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Finite lifespan of solutions of the semilinear wave equation in the

Einstein-de Sitter spacetime

Anahit Galstian and Karen Yagdjian

School of Mathematical and Statistical Sciences,
University of Texas RGV, Edinburg, TX 78539, U.S.A.

Abstract

We examine the solutions of the semilinear wave equation, and, in particular, of the ϕq model
of quantum field theory in the curved space-time. More exactly, for 1 < q < 4 we prove that the
solution of the massless self-interacting scalar field equation in the Einstein-de Sitter universe
has finite lifespan.
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1 Introduction

The equation for a self-interacting massless scalar field in the quantum field theory is the semilinear
covariant wave equation

�gψ = λ|ψ|p−1ψ , (1.1)

where �g is a covariant d’Alembert’s operator (the Laplace-Beltrami operator) in the spacetime
with the metric tensor g. The exponent p > 1 and the self-coupling constant λ show the intensity
of self-interaction. The metric of the Einstein & de Sitter universe (EdeS universe, see, e.g., [5,
p.123], [11, Sec. 5.3]) is a particular member of the Friedmann-Robertson-Walker metrics

ds2 = −dt2 + a2sc(t)

[
dr2

1−Kr2
+ r2dΩ2

]
,

where K = −1, 0, or +1, for a hyperbolic, flat, or spherical spatial geometry, respectively. For the
EdeS universe the scale factor is asc(t) = t2/3. The covariant d’Alambert’s operator,

�gψ =
1√
|g|

∂

∂xi

(√
|g|gik ∂ψ

∂xk

)
,

in the EdeS spacetime is

�EdeSψ = −∂2t ψ − 2t−1∂tψ + t−
4
3A(x, ∂x)ψ ,

where A(x, ∂x) is a second order partial differential operator.
Thus, the equation for the self-interacting massless field in the Einstein-de Sitter spacetime is

the semilinear covariant wave equation (1.1) which has singular coefficients at t = 0. The covariant
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d’Alembert’s operator in the Einstein-de Sitter spacetime belongs to the family of the non-Fuchsian
partial differential operators. The initial value problem for the equation (1.1) with the Cauchy data
on hyperplane t = 0 must be defined properly. In [7] Galstian, Kinoshita and Yagdjian suggested
such setting for the wave propagating in the EdeS spacetime when A(x, ∂x) is the Laplace operator
on R

n. In [7] the authors introduced the weighted initial value problem for the covariant (if n = 3)
wave equation and gave explicit representation formulas for the solutions. We generalize that
setting and set the problem for the semilinear equation as follows





ψtt − t−4/3A(x,Dx)ψ + 2t−1ψt = F (ψ), t > 0, x ∈ R
n,

lim
t→0+

tψ(x, t) = ϕ0(x), x ∈ R
n,

lim
t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= ϕ1(x), x ∈ R

n ,

(1.2)

where A(x,Dx) is an elliptic partial differential operator A(x,Dx) =
∑

|α|≤2 aα(x)∂
α
x with smooth

real-valued coefficients aα(x) ∈ C∞(Rn), which are constant outside of some compact. The two
limits of (1.2) are taken in the sense of H1(Rn) and L2(Rn), respectively.

We define p0(n) as a positive root of the equation

(n+ 3)p2 − (n+ 13)p − 2 = 0 (1.3)

and denote

pcr(n) := max

{
p0(n), 1 +

6

n

}
.

Consider the operator

A(x,Dx)u =
1

a(x)

∑

k,j=1,...,n

∂

∂xk

(
akj(x)

∂

∂xj
u

)
, (1.4)

where a(x), akj(x) ∈ C∞(Rn) and

a(x) ≥ a0 > 0, akj(x) = ajk(x) for all x ∈ R
n , k, j = 1, 2, . . . , n , (1.5)

with some number a0. Assume that the coefficients a(x), akj(x) are constant outside of some ball
BRA

(0):

akj(x) = cδjk, a(x) = 1 for all x ∈ R
n , |x| ≥ RA > 0, c > 0, (1.6)

where δjk is the Kronecker delta.
We say that the solution ψ ∈ C2((0, T ];D′(Rn)) of the problem (1.2) obeys the finite propagation

speed property if for every point (x0, t0) with t0 > 0 and an open ball BR(x0) = {x ∈ R
n ; |x−x0| <

R}, the property
ϕ0(x) = ϕ1(x) = 0 on B

R+3t
1/3
0 sA

(x0) ,

implies
ψ(x, t0) = 0 on BR(x0) .

Here

sA = max
x∈Rn, ξ∈Rn, |ξ|=1

1

a(x)

∑

|α|=2

aα(x)ξ
α .

Although in quantum field theory the nonlinear term typically has a gauge invariant form
F (ψ) = |ψ|p−1ψ, we will focus on semilinear equations, which are commonly used models for
general nonlinear problems (see [18, 20] and the bibliography therein). Our first main result is the
following theorem.
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Theorem 1.1 Consider the problem (1.2) with F (ψ) = |ψ|p and A(x,Dx) being an elliptic operator
with the properties (1.4),(1.5),(1.6). If p > 1 and

p < pcr(n) ,

then for every arbitrary small number ε > 0 and an arbitrary number s there exist functions
ϕ0, ϕ1 ∈ C∞

0 (Rn) with norms satisfying inequality

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε

such that the solution ψ ∈ C((0, T );H1(Rn)) ∩C((0, T );L2(Rn)) of the problem (1.2), which obeys
the finite propagation speed property, blows up in finite time. More precisely, there is T <∞ such
that

lim
tրT

∫

Rn

a(x)ψ(x, t) dx = ∞ .

Note, for n = 3 we have pcr(3) = 3 that is the exponent of the ϕ4 model of quantum field theory.
The next corollary indicates that the equations (1.2) possesses global in time sign preserving solution
only if p ≥ 3.

Corollary 1.2 Assume that F (ψ) = |ψ|p−1ψ, 1 < p < 3. For every arbitrary small number ε > 0
and an arbitrary number s there exist functions ϕ0, ϕ1 ∈ C∞

0 (Rn), ‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε,

such that the positive solution ψ ∈ C((0, T );H1(Rn)) ∩ C((0, T );L2(Rn)) of the problem (1.2) has
a finite life-span.

Note that, for the semilinear Klein-Gordon equation a global in time solvability is proved in [9] for
the problem with small initial data prescribed on the hyper-surface t = t0 > 0 .

In Section 5 we prove the finite propagation speed property for a subclass of operators of type
(1.2). The next theorem shows that the blow up phenomenon is still present even if we remove the
singularity at t = 0 by shifting the initial hyperplane; the blow up is caused by the semilinear term.
Consider the following Cauchy problem

{
ψtt − t−2kA(x,Dx)ψ + 2t−1ψt = |ψ|p, t > 1, x ∈ R

n,

ψ(x, 1) = ϕ0(x), ψt(x, 1) = ϕ1(x), x ∈ R
n,

(1.7)

where k ∈ (0, 1) and A(x,Dx) is an elliptic partial differential operator with the properties (1.4),
(1.5), (1.6). Let p0(n, k) be a positive root of the equation

p2(n+ 1− kn)− p(2k + n+ 3− kn)− 2(1 − k) = 0 . (1.8)

The numbers p0(k) and p0(n, k) can be regarded as an analog of the Strauss exponent that was
defined for the semilinear wave equation in the Minkowski spacetime. (See, e.g., [18, 20].)

The equation of (1.7) is strictly hyperbolic for every bounded interval of time and it has smooth
coefficients. Consequently, for every smooth initial functions ϕ0 and ϕ1 the problem (1.7) has
the local solution. According to the next theorem a local in time solution, in general, cannot be
prolonged to the global solution.

Theorem 1.3 Assume that p > 1 and

either 1 < p < 1 +
2

n(1− k)
or 1 < p ≤ 2 +

2k

n+ 1− kn
and p < p0(n, k) . (1.9)
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Then for every arbitrary small number ε > 0 and an arbitrary number s there exist functions
ϕ0, ϕ1 ∈ C∞

0 (Rn) with norms satisfying inequality

‖ϕ0‖H(s)(Rn) + ‖ϕ1‖H(s)(Rn) < ε (1.10)

such that the solution ψ ∈ C([1, T );H1(Rn))∩C([1, T );L2(Rn)) of the problem (1.7) that obeys the
finite propagation speed property blows up in finite time. More precisely, there is T <∞ such that

lim
tրT

∫

Rn

a(x)ψ(x, t) dx = ∞ .

Thus, according to this theorem for n = 3 and k = 2/3 the blow-up occurs if 1 < p < 3.

Corollary 1.4 Assume that F (ψ) = |ψ|p−1ψ and p satisfies (1.9). Then for every arbitrary small
number ε > 0 and an arbitrary number s there exist functions ϕ0, ϕ1 ∈ C∞

0 (Rn), ‖ϕ0‖H(s)(Rn) +

‖ϕ1‖H(s)(Rn) < ε, such that the positive solution ψ ∈ C([1, T );H1(Rn)) ∩ C([1, T );L2(Rn)) of the

problem (1.7) that obeys the finite propagation speed property blows up in finite time.

In order to illustrate results of the theorems above we discuss below several examples which
include, in particular, the Einstein-de Sitter spacetime of the matter dominated universe.

Example 1. Consider the covariant equation

ψtt − t−4/3∆ψ + 2t−1ψt = |ψ|p, t > 0, x ∈ R
3, (1.11)

for the self-interacting waves propagating in the Einstein-de Sitter spacetime. Here ∆ is the Laplace
operator in R

3. According to Theorem 1.1 and Theorem 1.3 (k = 2/3) if 1 < p < 3, then for every
arbitrary small number ε > 0 and an arbitrary number s there exist functions ϕ0, ϕ1 ∈ C∞

0 (R3)
with norms satisfying (1.10) such that the solution ψ of the problem (1.2) or (1.7), respectively,
for the equation (1.11), which obeys the finite propagation speed property, blows up in finite time.
Note that p = 3 is the exponent of the ϕ4 model of quantum field theory.

The coefficients of the operator in the next examples depend on the spatial variables as well.
Example 2. Consider the the Einstein-de Sitter spacetime with the metric defined by

ds2 = −dt2 + t4/3
[

dr2

1−Kr2
+ r2dΩ2

]
,

where K = −1, 0, or +1. In the Cartesian coordinates x = (x1, x2, x3) this metric tensor is




−1 0 0 0

0 t4/3
1−K(x2

2+x2
3)

1−K|x|2) t4/3 Kx1x2
1−K|x|2 t4/3 Kx1x3

1−K|x|2

0 t4/3 Kx1x2

1−K|x|2 t4/3
1−K(x2

1+x2
3)

1−K|x|2 t4/3 Kx2x3

1−K|x|2

0 t4/3 Kx1x3
1−K|x|2 t4/3 Kx2x3

1−K|x|2 t4/3
1−K(x2

1+x2
2)

1−K|x|2




and the semilinear covariant wave equation in this metric reads

ψtt − t−4/3A(x, ∂x)ψ + 2t−1∂tψ = |ψ|p , (1.12)

where

A(x, ∂x) = (1−Kx21)∂
2
x1

+ (1−Kx22)∂
2
x2

+ (1−Kx23)∂
2
x3

− 2Kx1x2∂x1∂x2 (1.13)

−2Kx1x3∂x1∂x3 − 2Kx2x3∂x2∂x3 − 3Kx1∂x1 − 3Kx2∂x2 − 3Kx3∂x3 .
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Thus, in the notation of (1.4) we have

akj(x) =
δkj −Kxkxj√

1−K|x|2
, k, j = 1, 2, 3 , a(x) =

1√
1−K|x|2

.

We consider equation of (1.2) that coincides with (1.12) inside of the ball BR(0) ⊂ R
3 and with

(1.11) outside of the ball B2R(0). The curvature R of such spacetime is

R =
4

3t2
+

6K

t4/3
in BR(0) while R =

4

3t2
in (R3 \B2R(0)) .

In oder to make coefficients of this operator more explicit in B2R(0)\BR(0) one can use the standard
cut-off function χ = χ(x) ≥ 0 and attach to K the factor εχ(x). For sufficiently small ε > 0 the
conditions (1.4),(1.5),(1.6) are fulfilled. Another equation satisfying all conditions is the following
one

ψtt − t−4/3 1

1 + a(x)χ(x)
A(x, ∂x)ψ + 2t−1∂tψ = |ψ|p ,

where a(x) is any smooth non-negative function and the operator A(x, ∂x) is given by (1.13) inside
of BR(0) and is ∆ outside of B2R(0). Then all conclusions of Example 1 are valid also for these
equations.

Example 3. Consider now problem (1.7) with A(x,Dx) = ∆. For the radiation dominated universe
k = 1/2 and n = 3. The first case of (1.9) in Theorem 1.3 reads 1 < p < 7

3 . We obtain 1 < p ≤ 2
from the second one. Thus, for the equation (1.7) there is a blowing up small data solution if
1 < p < 7

3 . Another example can be obtained by replacing ∆ with A(x, ∂x) (1.13) inside of some
ball in R

3 and with the modification similar to the one has used in Example 2.

Next two examples have spacetimes with non flat spatial slices.
Example 4. Let a spacetime be defined by the following metric

ds2 = −dt2 + t2k
(

β

x2 + 1
dx2 +

x2 + 1

β
dy2 + dz2

)

inside of some ball, where k and β > 0 are real numbers. The curvature of this spacetime is
12k2t−2 − 2t−2kβ−1 − 6kt−2, while the spatial slices have the constant curvature −2β−1. We
consider semilinear equation in this spacetime

ψtt − t−2k

(
x2 + 1

β
∂2xψ +

2x

β
∂xψ +

β

x2 + 1
∂2yψ + ∂2zψ

)
ψ + 2t−1ψt = |ψ|p, t > 0. (1.14)

The modification outside of some ball is similar to the one mentioned in Example 2. The equation
(1.14) is a covariant wave equation if k = 2/3. It is easy to verify that Theorem 1.3 can be applied
to the problem for this equation.

Example 5. Consider the spacetime with the metric

ds2 = −dt2 + t2k

(
β

e−x2 + 1
dx2 +

e−x2
+ 1

β
dy2 + dz2

)

inside of some ball, where k and β > 0 are real numbers. The curvature of the spacetime is

2β−1t−2(k+1)
(
3k(2k − 1)βt2k + t2e−x2 (

1− 2x2
))
,
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while the spatial slices have the curvature 2β−1t−2ke−x2 (
1− 2x2

)
. Theorem 1.3 can be applied to

the semilinear equation of (1.7) in this spacetime, where

A(x,D)ψ =
e−x2

+ 1

β
∂2xψ +

−2xe−x2

β
∂xψ +

β

e−x2 + 1
∂2yψ + ∂2zψ .

The equation (1.7) in this spacetime is a covariant wave equation if k = 2/3. It will be interesting to
replace requirement on the coefficients of A(x,D) to be constant outside of a ball with a condition
on their rate of convergence to the constants at infinity.

The last two examples belong to more general class of equations written in the background
given by the following metric

ds2 = −dt2 + t2k
(
G1(x, y, z)dx

2 +G2(x, y, z)dy
2 +G3(x, y, z)dz

2
)

such that G1(x, y, z)G2(x, y, z)G3(x, y, z) = constant 6= 0.

This paper is organized as follows. In Section 2 we introduce the basic ideas of the proof of
Theorem 1.1 and give main tools which will be also used in the next sections. In Section 3 we
prove Theorem 1.3. The existence of the local in time solution in proved in Section 4. Section 5 is
devoted to the uniqueness problem and the finite speed of propagation property.

2 Proof of Theorem 1.1

The number p0(n) is defined as a positive root of the equation (1.3), that is,

p0(n) =
n+ 13 +

√
n2 + 34n + 193

2(n + 3)
.

It is easily seen that

p0(n) <
2n+ 10

n+ 3
for all n ≥ 4,

and that

p0(n) < 1 +
6

n
for all n ≤ 4.

If we denote
L := ∂2t − t−4/3A(x,Dx) + 2t−1∂t, S := ∂2t − t−4/3A(x,Dx) , (2.1)

then we can easily check for t 6= 0 the following operator identity

t−1 ◦ S ◦ t = L . (2.2)

The last equation suggests a partial Liouville transform of an unknown function ψ with u

ψ = t−1u.

Then the problem for u is:




utt − t−4/3A(x,Dx)u = t1−p|u|p, t > 0, x ∈ R
n,

lim
t→0+

u(x, t) = ϕ0(x), x ∈ R
n,

lim
t→0+

(
ut(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= ϕ1(x), x ∈ R

n .

(2.3)
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Recall (1.4), (1.5), and that the coefficients a(x), akj(x) ∈ C∞(Rn) are constant outside of some
ball BRA

(0). Denote

F (t) =

∫

Rn

a(x)u(x, t) dx .

Then F ∈ C2(0, T ) provided that the function u is defined for all (x, t) ∈ R
n × (0, T ), and

lim
t→0+

F (t) =

∫

Rn

a(x)ϕ0(x) dx = C0,

while

lim
t→0+

F ′(t) = lim
t→0+

∫

Rn

a(x)
[
ut(x, t) + 3t−1/3A(x,Dx)ϕ0(x)− 3t−1/3A(x,Dx)ϕ0(x)

]
dx

= lim
t→0+

∫

Rn

a(x)
[
ut(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

]
dx =

∫

Rn

a(x)ϕ1(x) dx = C1 .

Thus
F ∈ C1[0,∞) ∩ C2(0,∞) .

From the equation we have

F ′′ = t1−p

∫

Rn

a(x)|u(x, t)|p dx ≥ 0 for all t > 0.

Furthermore,

F (t) = F (ε) + (t− ε)F ′(ε) +
∫ t

ε

∫ t1

ε
F ′′(t2)dt2 dt1

≥ F (ε) + (t− ε)F ′(ε) ≥ 0 for all t ≥ ε .

By letting ε→ 0+ we obtain

F (t) ≥ tC1 + C0 ≥ 0 for all t ≥ 0

provided that C0 ≥ 0 and C1 ≥ 0. We can assume also that supp ϕi ⊆ BR(0) := {x ∈ R
n | |x| ≤ R},

i = 0, 1 and R ≥ RA. On the other hand, using the compact support of u(·, t) and Hölder’s
inequality we obtain with φ(t) = 3t1/3

∣∣∣∣
∫

Rn

a(x)u(x, t) dx

∣∣∣∣
p

. (R+ φ(t))n(p−1)

(∫

|x|≤R+φ(t)
a(x)|u(x, t)|p dx

)
.

Here and henceforth, if A and B are two non-negative quantities, we use A . B (A & B) to denote
the statement that A ≤ CB (AC ≥ B) for some absolute constant C > 0. Hence

F ′′(t) & (R+ φ(t))−(n+3)(p−1)|F (t)|p for all t ≥ 0 . (2.4)

If 1 < p < 1 + 6
n and C1 > 0, then we can apply Kato’s lemma (see, e.g., [19, Lemma 2.1]) since

p− 1 >
(n+ 3)(p − 1)

3
− 2 ⇐⇒ p <

6

n
+ 1

that proves that solution blows up for such p.
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Next we consider the case of 1 < p ≤ (2n + 10)/(n + 3) and p < p0(n). For ϕ0 ∈ C
[n
2
]+3

0 (Rn),
according to [21], the solution of the problem




Su = 0, x ∈ R

n, t > 0,

lim
t→0

u(x, t) = ϕ0(x), lim
t→0

(
ut(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= 0, x ∈ R

n ,
(2.5)

is given by the function

u(x, t) = vϕ0(x, 3t
1/3)− 3t1/3(∂rvϕ0)(x, 3t

1/3) ,

where vϕ(x, 3t
1/3) is the value of the solution v(x, r) to the Cauchy problem

vrr −A(x,Dx)v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0,

taken at the point (x, r) = (x, 3t1/3). Hence, if we assume that A(x,Dx)ϕ = ϕ, then we obtain

vϕ(x, t) = cosh(t)ϕ(x)

and, consequently,

u(x, t) =
(
cosh(3t1/3)− 3t1/3 sinh(3t1/3)

)
ϕ(x) .

The second independent solution with separated variables is

w(x, t) =
(
sinh(3t1/3)− 3t1/3 cosh(3t1/3)

)
ϕ(x) .

Thus, the function v(x, t) = u(x, t)− w(x, t), that is,

v(x, t) =
(
3

3
√
t+ 1

)
exp

(
−3

3
√
t
)
ϕ(x) = (φ(t) + 1) exp (−φ(t))ϕ(x)

solves the problem (2.5) with ϕ0 = ϕ. Moreover, v is such that

v(x, 0) = ϕ(x) , lim
t→∞

v(x, t) = 0 .

The following lemma generalizes corresponding result from [18].

Lemma 2.1 There is a smooth function ϕ(x) such that

A(x,Dx)ϕ(x) = ϕ(x) for all x ∈ R
n

and

ϕ(x) =

∫

Sn−1

exω dω for all x, |x| ≥ RA + 1 .

Moreover,

ϕ(x) ∼ Cn|x|−(n−1)/2e|x| as |x| → ∞ .

Proof. We have

∆

∫

Sn−1

exω dω =

∫

Sn−1

exω dω for all x ∈ R
n ,

8



where ∆ is the Laplace operator. It is well known [18] that

ϕL(x) :=

∫

Sn−1

exω dω ∼ Cn|x|−(n−1)/2e|x| as |x| → ∞ .

To find the function ϕ(x) we solve the Dirichlet problem for the elliptic equation

A(x,Dx)ϕ(x) − ϕ(x) = 0 in BRA+1(0) , ϕ(x) = ϕL(x) on ∂BRA+1(0) = S
n−1
RA+1

(see, e.g. [10, Sec 9.6]). We set also ϕ(x) = ϕL(x) if |x| ≥ RA. The lemma is proved. �

Thus, the function v(x, t) is the “low frequency” solution of the linear equation

vtt − t−4/3A(x,Dx)v = 0 .

Next we define the function F1(t),

F1(t) :=

∫

Rn

a(x)u(x, t)v(x, t) dx ,

that is, the projection of the solution on the “low frequency” eigenspace of the problem for the
operator A(x,Dx). Here F1 ∈ C2(0, T ). We estimate the function F1 from above as follows

F ′′(t) &

(∫

|x|≤R+φ(t)
|v(x, t)|p/(p−1) dx

)1−p

t1−p |F1(t)|p . (2.6)

To find out the properties of F1(t) we need the following lemma.

Lemma 2.2 The function

λ(t) = (φ(t) + 1) exp (−φ(t))

solves the equation

λ′′(t)− t−
4
3λ(t) = 0

and has the following properties:

(i) λ′(t) = − 9

φ(t)
exp (−φ(t)) ≤ 0 ,

(ii) lim
t→0

λ(t) = 1 , lim
t→∞

λ(t) = 0 , lim
t→∞

λ′(t) = 0 ,

(iii)
λ′(t)
λ(t)

= − 9

φ(t) (φ(t) + 1)
.

Proof. It can be verified by straightforward calculations. �

Next we turn to the function ϕ(x). The following lemma is an analog of Lemma 2.3 [18].

Lemma 2.3 Assume that p > 1. Then

∫

|x|≤τ
|ϕ(x)|p/(p−1) dx ≤ cRτ

n−1
2

p−2
p−1 eτ

p
p−1 for all τ ≥ RA + 1.

9



Proof. Indeed, for τ ≥ RA + 1 we have

∫

|x|≤τ
|ϕ(x)|p/(p−1) dx =

∫

|x|≤RA+1
|ϕ(x)|p/(p−1) dx+

∫

RA+1≤|x|≤τ
|ϕ(x)|p/(p−1) dx

=

∫

|x|≤RA+1
|ϕ(x)|p/(p−1) dx+

∫

RA+1≤|x|≤τ
|ϕL(x)|p/(p−1) dx

=

∫

|x|≤RA+1
|ϕ(x)|p/(p−1) dx+

∫

|x|≤τ
|ϕL(x)|p/(p−1) dx .

The application of Lemma 2.3 [18] completes the proof. �

Lemma 2.4 Assume that ϕ0, ϕ1 ∈ C∞
0 (Rn), and that

∫

Rn

a(x)ϕ1(x)ϕ(x) dx ≥ 18

∫

Rn

a(x)ϕ0(x)ϕ(x) dx > 0 ,

then

F1(t) & (9
3
√
t2 − 1)

∫

Rn

a(x)ϕ1(x)ϕ(x) dx for all t > 1 .

Proof. We have

F1(0) = lim
t→0+

∫

Rn

a(x)u(x, t)v(x, t) dx =

∫

Rn

a(x)ϕ0(x)ϕ(x) dx ≥ c0 > 0 .

For every ǫ > 0 we have

0 =

∫ t

ε

∫

Rn

a(x)(utt(x, τ)− τ−4/3A(x,Dx)u− τ1−p|u|p)v(x, τ) dx dτ

=

∫ t

ε

∫

Rn

a(x)utt(x, τ)v(x, τ) dx dτ −
∫ t

ε

∫

Rn

τ−4/3u(x, τ)a(x)A(x,Dx)v(x, τ) dx dτ

−
∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ .

Further,

∫ t

ε

∫

Rn

a(x)utt(x, τ)v(x, τ) dx dτ

=

∫

Rn

a(x)ut(x, τ)v(x, τ) dx
∣∣∣
t

ε
−
∫

Rn

a(x)u(x, τ)vt(x, τ) dx
∣∣∣
t

ε

+

∫ t

ε

∫

Rn

u(x, τ)τ−4/3a(x)A(x,Dx)v(x, τ) dx dτ .

Hence,

∫

Rn

a(x)ut(x, τ)v(x, τ) dx
∣∣∣
t

ε
−
∫

Rn

a(x)u(x, τ)vt(x, τ) dx
∣∣∣
t

ε

=

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ.

10



The last equation implies
(
d

dτ

∫

Rn

a(x)u(x, τ)v(x, τ) dx − 2

∫

Rn

a(x)u(x, τ)vt(x, τ) dx

) ∣∣∣
t

ε

=

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ .

It follows

d

dt
F1(t)− 2

λt(t)

λ(t)

∫

Rn

a(x)u(x, t)λ(t)ϕ(x) dx

=
d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)

∫

Rn

a(x)u(x, ε)λ(ε)ϕ(x) dx

+

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ .

Consequently,

d

dt
F1(t)− 2

λt(t)

λ(t)
F1(t) =

d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

+

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ .

It follows

d

dt

(
F1(t) exp

(
−
∫ t

ε
2
λt(τ)

λ(τ)
dτ

))

= exp

(
−
∫ t

ε
2
λt(τ)

λ(τ)
dτ

)

×
{
d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε) +

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
,

that is

d

dt

(
F1(t)

(
λ(t)

λ(ε)

)−2
)

=

(
λ(t)

λ(ε)

)−2{ d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε) +

∫ t

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
.

We integrate it and obtain

F1(t) =

(
λ(t)

λ(ε)

)2
[
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2

(2.7)

×
{
d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε) +

∫ s

ε

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
ds

]
.

On the other hand, according to (iii) of Lemma 2.2 we have
λt(t)

λ(t)
= − 3

3
√
t(3 3

√
t+ 1)

. Consider the

term

d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε) =

∫

Rn

a(x)ut(x, ε)λ(ε)ϕ(x) dx +

∫

Rn

a(x)u(x, ε)λt(ε)ϕ(x) dx

+
6

3
√
ε(3 3

√
ε+ 1)

∫

Rn

a(x)u(x, ε)λ(ε)ϕ(x) dx.

11



We can rewrite it as follows

d

dt
F1(t)

∣∣∣
ε
+

6
3
√
ε(3 3

√
ε+ 1)

F1(ε)

=

∫

Rn

a(x)
{
ut(x, ε) + 3ε−1/3A(x,Dx)ϕ0(x)

}
v(x, ε) dx

−
∫

Rn

3a(x)ε−1/3A(x,Dx)ϕ0(x)v(x, ε) dx

−
∫

Rn

3
3
√
ε(3 3

√
ε+ 1)

a(x)u(x, ε)v(x, ε) dx +
6

3
√
ε(3 3

√
ε+ 1)

∫

Rn

a(x)u(x, ε)v(x, ε) dx

=

∫

Rn

a(x){ut(x, ε) + 3ε−1/3A(x,Dx)ϕ0(x)}v(x, ε) dx

+

∫

Rn

3ε−1/3a(x)
{
− ϕ0(x) +

1

(3 3
√
ε+ 1)

u(x, ε)
}
v(x, ε) dx .

Hence, taking into account the initial conditions for u, we derive

lim
ε→0+

(
d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

)
=

∫

Rn

a(x)ϕ1(x)ϕ(x) dx − 9

∫

Rn

a(x)ϕ0(x)ϕ(x) dx .

Now

lim
ε→0+

(
λ(t)

λ(ε)

)2
[
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2{ d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

}
ds

]

= λ(t)2F1(0) + lim
ε→0+

(
λ(t)

λ(ε)

)2 ∫ t

ε

(
λ(s)

λ(ε)

)−2{ d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

}
ds

= λ(t)2F1(0) +

{∫

Rn

a(x)ϕ1(x)ϕ(x) dx − 9

∫

Rn

a(x)ϕ0(x)ϕ(x) dx

}
λ2(t)

∫ t

0
λ−2(s)ds

= (3
3
√
t+ 1)2 exp

(
−6

3
√
t
) ∫

Rn

ϕ0(x)ϕ(x) dx

+

{∫

Rn

a(x)ϕ1(x)ϕ(x) dx − 9

∫

Rn

a(x)ϕ0(x)ϕ(x) dx

}

×(3
3
√
t+ 1)2 exp

(
−6

3
√
t
) ∫ t

0
(3 3
√
s+ 1)−2 exp

(
6 3
√
s
)
ds .

On the other hand
∫ t

0
(3 3
√
s+ 1)−2 exp

(
6 3
√
s
)
ds =

1

18

(
exp

(
6

3
√
t
) 3 3

√
t− 1

3 3
√
t+ 1

+ 1

)

implies

lim
ε→0+

(
λ(t)

λ(ε)

)2
[
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2{ d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)

}]
ds

= (3 3
√
t+ 1)2 exp

(
−6 3

√
t
) ∫

Rn

a(x)ϕ0(x)ϕ(x) dx

+

{∫

Rn

a(x)ϕ1(x)ϕ(x) dx − 9

∫

Rn

ϕ0(x)ϕ(x) dx

}

×(3
3
√
t+ 1)2

1

18

(
3 3
√
t− 1

3 3
√
t+ 1

+ exp
(
−6

3
√
t
))

.
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Due to the conditions of the lemma,
∫

Rn

a(x)ϕ1(x)ϕ(x) dx − 9

∫

Rn

a(x)ϕ0(x)ϕ(x) dx ≥ 1

2

∫

Rn

a(x)ϕ1(x)ϕ(x) dx > 0 .

Then, from (2.7), by letting ε→ 0, we derive

F1(t) ≥
(
λ(t)

λ(ε)

)2
[
F1(ε) +

∫ t

ε

(
λ(s)

λ(ε)

)−2{ d

dt
F1(t)

∣∣∣
ε
− 2

λt(ε)

λ(ε)
F1(ε)+

}
ds

]

≥ (3
3
√
t+ 1)2 exp

(
−6

3
√
t
) ∫

Rn

a(x)ϕ0(x)ϕ(x) dx

+(3
3
√
t+ 1)2

1

18

(
3 3
√
t− 1

3 3
√
t+ 1

+ exp
(
−6

3
√
t
)) 1

2

∫

Rn

a(x)ϕ1(x)ϕ(x) dx

≥ (3
3
√
t+ 1)2 exp

(
−6

3
√
t
) ∫

Rn

a(x)ϕ0(x)ϕ(x) dx

+(9
3
√
t2 − 1)

1

36

∫

Rn

a(x)ϕ1(x)ϕ(x) dx .

Lemma is proved. �

Furthermore, the inequality (2.6) implies

F ′′(t) ≥ λ−p(t)

(∫

|x|≤R+φ(t)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p for all t ≥ RA + 1 .

According to the last lemma

F ′′(t)

≥ cRλ
−p(t)(R + φ(t))−

n−1
2

(p−2)e−φ(t)pt1−p |F1(t)|p

≥ cR(R+ φ(t))−p−n−1
2

(p−2)t1−p

∣∣∣∣(9t
2
3 − 1)

∫

Rn

a(x)ϕ1(x)ϕ(x) dx

∣∣∣∣
p

for all t ≥ RA + 1 .

Finally

F ′′(t) ≥ CR(R+ φ(t))−p−n−1
2

(p−2)t1−p+ 2
3
p

∣∣∣∣
∫

Rn

a(x)ϕ1(x)ϕ(x) dx

∣∣∣∣
p

for all t ≥ RA + 1 . (2.8)

For t > 1 and arbitrary ε ∈ (0, 1), it follows

F (t) = F (ε) +

∫ 1

ε

{
F ′(ε) +

∫ t1

ε
F ′′(t2) dt2

}
dt1 +

∫ t

1

{
F ′(ε) +

∫ t1

ε
F ′′(t2) dt2

}
dt1

≥ F (ε) +

∫ 1

ε
F ′(ε) dt1 +

∫ t

1
F ′(ε) dt1 +

∫ t

1

{∫ t1

1
F ′′(t2) dt2

}
dt1

≥ F (ε) + (t− ε)F ′(ε) +
∫ t

1

{∫ t1

1
F ′′(t2) dt2

}
dt1 .

By letting ε→ 0 and using (2.8) we derive

F (t) ≥ tF ′(0) + F (0)

+ cR

∣∣∣∣
∫

Rn

a(x)ϕ1(x)ϕ(x) dx

∣∣∣∣
p ∫ t

1

∫ t2

1
(R + φ(t1))

−p−n−1
2

(p−2)t
1− 1

3
p

1 dt1 dt2 .
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Set (see (2.4))

r =
1

6
[2n + 16 − (n + 3)p] , q =

(n+ 3)(p − 1)

3
.

We need r ≥ 1 that is, p ≤ (2n + 10)/(n + 3). The Kato’s lemma (see, e.g., [19, Lemma 2.1]),
concerning differential inequalities

F (t) ≥ c0(1 + t)r for large t,

F ′′(t) ≥ (1 + t)−q|F (t)|p for large t ,

conditions are r ≥ 1, p > 1 and

(p − 1)r > q − 2 ⇐⇒ (n+ 3)p2 − (n+ 13)p − 2 < 0 .

Due to the definition of pcr(n) we obtain p < pcr(n). The theorem is proved. �

Corollary 2.5 For the covariant semilinear wave equation with n = 3 and F (ψ) = |ψ|p assume
that 1 < p < 3. Then for every arbitrary small number ε > 0 and an arbitrary number s there exist
functions ϕ0, ϕ1 ∈ C∞

0 (R3), suppϕ0, ϕ1 ⊆ {x ∈ R
3 | |x| ≤ R} with norms satisfying inequality

‖ϕ0‖H(s)(R3) + ‖ϕ1‖H(s)(R3) < ε

such that the solution of the problem (1.2) with support in {(x, t) | t > 0, x ∈ BR+φ(t)sA(0)} blows
up in finite time.

Now we analyze the conditions of the theorem. From the graph it follows that for n ≤ 4 there
is a small data blowing up solution if 1 < p < 1+ 6

n . For the dimensions n ≥ 5 such solution exists

if 1 < p < n+13+
√
n2+34n+193

2(n+3) .

2 4 6 8 10

0.6

0.7

0.8

0.9

1.0

1.1

6 8 10 12 14 16 18 20

1.11

1.12

1.13

1.14

1.15

1.16

50 100 150 200 250 300

1.04

1.06

1���

1.10

1.12

1.14

Figure 1: n+13+
√

n2+34n+193
2(n+3) /(1 + 6

n
), n ∈ [1, 10] n ∈ [4, 20] n ∈ [20, 300]

3 Equation without singularity. Proof of Theorem 1.3

Theorem 1.3 shows that the blow-up, which is stated in Theorem 1.1, is caused by the semilinear
term. Consider the Cauchy problem (1.7). Let p0(n, k) be a positive root of the equation (1.8).
(For the graph p = p0(n, k) see Figure 2.) The equation of (1.7) is strictly hyperbolic for every
bounded interval of time and it has smooth coefficients. Consequently, for every smooth initial
functions ϕ0 and ϕ1 the problem (1.7) has a local solution. According to Theorem 1.3 for n = 3
and p < 3 a local in time solution, in general, cannot be prolonged to the global solution.
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Figure 2: Function p0(n, k) for 0 ≤ k ≤ 1 and 1 ≤ n ≤ 100

Proof of Theorem 1.3. We use operators L and S which are introduced above in (2.1): L :=
∂2t − t−2kA(x,Dx)+ 2t−1∂t, S := ∂2t − t−2kA(x,Dx) , and for t 6= 0 the operator identity (2.2). The
last identity suggests a change of unknown function ψ with u such that ψ = t−1u. The problem
for u is as follows:





utt − t−2kA(x,Dx)u = t1−p|u|p, t > 1, x ∈ R
n,

u(x, 1) = u0(x) , u0(x) := ϕ0(x), x ∈ R
n,

ut(x, 1) = u1(x) , u1(x) := ϕ0(x) + ϕ1(x), x ∈ R
n.

(3.1)

Denote

F (t) =

∫

Rn

a(x)u(x, t) dx .

Then F ∈ C2[1, T ], provided that the function u is defined for all (x, t) ∈ R
n × [1, T ], and

F (1) =

∫

Rn

a(x)u0(x) dx = C0 > 0, F ′(1) =
∫

Rn

a(x)u1(x) dx = C1 .

From the equation of (3.1) we have

F ′′(t) = t1−p

∫

Rn

a(x)|u(x, t)|p dx ≥ 0 for all t > 1. (3.2)

Furthermore,

F (t) = F (1) + (t− 1)F ′(1) +
∫ t

1

∫ t1

1
F ′′(t2)dt2 dt1

≥ F (1) + (t− 1)F ′(1) ≥ 0 for all t ≥ 1 ,

provided that C0 ≥ 0 and C1 ≥ 0. Hence

F (t) ≥ (t− 1)

∫

Rn

u1(x) dx +

∫

Rn

u0(x) dx ≥ 0 for all t ≥ 1 .

Assume that suppui ⊆ BR(0), i = 0, 1. On the other hand, using the compact support of u(·, t)
and Hölder’s inequality with φ(t) := 1

1−k t
1−k we obtain

∣∣∣∣
∫

Rn

a(x)u(x, t) dx

∣∣∣∣
p

≤
(∫

|x|≤R+φ(t)−φ(1)
1 dx

)p−1(∫

|x|≤R+φ(t)−φ(1)
a(x)p|u(x, t)|p dx

)

. (R+ φ(t))n(p−1)

(∫

|x|≤R+φ(t)−φ(1)
a(x)|u(x, t)|p dx

)
.
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Hence from (3.2) we derive

F ′′(t) ≥ (1 + t)1−p−n(p−1)(1−k)|F (t)|p for all t ≥ 1 .

We set

r = 1 , q := (p− 1) + n(p− 1)(1 − k) = (p− 1)(1 + n(1− k)) .

Consider the first case of 1 < p < 1 + 2
n(1−k) . If 1 < p < 1 + 2

n(1−k) and C1 > 0, then we can apply

Kato’s lemma (see, e.g., [19, Lemma 2.1]) since

p− 1 > (p − 1)(1 + n(1− k))− 2 ⇐⇒ p < 1 +
2

n(1− k)
.

Thus, the solution blows up.

Consider the second case. For this case we choose

v(x, t) := λ̃(t)ϕ(x) , λ̃(t) :=
1

K 1
2−2k

(φ(1))

√
tK 1

2−2k
(φ(t)) ,

where Ka(z) is the modified Bessel function of the second kind. The function λ̃ = λ̃(t) solves the
equation

λ̃tt − t−2kλ̃ = 0 .

It is easy to verify the following limit

lim
t→∞

√
tK 1

2−2k
(φ(t)) = 0 .

Hence

v(x, 1) = ϕ(x) , lim
t→∞

v(x, t) = 0 .

We skip the proof of the next lemma.

Lemma 3.1 There is a number Λ0 > 0 such that

Λ1(k) := −λ̃t(1) =
K 1−2k

2−2k

(
1

1−k

)

K 1
2−2k

(
1

1−k

) > Λ0 for all k ∈ [0, 1) .

Assume that u0, u1 ∈ C∞
0 , suppu0, suppu1 ⊆ {x ∈ R

n | |x| ≤ R}. Now we turn to the function

F1(t) :=

∫

Rn

a(x)u(x, t)v(x, t) dx

and obtain

|F1(t)|p .

(∫

|x|≤R+φ(t)−φ(1)
|v(x, t)|p/(p−1) dx

)p−1

tp−1F ′′(t) for all t > 1 .

The last estimate implies

F ′′(t) ≥
(∫

|x|≤R+φ(t)−φ(1)
|v(x, t)|p/(p−1) dx

)1−p

t1−p |F1(t)|p for all t > 1 . (3.3)
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Lemma 3.2 Assume that u0, u1 ∈ C∞
0 , suppu0, suppu1 ⊆ BR(0) ⊆ R

n, and

Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx ≥ c0

∫

Rn

a(x)u0(x)ϕ(x)dx > 0 .

Then there exists a sufficiently large T > 1 such that for the solution u = u(x, t) of the problem
(3.1) with the support in {x ∈ R

n | |x| ≤ R+ φ(t)− φ(1)} one has

F1(t) ≥
1

16
tk
{
Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx

}
for all t > T .

Proof. We have

F1(1) =

∫

Rn

a(x)u(x, 1)v(x, 1) dx =

∫

Rn

a(x)u0(x)ϕ(x) dx ≥ c0 > 0

and

0 =

∫ t

1

∫

Rn

a(x)(utt(x, τ) − τ−2kA(x,Dx)u− τ1−p|u|p)v(x, τ) dx dτ

=

∫ t

1

∫

Rn

a(x)utt(x, τ)v(x, τ) dx dτ −
∫ t

1

∫

Rn

τ−2ka(x)uA(x,Dx)v(x, τ) dx dτ

−
∫ t

1

∫

Rn

τ1−pa(x)|u|pv(x, τ) dx dτ .

Further,
∫ t

1

∫

Rn

a(x)utt(x, τ)v(x, τ) dx dτ

=

∫

Rn

a(x)ut(x, τ)v(x, τ) dx
∣∣∣
τ=t

τ=1
−
∫

Rn

a(x)u(x, τ)vt(x, τ) dx
∣∣∣
τ=t

τ=1

+

∫ t

1

∫

Rn

u(x, τ)t−2ka(x)A(x,Dx)v(x, τ) dx dτ .

Hence,
∫

Rn

a(x)ut(x, τ)v(x, τ) dx
∣∣∣
τ=t

τ=1
−
∫

Rn

a(x)u(x, τ)vt(x, τ) dx
∣∣∣
τ=t

τ=1

=

∫ t

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ

implies
(
d

dτ

∫

Rn

a(x)u(x, τ)v(x, τ) dx − 2

∫

Rn

a(x)u(x, τ)vt(x, τ) dx

) ∣∣∣
τ=t

τ=1

=

∫ t

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ

and

d

dt
F1(t)− 2

λ̃t(t)

λ̃(t)

∫

Rn

a(x)u(x, t)λ̃(t)ϕ(x) dx

=
d

dt
F1(t)

∣∣∣
1
− 2

λ̃t(1)

λ̃(1)

∫

Rn

a(x)u(x, 1)λ̃(1)ϕ(x) dx

+

∫ t

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ .
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On the other hand,

λ̃t(t)

λ̃(t)
= −

t−kK 1−2k
2−2k

(φ(t))

K 1
2−2k

(φ(t))
< 0 for all t > 0 ,

lim
t→∞

λ̃t(t)

λ̃(t)
= 0 ,

λ̃t(1)

λ̃(1)
= λ̃t(1) = −

K 1−2k
2−2k

(
1

1−k

)

K 1
2−2k

(
1

1−k

) .

Consequently,

d

dt
F1(t)− 2

λ̃t(t)

λ̃(t)
F1(t)

=
d

dt
F1(t)

∣∣∣
1
− 2

λ̃t(1)

λ̃(1)
F1(1) +

∫ t

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ ,

that is,

d

dt

(
F1(t)

(
λ̃(t)

)−2
)

=
(
λ̃(t)

)−2
{
d

dt
F1(t)

∣∣∣
1
+ 2Λ1(k)F1(1) +

∫ t

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
,

where, due to Lemma 3.1, Λ1(k) = −λ̃t(1) =
K 1−2k

2−2k
( 1
1−k )

K 1
2−2k

( 1
1−k )

> Λ0 > 0 . We integrate the last relation

F1(t)
(
λ̃(t)

)−2
= F1(1) +

∫ t

1

(
λ̃(s)

)−2
{
d

dt
F1(t)

∣∣∣
t=1

+2Λ1(k)F1(1) +

∫ s

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
ds .

Finally,

F1(t) =
(
λ̃(t)

)2
[
F1(1) +

∫ t

1

(
λ̃(s)

)−2

×
{
d

dt
F1(t)

∣∣∣
t=1

+ 2Λ1(k)F1(1) +

∫ s

1

∫

Rn

τ1−pa(x)|u(x, τ)|pv(x, τ) dx dτ
}
ds

]
.

Consider two first terms of the integrand

d

dt
F1(t)

∣∣∣
t=1

+ 2Λ1F1(1)

=

∫

Rn

a(x)u0(x)vt(x, 1)dx +

∫

Rn

a(x)u1(x)v(x, 1)dx + 2Λ1

∫

Rn

a(x)u0(x)v(x, 1)dx

= Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x) dx +

∫

Rn

a(x)u1(x)ϕ(x) dx .
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Then
(
λ̃(t)

)2
[
F1(1) +

∫ t

1

(
λ̃(s)

)−2
{
d

dt
F1(t)

∣∣∣
t=1

+ 2Λ1(k)F1(1)

}
ds

]
(3.4)

=
(
λ̃(t)

)2
F1(1)

+

[
Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx

] (
λ̃(t)

)2 ∫ t

1

(
λ̃(s)

)−2
ds .

The following lemma completes the proof of Lemma 3.2. �

Lemma 3.3 There is a number T1 > 0 such that

λ̃2(t)

∫ t

T
λ̃−2(s) ds ≥ 1

32
tk for all t ≥ T1 .

Proof. For all T > 1 we have

λ̃2(t)

∫ t

1
λ̃−2(s) ds = λ̃2(t)

∫ T

1
λ̃−2(s) ds+ λ̃2(t)

∫ t

T
λ̃−2(s) ds for all t ≥ T . (3.5)

For large t there is the following asymptotic

√
tK 1

2−2k
(φ(t)) =

√
π

2

√
1− ke−φ(t)tk/2 (1 + o(1)) .

Consider the second integral; for the sufficiently large T we have

λ̃2(t)

∫ t

T
λ̃−2(s) ds

≥ 1

2
e−2 t1−k

1−k t2k
∫ t

T
e2

s1−k

1−k s−2k ds

=
1

2
e−2 t1−k

1−k t2k
1

4

(
2e

2t1−k

1−k t−k + ke
2t1−k

1−k t−1 + 2
1

1−k k

(
1

k − 1

) k−2
k−1

Γ

(
1

k − 1
,
2t1−k

k − 1

)

−2e−
2T1−k

k−1 T−k − ke−
2T1−k

k−1

T
− 2

1
1−k k

(
1

k − 1

) k−2
k−1

Γ

(
1

k − 1
,
2T 1−k

k − 1

))
for all t ≥ T ,

where Γ(a, z) =
∫∞
z ta−1e−t dt is the incomplete gamma function. (See, e.g., [1, Sec.6.9.2].) On

the other hand, since k = 1− ε, ε > 0, we obtain for the incomplete gamma function the following
asymptotic formula (see [1, Sec.6.13.1])

(
1

k − 1

) k−2
k−1

Γ

(
1

k − 1
,
2t1−k

k − 1

)
= 2

3−2k
k−1 e−

2t1−k

k−1 tk−2
(
2 +O(tk−1)

)

≤ ce−
2t1−k

k−1 t−1−ε for all t ≥ T .

Consequently, for the sufficiently large T1 > T we obtain

λ̃2(t)

∫ t

T
λ̃−2(s) ds ≥ 1

2
e−2 t1−k

1−k t2k
1

4

(
e

2t1−k

1−k t−k − 2e
2T1−k

1−k T−k

−ke
− 2T1−k

k−1

T
− 2

1
1−k k

(
1

k − 1

) k−2
k−1

Γ

(
1

k − 1
,
2T 1−k

k − 1

))

≥ 1

16
tk for all t ≥ T1 .
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The estimate for the first term of (3.5) is evident. Lemma is proved. �

On the other hand, according to (3.3), we have

F ′′(t) & λ̃−p(t)

(∫

|x|≤R+φ(t)−φ(1)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p for large t ,

and, consequently, the asymptotic of λ̃(t), Lemma 3.2, and Lemma 2.3 imply

F ′′(t) & λ̃−p(t)

(∫

|x|≤R+φ(t)−φ(1)
|ϕ(x)|p/(p−1) dx

)1−p

t1−p |F1(t)|p

& cR(R+ φ(t)− φ(1))−
n−1
2

(p−2)t1−pt
pk
2

×
∣∣∣∣
{
Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx

}∣∣∣∣
p

for t ≥ T .

Here T > 1 is a sufficiently large number. It follows

F (t) = F (1) +

∫ T

1

{
F ′(1) +

∫ t1

T
F ′′(t2)dt2

}
dt1 + F ′(T )(t− T ) +

∫ t

T

∫ t1

T
F ′′(t2)dt2 dt1

& F (1) + F ′(1)(T − 1) + (t− T )

{
F ′(1) +

∫ T

1
F ′′(t1) dt1

}

+

∣∣∣∣
{
Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx

}∣∣∣∣
p

×
∫ t

T

∫ t1

T
cR(R+ φ(t2)− φ(1))−

n−1
2

(p−2)t1−p
2 t

kp
2
2 dt2 dt1 ,

where F ′(1) =
∫
Rn a(x)u0(x)ϕ(x)dx +

∫
Rn a(x)u1(x)ϕ(x)dx. Thus,

F (t) & F (1) + F ′(1)(t− 1) +

∣∣∣∣
{
Λ1(k)

∫

Rn

a(x)u0(x)ϕ(x)dx +

∫

Rn

a(x)u1(x)ϕ(x)dx

}∣∣∣∣
p

×
∫ t

T

∫ t1

T
φ(t2)

−n−1
2

(p−2)t1−p
2 t

kp
2
2 dt2 dt1 .

Set

r = −(1− k)
n − 1

2
(p− 2) + 1− p+

kp

2
+ 2 , q = (p − 1)(1 + n(1− k)) .

We need r ≥ 1, that is,

p ≤ 2 +
2k

n+ 1− kn
.

We check the condition (p− 1)r > q − 2 of the Kato’s lemma (see, e.g., [19, Lemma 2.1]), that is,

p2(n+ 1− kn)− p(2k + n+ 3− kn)− 2(1 − k) < 0 .

Since k < 1, we conclude 1 < p < p0(n, k). Theorem is proved. �

For the semilinear generalized Tricomi equation ∂2t u− tm∆u = |u|p with increasing coefficient,
that is with m ∈ N, the critical exponent pcrit(m,n) and conformal exponent pconf(m,n) are
suggested in [12]. Then, there are interesting articles on the non-linear higher-order degenerate
hyperbolic equations [13], the low regularity solution problem for the semilinear mixed type equation
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[15], and the local existence and singularity structures of low regularity solution to the semilinear
generalized Tricomi equation with discontinuous initial data [14].

The Cauchy problem for the damped linear wave equations with time-dependent propagation
speed and dissipations, utt−a(t)2∆u+b(t)ut = 0, where a ∈ L1(0,∞), is considered in [6]. An inter-
esting example of the quasilinear equation utt−t−4 exp(−2t−1)∆u−(utt)

2+t−4 exp(−2t−1)(∇u)2 =
0 without global solvability for arbitrarily small initial data is given in [17]. See also [4, 19] for
more examples of such quasilinear equation.

4 Local in time solution

In this section we prove a local in time existence of the waves propagating in the Einstein-de Sitter
spacetime. The initial data are prescribed at the plane t = 0 where the coefficients are singular.
We discuss only the massless fields. Denote by G a solution operator of the problem





ψtt − t−4/3A(x,Dx)ψ + 2t−1ψt = f, t > 0, x ∈ R
n,

lim
t→0+

tψ(x, t) = ϕ0(x), x ∈ R
n ,

lim
t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= ϕ1(x), x ∈ R

n ,

(4.1)

with ϕ0(x) = ϕ1(x) = 0, that is ψ = G[f ]. Let ψ0 is the solution of the problem (4.1) with f = 0.
Then any solution ψ of the problem





ψtt − t−4/3A(x,Dx)ψ + 2t−1ψt = F (ψ), t > 0, x ∈ R
n,

lim
t→0+

tψ(x, t) = ϕ0(x), x ∈ R
n ,

lim
t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= ϕ1(x), x ∈ R

n ,

(4.2)

solves also the linear integral equation

ψ(x, t) = ψ0(x, t) +G[F (ψ(·, τ))](x, t), t > 0 . (4.3)

We define the solution of (4.2) as a solution of the integral equation (4.3). Let α0(n) = (−(n+3)+√
n2 + 30n + 81)/(2(n + 3)) be a positive solution of the equation

(n+ 3)α2 + (n+ 3)α− 6 = 0 .

Theorem 4.1 Consider the problem (4.2) for F (ψ) = |ψ|1+α or F (ψ) = |ψ|αψ, and with the
elliptic operator A(x,Dx) having the properties (1.4)-(1.6). Assume that 0 < α < α0(n). For
every given ϕ0(x), ϕ1(x), there exists T = T (ϕ0, ϕ1) such that the problem (4.2) has a solution
ψ ∈ C2((0, T (ϕ0, ϕ1)];L

q(Rn)), where q = 2 + α.

Proof. The following estimate is an analog of [7] (see (3.6),(3.7) and Prop. 3.3) and can be proved
by means of Theorem 3.1 [3] and the representation formulas of [21]:

‖ψ(·, t)‖Lq (Rn) ≤ Ct
1
3
(−1−n(1/p−1/q))

(
t−

2
3 ‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn)

)

+Ct
1
3
(−n(1/p−1/q))‖ϕ1‖Lp(Rn)

+t
1
3
(−n(1/p−1/q))

∫ t

0
τ‖|ψ|1+α(·, τ)‖Lp(Rn) dτ for all t ∈ (0, T ] .
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In particular, for q = α+ 2 and p = (α+ 2)/(α + 1) we obtain

t
1+ nα

3(α+2) ‖ψ(·, t)‖Lq (Rn) ≤ C
(
‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

)

+Ct

∫ t

0
τ‖|ψ(·, τ)|1+α‖Lp(Rn) dτ

≤ C
(
‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

)

+Ct

∫ t

0
τ ‖ψ(·, τ)‖1+α

Lq (Rn) dτ

for all t ∈ (0, T ]. Then, it follows

t
1+ nα

3(α+2) ‖ψ(·, t)‖Lq (Rn) ≤ C
(
‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

)

+Ct

∫ t

0
τ
−nα(α+1)

3(α+2)
−α
(
τ
1+ nα

3(α+2) ‖ψ(·, τ)‖Lq (Rn)

)1+α
dτ

for all t ∈ (0, T ]. Since tψ is continuous at t = 0 and α < α(n), we obtain

t
1+ nα

3(α+2) ‖ψ(·, t)‖Lq (Rn) ≤ C
(
‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

)

+Ct max
τ∈[0,t]

(
τ
1+ nα

3(α+2) ‖ψ(·, τ)‖Lq (Rn)

)1+α
∫ t

0
τ
−nα(α+1)

3(α+2)
−α

dτ

for all t ∈ (0, T ]. Hence, for α < α0(n) we have

t
1+ nα

3(α+2) ‖ψ(·, t)‖Lq (Rn) ≤ C
(
‖ϕ0‖Lp(Rn) + ‖A(x,Dx)ϕ0‖Lp(Rn) + ‖ϕ1‖Lp(Rn)

)

+Ct
2−nα(α+1)

3(α+2)
−α

max
τ∈[0,t]

(
τ
1+ nα

3(α+2) ‖ψ(·, τ)‖Lq (Rn)

)1+α
dτ

for all t ∈ (0, T ]. If we consider the map S defined as follows

S[ψ](x, t) := ψ0(x, t) +G[|ψ(·, τ)|p](x, t), ∀t ∈ [0, T ] ,

then the last estimate implies that S is a contraction for small T . Indeed, for ψ1 and ψ2 we obtain

max
t∈[0,T ]

t
1+ nα

3(α+2) ‖ψ1(·, t)− ψ2(·, t)‖Lq(Rn)

≤ c max
t∈[0,T ]

(
t
1+ nα

3(α+2) ‖ψ1(·, t)− ψ2(·, t)‖Lq(Rn)

)α+1
T
2−nα(α+1)

3(α+2)
−α

.

The theorem is proved. �

Thus, for n = 3 we have the following range of α of the nonlinear term α+1 ∈ (1, (
√
5+1)/2).

5 Uniqueness. Finite speed of propagation property

In [7] and [21] the representations for the solutions of the initial value problem for the equations with
singular coefficients are given. Because of that particular type of singularity in the coefficients one
cannot apply the known uniqueness theorems (see, e.g., [2]). The uniqueness must be established
independently of the representation formulas. For the case of A(x,Dx) = ∆ it was done in [8].
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In this section we prove the uniqueness of the solution and then the finite speed of propagation
property.

Suppose that

A(x,Dx) =
∑

|α|≤2

aα(x)∂
α
x

is negative elliptic operator with smooth coefficients aα(x) ∈ C∞(Rn) such that

A(x,Dx) = A(∞,Dx) for all x ∈ R
n |x| ≥ RA ,

and ∑

|α|=2

aα(x)ξ
α > 0 if ξ ∈ R

n, ξ 6= 0 , x ∈ R
n.

Theorem 5.1 Assume that A(x,Dx) is elliptic negative self-adjoint operator. The solution ψ of
the problem





ψtt − t−4/3A(x,Dx)ψ + 2t−1ψt = f, t > 0, x ∈ R
n,

lim
t→0+

tψ(x, t) = ϕ0(x), x ∈ R
n ,

lim
t→0+

(
tψt(x, t) + ψ(x, t) + 3t−1/3A(x,Dx)ϕ0(x)

)
= ϕ1(x), x ∈ R

n ,

(5.1)

is unique in C2((0, T ];D′(Rn)).

Proof. It suffices to prove the uniqueness in the problem



utt − t−4/3A(x,Dx)u = 0, in t > 0, x ∈ R

n,

u(x, 0) = 0, ut(x, 0) = 0, in R
n ,

where u = tψ ∈ C1([0, T ];D′(Rn)) ∩ C2((0, T ];D′(Rn)). We choose an arbitrary T > 0 and for the
function ϕ ∈ C∞

0 (Rn) consider the Cauchy problem




vtt − t−4/3A(x,Dx)v = 0, in t ∈ (0, T ], x ∈ R

n,

v(x, T ) = 0, vt(x, T ) = ϕ(x), in R
n.

(5.2)

Since the operator S = ∂2t − t−4/3A(x,Dx) is strictly hyperbolic for t > 0, there is a unique solution
v ∈ C∞((0, T ]×R

n)). This solution obeys finite speed of propagation, consequently there is a ball
B ⊆ R

n of the finite radius R, such that supp v ⊆ [0, T ] ×B.
Then we define operator

√
−A(x,Dx) (see, e.g.,[16, Ch.XII]), which is a pseudodifferential

operator. The solution v(x, t) of the problem (5.2) can be written in terms of the Fourier integral
operators as follows

v(x, t) =
i

18
(
√

−A(x,Dx))
−3

×
{(

iφ(t)
√

−A(x,Dx)− 1
)(

iφ(T )
√

−A(x,Dx) + 1
)
e−i(φ(T )−φ(t))

√
−A(x,Dx)

−
(
iφ(t)

√
−A(x,Dx) + 1

)(
iφ(T )

√
−A(x,Dx)− 1

)
ei(φ(T )−φ(t))

√
−A(x,Dx)

}
ϕ(x)
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as well as

v(x, t)

=
1

9
(
√

−A(x,Dx))
−3

{(
φ(t)φ(T )

√
−A(x,Dx)− 1

)
sin
(√

−A(x,Dx) (φ(T )− φ(t))
)

−
√

−A(x,Dx) (φ(t)− φ(T )) cos
(√

−A(x,Dx) (φ(T )− φ(t))
)}

ϕ(x) .

Thus, the solution is given by the Fourier integral operators of order −1. In particular, for the
derivative we obtain

vt(x, t) =
1

2φ(t)
(
√

−A(x,Dx))
−1

{
e−i(φ(t)−φ(T ))

√
−A(x,Dx)

(√
−A(x,Dx)φ(T ) + i

)

+ei(φ(t)−φ(T ))
√

−A(x,Dx)
(√

−A(x,Dx)φ(T )− i
)}

ϕ(x)

=
1

φ(t)

{
cos
(
(φ(t)− φ(T ))

√
−A(x,Dx)

)
φ(T )

+(
√

−A(x,Dx))
−1 sin

(
(φ(t)− φ(T ))

√
−A(x,Dx)

)}
ϕ(x) .

One can easily check the following limits

lim
t→0+

v(x, t) =
1

18
(
√

−A(x,Dx))
−3

×
{
e−i

√
−A(x,Dx)φ(T )

√
−A(x,Dx)φ(T )− ie−i

√
−A(x,Dx)φ(T )

+ei
√

−A(x,Dx)φ(T )
√

−A(x,Dx)φ(T ) + iei
√

−A(x,Dx)φ(T )

}
ϕ(x)

= −1

9
(A(x,Dx))

−1

{
cos
(
φ(T )

√
−A(x,Dx)

)
φ(T )

−(
√

−A(x,Dx))
−1 sin

(
φ(T )

√
−A(x,Dx)

)}
ϕ(x)

and

lim
t→0+

φ(t)vt(x, t)

=
{
φ(T ) cos

(
φ(T )

√
−A(x,Dx)

)
+ (
√

−A(x,Dx))
−1 sin

(
φ(T )

√
−A(x,Dx)

)}
ϕ(x) .

In particular, it follows
v, t1/3vt ∈ C([0, T ];C∞(K)) ,

where K ⊆ R
n is a compact. We denote 〈u, ϕ〉 the pairing of the distribution u ∈ D′(Rn)

and a test function ϕ ∈ D(Rn). Consider the functions 〈u(·, t), v(·, t)〉, 〈ut(·, t), vt(·, t)〉, and
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〈u(·, t), A(·,Dx)v(·, t)〉. We can assume that suppu ⊆ [0, T ] × Bu, where Bu is a compact and
it contains B. Then we can estimate these functions as follows

|〈u(·, t), v(·, t)〉| + |〈u(·, t), A(·,Dx)v(·, t)〉| ≤ ct for all t ∈ [0, T ] .

Hence,

∫ T

0
t−4/3| < u(·, t), A(·,Dx)v(·, t) > | dt <∞ and

∫ T

0
| < utt(·, t), v(·, t) > | dt <∞ ,

as well as ∫ T

0
| < ut(·, t), vt(·, t) > | dt <∞ .

Hence, taking into account that u solves equation without source term, we obtain

∫ T

0
< utt(·, t), v(·, t) > dt−

∫ T

0
t−4/3 < u(·, t), A(·,Dx)v(·, t) > dt = 0 .

Applying the integration by parts, taking into account that v solves equation without source term,
we derive

< u(·, T ), ϕ(·) >= 0

for arbitrary ϕ ∈ C∞
0 (Rn), which completes the proof of the theorem. �

Theorem 5.1 allows us to prove the finite speed of propagation property in the Cauchy problem.

Theorem 5.2 The solution ψ ∈ C2((0, T ];D′(Rn)) of the problem (5.1) obeys finite speed of prop-
agation, that is, for every given T > 0 and the open ball BR(x0) = {x ∈ R

n ; |x − x0| < R},
if

ϕ0 = ϕ1 = 0 on BR+3T 1/3sA
(x0) and f = 0 on

⋃

t∈[0,T ]

BR+3(T 1/3−t1/3)sA
(x0) ,

then
ψ(T ) = 0 on BR(x0) = {x ∈ R

n ; |x− x0| < R} .
Here

sA = max
x∈Rn, ξ∈Rn, |ξ|=1

∑

|α|=2

aα(x)ξ
α .

Proof. It suffices to use the finite speed of propagation in the problem for the auxiliary function
v in the proof of the previous theorem. �

Acknowledgement

This paper was completed during our visit at the Technical University Bergakademie Freiberg in
the summer of 2016. The authors are grateful to Michael Reissig for the invitation to Freiberg and
for the warm hospitality. K.Y. expresses his gratitude to the Deutsche Forschungsgemeinschaft for
the financial support under the grant GZ: RE 961/21-1. The authors are grateful to Alessandro
Palmieri for the useful remark that improved the text of the manuscript.

25



References

[1] H. Bateman, A. Erdelyi, Higher Transcendental Functions, v.1,2, McGraw-Hill, New York,
(1953).

[2] M. S. Baouendi, E. C. Zachmanoglou, Unique continuation of solutions of partial differential
equations and inequalities from manifolds of any dimension, Duke Math. J. 45 (1978) 1–13.

[3] P. Brenner, On the existence of global smooth solutions of certain semilinear hyperbolic equa-
tions, Math. Z. 167(2) (1979) 99–135.

[4] Y. Choquet-Bruhat, Global wave maps on Robertson-Walker spacetimes. Modern group anal-
ysis, Nonlinear Dynam. 22 (1) (2000) 39–47.

[5] Y. Choquet-Bruhat, General relativity and the Einstein equations. Oxford Mathematical
Monographs. Oxford University Press, Oxford (2009).

[6] M. R. Ebert and M. Reissig, Theory of damped wave models with integrable and decaying in
time speed of propagation, J. Hyperbolic Differ. Equ. 13(2) (2016) 417–439.

[7] A. Galstian, T. Kinoshita, K. Yagdjian, A note on wave equation in Einstein and de Sitter
space-time, J. Math. Phys. 51 (5) (2010) 052501.

[8] A. Galstian, K. Yagdjian, Microlocal analysis for waves propagating in Einstein & de Sitter
spacetime, Math. Phys. Anal. Geom. 17 (1–2) (2014) 223–246.

[9] A. Galstian, K. Yagdjian, Global solutions for semilinear Klein-Gordon equations in FLRW
spacetimes, Nonlinear Anal. 113 (2015) 339–356.

[10] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order. Reprint of
the 1998 edition. Classics in Mathematics. Springer–Verlag, Berlin (2001).

[11] S. W .Hawking, G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs
on Mathematical Physics, No. 1. Cambridge University Press, London-New York (1973).

[12] D. He, I. Witt, and H. Yin, On the global solution problem for semilinear generalized Tricomi
equations, I. arXiv:1511.08722v1 (2015)

[13] Z. Ruan, I. Witt, and H. Yin, The existence and singularity structures of low regularity solu-
tions to higher order degenerate hyperbolic equations. J. Differential Equations 256 (2) (2014)
407–460.

[14] Z. Ruan, I. Witt, and H. Yin, On the existence and cusp singularity of solutions to semilin-
ear generalized Tricomi equations with discontinuous initial data, Comm. in Contemporary
Mathematics 17 (3) (2015) 1450028.

[15] Z. Ruan, I. Witt, and H. Yin, On the existence of low regularity solutions to semilinear
generalized Tricomi equations in mixed type domains, J. Differential Equations 259 (12) (2015)
7406–7462.

[16] M. E. Taylor, Pseudodifferential operators. Princeton Mathematical Series, 34. Princeton Uni-
versity Press, Princeton, N.J. (1981).

26

http://arxiv.org/abs/1511.08722


[17] J. Wirth, About the solvability behaviour for special classes of nonlinear hyperbolic equations,
Nonlinear Anal. 52(2) (2003) 421–431.

[18] B. Yordanov and Qi S. Zhang, Finite-time blowup for wave equations with a potential, SIAM
J. Math. Anal. 36 (5) (2005) 1426–1433.

[19] K. Yagdjian, Global existence in the Cauchy problem for nonlinear wave equations with variable
speed of propagation. in New trends in the theory of hyperbolic equations, Oper. Theory Adv.
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