway is also activated by oxidants like
H2O2 in diseases like acute respiratory distress syndrome, Parkinson’s
disease, pulmonary fibrosis, and Alzheimer’s disease [71,72]. In COPD,
excessive activation of the JAK-STAT pathway leads to increased MMP9
expression and reduction in TIMP1 expression [73].

Lastly, the effect of elastase and the potential role of ATRA were
observed on tissue architecture by histopathology and morphometry
based DI analyses. The photomicrographs showed the destruction of
alveolar septa in the lungs of elastase treated lungs as compared to the
lungs of healthy rats. Amusingly, ATRA has shown its therapeutic po-
tential role in elastase treated lungs (therapy group), as alveolar septa
which has been lost on elastase treated group is now been regenerated
and were well comparable to the lungs of the healthy group. Damage
and recovery of alveolar septa in lungs was analyzed by DI based
analysis tool, which is an alternative tool for morphological quantifi-
cation [74]. The average value of DI was higher in case of emphyse-
matous lungs as compared to healthy lungs which may be due to the
destruction of alveolar septa and formation of large spaces. Massaro and
Massaro have demonstrated that exogenous application of ATRA pro-
motes alveolarisation in elastase-induced experimental model (rat) of

emphysema [25] and ATRA induces the alveolar septal formation
[30,75]. However, the underlying mechanism behind alveolar septal
regeneration is still unknown. Our morphometry result is similar to the
Massaro findings, where ATRA supplemented rat lungs represented the
alveolar regeneration resulting in intact alveolar septa indicated by
significantly reduced DI which was comparable to healthy lungs. The DI
values of ATRA only group were similar to the control group.

5. Conclusion

The current study focused on the regenerative and anti-in-
flammatory potential of ATRA. Pathophysiologies involved in the pro-
gression of emphysema are interlinked. Inflammation further leads to
protease-antiprotease imbalance and oxidative stress. It was evident
from the results that ATRA was able to reduce inflammation via the
amelioration of ERK and JAK/STAT pathway along with the down-
regulation of inflammatory markers. Protease and antiprotease balance
and levels of antioxidants were also restored. These results suggest that
if inflammation is reduced in the emphysematous condition it can
overall ameliorate the pathophysiologies involved. The histopatholo-
gical results showed that exogenous supplemented ATRA maintained
the tissue architecture, thus indicating the regenerative capacity of
ATRA. However, elaborated studies need to be conducted to further
explore the regeneration mechanism.
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Fig. 9. Protein expression of proteases and anti-proteases: The western blot analysis represents a significant increase in the protein expression of MMP2, MMP7,
MMP8 & CTSE, while a significant decrease in SERPINA1 and TIMP4, in ES group as compared to SS group. However, in EA group there is a significant decrease in the
protein levels of MMP2, MMP7, MMP8 & CTSE, while a significant increase in SERPINA1 and TIMP4 was noticed. Graphs indicate mean values with standard
deviation. No significant changes were observed in SA group and it was well comparable to SS group. Representative blots of pooled protein samples (n=6) from
each group in duplicates. Data were analysed by means of unpaired t-test to test for the effect of ATRA and elastase, respectively. *p < 0.05; **p < 0.01;
***p < 0.001.
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